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Zusammenfassung

Diese Dissertation stellt Approximationsalgorithmen für geometrische Packungs- und
Schedulingprobleme vor. Zuerst werden das Bin Packing-Problem und seine Verallge-
meinerung, das Variable-sized Bin Packing-Problem, betrachtet. Bei Bin Packing muss
eine Menge an Gegenständen (Items) in eine minimale Anzahl an Bins einer Größe
gepackt werden, ohne die Kapazität (Größe) der einzelnen Bins zu überschreiten. Bei
Variable-sized Bin Packing sind mehrere Bingrößen gegeben, wobei eine beliebige An-
zahl an Bins jeder Größe gewählt werden darf. Ziel ist es, die Gegenstände in die Bins
zu packen und gleichzeitig das Gesamtvolumen der benutzten Bins zu minimieren.
Wir stellen für beide Probleme Algorithmen vor, die eine Lösung mit Wert höchstens
(1 + ε)OPT(I) +O(log2( 1

ε )) für jedes ε > 0 und jede Probleminstanz I finden. Dabei
bezeichnet OPT(I) den optimalen Wert für die Instanz I.

Unsere Algorithmen müssen die unbeschränkte (unbounded) Variante des Knap-
sack-Problems (Rucksackproblems) und des Knapsack-Problems mit invers propor-
tionalen Profiten (Knapsack Problem with Inversely Proportional Profits, KPIP) als
Unterprobleme lösen. Beim Knapsack-Problem ist eine Knapsack-Größe zusammen
mit einer Menge an Items gegeben, wobei jedes Item einen Profit und eine Größe hat.
Ziel ist es, eine Menge an Items mit maximalem Profit zu wählen, die immer noch in
den Knapsack passt. In der normalen 0-1 Variante des Knapsack-Problems kann jedes
Item nur einmal gewählt werden. Bei der beschränkten Variante kann von jedem Item
eine bestimmte Anzahl an Kopien genommen werden. Die unbeschränkte Variante
erlaubt die unbeschränkte Anzahl Kopien jedes Items.
KPIP ist eine Verallgemeinerung des Knapsack-Problems, in der wir nicht nur eine,
sondern mehrere Knapsack-Größen haben. Eine Knapsack-Größe muss zusammen mit
einer entsprechenden Auswahl an Items gewählt werden, die in den Knapsack passt.
Allerdings ist der Profit eines Items invers proportional zur Größe des Knapsacks, in
den das Item gepackt wird. Das macht es schwierig, die richtige Knapsack-Größe zu
wählen, die den Profit über alle Knapsack-Größen maximiert. Wie beim Knapsack-
Problem gibt es bei KPIP ebenfalls die Varianten 0-1, beschränkt und unbeschränkt.
Wir stellen zuerst Algorithmen für alle drei Varianten von KPIP vor. Sie finden Lö-
sungen mit einem Mindestprofit von (1− ε)OPT(I) für jedes ε > 0 und jede Pro-
bleminstanz I, zudem sind die Algorithmen schneller als der natürliche Ansatz, für
jede Knapsack-Größe das entsprechende Knapsack-Problem einzeln zu lösen. Danach
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stellen wir einen Algorithmus für die unbeschränkte Variante des Knapsack-Problems
vor, ebenfalls mit einem Mindestprofit von (1− ε)OPT(I) für jedes ε > 0 und jede
Instanz I. Er ist schneller und benötigt weniger Speicherplatz als zuvor bekannte Algo-
rithmen. Schließlich kombinieren wir den Ansatz für KPIP und für das unbeschränkte
Knapsack-Problem, um einen Algorithmus für die unbeschränkte Variante von KPIP
zu finden, der wiederum eine kleinere Zeit- und Speicherkomplexität hat und dessen
Lösung für Instanz I und ε > 0 einen Mindestprofit von (1− ε)OPT(I) besitzt. All
diese Resultate verbessern die Laufzeit für den Bin Packing- und Variable-sized Bin
Packing-Algorithmus.

Als Korollar wird die Laufzeit für einen Strip Packing-Algorithmus der Güte
(1 + ε)OPT(I) + O( 1

ε log 1
ε ) verbessert. Bei Strip Packing ist das Ziel, eine Menge

an Rechtecken in einen Streifen mit unbeschränkter Höhe zu packen, sodass sich die
Rechtecke nicht überlappen und gleichzeitig die Höhe der Packung minimiert wird.

Schließlich wird das Scheduling-Problem auf unabhängigen Maschinen (Scheduling
on Unrelated Machines) betrachtet, bei dem eine Menge an Maschinen und Jobs
gegeben ist. Jeder Job hat auf einer Maschine eine Ausführungszeit, wobei diese auf
jeder Maschine unterschiedlich sein kann. Ziel ist es, die Jobs auf die Maschinen so
zu verteilen, dass die Laufzeit der am längsten laufenden Maschine minimiert wird.
Wir betrachten den Spezialfall, in dem die Anzahl der Maschinentypen K konstant
ist: Ein Job hat auf jeder Maschine desselben Typs die gleiche Ausführungszeit. Wir
stellen für den Spezialfall einen Algorithmus vor, der eine Lösung mit Wert höchstens
(1 + ε)OPT(I) für jedes ε > 0 und jede Instanz I findet. Der Algorithmus ist schneller
als das zuvor bekannte Verfahren für allgemeines (aber konstantes) K.
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Abstract

This thesis presents approximation algorithms for geometric packing and scheduling
problems. First, the Bin Packing Problem and its generalization, the Variable-sized
Bin Packing Problem, are considered. In Bin Packing, a set of items has to be packed
into a minimum number of bins of one size, without exceeding the size of any bin.
In Variable-sized Bin Packing, several bin sizes are given, and an arbitrary number
of bins of every size can be chosen. The objective is to pack the items into bins while
minimizing the total volume of the bins used. We present algorithms for both problems
that find a solution of value at most (1 + ε)OPT(I) +O(log2( 1

ε )) for every ε > 0 and
every problem instance I. In this thesis, OPT(I) denotes the optimum value for the
instance I.

Our algorithms have to solve the unbounded variant of the Knapsack Problem and
of the Knapsack Problem with Inversely Proportional Profits (KPIP) as subproblems.
In the Knapsack Problem, a knapsack size is given together with a set of items, each
with a profit and a size. The objective is to choose a subset of items with a maximum
total profit that still fits into the knapsack. In the normal 0-1 variant of the Knapsack
Problem, an item can be chosen only once. In the bounded variant, an individual
bounded number of copies can be taken of every item. The unbounded variant allows
for an infinite number of copies of every item.
KPIP is a generalization of the Knapsack Problem in which we have not only one,
but several knapsack sizes. One knapsack size has to be chosen together with a
corresponding subset of items that fits into the knapsack. However, the profit of an
item is inversely proportional to the size of the knapsack into which it has been packed.
This makes it non-trivial to choose the right knapsack size that maximizes the profit
over all knapsack sizes. There are the 0-1, the bounded, and the unbounded variant of
KPIP similar to the Knapsack Problem.
We first present algorithms for every of the three variants of KPIP. They find solutions
of value at least (1− ε)OPT(I) for every ε > 0 and problem instance I, and they are
moreover faster than the natural approach to separately solve for every knapsack
size the corresponding Knapsack Problem. Second, we present an algorithm for the
Unbounded Knapsack Problem with a solution of value at least (1− ε)OPT(I) for every
ε > 0 and instance I. It is faster and needs less storage space than previously known
algorithms. Finally, we combine the approaches of the KPIP and of the Unbounded
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Knapsack algorithms to get an algorithm for the Unbounded KPIP that has again a
better time and space complexity and whose solution to I has for ε > 0 a value of at
least (1− ε)OPT(I). All these results improve the running time for our Bin Packing
and Variable-sized Bin Packing algorithms.

As a corollary, we also improve the running time for a Strip Packing algorithm of
solution quality (1 + ε)OPT(I) +O( 1

ε log 1
ε ). The goal of Strip Packing is to pack a set

of rectangles into a strip of infinite height so that the rectangles do not overlap and the
height of the packing is minimized.

Finally, Scheduling on Unrelated Machines is considered where we are given a set
of machines and a set of jobs. Each job has a processing time on a machine, where the
processing time of a job may be different on each machine. The goal is to distribute the
jobs to the machines so that the total processing time of the longest-running machine
is minimized. We consider the case with a constant number K of machine types: one
job has the same processing time on every machine of the same type. We present an
algorithm for this special case that finds a solution of value at most (1 + ε)OPT(I)
for every ε > 0 and instance I. The algorithm has a better running time than the
previously known algorithm for general (but constant) K.
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1 Introduction

Optimization theory has a broad range of applications: from the cost-efficient cutting
of timber into pieces of desired length over the creation of rosters for airline crews up
to the correct and cost-efficient routing of goods or the distribution of data in cloud
computing. From a theoretical point of view, an optimization problem Π = (I , F, w)

consists of three elements as stated in [48]:

• a set I of problem instances of the optimization problem Π,

• a set of feasible solutions F(I) to every problem instance I ∈ I , and

• a value w(S) ∈ R for every solution S ∈ F(I).

There are two types of optimization problems: for a given instance I, the goal is either
to maximize w(S) (which are maximization problems), or to minimize w(S) (so-called
minimization problems).

The study of optimization problems is also driven by the fact that many of them
are NP-hard or NP-complete. Since the common assumption is P 6= NP, optimal
algorithms with an efficient running time seem highly unlikely. The running time
is called efficient if it is polynomial in the input instance length |I|. The natural
question is: if we cannot efficiently solve a problem to optimality, how good can we
approximate the optimal value in polynomial time? Are there theoretical bounds, or is
it possible to find a solution as close to the optimum as we wish to? Finally, can we
improve upon the running time or approximation quality of known approximation
algorithms?

1.1 Approximation Algorithms

We first introduce a formal definition of approximation. Let Π be an optimization
problem. The optimal value for an instance I ∈ I of Π is denoted by OPT(I). Let A
be an algorithm for the optimization problem Π. We denote the value of its solution
to I by A(I). The algorithm has an absolute approximation ratio ρ ∈ R>0 if we have

sup
I∈I

A(I)
OPT(I)

≤ ρ in the case of minimization problems

1



1 Introduction

and

inf
I∈I

A(I)
OPT(I)

≥ ρ in the case of maximization problems.

An algorithm of absolute approximation ratio ρ is also called a ρ-approximation algo-
rithm. Note that 1 ≤ supI∈I

A(I)
OPT(I) if Π is a minimization problem and infI∈I

A(I)
OPT(I) ≤

1 if it is a maximization problem.
Especially interesting for NP-hard problems are Polynomial Time Approximation

Schemes (PTAS). A PTAS is a family of approximation algorithms (Aε)ε>0 where Aε has
an absolute approximation ratio of 1 + ε for minimization and 1− ε for maximization
problems. The running time is in |I| f ( 1

ε ), i.e. polynomial for constant ε. The function f
is however not bounded in general and may e.g. be double exponential in 1

ε . Efficient
Polynomial Time Approximation Schemes (EPTAS) are PTAS where the running time is in
f ( 1

ε ) · |I|O(1) such that the degree of the polynomial is independent of 1
ε . Finally, Fully

Polynomial Time Approximation Schemes (FPTAS) are polynomial in |I| as well as 1
ε . It

should be noted that not all optimization problems allow for an FPTAS or even for a
PTAS.

The asymptotic approximation ratio is often considered e.g. if a PTAS is not possible.
An algorithm has an asymptotic approximation ratio ρ if the following holds:

lim sup
k→∞

sup
I∈I : OPT(I)=k

A(I)
OPT(I)

≤ ρ for minimization problems

and

lim inf
k→∞

inf
I∈I : OPT(I)=k

A(I)
OPT(I)

≥ ρ for maximization problems.

Roughly speaking, the asymptotic approximation ratio can be seen as the approxima-
tion ratio achieved for large problem instances. Similarly to above, there are Asymptotic
Polynomial Time Approximation Schemes (APTAS) (Aε)ε>0 that have an asymptotic ap-
proximation ratio of 1 + ε (for minimization problems) or 1− ε (for maximization
problems). The running time is again in |I| f ( 1

ε ). Finally, Asymptotic Fully Polynomial
Time Approximation Schemes (AFPTAS) are APTAS with a time complexity polynomial
in |I| and 1

ε .

1.2 Basic Concepts of Optimization

We introduce some basic concepts that are commonly used in optimization theory.

1.2.1 Linear Programming

An extremely useful tool to model and solve optimization problems is linear program-
ming. A linear program (LP) consists of an (m× n) matrix A with entries aij ∈ Z for
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1.2 Basic Concepts of Optimization

all i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. Moreover, we have vectors c ∈ Zn and b ∈ Zm.
Let aT

i (i ∈ {1, . . . , m}) be the rows of A. Furthermore, let N1 ·∪N2 = {1, . . . , n} be a
partition of the columns of A and M1 ·∪M2 = {1, . . . , m} a partition of the rows.

Linear programs have the following form:

A minimization LP

min cTx

aT
i x = bi i ∈ M1

aT
i x ≥ bi i ∈ M2

xj ≥ 0 j ∈ N1

xj ∈ R j ∈ N2

A maximization LP

max cTx

aT
i x = bi i ∈ M1

aT
i x ≤ bi i ∈ M2

xj ≥ 0 j ∈ N1

xj ∈ R j ∈ N2

This is the general form of a (minimization or maximization) LP. In the special case
of M1 = N2 = ∅, an LP is in standard form, and in the case of M2 = N2 = ∅, it is in
canonical form. These three forms are equivalent, as can be easily proved. Moreover,
a maximization LP can be transformed into an equivalent minimization LP, and vice
versa. Note that the standard form can also be written as

min cTx, Ax ≥ b, x ≥ 0 and accordingly max cTx, Ax ≤ b, x ≥ 0 .

Ax ≥ b (or Ax ≤ b) means that every entry of Ax = ((Ax)i)i∈{1,...,m} satisfies (Ax)i ≥
bi (and accordingly (Ax)i ≤ bi) for all i, similarly x ≥ 0 means xj ≥ 0 for all j. The
canonical form becomes

min cTx, Ax = b, x ≥ 0 and accordingly max cTx, Ax = b, x ≥ 0 .

Note that the conditions aij, bi, cj ∈ Z are often relaxed to aij, bi, cj ∈ R.
Consider a minimization LP in the canonical form. The common assumptions are

m ≤ n, that the matrix A is full rank, i.e. of rank m, and that the set of feasible solutions
F = {x ∈ Rn | Ax = b, x ≥ 0} is not empty. Moreover, it is assumed that the set of
solution values {cTx | x ∈ F} is bounded from below. It is obvious that the LP has a
finite optimum under these assumptions.

Let B = {Aj1 , . . . Ajm} be m linearly independent columns of A. We can view B as
an (m×m) matrix B = (Aj1 | · · · |Ajm), which is a regular matrix. Define

x̄ = (x̄1, . . . , x̄m) := B−1b

and the corresponding basic solution

x = (x1, . . . , xn) with xj :=

x̄k if Aj = Ajk ∈ B

0 otherwise
.

3



1 Introduction

A basic solution has at most m entries xj > 0. Moreover, a linear program has always
an optimal basic solution if the assumptions above are true. These two properties are
fundamental in linear programming.

For every LP, its dual LP can be defined. The original LP is called the primal LP. We
state the general definition for minimization LPs:

The primal LP

min cTx

aT
i x = bi i ∈ M1

aT
i x ≥ bi i ∈ M2

xj ≥ 0 j ∈ N1

xj ∈ R j ∈ N2

The dual LP

max πTb

πi ∈ R i ∈ M1

πi ≥ 0 i ∈ M2

πT Aj ≤ cj j ∈ N1

πT Aj = cj j ∈ N2

If the primal has a finite optimum of value z ∈ R, then the dual has also a finite
optimum of the same value z. Note that the columns Aj of the primal correspond to
the inequalities πT Aj ≤ cj or πT Aj = cj of the dual.

Until now, all variables xj have continuous values. If we restrict all variables to
integer values such that xj ∈ N or xj ∈ Z holds for all j ∈ {1, . . . , n}, we have an
integer linear program (ILP). Solving ILPs is in general NP-hard.

There are several algorithms to solve linear programs, e.g. the famous simplex
algorithm as well as the ellipsoid algorithm. ILPs can be solved by methods like
branch-and-bound or cutting planes. As linear programming and integer linear
programming are fundamental concepts in operations research and optimization
theory, a vast amount of literature exists. We recommend the books by Papadimitriou
and Steiglitz [71] as well as by Jansen and Margraf [48], which also prove the statements
in this subsection. The information here have been taken from the second book.

1.2.2 Column Generation

You may have remarked that a linear program can have a large number of columns
n compared to the m constraints aT

i x ≥ bi or aT
i x = bi. Optimization algorithms

that solve LPs therefore often rely on column generation where columns are generated
during the execution of the algorithm. The actual LP that has to be solved is called
the Master Problem (MP) and the LP with the currently known columns (and the
corresponding variables) the Restricted Master Problem (RMP). Based on the current
solution of the RMP, a pricing (sub)problem is solved to decide whether all relevant
columns of the MP are considered by the RMP. If not, the pricing subproblem returns a
new column that is added to the RMP, and the procedure is repeated until all relevant
columns have been found. One possibility for column generation is the consideration
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1.3 Problem Definitions

of the dual of the LP and to (approximately or exactly) solve a separation problem as
the pricing problem: it finds violated inequalities of the dual and therefore missing
columns of the primal LP.

As column generation is also an important topic in the theory of optimization, there
is a large amount of literature dedicated to it. We refer to [13, 66, 70] as an introduction.

1.2.3 Max-Min Resource Sharing

This thesis will solve linear programs by transforming them into max-min resource
sharing problems.

Let fi : B → R≥0, i ∈ {1, . . . , N}, be non-negative concave functions over a non-
empty, convex and compact set B ⊂ RL. The goal is to solve

max λ s.t. f (v) :=


f1(v)

...
fN(v)

 ≥ λ


1
...
1

 , v ∈ B , (1.1)

i.e. to find the largest value λ∗ and the corresponding vector v∗ ∈ B such that all
functions fi(v) are together as large as possible.

Such problems can be approximately solved with an algorithm by Grigoriadis
et al. [33]. It relies on a solver of a subproblem, the so-called block problem Λ(p) :=
max{pT f (v) | v ∈ B}. Here, p ∈ RN

≥0 is a vector in the standard simplex with ∑i pi = 1
and pi ≥ 0 for i ∈ {1, . . . , N}. For further information on max-min resource sharing,
we refer to Section A.1 and to [33, 41].

1.3 Problem Definitions

We present the optimization problems considered in this thesis. An informal introduc-
tion to the problem is followed by the formal definition.

1.3.1 Bin Packing and Variable-sized Bin Packing

The Bin Packing Problem (BP) is one of the classical NP-complete optimization prob-
lems. In it, we are given a set of items I and a bin size. The goal is to pack the items into
as few bins as possible without exceeding the size of each bin. In the Variable-sized
Bin Packing Problem (VSBPP or VBP), there are not only one, but several bin sizes C
at our disposal such that we may take an arbitrary number of bins of every size. The
goal is to minimize the total volume of the bins used in the packing. It is clear that
Variable-sized Bin Packing is a generalization of the normal Bin Packing Problem. The

5



1 Introduction

study of BP and VBP has been motivated from the beginning by the efficient use of
raw materials:

Very many materials used in industry and construction come in the form
of whole units (sheets of glass, tin-plate, plywood, paper, roofing and
sheet iron, logs, boards, beams, reinforcing rod, forms, etc.). In using them
directly or for making semi-finished products, it is necessary to divide
these units into parts of the required dimensions. In doing this, scrap is
usually formed and the materials actually utilized constitute only a certain
per cent of the whole quantity—the rest going into scrap. . . . Therefore, the
minimization of scrap appears to be a very important real problem, since
it would permit reduction in the norms of expenditure of critical materials.
[55]

Variants of BP and VBP where the input is given in a more compact form (see below)
are in fact called the Cutting Stock Problem (CSP) and the Multiple-Length Cutting
Stock Problem (MLCSP).

Formal Definition An instance (I, C) of the Variable-sized Bin Packing Problem
(VBP) is a pair consisting of a list I = {a1, . . . , an} of items and a list C = {c1, . . . , cM}
of different bin sizes with n, M ∈N. Every item a ∈ I has a size s(a) ∈ (0, 1]. The bin
sizes cl ∈ C satisfy cl ∈ (0, 1], and there is one unit-sized bin cM = 1. A set of items
S ⊂ I can be packed in a bin of size cl , l ∈ {1, . . . , M}, as long as the total volume of
the items does not exceed the capacity (i.e. size) of a bin, i.e. ∑a∈S s(a) ≤ cl .

The Variable-sized Bin Packing Problem. Pack the items I of an instance (I, C) into
bins of size in C so that the total size of the bins used is minimized. The optimal value
is denoted by OPT(I, C).

The Bin Packing Problem (BP) is a special case of the Variable-sized Bin Packing
Problem with C = {1}. Thus, a BP instance may be abbreviated as (I, C) = I, and the
optimal value as OPT(I, C) = OPT(I).

Closely related to BP and VBP is the Multiple-Length Cutting Stock Problem
(MLCSP), where the input is provided in a more compact form: it consists of a vector
(d, M, a,~n, c, ρ) of d item sizes a = (a1, . . . , ad), the vector~n = (n1, . . . , nd) where ni is
the number of items of size ai, the M stock-lengths c = (c1, . . . , cM) and stock-length
prices ρ = (ρ1, . . . , ρM). It is asked to partition the items into sets so that every set fits
into a stock and the total price of stocks used is minimized. (One stock length can
of course be used several times.) In our case, the price of a stock would be equal to
its length. Similar to BP, the normal Cutting Stock Problem (CSP) has only one stock
length such that we have without loss of generality c = (1) and ρ = (1).
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1.3 Problem Definitions

1.3.2 Strip Packing

In this problem, a set of rectangles has to be packed into a strip of infinite height such
that the rectangles do not overlap. In the variant we consider, the rectangles must not
be rotated. As a possible application, Prädel [73] suggests cutting out rectangles from
sheets of raw material like wood. Rotations are not allowed e.g. because of the grain
of the wood. Like Bin Packing, Strip Packing (SP) is NP-complete.

Formal Definition Let I be a set of n rectangles I = {a1, . . . , an}. Each rectangle has
a width w(aj) ∈ (0, 1] and a height h(aj) ∈ (0, 1] for j ∈ {1, . . . , n}. Pack the rectangles
into a strip of unit width such that the total height of the packing is minimized. The
rectangles must not overlap and must not be rotated.

1.3.3 Knapsack Problems

In the normal Knapsack Problem (KP), a set of items is given, each with a size and
a profit, together with a knapsack size. The goal is to choose a subset of items such
that they fit into the knapsack and at the same time maximize the total profit. In the
0-1 variant of KP (called 0-1 KP), an item may be taken only once. In the Bounded
Knapsack Problem (BKP), an individual number of copies of every item is allowed,
and the Unbounded Knapsack Problem (UKP) admits an unlimited number of item
copies. A famous “application” is a burglar that breaks into a museum. Since his
knapsack has only a limited capacity, his goal is to choose some of the exhibits such
that the loot still fits into the knapsack and that has at the same time a value as large
as possible.

The Knapsack Problem with Inversely Proportional Profits (KPIP) is a generalization
of KP with several knapsack sizes of which only one can be used. It may therefore
seem natural to choose the largest knapsack size. If an item is packed into a knapsack
of size cl , the profit of an item is however scaled by 1

cl
. A knapsack of smaller size

may therefore allow for a larger profit. The 0-1, bounded and unbounded variant of
KPIP are defined similar to the normal Knapsack Problem. A motivation for KPIP was
suggested by Felix Land: the scaling of the item profits takes into account that it is
harder to fill a smaller knapsack as good as possible.

Formal Definition An instance I of the Knapsack Problem (KP) consists of a list
of items a1, . . . , an, n ∈ N. Every item has a profit p(aj) = pj and a size s(aj) = sj.
Moreover, a knapsack size c is given. In the literature, the profits pj and sizes sj as well
as c are normally natural numbers such that pj, sj, c ∈N. For column generation, we
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1 Introduction

will study the Knapsack Problem with pj ∈ (0, 1], sj ∈ (0, 1], and c = 1. In both cases,
the problem definition is the same:

The 0-1 Knapsack Problem. Choose a subset V ⊂ {a1, . . . , an} such that the total
profit of V is maximized and the total size of the items in V is at most c.

Mathematically, the problem can be defined by

max

{
n

∑
j=1

pjxj

∣∣∣ n

∑
j=1

sjxj ≤ c ; xj ∈ {0, 1} ∀j

}
.

In the bounded variant (BKP), up to dj ∈N copies of each item aj may be taken (i.e.
xj ∈ {0, . . . , dj}), and in the unbounded variant (UKP), an arbitrary number of copies
of every item is allowed (i.e. xj ∈N).

The 0-1 Knapsack Problem with Inversely Proportional Profits (0-1 KPIP) is a gener-
alization of 0-1 KP where the items have sizes sj ∈ (0, 1] and basic profits pj ∈ (0, 1].
Moreover, M knapsack sizes 0 < c1 < . . . < cM = 1 are given. If an item aj is packed
into the knapsack of size cl for l ∈ {1, . . . , M}, its profit counts as pj

cl
.

The 0-1 Knapsack Problem with Inversely Proportional Profits. Find the knapsack
size cl and the corresponding item set V such that the total profit is maximized.

Mathematically, the problem is defined by

max
l∈{1,...,M}

max

{
n

∑
j=1

pj

cl
xj

∣∣∣ n

∑
j=1

sjxj ≤ cl ; xj ∈ {0, 1} ∀j

}
.

The Bounded Knapsack Problem with Inversely Proportional Profits (BKPIP) and
the Unbounded Knapsack Problem with Inversely Proportional Profits (UKPIP) are
defined similar to BKP and UKP.

Note that the goal of the Knapsack Problem is to maximize the profit by choosing the
right subset of items, whereas the goal of (Variable-sized) Bin Packing is to minimize
the number of bins or the volume of the bins used when all items are packed.

1.3.4 Scheduling on Unrelated Machines of Few Different Types

Scheduling is a classical optimization problem. Jobs—e.g. computing tasks—have
to be distributed to machines such that one objective is minimized, normally the
maximum completion time of the jobs. One example is a cluster of processors that
has to perform a large amount of computation tasks. In general, the machines may
be heterogeneous: a processor may have been designed to perform a certain type of
calculations very fast, but may not be suited for other ones. However, the number of
different machine types may indeed be limited, as can be the case for e.g. a cluster of
CPUs and GPUs.
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Formal Definition An instance I consists of a set J = J (I) of n jobs and a set
M =M(I) of m machines. Every job j has a processing time on machine i of pij ≥ 0
for i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. A non-preemptive schedule is a distribution
of the jobs to the machines such that every job is processed by exactly one machine.
Formally, it is a mapping σ : J →M of each job j to a machine i. The objective is to
find a schedule σ that minimizes the makespan maxi∈M ∑j:σ(j)=i pij, i.e. the maximum
completion time of all jobs. Thus, even the longest-running machine shall finish
the processing as soon as possible. This classical problem is called Scheduling on
Unrelated Machines and is denoted by R | |Cmax in the 3-field notation [32].

As suggested above, we look at a variant where the machines are only of K different
types, where K is seen as constant: for two different machines i and i′ (with i 6= i′)
of the same type, we have pij = pi′ j for all jobs j ∈ {1, . . . , n}. The machines of
type k are denoted byMk such that the setsM1, . . . ,MK are a disjoint partition of
M. The number of machines of one type is mk := |Mk| for k ∈ {1, . . . , K}. Hence,
m1 + · · · + mK = m holds. The problem is denoted by (Pm1, . . . , PmK)| |Cmax and
called Scheduling on Unrelated Machines of Few Different Types .

(Pm1, . . . , PmK)| |Cmax. Find a schedule σ : J →M that minimizes the makespan.

1.4 General Assumptions

We assume that basic arithmetic operations as well as the computation of the logarithm
can be done in O(1). Moreover, we assume that all arithmetic operations can be done
exactly, e.g. because the non-integral values are in Q. It is clear that it may not be
possible to express the logarithm of a number a > 0 exactly, but only approximately.
However, we normally use the logarithm for mathematical expressions whose final
values are rounded. We may e.g. only need blog2 ac and not log2 a. Hence, we assume
that we can determine the logarithm with a tolerance tight enough to obtain the
same rounded value as if we were able to exactly compute the logarithm and exactly
perform arithmetic operations with it.

1.5 Outline of the Thesis

The results of this thesis are presented in five chapters. Note that all results were
obtained in collaboration with my supervisor Prof. Dr. Klaus Jansen.

Chapter 2 first presents a short introduction to the known results for the Bin
Packing Problem (BP) and the Variable-sized Bin Packing Problem (VBP). It is fol-
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1 Introduction

lowed by the presentation of improved AFPTAS for both problems with Aε(I, C) ≤
(1+ ε)OPT(I, C) +O(log2 1

ε ). The results were first presented at the conference MFCS
2012 [42]. They have been accepted to be published in a special journal issue of the
conference CSR 2013 [44].

Chapter 3 first states the known results for the Knapsack Problem (KP) and then
presents FPTAS for all three variants of the Knapsack Problem with Inversely Propor-
tional Profits (KPIP). They are faster than the natural approach to separately solve the
Knapsack Problem for each knapsack size cl . The Unbounded Knapsack Problem with
Inversely Proportional Profits (UKPIP) is in fact the column generation subproblem
for our algorithm of Chapter 2: hence, its running time is directly improved by the
faster FPTAS for UKPIP. The Knapsack Problem with Inversely Proportional Profits
was formally introduced at the conference CSR 2013 [43] where the algorithms were
also presented for the first time. These results will be published together with the
results in Chapter 2 in the special journal issue of the conference [44].

Chapter 4 presents a faster FPTAS for the Unbounded Knapsack Problem (UKP) that
has also an improved space complexity. Note that the column generation subroutine
of the AFPTAS for the Bin Packing Problem only has to solve UKP instances (and not
UKPIP instances). The faster FPTAS for UKP therefore improves the time complexity
of our algorithm for BP. The result was presented at IWOCA 2015 [47] and is also
available on arXiv [45]. The chapter moreover shows at the end how the new algorithm
for UKP decreases the running time of an AFPTAS for Strip Packing (SP).

Chapter 5 combines the results in Chapter 3 and 4. We get an FPTAS for the Un-
bounded Knapsack Problem with Inversely Proportional Profits that is faster and that
has also a better space complexity. Thus, the running time of the AFPTAS for VBP is
further improved. The paper on which this chapter is based has not been published
[46].

Chapter 6 concludes the thesis with an improved PTAS for Scheduling on Unrelated
Machines of Few Different Types ((Pm1, . . . , PmK)| |Cmax). The result was obtained in
collaboration with the students Jan Clemens Gehrke and Jakob Schikowski as well as
my supervisor Klaus Jansen. It was accepted at SOFSEM 2016 [27] and is also available
as a technical report [26].
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2 Bin Packing and Variable-sized Bin Packing

2.1 Introduction

2.1.1 Known Results

As already mentioned, the Bin Packing Problem (BP) is a classic NP-complete problem
[25]. The first to consider it in the form of the (Multiple-Length) Cutting Stock Problem
(but naming it differently) were Kantorovich [55] and Eisemann [17]. Several approxi-
mation algorithms with a polynomial running time are known for Bin Packing (e.g.
First-Fit (FF), Next-Fit (NF), Best-Fit, First-Fit Decreasing (FFD) or Next-Fit Decreasing
(NFD)). As BP is a minimization problem, we always have 1 ≤ supI

A(I)
OPT(I) for the

absolute approximation ratio of any algorithm A. However, no polynomial-time
algorithm can achieve an absolute approximation ratio supI

A(I)
OPT(I) <

3
2 unless P = NP

[25]. (In fact, First-Fit Decreasing attains this absolute ratio [82].)

Note that the bound 3
2 for the absolute approximation ratio is due to the fact that a

polynomial algorithm could otherwise distinguish between the optimum of 2 or 3 for
BP instances and therefore solve the NP-complete Partition Problem in polynomial
time [25]. Since only such small instances prevent an absolute ratio better than 3

2 , larger
instances may allow for a better approximation ratio. It is therefore a good idea to
consider the asymptotic approximation ratio, which can be seen as the approximation
ratio for large instances (see Section 1.1). And in fact, every packing FFD(I) found
by FFD satisfies FFD(I) ≤ 11

9 OPT(I) + 6
9 [15, 16] so that FFD has an asymptotic

approximation ratio of 11
9 , which is obviously smaller than 3

2 .

In 1981, Fernandez de la Vega and Lueker [20] presented the first APTAS for
BP: the running time is polynomial in the input size |I| ≥ n, but exponential in
1
ε . One year later, Karmarkar and Karp [56] found the first AFPTAS satisfying
Aε(I) ≤ (1 + ε)OPT(I) +O( 1

ε2 ). In 1991, Plotkin et al. [72] presented an improved
algorithm satisfying Aε(I) ≤ (1 + ε)OPT(I) +O( 1

ε log( 1
ε )) and with a better running

time in O( 1
ε6 log6( 1

ε ) + log( 1
ε )n). Shachnai and Yehezkely [78] reduced the running

time further to O( 1
ε4 log3( 1

ε ) ·min{ 1
ε2 , 1

ε0.62 log0.62( 1
ε )N} + log( 1

ε )n), where N is the
longest binary representation of any input element. For general BP instances, the
algorithm therefore needs time in O( 1

ε6 log3( 1
ε ) + log( 1

ε )n). The algorithm is an appli-
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cation of Shachnai’s and Yehezkely’s AFPTAS for Bin Packing with Size Preserving
Fragmentation (BP-SPF).

Karmarkar and Karp [56] also presented a polynomial algorithm with the approxi-
mation guarantee A(I) ≤ OPT(I) +O(log2 OPT(I)), i.e. with an additive approxima-
tion factor. This result was only recently improved after 20 years: Rothvoß [75] first
presented an algorithm with A(I) ≤ OPT(I) +O(log(OPT(I)) log log(OPT(I))) and
then Hoberg and Rothvoß [35] an algorithm with A(I) ≤ OPT(I) +O(log OPT(I)). In
both cases, the algorithms are randomized and have an expected polynomial running
time in the input length. It should be noted that Cutting Stock with d different item
sizes has an exact polynomial-time algorithm if d is considered to be constant [31].

The Variable-sized Bin Packing Problem (VBP) was studied by Friesen and Langston
[22] who analysed three algorithms with the asymptotic approximation ratios 2, 3

2 and
4
3 . Murgolo [69] presented an AFPTAS with Aε(I) ≤ (1 + ε)OPT(I, C) +O( 1

ε4 ). This
was improved to (1 + ε)OPT(I, C) +O( 1

ε2 log( 1
ε )) by Shachnai and Yehezkely [78],

again by an application of their BP-SPF algorithm. The improved running time of
the algorithm is O( 1

ε8 log3( 1
ε ) ·min{ 1

ε2 log( 1
ε ),

1
ε0.24 N}+ (M + n) log( 1

ε )), where N is
(again) the longest binary representation of any input element. For general instances,
the running time is therefore bounded by O( 1

ε10 log4( 1
ε ) + log( 1

ε )(M + n)).

2.1.2 Our Result

This chapter presents an AFPTAS for BP and VBP with the smaller additive term
O(log2( 1

ε )) and a further improved running time.

Theorem 2.1. There is an AFPTAS (Aε)ε>0 for Variable-sized Bin Packing that finds for
ε ∈ (0, 1

2 ] a packing of an instance (I, C) in Aε(I) ≤ (1 + ε)OPT(I, C) +O(log2( 1
ε )) bins.

Its running time is in

O
(

1
ε5 log5 1

ε
+ M + log

(
1
ε

)
n
)

.

Theorem 2.2. There is an AFPTAS (Aε)ε>0 for Bin Packing that finds for ε ∈ (0, 1
2 ] a

packing of I in Aε(I) ≤ (1 + ε)OPT(I) +O(log2( 1
ε )) bins. Its running time is in

O
(

1
ε5 log4 1

ε
+ log

(
1
ε

)
n
)

.

For column generation, the VBP algorithm relies on FPTAS for the Unbounded Knap-
sack Problem with Inversely Proportional Profits (UKPIP) whereas the BP algorithm
uses algorithms for the Unbounded Knapsack Problem (UKP). Hence, the theorems
above state the running times of the AFPTAS for the case where the best FPTAS for
UKP and UKPIP of this thesis are used.
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2.2 Overview

Therefore, we present the actual time complexity of the AFPTAS if the running
time of the algorithms for UKP and UKPIP is left open (with the exception of a lower
bound). To do so, we introduce (in a slight abuse of notation) the functions UKPIP
and UKP.

Definition 2.3. Take an instance of the Unbounded Knapsack Problem with Inversely Pro-
portional Profits (UKPIP) with d1 items and M1 knapsacks, and where cmin is the smallest
knapsack size. Then, UKPIP(d1, M1, cmin, ε̄

6 ) denotes the running time of an FPTAS for
UKPIP that solves such an instance with the approximation ratio (1− ε̄

6 ) ∈ Θ(1− ε). Simi-
larly, let UKP(d1, ε̄

6 ) be the running time of an FPTAS for UKP with the same approximation
ratio and d1 items.

Theorem 2.4. Let (I, C) be a VBP instance with n items, M bin sizes and optimal value
OPT(I, C). There is an AFPTAS (Aε)ε>0 such that Aε finds for ε ∈ (0, 1

2 ] a solution of
the instance with an objective value of Aε(I, C) ≤ (1 + ε)OPT(I, C) +O(log2 ( 1

ε

)
). The

running time of Aε is bounded by

O
(

UKPIP
(

d1, M1, cmin,
ε̄

6

)
· 1

ε3 log
1
ε
+ M + log

(
1
ε

)
n
)

if we assume that UKPIP(d1, M1, cmin, ε̄
6 ) ∈ Ω( 1

ε2 ) for d1 ∈ O( 1
ε log 1

ε ), M1 ∈ O( 1
ε log 1

ε )

and cmin ≥ ε.

Theorem 2.5. Let I be a BP instance with the optimal value OPT(I). There is an AFPTAS
(Aε)ε>0 such that Aε finds for ε ∈ (0, 1

2 ] a packing of I in Aε(I) ≤ (1 + ε)OPT(I) +
O(log2( 1

ε )) bins. The running time is bounded by

O
(

UKP
(

d1,
ε̄

6

)
· 1

ε3 log
1
ε
+ log

(
1
ε

)
n
)

.

if we assume that UKP(d1, ε̄
6 ) ∈ Ω( 1

ε2 ) for d1 ∈ O( 1
ε log 1

ε ).

2.2 Overview

First, Section 2.3 explains the integer linear program (ILP) for VBP, which is a well-
known approach (see [17, 55, 69]). The basic idea is the following: let (I, C) be a VBP
instance with d different item sizes b1 > . . . > bd and where every item has a size
s(a) ≥ δ for a constant δ > 0. The corresponding ILP is

min cTv with Av ≥ b, v ∈ Zq and v ≥ 0 . (2.1)

The basis of the ILP are configurations that correspond to the columns of A: one
configuration K(l) is a subset of items that fits into one bin cl . AFPTAS usually consider

13



2 Bin Packing and Variable-sized Bin Packing

the relaxed version of (2.1) with v ∈ Rq, v ≥ 0. The relaxed optimal value is denoted
by LIN(I, C). The main difficulty is to solve the relaxed ILP efficiently and to round
the solution to an integer solution close to the optimum. Our algorithm also uses this
principle.

Section 2.4 introduces a partial ordering on VBP instances, which is useful for the
analysis of the algorithm. Moreover, the total size Area(I) of the items in instance I is
formally defined.

Then, Section 2.5 presents our basic algorithm for rounding in the Subsections
2.5.1 and 2.5.2: it is explained for a VBP instance (I(1), C(1)) with d1 different item
sizes and M1 bin sizes. (The instance is denoted differently for convenience as will
be seen in a moment.) First, it is shown how to solve the relaxed ILP for (I(1), C(1))

approximately by applying to VBP the algorithm by Grigoriadis et al. [33], which
yields the first solution v(1). Then, Shmonin’s rounding technique [80] is adapted: the
entries of v(1) are rounded down to the next integer, which already packs a subset
I(1)int ⊂ I(1). The remaining items I(1)res = I(1) \ I(1)int are split into J1 and J′1. The set J′1 is
packed using Next-Fit, while J1 is rounded, which yields the new instance (I(2), C(1))

that is processed in the same way. The procedure is then iterated such that we get
instances (I(k), C(1)) (of decreasing size and with dk different item sizes) until all items
of (I(1), C(1)) have been packed. In contrast to Shmonin’s proof, the relaxed ILPs (2.1)
are only solved approximately and not optimally. The analysis of the basic algorithm
in Subsection 2.5.3 therefore proves that the number of item sizes and the total size
Area(I(k)) of the items halves in every iteration k, which makes it possible to bound
the final objective value by (1 + 4ε)OPT(I(1), C(1)) +O(log( 1

δ ) log(d1)).

When the basic algorithm solves the relaxed ILP, the needed columns of the matrix
A are generated dynamically by solving instances of UKPIP. As mentioned in Section
1.2.2, it is necessary because there may be an exponential number of columns, i.e.
q ∈ 2O(

1
ε log2( 1

ε )). Column generation for BP and VBP is for instance also used in [29,
30, 56, 69, 72, 78].

In general, the additive factor O(log( 1
δ ) log(d1)) of our basic algorithm is not equal

to O(log2( 1
ε )). Section 2.6 shows how to preprocess a general VBP instance (I, C)

such that this is the case. First, we divide the items I into large and small items
Ilarge and Ismall, where the items in the first set have sizes s(a) ≥ δ = ε2. A special
subset Ihuge ⊂ Ilarge is determined that (roughly speaking) contains the largest items
of Ilarge. The remaining items in Ilarge \ Ihuge are rounded up to get I(1). As the set Ihuge

contains the largest items of I, the item set I(1) still satisfies OPT(I(1), C) ≤ OPT(I, C).
The rounding is done to have only d1 ∈ O( 1

ε log 1
ε ) different item sizes, which also

decreases the overall running time. To further improve the running time, only a
subset C(1) ⊂ C of bin sizes is used, which does not increase the approximation ratio
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2.3 Integer Linear Programs and Linear Programs for VBP

too much. The instance (I(1), C(1)) is then packed with the basic algorithm. Now,
O(log( 1

δ ) log(d1)) = O(log2( 1
ε )) holds. The remaining items in Ihuge and Ismall are

greedily packed, which (again) only slightly increases the approximation ratio.
The scheme of our algorithm is similar to the one of other AFPTAS for BP [20, 56,

72] and VBP [69, 78]. Our main contribution is the combination and extension of
the algorithm by Grigoriadis et al. [33] and the theoretical result by Shmonin [80,
Chapter 6] to solve the relaxed ILP and to round the fractional to an integer solution
close to the optimum. Note that Shmonin’s method is a modification of the Bin Packing
algorithm by Karmarkar and Karp [56].

2.3 Integer Linear Programs and Linear Programs for VBP

In this subsection, the ILP for VBP is introduced. Let (I, C) be a VBP instance. Let
d be the number of different item sizes, and let b1 > . . . > bd be the subsequence
consisting of the different item sizes in s1 ≥ . . . ≥ sn. Moreover, every item has a size
of at least s(a) ≥ δ for a constant δ > 0. We introduce configurations: a configuration
K(l) for the bin size cl is a subset J ⊆ I such that the items in J fit into a bin of size cl ,
i.e. ∑a∈J s(a) ≤ cl . Let K(l)

1 , . . . , K(l)
q(I,l) be all configurations of a bin size cl . The number

q(I, l) of the configurations may be exponential in the number of item sizes d.
A configuration K(l)

j can be described by a multiset{
a(K(l)

j , b1) : b1, . . . , a(K(l)
j , bd) : bd

}
where a(K(l)

j , bi) denotes the number of items of size bi in configuration K(l)
j (see

Figure 2.1). Furthermore, let ni be the total number of items of size bi in I. (Obviously,
n1 + · · ·+ nd = n holds.) It is possible to describe the VBP instance as an integer linear
program (ILP) [17, 29, 30]:

min
M

∑
l=1

q(I,l)

∑
j=1

cl · v(l)j

M

∑
l=1

q(I,l)

∑
j=1

a(K(l)
j , bi) · v(l)j = ni for i ∈ {1, . . . , d}

v(l)j ∈N∪ {0} for l ∈ {1, . . . , M} and j ∈ {1, . . . , q(I, l)}

(ILP-VBP)

The optimal value of this ILP is equal to OPT(I, C) because ∑l ∑j clv
(l)
j sums the

volume up of the bins used. The constraints make sure that all ni items of size di

are packed: a(K(l)
j , bi) · v(l)j is the number of items of size bi packed in the solution by
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b1

b2

b3

b4

(a)

b1

b1

b2

b2

b2

b3

(b)

b1

b1

b1

b4
b4
b4
b4
b4

(c)

Figure 2.1: (a) shows the item sizes b1, . . . , b4. Bin (b) is packed according to config-
uration {2 : b1, 3 : b2, 1 : b3, 0 : b4} and bin (c) according to configuration
{3 : b1, 0 : b2, 0 : b3, 5 : b4}.

configuration K(l)
j . Thus, summing over all configurations and bin sizes yields the

total number of packed items of size bi. We now consider the LP relaxation with the
optimum LIN(I, C) where the conditions v(l)j ∈N∪ {0} are replaced by v(l)j ≥ 0 and

the conditions . . . = ni by . . . ≥ ni. In the ILP as well as the relaxed LP, a variable v(l)j

can be interpreted as a vertical slice of a bin, packed according to configuration K(l)
j .

The slice has the width v(l)j (see Figure 2.2).

2.4 Useful Definitions

We introduce a partial order on VBP instances that will be useful later. It is a natural
extension of the order by Fernandez de la Vega and Lueker [20].

Definition 2.6. Let (J1, C) and (J2, C) be two VBP instances with the same set of bin sizes
C. We write (J2, C) ≤ (J1, C) if there is an injective function f : J2 → J1 such that
s(a) ≤ s( f (a)) holds for every a ∈ J2. We write J2 ≤ J1 for item sets if the same condition
holds.

The following lemmas will be used later.

Lemma 2.7. Let Area(I) := ∑a∈I s(a) be the total size of the items in I. Then we have
Area(I) ≤ LIN(I, C) ≤ OPT(I, C).

Proof. Let us consider the first inequality. All items are packed (fractionally) into bins.
Since the volume of the items is at most the volume of the bins they are packed into,
we have Area(I) ≤ LIN(I, C). The second inequality is obvious: integer solutions to
ILPs are at the same time solutions to the relaxed LPs.
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c1

c2

c3

· · ·

cM−1

cM

v
(1)
j1

v
(2)
j2

v
(3)
j3

v
(M−1)
jM−1

v
(M)
jM

Figure 2.2: A fractional packing of a VBP instance. The variable v(l)j can be interpreted

as a slice of a bin cl packed according to configuration K(l)
j with a width of

v(l)j .

Lemma 2.8. Let J2 and J1 be two item sets with J2 ≤ J1, and let (J2, C) ≤ (J1, C) be
the corresponding VBP instances that share the same set of bin sizes C. Then we have
Area(J2) ≤ Area(J1), LIN(J2, C) ≤ LIN(J1, C) and OPT(J2, C) ≤ OPT(J1, C).

Proof. Area(J2) ≤ Area(J1) is obvious. A (fractional or integral) packing of the items
in J1 can be transformed into a packing of the items in J2 by replacing every item
b ∈ J1 by the corresponding item a ∈ J2 with f (a) = b; we remove the items b ∈ J1 for
which there are not any a ∈ J2 with f (a) = b. As some bins may now be empty, this
packing of J2 has at most the objective value of the packing for J1. The optimal packing
of J2 may have an even smaller objective value, therefore LIN(J2, C) ≤ LIN(J1, C) or
OPT(J2, C) ≤ OPT(J1, C) holds. Note that we have implicitly used the fact that (J1, C)
and (J2, C) share the same set of bin sizes: if we had an instance (J1, C̃) with C ( C̃,
the constructed packing could use bin sizes not available for packing (J2, C), and the
packing could be infeasible. (This proof was adapted from [20].)

2.5 The Basic Algorithm

In this subsection, we consider a VBP instance (I(1), C(1)) with d1 item sizes, M1 bin
sizes and (still) with s(a) ≥ δ for all items a ∈ I(1). The basic scheme (Algε)ε>0 is
presented in Algorithm 2.1: as mentioned above, it is an adaptation and a practical
application of the methods presented by Karmarkar and Karp [56] and Shmonin [80,
Chapter 6], combined with a method based on the max-min resource sharing algorithm
by Grigoriadis et al. [33].
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2 Bin Packing and Variable-sized Bin Packing

Algorithm 2.1: The basic VBP algorithm Algε

Input: ε > 0, instance (I(1), C(1))

1 Set k := 1;
2 while true do

2.1 Solve the relaxed linear program corresponding to (I(k), C(1)) approximately
with the accuracy (1 + ε) (see Subsection 2.5.1) ;

2.2 Take the integral part bv(k)c = (bv(l,k)j c) of the approximate solution

v(k) = (v(l,k)j ). Pack the items according to bv(k)c in the respective bins: these

items are the instance (I(k)int , C(1)). The remaining, non-packed items are the
residual instance (I(k)res , C(1)) ;

2.3 if I(k)res = ∅ then
break;

else
Transform (I(k)res , C(1)) into two instances (J′k, C(1)) and (Jk, C(1)), where the

items in Jk have been rounded up (see Subsection 2.5.2);

2.4 Pack J′k into unit-sized bins with Next-Fit; open a new bin if necessary;
2.5 if Jk = ∅ then

break;
else

Set (I(k+1), C(1)) := (Jk, C(1));
k := k + 1;

3 Replace the rounded-up sizes of the items by their original sizes in I(1);
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1 0.8 0.4 2 1 1.7

1 0.7

(a)

0.8 0.4 0.7

(b)

Figure 2.3: (a) shows the packing v of the VBP instance (I, C). The values of the v(l)j are

written under the bins. Bins corresponding to integral variables v(l)j have
light-gray items, fractional bins have dark-grey items. The fractional part
v− bvc corresponds to a packing, which is shown in (b). These fractionally
packed items are the item set Ires.

Remark 2.9. The algorithm Algε finishes if either all items in an instance I(k) are
packed by bv(k)c, i.e. I(k)int = I(k), or all items that have not been packed by bv(k)c
are contained in J′k and packed by Next-Fit. If neither of these conditions is met,
the remaining unpacked items Jk become the new instance (I(k+1), C(1)), which is
processed again in the same way. Since items are packed integrally either by bv(l,k)j c or

by Next-Fit, we obtain an integral and feasible packing. (Figure 2.3 illustrates how I(k)res

is obtained from I(k).) Note that I(k)res always contains only complete (and not fractional)
items although v− bv(k)c packs them fractionally.

2.5.1 Solving the LPs Approximately

In Step 2.1, the algorithm has to approximately solve the relaxation of the integer
programs (ILP-VBP) for the instances (I(k), C(1)), where we have dk different item sizes
and M1 bin sizes. There is a well-known method for LPs of packing problems (see
e.g. [14, 41] for Strip Packing) based on the max-min resource sharing algorithm by
Grigoriadis et al. [33]. The method can be adapted to VBP. We introduce it for general
VBP instances (I, C).
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2 Bin Packing and Variable-sized Bin Packing

Let r be a guessed value for LIN(I, C). By introducing an additional variable λ and
dividing every constraint ∑l ∑j a(K(l)

j , bi) v(l)j ≥ ni by ni, we can rewrite the relaxed
(ILP-VBP) as

maxλ

M

∑
l=1

q(I,l)

∑
j=1

a(K(l)
j , bi)

ni
v(l)j ≥ λ for i ∈ {1, . . . , d}

(2.2)

v =
(

v(l)j

)
∈ B :=

{
v
∣∣∣ M

∑
l=1

cl

q(I,l)

∑
j=1

v(l)j = r; v(l)j ≥ 0

}
.

Remark 2.10. r ≥ LIN(I, C) holds for (2.2) if and only if λ ≥ 1. Moreover, the
conditions ∑l ∑j a(K(l)

j , bi) v(l)j ≥ ni hold if and only if λ ≥ 1.

Let Ã be the matrix

Ã :=

 a(K(l)
j , bi)

ni


i,g(l,j)

for
i ∈ {1, . . . , d} ,
l ∈ {1, . . . , M} , j ∈ {1, . . . , q(I, l)} .

Here, g(l, j) is a suitable enumeration of the variables v(l)j , which correspond to the
columns of Ã. We can now write Problem (2.2) as

max λ s. t. Ãv = f (v) =


f1(v)

...
fd(v)

 ≥ λ


1
...
1

 , v ∈ B , (2.3)

where (1, . . . , 1)T is the d-dimensional 1-vector and fi(v) is the i.th row of the vector
Ãv. The Inequality (2.3) therefore means that every entry of the vector Ãv ∈ Rd is
larger than or equal to λ.

The Problem (2.2) is obviously a max-min resource sharing problem (see Subsection
1.2.3). Let λ0 be the optimal value of (2.2). The algorithm by Grigoriadis et al. [33, 41]
(see also Section A.1) finds for a given ε̄ ∈ Θ(ε) a solution ˜̃v ∈ B of Problem (2.2) with

M

∑
l=1

q(I,l)

∑
j=1

a(K(l)
j , bi)

ni
˜̃v(l)j ≥ (1− ε̄) λ0 for i ∈ {1, . . . , d} .

Using the notation of (2.3), this is

Ã ˜̃v ≥ (1− ε̄)λ0(1, . . . , 1)T . (2.4)
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2.5 The Basic Algorithm

(We will see below how to scale ˜̃v to get a solution ṽ with Ãṽ ≥ λ0(1, . . . , 1)T.) Let
Γ = {p ∈ RM

≥0|∑i pi = 1} be the M-dimensional standard simplex. The block problem
is

Λ(p) = max
v∈B

pT f (v) = max
v∈B

pT Ãv for p ∈ Γ . (2.5)

As stated in Subsection 1.2.3, the max-min resource sharing algorithm has to approxi-
mately solve in each of its iterations the block problem for a given p ∈ Γ. It does so by
calling a blocksolver ABS(p, ε̄

6 ) that finds an approximate solution v ∈ B to Λ(p) with

pT f (v) ≥
(

1− ε̄

6

)
Λ(p) .

For (2.2), the Block Problem (2.5) corresponds to

max
v∈B

pT Ãv =max
v∈B

d

∑
i=1

pi

M

∑
l=1

q(I,l)

∑
j=1

a(K(l)
j , bi)

ni
v(l)j

=max
v∈B

M

∑
l=1

q(I,l)

∑
j=1

clv
(l)
j

d

∑
i=1

pi

nicl
a(K(l)

j , bi)

with
M

∑
l=1

q(I,l)

∑
j=1

clv
(l)
j = r .

(2.6)

This problem is a linear program, where an optimum basic solution v has only one
entry v(l)j > 0 (see Subsection 1.2.1). In fact, it is sufficient to find the index pair l1

and j1 such that the sum ∑d
i=1

pi
nicl1

a(K(l1)
j1

, bi) is maximal and to set v(l1)j1
= r

cl1
and the

other v(l)j = 0. Choosing the right bin size cl and the configuration K(l)
j therefore

corresponds to solving the problem

max
l∈{1,...,M}

max

{
d

∑
i=1

pi

nicl
zi

∣∣∣∣ d

∑
i=1

bizi ≤ cl , zi ∈N∪ {0}
}

. (2.7)

This is indeed an instance of the Unbounded Knapsack Problem with Inversely Pro-
portional Profits (UKPIP) (see Subsection 1.3.3) for which an FPTAS is presented in
the Chapters 3 and 5. We get the following result:

Remark 2.11. During the execution of the max-min resource sharing solver, the block-
solver directly generates the columns needed for an approximate solution to the
max-min resource sharing problem (2.2). It does so by finding in each iteration an
(1− ε̄

6 ) approximate solution to the UKPIP instance (2.7).

As mentioned above, we have to “guess” the right value r = LIN(I, C). It is even
sufficient that r = r0 ≤ LIN(I, C) as long as the max-min resource sharing algorithm
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2 Bin Packing and Variable-sized Bin Packing

finds a solution ˜̃v = ( ˜̃v(l)j ) with Ã ˜̃v ≥ (1− ε̄)(1, . . . , 1)T. Then, the covering constraints

∑l ∑j a(K(l)
j , bi)v

(l)
j ≥ ni can be satisfied by scaling: set ṽ := (1 + 4ε̄) ˜̃v to get

Ãṽ ≥ (1 + 4ε̄)(1− ε̄)(1, . . . , 1)T ≥ (1, . . . , 1)T (2.8)

and
M

∑
l=1

q(I,l)

∑
j=1

cl ṽ
(l)
j = (1 + 4ε̄) r0 ≤ (1 + ε)LIN(I, C) (2.9)

for ε ≤ 1
2 and ε̄ = ε

4 . Therefore, ṽ = (ṽ(l)j ) is indeed a (1 + ε) approximate solution to
the LP relaxation of (ILP-VBP).

Such an r0 can be found by exploiting an interesting property of the max-min re-
source sharing algorithm. It was already stated in an unpublished paper by Aizatulin,
Diedrich and Jansen [1] for the max-min resource sharing formulation of the Strip
Packing Problem, which is closely related to the Bin Packing Problem (see also [14,
p. 112]).

Lemma 2.12. Let r = 1, and let v1 be the corresponding solution to the max-min resource
sharing problem (2.2) found by the algorithm of Grigoriadis et al. [33]. Let v0 be the solution
obtained with r = rp ∈ R>0. Then v0 = rp · v1.

Proof. The proof can be found in Appendix A.2.

Thus, the solutions ˜̃v1 for r = 1 and ˜̃vrp for r = rp := LIN(I, C) satisfy

rp · ( f1( ˜̃v1), . . . , fd( ˜̃v1))
T
= rp · Ã ˜̃v1 = Ã ˜̃vrp ≥ (1− ε̄) λrp (1, . . . , 1)T

≥ (1− ε̄) (1, . . . , 1)T .
(2.10)

Here, λrp denotes the optimal value of Problem (2.2) for r = rp; note that we have
λrp ≥ 1 according to Remark 2.10. We deduce that 1−ε̄

min{ f1( ˜̃v1),..., fd( ˜̃v1)} ≤ rp = LIN(I, C)

so that it is sufficient to set r0 := 1−ε̄
min{ f1( ˜̃v1),..., fd( ˜̃v1)} ≤ LIN(I, C). A short calculation

together with the Inequalities (2.8) and (2.9) yields that

ṽ := (1 + 4ε̄) ˜̃v := (1 + 4ε̄)r0 · ˜̃v1

is a solution to (2.2). Note that Ã ˜̃v ≥ (1− ε) (1, . . . , 1)T holds by the definition of r0.
We get the main result of this subsection.

