
Electronic Structure Theory

of Magnetoresistive Effects in

Atomic-Scale Junctions

induced by Spin-Orbit Coupling

and Spin Non-Collinearity

Dissertation
zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät der
Christian-Albrechts-Universität zu Kiel

vorgelegt von

Fabian Otte

aus Kiel

Kiel

2016



Erster Gutachter: Prof. Dr. Stefan Heinze

Zweiter Gutachter: Prof. Dr. Yuriy Mokrousov

Tag der mündlichen Prüfung: 13.1.2016
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Zusammenfassung

In dieser Arbeit werden magnetoresistive Effekte auf der atomaren Skala, die durch die
Spin-Bahn-Kopplung und nicht-kollineare Spinstrukturen verursacht werden, mittels der
Theorie der elektronischen Struktur untersucht. Dazu wird die “Full potential linearized
augmented plane wave” (FLAPW) Methode benutzt, die auf der Dichtefunktionaltheorie
(DFT) basiert. Die elektronische Struktur wird auf Wannier-Funktionen projiziert,
mit deren Hilfe eine “Tight-Binding” (TB) ähnliche Hamiltonmatrix konstruiert wird.
Diese Hamiltonmatrix wird in einem Formalismus basierend auf Greenschen Funktionen
verwendet, um die Transmissionsfunktion mittels der Landauer-Büttiker-Formel zu
gewinnen.

Der anisotrope magnetoresistive Effekt (AMR) von symmetrischen, einatomigen
Ni-Kontakten mit Co-, Rh- und Ir-Endatomen wird als Funktion des Abstandes
zwischen den Endatomen untersucht. Eine nicht-triviale Abstandsabhängigkeit des
AMR, der Werte von bis zu 150% erreicht, wird gefunden und sogar Vorzeichenwechsel
treten auf. Das durch die Spin-Bahn-Kopplung verursachte Mischen und der
Abfall der Übergangsmatrixelemente der Orbitale über das Vakuum zwischen den
Endatomen hängt von der Symmetrie der Orbitale ab. Daher dominieren räumlich
delokalisierte Orbitale den AMR im Tunnelregime und lokalisierte Orbitale im
Kontaktregime. Diese Erkenntnisse erlauben es Rastertunnelmikroskopie-Experimente
der Abstandsabhängigkeit des AMR von Co und Ir Adatomen, die auf Domänen und
Domänenwänden der Doppellage Fe auf W(110) platziert sind, zu erklären. Dabei wird
gezeigt, dass der AMR in Einzelatomen stark beeinflusst werden kann.

Weiterhin werden Kontakte mit einzelnen Molekülen bestehend aus Metall-Benzol-
Komplexen, die von einatomigen Ni- und Co-Ketten kontaktiert werden, studiert. Die
Hybridisierung der Molekülorbitale mit den Orbitalen des benachbarten Metallatoms
resultiert in einer Filterung der Transmissionsfunktion anhand der Orbitalsymmetrie,
die zu einem gigantischen molekularen AMR führt.

Anschließend wird über die idealisierte Struktur basierend auf einatomigen Ketten
hinausgegangen und der AMR in Pt-Bruchkontakten untersucht. Es wurde theoretisch
vorhergesagt, dass Pt in niedrigdimensionalen Systemen ein magnetisches Moment
entwickelt und jüngste experimentelle Ergebnisse des AMR von Pt-Bruchkontakten
liefern starke Indizien für diesen aufkommendem Magnetismus. Von bcc-(001)
Elektroden kontaktierte Pt-Trimere werden studiert und ein AMR von bis zu 20% in
Übereinstimmung mit den experimentellen Daten wird gefunden.

Schließlich wird der Ursprung des nicht-kollinearen magnetischen Tunnelwiderstands
(TNCMR) erläutert, der in Rastertunnelmikroskopie-Experimenten entdeckt wurde,
bei denen Skyrmionen in der PdFe/Ir(111)-Oberfläche von nicht-magnetischen Spitzen



sondiert werden. Basierend auf TB und DFT Rechnungen wird gezeigt, dass die
Änderung des Tunnelstroms von der Mischung der Spinkanäle herrührt, die durch
die nicht-kollineare Spinstruktur verursacht wird. Dieses Mischen führt zu einer
Verschiebung eines Peaks in der Vakuumzustandsdichte, die einen TNCMR von bis
zu 100% verursachen kann. Dieser Effekt könnte in zukünftigen Bauteilen zur
elektronischen Detektion von Skyrmion ohne zusätzliche magnetische Elemente genutzt
werden.



Abstract

In this thesis magnetoresistive effects caused by spin-orbit coupling (SOC) and spin non-
collinearity are studied on the atomic scale based on electronic structure theory. The full-
potential linearized augmented plane wave method is applied, which is based on density
functional theory (DFT). The electronic structure is projected on Wannier functions
from which a tight-binding (TB) like Hamiltonian is constructed. This Hamiltonian is
used in a Green’s function formalism to obtain the transmission function of single-atom
and single-molecule junctions within the Landauer approach.
The anisotropic magnetoresistance (AMR) of symmetric Ni monowire junctions

terminated by Co, Rh and Ir apex atoms is investigated as a function of the distance
between the apex atoms. A non-trivial distance dependence of the AMR is found,
which can reach values of up to 150% and can even change sign. The orbital mixing
due to SOC and the decay of the transition-matrix element across the gap between
the apex atoms depends on the orbital symmetries. Therefore, spatially localized and
delocalized orbitals dominate the AMR in the contact and tunneling regime, respectively.
These findings allow to explain scanning tunneling microscopy (STM) experiments of
the distance dependence of AMR in Co and Ir adatoms located on domains and domain
walls of a double layer of Fe on W(110). It is shown that the AMR can be tuned on the
single-atom level.
Furthermore, single-molecule junctions consisting of metal-benzene complexes

contacted by Ni and Co monowires are studied. The hybridization of the molecular
orbitals with the orbitals of the adjacent metal atom results in an orbital-symmetry
filtering effect on the transmission function, which leads to a giant molecular AMR.
Going beyond the idealized monowire geometry, the AMR is investigated in Pt break

junctions. Pt is expected to become magnetic in low-dimensional systems and recent
experimental results on the AMR of Pt break junctions strongly indicate this emergent
magnetism. Pt trimers contacted by bulk-like bcc-(001) electrodes are studied finding
an AMR of up to 20% in agreement with the experimental results.
Finally, the origin of the tunneling non-collinear magnetoresistance (TNCMR) is

explained, which has been discovered in STM experiments probing magnetic skyrmions
in PdFe/Ir(111) with non-magnetic tips. It is demonstrated based on TB and DFT that
the change of the tunnel conductance is due to spin mixing caused by the non-collinearity
of the spin structure. This mixing leads to a peak shift in the vacuum density of states,
which can result in a TNCMR of up to 100%. This effect may be used for an all-electrical
detection of skyrmions in future devices.
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1 Introduction

Today, spintronics is a research focus of condensed matter physics. Its key idea to use
not only the charge but also the spin degree of freedom of electrons opens the route to a
vast number of potential applications. One type of effects that is already exploited
in today’s information technology are the magnetoresistive effects. In particular,
magnetoresistances are one key ingredient of ultra-dense magnetic data storage devices.
Before 1990, inductive read heads, which measure the magnetic flux from a stored bit,
were used in hard disk drives. Since the size of the bit determines the magnetic flux,
the limiting bit size is comparably large. Magnetoresistive effects have been found
to be ideally suited to further increase the data storage density. Magnetoresistance
originates from the interdependencies between the conductance and the alignment of
the magnetization. In general, the magnetoresistance (MR) is defined as the ratio of the
conductance between two configurations of the magnetization, here labeled with 1 and
2:

MR = 100% · G1 −G2

G2

. (1.1)

Starting in 1990, IBM introduced the first hard disk drive (HDD) using MR. In
particular, the read head was based on the anisotropic magnetoresistance (AMR). The
AMR was discovered by Lord Kelvin in 1854 [2] and relies on the difference between
the conductance for a parallel (G‖) and for a perpendicular (G⊥) orientation of the
magnetization of the sample with respect to the current direction. It is caused by
the relativistic spin-orbit coupling (SOC), which changes the scattering properties of
the electrons constituting the current depending on the magnetization direction, and

(a) (b) (c)GMR/TMR TAMR TNCMR

Gp Gap G‖ G⊥ GFM GNC

Figure 1.1: Sketch of the (a) giant magnetoresistance/tunneling magnetoresistance, (b)
tunneling anisotropic magnetoresistance and (c) tunneling non-collinear magnetoresistance.
Black boxes represent non-magnetic electrodes while colored boxes represent magnetic
electrodes with a magnetization direction represented by the white arrows. Gray boxes
represent insulators or in case of the GMR non-magnetic metals. The figure is adapted from
Fig. 1 of Ref. [1].
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1 Introduction

reaches values of up to 5% [3]. The magnitude of the MR limits the size of the bits at
which the signal-to-noise ratio is still large enough for exploitation in devices.

In 1997, HDDs using the giant magnetoresistance (GMR) were introduced. For
the GMR, discovered in 1988 by Peter Grünberg [4] and Albert Fert [5], who were
awarded the Nobel prize in Physics 2007, two magnetic layers separated by a non-
magnetic metal are considered as sketched in Fig. 1.1 (a). If the magnetizations of the
two layers are aligned antiparallel (Gap), electrons of spin-up and spin-down character
undergo the same scattering processes. However, if the magnetizations of the two layers
are aligned parallel (Gp), the scattering properties differ for spin-up and spin-down
electrons enhancing the total current compared to the case of antiparallel alignment of
the magnetizations. The magnitude of the GMR obtained in devices is about 10% [6].

Larger MR values of more than 100% can be reached in tunnel junctions, which in
similarity to the GMR consist of two magnetic electrodes and an insulating barrier. The
tunneling magnetoresistance (TMR) was discovered by M. Julliere in 1975 [7]. The first
HDD utilizing the TMR, which is nowadays used in all HDD read heads, was introduced
in 2004.

Recently, the AMR was discovered in the tunneling geometry, consisting of a
magnetic and a non-magnetic electrode separated by an insulating barrier as sketched
in Fig. 1.1 (b), using planar tunnel junctions with ferromagnetic semiconductors [8].
The tunneling anisotropic magnetoresistance (TAMR) is thereby defined according to
Eq. (1.1) for a conductance with a parallel (G‖) and perpendicular (G⊥) orientation of
the magnetization with respect to the tunneling current. In the TAMR geometry only
one magnetic electrode is needed, which is advantageous since in contrast to the GMR
and TMR spin coherence is not necessary. However, as already mentioned above, the
limited magnitude of the (tunneling) AMR found in mesoscopic samples of 2-3% limits
the achievable bit size.

New interest in the AMR also arose concerning its enhancement in low-dimensional
systems. Low-dimensional systems often show very different properties compared to
the bulk case. Regarding the electric properties, one can no longer use Ohm’s law
since quantization effects occur. If one considers the ballistic regime, i.e., the absence
of electron scattering, the resistance is determined by the spin-degenerate conductance
quantum G0 = 2e2/h = (12.9 kΩ)−1 divided by the number of available modes. In the
ballistic regime, the AMR has been predicted to reach values of nearly 20% [9] and at
the single-atom limit of the TAMR values of 10% have been found experimentally [10].
The origin of this enhancement compared to the bulk case lies in the fact that only a
few modes are affected by SOC, while the remaining modes constitute a background
conductance. Therefore, the fewer “background modes” present the larger the AMR,
which means constrictions on the atomic-scale lead to the largest effects.

Unfortunately, reducing the dimensionality of the junction complicates the
experimental and theoretical investigation of these systems. However, the formidable
development of the scanning tunneling microscopy (STM), invented by Binning and
Rohrer in 1981 [11], who were honored with the Nobel prize in Physics in 1986, and of the
spin-polarized STM [12] provided sophisticated state-of-the-art experimental techniques
allowing one to resolve electronic and magnetic structures on the atomic scale.
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Complementary on the theory side, electronic structure methods have been developed
without which detailed understanding of these experiments would not be possible. One
of the most successful methods is the density functional theory (DFT) developed by
Hohenberg, Kohn [13], who was awarded the Nobel Prize in Chemistry in 1998, and
Sham [14]. To make practical use of the DFT, numerous implementations have been
developed and one of the most precise implementations is the full-potential linearized
augmented plane wave (FLAPW) method [15, 16], which takes into account all electrons
and the full shape of the electrostatic potential.
The size of the system which can be described by DFT methods is limited by the

speed of the supercomputers used for the calculations. The present-day frontiers are
reached by describing, for example, realistic break junctions, junctions of a full STM
geometry or huge non-collinear magnetic structures such as skyrmions consisting of
hundreds of atoms. Furthermore, not all materials can be described accurately with
current approximations of the exchange-correlation potential.
Therefore, and since human nature demands for intuitive, picturesque understanding

from which new ideas can spark, effective models are very useful. For the electronic
structure one approach is the tight-binding (TB) model based on easy-to-interpret
atomic orbitals or more sophisticated Wannier functions.
In this thesis, which is primarily concerned with MR, a combined approach is

used. On the one hand, FLAPW calculations post-processed with a Green’s function
formalism [17] based on Wannier functions [18] are performed to determine the
transmission function and conductance from DFT and, on the other hand, simple TB
models are devised to describe the underlying physical origin of the properties of interest.
The conductance is obtained starting with calculations using the FLEUR code [19].

The FLEUR code is an implementation of the FLAPW method developed at the
Forschungszentrum Jülich. It offers real two-dimensional and one-dimensional [20]
geometries using an optimized basis set to describe the vacuum region, which allows
for faster calculations compared to the usual super cell approach. The Green’s function
formalism needs a description of the electronic structure in localized orbitals. Therefore,
the electronic structure obtained by FLEUR is projected on Wannier functions, which in
contrast to the delocalized basis in FLAPW are localized in real-space and preserve the
accuracy of the FLAPW calculation including complex electronic effects due to SOC.
From the Wannier functions a tight-binding like Hamiltonian matrix for open quantum
systems is constructed, which allows to apply the Green’s function formalism to obtain
the transmission function.
The thesis starts with a description of the Green’s function formalism to calculate the

transmission function and conductance within the Landauer approach [21] to coherent
transport in chapter 2. A short introduction to DFT and the FLAPW method and its
implementation in FLEUR is given in chapter 3. The Wannier functions and the setup of
the Hamiltonian matrices for the transport calculations are described in chapter 4.
In chapter 5, the AMR in single-atom junctions is studied from the tunneling to

the contact regime. For this purpose, the conductance of symmetric Ni monowires
terminated by Co, Rh and Ir apex atoms is calculated for a gap of variable size between
the apex atoms to mimic distance-dependent STM experiments. We find that the
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1 Introduction

AMR is enhanced for heavier apex atoms due to the larger SOC to up to 150%. As
a function of the gap size the AMR varies drastically and can even change its sign.
This distance dependence can be explained via the SOC induced orbital mixing and
the decay constants of the transition matrix elements between the orbitals at the apex
atoms on each side of the gap, which depend on the orbital symmetry. Therefore, the
AMR is dominated by spatially delocalized and localized orbital types in the tunneling
and contact regime, respectively.

The insight gained from the idealized junctions considered in chapter 5 allows to
explain STM experiments of Co and Ir adatoms on a double layer of Fe on W(110)
as discussed in chapter 6. The double layer of Fe exhibits domains and domain walls
with a magnetization pointing parallel and perpendicular to the surface, respectively.
The magnetic moments of adatoms located on domains and domain walls are aligned
to the moments of the underlying Fe atoms by the strong exchange interaction. Their
conductances are probed with a non-magnetic W tip and the distance between the
tip and the adatom is varied. This setup resembles the AMR geometry sketched in
Fig. 1.1 (b). A non-trivial distance dependence of the AMR is found for both Co and
Ir apex atoms. Motivated by DFT calculations, these results are explained with a TB
model, the key ingredients of which consist of the SOC induced orbital hybridization
at the adatom and the different decay constants of the transition matrix elements
between the adatom and the apex atom of the STM tip of orbitals of different symmetry.
Furthermore, the Green’s function formalism can be used to derive an analytical form
of the distance dependence of the conductance, which results in an excellent fit of the
experimental data.

In chapter 7, a new way of enhancing the AMR is introduced: orbital-symmetry
filtering by organic materials contacted by metallic leads. We find that the AMR in
monowires can be enhanced to gigantic values of about 100000% by contacting metal-
benzene complexes. The origin of this giant AMR is an orbital-symmetry filtering
effect on the transmission function caused by the hybridization of the molecule with
the adjacent metal atoms, which reduces the number of modes contributing to the
transmission function. The quality of the orbital-symmetry filtering is thereby sensitive
to the energetic position of the molecular orbitals, which is shown by contacting Bz,
VBz2, NbBz2, TaBz2, and V2Bz3. In addition, the energy landscape of this so-called
molecular anisotropic magnetoresistance (MAMR) is analyzed by using Ni and Co
monowires as contacting leads. Eventually, a generic TB model is used to show that the
effect might also be found for molecules on surfaces.

In chapter 8, we shift from idealized monowire structures to geometries which are
closer to experimental ones. The AMR of a break junction consisting of a Pt trimer
between two bcc(001)-leads is analyzed, whereby the junction is elongated to several
distances. In such nanoscale junctions, Pt has been predicted to become ferromagnetic
due to the reduced coordination number, which leads to an increased density of states
at the Fermi level fulfilling the Stoner criterion for ferromagnetism.

Direct experimental verification of this emergent magnetism is extremely difficult.
Therefore, one tries to detect it indirectly by measuring the AMR, which relies on a
spontaneous magnetization. Recent experiments reporting on the AMR of Pt break
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junctions [22] strongly indicate an emergent magnetism in these low-dimensional Pt
systems. However, this interpretation is not unambiguous due to the complexity of
the structure and the unknown exact atomic arrangement. Therefore, complementary
calculations of the conductance in such junctions are necessary [22], which we provide
in this chapter. We find conductances in the range of 0.75 to 0.9G0 and an AMR of up
to 20%. During elongation these values vary, which can be attributed to changes in the
electronic structure induced by the emergent magnetism and the bonding characteristics
for the different elongations. Qualitatively, our findings agree well with the experimental
data.
In chapter 9, the origin of a newly discovered magnetoresistance effect is explained,

which is not caused by SOC but by non-collinear spin structures. This tunneling
non-collinear magnetoresistance (TNCMR) has been observed experimentally in STM
experiments on skyrmions in the PdFe/Ir(111) system [23, 24] probed by a non-magnetic
tip. A sketch of the principle analogous to the TMR/GMR and TAMR can be seen in
Fig. 1.1 (c). The TNCMR measures the difference of the conductance for a ferromagnetic
(GFM) or non-collinear (GNC) arrangement of the spin structure of the magnetic electrode.
These findings are explained using two-orbital TB models adapted to results from DFT
calculations of spin-spiral states incorporating the full spin structure, resulting in very
well agreement with the experimental findings. The mixing of orbitals of majority and
minority spin character induced by the non-collinearity [25] leads to a pronounced peak
shift in the vacuum density of states compared to the ferromagnetic case, which can
constitute a TNCMR of up to 100%. The TNCMR provides a possibility to easily detect
non-collinear magnetic structures without the need of a magnetic read-out electrode.
Finally, the thesis is concluded in chapter 10.
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2 Coherent Transport

In macroscopic dimensions the resistance of a conductor can be described by Ohm’s law

R = (σA/L)−1, (2.1)

where σ is the material specific conductivity, andA and L are the cross-sectional area and
the length of the conductor, respectively. However, if the dimensions of the conductor
are reduced from macroscopic to microscopic length scales, Ohm’s law breaks down and
new effects emerge. Firstly, even if the conductor is perfect, i.e., no scattering of the
conducting electrons occurs, a resistance due to the interface of the contacts with the
conductor arises independently of the length L. Secondly, the resistance does not scale
with A−1 anymore but depends on the number of transverse modes in the conductor
and changes in discrete steps. The characteristic lengths at which these effects occur
are the mean free path lmfp and the phase relaxation length lφ.

The mean free path is the length that an electron can travel without changing its
momentum. The momentum can be changed by scattering due to impurities and
interfaces or any other scattering event that does not change the phase of the electron.
The regime where only phase-conserving scattering occurs is called coherent transport.
If no scattering is present at all, the regime is called ballistic. The mean free path
is strongly material dependent. In magnetic transition metals it is of the order of
lmfp = 10− 20 Å [26].

If scattering events are present which change the energy and the phase, one speaks
of incoherent transport. This can be caused by electron-phonon or electron-electron
scattering. The phase relaxation length is the length an electron travels without
changing its energy and is of the order of lφ = 100− 200 Å [27].

In this work, we regard the coherent transport regime. In the following, we will briefly
derive the basic equations and properties of the coherent transport regime following the
book from Datta [28].

2.1 Conductance Quantum and Ballistic Contact Resistance

We consider a three-dimensional conductor of a free electron gas with dimensions Ω =
Lx × Ly × Lz where Lx ≫ Ly = Lz and periodic boundary conditions. This leads to
wave functions

ψ(r) =
1√
Ω
exp(ikr) (2.2)

7



2 Coherent Transport

(a) (b)

kx

contact 1 contact 2conductor E

µ1

µ2

Figure 2.1: (a) Sketch of a conductor connected to contact 1 with chemical potential µ1
and contact 2 with chemical potential µ2. (b) Sketch of the dispersion relation for a free 3D
electron gas in dependence of kx. ky and kz give rise to the transverse modes.

with the conditions

kx =
2π

L
νx, ky =

2π

Ly

νy, kz =
2π

Lz

νz with νx, νy, νz ∈ Z. (2.3)

The energy dispersion is

E =
~2

2m
(k2x + k2y + k2z) =:

~2k2x
2m

+ ǫ0(ky, kz). (2.4)

The conductor is connected to two contacts at the left and right side as sketched in
Fig. 2.1 (a). The contacts are assumed to be reflectionless, meaning that electrons can
enter the contacts from the conductor with a negligible probability of being reflected.

Since one is interested in the transverse current in x direction, one regards the energy
dispersion as a function of kx, while ky and kz give rise to the different transverse modes
as sketched in Fig. 2.1 (b). The current density of one of the positive kx modes, which
occupation shall be described by f+(E(kx)), can be described by

j+ = env, (2.5)

where e is the charge of the electron, n = 1
Ω
is the electron density, and v = 1

~
∂E
∂kx

is the
velocity of the electron. The total current of the positive kx modes then is

I+ = j+ · (Ly · Lz) =
e

Lx

∑

kx≥0

1

~

∂E

∂kx
f+(E). (2.6)

8



2.2 The Landauer-Büttiker Formula

Since the kx states are very dense, it is convenient to change to an integral representation

I+ =
e

L

∫ ∞

ǫ0(ky,kz)

1

~

∂E

∂kx
f+(E)

dkx
(2π/Lx)

=
e

h

∫ ∞

ǫ0(ky ,kz)

f+(E)dE. (2.7)

To get the current for all modes, one now simply has to count the number of modes at
energy E

M(E) =
∑

ky,kz

θ(E − ǫ0(ky, kz)), (2.8)

which then gives

I+ =
e

h

∫ ∞

−∞
f+(E)M(E)dE. (2.9)

From the above equation one can see that the current carried by each mode per energy
is the conductance quantum e/h.
If one now applies a bias voltage so that contact 1 and 2 have a chemical potential of µ1

and µ2, respectively, the current carried by the −kx and +kx states does not cancel out
anymore as indicated in Fig. 2.1 (b). If the number of modes M(E) ≡M is constant in
the energy range µ1 ≥ E ≥ µ2 and the occupation function of the left and right contact
fL(E) and fR(E) are simple step-functions (T = 0K) one can write:

I = I+ + I− =
e

h

∫ ∞

−∞
(θ(µ2 − E)− θ(µ1 − E))M(E)dE (2.10)

=
|e|
h

∫ µ1

µ2

MdE =
|e|2
h
M
µ2 − µ1

|e| . (2.11)

Analogous to Ohm’s law one can define a contact resistance GC from Eq. (2.11) given
by

G−1
C =

h

e2M
≈ 6.45 kΩ

M
, (2.12)

which is created by the finite number of modes in the conductor. When the dimensions
of the conductor Ly and Lz become macroscopic, the number of modes will be large so
that the contact resistance tends to zero.

2.2 The Landauer-Büttiker Formula

If one now considers conductors which exhibit elastic scattering of the electrons, one has
to take into account the probability T (E) for electrons with energy E originating from
the left lead to be scattered into the right lead and vice versa as sketched in Fig. 2.2.
One can regard the conductor as being partitioned into a scattering region and two

9



2 Coherent Transport

Figure 2.2: Sketch of a conductor
consisting of a scattering region
which is connected to contact 1 by
the ballistically conducting lead 1
and contact 2 by the ballistically
conducting lead 2. The probability
of an electron originating from
contact 1 and contact 2 to
be transmitted by the scattering
region is T1 and T2, respectively.

contact 1 contact 2lead 1 lead 2
scattering
region

i+1

i−1 i−2

i+2T1

T2

perfectly conducting leads connecting the scattering region to the contacts. The influx
of electrons per unit energy from lead 1 and 2 (cf. with Fig. 2.2) can be written as:

i+1 (E) =
e

h
M1(E)f1(E) (2.13)

i−2 (E) =
e

h
M2(E)f2(E). (2.14)

The outflux from lead 2 is

i+2 (E) = T1(E)i
+
1 (E) + (1− T2(E))i

−
2 (E) (2.15)

and from lead 1 it is

i−1 (E) = (1− T1(E))i
+
1 (E) + T2(E)i

−
2 (E). (2.16)

The net current per energy is then given by

i(E) = i+1 − i−1 = i+2 − i−2 (2.17)

= T1i
+
1 − T2i

−
2 (2.18)

=
e

h
[M1(E)T1(E)f1(E)−M2(E)T2(E)f2(E)]. (2.19)

Defining the transmission function as T̄ (E) = M(E)T (E) and assuming T̄ = T̄1 = T̄2,
which holds if no incoherent scattering is present, one ends up with the Landauer-
Büttiker formula [21, 29]:

I =
e

h

∫
T̄ (E)[f1(E)− f2(E)]dE. (2.20)

The transmission function T̄ is the sum of all the transmission probabilities Tmn between
every mode m in lead 1 and every mode n in lead 2:

T̄ (E) =
∑

m

∑

n

Tmn(E). (2.21)

Büttiker has shown that the formula can be generalized to multi-terminal devices [30].
In this work, it is assumed that the electronic structure of the conductor does not

change with the applied bias, which means that the transmission function does not
change as a function of the applied bias.

10



2.3 Obtaining the Transmission Function with Green’s Functions

2.3 Obtaining the Transmission Function with Green’s Functions

To calculate the transport properties we now have to calculate the transmission function
T̄ (E). The transmission probabilities Tmn can be calculated from the scattering matrix,
which relates the outgoing wave amplitudes bi to the incoming wave amplitudes ai of
the electrons in lead 1 and lead 2, for example, for n modes the scattering matrix S can
be described by




b1
b2
...
bn


 =




s11 s12 · · · s1n
s21 s22 · · · s2n
...

...
. . .

...
sn1 sn2 · · · snn







a1
a2
...
an


 . (2.22)

The transmission probabilities Tmn are obtained from the scattering matrix by

Tmn = |smn|2. (2.23)

A more general and computationally more powerful concept are Green’s functions.
Green’s functions give the response at any point in the conductor due to an excitation
at any other point. The Green’s function is related to the scattering matrix by the
Fisher-Lee relation [31].

2.3.1 Green’s Functions

The transport through a conductor can be described by an incident wave originating
from the contacts, which leads to an excitation S in the conductor. The response Ψ to
this excitation in the conductor is connected to the excitation by the Hamilton operator

Ĥ = − ~2

2m
∆+ U(r), (2.24)

where U(r) represents the potential in the conductor. The problem can be expressed as

[
E − Ĥ

]
Ψ = S. (2.25)

To calculate Ψ, the Green’s function

G =
[
E − Ĥ

]−1

(2.26)

has to be calculated.
It is instructive to regard the simple case of a one-dimensional wire with U(r) ≡ U0.

Then Eq. (2.25) reads

(
E − U0 +

~2

2m

∂2

∂x2

)
G(x, x′) = δ(x− x′). (2.27)

11



2 Coherent Transport

The solution to this differential equation are outgoing or incoming plane waves:

GR(x, x′) = − 1

~ν
exp [ik|x− x′|] (2.28)

GA(x, x′) = +
1

~ν
exp [−ik|x− x′|], (2.29)

where k =

√
2m(E−U0)

~
and ν = ~k

m
. The retarded Green’s function GR corresponds to

outgoing waves and the advanced Green’s function GA to incoming plane waves. Which
solution is adequate to the problem has to be determined by the boundary conditions.

The boundary conditions can be incorporated into Eq. (2.27) by adding an
infinitesimal +iη (η > 0) to the energy:

(
E − U0 +

~2

2m

∂2

∂x2
+ iη

)
G̃(x, x′) = δ(x− x′). (2.30)

This leads to an imaginary component in the wave vector

k̃ =

√
2m(E − U0

~

√
1 +

iη

E − U0

≈ k

(
1 +

iη

2(E − U0)

)
, (2.31)

which makes the retarded Green’s function the only solution since the advanced Green’s
function would grow indefinitely for |x−x′| → ∞. The inverse behavior can be obtained
if −iη is added to the energy.

In general, the retarded and advanced Green’s functions are defined as

GR =
[
E − Ĥ + iη

]−1

(η → 0+) (2.32)

GA =
[
E − Ĥ − iη

]−1

(η → 0+). (2.33)

The Green’s function can be expanded in the eigenfunctions of the Hamilton operator

ĤΨα = ǫαψα(r) (2.34)

yielding [28]:

GR =
∑

α

ψα(r)ψ
∗
α(r

′)

E − ǫα + iη
(2.35)

GA =
∑

α

ψα(r)ψ
∗
α(r

′)

E − ǫα − iη
, (2.36)

therefore

GA(r, r′) = [GR(r, r′)]∗ → GA = [GR]†. (2.37)

12



2.3 Obtaining the Transmission Function with Green’s Functions

left lead right lead
scattering

region

HL HRHS HSRHLS Figure 2.3: Sketch of the
partitioning of the conductor
in the left and right lead and
the scattering region used to
calculate the Green’s function of
the scattering region.

2.3.2 Matrix Representation of the Green’s Function

If one now discretizes space or switches to a tight-binding description of the wave
functions defined by matrix H, one ends up with a matrix equation for the Green’s
function:

[(E + iη)1−H]GR = 1 ⇔ GR = [(E + iη)1−H]−1. (2.38)

To calculate the Green’s function, the matrix [(E+ iη)1−H] has to be inverted1. Since
the conductor is connected to semi-infinite leads, the matrix is of infinite dimensions.
This problem can be solved by the use of surface Green’s functions. To do that the
matrix is partitioned into submatrices:

[(E + iη)1−H] =



(E + iη)1−HL HLS 0

HSL E1−HS HSR

0 HRS (E + iη)1−HR


 . (2.39)

The matrices [(E+iη)1−HL/R] and [E1−HS] represent the isolated leads and scattering
region, respectively, as sketched in Fig. 2.3. It is assumed that the interactions between
the leads are negligible and also the coupling matrices HLS and HRS are chosen non-
zero only in the vicinity of the interface of the conductor with the left and right lead.
Furthermore, it is enough to add the iη in the leads to determine the boundary conditions
for the Green’s function [28].
One can now also define submatrices of the Green’s function:



GL GLS GLR

GSL GS GSR

GRL GRS GR


 ≡



(E + iη)1−HL HLS 0

HSL E1−HS HSR

0 HRS (E + iη)1−HR




−1

= G.

(2.40)

Eq. (2.38) yields

HSLGLS + [E1−HS]GS +HRSGRS = 1 (2.41)

HLSGS + [(E + iη)1−HL]GLS = 0 (2.42)

HRSGS + [(E + iη)1−HR]GRS = 0. (2.43)

1Because we are looking at the retarded Green’s function we will drop the index R from hereon
until otherwise noted.
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2 Coherent Transport

Figure 2.4: Sketch of the
partitioning of the leads (here
exemplary for the left lead) to
calculate the surface Green’s
function of the leads. left lead

hL hL hL HS

HLShLL hLL hLL

Using the Green’s function of the isolated, semi-infinite leads

gL/R = [(E + iη)1−HL/R]
−1 (2.44)

and Eqs. (2.42) and (2.43) one obtains

GLS/RS = −gL/RHLS/RSGS. (2.45)

Substituting this in Eq. (2.41) and taking into account that HSL/RS = H
†
LS/SR yields an

expression for the Green’s function of the conductor

GS = [E1−HS −ΣL −ΣR]
−1 . (2.46)

The terms

ΣL/R = H
†
LS/RSgL/RHLS/RS (2.47)

are called (retarded) self-energies and take into account the effect of the leads on the
propagation of the electrons in the conductor. Following from Eq. (2.37) the advanced
self-energy can be obtained by taking the adjoint of the retarded self-energy:

ΣA
L/R = [ΣR

L/R]
†. (2.48)

2.3.3 Surface Green’s Function

To determine the self-energies of the leads one still would need to invert the semi-infinite
matrix [(E + iη)1 −HL/R]. There are several methods to solve this problem. We here
follow the decimation technique described in Ref. [32]. To do that the Hamiltonian of
the leads are also divided into submatrices taking into account only a limited number of
nearest-neighbor hoppings, which have to be chosen in a way that the leads are still well
described. The partitioning of the left lead is sketched in Fig. 2.4. The Hamiltonian of
the left lead then states:

HL =




. . . hLL 0 0

h
†
LL hL hLL 0

0 h
†
LL hL hLL

0 0 h
†
LL hL


 (2.49)
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2.3 Obtaining the Transmission Function with Green’s Functions

The equation defining the Green’s function can be written as:



. . . −hLL 0 0

−h
†
LL ω1− hL −hLL 0

0 −h
†
LL ω1− hL −hLL

0 0 −h
†
LL ω1− hL


 ·




. . .
...