Theorem 2.13. Let ε > 0, ε̄ := ε
4 , and let (I(k), C(1)) be a VBP instance with M1 bin

sizes, dk item sizes and smallest bin size cmin. Moreover, let UKPIP(dk, M1, cmin, ε̄
6 ) be

the running time of an algorithm for UKPIP with the approximation ratio (1 − ε̄
6 ) that
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2.5 The Basic Algorithm

solves an instance with dk item sizes, M1 knapsack sizes and smallest knapsack size cmin.
There is an algorithm that finds a solution v = (v(l)j ) to the relaxed (ILP-VBP) satisfying

∑l cl ∑j v(l)j ≤ (1 + ε)LIN(I(k), C(1)) and with only dk + 1 variables v(l)j > 0. The running
time is in

O
(

max
{

UKPIP
(

dk, M1, cmin,
ε̄

6

)
,O
(

dk log log
(

dk
1
ε

))}
dk

(
log(dk) +

1
ε2

)
+ d2.5356

k

(
log dk +

1
ε2

))
.

Proof. The correctness of the algorithm has already been presented in this subsection.
Explanations for the other properties of the solution and the analysis of the running
time can be found in Section A.2.

2.5.2 Transforming I(k)res

The transformation of I(k)res into Jk and J′k in Step 2.3 of Algε is the geometric rounding
technique by Shmonin [80, Section 6.4]. It is the core element of his proof OPT(I) ≤
LIN(I) +O(log2(d)) for CSP. The rounding is a slight modification of the geometric
grouping by Karmarkar and Karp [56].

Roughly speaking, Jk contains rounded-up items so that it has less item sizes than
I(k)res , and J′k contains the largest and smallest items of I(k)res so that Jk ≤ I(k)res holds even
with the rounded-up items in Jk.

More formally, let hk := |I(k)res |. As will be seen in the proof of Theorem 2.21, the
items are either already sorted or can be sorted in O(dk log(dk) +

dk
δ ) so that we have

I(k)res =
{

ã1, ã2, . . . , ãhk

}
with s(ã1) = s̃1 ≥ s(ã2) = s̃2 ≥ . . . ≥ s(ãhk) = s̃hk .

We split this sequence into different groups: Let G(k)
1 be the first l1 items such that

∑l1−1
i=1 s̃i ≤ 2, but ∑l1

i=1 s̃i > 2. Next, we collect l2 items in group G(k)
2 such that

∑l1+l2−1
i=l1+1 s̃i ≤ 2, but ∑l1+l2

i=l1+1 s̃i > 2. We proceed until having grouped all items, i.e.

I(k)res =
Kk⋃

l=1

G(k)
l

(the last group G(k)
Kk

may have a total size smaller than 2, i.e. ∑ã∈G(k)
Kk

s(ã) ≤ 2).

Now, let k(k)l := |G(k)
l | for l ∈ {1, . . . , Kk}. Since we added the items ãi in non-

increasing order to the sets G(k)
l , we have k(k)1 ≤ k(k)2 ≤ . . . ≤ k(k)Kk−1. (The last group

G(k)
Kk

may contain less items than G(k)
Kk−1, i.e. k(k)Kk

≤ k(k)Kk−1 may hold.) Moreover, k(k)l ≤ 2
δ
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2 Bin Packing and Variable-sized Bin Packing

holds because s̃i ≥ δ, and we have Kk ≤ bArea(I(k)res )
2 c+ 1 because Area(G(k)

l ) > 2 for
l ∈ {1, . . . , Kk − 1}.

For l ∈ {2, . . . , Kk − 1}, let G′(k)l contain the largest k(k)l−1 items of G(k)
l . Let H(k)

l be

the set of items obtained by rounding up the sizes of all items in G′(k)l to the largest

item size in G′(k)l . We have G′(k)l ≤ H(k)
l ≤ G(k)

l−1 for l ∈ {2, . . . , Kk − 1}. We define

Jk :=
Kk−1⋃
l=2

H(k)
l and J′k := G(k)

1 ∪ G(k)
Kk
∪

Kk−1⋃
l=2

(
G(k)

l \ G′(k)l

)
. (2.11)

Lemma 2.14. Let dk be the number of different item sizes that instance I(k) has in the execu-
tion of Algε(I(1), C(1)), and let k0 be the number of times the main loop 2 of Algε is executed.
The following properties hold:

• (Jk, C(1)) ≤ (I(k)res , C(1)) ≤ (Jk ∪ J′k, C(1)) for k ∈ {1, . . . , k0}.

• For k ∈ {1, . . . , k0 − 1}, the set I(k+1) = Jk has dk+1 ≤ Kk − 1 ≤ bArea(I(k)res )
2 c − 1

different item sizes.

• The latest moment Algε terminates is when Area(I(k)res ) ≤ 4.

Proof. It is not difficult to see that (Jk, C(1)) ≤ (I(k)res , C(1)) ≤ (Jk ∪ J′k, C(1)) holds. More-

over, every H(k)
l for l ∈ {2, . . . , Kk − 1} contains only items of one (rounded-up) size,

and Kk ≤ bArea(I(k)res )
2 c+ 1 holds. As Jk =

⋃Kk−1
l=2 H(k)

l , the number of different item sizes
dk+1 follows.

Note that a sufficient condition for the termination of Algε is Area(I(k)res ) ≤ 4: by
definition of J′k, all items in I(k)res will then be contained in J′k so that J′k = I(k)res and Jk = ∅
hold. This is exactly a stopping criterion for Algε as explained in Remark 2.9.

2.5.3 Analysis and Running Time of the Basic Algorithm

In this section, we prove that Algε(I(1), C(1)) finds a packing for a given instance
(I(1), C(1)) that is not much larger than the optimum OPT(I(1), C(1)).

Theorem 2.15. Let (I(1), C(1)) be a VBP instance with d1 different item sizes and s(a) ≥
δ > 0 for a ∈ I(1). Algorithm Algε(I(1), C(1)) finds a packing v = (v(l)j ) such that

M

∑
l=1

cl ∑
j

v(l)j ≤ (1 + 4ε)OPT(I(1), C(1)) +O
(

log
(

1
δ

)
log(d1)

)
.

For the proof, we need some lemmas.
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2.5 The Basic Algorithm

Lemma 2.16. Let dk be the number of different item sizes in I(k) and k0 the number of
iterations of the main loop 2 of Algε. Then we have

1. Area(I(k)res ) ≤ dk + 1 for k ∈ {1, . . . , k0},

2. Area(I(k)res ) ≤ dk + 1 ≤ 1
2 Area(I(k−1)

res ) ≤ dk−1
2 + 1

2 for k ∈ {2, . . . , k0},

3. dk ≤ d1
2k−1 for k ∈ {1, . . . , k0}, and

4. Area(I(k)res ) ≤ Area(I(1)res )
2k−1 for k ∈ {1, . . . , k0} and Area(I(k)) ≤ Area(I(1))

2k−2 for
k ∈ {2, . . . , k0}.

Proof. Let v(k) = (v(l,k)j ) be the approximate solution to the relaxed ILP (ILP-VBP)

corresponding to I(k). As stated in Theorem 2.13, there are at most dk + 1 variables
v(l,k)j > 0. Thus, there are at most dk + 1 variables v(l,k)j − bv(l,k)j c > 0, which form

a fractional packing of I(k)res and correspond to at most dk + 1 bins because we have
v(l,k)j − bv(l,k)j c < 1. Since every bin is at most of size 1, we get the first inequality. The
second inequality follows from the first one and Lemma 2.14. The two remaining
inequalities are proved by induction and the fact that I(k) = Jk−1 ≤ I(k−1)

res ≤ I(k−1)

(see Lemma 2.14).

Lemma 2.17. As above, let k0 be the number of iterations of the main loop 2 in Algε. Then
k0 ≤ blog2(d1 + 1)c holds.

Proof. Lemma 2.14 already states that the algorithm terminates when Area(I(k)res ) ≤ 4.
A direct corollary of Lemma 2.16 (obtained by combining the first and last inequality) is
the inequality Area(I(k)res ) ≤ 1

2k−1 (d1 + 1) for k ∈ {1, . . . , k0}. If we want Area(I(k)res ) ≤ 4,
it is therefore sufficient that 1

2k−1 (d1 + 1) ≤ 4 holds, i.e. d1 + 1 ≤ 2k+1 and therefore
log2(d1 + 1) ≤ k + 1. The smallest k ∈ N satisfying this inequality is blog2(d1 + 1)c,
therefore k0 ≤ blog2(d1 + 1)c holds.

Lemma 2.18. Let the set J′k be defined as in Subsection 2.5.2. Next-Fit packs J′k in at most
O(log( 1

δ )) unit-sized bins.

Proof. By the grouping of I(k)res into G(k)
1 , . . . , G(k)

Kk
as presented in Subsection 2.5.2, we

know that Area(G(k)
1 ∪ G(k)

Kk
) ≤ 6. Let i ∈ {2, . . . , Kk − 1}. The first k(k)i − 1 items of

G(k)
i have a total volume of at most 2 by the definition of G(k)

i , and the last item may

be even smaller than the other items. The average item size in G(k)
i is therefore at most
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2 Bin Packing and Variable-sized Bin Packing

2
k(k)i −1

. Since ∆G(k)
i := G(k)

i \ G′(k)i contains the smallest k(k)i − k(k)i−1 items of G(k)
i , we

have Area(∆G(k)
i ) ≤ 2 k(k)i −k(k)i−1

k(k)i −1
. We conclude that

Area(J′k) ≤ 6 +
Kk−1

∑
i=2

Area(∆G(k)
i ) ≤ 6 + 2

Kk−1

∑
i=2

k(k)i − k(k)i−1

k(k)i − 1

≤ 6 + 2
Kk−1

∑
i=2

k(k)i −1

∑
j=k(k)i−1

1
j
= 6 +

k(k)Kk−1−1

∑
j=k(k)1

1
j
≤ 6 + 2 ln(k(k)Kk−1)

≤ 6 + 2 ln
(

2
δ

)
where we have used that k(k)l ≤ 2

δ holds for l ∈ {1, . . . , Kk − 1} because we have
s(a) ≥ δ. Therefore, we need at most 2Area(J′k) + 1 ≤ 13 + 4 ln( 2

δ ) = O(log( 1
δ )) bins

to pack J′k with Next-Fit.
(This proof is a slight modification of the proof of Theorem 6.7 in [80], which is

derived from the geometric grouping presented in [56]. The only difference is the fact
that we have s(a) ≥ δ in contrast to s(a) ≥ 1

dk
.)

Lemma 2.19. The following inequalities hold:

• LIN(I(k), C(1))− LIN(I(k)res , C(1)) ≤ LIN(I(k)int , C(1)),

• LIN(I(k+1), C(1)) ≤ LIN(I(k)res , C(1)), and

• LIN(I(k), C(1))− LIN(I(k)res , C(1)) ≤ LIN(I(k), C(1))− LIN(I(k+1), C(1)).

Proof. An optimal (fractional or integral) packing of (I(k)int , C(1)) together with an op-
timal packing of (I(k)res , C(1)) is a feasible packing of (I(k), C(1)), therefore we have
LIN(I(k), C(1)) ≤ LIN(I(k)int , C(1)) + LIN(I(k)res , C(1)), which proves the first inequality.
Since (I(k+1), C(1)) = (Jk, C(1)) ≤ (I(k)res , C(1)) holds according to Lemma 2.14, the sec-
ond inequality follows from Lemma 2.8. The last inequality follows directly from the
second one.

We are now able to prove Theorem 2.15, i.e. the bound on the solution quality of Algε.

Proof of Theorem 2.15. Let Bins(L) denote the volume of the bins into which the algo-
rithm has packed the instance (L, C(1)). Obviously, the solution found by Algε has the
total objective value ∑k0

k=1(Bins(I(k)int ) + Bins(J′k)) because items are either packed by

an integral part I(k)int or by J′k (see Remark 2.9).
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2.5 The Basic Algorithm

First, we derive a bound on Bins(I(k)int ). For an instance (I(k), C(1)) with the ap-
proximate packing v(k) = (v(l,k)j ) found by Algε in Step 2.1, we have the following
inequality:

M

∑
l=1

cl

q(I(k),l)

∑
j=1

v(l,k)j =
M

∑
l=1

cl

q(I(k),l)

∑
j=1

⌊
v(l,k)j

⌋
+

M

∑
l=1

cl

q(I(k),l)

∑
j=1

(
v(l,k)j −

⌊
v(l,k)j

⌋)
≤ (1 + ε)LIN(I(k), C(1)) .

(2.12)

Since (v(l,k)j − bv(l,k)j c) is a fractional packing of (I(k)res , C(1)) with LIN(I(k)res , C(1)) ≤
∑l cl ∑j(v

(l,k)
j − bv(l,k)j c), we get

Bins
(

I(k)int

)
=

M

∑
l=1

cl

q(I(k),l)

∑
j=1

⌊
v(l,k)j

⌋
(2.12)
≤ (1 + ε)LIN(I(k), C(1))−

M

∑
l=1

cl

q(I(k),l)

∑
j=1

(
v(l,k)j −

⌊
v(l,k)j

⌋)
≤ (1 + ε)LIN(I(k), C(1))− LIN(I(k)res , C(1))

Lem. 2.19
≤ (1 + ε)LIN(I(k), C(1))− LIN(I(k+1), C(1)) . (2.13)

We deduce with LIN(I(k0)
res , C(1)) ≥ 0 and (I(3), C(1)) ≤ (I(2), C(1)) ≤ (I(1), C(1)) that

k0

∑
k=1

Bins
(

I(k)int

)
≤

k0−1

∑
k=1

[
(1 + ε)LIN(I(k), C(1))− LIN(I(k+1), C(1))

]
+ (1 + ε)LIN(I(k0), C(1))− LIN(I(k0)

res , C(1))

= LIN(I(1), C(1)) + ε
k0

∑
k=1

LIN(I(k), C(1))− LIN(I(k0)
res , C(1))

≤ LIN(I(1), C(1)) + 3 ε LIN(I(1), C(1)) + ε
k0

∑
k=4

LIN(I(k), C(1)) . (2.14)

LIN(I(k), C(1)) ≤ (2Area(I(k)) + 1) holds because First-Fit could always provide a
packing for I(k) of this value. Moreover, we have 2Area(I(k)) ≤ 2

2k−2 Area(I(1)) =
1

2k−3 Area(I(1)) according to Lemma 2.16. Hence, the Sum (2.14) can be bounded as
follows:

k0

∑
k=1

Bins
(

I(k)int

)
≤ LIN(I(1), C(1)) + 3 ε LIN(I(1), C(1)) + ε

k0

∑
k=4

[
1

2k−3 Area(I(1)) + 1
]

≤ LIN(I(1), C(1)) + 3 ε LIN(I(1), C(1)) + ε LIN(I(1), C(1)) + ε (k0 − 3)

≤ (1 + 4ε)LIN(I(1), C(1)) + ε log2 (d1 + 1) . (2.15)
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For the last two inequalities, we have used Area(I(1)) ≤ LIN(I(1), C(1)) and k0 ≤
log2(d1 + 1) (see Lemma 2.17).

Finally, ∑k0
k=1 Bins(J′k) ∈ O(log( 1

δ ) log (d1)) holds because we have Bins(J′k) ∈
O(log( 1

δ )) (see Lemma 2.18) and k0 ≤ log2(d1 + 1). By combining this with the
Bound (2.15) and LIN(I(1), C(1)) ≤ OPT(I(1), C(1)), we obtain the desired result.

Remark 2.20. The relaxed ILPs of the instances (I(k), C(1)) are only approximately
solved in contrast to Shmonin’s proof [80] where optimal solutions are used. This
results in the additional additive terms εLIN(I(k), C(1)) and ε ∑k LIN(I(k), C(1)) in (2.13)
and (2.14). Thus, it is necessary to prove that the sum is bounded by ∑k

1
2k−3 Area(I(k)),

which yields the final estimate (2.15).

After the proof of the approximation ratio of the algorithm, we only need to bound
the running time.

Theorem 2.21. Let ε > 0, and let (I(1), C(1)) be a VBP instance with d1 item sizes, M1 bin
sizes and s(a) ≥ δ for a ∈ I(1). Then Algε has a running time in

O
(

max
{

UKPIP
(

d1, M1, cmin,
ε̄

6

)
,O
(

d1 log log
(

d1
1
ε

))}
· d1

(
log(d1) +

1
ε2

)
+ d2.5356

1

(
log(d1) +

1
ε2

)
+

d1

δ
+ n

)
.

(2.16)

Proof. We show how to bound the running time over all iterations of the main loop
2. In every loop iteration, the relaxed ILP is solved in Step 2.1. The complexity
of the solver in one iteration is given in Theorem 2.13 (see also Section A.2 in the
Appendix). We assume that the running time UKPIP(d, M, cmin, ε̄

6 ) of the knapsack
solver is monotonic increasing in d. We know that dk ≤ d1

2k−1 as seen in Lemma 2.16.
Thus, the running time of Step 2.1 in the k.th iteration is at most half as long as the
running time in the previous iteration because every summand of the running time
either contains dk or is dominated by other summands. Hence, the overall sum and
therefore the overall running time of Step 2.1 is still bounded by the term stated in
Theorem 2.13.

The next Step 2.2 consists of packing the items according to (bv(l,k)j c). There are only

dk + 1 variables v(l,k)j > 0 (see Theorem 2.13) so that dk + 1 times a configuration vector

K(l,k)
j with dk entries has to be read and the items packed accordingly. The running

time for reading the configuration vectors is bounded by ∑k0
k=1O(d2

k) = O(d2
1) over

all iterations of Step 2. Since there are at most n items that can be packed over all
iterations, we get a total running time in O(d2

1 + n).
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Constructing Jk and J′k in Step 2.3 can be performed in the following way: we only

have to sort the dk different item sizes of I(k)res and then group the items in I(k)res according
to the item sizes (i.e. we use BucketSort). As Area(I(k)res ) ≤ dk + 1 (see Lemma 2.16) and
s(a) ≥ δ, the set I(k)res has O( dk

δ ) items so that sorting I(k)res and partitioning it into Jk and
J′k can be performed in O(dk log(dk) +

dk
δ ). (By using the right data structure, we can

even assume that sorting is only necessary for k = 1 because the items stay in the right
order afterwards.) Since Next-Fit has a linear running time, packing the items in J′k
can be bounded by O(n) over all iterations. The running time of Steps 2.3 and 2.4 is
therefore bounded by O(d1 log(d1) +

d1
δ + n).

Replacing the rounded-up sizes by their original ones in Step 3 can be performed in
time O(n). By omitting dominated summands, we get the general running time of
Algε.

2.6 The General Algorithm

For a general VBP instance (I, C), we may not have O(log( 1
δ ) log(d1)) = O(log2 1

ε )

for the additive term, e.g. if the smallest item size s(a) does not satisfy s(a) ≥ ε and if
we have too many different item sizes d1. Therefore, we preprocess the items and the
bin sizes of a general instance (I, C) to apply Algε.

2.6.1 Rounding the Items

We first show how to bound the number of different item sizes by O( 1
ε log 1

ε ).
Let δ := ε2 and

I = Ilarge ∪ Ismall := { a ∈ I | s(a) > δ} ∪ { a ∈ I | s(a) ≤ δ} .

We now use the geometric grouping introduced by Karmarkar and Karp [56] with the
scaling factor k = d εArea(I)

log2(
1
δ )+1
e to group and round Ilarge (see also [72, p. 298]).

First, the items in Ilarge are grouped into intervals

Ir :=
{

a | s(a) ∈ (2−(r+1), 2−r]
}

for r ∈
{

0, 1, . . . ,
⌊

log2

(
1
δ

)⌋}
.

Each set Ir is then further grouped into sets Ir,1, Ir,2, . . . , Ir,q(r) such that the first group
Ir,1 contains the first k · 2r largest items, Ir,2 the next k · 2r largest items until all items
have been grouped. Note that Ir,q(r) may contain less than k · 2r items. Now, we
set Ihuge :=

⋃
r Ir,1. On the other hand, let j ∈ {2, . . . , q(r)} and round every item

in Ir,j up to the largest item in the group. Call the resulting group I′r,j. We then set

I(1) :=
⋃

r
⋃q(r)

j=2 I′r,j.
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As shown in [56, Proof of Lemma 5], the items in Ihuge can be packed in at most
k · dlog 1

δe ≤ ε Area(I) +O(log( 1
δ )) unit-sized bins with Next-Fit if the items of Ihuge

in (2−(r+1), 2−r] for r = 0 are packed first, then the items for r = 1, 2, . . . , blog2(
1
δ )c

(this can be seen as a less strict variant of Next-Fit Decreasing).
Since Ihuge contains the largest items of every Ir, we still have I(1) ≤ Ilarge. Due to

the rounding and the choice of k, the item set I(1) has only

d1 ≤
2
k

Area(I) +
⌈

log2
1
δ

⌉
∈ O

(
1
ε

log
1
ε

)
(2.17)

different item sizes [56, Lemma 5]. This will help us to bound the running time needed
to solve the LP relaxation of (ILP-VBP).

2.6.2 Reducing the Bin Sizes

As the running time of Algε also depends on the number of bin sizes (see (2.16)), we
only use a subset of the M bin sizes in C. Set C̃ := {c ∈ C | c ≥ ε}. If M ≤ b 2

ε ln 1
ε c+ 1,

set C(1) := C̃. If on the other hand M > b 2
ε ln 1

ε c+ 1, partition C̃ into

b 2
ε ln 1

ε c⋃
l=0

C̃l with C̃l :=
{

c
∣∣ c ∈

(
(1 + ε)−(l+1), (1 + ε)−l

]}
,

and let C(1) consist of the largest c in every C̃l , i.e.

C(1) :=
b 2

ε ln 1
ε c⋃

l=0

max
{

c | c ∈ C̃l
}

(This construction of C(1) is mentioned in [78].) We first show that the reduced bin set
C(1) does not increase the value of an optimal or approximate solution too much.

Lemma 2.22. C(1) has only M1 ≤ b 2
ε ln 1

ε c+ 1 bin sizes and satisfies

OPT(I(1), C(1)) ≤ OPT(Ilarge, C(1)) ≤ (1 + ε)OPT(Ilarge, C̃)

≤ (1 + 4ε)OPT(I, C) + 2 .

Proof. The bound ln(1 + z) ≥ z− z2 holds for z ≥ − 1
2 . The number of knapsack sizes

in C(1) is therefore in⌊
log1+ε

(
1
ε

)⌋
+ 1 =

⌊
ln 1

ε

ln 1 + ε

⌋
+ 1

ε>0
≤
⌊

ln 1
ε

ε− ε2

⌋
+ 1

=

⌊
ln 1

ε

ε · (1− ε)

⌋
+ 1

ε≤1/2

≤
⌊

ln 1
ε

1
2 ε

⌋
+ 1

=

⌊
2
ε

ln
1
ε

⌋
+ 1 ∈ O

(
1
ε

log
1
ε

)
.
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By definition, we have (I(1), C(1)) ≤ (Ilarge, C(1)). If C(1) = C̃, the second inequal-
ity is also obvious. If C(1) ( C̃, choose an optimal solution to (Ilarge, C̃) and let
OPT(Ilarge, C̃) = ∑l clzl , where zl denotes the number of bins cl the chosen optimal so-
lution uses. Every cl is contained in one C̃jl = {c | c ∈ ((1 + ε)−(jl+1), (1 + ε)−jl ]}, and
C(1) contains the largest bin size c̃jl of every C̃jl . Replace every cl by the corresponding
c̃jl . Then cl ≤ c̃jl ≤ (1 + ε)cl so that we obtain a feasible solution to (Ilarge, C(1)) with
the objective value ∑l c̃jl zl ≤ ∑l(1 + ε)clzl ≤ (1 + ε)OPT(Ilarge, C̃). As an optimal
solution to (Ilarge, C(1)) may have an even smaller objective value, we have

OPT(Ilarge, C(1)) ≤ (1 + ε)OPT(Ilarge, C̃) . (2.18)

For the last inequality, let (Ilarge, C) be a VBP instance with items Ilarge and all bin

sizes C, and let v = (v(l)j ) be an optimal integral packing of it. Let Ĩ1 be the items
packed in the bins cl ≥ ε, i.e. in bins in C̃, and let ( Ĩ1, C̃) be the corresponding instance.
Let ( Ĩ2, C̃2) be the instance with the items packed in the remaining smaller bin sizes
C̃2 = C \ C̃.

Note that we have

OPT(Ilarge, C) = OPT( Ĩ1, C̃) + OPT( Ĩ2, C̃2) . (2.19)

In fact, an optimal packing of ( Ĩ1, C̃) combined with an optimal packing of ( Ĩ2, C̃2) is
obviously a feasible packing of (Ilarge, C), i.e. we have OPT(Ilarge, C) ≤ OPT( Ĩ1, C̃) +
OPT( Ĩ2, C̃2). On the other hand, the packing of OPT(Ilarge, C) restricted to the bins C̃
(or C̃2) is by definition a feasible packing of ( Ĩ1, C̃) (or ( Ĩ2, C̃2)). Let Pack( Ĩ1, C̃) and
Pack( Ĩ2, C̃2) be the objective values of these packings where obviously Pack( Ĩ1, C̃) +
Pack( Ĩ2, C̃2) = OPT(Ilarge, C) holds. Then, we have OPT( Ĩ1, C̃) + OPT( Ĩ2, C̃2) ≤
Pack( Ĩ1, C̃) + Pack( Ĩ2, C̃2) = OPT(Ilarge, C) so that (2.19) follows.

Now, the items in Ĩ2 are re-packed into new unit-sized bins using First-Fit: an
additional new bin is opened if all new unit-sized bins are full. Let k + 1 be the
number of these new bins. Note that s(a) ≤ ε for a ∈ Ĩ2 because these items were
packed in bins of size cl ≤ ε. Since a new bin is only opened if no new item fits into
the old ones, the first k bins must be filled at least up to 1− ε, i.e. Area( Ĩ2) ≥ k(1− ε).
We get

k + 1 ≤ 1
1− ε

Area( Ĩ2) + 1 ≤ (1 + 2ε)Area( Ĩ2) + 1 ≤ (1 + 2ε)OPT( Ĩ2, C̃2) + 1

where we have used Lemma 2.7 and 1
1−ε ≤ 1 + 2ε for ε ≤ 1

2 . Now note that this
new packing of Ĩ2 into k + 1 unit-sized bins together with the original packing of Ĩ1
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is a packing of Ilarge not using the bin sizes cl ≤ ε, i.e. it is a packing of the instance
(Ilarge, C̃) with

OPT(Ilarge, C̃) ≤ OPT( Ĩ1, C̃) + k + 1

≤ OPT( Ĩ1, C̃) + (1 + 2ε)OPT( Ĩ2, C̃2) + 1

≤ (1 + 2ε)
(
OPT( Ĩ1, C̃) + OPT( Ĩ2, C̃2)

)
+ 1

(2.19)
= (1 + 2ε)OPT(Ilarge, C) + 1

≤ (1 + 2ε)OPT(I, C) + 1 . (2.20)

As we assume that ε ≤ 1
2 , we get

OPT(I(1), C(1)) ≤ OPT(Ilarge, C(1))
(2.18)
≤ (1 + ε)OPT(Ilarge, C̃)

(2.20)
≤ (1 + ε) [(1 + 2ε)OPT(I, C) + 1] ≤ (1 + 4ε)OPT(I, C) + 2 .

(The second part of the proof is only a slight modification of the corresponding proof
by Murgolo [69, Proof of Thm. 1, case 1].)

The general algorithm Aε including the preprocessing is presented in Algorithm 2.2.

Algorithm 2.2: The general algorithm Aε for VBP
Input: Accuracy ε > 0, instance (I, C)

1 Preprocess instance (I, C) to obtain (Ihuge, C(1)), (I(1), C(1)), and (Ismall, C(1));
2 Pack instance (I(1), C(1)) with the algorithm Algε(I(1), C(1)) (see Section 2.5 and

Alg. 2.1);
3 Replace the rounded-up and packed items of (I(1), C(1)) by their original

counterparts to obtain a packing of Ilarge \ Ihuge;
4 Pack the items of Ihuge into unit-sized bins using Next-Fit where the items in

(2−(r+1), 2−r] for r = 0 are packed first, then the items for r = 1, 2 . . . , blog2(
1
δ )c;

5 Add the small items Ismall greedily to the existing bins using Next-Fit: open a new
unit-sized bin if an item cannot be added to the existing bins;

2.6.3 Analysis of the Approximation Ratio

We sum the results up to obtain the final asymptotic approximation ratio of Aε.

Lemma 2.23. Before adding the small items Ismall in Step 5, algorithm Aε has found an
integral packing v = (v(l)j ) for (Ilarge, C) with ∑l cl ∑j v(l)j ≤ (1 + 17ε)OPT(I, C) +

O(log2( 1
ε )).
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2.6 The General Algorithm

Proof. δ = ε2 and log(d1) ∈ O(log( 1
ε log 1

ε )) ⊆ O(log( 1
ε )) hold. Moreover, we have

LIN(I(1), C(1)) ≤ OPT(I(1), C(1)) ≤ OPT(Ilarge, C(1)) ≤ OPT(I, C(1)) as can be seen in
Lemma 2.7. Combining these properties with Theorem 2.15, we deduce that (I(1), C(1))

and therefore (Ilarge \ Ihuge, C(1)) is packed in at most

(1 + 4ε)OPT(I(1), C(1)) +O
(

log
(

1
δ

)
log(d1)

)
≤(1 + 4ε)OPT(I(1), C(1))

+ O
(

log2
(

1
ε

))
bins. Using Lemma 2.22, we see that this is at most

(1 + 4ε) [(1 + 4ε)OPT(I, C) + 2] +O
(

log2
(

1
ε

))
≤(1 + 16ε)OPT(I, C)

+ O
(

log2
(

1
ε

))
because of ε ≤ 1

2 . As Ihuge fits into at most εArea(Ilarge) +O(log( 1
ε )) ≤ εOPT(I, C) +

O(log2( 1
ε )) unit-sized bins (see Subsection 2.6.1), we obtain the desired approximation

ratio.

Theorem 2.24. Let (I, C) be a VBP instance with n items. For given ε ∈ (0, 1
2 ], the algorithm

Aε finds a solution with Aε(I, C) ≤ (1 + 17ε)OPT(I, C) +O(log2( 1
ε )).

Proof. Because of Lemma 2.23, the theorem is obviously true if Step 5 does not create
any new bins. Hence, let us assume that at least one new (unit-sized) bin has to
be opened. Note that the solution constructed by the algorithm only uses bins in
C(1) ⊂ C̃, i.e. bins with cl ≥ ε. The items in Ismall satisfy s(a) ≤ δ = ε2. As at least
one unit-sized bin is opened, all bins (with the possible exception of the last opened
unit-sized bin) are filled at least up to cl − δ = cl − ε2 at the end of Step 5. Let zl be
the number of bins cl ∈ C(1) the solution has after adding the last (small) item, and let
C̄ := C(1) \ {cM} = C(1) \ {1}. Then we have with 1

1−ε ≤ 1 + 2ε for ε ≤ 1
2 that

Area(I) ≥ ∑
cl∈C̄

(
cl − ε2) zl +

(
1− ε2) (zM − 1)

cl≥ε

≥ ∑
cl∈C̄

cl (1− ε) zl + (1− ε) (zM − 1)

⇒ ∑
cl∈C̄

clzl + cMzM ≤
1

1− ε
Area(I) + 1 ≤ (1 + 2ε)OPT(I, C) + 1 .

Since ∑cl∈C̄ clzl + cMzM = ∑cl∈C(1) clzl is the objective value of our solution, this shows
the theorem. (The proof is only a slight modification of the corresponding proof by
Murgolo [69, Proof of Thm. 1, case 2].)
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2 Bin Packing and Variable-sized Bin Packing

2.6.4 Analysis of the Running Time

Deriving the running time is a rather straightforward calculation.
In Step 1 of the algorithm, Ismall and Ilarge can be constructed in time O(n). Fur-

thermore, it is mentioned in [72, p. 298] that I(1) and Ihuge can be obtained in time
O(log(d1)n) = O(log( 1

ε )n) even when Ilarge is not sorted. For the reduction of the bin
sizes, i.e. the construction of C(1), we have the following lemma.

Lemma 2.25. The bins C(1) can be constructed and sorted in time O(M + 1
ε log2 1

ε ).

Proof. The set C̃ can be found in time O(M). If M ≤ b 2
ε ln 1

ε c+ 1, we have C̃ = C(1)

and can sort the items inO(M log M) = O
(

1
ε log2 1

ε

)
. If M > b 2

ε ln 1
ε c+ 1, Lawler [63]

has presented a technique to construct C(1): create a bucket for every interval C̃l and
place every bin size c ∈ C̃ in its corresponding bucket. The largest bin size in every C̃l

can then be found by a single scan of the corresponding bucket. Here, the right bucket
for one c, i.e. the right exponent l, can be determined in O(1) because we assume that
the logarithm can be calculated in O(1). Thus, adding all c ∈ C̃ to the right buckets
can be done inO(M). The creation of the buckets themselves needs time inO

( 1
ε log 1

ε

)
and finding the largest c in every C̃l in totalO(M). Note that the buckets can of course
be created in increasing order of l ∈ {0, 1, . . .} such that C(1) is sorted in the end.

The running time of Step 2 is already known (see Theorem 2.21 and (2.16)). It
is not difficult to see that Steps 3 and 5 need time O(n). Finally, Step 4 consists
of grouping the items in Ihuge and then packing them with Next-Fit, which can be
done in O(log( 1

δ )n) = O(log( 1
ε )n). (In fact, the items have normally already been

grouped during the construction of Ihuge.) As C(1) contains M1 = min{M, b 2
ε ln 1

ε c+ 1}
different bin sizes, we get the overall running time:

O
(

max
{

UKPIP
(

d1, M1, cmin,
ε̄

6

)
,O
(

1
ε

log
(

1
ε

)
log log

(
1
ε

))}
· 1

ε
log
(

1
ε

)
·
[

log
(

1
ε

)
+

1
ε2

]
+

1
ε2.5356 · log2.5356

(
1
ε

) [
log
(

1
ε

)
+

1
ε2

]
+

1
ε3 log

(
1
ε

)
+ M + log

(
1
ε

)
n
)

.

(2.21)

Assume that UKPIP(d1, M1, cmin, ε̄
6 ) ∈ Ω( 1

ε2 ), which is motivated by the running
time of known UKPIP algorithms (as will be seen in this thesis). By simplifying the
expression above, we see that the AFPTAS needs time in

O
(

UKPIP
(

d1, M1, cmin,
ε̄

6

)
· 1

ε3 log
1
ε
+ M + log

(
1
ε

)
n
)

.
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2.6 The General Algorithm

This shows the Theorems 2.4 and 2.5. The time complexity for BP is obtained from
(2.21) with an FPTAS for UKP instead of one for UKPIP and with M = 1.

The last missing part of the algorithm is an FPTAS for UKPIP and UKP. One possi-
bility mentioned in the introduction is to employ Lawler’s FPTAS for UKP [63]. For
VBP, we get an FPTAS for UKPIP in the following way: we separately solve for every
cl ∈ C(1) the UKP instance with profits pj

cl
and return the maximum profit over all cl .

The correctness of this FPTAS for UKPIP follows from the lemmas in Section 3.4.
Since Lawler’s FPTAS has a running time in O(d1 +

1
ε3 ) for one knapsack size, this

method would yield a running time UKPIP(d1, M1, cmin, ε̄
6 ) ∈ O(M1 · (d1 +

1
ε3 )) =

O( 1
ε4 log 1

ε ) and therefore O( 1
ε7 log2( 1

ε ) + M + log( 1
ε )n) for the entire AFPTAS. Note

that ε̄ = ε
4 as stated in Theorem 2.13 and that cmin ≥ ε because cmin ∈ C(1) ⊆ C̃.

Theorem 2.26. Aε(I, C) has for VBP a running time in O( 1
ε7 log2( 1

ε ) + M + log( 1
ε )n).

This is indeed the running time our VBP algorithm originally had in [42]. Similarly, the
FPTAS for UKP by Lawler [63] yields the following time complexity for Bin Packing:

Theorem 2.27. Aε(I, C) is for C = {1} an AFPTAS for BP with a running time in
O( 1

ε6 log( 1
ε ) + log( 1

ε )n).

Remark 2.28. Note that we can even set δ = O(ε) for BP as done e.g. by Karmarkar
and Karp [56]. Moreover, the approximation ratio of (1+ ε) for BP and VBP is achieved
by replacing ε by ε

17 , which does not change the asymptotic running time.

The running times of our AFPTAS for VBP and BP depend on the running time of the
FPTAS for UKPIP or UKP. The next chapters will show how we can improve them and
therefore the time complexity of the AFPTAS.
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3 The Knapsack Problem with Inversely
Proportional Profits

3.1 Introduction

This chapter presents algorithms for variants of the Knapsack Problem with Inversely
Proportional Profits (KPIP), namely for the 0-1 variant (0-1 KPIP), the unbounded
variant (UKPIP), and the bounded variant (BKPIP). They are formally defined in
Subsection 1.3.3.

3.1.1 Known Results

The 0-1 Knapsack Problem and the other variants of KP like the Unbounded Knapsack
Problem (UKP) and the Bounded Knapsack Problem (BKP) are well-known NP-hard
problems [25]. They can be optimally solved in pseudo-polynomial time by dynamic
programming [5, 61]. As KP is a maximization problem, the absolute ratio of any algo-
rithm A for KP is defined by infI

A(I)
OPT(I) , and it is bounded from above by 1. While Bin

Packing has a bound of 3
2 on the absolute approximation ratio for polynomial-time al-

gorithms (see Subsection 2.1.1), there is no upper bound on the absolute approximation
ratio of KP: there are several known PTAS and FPTAS.

The first FPTAS for 0-1 KP was presented by Ibarra and Kim [39] with a running time
inO(n log n+ 1

ε2 ·min{ 1
ε2 log( 1

ε ), n}) and a space complexity inO(n+ 1
ε3 ). Lawler [63]

improved the running time to O( 1
ε4 + log( 1

ε )n). In 1981, Magazine and Oguz [67]
presented a method to decrease the space complexity of the dynamic program so
that their FPTAS runs in time O(n2 log(n) 1

ε2 ) and needs space in O( n
ε ). (The paper

focuses on the improved space complexity without a partitioning and reduction of
the items as done e.g. by Lawler. Without it, Lawler’s basic algorithm has in fact a
time and space complexity in O( n2

ε ).) The currently fastest known algorithm is due to
Kellerer and Pferschy [59, 60, 61, pp. 166–183] with a space bound in O(n + 1

ε2 ) and a
running time in O(n min{log n, log 1

ε }+ 1
ε2 log( 1

ε ) ·min{n, 1
ε log( 1

ε )}). Assuming that
n ∈ Ω( 1

ε log 1
ε ), this is in O(n log( 1

ε ) +
1
ε3 log2( 1

ε )).
For UKP, Ibarra and Kim [39] presented the first FPTAS by extending their 0-1 KP

algorithm. This UKP algorithm has a running time in O(n + 1
ε4 log 1

ε ) and a space
complexity in O(n + 1

ε3 ). Kellerer et al. [61, pp. 232–234] have moreover described an
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3 The Knapsack Problem with Inversely Proportional Profits

FPTAS with a time complexity in O(n log(n) + 1
ε2 (n + log 1

ε )) and a space bound in
O(n + 1

ε2 ). In 1979, Lawler [63] presented his FPTAS with a running time in O(n + 1
ε3 )

and a space complexity in O(n + 1
ε2 ). For n ∈ Ω( 1

ε ), this is still the best known FPTAS.
For BKP, a basic FPTAS was presented by Kellerer et al. in their book [61, pp. 207–

209] and a more sophisticated by Plotkin et al. [72, pp. 295–297], where the latter is
derived from Lawler’s 0-1 KP algorithm [63] and runs in O(min{n 1

ε2 , n log( 1
ε ) +

1
ε4 }).

For further information on the Knapsack Problem, we refer to the books by Martello
and Toth [68] as well as by Kellerer, Pferschy, and Pisinger [61].

3.1.2 Our Results

As mentioned in Chapter 2, the AFPTAS for VBP has to solve UKPIP instances as
a subroutine (see e.g. Subsection 2.5.1). This motivated us to formally define the
Knapsack Problem with Inversely Proportional Profits (KPIP) as a new problem and
to study it.

Subsection 2.6.4 has already presented a simple way to solve an instance of 0-1
KPIP, BKPIP or UKPIP with n items and M knapsack sizes: take an FPTAS for the
corresponding variant of the knapsack problem. For each knapsack cl , solve the KP
instance with item profits pj

cl
. Return the solution and knapsack size of highest profit.

Lawler’s algorithm [63] for UKP yields a running time in O(M · (n + 1
ε3 )) and a space

bound in O(M + n + 1
ε2 ) for UKPIP. (The correctness of this approach is formally

shown in Section 3.4.)
We change and improve the techniques of the KPIP approximation algorithm above

such that several knapsack sizes can be processed at once. Thus, we avoid redundancy
and get the following theorem.

Theorem 3.1. Let ε > 0. Let cmin be the smallest knapsack size of a UKPIP instance with M
knapsacks and n item types. There is an FPTAS that solves this problem in time

O
(

n log M + min
{⌊

log
1

cmin

⌋
+ 1, M

}
n + min

{⌊
log

1
cmin

⌋
+ 1, M

}
1
ε3 +

M
ε2

)
and space O(M + n + 1

ε2 ).

The running time of the column generation subroutine for our VBP AFPTAS improves
so that the overall time complexity decreases by a factor of Θ

( 1
ε

)
:

Theorem 3.2. The AFPTAS for VBP only needs time inO( 1
ε6 log2( 1

ε ) + M + log( 1
ε )n) (see

Theorem 2.4).

The FPTAS for KPIP together with the improved running time of our AFPTAS for VBP
were presented at the conference CSR 2013 [43].
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3.2 Overview

We start with some basic definitions and remarks in Section 3.3. Important are the
definition of OPTcl (I) (best solution for the KPIP instance with the knapsack size cl

and scaled profits pj
cl

) and OPTcl (I) (optimum solution for the normal KP instance with
the knapsack size cl and non-scaled basic profits pj). This notation is used throughout
this chapter where values without bar (like OPTcl (I)) are obtained with scaled profits
pj
cl

and values with bar (like OPTcl (I)) with the basic profits pj.

Section 3.4 shows an important property: for a solution of KPIP, it is sufficient to
solve the normal KP problem with basic profits pj for every knapsack size cl . By
scaling every solution by the corresponding cl , we get the solutions Pcl . The maximum
maxcl Pcl is the solution for the KPIP instance. This is also true for approximate
solutions. The property allows us to work with the basic profits pj: we could apply
e.g. the UKP algorithm by Lawler [63] to every knapsack size cl and basic profits pj

and scale the obtained profits afterwards. However, this results in using dynamic
programming M times, which is time-consuming.

In Section 3.5, the basic FPTAS for 0-1 KPIP is introduced. Since it is an extension of
Lawler’s FPTAS [63], our presentation follows the one by Lawler. First, we introduce
the well-known Dynamic Programming by Profits in Subsection 3.5.1, where Fj(i)
stands for the smallest total size to get profit i if only the items a1, . . . , aj are considered.

Subsection 3.5.2 presents the extended greedy approach to find first approximations
P̄cl ≥ 1

2 OPTcl (I) for every knapsack cl . Because of the scaling property of Section

3.4, we get the approximations Pcl =
P̄cl
cl
≥ 1

2 OPTcl (I) and P0 = maxl∈{1,...,M} Pcl ≥
1
2 OPT(I). The special item sets Sl are introduced, which are the items with a size
cl−1 < s(a) ≤ cl , and the derived sets S̄l =

⋃l
l′=1 Sl′ , which are the items that fit into cl ,

i.e. s(a) ≤ cl .

Subsection 3.5.3 explains the basic FPTAS that avoids redundancy for large values of
M by determining the values Fj(i) for several knapsack sizes at once. At the beginning,
a threshold T based on the values P̄cl is defined, and the items are partitioned into
large ones of profit pj > T and small ones of profit pj ≤ T. Let nL be the number of
large items. We assume without loss of generality that the first nL items a1, . . . , anL are
the large ones. Their profits are scaled to values qj = q(aj) with a scaling constant
K based on T. Dynamic Programming by Profits is applied to the scaled profits and
yields candidates (i, FnL(i)) where every candidate represents a set of large items of
scaled total profit i and total size FnL(i). Then, we determine an approximate solution
for every cl by P̄(1)

l = maxFnL (i)≤cl
K · i + φl(cl − FnL(i)). The value K · i is the (almost)

unscaled profit of the corresponding set of large items, and φl(cl − FnL(i)) is the profit
obtained by greedily adding the small items to the remaining knapsack capacity
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3 The Knapsack Problem with Inversely Proportional Profits

cl − FnL(i). The definition of S̄l is useful for these calculations. We set P(1)
l = P̄(1)

l /cl and

obtain with P1 = maxl P(1)
l an approximation to the optimum of our instance by the

observation in Section 3.4.

Unfortunately, the overall running time depends on cM
c1

, i.e. the ratio of the largest
knapsack cM = cmax to the smallest knapsack c1 = cmin. It is improved by first
partitioning the knapsacks into intervals Cb = {cl ∈ C | cl ∈ (c(b+1)w

min , cbw
min]} for b ∈

{0, . . . , b 1
wc+ 1} and a suitable w ≤ 1 and then by separately executing the algorithm

above for every Cb. Hence, a threshold Tb and a scaling constant Kb are introduced
for every Cb. Now, the ratio c(b)max/c(b)min of the largest to the smallest knapsack in Cb is
bounded by 1

cw
min

. Thus, w is chosen in such a way that O( 1
cw

min
· 1

w ), i.e. the running
time of one dynamic programming computation times the number of computations, is
minimized.

Subsection 3.5.4 shows how the running time and storage space of the algorithm
can be further reduced. In fact, only a limited number of large items with profits in
L(k,b) = (2kTb, 2k+1Tb] can be part of a solution for knapsacks in Cb (otherwise, the
upper bound OPTcl (I) ≤ 2P̄cl would be exceeded). Hence, we take a reduced number
nL,j of items for every scaled profit qj, which is sufficient for an approximate solution.
Therefore, the total number of large items nb ≤ nL is bounded. (nL now denotes the
global upper bound on all nb.) Furthermore, we redefine Fj(i) to be the smallest total
size to obtain the (scaled) total profit i if only the items with the first j scaled profits
q1, . . . , qj are considered. By adapting the dynamic program accordingly, the total
storage needed for the algorithms decreases, too.

The variants UKPIP and BKPIP are addressed in Section 3.6. Of special interest is
the adaptation of our algorithm to UKPIP because it is the subproblem we have to
solve for our VBP AFPTAS. For UKPIP, the instance is transformed (in parts) into a 0-1
KPIP instance. First, the item ãj of smallest size is determined for every scaled profit qj:
these items are obviously sufficient to get an approximate solution for UKPIP. Second,
items ã(r)j of profit 2r p(ãj) and size 2rs(ãj) are created, which can represent any choice
of large items in a feasible solution of UKPIP. Only one of these items has to be kept
for every scaled profit qj, which (again) improves the running time. The space needed
for the algorithm can be further decreased by adapting the dynamic program. Even
the greedy algorithm to determine the values of φl(·) is faster because we only have
to take copies of the most efficient small item a(l)eff for cl . Such improvements are not
possible for BKPIP, but the basic idea to create items as above is also used.
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3.3 Notation and Remarks

We introduce some useful notation. The basic profit of an item a is denoted by p(a)
and its size by s(a). If a = aj, we also write p(aj) = pj and s(aj) = sj. A multi-set
V = {xa : a | a ∈ I} of items is a subset of items in I with the item multiplicities. We
assume that xa ∈ Da: note that Da = {0, 1} for 0-1 KPIP, Da = {0, . . . , da} for BKPIP
(with da ∈N), and Da = N for UKPIP (see Subsection 1.3.3). We naturally define the
total basic profit p(V) := ∑xa>0 p(a)xa and the total size s(V) := ∑xa>0 s(a)xa.

OPTcl (I) = max

{
∑
a∈I

p(a)
cl

xa

∣∣∣ ∑
a∈I

s(a)xa ≤ cl ; xa ∈ Da for a ∈ I

}
refers to the optimal solution for the current variant of KPIP when only knapsack size
cl is considered. OPT(I) = maxl∈{1,...,M}OPTcl (I) denotes the global optimum.

We will also consider the case where the items only have their unscaled basic profit
pj, independent of the knapsack in which they are packed. Let v ≤ cM = 1 be a part of
any knapsack. The corresponding optimal basic profit for the volume v is denoted by

OPT (I, v) = max

{
∑
a∈I

p(a)xa

∣∣∣ ∑
a∈I

s(a)xa ≤ v; xa ∈ Da for a ∈ I

}
.

For v = cl , we also write the optimum for knapsack size cl as OPTcl (I) = OPT(I, cl).
Let OPT(I) = maxl∈{1,...,M}OPTcl (I) be the global optimum. (Note that OPT(I) =

OPTcM(I).) This notation will also be used in Chapters 4 and 5. As there is only one
knapsack size in the case of UKP, Chapter 4 will use expressions without bar (e.g.
OPT(I) instead of OPT(I)) for ease of notation.

Remark 3.3. For I = {a1, . . . , an}, we can of course write the optimum as OPTcl (I) =
max{∑n

j=1
pj
cl

xj | ∑n
j=1 sjxj ≤ cl ; xj ∈ Dj} etc. (a notation that will indeed be employed).

The UKP algorithm in Chapter 4 and the UKPIP algorithm in Chapter 5 will however
often use the optimum for different item sets in the analysis of the respective algo-
rithms. Hence, we have chosen the more general notation of summing over all items
in the instance ∑a∈I instead of the summation ∑n

j=1.

As mentioned in Section 1.4, we assume that basic arithmetic operations as well as
computing the logarithm can be done in O(1).

3.4 Observations

Two simple observations help us to handle that the profits depend on the knapsack
size. In fact, they allow us to work only with the basic profits pj.
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3 The Knapsack Problem with Inversely Proportional Profits

Lemma 3.4. For every variant of KPIP, it is sufficient to calculate for every knapsack cl a
(1− ε) approximate solution Pcl ≥ (1− ε)OPTcl (I) with profits pj

cl
and take as final solution

the maximum over all knapsack sizes maxl Pcl .

Proof. Let I = {a1, . . . , an}. Determine for every knapsack cl a (1− ε) approximate
solution (x(l)1 , . . . , x(l)n ) such that

Pcl =
n

∑
j=1

pj

cl
x(l)j ≥ (1− ε)OPTcl (I) . (3.1)

Let cr ∈ {c1, . . . , cM} be the knapsack size and (x(r)1 , . . . , x(r)n ) be the (1− ε) solution
with the maximum profit over all knapsack sizes. Therefore, we have

n

∑
j=1

pj

cr
x(r)j = max

l∈{1,...,M}

n

∑
j=1

pj

cl
x(l)j . (3.2)

On the other hand, let cq ∈ {c1, . . . , cM} be the knapsack size with OPT(I) =

OPTcq(I). Then obviously

n

∑
j=1

pj

cr
x(r)j

(3.2)
≥

n

∑
j=1

pj

cq
x(q)j

(3.1)
≥ (1− ε)OPT(I) ,

and (x(r)1 , . . . , x(r)n ) is a (1− ε) approximate solution.

Lemma 3.5. Let cl be a knapsack size. A (1− ε) approximate solution for one variant of KP
with the knapsack size cl and the basic profits pj is also a (1− ε) solution for the corresponding
variant of KPIP with profits pj

cl
and (only) the knapsack size cl , and vice versa.

Moreover, we have

OPTcl (I) =
OPTcl (I)

cl
. (3.3)

Proof. Let (again) I = {a1, . . . , an}. First, every solution to the problem with basic
profits pj is a feasible solution to the problem with profits pj

cl
because only the item

profits, but not the item sizes, change.
Let (x1, . . . , xn) be a (1− ε) approximate solution and (x̃1, . . . , x̃n) be an optimal

solution for knapsack size cl and basic profits pj. By definition, we have

n

∑
j=1

pjxj ≥ (1− ε)OPTcl (I) = (1− ε)
n

∑
j=1

pj x̃j . (3.4)

On the other hand, we show that

1
cl

n

∑
j=1

pj x̃j = OPTcl (I) . (3.5)
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3.4 Observations

The inequality ∑n
j=1

pj
cl

x̃j ≤ OPTcl (I) is obvious. To show the inequality ∑n
j=1

pj
cl

x̃j ≥
OPTcl (I), let (x̄1, . . . , x̄n) be an optimal solution for cl with profits pj

cl
. Then

n

∑
j=1

pj

cl
x̄j = OPTcl (I) ,

and
n

∑
j=1

pj x̄j ≤ OPTcl (I) =
n

∑
j=1

pj x̃j (3.6)

because (x̄1, . . . , x̄n) is also a feasible solution for the considered variant of KP with
the knapsack size cl . Dividing by cl > 0 on both sides of (3.6) shows that OPTcl (I) =
∑n

j=1
pj
cl

x̄j ≤ ∑n
j=1

pj
cl

x̃j and therefore (3.5).
We get

n

∑
j=1

pjxj
(3.4)
≥ (1− ε)cl

n

∑
j=1

pj

cl
x̃j

(3.5)
= (1− ε)clOPTcl ⇒

n

∑
j=1

pj

cl
xj ≥ (1− ε)OPTcl (I) .

The proof that an approximate solution for the profits pj
cl

is also an approximate
solution for the basic profits pj is almost the same.

Note that we have also shown that OPTcl (I) =
OPTcl (I)

cl
.

We get the following result:

Algorithm 3.1: MaxSolution
Input: Item set I, knapsack sizes c1 < . . . < cM = 1
Output: Solution of value P ≥ (1− ε)OPT(I)

1 for all cl , l ∈ {1, . . . , M} do
2 Find a solution (x(l)1 , . . . , x(l)n ) with ∑n

j=1 pjx
(l)
j ≥ (1− ε)OPT(I, cl);

3 for all cl , l ∈ {1, . . . , M} do
4 Compute Pcl := 1

cl
∑n

j=1 pjx
(l)
j ;

5 return maxl∈{1,...,M} Pcl ;

Theorem 3.6. The algorithm MaxSolution presented in Algorithm 3.1 finds a (1− ε) ap-
proximate solution for all considered KPIP variants.

Proof. Lemma 3.5 shows that Pcl ≥ (1− ε)OPTcl (I). Taking the maximum over all Pcl

then yields a solution with an objective value of at least (1− ε)OPT(I) according to
Lemma 3.4.
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3 The Knapsack Problem with Inversely Proportional Profits

3.5 Extending Lawler’s Algorithm

We have seen that MaxSolution calculates the desired approximate solution. In this
section, we will see how to extend Lawler’s algorithm for 0-1 KP [63] to 0-1 KPIP
such that we obtain the approximate solutions in Step 2 of the algorithm, and how we
optimize the overall running time when calculating them. BKPIP and UKPIP will then
be considered in Section 3.6. Our presentation follows the one by Lawler.

First, we will introduce basic techniques for the Knapsack Problem, which are
designed for integral profits pj, sizes sj, and knapsack sizes cl . Hence, we first assume
that pj, sj, cl ∈N for all j and l. Then, we will see that the techniques and the FPTAS
also work for pj, sj, cl ∈ (0, 1].

For ease of notation, this section assumes that I = {a1, . . . , an}.

3.5.1 Dynamic Programming

Dynamic Programming by Profits [5, 61] is a well-known technique to optimally solve
a 0-1 KP instance in pseudo-polynomial time. Let Fj(i) ∈ R≥0 be the minimum size
necessary to obtain the profit i ∈N with the items a1, . . . , aj. For instance, F1(0) = 0
and F1(p1) = s1 hold. If a profit i cannot be obtained with the first j items, Fj(i) = ∞ is
set, i.e. F1(i) = ∞ for i 6= 0, p1 and Fj(i) = ∞ for i < 0 and all j. The Fj(i) are computed
by the Bellman recursion

Fj(i) = min{Fj−1(i), Fj−1(i− pj) + sj} .

Let c1 < . . . < cM be several knapsack sizes. We obviously have the identity
OPTcl (I) = max {i | Fn(i) ≤ cl} (see also [29]), and the corresponding items can be
found by backtracking in the table of the Fj(i). Note that it is possible that i ≤ i′, but
Fn(i) ≥ Fn(i′): a larger profit i′ is achieved with a smaller size Fn(i′). Then, we say like
in [63] that Fn(i) is dominated by Fn(i′). It is not difficult to remove dominated table
entries Fn(i).

Lemma 3.7. Dominated table entries Fn(i) can be discarded inO(PB), where PB is an upper
bound on the maximum profit maxl∈{1,...,M}OPTcl (I) = OPTcM(I).

Proof. Let Fn(1), . . . , Fn(PB) be the table entries: they are already sorted in increasing
order of their profit i. Moreover, the profits i are already different so that Fn(i′) can
only dominate Fn(i) if i < i′, but Fn(i) ≥ Fn(i′). We define a partial ordering on the
pairs (i, Fn(i)) where (i, Fn(i)) < (i′, Fn(i′)) if i < i′ and Fn(i) < Fn(i′), i.e. (i, Fn(i))
has a smaller profit than (i′, Fn(i′)) and Fn(i) is not dominated by Fn(i′). We call a
sequence of pairs (i1, Fn(i1)), . . . , (ir, Fn(ir)) sorted if (i1, Fn(i1)) < . . . < (ir, Fn(ir)).
Hence, no Fn(i) is dominated in a sorted sequence.
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3.5 Extending Lawler’s Algorithm

Obviously, the last sequence element (PB, Fn(PB)) cannot be dominated. We it-
eratively construct a subsequence of non-dominated pairs in the following way:
let (i, Fn(i)), . . . , (PB, Fn(PB)) be the current sequence such that (i, Fn(i)) < . . . <

(PB, Fn(PB)). Compare (i− 1, Fn(i− 1)) and (i, Fn(i)). If (i− 1, Fn(i− 1)) < (i, Fn(i)),
add (i− 1, Fn(i− 1)) to the sequence as the new first element, otherwise discard it
because Fn(i− 1) ≥ Fn(i) holds. Continue until all items of the original sequence have
been processed, i.e. until (1, Fn(1)) has been considered.