...
...

. . . g22 g12 g02

. . . g21 g11 g01

. . . g20 g10 g00


 = 1, (2.50)

where ω = E + iη. Multiplying the rows of the first matrix with the last column of the
second matrix yields:

(ω1− hL)g00 − h
†
LLg01 = 1 (2.51)

−hLLg00 + (ω1− hL)g01 − h
†
LLg02 = 0 (2.52)

−hLLg01 + (ω1− hL)g02 − h
†
LLg03 = 0 (2.53)

−hLLg0m−1 + (ω1− hL)g0m − h
†
LLg0m+1 = 0. (2.54)

Solving for g0m and using W = ω1− hL leads to:

g0m = W−1(hLLg0m−1 + h
†
LLg0m+1). (2.55)

Plugging g01 into Eq. (2.51), g01 and g03 into Eq. (2.53), as well as g03 and g05 in
Eq. (2.54) for m = 4 and using the abbreviations

W̃S = (W + h
†
LLW

−1hLL) (2.56)

W̃B = (W + h
†
LLW

−1hLL + hLLW
−1h

†
LL) (2.57)

h̃LL = −(hLLW
−1hLL) (2.58)

h̃LL† = −(h†
LLW

−1h
†
LL) (2.59)

yields a formally identical set of equations as Eqs. (2.51)-(2.54):

W̃Sg00 − h̃LL†g02 = 1 (2.60)

−h̃LLg00 + W̃Bg02 − h̃LL†g04 = 0 (2.61)

−h̃LLg02 + W̃Bg04 − h̃LL†g06 = 0 (2.62)

−h̃LLg0(2m−2) + W̃Bg0(2m) − h̃LL†g0(2m+2) = 0 (2.63)

Iterating this procedure yields after p steps:

W̃
(p)
S = W

(p−1)
S + h̃

(p−1)
LL†

[
W

(p−1)
B

]−1

h̃
(p−1)
LL (2.64)

W̃
(p)
B = W

(p−1)
B + h̃

(p−1)
LL†

[
W

(p−1)
B

]−1

h̃
(p−1)
LL + h̃

(p−1)
LL

[
W

(p−1)
B

]−1

h̃
(p−1)
LL† (2.65)

h̃
(p)
LL† = h̃

(p−1)
LL†

[
W

(p−1)
B

]−1

h̃
(p−1)
LL† (2.66)

h̃
(p)
LL = h̃

(p−1)
LL

[
W

(p−1)
B

]−1

h̃
(p−1)
LL , (2.67)
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2 Coherent Transport

where the latter two equations yield the interactions between layer 0 and 2p. The fact
that the number of layers eliminated from the set of equations grows with an exponential
of the number of steps makes this method very effective.

One can expect that the interactions h̃
(p0)
LL† and h̃

(p0)
LL between layer 0 and 2p0 become

negligible for large enough p0. Then Eqs. (2.64)−(2.67) do not change anymore for
further iterations and one ends up with

W̃
(p0)
S g00 = 1. (2.68)

With this one can obtain the effective Green’s function gL = g00 for the surface of the
lead, which is then coupled to the scattering region as described in the previous section.

We can now calculate the self-energies and, therefore, the Green’s function according
to Eq. (2.46). The Green’s function gives access to all the quantities of interest like the
transmission and spectral function.

2.3.4 Spectral Function and Transmission Function

From Eq. (2.46) an effective Schrödinger equation for the scattering region including the
influence of the leads and the coupling to the contacts, i.e., of an open quantum system,
can be obtained:

[HS +ΣL +ΣR]ψα = ǫαψα (2.69)

The Hamiltonian HS + ΣL +ΣR is not Hermitian since the self-energies ΣL/R are not
Hermitian and, therefore, the eigenvalues are complex. Using the eigenenergies of the
isolated scattering region HS

HSψα0 = ǫα0ψα0 (2.70)

one can write

ǫα = ǫα0 −∆α − i(γα/2), (2.71)

where ∆α represents the shift in energy of the eigenstate of the isolated scattering region
due to the interaction with the leads. γα reflects the finite lifetime of the state since it
adds a time dependence to the probability density

|ψα|2 exp (−2γαt/~). (2.72)

2γα/~ is the average time an electron stays in state α before it exits the scattering region
into the leads.

One can now again write the retarded Green’s function in terms of the eigenfunctions
of [HS + ΣL + ΣR] defined in Eq. (2.70) and of the eigenfunctions Φα of the adjoint
operator2 [HS +ΣA

L +ΣA
R] [28]:

GR(r, r′) =
∑

α

ψα(r)Φ
∗
α(r

′)

E − ǫα
. (2.73)

2For the eigenfunctions of the operator and its adjoint holds:
∫
Φαψ

∗

β(r)d
3r = δαβ .
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2.3 Obtaining the Transmission Function with Green’s Functions

The so called spectral function A can now be expressed as:

A ≡ i
[
GR −GA

]
(2.74)

=
∑

α

ψα(r)Φ
∗
α(r

′)
γα

(E − ǫα0 −∆α)2 + (γα/2)2
. (2.75)

The trace of the spectral function

Tr[A(E)] ≡
∫

A(r, r, E)d3r =
∑

α

γα
(E − ǫα0 −∆α)2 + (γα/2)2

(2.76)

yields the density of states

N(E) =
1

2π
Tr[A(E)] =

∑

α

1

2π

γα
(E − ǫα0 −∆α)2 + (γα/2)2

. (2.77)

For vanishingly small couplings (γα,∆α → 0) to the leads, one obtains the usual
expression for the density of states

N(E) =
∑

α

δ(E − ǫ0α). (2.78)

From the above equations one can see that for the simplest case of energy independent
self-energies the coupling to the leads leads to a Lorentzian broadening

γ

(E − ǫ)2 + (γ/2)2
(2.79)

for each peak in the density of states. However, in general the self-energies are energy
dependent and, therefore, also the eigenenergies ǫα, which can lead to different peak
shapes.
The diagonal elements of the spectral function yield the local density of states:

ρ(r, E) =
1

2π
A(r, r, E) =

∑

α

1

2π

γα
(E − ǫα0 −∆α)2 + (γα/2)2

ψα(r)Φ
∗
α(r). (2.80)

The spectral function can be calculated more conveniently by [28]

A = GSΓLG
†
S +GSΓRG

†
S, (2.81)

whereby the so called broadening matrices ΓL/R of the left and right lead are defined as

ΓL/R(E) = i
[
ΣL/R(E)−Σ

†
L/R(E)

]
. (2.82)

Finally, we now can calculate the transmission function T (E) from the Green’s
function

T (E) = Tr
[
ΓL(E)GS(E)ΓR(E)G

†
S(E)

]
. (2.83)
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The equivalence to Eq. (2.23) can be obtained by the Fisher-Lee relation [31, 33], which
connects the Green’s function formalism with the scattering matrix S:

smn =
i

~

1√
|vm,<||vn,>|

(ΦL
n,<)

†ΓLGSΓR(Φ
R
n,>), (2.84)

where ΦL
n,< and ΦR

n,> are incoming (<) and outgoing (>) waves in the left and right
lead, respectively, and vm,< and vn,> are their group velocities. Furthermore, one can
write [33]:

ΓL =
∑

n

ΓLΦ
L
n,<

1

~|vn,<|
(ΦL

n,<)
†ΓL (2.85)

ΓR =
∑

n

ΓRΦ
R
n,>

1

~|vn,>|
(ΦR

n,>)
†ΓR, (2.86)

which then yields:

T (E) = Tr
[
ΓL(E)GS(E)ΓR(E)G

†
S(E)

]
(2.87)

=
∑

m,n

|smn|2. (2.88)

Extensive details on the derivation of the above equations can be found in [33]. Eq. (2.83)
can be obtained more generally by the non-equilibrium Green’s function formalism [17,
28, 33, 34, 35, 36, 37] in terms of second quantization, which in principle also allows to
incorporate non-coherent and finite bias effects.

2.4 Numerically Efficient Formula for the Transmission Function

As stated above, only a limited number of sites in the scattering region is connected to
the leads and also in the scattering region itself only hoppings up to a certain neighbor
are taken into account. The matrix of the scattering region can then be divided into n
principal layers and in this way becomes a block tridiagonal matrix

HS =




h1,1 h1,2 0 0 0

h
†
1,2 h2,2

. . . 0 0

0
. . .

. . .
. . . 0

0 0
. . . hn−1,n−1 h(n−1),n

0 0 0 h
†
(n−1),n hn,n



. (2.89)

Only the principal layers h1,1 and hn,n are connected to the left and right lead via ΣL

and ΣR, respectively. This makes ΓL and ΓR only nonzero in the upper left and lower
right corner, respectively. Following Ref. [35] one exploits this by rewriting the formula
for the transmission (Eq. (2.83)) using Eq. (2.81) as:

T = Tr
[
ΓR(A−G

†
SΓRGS)

]
. (2.90)
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Since ΓR is only nonzero in the lower right corner, one only needs the last diagonal block
of the matrices to calculate the transmission:

T = Tr
[
(ΓR)n,n(An,n − (G†

S)n,n(ΓR)n,n(GS)n,n)
]
. (2.91)

A is calculated via Eq. (2.74).
The block diagonal elements of the Green’s function GS are calculated in a recursive

scheme [37]: With B ≡ [E1−HS −ΣL −ΣR] the Green’s function of the first q
principal layer (only connected to the left lead indicated by index L) is defined by

B1:q,1:qg
Lq = 11:q,1:q. (2.92)

For the Green’s function of the (q + 1)th layer gLq+1, one can write

(
B1:q,1:q B1:q,q+1

Bq+1,1:q Bq+1,q+1

)(
g
Lq+1
1:q,1:q g

Lq+1
1:q,q+1

g
Lq+1
q+1,1:q g

Lq+1
q+1,q+1

)
=

(
11:q,1:q 01:q,q+1

0q+1,1:q 1q+1,q+1

)
. (2.93)

Dyson’s equation states

gLq+1 = g0 + g0UgLq+1 (2.94)

with

g0 =

(
B−1

1:q,1:q 0

0 B−1
q+1,q+1

)
, (2.95)

U =

(
0 −B1:q,q+1

−Bq+1,1:q 0

)
. (2.96)

Using Eq. (2.94) and the fact that the only nonzero element of B1:q,q+1 and Bq+1,1:q is
Bq,q+1 and Bq+1,q, respectively. One finds for the diagonal block of the lower right corner
of gLq+1:

g
Lq+1
q+1,q+1 = (Bq+1,q+1 −Bq+1,qg

Lq
q,qBq,q+1)

−1. (2.97)

gLn
n,n is then equal to the diagonal block of the lower right corner of the fully connected

Green’s function (GS)n,n needed in Eq. (2.91).
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To utilize the formalism introduced in the previous chapter, we need to determine the
matrices HS, HLS, HSR, hL, hLL, and the analogons for the right lead. To be able
to do the partitioning of the matrices as described in the previous chapter, one needs
to describe the system under investigation in terms of localized orbitals, so that the
interactions between the orbitals are negligible at a certain separation.
In this work, we obtain these matrices using maximally localized Wannier functions.

The Wannier functions are in turn obtained from a description of the system in terms of
Bloch functions gained with the FLAPW method, which is based on density functional
theory.

3.1 Density Functional Theory

For many-body problems, analytical solutions of the Schrödinger equation are only
feasible for the hydrogen atom, while already for the helium atom only approximative
solutions are possible. To still be able to effectively and precisely describe many-body
problems like they appear in solid-state physics, numerous theories have been developed.
One of the most successful approaches is DFT developed by Hohenberg, Kohn and
Sham [13, 14]. DFT is computationally efficient and able to cover most of the effects
arising in solids.
Its starting point is the Born-Oppenheimer approximation, which fixes the atomic

nuclei positions and, therefore, reduces the problem to the positional variables of the
electrons. The Schrödinger equation then states:
[
− ~2

2m

N∑

i=1

∇2
i +

1

2

N∑

i 6=j=1

e2

|ri − rj|
−

N∑

i=1

M∑

µ=1

e2Zµ

|ri − τ µ|

]
Ψ(r1, ..., rN) = EΨ(r1, ..., rN),

(3.1)
where N is the number of electrons, ri is the position of the ith electron,M is the number
of nuclei, and τ µ and Zµ are the position and charge of the µth nucleus. Since the system
has 3N variables, the solution of Eq. (3.1) is computationally very demanding.

3.1.1 The Hohenberg-Kohn Theorem

The idea behind DFT is to relinquish the information of each individual electron and
instead to focus on the electron density

n(r) = 〈Ψ|
N∑

i=1

δ(r− ri)|Ψ〉. (3.2)
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3 Density Functional Theory and FLAPW

This reduces the number of variables to 3.
For systems with non-degenerate ground states, Hohenberg and Kohn proved the

following two theorems [13]:

� For a given external potential v(r) =
∑M

µ=1
e2Zµ

|r−τµ| created by the nuclei, the

ground state energy and all other ground state properties of the system are unique
functionals of the electron density n(r).

� The ground state density n0(r) minimizes the energy functional E[n]:

E0 = min
n
Ev(r)[n] = min

n

(
FHK[n] +

∫
v(r)n(r)d3r

)
, (3.3)

where the universal Hohenberg-Kohn functional is defined as the sum of the kinetic
energy T̂ = − ~2

2m

∑N
i=1∇2

i and Coulomb interaction energy Û = 1
2

∑N
i 6=j=1

e2

|ri−rj | of the

electrons
FHK[n] = 〈Ψ[n]|T̂ + Û |Ψ[n]〉. (3.4)

Therefore, the ground state density can be obtained by the minimization of the energy
functional. It was further shown that the theorems mentioned above can also be proven
for degenerate ground states [38]. Since the Hohenberg-Kohn functional is not known
exactly, approximations have to be made to make practical use of the Hohenberg-Kohn
theorem.

3.1.2 The Kohn-Sham Equations

The main idea of Kohn and Sham is to project the problem of interacting electrons on
a problem of non-interacting electrons in an effective potential veff(r), which is chosen
so that the ground state density is equivalent to the problem of interacting electrons.
For each of the N electrons this leads to Schrödinger-like one-particle equations, the so
called Kohn-Sham equations [14]:

(
− ~2

2m
∇2 + veff(r)

)
ψi(r) = ǫiψi(r). (3.5)

The ground state density is calculated via

n(r) =
N∑

i=1

|ψi(r)|2 . (3.6)

To determine veff , the Hohenberg-Kohn functional is expressed in terms of the kinetic
energy TS and Hartree energy UH of the non-interacting many-body system:

TS[ψ[n]] = − ~2

2me

N∑

i=1

∫
∇ψ∗

i (r)∇ψi(r)d
3r, (3.7)

UH[n] =
e2

2

∫
n(r)n(r′)

|r− r′| d3rd3r′, (3.8)

FHK = T + U = TS + UH + Exc. (3.9)
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3.1 Density Functional Theory

This equation defines the exchange-correlation functional, which includes all the
unknown terms arising due to the interaction of the electrons. With this formulation
the variation of the energy functional yields an explicit expression of the Kohn-Sham
equations:

(
− ~2

2me
∇2 + e2

∫
d3r′

n(r′)

|r− r′| + v(r) +
δExc[n]

δn(r)

)
ψi(r) = ǫiψi(r). (3.10)

Since the equations depend on the particle density n and, therefore, on ψi, this is a
self-consistency problem, which has to be solved iteratively.

Starting from a guess for the starting density, which is usually constructed as a
superposition of the charge density of isolated atoms, the Kohn-Sham equations are
solved. The output density is then mixed with the input density constituting the starting
density of the next iteration. This is done until the difference between input and output
density is reasonably small.

To make the calculation of the total energy numerically convenient, the kinetic energy
can be expressed as

TS(n(r)) =

N∑

i=1

ǫi −
∫
veff(r)n(r)d

3r, (3.11)

which avoids the direct calculation of ∇ψi and which leads to

E[n] =
N∑

i=1

ǫi −
∫
veff(r)n(r)d

3r+
e2

2

∫
n(r)n(r′)

|r− r′| d3rd3r′ +

∫
v(r)n(r)d3r+ Exc[n].

(3.12)

3.1.3 Spin Density Functional Theory and Non-Collinearity

The Hohenberg-Kohn theorem also holds for spin-polarized systems. In this case, the
minimization of the energy has to be done with respect to the particle density and, in
addition, to the magnetization density m(r):

E[n0(r),m0(r)] ≤ E[n(r),m(r)], (3.13)

where n(r) and m(r) are expressed in terms of Pauli spinors:

ψi(r) =

(
ψ↑,i(r)
ψ↓,i(r)

)
, (3.14)

n(r) =

N∑

i=1

|ψi(r)|2, (3.15)

m(r) = µB

N∑

i=1

ψ∗
iσψi. (3.16)
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Variation of the energy functional then again leads to Kohn-Sham equations:

(
− ~2

2me

∇2 + veff(r) + σBeff(r)

)
ψi(r) = ǫiψi(r), (3.17)

where the effective magnetic field includes the applied external field and a term arising
from the variation of the exchange-correlation energy with respect to the magnetization
density:

Beff(r) = Bext(r) +Bxc(r) (3.18)

Bxc(r) =
δExc[n(r),m(r)]

δm(r)
. (3.19)

In the case of collinear magnetism, where the global and the local spin axes
coincide and Bxc(r) = Bxc(r)êz, the spin-up and spin-down channel decouple and the
magnetization can be expressed by its absolute value m(r) = |m(r)| = n↑ − n↓. One
then obtains independent Kohn-Sham equations for each spinor component:

(
− ~2

2m
∇2 + veff(r) +Bxc(r)

)
ψ↑,i(r) = ǫ↑,iψ↑,i(r), (3.20)

(
− ~2

2m
∇2 + veff(r)−Bxc(r)

)
ψ↓,i(r) = ǫ↓,iψ↓,i(r). (3.21)

Non-collinear systems can be treated based on the density matrix ρ:

ρ =
1

2
nI2 + σ ·m =

1

2

(
n +mz mx − imy

mx + imy n−mz

)
, (3.22)

where σ is vector of the Pauli matrices.

3.1.4 Exchange-Correlation Potentials

No exact expression for the exchange-correlation energy is known so far, which forces one
to use approximations to describe these many-body effects. One of the most widespread
approximation is the local density approximation (LDA), or, for the spin-polarized case,
the local spin density approximation (LSDA). In LSDA the exchange-correlation energy
is locally approximated by the exchange-correlation energy of a homogeneous electron
gas ǫxc(n(r), m(r)), which can be calculated numerically:

Exc[n(r),m(r)] =

∫
n(r)ǫxc(n(r), |m(r)|)d3r. (3.23)

The LSDA approximation, which in principle should be most suitable for systems with
slowly varying particle densities, also proved its usefulness in inhomogeneous systems.
Albeit, it fails to correctly describe the ground state of some systems, as, for example,
the bulk crystal structure of Fe and its magnetic properties. Therefore, a number of
additional approximations have been developed. The next logical step is to consider
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3.2 The FLAPW Method

non-local exchange-correlation effects by including the gradient of the particle density,
which is called the generalized gradient approximation (GGA):

EGGA
xc [n↑, n↓] =

∫
f(n↑, n↓,∇n↑,∇n↓)d

3r. (3.24)

With the LDA and GGA approximations one is able to describe a wide range of systems.

3.2 The FLAPW Method

Solving the Kohn-Sham equations is not a straight forward task in practice, since the
regions of space are highly inhomogeneous. While the wave functions oscillate fast near
the atomic cores, between the atomic cores, in the so-called interstitial region, they
are much smoother. This leads to a problem regarding the choice of the basis set in
which the wave functions are expanded. The basis has to be chosen in a way that it is
computationally feasible and still able to precisely describe all the regions of the system.
Plane waves are well suited as basis sets, since they are orthogonal, diagonal in any

power of the momentum operator and, due to their simplicity, easy to implement.
However, near the atomic cores plane waves with large wave vectors are needed
to precisely describe the fast oscillating wave functions, which makes plane waves
computationally inefficient.
The augmented plane wave (APW) method [39] uses optimized basis sets in the

different regions of space, i.e., plane waves in the interstitial region and atomic-like
orbitals near the atomic cores. A computationally more efficient advancement of the
APW method is the linearized augmented plane wave (LAPW) method [40, 41, 42].
The method used in this thesis is the FLAPW method and is implemented in the FLEUR
code [19], which treats the atomic cores self-consistently, and is, therefore, one of the
most precise implementations of DFT.
The FLEUR code also offers implementations optimized for different geometries, such as

bulk systems, surfaces, or, heavily used in this thesis, one-dimensional (1D) structures.
Surfaces and 1D-structures introduce a third region, the vacuum, where exponentially
decaying functions are used as basis functions.
In the following, we will briefly introduce the FLAPW method and the FLEUR code.

3.2.1 The APW Method

The APW method [39] divides space in two regions: the so-called muffin tins, which are
spheres around the atom sites, and the interstitial region, which is the remaining space
between the muffin tins. The potential is approximated as spherically symmetric in the
muffin-tin spheres and as constant in the interstitial regions:

V (r) =

{
V 0
I = const. interstitial region
Vµ(r) muffin tin µ

. (3.25)

These approximations to the potential are called shape approximations.
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3 Density Functional Theory and FLAPW

The basis functions are chosen as plane waves in the interstitial regions and spherical
harmonics YL(r̂) in the muffin tins:

ϕG(k, r) =

{ 1√
Ω
ei(G+k)r interstitial region∑
LA

µG
L (k)ul(r)YL(r̂) muffin tin µ

, (3.26)

where k is the Bloch vector, G is a reciprocal vector, Ω is the cell volume, L is an
abbreviation for the quantum numbers l andm, and ul(r) is the solution of the separated
radial part of the Schrödinger equation for energy parameter ǫl:

(
− ~2

2m

d2

dr2
+

~2

2m

l(l + 1)

r2
+ V (r)− ǫl

)
rul(r) = 0. (3.27)

The coefficients AµG
L are determined by the requirement that the basis functions have

to be continuous at the boundary of the muffin-tin spheres. This leads to the fact that
AµG

L ∝ 1
ul(Rµ)

, which in turn leads to the so-called asymptotic problem, if ul(Rµ) vanishes

or becomes small.
Further problems arise due to the fact that the ǫl have to be set to the corresponding

band energies to yield accurate results. Since the wave functions have to be known
to determine the band energies, requiring the ǫl to equal the band energies turns the
solution of the characteristic equation to a non-linear problem, which is computationally
very demanding.

3.2.2 The LAPW Method

The limited variational freedom of the APW method can be extended by doing a Taylor
expansion of ul in terms of energy around ǫl [40, 41, 42]:

ul(r, ǫ) = ul(r, ǫl) +
∂

∂ǫ
ul(r, ǫ)

∣∣∣∣
ǫl

(ǫ− ǫl) +O[(ǫ− ǫl)
2]. (3.28)

The Taylor expansion is canceled after the linear term, introducing a quadratic error in
the wave function. Due to the variational principle, this introduces an error of the order
of (ǫ− ǫl)

4 to the band energies. Because of the high order, the linearization works very
well over broad energy regions. The method is then called LAPW. The u̇l =

∂
∂ǫ
ul can

be calculated by differentiating Eq. (3.27):

(
− ~2

2m

d2

dr2
+

~2

2m

l(l + 1)

r2
+ V (r)− ǫl

)
ru̇l(r) = rul(r). (3.29)

To uniquely define ul, it is useful to normalize ul:

〈ul|ul〉 =
∫ Rµ

0

ul(r)
2r2dr = 1. (3.30)

Taking the energy derivative of Eq. (3.30) shows that with this normalization ul and u̇l
are orthogonal.
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The basis functions in LAPW are chosen as:

ϕG(k, r) =

{ 1√
Ω
ei(G+k)r interstitial region∑
LA

µG
L (k)ul(r)YL(r̂) +BµG

L (k)u̇l(r)YL(r̂) muffin tin µ
. (3.31)

The additional variational freedom due to the extra term with coefficients BµG
L (k) now

allows to request that not only the basis functions themselves but also theirs derivatives
are continuous at the muffin-tin boundary. This also determines BµG

L (k).
In the LAPW method, ǫl does not need to be set to the band energies anymore and

is treated as a fixed parameter. In addition, the asymptotic problem is solved, since if
ul vanishes at the muffin-tin boundary, ∂

∂r
ul and u̇l are in general nonzero. Finally, the

LAPW method can be extended to non-spherical potentials due to the large variational
freedom offered by the basis functions.

3.2.3 The FLAPW Method

LAPW methods, which use the shape approximation of the potential (Eq. (3.25)), yield
accurate results for close-packed metal systems. However, for systems containing open
structures, such as surfaces, clusters or monowires, the approximation of a constant
potential in the interstitial region and a spherically-symmetric potential in the muffin-
tin cores becomes inaccurate.
To handle these kind of systems, the full-potential LAPW method has been

developed [15, 16], which does not assume any shape approximations to the potential.
The coulomb potential consists of the contribution from the electrons, the Hartree
potential VH, and the contribution from the ionic cores Vi:

V (r) = VH + Vi. (3.32)

The Hartree potential has to be determined by solving the Poisson equation

∆VH = 4πρ(r). (3.33)

The charge density and the potential are represented differently in the different regions
of space similar to the basis functions:

ρ(r) =

{ ∑
G
ρGe

iGr interstitial region∑
L ρ

µ
L(r)YL(r̂) muffin tin µ

, (3.34)

V (r) =

{ ∑
G
VGe

iGr interstitial region∑
L V

µ
L (r)YL(r̂) muffin tin µ

. (3.35)

The potential is then calculated separately for each region of space. This is done by
replacing the true muffin-tin charge by a convergent pseudo-charge density that leads
to the same potential, i.e., it has the same multipole moments, outside the muffin tin.
Then the interstitial potential can be calculated in reciprocal space. After that, the
potential in the muffin tins can be computed by solving the Dirichlet boundary value
problem defined by the true muffin-tin charge density and the interstitial potential on
the muffin-tin boundaries.
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3 Density Functional Theory and FLAPW

3.2.4 Relativistic Effects

The Kohn-Sham equations in the relativistic density functional theory have the form of
single-particle Dirac equations:

cαp+ (β − 1)mc2 + Veff(r)Ψ = ǫΨ, (3.36)

where c is the velocity of light,

α =

(
0 σ
σ 0

)
, (3.37)

β =

(
1 0

0 −1

)
, (3.38)

andΨ is the four-component Dirac spinors. In principle, Eq. (3.36) can be solved for each
component utilizing the FLAPW basis. However, that would increase the computational
time by a factor of 64.

Therefore, the scalar-relativistic (SR) approximation [43] has been developed, which
initially omits the spin-orbit interaction but retains all other relativistic effects for the
electrons in the muffin-tin spheres. This is justified by the fact that the kinetic energy
of the electrons and, thus, relativistic effects are largest near the nuclei. The vacuum
and interstitial region are treated non-relativistically, too.

For the limit of low velocities v2/c2 ≪ 1 of the valence electrons, the Dirac equation
can be reduced to the Pauli equation with Pauli Hamiltonian

HPauli =
p2

2m
− eΦ− p4

8m3c2
+

e~2

8m2c2
∇ · E+

e~

4m2c2
σ(E× p). (3.39)

The first two contributions represent the non-relativistic kinetic and electrostatic energy.
Together they form the non-relativistic Hamilton operator. The third and fourth term
are the relativistic mass-velocity correction and the Darwin correction, respectively.
These terms are independent of the spin S = σ/2 and form in combination with the
non-relativistic terms the SR Hamiltonian. The last term is the spin-orbit coupling HSO,
which can be interpreted as the coupling of the electron spin with the magnetic field
created by its own orbital motion around the nucleus.

As mentioned before, SOC effects are strongest around the nuclei where the potential
can be approximated to be spherically symmetric and, thus, one can write

E = −∇Φ(r) = −r

r

dΦ

dr
. (3.40)

This leads to the spin-orbit Hamiltonian

HSO =
−e~

4m2c2r

dΦ

dr
σ(r× p) (3.41)

=
−e~

4m2c2r

dΦ

dr
L · S (3.42)

= ξ(r)L · S. (3.43)
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(a) (b)

Figure 3.1: (a) Side view
of the unit cell of the one-
dimensional version of FLEUR

and the partitioning into the
different regions of space, i.e., the
muffin tins (MT), the interstitial
region (IR) and the vacuum region
(VR) defined by D and D̃. The
translational vector T defines the
size of the unit cell in z-direction.
(b) Top view of the in-plane square
unit cell.

In transition metals the magnetism is due to the d electrons. Therefore, one can consider
the SOC originating from d electrons and take the radial average of ξ(r) over the d-
orbitals:

HSO = ξL · S. (3.44)

Assuming Φ(r) = −Ze/r and using the non-relativistic radial functions Rnl(r) ∝ rl, one
finds

ξnl ∝ 〈nl|1
r

Z

r2
|nl〉Z

4

a3B

1

n3l2
, (3.45)

where n and l are the principal and azimuthal quantum numbers, respectively, and aB
is the bohr radius. ξ becomes larger for heavier atoms. For 3d atoms, ξ is of the order
of 50− 100 meV and can become as large as about 500 meV for 5d elements like Ir.
The term L ·S describes the angular dependency of the SOC and the matrix elements

depend on the quantization axis of the spin S. The dependence of the matrix elements
between the various d orbitals for a magnetization direction defined by angles θ and φ
can be found in Tab. 5.1.

3.2.5 The One-Dimensional Version of the FLEUR Code

The FLEUR code offers a FLAPW implementation with optimized geometries and basis
sets for bulk systems, surfaces and 1D structures [20]. Many other codes handle surfaces
and 1D structures in a super cell approach:
An isolated monowire running in z-direction is modeled by creating a periodic system

of unit cells including one monowire and large spacings in the xy-plane. If the size of
the unit cell is large enough, spurious effects due to the interactions of the monowires
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Figure 3.2: Top view of the
hexagonal unit cell of the one
dimensional version of FLEUR.

are minimized and precise results are achieved. However, the calculations become
computationally very demanding due to the large unit cell itself and because a lot
of plane waves have to be considered to properly describe the exponential decay of the
wave functions between the monowires.

The FLEUR code introduces actual vacuum regions in which the basis sets are
exponentially decaying functions and have the optimal cylindrical symmetry:

ϕG(k, r) =



∑
m(A

G

m(kz)u
Gz
m (kz, r) +BG

m (kz)u̇
Gz
m (kz, r))e

imϕei(Gz+kz)z vacuum region

1√
Ω
ei(G+k)r interstitial region

∑
LA

µG
L (k)ul(r)YL(r̂) +BµG

L (k)u̇l(r)YL(r̂) muffin tin µ

,

(3.46)

with k = (0, 0, kz). The vacuum region is described in cylindrical coordinates (r, ϕ, z)
and the summation over m goes up to the angular expansion parameter mmax, which
provides a smooth transition of the wave functions from the interstitial to the vacuum
region. Each iteration, for every pair (m,Gz) the vacuum radial basis functions uGz

m (kz, r)
and their derivatives u̇Gz

m (kz, r) are obtained by solving the radial Schrödinger equation.
The coefficients Am and Bm for the vacuum regions are determined by the requirement
that the basis functions and their derivatives are continuous at the vacuum-interstitial
boundary. To determine the potential, the treatment described in subsection 3.2.3 has
to be extended to include the new vacuum region. The main idea stays the same and a
detailed description can be found in [20]. The vacuum region is defined to be outside a
cylinder with radius Dvac. In the xy-plane the plane waves of the interstitial region are
created in a square lattice with lattice constant D̃, chosen larger than Dvac to increase
the variational freedom.

Hexagonal vs. Square Unit Cell

The square in-plane unit cell can create problems since the plane wave basis in the
interstitial region is created in the square unit cell with length D̃. The square unit cell
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Figure 3.3: (a) and (b) show the
bandstructure of a Fe monowire
with parameters D = 4.4 a.u.,
D̃ = 5.5 a.u., kmax = 4.8 a.u.,
lattice constant a = 4.18 a.u., 12
kpoints, and muffin-tin radius 2.0
a.u. using GGA and utilizing the
square (red squares) and hexagonal
(black filled circles) unit cell for
the majority and minority spin
channel, respectively.

however does not necessarily have the symmetry of the system under consideration, as
in the case of the cylindrical symmetry of monowires. Therefore, depending on the basis,
it might happen that the cylindrical symmetry is broken, which leads to an artificial lift
of the degeneracy of the dxy and dx2−y2 states. This can be seen in Fig. 3.3 for a Fe
monowire. This problem can be managed by increasing the plane-wave cutoffs. However,
this increases the computational time and can also lead to problems in the stability of
the method.
Another way to solve this problem for systems with cylindrical symmetry is the use of

an hexagonal in-plane unit cell as sketched in Fig. 3.2, which is closer to the cylindrical
symmetry. As a part of this thesis, the hexagonal unit cell has been implemented in the
1D-version of FLEUR. To do this, the routines considering the symmetry operations had
to be adapted. The improvements due to the hexagonal unit cell can be seen in Fig. 3.3.
The splitting of dxy, dx2−y2 states vanishes in the hexagonal cell.

We are now able to obtain a description of the system in terms of delocalized Bloch
functions. As a last step, we now need to transform the Bloch functions to localized
Wannier functions to be able to set up the Hamilton matrices.
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4 Wannier Functions and Construction of the

Hamilton Matrices

In the last chapter, we described how we can obtain a description of a solid, surface or
monowire in terms of delocalized Bloch functions. In this chapter, we will describe how
we can obtain a description in terms of spatially localized Wannier functions. Wannier
functions have been introduced by Gregory Wannier in 1937 [44]. For an isolated Bloch
state

|ψnk〉 = eikrunk (4.1)

with lattice periodic part unk, wave vector k and band index n one defines on a discrete
k-mesh

|Rn〉 = 1√
N

∑

k

e−ikR |ψnk〉 (4.2)

|ψnk〉 =
1√
N

∑

R

eikR |Rn〉 , (4.3)

where R is a real-space lattice vector and |Rn〉 is the Wannier function in cell R with
band index n. The equations above constitute a unitary transformation between Bloch
and Wannier functions.
Eq. (4.2) leaves a gauge freedom since one can add a k-dependent phase factor ϕn(k)

to the Bloch functions without changing the physical description of the system:

|ψ̃nk〉 = eiϕn(k) |ψnk〉 . (4.4)

This gauge freedom affects the Wannier functions since different gauges lead to different
sets of Wannier functions with different properties, e.g., shapes and spreads. Therefore,
this gauge freedom can critically affect the transport properties investigated in this
thesis.
Further complications arise in real systems since, in general, one do not have isolated

bands but a manifold of J bands. In the most convenient case this manifold of
bands is separated from higher bands by a band gap, as, for example, in insulators
or semiconductors. In this case, the gauge freedom can be expressed by mixing the
bands at wave vector k via a unitary matrix U

(k)
mn :

|ψ̃nk〉 =
J∑

m=1

U (k)
mn |ψnk〉 . (4.5)
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4 Wannier Functions and Construction of the Hamilton Matrices

Eq. (4.5) becomes Eq. (4.4) when the U
(k)
mn are chosen diagonal.

One very successful approach to dissolve the problem of the arbitrariness of the
Wannier functions is to demand them to be “maximally localized” [18, 45].

4.1 Maximally Localized Wannier Functions

As a measure of the localization of the Wannier functions, a functional is introduced,
which is called the spread of the Wannier functions and which measures the sum of the
quadratic spreads of the Wannier functions in the “home” unit cell characterized by the
vector 0:

Ω =
∑

n

[〈
0n|r2|0n

〉
− 〈0n|r|0n〉2

]
=
∑

n

[
〈r2〉n − r̄2n

]
. (4.6)

This functional is minimized with respect to the U
(k)
mn, which yields maximally localized

Wannier functions (MLWF).
In the case of metals, which are studied extensively in this thesis, further problems

arise since the bands of interest are not isolated from other bands. In this case the
J bands of interest overlap with other high energy bands reaching into the considered
energy window (total number of bands Jk ≥ J). Therefore, it is not clear which states
to choose at wave vector k in the Brillouin zone to construct the J Wannier functions.
The bands need to be disentangled [46] before the localization procedure introduced
above can be applied.

The aim of the disentanglement procedure is to choose the states at each k-point in
such a way that the dispersion of the resulting bands is as smooth as possible. The
disentanglement procedure is usually done in two steps. The first step is a projection of
the wave function on J localized trial orbitals gn(r):

|φnk〉 =
Jk∑

m=1

|ψmk〉 〈ψmk|gn〉 =:

Jk∑

m=1

|ψmk〉Ak

mn, (4.7)

These orbitals are then Löwdin-orthonormalized

|ψ̃nk〉 =
J∑

m=1

|φmk〉
(
S
−1/2
k

)
mn
, (4.8)

where (Sk)mn = 〈φmk|φnk〉. The projection procedure leads to a smooth subspace since
the trial orbitals are localized in real space [18].

The smoothness of the subspace can be further refined by minimizing the gauge
invariant part of the spread functional ΩI:

Ω = ΩI + Ω̃, where (4.9)

ΩI =
∑

n

[
〈
0n|r2|0n

〉
−
∑

Rm

|〈Rm |r|0n〉|2
]
, (4.10)

Ω̃ =
∑

n

∑

Rm6=0n

|〈Rm|r|0n〉|2. (4.11)
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4.2 The Wannier Representation of the Hamiltonian

In reciprocal space ΩI can be expressed as

ΩI =
1

N

∑

k,b

wbTk,b, (4.12)

with

Tk,b = J −
∑

m,n

∣∣M (k,b)
mn

∣∣2 , (4.13)

where N is the number of k-points, b are vectors connecting k-mesh points with theirs
neighbors, wb are weights arising from discretization procedures, and M

(k,b)
mn are the

overlap matrices:

M (k,b)
mn = 〈umk|unk+b〉. (4.14)

The subspace is then chosen so that ΩI integrated over the Brillouin zone is minimized.
It is also possible to preserve a chosen set of Bloch states inside the energy window

used for the disentanglement. This energy window is called “frozen window” [46].
After the projection and disentanglement process the gauge selection is refined one

last time by minimizing Ω̃, which can be expressed in reciprocal space as:

Ω̃ =
1

N

∑

k,b

wb

∑

m6=n

∣∣M (k,b)
mn

∣∣2 + 1

N

∑

k,b

wb

∑

n

(−Im lnM (k,b)
nn − b · r̄n)2. (4.15)

The minimization is done iteratively by variation of U (k). In each iteration the gradient
of the spread functional Ω with respect to an infinitesimal gauge transformation is
calculated and U (k) is changed accordingly to lead to the minimum of Ω. After the
update of U (k) the overlap matrices M (0)(k,b) are updated:

M (k,b) = (U (k))†M (0)(k,b)U (k+b), (4.16)

and the next iteration begins until the convergence criterion is reached.
The ingredients provided by the FLAPW calculation to calculate the MLWF are the

M (k,b) and A(k,b). How these matrices are obtained and how spin-orbit coupling is
included within the FLAPW formalism can be found in [47].
The Wannierization, maximal localization, and disentanglement procedure are

implemented in the Wannier90 code [48].
Finally, we now need to formulate the Hamiltonian of the investigated system in terms

of the Wannier functions.

4.2 The Wannier Representation of the Hamiltonian

In terms of Bloch functions the Hamiltonian Ĥ reads:

Ĥ =
1

N

∑

k,n

ǫn(k)|ψkn〉〈ψkn|, (4.17)
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4 Wannier Functions and Construction of the Hamilton Matrices

where N is the number of k points and ǫn(k) are the eigenvalues of Ĥ. The Hamiltonian
in terms of Wannier functions reads:

Ĥ =
∑

R1m

∑

R2m′

Hmm′(R1 −R2)|R1m〉〈R2m
′|, (4.18)

where

Hmm′(R1 −R2) = 〈R1m|Ĥ|R2m
′〉 (4.19)

=
1

N

∑

kn

ǫn(k)〈R1m|ψkn〉〈ψkn|R2m
′〉 (4.20)

=
1

N

∑

kn

ǫn(k)e
ik(R1−R2)

(
U (k)
mn

)∗
U

(k)
nm′ . (4.21)

The hoppings between the Wannier functions can be translated into hoppings between
Bloch functions with Eq. (4.2):

H
(k)
nn′ = 〈ψkn|Ĥ|ψkn′〉 (4.22)

=
1

N

∑

R1

∑

R2

eik(R2−R1)〈R1n|Ĥ|R2n
′〉 (4.23)

=
1

N

∑

R1

∑

R2

Hnn′(R1 −R2)e
ik(R1−R2) =

∑

R

Hnn′(R)eikR. (4.24)

An interpolated bandstructure from the Wannier functions can then be calculated by
diagonalization of H

(k)
nn′.

4.3 Maximally Localized Wannier Functions, First-Shot Wannier

Functions and Others

A major problem with setting up the Hamiltoninan found during the development of
this thesis and in Ref. [49] is the assignment of the MLWF to the atoms of the super
cell. This especially becomes difficult for systems with many atoms in the super cell
and when spin-orbit coupling or non-collinear systems [49] are considered. The problem
is that MLWF of orbitals of s character tend to be centered between two atomic sites,
which makes it unclear to which atom the Wannier function should be attributed. This
further complicates if spin-orbit coupling or non collinearity is present, since this mixes
spin-up and spin-down states so that four s-like orbitals can be centered between two
atom sites.

In addition, if one wants to compare properties from Hamiltonians utilizing Wannier
functions from different FLAPW calculations, one has to be sure that the differences
between the results originate from the electronic structure of the FLAPW calculation
and not from differences in the gauging of the Wannier functions. For example, if one
compares spin-orbit coupling effects in a monowire connecting a molecule between a

36



4.4 Construction of the Hamilton Matrices

magnetization parallel and perpendicular to the monowire axis, one can end up with
MLWF with different positions of the centers and different spread sizes although the
parameters for the Wannierization are identical. This is caused by the different electronic
structures for the two magnetization directions, whereby different states are included
during the Wannierization. The properties of the Hamiltonian constructed with these
Wannier functions are then not comparable, because they include spurious effects due
to the differently gauged Wannier functions. Therefore, one has to choose the setup for
both calculations independently, so that the resulting Wannier functions have the same
centers and spreads for both setups.
The method introduced in Ref. [49] to solve the problem of attributing s-like orbitals

to atom sites are first-shot Wannier functions (FSWF). FSWF are obtained by skipping
the minimization of Ω̃ and only execute the projection and disentanglement procedure.
This usually results in Wannier functions centered on atomic sites, but with large spreads
ranging from 30 Å to a few hundred Å. This is a convenient method for systems where
the dominating hoppings are large. However, as will be shown in Sec. 5.1, for systems
where the dominating hoppings are small as in tunnel junctions, the convergence with
the included hoppings to neighboring atoms is slow. In these cases MLWF have to be
used.
A solution to both problems might be Wannier functions with fixed centers. To fix

the centers, a penalty can be added to the spread functional so that the centers are
forced to stay at the chosen positions r0n [50]:

ΩFC = Ω +
∑

n

λc(r̄n − r0n)
2 =

∑

n

[
〈r2〉n − r̄2n + λc(r̄n − r0n)

2
]
. (4.25)

In the case of isolated bands, the implementation is straight-forward and one can
force the Wannier functions to be centered at the chosen positions with slightly larger
spreads than the maximally localized Wannier functions [50]. However, the formalism
does not include the disentangling procedure for entangled bands, which is crucial for
the systems investigated in this thesis.

4.4 Construction of the Hamilton Matrices

The Hamilton matrices needed are HS, HLS, HSR, hL, hLL, and the analogons for the
right lead hR and hRR. As an example we use the Pt system from Chapter 8. A sketch
of how the matrices are obtained is displayed in Fig. 4.1.
The starting point are individual FLEUR calculations of the perfect lead and the

scattering region depicted in Fig. 4.1 (a). The two parts can be connected to one
another using the “Locking”-technique [49]. In this example, the primitive cell of the
perfect lead contains five atoms and the cell used for the scattering region contains 27
atoms. The Wannierization then yields the hoppings between the atoms.
Depending on the number of hoppings one wants to include in the calculation of the

transmission, one has to construct hL, hLL, hR and hRR from the Wannierization of the
primitive cell of the perfect leads. Here, the third nearest-neighbor approximation is
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leads scattering region
side view

front view

Figure 4.1: (a) Front and side view of the primitive cell used for the calculation of the perfect
Pt leads. (b) Side view of the unit cell used to calculate the Pt trimer between two Pt leads.
Vertical lines mark the unit cells. (c) Sketch of the geometrical setup of the junction consisting
of a Pt trimer connected to Pt leads and of the matrices used to calculate the transmission
function. The junction is divided into the scattering region and the left and right lead. The
black circles in the scattering region depict “ghost atoms”, which are needed to set up the
matrices properly.

used. A “neighbor” in this case is considered to be one primitive cell, i.e., five atoms.
The super cell of the leads contain 15 atoms as can be seen in Fig 4.1 (b). These matrices
are used to calculate the surface green’s functions as described in Sec. 2.3.3.

The scattering region is constructed from the FLAPW calculation in the following way.
To optimize the numerical treatment, the scattering region is divided into n principal
layers as described in Sec. 2.4, which makes HS a tridiagonal matrix

HS =




h1 h12 0 0 0

h
†
12 h2

. . . 0 0

0
. . .

. . .
. . . 0

0 0
. . . hn−1 h(n−1)n

0 0 0 h
†
(n−1)n hn



. (4.26)

For the third nearest-neighbor approximation the scattering region is divided into
two principal layers labeled 1 and 2 (cf. Fig. 4.1 (c)). Due to the implementation, all
matrices need to be quadratic and have the same size. The dimensions of the matrices
are (natoms · norb)× (natoms · norb), where natoms is the number of atoms in the principal
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layer and norb the number of orbitals per atom. To be able to build matrices with these
dimensions for the scattering region, “ghost atoms” are added which are not coupled to
any other atoms. In this way the two principal layers of the scattering region sketched
in Fig 4.1 (b) now also contain 15 atoms.
The matrices HLS and HSR can either be taken from the calculation of the scattering

region, or can set to be equal to hLL and hRR, respectively.
Hoppings included in the matrices which go beyond the third nearest neighbor have

to be set to 0 to avoid spurious effects [49].
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5 Tuning the Anisotropic Magnetoresistance

in Monowires

The tunneling magnetoresistance and giant magnetoresistance is and has been widely
used in hard disk drives, respectively. The TMR and GMR originate from the
difference in the conductance for a parallel (Gp) and antiparallel (Gap) alignment of
two ferromagnetic layers. These layers are separated by a tunneling barrier (TMR) or
non-magnetic metal (GMR). The first electrode generates a spin-polarized current, while
the second electrode acts as a filter on the spin-polarized current allowing to pass through
a high current for parallel alignment and a small current for antiparallel alignment. The
setup of these two magnetoresistances is sketched in Fig. 5.1 (a). The GMR/TMR can
be defined as:

GMR/TMR = 100% · Gp −Gap

Gap

. (5.1)

Another magnetoresistive effect in bulk transition metals, the AMR, has been
experimentally discovered as early as 1857 by Lord Kelvin [2]. A full theoretical
description has been provided a century later, where a cos2Θ dependence of the AMR
on the angle Θ between magnetization and the current was found. The origin of the
AMR was identified to be the anisotropy of the scattering for electrons traveling parallel
or perpendicular to the magnetization due to SOC [3]. In bulk materials, the AMR is
on the order of a few percents (≤ 5%).

12

(a) (b) tunnelingtunneling

magnetoresistance anisotropic magnetoresistance

FM

FM

FM/AFM

NM

Gp Gap G‖ G⊥

Figure 5.1: (a) Sketch of the tunneling magnetoresistance, which utilizes the difference in the
conductance for parallel and antiparallel alignment of two ferromagnetic materials (green and
red boxes) separated by a an insulator (gray box), respectively. (b) Sketch of the tunneling
anisotropic magnetoresistance, which utilizes the difference in the conductance induced by spin-
orbit interaction for the parallel and perpendicular orientation of a magnetic electrode (blue
and orange boxes) separated by an insulator from a non-magnetic electrode (black boxes).

41



5 Tuning the Anisotropic Magnetoresistance in Monowires

In contrast to the GMR/TMR, only one magnetic and one non-magnetic electrode are
needed to realize the AMR in a tunneling geometry as sketched in Fig. 5.1 (b), which
is advantageous since spin coherence is not needed. Here, the AMR is defined as the
difference in the conductance for a parallel (G‖) and perpendicular (G⊥) alignment of
the magnetization with respect to the current direction

AMR = 100% · G‖ −G⊥
G⊥

. (5.2)

In a tunneling geometry of thin films, the AMR has been first measured in STM
experiments probing domains and domain walls of Fe thin films on W(110). It has been
explained by spin-orbit induced mixing between minority dxy,xz and minority dz2 states,
which can be described by the spin-orbit Hamiltonian introduced in section 3.2.4:

HSO = ξL · S, (5.3)

where ξ is the SOC strength. For the aforementioned orbitals 〈dz2|L · S|dxy,xz〉 is non-
zero for the out-of-plane magnetization in the domains, while it is zero for the in-plane
magnetization in the domains. This leads to differences in the local density of states
(LDOS) in the vacuum above the two regions, which is detected with the STM [51].

The TAMR has also been found in planar tunnel junctions with ferromagnetic
semiconductors [8], and has been explained by SOC induced changes in the LDOS [52, 8].
In both cases, the magnitude of the TAMR is of about 5%. It was further shown
theoretically that resonant surface states may produce sizable TAMR in a Fe(001)
surface [53]. Furthermore, one should note that the TAMR in general is sensitive to
the applied bias [8, 51, 52, 53].

In the single-atom limit, the TAMR has been measured in Co adatoms on a double-
layer Fe film on W(110) by STM finding values of up to 12% [10]. In break-junction
geometries, resonant tip states have been predicted to be the cause of a bias-sensitive
TAMR [54]. Further theoretical studies on the TAMR include DFT calculations of an
Ir adatom on a double layer of Fe on W(110) [55] and Co, Rh, and Ir adatoms on a
non-collinear magnetic surface, namely Mn/W(110) [56].

If the distance between the two electrodes is in the contact regime, the explanation
of the AMR via the LDOS breaks down since the orbitals directly overlap and start
to hybridize. Therefore, the transmission has to be calculated explicitly. A ballistic
anisotropic magnetoresistance (BAMR) has been proposed to occur in the case of
an atomic-scale constriction between the electrodes [9]. Monowires show a quantized
transmission function, the magnitude of which is determined by the number of modes
or bands at a given energy. The BAMR also arises due to SOC induced changes in
the electronic structure for a magnetization parallel (M ‖ z) or perpendicular (M ⊥ z)
to the monowire axis (z). In particular, depending on the magnetization direction d-
orbitals with different symmetries are allowed to mix (cf. Tab. 5.1). This leads to six
bands crossing the Fermi level for M ‖ z, i.e., G‖ = 6G0 but seven bands for M ⊥ z,
i.e., G⊥ = 7G0 and, thus, resulting in a BAMR of about 14% [9] (cf. Figs. 5.5 (b) and
(c)).
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L+∆L

Figure 5.2: Sketch of a symmetric Ni monowire (blue spheres) terminated by Co/Rh/Ir apex
atoms (yellow spheres).

Evidence of the BAMR was obtained in break-junction experiments [57]. However,
these experiments are difficult to interpret since the exact atomic structure is unknown
and ballistic magnetoresistance effects can easily be mimicked by changes of the distances
between the atoms due to magnetostriction [58, 59]. In other break-junction experiments,
values of BAMR of 25% to 100% in the contact regime have been found [60, 61].

Although, it was shown theoretically that it is unlikely that the large magnitude of the
BAMR is caused by the quantized transmission since scattering, which is present in each
realistic system due to the imperfect geometry or impurities [62, 63, 64, 65], will prevent
the transmission function from being ballistic. The scattering especially affects the
d-orbitals responsible for the magnetism while the s-orbitals are largely unaffected [62].

Yet, theory predicts that the AMR in single-atom contacts is larger than in bulk
systems or on surfaces due to the confined geometry, which limits the number of available
conducting modes. The AMR will be the larger the fewer modes are contributing to the
transmission function at a given energy since only some of the modes are affected by SOC.
The modes not affected by SOC at that energy constitute a background transmission,
which limits the size of the AMR.

Further on, it has been shown that the AMR can have a non-trivial and non-monotonic
behavior as a function of distance between the apex atoms [65]. However, a localized
atomic orbital minimal basis set was used adding SOC in a post-self-consistent approach.
No TAMR was found and, therefore, a complete explanation for the different sizes of
the AMR in the tunneling and contact regime and its dependence on the bias voltage
has not been given yet.

Therefore, in this chapter the AMR in symmetric junctions composed of two Ni
monowires terminated by Co, Rh, and Ir apex atoms is investigated. A sketch of the
junction can be seen in Fig. 5.2. To study the distance dependence of the AMR, we vary
the distance L+∆L between the apex atoms from the tunneling to the contact regime
and analyze the bias dependence of the AMR at chosen distances ∆L. The chemically
different apex atoms compared to the Ni monowire induce scattering, which prevent the
transmission from being ballistic in the contact regime. In addition, since the AMR is
caused by SOC, the AMR is expected to be the more enhanced the heavier the apex
atom. The magnetic moment in the Rh and Ir apex atom is thereby induced by the
coupling to the magnetic Ni monowire (MW), while Co is magnetic by itself.

We start by analyzing the AMR of the pure Ni monowire for several spacings and then
move on to the Ni monowires terminated by Co, Rh, and Ir apex atoms. We find that the
AMR depends sensitively on energy in the tunneling and contact regime. Furthermore,
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5 Tuning the Anisotropic Magnetoresistance in Monowires

as a function of distance the AMR at a certain energy can change drastically and even
change its sign. This can be understood by the SOC induced mixing and the decay
constant of the transition matrix elements between the apex atoms of the d-orbitals,
which depend on the orbital symmetry. Finally, we find that the size of the AMR
increases for heavier apex atoms reaching values of up to 150% for Ir. We explain
this by analyzing the LDOS, which shows that the increasing SOC constant enhances
the mixing of the d-orbitals moving from Co to Rh apex atoms and even induces a
spin-mixing for Ir apex atoms at the Fermi level.

The chapter is structured as follows. After introducing the computational details in
Sec. 5.1, we discuss the electronic structure and magnetic properties as well as the AMR
of Ni monowires in Sec 5.2. Subsequently, in Sec. 5.3 the influence of Co, Rh, and Ir
apex atoms on the AMR is analyzed. For a deeper understanding of the origin of the
AMR due to SOC induced changes in the electronic structure, we analyze the LDOS in
Sec. 5.4. A summary and conclusions are given in the final section.

5.1 Computational Details

Calculations for the Ni monowire leads are preformed in one-atom unit cells with a
theoretical lattice constant of 4.18 bohr using 96 k-points in the irreducible Brillouin
zone (IBZ) and a value of kmax = 4.8 bohr−1. The scattering regions are described with
symmetric 12-atom unit cells consisting of ten Ni atoms and two apex atoms, which are
either Ni, Co, Rh, or Ir. The setup is sketched in Fig. 5.2. Eight k-points in the IBZ and
a value of kmax = 4.6 bohr−1 have been used for the calculation of the scattering region.
In all calculations LDA has been used and D and D̃ have been chosen to 8.0 bohr and
9.0 bohr, respectively. The muffin-tin radius has been set to 2.0 bohr for Ni atoms and
2.10, 2.15, and 2.15 bohr for the Co, Rh and Ir atom, respectively. The distance of the
Co, Rh, and Ir apex atom to the adjacent Ni atom is fixed to 4.35 bohr.

For the Wannierization of the one-atom unit cell 96 k-points have been used. Five and
ten 3d orbitals as well as one and two 4s orbitals per atom have been used to construct
the MLWF out of nine and 20 bands for the SR calculations and calculations with SOC,
respectively. For the Wannierization of the 12-atom unit cell eight k-points in the full
Brillouin zone have been used. The electronic structure with DFT has been projected
on five and ten 3d orbitals as well as one and two s orbitals per atom to construct the
MLWF out of 90 and 164 bands for the SR and SOC calculations, respectively.

For all calculations a frozen energy window from −5 eV to approximately 2 eV with
respect to the Fermi energy has been used, since it was found that this energy window
guarantees the desired orbital character of the Wannier functions. The actual value of
the upper bound depends on the system.

Hoppings have been taken into account up to the fifth nearest neighbor to obtain
converged results for the transmission in the tunneling regime.

During the convergence tests for this system it was found that FSWF converge very
slowly in the tunneling regime. In Fig. 5.3 (a, c, e) the transmission obtained with
FSWF for a Ni MW with ∆L = 2.0 bohr, 4.0 bohr, and 8.0 bohr, respectively, can be
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Figure 5.3: (a, c, e) Transmission function of the minority spin channel of a pure Ni monowire
in the scalar-relativistic approximation including spacings of ∆L = 2.0 bohr, 4.0 bohr, and
8.0 bohr, respectively, obtained by first-shot Wannier functions (FSWF). (b, d, f) shows
the same as (a, c, e) obtained with maximally-localized Wannier functions (MLWF). The
transmission is obtained in the 2nd (blue line), 3rd (red line), and 4th (black line) nearest-
neighbor approximation.

seen. For ∆L = 4.0 bohr and 8.0 bohr the convergence is very poor, while it is reasonable
for 2.0 bohr. The MLWF, on the contrary, converge for all ∆L in Fig. 5.3 (b, d, f).

5.2 Ni Monowire

5.2.1 Electronic Structure and Magnetic Properties

Fig. 5.5 (a) shows the bandstructure of a Ni MW for a SR calculation. The bandstructure
calculated utilizing the MLWF taking into account hoppings up to the 5th nearest
neighbors shows excellent agreement with the FLAPW calculation. The dispersion of
the bands of ∆1 (d3z2−r2, s), ∆3 (dzx, dyz), and ∆4 (dxy, dx2−y2) symmetry in Fig. 5.5 (a)
can be understood by comparing with the shapes of the orbitals in Fig. 5.4. The overlap
of the ∆1-orbitals in z-direction is large leading to a large dispersion. For the ∆3-orbitals
the dispersion is smaller due to the canted orientation with respect to the z-axis. The
∆4-orbitals finally are localized mainly perpendicular to the z-axis and, therefore, show
a very flat dispersion. The spin-splitting of the bands leads to a magnetic moment of
about 1.1 µB per Ni atom.

45



5 Tuning the Anisotropic Magnetoresistance in Monowires

Figure 5.4: Sketches of the
d-orbitals of different symmetry.
The orbitals are grouped together
according to their symmetry:
∆1(d3z2−r2 , s) (s not shown), ∆3

(dzx, dyz), and ∆4 (dxy, dx2−y2).
Taken from Ref. [66].

s

x
y

z

dx2−y2

dzx dyz

dxy

d3z2−r2∆1 :

∆3 :

∆4 :

000 0.40.40.4 0.20.20.2

∆4

∆3∆1

kz (2π/a)kz (2π/a)kz (2π/a)

E
−
E

F
(e
V
)

(c) M ⊥ z(b) M ‖ z(a) SR

−2

−4

−2

−4

−0

FLEUR

5th NN WF

Figure 5.5: Bandstructure of a Ni monowire in (a) a scalar-relativistic calculation, and in
calculations including SOC with (b) M ‖ z and (c) M ⊥ z. The orange circles show the result
of the FLAPW calculation and the black solid line the 5th nearest neighbor (NN) MLWF
interpolation.
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details) in the SR approximation.
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exponentially decaying function.
The change of slope at 6.8 bohr
marks the transition from the
tunneling to the contact regime.

If we now consider SOC and a magnetization parallel (M ‖ z) and perpendicular
(M ⊥ z) to the z-axis in Fig. 5.5 (b, c), several differences between the bandstructures of
the two magnetization directions can be seen. SOC causes the matrix elements between
the 3d-orbitals to be non-zero depending on the magnetization direction according to
Tab. 5.1. In k-space, this hybridization leads to mixing of states with the same k affecting
them the stronger the closer the k-states are in energy. For example, the minority
∆4-bands crossing the Fermi level, which are degenerate in the SR approximation, are
degenerate forM ⊥ z but not forM ‖ z. The same holds for the ∆3-bands. Furthermore,
several level crossings between ∆4- and ∆3-bands, e.g., at −0.5 eV, −1 eV, and −1.5 eV
below the Fermi level, which are present for the SR calculation, become avoided level
crossing when SOC is included.

The magnetocrystalline anisotropy energy (MAE) (E‖−E⊥) amounts to 15meV/atom
in favor of the parallel orientation in good agreement with Ref. [67]. For M ‖ z the spin
and orbital moments per Ni atom amount to 1.1µB and 0.6µB, respectively, and for
M ⊥ z the values of the spin and orbital moments are 1.1µB and 0.1µB, respectively.

If now a spacing ∆L = 2.0 bohr is introduced between two Ni atoms of the MW,
the spin and orbital moments of the apex atom do not change strongly and amount to
1.1µB (1.1µB) and 0.7µB (0.3µB), respectively, for M ‖ z (M ⊥ z). The MAE increases
slightly to 16meV/atom in favor of the parallel orientation. Further enlargement of ∆L
does not change the spin and orbital moments or the MAE considerably.

After having established the general electronic and magnetic properties, we now
analyze the transport properties. Figure 5.6 shows the transmission at the Fermi energy
(EF) for increasing width d of the tunneling barrier1 obtained from SR calculations. One
can use the change of the slope around d = 6.8 bohr, which corresponds to ∆L = 4.0 bohr,

1The width of the tunneling barrier has been determined by evaluating the width of the Coulomb
potential determined by the intersection of the Coulomb potential with the Fermi energy. Using this
actual width of the tunneling barrier yields a slightly better fit compared to simply using ∆L.
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Figure 5.7: (a-c) shows the transmission function for M ‖ z and M ⊥ z as well as the
AMRdiff. of a Ni MW for ∆L = 0.0 bohr. (d-f) shows the same for ∆L = 2.0 bohr and (g-i)
for ∆L = 8.0 bohr. Blue, red and gray color indicate the contribution of orbitals with ∆1-,
∆3-, and ∆4-symmetry to the transmission function, respectively. The dashed line in panel (i)
depicts the anisotropy of the ∆1-LDOS at the apex atom calculated according to Eq. (5.5).

to determine the boundary between the contact and tunneling regime [68]. The
transmission in the tunneling regime displays an exponential decay ∝ e−2κd with
κ =

√
2mΦ/~2. Fitting the data yields a work function Φ = 4.9 eV in reasonable

agreement with the Fermi energy of 5.25 eV of the FLAPW calculation.

5.2.2 Energy Dependence of the AMR

To investigate the energy-dependence of the AMR in the contact regime, we now focus
on ∆L = 2.0 bohr and 8.0 bohr.

Figs. 5.7 (a, b) show the orbital-decomposed transmission around the Fermi energy
for the perfect Ni MW showing the expected step function of the ballistic regime
corresponding to the number of bands at each energy (cf. Fig. 5.5). At the Fermi
level in Fig. 5.7 (c) one sees the originally proposed ballistic AMR due to the ∆4-bands,
the degeneracy of which is lifted due to SOC for M ‖ z but not for M ⊥ z. The energy-
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5.3 Different Apex Atoms

dependent AMR shown here is defined via the transmission function, which corresponds
to the differential conductance, and is defined as

AMRdiff. = 100% · T‖ − T⊥
T⊥

. (5.4)

To simplify further discussions, we divide the energy range in three regions naturally
defined by the orbitals which are responsible for the majority of the AMRdiff. in that
energy. Region A extends from −1 eV to −0.25 eV below EF and contains primarily the
AMRdiff. mainly due to mixing of ∆1-bands with bands of other symmetries reaching
values from 10% to 100%. Region B extends from −0.25 eV to 0.25 eV around EF and
includes the AMRdiff. due to mixings involving the ∆4-bands reaching values of about
20%. Region C extends from 0.25 eV to 1 eV above the Fermi level and comprises the
AMRdiff. originating from mixings of the ∆3-bands reaching values of about 50%.

If elastic scattering is introduced by setting ∆L = 2.0 bohr, Fig. 5.7 (d-f), the
transmission function broadens and especially the contribution from the ∆3- and ∆4-
orbitals reduces. The AMRdiff. in regions B and C now only shows magnitudes of about
10% due to the reduced contribution of the ∆3- and ∆4-orbitals. The AMRdiff. in region
A shows a similar shape and the same or slightly decreased magnitude as in the perfect
wire. An additional effect in the AMRdiff. can be seen in region C slightly below 0.5 eV,
which originates from the band edge of the ∆1-band. The results for the perfect MW
and a spacing of ∆L = 2.0 bohr are in agreement with Ref. [65].
Eventually, for ∆L = 8.0 bohr, Fig. 5.7 (g-i), only the ∆1-bands contribute to the

transmission function. Therefore, the effects in region B and C and at EF originating
from the ∆3- and ∆4-bands vanish completely and the comparison with the anisotropy
of the LDOS of the ∆1-symmetry bands at the apex atom calculated via

AMRLDOS = 100% · LDOS‖ − LDOS⊥

LDOS⊥
(5.5)

reproduces the AMRdiff. quite well, Fig. 5.7 (i). In the tunneling regime, our results differ
from the ones obtained in Ref. [65], where no AMR was found at all in the area from
−0.3 eV below to 0.3 eV above the Fermi energy. These differences can be attributed to
the localized basis set and the post-self-consistent approach to add SOC used in Ref. [65]

5.3 Different Apex Atoms

5.3.1 Magnetic Properties and AMR

We now replace the apex atom of the two Ni monowires with Co, Rh and Ir apex
atoms and analyze the electronic, magnetic and transport properties of our symmetric
junctions (cf. Fig. 5.2).
Figs. 5.8 (a) and (b) show the spin and orbital moment of the different apex atoms

as a function of ∆L for M ‖ z and M ⊥ z. The spin moment of the Co apex atom,
which is magnetic by itself, stays constant at 2.2µB for all values of ∆L. The orbital
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5 Tuning the Anisotropic Magnetoresistance in Monowires

Figure 5.8: (a) Spin (b) and
orbital moments of the apex
atoms, (c) MAE, and (d) AMR
of the conductances for M ‖ z and
M ⊥ z obtained by integrating
the transmission function from
−50meV below to +50meV above
the Fermi level of the symmetric
junctions of two Ni monowires
terminated by Co (dashed-dotted
line), Rh (dashed line), and Ir
(solid line) apex atoms as a
function of ∆L. The spin and
orbital moment for M ‖ z and
M ⊥ z are marked with empty
and filled symbols, respectively.