It is clear that the resulting sequence is sorted and therefore consists only of pairs
that correspond to non-dominated Fn(i). On the other hand, we have only removed
pairs from the original sequence that are dominated. Therefore, the new sequence has
to be the original sequence with the dominated entries removed. The running time of
O
(

PB
)

is obvious. Note that we have implicitly removed entries Fn(i) = ∞: there is
no item set with the total profit i if this is the case.

Thus, all OPTcl (I) can be found by a single scan of the Fn(i) in time O(PB + M).

Theorem 3.8. The Fj(i) can be determined in time and space O(PB · n). Afterwards, the
optimal values OPTcl (I) for l ∈ {1, . . . , M} can be found in time O

(
PB + M

)
and space

O(M). Dynamic programming also works for non-integral item sizes sj ∈ R>0 and knapsack
sizes cl ∈ R>0.

Proof. The Fj(i) form a table with n · PB entries. As one entry Fj(i) can be determined
in O(1), the overall running time to determine the Fj(i) is therefore in O(n · PB).
Since OPTcl (I) = max {i | Fn(i) ≤ cl} holds as mentioned above, it is sufficient to
calculate all entries Fn(i) once and discard the dominated Fn(i). Thus, all OPTcl (I) for
l ∈ {1, . . . , M} can be determined in additional time O(PB + M) by one scan of the
Fn(i).

The overall space requirement can be bounded by O
(
n · PB

)
to calculate and save

the Fj(i) and O(M) to save the OPTcl (I).
Finally, dynamic programming does not use the fact that the item sizes sj and

knapsack sizes cl are integral: the algorithm only assumes that the profits pj are
integral whereas it is sufficient that the sizes sj, cl are positive.

A trivial bound on PB (not used in this thesis) is n · pmax, where pmax is the largest
item profit.

3.5.2 Bounds for the Optimum: a Simple 1
2 Algorithm

We present a simple algorithm for a bound on OPTcl (I). Let

S1 := {ai | s(ai) ≤ c1} and Sl := {ai | cl−1 < s(ai) ≤ cl} for l ∈ {2, . . . , M} .
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3 The Knapsack Problem with Inversely Proportional Profits

Note that we still have c1 < c2 < . . . < cM.
Moreover, let S̄l :=

⋃l
l′=1 Sl′ = {a | s(a) ≤ cl}, which is the set of the items that have

to be considered for a solution of knapsack size cl .
The basic idea of the approximation for any cl is simple: sort the items in S̄l according

to their efficiency p(a)
s(a) ; if ties occur, we can e.g. consider the item of smaller index to

have a smaller efficiency. Start with the item of largest efficiency and add items in S̄l

to the knapsack in non-increasing order of the efficiency until no more items can be
added. Return P̄cl , the maximum of this value and of the most precious item a(l)max with
profit p(l)max := max

{
pj | sj ≤ cl

}
. We will see below how this can be done without

sorting the items. This greedy approximation algorithm is also called Ext-Greedy [61].
For 0-1 KPIP, let

Pcl :=
P̄cl

cl
. (3.7)

Finally, let P0 := maxl∈{1,...,M} Pcl be the global maximum.

Theorem 3.9. For 0-1 KPIP, we have P̄cl ≥ 1
2 OPTcl (I) and Pcl ≥ 1

2 OPTcl (I). Furthermore,
P0 is a 1

2 approximation to the global optimum OPT(I).

Proof. For ease of notation, let us assume without loss of generality that we have
S̄l = {a1, . . . , an} and p1

s1
≥ p2

s2
≥ . . . ≥ pn

sn
, i.e. the items are already sorted according

to their efficiency p(a)
s(a) in non-increasing order.

Determine now jcl such that s1 + · · ·+ sjcl
≤ cl , but s1 + · · ·+ sjcl

+ sjcl+1 > cl . Then
we have

p1 + · · ·+ pjcl
≤ OPTcl (I) < p1 + · · ·+ pjcl

+ pjcl+1 . (3.8)

Since p(l)max := max {pi | si ≤ cl} ≤ OPTcl (I), the inequality

OPTcl (I) < p1 + · · ·+ pjcl
+ pjcl+1 ≤ p1 + · · ·+ pjcl

+ p(l)max

≤ 2 max
{

p1 + · · ·+ pjcl
, p(l)max

}
≤ 2OPTcl (I)

holds, i.e.

1
2

OPTcl (I) ≤ P̄cl = max
{

p1 + · · ·+ pjcl
, p(l)max

}
≤ OPTcl (I) . (3.9)

Thus, P̄cl is a 1− ε = 1− 1
2 = 1

2 approximation to OPTcl (I) so that P̄cl is a suitable
lower bound on OPTcl (I) and 2P̄cl an upper bound.

Pcl =
P̄cl
cl

is a 1
2 approximate solution for cl with profits pj

cl
according to Lemma 3.5.

Lemma 3.4 shows that P0 = maxl∈{1,...,M} Pcl is also a 1
2 approximation to OPT(I) with

1
2 OPT(I) ≤ P0 ≤ OPT(I).

(The main part of this proof is taken from [63].)
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3.5 Extending Lawler’s Algorithm

Corollary 3.10. For 0-1 KPIP, we can discard knapsacks cl with Pcl =
P̄cl
cl

< 1
2 P0.

Proof. To avoid confusion, let P1/2
cl

:= Pcl be the 1
2 approximate value for knapsack

size cl found by the greedy approach of this subsection. Moreover, let Pε
cl

be a (1− ε)

approximation to OPTcl (I). We show that there is at least one knapsack size cl ∈ C
such that P1/2

cl
≥ 1

2 P0 and Pε
cl
≥ (1− ε)OPT(I). In fact, let cq be the optimum knapsack

size so that OPT(I) = OPTcq(I). We get

P1/2
cq

Thm. 3.9
≥ 1

2
OPTcq(I) =

1
2

OPT(I)
Thm. 3.9
≥ 1

2
P0 .

Moreover, Pε
cq
≥ (1− ε)OPTcq(I) = (1− ε)OPT(I) holds, which finishes the proof.

We show how to actually construct the Sl and to find the P̄cl and P0. First, the P̄cl

can be constructed without having to sort the items according to their efficiency by a
median-based divide-and-conquer strategy (similar to [63]).

Lemma 3.11. Suppose the item sets Sl have been created and the items a(l)max are known. Then,
all P̄cl and therefore P0 can be found in time O(M · n) and space O(M + n) without sorting
the items according to their efficiency. The procedure also works for non-integral profits and
sizes pj, sj, cl ∈ R>0.1

Proof. For one cl , the median-based binary search presented in Lemma B.2 of Section B
is applied to the set S̄l to determine the greedy solution in time and spaceO(

∣∣S̄l
∣∣). The

item with p(a) = p(l)max is already known. Hence, one P̄cl can be determined in time and

1During the proofreading of the thesis, I have discovered that the running time can probably be
improved to an expression in o(M · n). In Chapter B, it is explained how the remaining capacity
cl − Fnb (i) of a knapsack can be filled with a median-based divide-and-conquer strategy. These are
the values φl(cl − Fnb (i)) of Subsection 3.5.3. Assume that in iteration s− 1 these values are known
for profits i1 < . . . < i3 < . . . < i2r−1 < i2r+1 and therefore for capacities cl − Fnb (i1) ≥ cl − Fnb (i3) ≥
. . . ≥ cl − Fnb (i2r−1) ≥ cl − Fnb (i2r+1). In the next iteration s, the values are determined for values
i0, i2, . . . , i2r, i2r+2 with i0 < i1 < i2 < . . . < i2r−1 < i2r < i2r+1 < i2r+2 and therefore with sizes
cl − Fnb (i0) ≥ cl − Fnb (i1) ≥ cl − Fnb (i2) ≥ . . . ≥ cl − Fnb (i2r) ≥ cl − Fnb (i2r+1) ≥ cl − Fnb (i2r+2)

where the median-based algorithm uses the information of the last iteration s− 1. This procedure
is iterated until the values are known for all pairs (i, Fnb (i)). Similarly, it is probably possible to use
the same approach to iteratively find the greedy solutions for the knapsack sizes: when the values
for the knapsack sizes cl1 < cl3 < . . . < cl2r−1

< cl2r+1
are known in iteration s− 1, the values for

cl0 , cl2 . . . , cl2r , cl2r+2 with cl0 < cl1 < cl2 < cl3 < . . . < cl2r−1
< cl2r < cl2r+1

< cl2r+2 can be determined
like above in iteration s. Each iteration only needs time in O(n). Instead of using the median-based
approach for every cl again (which needs O(n) for every cl), this iterative approach may find all
P̄cl in O(log(M)n) because only O(log M) iterations are necessary until all cl have been considered.
However, this does not change the asymptotic running time of the final algorithm (see Theorem 3.23),
which still contains an expression that dominates O(M · n). We leave it as an open question of this
thesis whether the sketched idea is correct, and if yes, to develop the actual algorithm.
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3 The Knapsack Problem with Inversely Proportional Profits

space O(
∣∣S̄l
∣∣) ⊆ O(n) and therefore all P̄cl in time O(M · n). As the storage needed

to find one P̄cl can be emptied after P̄cl has been found, we only need space in O(n)
to find all P̄cl and additionally space in O(M) to save the P̄cl . As the median-based
approach also works for non-integral profits and sizes, the lemma follows.

Lemma 3.12. Suppose the cl are already sorted such that c1 < . . . < cM. Algorithm 3.2
constructs the sets Sl and finds the items a(l)max of profit p(l)max as well as the values P̄cl and P0

in time O(M · n) and space O(M + n). Moreover, knapsack sizes cl with Pcl =
P̄cl
cl

< 1
2 P0

are discarded. The algorithm also works for non-integral profits and sizes pj, sj, cl ∈ R>0.

Proof. The algorithm is based on an idea by Lawler [63]: create M stacks, one for each
Sl . Every item a ∈ I is then added to the right stack by binary search. Note that amax

is always the item of highest profit for S̄l = ∪l
l′=0Sl′ so that a(l)max is correctly defined.

The re-combination of sets Sl and Sl+1 when cl is discarded can be done in O(1) if the
right data structure is used (e.g. linked lists). The running time and the space needed
follow. It is obvious that the procedure also works for non-integral pj, sj and cl .

Remark 3.13. Algorithm 3.2 only creates O(n) sets Sl . This is sufficient: it can easily
be deduced that Sl = ∅ if one set Sl′ for l′ < l is followed by Sl′′ with l′′ > l such that
we do not have to save the sets Sl = ∅.

3.5.3 Scaling and Dividing: the Basic FPTAS

We introduce the basic algorithm, an extension of Lawler’s algorithm [63]. The basic
idea of Lawler’s FPTAS for the normal 0-1 KP with knapsack size c is as follows:

First, a threshold T, which will be defined later, is introduced: items aj with p(aj) ≥
T are large, the other items small. For ease of notation, let a1, . . . , anL be the large items.
They are scaled as follows: if p(aj) = pj ∈ (2kT, 2k+1T] for k ∈ N, the item has the
scaled profit

q(aj) = qj := 2k
⌊

pj

2kK

⌋
,

where K will be defined later. We assume that q(aj) can be computed in time O(1)
because k can be found in O(1) by computing the logarithm. Then, dynamic pro-
gramming is applied to the large items with profits qj, but unchanged sizes sj, and
dominated FnL(i) are discarded.

Moreover, let φ(c− FnL(i)) be the profit obtained by greedily filling up the remaining
capacity c− FnL(i) with small items: as in Subsection 3.5.2, items are added in non-
increasing order of their efficiency pj

sj
(and starting with the item of largest efficiency)

until adding the next item would result in a packing of size more than c− FnL(i).
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3.5 Extending Lawler’s Algorithm

Algorithm 3.2: This algorithm constructs the sets Sl and finds the items with
profit p(l)max as well as the values P̄cl and P0. Knapsack sizes cl with Pcl <

1
2 P0 are

discarded.
for l = 1, . . . , M do

a(l)max := ∅ ;

for all a ∈ I do
Determine by binary search the value l such that cl−1 < s(a) ≤ cl ;
if Sl not defined then

Create Sl = ∅;

Sl := Sl ∪ {a};
amax := ∅;
for l = 1, . . . , M do

for a ∈ Sl do
if amax = ∅ or p(a) > p(amax) then

amax := a;

a(l)max := amax;

Determine all P̄cl (see Lemma 3.11);
P0 := 0;
for l = 1, . . . , M do

if
P̄cl
cl

> P0 then

P0 :=
P̄cl
cl

;

for l = 1, . . . , M− 1 do

if
P̄cl
cl

< 1
2 P0 then

C := C \ {cl};
Sl+1 := Sl ∪ Sl+1;
Discard Sl ;

if
P̄cM
cM

< 1
2 P0 then

C := C \ {cl};
Discard SM;
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...

FnL(i)

...
FnL(i

′)
...

FnL(i
′′)

...

Fj(i)

Figure 3.1: Principle of Lawler’s algorithm: the values FnL(i) are determined with the
scaled profits of the large-profit items. Each FnL(i) stands for a set of large-
profit items (coloured medium gray). The remaining knapsack capacity
c− FnL(i) is greedily filled with small-profit items (coloured dark-grey).
The best combination of large and small items is returned.

Lawler’s algorithm for 0-1 KP then returns maxFnL (i)≤c K · i + φ(c− FnL(i)), the best
combination of large and small items. The principle is shown in Figure 3.1.

We now want to use the same principle for KPIP and combine it with the idea from
Subsection 3.5.1: first, the FnL(i) are determined for the scaled large items and the
dominated values discarded. For every cl , we take

P̄(1)
l := max

FnL (i)≤cl

K · i + φl(cl − FnL(i)) , (3.10)

where φl only uses small items in S̄l = {ai | s(ai) ≤ cl} to fill the remaining capacity
cl − FnL(i). Therefore, the FnL(i) are calculated only once and used to determine the
P̄(1)

l for all cl similar to Subsection 3.5.1. Figure 3.2 illustrates the idea.

Lemma 3.14. Let Ṽcl be the items chosen by the algorithm for knapsack cl , and let APPcl :=
∑a∈Ṽcl

p(a) be their profit. Let cmin = c1 be the smallest knapsack size. By setting T :=
1
2 εP̄cmin and K := 1

4 ε2P̄cmin , we have APPcl ≥ P̄(1)
l ≥ (1− ε)OPTcl (I) for all cl . Moreover,

the algorithm (including the dynamic program) also works for non-integral profits and sizes
pj, sj, cl ∈ R>0.

Proof. We want to choose K and T such that P̄(1)
l ≥ (1− ε)OPTcl (I) holds for all cl .

Let us fix one knapsack size cl . First of all, the algorithm obviously determines a set
of items that fits into cl , i.e. a feasible solution.

Now, let V = Vcl = VL ∪ VS ⊆ {a1, . . . , an} be the optimal choice of items for
knapsack cl , where VL = VL,cl are the large and VS = VS,cl the small items. Let
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...

FnL(i)

...
FnL(i

′)
...

FnL(i
′′)

...

Fj(i)

cM

c1

c`

...

...

Figure 3.2: The table of the Fj(i) is computed in such a way that the FnL(i) can be used
to determine the best combination of large- and small-profit items for all
knapsack sizes cl .

OPTL = OPTL,cl be the profit of the large and OPTS = OPTS,cl be the profit of the
small items, i.e.

OPTcl (I) = OPTL + OPTS = ∑
a∈VL

p(a) + ∑
a∈VS

p(a) . (3.11)

The large items in VL have the total scaled profit

iL := ∑
a∈VL

q(a) . (3.12)

Since the dynamic program determines all optimal, non-dominated solutions for the
scaled profits qj, there is a pair (iL,Dom, FnL(iL,Dom)) that is equal to or that dominates
(iL, s(VL)) such that

iL,Dom ≥ iL and cl ≥ s(VL) ≥ FnL(iL,Dom) . (3.13)

On the other hand, let Ṽ = ṼL ∪ ṼS be the item set of the solution found by the
algorithm. The total profit of the unscaled items is APPcl := p(Ṽ) = ∑a∈Ṽ p(a). Let
APPL be the (unscaled) total profit of the large items and APPS be the (unscaled) total
profit of the small items so that

APPcl = APPL + APPS = ∑
a∈ṼL

p(a) + ∑
a∈ṼS

p(a) . (3.14)

We denote by

ĩL := ∑
a∈ṼL

q(a) (3.15)
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the profit of the scaled large items in ṼL. Since ṼL is chosen by the dynamic program
with the scaled profits, we have s(ṼL) = FnL(ĩL), and the profit of the small items in
ṼS satisfies

p(ṼS) = φl(cl − FnL(ĩL)) . (3.16)

Finally, let k(a) be the exponent for a large item a such that p(a) ∈ (2k(a)T, 2k(a)+1T].
Thus, we have the following:

APPcl

(3.14)
= APPL + APPS = ∑

a∈ṼL

p(a) + ∑
a∈ṼS

p(a)

≥ ∑
a∈ṼL

K ·
⌊

p(a)
2k(a)K

⌋
2k(a)︸ ︷︷ ︸

=q(a)

+ ∑
a∈ṼS

p(a)

(3.16)
= ∑

a∈ṼL

K · q(a) + φl
(
cl − FnL(ĩL)

)
(3.15)
= K · ĩL + φl

(
cl − FnL(ĩL)

)
= max

FnL (i)≤cl

K · i + φl(cl − FnL(i))
(3.10)
= P̄(1)

l (3.17)

(3.13)
≥ K · iL,Dom + φl(cl − FnL(iL,Dom))

(3.13)
≥ K · iL + φl(cl − FnL(iL,Dom))

(3.12)
= ∑

a∈VL

K ·
⌊

p(a)
2k(a)K

⌋
2k(a) + φl (cl − FnL(iL,Dom))

≥ ∑
a∈VL

K ·
(

p(a)
2k(a)K

− 1
)

2k(a) + φl (cl − FnL(iL,Dom))

= ∑
a∈VL

(
p(a)− K · 2k(a)

)
+ φl (cl − FnL(iL,Dom)) =: (∗) .

The Identity (3.17) holds because Ṽ is exactly the solution set found by the algorithm.
Since p(a) ∈ (2k(a)T, 2k(a)+1T], i.e. p(a)

T ≥ 2k(a), holds, we get

(∗) ≥ ∑
a∈VL

(
p(a)− K · p(a)

T

)
+ φl (cl − FnL(iL,Dom))

(3.11)
=

(
1− K

T

)
OPTL + φl (cl − FnL(iL,Dom))

(3.13)
≥
(

1− K
T

)
OPTL + φl (cl − s(VL)) .

There are two possibilities: either φl manages to greedily fill the entire capacity cl −
s(VL) with small items. Then obviously φl(cl − s(VL)) = OPTS. Otherwise, we have
similar to Inequality (3.8) that φl(cl − s(VL)) + p(anext) ≥ OPTS, where anext is the
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3.5 Extending Lawler’s Algorithm

item that would be greedily added if there were enough knapsack capacity left. Since
anext is a small item, we have p(anext) < T and therefore

APPcl ≥
(

1− K
T

)
OPTL + φl (cl − s(VL)) ≥

(
1− K

T

)
OPTL + OPTS − T

≥
(

1− K
T

) (
OPTL + OPTS

)
− T

(3.11)
=

(
1− K

T

)
OPTcl (I)− T .

As we want that APPcl ≥ (1− ε)OPTcl (I) for all cl , we have to ensure that

K
T

OPTcl (I) ≤ λεOPTcl (I)⇔ K
T
≤ λε and T ≤ (1− λ) εOPTcl (I), ∀l ∈ {1, . . . , M}

where λ ∈ (0, 1). Let

cmin := min
{

cl
∣∣ l ∈ {1, . . . , M}

}
= c1 .

Since OPTcmin(I) ≤ OPTcl (I) for l ∈ {1, . . . , M}, we see that we must have

T ≤ (1− λ)εOPTcmin(I) and K ≤ λεT = ε2λ(1− λ)OPTcmin(I) . (3.18)

Note that a scaling factor K as large as possible yields smaller scaled profits qj and
therefore a faster running time as stated by Lawler [63]. Choosing λ = 1

2 maximizes K
and therefore minimizes the running time. Together with P̄cmin ≤ OPTcmin(I), we have
proved the correctness if we set

T =
1
2

εP̄cmin and K =
1
4

ε2P̄cmin . (3.19)

Moreover, APPcl = ∑a∈Ṽ p(a) ≥ P̄(1)
l ≥ (1− ε)OPTcl holds because of (3.17).

Finally, it is obvious that the algorithm also works for non-integral pj, sj, cl ∈ R>0

because the large-item profits are scaled to integral values, and the dynamic program
also works for non-integral sj and cl (see Theorem 3.8). Moreover, the greedy algorithm
presented in this proof does not use the fact that the profits are integral. (This proof is
adapted from Lawler’s proof [63].)

After having found the P̄(1)
l , Algorithm MaxSolution yields a (1− ε) solution for 0-1

KPIP.

Let us now determine the running time. We will see how to optimize it by a change
to the calculation of the FnL(i).
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3 The Knapsack Problem with Inversely Proportional Profits

Running Time for the Large-Item Computation

We have already seen in Theorem 3.8 the general running time of O(nL · imax) for the
dynamic program, where imax is the largest total profit i of scaled items we have to
consider. Moreover, O(imax + M) is an upper bound on the time needed to discard
dominated FnL(i) and determine for all cl the profits i such that FnL(i) ≤ cl . Therefore,
we have to bound imax.

Let VL,cl be a choice of large items of a solution for knapsack cl , and let icl :=
∑a∈VL,cl

q(a) be the corresponding total scaled profit. Obviously, we have icl ≤ imax.
As in the proof of Lemma 3.14, let k(a) be the exponent for a large item a such that
p(a) ∈ (2k(a)T, 2k(a)+1T].

There is a general bound for every icl and therefore for imax: we have

icl = ∑
a∈VL,cl

q(a) = ∑
a∈VL,cl

⌊
p(a)

2k(a)K

⌋
2k(a) ≤ ∑

a∈VL,cl

p(a)
K
≤ OPTcl (I)

K

≤ OPTcmax(I)
K

=
OPT(I)

K
, (3.20)

where cmax := maxl∈{1,...,M} cl = cM = 1. As

OPT(I) = OPTcmax(I)
(3.3)
= cmax ·OPTcmax(I)

Thm. 3.9
≤ 2cmaxPcmax ≤ 2cmaxP0 , (3.21)

we see that

icl ≤ imax
(3.20)
≤ OPTcmax(I)

K
=

OPT(I)
K

≤ 2cmaxP0

K
(3.22)

so that the large-item computation is done in O(imax · nL) = O( 2cmaxP0
K · nL) as seen in

Theorem 3.8.
We have K

(3.19)
= ε2

4 P̄cmin

(3.7)
= ε2

4 cminPcmin . Since we assume without loss of generality
that Pcl ≥ P0

2 (see Corollary 3.10), we get

imax ≤
OPTcmax(I)

K
=

OPT(I)
K

≤ 2cmaxP0

K
=

2cmaxP0
ε2

4 cminPcmin

≤ 8cmaxP0

ε2cmin
P0
2

=
16
ε2

cmax

cmin

(3.23)

so that the overall running time for the large-item computation is bounded by

O
(

2cmaxP0

K
· nL

)
= O

(
16
ε2

cmax

cmin
nL

)
.

The running time therefore depends on the ratio cmax
cmin

, which may be quite large.
Fortunately, there is a method to control it.
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3.5 Extending Lawler’s Algorithm

For w > 0, partition [cmin, cmax] into intervals

Cb :=
{

c ∈ C
∣∣∣ c ∈

(
cw·(b+1)

min , cw·b
min

]}
and Cb 1

w c+1 :=
{

c ∈ C
∣∣∣ c ∈

[
cmin, c

w·b 1
wc

min

]}
.

The value for w will be chosen later.
For every Cb, we apply our algorithm only to the bin sizes cl ∈ Cb. Therefore, we

have an adapted threshold Tb := 1
2 εP̄

c(b)min
and scaling factor Kb := 1

4 ε2P̄
c(b)min

, where c(b)min

is the smallest knapsack size in Cb. The disadvantage is obviously that we have to
partition the items into large and small ones as well as scale the items again if we
consider another Cb. The advantage is a decreased running time: if c(b)max is the largest
knapsack size in Cb, we have

c(b)max

c(b)min

≤ cw·b
min

cw·(b+1)
min

=
1

cw
min

. (3.24)

Should M ≤ b 1
wc+ 1 hold, we instead set Cb = Cl := {cl} for l ∈ {1, . . . , M}: we have

c(b)max/c(b)min = 1 and less Cb than in the case where we partition into (cw·(b+1)
min , cw·b

min].
Therefore, we get the following theorem. We assume for convenience that the first

nb items a1, . . . , anb are the large items for Cb.

Theorem 3.15. Let the Fnb(i) be non-dominated. Let nb be the number of large items for
knapsack interval Cb, and let nL be an upper bound on all nb. The overall time and space bound
for the large-item computation in one knapsack interval Cb is in O( 1

ε2
c(b)max/c(b)minnb), which is in

O( 1
ε2

1
cw

min
nL) for M > b 1

wc+ 1 and in O( 1
ε2 nL) otherwise.

Note that the running time for re-partitioning and re-scaling is not considered yet, as
well as the optimal choice of w.

Adding the Small Items Efficiently

Let Cb be a knapsack interval and Fnb(i) the values Fj(i) that consider all nb large
items. For every cl and Fnb(i) ≤ cl , we have to determine φl(cl − Fnb(i)). As already
stated in Subsection 3.5.2, we can avoid sorting the items according to their efficiency:
we use median finding in a divide-and-conquer strategy on the small items in S̄l ,
similar to the idea by Lawler [63]. Details can again be found in Appendix B. The
algorithm also returns item sets J̃(i) from which the item choice for every cl − Fnb(i)
can be reconstructed.

Theorem 3.16. For one cl ∈ Cb, let the small items S̄l,small in S̄l be given. The values
φl(cl − Fnb(i)) can then be determined in time O( 1

ε2
c(b)max/c(b)min + n · log( 1

ε
c(b)max/c(b)min)) and in
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3 The Knapsack Problem with Inversely Proportional Profits

space O( 1
ε2

c(b)max/c(b)min + n). The method employed also returns item sets J̃(i
′) such that the

item set J(i) for profit φl(cl − Fnb(i)) can be constructed by J(i) =
⋃i

i′=icl
J̃(i
′). There are

O(imax)
(3.23)
= O( 1

ε2
c(b)max/c(b)min) sets J̃(i), which are stored in space O( 1

ε2
c(b)max/c(b)min + n). The

method also works for non-integral profits and sizes pj, sj, cl ∈ R>0.

Putting the Basic FPTAS Together

Algorithm 3.3 presents the basic algorithm for 0-1 KPIP. The principle of the algorithm
is illustrated in Figure 3.3.

Algorithm 3.3: The basic algorithm for 0-1 KPIP
Input: Item set I, sorted knapsacks C = {c1, . . . , cM}
Output: Profit P, solution set V and knapsack size csol

1 Determine the sets Sl , the approximations P̄cl and P0 and adapt C accordingly
(Algorithm 3.2);

2 Partition C into the sets Cb and determine at the same time c(b)min and c(b)max for all Cb;
3 Set P := 0, csol := ∅, and V := ∅;
4 for all Cb 6= ∅ do
5 Define Tb and Kb;

6 Partition the items in every Sl for cl ≤ c(b)max into large and small items and scale
the large ones;

7 Calculate the Fj(i). Discard dominated Fnb(i);
8 for all cl ∈ Cb do
9 Find P̄(1)

l = maxFnb (i)≤cl
Kb · i + φl(cl − Fnb(i)) where the values of φl are

determined as stated in Theorem 3.16;

10 if 1
cl

P̄(1)
l > P1 then

11 Set P := P̄(1)
l
cl

;

12 Determine the item set Vt for solution P̄(1)
l and set V := Vt as well as

csol := cl ;

13 return P, V and csol;

As the algorithm is an implementation of Algorithm MaxSolution, its correctness
follows from Lemma 3.4, Lemma 3.5 and Lemma 3.14. Note that we keep the structure
of the Sl to (heuristically) faster get the small items in S̄l for the calculations in Step 9.

We can now state the running time and the space bound.
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Fn0

Fnb

Fnb′

...

...

Cb′

C0

Cb

...

...

Figure 3.3: The principle of the 0-1 KPIP algorithm: the tables Fnb of the entries Fj(i)
are determined for every Cb. Then, the Fnb(i) are only used for the knapsack
sizes cl ∈ Cb to find the best combination of large items (coloured medium
gray) and small items (coloured dark-grey).

Lemma 3.17. Fix one Cb 6= ∅. The inner for-loop of Algorithm 3.3 (Steps 8–12) needs for all
cl ∈ Cb time in O(|Cb| · ( 1

ε2
c(b)max/c(b)min + n · log( 1

ε
c(b)max/c(b)min))) and space in O( 1

ε2
c(b)max/c(b)min + n).

Proof. Fix one cl ∈ Cb. We calculate Kb · i + φl(cl − Fnb(i)) for i ∈ {1, . . . , icl} where
Fnb(i) ≤ cl for i ≤ icl . Here, icl ≤ imax is the largest profit i we have to consider, i.e.
icl ∈ O( 1

ε2
c(b)max/c(b)min) holds (see Bound (3.23)). We do not have to consider values i > icl

because Fnb(i) > cl holds for these i: dominated Fnb(i) have been removed. The set of
small items S̄l,small for cl can be constructed and stored in O(n) from the small items
in the Sl′ , l′ ≤ l (see Step 6). Thus, all φl(cl − Fnb(i)) for cl ∈ Cb can be found in time
O( 1

ε2
c(b)max/c(b)min + n · log( 1

ε
c(b)max/c(b)min)) according to Theorem 3.16. Therefore, finding P̄(1)

l
needs time in O(|Cb| · ( 1

ε2
c(b)max/c(b)min + n · log( 1

ε
c(b)max/c(b)min))) over all cl ∈ Cb.

The check of the if-condition only needs time and space O(1). For one cl ∈ Cb, the
body of the if-condition needsO(nb) ⊆ O(n) for backtracking of the large items in the
solution and O(n + 1

ε2
c(b)max/c(b)min) to find the small items from the J̃(i

′) (see Theorem 3.16).
Hence, the if-condition with its body needs time in O(|Cb| (n + 1

ε2
c(b)max/c(b)min)) for all

cl ∈ Cb. As this is dominated by the time to find P̄(1)
l , the time complexity bound

follows.
We now consider the space complexity. Only the values φl(Fnb(i)− cl) as well as the

sets J̃(i
′) and Vt are newly determined in the inner for-loop. The calculation of P̄(1)

l for
one cl therefore needs space inO( 1

ε2
c(b)max/c(b)min + n) and the body of the if-condition space

in O( 1
ε2

c(b)max/c(b)min + n) (see Theorem 3.16). This also includes the space for backtracking
to find the large items, which is bounded by O(n). The newly calculated values
(except of P1, V and csol) can be discarded after one iteration of the inner for-loop,
i.e. after having processed one cl , and the values P1, V and csol are overwritten if
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3 The Knapsack Problem with Inversely Proportional Profits

a new optimum is found. The overall space bound over all cl ∈ Cb is therefore in
O( 1

ε2
c(b)max/c(b)min + n).

Lemma 3.18. The outer for-loop of Algorithm 3.3 (Steps 4–12) needs time in

O
(

1
ε2

c(b0)
max

c(b0)
min

nL + |Cb| ·
(

1
ε2

c(b0)
max

c(b0)
min

+ n · log

(
1
ε

c(b0)
max

c(b0)
min

)))

for one Cb 6= ∅. The space needed is in O( 1
ε2

c(b0)
max/c(b0)

min nL + n). Here, nL ≤ n is an upper
bound on the number of the large items for all Cb, and c(b0)

max/c(b0)
min := maxCb

c(b)max/c(b)min.

Proof. Fix Cb 6= ∅. Defining Tb and Kb can be done in time and space O(1).
The partition of the Sl into large and small can be done in time O(n) and in space
O(n): we only have O(n) sets Sl as seen in Remark 3.13.

We need time and space inO( 1
ε2

c(b)max/c(b)minnL) for the dynamic program, i.e. to calculate
and save the Fj(i) according to Theorem 3.15. Discarding the dominated Fnb(i) can be

done in time O(imax)
(3.23)
= O( 1

ε2
c(b)max/c(b)min) as seen in Lemma 3.7.

Lemma 3.17 states that we need time inO(|Cb| · ( 1
ε2

c(b)max/c(b)min + n · log( 1
ε

c(b)max/c(b)min))) and
space in O( 1

ε2
c(b)max/c(b)min + n) for the inner for-loop.

The stated time and space complexity follow.

Theorem 3.19. The basic FPTAS (Algorithm 3.3) determines a solution of 0-1 KPIP in time

O
(

min

{(⌊
1
w

⌋
+ 1
)

c(b0)
max

c(b0)
min

, M

}
· 1

ε2 nL + M ·
(

1
ε2

c(b0)
max

c(b0)
min

+ n · log
1
ε

c(b0)
max

c(b0)
min

))

and in space O( 1
ε2

c(b0)
max/c(b0)

min nL + M + n). Note that c(b0)
max/c(b0)

min ≤ 1
cw

min
for M > b 1

wc+ 1 and
c(b0)

max/c(b0)
min = 1 otherwise. The FPTAS also works for non-integral profits and sizes pj, sj, cl ∈

R>0 and therefore for the formal definition of 0-1 KPIP in Subsection 1.3.3.

Proof. Algorithm 3.2 needs time in O(M · n) and space in O(n + M) as seen in
Lemma 3.12.

The partitioning of the knapsacks into Cb can be done in time and space O(M)

because the knapsack sizes are already sorted and the logarithm—necessary to find
for one cl the right b such that cl ∈ Cb—needs time in O(1). Moreover, we only save
the sets Cb 6= ∅. During the partitioning, all values c(b)min and c(b)max can also be found,
which additionally needs time and space in O(M). Details can be found in Subsection
5.5.1. Note that Cb = {c ∈ C | c ∈ (2−(b+1), 2−b]} holds in Subsection 5.5.1, which does
not change the reasoning here.

The creation of P, csol and V is in O(1).
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For the outer for-loop, remember that Cb contains the knapsacks cl ∈ (cw·(b+1)
min , cw·b

min]

for M > b 1
wc+ 1 and Cb = Cl = {cl} for M ≤ b 1

wc+ 1. There are therefore at most
min

{⌊ 1
w

⌋
+ 1, M

}
sets Cb so that the outer for-loop is executed min

{⌊ 1
w

⌋
+ 1, M

}
times. Hence, its time complexity is in

O
(

min

{(⌊
1
w

⌋
+ 1
)

c(b0)
max

c(b0)
min

, M

}
1
ε2 nL + M ·

(
1
ε2

c(b0)
max

c(b0)
min

+ n · log
1
ε

c(b0)
max

c(b0)
min

))

as seen in Lemma 3.18. We have used that c(b0)
max/c(b0)

min ≤ 1
cw

min
holds for M > b 1

wc + 1

according to Inequality (3.24) and that c(b0)
max/c(b0)

min = 1 for M ≤ b 1
wc + 1. The space

needed is bounded by

O
(

1
ε2

c(b0)
max

c(b0)
min

nL + M + n

)
,

again because the newly calculated values except of P1, V and csol can be discarded
after one iteration of the for-loop.

It is easy to see that the FPTAS also works for non-integral profits pj, sizes sj, and
knapsacks cl . Note that this has already been stated for the more complicated steps
like Algorithm 3.2 (see Lemma 3.12), the dynamic program to determine the Fj(i) with
the scaled profits qj, and the calculation of the φl(cl − Fnb(i)) (see Lemma 3.14 and
Theorem 3.16).

Assumption 3.1. For the remaining thesis, we assume that the profits p(a), sizes
s(a), and knapsacks c, cl for KP and KPIP are not necessarily integral (or better
p(a), s(a), cl ∈ (0, 1]). This is the case for the column generation of our AFPTAS
for Bin Packing and Variable-sized Bin Packing (see Remark 2.11 in Subsection 2.5.1).
In fact, this assumption is in line with the formal definition of KPIP in Subsection 1.3.3.

3.5.4 Improved FPTAS: Reducing Running Time and Storage Space

Lawler [63] presented two techniques to decrease the running time and the storage
space of the basic FPTAS algorithm. We adapt the notation in this section to explain
them: let q1, . . . , qmb from now on be all different scaled profits that occur for a fixed
knapsack interval Cb. We assume that they are sorted in non-increasing order, i.e.
q1 ≥ . . . ≥ qmb .2

2It should be noted that p(a1) < p(a2) does not always imply q(a1) ≤ q(a2). Let p(a1) = 2k+1Tb and
p(a2) = (2k+1 + 2k+1δ)Tb for δ > 0 small enough such that q(a1) = b 4

ε c2k > q(a2) = b 2+2δ
ε c2k+1 =

b 2
ε c2k+1, i.e. b 4

ε c > 2b 2
ε c. Values ε > 0 for which the latter condition holds can be easily found.

However, the scaling monotonicity can be guaranteed by assuming without loss of generality that
ε = 1

2κ for κ ∈ N. Even if this is not assumed, the possible non-monotonicity does not change the
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First, it is quite obvious that an optimal solution cannot contain too many items
of large profit. Let a be a large-profit item with p(a) ∈ L(k,b) := (2kTb, 2k+1Tb] and
therefore with the scaled profit

qj ∈ L̃(k,b) :=
(⌊

2
ε

⌋
2k,
⌊

4
ε

⌋
2k
]

.

We can show that only a subset of items for every scaled profit qj ∈ L̃(k,b) has to be
kept. Moreover, an optimal solution using r items of profit qj obviously uses the r
items of smallest size. This allows us to efficiently choose the large-profit items we
have to consider.

Lemma 3.20. For one Cb, there are at most mb ∈ O( 2
ε · log( 1

ε
c(b)max/c(b)min)) different scaled

profits qj. We need at most nb ≤ nL ∈ O( 1
ε2

c(b)max/c(b)min) items of large profit, which can be found
in time and space O(n + 2

ε log( 1
ε

c(b)max/c(b)min)).

Proof. Let Cb be a fixed interval of knapsack sizes. Note that an item of profit p(a) ∈
L(k,b) has a scaled profit qj = b pj

2kKb
c2k ∈ L̃(k,b) = (b 2

ε c2k,
⌊ 4

ε

⌋
2k] so that each interval

L(k,b) provides only O( 2
ε ) different scaled profits qj.

On the other hand, at most O(log( 1
ε

c(b)max/c(b)min)) intervals L(k,b) are needed to cover the

interval of the large items [Tb, OPT
c(b)max

(I)] ⊆ [Tb, 2c(b)maxP0]: obviously, an item a with

s(a) ≤ c(b)max cannot have a profit p(a) larger than

OPT
c(b)max

(I)
Thm. 3.9
≤ 2P̄

c(b)max

(3.7)
= 2c(b)maxP

c(b)max
≤ 2c(b)maxP0 . (3.25)

Thus, there are at most mb ∈ O( 2
ε · log( 1

ε
c(b)max/c(b)min)) different scaled values qj, which

proves the first part of the lemma.
An upper bound on the total profit that can be obtained with the scaled items is

OPT
c(b)max

(I)

Kb
≤ 2c(b)maxP0

Kb
=

2c(b)maxP0

1
4 ε2c(b)minP

c(b)min

Coroll. 3.10
≤ 16P0

ε2P0

c(b)max

c(b)min

∈ O
(

1
ε2

c(b)max

c(b)min

)
(3.26)

(see also Inequality (3.23)).
Fix one scaled profit qj. Let ã ∈ I be an item with p(ã) ∈ L(k,b) such that q(ã) = qj =

b p(ã)
2kKb
c2k. Thus, we have qj = q(ã) ≥ ( p(ã)

2kKb
− 1)2k ≥ p(ã)

Kb
− p(ã)

Tb
and therefore

Kbqj = Kbq(ã) ≥
(

1− Kb

Tb

)
p(ã) =

(
1− ε

2

)
p(ã) ≥ 1

2
p(ã) ≥ 2k−1Tb (3.27)

results and proofs in this subsection because the monotonicity is not used. This subsection then uses
another order (see e.g. Lemma 3.21) where q1, . . . , qj′ are the scaled profits in decreasing order for
the largest interval (2kTb, 2k+1Tb], the items qj′+1, . . . , qj′′ are the scaled profits in decreasing order for
(2k−1Tb, 2kTb] etc.
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where we use the trivial bound ε ≤ 1.
Hence, there cannot be more than

nL,j ≤
⌊

2c(b)maxP0/Kb

qj

⌋
(3.27)
≤
⌊

2c(b)maxP0

2k−1Tb

⌋
≤ 2c(b)maxP0

2k−1Tb
=

2
2k−2

c(b)max

c(b)min

P0

εP
c(b)min

≤ 24−k 1
ε

c(b)max

c(b)min

∈ O
(

2−k

ε

c(b)max

c(b)min

)
(3.28)

items of scaled profit qj ∈ L̃(k,b) in a solution. We have again used that Pcl ≥ 1
2 P0

(see Corollary 3.10). Since an optimal solution that uses n′ ≤ nL,j of these items will
obviously use the n′ items of smallest size, only the smallest nL,j items have to be kept.

Remember that every interval L̃(k,b) has only O
( 2

ε

)
different values qj and that there

are only O(log( 1
ε

c(b)max/c(b)min)) intervals L(k,b), which is also the number of intervals L̃(k,b).
Thus, we get the following bound on the number of the large items:

nL ≤ ∑
L̃(k,b)

∑
qj∈L̃(k,b)

nL,j ≤ ∑
L̃(k,b)

O
(

2
ε
· 2−k

ε

c(b)max

c(b)min

)
⊆ O

(
1
ε2

c(b)max

c(b)min

)
.

Lawler [63] has presented a technique to obtain these items: create a bucket for every
scaled profit qj and place every large item in the bucket with the corresponding scaled
profit. The right bucket for one item a, i.e. the value q(a) = qj, can be determined in
O(1): the exponent k(a) can be computed in time O(1) because we assume that the
logarithm can be determined in O(1). All other operations to compute q(a) then also
need time in O(1). The nL,j items of smallest size in one bucket can be found in linear
time of the bucket size with a median-finding routine similar to the one of Appendix
B. In total, we need time and space in O(n + 2

ε log( 1
ε

c(b)max/c(b)min)) for the entire procedure.
(This proof is a slight modification of the proof by Lawler [63].)

Let ã1, . . . , ãr be items that have the same scaled profit qj and a non-scaled profit in
L(k,b). As seen above, we may assume r ≤ nL,j ∈ O( 2−k

ε
c(b)max/c(b)min) because of Bound

(3.28), and these r items are the smallest items with the scaled profit qj. Assume
without loss of generality that the items are sorted according to their size such that
s(ã1) ≤ . . . ≤ s(ãr).

Let us change the large-item computation: Fj(i) stands for the smallest size to get
the profit i with items of profit in q1, . . . , qj. The recursion becomes

Fj(i) = min{Fj−1(i), Fj−1(i− qj) + s(ã1), . . . ,

Fj−1(i− r′ · qj) + s(ã1) + · · ·+ s(ãr′), . . . ,

Fj−1(i− r · qj) + s(ã1) + · · ·+ s(ãr)} ,
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3 The Knapsack Problem with Inversely Proportional Profits

which only needs space in O(1) and not more time than before. For backtracking, it
must be stored how many items of profit qj are added to obtain Fj(i). The correctness
is obvious: if r′ ≤ r items are used, the solution will use the smallest r′ items.

This new recursion allows us to improve the space bound for the large-item compu-
tation.

Lemma 3.21. Redefine the Fj(i) as above. By using this definition of the large-item computa-
tion over the scaled profits, we need space in O( 1

ε3
c(b)max/c(b)min) to find and store the Fj(i) of one

Cb. The running time is in O( 1
ε2

c(b)max/c(b)minnL) ⊆ O( 1
ε4 (c(b)max/c(b)min)

2). Note that the items have to
be sorted according to their size s(a) to determine the Fj(i) and that we have j ∈ {1, . . . , mb},
where mb is the number of different scaled profits (see Lemma 3.20).

Proof. Let k be such that OPTcl (I) ∈ L(k,b), i.e. k is the largest k′ that occurs for the
item intervals L(k′,b) = (2k′Tb, 2k′+1Tb]. Since OPTcl (I) ≤ 2c(b)maxP0 holds (see the Bound
(3.25)), we have

k ∈ O
(

log

(
8
ε

c(b)max

c(b)min

))
. (3.29)

Inequality (3.26) shows that the maximum profit for the scaled items that has to
be considered is OPT

c(b)max
(I)/Kb ≤ 16

ε2
c(b)max/c(b)min. On the other hand, the items a with

p(a) ∈ L(k,b), i.e. the items of largest profits, have scaled profits q(a) = b p(a)
2kKb
c2k ∈

{r · 2k | r ∈N}.
Start the calculation of the Fj(i) with these items. Because of q(a) ∈ {r · 2k | r ∈N},

only scaled profits i = s · 2k, s ∈ N, may have Fj(i) < ∞, all other entries must have
Fj(i) = ∞. It is therefore sufficient to calculate and save the Fj(i) for i = s · 2k. There
are at most

O
(

OPT
c(b)max

(I)/Kb

2k

)
⊆ O

(
16
ε2

c(b)max

c(b)min

1
2k

)
(3.29)
⊆ O

(
16
ε2 ·

ε

8

)
= O

(
2
ε

)
values i = s · 2k in {0, 1, . . . , OPT

c(b)max
(I)/Kb}, and only O

( 2
ε

)
different profits qj′ ∈

L̃(k,b) as seen in the proof of Lemma 3.20. Thus, we only have to save O
( 2

ε

)
· O
( 2

ε

)
=

O
( 4

ε2

)
table entries Fj(i) for all qj′ ∈ L̃(k,b).

We continue the large-item computation for items in L̃(k′,b) from the largest to the
smallest k′ ∈ {k − 1, k − 2, . . . , 0}. The number of scaled profits qj′ remains O( 2

ε )

(see the proof of Lemma 3.20), whereas the number of profits i to be considered
doubles from k′ + 1 to k′ because the items now have profits r · 2k′ and the table entries
Fj(i) < ∞ therefore have scaled profits i = s · 2k′ , i.e. O( 2

ε ) · O( 2
ε 2k−k′) = O( 4

ε2 2k−k′)

entries have to be saved. (Note that the scaled profits i = s · 2k′′ for k′′ > k′ are a subset
of the entries i = s · 2k′ .)
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3.5 Extending Lawler’s Algorithm

Hence, we only need space in

k

∑
k′=0
O
(

4
ε2 2k−k′

)
= O

(
4
ε2 2k

)
(3.29)
= O

(
4
ε2 ·

8
ε

c(b)max

c(b)min

)
= O

(
1
ε3

c(b)max

c(b)min

)

to compute and save all Fj(i) < ∞ if we determine the Fj(i) from the largest to the
smallest k′ ∈ {k, k− 1, . . . , 0}.

To sum up, all profits i ∈ {0, . . . , imax}, i.e. all values Fj(i), have to be considered
only for k′ = 0. Since there are only O( 2

ε ) values qj′ for k′ = 0, we get O( 2
ε imax) =

O( 2
ε

16
ε2

c(b)max/c(b)min) = O( 1
ε3

c(b)max/c(b)min). For k′ ∈ {1, 2, . . .}, the number of the scaled profits
qj′ stays the same, but only half as many profits i as for the preceding k′ have to be
considered, which yields the bound above.

The asymptotic running time for determining the table of the Fj(i) does not change.
Similar to Theorem 3.15, it is still dominated for one Cb by

O
(

1
ε2

c(b)max

c(b)min

nb

)
= O

 1
ε4

(
c(b)max

c(b)min

)2
 ,

where we have used nb ≤ nL ∈ O( 1
ε2

c(b)max/c(b)min) as seen in Lemma 3.20. The time to sort
all nb large items according to their size (which is needed for the modified computation)
is dominated by the dynamic program because only nb ≤ nL ∈ O( 1

ε2
c(b)max/c(b)min) large

items have to be sorted.

Lemma 3.20 and 3.21 can now be applied to the basic FPTAS for 0-1 KPIP. Algorithm
3.4 presents the new method.

Lemma 3.22. The improved FPTAS needs time in

O
min


(⌊

1
w

⌋
+ 1
)(

c(b0)
max

c(b0)
min

)2

, M

 · 1
ε4 + M ·

(
1
ε2

c(b0)
max

c(b0)
min

+ n · log
1
ε

c(b0)
max

c(b0)
min

)
and space in O( 1

ε3
c(b0)

max/c(b0)
min + M + n).

Proof. Lemma 3.17 still holds: for one Cb 6= ∅, the inner for-loop (Steps 8–12) needs
time in O(|Cb| · ( 1

ε2
c(b)max/c(b)min + n · log( 1

ε
c(b)max/c(b)min))) and space in O( 1

ε2
c(b)max/c(b)min + n). The

main difference is that the backtracking for the large items needs O(mb + nb) ⊆
O(mb + nL) ⊆ O( 1

ε2
c(b0)

max/c(b0)
min ), which however does not change the time and space

complexity.
Let us now consider the outer for-loop (Steps 4–12). We will derive the running time

for the Steps 6 and 7 over an iteration of one Cb 6= ∅.
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3 The Knapsack Problem with Inversely Proportional Profits

Algorithm 3.4: The improved algorithm for 0-1 KPIP
Input: Item set I, sorted knapsacks C = {c1, . . . , cM}
Output: Profit P, solution set V and knapsack size csol

1 Determine the sets Sl , the approximations P̄cl and P0 and adapt C accordingly
(Algorithm 3.2);

2 Partition C into the sets Cb and determine at the same time c(b)min and c(b)max for all Cb;
3 Set P := 0, csol := ∅, and V := ∅;
4 for all Cb 6= ∅ do
5 Define Tb and Kb;

6 Partition the items in every Sl for cl ≤ c(b)max into large and small items. Reduce
the number of the large items as seen in Lemma 3.20 to have only nb of them.
Scale the large items and sort them according to their size;

7 Calculate the Fj(i) with the new method of Lemma 3.21. Discard dominated
Fmb(i);

8 for all cl ∈ Cb do
9 Find P̄(1)

l = maxFmb (i)≤cl
Kb · i + φl(cl − Fmb(i)) where the values of φl are

determined as stated in Theorem 3.16;

10 if 1
cl

P̄(1)
l > P1 then

11 Set P := P̄(1)
l
cl

;

12 Determine the item set Vt for solution P̄(1)
l and set V := Vt as well as

csol := cl ;

13 return P, V and csol;
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3.5 Extending Lawler’s Algorithm

Step 6 still needs time in O(n) and space in O(n) to group the items into large and
small. Additionally, it determines the nL,j items for every scaled item profit qj in time
O(n + 2

ε log 1
ε

c(b0)
max/c(b0)

min ) as seen in Lemma 3.20. Moreover, the large items are sorted
according to their size for the space-saving calculation of the table entries Fj(i) pre-
sented in Lemma 3.21. This increases the running time byO( 1

ε2
c(b0)

max/c(b0)
min log( 1

ε2
c(b0)

max/c(b0)
min )).

The space complexity of Step 6 is now bounded by O(nL + n + 2
ε log( 1

ε
c(b0)

max/c(b0)
min )) =

O(n + 2
ε log( 1

ε
c(b0)

max/c(b0)
min )), which also includes the space to sort the O(nL) large items.

The running time of Step 7 (together with discarding dominated Fmb(i)) decreases
to O((c(b0)

max/c(b0)
min )

2 1
ε4 ) and only needs space in O( 1

ε3
c(b0)

max/c(b0)
min ) as seen in Lemma 3.21.

Thus, the running time of the Steps 6 and 7 now is in O(n + (c(b0)
max/c(b0)

min )
2 1

ε4 ) for one

iteration of the outer for-loop, and the space needed is in O(n + 1
ε3

c(b0)
max/c(b0)

min ). The
overall time complexity in

O
( c(b0)

max

c(b0)
min

)2

· 1
ε4 + |Cb| ·

(
1
ε2

c(b0)
max

c(b0)
min

+ n · log
1
ε

c(b0)
max

c(b0)
min

)
and space complexity inO( 1

ε3
c(b0)

max/c(b0)
min + n) follow for one iteration of the outer for-loop

similar to the proof of Lemma 3.18.
The new running time and space bound can now be derived like in the proof of

Theorem 3.19.

w has still to be chosen so that the running time is minimized. Note that c(b0)
max/c(b0)

min ≤
1

cw
min

and that cmin ≤ cw
min ≤ 1 so that w ≤ 1, i.e.

⌊ 1
w

⌋
+ 1 ≤ 2

w . For simplicity,

we minimize the expression (b 1
wc + 1)(c(b0)

max/c(b0)
min )

2 1
ε4 by minimizing the dominating

expression 2
w

1
ε4c2w

min
. A short calculation shows that the minimum is attained at w =

− 1
2 ln cmin

. Since c2w
min|w=− 1

2 ln cmin
= e−

2 ln cmin
2 ln cmin = e−1 ∈ O(1), we get the following result:

Theorem 3.23. 0-1 KPIP can be solved in time

O
(

min
{

M,
⌊

2 log
1

cmin

⌋
+ 1
}

1
ε4 + M ·

(
1
ε2 + n log

1
ε

))
and in space O( 1

ε3 + M + n).

Remark 3.24. By setting w = − 1
2 ln cmin

, the knapsack intervals Cb are contained in

(e−
1
2 (b+1), e−

1
2 b]. We can of course also set e.g. w = − 1

log2(cmin)
instead. Then we have

Cb ⊂ (2−(b+1), 2−b], which is easier to implement and yields the same asymptotic
running time and space bound.
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3 The Knapsack Problem with Inversely Proportional Profits

3.6 Variants of KPIP

3.6.1 The Unbounded KPIP

Here, it is allowed to take an arbitrary number of copies of each item a ∈ I. The
unboundedness allows to improve the running time and space complexity of the
algorithm. The ideas below to adapt our FPTAS for 0-1 KPIP to UKPIP are again taken
from [63], and the modified FPTAS is presented in Algorithm 3.5. Note that some
ideas are re-used in Chapter 5 so that they are formally presented there.

First of all, the greedy procedures are easier to do. For the first approximations
P̄cl , we only need the most efficient item a(l)meff in S̄l . As remarked in [63, 61, p. 232],

the greedy procedure can fill at least half of cl with a(l)meff, i.e. the item of largest profit
does not need to be considered. A proof similar to Theorem 3.9 shows that we have
1
2 OPTcl ≤ P̄cl = b cl

s(a(l)meff)
c · p(a(l)meff). This will be formally proved in Theorem 5.4.

Similarly, we only need the most efficient small item a(l)eff for cl when we determine the
φl(cl − Fnb(i)) in maxFnb (i)≤cl

Kb · i + φl(cl − Fnb(i)).
Fix Cb 6= ∅. As we are in the unbounded case, it is obviously sufficient to keep only

the smallest item ãj for each scaled profit qj. Then, we copy these large items for the
dynamic program. One possibility is to take nL,j copies of each item ãj. However, it is

not the most efficient way: instead of nL,j items, we create items ã(r)j of profit 2r p(ãj)

and size 2rs(ãj) for r ∈
{

0, . . . ,
⌊
log2(nL,j)

⌋}
as done in [63]. Note that the item ã(r)j

has also the scaled profit 2rqj. Obviously, these copies are sufficient to represent any
choice of large items in a feasible solution of UKPIP. However, there may be items
ã(r1)

j1
, ã(r2)

j2
with the same scaled profit qj. For every scaled profit qj, we again have only

to keep the item copy of smallest size because of the following lemma:

Lemma 3.25. Let qj be a fixed scaled profit. In UKPIP, it is sufficient to have only one item

ã(r)j1
of smallest size with q(ã(r)j1

) = qj.

Proof. Let ã(r1)
j1

and ã(r2)
j2

be two item copies with the same scaled profit qj. Assume

without loss of generality that s(ã(r1)
j1

) ≤ s(ã(r2)
j2

) and that both items are used in a

solution. Replace ã(r2)
j2

by a second copy of ã(r1)
j1

. These two copies of ã(r1)
j1

with the

profit qj + qj = 2qj can again be replaced by ã(r1+1)
j1

with the profit 2qj. By iterating,
we get a new solution of the same profit as the old one and which may have an even
smaller total size, but only one item of every scaled profit qj. Thus, it is sufficient to
consider one item of smallest size for every scaled profit.

Note that we therefore have (at most) one item for every scaled profit in the end, i.e.
nb ≤ mb holds.
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Finally, we can take advantage of the unboundedness for the space complexity [63]:
the table entries we save are of the form (Fj(i), j′), where j′ is the index of the scaled
profit qj′ who was used to form the entry Fj(i), i.e. the index where Fj(i) changed
for the last time so that Fj(i) = Fj′(i) = Fj′−1(i− qj′) + s(āj′) holds. When the entries
(Fj(i), j′) have been determined, the old entries (Fj−1(i), j′′) can be discarded so that
we only have the entries (Fnb(i), j) at the end. These are sufficient for backtracking: if
Fnb(i) has been obtained by adding the item with the scaled profit qj′ , this item is part
of the solution, and we continue the backtracking with the entry (Fnb(i− qj′), j′′). It
is of course possible that one item āj′ is used several times in the resulting solution,
which is not a problem because of the unboundedness.

Algorithm 3.5 presents the entire FPTAS for UKPIP. We will derive the time and
space complexity.

Lemma 3.26. Fix one Cb 6= ∅ and assume that the most efficient small item a(l)eff is already
known for each cl ∈ Cb. The inner for-loop of Algorithm 3.5 (Steps 10–14) needs for all
cl ∈ Cb time in O(|Cb| · 1

ε2
c(b)max/c(b)min) and space in O(1).

Proof. As already explained, φl(cl − Fnb(i)) can be determined in O(1) simply by

computing p(a(l)eff) · b
cl−Fnb (i)

s(a(l)eff )
c. As the a(l)eff are already known, we only need time in

O(|Cb| · imax) = O(|Cb| 1
ε2

c(b)max/c(b)min) for the P̄cl (see the Bound (3.26)). In each iteration of
the inner for-loop, we only have to store the new values of P1, csol, NewBestValueFound
as well as the saved tuple (Fnb(i), j′), and we can discard the old values. Hence, the
space is bounded by O(1) over all cl ∈ Cb.

Lemma 3.27. The outer for-loop of Algorithm 3.5 (Steps 4–16) needs time in O(M
ε2

c(b0)
max/c(b0)

min +

min{b 1
wc+ 1, M} 1

ε3
c(b0)

max/c(b0)
min + min{b 1

wc+ 1, M}n) and space in O( 1
ε2

c(b0)
max/c(b0)

min + M + n)
over all Cb 6= ∅.