(a)

(b)

(c)

(d)

0

0

0

0

1

1

2

2

33

3

66 99
∆L (bohr)∆L (bohr)

µ
sp

in
(µ

B
)

µ
o
rb

.
(µ

B
)

M
A
E
(m

eV
)

M ⊥ z

M ‖ z

A
M
R

(%
) −00

−00

−20

−20

−30

−15

−40

Ir
Rh
Co

moment decreases slightly from 0.29µB to 0.20µB when moving from ∆L = 0.0 bohr to
2.0 bohr and stays constant for larger spacings afterwards. For the Rh and Ir apex atoms
a qualitatively very similar behavior can be observed. For Rh (Ir) at ∆L = 0.0 bohr
the spin moment is −0.1µB (0.27µB) and −0.36µB (−0.29µB) for M ‖ z and M ⊥ z,
respectively. For ∆L = 2.0 bohr the value for Rh (Ir) rises to 1.39µB (1.53µB) and
1.37µB (1.42µB) for M ‖ z and M ⊥ z, respectively, and after that stays stable with
increasing spacing ∆L. A similar trend can be seen for the orbital moments: For Rh
(Ir) the orbital moment jumps from 0.24µB (0.63µB) to 1.0µB (1.4µB) and −0.07µB

(−0.1µB) to 0.32µB (0.79µB) for M ‖ z and M ⊥ z, respectively.

This can be understood in the following way. For large distances between the apex
atoms the Rh and Ir apex atoms are polarized by the nearest-neighbor Ni atom. However,
for small distances the interaction between the two apex atoms leads to a quenching of
their magnetic moments. Quenching of the magnetic moment for small lattice constants
in pure Rh and Ir monowires has also been observed in Ref. [69].

The MAE in Fig. 5.8 (c) follows the difference of the orbital moments for the
two magnetization directions in accordance with the Bruno model [70]. A value of
15meV/atom is found for ∆L = 0.0 bohr for all apex atoms, which is very close to the
value for the pure Ni MW. For larger spacings, a value of 2.5meV/atom, 23meV/atom,
and 37meV/atom is found for Co, Rh and Ir apex atoms, respectively. The large MAE
found for the Ir apex atoms is consistent with Ref. [71], where it has been observed that
NiIr alloys can exhibit very large anisotropy energies.

Fig. 5.8 (d) shows the AMR of the conductances obtained by integrating the
transmission function from −50meV below to 50meV above the Fermi level. As for
the MAE, the AMR is largest for Ir apex atoms, followed by Rh and then Co apex
atoms. The AMR of the Co apex atom shows a change of sign between ∆L = 0.0 bohr
and ∆L = 2.0 bohr and stays constant afterwards. The same can be seen for the AMR
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5.3 Different Apex Atoms

of the Rh apex atom, albeit there is an additional large change of the AMR between
∆L = 2.0 bohr and ∆L = 4.0 bohr. For Ir, an additional jump of the AMR occurs
between ∆L = 4.0 bohr and ∆L = 8.0 bohr. This behavior of the AMR for the Co, Rh
and Ir apex atom is consistent with the fact, that the 3d, 4d, and 5d orbitals increase
in spread and, therefore, 4d and 5d orbitals still contribute to the conductance at larger
∆L, while the 3d orbitals do not. Since the AMR is mainly created by the d-orbitals,
this is reflected by an AMR which is more sensitive to ∆L.

5.3.2 Energy Dependence of the AMR

After having established the magnetic and transport properties for the Ni monowire
terminated by different apex atoms, we focus on one point in the contact (∆L = 2.0 bohr)
and one in the tunneling (∆L = 8.0 bohr) regime to study the energy dependence of the
AMR.

Contact Region

Figs. 5.9 (a, b) shows the transmission function for M ‖ z and M ⊥ z for ∆L = 2.0 bohr
of a Ni MW junction with Co apex atoms. The first thing to notice are the missing
contributions from ∆4-bands in the transmission for both magnetization directions. This
is due to the weak coupling to the ∆4-bands of the Ni leads and the small overlap of
the ∆4-orbitals of the two Co apex atoms across the gap. Therefore, in Fig. 5.9 (c) no
AMRdiff. is observed in region B in contrast to the pure Ni MW with ∆L = 2.0 bohr
(cf. Fig. 5.7 (f)). Besides that, the AMRdiff. shows strong similarities in shape and
magnitude to the one of the pure Ni monowire with ∆L = 2.0 bohr. Similar shapes and
magnitudes of the AMRdiff. as for the Ni MW due to ∆3-bands can be seen in region C
as well as due to the mixing of ∆1-bands with bands of ∆3- and ∆4-symmetry in region
A. The enhancement in region C originates from the fact that the contribution of the
∆3-bands to the transmission function is enhanced in that energy region compared to
the pure Ni MW.

For the Rh apex atom, Figs. 5.9 (d-f), the shape of the AMRdiff. in region A remains
similar to the Ni MW, although its magnitude increases and the peaks are broader due
to the enhanced SOC. In region B, the AMRdiff. reaches values of up to −50% due to
the ∆4-contributions and in region C up to 50% due to the ∆3-bands. This is also
caused by the aforementioned enhanced SOC and the larger spread of the 4d-orbitals
of Rh compared to the 3d-orbitals of Co, which leads to larger overlaps of the orbitals
of the Rh apex atoms and, therefore, larger contributions to the transmission function
reaching values of more than 3 (cf. Figs. 5.9 (d, e)).
This trend continues for Ir apex atoms (Figs. 5.9 (g-i)), where also an AMRdiff. of up

to −50% due to the ∆4-orbitals is found in region B and even of up to 70% caused by
the ∆3-orbitals in region C. Below the Fermi level we observe a very similar shape and
magnitude of the AMRdiff. as for Rh.
In summary, we find that the changes induced by the different apex atoms on the

AMRdiff. originating from ∆1-bands in region A is relatively small and that it is similar
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Figure 5.9: (a-c) shows the transmission function for M ‖ z and M ⊥ z and the AMRdiff.

of a Ni MW with Co apex atoms and a spacing of ∆L = 2.0 bohr. (d-f) shows the same of a
Ni MW with Rh apex atoms and (g-i) with Ir apex atoms. Blue, red and gray color indicates
the contribution of orbitals with ∆1, ∆3, and ∆4-symmetry to the transmission function,
respectively.

in shape and magnitude for all apex atoms. The AMRdiff. due to the more localized ∆3-
and ∆4-bands in region B and C is much more affected by the apex atom. The fact that
the AMRdiff. caused by the more localized orbitals is stronger affected by the apex atom,
which constitutes an impurity to the Ni MW, is consistent with the findings of Ref. [62].
The AMRdiff. in shows both signs in region A, while it prefers mainly negative values in
region B and positive values in region C.

A more detailed discussion of the hybridizations of the ∆3- and ∆4-bands can be
found in Sec. 5.4.
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Tunneling regime (∆L = 8.0 bohr)

Figure 5.10: (a-c) shows the transmission function for M ‖ z and M ⊥ z as well as the
AMRdiff. of a symmetric junction consisting of two Ni MWs terminated by Co apex atoms
and a spacing of ∆L = 8.0 bohr. (d-f) shows the same with Rh apex atoms and (g-i) with
Ir apex atoms. Blue, red and gray color indicates the contribution orbitals with ∆1, ∆3, and
∆4-symmetry to the transmission function, respectively. The dashed green line in (c), (f),
and (i) depicts the anisotropy of the ∆1-LDOS at the apex atom calculated analogous to the
AMRdiff..

Tunneling Region

Figs. 5.10 (a, b) show the transmission functions for M ‖ z and M ⊥ z with ∆L =
8.0 bohr for Co apex atoms. Clearly, the ∆1-states dominate the transmission and only
below the Fermi energy one finds sharp features of the ∆3- and ∆4-bands reminiscent
of the tip resonances found in Ref. [54]. In region A, the AMRdiff. of the Co apex atoms
in Fig. 5.10 (c) has a similar shape as the AMRdiff. in contact (cf. Fig.5.9 (c)), which
can be explained by its primary origin from the ∆1-bands. In region C, one observes
a similar feature as in the AMRdiff. for ∆L = 2.0 bohr, although much sharper, of
smaller magnitude and favoring negative values. The reason for this change is that the
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5 Tuning the Anisotropic Magnetoresistance in Monowires

AMRdiff. in region C in contact is caused by the ∆3-bands, which do not contribute to the
transmission function in the tunneling regime. Therefore, one sees the AMRdiff. caused
by the ∆1-bands at this energy. The AMRdiff. is well reproduced by the anisotropy of
the LDOS (Eq. (5.5)) of the ∆1-states at the apex atom. Only the peaks at −0.25 eV
and −0.5 eV below the Fermi level are not reproduced due to their origin from orbitals
with ∆4-symmetry.

In Figs. 5.10 (d, e) the transmission functions for M ‖ z and M ⊥ z for the Rh apex
atoms with ∆L = 8.0 bohr also show no contribution of the ∆3- and ∆4-bands. The
transmission due to the ∆1-states displays a large double peak around the Fermi energy
and generally a very different shape compared to the one of the Co apex atoms. As for
Co apex atoms, the AMRdiff., Fig. 5.10 (f), in region A is very similar to the AMRdiff. in
contact (cf. Fig. 5.9 (f)). Region B, where the AMRdiff. is caused by the ∆4-bands in the
contact region, now shows a small and broad AMRdiff. due to the ∆1-orbitals. In region
C, the AMRdiff. in the tunneling region also decreases compared to the contact regime
and exhibits sharper peaks favoring a negative sign of the AMRdiff.. Despite from region
B, the AMRdiff. can be well reproduced by the anisotropy of the LDOS of the ∆1-bands
at the apex atom.

The transmission functions for M ‖ z and M ⊥ z with ∆L = 8.0 bohr for the Ir
apex atoms, Figs. 5.10 (g, h), show more and broader contributions of the ∆3- and
∆4-bands compared to the case of Co and Rh apex atoms. This can be understood
by the enhanced SOC with leads to stronger mixing of the ∆3- and ∆4-bands with the
∆1-band and the larger spread of the 5d-orbitals. The shape of the ∆1-contribution
to the transmission function is very different compared to the one of the Co and Rh
apex atom. As already seen for the Co and Rh apex atoms, in region A the shape
and magnitude of the AMRdiff. shown in Fig 5.10 (i) is very similar to the AMRdiff.

in contact, Fig 5.9 (i), while region B and C show larger differences compared to the
contact regime. In region B, the AMRdiff. still has the same shape as the AMRdiff. for
∆L = 2.0 bohr caused by the ∆4-bands and only its magnitude decreased. In region C,
the AMRdiff. has a similar shape as the AMRdiff. for ∆L = 2.0 bohr, although the sign of
most of the peaks changes to negative as seen before for Co and Rh apex atoms. Most
of the AMRdiff. in the tunneling regime can be well reproduced by the anisotropy of the
∆1-LDOS at the apex atom.

In summary, we observe a different energy dependence, magnitude, and sign of the
AMRdiff. in the contact and in the tunneling regime. Since the AMRdiff. in region A is
dominated by ∆1-bands, it shows very similar behavior for all apex atoms in the contact
and tunneling regime. However, the AMRdiff. in region B and region C is dominated
by ∆4- and ∆3-bands in the contact regime, respectively, but primarily by ∆1-bands in
tunneling regime. This leads to a qualitatively and quantitatively different behavior of
the AMRdiff. and in region C even to a change of the sign between the AMRdiff. in the
contact and the tunneling regime. In addition, due to enhanced SOC induced mixings
of ∆1-bands with ∆3-bands in region C for Rh and Ir, the AMRdiff. for these apex atoms
is enhanced compared to the Co apex atom or the pure Ni chain.

In the next section, we analyze these effects in more detail based on the local density
of states.
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5.4 Analysis of the LDOS

Table 5.1: Angular dependency of the SOC matrix elements 〈d1|L ·S|d2〉 of the d-orbitals (d1
and d2 represent dxy, dyz , dzx, dx2−y2 , and d3z2−r2) for parallel (↑↑) and antiparallel (↑↓) spin
alignment for a magnetization defined by polar angles θ and φ with respect to the direction of
the current. Taken from [72].
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5.4 Analysis of the LDOS

5.4.1 Contact region

To analyze the origin of the AMRdiff. in the contact and in the tunneling regime in detail,
we study the LDOS of the states at the apex atom and at the adjacent Ni atom of the
open quantum system obtained with the transport code described in chapter 2.

For the contact region (∆L = 2.0 bohr), we focus on the more localized ∆3- and ∆4-
orbitals of the Co apex atom and the ∆4-orbitals of the adjacent Ni atom. Fig. 5.11 (a)
shows the LDOS of the aforementioned orbitals of a SR calculation for the majority
and minority spin. In the depicted energy region only minority spin states of ∆3- and
∆4-orbitals are present due to the exchange-splitting. The LDOS of the ∆4-orbitals of
the Co apex and adjacent Ni atom show very sharp peaks indicating small hybridization.
The weak hybridization leads to the fact that the ∆4-orbitals do not contribute to the
transmission function in the contact regime (cf. Figs. 5.9 (a) and (b)). The LDOS of
the ∆3-orbitals of the Co apex atom shows the expected band-like shape.

SOC leads to several differences in the LDOS for M ‖ z and M ⊥ z shown in
Fig. 5.11 (b) and (c). According to Tab. 5.1 for identical spin orientations and M ‖ z
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Figure 5.11: LDOS of the ∆4- (shaded cyan) and ∆3-orbitals (dashed red line) at the Co
apex atom and the ∆4-orbital (solid blue line) at the nearest-neighbor Ni atom obtained from
a SR calculation (a) and calculations including SOC with (b) M ‖ z and (c) M ⊥ z for a
spacing of ∆L = 2.0 bohr between the apex atoms terminating the two Ni MWs. (d-f) shows
the same for Rh apex atoms and (g-i) for Ir apex atoms.

(θ = φ = 0°) one finds SOC matrix elements (Eq. (5.3)) of 〈dzx, ↑ |HSO|dyz, ↑〉 = −1
2
iξ,

while for M ⊥ z (θ = 90°, φ = 0°) 〈dzx, ↑ |HSO|dyz, ↑〉 = 0. For M ‖ z this leads to
a lifting of the degeneracy of the ∆3-states and to a two peak structure around 0.5 eV
above EF. These differences around 0.5 eV above EF explain the AMRdiff. in region
C in Fig. 5.9 (c). Analogously, one finds for the ∆4-states of parallel spin orientation
non-vanishing SOC matrix elements for M ‖ z while they are zero for M ⊥ z. This
leads to the extra peak slightly above EF present for M ‖ z but not M ⊥ z. However,
since the ∆4-states of the Co apex atoms are only weakly coupled to the adjacent Ni
atom, no AMRdiff. in region B is found around the Fermi level in Fig. 5.9 (c).

The LDOS of the ∆4-orbitals of the Rh apex atom and the adjacent Ni atom of the SR
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5.4 Analysis of the LDOS

calculation in Fig. 5.11 (d) show stronger hybridizations and more band-like structures
compared to the Co apex atom. The ∆3-LDOS of the Rh apex atom is very similar to
the one of the Co apex atom. The LDOS obtained from calculations including SOC for
M ‖ z and M ⊥ z are shown in Figs. 5.11 (e, f). One sees the same splitting at the ∆3

band edge (0.5 eV above the EF) as found for the Co apex atom and around the Fermi
level for the ∆4-states. However, due to the larger hybridization of the ∆4-states of the
Rh apex atom with the adjacent Ni atom, the SOC induced mixing of the ∆4-states
now creates an AMRdiff. in region B around the Fermi level in Fig. 5.9 (f). In addition
to the SOC induced mixing found already for Co, hybridization between minority and
majority spin states of ∆3- and ∆4-character can be found in the energy region from
−1.0 eV to −0.5 eV below the Fermi level for both magnetization directions. Comparing
with Tab. 5.1 yields non-vanishing SOC matrix elements for 〈dxy, ↑ |HSO|dzx, ↓〉 and
〈dx2−y2 , ↑ |HSO|dyz, ↓〉 for M ‖ z as well as for 〈dyz, ↑ |HSO|dzx, ↓〉 for M ⊥ z. The
reasons why these hybridizations are visible for Rh but not for Co lie in the larger
SOC constant for Rh and in the smaller spin-splitting of the states at the Rh apex atom
compared to the Co apex atom (cf. Fig.5.8 (a)). These additional mixings are the reason
for the increased AMRdiff. for Rh apex atoms compared to Co apex atoms in region A
in Fig. 5.9 (f).
The LDOS of the ∆4-state of the Ir apex atom and the adjacent Ni atom of the SR

calculation in Fig. 5.11 (g) is very similar to the one of the Rh apex atom. Considering
SOC for M ‖ z and M ⊥ z the mixings described for Co and Rh apex atoms can also
be found for the Ir apex atom in Fig. 5.11 (h, i). The mixing of minority and majority
∆3- and ∆4-states moves closer to the Fermi level due to the reduced spin-splitting for
Ir apex atoms. The reduced spin-splitting also leads to additional hybridizations of the
∆4-states of majority and minority spin for M ⊥ z originating from the matrix elements
〈dxy, ↑ |HSO|dx2−y2 , ↓〉 = −i, which is only weakly visible for Rh and not at all for Co
apex atoms.

5.4.2 Tunneling region

For a deeper understanding of the effects of the different apex atoms on the AMRdiff. in
the tunneling regime (∆L = 8.0 bohr), the LDOS of the delocalized ∆1- and ∆3-orbitals
of the apex atom as well as the ∆1-orbital of the adjacent Ni atom is analyzed for the
three different apex atoms.
The LDOS of the ∆3-states obtained with a SR calculation at the Co apex atom,

Fig. 5.12 (a), shows the same shape as in the contact region, Fig. 5.11 (a). The LDOS
of the ∆1-states shows the expected broad features due to the strong overlap of the
orbitals of the apex atom with the adjacent Ni atom in the majority and minority spin
channel. Including SOC for M ‖ z lifts the degeneracy of the ∆3-states is lifted, as
already observed in the contact regime, leading to the emergence of a shoulder in the
LDOS at 0.5 eV above EF. In addition, at −0.7 eV a kink can be seen in the minority
∆3-LDOS and the majority ∆1-LDOS, which can be attributed to the non-vanishing
SOC matrix elements 〈zx, ↑ |HSO|3z2 − r2, ↓〉 and 〈yz, ↑ |HSO|3z2 − r2, ↓〉 (cf. Tab. 5.1).
The same kinks can also be seen for M ⊥ z since also here 〈zx, ↑ |HSO|3z2 − r2, ↓〉 is
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Figure 5.12: LDOS of the ∆1- (shaded gray) and ∆3- (dashed red line) orbitals at the
apex atom and the ∆1-orbital (solid black line) at the nearest-neighbor Ni atom for the SR
calculation (a) and the calculations including SOC (b) M ‖ z and (c) M ⊥ z for a spacing of
∆L = 8.0 bohr between the apex atoms terminating the two Ni MWs. (d-f) shows the same
for Rh apex atoms and (g-i) for Ir apex atoms.

non-zero. In addition, ∆3- and ∆1-orbitals of parallel spin are allowed to mix, creating
the kink at −0.7 eV. These two kinks in the LDOS of the ∆3- and ∆1-orbitals are the
origin of the AMRdiff. in region A in Fig. 5.10 (c). The sharp peak at −0.5 eV in the
AMRdiff. in region B can be explained by the mixing of ∆3- and ∆1-orbitals of minority
spin character. Although, it is barely visible for the Co apex atom and can be seen
much clearer for the Rh and Ir apex atom.

The LDOS of the ∆3- and ∆1-states at the Rh apex atom obtained with a SR
calculation, Fig. 5.12 (d), show additional and more pronounced peaks compared to
one at the Co apex atom. However, the general shape is similar. Including SOC similar
mixing between the orbitals are found for M ‖ z and M ⊥ z as for the Co apex atom.
For the Rh apex atom one now clearly sees the mixing of minority ∆1- and ∆3-states
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slightly above EF + 0.5 eV leading to the AMRdiff. in region C (cf. Fig. 5.10 (f)).
The LDOS obtained in the SR approximation at the Ir apex atom in Fig. 5.12 (g)

shows a very similar shape as the one at the Co apex atom. When SOC is included the
same mixings as before occur for the two magnetization direction. However, due to the
larger SOC constant for the Ir apex atom, the mixings are more pronounced and occur
on larger energy scales, e.g., the mixing of minority ∆1- and ∆3-states slightly above
EF + 0.5 eV for M ⊥ z. For M ‖ z one now sees mixing of minority and majority ∆1-
and ∆3-states slightly below EF + 0.5 eV and near the Fermi level. Due to the larger
mixings for the Ir apex atoms in Fig. 5.10 (i), the AMRdiff. is larger and broader in all
regions.

5.5 Summary

In summary, the AMR was studied in symmetric junctions consisting of Ni MWs
terminated by Co, Rh and Ir apex atoms as a function of the spacing ∆L introduced
between the apex atoms of the monowire. We have focused on the AMRdiff. of the
transmission function, which corresponds to the AMR of the differential conductance.
We have found that the AMRdiff. depends sensitively on energy and can be enhanced by
replacing the Ni or Co apex atoms using isoelectronic but heavier 4d and 5d transition
metals Rh and Ir, respectively, reaching values of up to 150%. As a function of ∆L
we have found a non-trivial and non-monotonic evolution of the AMR, which can even
change its sign when moving from the contact to the tunneling regime. The findings
can be explained by the different symmetry of the orbitals constituting the transmission
in the two regimes. The decay constants of the transition matrix elements between the
orbitals at the apex atoms on each side of the gap and the SOC induced mixing depend
on the orbital symmetry. The AMR is dominated by spatially delocalized and localized
orbital types in the tunneling and contact regime, respectively, and, therefore, the AMR
can differ strongly between the two regimes.
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6 From Tunneling to Ballistic AMR in

Single-Atom Junctions

In the last chapter, we have analyzed the AMRdiff. of the transmission function, which
corresponds to the AMR of the differential conductance as a function of energy and
distance of Ni monowires terminated by Co, Rh and Ir apex atoms. In this chapter, we
will focus on the distance dependence of the AMR of the conductance, i.e., the integrated
transmission function, defined by

AMR(∆z) = 100% · G‖(∆z)−G⊥(∆z)

G⊥(∆z)
. (6.1)

This is motivated by STM experiments performed by Johannes Schöneberg and
Nicolas Néel in the group of Prof. Richard Berndt at the Christian-Albrechts-Universität
zu Kiel. In these experiments, Co and Ir adatoms on a double layer of Fe on W(110) have
been probed by a non-magnetic W tip. The experimental setup is sketched in Fig. 6.1.
The Fe double layer on W(110) is known to exhibit ferromagnetic domains with an out-
of-plane magnetization that rotates into the film plane in domain walls (Néel walls) [51].
DFT calculations have shown that due to exchange coupling the magnetic moments of
Co and Ir adatoms, whereby Ir is polarized by the substrate, on the domain and domain
wall point in the same direction as the moments of the underlying Fe atoms [10, 55].
Therefore, the distance dependent current (or conductance) of adatoms deposited on
domains and domain walls can be used to calculate the AMR as a function of the vertical
tip displacement. A great advantage of this approach is that an external magnetic field
is not needed and, thus, magnetostriction is not an issue.

STM tip (W)

z G‖(∆z) G⊥(∆z)

domain domain wall

Co/IrFe

Figure 6.1: Sketch of the
experimental setup of Co and
Ir adatoms on the domain and
domain wall of a double layer of
Fe on W(110) probed by a W
STM tip. The conductances for
the two magnetization directions
G‖ and G⊥ are measured as a
function of the tip displacement
∆z and are used to calculate the
distance dependence of the AMR.
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6 From Tunneling to Ballistic AMR in Single-Atom Junctions

Figure 6.2: Conductance G

versus vertical tip displacement
∆z for (a) Co and (c) Ir adatoms
on an Fe double layer on W(110).
Bias voltages were set to 50 mV
(Co) and 100 mV (Ir). Negative
∆z corresponds to reduction of
the tip-adatom distance. The
dashed and solid curves show
the conductances for an adatom
on a domain (G‖/domain) and
on a domain wall (G⊥/wall),
respectively. The AMR was
calculated from the data in (a)
and (c) using Eq. (6.1). (b) and
(d) display the results for Co and
Ir, respectively. Experimental
data taken from Ref. [73].
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The experimental AMR is shown in Figs. 6.2 (b) and (d) for Co and Ir adatoms,
respectively. As a function of the tip displacement ∆z the AMR of Ir adatoms changes
from 0% for ∆z = 0.0 Å to −10% for ∆z = −1.5 Å as the tip approaches the adatom.
The AMR of Co adatoms shows a non-monotonic behavior and a change of sign whereby
the values range from −5% to 5%. From the conductance curves in Figs. 6.2 (a) and
(c) it can be seen that the AMR starts to change at the transition from the tunneling
to the contact region (cf. with definition of tunneling and contact region in Sec. 5.2).

We have seen in the previous chapter that depending on the spacing between the apex
atoms of the Ni monowires orbitals of different symmetry dominate the shape of the
transmission function. Further it has been demonstrated that this influences the AMR
and can even change its sign. Here, we show that albeit the more complex geometry
of the experimental STM junction, the same mechanism is responsible for the distance
dependence of the AMR in the STM experiments. With the help of DFT calculations
we show that a similar behavior of the conductance as seen in the experimental data can
be found for Fe monowires terminated by Co or Ir apex atoms. Thereby, the geometrical
setup is the same as in chapter 5 (cf. Fig. 5.2).

To account for the more complex geometry in the experiment, we generalize our
findings by devising a TB model similar to the one of the tunneling AMR on surfaces
presented in Ref. [10] but take into account the contact region and calculate the
conductance. The TB model consists of two orbital types of different symmetry
characterized by the decay of the transition matrix elements of these orbitals across
the gap in between the adatom and the STM apex atom. SOC is introduced as an off-
diagonal matrix element to account for the magnetization-direction dependent mixing
between the orbitals. This generic TB model is capable to explain the experimentally
observed conductances and AMR.
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6.1 DFT Calculations of Distance-Dependent AMR

Additionally, we present an analytical model of the distance dependence of the
conductance which can be used to fit the experimental data. From these fits, the decay
constants characterizing the orbitals of different symmetries can be obtained for adatoms
on domains and domain walls. In a further step of interpretation the differences of the
decay constants of adatoms on domains and domain walls can be attributed to a change
in the effective mass of the electrons populating the orbitals. Since the effective mass can
be calculated from the electronic structure this interpretation directly links the fitted
values to the SOC induced changes in the electronic structure.

6.1 DFT Calculations of Distance-Dependent AMR

We consider symmetric atomic junctions as in chapter 5 (cf. Fig. 5.2). Instead of Ni
we use Fe monowires and consider Co and Ir apex atoms and perform calculations for
several distances L between the apex atoms. We integrate the transmission function in
an energy interval corresponding to the width of the voltage window of the experiment,
i.e., in an energy range of 50meV and 100meV for Co and Ir, respectively. The energy
dependence of the AMR has been discussed in detail in the last chapter. Here, the
focus is on a small energy region around the Fermi level where a behavior as in the
experiment is obtained. The larger coordination number of the apex atom of the STM
tip and the adatom in the full STM geometry will lead to an energy shift and broadening
of the electronic states located at the adatom and the apex atom. In addition, further
changes will arise since the junction considered in the experiment is asymmetric, while
in the DFT calculations it is symmetric. Therefore, the energy interval need to be
chosen differently compared to the experiment. However, in the next sections we will
show using a TB and an analytical model that these complications do not change the
underlying physical mechanism.

For the Co apex atom we focus on the energy region from −100meV to −50meV
marked by the gray shaded area in the transmission function for L = 5.5 Å in the
tunneling region and L = 2.56 Å in the contact region depicted in Fig. 6.3 (a) and (c),
respectively. In the tunneling region the transmission function is dominated by sdz2
states. A sharp peak in the shaded area for M ⊥ z can be seen, which is due to weak
SOC induced mixings of the dyz state with dx2−y2 and dz2 states (cf. Tab. 5.1). This
peak can also be seen in the LDOS at the Co apex atom for L = 5.5 Å in Fig. 6.3 (b).
For M ‖ z the corresponding matrix elements vanish due to symmetry.

On the other hand, in the contact region the transmission is dominated by the dxy,x2−y2

states. Due to SOC the degeneracy of the dxy and dx2−y2 states is lifted for M ‖ z
(cf. Tab. 5.1), which can also be seen in the LDOS of the dxy,x2−y2 states in Fig. 6.3 (d).
This leads to a larger transmission function forM ‖ z in the energy region marked by the
gray shading, Fig. 6.3 (c), in contrast to the tunneling regime, where the transmission
function for M ⊥ z is larger. One can already estimate that this will lead to a change
of sign in the AMR between tunneling and contact regime.

The conductances for the two magnetization directions G‖ and G⊥ of the Co apex
atoms obtained by integrating the transmission function from −100meV to −50meV
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Figure 6.3: Transmission from DFT for a junction of two Fe MWs terminated with Co apex
atoms in (a) the tunneling region (L = 5.5 Å) and (c) at contact (L = 2.56 Å) forM ‖ z (dashed
line) and M ⊥ z (solid line). (e, g) the same for Ir apex atoms at separations L = 5.5 Å and
L = 3.36 Å. The shaded areas in (a, e, c, g) mark the integration ranges chosen to obtain the
conductances. (b, d) LDOS corresponding to (a, c) of the sdz (blue lines), dx2−y2,xy (brown
lines) and dxz,yz (orange lines) states at the apex atom for M ‖ z (dashed lines) and M ⊥ z
(solid lines). (f, h) the same for Ir apex atoms at separations L = 5.5 Å and L = 3.36 Å.
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Figure 6.4: (a, d)
Calculated distance
dependence of the
conductances G‖ (circles,
dashed line) and G⊥ (squares,
solid line) for a symmetric
junction of two Fe monowires
terminated by Co (Ir)
apex atoms separated by a
spacing L. The conductance
has been obtained by
an energy integration of
the transmission function
between EF − 100meV and
EF − 50meV for Co apex
ataoms and between EF and
EF − 100meV for Ir apex
atoms. (b, e) Decomposition
of the conductances for
M ‖ z (dashed line) and
M ⊥ z (solid line) shown in
(a) and (d) into delocalized
orbitals (sdz2) (blue lines)
and localized orbitals
(dxz,yz + dx2−y2,xy) (orange
lines). (c, f) Corresponding
AMR defined in Eq. (6.1).

are depicted in Fig. 6.4 (a). In the tunneling region G⊥ > G‖ holds leading to an AMR
of −15% as seen in Fig. 6.4 (c). As the contact region is entered the AMR changes
to a positive value of +15%. This behavior of the AMR qualitatively agrees with the
experimental data. The conductances are also in good agreement quantitatively, while
the values of the AMR are slightly too large. The smaller values of the AMR in the
experiment can be attributed to the more complex geometry in the experimental setup
leading to more scattering and, therefore, a broadening of the electronic states and the
conductances associated with these states that leads to a smaller AMR [62].

The decomposition of the conductance in the delocalized orbitals (sdz2) and localized
orbitals (dxz,yz+dx2−y2,xy) in Fig. 6.4 (b) yields further insight into the origin of the AMR.
While the conductance in the tunneling regime is dominated by the delocalized orbitals,
the contribution of the localized orbitals starts to quickly increase as the contact regime
is approached. This leads to the sign change of the AMR.

For the Ir apex atom the energy region from −100meV to the Fermi level is chosen
as the integration range. The transmission function of the tunneling region (L = 5.5 Å)
in Fig. 6.3 (e) is again dominated by sdz2 states showing a similar shape as for Co, i.e.,
a small peak at −0.07 eV for M ⊥ z due to the same SOC induced mixing of d-orbitals
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6 From Tunneling to Ballistic AMR in Single-Atom Junctions

as described above for the Co adatom and additional spin-mixing as can be seen in
LDOS in Fig. 6.3 (f). In contrast to the Co apex atom, for the Ir apex atom the peak
at −0.01 eV in the transmission function for M ‖ z originating from the band edge of
the dxy,x2−y2 states is included (cf. with tip resonances [54]) in the integration range.
Therefore, the AMR calculated according to Eq. (6.1) using the conductances obtained
by integrating the transmission functions from −100meV to the Fermi level vanishes.

The transmission in the contact region (L = 3.36 Å) depicted in Fig. 6.3 (g) is
dominated by the dxy,x2−y2 states. For M ⊥ z the dxy,x2−y2 states hybridize strongly
with the dzx,yz states with the same and opposite spin character (cf. Tab. 5.1). This
is also clearly visible in the LDOS in Fig. 6.3 (h). This hybridizations lead to a broad
peak in the transmission function for M ⊥ z below the Fermi level and, therefore, to
G⊥ > G‖.

The resulting conductances G‖ and G⊥ obtained by integrating the transmission
function from −100meV to the Fermi level are depicted in Fig. 6.4 (d). As in the
experiment the curves for G‖ and G⊥ lie on top of each other in the tunneling region
but start to deviate as the contact region is entered. The resulting AMR depicted
in Fig. 6.4 (e) vanishes in the tunneling region and starts to become negative as the
contact region is entered reaching a value of −30%. As for the Co apex atoms the
qualitative agreement between the AMR obtained from the DFT calculations and the
experiment is good as well as the quantitative agreement of the conductances. The AMR
obtained from the DFT calculations is larger than the one measured in the experiment
as has been found for Co apex atoms. Again the decomposition into the delocalized
orbitals (sdz2) and localized orbitals (dxz,yz + dx2−y2,xy) shown in Fig. 6.4 (f) reveals the
origin of the distance dependence of the AMR, which is due to the The character of the
orbitals dominating the conductances changes from mainly sdz2 to a mixture of sdz2 and
dxz,yz + dx2−y2,xy.

6.2 Tight-Binding Model

In the DFT calculations described in the last section a idealized monowire geometry was
assumed. The agreement between theoretically and experimentally obtained AMR was
already good (cf. Fig.6.2 and Fig. 6.4). The more complex geometry of the experimental
setup will lead to several differences in the electronic structure, which are stronger
scattering due to the contact geometry [62], lifting of the degeneracy of the dzx,yz and
dxy,x2−y2 states by the crystal field of the (110) surface, and energy offsets of the states
located at the adatom and apex atom of the STM tip caused by the asymmetry of the
junction.

To further support our interpretation of the experimental data we devise a generic
minimal TB model similar to the TB model of the tunneling AMR on surfaces [10,
55], which takes the aforementioned complications into account and which yields the
transmission function numerically. A schematic drawing of the TB model is sketched in
Figs. 6.5 (a) and (b). We consider the adatom and the apex atom of the STM tip of the
actual geometrical setup of the junction depicted in Fig. 6.5 (a). The coupling of the
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Figure 6.5: (a) Sketch
of an adatom with
M ‖ z or M ⊥ z probed
by an STM tip. (b)
Schematic drawing of
the TB model used
to model the junction
sketched in (a).

adatom and the apex atom for each orbital i to the surface and the rest of the STM tip
is modeled by the energy independent self-energy γadatom,i and γtip,i, respectively. Three
orbitals are considered located at the adatom and the apex atom. At the apex atom two
of the orbitals are energetically degenerate while these orbitals are not degenerate at the
adatom to account for the crystal-field splitting. SOC is introduced as an off-diagonal
matrix element ξSOC between the two orbitals at the adatom, which is only nonzero
for M ‖ z. The orbitals of the adatom are connected to the apex atom via a hopping
term depending exponentially on the displacement ∆L between the apex atom and the
adatom:

ti(∆L) = t0,i exp(−κi∆L). (6.2)

The chosen values are shown in Tab. 6.1. The reference hoppings are chosen as t0,1 =
1.5 eV and t0,2 = t0,3 = 0.2 eV and the decay constants are chosen to κ1 = 1.1 Å−1 and
κ2 = κ3 = 1.7 Å−1.
The choice of these values is motivated by the analysis of the decay of the transition

matrix elements of the orbitals across the spacing between the apex atoms of the Fe
monowires obtained from the DFT calculations presented in the previous section.
Figs. 6.6 (a) and (b) show the hoppings of the maximally-localized Wannier functions

of dxz,yz, dx2−y2,xy, dz2, and s character located at the apex atoms as a function of
distance between the apex atoms for M ⊥ z for Co and Ir apex atoms. The transition
matrix elments of each orbital type i can be fitted with

ti(L) = t0,i exp(−κiL). (6.3)

ǫ1 (eV) ǫ2 (eV) ǫ3 (eV) γ1 (eV) γ2 = γ3 (eV) ξSOC (eV)
adatom −0.2 0.15 0.05 −1.0 −0.15 0.3
tip atom 0.3 −0.15 −0.15 −1.0 −0.15 0.0

Table 6.1: Parameters chosen for the TB model sketched in Fig. 6.5.
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L (Å)L (Å)
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Figure 6.6: Hoppings of the maximally-localized Wannier functions of dxz,yz (black crosses),
dx2−y2,xy (blue stars), dz2 (red diamonds), and s (green triangles) character located at the
apex atoms as a function of the distance L between the (a) Co and (b) Ir apex atoms. Solid
lines depict the fits obtained with Eq. (6.3) for each listed orbital-type for M ⊥ z from which
the decay constants in Tab. 6.2 are obtained.

The values of the decay constants κi obtained by fitting the data are shown in Tab. 6.2.
While the decay constants for the localized orbitals (dxz,yz and dx2−y2,xy) are in the range
of 1.7 Å−1, the average value of the s and dz2 state, which are strongly hybridized, is
about 1.0 Å−1. The matrix elements due to SOC obtained from the MLWF between
the states of dxz,yz and dx2−y2,xy character yields values of ξIrSOC ≈ 400meV and ξCo

SOC ≈
80meV for Co and Ir apex atoms, respectively.

Returning to the TB model according to the chosen values, orbital 1 can be interpreted
as an sdz2 orbital and orbital 2 and 3 as dzx and dyz or dxy and dx2−y2 orbitals. The
orbital symmetry is reflected by the values of the broadening γi, which leads to broad
(sdz2) or sharper (dzx, dyz or dxy, dx2−y2) LDOS at the adatom depicted in Fig. 6.7 (a).
Furthermore, it is reflected by the values of the decay constant κi, which is small for
the s orbital and large for the dzx and dyz orbitals leading to a slow and fast decay of
the transmission function attributed to these orbitals as the distance between the apex
atom and the adatom is increased, respectively, as is found in the DFT calculations
(cf. Fig. 6.4) and in the literature [74]. The crystal-field splitting of the dzx and dyz
orbitals of the adatom is represented by the small offset between the on-site energies ǫ2
and ǫ3. For M ‖ z the SOC induced hybridization between these orbitals increases this
offset as seen in Fig. 6.7 (a).

adatom κ∆3
(Å−1) κ∆4

(Å−1) κd
z2

(Å−1) κs (Å
−1)

Co, M ‖ z 1.61 1.59 1.63 0.29
Co, M ⊥ z 1.61 1.59 1.64 0.29
Ir, M ‖ z 1.41 1.69 1.51 0.51
Ir, M ⊥ z 1.70 1.66 1.36 0.54

Table 6.2: Decay constants for the different orbital types obtained by fitting the data shown
in Figs. 6.6 (a, b) with Eq. (6.3).
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6.2 Tight-Binding Model
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Figure 6.7: (a) LDOS at the adatom in the tunneling region (∆L = 2.0 Å) obtained
from the TB model sketched in Fig. 6.5 for parameters representing s (green line) and dzx
and dyz orbitals (magenta and orange line) for M ‖ z (dashed lines) and M ⊥ z (solid
lines). (b) Energy-dependent and orbital-decomposed transmission functions of the s (green
line) and dzx + dyz (violet line) orbitals in the contact (∆L = 0.5 Å, upper panel) and
tunneling (∆L = 2.0 Å, lower panel) region. (c) Total conductance obtained by integrating
the transmission functions from −50meV to +50meV. (d) Orbital-decomposed conductance
obtained by integrating the transmission functions from −50meV to +50meV. (e) AMR of the
conductances obtained by integrating the transmission functions from −50meV to +50meV
(red line) and from −150meV to −50meV (blue line) corresponding to the red and blue shaded
areas in (c).
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6 From Tunneling to Ballistic AMR in Single-Atom Junctions

This also reflects itself in the energy-dependent transmission function of the individual
orbitals Ti in Fig. 6.7 (b). However, in the tunneling region (∆L = 2 Å) this does not
affect the transmission properties since the contributions from the dzx and dyz orbitals
are orders of magnitudes smaller than the one from the s orbital due to the larger decay
constant. On the other hand, in the contact region the transmission function from the
dzx and dyz orbitals and s orbitals are on the same order of magnitude.

The resulting conductances obtained from integrating the transmission function from
−50meV to +50meV can be seen in Fig. 6.7 (c). They show the same distance
dependence as the DFT calculations for the Ir adatom (cf. Fig. 6.4 (c)) and the
experimental data of the Ir adatom (cf. Fig. 6.2 (c)). The origin of the distance
dependence can be easily understood by the decomposition of the conductance into
the two orbitals types Gi depicted in Fig. 6.7 (d). Far in the tunneling region only
the s orbital contributes considerably to the conductance, while at smaller values of
∆L the dzx and dyz orbitals start to contribute. Since the contribution of the dzx and
dyz orbitals is different for M ‖ z and M ⊥ z due to SOC induced hybridizations, the
characteristic distance dependence of the AMR in Fig. 6.7 (e) is found. The decrease
of the conductance of the s orbital close to 0 Å is caused by the strong mixing at these
distances between the s orbital located at the adatom and apex atom, which leads to
a splitting of the peak in the LDOS of the s orbital and, therefore, a reduction of the
LDOS in the integration interval. This effect has also been found in DFT calculations
in Ref. [74].

From Fig. 6.7 (b) it can be seen that if the integration range is chosen differently
(or the states are located at a different energy with respect to the Fermi level), a
different behavior of the AMR will be obtained. For example, if the integration range is
chosen from −150meV to −50meV, the inverse behavior of the AMR can be seen, i.e.,
qualitatively the one of the Co adatom (cf. Fig. 6.4 (b) and Fig. 6.2 (b)). This shows the
bias sensitivity of the AMR, which has been mentioned in the literature [51, 8, 52, 53]
and which has been described for the AMRdiff. of the transmission functions in the
previous chapter.

The sign change of the slope of the AMR at 0.25 Å for both integration ranges can be
attributed to the fact that the conductance of the dzx + dyz orbitals reaches saturation
earlier for M ⊥ z than for M ‖ z due to the SOC induced mixing. A similar behavior
of the experimentally obtained AMR can be seen in Fig. 6.2 (b) for the Co adatom.

In principle, the non-zero AMR in the tunneling regime could be modeled by adding
another off-diagonal element between one of the localized and the delocalized orbital.
However, to keep the model minimal we refrain from doing so but show in the next
section that the distance dependence of the conductance within this TB model can be
derived analytically using the Green’s function formalism. The analytical model can be
used to fit the experimental data yielding very good agreement.

70



6.3 Analytical Model
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Figure 6.8: Sketch of the setup of
the Green’s function model mimicking
an adatom on a surface probed by an
STM tip.

6.3 Analytical Model

The distance dependence of the conductance obtained with TB model used in the last
section can be derived analytically utilizing the Green’s function formalism introduced
in chapter 2.
We consider one energy level on an adatom coupled to a surface and an STM tip

as sketched in Fig. 6.8. The electronic structure of the adatom can be described with
the help of the Green’s function Gadatom. The influence of the surface and the STM tip
is taken into account via the self-energies Σsurf. and Σtip(L), respectively. We thereby
assume that the self-energies Σsurf. and Σtip(L) describing these couplings are constant
in energy. The latter depends on the separation L of the adatom to the STM tip.
The self-energy Σtip(L) can be calculated with the help of the Green’s function of the
isolated STM tip Gtip and the coupling of the adatom to the tip, which is assumed to
be exponential as in the TB model in the previous section, Vtip(L) = te−κL via:

Σtip(L) = Vtip(L)
†GtipVtip(L) = Vtip(L)

2Gtip. (6.4)

The Green’s function of the adatom then states:

Gadatom(L) = [E − ǫ− Σtip(L)− Σsurf.]
−1. (6.5)

Using Eq. (2.88) this results in a distance dependence of the transmission function

TE(L) = T0,E
e−2κL

1− aEe−2κL + bEe−4κL
(6.6)

at energy E. For large L one regains the well-known exponential behavior of the
tunneling current ∝ e−2κL (cf. Fig. 5.6). In the linear response regime [28] one obtains
for the conductance

G(L) =
e2

h
TEF

(L). (6.7)
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6 From Tunneling to Ballistic AMR in Single-Atom Junctions

adatom κ1 (Å−1) κ2 (Å−1) L0,1 (Å) L0,2 (Å)
Ir, M ‖ z 1.02 2.87 −1.17 −2.18
Ir, M ⊥ z 1.00 2.67 −1.15 −2.27
Co, M ‖ z 1.03 1.39 −1.47 −2.16
Co, M ⊥ z 1.07 1.76 −1.44 −2.37

Table 6.3: Decay constants κi and distance L0,i at which the conductance associated with
orbital type i reaches its maximum obtained by fitting the analytical model to the experimental
data using Eq. (6.8) for Co and Ir adatoms on domains (M ‖ z) and domain walls (M ⊥ z).

If one assumes that the modes on the adatom are independent from each other, one can
add up the contributions from all the individual modes:

Gtot(L) =
∑

i

G0,iTEF,i(L). (6.8)

In practice, it has been found that one should use

TEF,i(L) =
(1− ãi + b̃i)e

−2κi(L−L0,i)

1− ãie−2κi(L−L0,i) + b̃ie−4κi(L−L0,i)
(6.9)

for the fitting.

With Eq. (6.8) we can fit the experimental data and obtain effective decay constants
κi. To do that in our particular case, we assume two orbital types with differing decay
constants κi as in the TB model presented in the previous section. This is motivated by
the DFT calculations and the results from Ref. [74], which show that at the beginning
of the contact region only two types of orbitals are contributing considerably to the
transmission, e.g., sdz2, dzx and dyz orbitals. In addition, we do not consider the effect
of the crystal-field on the dzx and dyz orbitals effective, averaged orbitals which are
degenerate.

Good fits are obtained by choosing G0,1 = 0.5G0 and G0,2 = 1.5G0 shown in
Figs. 6.9 (a) and (b) for M ⊥ z for Co and Ir adatoms, respectively, and in Figs. 6.9 (c)
and (d) for M ‖ z, respectively. The values G0,i define the maximum value of
conductance associated with orbital type i that is reached when L = L0,i. Therefore,

adatom ã1 ã2 b̃1 b̃2
Ir, M ‖ z 0.43 −39.46 1.00 −28.78
Ir, M ⊥ z 0.62 −59.16 1.02 −38.42
Co, M ‖ z 1.24 0.83 1.00 1.65
Co, M ⊥ z 0.95 −1.11 1.01 4.09

Table 6.4: Dimensionless fitting constants ãi and b̃i obtained by fitting the analytical model
to the experimental data using Eq. (6.8) for Co and Ir adatoms on domains (M ‖ z) and
domain walls (M ⊥ z).
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Figure 6.9: (a)
Conductance obtained
experimentally (solid
black line) for a Co
adatom located on a
domain wall (M ⊥ z)
of a double layer Fe on
W(110) and the fit (solid
orange line) obtained
with Eq. (6.8) assuming
two orbital types. (b)
shows the same as (a)
for Ir adatoms. (c)
shows the same as (a)
for Co adatoms located
on a domain (M ‖ z):
Experimental data
(dashed red line) and Fit
(dashed green line). (d)
shows the same as (c) for
Ir adatoms. (e) and (f)
show the decomposition
of the fitted conductance
into the two assumed
orbital types with decay
constants κ1 (blue lines)
and κ2 (red lines) for
M ‖ z (dashed lines)
and M ⊥ z (solid lines)
for Co and Ir adatoms,
respectively. (g) and
(h) AMR calculated
according to Eq. (6.1)
from the experimental
data (black line) and
the fits (turquoise
line) for Co and Ir
adatoms, respectively.
Experimental data taken
from Ref. [73].
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6 From Tunneling to Ballistic AMR in Single-Atom Junctions

orbital type 1 effectively consists of one orbital and orbital type 2 of three orbitals1. The
decay constants and the distance L0,i at which the maximum conductance associated
with orbital type i is reached are given in Tab. 6.3. The decay constant κ1 for the Ir
adatom is very similar for M ‖ z and M ⊥ z, which can also be seen in the very similar
shape of the orbital-decomposed conductances shown in Fig. 6.9 (f). This is consistent
with the vanishing AMR in the tunneling region found for Ir adatoms. The decay
constant κ2 shows stronger deviations for M ‖ z and M ⊥ z. The orbital-decomposed
conductances show the same qualitative behavior as the ones obtained from the TB
model in Fig. 6.7 (d).

For the Co adatom the difference between the decay constant κ1 for the two
magnetization directions is twice as large as for the Ir adatom resulting in a clear
difference between the orbital-decomposed conductances in Fig. 6.9 (e). This is
consistent with the AMR in the tunneling region found for Co adatoms. Also κ2 differs
a lot for the two magnetization directions leading to the AMR found in the contact
region.

The values for L0,i show the same behavior as the values for κi, i.e., L0,1 is very similar
for both magnetization directions, while L0,2 changes considerably. This also holds for
the dimensionless fitting parameters ãi and b̃i in Tab. 6.4, which contain the information
of the self-energies and are not easy to interpret. The parameters ã1 and b̃1 for orbital
type 1 are similar for Co and Ir adatoms, while ã2 and b̃2 differ strongly. This can be
understood by the stronger SOC induced mixing for the localized orbitals of Ir adatoms
compared to Co adatoms found in the DFT calculations in Sec. 6.1. The stronger SOC
induced mixing for Ir adatoms, which even leads to spin-mixing, changes the orbital
character of the localized orbitals compared to the Co adatoms.

For both adatoms a decrease of the conductance of delocalized orbital-type (κ1) that
has also been seen in the TB model for the orbital of s character is found in Figs. 6.9 (e)
and (f). As mentioned above this decrease can be attributed to the strong hybridization
of the orbitals of the apex atom of the tip and the adatom for small separations leading
to a peak splitting in the LDOS as described in Ref. [74].

The AMR calculated via Eq. (6.1) using the experimental data and the fits shown in
Figs. 6.9 (g) and (h) for Co and Ir adatoms, respectively, is in very good agreement.

Although the decay constants are not the only changing parameter obtained from the
fitting for the two magnetization directions, they are easiest to interpret. The decay
constant can be analyzed with the well-known formula from the tunneling effect

κi =

√
2m∗

i

~2
Φ, (6.10)

where Φ is the work function and m∗
i is the effective mass of the electron in mode

i accounting for the mobility of the d-electrons, which has to be considered for the
conductivity [3]. The effective mass can then be calculated according to

m∗
i = 3.8096

κi[Å
−1
]

Φ[eV ]
·me, (6.11)

1If the spin is taken into account, each mode carries a conductance quantum G0/2 = e2/h.
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6.4 Summary

adatom m∗
1 (me) m∗

2 (me)
Ir, M ‖ z 0.97 2.73
Ir, M ⊥ z 0.95 2.54
Co, M ‖ z 0.98 1.32
Co, M ⊥ z 1.02 1.68

Table 6.5: Effective masses in
electron masses me obtained from the
fitted decay constants κi calculated
using Eq. (6.11) with Φ = 4 eV for
the Co and Ir adatom for M ‖ z and
M ⊥ z.

where me is the electron mass. For a typical value of Φ = 4 eV, we obtain the effective
masses shown in Tab. 6.5. The orbitals with small values of κ1 corresponding to sdz2
orbitals show values close to me, i.e., of electrons with a free-electron like dispersion.
The effective masses of more strongly bound electrons corresponding to decay constant
κ2 (dzx and dyz or dxy and dx2−y2 orbitals) are in the range of 1.3 to 2.7 electron masses.

The effective mass is connected to the electronic structure via its definition:

m∗
i = ~2

[
d2ǫi(k)

dk2

]−1

. (6.12)

As we have seen in the previous chapter (cf. Fig. 5.5) and as has been shown in [9]
the SOC induced hybridizations lead to changes in the electronic structure, which in
periodic systems can be seen as changes of the dispersion relation in the bandstructure
or alternatively in the LDOS. Therefore, one can attribute the effective masses obtained
via the fitting of the experimental data for the two magnetization directions directly to
the SOC induced differences in the electronic structure.

6.4 Summary

We have shown how the distance dependence of the AMR measured on Co and Ir
adatoms on a double layer of Fe on W(110) can be explained by DFT calculations of
Fe monowires terminated by Co and Ir adatoms. Furthermore, to account for the more
complex geometry of the experiment we developed a generic TB model to obtain the
conductances and the AMR of adatoms on surfaces. This model captures the essential
physics of the distance dependence of the AMR observed in the experiment and in
the DFT calculations. Finally, we presented an analytical model based on the Green’s
function formalism presented in chapter 2 of the distance dependence of the conductance.
With the model one is able to explain the measured conductance curves and extract
effective decay constants of the involved orbitals. These decay constants differ for
adatoms on domain (M ‖ z) and domain walls (M ⊥ z) due to SOC induced changes in
the electronic structure. The analytical distance dependence found for the conductance
can be interpreted as an extension regime of the known exponential behavior of the
tunneling current to the contact.
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7 Molecular Anisotropic Magnetoresistance

In the previous chapters, we have seen that the AMR reaches values of more than 100%
in monowires but only about 10% for adatoms on surfaces due to the strong interaction
of the adatoms with the surface. In this chapter, we will show how the AMR can be
enhanced by the orbital-symmetry filtering properties on the transmission function of
metal-benzene complexes.

As we have seen in the previous chapter, the AMR is caused by the SOC induced
mixing of specific orbitals at a certain energy which depend on the magnetization
direction. However, the magnitude is limited by orbitals which are not affected by SOC
at that certain energy but provide a background to the transmission function. This
limits the size of the AMR. Therefore, isolating the contribution to the transmission
function of the orbitals which are affected by SOC at a certain energy would lead to a
large enhancement of the AMR.

A possibility to realize this are molecules. The interactions between organic materials
and metals can lead to a very different behavior compared to what is expected from
the isolated entities. In combination with spin application the field has been coined
“spinterface” science [75]. Apart from interfaces of metals with organic semiconductors,
it is also possible to investigate the interface of single molecules with metals theoretically
and experimentally [75]. Effects that occur in these spinterface systems are for example
spin filtering [75], spin injection [76], and magnetoresistance [77]. In the organic
semiconductor/metal interface magnetoresistances of up to 300% have been found
experimentally [77].

For interfaces of metals with single molecules magnetoresistances up to 100% have
been predicted theoretically [78, 79, 80]. Experimentally, values ranging from 16% to
80% have been found in break-junction experiments [81, 82], in experiments using the
nanopore technique [83], and in STM experiments [84].

Regarding the anisotropic magnetoresistance, values of 3% in metal/organic
semiconductor interfaces have been found [85] and up to 53% in single molecules utilizing
the jump-to-contact STM break-junction technique [86]. The AMR in single molecules
observed in Ref. [86] is explained with the help of DFT calculations by the electronic
coupling at the interface of the molecule and the leads. However, the calculated
transmission coefficients are much larger than the measured conductance [86].

Furthermore, STM experiments have been found to offer sophisticated control of the
experimental geometry. For example, it has been shown that the electrodes for single-
molecule contacts can be engineered on the atomic-scale [87]. In addition, it is possible
to probe the spin-polarization of Co-Phthalocyanine (Co-Pc) molecules absorbed on
surfaces with intramolecular spatial resolution [88] and that it should be possible to
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7 Molecular Anisotropic Magnetoresistance

map the spatial distributions of the different orbitals of a pyridine-2,5-dicarboxylic
acid molecule [76]. Further on, for the Co-Pc molecule it has been shown that the
energetically localized molecular orbitals can lead to a negative differential resistance [89]
or can have a rectifying effect on the current [90]. It is interesting to note that in Ref. [90]
a graphene spacer layer is used to keep the Co-Pc from hybridizing too much with
the Ru(0001) substrate, conserving the molecular orbital character, which is critical
for the observed effect. Recently, it has been shown that magnetism can be induced
in pure organic molecules by doping with single magnetic atoms, where the magnetic
atom prefers hybridization with the organic ligands over hybridization with the surface
resulting in energetically very localized metal-ligand spin states [91].

We here show that the molecule’s energetically localized molecular orbital (MO)
can act as a orbital-symmetry filter on the transmission function, which can enhance
the AMR created in the contacting monowires by orders of magnitudes. We use
sandwich molecules of the VBz2-type as a model system, which have been studied
experimentally [92] and theoretically [93] as isolated entities. The VBz2-type molecules
are contacted by monowires as sketched in Fig. 7.1.

In the following, we will first discuss the computational details of the DFT calculations.
Then, we present the scalar-relativistic results for a VBz2 molecule connected by Ni
monowires. We thereby vary the distance between the apex atom of the Ni monowire
and the molecule to analyze the general characteristics of the hybridization between the
leads and the molecule, which determines the quality of the orbital-symmetry filtering.
After that SOC is taken into account for a perpendicular (M ⊥ z) and a parallel
(M ‖ z) orientation of the magnetization with respect to the monowire axis (z-axis).
Since molecules are the decisive component in the junction to achieve huge AMRs, we
define the molecular AMR via the transmission function as

MAMR = 100% · T‖ − T⊥

T⊥
. (7.1)

To analyze the influence of the contacted molecule on the orbital-symmetry filtering,
the VBz2 molecule is replaced by NbBz2, TaBz2, Bz, and V2Bz3, respectively. The
influence of the contacting leads is analyzed by replacing the Ni monowires by Co
monowires. Finally, a generic TB model is presented, which reproduces the orbital-

0.0

z

Figure 7.1: Schematic drawing of the Ni-VBz2-Ni junction. Blue, violet, gray, and green
spheres mark Ni, V, C, and H atoms, respectively.
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7.1 Computational Details

symmetry filtering and shows that the MAMR might also be found in STM experiments
of molecules on surfaces.

7.1 Computational Details

To obtain the Hamiltonian of the leads a unit cell containing one Ni (or Co) atom with
the theoretical lattice constant of 4.18 bohr using 96 kpts in the IBZ and a value of
kmax = 4.8 bohr−1 has been calculated with the 1D-version of FLEUR. The MLWF are
obtained from the self-consistent calculations by using 96 k-points in the full Brillouin
zone and projecting on five d orbitals and one s orbital per atom out of ten bands for
calculations without SOC. For calculations with SOC the numbers of orbitals and bands
were doubled.

The unit cell of the scattering region consists of six Ni (or Co) atoms and the molecule.
For the VBz2 (or NbBz2 or TaBz2) molecule the distance of the central metal atom of
the molecule to the center of the benzene (Bz) ring is 3.431 bohr. For the benzene the
radius of the C ring is 2.675 bohr and the distance between C and H atoms is 2.047 bohr.
These are the relaxed distances obtained for the isolated VBz2 molecule in Ref. [66].
The same distances were also chosen for the V2Bz3 molecule. Since this is a concept
study and not a study of a realistic system, we did not relax every system individually.
In addition, it has been found the the relaxed values do not change a lot for NbBz2,
TaBz2 or V2Bz3 [93]. For the scattering region eight k-points in the IBZ and a value of
kmax = 4.0 bohr−1 have been used. The MLWF are then obtained using eight k-points
in the full Brillouin zone and by projecting on five d orbitals and one s orbital per Ni
(Co) atom and V (Nb, Ta) atom and one pz orbitals per C atom out of 159 bands for
the calculations without SOC. For calculations with SOC the number of orbitals and
bands were doubled. The energy window has to be chosen such that the relevant states
of the molecule are included [94]. In all calculations the local density approximation [95]
has been used. The vacuum parameters D and D̃ were chosen 12.0 and 13.0 bohr. The
muffin tin radii have been chosen to 1.25, 0.65, 2.4, and 2.0 bohr for the C, H, V (Nb,
Ta), and Ni (Co) atom, respectively.

The influence of the number of included nearest neighbors in the Hamiltonian is
analyzed in Fig. 7.2 (a) for the Ni−VBz2−Ni junction with LNi−V = 5.6 bohr. The unit
cell of the scattering region includes five Ni atoms on each side of the molecule. It is
found that the transmission function does not change critically if more hoppings than
the third nearest neighbor hopping are included.

Fig. 7.2 (b) compares the transmission function of the Ni−VBz2−Ni junction with
LNi−V = 8.0 bohr including SOC for the third nearest neighbor approximation obtained
from a unit cell of the scattering region including three or five Ni atoms on each side of
the molecule. It is found that three Ni atoms on each side of the molecule are sufficient
to obtain reliable results.
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Figure 7.2: (a) Transmission function of the Ni−VBz2−Ni junction with LNi−V = 5.6 bohr
neglecting SOC and using five Ni atoms on each side of the molecule in the third (orange
solid line), fourth (blue dashed line) and fifth (green dashed-dotted line) nearest-neighbor
approximation. (b) Transmission function of the Ni−VBz2−Ni junction with LNi−V = 8.0 bohr
including SOC for M ⊥ z taking into accounts hoppings up to the third nearest neighbor
obtained using a unit cell for the scattering region containing three (black line) or five (red
line) Ni atoms on each side of the molecule.

7.2 Orbital-Symmetry Filtering of the Transmission using VBz2

The bandstructure of the infinite Ni MW and the local density of states of the isolated
VBz2 molecule neglecting spin-orbit coupling are shown in Fig. 7.3 (a) and (b). The
spin splitting of the minority and majority states in the Ni MW leads to a magnetic
moment of the Ni atoms of about 1.1µB. For the transmission function the critical
bands are the largely dispersive bands of ∆1-symmetry (s, dz2) and of the very localized
states of ∆4-symmetry (dxy, dx2−y2). The bands of ∆3-symmetry (dxz, dyz) are of minor
importance due to the fact that the MOs of the VBz2 molecule of ∆3-symmetry are lying
energetically very low. In contrast, the molecular orbitals of ∆1- and ∆4-symmetry lie
very close to the Fermi level and overlap energetically with the corresponding bands
in the Ni MW. In the V atom the splitting of minority and majority states leads to a
magnetic moment of 1.0µB.

Fig. 7.3 (c) shows the resulting transmission of a VBz2 molecule contacted by Ni MWs
with LNi−V = 8.0 bohr, which means that the distance between the Ni apex atom and
the Bz ring is 4.6 bohr. The transmission shows localized contributions of ∆1-symmetry
in the minority and majority channel at +0.13 eV and −0.93 eV with respect to the
Fermi level, respectively, conserving roughly the energy difference between the majority
and minority MOs of ∆1-symmetry of +1.4 eV. The states of ∆4-symmetry contribute
broad, band-like features from −0.5 to ±0.0 eV and −1.4 to −1.0 eV with respect to the
Fermi energy in the minority and majority channel, respectively, coinciding energetically
precisely with the ∆4-bands in the isolated Ni MW.

The strong and weak hybridization of the ∆4- and ∆1-orbitals of the Ni apex atoms
and the molecule, respectively, can be understood by the insets in Fig. 7.3 (b), which

80



7.2 Orbital-Symmetry Filtering of the Transmission using VBz2

maj.
maj.

min.
min.

(a) (b) (c)

00 11 220.40.2

∆4

∆4

∆4

∆4

∆4

∆3

∆3

∆3

∆3

∆1

∆1

∆1

∆1

∆1

T

E
−
E

F
(e
V
)

LDOS (arb. u.)kz (2π/a)

−0

−2

−4

−2
Ni monowire VBz2 Ni−VBz2−Ni

Figure 7.3: (a) Bandstructure of a Ni monowire neglecting spin-orbit interaction. Majority
and minority states are marked with black and green circles, respectively. (b) Spin-decomposed
local density of states of an isolated VBz2 molecule neglecting spin-orbit interaction. The insets
show plots of the charge density of the orbitals of ∆1-, ∆3- and ∆4-symmetry in the xz-plane.
(c) Spin-decomposed transmission of a VBz2 molecule contacted by Ni monowires neglecting
spin-orbit interaction with a distance LNi−V = 8.0 bohr between the Ni apex atoms and the
V atom. The contributions of orbitals of ∆1-, ∆3- and ∆4-symmetry are colored in gray, red
and blue, respectively.

show the charge density distribution in the xz-plane of the molecular orbitals. The
charge of the molecular orbital of ∆1-symmetry is concentrated strongly around the V
atom and not at all in the C rings. On the other hand, the charge of the ∆4 molecular
orbital is more delocalized covering also the C rings. This leads to an effective bonding
distance of the ∆1-orbitals that is larger than the one of the ∆4-orbitals.

As one can see in Fig. 7.3 (c) the molecule acts as an orbital-symmetry filter on the
transmission function (cf. Fig. 5.7). The quality of the filtering depends on the details
of the hybridization between the Ni apex atom and the molecule. To analyze this we
vary the distance LNi−V.

Fig. 7.4 (a) shows the transmission function for a distance LNi−V = 5.6 bohr. The
transmission function shows mainly band-like contributions from the ∆1-orbitals, while
sharp peaks from the ∆3- and ∆4-orbitals can be seen in the minority channel. The
transmission function for LNi−V = 12.0 bohr in Fig. 7.4 (b) shows only sharp ∆1-peaks at
−1 eV below and directly at the Fermi level in the majority and minority spin channel,
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Figure 7.4: Spin-decomposed
transmission of a VBz2 molecule
contacted by Ni monowires
neglecting spin-orbit interaction
for (a) LNi−V = 5.6 bohr and (b)
LNi−V = 12.0 bohr, respectively.
The contributions of orbitals of
∆1-, ∆3- and ∆4-symmetry are
colored in gray, red and blue,
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respectively. The shape of the transmission function for the different LNi−V can be
understood by the local density of states of the VBz2 molecule and the nearest-neighbor
Ni atom for the three values of LNi−V in Fig. 7.5.

A glance at the LDOS of the nearest neighbor Ni atom and the VBz2 molecule in
Fig. 7.5 (a, b) for LNi−V = 12.0 bohr reveals that the interaction between the lead and
the molecule is very small. The LDOS of the VBz2 shows two peaks in each spin-channel:
one composed of the ∆1-orbitals of the V atom hybridized with pz orbitals of the C atoms
and the other one composed of ∆4-orbitals of the V and C pz orbitals. The LDOS is very
similar to the one of the completely isolated VBz2, although the levels of the molecular
orbitals are slightly shifted with respect to each other as well as to the Fermi level. The
small hybridization between the ∆1-orbitals of the V atom and the Ni leads explains
the two very sharp peaks in the transmission function. The ∆4-states of the V atom do
not hybridize at all with the ∆4-orbitals of the Ni atom due to the large distance and,
therefore, do not contribute to the transmission function.