Proof. Fix one Cb 6= ∅. Obviously, Steps 5 and 6 need time and space in O(1).
In Step 7, the Sl can be partitioned into large and small items in time and space
O(n). We use Remark 3.13 so that we only have at most n sets Sl . The most efficient
small item a(l)eff for every cl ∈ Cb can be found by a single scan of the small items: a(l)eff is

either a(l−1)
eff or a small item in Sl . We therefore additionally need time and space in

O(n + |Cb|). Saving the a(l)eff needs space in O(|Cb|). Algorithm 5.3 shows a possible
implementation, where time and space complexity are proved in Theorem 5.11.

Step 8 preprocesses the large items. The item ãj of smallest size for every scaled
profit qj can be found by creating a bucket for every scaled profit, adding every
item to its corresponding bucket and taking the item of smallest size from every
bucket. Together with the creation of the item copies ã(r)j , this can be done in time
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Algorithm 3.5: The algorithm for UKPIP
Input: Item set I, sorted knapsacks C = {c1, . . . , cM}
Output: Profit P, solution set V and knapsack size csol

1 Determine a(l)meff, the sets Sl , the approximations P̄cl and P0 and adapt C
accordingly (Algorithm 5.1);

2 Partition C into the sets Cb and determine the c(b)min and c(b)max similar to Algorithm
5.2;

3 Let P1 := 0, V := ∅ and csol := ∅;
4 for all Cb 6= ∅ do
5 Set NewBestValueFound := false;
6 Compute Tb and Kb;

7 Partition the items in every Sl for cl ≤ c(b)max into large and small items and save

the most efficient small item a(l)eff for every cl ∈ Cb (see Algorithm 5.3);
8 Take for every scaled profit qj a large item ãj with q(ãj) = qj and of smallest

weight. Create the item copies ã(r)j and reduce the items again to have only

one item for every scaled profit. Scale these large items;
9 Calculate the (Fj(i), j′). Discard dominated (Fnb(i), j′);

10 for every cl ∈ Cb do
11 Find P̄(1)

l = maxFnb (i)≤cl
Kb · i + φl(cl − Fnb(i));

12 if 1
cl

P̄(1)
l > P1 then

13 Save the tuple (Fnb(i), j′) for P̄(1)
l ;

14 Set P1 := 1
cl

P̄(1)
l , csol := cl and NewBestValueFound := true;

15 if NewBestValueFound = true then
16 Determine the item set V for solution P̄(1)

l by backtracking (for the large

items) and by taking b csol−Fnb (i)

s(a(l)eff )
c copies of a(l)eff ;

17 return P1, V and csol;
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and space O(n + 2
ε log2( 1

ε
c(b)max/c(b)min)), and we have O( 2

ε log2( 1
ε

c(b)max/c(b)min)) item copies in
total. For these bounds, we use that mb ∈ O( 2

ε · log( 1
ε

c(b)max/c(b)min)) (Lemma 3.20) and
the generous bound nL,j ≤ O( 1

ε
c(b)max/c(b)min) (see Bound (3.28)) so that each ãj yields

O(log( 1
ε

c(b0)
max/c(b0)

min )) item copies ã(r)j . Moreover, we assume that the scaled profit of an
item can be determined in O(1) (see the proof of Lemma 3.20). After having created
the item copies, they are reduced again to have only one item for every scaled profit.
This can be done in time and space O( 2

ε log2( 1
ε

c(b)max/c(b)min)) by the bucket procedure.
Thus, Step 8 has a running time in O( 1

ε log2( 1
ε

c(b)max/c(b)min) + n) and needs space in
O( 1

ε log2( 1
ε

c(b)max/c(b)min) + n). We only have one item for every scaled profit qj with nb ≤
mb ∈ O( 1

ε log( 1
ε

c(b)max/c(b)min)).
The dynamic program is executed in Step 9. The space for Step 9, i.e. the space to

store the pairs (Fj(i), j′) and finally (Fnb(i), j′), is always in O(imax) = O( 1
ε2

c(b)max/c(b)min)

(see Bound (3.23)) because the dynamic program only saves the consecutive entries
(Fj−1(i), j′) and (Fj(i), j′) for i ∈ {0, . . . , imax}. As we only have one item āj′ for every
scaled profit qj′ , the running time is equal to the space bound of Lemma 3.21, i.e. in
O( 1

ε3
c(b)max/c(b)min).

The time and space complexity of the inner for-loop are stated in Lemma 3.26.
Finally, the time needed for the new backtracking in Step 16 can be bounded by
O(imax) = O( 1

ε2
c(b)max/c(b)min), while the number of item copies of a(l)eff to be taken can be

re-computed in O(1) if necessary. The space required is obviously in O( 1
ε2

c(b)max/c(b)min).

To sum up, the outer for-loop needs over all Cb 6= ∅ time in O(M
ε2

c(b0)
max/c(b0)

min +

min{b 1
wc+ 1, M} 1

ε3
c(b0)

max/c(b0)
min + min{b 1

wc+ 1, M}n). Since new values (except of P1, csol

and V) can be discarded after one execution of the for-loop, we have a space complexity
in O( 1

ε2
c(b0)

max/c(b0)
min + M + n) over all iterations of the algorithm.

We get the overall running time and space bound.

Lemma 3.28. UKPIP can be solved in time

O
(

n log M + min
{⌊

1
w

⌋
+ 1, M

}
n +

M
ε2

c(b0)
max

c(b0)
min

+ min

{(⌊
1
w

⌋
+ 1
)

c(b0)
max

c(b0)
min

, M

}
1
ε3

)

and space O( 1
ε2

c(b0)
max/c(b0)

min + M + n).

Proof. Step 1 is similar to the corresponding Step 1 in Algorithm 3.4. The main
difference to Algorithm 3.2 is that we find the most efficient item a(l)meff for each cl

instead of a(l)max. Then, each P̄cl can be determined in O(1) as explained above. A
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3 The Knapsack Problem with Inversely Proportional Profits

proper implementation of the modified Step 1 is shown in Algorithm 5.1, and we
need time in O(M + n log M) and space in O(M + n) (see the proof of Lemma 3.12 or
Theorem 5.7). We can assume that we have only O(n) sets Sl (see Remark 3.13 and
Remark 5.8).

Step 2 has not changed either and can be done in time and space O(M) (see the
proof of Theorem 3.19 as well as Algorithm 5.2 with Theorem 5.10).

The lemma now follows with Lemma 3.27.

Similar to Theorem 3.23, we get w = − 1
ln cmin

and Theorem 3.1. Note that we can also
set w = − 1

log2(cmin)
like in Remark 3.24.

3.6.2 The Bounded KPIP

Contrary to UKPIP, only a bounded number dj ∈ N of copies of every item aj, j ∈
{1, . . . , n}, can be taken. Plotkin, Shmoys, and Tardos [72, pp. 295–297] explain how
the 0-1 FPTAS by Lawler [63] can be transformed into one for the Bounded Knapsack
Problem. We adapt their reasoning and therefore slightly modify our 0-1 KPIP FPTAS
for the Bounded KPIP (BKPIP).

The median-based divide-and-conquer strategy can easily be adapted to still run in
time linear in the number of item sizes that are considered. It is used to get the values
of P̄cl and P0 in Step 1 of the 0-1 FPTAS (Algorithm 3.4), the subset of large items in
Step 6 as well as the small-item values φl(cl − Fnb(i)) in Step 9 together with the small
items in Vt in Step 12. As proposed in [72, p. 296], item copies of the large items can
be taken similar to UKPIP. However, the additional modifications for UKPIP are not
possible, i.e. the running time and space bound are identical to the improved 0-1 KPIP
algorithm.

Details can be found in Appendix C.

Theorem 3.29. BKPIP can be solved in time

O
min


(⌊

1
w

⌋
+ 1
)(

c(b0)
max

c(b0)
min

)2

, M

 · 1
ε4 + M ·

(
1
ε2

c(b0)
max

c(b0)
min

+ n · log
1
ε

c(b0)
max

c(b0)
min

)
and space O( 1

ε3
c(b0)

max/c(b0)
min + M + n). By choosing w = − 1

2 ln cmin
, we obtain the same bounds

as in Theorem 3.23 (see also Remark 3.24).
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4 The Unbounded Knapsack Problem

In this chapter, we focus on the unbounded variant of the Knapsack Problem (UKP)
where an arbitrary number of copies of every item is allowed, i.e. we want to deter-
mine max{∑n

j=1 pjxj | ∑n
j=1 sjxj ≤ c; xj ∈ N ∀j}. Note that the chapter can be read

independently of the other knapsack results so that some parts of its content overlap
with the other chapters.

4.1 Our Result

We have derived an improved FPTAS for UKP that is faster and needs less space than
previously known algorithms.

Theorem 4.1. There is an FPTAS for UKP with a running time in O(n + 1
ε2 log3( 1

ε )) and a
space complexity in O(n + 1

ε log2( 1
ε )).

Not only the improved running time, but also the improved space complexity is
interesting because “for higher values of 1

ε the space requirement is usually considered
to be a more serious bottleneck for practical applications than the running time” [61,
p. 168].

Moreover, the new FPTAS can be used as the column generation subroutine of our
Bin Packing AFPTAS. Its running time is in O(UKP(d1, ε̄

6 ) · 1
ε3 log 1

ε + log( 1
ε )n) for

d1 ∈ O( 1
ε log 1

ε ) and ε̄ ∈ Θ(ε) according to Theorem 2.5, which yields with the new
FPTAS the following result:

Theorem 2.2. There is an AFPTAS (Aε)ε>0 for Bin Packing that finds for ε ∈ (0, 1
2 ] a

packing of I in Aε(I) ≤ (1 + ε)OPT(I) +O(log2( 1
ε )) bins. Its running time is in

O
(

1
ε5 log4 1

ε
+ log

(
1
ε

)
n
)

.

Furthermore, Section 4.9 shows how the running time of an AFPTAS for Strip Packing
is improved by the FPTAS.

71



4 The Unbounded Knapsack Problem

4.2 Overview

Section 4.3 presents the notation used in this chapter. The value OPT(I, v) is especially
important and stands for the optimum profit that can be achieved with the items I in
the knapsack volume v ≤ c.

Section 4.4 shows how the greedy 1
2 approximation algorithm of Subsection 3.5.2

can be simplified in the unbounded case to get the approximation P0 ≥ 1
2 OPT(I). The

threshold T and constant K are defined based on P0.

In Section 4.5, the items are first partitioned into the set of large(-profit) items IL

with pj ≥ T and the set of small(-profit) items IS with pj < T. The basic idea of
the FPTAS is (again) to find the best combination of large and small items: we have
OPT(I) = max0≤v≤c OPT(IL, v) + OPT(IS, c− v). The solution values OPT(IL, v) for
the large items are approximated by dynamic programming and the small items are
added greedily to the volume c − v. In fact, only the most efficient small item aeff

needs to be used for this, i.e. a small item that maximizes pj
sj

. It is also shown that only
a subset IL,red of the large items is necessary for an approximation, which reduces the
overall running time and space complexity. The set IL,red is found by first partitioning
the interval of large item profits [T, 2P0] into L(k) = [2kT, 2k+1T) for k ∈ {0, . . . , κ + 1}
and each L(k) into sub-intervals L(k)

γ of length 2kK. For IL,red, only the smallest item
a(k)γ is kept for every L(k)

γ . Finally, it is also remarked that one item in IL,red of profit
2P0 already attains the largest possible value such that the final algorithm does not
need to continue if it finds such an item. Hence, it can be assumed that k ≤ κ.

Most algorithms for UKP [39, 61, 63] take copies of the items in a reduced item set
like IL,red to transform the UKP instance into a 0-1 KP instance. However, we further
preprocess the large items in Section 4.6 by taking advantage of the unboundedness:
the items in IL,red with profits in L(k) are denoted by I(k) for k ∈ {0, . . . , κ}. Starting
with I(0) = Ĩ(0), the items in Ĩ(k) are iteratively combined (“glued”) together to larger
items ˜̃I(k+1). The next set Ĩ(k+1) is then obtained by keeping from ˜̃I(k+1) ∪ I(k+1) only
the smallest item ã(k+1)

γ of each profit sub-interval L(k+1)
γ . The sets Ĩ(k) form the new set

Ĩ, which has approximate structured solutions for k = κ: except of a special case that
can be easily checked, at most one large item in Ĩ(k) is used for every k ∈ {0, . . . , κ}.
The value OPT≤κ( Ĩ, v) denotes the optimal profit of these structured solutions for the
knapsack volume v ≤ c. (For the analysis, OPT≤k0(·, v) is introduced for structured
solutions for k = k0 that use at most one item in Ĩ(k,b) for every k ∈ {0, . . . , k0}, where
k0 ≤ κ.) Then, a large item aeff−c that consists of several copies of the most efficient
small item aeff is constructed. There are now approximate structured solutions to the
large items Ĩ ∪ {aeff−c} with a lower bound (on the profit). They consist of at most
one item of every set Ĩ(0), . . . , Ĩ(κ), {aeff−c} and additionally use at least one item of
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4.3 Notation and Remarks

profit at least 1
4 P0. The value OPTSt( Ĩ ∪ {aeff−c}, v) denotes the optimal profit with

this structure for the knapsack volume v ≤ c. (In fact, the approximate structured
solutions with a lower bound are approximations to the OPT(IL, v).)

How can a solution with such a structure for the large items be found for the
relevant v ≤ c? This question is answered in Section 4.7 where approximate dynamic
programming is explained. It generates tuples, where a tuple (p, s, k) stands for a set
of items with the profit p and size s. Only items in

⋃κ
k′=k Ĩ(k

′) ∪ {aeff−c} are considered,
and the structure above is respected. The dynamic program iteratively generates tuples
for k = κ, . . . , 0. The number of tuples is bounded by dividing the interval of the
possible profits p into sub-intervals L̃(κ−2)

ξ and by keeping at most one tuple of smallest
size for each sub-interval. As at least one item of profit 1

4 P0 is used, the profit interval
is [ 1

4 P0, 2P0]. Moreover, the number of large items can be bounded by O(log 1
ε ) in each

structured solution. Hence, it is sufficient for the overall approximation ratio that the
profit interval is divided into sub-intervals L̃(κ−2)

ξ of length 2κ−2K. This considerably
reduces the time and space complexity of the dynamic program, and is the reason for
the introduction of the structured solutions with a lower bound.

Section 4.8 puts the entire algorithm together. It is shown that the best combination
of large items (packed by the dynamic program) and the small item aeff (added
greedily), i,.e. max(p,s,0) p + OPT ({aeff}, c− s), has a profit of at least (1− ε)OPT(I).

4.3 Notation and Remarks

We use the notation presented in (or close to the one in) Section 3.3. The profit of an
item a is denoted by p(a) and its size by s(a). If a = aj, we also write p(aj) = pj and
s(aj) = sj. Let V = {xa : a | a ∈ I, xa ∈N} be a multiset of items, i.e. a subset of items
in I with their multiplicities. We naturally define the total profit p(V) := ∑xa>0 p(a)xa

and the total size s(V) := ∑xa>0 s(a)xa.
Let v ≤ c = 1. The corresponding optimum profit for the volume v is denoted

by OPT (I, v) = max{∑a∈I p(a)xa|∑a∈I s(a)xa ≤ v; xa ∈ N}. Obviously, OPT(I) =

OPT (I, c) holds.
Recall that we assume throughout the thesis that basic arithmetic operations as well

as computing the logarithm can be performed in O(1).
Finally, we have a remark about the use of “item” and “item copy” when we consider

a solution to a UKP instance.

Remark 4.2. Let I, Ĩ be two sets of knapsack items with Ĩ ⊆ I. In the 0-1 Knapsack
Problem, a sentence like “the solution to I uses at most one item in Ĩ” is obvious: if the
solution uses one item in Ĩ, all other items of the solution are in I \ Ĩ.
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4 The Unbounded Knapsack Problem

Consider now UKP. When we talk about solutions, we would formally have to
distinguish between an item a′ ∈ I in the instance and the item copies of a′ that
a solution V = {xa : a | a ∈ I, xa ∈ N} uses. In this thesis, we however use the
expressions “item” and “item copy” interchangeably when talking about solutions.
As an example, let us consider the sentence “the solution to I uses at most one item
in Ĩ.” It means that the solution contains item copies of items in I, but at most one
item copy whose corresponding item is in Ĩ. To be more precise, the multiset V uses
only one item a ∈ Ĩ with a multiplicity xa > 0. We have xa ≤ 1, but xa′′ = 0 for all
other a′′ ∈ Ĩ, i.e. ∑a′∈ Ĩ xa′ ≤ 1. Similarly, “the solution V uses at most n′ ∈N items in
Ĩ” means that there are only n′ item copies whose corresponding item(s) are in Ĩ: we
have ∑a′∈ Ĩ xa′ ≤ n′.

The interchangeable use of “item” and “item copy” allows for shorter sentences.
Moreover, it is based upon 0-1 KP where “item” and “item copy” are in fact identical.

4.4 A First Approximation

The simple greedy approximation algorithm of Subsection 3.5.2 for OPT(I) now
becomes even easier. Take the most efficient item ameff := arg maxa∈I

p(a)
s(a) . Fill the

knapsack with as many copies of ameff as possible, i.e. take b c
s(ameff)

c c=1
= b 1

s(ameff)
c copies

of ameff. Then the following holds:

Theorem 4.3. We have P0 := p(ameff) · b c
s(ameff)

c ≥ 1
2 OPT(I). The value P0 can be found

in time O(n) and space O(1).
Proof. Suppose first that ameff can greedily fill the knapsack completely. Then p(ameff) ·
b c

s(ameff)
c = OPT(I). Otherwise, one additional item ameff exceeds the capacity c.

Then p(ameff) · b c
s(ameff)

c+ p(ameff) ≥ OPT(I). If p(ameff) ≤ 1
2 OPT(I), then p(ameff) ·

b c
s(ameff)

c ≥ OPT(I) − p(ameff) ≥ 1
2 OPT(I), and the theorem follows. Otherwise

p(ameff) · b c
s(ameff)

c ≥ p(ameff) ≥ 1
2 OPT(I), which also proves the theorem.

To determine P0, we only have to check all items (which can be done in O(n)) and
to save the most efficient item (which only needs time in O(1)).

(The proof is taken from [61, p. 232, 63])

Assumption 4.1. From now on, we assume without loss of generality that ε ≤ 1
4 and

ε = 1
2κ−1 for κ ∈ N. Otherwise, we replace ε by the corresponding 1

2κ−1 such that
1

2κ−1 ≤ ε < 1
2κ−2 . Note that log2(

2
ε ) = κ holds.

Similar to Lawler [63] and to Subsection 3.5.3, we introduce the threshold T and a
constant K:

T :=
1
2

εP0 =
1
2

1
2κ−1 P0 (4.1)
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and

K :=
ε

4
1

log2(
2
ε ) + 1

T =
1
4

1
κ + 1

1
2κ−1 T =

1
8

1
κ + 1

(
1

2κ−1

)2

P0 . (4.2)

We will see later that these values are indeed a good choice for the algorithm. Note
that Chapter 5 will additionally derive the corresponding values Tb and Kb similar to
Chapter 3, which will justify the choice of T and K in this chapter.

4.5 Reducing the Items

We first partition the items into large(-profit) and small(-profit) items, and only keep
the most efficient small item:

IL := {a ∈ I | p(a) ≥ T} , IS := I \ IL, and aeff := arg max
{

p(a)
s(a)

∣∣∣ p(a) < T
}

.

Theorem 4.4. The sets IL, IS and the item aeff can be found in time O(n) and space O(n).
This is also the space needed to save IL.

Proof. Obvious.

Similar to Lawler, we now reduce the item set IL. Note that we have OPT(I) ≤ 2P0

according to Theorem 4.3 so that one item cannot have a profit larger than OPT(I) ≤
2P0. Hence, the large item profits are in the interval [T, 2P0]. We partition this interval
into

L(k) := [2kT, 2k+1T) for k ∈ {0, . . . , κ + 1} . (4.3)

Note that

L(κ) =
[
2κT, 2κ+1T

)
=

[
2κ 1

2
1

2κ−1 P0, 2κ+1 1
2

1
2κ−1 P0

)
= [P0, 2P0) .

For convenience, we directly set L(κ+1) := {2P0}.
We further split the L(k) into disjoint sub-intervals, each of length 2kK:

L(k)
γ :=

[
2kT + γ · 2kK, 2kT + (γ + 1)2kK

)
for γ ∈

{
0, . . . , 2κ+1(κ + 1)− 1

}
. (4.4)

Note that indeed L(k) =
⋃

γ L(k)
γ holds because

2kT + (γ + 1)2kK|γ=2κ+1(κ+1)−1 = 2kT + 2κ+1(κ + 1)2kK
(4.2)
= 2kT + 2κ+1(κ + 1)2k 1

4
1

κ + 1
1

2κ−1 T

= 2kT + 2kT = 2k+1T .
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4 The Unbounded Knapsack Problem

Similar to above, we set L(κ+1)
0 := {2P0}.

The idea is to keep only the smallest item a for every profit interval L(k)
γ . We will see

that these items are sufficient to determine an approximate solution. Indeed, this is
the reasoning used by Lawler [63], which we also employed for our UKPIP FPTAS
(see Subsection 3.6.1). The difference is that the profit of an item in L(k)

γ was scaled to
q(a) = 2kb p(a)

2kK c (see Subsection 3.5.3) while the original profit p(a) is kept here. Note

that the items in one L(k)
γ would indeed have the same scaled profit.

Definition 4.5. For an item a with p(a) ≥ T, let k(a) ∈ N be the interval such that
p(a) ∈ L(k(a)) and γ(a) ∈ N be the sub-interval such that p(a) ∈ L(k(a))

γ(a) . Let a(k)γ be the

smallest item for the profit interval L(k)
γ , i.e.

a(k)γ := arg min
{

s(a) | a ∈ IL and p(a) ∈ L(k)
γ

}
for all k and γ .

Algorithm 4.1 shows the algorithm to determine the a(k)γ . They form the reduced set of
large items

IL,red :=
⋃
k

⋃
γ

{
a(k)γ

}
.

As in [63], we now prove that IL,red is sufficient for an approximation.

Algorithm 4.1: The algorithm to determine the a(k)γ .

for k = 0, . . . , κ do
for γ = 0, . . . , 2κ+1(κ + 1)− 1 do

a(k)γ := ∅;

a(κ+1)
0 := ∅;

for a ∈ IL do
Determine (k(a), γ(a));

if s(a(k(a))
γ(a) ) > s(a) or a(k(a))

γ(a) = ∅ then

a(k(a))
γ(a) := a;

Output: IL,red :=
⋃

k
⋃

γ{a(k)γ }

Lemma 4.6. Let 0 ≤ v ≤ c = 1. Then

OPT ({aeff}, c− v) ≥ OPT (IS, c− v)− T

and

OPT (IL,red, v) ≥
(

1− ε

4
1

log2(
2
ε ) + 1

)
OPT (IL, v) .
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4.5 Reducing the Items

Proof. For the first inequality, there are two possibilities: either copies of aeff can be
taken such that the entire capacity c− v is used. Then obviously OPT ({aeff}, c− v) =
OPT (IS, c− v) holds. Otherwise, we have similar to the proof of Theorem 4.3 that
OPT({aeff}, c − v) + p(aeff) = b c−v

s(aeff)
c · p(aeff) + p(aeff) ≥ OPT (IS, c− v). Thus,

OPT({aeff}, c− v) ≥ OPT(IS, c− v)− p(aeff) ≥ OPT(IS, c− v)− T. The first inequal-
ity follows.

For the second inequality, take an optimal solution (xa)a∈I such that OPT (IL, v) =
∑a∈IL

p(a)xa. Replace now every item a by its counterpart a(k(a))
γ(a) in IL,red. Obviously,

the solution stays feasible, i.e. the volume v will not be exceeded, because an item may
only be replaced by a smaller one. This solution has the total profit ∑a∈IL

p(a(k(a))
γ(a) )xa.

Moreover, we have

p(a(k(a))
γ(a) ) ≥ p(a)− 2k(a)K

(4.2)
= p(a)− 1

4
1

κ + 1
1

2κ−1 2k(a)T

p(a)≥2k(a)T
≥ p(a)−

(
1
4

1
κ + 1

1
2κ−1

)
p(a) = p(a) ·

(
1− 1

4
1

κ + 1
1

2κ−1

)
(4.5)

by the definition of the L(k)
γ . We get

OPT (IL,red, v) ≥ ∑
a∈IL

p(a(k(a))
γ(a) )xa

(4.5)
≥ ∑

a∈IL

(
1− 1

4
1

κ + 1
1

2κ−1

)
· p(a)xa

=

(
1− 1

4
1

κ + 1
1

2κ−1

)
OPT (IL, v)

=

(
1− ε

4
1

log2(
2
ε ) + 1

)
OPT (IL, v) .

(The reasoning is partially taken directly from or close to the one by Lawler in [63].)
Note that we have used the expressions “items” and “item copies” interchangeably

in this proof as described in Remark 4.2.

Theorem 4.7. IL,red has O( 1
ε log2 1

ε ) items. Algorithm 4.1 needs time in O(n + 1
ε log2 1

ε )

and space in O( 1
ε log2 1

ε ) for the construction and for saving IL,red.

Proof. The number of items a(k)γ , including the item a(κ+1)
0 , is bounded by O((κ + 1) ·

(2κ+1(κ + 1) − 1 + 1)) = O(log 1
ε · ( 1

ε log 1
ε )) = O( 1

ε log2 1
ε ). The space needed is

asymptotically bounded by the space required to save the a(k)γ . Finally, the running
time is obviously bounded by O(n + 1

ε log2 1
ε ): the values k(a) and γ(a) can be found

in O(1) because we assume that the logarithm can be determined in O(1).

Remark 4.8. If there is one item a with the profit p(a) = 2P0, i.e. whose profit attains
the upper bound, one optimum solution obviously consists of this single item. During
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4 The Unbounded Knapsack Problem

the partition of I into IL and IS, it can easily be checked whether such an item is
contained in I. Since the algorithm can directly stop if this is the case, we will from
now on assume without loss of generality that such an item does not exist and that
a(κ+1)

0 = ∅.

4.6 A Simplified Solution Structure

In this section, we will transform IL,red into a new instance Ĩ whose optimum OPT( Ĩ, v)
is only slightly smaller than OPT(IL,red, v) and where the corresponding solution has
a special structure. This new transformation will allow us later to faster construct the
approximate solution. First, we define

I(k) :=
{

a ∈ IL,red
∣∣ p(a) ∈ L(k)

}
=
{

a ∈ IL,red
∣∣ p(a) ∈

[
2kT, 2k+1T

)}
.

Note that the items are already partitioned into the sets I(k) because of the way IL,red

has been constructed.

Definition 4.9. Let a1, a2 be two knapsack items with s(a1) + s(a2) ≤ c. The gluing op-
eration ⊕ combines them into a new item a1 ⊕ a2 with p(a1 ⊕ a2) = p(a1) + p(a2) and
s(a1 ⊕ a2) = s(a1) + s(a2).

Thus, the gluing operation is only defined on pairs of items whose combined size does
not exceed c.

The basic idea for the new instance Ĩ is as follows: we first set Ĩ(0) := I(0). Then, we
construct a1 ⊕ a2 for all a1, a2 ∈ Ĩ(0) (including the case a1 = a2), which yields the item
set ˜̃I(1) := {a1 ⊕ a2 | a1, a2 ∈ Ĩ(0)}. Note that p(a1 ⊕ a2) ∈ [2T, 4T) = L(1). For every
profit interval L(1)

γ , we keep only the item of smallest size in I(1) ∪ ˜̃I(1), which yields
the item set Ĩ(1). This procedure is iterated for k = 1, . . . , κ − 1: the set Ĩ(k) contains
the items with a profit in [2kT, 2k+1T) = L(k) (see Fig. 4.1(a)). Gluing like above yields
the item set ˜̃I(k+1) with profits in [2k+1T, 2k+2T) = L(k+1) (see Fig. 4.1(b)). By taking
again the smallest item in ˜̃I(k+1) ∪ I(k+1) for every L(k+1)

γ , the set Ĩ(k+1) is derived (see
Fig. 4.1(c)). The item in Ĩ(k) with a profit in L(k)

γ is denoted by ã(k)γ for every k and γ.
We finish when Ĩ(κ) has been constructed from Ĩ(κ−1). We are in the case where

I(κ+1) = ∅, i.e. a(κ+1)
0 = ∅, and it is explained at the beginning of Section 4.7 that

it is not necessary to construct Ĩ(κ+1) from the items in Ĩ(κ). Hence, we also have
ã(κ+1)

0 = ∅.
Note that we may glue items together that already consist of glued items. For

backtracking, we save for every ã(k)γ which two items in Ĩ(k−1) have formed it or
whether ã(k)γ has already been an item in I(k). Algorithm 4.2 presents one way to
construct the sets Ĩ(k).
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Remark 4.10. One item ã(k)γ is in fact the combination of several items in IL,red. The
profit and size of ã(k)γ is equal to the total profit and size of these items. The ã(k)γ

represent feasible item combinations because an arbitrary number of item copies can
be taken in UKP.

Algorithm 4.2: The construction of the item sets Ĩ(k).

for k = 0, . . . , κ do
for γ = 0, . . . , 2κ+1(κ + 1)− 1 do

ã(k)γ := a(k)γ ;

Backtrack(ã(k)γ ) := a(k)γ ;

Ĩ(0) := I(0);
for k = 0, . . . , κ − 1 do

for γ = 0, . . . , 2κ+1(κ + 1)− 1 do
for γ′ = γ, . . . , 2κ+1(κ + 1)− 1 do

if s(ã(k)γ ) + s(ã(k)γ′ ) ≤ c then

ã := ã(k)γ ⊕ ã(k)γ′ ;

if s(ã) < s(ã(k+1)
γ(ã) ) or ã(k+1)

γ(ã) = ∅ then

ã(k+1)
γ(ã) := ã;

Backtrack(ã(k+1)
γ(ã) ) := (ã(k)γ , ã(k)γ′ );

Ĩ(k+1) :=
{

ã(k+1)
0 , . . . , ã(k+1)

2κ+1(κ+1)−1

}
;

The item set

Ĩ :=
κ⋃

k=0

Ĩ(k)

has for every 0 ≤ v ≤ c a solution near the original optimum OPT (IL,red, v) as shown
below in Theorem 4.12. It is additionally proved that at most one item of every Ĩ(k) for
k ∈ {0, . . . , κ − 1} is needed. First, we introduce a definition for the proof.

Definition 4.11. Let I′ be a set of knapsack items with p(a) ≥ T for every a ∈ I′. For a
knapsack volume v ≤ c and k0 ∈ {0, . . . , κ}, a solution is structured for k = k0 if it fits into v
and uses for every k ∈ {0, . . . , k0} at most one item copy with a profit in L(k) = [2kT, 2k+1T).
We denote by OPT≤k0 (I′, v) the corresponding optimum profit.

For instance, the solution for

OPT≤k0

(
Ĩ(0) ∪ . . . ∪ Ĩ(k0) ∪ Ĩ(k0+1) ∪ I(k0+2) ∪ . . . ∪ I(κ), v

)
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2kT +
γ · 2kK2kT 2k+1T

Ĩ (k)

2k+1T +
γ · 2k+1K

2k+1T 2k+2T

ã0
ã3s(ã3) ã4

a0 a1 a3 a4

I (k+1)

(a) The items in Ĩ(k) and I(k+1) . The height of every item a corresponds to its size s(a) while
its position on the axis corresponds to its profit p(a). The axis is partitioned into the profit
sub-intervals L(k)

γ = [2kT + γ2kK, 2kT + (γ + 1)2kK).

2k+1T +
γ · 2k+1K

2k+1T 2k+2T

a0
ã0

ã0⊕
ã0

ã3
⊕a1

ã0

ã4
⊕

a3
ã3

ã3
⊕

ã3

ã4
⊕

ã4

ã4
⊕ a4

(b) The set I(k+1) together with the newly constructed items in ˜̃I(k+1)

2k+1T +
γ · 2k+1K

2k+1T 2k+2T

Ĩ (k+1)
a0 a1

ã0

ã4
⊕

a3
ã4

ã4
⊕

(c) The new set Ĩ(k+1) after keeping only the smallest item with a profit in L(k+1)
γ . For instance,

ã4 ⊕ ã4 is kept because it is the smallest item in its profit sub-interval L(k+1)
γ .

Figure 4.1: Principle of deriving Ĩ(k+1) from Ĩ(k) and I(k+1)

80



4.6 A Simplified Solution Structure

fits into the volume v, and it uses only one item from every Ĩ(k) for k ∈ {0, . . . , k0}. It
may however use an arbitrary number of item copies e.g. in Ĩ(k0+1) or I(k0+2).

Theorem 4.12. For v ≤ c and k0 ∈ {0, . . . , κ − 1}, we have

OPT≤k0

(
k0+1⋃
k=0

Ĩ(k) ∪
κ⋃

k=k0+2

I(k), v

)
≥
(

1− ε

4
1

log2(
2
ε ) + 1

)k0+1

OPT (IL,red, v) .

Proof. The proof idea is quite simple: we iteratively replace the items in I(k0+1) by
their counterpart in Ĩ(k0+1) and also replace every pair of item copies in Ĩ(k0) by the
counterpart in Ĩ(k0+1). This directly follows the way to construct the item sets Ĩ(k)

presented in Algorithm 4.2.
Formally, the statement is proved by induction over k0. Let k0 = 0. Take an optimum

solution to Ĩ(0) ∪ I(1) ∪ . . . ∪ I(κ) = I(0) ∪ I(1) ∪ . . . ∪ I(κ) = IL,red. For ease of notation,
we directly write each item as often as it appears in the solution, i.e. we directly
consider the item copies. We have three sub-sequences:

• Let ā1, . . . , āη (η ∈N) be the item copies from Ĩ(0) = I(0) in the optimal solution
for OPT(IL,red, v). We assume that η is odd (the case where η is even is easier
and handled below.)

• Let āη+1, . . . , āη+ξ (ξ ∈ N) be the item copies from I(1) in the optimal solution
for OPT(IL,red, v).

• Let ā′1, . . . , ā′λ (λ ∈ N) be the remaining item copies from I(2) ∪ . . . ∪ I(κ) in the
optimal solution for OPT(IL,red, v). This set is denoted by Λ. As defined above,
the total profit of these items is written as p(Λ).

Figure 4.2(a) illustrates the packing. (Figure 4.2 shows the case for general k.) We have

OPT
(

Ĩ(0) ∪ I(1) ∪ . . . ∪ I(κ), v
)
=

η

∑
i=1

p(āi) +
η+ξ

∑
j=η+1

p(āj) + p(Λ) . (4.6)

In the first step, every pair of items ā2i−1 and ā2i from Ĩ(0) for i ∈ {1, . . . , b η
2 c}

is replaced by ā2i−1 ⊕ ā2i ∈ ˜̃I(1) (see Fig. 4.2(b)). In the second step, every item
ā2i−1 ⊕ ā2i is again replaced by the corresponding item ã(1)

γ(ā2i−1⊕ā2i)
=: ã(1)

ρ(i) in Ĩ(1) (for

i ∈ {1, . . . , b η
2 c}). Only the item āη remains unchanged. Moreover, āj from I(1) is

replaced by the corresponding ã(1)
γ(āj)

=: ã(1)
ρ(j) for j ∈ {η + 1, . . . , η + ξ} (see Fig. 4.2(c)).

Note that this new solution is indeed feasible because the replacing items ã(1)γ are at
most as large as the original ones. Moreover, the corresponding items ã(1)

ρ(i) and ã(1)
ρ(j)

must exist by the construction of Ĩ(1). Thus, we have a (feasible) solution that consists
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4 The Unbounded Knapsack Problem

of the item āη ∈ Ĩ(0), the items ã(1)
ρ(i) and ã(1)

ρ(j) in Ĩ(1), and the remaining items ā′1, . . . , ā′λ
in I(2), . . . , I(κ): this solution respects the structure of OPT≤k0(·, v) for k0 = 0. (If η is
even, no item in Ĩ(0) is used.)

Let now ā be an item ā2i−1 ⊕ ā2i or āj. It can be proved like for Inequality (4.5) that

p(ã(1)
γ(ā)) ≥

(
1− ε

4
1

log2(
2
ε ) + 1

)
p(ā) . (4.7)

Thus, we have

OPT≤0

(
Ĩ(0) ∪ Ĩ(1) ∪ I(2) ∪ . . . ∪ I(κ), v

)
≥ p(āη) +

b η
2 c

∑
i=1

p(ã(1)
ρ(i)) +

η+ξ

∑
j=η+1

p(ã(1)
ρ(j)) + p(Λ)

(4.7)
≥ p(āη) +

(
1− ε

4
1

log2(
2
ε ) + 1

) b η
2 c

∑
i=1

p(ā2i−1 ⊕ ā2i)

+

(
1− ε

4
1

log2(
2
ε ) + 1

)
η+ξ

∑
j=η+1

p(āj) + p(Λ)

≥
(

1− ε

4
1

log2(
2
ε ) + 1

)(
η

∑
i=1

p(āi) +
η+ξ

∑
j=η+1

p(āj) + p(Λ)

)
(4.6)
=

(
1− ε

4
1

log2(
2
ε ) + 1

)
OPT

(
Ĩ(0) ∪ I(1) ∪ . . . ∪ I(κ), v

)
=

(
1− ε

4
1

log2(
2
ε ) + 1

)
OPT (IL,red, v) .

The statement for k0 = 1, . . . , κ − 1 now follows by induction. The proof is almost
identical to the case k0 = 0 above, the only difference is that there are additionally the
items in Ĩ(0), . . . , Ĩ(k0−1) that remain unchanged like the items in I(k0+2), . . . , I(κ). Only
items in Ĩ(k0) and I(k0) are replaced.

Note that we have again used the expressions “items” and “item copies” inter-
changeably in this proof as described in Remark 4.2.

Lemma 4.13. OPT( Ĩ ∪ {aeff}) ≤ OPT(IL,red ∪ IS) ≤ OPT(IL ∪ IS) = OPT(I) ≤ 2P0

holds.

Proof. Ĩ consists of items in IL,red or of items that can be obtained by gluing several
items in IL,red together. Every combination of items in Ĩ can therefore be represented by
items in IL,red (see also Remark 4.10). Moreover, we have aeff ∈ IS. The first inequality
follows. Since IL,red ⊆ IL, the second inequality is obvious. The last inequality follows
from Theorem 4.3.
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ã4

ã4

ã4

ã3

ã0

a1

a4

Ĩ (k)

I (k+1)

Ĩ (0), . . . , Ĩ (k−1)

I (k+2), . . . , I (κ)

(a) The current solution
to Ĩ(0) ∪ · · · ∪ Ĩ(k) ∪
I(k+1) ∪ · · · ∪ I(κ).
The structure of
OPT≤k−1(·, v) is
respected, i.e. at
most one item from
every Ĩ(0), . . . , Ĩ(k−1)

is used.

ã4

ã4

ã4
⊕

ã3

ã0⊕

a1

a4

Ĩ (k)

˜̃I
(k+1)

I (k+1)

(b) The items
in Ĩ(k) are
pairwise
glued
together
with the
possible
exception
of one
item.

ã4

ã4

ã4
⊕

a1

a1

ã4

ã4
⊕

Ĩ (k)

Ĩ (k+1)

Ĩ (0), . . . , Ĩ (k−1)

I (k+2), . . . , I (κ)

(c) The items in ˜̃I(k+1) ∪
I(k+1) are replaced
by their counterparts
in Ĩ(k+1). Now, at
most one item in Ĩ(k)

is part of the solu-
tion, and the struc-
ture for OPT≤k(·, v)
is respected.

Figure 4.2: The principle of the proof for Theorem 4.12
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4 The Unbounded Knapsack Problem

Up to now, we have (only) reduced the original item set I to Ĩ ∪ {aeff}.

Lemma 4.14. Assume as mentioned in Remark 4.8 that a(κ+1)
0 = ∅. Consider the optimum

structured solutions to Ĩ ∪ {aeff} for k0 = κ− 1 (see Definition 4.11). This means that at most
one item is used from every Ĩ(k) for k ∈ {0, . . . , κ− 1}. (The item aeff has a profit p(aeff) < T
such that it does not have to satisfy any structural conditions.) Then there are two possible
cases:

• One solution uses (at least) two items in Ĩ(κ). This is the case if and only if the optimum
for Ĩ ∪ {aeff} is 2P0, and the solution consists of two item copies of the item ã(κ)0 with
p(ã(κ)0 ) = P0.

• Every solution uses at most one item in Ĩ(κ). Then, OPT≤κ−1( Ĩ, v′) = OPT≤κ( Ĩ, v′)
holds for all values 0 ≤ v′ ≤ c, and there is a value 0 ≤ v ≤ c such that

OPT≤κ

(
Ĩ, v
)
+ OPT ({aeff} , c− v) = OPT≤κ−1

(
Ĩ, v
)
+ OPT ({aeff} , c− v)

≥
(

1− ε

4
1

log2(
2
ε ) + 1

)κ+1

OPT(I)− T .

Moreover, OPT≤κ( Ĩ, v) uses at least one item in Ĩ(κ−2) ∪ Ĩ(κ−1) ∪ Ĩ(κ), and/or we have
OPT ({aeff} , c− v) ≥ 1

4 P0.

Proof. Note that IL,red does not contain any item with the profit 2P0 (see Remark 4.8).
By construction, this is still the case for Ĩ. Suppose that one solution to Ĩ ∪ {aeff} uses
more than one item in Ĩ(κ). Since items in Ĩ(κ) have profits in [P0, 2P0), only two copies
of the item ã(κ)0 can be used, and we have p(ã(κ)0 ) = P0. In fact, 2P0 is the maximum
possible profit because OPT( Ĩ ∪ {aeff}) ≤ OPT(I) ≤ 2P0 holds as we have seen in
Lemma 4.13. Thus, the “only if” direction has been proved. The “if” direction is
obvious.

Suppose now that every structured solution to Ĩ ∪ {aeff} for k0 = κ − 1 uses at most
one item in Ĩ(κ). Thus, OPT≤κ−1( Ĩ, v′) = OPT≤κ( Ĩ, v′) holds for all 0 ≤ v′ ≤ c.

Let v ≤ c now be the volume the large items IL occupy in an optimum solution to I.
Then obviously OPT(I) = OPT (IL, v) + OPT (IS, c− v) holds. We have the following
inequality:

OPT≤κ

(
Ĩ, v
)
+ OPT ({aeff} , c− v) = OPT≤κ−1

(
Ĩ, v
)
+ OPT ({aeff} , c− v)

Thm. 4.12
≥

(
1− ε

4
1

log2(
2
ε ) + 1

)κ

OPT (IL,red, v) + OPT ({aeff} , c− v)

Lem. 4.6
≥

(
1− ε

4
1

log2(
2
ε ) + 1

)κ+1

OPT (IL, v) + OPT (IS, c− v)− T

84



4.6 A Simplified Solution Structure

≥
(

1− ε

4
1

log2(
2
ε ) + 1

)κ+1

(OPT (IL, v) + OPT (IS, c− v))− T

=

(
1− ε

4
1

log2(
2
ε ) + 1

)κ+1

OPT(I)− T . (4.8)

For the final property, suppose that no item in Ĩ(κ−2) ∪ Ĩ(κ−1) ∪ Ĩ(κ) is used in a solution
for OPT≤κ( Ĩ, v). Then we have

OPT≤κ

(
Ĩ, v
)
≤

κ−3

∑
k=0

max
{

p(a) | a ∈ Ĩ(k)
}
≤

κ−3

∑
k=0

2 · 2kT < 2κ−1T
(4.1)
=

1
2

P0 .

On the other hand, Inequality (4.8) together with (1− δ)k ≥ (1− k · δ) for δ < 1 yields

OPT≤κ

(
Ĩ, v
)
+ OPT ({aeff} , c− v)

≥
(

1− ε

4
κ + 1

log2(
2
ε ) + 1

)
OPT(I)− T

(4.1)
=
(

1− ε

4

)
OPT(I)− 1

2
εP0

≥
(

1− ε

4

)
OPT(I)− 1

2
ε OPT(I)

ε≤1/4

≥ 3
4

OPT(I) ≥ 3
4

P0 .

Hence, OPT({aeff} , c− v) ≥ 1
4 P0 holds. The final property of the second case follows.

Definition 4.15. Take d P0/4
p(aeff)

e items aeff. If their total size is at most c, they are glued together
to aeff−c.

Obviously, aeff−c consists of the smallest number of items aeff whose total profit is at
least P0

4 . Moreover, aeff−c is a large item.

Definition 4.16. Take a knapsack volume v ≤ c. Consider the following solutions to Ĩ ∪
{aeff−c} of size at most v:

• They are structured for k = κ, i.e. they use for every k ∈ {0, . . . , κ} at most one item in
Ĩ(k).

• They additionally use the item aeff−c at most once and at least one item ã ∈ Ĩ(κ−2) ∪
Ĩ(κ−1) ∪ Ĩ(κ) ∪ {aeff−c}.

Hence, these solutions have a profit of at least p(ã) ≥ 2κ−2T = 1
4 P0. These special solutions

are called structured solutions with a lower bound (on the profit).
The value OPTSt( Ĩ ∪ {aeff−c}, v) denotes the optimal profit for such solutions of total size at

most v. If v is too small so that such a solution does not exist, we set OPTSt( Ĩ ∪ {aeff−c}, v) =
0.
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Theorem 4.17. In the second case of Lemma 4.14, there is a value 0 ≤ v ≤ c such that

OPTSt
(

Ĩ ∪ {aeff−c} , v
)
+ OPT ({aeff} , c− v) ≥

(
1− ε

4
1

log2(
2
ε ) + 1

)κ+1

OPT(I)− T .

Proof. Like in the proof of Lemma 4.14, let v′ be the volume the large items IL occupy
in an optimum solution to I so that OPT(IL, v′) + OPT(IS, c− v′) = OPT(I). Consider
an optimum structured solution for OPT≤κ( Ĩ, v′) and suppose that it does not use
any items in Ĩ(κ−2) ∪ Ĩ(κ−1) ∪ Ĩ(κ). Lemma 4.14 states that OPT({aeff}, c − v′) has a
profit of at least 1

4 P0. Thus, a subset of the item copies of aeff can be replaced by aeff−c,
and c− v′ ≥ s(aeff−c). We set v := v′ + s(aeff−c). Note that OPTSt( Ĩ ∪ {aeff−c}, v) ≥
OPT≤κ( Ĩ, v′) + p(aeff−c). Moreover, OPT≤κ( Ĩ, v′) = OPT≤κ−1( Ĩ, v′) holds because we
are in the second case of Lemma 4.14. We get the following inequalities:

OPTSt
(

Ĩ ∪ {aeff−c} , v
)
+ OPT ({aeff} , c− v)

≥ OPT≤κ

(
Ĩ, v′

)
+ p(aeff−c) + OPT

(
{aeff} , c− v′ − s(aeff−c)

)
= OPT≤κ−1

(
Ĩ, v′

)
+ OPT

(
{aeff} , c− v′

)
Thm. 4.12
≥

(
1− ε

4
1

log2(
2
ε ) + 1

)κ

OPT
(

IL,red, v′
)
+ OPT

(
{aeff} , c− v′

)
Lem. 4.6
≥

(
1− ε

4
1

log2(
2
ε ) + 1

)κ+1

OPT
(

IL, v′
)
+ OPT

(
IS, c− v′

)
− T

≥
(

1− ε

4
1

log2(
2
ε ) + 1

)κ+1 (
OPT

(
IL, v′

)
+ OPT

(
IS, c− v′

))
− T

=

(
1− ε

4
1

log2(
2
ε ) + 1

)κ+1

OPT(I)− T .

Note that OPT({aeff}, c− v) is well-defined—and therefore the entire chain of inequal-
ities feasible—because c− v = c− v′ − s(aeff−c) ≥ 0.

Suppose now that the optimal solution uses at least one item in Ĩ(κ−2) ∪ Ĩ(κ−1) ∪ Ĩ(κ).
We can then directly set v := v′, and the proof is similar to the first case above.

Roughly speaking, a solution in the first case of this proof satisfies the lower bound
of the theorem on the profit and uses at most one item in every Ĩ(k), but no item in
Ĩ(κ−2), Ĩ(κ−1) or Ĩ(κ). This implies that enough items aeff are part of the solution such
that a subset of them can be replaced by aeff−c.

So far, we have not constructed an actual solution. We have only shown in Theo-
rem 4.17 that there is a solution to Ĩ ∪ {aeff−c} ∪ {aeff} that is close to OPT(I) and that
is a structured solution with a lower bound.
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Theorem 4.18. The cardinality of Ĩ(k) is in O( 1
ε log 1

ε ), i.e. Ĩ has O( 1
ε log2 1

ε ) items. Algo-
rithm 4.2 constructs Ĩ in time O( 1

ε2 log3 1
ε ) and space O( 1

ε log2 1
ε ), which also includes the

space to store Ĩ and the backtracking information. The item aeff−c can be constructed in time
O(1).

Proof. The statement for aeff−c is trivial: the number of items aeff−c to glue together
can be determined by division.

The number of items in Ĩ(k) and Ĩ can be derived like the number of items in IL,red

in Theorem 4.7. The running time of Algorithm 4.2 is obviously dominated by the
second for-loop. It is in

O
(

κ ·
(

2κ+1(κ + 1)
)2
)
= O

(
log
(

1
ε

)
·
(

1
ε

log
1
ε

)2
)

= O
(

1
ε2 log3

(
1
ε

))
.

The space complexity is dominated by the space to save the ã(k)γ and the backtracking
information, which is again asymptotically equal to the number of items in Ĩ.

4.7 Finding an Approximate Structured Solution by Dynamic
Programming

The previous section has presented three cases:

1. The instance I has one item of profit 2P0: return this item for an optimum
solution, and OPT(I) = 2P0 (see Remark 4.8).

2. If this is not the case, and Ĩ has one item of profit P0 and size at most c
2 , two copies

of this item are an optimum solution to Ĩ ∪ {aeff} (see Lemma 4.14). Undoing
the gluing returns an optimum solution to I with OPT(I) = 2P0.

3. Otherwise, there is an approximate solution to Ĩ ∪ {aeff−c} ∪ {aeff} where the
large items are a structured solution with a lower bound (see Theorem 4.17).

The first two cases can be easily checked, which is the reason why it has not been
necessary to construct the set Ĩ(κ+1). We will from now on assume that we are in the
third case: regarding the large items, a solution uses at most one item from every Ĩ(k)

for k ∈ {0, . . . , κ} as well as aeff−c at most once. At the same time, at least one item
ã ∈ Ĩ(κ−2) ∪ Ĩ(κ−1) ∪ Ĩ(κ) ∪ {aeff−c} is chosen. (See Definition 4.16.)

We use dynamic programming to find for all 0 ≤ v ≤ c the corresponding set of
large items V ⊆ Ĩ ∪ {aeff−c}with s(V) ≤ v. For convenience, let Ĩ(κ+1) := {aeff−c}. We
introduce tuples (p, s, k) similar to Lawler [63]. For profit p with 0 ≤ p ≤ 2P0 and size
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0 ≤ s ≤ c, the tuple (p, s, k) states that there is an item set of size s whose total profit
is p. Moreover, the set has only items in Ĩ(k) ∪ · · · ∪ Ĩ(κ+1) and respects the structure
above.

The dynamic program is quite simple: start with the dummy tuple set F(κ+2) :=
{(0, 0, κ + 2)}. For k = κ + 1, . . . , κ − 2, the tuples in F(k) are recursively constructed
by

F(k) :=
{
(p, s, k) | (p, s, k + 1) ∈ F(k+1)

}
∪
{
(p + p(ã), s + s(ã), k) | (p, s, k + 1) ∈ F(k+1), ã ∈ Ĩ(k), s + s(ã) ≤ c

}
.

Note that (0, 0, k + 1) ∈ F(k+1), which guarantees that F(k) also contains the tuples
(p(ã), s(ã), k) for ã ∈ Ĩ(k) if k ∈ {κ + 1, . . . , κ − 2}. For k = κ − 3, . . . , 0, this tuple
(0, 0, k + 1) is no longer considered to form the new tuples, which guarantees that
tuples of the form (p + p(ã), s + s(ã), k) for ã ∈ Ĩ(k) have p, s 6= 0. The recursion
becomes

F(k) :=
{
(p, s, k) | (p, s, k + 1) ∈ F(k+1)

}
∪
{
(p + p(ã), s + s(ã), k) | (p, s, k + 1) ∈ F(k+1) \ {(0, 0, k + 1)} ,

ã ∈ Ĩ(k), s + s(ã) ≤ c
}

.

The actual item set corresponding to (p, s, k) can be reconstructed by saving backtrack-
ing information.

Definition 4.19. A tuple (p2, s2, k) is dominated by (p1, s1, k) if p2 ≤ p1 and s2 ≥ s1.

As in [63] and similar to Subsection 3.5.1, dominated tuples (p, s, k + 1) are now
removed from F(k+1) before F(k) is constructed. This does not affect the outcome:
dominated tuples only stand for sets of items with a profit not larger and a size
not smaller than non-dominated tuples. A non-dominated tuple (p, s, k) is therefore
optimal, i.e. the profit p can only be obtained with items of size at least s if items in
Ĩ(k), . . . , Ĩ(κ+1) are considered.

Lemma 4.20. A tuple (p, s, k) ∈ F(k) stands for a structured solution with a lower bound
(see Definition 4.16). Therefore, we have p ≥ 2κ−2T if p > 0. For every v ≤ c, there is a tuple
(p, s, 0) ∈ F(0) with p = OPTSt( Ĩ ∪ {aeff−c}, v) and s ≤ v.

Proof. This lemma directly follows from the dynamic program: tuples use at most
one item from every Ĩ(k). For k ∈ {κ − 2, . . . , κ + 1}, a tuple with p > 0 represents
an item set that uses at least one item in Ĩ(k), . . . , Ĩ(κ+1), and such an item has a profit
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of at least 2κ−2T. Tuples for k ≤ κ − 3 with p > 0 are only derived from tuples that
use at least one item in Ĩ(κ−2), . . . , Ĩ(κ+1). If dominated tuples are not removed, the
dynamic program obviously constructs tuples for all possible structured solutions
with a lower bound, especially the optimum combinations for every 0 ≤ v ≤ c.
Removing dominated tuples does not affect the tuples that stand for the optimum
item combinations so that the second property still holds.

While the dynamic program above constructs the desired tuples, their number may
increase dramatically until F(0) is obtained. We therefore use approximate dynamic
programming for the tuples with profits in [ 1

4 P0, 2P0]. This method is inspired by the
dynamic programming used in [58] (see also [61, pp. 97–112]).

Definition 4.16 and Lemma 4.20 state that a tuple (p, s, k) with p > 0 satisfies
p ≥ 2κ−2T. Apart from (0, 0, k), all tuples have therefore profits in the interval

[2κ−2T, 2P0]
(4.1)
= [ 1

4 P0, 2P0] = [2κ−2T, 2κ+1T]. We partition this interval into sub-
intervals of length 2κ−2K. We get

[2κ−2T, 2P0] =
ξ0⋃

ξ=0

[
2κ−2T + ξ · 2κ−2K, 2κ−2T + (ξ + 1)2κ−2K

)
∪ {2P0}

=:
ξ0⋃

ξ=0

L̃(κ−2)
ξ ∪ L̃(κ−2)

ξ0+1

for ξ0 := 7(κ + 1)2κ+1 − 1. (A short calculation shows that 2κ−2T + (ξ0 + 1)2κ−2K =

2P0.) The approximate dynamic program keeps for every ξ ∈ {0, . . . , ξ0 + 1} only
the tuple (p, s, k) with p ∈ L̃(κ−2)

ξ that has the smallest size s. The dominated tuples
are removed when all tuples for k have been constructed. The modified dynamic
program is presented in Algorithm 4.3 and shown in Figure 4.3. The sets of these
non-dominated tuples are denoted by D(k). For convenience, (p(ξ), s(ξ), k) ∈ D(k)

denotes the smallest tuple with a profit in L̃(κ−2)
ξ . We again save the backtracking

information during the execution of the algorithm.

Lemma 4.21. Let D̃(k) be the set D(k) from Algorithm 4.3 before the dominated tuples are
removed. A tuple (p, s, k) ∈ D̃(k) for k = κ + 1, . . . , 0 stands for a structured solution with a
lower bound. Therefore, we have p ≥ 2κ−2T if p > 0. This is also true for (p, s, k) ∈ D(k).

Proof. The proof is almost identical to the one of Lemma 4.20. In fact, the proof is not
influenced by keeping only the tuple of smallest size in every profit interval L̃(κ−2)

ξ .
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Algorithm 4.3: The approximate dynamic program

D(κ+2) := {(0, 0, κ + 2)};
Backtrack(0, 0, κ + 2) := ∅;
for k = κ + 1, . . . , 0 do

D(k) := ∅;
for (p(ξ), s(ξ), k + 1) ∈ D(k+1) do

D(k) := D(k) ∪ {(p(ξ), s(ξ), k)};
Backtrack(p(ξ), s(ξ), k) := Backtrack(p(ξ), s(ξ), k + 1);

for ã ∈ Ĩ(k) do
for (p, s, k + 1) ∈ D(k+1) \ {(0, 0, k + 1)} do

// Construction of new tuples
(p′, s′, k) := (p + p(ã), s + s(ã), k);

Determine ξ ′ for (p′, s′, k) such that p′ ∈ L̃(κ−2)
ξ ′ ;

if s′ < s(ξ ′) or (p(ξ ′), s(ξ ′), k) = ∅ then
// Only new tuples of smaller size are kept
D(k) := D(k) \ {(p(ξ ′), s(ξ ′), k)};
(p(ξ ′), s(ξ ′), k) := (p′, s′, k);
Backtrack(p(ξ ′), s(ξ ′), k) := ((p, s, k + 1), ã);
D(k) := D(k) ∪ {(p(ξ ′), s(ξ ′), k)};

if k ≥ κ − 2 then
// Construction of (possible) tuples (p(ã), s(ã), k) for

k ≥ κ − 2

Determine ξ ′ for p(ã) such that p(ã) ∈ L̃(κ−2)
ξ ′ ;

if s(ã) < s(ξ ′) or (p(ξ ′), s(ξ ′), k) = ∅ then
D(k) := D(k) \ {(p(ξ ′), s(ξ ′), k)};
(p(ξ ′), s(ξ ′), k) := (p(ã), s(ã), k);
Backtrack(p(ξ ′), s(ξ ′), k) := (ã);
D(k) := D(k) ∪ {(p(ξ ′), s(ξ ′), k)};

Remove dominated tuples from D(k);
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s

p

2
κ−

2K

(p(ξ), s(ξ), k + 1)

(p(ξ + 1), s(ξ + 1), k + 1)

(a) The tuples in D(k+1)

s

p

+s(ã)

+p(ã)

(p(ξ) + p(ã), s(ξ) + s(ã))

(b) The tuples in D(k+1) are kept. Additionally,
new tuples are constructed with the items
in Ĩ(k).