While the LDOS of the Ni apex atom in Fig. 7.5 (c) for LNi−V = 8.0 bohr does not
differ much compared to the case of LNi−V = 12.0 bohr, the ∆1-peaks in the VBz2 LDOS,
Fig. 7.5 (d), broadens significantly due to the enhanced hybridization with the Ni atom,
which also explains the broader transmission peaks of ∆1-character in Fig. 7.3 (c). The
∆4-states now show a band-like LDOS similar to the Ni atom and, so to say, continue
the ∆4-band of the Ni leads, which leads to a large transmission contribution of the
∆4-states.

Further decreasing the distance to LNi−V = 5.6 bohr leads to further broadening of
the ∆1-states of the V atom and the Ni apex atom in Fig.7.5 (e, f), where one sees a
very broad LDOS of the ∆1-orbitals for the Ni atom and the molecule. The ∆4-orbitals
of the Ni atom are now strongly hybridized with the ones of the V atom and the C pz
orbitals. One sees two very sharp features at the Fermi level and −0.7 eV in the LDOS
of the molecule and the Ni atom. The reason for this is that the distance of the apex Ni
atom to the Bz ring is now smaller than to the next Ni atom in the lead. The ∆4-states
of the adjacent Ni atom decouple from the rest of the lead and the hybridization with
the ∆4-orbitals of the V atom and the C pz orbitals becomes very strong. The small
distance also causes the hybridization of the ∆3-orbitals with the C pz orbitals, which
explains the ∆3-contribution to the transmission function.

As we have seen, the orbital-filtering properties are sensitive to the distance LNi−V.
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of a Ni-VBz2-Ni junction with (a, b) LNi−V = 12.0 bohr, (c, d) 8.0 bohr, and (e, f) 5.6 bohr,
respectively. C pz orbitals are marked by dashed-dotted black lines. SOC is neglected.

If the hybridization between the apex atom and the molecule is too strong (LNi−V =
5.6 bohr), the quality of the filtering decreases since the states of the molecule broaden
and contribute to the transmission over a larger energy region. On the other hand,
if the hybridization between the apex atom and the molecule is too weak (LNi−V =
12.0 bohr) only the very delocalized orbitals of ∆1-character remain and nothing else is
left to filter. Since the largest SOC effects are occurring for the localized d orbitals an
intermediate distance of LNi−V = 8.0 bohr is the optimal case to combine the orbital-
symmetry filtering with the AMR.

7.3 Combining AMR with Orbital-Symmetry Filtering

After establishing the orbital-symmetry filtering effect of the VBz2 molecule on the
transmission function, we now analyze the impact of SOC for the two magnetization
directions with respect to the wire axis (M ⊥ z and M ‖ z).
Fig. 7.6 (a) shows the bandstructure of a perfect Ni MW for the two directions of

magnetization. We focus here on the three marked splittings labeled 1, 2 and 3. 1
is the crossing of the ∆4- and ∆3-bands at EF − 0.38 eV, which becomes an avoided
level crossing due to SOC induced hybridization for M ⊥ z. As a result there are
only states of ∆1-symmetry available from EF − 0.4 eV to EF − 0.33 eV. The changes

83



7 Molecular Anisotropic Magnetoresistance

0

0

0000 111 222 3330.40.2

∆4

∆3
∆1

TTT

E
−
E

F
(e
V
)

E
−
E

F
(e
V
)

kz (2π/a)

−0.4

−0.4

−0.8

−0.8

−0.4

−0.4

−0.0

−0.0

M ⊥ z

M ‖ z

4 · 10−4

4 · 10−4

(a) Ni (b) 5.6 bohr (c) 8.0 bohr (d) 12.0 bohr

1

2

3

Ni−VBz2−Ni

Figure 7.6: (a) Ni bandstructure with spin-orbit coupling for M ⊥ z (top) and M ‖ z
(bottom). (b) Transmission function of the Ni-VBz2-NI junction with LNi−V = 5.6 bohr for
M ‖ z (top) and M ⊥ z (bottom). The contributions of orbitals of ∆1-, ∆3- and ∆4-symmetry
are colored in gray, red and blue, respectively. (c) shows the same as (b) for LNi−V = 8.0 bohr.
(d) shows the same as (c) for LNi−V = 12.0 bohr.

in the bandstructure due to SOC are directly passed on to the transmission function of
the Ni−VBz2−Ni junction with LNi−V = 8.0 bohr in Fig. 7.6 (c). For M ⊥ z the ∆4-
contribution to the transmission function is quenched between EF−0.4 eV to EF−0.33 eV
and the magnitude of the remaining transmission function is on the order of 0.05 is due
to the tail of the localized ∆1-peaks at EF+0.1 eV and EF−0.9 eV. However, for M ‖ z
the transmission function has a value of about 1.5 originating mainly from the ∆4-states.
This leads to a MAMR on the order of 1000%. The BAMR at the Fermi level described
by Velev et al. [9] originating from the lifted degeneracy of the ∆4-states (cf. Fig. 7.6 (a))
marked by 3, is enhanced to a value of −30% compared to the −18% of the pure Ni
monowire (cf. chapter 5). The reason for this smaller enhancement is that the ∆1-peak
in the transmission function is also close to the Fermi level yielding a large background.

For the case of LNi−V = 5.6 bohr, Fig. 7.6 (b), one does not find a large MAMR due
to the very strong hybridization between the Ni apex atom and the molecule described
in the previous section. The differences in the transmission for the two magnetization
directions here only lead to values of the MAMR of similar magnitude as for the infinite
Ni MW.

Fig. 7.6 (d) shows the case of LNi−V = 12.0 bohr. Here, the MAMR in the energy
region from −0.4 eV to −0.33 eV vanishes, since the contribution from the ∆4-states
to the transmission vanishes. However, one now sees an effect from the avoided level
crossing at −0.5 eV of the ∆1- and ∆3-band in Fig. 7.6 (a) for M ⊥ z marked by 2.
Since only ∆1-states contribute to the transmission at LNi−V = 12.0 bohr this leads to
an MAMR of about 1000%.
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7.3.1 Influence of the Electronic Structure of the Molecule and the Leads
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Figure 7.7: (a)
Transmission function of
a Bz molecule contacted
by Ni monowires with
LNi−Bz = 4.59 bohr for M ‖ z
(top) and M ⊥ z (bottom).
The contributions of orbitals
of ∆1-, ∆3- and ∆4-symmetry
are colored in gray, red and
blue, respectively. (b)
shows the same as (a)
of a V2Bz3 molecule for
LNi−V = 8.0 bohr.

The strength of the orbital-symmetry filtering does not only depend on the distance
LNi−V but can also be “engineered” by the size of the contacted molecule.

For a Bz molecule contacted by a Ni MW, Fig. 7.7 (a), with a distance of LNi−Bz =
4.59 bohr between the Ni apex atom and the Bz ring1 the contribution of the states of
∆1- and ∆3-symmetry to the transmission function show band-like features due to the
strong hybridization of the Ni apex atoms with the Bz ring and each other through the
Bz ring. This leads to poor orbital-symmetry filtering leaving a value of the transmission
function of about 0.7 for M ⊥ z in the energy range from −0.4 eV to −0.33 eV below
the Fermi level. The transmission function for M ‖ z shows a value of about 2.2 leading
to a MAMR of about 200% one magnitude smaller compared to the VBz2 junction.

If V2Bz3 is contacted by the Ni leads with LNi−V = 8.0 bohr, the MAMR is enhanced
even more compared to the case of VBz2. For this system the ∆1-transmission peak at
0.05 eV in Fig. 7.7 (b) becomes very sharp and also the tails of the peaks at 0.05 eV and
−0.9 eV are strongly suppressed. Therefore, the transmission function between −0.4 eV
to −0.33 eV is nearly solely constituted by states of ∆4-symmetry. The remaining
transmission function in this energy region for M ⊥ z is only of the order of 10−3,
while for a parallel magnetization it is 1.2. This results in an MAMR of about 100000%,
which is two magnitudes larger compared to the VBz2 junction.

The AMR at the Fermi level due to the lifted degeneracy of the ∆4-states at the Fermi
level is enhanced to −85%.

1This is the same distance between the Ni apex atom and the Bz ring as in the VBz2 junction
contacted by Ni MWs with LNi−V = 8.0 bohr.
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Figure 7.8: (a) Spin-decomposed local density of states of an isolated NbBz2 molecule
neglecting spin-orbit interaction. (b) Transmission function of a NbBz2 molecule contacted by
Ni monowires with SOC for M ‖ z (left) and M ⊥ z (right). The contributions of orbitals of
∆1-, ∆3- and ∆4-symmetry are colored in gray, red and blue, respectively. (c) Spin-decomposed
local density of states of an isolated TaBz2 molecule neglecting SOC. (d) Transmission function
of a TaBz2 molecule contacted by Ni monowires with SOC for M ‖ z (left) and M ⊥ z (right).

Electronic Structure of the Molecule

The quality of the orbital-symmetry filtering of the junctions strongly depends on the
energetic position of the MOs of the contacted molecule. Fig. 7.8 (a) shows the LDOS
of NbBz2, which is very similar to VBz2. However, the spin splitting of the MOs of
∆1-symmetry amounts only to 0.7 eV, half as large as for VBz2, which is also mirrored
in the magnetic moment of 0.67 µB. As we have seen before for VBz2, the spin splitting
between the states of ∆1-symmetry is nearly conserved when the molecule is contacted
by the Ni MW, which in the case of NbBz2 is about 0.6 eV, Fig. 7.8 (b). This leads to
the fact that in the transmission the peak due to the majority state of ∆1-symmetry
lies at −0.36 eV, which is directly in the energy region of the avoided level crossing in
the bandstructure of the Ni MW for M ⊥ z. Therefore, the transmission function for
M ⊥ z still shows a value of about 1 in the energy region from −0.4 eV to −0.33 eV and
a value of 1.7 for M ‖ z. The resulting MAMR then amounts only to 90%. The MAMR
at the Fermi level amounts to 67%, approximately four times as large as the originally
proposed BAMR [9].
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Table 7.1: Top: MAMR at EF − 0.36 eV of a VBz2 molecule contacted by Ni leads with
distances LNi−V ranging from 5.6 to 12.0 bohr and of different molecules contacted by Ni leads
with LNi−V = 8.0 bohr. Bottom: MAMR at EF − 0.36 eV for different molecules contacted by
Ni MWs whereby the distance from the nearest neighbor Ni atom to the metal atom of the
molecule is 8.0 bohr or 4.59 bohr to the benzene ring. The AMR of the Ni MW is shown for
comparison.

LNi−V (bohr)
5.6 7.0 8.0 9.0 12.0 Ni MW

MAMR (%) 0 2500 3500 74 3 130
molecule at LNi−V = 8.0 bohr

Bz VBz2 V2Bz3 TaBz2 NbBz2 Ni MW
MAMR (%) 230 3500 130000 100 90 130

For Ta in Fig. 7.8 (c) and (d) the spin splitting of the MOs has a very similar size as
for Nb and the MAMR in the energy region from −0.4 eV to −0.33 eV only amounts to
about 100%. At the Fermi level the MAMR only reaches a value of −8%.

This behavior is counter-intuitive because Nb and Ta are heavier than V and, therefore,
one would expect a larger MAMR due to the enhanced SOC. However, the size of the
SOC in the molecule is not decisive here since the size of the avoided level crossing is
determined by the Ni MW and the molecule only acts as a filter.

Tab. 7.1 summarizes the values of the MAMR at −0.36 eV of a VBz2 molecule
contacted by Ni MWs with distances LNi−V ranging from 5.6 to 12.0 bohr. The MAMR
starts with a value of 0% at a distance of 5.6 bohr, rises to its maximum at 7.0 bohr and
8.0 bohr of a few thousands of percent and then decays again to 3% at 12.0 bohr. This
behavior is due to the different strengths of the hybridization of orbitals between the Ni
apex atom and the VBz2 molecule. At small distances LNi−V the hybridizations are very
strong leading to a large background to the transmission function which quenches the
MAMR created by the states of ∆4-symmetry. The hybridization reduces strongly for
the states of ∆1- and ∆3-symmetry at intermediate distances of 7.0 bohr and 8.0 bohr,
while it stays strong for the states of ∆4-symmetry as has been discussed for Fig. 7.5.
Therefore, the orbital-symmetry filtering is at its best at these distances. Eventually,
at very large distances the overlap of the states of ∆4-symmetry vanishes and with it
the MAMR and only tunneling through the delocalized states of ∆1-symmetry remains.
Tab. 7.1 also summarizes the MAMR for the different contacted molecules.

Electronic Structure of the Leads

To demonstrate the influence of the leads, we replace the Ni MWs in the Ni−VBz2−Ni
junction with Co MWs where LCo−V = 8.0 bohr. In the bandstructure of an infinite Co
MW calculated neglecting SOC, Fig. 7.9 (a), the bands of ∆3- and ∆4-symmetry cross
at −0.13 eV marked with 1. Therefore, also the avoided level-crossing for M ⊥ z due
to SOC is created at that energy as can be seen in Fig. 7.9 (b) for M ⊥ z. Since Co is
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Figure 7.9: (a) Bandstructure of an infinite Co monowire neglecting SOC. Majority and
minority states are marked with black and green circles, respectively. (b) Transmission function
of a VBz2 molecule contacted by Co monowires with SOC for LCo−V = 8.0 bohr for M ‖ z
(left) and M ⊥ z (right). The contributions of orbitals of ∆1-, ∆3- and ∆4-symmetry are
colored in gray, red and blue, respectively.

slightly lighter than Ni, the SOC effects are reduced compared to the Ni leads and the
energy range devoid of states of ∆3- and ∆4-symmetry for M ⊥ z goes from −0.1 eV
to −0.15 eV, i.e., over a range of 50meV compared to 67meV for the Ni MW. The
MAMR in this energy region is about 1800% of a similar magnitude as for the molecule
contacted by Ni.

7.4 Tight-Binding Model of the Orbital-Symmetry Filtering

In Fig. 7.10 we present a TB model of the orbital-symmetry filtering. It consists of the
apex atom of an STM tip and a molecule coupled to a surface. The STM tip is assumed
to be in contact with the molecule so the couplings to the molecule are rather large.
The molecule is only weakly coupled to the surface assuming that it keeps its molecular
orbitals. As found in the results from DFT we assume the effective bonding distance
of the localized dxy state of the molecules to the surface to be smaller than for the s
state. Therefore, the transition matrix element from the apex atom to the molecule is
larger for the xy state than for the s state. The electronic states of the substrate and
the molecule are assumed to be spin split so we only have to consider three orbitals of
minority spin character, which are of s, dxy, and dyz type. The parameters of the TB
model are displayed in Tab. 7.2.

The LDOS at the apex atom of the STM tip in Fig. 7.11 (a) of the s orbital is rather
broad while the one for dxy and dyz orbital is sharp. The dxy orbital shows a two peak
structure due to the hybridization with the molecule, which is not possible for the dyz
orbital since the on-site energies of the molecule and the adatom of this orbital are
assumed to differ strongly (cf. Tab. 7.2). The LDOS at the molecule in Fig. 7.11 (b)
shows a rather sharp peak of the s orbital and a two peak structure of the dxy orbital
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to simulate the orbital-
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molecules on surfaces.
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model of the orbital-
symmetry filtering.

with the same width as on the apex atom.

The transmission function in Fig. 7.11 (c) also shows a sharp peak of the s orbital
and a broad band-like feature of the dxy orbital. The result is very similar to the one
obtained for the VBz2 molecule contacted by Ni monowires in Fig. 7.3 and suggests that
the orbital-symmetry filtering can also be found for molecules on surfaces.

Experimentally, it has been shown that ferrocene molecules, which are structurally
very similar to the metal-benzene molecules considered here, form physisorbed molecular
layers on metal surfaces [96, 97]. Since they are mainly bound by van der Waals forces,
the states of the molecules keep their MO character. As shown in the previous sections
and in Ref. [10] the AMR can also be found on surfaces. Therefore, it should be possible
to combine the AMR of a magnetic surface with the orbital-symmetry filtering of the
metal-benzene molecules.

7.5 Summary

We have shown that the interface of 3d-metal MWs with metal-benzene molecules leads
to an orbital-symmetry filtered transmission function. Furthermore, we have shown how
the quality of the orbital-symmetry filtering depends on the details of the hybridization
of the apex atom of the MW with the molecule and on the chemical composition of

ǫs (eV) ǫxy (eV) ǫyz (eV) γs (eV) γxy (eV) γyz (eV)
tip atom 0.0 −0.2 −0.2 0.5 0.075 0.1
molecule 0.1 −0.2 −3.5 0.05 0.1 0.1
ttip−mol. ts txy tyz

0.1 0.15 0.1

Table 7.2: Parameters chosen for the TB model sketched in Fig. 7.11.
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Figure 7.11: LDOS at (a) the apex atom of the STM tip and (b) the molecule. The LDOS
of the s, dxy, and dyz state are depicted by black, blue, and red lines, respectively. (c) shows
the transmission function. The s, dxy, and dyz contributions are colored gray, blue, and red,
respectively.

the molecule. In addition, the AMR caused by SOC in the contacting leads, which
is limited to about 100% in the infinite MW, can be enhanced with the help of the
orbital-symmetry filtering by orders of magnitudes reaching values of more than 1000%.
Since molecules are the pivotal part in these junctions, we dubbed the combination of
the orbital-symmetry filtering with the anisotropic magnetoresistance MAMR. Finally,
we have shown with a generic TB model that the orbital-symmetry filtering might also
be found in molecules on surfaces and, thus, also the MAMR.
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8 Anisotropic Magnetoresistance of Pt Break

Junctions

In the previous chapters we analyzed the general features of the anisotropic
magnetoresistance in the contact and tunneling regime of single-atom and -molecule
contacts utilizing idealized monowire geometries for the leads. Here, we go beyond the
idealized monowire geometry and take into account a more realistic geometry for the
leads and structural relaxations of a Pt trimer connected to bulk-like bcc-(001) contacts
in a break-junction geometry.
Bulk Pt is close to fulfilling the Stoner criterion for ferromagnetism. In break junctions,

it is known to form atomic wires [98, 99]. According to several theoretical studies Pt
becomes magnetic for systems with reduced dimensions [100, 101, 102, 103], because the
reduced coordination number leads to a smaller bandwidth of the LDOS fulfilling the
Stoner criterion. However, direct experimental verification of this emergent magnetism
is very challenging. A workaround to detect this magnetism directly is to measure the
AMR, which requires the existence of a spontaneous magnetization. Therefore, the
detection of the AMR would be an indirect proof an emergent magnetization.
It has already been mentioned that the detection of the AMR in break-junction

experiments itself is challenging. Several papers report the AMR in a contact and
tunneling geometry of intrinsically magnetic break junctions consisting of 3d-elements
Co [57, 63], Fe [61, 63] and Ni [63]. However, other interpretations in terms of
magnetostriction [58, 59] or quantum interference [60] remain possible.
Recently, results of Pt break-junction experiments have been presented [22] strongly

indicating an emergent magnetism of Pt in reduced dimensions. However, due to
the unknown geometry of the break junction speculation about the interpretation of
the results is unavoidable and theoretical calculations of the transport properties are
necessary. In Ref. [22] values of around 1.0 to 1.25G0 attributed to monoatomic
chains of two to four Pt atoms are found. Theoretical calculations indicate that the
easy magnetization direction lies along the monowire axis [104, 105, 106]. Therefore,
the measured magnetoconductance ratio (MCR) in Ref. [22] defined as the difference
between the conductance with an applied magnetic field perpendicular to the current
direction and without an applied magnetic field divided by the latter value is a first
indicator of the anisotropic magnetoresistance in these systems1. The obtained MCR is
on the order of 10% to 30% with changing sign during elongation. A hysteresis of the
MCR has been found and has been proposed to be connected to the anisotropy energy

1The MCR is the anisotropic magnetoresistance if the magnetic field is large enough to align all
magnetic moments and if the magnetization without an applied magnetic field really lies parallel to the
current.
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Figure 8.1: (a) Sketch of the junction used to calculate the transmission function of the Pt
trimer marked by the rectangular box attached to bulk-like bcc-(001) electrodes. The trimer
consists of two apex atoms and a central atom marked by letters a and c, respectively. (b)
Front view of the bulk-like bcc-(001) Pt electrodes.

of the electrodes. The AMR as a function of the angle of the applied magnetic fields
with respect to the direction of the current θ is in the range of 6%, changes sign during
elongation, and follows approximately a cos2Θ-dependence [22]. The different values of
the MCR and AMR can be attributed to the applied magnetic field, which ranges from
−8 to +8T for the MCR but only has a magnitude of 2.5T for the AMR.

The transmission function of Pt chains contacted by bulk electrodes has been studied
in Ref. [106] considering three to five atoms. However, the distances between the atoms
were fixed and the effect of the continuous elongation of the break junction was not
considered.

Here, we provide a complementary theoretical study to the experiments presented
in Ref. [22] of the anisotropy of the transmission function of a Pt trimer suspended
between bulk-like bcc-(001) contacts elongated to several distances, the magnetic and
geometrical properties of which are presented in detail in Ref. [104].

The geometrical setup can be seen in Fig. 8.1. The distance between the layers of
the leads L is elongated by ∆L ranging from 0.0 to 3.0 bohr. The values for the relaxed
structure are taken from Ref. [104] and the transmission function for a magnetization
parallel to the trimer axis M ‖ z and parallel to the x-axis M ‖ x denoted as M ⊥ z, is
calculated.

The analysis starts with details on the setup of the calculation and cutoff tests
regarding the choice of the Wannier functions. Due to the high complexity in this
system, which is only a little more complicated than the monowire, we first analyze the
transmission function in the scalar-relativistic approximation. Then SOC is considered
for M ‖ z and M ⊥ z.

We find slightly smaller values of the conductance compared to the experimental
results ranging from 0.75 to 0.9G0 which change slightly during elongation. The AMR
goes up to about 20% in magnitude and changes sign during elongation. During the
elongation of the trimer a sign change and an increase in magnitude near the Fermi
level can be found for the differential AMRdiff. of the transmission function. These
effects originate from changes in the electronic structure due to the emergent magnetism
and the bonding characteristics in the trimer for the different elongations ∆L. We
furthermore find that SOC changes the transport properties dramatically compared to
the SR approximation, which is attributed to the SOC induced spin- and orbital-mixing.
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Figure 8.2: Transmission function of the majority spin channel of the Pt trimer attached
to bulk-like bcc-(001) electrodes with ∆L = 1.2 bohr using (a) maximally-localized Wannier
functions and (b) first-shot Wannier functions in the first (black), second (red), and third
(blue) nearest-neighbor approximation without SOC.

8.1 Computational Details

Fig. 8.1 shows the geometrical setup of the junction investigated in this chapter. In the
DFT study of these junctions [104] the contact separation L = 30.1 bohr is enlarged by
∆L ranging from 0.0 bohr to 3.0 bohr. All atoms except the three atoms of the trimer
are kept fix. The central atom of the trimer is fixed by symmetry and, therefore, the
relaxation is defined by the movement of the two apex atoms of the trimer. We here
take the relaxed values obtained in Ref. [104].
The scattering region is calculated using the 1D-version of FLEUR in a unit cell with

a length of 44.2 bohr including 27 atoms. kmax is set to 3.6 bohr−1 and eight k-points
are used in the IBZ. SOC is taken into account self-consistently. GGA is used and the
muffin tin radii are set to 2.6 bohr. The vacuum parameters D and D̃ are chosen 13.0
and 14.0 bohr, respectively.
First-shot Wannier functions are used since it was not possible to obtain MLWF for

the systems including SOC in adequate quality. In Figs. 8.2 (a, b) it can be seen that
the qualitative difference between the transmission function from FSWF and MLWF is
not large. Only the localization of the s-like orbitals of the FSWF leads to a slightly
enhanced transmission function around the Fermi level compared to the MLWF, while
the transmission of the d-orbitals shows very similar shapes and magnitudes. The FSWF
were obtained by projecting on five d and one s orbitals per Pt atom out of 243 bands.
For calculations with SOC these numbers were doubled.
The leads are calculated in a unit cell with a length of 7.04 bohr including five Pt atoms,

using 16 k-points and kmax = 3.6 bohr−1. The FSWF were obtained by projecting on
five d and one s orbitals per Pt atom out of 45 bands. For calculations with SOC the
numbers were doubled.
The scattering region consisting of the trimer and two base layers of four atoms
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Figure 8.3: Spin-decomposed transmission function of (a) the bulk-like bcc-(001) electrodes
and (b) the Pt trimer with ∆L = 0.0 bohr attached to bulk-like bcc-(001) electrodes. The
contributions of orbitals of different character and their localization at the edge or center atom
are marked in the colors as stated in the legend. The dashed lines show the total transmission
summed over both spin channels for comparison.

on each side is attached to semi-infinite leads as sketched in Fig. 8.1. Regarding the
hoppings, the 3rd nearest-neighbor approximation with respect to layers is used to
calculate the transmission function, where one nearest-neighbor layer consists of five
atoms. Ghost atoms are added to the trimer to fill the matrices properly. As can
be seen in Figs. 8.2 (a) and (b) for both, the MLWF and the FSWF, the third and
second nearest-neighbor approximation yield very similar results indicating an already
well converged transmission function using three nearest-neighboring layers.

To simplify the interpretation of the data we use a moderate Gaussian broadening
with standard deviation σ = 0.01 eV to calculate the transmission function and local
density of states, which can be interpreted as a temperature broadening.

8.2 Magnetic and Transport Properties neglecting SOC

We start by analyzing the transmission function of the bulk-like bcc-(001) electrodes
contacting the junction in Fig. 8.3 (a) for the majority and minority spin channel. The
transmission function is spin-polarized due to the formation of magnetic moments of
the Pt atoms caused by the reduced coordination number. The magnetic moments of
the bulk-like bcc-(001) electrodes amounts to 0.18µB and 0.44µB for the center and
edge atoms, respectively. The decomposition into the different orbital types and atoms
surprisingly shows that around the Fermi level from −0.5 to 0.5 eV no ∆1 (s, dz2)-states
from the center atom are contributing to the transmission of the majority or minority
spin channel. However, ∆3 (dxz, dyz)- and ∆4 (dxy, dx2−y2)-states of the center atom
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Figure 8.4: Spin-decomposed transmission function of the Pt trimer with (a) ∆L = 0.6 bohr,
(b) ∆L = 1.8 bohr, and (c) ∆L = 3.0 bohr attached to bulk-like bcc-(001) electrodes. The
contributions of orbitals of different character and localized at the edge or center atom are
marked in the colors as stated in the legend.

are contributing as well as ∆1-, ∆3-, and ∆4-states of the four edge atoms. Note, that
although the degeneracy of the dxy and dx2−y2 is lifted by the geometry of the electrodes,
we here keep the ∆4 notation for simplicity until otherwise noted.

Moving to the trimer with ∆L = 0.0 bohr in Fig. 8.3 (b) the transmission function
reduces by approximately a factor of three. In particular, the contribution of the
∆4-states of the center and edge atom nearly vanishes completely around the Fermi
level, while ∆3- and ∆1-contributions from the center and edge atoms remain. The
energetic positions of the contributions to the transmission function from the different
states coincides with the ones of the perfect lead, i.e., the shape of the transmission is
determined by the leads and the trimer mainly leads to a decrease in magnitude.
If the trimer is now pulled apart, Fig. 8.4, for several distances ∆L, one first notices

that the contributions of the edge atoms strongly decrease while the contributions of the
central atom remain. This is consistent with the fact that the distance of the edge atoms
on each side of the trimer is about 16.0 bohr for ∆L = 0.0 bohr, which indicates that the
transmission function between these atoms is in the tunneling regime. However, for the
center atom the transmission function is not in the tunneling regime. The bonds between
the atoms of the trimer are not broken and the changes in the transmission function
are caused by rearrangements of the electronic states due to the geometrical relaxation
and the different bond lengths. A very prominent feature is the ∆4-peak in the minority
channel marked with an arrow, which moves from EF − 0.7 eV for ∆L = 0.6 bohr to
EF − 0.25 eV for ∆L = 3.0 bohr.
This peak is directly connected to the build-up of the magnetic moment and can also

be seen in the LDOS, Fig. 8.5, of the dxz and dyz states (∆3-symmetry2) as well as

2Note, that the small differences in the LDOS of the two orbitals are artifacts from
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Figure 8.5: Spin- and orbital-decomposed local density of states calculated without SOC of
the dxz, dyz, dx2−y2 , and dxy orbitals located at the apex (upper panels) and central (lower
panels) atom of the Pt trimer with (a, b) ∆L = 0.0 bohr, (c, d) ∆L = 1.2 bohr, and (e, f)
∆L = 3.0 bohr attached to bulk-like bcc-(001) electrodes.

the dxy and dx2−y2 states (∆4-symmetry in the monowire geometry) for different ∆L
at the apex and central atom of the trimer. While the symmetry of the ∆3-orbitals is
conserved, the symmetry of the ∆4-states is broken due to the quadratic leads. The
shifting ∆4-peak in the transmission function for increasing ∆L in the minority channel
discussed above can be clearly attributed to the LDOS of the dxy and dx2−y2 orbitals
in the minority channel at the central atom (cf. Figs. 8.5 (b, d, f)), which continuously
move towards higher energies for increasing ∆L. This also changes the magnetic moment
of the central atom from around 0µB to around 1µB for ∆L = 0.0 bohr and 3.0 bohr,
respectively. The energetic positions of the ∆3-states stays constant for increasing ∆L
but the LDOS becomes sharper as expected for decreasing hybridization due to the
larger distance between the atoms.

At the apex atom the magnetic moment is created by the dxy states which slightly
shift to lower energies in the majority channel and to higher energies in the minority
channel.

The build-up of the magnetic moment of the central and the apex atom of the trimer
can be seen in Fig. 8.6 (a). A sharp jump from a magnetic moment close to zero at

the Wannierization.
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of the Pt trimer as a function of ∆L calculated without SOC. (b) Conductance (black line) and
spin-decomposed conductance (green up-triangle and red down-triangles mark majority and
minority states, respectively) obtained by integrating the transmission function from −0.05
below to 0.05 eV above the Fermi level.

∆L = 0bohr to a value of about 0.5µB and 0.8µB around ∆L = 1.2 bohr for the apex
and central atom, respectively, can be seen, consistent with the movement of the dxy
LDOS discussed above.
The conductance obtained by integrating the transmission function from −0.05 eV

below to 0.05 eV above the Fermi level as a function of ∆L is shown in Fig. 8.6 (b).
The total conductance continuously decreases with increasing ∆L. Furthermore, for
small ∆L the conductance is strongly spin-polarized. For large ∆L the spin-polarization
is reversed. This might seem contradictory to the behavior of the magnetic moment,
however, the conductance around the Fermi level is dominated by the ∆1- and ∆3-
orbitals and their contribution to the magnetic moment is limited.
As we will see in the next chapter, the behavior of the transmission function and

conductance is profoundly changed by SOC.

8.3 Magnetic and Transport Properties including SOC

If SOC is included the spin and orbital moment of the central and apex Pt atom in
Fig. 8.7 (a, b) also rise as a function of increasing ∆L for both magnetization directions.
However, the rise is more continuous compared to the SR calculations. The spin and
orbital moments for M ‖ z are larger than for M ⊥ z. This also leads to a MAE favoring
a magnetization parallel to the z-axis with about −4meV which jumps to −4.5meV at
∆L = 1.2 bohr. The MAE follows approximately the difference in magnitude of the
orbital moments for the two magnetization directions in accordance with the Bruno
model [70].
The different magnitude of the magnetic moment at the central atom for the two

magnetization directions can be understood by the induced hybridizations between the
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orbitals, which can be seen in the local density of states in Fig. 8.8. As for the SR case
one sees that the dx2−y2 and dxy orbitals in the minority spin channel shift to higher
energies with increasing ∆L. This leads to the increasing magnetic moment. However,
for the case of M ⊥ z the dxy orbitals are allowed to mix with the dx2−y2 orbitals of
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Figure 8.9: Spin- and symmetry-decomposed transmission function of the Pt trimer with
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The contributions of orbitals of different character and localized at the edge or central atom
are marked in the colors as stated in the legend.

opposite spin character (cf. Tab. 5.1). Because of that also the dx2−y2 and dxy orbitals
of majority spin character move to higher energies for increasing ∆L, which reduces the
magnetic moment for M ⊥ z considerably.

For M ⊥ z also the degeneracy of the dxz and dyz orbitals is lifted since the dyz state
is allowed to hybridize with the dz2 state while the dxz orbital is not (cf. Tab. 5.1 in
chapter 5). For both magnetization directions the LDOS of the dxz and dyz orbitals
becomes more spiky with increasing ∆L, which can be understood by the increased
distance and, therefore, reduced hybridization between the atoms of the Pt trimer.

The two effects described above, the movement of the ∆4-orbitals and the sharpening
of the ∆3-orbitals with increasing ∆L, lead to differences in the transmission function
for the two magnetization directions as shown in Fig. 8.9. For M ⊥ z one can clearly
see how the ∆4-contributions move closer to the Fermi level in the majority and the
minority spin channel with increasing ∆L (cf. Fig. 8.9 (b, d, f)). The contribution from
the ∆3-orbitals decreases and especially at 0.1 eV a kink forms in the ∆3-contribution
of minority spin character starting at ∆L = 0.0 bohr until no contribution from these
states is present at that energy at ∆L = 3.0 bohr. The kink is due to the sharpening of
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the LDOS and the hybridization of the dyz with the dz2 orbitals, which is not allowed
for M ‖ z as described in the discussion of the LDOS.