Figure 4.3: The principle of the approximate dynamic programming
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s

p

s2

p2

s1

p1

<

2
κ−

2K
≥

(c) Only the tuple of smallest size is kept for every
L̃(κ−2)

ξ , which yields D̃(k),. . .

s

p

s2

p2

(p, s) = (p(ξ′), s(ξ′), k)

s

p

>

<

(d) . . . and removing the dominated tuples
yields D(k).

Figure 4.3: (Continued) The principle of the approximate dynamic programming
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Theorem 4.22. Let k ∈ {0, . . . , κ + 1}. For every (non-dominated) tuple ( p̄, s̄, k) ∈ F(k),
there is a tuple (p, s, k) ∈ D(k) such that

p ≥
(

1− ε

4
1

log2(
2
ε ) + 1

)κ−k+1

p̄ and s ≤ s̄ .

Proof. This statement is trivial for ( p̄, s̄, k) = (0, 0, k) because (0, 0, k) ∈ D(k) (this tuple
is never removed in the construction of F(k) and D(k)).

Suppose now that ( p̄, s̄, k) 6= (0, 0, k). The theorem is proved by induction for
k = κ + 1, . . . , 0.

The statement is evident for k = κ + 1. If aeff−c exists (i.e. enough copies of aeff

can be glued together without exceeding the capacity c), then F(κ+1) = D(κ+1) =

{(0, 0, κ + 1), (p(aeff−c), s(aeff−c), κ + 1)}. If aeff−c does not exist, then we have F(κ+1) =

D(κ+1) = {(0, 0, κ + 1)}.
Suppose that the statement is true for k + 1, . . . , κ + 1. As defined in Lemma 4.21,

D̃(k) is the set D(k) before the dominated tuples are removed. Let ( p̄, s̄, k) ∈ F(k).

There are two cases. In the first case, we have ( p̄, s̄, k + 1) ∈ F(k+1). By the induction
hypothesis, there is a tuple (p1, s1, k + 1) ∈ D(k+1) such that the inequalities p1 ≥
p̄ · (1− ε

4
1

log2(
2
ε )+1

)κ−(k+1)+1 and s1 ≤ s̄ hold (see Fig. 4.4(a)). Note that this implies

(p1, s1, k + 1) 6= (0, 0, k + 1) and therefore p1 ≥ 2κ−2T by Lemma 4.21. Let ξ1 be the
index such that p1 ∈ L̃(κ−2)

ξ1
. During the execution of Algorithm 4.3, (p1, s1, k + 1)

yields the tuple (p1, s1, k), which may only be replaced in D̃(k) by a tuple of smaller
size, but with a profit still in L̃(κ−2)

ξ1
. Thus, there must be a tuple (p2, s2, k) ∈ D̃(k) with

s2 ≤ s1 and p2 ∈ L̃(κ−2)
ξ1

(see Fig. 4.4(b)). Let now (p, s, k) ∈ D(k) be the tuple that
dominates (p2, s2, k) (which can of course be (p2, s2, k) itself), i.e. p ≥ p2 and s ≤ s2

(see Fig. 4.4(c)). For the profit, we have

p ≥ p2 ≥ p1 − 2κ−2K
p1 6=0
= p1 ·

(
1− 2κ−2K

p1

)
Lem. 4.21
≥ p1 ·

(
1− 2κ−2K

2κ−2T

)
(4.1),(4.2)

= p1 ·
(

1− ε

4
1

log2(
2
ε ) + 1

)
≥ p̄ ·

(
1− ε

4
1

log2(
2
ε ) + 1

)κ−k+1

.

The lower bound on the profit is therefore true for (p, s, k). We have s ≤ s2 ≤ s1 ≤ s̄
for the bound on the size (see also Fig. 4.4(c)).

Consider now the second case where ( p̄, s̄, k) ∈ F(k), but ( p̄, s̄, k + 1) /∈ F(k+1).
Therefore, ( p̄, s̄, k) is a new (non-dominated) tuple with ( p̄, s̄, k) = ( p̃+ p(ã), s̃+ s(ã), k)
for the right item ã ∈ Ĩ(k) and tuple ( p̃, s̃, k + 1) ∈ F(k+1). By the induction hypothesis,
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s

p

(p̄, s̄, k + 1) = (p̄, s̄, k)

p̄

s̄

(p1, s1, k + 1) = (p1, s1, k)
p1

s1 ≤

p
1 ≥

(1−
Q
)
κ−

(k
+
1)+

1p̄

(a) Since ( p̄, s̄, k + 1) ∈ F(k+1), there must be a
corresponding tuple (p1, s1, k + 1) ∈ D(k+1)

by the induction hypothesis whose profit can
be bounded from below.

s

p

(p̄, s̄, k)

p̄

s̄

(p1, s1, k)

s1

(p2, s2, k)

p2

s2 ≤≤

L̃
(κ−2)
ξ1

p
2 ≥

(1−
Q
)
κ−

k
+
1p̄

(b) By construction, there must be a tuple (p2, s2, k) ∈
D̃(k) with a profit in the same interval L̃(κ−2)

ξ1
as

(p1, s1, k). This makes it possible to bound p2 from
below.

Figure 4.4: The first case of the proof for Theorem 4.22: we have ( p̄, s̄, k) ∈ F(k) and
also ( p̄, s̄, k + 1) ∈ F(k+1). We set Q := (1− ε

4
1

log2(
2
ε )+1

).

94



4.7 Finding an Approximate Structured Solution by Dynamic Programming

s

p

(p̄, s̄, k)

s̄

p̄

(p1, s1, k)

s1

(p2, s2, k)

s2

(p, s, k)

s

p

≤≤≤

p
≥

p
2 ≥

(1−
Q
)
κ−

k
+
1p̄

(c) There may be a tuple (p, s, k) ∈ D(k) that
dominates (p2, s2, k). Since p ≥ p2, the
bound still holds.

Figure 4.4: (Continued) The first case of the proof for Theorem 4.22: we have ( p̄, s̄, k) ∈
F(k) and also ( p̄, s̄, k + 1) ∈ F(k+1). We set Q := (1− ε

4
1

log2(
2
ε )+1

).

there must be a tuple (p1, s1, k+ 1) ∈ D(k+1) such that p1 ≥ p̃ · (1− ε
4

1
log2(

2
ε )+1

)κ−(k+1)+1

and s1 ≤ s̃ (see Fig. 4.5(a)). Thus, the following inequality holds:

p1 + p(ã) ≥ p(ã) + p̃ ·
(

1− ε

4
1

log2(
2
ε ) + 1

)κ−(k+1)+1

≥ (p(ã) + p̃) ·
(

1− ε

4
1

log2(
2
ε ) + 1

)κ−(k+1)+1

= p̄ ·
(

1− ε

4
1

log2(
2
ε ) + 1

)κ−(k+1)+1

.

There are two possibilities: either k ≥ κ − 2, i.e. p(ã) ≥ 2κ−2T holds, and p1 +

p(ã) ≥ 2κ−2T directly follows. Otherwise, we have k ≤ κ − 3. Then, the identity
( p̄, s̄, k) = ( p̃ + p(ã), s̃ + s(ã), k) 6= (0, 0, k) implies that ( p̃, s̃, k + 1) 6= (0, 0, k + 1)
holds because the tuple (0, 0, k + 1) is not used to form any new tuple in D̃(k) and
therefore in D(k). Because of p1 ≥ p̃ · (1− ε

4
1

log2(
2
ε )+1

)κ−(k+1)+1, this again implies that

p1 6= 0 and therefore p1 + p(ã) ≥ p1 ≥ 2κ−2T as seen in Lemma 4.21.
Thus, there is an index ξ1 such that p1 + p(ã) ∈ L̃(κ−2)

ξ1
. Similar to above, the tuple

(p1 + p(ã), s1 + s(ã), k) is formed during the construction of D̃(k) (see Fig. 4.5(b)). It
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may only be replaced by a tuple of smaller size. Hence, there must be (p2, s2, k) ∈ D̃(k)

with p2 ∈ L̃(κ−2)
ξ1

. Let (p, s, k) ∈ D(k) be the tuple that dominates (p2, s2, k) (see Fig.
4.5(c)). We get

p ≥ p2 ≥ p1 + p(ã)− 2κ−2K
p1+p(ã) 6=0

= (p1 + p(ã)) ·
(

1− 2κ−2K
p1 + p(ã)

)
p1+p(ã)≥2κ−2T

≥ (p1 + p(ã)) ·
(

1− 2κ−2K
2κ−2T

)
(4.1),(4.2)

= (p1 + p(ã)) ·
(

1− ε

4
1

log2(
2
ε ) + 1

)

≥ p̄ ·
(

1− ε

4
1

log2(
2
ε ) + 1

)κ−k+1

.

We have similar to above s ≤ s2 ≤ s1 + s(ã) ≤ s̃ + s(ã) = s̄ for the bound on the size
(see also Fig. 4.5(c)).

Remark 4.23. As can be seen, the proof of Theorem 4.22 is only possible because it
is guaranteed that p1 or p1 + p(ã) is at least 2κ−2T. In fact, this is achieved by the
construction of the glued item set Ĩ with its structured solutions (Definition 4.11 and
Theorem 4.12). Hence, we can prove Lemma 4.14, and with the introduction of aeff−c,
we have structured solutions with a lower bound (Definition 4.16 and Theorem 4.17).
This shows that p1 ≥ 2κ−2T or p1 + p(ã) ≥ 2κ−2T (see also Lemma 4.20 and 4.21).
Without the structure, a dynamic program like Algorithm 4.3 would also have to
generate tuples (p, s, k) with p < 2κ−2T for k ≤ κ − 3. Hence, we would need for the
same approximation ratio profit sub-intervals like L̃(κ−2)

ξ with a smaller length than
2κ−2K, and we would have to save more tuples. Both would increase the asymptotic
running time and space complexity as can be seen in the proof of Theorem 4.25.

Corollary 4.24. For every v ≤ c, there is a tuple (p, s, 0) ∈ D(0) such that s ≤ v and

p ≥
(

1− ε

4
1

log2(
2
ε ) + 1

)κ+1

OPTSt
(

Ĩ ∪ {aeff−c} , v
)

.

Proof. Lemma 4.20 states that there is a ( p̄, s̄, 0) ∈ F(0) with p̄ = OPTSt( Ĩ ∪ {aeff−c} , v)
and s̄ ≤ v. Theorem 4.22 implies that there is a tuple (p, s, 0) ∈ D(0) with the desired
property.

Theorem 4.25. Algorithm 4.3 constructs all tuple sets D(k) for k = κ + 1, . . . , 0 in time
O( 1

ε2 log3 1
ε ). The space needed for the algorithm and to save the D(k) as well as the backtrack-

ing information is in O( 1
ε log2 1

ε ).
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s

p

(p̄, s̄, k) = (p̃ + p(ã), s̃ + s(ã), k)

(p̃, s̃, k + 1)

+s(ã)

+p(ã)

p̃

(p1, s1, k + 1)
p1

s1 s̃≤

p
1 ≥

(1−
Q
)
κ−

(k
+
1)+

1p̃

(a) Since ( p̄, s̄, k + 1) /∈ F(k+1), there must be an
item ã s.t. ( p̄, s̄, k) = ( p̃ + p(ã), s̃ + s(ã), k)
for a tuple ( p̃, s̃, k + 1) ∈ F(k+1). By the
induction hypothesis, there must be a tu-
ple (p1, s1, k + 1) ∈ D(k+1) corresponding
to ( p̃, s̃, k + 1) whose profit can be bounded
from below.

s

p

(p̄, s̄, k) = (p̃ + p(ã), s̃ + s(ã), k)

s̃ + s(ã)

(p1, s1, k + 1)

+s(ã)

+p(ã)

(p1 + p(ã), s1 + s(ã), k)

s1 + s(ã)≤

L̃
(κ−2)
ξ1

(b) The tuple (p1 + p(ã), s1 + s(ã), k) is con-
structed during the execution of the dynamic
program.

Figure 4.5: The second case of the proof for Theorem 4.22: we have ( p̄, s̄, k) ∈ F(k), but
( p̄, s̄, k + 1) /∈ F(k+1). We set Q := (1− ε

4
1

log2(
2
ε )+1

).
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s

(p̄, s̄, k) = (p̃ + p(ã), s̃ + s(ã), k)

s̃ + s(ã)s1 + s(ã)≤

(p2, s2, k) = (p, s, k)

s ≤ s2≤

p̄

p

p
≥

p
2 ≥

(1−
Q
)
κ−

k
+
1p̄ L̃

(κ−2)
ξ1

(c) As in the first case, there must be a tuple (p, s, k) ∈
D(k) whose profit can be bounded as desired.
Here, (p2, s2, k) is not dominated, i.e. (p, s, k) =

(p2, s2, k).

Figure 4.5: (Continued) The second case of the proof for Theorem 4.22: we have
( p̄, s̄, k) ∈ F(k), but ( p̄, s̄, k + 1) /∈ F(k+1). We set Q := (1− ε

4
1

log2(
2
ε )+1

).

Proof. Let us first bound the space complexity. The profit interval [ 1
4 P0, 2P0] is par-

titioned into O(ξ0) intervals L̃(κ−2)
ξ . The set D(k) saves at most one tuple with the

corresponding backtracking information for every L̃(κ−2)
ξ or the information that a

tuple does not exist. Thus, the space needed for all D(k) and the corresponding back-
tracking data is in O(κ · ξ0) = O(κ · (κ2κ)) = O(log( 1

ε ) · (log( 1
ε )

1
ε )) = O( 1

ε log2 1
ε ).

All other information of the algorithm is only temporarily saved and needs O(1).
The loops dominate the running time. Apart from removing the dominated tuples,

they need in total

O
(

κ ·
(

ξ0 + ξ0 · | Ĩ(k)|+ | Ĩ(k)|
))

Thm. 4.18
= O

(
log
(

1
ε

)(
1
ε

log
(

1
ε

)
· 1

ε
log
(

1
ε

)))
= O

(
1
ε2 log3 1

ε

)
.

As seen in Lemma 3.7 and stated in [63], non-dominated tuples (p, s, k) can be removed
in linear time in the number of tuples if the tuples are different and sorted by profit.
This is the case because every tuple in D(k) is stored in an array sorted according to
the corresponding ξ. The total time to remove the dominated tuples from all D(k)
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is therefore in O(κ · ξ0) = O( 1
ε log2 1

ε ), which is dominated by the overall running
time.

4.8 The Complete Algorithm

We can now put together the entire approximation algorithm.

Algorithm 4.4: The complete algorithm
Input: Item set I
Output: Profit P, solution set J
Determine P0 and define T, K;
Partition the items into IL and IS and find aeff;
if Item a with p(a) = 2P0 found during the partitioning then

return 2P0, {a};
Reduce IL to IL,red with Algorithm 4.1;
Construct Ĩ with Algorithm 4.2 and the item aeff−c;

if p(ã(κ)0 ) = P0 and s(ã(κ)0 ) ≤ c
2 then

Recursively undo the gluing of ã(κ)0 to get the item set J′. Let J be the set
consisting of two copies of every item in J′;

return 2P0, J ;

Construct with Algorithm 4.3 the tuple sets D(κ+1), . . . , D(0);
Find (p, s, 0) ∈ D(0) such that

P := p + OPT ({aeff}, c− s) = max(p′,s′,0)∈D(0) p′ + OPT ({aeff}, c− s′);
Backtrack the tuple (p, s, 0) to find the large items J′ ⊂ Ĩ ∪ {aeff−c} of the
corresponding structured solution with a lower bound;

Recursively undo the gluing of all ã ∈ J′ and add these items to the solution set J;
Add the items of OPT({aeff}, c− s) to J;
return P, J ;

Theorem 4.26. Algorithm 4.4 finds a solution of value at least (1− ε)OPT(I).

Proof. The algorithm returns a feasible solution: (p, s, 0) represents an item set of size
s. If items ã ∈ Ĩ derived from gluing are part of the solution, their ungluing does not
change the total size nor the total profit (see Remark 4.10).

We prove the solution quality. First, the algorithm considers the two special cases
listed at the beginning of Section 4.7. Each of them returns a solution of profit 2P0

so that OPT(I) = 2P0 (see Theorem 4.3 and Lemma 4.13). If the special cases do not
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yield a solution, we are in the third case. Let v be the volume from Theorem 4.17.
Corollary 4.24 guarantees the existence of one (p, s, 0) ∈ D(0) with s ≤ v such that

p ≥
(

1− ε

4
1

log2(
2
ε ) + 1

)κ+1

OPTSt
(

Ĩ ∪ {aeff−c} , v
)

.

Moreover, we have OPT({aeff}, c − s) ≥ OPT({aeff}, c − v) because c − s ≥ c − v.
Thus, the following inequality holds for this (p, s, 0):

p + OPT ({aeff}, c− s)

≥
(

1− ε

4
1

log2(
2
ε ) + 1

)κ+1

OPTSt
(

Ĩ ∪ {aeff−c} , v
)
+ OPT ({aeff}, c− v)

≥
(

1− ε

4
1

log2(
2
ε ) + 1

)κ+1 (
OPTSt

(
Ĩ ∪ {aeff−c} , v

)
+ OPT ({aeff}, c− v)

)
Thm. 4.17
≥

(
1− ε

4
1

log2(
2
ε ) + 1

)2κ+2

OPT(I)−
(

1− ε

4
1

log2(
2
ε ) + 1

)κ+1

T

≥
(

1− ε

4
1

log2(
2
ε ) + 1

)2κ+2

OPT(I)− T

(4.1)
≥

(
1− ε

4
2κ + 2

log2(
2
ε ) + 1

)
OPT(I)− 1

2
εP0

≥
(

1− ε

4
· 2 ·

(
log2(

2
ε ) + 1

)
log2(

2
ε ) + 1

)
OPT(I)− 1

2
ε OPT(I)

= (1− ε)OPT(I) .

Taking the maximum over all (p, s, 0) ∈ D(0) therefore yields the desired solution.
Note that we have used (1− δ)k ≥ (1− k · δ) for δ < 1.

Remark 4.27. The total bound on the approximation ratio is mainly due to the expo-
nent 2κ + 2, i.e. that we make the multiplicative error of (1− ε

4
1

log2(
2
ε )+1

) only 2κ + 2

times. Such an error occurs when I is replaced by IL,red at the beginning (Lemma 4.6),
in each of the κ iterations in which Ĩ is constructed (Theorem 4.12), and in κ + 1 of
the κ + 2 iterations of the dynamic program (Theorem 4.22 and Corollary 4.24). The
error of the dynamic program can be bounded because the structured solutions with a
lower bound have at least one item of profit at least 2κ−2T (see the second property of
Definition 4.16 and Remark 4.23).

Theorem 4.28. The algorithm has a running time in O(n + 1
ε2 log3 1

ε ) and needs space in
O(n + 1

ε log2 1
ε ).
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Proof. Determining P0, constructing IL and IS as well as finding aeff can all be done in
time and space O(n) as stated in Theorem 4.3 and 4.4. The definition of T and K in
time and space O(1) is obvious. It is also clear that an item p(a) = 2P0 can directly be
found during the construction of IL such that the first if-condition does not influence
the asymptotic running time.

Algorithm 4.1 returns the set IL,red in time O(n + 1
ε log2 1

ε ) and space O( 1
ε log2 1

ε )

(see Theorem 4.7).

Algorithm 4.2 constructs the Ĩ(k) and Ĩ in timeO( 1
ε2 log3 1

ε ) and spaceO( 1
ε log2 1

ε ) as
explained in Theorem 4.18, which clearly dominates the construction of aeff−c in O(1).

The second if-condition can be checked in O(1). The running time for undoing the
gluing will be determined at the end of the proof.

Algorithm 4.3 constructs the sets D(k) in time O( 1
ε2 log3 1

ε ) and space O( 1
ε log2 1

ε )

(see Theorem 4.25). For one tuple (p′, s′, 0), the corresponding OPT ({aeff}, c− s′) can
be found in O(1) by computing b c−s′

s(aeff)
c · p(aeff). Thus, finding the best tuple (p, s, 0)

can be done in O(|D(0)|) = O(ξ0) = O( 1
ε log 1

ε ). Since only the currently best tuple
(p, s, 0) has to be saved, the space needed is in O(1).

The backtracking for the tuple (p, s, 0) needs time in O(κ) = O(log 1
ε ): the back-

tracking information Backtrack(p′, s′, k) for k = 0, . . . , κ + 1 states whether the tuple
(p′, s′, k) was formed by adding an item ã ∈ Ĩ(k) and with which tuple (p′′, s′′, k + 1) to
continue. Hence, the item set J′ also has at most O(log 1

ε ) items in Ĩ ∪ {aeff−c}, which
bounds the storage space needed.

To conclude, the time and space for the ungluing still have to be bounded. Consider
one item ã ∈ Ĩ. The backtracking information Backtrack(ã) returns two items (ā1, ā2)

(with ā1, ā2 ∈ IL,red ∪ Ĩ) on which the backtracking can be recursively applied. The
recursive ungluing of the items can be represented as a binary tree where the root is
the original item ã and the (two) children of each node are the items (ā′, ā′′) returned
by the backtracking information. The leaves of the tree are the original items in IL,red.
This binary tree obviously has a height in O(κ) because the children (ā′, ā′′) for one
ā ∈ Ĩ(k) are in Ĩ(k−1) ∪ IL,red. A binary tree of height O(κ) = O(log 1

ε ) has at most
O( 1

ε ) nodes. The backtracking and ungluing of ã can therefore be done in time and
space in O( 1

ε ), which also includes saving the items ā ∈ IL,red of which ã is composed.
Since J′ has O(log 1

ε ) items, the original items IL,red of the approximate solution can be
found in time and space O( 1

ε log 1
ε ). This also dominates the time to undo the gluing

of ã(κ)0 should the body of the second if-condition be executed.

Similar to above, the number of items aeff for OPT ({aeff}, c− s) can be found in
O(1). To sum up, Algorithm 4.4 has the stated running time and space complexity.
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4 The Unbounded Knapsack Problem

4.9 Column Generation for Strip Packing

We apply the new FPTAS for UKP to Strip Packing (SP).

Known Results Well-known approaches for Strip Packing are shelf-based algorithms
like Next Fit Decreasing Height (NFDH) and First Fit Decreasing Height (FFDH). The
overview by Coffman et al. [12] (see also [48]) shows that NFDH finds a solution
with NFDH(I) ≤ 2 ·OPT(I) + 1, and FFDH satisfies FFDH(I) ≤ 1.7 ·OPT(I) + 1.
Both algorithms have an absolute approximation ratio of 3 and 2.7, respectively [9,
12]. The algorithm by Sleator [83] has an approximation guarantee of 2 ·OPT(I) +
1
2 maxj h(aj) and therefore an absolute ratio of 2.5 and an asymptotic ratio of 2. Later,
Schiermeyer [76] and Steinberg [84] both independently found an algorithm with an
absolute approximation ratio of 2. Finally, the algorithm by Harren et al. [34] has the
currently best absolute approximation ratio of 5

3 + ε for ε > 0. On the other hand,
the lower bound on the absolute approximation ratio is 3

2 for every polynomial-time
algorithm unless P = NP.

Jansen and Solis-Oba [53] presented an APTAS with an approximation guarantee
of (1 + ε)OPT(I) + 1 for ε > 0. The first AFPTAS was found even earlier by Kenyon
and Rémila [62] with the (larger) additive term f ( 1

ε ) ∈ O( 1
ε2 ). Bougeret et al. [9]

and Sviridenko [86] independently improved the additive term with their AFPTAS
to f ( 1

ε ) ∈ O( 1
ε log 1

ε ). The running time for the algorithm in [9] can be bounded by
O( 1

ε6 log( 1
ε ) + n log n), which is the currently fastest known AFPTAS.

Our Result Similar to Theorem 2.5, the Strip Packing algorithm in [9] (see also
[41]) has in fact a running time inO(d( 1

ε2 + ln d)max{UKP(d, ε̄
6 ), d ln ln( d

ε )}+ n log n)
where d ∈ O( 1

ε log 1
ε ) and ε̄ ∈ Θ(ε). The new FPTAS for UKP yields the following

improved AFPTAS:

Corollary 4.29. There is an AFPTAS (Aε)ε>0 for Strip Packing that finds a packing for I of
total height Aε(I) ≤ (1 + ε)OPT(I) +O( 1

ε log( 1
ε )). Its running time is in

O
(

1
ε5 log4 1

ε
+ n log n

)
.

102



5 A Faster FPTAS for the Unbounded Knapsack
Problem with Inversely Proportional Profits

As stated in the introduction, this chapter combines the results in Chapter 3 and
4 to derive a faster FPTAS for the Unbounded Knapsack Problem with Inversely
Proportional Profits (UKPIP). This allows us to again improve the running time of the
AFPTAS for the Variable-sized Bin Packing Problem (VBP).

Note that the chapter is almost self-contained. Hence, many of the definitions,
proofs and results in this chapter overlap with the ones in the previous two chapters.
Similar to Chapter 3, we introduce the threshold Tb > 0 and a modified constant
Kb > 0 for every set of knapsacks Cb, which will be determined at the end, and not be
fixed at the beginning like in Chapter 4. This will also explain how the corresponding
values for T and K in Chapter 4 were derived.

5.1 Our Result

We first state the improved FPTAS.

Theorem 5.1. Let ε > 0. Let cmin be the smallest knapsack size of a UKPIP instance with M
knapsacks and n item types. There is an FPTAS that solves this problem in time

O
(

n log M + M · 1
ε

log
1
ε
+ min

{⌊
log

1
cmin

⌋
+ 1, M

}
1
ε2 log3 1

ε

+ min
{⌊

log
1

cmin

⌋
+ 1, M

}
· n
)

and space O(M + n + 1
ε log2 1

ε ).

This new algorithm together with Theorem 2.4 proves

Theorem 2.1. There is an AFPTAS (Aε)ε>0 for Variable-sized Bin Packing that finds for
ε ∈ (0, 1

2 ] a packing of an instance (I, C) in Aε(I) ≤ (1 + ε)OPT(I, C) +O(log2( 1
ε )) bins.

Its running time is in

O
(

1
ε5 log5 1

ε
+ M + log

(
1
ε

)
n
)

.
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5 A Faster FPTAS for UKPIP

For UKPIP, a preprocessing of the knapsack sizes allows to get a running time that
does not depend on cmin and is only linear in M.

Corollary 5.2. Let ε > 0. There is an FPTAS for UKPIP with a running time in

O
(

1
ε2 log4 1

ε
+ M + log

(
1
ε

)
n
)

and a space complexity in O(M + n + 1
ε log2 1

ε ).

5.2 Overview

Like in Chapter 3, the optimum for knapsack size cl with the basic profits pj is denoted
by an additional bar over the corresponding expression. Hence, the value OPT(I, v)
stands for the optimum value obtained with the basic profits pj if a capacity v ≤ 1 is
considered. In a slight deviation to Chapter 3, we directly write OPT(I, cl) instead of
OPTcl (I).

As stated in Section 3.4, it is sufficient to find an implementation of MaxSolution,
i.e. to determine an approximation to every OPT(I, cl).

Section 5.4 presents how the greedy approach of Subsection 3.5.2 is implemented
for UKPIP. The greedy algorithm finds approximations P̄cl ≥ 1

2 OPT (I, cl) for every
knapsack cl . Because of the scaling property of Section 3.4, we (again) get the approxi-

mations Pcl =
P̄cl
cl
≥ 1

2 OPTcl (I) and P0 = maxl∈{1,...,M} Pcl ≥ 1
2 OPT(I). Moreover, the

special item sets Sl are again used, which are the items of size cl−1 < s(a) ≤ cl , and
the derived sets S̄l =

⋃l
l′=1 Sl′ , which are the items that fit into cl , i.e. s(a) ≤ cl . Finally,

knapsack sizes with Pcl <
1
2 P0 are discarded.

In Subsection 5.5.1, we divide C into subsets Cb = {cl ∈ C | cl ∈ (2−(b+1), 2−b]} of
similar size. The knapsacks c(b)min and c(b)max are the smallest and largest knapsack in
Cb, respectively. We assume moreover without loss of generality that ε = 1

2κ−1 ≤ 1
4 .

The threshold Tb and constant Kb for Cb are introduced, but not explicitly defined
yet. Subsection 5.5.2 presents the division of the items into the set of large items
I(b)L (with pj ≥ Tb and sj ≤ c(b)max) and the set of small items I(l)S for cl ∈ Cb (with
pj < Tb and sj ≤ cl). It is sufficient to keep for every cl ∈ Cb only the most efficient

small item a(l)eff . These items are collected in the set I(b)S,eff. The basic idea of the FPTAS
is (again) to find for each cl the best combination of large and small items. In fact,
OPT(I, cl) = max0≤v≤cl OPT(I(b)L , v) + OPT ({a | p(a) < Tb} , cl − v) holds. The solu-
tion values OPT(I(b)L , v) to the large items are approximated by dynamic programming
and the small items (in fact, copies of a(l)eff) are added greedily to the volume cl − v. As
in Chapter 3, redundancy is avoided by determining for all knapsacks cl ∈ Cb at once
the solutions of the dynamic program.
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5.2 Overview

Fix one Cb. Subsection 5.5.3 introduces κ
(b)
min and κ

(b)
max, the exponents such that

P̄
c(b)min
∈ [2κ

(b)
min Tb, 2κ

(b)
min+1Tb) and P̄

c(b)max
∈ [2κ

(b)
max Tb, 2κ

(b)
max+1Tb). It is shown that a subset

I(b)L,red ⊆ I(b)L is sufficient to find an approximate solution (similar to Section 4.5), which
reduces the overall time and space complexity. Like in Section 4.5, the interval of
large item profits [Tb, 2P̄

c(b)max
] is first partitioned into L(k,b) = [2kTb, 2k+1Tb) for k ∈

{0, . . . , κ
(b)
max + 1} and each L(k,b) into γ0 ∈ N sub-intervals L(k,b)

γ of length 2kKb. For
I(b)L,red, only the smallest item a(k,b)

γ is kept of every L(k,b)
γ .

Section 5.6 creates like in Section 4.6 a set of items with a special solution structure.
The items in I(b)L,red with profits in L(k,b) are denoted by I(k,b) for k ∈ {0, . . . , κ

(b)
max + 1}.

Starting with I(0,b) = Ĩ(0,b), the items in Ĩ(k,b) are iteratively glued together to larger
items ˜̃I(k+1,b). The next set Ĩ(k+1,b) is then obtained by keeping from ˜̃I(k+1,b) ∪ I(k+1,b)

only the smallest item ã(k+1,b)
γ of each profit sub-interval L(k+1,b)

γ . The sets Ĩ(k,b) form
the new set Ĩ(b), which has approximate structured solutions for k = κ

(b)
max + 1: at

most one large item of every Ĩ(k,b) is used. The value OPT≤κ
(b)
max+1

( Ĩ(b), v) denotes the

optimum profit of these structured solutions for the knapsack volume v ≤ c(b)max. (For
the analysis, OPT≤k0(·, v) is introduced for structured solutions for k = k0 that use at
most one item in Ĩ(k,b) for every k ∈ {0, . . . , k0}, where k0 ≤ κ

(b)
max + 1.) For each a(l)eff , a

large item a(l)eff−c that consists of several copies of a(l)eff is introduced. A subset I(b)S,red−c

of the items a(l)eff−c is kept. It is proved that there are approximate structured solutions

to Ĩ(b) ∪ I(b)S,red−c with a lower bound (on the profit). They use at most one item of every

set Ĩ(0,b), . . . , Ĩ(κ
(b)
max+1,b), I(b)S,red−c. Additionally, these solutions have at least one item of

profit at least 2κ
(b)
min−2Tb. The value OPTSt( Ĩ(b) ∪ I(b)S,red−c, v) is the optimum profit for

the large items with this structure for the knapsack volume v ≤ c(b)max.

Section 5.7 introduces approximate dynamic programming to find the large items in
a solution with the structure above. It is slightly modified compared to Section 4.7:
instead of dividing the interval of possible profits into sub-intervals of equal length,
the division into the sub-intervals L(k̄,b)

γ of variable length 2k̄Kb is re-used, and the

dynamic program keeps in each iteration k the tuple (p, s, k) of profit p ∈ L(k̄,b)
γ that has

the smallest size s. The fact that the tuples have profits of at least 2κ
(b)
min−2Tb and that at

most one item of every set Ĩ(0,b), . . . , Ĩ(κ
(b)
max+1,b), I(b)S,red−c is used allows to reduce the time

and space complexity, similar to Chapter 4. Interestingly, the modified approximate

dynamic program does not need that p ≥ 2κ
(b)
min−2Tb for the approximation ratio (see

Remark 5.37).

Finally, Section 5.8 puts the entire algorithm together. For each cl ∈ Cb, it returns
max(p,s,0) p + OPT({a(l)eff−c}, cl − s), and Subsection 5.8.1 shows how Tb and Kb have
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5 A Faster FPTAS for UKPIP

to be set such that this is at least (1− ε)OPT (I, cl) for each cl ∈ Cb. The algorithm is
therefore an implementation of MaxSolution. The overall time and space complexity
are bounded in Subsection 5.8.2.

This chapter is concluded with Section 5.9. It compares the constants Tb and Kb

to the constants T and K of Chapter 4, and the representation of the solution as a
multi-set is briefly discussed.

5.3 Notation and Remarks

The notation follows the one presented in Section 3.3. The only slight deviation is
that OPTcl (I) is written as the (equivalent) OPT (I, cl). Remember that OPT (I, v) =
max{∑a p(a)xa | ∑a s(a)xa ≤ v; xa ∈N for a ∈ I}.

We (still) assume that basic arithmetic operations as well as computing the logarithm
can be performed in O(1).

Finally, we have a remark about the use of “item” and “item copy” when we consider
a solution to a UKPIP instance, similar to Chapter 4.

Remark 5.3. Let I, Ĩ be two sets of knapsack items with Ĩ ⊆ I. In 0-1 KPIP, a sentence
like “the solution to I uses at most one item in Ĩ” is obvious: if the solution uses one
item in Ĩ, all other items of the solution are in I \ Ĩ.

Consider now UKPIP. When we talk about solutions, we would formally have to
distinguish between an item a′ ∈ I in the instance and the item copies of a′ that a
solution V = {xa : a | a ∈ I, xa ∈ N} uses. Like in Chapter 4, we however use the
expressions “item” and “item copy” interchangeably when talking about solutions.
As an example, let us consider the sentence “the solution to I uses at most one item
in Ĩ.” It means that the solution contains item copies of items in I, but at most one
item copy whose corresponding item is in Ĩ. To be more precise, the multiset V uses
only one item a ∈ Ĩ with a multiplicity xa > 0. We have xa ≤ 1, but xa′′ = 0 for all
other a′′ ∈ Ĩ, i.e. ∑a′∈ Ĩ xa′ ≤ 1. Similarly, “the solution V uses at most n′ ∈N items in
Ĩ” means that there are only n′ item copies whose corresponding item(s) are in Ĩ: we
have ∑a′∈ Ĩ xa′ ≤ n′.

The interchangeable use of “item” and “item copy” allows for shorter sentences.
Moreover, it is based upon 0-1 KPIP where “item” and “item copy” are in fact identical.

Basic Principle of the Algorithm It has already been shown in Section 3.4 that it
is sufficient to find an implementation of MaxSolution: we only have to determine
an approximate solution P̄′cl

≥ (1− ε)OPT(I, cl) for every l ∈ {1, . . . , M} and return
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5.4 A First Approximation

max 1
cl

P̄′cl
. The remaining chapter therefore demonstrates how the P̄′cl

can be found
efficiently.

5.4 A First Approximation

We present a first approximation for the OPT(I, cl). Like in Subsection 3.5.2, let

S1 := {ai | s(ai) ≤ c1} and Sl := {ai | cl−1 < s(ai) ≤ cl} for l ∈ {2, . . . , M} .

Moreover, let S̄l :=
⋃l

l′=1 Sl′ = {a | s(a) ≤ cl}, which is the set of the items that have
to be considered for a solution of knapsack size cl .

The greedy algorithm becomes easier because of the unboundedness (see Section
4.4): take the most efficient item a(l)meff := arg maxa∈S̄l

p(a)
s(a) (if ties occur, we can e.g.

consider the item of smaller index to have a smaller efficiency). Fill the knapsack cl

with as many copies of a(l)meff as possible, i.e. take b cl

s(a(l)meff)
c copies of a(l)meff. Let

P̄cl := p(a(l)meff) ·
⌊

cl

s(a(l)meff)

⌋

be this value. Moreover, let Pcl :=
P̄cl
cl

and let P0 := maxl∈{1,...,M} Pcl be the global
maximum. Then the following holds:

Theorem 5.4. We have P̄cl ≥ 1
2 OPT (I, cl) and Pcl ≥ 1

2 OPTcl (I). Finally, P0 ≥ 1
2 OPT(I)

holds.

Proof. Suppose first that the copies of a(l)meff can completely fill the knapsack cl . Then

p(a(l)meff) · b
cl

s(a(l)meff)
c = OPT (I, cl) holds. Otherwise, one additional item a(l)meff exceeds

the capacity cl . Then we have p(a(l)meff) · b
cl

s(a(l)meff)
c+ p(a(l)meff) ≥ OPT (I, cl). If p(a(l)meff) ≤

1
2 OPT (I, cl), then p(a(l)meff) · b

cl

s(a(l)meff)
c ≥ OPT (I, cl)− p(a(l)meff) ≥ 1

2 OPT (I, cl), and the

theorem follows. Otherwise p(a(l)meff) · b
cl

s(a(l)meff)
c ≥ p(a(l)meff) ≥ 1

2 OPT (I, cl).

Thus, P̄cl is a 1− ε = 1− 1
2 = 1

2 approximation of OPT (I, cl) so that P̄cl is a suitable
lower bound on OPT (I, cl) and 2P̄cl an upper bound.

Pcl =
P̄cl
cl

is a 1
2 solution for cl with profits pj

cl
according to Lemma 3.5. Lemma 3.4

shows that P0 = maxl∈{1,...,M} Pcl is also a 1
2 approximation of OPT(I) with 1

2 OPT(I) ≤
P0 ≤ OPT(I). (As above, the proof is taken from [61, p. 232, 63])

Corollary 5.5. We can discard knapsacks cl with Pcl =
P̄cl
cl

< 1
2 P0.
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5 A Faster FPTAS for UKPIP

Proof. See Corollary 3.10 on page 47.

Interestingly, the largest knapsack size will never be discarded.

Lemma 5.6. The largest knapsack size cM = 1 will always satisfy P̄cM = PcM ≥ 1
2 P0.

Proof. Suppose first that P0 =
P̄cl
cl

for a knapsack cl <
1
2 . Since the items that have the

total profit P̄cl fit into cl , we can fill cM with these items b 1
cl
c times. Thus, P̄cM ≥ b 1

cl
cP̄cl .

Note that cl · P0 = P̄cl . We get

P̄cM ≥
⌊

1
cl

⌋
P̄cl ≥

(
1
cl
− 1
)

P̄cl =
P̄cl

cl
− P̄cl = P0 − cl · P0 = (1− cl) P0

cl<1/2

≥ 1
2

P0 .

Suppose now that cl ≥ 1
2 . Then

P̄cM ≥ P̄cl = cl · P0 ≥
1
2

P0 .

In both cases, the lemma follows.

We present now one way to find the items and sets.

Theorem 5.7. Algorithm 5.1 constructs the sets Sl and finds the a(l)meff, P̄cl and P0 in time

O(M + n log M) and space O(n + M). Moreover, knapsack sizes cl with Pcl =
P̄cl
cl

< 1
2 P0

are discarded.

Proof. The running time and the space needed are almost obvious. The idea to con-
struct the Sl is taken from Lawler [63]: create M stacks, one for each Sl . Each item
a is then added to the right stack by binary search. Note that the item ameff is the
currently known most efficient item for S̄l = ∪l

l′=1Sl′ so that a(l)meff is correctly defined.
The re-combination of sets Sl and Sl+1 when cl is discarded can be done in O(1) if
the right data structure is used (e.g. linked lists). Note that Lemma 5.6 is taken into
account because the knapsack size cM is never discarded.

Remark 5.8. Like Algorithm 3.2, Algorithm 5.1 only creates O(n) sets Sl . This is
sufficient: it can easily be deduced that Sl = ∅ if one set Sl′ for l′ < l is followed by
Sl′′ with l′′ > l such that we do not have to save the sets Sl = ∅.

5.5 Partitioning the Knapsack Sizes and Reducing the Items

Remark 5.9. For ease of notation, M denotes from now on the number of the remain-
ing knapsack sizes, i.e. the knapsacks that are not discarded because of Corollary 5.5.
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5.5 Partitioning the Knapsack Sizes and Reducing the Items

Algorithm 5.1: This algorithm constructs the sets Sl and finds the a(l)meff, P̄cl and P0.
Knapsack sizes cl with Pcl <

1
2 P0 are discarded.

for l = 1, . . . , M do
a(l)meff := ∅ ;

for all a ∈ I do
Determine by binary search l such that cl−1 < s(a) ≤ cl ;
if Sl not defined then

Create Sl = ∅;

Sl := Sl ∪ {a};
ameff := ∅;
for l = 1, . . . , M do

for a ∈ Sl do
if ameff = ∅ or p(a)

s(a) > p(ameff)
s(ameff)

then

ameff := a;

a(l)meff := ameff;

P0 := 0;
for l = 1, . . . , M do

P̄cl := p(a(l)meff) ·
⌊

cl

s(a(l)meff)

⌋
;

if
P̄cl
cl

> P0 then

P0 :=
P̄cl
cl

;

for l = 1, . . . , M− 1 do

if
P̄cl
cl

< 1
2 P0 then

C := C \ {cl};
Sl+1 := Sl ∪ Sl+1;
Discard Sl ;
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5 A Faster FPTAS for UKPIP

5.5.1 The Knapsacks

As in Subsection 3.5.3 and as explained in Remark 3.24, we partition the knapsacks
into intervals

Cb :=
{

cl ∈ C
∣∣∣ cl ∈

(
1

2b+1 ,
1
2b

]}
for b ∈

{
0, . . . ,

⌊
log2

1
cmin

⌋}
(5.1)

if there are more than blog2
1

cmin
c+ 1 = blog2

1
c1
c+ 1 knapsack sizes in C, otherwise

we directly set Cl = Cb = {cl} for l ∈ {1, . . . , M}. Furthermore, let c(b)min be the smallest
and c(b)max be the largest knapsack size in Cb, and l(b)min and l(b)max their indices.

Theorem 5.10. Algorithm 5.2 constructs the item sets Cb in time and space O(M).

Proof. The correctness is obvious, For the running time, we use that we can compute
the right b such that cl ∈ ( 1

2b+1 , 1
2b ] in O(1) because the logarithm can be computed in

O(1).

Algorithm 5.2: The algorithm creates the knapsack intervals Cb.

if |C| ≥ blog2
1
c1
c+ 1 then

for cl ∈ C do

Determine b such that cl ∈
(

1
2b+1 , 1

2b

]
;

if Cb has not been defined then
Create the set Cb = ∅ and set c(b)min := ∅ and c(b)max := ∅;

Cb = Cb ∪ {cl};
if c(b)min = ∅ or cl < c(b)min then c(b)min := cl ;

if c(b)max = ∅ or cl > c(b)max then c(b)max := cl ;

else
for l ∈ {1, . . . , M} do

Create Cl and set Cl := {c};

Assumption 5.1. We assume without loss of generality that ε ≤ 1
4 and ε = 1

2κ−1 for
κ ∈ N (i.e. κ ≥ 3). Otherwise, we replace ε by the corresponding 1

2κ−1 for which
1

2κ−1 ≤ ε < 1
2κ−2 . Note that log2(

2
ε ) = κ holds.

Similar to Lawler [63] and the other knapsack algorithms in this thesis, we introduce
the threshold Tb > 0 and a constant Kb > 0 for every Cb. Contrary to Chapter 4, we do
not explicitly define them yet, but we will determine the right values at the end. This
will also explain how the corresponding values for T and K in Chapter 4 were derived.
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5.5.2 Partitioning of the Items and the Basic Idea of the Algorithm

From now on, we focus on one knapsack interval Cb. First, we partition the items into
large(-profit) and small(-profit) items and only keep the most efficient small item for
every cl ∈ Cb:

I(b)L :=
{

a ∈ I | p(a) ≥ Tb and s(a) ≤ c(b)max

}
(5.2)

and a(l)eff := arg max
{

p(a)
s(a)

∣∣∣ p(a) < Tb and s(a) ≤ cl

}
.

The items a(l)eff are collected in one set

I(b)S,eff :=
l(b)max⋃

l=l(b)min

{
a(l)eff

}
. (5.3)

For convenience, we formally also introduce the set of small items

I(l)S := {a ∈ I | p(a) < Tb and s(a) ≤ cl} for every cl ∈ Cb , (5.4)

which will however not be explicitly constructed, but only used in the analysis of the
algorithm.

We can now present the basic concept of our approximation algorithm. Take one
cl ∈ Cb. It is not difficult to see that

OPT (I, cl) = max
0≤v≤cl

OPT ({a | p(a) ≥ Tb} , v) + OPT ({a | p(a) < Tb} , cl − v)

= max
0≤v≤cl

OPT ({a | p(a) ≥ Tb and s(a) ≤ cl} , v) + OPT
(

I(l)S , cl − v
)

.

The principle of many FPTAS for KP where only one knapsack size c is given (e.g.
Lawler’s algorithm [63] or our algorithm in Chapter 4) is to approximate both sum-
mands above. Additionally, Chapter 3 used the observation

OPT ({a | p(a) ≥ Tb and s(a) ≤ cl} , v) = OPT
(

I(b)L , v
)

for 0 ≤ v ≤ cl ≤ c(b)max

so that OPT(I(b)L , v) was approximated for all 0 ≤ v ≤ c(b)max and these approximations
used for all cl ∈ Cb (see Subsection 3.5.3). This led to an improved running time for
the KPIP algorithms in Chapter 3. The algorithm in this chapter also uses these ideas.

Theorem 5.11. Algorithm 5.3 finds I(b)L and the items a(l)eff in time O(n + |Cb|) and space
O(n + |Cb|).
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5 A Faster FPTAS for UKPIP

Proof. It is clear that the set I(b)L is constructed. Moreover, aeff is the currently most
efficient small item with s(aeff) ≤ cl . If l ≥ l(b)min, it is saved as the most efficient

small item that fits into cl . The running time is obviously in O(|Cb|+ ∑l(b)max
l=1 |Sl |) ⊆

O(|Cb|+ n), where we use Remark 5.8. The space complexity is clear.

Algorithm 5.3: Construction of I(b)L and determining the a(l)eff

I(b)L := ∅;
aeff := ∅;

for cl ∈ Cb do Set a(l)eff := ∅;

for Sl 6= ∅ and l = 1, . . . , l(b)max do
for a ∈ Sl do

if p(a) ≥ Tb then
I(b)L := I(b)L ∪ {a};

else if aeff = ∅ or p(a)
s(a) > p(aeff)

s(aeff)
then

aeff := a;

if aeff 6= ∅ and l ≥ l(b)min then a(l)eff := aeff;

5.5.3 Reduction of the Items

We now reduce the set of large items I(b)L to I(b)L,red as done in Section 4.5. First, we
introduce a technical definition.

Definition 5.12. For cl ∈ Cb, let κl ∈ N be the exponent such that P̄cl ∈ [2κl Tb, 2κl+1Tb).
Let κ

(b)
min and κ

(b)
max be the values for c(b)min and c(b)max, respectively.

We obviously use the following assumption:

Assumption 5.2. We have Tb ≤ P̄cl for all cl ∈ Cb.

The values κ
(b)
min and κ

(b)
max are related.

Lemma 5.13. The inequalities κ
(b)
min ≤ κ

(b)
max ≤ κ

(b)
min + 2 hold.

Proof. The first inequality is obvious. For the second one, we use Corollary 5.5 (see

also Theorem 5.7), the fact that c(b)max ≤ 2c(b)min because of (5.1), and the identity Pcl =
P̄cl
cl

:

2P̄
c(b)max

= 2c(b)maxP
c(b)max
≤ 2c(b)maxP0 = 4c(b)max

P0

2

Cor. 5.5
≤ 4c(b)maxP

c(b)min
= 4

c(b)max

c(b)min

P̄
c(b)min

(5.1)
≤ 8P̄

c(b)min
.
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Hence, P̄
c(b)max
≤ 4P̄

c(b)min
holds from which the second inequality follows by the definition

of the values κl in Definition 5.12.

Let a ∈ I(b)L so that s(a) ≤ c(b)max. Obviously, p(a) ≤ OPT(I, c(b)max) ≤ 2P̄
c(b)max

holds (see

Theorem 5.4). Hence, all large items a ∈ I(b)L have a profit in the interval [Tb, 2P̄
c(b)max

] ⊆
[Tb, 2κ

(b)
max+2Tb). We partition this interval into

L(k,b) :=
[
2kTb, 2k+1Tb

)
for k ∈

{
0, . . . , κ

(b)
max

}
and L(κ

(b)
max+1,b) :=

[
2κ

(b)
max+1Tb, 2P̄

c(b)max

]
.

(5.5)

Note that the L(k,b) are similar to the intervals in Subsection 3.5.4.
We further split the L(k,b) into disjoint sub-intervals, each of length 2kKb:

L(k,b)
γ :=

[
2kTb + γ · 2kKb, 2kT + (γ + 1)2kKb

)
for γ ∈ {0, . . . , γ0} , (5.6)

where γ0 = γ0(Tb, Kb) will be determined later. Obviously, the partitioning of

L(κ
(b)
max+1,b) is slightly different:

L(κ
(b)
max+1,b)

γ :=
[
2κ

(b)
max+1Tb + γ · 2κ

(b)
max+1Kb, 2κ

(b)
max+1T + (γ + 1)2κ

(b)
max+1Kb

)
for γ ∈ {0, . . . , γ1 − 1}

and L(κ
(b)
max+1,b)

γ1 :=
[
2κ

(b)
max+1Tb + γ1 · 2κ

(b)
max+1Kb, 2P̄

c(b)max

]
for the right γ1 ≤ γ0.

We make the following assumption:

Assumption 5.3. We have (γ0 + 1)Kb = Tb for the right choice of γ0 ∈ N≥1 and
therefore Kb

Tb
< 1.

Hence, we have

κ
(b)
max⋃

k=0

γ0⋃
γ=0

L(k,b)
γ ∪

γ1⋃
γ=0

L(κ
(b)
max+1,b)

γ =
κ
(b)
max+1⋃
k=0

L(k,b) = [Tb, 2P̄
c(b)max

] .

The idea is (again) to keep only the smallest item a for every profit interval L(k,b)
γ .

We will see that these items are sufficient to determine an approximate solution. As
mentioned in the preceding chapters, this is the reasoning used by Lawler [63], which
we also employed for our UKPIP FPTAS (see Subsection 3.6.1). The difference is that
the profit of an item in L(k,b)

γ was scaled to q(a) = 2kb p(a)
2kKb
c (see Subsection 3.5.3) while

the original profit p(a) is kept here. Note that items in one L(k,b)
γ would indeed have

the same scaled profit.
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5 A Faster FPTAS for UKPIP

Definition 5.14. For an item a with p(a) ≥ Tb, let k(a) ∈ N be the interval such that
p(a) ∈ L(k(a),b) and γ(a) ∈N be the sub-interval such that p(a) ∈ L(k(a),b)

γ(a) . Let a(k,b)
γ be the

smallest item for the profit interval L(k,b)
γ , i.e.

a(k,b)
γ := arg min

{
s(a) | a ∈ I(b)L and p(a) ∈ L(k,b)

γ

}
for all k and γ .

Algorithm 5.4 shows the algorithm to determine the a(k,b)
γ . They form the reduced set

of large items

I(b)L,red :=
⋃
k

⋃
γ

{
a(k,b)

γ

}
. (5.7)

Algorithm 5.4: The algorithm to determine the a(k,b)
γ .

for k = 0, . . . , κ
(b)
max do

for γ = 0, . . . , γ0 do
a(k,b)

γ := ∅;

for γ = 0, . . . , γ1 do

a(κ
(b)
max+1,b)

γ := ∅ ;

for a ∈ I(b)L do
Determine (k(a), γ(a));

if s(a(k(a),b)
γ(a) ) > s(a) or a(k(a),b)

γ(a) = ∅ then

a(k(a),b)
γ(a) := a;

Output: I(b)L,red :=
⋃

k
⋃

γ{a(k,b)
γ }

Similar to Lawler [63], we now prove that the overall solution quality does not
decrease too much.

Lemma 5.15. Let 0 ≤ v ≤ c(b)max. Then

OPT
(

I(b)S,eff, cl − v
)
≥ OPT

({
a(l)eff

}
, cl − v

)
≥ OPT

(
I(l)S , cl − v

)
− Tb

and

OPT
(

I(b)L,red, v
)
≥
(

1− Kb

Tb

)
OPT

(
I(b)L , v

)
.

Proof. We prove the first chain of inequalities. The first inequality in it is clear because

a(l)eff ∈ I(b)S,eff =
⋃l(b)max

l′=l(b)min

{a(l′)eff }. For the second inequality, there are two possibilities:
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5.6 A Simplified Solution Structure

either copies of a(l)eff can be taken such that the entire capacity cl − v is used. Then

obviously OPT({a(l)eff}, cl − v) = OPT(I(l)S , cl − v) holds. Otherwise, we have similar

to the proof of Theorem 5.4 that OPT({a(l)eff}, cl − v) + p(a(l)eff) = b cl−v
s(a(l)eff )

c · p(a(l)eff) +

p(a(l)eff) ≥ OPT(I(l)S , cl − v). Thus, OPT({a(l)eff}, cl − v) ≥ OPT(I(l)S , cl − v)− p(a(l)eff) ≥
OPT(I(l)S , cl − v)− Tb.

For the second inequality, take an optimal solution (xa)a∈I(b)L
such that OPT(I(b)L , v) =

∑a∈I(b)L
p(a)xa. Replace now every item a by its counterpart a(k(a),b)

γ(a) in I(b)L,red. Obviously,
the solution stays feasible, i.e. the volume v will not be exceeded, because an item may
only be replaced by a smaller one. This solution has the total profit ∑a∈I(b)L

p(a(k(a),b)
γ(a) )xa.

Moreover, we have

p(a(k(a),b)
γ(a) ) ≥ p(a)− 2k(a)Kb = p(a) ·

(
1− 2k(a)Kb

p(a)

)
p(a)≥2k(a)Tb
≥ p(a) ·

(
1− 2k(a)Kb

2k(a)Tb

)
= p(a) ·

(
1− Kb

Tb

)
(5.8)

by the definition of the L(k,b)
γ . We get

OPT
(

I(b)L,red, v
)
≥ ∑

a∈I(b)L

p
(

a(k(a),b)
γ(a)

)
xa

(5.8)
≥ ∑

a∈I(b)L

(
1− Kb

Tb

)
· p(a)xa

=

(
1− Kb

Tb

)
OPT

(
I(b)L , v

)
.

(The reasoning is again taken in parts directly from or close to the one by Lawler in
[63].) Note that we have used the expressions “items” and “item copies” interchange-
ably in this proof as described in Remark 5.3.

Theorem 5.16. I(b)L,red hasO(γ0 · κ(b)max) items. Algorithm 5.4 needs time inO(n + γ0 · κ(b)max)

and space in O(γ0 · κ(b)max) for the construction and for saving I(b)L,red.

Proof. Together with the a(κ
(b)
max+1,b)

γ , we have O((γ0 + 1) · (κ(b)max + 1) + (γ1 + 1)) =

O(γ0 · κ(b)max) items a(k,b)
γ . The space needed is asymptotically bounded by the space

required to save these items a(k,b)
γ . Finally, the running time is obviously bounded by

O(n + γ0 · κ(b)max): the values k(a) and γ(a) can be found in O(1) because we assume
that the logarithm can be determined in O(1).

5.6 A Simplified Solution Structure

This section closely follows the corresponding Section 4.6. We will transform I(b)L,red
into a new instance Ĩ(b) whose optimum OPT( Ĩ(b), v) is only slightly smaller than
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OPT(I(b)L,red, v) and where the corresponding solution has a special structure. This new
transformation will allow us later to faster construct the approximate solution. First,
we define

I(k,b) :=
{

a ∈ I(b)L,red

∣∣ p(a) ∈ L(k,b)
}
=
{

a ∈ I(b)L,red

∣∣ p(a) ∈
[
2kTb, 2k+1Tb

)}
for k ∈

{
0, . . . , κ

(b)
max

}
and I(κ

(b)
max+1,b) :=

{
a ∈ I(b)L,red

∣∣ p(a) ∈ L(κ
(b)
max+1,b)

}
=
{

a ∈ I(b)L,red

∣∣ p(a) ∈
[
2κ

(b)
max+1Tb, 2P̄

c(b)max

]}
.

Note that the items are already partitioned into the sets I(k,b) because of the way the
set I(b)L,red has been constructed. We (re-)define the gluing operation (see Definition 4.9):

Definition 5.17. Let a1, a2 be two knapsack items with s(a1) + s(a2) ≤ c(b)max. The gluing
operation ⊕ combines them into a new item a1 ⊕ a2 with p(a1 ⊕ a2) = p(a1) + p(a2) and
s(a1 ⊕ a2) = s(a1) + s(a2).

Thus, the gluing operation is only defined on pairs of items whose combined size does
not exceed c(b)max.

The basic idea for the new instance Ĩ(b) is as follows: we first set Ĩ(0,b) := I(0,b). Then,
we construct a1 ⊕ a2 for all a1, a2 ∈ Ĩ(0,b) (including the case a1 = a2), which yields the
item set ˜̃I(1,b) := {a1 ⊕ a2 | a1, a2 ∈ Ĩ(0,b)}. Note that p(a1 ⊕ a2) ∈ [2Tb, 4Tb) = L(1,b).
For every profit interval L(1,b)

γ , we keep only the item of smallest size in I(1,b) ∪ ˜̃I(1,b),
which yields the item set Ĩ(1,b). This procedure is iterated for k = 1, . . . , κ

(b)
max: the set

Ĩ(k,b) contains the items with profits in [2kTb, 2k+1Tb) = L(k,b). Gluing like above yields
the item set ˜̃I(k+1,b) with profits in [2k+1Tb, 2k+2Tb) = L(k+1,b). By taking again the
smallest item in ˜̃I(k+1,b) ∪ I(k+1,b) for every L(k+1,b)

γ , the set Ĩ(k+1,b) is derived. For every
k and γ, the item in Ĩ(k,b) with a profit in L(k,b)

γ is denoted by ã(k,b)
γ .