For M ‖ z the movement of the main ∆4-peak in the LDOS of the minority spin
channel around the Fermi level is not seen as clearly in the transmission function
(cf. Fig. 8.9 (a, c, e)). In general, one sees a decrease of the transmission function
for the ∆3-states as well as the ∆4-states.

The two features in the transmission function for M ⊥ z, i.e., the kink from the ∆3-
states at 0.1 eV and the movement of the ∆4-states, lead to an AMRdiff. (cf. Eq. (5.4))
dependent on ∆L. As can be seen in Fig. 8.10 the peak at 0.1 eV grows monotonically
with ∆L. In the region below the Fermi level the sign of the AMRdiff. changes gradually
from positive values for small ∆L to negative ones for ∆L larger than 1.2 bohr. These
two effects are both directly connected to SOC and the build-up of the magnetic moment.

We now compare the results from this work with the experimental results from
Ref. [22]. The conductance integrated from −0.05 eV to 0.05 eV around the Fermi level
as a function of ∆L presented in Fig. 8.11 shows a very different behavior compared to
the case without SOC. It stays rather constant around values of 0.75G0. This behavior
is consistent with the data presented in Ref. [22], although they obtain values on the
order of 1.0G0.

The AMR of the integrated conductance shows a sign change as a function of ∆L.
This was also found in Ref. [22] for the MCR on a similar scale of distance and also for
the experimental AMR. The magnitude of the AMR found here is three times larger
than found for the experimental angular dependent AMR in Ref. [22]. However, the
theoretical values compare well with the MCR, which shows values in the range of 30%
and an oscillating behavior.

What is also interesting to note is that forM ‖ z the spin-polarization has the opposite
sign compared to M ⊥ z. This can be attributed to the missing contribution of the ∆1-
minority states to the transmission function at the Fermi level for M ‖ z, while for
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Figure 8.11: (a) Conductance (black circles) and spin-decomposed conductance (green up-
triangle and red down-triangles mark majority and minority states, respectively) of the Pt
trimer connected to bulk-like bcc-(001) electrodes obtained by integrating the transmission
function from −50 below to +50 eV above the Fermi level for M ‖ z (empty symbols and solid
lines) and M ⊥ z (filled symbols and dashed lines) as a function of ∆L. (b) AMR of the
integrated conductance as a function of ∆L.

M ⊥ z the ∆1-states of both spin channels contribute. In addition, as described during
the discussion of Fig. 8.8 due to the SOC induced mixing the LDOS for M ⊥ z is very
similar for both spin channels while larger differences can be seen for M ‖ z. Therefore,
the spin-polarization of the conductance is also larger for M ‖ z than for M ⊥ z.
Fig. 8.12 (a) shows the conductances obtained by integrating over energy intervals

with a size of 200meV around the Fermi level. The obtained conductances for all
integration ranges are slightly larger than for the integration range of 100meV. This can
be understood by comparing with Fig. 8.9, which shows that there is a local minimum
of the transmission function around the Fermi level. At higher and lower energies with
respect to the Fermi level the transmission function shows larger values.
The AMR for the conductances obtained by integrating the transmission function

from EF − 100meV to EF + 100meV depicted in Fig. 8.12 (b) shows a similar behavior
to the AMR for an integration range from EF − 50meV to F + 50meV, Fig. 8.11 (b).
If the integration range is set to negative values, i.e., EF − 200meV to EFmeV, the
shape of the AMR is similar to the two integration ranges already discussed: The AMR
changes from positive to negative sign when ∆L is enlarged. However, the magnitude
of the AMR reached for large ∆L is increased. This can be understood by the AMRdiff.,
Fig. 8.10, which changes from being positive to negative in this energy for increasing ∆L.
If the integration range is chosen positive (EF to EF+200meV), the AMR stays positive
and increases in magnitude when the junction is elongated reaching values of 80%. This
also can be attributed to the increasing AMRdiff. in this energy region discussed above.
It is intersting to note that for all integration ranges the AMR stays relatively stable
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Figure 8.12: (a) Conductance of the Pt trimer connected to bulk-like bcc-(001) electrodes
obtained by integrating the transmission function from EF − 100meV to EF+100meV (black
circles), EF − 200meV to EFmeV (red squares), and EF to EF + 200meV (blue diamonds)
for M ‖ z (empty symbols and solid lines) and M ⊥ z (filled symbols and dashed lines) as
a function of ∆L. (b) AMR of the integrated conductance as a function of ∆L for the three
integration ranges.

for ∆L = 0.0 bohr and ∆L = 0.6 bohr and then jumps to higher or lower values. This
jump can also be seen in the MAE in Fig. 8.7 (c) and the orbital moment in Fig. 8.7 (b).
Therefore, one can attribute this jump to the emergent magnetism in the Pt trimer.

8.4 Summary

We calculated the transport properties of a Pt trimer contacted by bulk-like bcc-(001)
electrodes as a function of the elongation of the trimer ∆L going beyond the monowire
geometry used in the previous chapters. We used the structural parameters found by
relaxing the atoms of the trimer from Ref. [104]. We find that SOC has large effects
on the magnetic properties of the Pt trimer, which is reflected in the conductance. For
calculations including SOC we find values of the conductance ranging from 0.75 to 0.9G0,
which change slightly during elongation of the trimer. The AMR goes up to about 20%
in absolute value and changes sign during elongation. During the chain elongation a
sign change and an increase in magnitude near the Fermi level can be found of the
AMRdiff. of the transmission function. These effects can be attributed to changes in the
electronic structure due to the emergent magnetism and the bonding characteristics in
the trimer for the different elongations ∆L. Furthermore, we found that it is critical to
include SOC in the calculations since it changes the magnetic and transport properties
dramatically.

Qualitatively the results compare well with the experimental results from Ref. [22].
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8.4 Summary

Quantitatively, the values found for the conductance experimentally are slightly larger
(1.0 to 1.25G0). The MCR is of a similar magnitude as the theoretically obtained AMR
and also changes sign during elongation of the break junction. The experimentally
obtained AMR as a function of the angle of the applied magnetic field also changes sign
as a function of elongation but shows smaller values of only about 6%. The fact that
the theoretical AMR compares better with the experimental MCR than the AMR can
be understood by the applied magnetic field, which is lower for the AMR measurements
than for the MCR measurements. Therefore, it might be the case that during the
measurement of the AMR not all magnetic moments are aligned.
Summarizing, the experimental and theoretical findings are in reasonable agreement.

This supports the interpretation of emergent magnetism in Pt break junctions. However,
some uncertainties remain due to the unknown exact atomic structure of the break
junction and the idealization of the calculations.

103



8 Anisotropic Magnetoresistance of Pt Break Junctions

104



9 Tunneling Non-Collinear Magnetoresistance

In this chapter, we propose a novel type of magnetoresistance to explain STM
experiments with non spin-polarized tips on non-collinear (NC) spin structures. It is
known that in a non-collinear spin structure a mixing between the spin channels occurs
resulting in changes of the band structure and the local density of states compared to the
ferromagnetic (FM) case [25, 107]. We here argue that this hybridization between bands
of different spin character in non-collinear spin structures can lead to large changes in
the local density of states in the vacuum and, therefore, also in the dI/dU spectrum
obtained in STM experiments. We propose that this effect can be used to detect non-
collinear spin structures in a setup as sketched in Fig. 9.1. In analogy to the anisotropic
magnetoresistance one only needs one magnetic electrode. The TNCMR is then defined
by

TNCMR = 100% · (dI/dU)NC − (dI/dU)FM
(dI/dU)FM

(9.1)

to measure the strength of the effect. We show that the magnitude of the TNCMR can
be correlated with the size of the angles between adjacent atoms. Thus, the TNCMR is
ideally suited to detect localized NC structures in FM environments.
In particular, this theoretical analysis was motivated by experiments performed by

Christian Hanneken in the group of Prof. Roland Wiesendanger at the University of
Hamburg. In these experiments W tips have been used to probe the bilayer PdFe/Ir(111)
system in the skyrmion phase.
Skyrmions are particle-like spin structures which are topologically-protected, which

means that they cannot be annihilated in a continuous manner. They can be found

µ

µ

µ

magnetic electrodemagnetic electrode

non-magneticnon-magnetic

metalmetal

(dI/dU)FM (dI/dU)NC

Figure 9.1: Sketch of the tunneling non-collinear magnetoresistance, which measures the
difference in the differential conductance dI/dU of a junction consisting of a non-magnetic
metal and a magnetic electrode separated by a tunneling barrier between the ferromagnetic
(FM) state and a non-collinear spin state of the magnetic electrode. Adapted from Ref. [1].
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9 Tunneling Non-Collinear Magnetoresistance

Figure 9.2: Perspective view
of a two-dimensional skyrmion
from above the center of the
skyrmion. The cones represent the
magnetization direction of individual
atoms and the colorscale ranging
from dark blue (magnetization
pointing away from the reader) to red
(magnetization pointing towards the
reader) scales with the z-component
of the magnetization. In the center
the magnetization points away from
the reader and then rotates into the
opposite direction. Povray script
courtesy of B. Dupé.

µ

µ

µ

in bulk materials [108, 109] and at interfaces and surfaces [110]. Here, we focus on
skyrmions on surfaces. A sketch of a skyrmion can be seen in Fig. 9.2. In the skyrmion
center the magnetization points antiparallel to the magnetization in the surrounding
and rotates continuously in a unique sense in between. Due to this spin arrangement
one cannot simply unwind a skyrmion continuously. The unique rotational sense is
imposed by the Dzyaloshinskii-Moriya interaction [111, 112], which arises due to spin-
orbit interaction in systems with broken inversion symmetry such as a surface. A
skyrmion can be characterized by its topological charge

S =
1

4π

∫
n ·
(
∂n

∂x
× ∂n

∂y

)
dxdy, (9.2)

where n is the unit vector of the local magnetization and the term n ·
(

∂n
∂x

× ∂n
∂y

)
is called

skyrmion density. The topological charge of a skyrmion is 1.

The bilayer PdFe/Ir(111) has been found to be an ideal playground for experiments
with skyrmions. The ground state of PdFe/Ir(111) is a spin spiral. However, when a
magnetic field is applied the skyrmion phase becomes energetically favorable until at
large enough fields the FM state occurs [23, 24]. Furthermore, it has been demonstrated
in this system that it is possible to write and delete skyrmions with spin-polarized
currents [23]. Recently, from spin-polarized STM measurements it has been shown
that the field-dependent magnetization profile of a skyrmion can be described by
superimposing the profiles known for domain walls [113]. This allows to characterize a
skyrmion by two field-dependent parameters c(B) and w(B). For the polar angle of the
magnetization one can write

θ(r) = π − arcsin

(
tanh

(
2(r − c)

w

))
− arcsin

(
tanh

(
2(r + c)

w

))
, (9.3)
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(a) (b)

2

Figure 9.3: (a) Close view of two
skyrmions, dI/dU map, the inset
presents a profile along the blue
arrow (experimental parameters:
B = −2.5T, U = +0.7V, I =
1nA, T = 4K). (b) dI/dU tunnel
spectra in the center of a skyrmion
(red) and outside the skyrmion
in the FM background (black);
(experimental parameters: B =
−2.5T, T = 4K, stabilization
parameters U = −1V, I = 1nA).
Figures taken from [1].

and for the azimuth angle

tanφ(r) =
y

x
. (9.4)

Surprisingly, it was recently discovered that skyrmions can also be observed with
non-magnetic STM tips.
Fig. 9.3 (a) shows a map of the the differential conductance of two skyrmions measured

at a voltage of 0.7V and with a non-magnetic STM tip. When the tip is moved along
the blue arrow from the FM edge of the skymrion to its center, one obtains the profile
shown in the inset of Fig. 9.3 (a). Values of about 1.2 and 2.4 are found at the center of
the skyrmion and in the FM area at the edge of the skyrmion, respectively. According to
Eq. (9.1) this would result in a TNCMR of 50%. Fig. 9.3 (b) shows the bias dependence
of the dI/dU signal at the center of the skyrmion and in the FM surrounding. In the
FM region a peak at 0.7 eV and a shoulder at 0.35 eV can be seen. At the center of the
skyrmion the peak at 0.7 eV splits into two located at 0.9 eV and 0.5 eV leaving a local
minimum at 0.7 eV. The dI/dU spectra for smaller magnetic field strengths can be seen
in Fig. 9.14 (c). They reveal that the shift of the high energy peak increases continuously
with the magnetic field strength. From the θ(r) profiles obtained from the experimental
c(B) and w(B) values for different magnetic fields shown in Fig. 9.15 (a) it can be
seen that also the slope of θ(r) at the center of the skyrmion increases continuously
with increasing magnetic field strength. Since the slope of θ(r) determines the angle α
between the central atom of the skyrmion and its neighbors, one can assume that shift
of the high-energy peak correlates with α. The same correlation can be found when the
lateral dependence shown in Fig. 9.3 (a) is considered.
Understanding this correlation is the goal of this chapter. Since DFT calculations

of skyrmions with the size found in this experiment are currently out of reach, we
explain the observed peak-splitting by using a two-orbital TB model on a hexagonal
lattice, which is adapted to the results of DFT calculations of spin spirals. The orbitals
are assumed to be of minority and majority spin character and only hoppings to the
nearest neighbors are taken into account. The non-collinearity is accounted for by
introducing matrix elements between the two orbitals, which magnitude depends on
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9 Tunneling Non-Collinear Magnetoresistance

the angle between the magnetization direction of adjacent atoms calculated with the
spin-rotation matrix. The “periodic TB model” is solved in reciprocal space and, thus,
is ideally suited to describe periodic structures like spin spirals. It can also be used
to locally describe non-periodic structures. The “full TB model” is solved in real
space and able to describe large NC spin structures, i.e., skyrmions. We first introduce
these two TB models and compare with results obtained from density functional theory
calculations. Good agreement is found, which proves that the assumed simplifications
are justified. We then show that the TB model explains the experimental data, which is
available for skyrmions at several magnetic field strengths, very well and that the shift
of the high-energy peak can be correlated with the mean angle between adjacent atoms.
Furthermore, we find that the lateral dependence of the height of the high-energy peak
can be used to determine the shape of the emergent magnetic field or skyrmion density.
We then analyze the TNCMR as a function of bias voltage for different field strengths
and compare the TNCMR to the TMR and TAMR. Finally, we shortly investigate the
ballistic transport properties of spin spirals and skyrmions.

Parts of this chapter have been published in Ref. [1]1.

9.1 Periodic TB Model

In the following, we introduce the so-called “periodic TB model”. It consists of two
orbitals of majority or minority spin character in a one-atom unit cell taking into
account hoppings to the nearest neighbors. Non-collinearity is introduced by off-diagonal
matrix elements, the magnitudes of which depend on the angle between neighboring
atoms. It is solved in reciprocal-space and, thus, ideally suited to describe periodic
structures. However, also non-periodic structures can be described if the obtained results
are regarded as local quantities.

Bandstructure, Density of States, and Vacuum Density of States

The energy of an isolated Bloch state can be calculated via the Schrödinger equation:

H |Ψnk〉 = En(k) |Ψnk〉 . (9.5)

Recalling the definition of the Wannier functions from Sec. 4.1

|Ψnk〉 =
1√
N

∑

R

eikR |Rn〉 , (9.6)

and plugging it into the Schrödinger equation yields:

1√
N

∑

R

eikRH |Rn〉 = E(k)
1√
N

∑

R

eikR |Rn〉 . (9.7)

1Note, that here we use different parameters to model the local density of states in the vacuum.
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9.1 Periodic TB Model

Multiplying with 〈R′n| from the left and using the orthonormality of Wannier functions
〈R′n|Rn〉 = δRR′ leads to:

∑

R

eikR 〈R′n|H |Rn〉 = E(k)eikR
′

(9.8)

⇔
∑

R

eik(R−R′) 〈R′n|H |Rn〉 = E(k). (9.9)

This eventually yields the band energy at each k point:

E(k) =
∑

∆R

eik∆R 〈0n|H |∆Rn〉 . (9.10)

For a NN approximation this simplifies to

E(k) = ǫ0 +

NNN∑

i=1

teikTi , (9.11)

where Ti are the vectors from a site to its nearest neighbors, ǫ0 = 〈0n|H |0n〉 is the
on-site energy of the sites and t = 〈0n|H |Tin〉 the hopping to the nearest neighbors,
which is assumed identical for all nearest neighbors.

For the case of a hexagonal lattice (Ti = −Ti+3, i ∈ [1, 3]) the energy dispersion
simplifies to

E(k) = ǫ0 + 2t[cos (kT1) + cos (kT2) + cos (kT3)]. (9.12)

To calculate the density of states at energy E one needs to count the number of states
at that certain energy

D(E) =
1

Nk

∑

k

δ(E − E(k)), (9.13)

where Nk is the total number of k-points. Computationally, it is convenient to
approximate the δ function by a Gaussian distribution with standard deviation σ to
count the states:

δ(E − E(k)) =
1√
2πσ2

exp

(
−(E − E(k))2

2σ2

)
. (9.14)

σ can be interpreted as a broadening due to the coupling to an underlying surface.
Within the Tersoff-Hamann model, the dI/dU signal in an STM experiment is

proportional to the LDOS at the tip position, i.e., in the vacuum a few Å above the
surface [114, 115]. Therefore, it is of great interest to be able to calculate this quantity.
The LDOS in the vacuum can be interpreted as the result of a tunneling process of
electrons localized at the surface into a vacuum plane with a distance d to the surface
plane. The tunneling barrier is approximated to be rectangular and the height is defined
by the work function Φ. In the vacuum plane the electron can move freely and, thus,
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9 Tunneling Non-Collinear Magnetoresistance

Figure 9.4: Sketch of the hexagonal
unit cell. The spin quantization
axis on the neighboring sites Tj

are labeled by Sj . Here, the
spin quantization axis are chosen
exemplary according to a spin spiral.
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has a free-electron dispersion which scales with k2. The vacuum density of states can
then be calculated by:

VDOS(E) =
1

Nk

∑

k

1√
2πσ2

exp

(
−(E − E(k))2

2σ2

)
exp

(
−2d

√
2melΦ

~2
+ k2

)
. (9.15)

Due to the k dependence of the local density of states in the vacuum (VDOS) the
magnitude of the VDOS around the Γ̄ point is amplified compared to the LDOS at the
atom.

One needs to set the work function Φ and the distance d to calculate the VDOS.

Non-collinearity

Non-collinearity is now introduced in the model by allowing the two orbitals to mix
according to the angle α0j between the spin quantization axes at one site and its
neighboring sites j characterized by the vector Tj.

For the collinear case the on-site Hamiltonian states

H0 =

(
ǫ↑ 0
0 ǫ↓

)
, (9.16)

where ǫ↑ and ǫ↓ are the on-site energies of the two orbitals for majority and minority
spin states, respectively. The site is connected to neighboring site Tj via the transition
matrix elements t↑ and t↓:

V0,j =

(
t↑ 0
0 t↓

)
. (9.17)

The non-collinearity leads to a mixing of majority- and minority-spin orbitals on
neighboring sites. The hopping from one site to the adjacent atomic site Tj is obtained
by rotating the wave function from the local spin quantization axis Sj from site j
characterized by angles Θ and Φ into the local spin quantization axis S0, which is
assumed to lie in z-direction, with the spin-rotation matrix

U(Θ,Φ) =

(
e−iΦ

2 · cos(Θ
2
) −e−iΦ

2 · sin(Θ
2
)

e−iΦ
2 · sin(Θ

2
) ei

Φ

2 · cos(Θ
2
)

)
. (9.18)
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9.2 Full TB Model

Since we are only regarding the hopping between two atomic sites pairwise, one can
assume that the spin quantization axes are lying in a plane and, thus, the rotation
matrix can be described by the absolute angle between the spin quantization axes α0j =
arccos (Sj · S0):

U(α0j) =

(
cos(

α0j

2
) − sin(

α0j

2
)

sin(
α0j

2
) cos(

α0j

2
)

)
. (9.19)

The matrix V0j then becomes [116]:

V0j =

(
t↑ cos (α0j/2) −t↓↑ sin (α0j/2)
t↑↓ sin (α0j/2) t↓ cos (α0j/2)

)
, (9.20)

where t↑↓ and t↓↑ are the hopping integrals between the orbitals of majority and minority
spin character on neighboring sites, the values of which depend on the assumed orbital
character of the majority and minority spin states.
In reciprocal-space this translates to a mixing between k-states of the majority and

minority band according to the Hamiltonian

Hk =

(
E↑(k) t↓↑,k
t↑↓,k E↓(k)

)
. (9.21)

E↑/↓(k) is calculated via Eq. (9.11) and the mixing between the orbitals translates to
a mixing between states at the same k-point, which can be obtained from the Wannier
formalism as described in Sec. 4.2 via Eq. (4.24):

t↑↓/↓↑,k =

6∑

i=1

±t↑↓/↓↑ sin (α0j/2)e
ikTi . (9.22)

Diagonalizing Eq. (9.21) leads to the eigenvalues:

λ1/2 =
E↑(k) + E↓(k)

2
±

√(
E↑(k)−E↓(k)

2

)2

+ t↑↓,kt↓↑,k. (9.23)

The angles α0j can in principle be chosen arbitrarily so that also non-periodic
structures, for example, the center of a skyrmion, can be described approximately by
interpreting the bandstructure as a “local bandstructure”.

9.2 Full TB Model

The periodic TB model cannot account for the full spin-structure of a skyrmion since
the unit cell only consists of one atom. In principle, a multi-atom basis which includes
the spin-structure of the skrmion could be incorporated and which would then be
repeated periodically in the periodic TB model. However, this would increase the
computational effort tremendously. Therefore, we here introduce the so-called “full
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Figure 9.5: Sketch of the geometrical setup used for the full TB model in real space.

TB model” based on the Green’s function code described in chapter 2. The full TB
model is solved in real space which is computationally more convenient for intrinsically
non-periodic structures such as isolated skyrmions. In addition, the Green’s function
method allows for connecting the skyrmion to semi-infinite environments abolishing the
need for periodic repetition of the unit cell. As in the periodic TB model hoppings to
the nearest neighbors are taken into account.

Starting from the infinite hexagonal lattice in Fig. 9.5 (a) characterized by the basis
vectors

a1 = (1, 0)T a2 = (0.5,−
√

3/4)T, (9.24)

one chooses a vector c defined by

c =
N

2
a1 −Na2, (9.25)

with N ∈ N. Atoms connected by vector c are assumed to be identical. This cuts out a
stripe containing N atoms as sketched in Fig. 9.5 (b). N is always an even number by
construction. The scattering region is created by repeating this stripe M times. The
scattering region is connected to the leads as described in chapter 2.

Two orbitals per atom are assumed and, therefore, the Hamiltonian for stripe m of
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9.2 Full TB Model

the scattering region takes the form:

Hm =




Hm
1,1 Vm

1,2 0 · · · 0 Vm
1,N

Vm
2,1 Hm

2,2 Vm
2,3

. . . 0 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 0
. . .

. . . Hm
N−1,N−1 Vm

N−1,N

Vm
N,1 0 · · · 0 Vm

N,N−1 Hm
N,N




, (9.26)

with Hm
n,n and Vm

n,n+1 being 2 × 2 matrices. As one can see from Eq. (9.26) periodic
boundary conditions are assumed in y-direction. The on-site energies are given by

Hm
n,n =

(
ǫ↑ 0
0 ǫ↓

)
. (9.27)

The neighboring stripes m and m′ are connected to each other via

Vm,m′

=




Vmm′

1,1 Vmm′

1,2 0 · · · 0 Vmm′

1,N

Vmm′

2,1 Vmm′

2,2 Vmm′

2,3
. . . 0 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 0
. . .

. . . Vmm′

N−1,N−1 Vmm′

N−1,N

Vmm′

N,1 0 · · · 0 Vmm′

N,N−1 Vmm′

N,N




. (9.28)

Matrices connecting sites in neighboring rows, i.e., n 6= n′, differ due to the zigzag
structure of each stripe for the cases m′ = m+1 and m′ = m−1, i.e., going from left to
right or right to left. For m′ = m+ 1 and n odd: Vmm′

n,n′ 6= 0, but for n even: Vmm′

n,n′ = 0.
For m′ = m− 1 it is the other way around.
The matrices for the leads and the matrices connecting the leads to the scattering

region are created analogously. The Green’s function formalism gives access to the local
density of states at each site as well as to the lateral transmission function in x-direction.

Incorporation of the Spin Structure

For each site characterized by indices m and n the direction of the spin quantization
axis can be written as:

S(m,n) =




sin θ(m,n) cosφ(m,n)
sin θ(m,n) sinφ(m,n)

cos θ(m,n)


 . (9.29)

To calculate the hoppings between neighboring sites we pairwise rotate the spin
quantization axes of neighboring sites into each other. As in the periodic TB model
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9 Tunneling Non-Collinear Magnetoresistance

we can assume that the spin quantization axes pairwise lie in a plane and, thus, the
rotation matrix can be described by the absolute angle between the spin quantization
axes αmn,m′n′ = arccos (S(m,n) · S(m′, n′)):

U(αmn,m′n′) =

(
cos(

αmn,m′n′

2
) − sin(

αmn,m′n′

2
)

sin(
αmn,m′n′

2
) cos(

αmn,m′n′

2
)

)
. (9.30)

The matrices Vmm′

nn′ then state

Vmm′

nn′ =

(
t↑ cos(

αmn,m′n′

2
) −t↓↑ sin(

αmn,m′n′

2
)

t↑↓ sin(
αmn,m′n′

2
) t↓ cos(

αmn,m′n′

2
)

)
. (9.31)

The skyrmion spin structure is incorporated using Eq. (9.3) and Eq. (9.4) for the
determination of S(m,n) in the scattering region. For the case of skyrmions the
scattering region is attached to FM leads (cf. Fig. 9.13).

Spin spirals propagating along the x-direction are implemented by choosing the
number of stripes M = 1 and the angle between adjacent sites

αmn,m′n′ =

{ 2π
2NS

for m = m′

2π
NS

for m 6= m′ (9.32)

in the scattering region as well as in the leads. The wavelength of the spin spiral then
is λ = NSa.

Periodic Boundary Conditions and Effective Coupling to an Underlying Crystal

The periodic boundary conditions allow only certain k-vectors. They are defined by the
vector c forcing atoms connected by that vector to be identical as sketched in Fig. 9.5 (a).
Graphically speaking, the hexagonal lattice is rolled up and becomes a tube analogous
to carbon nanotubes. The allowed k vectors are defined by

k · c = 2πν. (9.33)

According to the choice of c in Eq. (9.25), this leads to a quantization of ky while kx is
not affected:

ky =
2πν

N
√

3/4
. (9.34)

To get rid of these artificial quantization effects due to the periodic boundary
conditions and to account for the hybridization of the surface atoms with the underlying
layers in real surfaces, we add an effective self-energy Σ to the diagonal elements of
Eq. (9.27) which then reads

Hm
n,n =

(
ǫ↑ − iΣ 0

0 ǫ↓ − iΣ

)
. (9.35)

The effects due to the periodic boundary conditions and the broadening due to the
self-energy are discussed in Sec. 9.2.1.
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9.2 Full TB Model

Modeling the Vacuum Local Density of States

As stated in Sec. 9.1 the decay of the states from the surface into the vacuum leads to
a filtering effect on the VDOS depending on k. Since the full TB model is solved in
real space, one cannot model the vacuum decay as for the periodic TB model directly
as a function of k. To access the VDOS we here introduce a second layer of sites, the
vacuum sites, as sketched in Fig. 9.6. At each vacuum site two orbitals are located as
for the atomic sites. Eqs. (9.26) and (9.28) then have the form

Hm =

(
Hm

at Vm
at,V

Vm
V,at Hm

V

)
(9.36)

and

Vm,m′

=

(
V

m,m′

at V
m,m′

at,V

V
m,m′

V,at V
m,m′

V

)
, (9.37)

where the subscript “at” and “V” stands for the atomic and vacuum sites, respectively.
The structure of Hm

V and V
m,m′

V is the same as for to the atomic sites, i.e., only
interactions up to the nearest neighbor are taken into account. The version of Eqs. (9.27)
and (9.31) for the vacuum sites state:

(
Hm

n,n

)
V
=

(
ǫV 0
0 ǫV

)
(9.38)

and

(
Vmm′

nn′

)
V
=

(
tV 0
0 tV

)
. (9.39)

The structure of the matrices connecting atomic to vacuum sites V
m,m′

at,V is the same

as in Eq. (9.28). The individual matrices contained in V
m,m′

at,V state:

(
Vmm′

nn′

)
at,V

=

((
tmm′

↑,nn′

)
at,V

0

0
(
tmm′

↓,nn′

)
at,V

)
. (9.40)

Thereby

(
tmm′

↑,nn′

)
at,V

=

{
tat,V↑ for m = m′ and n = n′

tat,V↑ e−κ∆b for m 6= m′ or n 6= n′ (9.41)

and analogously for
(
tmm′

↓,nn′

)
at,V

. The values κ =
√

2mΦ
~2

and ∆b = b− d =
√
d2 + a2 − d

account for the decreased magnitude of the hoppings from atomic sites to vacuum sites,
which are not located directly above each other as sketched in Fig. 9.6. Here, a is the
lattice constant, Φ the work function and d the distance from the vacuum plane to the
atomic plane.
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9 Tunneling Non-Collinear Magnetoresistance

Figure 9.6: Sketch of the geometry
used to calculate the vacuum density
of states.
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tV should now be chosen to yield the dispersion of the free electron gas. The work
function Φ is connected to the on-site energy of the vacuum sites ǫV by Eq. (9.12) for
k = 0:

Φ = ǫV + 6tV. (9.42)

9.2.1 Computational Details of the Full TB Model

Quantization Effects and Effective Broadening

Fig. 9.7 (a) shows the local density of states of an orbital at an atomic site of the
hexagonal lattice for the FM state obtained from the full TB model for parameters
ǫ = 0 eV, t = −0.25 eV and Σ = 0 eV. For N = 1 and N = 2 a monowire and zigzag
wire is modeled, respectively. For N = 4 the full bandwidth of 11 · t = 2.75 eV is reached
as expected for the full hexagonal lattice. The peaks originate from the quantization of
ky. As N increases the number of quantization peaks increases.

Fig. 9.7 (b) shows the effect of the Lorentzian broadening on the LDOS caused by
the self-energy Σ for the same parameters as above and N = 30. As Σ increases the
quantization peaks broaden and eventually vanish for Σ = 0.1 eV. The results compare
well with the ones obtained from the periodic TB model for a Gaussian broadening of
σ = 0.1 eV.

Quality of Vacuum Local Density of States

To model the vacuum decay at least four new parameters have to be introduced: ǫV,
tV, t

at,V
↑ = tat,V↓ and d. Although ǫV and tV are in principle defined by the desired work

function Φ and by demanding a free electron like dispersion of the vacuum states, it has
been found that the quality of the VDOS sensitively depends on these parameters and
that it must not necessarily be the best choice to demand tV to result in a free-electron
like dispersion. This has multiple reasons.
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Figure 9.7: (a) Local density of states of one orbital at the atom of an unsupported hexagonal
monolayer obtained from the full TB Model for increasing number of atoms N in the stripe
to illustrate the quantization effects. (b) Local density of states at the atom of obtained from
the full TB model of an hexagonal monolayer with N = 30 atoms in the stripes with different
effective broadenings Σ, which mimic the hybridization with an underlying crystal. The dashed
red line is obtained from the periodic TB model with σ = 0.1 eV.

First, as can be seen in Fig. 9.8 (a) one cannot achieve a perfect free electron dispersion
within the nearest-neighbor approximation. The second reason can be seen when the
VDOS is regarded in a perturbation theory approach. The VDOS in k-space can be

regarded as a perturbation of the free electron state
∣∣∣~2k2

2me

〉
in the vacuum by a state

in the solid |k, n〉, where n is the band index. The states interact via the perturbation
Vat,V. This yields a first correction to the vacuum state of:

˜
∣∣∣∣
~2k2

2me

〉
= |k, n〉

〈k, n|Vat,V|~
2
k
2

2me
〉

~2k2

2me
− Ek,n

. (9.43)

Using the Wannier transformation (Eq. (4.3)) for the state in the solid and in the vacuum,
as well as ∆E(k) = ~2k2

2me
−Ek,n yields:

˜
∣∣∣∣
~2k2

2me

〉
=

1

N∆E(k)
|k, n〉

∑

R

∑

RV

eik(R−RV )〈R, n|H1|RV 〉, (9.44)
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Figure 9.8: (a) Bandstructures of a band localized at the surface (solid black line at 0 eV) and
of two approximations (solid black line and dashed blue line) of the free electron dispersion
(dotted red line) obtained from the periodic TB model. (b) Local density of states in the
vacuum at a distance of 12 Å obtained from the full TB model for the two approximations
(solid black and dashed blue lines) of the free electron dispersion and with the periodic TB
model (orange dashed-dotted line). (c) Local density of states at the atom used in the full TB
model (solid black line) and periodic TB model (orange dashed-dotted line).

where RV are the lattice sites in the vacuum. We now choose

〈R, n|Vat,V|RV 〉 =





tat,V if R and RV are on top of each other
tat,Ve

−κ∆b if R and RV are in-plane nearest-neighbors
0 otherwise

, (9.45)

as in Eq. (9.41), which leads to

˜
∣∣∣∣
~2k2

2me

〉
=

1

N∆E(k)
|k, n〉N

∑

RV

eik(0−RV )〈0, n|H1|RV 〉 (9.46)

=
tav

∆E(k)
|k, n〉

(
1 + e−κ∆b

∑

∆R∈NN

eik∆R

)
(9.47)

Eq. (9.47) shows that in the nearest neighbor approximation there are two origins of
the k-filtering effects of the vacuum decay. The term tav

∆E(k)
leads to a pronunciation of
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9.3 TNCMR in Spin Spirals and Skyrmions

∆b1stNN (Å) ∆b2ndNN (Å) ∆b3rdNN (Å)
0.30 0.88 1.16

Table 9.1: Values of ∆b for a hexagonal lattice with vacuum distance d = 12 Å and lattice
constant a = 2.71 Å.

states close to the Γ̄ point but is independent of the distance of the vacuum layer to
the surface layer. The origin of the distance dependence of the VDOS is the hopping
from the vacuum sites to the atomic sites, which are not directly below the vacuum site.
Since

∆b = d

(√
1 +

(a
d

)2
− 1

)
→ 0 for d→ ∞, (9.48)

it can be seen that these terms become especially important for larger distances.
Exemplary values of ∆b for the 1st, 2nd and 3rd in-plane nearest neighbor are shown

in Tab. 9.1 for a vacuum distance of d = 12 Å and a lattice constant of a = 2.71 Å. The
small values suggests that to achieve a good description of the VDOS the 2nd in-plane
nearest neighbor should be considered since they will lead to an enhancement of the
k-point filtering. Therefore, one can try to improve the quality of the obtained VDOS
by abolishing the demand that tV yields a free electron like dispersion but to choose tV
larger so that the filtering effect is enhanced due to the tav

∆E(k)
term.