Note that we may glue items together that already consist of glued items. For
backtracking, we save for every ã(k,b)

γ which two items in Ĩ(k−1,b) have formed it or
whether ã(k,b)

γ has already been an item in I(k,b). Algorithm 5.5 presents one way to
construct the sets Ĩ(k,b).

We finish when Ĩ(κ
(b)
max+1,b) has been constructed, i.e. the gluing for k = κ

(b)
max + 1 and

therefore the construction of Ĩ(κ
(b)
max+2,b) is not done. Corollary 5.21 below presents the

reason for it.

Remark 5.18. One item ã(k,b)
γ is in fact the combination of several items in I(b)L,red. The

profit and size of ã(k,b)
γ is equal to the total profit and size of these items. The ã(k,b)

γ
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Algorithm 5.5: The construction of the item sets Ĩ(k,b).

for k = 0, . . . , κ
(b)
max do

for γ = 0, . . . , γ0 do
ã(k,b)

γ := a(k,b)
γ ;

Backtrack(ã(k,b)
γ ) := a(k,b)

γ ;

for γ = 0, . . . , γ1 do // Items with profit in L(κ
(b)
max+1,b)

ã(κ
(b)
max+1,b)

γ := a(κ
(b)
max+1,b)

γ ;

Backtrack(ã(κ
(b)
max+1,b)

γ ) := a(κ
(b)
max+1,b)

γ ;

Ĩ(0,b) := I(0,b);

for k = 0, . . . , κ
(b)
max do

for all ã1 ∈ Ĩ(k,b) do
for all ã2 ∈ Ĩ(k,b) do

if s(ã1) + s(ã2) ≤ c(b)max then
ã := ã1 ⊕ ã2;

if s(ã) < s(ã(k+1,b)
γ(ã) ) or ã(k+1,b)

γ(ã) = ∅ then

ã(k+1,b)
γ(ã) := ã;

Backtrack(ã(k+1,b)
γ(ã) ) := (ã1, ã2);

Ĩ(k+1,b) :=
⋃

γ

{
ã(k+1,b)

γ

}
;
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represent feasible item combinations because an arbitrary number of item copies can
be taken in UKPIP.

In Section 4.6, items were only glued together for k = 0, . . . , κ − 1. Indeed, the
gluing of the items in Ĩ(κ) was not necessary as explained at the beginning of Section
4.7.

The item set

Ĩ(b) :=
κ
(b)
max+1⋃
k=0

Ĩ(k,b)

has for every 0 ≤ v ≤ c(b)max a solution near the original optimum OPT(I(b)L,red, v) as
shown below in Theorem 5.20. It is additionally proved in Lemma 5.23 that at most
one item of every Ĩ(k,b) for k ∈ {0, . . . , κ

(b)
max + 1} is needed. First, we introduce a (rather

technical) definition.

Definition 5.19. Let I′ be a set of knapsack items with p(a) ≥ Tb for every a ∈ I′. For a
knapsack volume v ≤ c(b)max and k0 ∈ {0, . . . , κ

(b)
max + 1}, a solution is structured for k = k0

if it fits into v and uses for every k ∈ {0, . . . , k0} at most one item copy with a profit in L(k,b).
We denote by OPT≤k0 (I′, v) the corresponding optimum profit.

For instance, the solution for

OPT≤k0

(
Ĩ(0,b) ∪ . . . ∪ Ĩ(k0,b) ∪ Ĩ(k0+1,b) ∪ I(k0+2,b) ∪ . . . ∪ I(κ

(b)
max+1,b), v

)
fits into the volume v, and it uses only one item from every Ĩ(k,b) for k ∈ {0, . . . , k0}. It
may however use an arbitrary number of item copies in e.g. Ĩ(k0+1,b) or I(k0+2,b).

Theorem 5.20. For v ≤ c(b)max and k0 ∈ {0, . . . , κ
(b)
max}, we have

OPT≤k0

k0+1⋃
k=0

Ĩ(k,b) ∪
κ
(b)
max+1⋃

k=k0+2

I(k,b), v

 ≥ (1− Kb

Tb

)k0+1

OPT
(

I(b)L,red, v
)

.

Proof. The proof idea is quite simple: we iteratively replace the items in I(k0+1,b)

by their counterpart in Ĩ(k0+1,b) and also replace every pair of items in Ĩ(k0,b) by the
counterpart in Ĩ(k0+1,b). This directly follows the way to construct the item sets Ĩ(k,b)

presented in Algorithm 5.5.
Formally, the statement is proved by induction over k0. Let k0 = 0. Take an optimum

solution to Ĩ(0,b) ∪ I(1,b) ∪ . . . ∪ I(κ
(b)
max+1,b) = I(0,b) ∪ I(1,b) ∪ . . . ∪ I(κ

(b)
max+1,b) = I(b)L,red. For

ease of notation, we directly write each item as often as it appears in the solution, i.e.
we directly consider the item copies. We have three sub-sequences:
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• Let ā1, . . . , āη (η ∈ N) be the item copies from Ĩ(0,b) = I(0,b) in the optimal

solution for OPT(I(b)L,red, v). We assume that η is odd (the case where η is even is
easier and handled below.)

• Let āη+1, . . . , āη+ξ (ξ ∈N) be the item copies from I(1,b) in the optimal solution

for OPT(I(b)L,red, v).

• Let ā′1, . . . , ā′λ (λ ∈N) be the remaining item copies from I(2,b) ∪ . . . ∪ I(κ
(b)
max+1,b)

in the optimal solution for OPT(I(b)L,red, v). This set is denoted by Λ. As defined
above, the total profit of these items is written as p(Λ).

We have

OPT
(

Ĩ(0,b) ∪ I(1,b) ∪ . . . ∪ I(κ
(b)
max+1,b), v

)
=

η

∑
i=1

p(āi) +
η+ξ

∑
j=η+1

p(āj) + p(Λ) . (5.9)

In the first step, every pair of items ā2i−1 and ā2i from Ĩ(0,b) for i ∈ {1, . . . , b η
2 c}

is replaced by ā2i−1 ⊕ ā2i ∈ ˜̃I(1,b). In the second step, every item ā2i−1 ⊕ ā2i is again
replaced by the corresponding item ã(1,b)

γ(ā2i−1⊕ā2i)
=: ã(1,b)

ρ(i) in Ĩ(1,b) (for i ∈ {1, . . . , b η
2 c}).

Only the item āη remains unchanged. Moreover, āj from I(1,b) is replaced by the

corresponding ã(1,b)
γ(āj)

=: ã(1,b)
ρ(j) for j ∈ {η + 1, . . . , η + ξ}. Note that this new solution is

indeed feasible because the replacing items ã(1,b)
γ are at most as large as the original

ones. Moreover, the corresponding items ã(1,b)
ρ(i) and ã(1,b)

ρ(j) must exist by the construction

of Ĩ(1,b). Thus, we have a (feasible) solution that consists of the item āη ∈ Ĩ(0,b), the

items ã(1,b)
ρ(i) and ã(1,b)

ρ(j) in Ĩ(1,b), and the remaining items ā′1, . . . , ā′λ in I(2,b), . . . , I(κ
(b)
max+1,b):

this solution respects the structure of OPT≤0(·, v). (If η is even, no item in Ĩ(0,b) is
used.)

Let now ā be an item ā2i−1 ⊕ ā2i or āj. It can be proved like for Inequality (5.8) that

p
(

ã(1,b)
γ(ā)

)
≥
(

1− Kb

Tb

)
p(ā) . (5.10)
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Thus, we have

OPT≤0

(
Ĩ(0,b) ∪ Ĩ(1,b) ∪ I(2,b) ∪ . . . ∪ I(κ

(b)
max+1,b), v

)
≥ p(āη) +

b η
2 c

∑
i=1

p(ã(1,b)
ρ(i) ) +

η+ξ

∑
j=η+1

p(ã(1,b)
ρ(j) ) + p(Λ)

(5.10)
≥ p(āη) +

(
1− Kb

Tb

) b η
2 c

∑
i=1

p(ā2i−1 ⊕ ā2i) +

(
1− Kb

Tb

) η+ξ

∑
j=η+1

p(āj) + p(Λ)

≥
(

1− Kb

Tb

)( η

∑
i=1

p(āi) +
η+ξ

∑
j=η+1

p(āj) + p(Λ)

)
(5.9)
=

(
1− Kb

Tb

)
OPT

(
Ĩ(0,b) ∪ I(1,b) ∪ . . . ∪ I(κ

(b)
max+1,b), v

)
=

(
1− Kb

Tb

)
OPT

(
I(b)L,red, v

)
.

The statement for k0 = 1, . . . , κ
(b)
max now follows by induction. The proof is almost

identical to the case k0 = 0 above, the only difference is that there are additionally the

items in Ĩ(0,b), . . . , Ĩ(k0−1,b) that remain unchanged like the items I(k0+2,b), . . . , I(κ
(b)
max+1,b).

Only items in Ĩ(k0,b) and I(k0+1,b) are replaced.
Note that we have again used the expressions “items” and “item copies” inter-

changeably in this proof as described in Remark 5.3.

Corollary 5.21. By setting k0 = κ
(b)
max, Theorem 5.20 shows that Ĩ(b) =

⋃κ
(b)
max+1

k=0 Ĩ(k,b) is
sufficient for an approximate solution and that it is not necessary to construct Ĩ(k0,b) for
k0 ≥ κ

(b)
max + 2.

Lemma 5.22. For cl ∈ Cb, we have

OPT

 Ĩ(b) ∪
l⋃

l′=l(b)min

{
a(l
′)

eff

}
, cl

 ≤ OPT
(

Ĩ(b) ∪ I(b)S,eff, c(b)max

)

≤ OPT
(

I(b)L,red ∪ I(l
(b)
max)

S , c(b)max

)
≤ OPT

(
I(b)L ∪ I(l

(b)
max)

S , c(b)max

)
= OPT

(
I, c(b)max

)
≤ 2P̄

c(b)max
.

Proof. The first inequality is obvious because
⋃l

l′=l(b)min
{a(l′)eff } ⊆ I(b)S,eff (see (5.3)) and

cl ≤ c(b)max. For the second inequality, note that Ĩ(b) consists of items in I(b)L,red or of items
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5.6 A Simplified Solution Structure

that can be obtained by gluing several items in I(b)L,red together. Every combination

of items in Ĩ(b) can therefore be represented by items in I(b)L,red (see also Remark 5.18).

Moreover, we have I(b)S,eff ⊆ I(l
(b)
max)

S (see (5.3) and (5.4)). The second inequality follows.

Since I(b)L,red ⊆ I(b)L , the third inequality is obvious. The identity is also trivial because

I(b)L ∪ I(l
(b)
max)

S is just the set I reduced to the items that fit into c(b)max (see (5.2) and (5.4)).
The last inequality directly follows from Theorem 5.4.

Up to now, we have (only) reduced the original item set I to Ĩ(b) ∪ I(b)S,eff.

Lemma 5.23. Let cl ∈ Cb. Consider the optimum structured solutions to Ĩ(b) ∪ I(b)S,eff for

knapsack cl and k0 = κ
(b)
max (see Definition 5.19). This means that at most one item is used

from every Ĩ(k,b) for k ∈ {0, . . . , κ
(b)
max}. (The items a(l)eff have profits p(a(l)eff ) < Tb such that

they do not have to satisfy any structural conditions.)

• Then, every solution uses at most one item in Ĩ(κ
(b)
max+1,b). Hence, OPT≤κ

(b)
max

( Ĩ(b), v′) =

OPT≤κ
(b)
max+1

( Ĩ(b), v′) holds for all values 0 ≤ v′ ≤ cl .

• Moreover, there is a value 0 ≤ v ≤ cl such that

OPT≤κ
(b)
max+1

(
Ĩ(b), v

)
+ OPT

(
I(b)S,eff, cl − v

)
= OPT≤κ

(b)
max

(
Ĩ(b), v

)
+ OPT

(
I(b)S,eff, cl − v

)
≥ OPT≤κ

(b)
max

(
Ĩ(b), v

)
+ OPT

({
a(l)eff

}
, cl − v

)
≥
(

1− Kb

Tb

)κ
(b)
max+2

OPT(I, cl)−
(

1− Kb

Tb

)κ
(b)
max+2

Tb .

Proof. Suppose that one structured solution to Ĩ(b) ∪ I(b)S,eff for k0 = κ
(b)
max uses more than

one item in Ĩ(κ
(b)
max+1,b). Since items in Ĩ(κ

(b)
max+1,b) have profits in [2κ

(b)
max+1Tb, 2P̄

c(b)max
], two

items ã1, ã2 ∈ Ĩ(κ
(b)
max+1,b) have a total profit

p(ã1) + p(ã2) ≥ 2 · 2κ
(b)
max+1Tb = 2κ

(b)
max+2Tb > 2 · P̄

c(b)max

by the definition of κ
(b)
max (see Definition 5.12). However, this is a contradiction to the

bound OPT( Ĩ(b) ∪ I(b)S,eff, cl) ≤ 2P̄
c(b)max

seen in Lemma 5.22.

Thus, OPT≤κ
(b)
max

( Ĩ(b), v′) = OPT≤κ
(b)
max+1

( Ĩ(b), v′) holds for all 0 ≤ v′ ≤ c.

Let v ≤ cl now be the volume the large items I(b)L occupy in an optimum solution to
I and knapsack size cl . Then obviously OPT (I, cl) = OPT(I(b)L , v) + OPT(I(l)S , cl − v)
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holds (see the basic idea of the algorithm in Subsection 5.5.2 as well as (5.2) and (5.4)).
We get the following inequalities:

OPT≤κ
(b)
max+1

(
Ĩ(b), v

)
+ OPT

(
I(b)S,eff, cl − v

)
= OPT≤κ

(b)
max

(
Ĩ(b), v

)
+ OPT

(
I(b)S,eff, cl − v

)
(5.3)
≥ OPT≤κ

(b)
max

(
Ĩ(b), v

)
+ OPT

({
a(l)eff

}
, cl − v

)
(5.11)

Thm. 5.20
≥

(
1− Kb

Tb

)κ
(b)
max+1

OPT
(

I(b)L,red, v
)
+ OPT

({
a(l)eff

}
, cl − v

)
Lem. 5.15
≥

(
1− Kb

Tb

)κ
(b)
max+2

OPT
(

I(b)L , v
)
+ OPT

({
a(l)eff

}
, cl − v

)
Ass. 5.3
≥

(
1− Kb

Tb

)κ
(b)
max+2 (

OPT
(

I(b)L , v
)
+ OPT

({
a(l)eff

}
, cl − v

))
Lem. 5.15
≥

(
1− Kb

Tb

)κ
(b)
max+2 (

OPT
(

I(b)L , v
)
+ OPT

(
I(l)S , cl − v

)
− Tb

)
=

(
1− Kb

Tb

)κ
(b)
max+2

OPT (I, cl)−
(

1− Kb

Tb

)κ
(b)
max+2

Tb . (5.12)

Note that the Inequality (5.11) is the second one in the inequality chain we want to
prove.

Let v be the volume defined as in the lemma. Assume that any solution with a value

OPT≤κ( Ĩ(b), v) does not use any items in Ĩ(κ
(b)
min−2,b) ∪ . . . ∪ Ĩ(κ

(b)
max+1,b). Because of the

structure, we get

OPT≤κ
(b)
max+1

(
Ĩ(b), v

)
≤

κ
(b)
min−3

∑
k=0

max
{

p(a) | a ∈ Ĩ(k,b)
}
≤

κ
(b)
min−3

∑
k=0

2 · 2kTb

< 2κ
(b)
min−1Tb =

1
2

2κ
(b)
min Tb ≤

1
2

P̄
c(b)min
≤ 1

2
P̄cl (5.13)

by the value of κ
(b)
min (see Definition 5.12). Note that Assumption 5.2 only guarantees

that κ
(b)
min ≥ 0. Hence, Ĩ(κ

(b)
min−2,b) and Ĩ(κ

(b)
min−1,b) may indeed not exist a priori. Still, this

does not change the correctness of the bound above.
Let us now assume the following lower bound:

Assumption 5.4. The constants Tb and Kb are chosen in such a way that we have for
all cl ∈ Cb the lower bound

(
1− Kb

Tb

)κ
(b)
max+2

OPT(I, cl)−
(

1− Kb

Tb

)κ
(b)
max+2

Tb ≥
3
4

P̄cl .
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We get the following lemma:

Lemma 5.24. Let cl ∈ Cb, and let v be defined as in Lemma 5.23. If Assumption 5.4
holds and a solution for OPT≤κ

(b)
max+1

( Ĩ(b), v) + OPT(I(b)S,eff, cl − v) does not use any items in

Ĩ(κ
(b)
min−2,b) ∪ . . . ∪ Ĩ(κ

(b)
max+1,b), then

OPT
(

I(l)S , cl − v
)
≥ OPT

({
a(l)eff

}
, cl − v

)
≥ 1

4
P̄cl .

Proof. Assumption 5.4 gives a lower bound on the expressions in Lemma 5.23. On
the other hand, we consider the case where the upper bound (5.13) holds. Thus, the
lemma follows.

Definition 5.25. For every cl ∈ Cb, take d P̄cl /4

p(a(l)eff )
e items a(l)eff . If their total size is at most cl ,

they are glued together to a(l)eff−c.

We now strengthen Assumption 5.2.

Assumption 5.5. We have Tb ≤ 1
4 P̄cl for all cl ∈ Cb.

Lemma 5.26. We have 1
4 P̄

c(b)min
≥ 2κ

(b)
min−2Tb and κ

(b)
min ≥ 2. The sets Ĩ(κ

(b)
min−2,b), . . . , Ĩ(κ

(b)
max+1,b)

are therefore well-defined and contain large items. The items a(l)eff−c have profits p(a(l)eff−c) ≥
1
4 P̄cl ≥ 2κ

(b)
min−2Tb ≥ Tb and are therefore also large.

Proof. We assume 1
4 P̄

c(b)min
≥ Tb. By Definition 5.12, we have 2κ

(b)
min+1Tb > P̄

c(b)min
≥ 2κ

(b)
min Tb,

from which the statements follow.

There may of course be several items a(l)eff−c with profits in the same sub-interval L(k,b)
γ .

It is not necessary to keep all of them.

Definition 5.27. Similar to the definition of I(b)L,red in (5.7), we keep for all k and γ only the

item a(l)eff−c with a profit in L(k,b)
γ that has the smallest size. Hence, we set

a(k,b)
γ,e−c := arg min

{
s(a) | a = a(l)eff−c for cl ∈ Cb and p(a) ∈ L(k,b)

γ

}
for every k and γ, and we define

I(b)S,red−c :=
⋃
k

⋃
γ

{
a(k,b)

γ,e−c

}
. (5.14)

Having defined these auxiliary items a(k,b)
γ,e−c, we can now further refine the structure

introduced in Definition 5.19.
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5 A Faster FPTAS for UKPIP

Definition 5.28. Take a knapsack volume v ≤ c(b)max. Consider the following solutions to
Ĩ(b) ∪ I(b)S,red−c of size at most v:

• They are structured for k = κ
(b)
max + 1, i.e. they use for every k ∈ {0, . . . , κ

(b)
max + 1} at

most one item in Ĩ(k,b).

• They additionally use at most one item in I(b)S,red−c and at least one item ã ∈ Ĩ(κ
(b)
min−2,b) ∪

. . . ∪ Ĩ(κ
(b)
max+1,b) ∪ I(b)S,red−c.

Hence, these solutions have a profit of at least p(ã) ≥ 2κ
(b)
min−2Tb. These special solutions are

called structured solutions with a lower bound (on the profit).
The value OPTSt( Ĩ(b) ∪ I(b)S,red−c, v) denotes the optimal profit for such solutions of total size

at most v. We set OPTSt( Ĩ(b) ∪ I(b)S,red−c, v) = 0 if v is too small so that such a solution does
not exist.

Theorem 5.29. For every cl ∈ Cb, there is a value 0 ≤ v ≤ cl such that

OPTSt

(
Ĩ(b) ∪ I(b)S,red−c, v

)
+ OPT

({
a(l)eff

}
, cl − v

)
≥
(

1− Kb

Tb

)κ
(b)
max+2

OPT (I, cl)−
(

1− Kb

Tb

)κ
(b)
max+2

Tb .

Proof. Like in the proof of Lemma 5.23, let v′ be the volume the large items I(b)L occupy
in an optimum solution to I, i.e. OPT(I(b)L , v′) + OPT(I(l)S , cl − v′) = OPT (I, cl).

Consider an optimum structured solution for OPT≤κ
(b)
max+1

( Ĩ(b), v′) and suppose that

it does not use any items in Ĩ(κ
(b)
min−2,b) ∪ . . . ∪ Ĩ(κ

(b)
max+1,b). By Lemma 5.24, we have

1
4 P̄cl ≤ OPT({a(l)eff}, cl − v′) ≤ OPT(I(l)S , cl − v′). If we fill cl − v′ with item copies of

a(l)eff , we can therefore replace a part of them with one item a(l)eff−c and this item again

by the corresponding a(k,b)
γ,e−c (see Definition 5.27). (For ease of notation, we write

k(a(l)eff−c) = k and γ(a(l)eff−c) = γ.) Note that cl − v′ ≥ s(a(l)eff−c) ≥ s(a(k,b)
γ,e−c). This implies

together with (5.14) that we have for any volume 0 ≤ v′′ ≤ cl − s(a(l)eff−c)

OPTSt

(
Ĩ(b) ∪ I(b)S,red−c, v′′ + s

(
a(l)eff−c

))
≥ OPT≤κ

(b)
max+1

(
Ĩ(b), v′′

)
+ p

(
a(k,b)

γ,e−c

)
. (5.15)

By definition, we have p(a(k,b)
γ,e−c) ≥ p(a(l)eff−c)− 2kKb. Set v := v′ + s(a(l)eff−c). Hence, we

get

OPTSt

(
Ĩ(b) ∪ I(b)S,red−c, v

)
+ OPT

({
a(l)eff

}
, cl − v

)
= OPTSt

(
Ĩ(b) ∪ I(b)S,red−c, v′ + s

(
a(l)eff−c

))
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+ OPT
({

a(l)eff

}
, cl − v′ − s

(
a(l)eff−c

))
(5.15)
≥ OPT≤κ

(b)
max+1

(
Ĩ(b), v′

)
+ p

(
a(k,b)

γ,e−c

)
+ OPT

({
a(l)eff

}
, cl − v′ − s

(
a(l)eff−c

))
Lem. 5.23

= OPT≤κ
(b)
max

(
Ĩ(b), v′

)
+ p

(
a(k,b)

γ,e−c

)
+ OPT

({
a(l)eff

}
, cl − v′ − s

(
a(l)eff−c

))
Thm. 5.20
≥

(
1− Kb

Tb

)κ
(b)
max+1

OPT
(

I(b)L,red, v′
)
+ p

(
a(l)eff−c

)
− 2kKb

+ OPT
({

a(l)eff

}
, cl − v′ − s

(
a(l)eff−c

))
Lem. 5.15
≥

(
1− Kb

Tb

)κ
(b)
max+2

OPT
(

I(b)L , v′
)
+ p

(
a(l)eff−c

)
− 2kKb

+ OPT
({

a(l)eff

}
, cl − v′ − s

(
a(l)eff−c

))
p(a(l)eff−c)≥2kTb

≥
(

1− Kb

Tb

)κ
(b)
max+2

OPT
(

I(b)L , v′
)
+ p

(
a(l)eff−c

)(
1− 2kKb

2kTb

)
+ OPT

({
a(l)eff

}
, cl − v′ − s

(
a(l)eff−c

))
Ass. 5.3
≥

(
1− Kb

Tb

)κ
(b)
max+2

OPT
(

I(b)L , v′
)
+

(
1− Kb

Tb

)
p
(

a(l)eff−c

)
+

(
1− Kb

Tb

)
OPT

({
a(l)eff

}
, cl − v′ − s

(
a(l)eff−c

))
=

(
1− Kb

Tb

)κ
(b)
max+2

OPT
(

I(b)L , v′
)
+

(
1− Kb

Tb

)
OPT

({
a(l)eff

}
, cl − v′

)
Lem. 5.15
≥

(
1− Kb

Tb

)κ
(b)
max+2

OPT
(

I(b)L , v′
)
+

(
1− Kb

Tb

)(
OPT

(
I(l)S , cl − v′

)
− Tb

)
≥

(
1− Kb

Tb

)κ
(b)
max+2 (

OPT
(

I(b)L , v′
)
+ OPT

(
I(l)S , cl − v′

)
− Tb

)
=

(
1− Kb

Tb

)κ
(b)
max+2

OPT (I, cl)−
(

1− Kb

Tb

)κ
(b)
max+2

Tb .

Note that OPT({a(l)eff}, cl − v) is well-defined—and therefore the entire chain of in-

equalities feasible—because cl − v = cl − v′ − s(a(l)eff−c) ≥ 0.

The case where one solution OPT≤κ
(b)
max+1

( Ĩ(b), v′) uses at least one item in Ĩ(κ
(b)
min−2,b) ∪

. . . ∪ Ĩ(κ
(b)
max+1,b) is proven in a similar way, we directly set v := v′. (The entire proof is

similar to the proof of Lemma 5.23.)

So far, we have not constructed an actual solution. Instead, we have shown in The-
orem 5.29 that there is for every cl ∈ Cb a solution to Ĩ(b) ∪ I(b)S,red−c ∪ {a

(l)
eff−c} that is

close to OPTcl (I) and that is a structured solution with a lower bound.
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Theorem 5.30. The cardinality of Ĩ(k,b) is in O(γ0), i.e. Ĩ(b) has O(γ0 · κ(b)max) items. The
cardinality of I(b)S,red−c is in O(min{|Cb| , γ0}) ⊆ O(γ0).

Algorithm 5.5 constructs Ĩ(b) in time O(γ2
0 · κ

(b)
max) and space O(γ0 · κ(b)max), which also

includes the space to store Ĩ(b) and the backtracking information. One item a(l)eff−c can be

constructed in time O(1). By combining the construction of all a(l)eff−c with an algorithm

similar to Algorithm 5.4, the set I(b)S,red−c can be found in time and space O(|Cb|+ γ0).

Proof. The number of items in Ĩ(k,b) and Ĩ(b) can be derived like the number of items in
I(b)L,red in Theorem 5.16. The running time of Algorithm 5.5 is obviously dominated by

the second for-loop. It is in O(κ(b)max · γ2
0). The storage complexity is dominated by the

space to save the ã(k,b)
γ and the backtracking information, which is again asymptotically

equal to the number of items in Ĩ(b).

Note that the items a(k,b)
γ,e−c have profits of at least 2κ

(b)
min−2Tb by Lemma 5.26 and

Definition 5.27, i.e. they have profits in [2κ
(b)
min−2Tb, 2P̄

c(b)max
]. This interval is covered

by the profit intervals L(k,b) for κ
(b)
min − 2 ≤ k ≤ κ

(b)
max + 1, and each L(k,b) has O(γ0)

sub-intervals L(k,b)
γ . Since each L(k,b)

γ yields at most one item a(k,b)
γ,e−c, their number is in

O((κ(b)max + 1− (κ
(b)
min − 2) + 1) · γ0) = O((κ(b)max − κ

(b)
min) · γ0) = O(γ0) by Lemma 5.13.

The cardinality of I(b)S,red−c can be bounded by O(min{|Cb| , γ0}) if only the items

a(k,b)
γ,e−c 6= ∅ are saved.

The time to construct one a(l)eff−c is obviously in O(1). The construction can easily be

combined with an algorithm similar to Algorithm 5.4 to save only the a(k,b)
γ,e−c. As we

only have to consider profit sub-intervals L(k,b)
γ for κ

(b)
min − 2 ≤ k, the running time and

space bound are easy to see.

5.7 Finding an Approximate Structured Solution by Dynamic
Programming

Fix one cl ∈ Cb. In the last section, we have seen that there is an approximate solution
to Ĩ(b) ∪ I(b)S,red−c ∪ {a

(l)
eff} where the large items are a structured solution with a lower

bound (see Theorem 5.29). Regarding the large items, at most one item from every
Ĩ(k,b) for k ∈ {0, . . . , κ

(b)
max + 1} is therefore used together with at most one item in

I(b)S,red−c. Furthermore, at least one item ã ∈ Ĩ(κ
(b)
min−2,b) ∪ . . . ∪ Ĩ(κ

(b)
max+1,b) ∪ I(b)S,red−c is part

of the solution. (See Definition 5.28.) Note that the set of large items used in the
solution is for every cl a subset of the same set Ĩ(b) ∪ I(b)S,red−c. The idea is to find for all

cl ∈ Cb at once the necessary values OPTSt( Ĩ(b) ∪ I(b)S,red−c, v).
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We do this by dynamic programming. For convenience, let Ĩ(κ
(b)
max+2,b) := I(b)S,red−c.

Similar to Lawler [63], we introduce tuples (p, s, k). For profit p with 0 ≤ p ≤ 2P̄
c(b)max

and size 0 ≤ s ≤ c(b)max, the tuple (p, s, k) states that there is an item set of size s whose

total profit is p. Moreover, the set has only items in Ĩ(k,b) ∪ · · · ∪ Ĩ(κ
(b)
max+2,b) and respects

the structure above.
The dynamic program is almost identical to the one in Section 4.7: start with the

dummy tuple set F(κ
(b)
max+3) := {(0, 0, κ

(b)
max + 3)}. For k = κ

(b)
max + 2, . . . , κ

(b)
min − 2, the

tuples in F(k) are recursively constructed by

F(k) :=
{
(p, s, k) | (p, s, k + 1) ∈ F(k+1)

}
∪
{
(p + p(ã), s + s(ã), k) | (p, s, k + 1) ∈ F(k+1), ã ∈ Ĩ(k,b), s + s(ã) ≤ c(b)max

}
.

Note that (0, 0, k + 1) ∈ F(k+1), which guarantees that F(k) also contains the tuples
(p(ã), s(ã), k) for ã ∈ Ĩ(k,b) if k ∈ {κ(b)max + 2, . . . , κ

(b)
min − 2}. For k = κ

(b)
min − 3, . . . , 0, this

tuple (0, 0, k + 1) is no longer considered to form the new tuples, which guarantees
that tuples of the form (p + p(ã), s + s(ã), k) for ã ∈ Ĩ(k,b) have p, s 6= 0. The recursion
becomes

F(k) :=
{
(p, s, k) | (p, s, k + 1) ∈ F(k+1)

}
∪
{
(p + p(ã), s + s(ã), k) | (p, s, k + 1) ∈ F(k+1) \ {(0, 0, k + 1)} ,

ã ∈ Ĩ(k,b), s + s(ã) ≤ c(b)max

}
.

The actual item set corresponding to (p, s, k) can be reconstructed by saving backtrack-
ing information.

Definition 5.31. A tuple (p2, s2, k) is dominated by (p1, s1, k) if p2 ≤ p1 and s2 ≥ s1.

As in Section 4.7 and in [63], dominated tuples (p, s, k + 1) are now removed from
F(k+1) before F(k) is constructed. This does not affect the outcome: dominated tuples
only stand for sets of items with a profit not larger and a size not smaller than non-
dominated tuples. A non-dominated tuple (p, s, k) is therefore optimal, i.e. profit p

can only be obtained with items of size at least s if items in Ĩ(k,b), . . . , Ĩ(κ
(b)
max+2,b) are

considered.

Lemma 5.32. A tuple (p, s, k) ∈ F(k) stands for a structured solution with a lower bound
(see Definition 5.28). Therefore, we have p ≥ 2κ

(b)
min−2Tb if p > 0. For every v ≤ c(b)max, there is

a tuple (p, s, 0) ∈ F(0) with p = OPTSt( Ĩ(b) ∪ I(b)S,red−c, v) and s ≤ v.
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Proof. This lemma directly follows from the dynamic program: tuples use at most
one item from every Ĩ(k,b). For k ∈ {κ(b)min − 2, . . . , κ

(b)
max + 2}, a tuple with p > 0

represents an item set that uses at least one item in Ĩ(k,b), . . . , Ĩ(κ
(b)
max+2,b). Tuples for

k ≤ κ
(b)
min − 3 with p > 0 are only derived from tuples that use at least one item in

Ĩ(κ
(b)
min−2,b), . . . , Ĩ(κ

(b)
max+2,b). If dominated sets are not removed, the dynamic program

obviously constructs tuples for all possible structured solutions with a lower bound,
especially the optimum combinations for every 0 ≤ v ≤ c(b)max. Removing dominated
tuples does not affect the tuples that stand for the optimum item combinations so that
the second property still holds.

While the dynamic program above constructs the desired tuples, their number may
increase dramatically until F(0) is obtained. We therefore use approximate dynamic

programming for the tuples with profits in [2κ
(b)
min−2Tb, 2P̄

c(b)max
]. Such a method is also

used in Chapter 4 and was inspired by the dynamic programming in [58] (see also
[61, pp. 97–112]). We change it slightly compared to Chapter 4.

Definition 5.28 and Lemma 5.32 state that a tuple (p, s, k) with p > 0 satisfies

p ≥ 2κ
(b)
min−2Tb. Apart from (0, 0, k), all tuples have therefore profits in the interval

[2κ
(b)
min−2T, 2P̄

c(b)max
]. We have already partitioned it into sub-intervals L(k̄,b)

γ for k̄ ≥
κ
(b)
min − 2 (see (5.6)). The approximate dynamic program keeps for every k̄ and γ only

the tuple (p, s, k) with p ∈ L(k̄,b)
γ that has the smallest size s. The dominated tuples are

removed when all tuples for k have been constructed. The modified dynamic program
is presented in Algorithm 5.6. The sets of non-dominated tuples are denoted by D(k).

For convenience, (p(k̄, γ), s(k̄, γ), k) ∈ D(k) denotes the smallest tuple with a profit
in L(k̄,b)

γ . We again save the backtracking information during the execution of the
algorithm.

Lemma 5.33. Let D̃(k) be the set D(k) from Algorithm 5.6 before the dominated tuples are
removed. A tuple (p, s, k) ∈ D̃(k) for k = κ

(b)
max + 2, . . . , 0 stands for a structured solution

with a lower bound. Therefore, we have p ≥ 2κ
(b)
min−2Tb if p > 0. This is also true for

(p, s, k) ∈ D(k).

Proof. The proof is almost identical to the one of Lemma 5.32. In fact, the proof is not
influenced by keeping only the tuples of smallest size in every profit interval L(k̄,b)

γ .

Theorem 5.34. Let k ∈ {0, . . . , κ
(b)
max + 2}. For every (non-dominated) tuple ( p̄, s̄, k) ∈ F(k),

there is a tuple (p, s, k) ∈ D(k) such that

p ≥
(

1− Kb

Tb

)κ
(b)
max+2−k

p̄ and s ≤ s̄ .
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Algorithm 5.6: The approximate dynamic programming

D(κ
(b)
max+3) :=

{
(0, 0, κ

(b)
max + 3)

}
;

Backtrack(0, 0, κ
(b)
max + 3) := ∅;

for k = κ
(b)
max + 2, . . . , 0 do

D(k) := ∅;
for (p(k̄, γ), s(k̄, γ), k + 1) ∈ D(k+1) do

D(k) := D(k) ∪
{
(p(k̄, γ), s(k̄, γ), k)

}
;

Backtrack(p(k̄, γ), s(k̄, γ), k) := Backtrack(p(k̄, γ), s(k̄, γ), k + 1);

for ã ∈ Ĩ(k,b) do
for (p, s, k + 1) ∈ D(k+1) \ {(0, 0, k + 1)} do

// Construction of new tuples
(p′, s′, k) := (p + p(ã), s + s(ã), k);

Determine (k̄, γ) for (p′, s′, k) such that p′ ∈ L(k̄,b)
γ ;

if s′ < s(k̄, γ) or (p(k̄, γ), s(k̄, γ), k) = ∅ then
// Only new tuples of smaller size are kept
D(k) := D(k) \ {(p(k̄, γ), s(k̄, γ), k)};
(p(k̄, γ), s(k̄, γ), k) := (p′, s′, k);
Backtrack(p(k̄, γ), s(k̄, γ), k) := ((p, s, k + 1), ã);
D(k) := D(k) ∪ {(p(k̄, γ), s(k̄, γ), k)};

if k ≥ κ
(b)
min − 2 then

// Construction of (possible) tuples (p(ã), s(ã), k) for

k ≥ κ
(b)
min − 2

Determine (k̄, γ) for p(ã) such that p(ã) ∈ L(k̄,b)
γ ;

if s(ã) < s(k̄, γ) or (p(k̄, γ), s(k̄, γ), k) = ∅ then
D(k) := D(k) \ {(p(k̄, γ), s(k̄, γ), k)};
(p(k̄, γ), s(k̄, γ), k) := (p(ã), s(ã), k);
Backtrack(p(k̄, γ), s(k̄, γ), k) := (ã);
D(k) := D(k) ∪ {(p(k̄, γ), s(k̄, γ), k)};

Remove dominated tuples from D(k);
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Proof. This statement is trivial for ( p̄, s̄, k) = (0, 0, k) because also (0, 0, k) ∈ D(k) (this
tuple is never removed in the construction of F(k) and D(k)).

Suppose now that ( p̄, s̄, k) 6= (0, 0, k). The theorem is proved by induction for
k = κ

(b)
max + 2, . . . , 0.

The statement is evident for k = κ
(b)
max + 2. In fact, Ĩ(κ

(b)
max+2) = I(b)S,red−c because I(b)S,red−c

has at most one item for every L(k̄,b)
γ by Definition 5.27. Hence, F(κ

(b)
max+2) = D(κ

(b)
max+2)

holds.
Suppose that the statement is true for k + 1, . . . , κ

(b)
max + 2. As defined in Lemma 5.33,

D̃(k) is the set D(k) before the dominated tuples have been removed. Let ( p̄, s̄, k) ∈ F(k).
There are two cases. In the first case, we have ( p̄, s̄, k + 1) ∈ F(k+1). There has

to be a tuple (p1, s1, k + 1) ∈ D(k+1) by the induction hypothesis such that p1 ≥
p̄ · (1− Kb

Tb
)κ

(b)
max+2−(k+1) and s1 ≤ s̄. Note that this implies (p1, s1, k + 1) 6= (0, 0, k + 1)

and therefore p1 ≥ 2κ
(b)
min−2Tb by Lemma 5.33. Let (k̄, γ) be the index pair such that

p1 ∈ L(k̄,b)
γ . During the execution of Algorithm 5.6, (p1, s1, k + 1) yields the tuple

(p1, s1, k), which may only be replaced in D̃(k) by a tuple of smaller size, but with a
profit still in L(k̄,b)

γ . Thus, there must be a tuple (p2, s2, k) ∈ D̃(k) with s2 ≤ s1 and
p2 ∈ L(k̄,b)

γ . Let now (p, s, k) ∈ D(k) be the tuple that dominates (p2, s2, k) (which can
of course be (p2, s2, k) itself), i.e. p ≥ p2 and s ≤ s2. For the profit, we have

p ≥ p2 ≥ p1 − 2k̄Kb
p1 6=0
= p1 ·

(
1− 2k̄Kb

p1

)
p1≥2k̄Tb
≥ p1 ·

(
1− 2k̄Kb

2k̄Tb

)

≥ p̄ ·
(

1− Kb

Tb

)κ
(b)
max+2−k

.

The lower bound on the profit is therefore true for (p, s, k). As for the bound on the
size, we have s ≤ s2 ≤ s1 ≤ s̄.

Consider now the second case where ( p̄, s̄, k) ∈ F(k), but ( p̄, s̄, k+ 1) /∈ F(k+1). Hence,
( p̄, s̄, k) is a new (non-dominated) tuple with ( p̄, s̄, k) = ( p̃ + p(ã), s̃ + s(ã), k) for the
right item ã ∈ Ĩ(k,b) and tuple ( p̃, s̃, k + 1) ∈ F(k+1). By the induction hypothesis, there
must be a tuple (p1, s1, k + 1) ∈ D(k+1) so that we have p1 ≥ p̃ · (1− Kb

Tb
)κ

(b)
max+2−(k+1)

and s1 ≤ s̃. Thus, the following inequality holds:

p1 + p(ã) ≥ p(ã) + p̃ ·
(

1− Kb

Tb

)κ
(b)
max+2−(k+1)

≥ (p(ã) + p̃) ·
(

1− Kb

Tb

)κ
(b)
max+2−(k+1)

= p̄ ·
(

1− Kb

Tb

)κ
(b)
max+2−(k+1)

.

There are two possibilities: either k ≥ κ
(b)
min − 2, i.e. p(ã) ≥ 2κ

(b)
min−2Tb holds, and

p1 + p(ã) ≥ 2κ
(b)
min−2Tb directly follows. Otherwise, we have k ≤ κ

(b)
min − 3. Then,
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( p̄, s̄, k) = ( p̃ + p(ã), s̃ + s(ã), k) 6= (0, 0, k) implies that ( p̃, s̃, k + 1) 6= (0, 0, k + 1)
because the tuple (0, 0, k + 1) is not used to form any new tuple in D̃(k) and therefore

in D(k). Because of p1 ≥ p̃ · (1− Kb
Tb
)κ

(b)
max+2−(k+1), this again implies that p1 6= 0 and

therefore p1 + p(ã) ≥ p1 ≥ 2κ
(b)
min−2Tb as seen in Lemma 5.33.

Hence, there is an index pair (k̄, γ) such that p1 + p(ã) ∈ L(k̄,b)
γ . Similar to above, the

tuple (p1 + p(ã), s1 + s(ã), k) is formed during the construction of D̃(k). It may only
be replaced by a tuple of smaller size. Hence, there must be (p2, s2, k) ∈ D̃(k) with
p2 ∈ L(k̄,b)

γ . Let (p, s, k) ∈ D(k) be the tuple that dominates (p2, s2, k). We get

p ≥ p2 ≥ p1 + p(ã)− 2k̄Kb
p1+p(ã) 6=0

= (p1 + p(ã)) ·
(

1− 2k̄Kb

p1 + p(ã)

)
p1+p(ã)≥2k̄Tb
≥ (p1 + p(ã)) ·

(
1− 2k̄Kb

2k̄Tb

)

≥ p̄ ·
(

1− Kb

Tb

)κ
(b)
max+2−k

.

For the bound on the size, we have similar to above s ≤ s2 ≤ s1 + s(ã) ≤ s̃+ s(ã) = s̄.

Corollary 5.35. For every v ≤ c(b)max, there is a tuple (p, s, 0) ∈ D(0) such that s ≤ v and

p ≥
(

1− Kb

Tb

)κ
(b)
max+2

OPTSt

(
Ĩ(b) ∪ I(b)S,red−c, v

)
.

Proof. Lemma 5.32 states that there is a tuple ( p̄, s̄, 0) ∈ F(0) with s̄ ≤ v and p̄ =

OPTSt( Ĩ(b) ∪ I(b)S,red−c, v). Theorem 5.34 implies that there is a tuple (p, s, 0) ∈ D(0) with
the desired property.

Theorem 5.36. Algorithm 5.6 constructs all tuple sets D(k) for k = κ
(b)
max + 2, . . . , 0 in

time O(κ(b)max · γ2
0). The space needed for the algorithm and to save the D(k) as well as the

backtracking information is in O(γ0 · κ(b)max), where D(k) contains O(γ0) tuples.

Proof. Let us first bound the space complexity. The profit interval [2κ
(b)
min−2Tb, 2P̄

c(b)max
] is

partitioned into κ
(b)
max + 1− (κ

(b)
min− 2)+ 1 ∈ O(κ(b)max− κ

(b)
min) = O(1) intervals L(k̄,b) (see

Lemma 5.13). Each L(k̄,b) has γ0 (or γ1 ≤ γ0 in the case of L(κ
(b)
max+1,b)) sub-intervals L(k̄,b)

γ .
The set D(k) saves at most one tuple with the corresponding backtracking information
for every L(k̄,b)

γ or the information that a tuple does not exist. Hence, one D(k) has a
cardinality in O((κ(b)max − κ

(b)
min) · γ0) = O(γ0). Thus, the space needed for all D(k) and

their backtracking data is bounded byO((κ(b)max + 3) · (κ(b)max− κ
(b)
min) ·γ0) = O(γ0 · κ(b)max).

All other information of the algorithm are only temporarily saved and need O(1).
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The loops dominate the running time. Apart from removing the dominated tuples,
they need in total

O
(

κ
(b)
max · γ0 · (κ(b)max − κ

(b)
min)

)
+O

(
κ
(b)
max · γ0 · γ0 · (κ(b)max − κ

(b)
min)

)
= O

(
γ2

0 · κ(b)max

)
,

where we have used that | Ĩ(k,b)| ∈ O(γ0) by the definition of Ĩ(k,b) in Section 5.6 and

that | Ĩ(κ(b)min+2,b)| = |I(b)S,red−c| ∈ O(γ0) by Theorem 5.30.
As stated in [63] and Lemma 3.7, non-dominated tuples (p, s, k) can be removed

in linear time in the number of tuples if the tuples are different and sorted by profit.
This is the case because every tuple in D(k) is stored in an array sorted according to
the corresponding p(k̄, γ). The total time for removing the dominated tuples from all
D(k) for k ∈ {0, . . . , κ

(b)
max + 2} is therefore in O(γ0 · κ(b)max), which is dominated by the

overall running time.

Remark 5.37. In Section 4.7, the dynamic program is slightly different: the interval

[2κ−2T, 2P0] that corresponds to [2κ
(b)
min−2Tb, 2P̄

c(b)max
] is not partitioned into sub-intervals

L(k̄,b)
γ . Instead, it is divided into sub-intervals L̃(κ−2)

ξ of the same length 2κ−2K with

L̃(κ−2)
ξ = [2κ−2T + ξ · 2κ−2K, 2κ−2T + (ξ + 1) · 2κ−2K). The dynamic program works

in the same way as presented in this chapter, i.e. only the smallest tuple with a
profit in L̃(κ−2)

ξ is kept. The number of intervals L̃(κ−2)
ξ is still in O( 2κ−2T

2κ−2K ) = O( T
K ),

which corresponds to O(γ0) in our algorithm. Hence, an improved partitioning of
[2κ−2T, 2P0] as done in this chapter does not change the asymptotic time and space
complexity of the FPTAS in Chapter 4. The values of Tb and Kb we will derive later
will also asymptotically be the same as T and K in Chapter 4, and vice versa.

However, the fact that p1 or p1 + p(ã) is at least 2κ
(b)
min−2Tb is no longer necessary for

the proof of Theorem 5.34, i.e. the bound on the approximation ratio of the approximate
dynamic program. On the other hand, this was essential for the dynamic program
in Section 4.7 as explained in Remark 4.23. Still, the solution structure improves the

running time of Algorithm 5.6: we only have tuples (p, s, k) with p ≥ 2κ
(b)
min−2Tb. If this

were not the case, the dynamic program would also have to generate tuples (p, s, k)
with p < 2kTb for k ≤ κ

(b)
min − 3, which would increase the running time and storage

space by an additional factor ofO(κ(b)max): the time complexity would beO((κ(b)max)
2 ·γ2

0)

and the space complexity O((κ(b)max)
2 · γ0) as can be seen in the proof of Theorem 5.36.

We leave it as an open question whether the approximate dynamic programming of
this section leads to an overall faster algorithm (e.g. because less pre-processing may
be necessary).1

1The observation that p1 or p1 + p(ã) no longer needs to be at least 2κ
(b)
min−2Tb for the approximation

ratio was made during the final proofreading of this thesis. An improvement of the whole FPTAS
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For completeness, we present a short overview how p1 or p1 + p(ã) ≥ 2κ
(b)
min−2Tb is

achieved. First, the glued item set Ĩ(b) with its structured solution (Definition 5.19 and
Theorem 5.20) is constructed. Assumption 5.5 with 1

4 P̄
c(b)min
≥ Tb allows us to prove

Lemma 5.24 and to introduce I(b)S,red−c with its items a(k,b)
γ,e−c ≥ 1

4 P̄cl ≥ 2κ
(b)
min−2Tb. Hence,

we have structured solutions with a lower bound (Definition 5.28 and Theorem 5.29).
This shows that p1 ≥ 2k̄Tb ≥ 2κ

(b)
min−2Tb or p1 + p(ã) ≥ 2k̄Tb ≥ 2κ

(b)
min−2Tb (see also

Lemma 5.32 and 5.33).

5.8 The Algorithm

We can now put together the approximation algorithm, which is shown in Algorithm
5.7.

5.8.1 Solution Quality and Check of Assumptions

Lemma 5.38. Take one Cb 6= ∅ and let cl ∈ Cb. The value P̄′ = P̄′(cl) for cl in Step 13 of
Algorithm 5.7 is at least

P̄′(cl) ≥
(

1− Kb

Tb

)2κ
(b)
max+4

OPT (I, cl)−
(

1− Kb

Tb

)2κ
(b)
max+4

Tb .

The corresponding set of items fits into cl .

Proof. (p, s, 0) represents an item set J′ of size s taken from Ĩ(b) ∪ I(b)S,red−c. If items
ã ∈ Ĩ(b) derived from gluing are part of the solution, their ungluing does not change
the total size nor the total profit (see Remark 5.18). This is obviously also true for ã ∈
I(b)S,red−c. Hence, the unglued items together with the items a(l)eff from OPT({a(l)eff}, cl − s)
yields the set J that fits into cl .

We prove the solution quality. Let v be the volume from Theorem 5.29. Corollary 5.35
guarantees the existence of one (p, s, 0) ∈ D(0) with s ≤ v such that

p ≥
(

1− Kb

Tb

)κ
(b)
max+2

OPTSt

(
Ĩ(b) ∪ I(b)S,red−c, v

)
.

may not be straightforward: the solution structure shows that we have to add only single items in
Ĩ(k,b) to the tuples in D(k+1) to get the new tuples D(k). Without the structure, we also may have to
add several items to each tuple, which would complicate the approximate dynamic program.
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Algorithm 5.7: The complete algorithm
Input: Item set I, sorted knapsacks C = {c1, . . . , cM}
Output: Profit P, solution set J and knapsack size csol

1 Determine a(l)meff, the sets Sl , the approximations P̄cl and P0 and adapt C
accordingly (Algorithm 5.1);

2 Partition C into the sets Cb with Algorithm 5.2;
3 Set P := 0, csol := ∅, s := 0, J := ∅ and J′ := ∅;
4 for all Cb 6= ∅ do
5 Set NewBestValueFound := false;

6 Define Tb and Kb and determine κ
(b)
min and κ

(b)
max;

7 Find the set I(b)L and the a(l)eff with Algorithm 5.3;

8 Reduce I(b)L to I(b)L,red with Algorithm 5.4;

9 Construct the Ĩ(k,b) and Ĩ(b) with Algorithm 5.5;

10 Define the a(l)eff−c and reduce them to I(b)S,red−c (see Theorem 5.30);

11 Determine the tuples D(κ
(b)
max+2), . . . , D(0) with the approximate dynamic

program (see Algorithm 5.6);
12 for all cl ∈ Cb do
13 Find (p, s, 0) ∈ D(0) such that

P̄′ := p + OPT({a(l)eff}, cl − s) = max(p′,s′,0)∈D(0) p′ + OPT({a(l)eff}, cl − s′) ;

14 if P̄′
cl
> P then

15 Set P := P̄′
cl

, csol := cl as well as ( p̄, s̄, 0) := (p, s, 0);

16 NewBestValueFound := true;

17 if NewBestValueFound = true then
18 Backtrack the tuple ( p̄, s̄, 0) to find the large items J′ ⊆ Ĩ(b) ∪ I(b)S,red−c of the

corresponding structured solution with a lower bound;
19 Undo the gluing for the items in J′ to get J;

20 Add the items of OPT({a(l)eff}, csol − s̄) to J;

21 return P, J and csol;
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Moreover, we have OPT({a(l)eff}, cl − s) ≥ OPT({a(l)eff}, cl − v) because cl − s ≥ cl − v.
Thus, the following inequality holds for this (p, s, 0):

p + OPT
({

a(l)eff

}
, cl − s

)
≥

(
1− Kb

Tb

)κ
(b)
max+2

OPTSt

(
Ĩ(b) ∪ I(b)S,red−c, v

)
+ OPT

({
a(l)eff

}
, cl − v

)
≥

(
1− Kb

Tb

)κ
(b)
max+2 (

OPTSt

(
Ĩ(b) ∪ I(b)S,red−c, v

)
+ OPT

({
a(l)eff

}
, cl − v

))
Thm. 5.29
≥

(
1− Kb

Tb

)κ
(b)
max+2

(1− Kb

Tb

)κ
(b)
max+2

OPT (I, cl)−
(

1− Kb

Tb

)κ
(b)
max+2

Tb


=

(
1− Kb

Tb

)2κ
(b)
max+4

OPT (I, cl)−
(

1− Kb

Tb

)2κ
(b)
max+4

Tb .

Since the maximum over all (p′, s′, 0) ∈ D(0) is taken, the lemma follows.

It is not too difficult to see that Algorithm 5.7 is an implementation of MaxSolution
(i.e. Algorithm 3.1). We only have to make sure that P̄′(cl) ≥ (1− ε)OPT(I, cl) for
every cl . Thus, we have to choose Tb and Kb for Cb such that the assumptions on Tb

and Kb we have used so far are all satisfied and(
1− Kb

Tb

)2κ
(b)
max+4

OPT (I, cl)−
(

1− Kb

Tb

)2κ
(b)
max+4

Tb
!
≥ (1− ε)OPT(I, cl) . (5.16)

We use Assumption 5.3 to get similar to the proof of Theorem 4.26(
1− Kb

Tb

)2κ
(b)
max+4

OPT (I, cl)−
(

1− Kb

Tb

)2κ
(b)
max+4

Tb

≥
(

1− (2κ
(b)
max + 4)

Kb

Tb

)
OPT (I, cl)−

(
1− Kb

Tb

)2κ
(b)
max+4

Tb
!
≥ (1− ε)OPT(I, cl) .

(5.17)

Similar to Lawler [63] and to Subsection 3.5.3 (see (3.18)), the following conditions
have therefore to be satisfied:(

2κ
(b)
max + 4

) Kb

Tb
≤ λε and

(
1− Kb

Tb

)2κ
(b)
max+4

Tb ≤ (1− λ) εOPT (I, cl) (5.18)

for one λ ∈ (0, 1) and all cl ∈ Cb.
Let us set Tb = (1 − λ)εP̄

c(b)min
. It implies the second condition so that the first

condition is satisfied for

Kb =
λεTb

2κ
(b)
max + 4

=
λ(1− λ)

2κ
(b)
max + 4

ε2P̄
c(b)min

.
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We set λ = 1
2 , which maximizes Tb and Kb and therefore minimizes the value of γ0

and the number of L(k,b)
γ (again similar to Subsection 3.5.3 and [63]). We therefore have

Tb =
1
2

εP̄
c(b)min

and Kb =
ε

4
1

κ
(b)
max + 2

Tb . (5.19)

Theorem 5.39. Algorithm 5.7 finds a solution of value at least (1− ε)OPT(I).

Proof. For every Cb, we have P̄′(cl) ≥ (1− ε)OPT (I, cl) for all cl ∈ Cb with P̄cl ≥ 1
2 P0.

(Algorithm 5.7 does not determine solutions for P̄cl <
1
2 P0 because such knapsack sizes

are discarded, which is justified by Corollary 5.5.) Hence, Algorithm 5.7 is a correct
implementation of MaxSolution, i.e. Algorithm 3.1, which finds a (1− ε) approximate
solution according to Theorem 3.6.

Theorem 5.40. We have κ = κ
(b)
min because of Assumption 5.1. Assumptions 5.2 to 5.5 are

satisfied by the choice of Tb and Kb. Finally, γ0 ∈ O( 1
ε log 1

ε ).

Proof. Note that Assumption 5.1 only states that ε = 1
2κ−1 for κ ≥ 3 whereas the other

assumptions ask for special properties of Tb, Kb, and γ0.

Since ε = 1
2κ−1 and 2κ

(b)
min+1Tb > P̄

c(b)min
≥ 2κ

(b)
min Tb, the identity κ = κ

(b)
min follows

immediately. Assumption 5.3 is obviously satisfied: as ε
4

1
κ
(b)
max+2

· Kb = Tb holds by

Definition (5.19), we get 1
γ0+1

!
= 1

4
ε

κ
(b)
max+2

= 1
2κ+1

1
κ
(b)
max+2

, i.e. γ0 = 2κ+1(κ
(b)
max + 2)− 1 ∈

N≥1 and γ0 ∈ O( 1
ε log 1

ε ).
It is also obvious that

P̄
c(b)min
≥ 1

4
P̄

c(b)min

ε≤1/4

≥ εP̄
c(b)min

=
1

2κ−1 P̄
c(b)min

=
1

2κ
(b)
min−1

P̄
c(b)min
≥ 1

2κ
(b)
min

P̄
c(b)min
≥ Tb ,

i.e. the Assumptions 5.2 and 5.5 are true. As for Assumption 5.4, it is easy to see that it
is satisfied because of (5.17).

We finish this subsection with a remark regarding the overall approximation ratio.

Remark 5.41. The multiplicative error of (1 − Kb
Tb
)2κ

(b)
max+4 in front of OPT(I, cl) in

Lemma 5.38 is caused by the multiplicative error (1− Kb
Tb
) that we make 2κ

(b)
max + 4

times. Such an error occurs when I is replaced by I(b)L,red at the beginning (Lemma 5.15),

in each of the κ
(b)
max + 1 iterations in which Ĩ(b) is constructed (Theorem 5.20), and

in κ
(b)
max + 2 of the κ

(b)
max + 3 iterations of the dynamic program (Theorem 5.34 and

Corollary 5.35).
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The additive error of (1− Kb
Tb
)2κ

(b)
max+4Tb is mainly due to the additive error of Tb in

Lemma 5.15. The multiplicative factor appears when the small items are combined

with the large ones. First, Tb is multiplied by (1− Kb
Tb
)κ

(b)
max+2 in Theorem 5.29, and

it is again multiplied by the same value in Lemma 5.38. Interestingly, the error in
Theorem 5.29 has the same bound as the error in Lemma 5.23. In Theorem 5.29, the
reduced set I(b)S,red−c is used for the structured solutions with a lower bound. The error

of (1− Kb
Tb
) caused by this is subsumed by the multiplicative error (1− Kb

Tb
)κ

(b)
max+2.

5.8.2 Running Time and Space Complexity

Lemma 5.42. Fix one Cb. The inner for-loop of Algorithm 5.7 (Steps 12–16) has for one
cl ∈ Cb a running time in O(γ0) and a space complexity in O(1). For all cl ∈ Cb, the
running time is in O(|Cb|γ0) = O(|Cb| 1ε log 1

ε ) and the space needed still in O(1).

Proof. The space complexity is easy to see: only P̄′, P, csol, and ( p̄, s̄, 0) are saved.
The if-condition needs time O(1) in every iteration of the for-loop (even if the body

is executed). One value p′ + OPT({a(l)eff}, cl − s′) can be determined in O(1). Thus, the
maximum can be found for one cl in O(|D(0)|) = O(γ0) (see Theorem 5.36). For all
cl ∈ Cb, the running time is in O(|Cb| · γ0) = O(|Cb| · 1

ε log 1
ε ) (see Theorem 5.40).

Lemma 5.43. For one Cb, the outer for-loop of Algorithm 5.7 (Steps 4–20) needs time in
O( 1

ε2 log3 1
ε + |Cb| · 1

ε log 1
ε + n) and storage space in O( 1

ε log2 1
ε + |Cb|+ n).

Proof. The definition of Tb, Kb and determining κ
(b)
min and κ

(b)
max can be done in time and

space O(1).
Algorithm 5.3 needs time and space in O(n + |Cb|) as seen in Theorem 5.11. Then,

Algorithm 5.4 reduces I(b)L to I(b)L,red in time O(n + γ0 · κ(b)max) and space O(γ0 · κ(b)max) as
explained in Theorem 5.16.

Algorithm 5.5 constructs the sets Ĩ(k,b) and Ĩ(b) in time O(γ2
0 · κ

(b)
max) and space

O(γ0 · κ(b)max). This is shown in Theorem 5.30, which also states that the items a(l)eff−c

and therefore the set I(b)S,red−c can be found in time and space O(|Cb|+ γ0).

The approximate dynamic programming (Algorithm 5.6) needs time in O(γ2
0 · κ

(b)
max)

and space in O(γ0 · κ(b)max) as stated in Theorem 5.36.
The inner for-loop needs time in O(|Cb| · γ0) and space in O(1) as seen above in

Lemma 5.42.
The backtracking is in O(κ(b)max): every entry Backtrack(p′, s′, k) for k = 0, . . . , κ

(b)
max +

2 states whether the tuple was formed by adding an item ã ∈ Ĩ(k,b) and with which
tuple (p′′, s′′, k + 1) to continue. Hence, the item set J′ has at most O(κ(b)max) items in
Ĩ(b) ∪ I(b)S,red−c.
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The time and space for the ungluing have to be bounded. Consider one item
ã ∈ Ĩ(b). The backtracking information Backtrack(ã) returns two items (ā1, ā2) (with
ā1, ā2 ∈ I(b)L,red ∪ Ĩ(b)) on which the backtracking can be recursively applied. The
recursive ungluing of the items can be represented as a binary tree where the root is
the original item ã and the (two) children of each node are the items (ā′, ā′′) returned
by the backtracking information. The leaves of the tree are the original items in I(b)L,red.

This binary tree obviously has a height inO(κ(b)max) because the children (ā′, ā′′) for one

ā ∈ Ĩ(k,b) are in Ĩ(k−1,b) ∪ I(b)L,red. A binary tree of height O(κ(b)max) has at most O(2κ
(b)
max)

nodes. The backtracking or ungluing of ã can therefore be done in time and space

O(2κ
(b)
max), which also includes saving the items ā ∈ I(b)L,red of which ã is composed. Since

J′ hasO(κ(b)max) items, the original items I(b)L,red of the approximate solution can be found

in time and space O(κ(b)max · 2κ
(b)
max).

Finally, the number of items OPT({a(l)eff}, csol − s̄) can be found in O(1), which is

also the time needed to unglue a(k,b)
γ,e−c should it be part of the solution.

Hence, we get an overall running time in O(γ2
0 · κ

(b)
max + γ0 · |Cb|+ κ

(b)
max · 2κ

(b)
max + n)

and a space complexity in O(|Cb|+ γ0 · κ(b)max + κ
(b)
max · 2κ

(b)
max + n). The lemma follows

by using κ
(b)
max ≤ κ

(b)
min + 2 = κ + 2 (see Lemma 5.13 and Theorem 5.40), the property

γ0 ∈ O( 1
ε log 1

ε ) (see again Theorem 5.40), and 2κ = 2
ε , i.e. κ = κ

(b)
min ∈ O(log 1

ε ).

We are now able to prove Theorem 5.1, i.e. the overall time and space complexity.

Proof of Theorem 5.1. As stated in Theorem 5.7, Algorithm 5.1 has a time complexity
in O(M + n log M) and a space complexity in O(M + n). This also bounds time and
space of Algorithm 5.2 (see Theorem 5.10).

As stated by Lemma 5.43, the overall running time of the outer for-loop is in

O
(

∑
Cb

(
1
ε2 log3 1

ε
+ |Cb| ·

1
ε

log
1
ε
+ n

))

= O
(

min
{

log
⌊

1
cmin

⌋
+ 1, M

}
· 1

ε2 log3 1
ε
+ M · 1

ε
log

1
ε

+min
{

log
⌊

1
cmin

⌋
+ 1, M

}
n
)

,

where we have used that the number of Cb is bounded by min{logb 1
cmin
c+ 1, M} as

stated at the beginning of Subsection 5.5.1. The overall running time follows.
For the space complexity, we use the fact that only P, J and csol have to be stored

permanently while the other values and sets saved during one execution of the outer
for-loop can be discarded. Hence, the space complexity for the outer for-loop is
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bounded by the space complexity of one of its runs, which is stated in Lemma 5.43.
We get the overall storage space bound.

You may recall that we wanted the bound (1− Kb
Tb
)2κ

(b)
max+4Tb ≤ (1− λ)ε OPT(I, cl)

to be satisfied (see (5.18)). We then set Tb = (1− λ)εP̄
c(b)min

, which was sufficient for

the Bound (5.16) on the approximation ratio. However, our choice of Tb seems quite
generous at first sight: can even a larger value of Tb be chosen? This would also imply
a larger Kb and a smaller value for γ0 and might therefore improve the overall running
time.

We now prove that this is not the case. The following proof was found in collabora-
tion with the student Dennis Papesch. The main idea is due to him.

Theorem 5.44. If the Bound (5.16) has to be satisfied (together with the Assumptions 5.1–5.5),
then Tb ∈ O(ε ·OPT(I, cl)) = O(εP̄cl ) = O(εP̄

c(b)min
) holds for ε→ 0.

Proof. The identitiesO(ε ·OPT(I, cl)) = O(εP̄cl ) = O(εP̄
c(b)min

) follow from Theorem 5.4

and Corollary 5.5 as well as Theorem 5.7. We prove that Tb ∈ O(ε ·OPT(I, cl)).
Clearly, the Bound (5.16) implies that(

1− Kb

Tb

)2κ
(b)
max+4

OPT (I, cl) ≥ (1− ε)OPT (I, cl) + α

for α :=
(

1− Kb

Tb

)2κ
(b)
max+4

Tb ≥ 0 .

We assume here that Tb ≥ 0 together with OPT (I, cl) > 0. The bound can be rewritten
as (

1− Kb

Tb

)2κ
(b)
max+4

OPT (I, cl) ≥
(

1− ε ·
(

1− α

ε ·OPT (I, cl)

)
︸ ︷︷ ︸

=:λ

)
·OPT (I, cl) .

Note that

OPT (I, cl) ≥
(

1− Kb

Tb

)2κ
(b)
max+4

OPT (I, cl) ≥ (1− λε)OPT (I, cl)

so that λ ≥ 0 holds, where we use Assumption 5.3, i.e. Kb
Tb

< 1. By definition, we also
see that λ ≤ 1. To sum up, we have—similar to (5.18)—for every ε > 0(

1− Kb

Tb

)2κ
(b)
max+4

OPT (I, cl) ≥ (1− λε)OPT (I, cl)

and
(

1− Kb

Tb

)2κ
(b)
max+4

Tb = α = (1− λ) ε ·OPT (I, cl)
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for λ = λ(ε) ∈ [0, 1]. This implies(
1− Kb

Tb

)2κ
(b)
max+4

≥ (1− λε) . (5.20)

Let ε ≤ 1
4 . For the sake of contradiction, assume that Tb = Tb(ε) /∈ O(ε ·OPT(I, cl)).

Hence, there is for every C > 0 and every ε > 0 a value ε′ = ε′(ε, C) ≤ ε such that

Tb(ε
′) > C · ε′ ·OPT (I, cl) .

On the other hand, we have

(1− λ) ε′ ·OPT (I, cl) =

(
1− Kb

Tb

)2κ
(b)
max+4

Tb =

(
1− Kb(ε

′)
Tb(ε′)

)2κ
(b)
max+4

Tb

(5.20)
≥
(
1− λε′

)
Tb

>
(
1− λε′

)
C · ε′ ·OPT (I, cl) .

Note that λ may depend on ε′, which however does not influence the reasoning. Hence,
1− λ ≥ (1− λε′)C = C− λε′C holds. We get

1 ≥ 1− λ ≥ C− λε′C ≥ C− ε′C ≥ C− 1
4

C =
3
4

C .

This obviously is not satisfied for C > 4
3 . We get a contradiction, therefore Tb ∈

O(ε ·OPT(I, cl)).

Finally, we can now prove Corollary 5.2. The idea is quite simple: we just preprocess
and reduce the set of knapsacks C. This preprocessing is actually close to the one used
for VBP in [78], which we also use in Subsection 2.6.2. The proof is therefore similar.

Proof of Corollary 5.2. Since we want to reduce the set C, we introduce (with a slight
abuse of notation) the value OPT(I, C̄): it is the optimum for the UKPIP instance with
items I and knapsack sizes C̄, i.e. OPT(I, C̄) = maxc∈C̄ OPTc(I). Until now, we wrote
OPT(I) because the set of knapsacks C did not change.

First, we set ε′ := ε
3 , and let C′ ⊆ C be the knapsacks with sizes of at least c ≥ ε′, i.e.

C′ = {c ∈ C | c ≥ ε′}. Then, we partition C′ into intervals ((1 + ε′)−(l+1), (1 + ε′)−l ]

for l ∈ {0, . . . , blog1+ε′(
1
ε′ )c}. Let C′′ ⊆ C′ be the set that has only the largest knapsack

size in every interval, i.e.

C′′ :=
⋃

l

{
max

{
c | c ∈

(
(1 + ε′)−(l+1), (1 + ε′)−l

]}}
.

As shown in the proof of Lemma 2.22, we have O( 1
ε′ log 1

ε′ ) = O( 1
ε log 1

ε ) knapsack
sizes.
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The time to construct C′ and then C′′ is therefore in O(M + 1
ε log 1

ε ) because we
suppose that the logarithm can be determined in O(1). This is also a bound on
the space complexity. (We can alternatively directly set C′′ = C′ if C′ has less than
blog1+ε′

( 1
ε′
)
c+ 1 knapsack sizes.)

Let c0 be the optimum knapsack size for OPT(I, C′) with OPTc0(I) = OPT(I, C′).
If c0 ∈ C′′, the identity OPT(I, C′′) = OPT(I, C′) holds. Otherwise, there is another
knapsack size c1 ∈ C′ in the same interval ((1 + ε′)−(l+1), (1 + ε′)−l ] as c0 and where
c1 is in C′′ instead of c0. We have c1 ≥ c0 ≥ 1

1+ε′ c1, i.e. 1
c1
≤ 1

c0
≤ 1+ε′

c1
, which allows us

to prove the following lower bound:

OPT
(

I, C′′
)
≥ OPTc1(I) Lem. 3.5

=
1
c1
·OPT (I, c1) ≥

1
c1
·OPT (I, c0)

≥ 1
1 + ε′

1
c0
·OPT (I, c0) ≥

(
1− ε′

) 1
c0
·OPT (I, c0)

=
(
1− ε′

)
OPTc0(I) =

(
1− ε′

)
OPT

(
I, C′

)
. (5.21)

We have used the inequality 1
1+ε′ ≥ 1− ε′.

Let c2 be the optimum knapsack size for C such that OPTc2(I) = OPT(I, C). If
c2 ≥ ε′, then c2 ∈ C′, and the identity OPT(I, C) = OPT(I, C′) follows. Otherwise, we
have c2 < ε′. The knapsack 1 = cM is part of C, C′ and C′′. Take b cM

c2
c = b 1

c2
c copies of

the optimum solution of value OPTc2(I). The copies fit into the knapsack cM, which
yields a solution of profit b 1

c2
c ·OPT(I, c2). (The items have in knapsack cM only their

basic profit pj such that one copy of the solution has only profit OPT(I, c2); see also
Lemma 3.5.) We get

OPT
(

I, C′
)
≥ OPTcM(I) ≥

⌊
1
c2

⌋
·OPT (I, c2)

Lem. 3.5
≥

(
1
c2
− 1
)
· c2 ·OPTc2(I)

= (1− c2)OPTc2(I)
c2<ε′

≥
(
1− ε′

)
OPTc2(I) =

(
1− ε′

)
OPT (I, C) .

(5.22)

Thus, the new FPTAS works as follows: we first reduce C to C′′, for which the running
time and space complexity have been stated above. We now call our FPTAS from
Theorem 5.1 with the knapsack set C′′ and accuracy ε′. A solution is returned of value

Aε′(I, C′′) ≥
(
1− ε′

)
OPT(I, C′′)

(5.21)
≥
(
1− ε′

)2 OPT(I, C′)
(5.22)
≥
(
1− ε′

)3 OPT(I, C)

≥
(
1− 3ε′

)
OPT(I, C) = (1− ε)OPT(I, C) .

The original FPTAS of Theorem 5.1 is called with |C′′| ∈ O( 1
ε log 1

ε ) knapsack sizes
and a minimum knapsack size of at least ε′ ∈ Θ(ε), from which the time and space
complexity for the corollary follow.
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5.9 Final Observations

We conclude this chapter with three remarks. First, we again compare the algorithm
in this paper with the algorithm in Chapter 4.

Remark 5.45. The normal UKP is the UKPIP with M = 1 and c1 = cmin = c = 1. The
algorithm presented in this chapter has for UKP a running time in O( 1

ε2 log3( 1
ε ) + n)

and a space complexity in O( 1
ε log2( 1

ε ) + n) as seen in Theorem 5.1. Moreover, we
have P̄

c(b)min
= P0 and only one knapsack set Cb = C0 = {c} such that T = Tb = 1

2 εP0

and K = Kb = 1
4

1
log2

1
ε +2

εT. The bounds on the running time, the space complexity,

and T in this chapter are equal to the ones of the original UKP algorithm in Chapter 4
(see Theorem 4.1 and (4.1)). The constant K in this chapter is asymptotically equal to
the constant K = 1

4
1

log2
1
ε +1

εT defined in (4.2).

In general, the calculations in this chapter for Tb and Kb can be also done for UKP
in Chapter 4 and indeed yield the values of T and K stated there (and therefore
the same asymptotic running time and space complexity). The difference between
K in Chapter 4 and Kb in this chapter is caused by the fact that we also have to

consider Ĩ(κ
(b)
max+1,b) (see Remark 5.18) while the corresponding set Ĩ(κ+1) is empty for

UKP: two special cases are checked instead (see the explanation at the beginning

of Section 4.7). Because of the additional set Ĩ(κ
(b)
max+1,b), we get in Theorem 5.29 the

lower bound of (1− Kb
Tb
)κ

(b)
max+2OPT(I, cl)− (1− Kb

Tb
)κ

(b)
max+2Tb and then the lower bound

of (1− Kb
Tb
)2κ

(b)
max+4OPT(I, cl)− (1− Kb

Tb
)2κ

(b)
max+4Tb on the approximation (Lemma 5.38)

from which Kb is derived. In Chapter 4, we instead get—because of Ĩ(κ+1) = ∅—the
lower bound of (1− K

T )
2κ+2OPT(I)− (1− K

T )
2κ+2T on the approximate solution, and

therefore the slightly larger value for K.
To sum up, we have confirmed Remark 5.37.

We also want discuss the encoding of the output.

Remark 5.46. For the input I = {a1, . . . , an}, a natural representation of a solution
is the multi-set {x1 : a1, . . . , xn : an}. The ungluing of the large items returns the
individual item copies. They can be converted into a multi-set in O( 1

ε log 1
ε + n)

because there are at most O( 1
ε log 1

ε ) large items as seen in the proof of Lemma 5.43.
The small items are added in O(1) to the multi-set by determining their number
b csol−s̄

s(a(l)eff )
c.

As a final remark, we bound the number of the large items in a solution.

Remark 5.47. Note that there are in fact O( 1
ε ) large items. Let cl ∈ Cb be the knapsack

size chosen by the algorithm. We have Pcl , P
c(b)min
≤ OPT(I) ≤ 2P0, 1

2 P0 ≤ P̄
c(b)min

/c(b)min
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and 1
2 P0 ≤ P̄cl /cl by Theorem 5.4 and 5.7 as well as Corollary 5.5. Since large items

have a basic profit of at least Tb =
1
2 εP̄

c(b)min
, i.e. a profit of at least Tb

cl′
in knapsack cl′ ∈ Cb,

we have

O
(

OPT(I)
Tb/cl

)
= O

 P̄cl /cl
1/2 ε P̄

c(b)min
/cl

 c(b)min,cl∈Cb
= O

 P̄cl /cl

1/2 ε P̄
c(b)min

/c(b)min

 = O
(

P0
1/4 εP0

)

= O
(

1
ε

)
large items.
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6 Scheduling on Unrelated Machines of Few
Different Types

6.1 Introduction

The result in this chapter was discovered by Jan Clemens Gehrke, Klaus Jansen,
Stefan Kraft, and Jakob Schikowski during the lecture “Effiziente Algorithmen” in
the summer term 2014. This chapter is based on the technical report [26] created by
Stefan Kraft, which is an extension and a revision of the report [28] written by Jan
Clemens Gehrke and Jakob Schikowski in German. Hence, parts of this chapter have
been (almost) directly translated from the German report.

6.1.1 Known Results

Even Scheduling on Identical Machines (P | |Cmax) (where, as the name suggests, all
machines are of the same type) is NP-complete [25]. Thus, finding the optimum
objective value OPT(I) and a corresponding schedule efficiently seems unlikely for
the general case. We are therefore looking for efficient approximation algorithms. List
Scheduling is a well-known heuristic with the approximation ratio 2− 1

m for P | |Cmax.
Hochbaum and Shmoys [36] presented the first Polynomial Time Approximation
Scheme (PTAS).

Unfortunately, Scheduling on Unrelated Machines (R | |Cmax) does not allow for
a PTAS unless P = NP: a polynomial algorithm cannot in general have an approxi-
mation ratio c < 3

2 as shown by Lenstra, Shmoys, and Tardos [64]. Approximation
algorithms with a ratio of 2 were presented by Lenstra et al. [64], by Shmoys and
Tardos [81], and by Gairing, Monien, and Woclaw [23]. A 2− 1

m approximation al-
gorithm was found by Shchepin and Vakhania [79]. These algorithms are based on
solving a linear program (LP) and rounding the solution to an integer one, with the
exception of the purely combinatorial algorithm in [23]. Recently, Arad, Mordechai,
and Shachnai [2] have presented a new algorithm that decides that a schedule σ with
a makespan of at most T and an average machine load L =

∑i∈M ∑j:σ(j)=i pij
m does not

exist, or it finds one with a makespan of at most min{T + L
h , 2T}, where h = h(T) is

the so-called feasibility factor.
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No algorithm is known for the general problem with a ratio better than 2. For a long
time, this was even true for the Restricted Assignment Problem, a special case where
pij ∈ {pj, ∞}. A breakthrough was the estimation algorithm by Svensson [85]. The
algorithm does not return an actual solution, but it can estimate the optimal makespan
within 33

17 + ε ≈ 1.9412 + ε, i.e. with a ratio better than 2. Chakrabarty, Khanna, and
Li [10] have presented for a constant δ∗ > 0 a (2− δ∗)-approximation algorithm (that
also returns a solution) for the (1, ε̄)-Restricted Assignment Problem. In this case of
Restricted Assignment, the finite processing times are additionally either pj = 1 or
pj = ε̄ for constant ε̄ > 0.

Bhaskara et al. [6] studied the matrix P = (pij)m×n of the processing times, more
precisely the influence of its rank on the non-approximability of R | |Cmax. Rank 1 is
the case of identical or uniform machines (where the processing times are of the form
pij =

pj
si

), which allows for PTAS (see above for identical and e.g. [37, 51] for uniform
machines). Unless P = NP, rank 4 is already APX-hard (i.e. a PTAS cannot exist), and
rank 7 cannot be better approximated than 3

2 , as in the general case (see above). This
was improved by Chen, Ye, and Zhang [11] who showed that already rank 4 does not
allow for a polynomial-time approximation algorithm better than 3

2 unless P = NP.

If the number m of machines is constant (i.e. Rm | |Cmax is considered), the problem
has a PTAS [64] and a Fully Polynomial Time Approximation Scheme (FPTAS) [38].
Faster FPTAS were successively found [21, 50], and the fastest known FPTAS has a
running time in O(n) + (m

ε )
O(m) ≤ O(n) + ( log m

ε )O(m log m) [49]. It should be noted
that the algorithm by Lenstra, Shmoys, and Tardos [64], while “only” being a PTAS,
has a space complexity only polynomial in m, log 1

ε , and the input length.

Interestingly, the special case of Scheduling on a constant number of m identical
machines (Pm | |Cmax) has a lower bound of nO(1) + ( 1

ε )
O(m) on the running time

unless the Exponential Time Hypothesis fails [11]. For ε small enough, e.g. ε ≤ 1
m , the

running time of the algorithm in [49] can be bounded byO(n) + ( 1
ε )
O(m) and therefore

attains this lower bound.

Finally, Imreh [40] considered the Scheduling Problem on K = 2 types. He pre-
sented heuristic algorithms with ratios 2 + m−1

k and 4− 2
m , where m is the number of

processors of the first and k the number of processors of the second type. Bleuse et al.
[7] described an algorithm with the approximation ratio 4

3 +
1
3k + ε for scheduling on

m cores (CPUs) and k GPUs. If all jobs are accelerated when executed on a GPU, the
algorithm has the ratio 3

2 + ε. Wiese, Bonifaci, and Baruah [87] presented a PTAS for
Scheduling on Unrelated Machines of Few Different Types ((Pm1, . . . , PmK)| |Cmax)
(where K = O(1)). It has to solve mO(K·((1/ε)1/ε log 1/ε)) linear programs, which is there-
fore a lower bound on the overall running time. It is double exponential in 1

ε . (An
earlier paper [8] with a more sophisticated rounding of the relaxed ILP solution pre-
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sented an algorithm for ∆-dimensional jobs.) Baruah [3] and Raravi and Nélis [74]
presented for K = 2 PTAS that are single exponential in 1

ε .

6.1.2 Our Result

We present a PTAS for the one-dimensional case that is only single exponential in 1
ε

for general K = O(1).

Theorem 6.1. There is a PTAS for (Pm1, . . . , PmK)| |Cmax with a running time in

O(K · n) + mO(K/ε2) ·
(

log m
ε

)O(K2)

.

6.2 Overview

Since the processing times are identical on machines of the same type, they are denoted
by pkj for k ∈ {1, . . . , K} and j ∈ {1, . . . , n}. Section 6.4 explains the preprocessing
of the instance I to get a new instance Imerge whose set of jobs J (Imerge) = J merge

has a bounded cardinality. The method used was presented in [21, 49] and works as
follows: first, the smallest processing time dj over all machine types is determined
for every job j. The jobs are scaled such that 1 ≤ OPT(I) ≤ m holds, then divided
into fast and slow for every machine type k and rounded accordingly based on a
value ε′ ∈ Θ(ε). We have a new instance Iround with jobs J round. Every job with its
processing times pround

kj has a profile (Π1,j, . . . , Πk,j). Jobs with the same profile are
then iteratively combined, i.e. merged, until we get the instance Imerge. As its job set
J merge has a bounded cardinality, this improves the running time of the next step.

Section 6.5 shows how to find for δ ∈ Θ(ε) a solution with a value of at most
(1 + δ)OPT(Imerge) (and therefore an approximate solution to I). It uses the well-
known dual approximation approach [36, 37, 64] a binary search with an oracle
Oracle: in each iteration, a value T is tested. If there is a schedule with a makespan
of at most T, the oracle returns for δ′ ∈ Θ(ε) a solution of value at most (1 + Cδ′)T
(and T is decreased in the next iteration). If there is not a schedule, the oracle does not
return any solution (and T is increased because it was too small). This can be iterated
until a solution close enough to the optimum is found. The principle is explained in
Subsection 6.5.1.

Subsection 6.5.2 gives an overview of Oracle and explains its preprocessing: Imerge

(called I in Section 6.5, a slight abuse of notation) is first scaled based on T to get Iscale.
Next, the oracle partitions the jobs into large and small jobs for every machine type k.
The processing times of the jobs are then rounded so that they have discrete values,
and we get the instance Ir with job processing times pr

kj. Every feasible schedule σ
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6 Scheduling on Unrelated Machines of Few Different Types

for Ir has a profile. As the job processing times are discrete, so are the profiles. One
profile states for every machine type k the total processing time ask(σ) of the small
jobs assigned to k. Moreover, it states for machine type k that abk(σ, γ) machines have
the processing time γ · (δ′)2, and it does so for all relevant γ ∈N.

The dynamic program DynProg of the oracle is presented in Subsection 6.5.3: it
is the main contribution in this chapter. DynProg iteratively constructs all possible
profiles TS0, . . . , TSn′ , where TSj contains all profiles for the first jobs {1, . . . , j}. Each
constructed profile t is represented like above: it has the entries ASk = ASk(t) that
correspond to the ask(·) and the entries (ABk(t))γ that correspond to the abk(·, γ). The
number of different profiles is denoted by κ.

Subsection 6.5.4 first introduces the instance Ip with its processing times pp
kj, which

is similar to Ir. Then, the function CreateSchedule is presented. It first checks a
simple condition for every constructed profile t′ ∈ TSn′ to see whether the small jobs
can be greedily assigned to the machines. If yes, it calls the function Backtracking
that constructs the schedules σk for the large jobs and the set Jk of small jobs assigned
to machine type k. This is done by backtracking (as suggested by the function name).
Afterwards, CreateSchedule greedily assigns the jobs in Jk to the machines, which
yields a solution with a makespan of at most (1 + Θ(ε))T. If no profile has been
generated by the dynamic program or no profile allows for a distribution of the small
jobs, the value T is too small. The binary search adapts T according to the output of
the oracle until the optimum has been approximated.

Finally, Section 6.6 puts the preprocessing of Section 6.4 and the dual approach of
Section 6.5 together and shows that the overall algorithm is indeed a PTAS.

Note that the principle of our algorithm is similar to [3, 21, 74], but it was found
independently of [3, 74]. We think that the algorithm presented in this chapter can be
considered to be less complicated and to have an easier analysis than the algorithm in
[74] and possibly in [3]. Moreover, we use a different dynamic program.

6.3 General Remarks and Notation

Since we are in the case of K machine types, it is sufficient to state for a job j its
processing time on every machine type and not on every individual machine. The
processing time of job j on the machine type k ∈ {1, . . . , K} is therefore denoted by pkj.
The value k(i) is the type of a machine i ∈ M.

We suppose that K is constant, that 0 < ε ≤ 1
2 and (still) that computing the

logarithm needs time in O(1).
We can assume without loss of generality that mk ≤ n for all k ∈ {1, . . . , K} and

therefore m = m1 + · · · + mK ≤ n · K. In fact, a solution cannot use more than n
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machines of a type k because there are only n jobs. For one type, machines whose
number exceeds n can therefore be discarded.

6.4 Preprocessing of the Instance

The first step of the algorithm is a preprocessing to reduce the number of items. The
technique in this section is taken from [21, 49]. Let 0 < ε′ ≤ 1

3 with ε′ ∈ Θ(ε). The
actual value of ε′ will be determined later.

First, let
dj := min

k∈{1,...,K}
pkj

be the smallest processing time of a job j over all machine types, and let D := ∑j∈J dj.
We have D

m ≤ OPT(I) because the jobs could ideally be scheduled uniformly on all
machines, where each job is executed on one machine of its fastest type. On the other
hand, we have OPT(I) ≤ D: a feasible solution is obtained by scheduling each job to
one of its fastest machine. In the worst case, all jobs have the same fastest machine
type, and there is only one machine of this type.

Hence, we can divide all processing times pkj by D
m such that we get the following:

Assumption 6.1. Without loss of generality, the jobs are scaled such that we have
1 ≤ OPT(I) ≤ m and D = ∑j∈J dj = m.

The jobs are now partitioned into fast and slow ones for each type k. A job is slow on
type k if pkj ≥ m

ε′ dj, otherwise it is fast on type k. Should j be slow on type k, we set
pround

kj := ∞ (or to a sufficiently large value like 2m) such that a reasonable algorithm
will not schedule j on such a machine. If j is fast on type k, we round it down to

the nearest lower value pround
kj := dj

(
1 + ε′

)h for h ∈N .

We therefore have dj(1 + ε′)h ≤ pkj < dj(1 + ε′)h+1 and h = blog1+ε′
pkj
dj
c. The new

instance of scaled and rounded jobs J round together with the (unchanged) machines
is called Iround.

Remark 6.2. In this chapter, we will sometimes directly refer to “fast jobs” and “slow
jobs” although we mean e.g. “jobs scheduled on machines where they are fast”. We
may also call jobs “fast” or “slow” when we refer to their processing times, which
should therefore be “the processing times of one job on machines where the job is
fast” and “the processing times of one job on machines where it is slow.” Similarly,
we may also use expressions like “jobs on slow/fast machines” when we mean “jobs
scheduled on machines where they are slow/fast.”
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6 Scheduling on Unrelated Machines of Few Different Types

Finally, jobs will later on also be called “large” and “small” such that similar expres-
sions will be used.

Lemma 6.3 ([49, Lemma 2.1]). We have OPT(Iround) ≤ (1 + ε′)OPT(I).

Proof. Let I′ be the instance where the fast jobs are rounded, but the processing
times of slow jobs have not been set to ∞. On the one hand, we obviously have
OPT(I′) ≤ OPT(I) because the processing times may only have decreased. On
the other hand, we can take an optimum solution to I′ and replace every rounded
processing time pround

kj by its original processing time pkj. Then the schedule increases
only by a factor of 1 + ε′. We get OPT(I′) ≤ OPT(I) ≤ (1 + ε′)OPT(I′).

Let σ′ : J → M be an optimum schedule for I′, i.e. with a makespan of OPT(I′).
We transform it into a schedule σ′′ for Iround. If a job j is scheduled by σ′ to a machine
on which it is slow, it is moved to an arbitrary machine where it is processed in time
dj (i.e. to one of the fastest machines for the job). Let S be the set of jobs that have
been scheduled by σ′ on slow machines. In the worst case, the processing time for one
machine increases with the modified schedule σ′′ by

∑
j∈S

dj ≤ ∑
j∈S

ε′

m
· pk(σ′(j))j = ∑

i∈M
∑

j:σ′(j)=i

ε′

m
· pk(i)j ≤ ∑

i∈M

ε′

m
·OPT(I′)

=
ε′

m
·m ·OPT(I′) = ε′OPT(I′) ≤ ε′OPT(I) .

The modified schedule is obviously a schedule for Iround. To sum up, we get

OPT(Iround) ≤ OPT(I′) + ε′OPT(I′) ≤ OPT(I) + ε′OPT(I)

=
(
1 + ε′

)
OPT(I) .

The following lemma allows us to derive an approximation algorithm for I from an
algorithm for Iround.

Lemma 6.4 ([49, Lemma 2.3]). If there is an approximation algorithm Ar for Iround such
that Ar(Iround) ≤ αOPT(I) + β, then there is also an approximation algorithm A for I with

A(I) ≤ α
(
1 + ε′

)2 OPT(I) + β(1 + ε′) ≤
(
α(1 + ε′)2 + β(1 + ε′)

)
OPT(I) .

Proof (Sketch). The proof is constructive: find a schedule for Iround and replace the
modified processing times by the unmodified ones.

Now, jobs are grouped together in a special way to reduce their overall number. We
first introduce the notion of profiles for jobs in Iround: a rounded job j ∈ J (Iround)

has the profile (Π1,j, . . . , Πk,j) where Πk,j ∈ N is the exponent such that pround
kj =

dj (1 + ε′)Πk,j . We set Πk,j = ∞ if pround
kj = ∞.
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Lemma 6.5 ([21, Lemma 2]). Let l be the number of profiles for the jobs in Iround. We have
the bound l ≤ (2 + log1+ε′(

m
ε′ ))

K.

Proof. If a job j is fast on the machine type k, its maximum processing time is m
ε′ dj.

Hence, we have for the largest exponent hmax that dj(1 + ε′)hmax ≤ m
ε′ dj such that

hmax = blog1+ε′(
m
ε′ )c follows. The smallest exponent is hmin = 0. If j is slow on type

k, then its exponent is ∞. Thus, there are 2 + blog1+ε′(
m
ε′ )c possible exponents on K

positions, which yields (2 + log1+ε′(
m
ε′ ))

K possible profiles.

We derive from Iround a modified instance Imerge. Let ν := 1
dm/ε′e . The jobs in Iround

are divided into the set of large jobs L := {j ∈ J (Iround) | dj > ν} and the set of
small jobs S := {j ∈ J (Iround) | dj ≤ ν}. Take an enumeration of the l profiles such
that we can denote a profile directly by its number ς ∈ {1, . . . , l}. The set S is then
further partitioned into the sub-sets Sς = {j ∈ J (Iround) | j has the profile ς} for
ς ∈ {1, . . . , l}.

Two jobs ja and jb with the same profile ς and for which dja , djb ≤ ν
2 holds are now

grouped together to a new composed job jc with pkjc := pkja + pkjb for every k. The
composing is repeated until there is at most one job j ∈ Sς with dj ≤ ν

2 for every
profile ς. The other jobs (including the jobs in L) now have all a processing time of at
least ν

2 . The set of all jobs is called J merge, which yields together with the (unchanged)
machines the instance Imerge.

Lemma 6.6. If two jobs ja and jb are grouped together to jc, then jc has the same profile as ja
and jb.

Proof. We have Πk,ja = Πk,jb for all k ∈ {1, . . . , K} because ja and jb have the same
profile. Let k′ be a machine type where Πk′,ja = Πk′,jb = 0, i.e. both jobs have their
fastest processing time dja and djb on the machine type k′. We have

pround
kjc = pround

kja + pround
kjb = dja

(
1 + ε′

)Πk,ja + djb
(
1 + ε′

)Πk,jb

=
(
dja + djb

) (
1 + ε′

)Πk,ja for all k ∈ {1, . . . , K} .

Thus, we have pround
k′ jc = dja + djb , and djc = dja + djb . The job jc has therefore the same

profile as ja and jb.

Lemma 6.7. After composing the items, we still have 1 ≤ OPT(Imerge) ≤ m.

Proof. Composed jobs have values djc that are the sum of several dj for j ∈ J (Iround).
Hence, we get D = m = ∑j∈J dj = ∑j∈J merge dj (see Assumption 6.1) because one
j ∈ J (Iround) can only be used in the composition of one job jc ∈ J merge = J (Imerge).
The upper and lower bound now follow as before.
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6 Scheduling on Unrelated Machines of Few Different Types

Theorem 6.8. There are min{n, 2D
ν + l} = min{n,O(m2

ε′ ) + ( log m
ε′ )O(K)} jobs in J merge

(i.e. in Imerge).

Proof. The number of jobs does obviously not increase so that n is an upper bound.
The number of jobs in J merge that have a shortest processing time of dj >

ν
2 is bounded

by ∑j∈J dj
ν/2 = 2D

ν . Moreover, there is at most one job left with dj ≤ ν
2 for every profile ς.

Therefore, we have at most l + 2D
ν jobs. Note that 0 < ε′ ≤ 1

3 such that ln(1 + ε′) ≥
ε′ − (ε′)2 = ε′(1− ε′) ≥ 1

2 ε′ holds. We get

2D
ν

+ l

= 2m ·
⌈m

ε′

⌉
︸ ︷︷ ︸

≤ 2m ·
(m

ε′ + 1
)

≤ 2m2

ε′ + m2

ε′

∈ O
(

m2

ε′

)
+
(

2 + log1+ε′

(m
ε′

))K

︸ ︷︷ ︸
=

(
2 +

ln(m
ε′ )

ln(1+ε′)

)K

≤
(
2 + 2

ε′ · ln
(m

ε′
))K

∈
(

log m
ε′

)O(K)

∈ O
(

m2

ε′

)
+

(
log m

ε′

)O(K)
.

The proof is an extension of the proof in [21, 49].

Theorem 6.9 ([49, Lemma 2.4]). We have

OPT(Iround) ≤ OPT(Imerge) ≤ OPT(Iround) + ε′ .

We state the running time to construct Imerge.

Theorem 6.10. Imerge can be constructed from I in time O(n · K).

Proof. We have the following parts:

• Finding the values dj for all jobs j, the calculation of D as well as the scaling of
the instance can be done in O(n · K).

• We suppose that determining the logarithm can be done in O(1) such that the
exponent h for which dj(1 + ε′)h ≤ pkj < dj(1 + ε′)h+1 holds can be found in
O(1). In fact, we have h = blog1+ε′

pkj
dj
c. Hence, the jobs can be rounded and

their profiles determined in O(n · K). A rounded job is then directly added to
the stack that corresponds to its profile. Thus, there are at most O(n) profiles to
be considered.

• The partitioning of the jobs into L and S is done in O(n).
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• The composition of the jobs is described in Algorithm 6.1. First, list(j) is created
for every j ∈ S, a list that is used at the end of the algorithm to replace a com-
posed item by the the ones it consists of. The jobs in S are already grouped into
their respective profile sets Sς (see above). Then, the jobs are further partitioned
into S1

ς := {j ∈ Sς | dj >
ν
2} and S2

ς := {j ∈ Sς | dj ≤ ν
2}. The jobs are iteratively

combined into larger ones in each S2
ς until at most one job is left in each S2

ς, i.e.
there is at most one job in Sς with dj ≤ ν

2 . The correctness of the algorithm
is obvious because each S2

ς will always contain all small jobs of profile ς with
dj ≤ ν

2 .

As for the running time, the division of the small jobs into the sets S1
ς and S2

ς

needs time in O(n) over all profiles ς. Fix one set S2
ς. The combination of two

jobs in S2
ς can be done in O(K). For combining list(ja) and list(jb), suppose

that linked lists are used for list(·). Since ja and jb are not used afterwards, we
just concatenate list(ja) and list(jb) and save the result as list(jc). With the right
implementation of linked lists, this needs only O(1). Finally, checking whether
jc satisfies djc >

ν
2 (and adapting S1

ς and S2
ς) can be done in O(1). Hence, one

iteration of the while-loop needs time in O(K). The while-loop can only be
executed at most n times in total over all Sς because all jobs will then be merged
into one. Hence, we get a running time in O(n · K) for the entire algorithm.

Algorithm 6.1: This procedure combines the items in S into larger ones until at
most one item with dj ≤ ν

2 is contained in every Sς.

for j ∈ S do
list(j) := {j} ; // Information for undoing the composition of

every item

for every Sς do
Partition Sς into S1

ς = {j ∈ Sς | dj >
ν
2} and S2

ς = {j ∈ Sς | dj ≤ ν
2};

while There are (at least) two jobs ja, jb ∈ S2
ς do

Group ja and jb together to jc;
list(jc) := list(ja) ∪ list(jb);
if djc >

ν
2 then

S2
ς := S2

ς \ {jc} and S1
ς := S1

ς ∪ {jc};

(This proof is close to the explanations in [21, 49].)

153



6 Scheduling on Unrelated Machines of Few Different Types

6.5 The Main Algorithm

Let 0 < δ ≤ ε′ ≤ 1
3 with δ ∈ Θ(ε′). We present our algorithm for an instance I with n′

items and 1 ≤ OPT(I) ≤ m: it finds a solution of value at most (1 + δ)OPT(I). Later
on, I will in fact be Imerge such that we make the following assumption:

Assumption 6.2. I has n′ ∈ O(m2

ε′ ) + ( log m
ε′ )O(K) = O(m2

δ ) + ( log m
δ )O(K) items.

6.5.1 Approximating the Optimum by Binary Search

We introduce another value δ′ ∈ Θ(δ) with 0 < δ′ ≤ δ ≤ ε′ ≤ 1
3 . Suppose that

we have an oracle Oracle(I, T) that returns for a given makespan T and a constant
C > 0 either a solution of value at most (1 + Cδ′)T or ⊥ (false). The answer ⊥ implies
that there is not a solution of value (at most) T, i.e. T < OPT(I). We employ the
well-known dual approximation approach [36, 37, 64], a binary search with such an
oracle, to approximate the optimum OPT(I) up to a given approximation ratio (see
Algorithm 6.2). We start with the lower bound LB = 1 and the upper bound UB = m
and first check whether LB = 1 yields a solution. If not, we iteratively adapt LB and
UB until the difference UB− LB is small enough. At the same time, we ensure that
LB < OPT(I) always holds and that there is a solution for the value T = UB: the
solution for UB is returned at the end. Note that the oracle can construct a solution for
T = m in O(n′ + m) as described at the beginning of Section 6.4.

Algorithm 6.2: Binary search to approximate OPT(I) with the oracle

LB := 1;
UB := m;
if Oracle(I,LB) 6= ⊥ then // Solution for T = LB exists

return Oracle(I,LB);

while UB− LB > δ′ do
T := UB+LB

2 ;
result := Oracle(I, T);
if result = ⊥ then // T is too small

LB := T;
else // T is large enough

UB := T;

T := UB;
return Oracle(I,T);
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Lemma 6.11. Suppose that the Oracle function has the properties above, i.e. it returns
for given T either a solution with a makespan of at most (1 + Cδ′)T or ⊥. In the second
case, we have T < OPT(I). Then, the dual approximation approach, i.e. the binary search,
finds a schedule with a makespan of at most

(
1 + (C + 1)δ′ + C(δ′)2)OPT(I) and needs

O(log(m
δ′ )) calls of the oracle.

Proof. It is clear that the algorithm finishes after O(log(m
δ′ )) iterations of the binary

search.
The correctness of the binary search has already been shown in [36, 37, 64] and

is easy to see: first, we have at the beginning 1 = LB ≤ OPT(I) and that there is a
solution for UB = m. If the oracle does not return a solution for T = LB, we have
LB < OPT(I). The algorithm then makes sure by the adaptation of T that we always
have LB < OPT(I) and that the oracle returns for T = UB a solution (of value at most
(1 + Cδ′)T). Suppose that the binary search terminates, i.e. UB− LB ≤ δ′ holds. The
oracle then returns a solution with a makespan of at most (1 + Cδ′)UB. Since we have
UB ≤ LB + δ′ ≤ OPT(I) + δ′, we get(

1 + Cδ′
)

UB ≤
(
1 + Cδ′

) (
OPT(I) + δ′

)
=
(
1 + Cδ′

)
OPT(I) +

(
1 + Cδ′

)
δ′

≤
(
1 + Cδ′

)
OPT(I) +

(
1 + Cδ′

)
δ′OPT(I)

=
(
1 + Cδ′

) (
1 + δ′

)
OPT(I)

=
(
1 + (C + 1)δ′ + C(δ′)2)OPT(I) .

6.5.2 The Oracle

We now describe the principle of the oracle. As a first step, the processing times of
the jobs in I are divided by T. We get a new instance Iscale with OPT(Iscale) ≤ 1 (if
OPT(I) ≤ T). Then, the jobs are rounded to get the instance Ir with OPT(Ir) ≤ (1+ δ′).
A dynamic program DynProg is used to iteratively construct the sets TS0, . . . , TSn′ of
profiles, where each profile represents several (real) schedules. (A formal definition
is given below.) The profiles in TSj consider the first j jobs {1, . . . , j}. At the end, a
function CreateSchedule tries to construct a discrete schedule σ for the instance Ip

(which is similar to Ir) from each profile t ∈ TSn′ , where the profiles in TSn′ consider
all n′ jobs. If there is a solution to I with a makespan of at most T, one discrete schedule
σ for I with a makespan of at most (1 + Cδ′)T will be found by CreateSchedule. An
overview is shown in Algorithm 6.3. We first have the following obvious lemma:

Lemma 6.12. The set Iscale can be constructed in O(n′ · K).
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Algorithm 6.3: An overview of the Oracle(I, T)

Construct Iscale from I;
Round Iscale to Ir;
TS = (TS0, . . . , TSn′) := DynProg(Ir);
for all t ∈ TSn′ do

σ := CreateSchedule(t);
if σ 6= ⊥ then

// A schedule of value at most (1 + Cδ′) has been found for Ip

return σ;

return ⊥ ; // No schedule for I with a makespan ≤ T

In a slight abuse of notation, we still denote the scaled processing times by pkj.

Definition 6.13. A (scaled) job j is large on a machine type k if pkj ≥ δ′. Otherwise, it is
small.

Take one job j. If its processing time is large on a machine type k, it is rounded up to
the next γ · (δ′)2 for γ ∈N. If the processing time is small, i.e. pkj < δ′, the processing
time is rounded down to the next multiple of mk ·δ′

n′ . This new instance with processing
times pr

kj is denoted by Ir.
Note that jobs are large (or small) on a machine type in Ir if they are large (or small)

in Iscale, and vice versa.

Lemma 6.14. If Iscale has a schedule with a makespan of at most 1, then Ir has a schedule
with a makespan of at most 1 + δ′. Ir can be constructed in O(n′ · K).

Proof. Let σ be a schedule for Iscale with a makespan T ≤ 1. By definition, there can
only be 1

δ′ large jobs on one machine. Replace all jobs by their rounded counterpart in
Ir. The processing times of small jobs may only decrease while each large job increases
by at most (δ′)2. Hence, the increase of the total processing time on a machine is
bounded by (δ′)2 · 1

δ′ = δ′. The new total processing time of machine i is therefore at
most T + δ′ ≤ 1 + δ′. Since this holds for all machines, the bound on the makespan
follows for Ir.

The running time to obtain Ir is obvious.

Take one schedule for Ir with a makespan of at most 1 + δ′. If only large jobs of Ir

are scheduled on a machine i, its total processing time is a multiple of (δ′)2. In fact, it
must be one of the values

{0} ∪
{

γ · (δ′)2 | γ ∈N and δ′ ≤ γ · (δ′)2 ≤ 1 + δ′
}

.
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These processing times can be numbered with γ = 0 (for the total processing time 0)
and γ ∈ {γ0 := d 1

δ′ e, γ0 + 1, . . . , γ1 − 1, γ1 := b 1+δ′
(δ′)2 c}. If j is large, the value γ(k, j) is

the factor such that pr
kj = γ(k, j) · (δ′)2.

Lemma 6.15. For Ir, there are O( 1
(δ′)2 ) processing times of the form γ · (δ′)2 of large jobs on

a machine.

Similarly, take all small jobs assigned to a machine type k. Their total processing time
is at most mk · (1 + δ′) because we consider a schedule with a makespan of at most
1 + δ′. Moreover, the total processing time is also a multiple of mk ·δ′

n′ because of the
rounding, i.e. it is one of the values in

Σk :=
{

τ · mk · δ′
n′

∣∣∣ τ ∈N and 0 ≤ τ · mk · δ′
n′

≤ mk · (1 + δ′)
}

.

Lemma 6.16. For one machine type k of Ir, there are O( n′
δ′ (1 + δ′)) = O( n′

δ′ ) possible total
processing times of small jobs in Σk.

Proof. The small jobs have a total processing time in the interval [0, (1+ δ′) ·mk]. Since
the processing times are a multiple of mk ·δ′

n′ , the lemma follows.

Based on the observations above, we introduce several useful definitions.

Definition 6.17. Let I′ be a sub-instance of Ir, i.e. an instance whose jobs J ′ are a subset of
the jobs in Ir, and which has the same machines as Ir. Let σ : J ′ →M be a feasible schedule
with a makespan of at most 1 + δ′. Let bi be the total processing time of the large jobs assigned
to machine i, i.e.

bi = bi(σ) := ∑
j:σ(j)=i,pr

k(i)j≥δ′
pr

k(i)j .

We also introduce the remaining processing time (or remaining machine capacity) of every
machine type k for the makespan 1 + δ′:

rk = rk(σ) := ∑
i∈Mk

(1 + δ′ − bi) = mk · (1 + δ′)− ∑
i∈Mk

bi .

Moreover, the value abk(σ, γ) denotes the number of machines of type k where bi = γ · (δ′)2:

abk(σ, γ) :=
∣∣{i ∈ Mk | bi = γ · (δ′)2}∣∣ for γ ∈ {0, γ0, . . . , γ1} .

The vector abk(σ) = (abk(σ, γ))γ=0,γ0,...,γ1 contains all entries abk(σ, γ).
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Furthermore, ask(σ) is the total processing time of all small jobs assigned to machine type k,
i.e.

ask(σ) := ∑
j:σ(j)∈Mk ,pr

kj<δ′
pr

kj .

As seen above, we have ask(σ) ∈ Σk. Since the small jobs have to fit into the remaining
processing time, ask(σ) ≤ rk(σ) holds for all k ∈ {1, . . . , K}.

The values abk(σ, γ) and ask(σ) form the profile of σ:([(
ab1(σ, 0), ab1(σ, γ0), . . . , ab1(σ, γ1)

)
, as1(σ)

]
,

. . . ,[(
abK(σ, 0), abK(σ, γ0), . . . , abK(σ, γ1)

)
, asK(σ)

])
.

6.5.3 Dynamic Programming

The dynamic program we introduce determines all possible profiles for Ir. It is together
with the definitions above the main contribution of this chapter. One profile t for a
sub-instance I′ is represented like above: it is a tuple of K tuples, one for each machine
type:

t = ((AB1, AS1) , . . . , (ABk, ASk) , . . . , (ABK, ASK)) .

For each k ∈ {1, . . . , K}, the entry ASk denotes the total processing time of all small
jobs that are assigned to the machines of type k.

One ABk is again a tuple

ABk = (q0, qγ0 , . . . , qγ, . . . , qγ1) .

Each entry qγ denotes the number of machines of type k where the large jobs have the
total processing time γ · (δ′)2. Obviously, q0 + ∑γ1

γ=γ0 qγ = mk holds.
For convenience, ASk(t) denotes the entry ASk of a profile t. Similarly, ABk(t)

stands for the tuple ABk of profile t. Additionally, (ABk(t))γ is the entry qγ in the
tuple ABk(t).

Lemma 6.18. One profile t has O( K
(δ′)2 ) entries.

Proof. There are K entries ASk(t) and K tuples ABk(t). Each ABk(t) has againO(γ1) =

O( 1
(δ′)2 ) entries (see Lemma 6.15). The overall bound follows.
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The idea of the dynamic program DynProg (as shown in Algorithm 6.5) is quite simple.
We start with the profile set

TS0 =


( (

(

q0︷︸︸︷
m1 , 0, . . . , 0)︸ ︷︷ ︸

AB1

, 0︸︷︷︸
AS1

)
, . . . ,

(
(

q0︷︸︸︷
mK , 0, . . . , 0)︸ ︷︷ ︸

ABK

, 0︸︷︷︸
ASK

) ) (6.1)

that represents the empty schedule: for every machine type k, small jobs have not
been assigned (ASk = 0), and mk machines (i.e. all machines of type k) have a total
processing time of large jobs equal to 0.

Suppose that the set TSj−1 has been determined: it contains all profiles that can be
obtained for the first j− 1 jobs {1, . . . , j− 1}. The profiles for {1, . . . , j} are constructed
by considering for each t ∈ TSj−1 all possibilities to add j to t. Fix one t ∈ TSj−1.
We go over all k. If j is small on type k, then ASk(t) is simply increased by pr

kj (Steps
6–12): we have a new profile t′ where additionally j is assigned to the machine type
k. If j is large on type k, all qγ = (ABk(t))γ > 0 are taken into account (Steps 13–
20): there are qγ machines of type k in t where each has the total processing time
γ · (δ′)2. If we add j to one of these machines, there is obviously one machine less
with the processing time γ · (δ′)2 and one machine more with the processing time
γ · (δ′)2 + pr

kj = γ · (δ′)2 + γ(k, j) · (δ′)2. Hence, qγ decreases and qγ+γ(k,j) increases
by one. The add operation is shown in Algorithm 6.4. Thus, each qγ > 0 in ABk(t)
generates a new profile t′ ∈ TSj.

Algorithm 6.4: add(ABk, γ, j)
Input: ABk, γ, j
Set γ′ := γ + γ(k, j);
(ABk)γ′ := (ABk)γ′ + 1;
(ABk)γ := (ABk)γ − 1;
return ABk;

When t′ has been constructed, it is checked whether t′ ∈ TSj already holds (Steps 10
and 18), i.e. whether we have already obtained the tuple t′ in another way (e.g. from
another t ∈ TSj−1). If no, we save t′ together with the corresponding backtracking
information to later construct a schedule (Steps 11–12 and 19–20). If yes, we only
keep the old backtracking information. Note that the add operation is only executed if
γ · (δ′)2 + pr

kj ≤ (1 + δ′), i.e. γ + γ(k, j) ≤ γ1 (see Step 15): we only want to find the
profiles representing schedules with makespans of at most 1 + δ′. Similarly, the bound
ASk(t) + pr

kj ≤ mk · (1 + δ′) for ASk is checked in Step 7. It is therefore possible that
there is not any profile t ∈ TSj−1 such that j can be assigned: the value T is too small.
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Then, DynProg returns the empty set (Step 22), and Oracle will therefore return ⊥. We
show that a schedule for Ir with a makespan of at most (1 + δ′) corresponds to at least
one profile.

Algorithm 6.5: The dynamic program DynProg

Input: Instance Ir, δ′ > 0
1 Set TS0 as seen in Equation (6.1);
2 for j = 1, . . . , n′ do
3 TSj := ∅;
4 for t ∈ TSj−1 do
5 for k = 1, . . . , K do
6 if j is small on type k then
7 if ASk(t) + pr

kj ≤ mk · (1 + δ′) then
8 t′ := t;
9 ASk(t′) := ASk(t′) + pr

kj;

10 if t′ /∈ TSj then
11 Backtrack(t′) := (t, k);
12 TSj := TSj ∪ {t′};

13 else // j is large on type k
14 for γ = 0, γ0, . . . , γ1 − 1 do
15 if qγ = (ABk(t))γ > 0 and γ + γ(k, j) ≤ γ1 then
16 t′ := t;
17 add(ABk(t′), γ, j);
18 if t′ /∈ TSj then
19 Backtrack(t′) := (t, k, γ);
20 TSj := TSj ∪ {t′};

21 if TSj = ∅ then
22 return ∅;

23 return TS = (TS0, TS1, . . . , TSn′);

Lemma 6.19. Let σ be a schedule for Ir with a makespan of at most 1 + δ′. Then the dynamic
program DynProg generates a profile t for Ir where

• (ABk(t))γ = abk(σ, γ) for all γ ∈ {0, γ0, . . . , γ1} and k ∈ {1, . . . , K}, and

• ASk(t) = ask(σ) for all k ∈ {1, . . . , K}.
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Proof. The statement is easy to see because the dynamic program does exactly what a
natural algorithm to construct all schedules would do: it takes all currently constructed
schedules for the first j− 1 jobs and tries for each of these schedules to assign job j to
every machine i. However, only the corresponding profiles are saved.

Since σ has a makespan of at most 1+ δ′, all conditions checked during the construc-
tion of tσ will be satisfied.

Lemma 6.20. The number κ of profiles in TSj is bounded by

κ ≤ mO(K/(δ′)2) ·
(

log m
δ′

)O(K2)

.

Proof. Fix one machine type k. The number of possible vectors ABk is bounded by
(m + 1)O(1/(δ′)2) = mO(1/(δ′)2) because ABk has O( 1

(δ′)2 ) entries (see Lemma 6.15), and
each entry (ABk)γ is in {0, 1, . . . , mk} ⊆ {0, . . . , m}.

For every value of ABk, we will only save O( n′
δ′ ) possible values for ASk (see

Lemma 6.16). Note that we have n′ ∈ O(m2

δ ) + ( log m
δ )O(K) = O(m2

δ′ ) + ( log m
δ′ )O(K)

because of Assumption 6.2 and δ′ ∈ Θ(δ). We get

O
(

n′

δ′

)
= O

(
m2

(δ′)2

)
+

(
log m

δ′

)O(K)
.

If we consider all machine types k, we have the upper bound on the number of profiles
of (

mO(1/(δ′)2) · O
(

n′

δ′

))K

=

(
mO(1/(δ′)2) ·

(
O
(

m2

(δ′)2

)
+

(
log m

δ′

)O(K)))K

=

(
mO(1/(δ′)2) · m2

(δ′)2 + mO(1/(δ′)2) ·
(

log m
δ′

)O(K))K

=

(
mO(1/(δ′)2) ·

(
log m

δ′

)O(K))K

= mO(K/(δ′)2) ·
(

log m
δ′

)O(K2)

.

We have used that 1
(δ′)2 = 22 log(1/(δ′)) ≤ 2O(1/δ′) ≤ mO(1/δ′) so that m2

(δ′)2 · mO(1/(δ′)2) =

mO(1/(δ′)2).

Lemma 6.21. The dynamic program (Algorithm 6.5) needs time in O( K
(δ′)2 · m · κ · n′) =

mO(K/(δ′)2)( log m
δ′ )O(K

2) to construct all profiles TS0, . . . , TSn′ .

161



6 Scheduling on Unrelated Machines of Few Different Types

Proof. The for-loop for the items needs n′ iterations. When an item is processed in
the for-loop, it is tried to assign it to each of the O(κ) profiles in TSj−1. Fix one
profile t ∈ TSj−1 and one machine type k. If the item is small on machine type k, we
need O(1) to check whether j can be added to type k. If the item is large, we need

O(γ1)
Lem. 6.15

= O( 1
(δ′)2 ) to check the entries qγ and the conditions whether j can be

added. Note that there are O(mk) entries qγ > 0 and therefore only O(mk) cases
where an item is added.

When an item is added, we need time in O( K
(δ′)2 ) to create the new profile t′ and

add the item to it (see Lemma 6.18; note that the add operation of Algorithm 6.4 needs
time in O(1)). Additionally, it has to be checked whether t′ is new in TSj. We can
suppose that this can be done in the size of the profile O( K

(δ′)2 ): all profiles t′′ ∈ TSj

can be saved in one array where the position of t′′ is given by its values (ABk(t′′))γ

and ASk(t′′). Finally, the backtracking information only has to save a pointer to the
old profile from which the new one was obtained as well as the values k and/or γ. In
total, the time needed to add an item is bounded by O( K

(δ′)2 ).
Obviously, the case where j is large on type k dominates the running time for one

machine type. The dynamic program therefore needs time in

O
(

n′ · κ ·
K

∑
k=1

(
1

(δ′)2︸ ︷︷ ︸
checks of qγ

+ mk︸︷︷︸
number of qγ > 0

· K
(δ′)2︸ ︷︷ ︸

time to add an item

))
= O

(
n′ · κ ·m · K

(δ′)2

)
.

We get

O
(

K
(δ′)2 ·m · κ · n

′
)

= O
(

K
(δ′)2 ·m ·

[
mO(K/(δ′)2) ·

(
log m

δ′

)O(K2)
]
·
[(

m2

δ′

)
+

(
log m

δ′

)O(K)])

=
K

(δ′)2 ·m
O(K/(δ′)2) ·

(
log m

δ′

)O(K2)

= K ·mO(K/(δ′)2) · 1
(δ′)2 ·

(
log m

δ′

)O(K2)

= mO(K/(δ′)2) ·
(

log m
δ′

)O(K2)

with Assumption 6.2 and Lemma 6.20.

Remark 6.22. Profiles can of course be stored in a more compact form: we only have
to save the strictly positive abk(σ, γ) and (ABk(t))γ. The number of entries in one
profile is then bounded by O(K + m). However, the number of profiles κ does not
decrease: it is independent of the fact whether we save the qγ = 0 or not. Lemma 6.20
still holds so that the asymptotic running time also remains unchanged (see the proof
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of Lemma 6.21). (Lemma 6.20 is obviously a rough estimate, but it is sufficient to prove
that the final algorithm is single exponential in 1

ε .)

6.5.4 Construction of a Schedule

The goal of this section is the construction of a schedule with a makespan of at most
1 + 3δ′ from a suitable profile. We first state two definitions.

Definition 6.23. For a given profile t′, the remaining total processing time for every machine
type k is defined by

Rk = Rk(t′) := mk · (1 + δ′)−∑
γ

(ABk(t))γ · γ · (δ′)2 .

The definition corresponds to the one of rk in Definition 6.17.

Definition 6.24. Take one job j in I. If its processing time is large on machine type k, it
is rounded up to the next γ · (δ′)2 for γ ∈ N. The small processing times of a job are not
changed. This is the new instance Ip whose processing times are denoted by pp

kj.

Ip is therefore the instance Ir without the rounding of the small jobs. We have pp
kj = pkj if j

is small on type k, and we have pp
kj = pr

kj if j is large on type k.

After DynProg, Oracle (Algorithm 6.3) calls for every t′ ∈ TSn′ CreateSchedule, a
function that is shown in Algorithm 6.6. First, CreateSchedule(t′) checks whether
enough processing time is left for the small jobs (Steps 1–4), by controlling whether
ASk(t′) ≤ Rk(t′) holds for all k ∈ {1, . . . , K}. If yes, this is sufficient to construct
a schedule for Ip of value at most 1 + 3δ′ (Steps 5–9) as will be shown below in
Lemma 6.25. In Step 6, the function Backtracking uses the backtracking information
to find the set of small jobs Jk assigned to machine type k for all k ∈ {1, . . . , K}.
Moreover, it constructs a schedule σk for the large jobs assigned to type k for all
k ∈ {1, . . . , K}. The function Backtracking is explained in detail below (see also
Algorithm 6.7). When Backtracking(t′) has finished, σ is updated according to each
σk (Step 8). The small jobs assigned to k are greedily added to the machinesMk (Step
9): a machine inMk gets assigned jobs in Jk until the total processing time of the
machine exceeds 1 + 2δ′. Then, the next machine in Mk is processed in the same
way. As mentioned above, it will be shown in Lemma 6.25 that this procedure will be
successful.

Note that Oracle returns ⊥ if it cannot construct a schedule (because TSn′ = ∅ or
no t′ satisfies Rk(t′) ≤ ASk(t′) for all k). It will be shown in Theorem 6.27 that Oracle
indeed satisfies the properties of Lemma 6.11.
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Algorithm 6.6: CreateSchedule(t′) from Oracle (Algorithm 6.3)
Input: Profile t′

1 for k = 1, . . . , K do
2 Determine Rk = Rk(t′);
3 if ASk(t′) > Rk then
4 return ⊥;

5 σ := ∅ ; // The empty schedule
6 (σ1,J1), . . . , (σK,JK) := Backtracking(t′);
7 for k = 1, . . . , K do
8 Set σ(j) := σk(j) for the jobs j scheduled by σk;
9 Assign the jobs in Jk greedily to the machines inMk and adapt σ accordingly;

10 return σ;

Let us now present the Backtracking function as shown in Algorithm 6.7. The
backtracking information of DynProg allows us to go directly from t′ = t′n′ ∈ TSn′ to
t′n′−1 ∈ TSn′−1 from which t′n has been constructed. We continue and iteratively get
t′n′−2 ∈ TSn′−2, . . . , t′j ∈ TSj, . . . , t′1 ∈ TS1, t′0 ∈ TS0, where t′j has been obtained from
t′j−1. Next, we define the σk and Jk (Step 3).

Starting from t′0 (which is the profile of the empty schedule, see (6.1)), we have
two cases. Either t′j has been constructed from t′j−1 by adding j to a machine type k
where it is large, and inMk to one machine with the current processing time γ · (δ′)2

for one γ. The corresponding value γ and the machine type k are exactly the values
stored in Backtrack(t′j) (see Step 19 of Algorithm 6.5). The current schedule σk is then
updated accordingly by assigning j to one machine inMk with a current processing
time of γ · (δ′)2 (Steps 8–11). Otherwise, j has been assigned to a type k where it is
small. The value of k is stored in Backtrack(tj) (see Step 11 of Algorithm 6.5). The job
j is then added to Jk (Steps 12–14). The assignment of large jobs to the machines is
rendered more comfortable by the function extime(·): it keeps track of the current
total processing time of large jobs on every machine.

Lemma 6.25. Let t ∈ TSn′ be a profile for which ASk(t) ≤ Rk(t) holds for all k. Then,
CreateSchedule and Backtracking (Algorithms 6.6 and 6.7) return a schedule σ for Ip

with a makespan of at most 1 + 3δ′. It is also a schedule for I of value at most (1 + 3δ′)T.

Proof. As we have ASk(t) ≤ Rk(t), CreateSchedule(t) calls Backtracking(t), which
returns the schedules σk and the job sets Jk for all k ∈ {1, . . . , K}. For each k ∈
{1, . . . , K}, the algorithm takes the schedule σk for the machines Mk and greedily
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Algorithm 6.7: Backtracking (t′) from CreateSchedule (t′) (Algorithm 6.6)
Input: Profile t′

1 Determine by backtracking the profiles
t′ = t′n′ ∈ TSn′ , t′n′−1 ∈ TSn′−1, . . . , t′j ∈ TSj, . . . , t′1 ∈ TS1, t′0 ∈ TS0 from which t′

has been constructed;
2 for k = 1, . . . , K do
3 σk := ∅ and Jk := ∅;

4 for i = 1, . . . , m do
5 extime(i) := 0 ; // Total processing time of large jobs on machine i

6 for j = 1, . . . , n′ do
7 if Backtrack(t′j) is of the form (t′j−1, k, γ) then

// j is added to a machine type where it is large
8 Take k and γ from Backtrack(t′j);

9 Use extime(·) to find one machine i inMk with a total processing time of
large jobs equal to γ · (δ′)2;

10 Add j to i: σk(j) := i;
11 extime(i) := extime(i) + pr

kj;

12 else // j is added to a machine type where it is small
13 Take k from Backtrack(t′j) ; // Backtrack(t′j) = (t′j−1, k)

14 Jk := Jk ∪ {j};

15 return (σ1,J1), . . . , (σK,JK);
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assigns the small jobs inJk as explained above. When this is done for all k ∈ {1, . . . , K},
the schedule σ for Ip has been constructed. Technically, the σk are schedules for jobs in
Ir, and the sets Jk are also taken from J (Ir). However, they can be trivially adapted
to Ip: the instances Ip and Ir have a one-to-one correspondence of the jobs and differ
only in the processing times pp

kj and pr
kj.

We have to show that all small jobs in the sets Jk can indeed be greedily assigned
and that the resulting schedule has a makespan of at most 1 + 3δ′. We first state
several identities. For the total processing time of large jobs on a machine i ∈ Mk,
bi(σk) = bi(σ) holds: we have pr

kj = pp
kj for jobs j that are large on a machine type k,

and σk is σ restricted to the large jobs assigned to machine type k. Hence, we also
have abk(σ, γ) = abk(σk, γ) for each γ and k. Moreover, abk(σk, γ) = (ABk(t))γ holds:
it is clear that the backtracking constructs σk in such a way that it has a profile for
the large jobs on k that corresponds to t. By induction, it can indeed be shown that
(ABk(tj))γ = abk((σk)

(j), γ), where (σk)
(j) is the schedule σk restricted to the large jobs

in {1, . . . , j}, and tj ∈ TSj is the profile of which t is constructed. To sum up, we have
abk(σ, γ) = abk(σk, γ) = (ABk(t))γ for all γ ∈ {0, γ0, . . . , γ1}.

From this, we can directly derive the following identity for the remaining machine
capacity on machines of type k:

rk(σ) = ∑
i∈Mk

(
1 + δ′ − bi(σ)

)
=
(
1 + δ′

)
·mk −∑

γ
∑

i:bi(σ)=γ·(δ′)2

γ · (δ′)2

=
(
1 + δ′

)
·mk −∑

γ

abk(σ, γ) · γ · (δ′)2

=
(
1 + δ′

)
·mk −∑

γ

(ABk(t))γ · γ · (δ′)2 = Rk(t) .

Note first that pp
kj ≤ pr

kj +
mk ·δ′

n′ holds for small jobs according to the definition

of Ir and Ip (see Subsection 6.5.2 and Definition 6.24). Thus, we have ∑j∈Jk
pp

kj ≤
∑j∈Jk

(pr
kj + mk ·δ′/n′) ≤ (∑j∈Jk

pr
kj) + mk · δ′. As the identity ASk(t) = ∑j∈Jk

pr
kj holds

for the total processing time of small jobs assigned to type k, we get ∑j∈Jk
pp

kj ≤
ASk(t) + mk · δ′. Since we have ASk(t) ≤ Rk(t) by assumption, we finally get
∑j∈Jk

pp
kj ≤ Rk(t) + mk · δ′: the small jobs in Jk with their processing times pp

kj only
slightly exceed the remaining capacity of the machines of type k.

Assume for the sake of contradiction that there is one type k for which all small jobs
in Jk cannot be greedily scheduled. Thus, every machine i ∈ Mk has a processing
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time larger than 1 + 2δ′, and there are still small jobs left. Let δi > 0 be the processing
time by which all jobs assigned to machine i exceed 1 + 2δ′. We have

∑
j∈Jk

pp
kj ≥ ∑

i∈Mk

(
1 + 2δ′ + δi − bi(σ)

)
> ∑

i∈Mk

(
1 + 2δ′ − bi

)
= ∑

i∈Mk

(
1 + δ′ − bi

)
+ mk · δ′ = rk(σ) + mk · δ′ = Rk(t) + mk · δ′

≥ ∑
j∈Mk

pp
kj .

This is a contradiction. All small jobs can therefore be greedily scheduled. Let δi still
be the amount by which the total processing time of machine i exceeds 1 + 2δ′. (It
is of course possible that some machines may have a makespan smaller than 1 + 2δ′

even after the scheduling of the small jobs. Then, we set δi = 0.) As we have pp
kj < δ′

for small jobs on type k, the bound δi ≤ δ′ holds: at most one small job is assigned
to a machine i such that the processing time exceeds 1 + 2δ′. Hence, we have for the
makespan maxk maxi∈Mk 1 + 2δ′ + δi ≤ 1 + 3δ′.

Note that the proof by contradiction above is in fact independent of whether some
small jobs are still left or all small jobs have been assigned, but all machines i ∈ Mk

have a processing time that exceeds 1 + 2δ′. It is shown that there must be at least one
machine with a total processing time of at most 1+ 2δ′ because we get the contradiction
otherwise.

Finally, the schedule σ for Ip is also one for Iscale with a makespan of at most
1 + 3δ′. In fact, small processing times are identical in Ip and Iscale, and if we undo the
rounding of the large processing times, the makespan does not increase because the
large jobs were rounded up in Ip. After undoing the scaling of Iscale, the schedule σ is
a solution to I of value at most (1 + 3δ′)T.

We now state the overall running time for Backtracking and CreateSchedule.

Lemma 6.26. One call of Backtracking(t′) (Algorithm 6.7) needs time in O(K + n′ ·m).
Therefore, the total running time for all calls of CreateSchedule (Algorithm 6.6), i.e. of the
for-loop in Oracle (Algorithm 6.3), is in O(κ · K

(δ′)2 + n′ ·m) = mO(K/(δ′)2) · ( log m
δ′ )O(K

2).

Proof. Let us first consider Backtracking. Creating a list consisting of pointers to
the t′j can be done in O(n′): we just follow the pointers given by the backtracking
information Backtrack(t′j). The creation of the σk and Jk is in O(K), and setting the
values extime(i) to 0 in O(m). This is followed by the n′ iterations of the for-loop. In
one iteration, the case where j is small can be done in O(1). The case where j is large
needs O(m): we have to check all i ∈ Mk and their corresponding value extime(i). In
total, we need time O(K + n′ ·m) for one call of Backtracking.
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6 Scheduling on Unrelated Machines of Few Different Types

Let us now consider CreateSchedule. One call of CreateSchedule(t′) first de-
termines all Rk. Note that Rk = ∑γ(ABk(t′))γ · γ · (δ′)2 so that determining all Rk

needs O(K · 1
(δ′)2 ) including the checks of the if-condition (see the bound on γ ≤ γ1

in Lemma 6.15). Should one of the if-conditions fail, the call of CreateSchedule(t′)
is terminated such that the oracle checks the next t′′ ∈ TSn′ . In the worst case,
CreateSchedule is therefore called κ times without constructing a schedule, which
needs in total O(κ · K

(δ′)2 ).
The schedule σ is constructed if we have ASk(t′) ≤ Rk(t′) for all machine types

k. CreateSchedule is not called again afterwards because the oracle terminates if
σ has been found. The construction of σ first calls Backtracking(t′), which needs
O(K + n′ · m), and then greedily assigns the small jobs to the machines. Let nk

be the number of large jobs assigned to Mk. The greedy procedure then needs
O(nk + mk + |Jk|) for one k, i.e. O(n′ + m) for all K machine types. In total, we have
a time complexity first for all checks of the if-condition and then for the construction
of σ in

O
(

κ · K
(δ′)2 + (K + n′ ·m) + (n′ + m)

)
= O

(
κ · K

(δ′)2 + n′ ·m
)

=
K

(δ′)2 ·m
O(K/(δ′)2) ·

(
log m

δ′

)O(K2)

+ m ·
(
O
(

m2

δ′

)
+

(
log m

δ′

)O(K))

= mO(K/(δ′)2) ·
(

log m
δ′

)O(K2)

,

where we have used Assumption 6.2 and Lemma 6.20.

Theorem 6.27. Let I be an instance with 1 ≤ OPT(I) ≤ m. The dual approximation
approach (Algorithm 6.2) with the Oracle function of Algorithm 6.3 is a PTAS: it finds for
given δ > 0 and δ′ := δ

5 a solution of value at most (1 + δ)OPT(I). The running time is in

mO(K/(δ′)2) ·
(

log m
δ′

)O(K2)

= mO(K/δ2) ·
(

log m
δ

)O(K2)

.

Proof. Lemma 6.11 states that the binary search returns a solution of value at most
(1 + (C + 1)δ′ + C(δ′)2)OPT(I) if Oracle has the stated properties. These will now be
shown.

Suppose first that Oracle (Algorithm 6.3) returns a solution σ for T and input I.
First, the instance is scaled by Oracle and becomes Iscale, which is rounded to get Ir.
The solution σ is then determined for Ip. It is clear that a schedule is only returned
if there is a profile t ∈ TSn′ for which ASk(t) ≤ Rk(t) holds. If this is the case, the
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6.5 The Main Algorithm

returned schedule σ has a makespan of at most 1 + 3δ′ as seen in Lemma 6.25. It is
easy to see that it is also a schedule for I with a makespan of at most (1 + 3δ′)T.

It remains to prove that there is not a solution to I of value (at most) T if Oracle(I, T)
returns⊥. We show this by demonstrating that the oracle will always return a solution
if there is a solution of value (at most) T:

• The instance I satisfies OPT(I) ≤ T, which implies that

• the instance Iscale has an optimum OPT(Iscale) ≤ 1, which again implies that

• the instance Ir satisfies OPT(Ir) ≤ 1 + δ′ (see Lemma 6.14). Let σ be an optimal
schedule for Ir. Then,

• DynProg, CreateSchedule and Backtracking will find a schedule: Lemma 6.19
states that there is a profile tσ for which we have abk(σ, γ) = (ABk(tσ))γ and
ask(σ) = ASk(tσ) for all k and γ. As in the proof of Lemma 6.25, the identity
abk(σ, γ) = (ABk(tσ))γ implies rk(σ) = Rk(tσ). Since the small jobs assigned by
σ to the machine type k have to fit into the remaining machine capacity rk(σ),
we have ASk(tσ) = ask(σ) ≤ rk(σ) = Rk(tσ). By Lemma 6.25, the function
CreateSchedule(tσ) will therefore construct a schedule σ′ for Ip with a make-
span of at most 1 + 3δ′, which is also a solution to I with a makespan of at most
(1 + 3δ′)T.

Hence, the oracle has the desired properties. We now want that the bound

(1 + (C + 1)δ′ + C(δ′)2)OPT(I) ≤ (1 + δ)OPT(I)

is satisfied. Note that we have C = 3. Set δ′ := δ
5 such that (C + 1)δ′ + C(δ′)2 =

4δ′ + 3(δ′)2 ≤ δ holds because δ ≤ 1
3 .

Let us bound the overall running time of the binary search, i.e. Algorithm 6.2. The
binary search needs O(log(m

δ′ )) = O(log(m
δ )) iterations as seen in Lemma 6.11. In

each iteration, Oracle (Algorithm 6.3) is called. When called, Oracle needs O(K · n′)
to obtain first Iscale and then Ir as stated in Lemma 6.12 and 6.14. Lemma 6.21 bounds
the running time for the dynamic program by mO(K/(δ′)2)( log m

δ′ )O(K
2). The for-loop of

Oracle also needs time in mO(K/(δ′)2) · ( log m
δ′ )O(K

2) (see Lemma 6.26). Overall, we have
a time complexity in

O
(

log
(m

δ′

))
·
(
O
(
K · n′

)
+ mO(K/(δ′)2) ·

(
log m

δ′

)O(K2)
)

= O
(

log
(m

δ′

))
·mO(K/(δ′)2) ·

(
log m

δ′

)O(K2)

= mO(K/(δ′)2) ·
(

log m
δ′

)O(K2)

= mO(K/δ2) ·
(

log m
δ

)O(K2)

.
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6 Scheduling on Unrelated Machines of Few Different Types

We have used Assumption 6.2 to see that O(K · n′) = O(K · [m2

δ′ + ( log m
δ′ )O(K)]) ⊆

mO(K/(δ′)2) · ( log m
δ′ )O(K

2).

6.6 The General PTAS

The PTAS is presented in Algorithm 6.8.

Algorithm 6.8: An overview of the PTAS
Input: Instance I, ε > 0

1 Set ε′ := ε
5 and δ := ε′;

2 Construct from I the instance Imerge as shown in Section 6.4;
3 Call the binary search for Imerge (Algorithm 6.2) with δ′ = δ

5 = ε
25 ;

4 Undo the combination of the items in Imerge and then the rounding of Iround to get
a schedule σ for I;

5 return σ;

Lemma 6.28. For the values of ε′ = ε
5 , δ = ε′ and δ′ = ε

25 , the algorithm returns a solution
of value Aε(I) ≤ (1 + ε)OPT(I).

Proof. As seen in Theorem 6.27, the binary search returns a solution to Imerge whose
makespan is bounded by (1 + δ)OPT(Imerge). For convenience, we denote the make-
span by Am(Imerge). By undoing the combination of the items, we get a solution to
Iround of the same makespan. Thus,

• transforming Iround into Imerge,

• applying the binary search and then

• undoing the combination of items

is an algorithm Ar for Iround with

Ar

(
Iround

)
= Am (Imerge)

Thm. 6.27
≤ (1 + δ)OPT (Imerge) =

(
1 + ε′

)
OPT (Imerge) .

Since OPT(Iround) ≤ OPT(Imerge) ≤ OPT(Iround) + ε′ (see Theorem 6.9), we have an
algorithm with

Ar

(
Iround

)
≤
(
1 + ε′

)
OPT (Imerge) ≤

(
1 + ε′

) (
OPT(Iround) + ε′

)
=
(
1 + ε′

)
OPT

(
Iround

)
+ ε′

(
1 + ε′

)
.
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By Lemma 6.4, this implies an algorithm for I with

Aε(I) ≤
((

1 + ε′
)3

+ ε′ ·
(
1 + ε′

)2
)

OPT(I) ≤ (1 + ε)OPT(I) .

This upper bound holds because(
1 + ε′

)3
+ ε′ ·

(
1 + ε′

)2
=

(
1 +

ε

5

)3
+

ε

5
·
(

1 +
ε

5

)2

=

(
1 + 3

ε

5
+ 3

ε2

25
+

ε3

125

)
+

ε

5
+ 2

ε2

25
+

ε3

125
ε≤1/2

≤ 1 +
3
5

ε +
3
50

ε +
ε

4 · 125
+

ε

5
+

ε

25
+

ε

4 · 125
≤ 1 + ε .

(Main parts of the proof are taken from [49].)

Lemma 6.29. The PTAS has a running time in

O(K · n) + mO(K/ε2) ·
(

log m
ε

)O(K2)

.

Proof. The time to construct Imerge is in O(n · K) as stated in Theorem 6.10. The

running time for the binary search of mO(K/(δ′)2)·( log m
δ′ )O(K

2)
= mO(K/ε2)·( log m

ε )O(K
2)

is shown
in Theorem 6.27. When Imerge is constructed from Iround, it is saved for every item
j ∈ Imerge which items in Iround have been combined into j. (This is the set list(j) in
Algorithm 6.1.) Reversing the combination of the items is therefore in O(n). Undoing
the rounding can finally be done in O(K · n).

These two lemmas show Theorem 6.1.
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7 Concluding Remarks

Chapter 2 presented an AFPTAS for the Bin Packing Problem (BP) and the Variable-
sized Bin Packing Problem (VBP) with the approximation guarantee (1+ ε)OPT(I, C)+
O(log2( 1

ε )), i.e. with a smaller additive term. This was achieved by a practical ap-
plication of Shmonin’s theoretical result [80], which is based on the algorithm by
Karmarkar and Karp [56]. Contrary to Shmonin’s result, the linear programs are only
approximately solved with the max-min resource sharing algorithm by Grigoriadis et
al. [33] applied to VBP. To obtain the asymptotic approximation ratio of (1 +O(ε)),
we therefore had to show that the number of item sizes and therefore Area(I(k)) halves
in every iteration. Note that the max-min resource sharing approach also improved
the running time. An interesting question is whether these techniques can be applied
to other problems to find better AFPTAS. Bin Covering might be such a problem, for
which Jansen and Solis-Oba [52] found an AFPTAS with an additive term in O( 1

ε3 ).
Other examples may be Class Constrained Bin Packing [19], Bin Packing with Size
Preserving Fragmentation and Bin Packing with Size Increasing Fragmentation [77, 78].
Improved approximation algorithms can also be expected e.g. for Bin Packing with
Cardinality Constraints, Scheduling Multiprocessor Tasks and Resource-constrained
Scheduling.

The crucial open question for VBP is the construction of an AFPTAS with an
additive term in o(log2 1

ε ). As already mentioned, Shmonin’s bound OPT(I) ≤
LIN(I) + O(log2 d) for Cutting Stock [80] we have used is based on an algorithm
for Bin Packing by Karmarkar and Karp [56] with A(I) ≤ OPT(I) +O(log2 OPT(I)).
Hoberg and Rothvoß [35] were recently able to show with a constructive proof
that we have OPT(I) ≤ LIN(I) + O(log(LIN(I))) for Bin Packing and OPT(I) ≤
LIN(I) +O(log(d)) for Cutting Stock. It may be the basis of an AFPTAS for BP or
VBP with a smaller additive constant in O(log( 1

ε )). One important step for this is
probably the derandomization of Hoberg’s and Rothvoß’s algorithm.

The Chapters 3, 4 and 5 decreased the running time of the AFPTAS for BP and VBP.
This was done by improving the column generation subroutines of both algorithms.
First, Chapter 3 introduced the Knapsack Problem with Inversely Proportional Profits
(KPIP) and presented faster FPTAS for its variants: the running time is improved for
large M = |C| by using the values Fj(i) determined by dynamic programming for all
knapsack sizes in Cb ⊂ (2−(b+1), 2−b].
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7 Concluding Remarks

Chapter 4 presented a faster FPTAS for the Unbounded Knapsack Problem (UKP)
to improve the column generation for BP. The most important steps in the FPTAS
are the creation of the item set Ĩ by gluing and the introduction of aeff−c. This guar-
antees the existence of an approximate structured solution with a lower bound (see
Definition 4.16). Therefore, the approximate dynamic program has to store less tuples
(p, s, k) than in the case without the structure.

An open question is an improvement of the running time and/or the space complex-
ity e.g. with the techniques by Magazine and Oguz [67] or by Kellerer and Pferschy
[59–61]. Recently, Lokshtanov and Nederlof [65] showed that the 0-1 Knapsack Prob-
lem (0-1 KP) and the Subset Sum Problem have a pseudo-polynomial time and only
polynomial space algorithm. Subset Sum is a special case of the Knapsack Problem
where the profit of an item is equal to its size, i.e. pj = sj. Moreover, it was shown
that Unary Subset Sum is in Logspace [18, 54]. Gál et al. [24] described an FPTAS for
Subset Sum whose space complexity is in O( 1

ε ), i.e. which does not depend on the
actual input size, and whose running time is in O( 1

ε n(n + log n + log 1
ε )). Can any of

these results be further extended to improve the space complexity of an UKP FPTAS?

It is also an open question whether the ideas for UKP can be extended to the normal
0-1 KP or other KP variants as well as used for column generation of other optimization
problems. The currently fastest known algorithm for 0-1 KP is due to Kellerer and
Pferschy [59–61].

Chapter 5 finally presented the combination of the techniques of Chapters 3 and
4. The running time of the AFPTAS for VBP is now close to the AFPTAS for BP: they
only differ by a multiplicative factor of O(log 1

ε ) (and the additive term O(M)). It
is expected that the better running time of the FPTAS for UKP and UKPIP will also
improve the running time of AFPTAS for the problems we have mentioned above.
Finally, there is the open question of Remark 5.37: can the modified approximate
dynamic programming of Section 5.7 further improve the running time and space
complexity of FPTAS for UKP, UKPIP or other variants of KP and KPIP?

Chapter 6 described a PTAS for Scheduling on Unrelated Machines of Few Different
Types ((Pm1, . . . , PmK)| |Cmax) that is single exponential in 1

ε . A natural question is
of course the existence of an EPTAS. Another interesting task is the generalization
of this algorithm to jobs with ∆ ≥ 2 dimensions because Bonifaci and Wiese [8] first
considered this more general case. However, we run into trouble when it comes to the
preprocessing of jobs in Section 6.4. For one dimension ∆ = 1, jobs can be partitioned
into fast and slow ones on every machine type. The partition is then explicitly used to
set pround

kj = ∞ for jobs that are slow on a machine type k. This allowed us to bound
the number of profiles in Lemma 6.5 and therefore the number of jobs n′ in Imerge.
Hence, we were able to bound the time complexity of the oracle: the bound on n′
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limited the overall running time of the dynamic program that generates all possible
profiles. In ∆ ≥ 2 dimensions, a partition into fast and slow jobs on a machine type
may not be possible in a way similar to ours because a job may be fast in one, but slow
in another dimension.

Optimizations for the running time of our algorithm are probably possible. For
instance, the jobs large on a machine type are rounded linearly and then the rounded
processing times are used to derive the profiles. An adapted rounding may lead to
a smaller number of profiles. Geometric rounding may be an option, but then the
processing times are not necessarily a discrete multiple of a value like (δ′)2. One
possibility may therefore be not to round the processing times. Instead, the interval
[0, 1 + δ′] is partitioned geometrically. For each interval of the partition, the number of
machines is saved whose total processing time lies in this interval, which may lead to
an improved running time.

Finally, an open question is whether the FPTAS for Scheduling on m Unrelated
Machines (Rm | |Cmax) (where m is constant) presented by Jansen and Mastrolilli [49]
can also be adapted to (Pm1, . . . , PmK)| |Cmax and yield an FPTAS for a constant
number of machine types K.
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A Solving the LPs Approximately: The Details

We first introduce the max-min resource sharing algorithm by Grigoriadis et al. [33].
Then, the missing proofs of Subsection 2.5.1 are presented.

A.1 Max-Min Resource Sharing

Let fi : B→ R≥0, i ∈ {1, . . . , N}, be non-negative concave functions over a non-empty,
convex and compact set B ⊂ RL. The goal is to find

λ∗ := max {λ | min { fi(v), i ∈ {1, . . . , N}} ≥ λ, v ∈ B} ,

i.e. to solve

max λ s.t. f (v) :=


f1(v)

...
fN(v)

 ≥ λ


1
...
1

 , v ∈ B . (A.1)

Let e := (1, . . . , 1)T be the all-1 vector in RN and Γ := {p ∈ RN
≥0 | pTe = 1} be the

standard simplex in RN . Then obviously λ∗ = maxv∈B minp∈Γ pT f (v), and by duality

λ∗ = max
v∈B

min
p∈Γ

pT f (v) = min
p∈Γ

max
v∈B

pT f (v) = min
p∈Γ

Λ(p)

where Λ(p) := max{pT f (v) | v ∈ B} is the block problem associated to the max-min
resource sharing problem.

Let ε̄ > 0. We are looking for an approximate solution to (A.1):

Find v ∈ B such that f (v) ≥ (1− ε̄) λ∗e . (A.2)

This can be done with an algorithm by Grigoriadis et al. [33] (see also [41]). This
algorithm relies on a blocksolver ABS(p, t) that solves the block problem with the
accuracy t = ε̄

6 :

Find v ∈ B for a given p ∈ Γ, t = Θ(ε̄), such that pT f (v) ≥ (1− t)Λ(p).

First, the algorithm computes an initial solution

v(0) :=
1
N

N

∑
i=1

v̂(i) where v̂(i) := ABS
(

ei,
1
2

)
. (A.3)
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The vector ei ∈ RN is the unit vector with 1 in the i.th component and 0 otherwise,
therefore v̂(i) satisfies eT

i f (v̂(i)) = fi(v̂(i)) ≥ (1− 1
2 )Λ(ei) = 1

2 Λ(ei). The algorithm
then improves upon this initial solution v(0): it sets v := v(0) and computes the solution
θ( f (v)) of

t
N

N

∑
i=1

θ

fi(v)− θ
= 1, θ ∈ (0, min { f1(v), . . . , fN(v)}) . (A.4)

Note that the solution θ( f (v)) is unique because the sum is strictly increasing in θ.
Then, a new vector p = p( f (v)) = (p1, . . . , pN)

T ∈ Γ is computed with

pi :=
t
N

θ( f (v))
fi(v)− θ( f (v))

for i = 1, . . . , N . (A.5)

After this, v̂ := ABS(p( f (v)), t) is calculated as well as the following stopping condi-
tion checked:

ν(v, v̂) :=
pT f (v̂)− pT f (v)
pT f (v̂) + pT f (v)

≤ t . (A.6)

If not satisfied, v is set to v = (1− τ)v + τv̂, where

τ = τ( f (v)) :=
tθ( f (v))ν(v, v̂)

2N(pT f (v) + pT f (v̂))
. (A.7)

The algorithm then restarts with the calculation of θ( f (v)) and continues until the
condition ν(v, v̂) ≤ t is satisfied. Then it returns v. A speed-up is possible by beginning
with ε̄0 = 1− 1

2N and setting ε̄s =
ε̄s−1

2 when the stopping condition is met until the
stopping condition is satisfied for an ε̄s ≤ ε̄. The algorithm is presented in Algorithm
A.1. (The pseudocode representation was adapted from [14].)

Algorithm A.1: The max-min resource sharing algorithm (taken from [14])

Compute v(0). Set v := v(0), s := 0, ε0 := 1− 1
2N ;

repeat // scaling phase
s := s + 1, ε̄s := ε̄s−1

2 , t := ε̄s
6 , v := v(s−1);

while true do // coordination phase
Compute θ( f (v)) and p( f (v));
v̂ := ABS(p( f (v)), t);
Compute ν(v, v̂);
if ν(v, v̂) ≤ t then v(s) := v, break;
Compute step length τ and set v := (1− τ)v + τv̂;

until ε̄s ≤ ε̄;
return v(s);
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A.2 Missing Proofs

Remark A.1. It may not be possible to compute the root θ( f (v)) of (A.4) exactly. It can
be shown that it is sufficient to approximately determine it up to a relative accuracy
of O( ε2

N ) [41, p. 307]. The loss of accuracy because of this can be neglected, and the
approximated root can e.g. be found with the Newton method in O(N log log(N

ε )).
Note that the approximation to θ( f (v)) is then a number that can be expressed exactly.

Theorem A.2. Let ε̄ > 0 and let fi : B → R≥0, i ∈ {1, . . . , N}, be non-negative concave
functions over a non-empty, convex and compact set B ⊂ RL. Then Algorithm A.1 finds an
approximate solution v ∈ B to the max-min resource sharing problem (A.1), where v satisfies
(A.2). The algorithm needs O(N(log N + 1

ε̄2 )) iterations, where in each iteration a call to the
blocksolver is needed as well as an overhead of O(N log log(N 1

ε̄ )) incurs.

Proof. Correctness and running time were proved by Grigoriadis et al. [33] (see also
[41]).

A.2 Missing Proofs

Proof of Lemma 2.12. Note that the configuration generated by the blocksolver (2.7)
does not depend on r, but only on the simplex vector p. For different values r, but the
same vector p, the blocksolver will choose the same bin size and the same configuration
and then set the corresponding variable v(l0)j0

:= r
cl0

.

Using the notation of the Algorithm A.1, we have ABSrp(p, t) = rp · ABS1(p, t)
where ABSrp is the blocksolver for r = rp and ABS1 the blocksolver for r = 1. More-
over, we have fi(v) = ãT

i v, where ãi is the i.th row of the matrix Ã of (2.3).
This allows us to show the theorem by induction. (To simplify notation, we will

denote all variables and constants for r = 1 and for r = rp by a corresponding index.)

For s = 0, we have v(0)rp = rp · v(0)1 because of Definition (A.3): the initial solution v(0)r

is a linear combination of the different ABSr(em, t), where r ∈ {1, rp}.
Let us now assume that v(s

′)
rp = rp · v(s

′)
1 for all s′ ≤ s− 1, in particular vrp = v(s−1)

rp =

rp · v(s−1)
1 = rp · v1. We have θrp( f (vrp)) = rp · θ1( f (v1)) because the solution θ( f (v))

of (A.4) is unique, and rp · θ1( f (v1)) is a solution to it for r = rp because of the
linearity of fi(v). Moreover, θ̃rp( f (vp)) := rp · θ̃1( f (v1)) is an approximate solution

to θrp( f (vrp)) with a relative error in O( ε2

N ) if θ̃1( f (v1)) is a O( ε2

N ) approximation
to θ1( f (v1)), and vice versa. Hence, we can assume that prp( f (vrp)) = p1( f (v1))

according to Definition (A.5). Thus, we have v̂rp = ABSrp(prp , t) = ABSrp(p1, t) =

rp · ABS1(p1, t) = rp · v̂1 as explained above. Moreover, νrp(vrp , v̂rp) = ν1(v1, v̂1) holds

according to Definition (A.6). Similarly, the new vrp = v(s)rp := (1− τrp)vrp + τrp v̂rp and

the new v1 = v(s)1 := (1− τ1)v1 + τ1v̂1 satisfy v(s)rp = rp · v(s)1 because we have τrp = τ1
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according to Definition (A.7). Finally, the algorithm will finish for r = 1 and r = rp

after the exact same number of iterations because νrp(vrp , v̂rp) = ν1(v1, v̂1) holds. This
finishes our proof.

We finish this section with the proof of Theorem 2.13.

Proof of Theorem 2.13. For simplicity, we write dk = d and M1 = M. First, we solve
(2.2) with r = 1 as explained above to obtain a solution ˜̃v with

∑
l

cl ∑
j

˜̃v(l)j = 1

∑
l

∑
j

a(K(l)
j , bi) ˜̃v(l)j =: βi ≥ (1− ε̄)λ1ni for i ∈ {1, . . . , d} .

(A.8)

Here, λ1 is the optimum of (2.2) for r = 1. Note that we have set ε̄ = ε
4 .

The max-min resource sharing algorithm needsO(d(log d+ 1
ε̄2 )) = O(d(log d+ 1

ε2 ))

iterations, where a call to the blocksolver UKPIP(d, M, cmin, ε̄
6 ) is needed in each

iteration and an overhead of O(d log log(d 1
ε̄ )) = O(d log log(d 1

ε )) incurs (see [33, 41]
and Theorem A.2). In total, we get a running time in

O
(

d
(

log(d) +
1
ε2

)
max

{
UKPIP

(
d, M, cmin,

ε̄

6

)
,O
(

d log log
(

d
1
ε

))})
.

Note that at most one new configuration is added in every iteration of the max-min
resource sharing algorithm. Therefore, there are at most O(d(log d + 1

ε2 )) columns

in Ã, which is also an upper bound on the number of variables ˜̃v(l)j > 0 of the final
solution ˜̃v.

After having determined ˜̃v, we reduce the number of positive variables by finding
a basic solution ṽ to (A.8) with only d + 1 variables ṽ(l)j > 0. Beling and Megiddo [4]
have found an implementation of the standard technique to do so with a running time
in O(d1.594d(log d + 1

ε2 )) = O(d2.594(log d + 1
ε2 )), and Ke, Zeng, Han, and Pan [57]

have improved it to run in O(d1.5356d(log d + 1
ε2 )) = O(d2.5356(log d + 1

ε2 )). Since
f ( ˜̃v) = Ã ˜̃v = Ãṽ = f (ṽ), the value r0 = 1−ε̄

min{ f1( ˜̃v1),..., fd( ˜̃v1)} remains unchanged by this.

Note that ∑l cl ∑j ˜̃v(l)j = ∑l cl ∑j ṽ(l)j = 1 still holds, too.

After this reduction, we multiply the d + 1 positive variables ṽ(l)j by r0 · (1 + 4ε̄) to
obtain the solution to (2.2). This can obviously be done in time O(d + 1). We get the
solution v within the running time stated in Theorem 2.13.
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B KPIP: Adding the Small Items Efficiently

The ideas in the following section are taken from Lawler’s paper [63].

Remark B.1. The results in this section are also valid for non-integral profits and sizes
pj, sj ∈ R>0 as well as knapsacks cl ∈ R>0.

First, let J := {a1, . . . , am} be a set of knapsack items. Let σ : {1, . . . , m} → {1, . . . , m}
be the permutation that sorts the items according to their efficiency p(a)

s(a) in non-

increasing order, i.e.
p(aσ(1))

s(aσ(1))
≥ . . . ≥ p(aσ(j))

s(aσ(j))
≥ . . . ≥ p(aσ(m))

s(aσ(m))
. (In case of ties, the

item with the smaller index can be defined to have the smaller efficiency.) Moreover,
let c̃ be a knapsack size. We now want to add the items greedily to knapsack c̃ until
the knapsack is full without sorting the items according to their efficiency.

To do so, let J(1) the solution, i.e. the m′ items such that J(1) = {aσ(1), . . . , aσ(m′)}
and s(J(1)) = ∑m′

j=1 s(aσ(j)) ≤ c̃ < s(J(1)) + s(aσ(m′+1)) = ∑m′+1
j=1 s(aσ(j)). We will now

iteratively construct pairwise disjoint item sets J̃1, . . . , J̃k and J̄k such that

k⋃
j=1

J̃j ⊆ J(1) ⊆
k⋃

j=1

J̃j ∪ J̄k (B.1)

until having found one k̄ such that
⋃k̄

j=1 J̃j = J(1) or J(1) =
⋃k̄

j=1 J̃j ∪ J̄k̄.
We introduce the notion of the median set J̃ of an item set J̄ ⊆ J: if | J̄| = r, then the

median set J̃ consists of the first b r
2c+ 1 most efficient items of J̄. Thus, the median

set consists of the items sorted according to their efficiency up to and including the
median. For instance, we have for J̄ = J that J̃ = {aσ(1), aσ(2), . . . , aσ(bm

2 c+1)}. Since the
median of a set can be found in time and space O(| J̄|), this is also the running time
and space requirement for determining J̃. Note that

p(aσ(b r
2 c+1))

s(aσ(b r
2 c+1))

=
p(aσ(b r

2 c+2))

s(aσ(b r
2 c+2))

may hold, i.e. the median set is not always equal to{
a ∈ J̃ | p(a)

s(a)
≥

p(aσ(b r
2 c+1))

s(aσ(b r
2 c+1))

}
.
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B KPIP: Adding the Small Items Efficiently

Let us determine J(1). Set J̃1 := ∅ and J̄1 := J. Obviously, J̃1 ⊆ J(1) ⊆ J̃1 ∪ J̄1, i.e.
Property (B.1) holds, and the item sets are pairwise disjoint. Now, let

⋃k
j=1 J̃j and J̄k

be the current sets. Let J̃ be the median set of J̄k. If the items in
⋃k

j=1 J̃j ∪ J̃ fit into c̃,
then the optimal set J(1) has to contain

⋃k
j=1 J̃j ∪ J̃ as a subset. We set J̃k+1 := J̃ and

J̄k+1 := J̄k \ J̃ and replace k by k + 1. Then Property (B.1) still holds, and the item sets
are still pairwise disjoint.

On the other hand, if the items in
⋃k

j=1 J̃j ∪ J̃ do not fit into c̃, then
⋃k

j=1 J̃j ∪ J̃ contains
too many items, i.e. J(1) (

⋃k
j=1 J̃j ∪ J̃. Thus, we set J̄k := J̃. Property (B.1) holds, and

the item sets are still pairwise disjoint.
The procedure continues until

⋃k
j=1 J̃j = J(1) or

⋃k
j=1 J̃j ∪ J̄k = J(1). As the size of the

set J̄k halves in every iteration, we get a total running time in O(m + m
2 + m

4 + · · · ) =
O(m). Moreover, we only have to store the current union set

⋃k
j=1 J̃j as well as the

current sets J̄k and J̃ together with their corresponding total sizes s(
⋃k

j=1 J̃j), s( J̄k) and
s( J̄k). Thus, we only need space in O(m).

Lemma B.2. Let J := {a1, . . . , am} be a set of knapsack items together with a knapsack size
c̃. We can find the greedy solution J(1) for this knapsack size by a median-based divide-and-
conquer strategy in time and space O(|J|) = O(m).

Consider now a 0-1 knapsack instance with n items and the knapsack size c, which is
solved with Lawler’s FPTAS, i.e. the algorithms presented in Subsections 3.5.3 and
3.5.4 for only one knapsack size C = {c}. We assume that the Fmb(i) are not dominated
(otherwise we discard dominated ones as seen in Lemma 3.7), i.e. Fmb(1) < . . . <
Fmb(ic). Here, ic is the largest profit we have to consider, where we have Fmb(ic) ≤ c.

Take two profits i < i′′. Assume that the set of the small items J(i) and J(i
′′) that

are added to the remaining knapsack space c − Fmb(i) and c − Fmb(i
′′) in Step 9 of

Algorithm 3.4 (see also (3.10)) are known. Then obviously J(i) ⊇ J(i
′′) holds because

c− Fmb(i) > c− Fmb(i
′′). Furthermore, we have by definition φ(c− Fmb(i)) = p(J(i))

and φ(c− Fmb(i
′′)) = p(J(i

′′)). Let us take now a profit i′ with i < i′ < i′′ and therefore
with Fmb(i) < Fmb(i

′) < Fmb(i
′′). We know that J(i) ⊇ J(i

′) ⊇ J(i
′′), i.e. we have

J(i
′) = J(i

′′) ∪ J̃(i
′) for the appropriate item set J̃(i

′) ⊆ J̃(i) := J(i) \ J(i
′′). Thus, J̃(i

′) are
the items that can greedily be added to c− Fmb(i

′) together with the items J(i
′′).

Therefore, it is sufficient to find the item set J̃(i
′), and we can do so by applying

Lemma B.2 to the item set J̃(i) and knapsack size c̃ = c− Fmb(i
′)− s(J(i

′′)).

Lemma B.3. Let i < i′ < i′′ with Fmb(i) < Fmb(i
′) < Fmb(i

′′). We can determine the set
J̃(i
′) and therefore J(i

′) = J(i
′′) ∪ J̃(i

′) in time and space O(| J̃(i)|) = O(|J(i) \ J(i
′′)|). We only

have to know the item set J̃(i) = J(i) \ J(i
′′) and the size s(J(i

′′)) to find J̃(i
′) itself.

We can now determine all φ(c− Fmb(i)) again by a divide-and-conquer strategy. Let J
be the set of all small items for c with |J| =: m ≤ n, let ic be the largest profit i we have
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to consider, and let s be the number of the current iteration of the divide-and-conquer
algorithm. We start with s = 0. We take the profit ĩ := b ic

2 c+ 1, i.e. the median of
1, . . . , ic, and apply Lemma B.2 to it with c̃ = c− Fmb(ĩ). We find J(ĩ) = J̃(ĩ) in time
and space O(|J|) ⊆ O(n). We save J̃(ĩ) and s(J(ĩ)). The missing sets J(i) will now be
iteratively constructed.

Let s be the current iteration and r = rs ∈ N be a value such that i1 < i3 < . . . <
i2r−1 < i2r+1 are the profits for which the item sets J̃(i) have been determined and
saved so far. Moreover, we have also stored the corresponding sizes s(J(i)). Note that
J̃(i2r+1) = J(i2r+1) and that J(i) = J̃(i) ∪ . . . ∪ J̃(i2r+1). We take the median i2r′ of every pair
i2r′−1 and i2r′+1 as well as the median i0 of 1 and i1 and the median i2r+2 of i2r+1 and ic.
This can be done in time and space O(r). Thus, we have

1 ≤ i0 < i1 < i2 < . . . < i2r−1 < i2r < i2r+1 < i2r+2 ≤ ic .

Note that i2r′−1 and i2r′+1 may be neighbours so that i2r′ does not exist. If i1 = 2, we
set i0 = 1, and if i2r+1 = ic − 1, we also set i2r+2 = ic.

For every new i2r′ , we have Fmb(i2r′−1) < Fmb(i2r′) < Fmb(i2r′+1). We can deter-
mine J̃(i2r′ ) as the subset of J̃(i2r′−1) with Lemma B.3 in time and space O(| J̃(i2r′−1)|) =
O(|J(i2r′−1) \ J(i2r′+1)|).
We then save J̃(i2r′ ) and the total size s(J(i2r′ )) = s( J̃(i2r′ )) + s(J(i2r′+1)). Moreover, we
replace J̃(i2r′−1) by J̃(i2r′−1) \ J̃(i2r′ ) so that we now have J(i2r′−1) = J̃(i2r′−1) ∪ J(i2r′ ). These
operations additionally need time and space in O(|J(i2r′−1) \ J(i2r′+1)|).
One special case is i0, where we have J ⊇ J(i0) ⊇ J(i1) so that we use the set J \ J(i1)

for the algorithm of Lemma B.3, and all operations above need time and space in
O(|J \ J(i1)|). Another special case is i2r+2, where J̃(i2r+1) = J(i2r+1) ⊇ J(i2r+2) holds so
that we apply the algorithm of Lemma B.3 to the set J(i2r+1): we need time and space in
O(|J(i2r+1)|).

It is of course possible that e.g. already J(i2r′−1) = J(i2r′+1) holds so that we get
J̃(i2r′ ) = ∅ and a “running time” of O(|J(i2r′−1)|) = 0. To take into account the running
time and space complexity of such cases—we still have e.g. to save the information
that J̃(i2r′ ) = ∅—we additionally add O(1) to the time and space needed for each i2r′ ,
which yields an additional cost of O(r) in time and space for iteration s.

To sum up, we need time and space in

O
(∣∣∣J \ J(i1)

∣∣∣)+ r

∑
r′=1
O
(∣∣∣J(i2r′−1) \ J(i2r′+1)

∣∣∣)+O(∣∣∣J(i2r+1)
∣∣∣)+O(r)

= O(|J|+ r) = O(m + rs) ⊆ O(n + rs)

for iteration s because J(i2r+1), the J(i2r′−1) \ J(i2r′+1), and J \ J(i1) are disjoint sets. Obvi-
ously, we only need O(log ic) iterations in total to find the values for all Fmb(i). It is
also easy to see that rs ∈ O(2s).
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B KPIP: Adding the Small Items Efficiently

Let us assume that we have c = cl for one cl ∈ Cb of our 0-1 KPIP algorithm. For the
overall time bound, we have ic = icl ≤ imax ∈ O( 1

ε2
c(b)max/c(b)min) (see (3.23)) and therefore

together with rs ∈ O(2s) a total running time in

O
(O(log(imax))

∑
s=0

(n + rs)

)
= O

(
n · log

(
1
ε2

c(b)max

c(b)min

)
+
O(log(imax))

∑
s=0

2s

)

= O
(

n · log

(
1
ε2

c(b)max

c(b)min

)
+

1
ε2

c(b)max

c(b)min

)
.

For the overall space requirement, note that we only save the J̃(i) and s(J(i)) after
iteration s is completed, which need space inO(rs + n) ⊆ O(imax + n) in total. During
one operation s, we also need space in O(n + rs) ⊆ O(imax + n). As the values and
sets of iteration s− 1 can be discarded when iteration s has been finished, the overall
space complexity is in

O(imax + n) ⊆ O
(

1
ε2

c(b)max

c(b)min

+ n

)
.

The actual values φl(cl − Fmb(i)) can be determined by using that

φl (cl − Fmb(icl )) = ∑
a∈ J̃(icl )

p(a),

φl (cl − Fmb(icl − 1)) = φl (cl − Fmb(icl )) + ∑
a∈ J̃(icl−1)

p(a)

...

(B.2)

This needs time and space in O(imax + n), which is dominated by the expressions
above.

We have proved Theorem 3.16. It is possible to heuristically improve the running
time: let J′ be the first m′ most efficient small items so that ∑m′

r′=1 s(aσ(r′)) ≤ cl , but
∑m′+1

r′=1 s(aσ(r′)) > cl . By a binary search as above, J′ can be found in O(m) ⊆ O(n) and
then J′ instead of J used to determine all φl(·) and J̃(i).
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C The Bounded KPIP: The Details

Proof of Theorem 3.29. Here, we normally use multi-sets, i.e. we do not save individual
item copies, but how many copies of one item type we use. We have for example
J̃(i) = {aσ(j) : gj, . . . , aσ(j′) : gj′}, where gj′′ denotes the number of copies of item aσ(j′′)

in the set J̃(i). Note that the usual algorithm to find the median of a set can be adapted
to be still linear in the number of different item types in a set. For convenience, |J|
denotes the number of item types in set J.

First, the median-based search does not change much. It is used to get the P̄cl and
P0 in Step 1 of Algorithm 3.4, the small-item values φl(cl − Fmb(i)) in Step 9 and the
small items of Vt in Step 12, .

Let Fmb(i) and Fmb(i
′′) be two values as seen in Appendix B with their sets J̃(i), J(i)

and J̃(i
′′), J(i

′′), respectively. We may have e.g. J̃(i) = {aσ(j) : gj, . . . , aσ(j′) : gj′} and
J(i
′′) = {aσ(j′) : g̃j′ , . . . , aσ(j′′) : g̃j′′}, i.e. both contain item type aσ(j′), each with its

corresponding multiple. In iteration s of the algorithm of Theorem 3.16, the sets
J̃(i0), J̃(i1), . . . , J̃(i2rs+2) may therefore no longer be “disjoint” by sharing copies of the
same item type. However, we have by definition of the sets J̃(ĩ) that J̃(i2rs+2) contains
the most efficient items and that the efficiencies do not increase from one item set
to another: the items are added according to the order σ from the most to the least
efficient items. Thus, the number of overlapping item types in iteration s is bounded
byO(rs). A similar reasoning shows that the time and space complexity in Lemma B.2
and Lemma B.3 do not change either. Hence, determining J̃(i

′) for i < i′ < i′′ can
still be done linear in the number of item types in J̃(i). To sum up, the algorithm to
find all J̃(i) works as before and its asymptotic running time and space complexity
do not increase. In the same way, we can show that the computation of the values
φl(cl − Fmb(i)) as seen in (B.2) does not need more time and space.

The same properties also hold for the operations in Step 1 so that the overall running
time and space complexity of this step do not change either.

For the large-item computation in Step 7, we create item copies in Step 6. Fix one Cb.
Let ã1,j, . . . , ãt,j be the large item types that have the scaled profit qj, sorted according
to their size in non-decreasing order (i.e. s(ã1,j) ≤ . . . ≤ s(ãt,j)), and let d̃1,j, . . . , d̃t,j

be their corresponding maximal possible multiple. Since a solution can contain at
most nL,j large items for every qj (see Bound (3.28)), it is sufficient for the large-item
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C The Bounded KPIP: The Details

computation to take copies of the items of smallest size until having nL,j of them.
Hence, it is sufficient to find t′ ≤ t such that

d̃1,j + · · ·+ d̃t′−1,j + (d̃t′,j − hj)︸ ︷︷ ︸
:= ˜̃dt′ ,j

= nL,j, hj ∈
{

0, . . . , d̃t′,j − 1
}

,

and then take d̃t′′,j copies of ãt′′,j, t′′ ∈ {1, . . . , t′ − 1}, and ˜̃dt′,j copies of ãt′,j. This
method already yields the bound nb ≤ nL ∈ O( 1

ε2
c(b)max/c(b)min) for the large items as seen

in Lemma 3.20.
To improve the running time, Lawler’s idea for the unbounded case can be slightly

modified as proposed by Plotkin et al. [72, p. 296]: item copies ã(r)t′′,j are created with

ã(r)t′′,j with p(ã(r)t′′,j) = 2r p(ãt′′,j), s(ã(r)t′′,j) = 2rs(ãt′′,j)

for r ∈ {0, . . . , blog2(d̃t′′,j)c − 1}
and ã(r)t′′,j with p(ã(r)t′′,j) = (d̃t′′,j − 2blog2(d̃t′′ ,j)c + 1)p(ãt′′,j),

s(ã(r)t′′,j) = (d̃t′′,j − 2blog2(d̃t′′ ,j)c + 1)s(ãt′′,j)

for r = blog2(d̃t′′,j)c .

The only exception are the item copies ã(r)t′,j of ãt′,j where d̃t′′,j is replaced by ˜̃dt′,j =

d̃t′,j − hj. These multiple copies are sufficient to represent all choices of item copies.
Similar to the unbounded case, only nL,j item copies of smallest size for one profit qj

have to be kept after having created the copies. It is however not possible to keep only
the item ã(r)t′′,j of smallest size because Lemma 3.25 is not valid for BKPIP.

Note that keeping the nL,j smallest items for every profit qj can still be done in time
linear in the number of item types: the median finding algorithm used for it (see
Lemma 3.20) still runs in linear time.

For the entire BKPIP algorithm, the running time and space bound can be deter-
mined like for the improved 0-1 KPIP algorithm in Lemma 3.22. The additional time
to take the item copies in Step 6 and to keep only the smallest nL,j item copies for every
qj is dominated by the large-item computation in Step 7. In Step 12, the (normal) set of
large items found by backtracking and the (multi-)set J(i) of small items additionally
have to be combined into the multi-set Vt of the solution. This can be done in time
O( 1

ε2
c(b0)

max/c(b0)
min + n) and space O(n), which does not change the running time of the

inner for-loop (Steps 8–12; see also Lemma 3.17, which is still valid for the improved
FPTAS as seen in the proof of Lemma 3.22).
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Acronyms

PTAS Polynomial Time Approximation Scheme

APTAS Asymptotic Polynomial Time Approximation Scheme

EPTAS Efficient Polynomial Time Approximation Scheme

FPTAS Fully Polynomial Time Approximation Scheme

AFPTAS Asymptotic Fully Polynomial Time Approximation Scheme

KP Knapsack Problem

UKP Unbounded Knapsack Problem

BKP Bounded Knapsack Problem

KPIP Knapsack Problem with Inversely Proportional Profits

UKPIP Unbounded Knapsack Problem with Inversely Proportional Profits

BKPIP Bounded Knapsack Problem with Inversely Proportional Profits

BP Bin Packing Problem

VBP Variable-sized Bin Packing Problem

MLCSP Multiple-Length Cutting Stock Problem

CSP Cutting Stock Problem

SP Strip Packing

LP linear program

ILP integer linear program

P | |Cmax Scheduling on Identical Machines

Pm | |Cmax Scheduling on m Identical Machines (m is constant)

Q | |Cmax Scheduling on Uniform Machines
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Acronyms

R | |Cmax Scheduling on Unrelated Machines

Rm | |Cmax Scheduling on m Unrelated Machines (m is constant)

(Pm1, . . . , PmK)| |Cmax Scheduling on Unrelated Machines of Few Different Types (K
is constant)

OPT(I) The optimal value for instance I

OPT(I, C) For VBP: the optimal value for the instance (I, C) with items I and bin
sizes C

OPTcl (I) For KPIP: the optimal value for instance I, knapsack size cl , and profits
pj
cl

OPTcl (I) For KPIP: the optimal value for instance I, knapsack size cl , and basic
profits pj

OPT(I, v) For UKP: the optimal value for instance I, knapsack volume v, and
profits pj.
For KPIP: the optimal value for instance I, knapsack volume v, and
profits pj

cl

OPT(I, v) For KPIP: the optimal value for instance I, knapsack volume v, and
profits pj

OPT≤k0(I, v) For UKP: the value of the optimal structured solution to instance I for
k = k0, knapsack volume v, and profits pj (see Definition 4.11)

OPTSt(I, v) For UKP: the value of the optimal structured solution to instance I with
a lower bound for knapsack volume v and profits pj (see Definition 4.16)

OPT≤k0(I, v) For UKPIP: the value of the optimal structured solution to instance I for
k = k0, knapsack volume v, and basic profits pj (see Definition 5.19)

OPTSt(I, v) For UKPIP: the value of an optimal structured solution to instance I
with a lower bound for knapsack volume v and profits pj (see
Definition 5.28)

LIN(I) The optimal value for an LP, which is sometimes the relaxation of an
ILP in this thesis

Area(I) For VBP: The total size of the items in I
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