Fig. 9.8 (a) shows the perfect free electron dispersion and two approximation obtained
from the periodic TB model with parameters ǫ1V = 9.1 eV and t1V = −0.85 eV in the first
and ǫ2V = 49 eV and t2V = −7.5 eV in the second approximation. This results in Φ = 4 eV
in both cases. The other parameters are chosen identical: d = 12 Å and tat,V = 0.005 eV.
The surface band for which the vacuum density of states is calculated is also shown. The
parameters for this band are ǫ = 0.22 eV and t = −0.09 eV.
Fig. 9.8 (c) shows the LDOS at the atom of this band obtained from the periodic

and the full TB model for σ = Σ = 0.09 eV and N = 30 showing good agreement. In
Fig. 9.8 (b) the VDOS obtained from the periodic TB model for Φ = 4 eV and d = 12 Å
is used as a reference, too, and is compared to the VDOS obtained from the full TB
model for the two approximations of the free electron dispersion. One can see that both
approximations result in the correct shape of the peak. However, the peak width of
approximation 2 is in better agreement with the periodic TB model. Therefore, in the
following we will use the vacuum parameters from approximation 2 in the following.

9.3 TNCMR in Spin Spirals and Skyrmions

In this section we model specific bands of the PdFe/Ir(111) system with the periodic
and the full TB model. The parameters used in the models are motivated from density
functional theory calculations and the experimental results.
We first motivate the choice of the parameters used for the periodic TB model by DFT

calculations of the FM state of PdFe/Ir(111) and then compare the results obtained for
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9 Tunneling Non-Collinear Magnetoresistance

Figure 9.9: (a) Local density of
states in the vacuum obtained from
the periodic TB model. The TB
parameters are chosen such that
the shape of the density of states
resembles the local density of states
in the vacuum obtained from DFT
calculations which is displayed in
(b).
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spin spirals with the corresponding DFT calculations and the experimental data. Finally,
we use the same parameters for the full TB model to calculate the TNCMR in the full
skyrmion structure and compare with the experimental results.

FM state

In Fig. 9.3 (b) a large peak in the experimental dI/dU spectrum around 0.7V can
be seen. DFT calculations using the FLAPW method as implemented in the FLEUR

code [24] indicate that the peak is due to minority d states at the Fe atom hybridizing
with Pd p states as depicted in Fig. 9.9 (b)2. The shoulder in the dI/dU spectrum
around 0.5V can be attributed to majority states of s and p character at the Fe and
Pd atoms. The sharpness of the majority peak in the LDOS indicates a flat band and
the broader features of the shoulder created by minority states indicate a band of larger
dispersion.

This is considered in the periodic TB model by choosing the values ǫmin. = 0.50 eV
and tmin = 0.09 eV for the minority band and ǫmaj. = 3.50 eV and tmin = −0.5 eV for
the majority band. The parameters used to obtain the VDOS shown in Fig. 9.9 (a) are
chosen as d = 12 Å and Φ = 4 eV. The broadening is set to σ = 0.09 eV. The VDOS of
the DFT calculations and the periodic TB model show good agreement.

Furthermore, the electronic structure can be represented by the bandstructure shown
in Fig 9.10 (a). In the TB model the chosen values lead to a band with a small dispersion
of minority spin character and a band with large dispersion of majority spin character.
Due to the aforementioned k-point filtering caused by the vacuum decay, the VDOS
singles out the band edges of the majority and minority band near Γ̄. Since the minority
band is flat, many states near Γ̄ are localized at energies around 0.9 eV leading to a
large peak in the VDOS, while the larger dispersion of the majority band only leads
to a shoulder at 0.5 eV. This is also found in the marked regions in the bandstructure
for the FM state obtained from DFT in Fig. 9.10 (b), albeit the number of bands is
much larger since more orbitals are involved. However, qualitatively one sees largely
dispersive bands of majority spin character with a pronounced band edge at 0.5 eV and
flatter bands of minority spin character with a band edge at 0.9 eV.

2In the DFT calculations the peak is found at a slightly higher energy of 0.9 eV
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Figure 9.10: (a) Bandstructure of the FM state and a spin spiral in closed-packed direction
with λ = 5.14 nm obtained from the periodic TB model. Bandstructure of PdFe/Ir(111)
obtained from DFT calculations in (b) the FM state and (c) the same spin-spiral state, i.e.,
λ = 5.14 nm, as calculated with the periodic TB model. (b) and (c) are taken from Ref. [1].
States with majority and minority spin character are represented by green and red circles,
respectively. Orange circles represent mixed states.

Spin Spirals

If one now considers a spin spiral, the majority and minority states are allowed to
mix. In the DFT calculations3 this leads to a shift to lower and higher energies of the
majority and minority band edge, respectively, in Fig. 9.10 (b) for a spin spiral in the
Γ̄ − M̄ direction with λ = 5.14 nm. In addition to these shifts in energy, one also sees
transitions from bands of minority character to bands of majority character leading to
avoided level crossing where former crossings took place. The same behavior for the two
bands of the periodic TB model can be seen in Fig. 9.10 (a) when the same spin spiral
is considered. The parameter for the spin mixing is set to t↓↑ = −t↑↓ = 0.17 eV4.

If one increases the angle α between the atoms by choosing a smaller wavelength of
the spin spiral, the mixing between minority and majority states enhances and the gap
between the bands enlarges. This can be seen in Fig. 9.11 (a) where the VDOS obtained
from the periodic TB model is shown for decreasing wavelength. While for the largest
wavelength (λ = 5.14 nm) the peak at 0.9 eV becomes only a little smaller and moves
slightly to higher energies one can see a two peak structure for λ = 2.57 nm. One should
mention that the high-energy peak is caused solely by the shifting band edge of the
minority states, while the low-energy peak is a superposition of the majority band edge

3for details see supplementary information of Ref. [1]
4The choice of the value is motivated by the experimental results.
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Figure 9.11: (a) Local density of states in the vacuum obtained from the periodic TB model
for spin spirals in the closed-packed direction with different wavelengths. (b) Local density of
states in the vacuum of the same spin spirals obtained from DFT calculations. (c) Shift of the
high-energy peak as a function of the angle α between neighboring atomic rows corresponding
to different wavelengths of the spin spiral obtained from the TB model (green triangles) and
DFT (black circles). Lines are a fit with Eq. (9.49).

and the extra band edge created by the avoided level crossing. The broadening prevents
one from identifying each peak individually. The broadening also prevents one to see a
two peak structure for large wavelengths, i.e., small splittings. In the following we focus
on the high-energy peak.

The same qualitative behavior of the VDOS as a function of the wavelength of the
spin spiral can also be seen in the DFT calculations in Fig. 9.11 (b).

A quantitative comparison of the shift of the high-energy peak ∆E obtained from the
periodic TB model and the DFT calculations is shown in Fig. 9.11 (c) and shows good
agreement. The data can be fitted with a version of Eq. (9.23):

f(α) = a0 +
√
a21 + (a2 · sin(α/2))2. (9.49)

In the considered range of α the sine is approximately linear, which leads to

f(α) = a0 +
√
a21 + (a2 · (α/2))2 = a0 + a1

√

1 +

(
a2
2a1

)2

α2. (9.50)

The strongest hybridization takes place at k-states which are close in energy. Therefore,

comparison with Eq. (9.23) implies a2 ≫ a1. For large α one can assume
(

a2
2a1

)2
α2 ≫ 1

so that one obtains a linear dependence on α:

f(α) ≈ a0 +
(a2
2

)
α. (9.51)
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Figure 9.12: Experimental tunnel spectra at
a maximal (blue, out-of-plane magnetization)
and minimal (red, in-plane magnetization)
dI/dU signal of a spin spiral in PdFe/Ir(111),
in comparison to the FM spectrum taken at
B = −2.5T (black) (T = 4K, stabilization
parameters U = −1V, I = 1nA). Figure taken
from Ref. [1].

For small angles the square root can be expanded as a Taylor series and one obtains a
quadratic dependence on α:

f(α) ≈ a0 + a1 +
a22
8a1

α2. (9.52)

This means that for small angles α a quadratic dependence of the peak shift of the
high-energy peak is expected, while it is expected to be linear for large values of α. This
is consistent with the data depicted in Fig. 9.11 (c).
The experimental dI/dU spectrum of a spin spiral with a wavelength close to 5.14 nm

of PdFe/Ir is shown in Fig. 9.12. The same behavior as observed in the TB model and
the DFT calculations can be seen, i.e., compared to the FM state the peak at 0.7 eV
shifts to higher energies, and decreases in height when the spin spiral is probed. The
difference for the spin spiral probed at sites with in-plane and out-of-plane magnetization
can be attributed to the magnetocrystalline anisotropy, which favors the magnetization
to be out-of-plane [24, 113]. This leads to a faster rotation and, thus, larger angles
between the atoms for a large in-plane component and smaller angles when they have a
large out-of-plane components, i.e., the spin spiral is inhomogeneous.

Skyrmions: Field-Dependence at the Center

To describe the skyrmions we choose the same parameters as for the spin spirals in the
previous chapter with the only difference that the on-site energies are shifted by 0.18 eV
to lower energies to account for the fact that the experimental dI/dU spectra of the FM
state are shifted by this energy compared to the DFT calculations. The parameters
are: ǫmin = 0.22 eV, ǫmaj = 3.22 eV, tmin = 0.09 eV, tmaj = −0.5 eV, Σ = 0.09 eV. The
parameters to obtain the VDOS are ǫV = 49 eV, tV = −7.5 eV, d = 12 Å and tat,V =
0.005 eV. 30× 30 sites are used in the scattering region, which is then attached to FM
leads. The spin structure of the skyrmion is obtained from Eq. (9.3) and Eq. (9.4) using
the magnetic field dependent parameters c(B) and w(B) obtained experimentally [113].
The geometrical setup of the calculation in the full TB model can be seen in Fig. 9.13
for a skyrmion at B = 2.5T.
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Figure 9.13: Sketch of the geometry used in the full TB model. The skyrmion in the scattering
region is attached to two ferromagnetic leads.

Figs. 9.14 (a-c) show the VDOS for the FM case and at the center of the skyrmion for
increasing magnetic field strengths obtained from the periodic and full TB model and
the experimental dI/dU spectra. All three plots show the same qualitative behavior
that has been observed for the spin spiral, i.e., a shift of the high-energy peak at 0.7 eV
and an emergent second peak around 0.5 eV. These features become the stronger the
larger the field strength. As shown in Sec. 9.2.1 the exact position and the height of
the peak is very sensitive to the vacuum parameters in the full TB model. This is
also the main reason for the differences between the VDOS obtained from the periodic
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Figure 9.14: Local density of states in the vacuum above the center of skyrmions at magnetic
fields of 1.0T (red line), 1.75 T (orange line), and 2.5 T (blue line) and the FM state (black
line) obtained from the (a) periodic and (b) full TB model. (c) Experimentally obtained
dI/dU spectra obtained at the center of skyrmions with the same applied magnetic fields.
Experimental data taken from Ref. [117].
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Figure 9.15: (a) Θ(r) profile for magnetic fields of 0.5 T, 1.0T, 1.75 T, 2.1T, and 2.5T from
top to bottom obtained via Eq. (9.3) with experimentally obtained c(B) and w(B) values [113].
(b) Angle α between the atom at the center of the skyrmion and its nearest neighbors as
a function of the magnetic field. (c) Shift of the high-energy peak ∆E obtained from the
experimental data (red squares), periodic TB model (green triangles), and full TB model
(black circles) as a function of α. Experimental data taken from Ref. [117].

and full TB model in Figs. 9.14 (a) and (b) since the LDOS at the atom is very similar
(cf. Fig. 9.8 (c)). The same plot for different vacuum parameters can be found in Ref. [1].

We now again analyze the peak shift of the high-energy peak ∆E quantitatively.
We first correlate the angle between the atoms at the center of the skyrmion with the
magnetic field. The shape of Θ(r) for different magnetic fields obtained from the spin-
polarized STM experiments [113] used in the simulations can be seen in Fig. 9.15 (a). It
is found that the angle α between the central atom of the skyrmion and its neighbors of
the skyrmion scales linearly with the applied magnetic field as depicted in Fig. 9.15 (b).
The experimentally found peak shift ∆E is also linear as a function of the angle as seen
in Fig. 9.15 (c). For large angles a linear dependence is also found in the periodic and
full TB model. For smaller angles one sees a quadratic behavior. The data obtained
from the TB models follows Eq. (9.49) as the data obtained for the spin spiral. The
steeper slope of the periodic TB model can be attributed to the fact that not the full
spin structure is taken into account in the periodic TB model.

Skyrmions: Lateral Dependence

We now turn to the lateral dependence of the experimental dI/dU data and VDOS
obtained from the full TB model when moving from the FM surrounding of the skyrmion
to its center. In Fig. 9.16 (a) and (b) this is shown for B = 1.0T for the theoretical and
experimental data, respectively. Both data sets show the same behavior, i.e., the high-
energy peak moves to higher energy as the lateral position is moved from the outskirts
to the center of the skyrmion, reaching the maximum ∆E at about 1.62 nm and 1.2 nm
distance from the center for the theoretical and experimental data, respectively. ∆E
then decreases as the skyrmion center is approached.
The same plots of the theoretical and experimental data for a magnetic field of B =

2.5T are depicted in Fig. 9.16 (c) and (d), respectively. There, the peak shift ∆E
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9 Tunneling Non-Collinear Magnetoresistance

Figure 9.16: VDOS
obtained from the full
TB model at a distance
r from the center of a
skyrmion at a magnetic
field of (a) B = 1.0T
and (c) B = 2.5T; the
FM spectrum at the
bottom and spectra
towards the skyrmion
center (top) have a
vertical offset for clarity.
(b, d) Corresponding
plot of the experimental
dI/dU tunnel spectra
measured with a W
tip. Experimental data
taken from Ref. [117].
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increases monotonically as the center of the skyrmion is approached. Compared to the
case of 1T the peak shift starts at smaller distances from the center of about 1.89 nm
and 2 nm for the theoretical and experimental data, respectively.

A quantitative analysis of the peak shift ∆E reveals that it can be correlated with
the mean angle of the neighboring atoms at the lateral position defined as:

ᾱ(r) =
1

6

6∑

i=1

αi(r), (9.53)

where i sums over the angles αi to the nearest neighbors of the atom at position r.
The comparison between the experimental and theoretical data of the peak shift as a
function of the distance r to the skyrmion center for B = 1.0T and 2.5T is depicted
in Figs. 9.17 (a) and (b), respectively. For B = 1.0T the theoretical data reaches a
maximum of 0.05 eV at 2 nm and the experimental data a maximum of 0.06 eV at 1.5 nm.
For 2.5T the agreement between theoretical and experimental data is slightly better
showing a maximum of 0.13 eV and 0.15 eV at the center of the skyrmion, respectively.

Comparing with ᾱ(r) in Fig. 9.17 (c) and (d) shows that the largest peak shift ∆E is
found at distances r where also ᾱ(r) shows a maximum of 15° and 25° at about 2 nm and
about 0.0 nm for 1.0T and 2.5T, respectively. The relation between ᾱ and ∆E is very
close to the one found in Fig. 9.15 (c) for the skyrmion center, e.g., for the maximum
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Figure 9.17: Peak
shift ∆E obtained from
the experimental and
theoretical data as a
function of the distance
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skyrmion at a magnetic
field of (a) B = 1.0T
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5th nearest neighbors.
Experimental data taken
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value of ᾱ = 25° for skyrmions at B = 2.5T the peak shift is ∆E = 0.14 eV and for
the maximum value of ᾱ = 15° for skyrmions at B = 1.0T the peak shift amounts to
∆E = 0.5 eV (cf. Fig. 9.15 (c)).

The insets in Fig. 9.15 (c) and (d) show the normalized value of ᾱ summing over the
1st, 3rd, and 5th nearest neighbor. As one can see the qualitative agreement becomes the
better the more neighbors are included, i.e., for 1.0T the maximum of |ᾱ| becomes more
asymmetric and for 2.5T the maximum of |ᾱ| moves from slightly off-center to at-center
in better agreement with the maximum of ∆E. This shows that the electronic structure
is also indirectly affected by the non-local magnetic structure and that not only the
nearest neighbors are important. This has already been seen when the peak-shift at the
center of the skyrmion obtained from the periodic and the full TB model in Fig. 9.15 (c)
was compared.

To complete the analysis we now compare the lateral variation of the relative change
of the intensity of the high-energy peak ∆Ipeak obtained from the theoretical and
experimental data shown in Figs. 9.18 (a) and (b) for 1.0T and 2.5T, respectively. The
experimental and theoretical data are in good agreement. For 1.0T ∆Ipeak obtained from
the theoretical and experimental data shows a maximum at 2 nm and 1.3 nm distance
from the center reaching values of 10% and 20%, respectively. For 2.5T the maximum
is found closer to the center at 1 nm and 0.9 nm reaching a value of 24% and 26%
considering the theoretical and experimental data, respectively.

The intensity change of the high-energy peak ∆Ipeak approximately follows the radial
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9 Tunneling Non-Collinear Magnetoresistance

Figure 9.18: (a) and
(b) show the relative
change of the intensity
of the high-energy peak
∆Ipeak with respect
to the height of the
FM peak at 0.7 eV
as a function of the
distance r from the
center of the skyrmion
for B = 1.0T and
B = 2.5T, respectively.
Experimental data
taken from Ref. [117].
(c) and (d) show dΘ/dr
for B = 1.0T and
B = 2.5T, respectively.
(e) and (f) show the
emergent magnetic field
Be or skyrmion density
as a function of r for
the two magnetic field
strengths.
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derivation of the polar angle of the skyrmion profile dθ
dr

as can be seen by comparing with
Figs. 9.18 (c) and (d). This is a nice feature since the norm of the emergent magnetic
field or skyrmion density defined as [118, 119]:

Be(x, y) =
h

2
S ·
(
∂S

∂x
× ∂S

∂y

)
(9.54)

can be conveniently expressed in polar coordinates as

Be(r, ϕ) =
h

2

sin θ(r)

r

∂θ

∂r
. (9.55)

The emergent magnetic field is the effective field an electron feels when it travels across
a magnetic structure [119]. In Fig. 9.18 (e) and (f) Be is shown for a magnetic field
of 1.0T and 2.5T. The emergent magnetic field is proportional to dθ

dr
just as ∆Ipeak.

For B = 1.0 T the modification due to the sin θ(r)
r

term leads to a steeper slope of
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Figure 9.19: (a) TNCMR calculated using Eq. (9.1) utilizing the experimental dI/dU value
(red line) and the VDOS (black line) obtained theoretically for B = 1.0T (see text for details).
(b) shows the same for B = 2.5T. Experimental data taken from Ref. [117].

the emergent magnetic field compared to the slope of dθ
dr

for radii r larger than 1.9 nm.
However, the maximum of the emergent magnetic field coincides with the maximum of
dθ
dr
. For B = 2.5 T the maximum of Be is reached at r = 0.4 nm a slightly smaller value

compared to r = 0.9, where the maximum of dθ
dr

is reached. Nevertheless, the general
shape of Be is very similar to dθ

dr
. Therefore, one can roughly estimate the shape of the

emergent magnetic field by analyzing the height of the high-energy peak.

Comparison of TNCMR with TMR and TAMR

Figs. 9.19 (a) and (b) shows the energy-dependent TNCMR calculated using Eq. (9.1)
utilizing the experimental dI/dU value and the VDOS obtained within the TB model
for B = 1.0T and B = 2.5T, respectively. At the position of the high-energy peak
in the FM state at 0.7 eV the TNCMR reaches values of 14% and 66% considering
the theoretical data for 1.0T and 2.5T, respectively. The experimental values yield a
slightly lower TNCMR for B = 2.5T and a slightly higher one for 1T. The TNCMR as
a function of energy is larger for high magnetic fields than for low magnetic fields.
However, if the TNCMR is exploited in devices, it is very unlikely that an STM tip is

used as the probing electrode. Therefore, we mimic a disk-like electrode by integrating
the vacuum density of states (∝ dI/dU) obtained theoretically over an area of a disk
with radius r located above the skyrmion center:

Ξskyrm(r) = 2π

∫ r

0

VDOSSkyrm(r̃)r̃dr̃ (9.56)

and compare it to the FM case

ΞFM(r) = πr2VDOSFM. (9.57)

The TNCMR© is then defined as:

TNCMR©(r) = 100% · Ξskyrm(r)− ΞFM(r)

ΞFM(r)
. (9.58)

129



9 Tunneling Non-Collinear Magnetoresistance

µ

µ

µ

(a) (b)

0
0
0 11 22 33 44

B = 1.0T
B = 2.5T

r (nm)r (nm)

rTNCMR©

TAMR©

TMR©

|M
R
|(
%
)

100

75

50

25
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shows the same for B = 2.5T.

As one can see in Fig. 9.20 (a) and (b), the TNCMR© reaches its maximum value of
about 25% at r = 2nm and 1 nm for B = 1.0T and 2.5T, respectively. For disk sizes
covering the whole skyrmion of about r = 4nm the value of the TNCMR© for 1.0T
is about 10%, while the one for 2.5T is only half as large. This is due to the larger
area of non-collinear magnetization for skyrmions at B = 1.0T compared to skyrmions
at B = 2.5T, albeit the TNCMR(E) is significantly larger for B = 2.5T than for
B = 1.0T.

To compare the TNCMR with the TMR and TAMR, we assume that the VDOS
changes with the direction of the magnetization θ(r) of the skyrmion according to

VDOSTMR(r) = VDOS0(1 + Peff cos θ(r)) (9.59)

VDOSTAMR(r) = VDOS0(1 + γTAMR cos2 θ(r)) (9.60)

with Peff = PSPT, where PS and PT are the spin-polarization of the two electrodes,
respectively. We then integrate as described above for the TNCMR©. The value of
γTAMR = 0.1 determines the strength of the TAMR. θ(r) is the profile of the polar angle
of the spin structure, i.e., the skyrmion profile for skyrmions and θ(r) ≡ 0 for the FM
case. The above Eqs. (9.59) and (9.60) ignore contributions to the VDOS originating
from neighboring atomic sites (cf. with complete formulas in Refs. [55, 110, 120]), which
is sufficient for the assessment done here. The vacuum density of states is integrated in
the same way as has been described for the TNCMR©. The variation due to the TAMR
given by γTAMR is chosen to be 10%, relying on values from previous publications [110].
For the TMR Peff = 100% is chosen assuming perfect spin-polarization of the electrodes.

The TAMR© for skyrmions at both field strengths, Figs. 9.20 (a) and (b), does not
reach values larger than 7%, although the value of γTAMR is chosen quite large. At the
center of the skyrmion the TAMR© vanishes due to the cos2 θ(r) dependence. For the
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9.4 Ballistic Transport through Spin Spirals and Skyrmions

TMR© the cos θ(r) dependence leads to a maximum value of 100% at the center and
then decreases to a value of 25% and 6% for disk radii of r = 4nm for B = 1.0T and
B = 2.5T, respectively. The decline is faster for B = 2.5T than for B = 1.0T, which
can be attributed to the Θ(r) profile, the rotation of which is faster for skyrmions at
larger magnetic fields. The TNCMR© starts with values of 12% and 65% for skyrmions
at B = 1.0T and B = 2.5T and disk radius r = 0nm, respectively. For skyrmions at
B = 2.5T the TNCMR© decreases continuously to 8.5% at r = 4nm, slightly larger
than the TMR©. For skyrmions at B = 1.0T the TNCMR© reaches its maximum value
of 30% at r = 2.2 nm and then declines to 15% for r = 4nm, only 10% smaller than
the TMR©. The TNCMR© for disk radii more than r = 2.2 nm is larger for skyrmions
at B = 1.0T than B = 2.5T since the area of non-collinear spin arrangement is larger
for slower rotating skyrmions.

For larger disk radii the TNCMR© is of similar magnitude as the TMR© and can
even be larger depending on the spin structure. For all disk radii the magnitude of the
TNCMR© is more than five times larger than the TAMR©. Since spin-coherence is not
need for the TNCMR©, it provides an easy possibility to detect skyrmions in future
devices.

9.4 Ballistic Transport through Spin Spirals and Skyrmions

So far we considered the vertical transport properties of skyrmions and spin spirals
in a tunneling geometry. However, lateral transport measurements may be another
possibility to detect non-collinear spin structures. The full TB model gives access to
the lateral transport properties in the x-direction. Here, we compare ballistic transport
properties through spin spirals along the x-direction direction with the ones of skyrmions.
Thereby, the parameters for the bands are chosen as in the previous section.

Figs. 9.21 (a) and (b) show the local density of states at the atom for spin spirals
with different wavelength ranging from λ = ∞ nm (FM case) to λ = 1.63 nm and the
corresponding transmission function, respectively. The emerging two peak structures
in the LDOS around 0.7 eV discussed in detail in the previous sections for shorter
wavelengths leads to a large decrease of the transmission function around 0.7 eV. This
effect increases with decreasing wavelength.

Fig. 9.21 (c) and (d) show the local density of states of atoms at different distances
ranging from d = 0.0 nm to d = 3.25 nm from the center of a skyrmion at B = 2.5T
and the transmission function through this skyrmion, respectively. Since the two peak
structure is only present in the LDOS in a small area around the center of the skyrmion,
the transmission function shows no difference compared to the one for the FM structure.
The large nearly FM surrounding of the skyrmion prevents the decrease of the lateral
transmission that is seen for spin spirals. This also holds for larger skyrmions at a
magnetic field of B = 1.0T (not shown).

We now compare the change in the transmission function at 0.7 eV due to the non-
collinearity of the spin spirals, which corresponds to a change in the resistance and
compare with the results of Ref. [121] obtained for domain wall profiles of L10-ordered
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9 Tunneling Non-Collinear Magnetoresistance

Figure 9.21: (a)
LDOS at the atom
obtained from the full
TB model for spin
spirals along the x-
direction direction with
different wavelengths
λ. (b) Corresponding
transmission function
to the LDOS shown in
(a). (c) LDOS at the
atom obtained from
the full TB model at
different positions d in a
skyrmion for B = 2.5T.
(d) Corresponding
transmission function
through a skyrmion
at B = 2.5T and
the FM structure for
comparison.
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FePd and FePt alloys with a thickness of 30 nm. The L10 ordering indicates an fcc
structure with alternating layers consisting of Fe and Pt/Pd. In Ref. [121] by first-
principles calculations based on micromagnetic simulations of domain walls in L10-FePd
and L10-FePt the contribution due to the rotating magnetization

ρSSP/ρ0 =
ρ(λ)− ρ0
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(9.61)

is calculated, whereby ρ0 = 1/GFM is the resistance for FM structures and ρ(λ) the
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Figure 9.22: (a) Resistance of a domain wall of L10-FePd and L10-FePt as a function of the
reciprocal wavelength of the domain wall. Taken from Ref. [121]. (b) Resistance of a spin
spiral as a function of the reciprocal wavelength at EF = 0.7 eV obtained from the full TB
model with the parameters from Sec. 9.3.
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9.5 Summary

resistance for a spin spiral with wavelength λ. In Ref. [121] a resistance of ρSSP mainly
proportional to λ−1 (cf. Fig. 9.22 (a)) is found. Our results shown in Fig. 9.22 (b)
for infinite spin spirals obtained from the fullTB model with the same parameters that
were used in the previous section qualitatively agree with these finding in the wavelength
range investigated in Ref. [121] but show a quadratic behavior for large λ−1.

9.5 Summary

We have explained the origin of a novel magnetoresistance effect first observed in
STM experiments probing non-collinear spin structure using nonmagnetic tips. The
TNCMR originates from spin mixing of majority and minority bands in non-collinear
spin structures. We have shown this by introducing a two-band TB model motivated
from DFT. The TB model was solved for periodic spin structures and the full skyrmion
profile. We have shown that the variation of the experimental dI/dU signal at the
center of a skyrmion for different applied magnetic fields can be attributed to the
angle between the magnetic moment of the center and its neighbors. Furthermore,
the lateral variation of the dI/dU signal as the tip is moved across the skyrmion can be
correlated with the mean angle between the neighboring atomic sites at each position in
the skyrmion. The difference in the dI/dU signal between non-collinear structures and
the FM state constitutes the tunneling non-collinear magnetoresistance, which could
be used to detect non-collinear structures in devices, e.g., skyrmions in a race-track
geometry [122], without the need of a magnetic read-out electrode.
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In this thesis the tunneling and ballistic anisotropic magnetoresistance of single-
atom and single-molecule junctions have been studied based on first-principles
electronic structure theory using density functional theory (DFT). In addition, a
new magnetoresistance effect, coined the tunneling non-collinear magnetoresistance
(TNCMR), has been investigated based on electronic structure theory combining DFT
and tight-binding (TB) calculations.

In atomically wide constrictions, the AMR is expected to be enhanced due to the
large reduction of conducting modes. Here, we have used an approach to obtain the
transmission function of such atomic-scale junctions which is based on DFT calculations
utilizing the full-potential linearized augmented plane wave (FLAPW) method as
implemented in the FLEUR code. The electronic structure obtained by the FLAPW
method is projected on Wannier functions preserving all the information, e.g., spin-
orbit coupling (SOC) effects, contained in the FLAPW results. With the help of the
Wannier functions, Hamiltonian matrices for the open quantum system are constructed,
which are then used in a Green’s function formalism to yield the transmission function.
The method has been described in chapters 2 to 4.

In chapter 5, the calculated AMR of symmetric Ni monowires terminated with Co,
Rh and Ir apex atoms has been presented. Here, the distance between the apex atoms
is varied, which yields the distance dependence of the AMR in atomic-scale junctions
from the tunneling to the contact regime. It has been found that the AMR increases for
heavier apex atoms reaching values of up to 150%. The distance dependence of the AMR
has been found to be non-trivial and even sign changes were observed. These findings
can be explained by the different symmetry of the orbitals dominating the transmission
function in the contact and tunneling regime.

The insights gained from the DFT results on single-atom junctions from chapter 5
allowed to explain scanning tunneling microscopy (STM) experiments of Co and Ir
adatoms on a double layer of Fe on W(110) as discussed in chapter 6. The double layer
of Fe on W(110) exhibits domains and domain walls with a magnetization pointing
parallel and perpendicular to the surface, respectively. The magnetic moments of the
adatoms on domains and domain walls are coupled by the exchange interaction to the
magnetic moments of the underlying Fe atoms. Thereby, the two configurations needed
to probe the AMR are realized without the requirement of an external magnetic field.
The adatoms have been approached with a W tip yielding the distance dependence of
the AMR with a magnitude of about 10%. A TB model, the key ingredients of which
are the orbital mixing due to SOC at the adatom and the orbital-dependent decay of the
transmission function across the gap between adatom and STM tip, is used to explain
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the experimental results. Furthermore, an analytical form of the distance dependence
of the conductance for each contributing mode has been derived based on the Green’s
function formalism. This analytical result leads to a very good fit of the experimental
data.

In chapter 7, a new concept to enhance the AMR in atomic-scale junctions is presented.
In particular, molecules have been used to provide a symmetry filter for the conducting
channels. To demonstrate this effect the AMR has been calculated for model junctions
of Ni and Co monowires contacting the molecules Bz, VBz2, TaBz2, NbBz2, and V2Bz3.
It has been found that the interface of the metal monowires with the molecules filters
the transmission function according to the orbital symmetry. The quality of the orbital-
symmetry filtering depends strongly on the electronic structure of the molecule and the
interactions with the contacting leads. The AMR in monowires can be enhanced to
gigantic values due to the orbital-symmetry filtering. A generic TB model has been
presented, which suggests that this molecular AMR can also be found in molecules on
surfaces that may be studied using STM.

In Chapter 8, we have gone beyond the idealized monowire geometry and considered a
more realistic break junction geometry of Pt trimers. Pt is expected to become magnetic
in low-dimensional systems. However, direct experimental verification is currently out
of reach and therefore one has tried to use the AMR to indirectly verify the theoretical
predictions. Motivated by recent experimental magnetoresistance measurements on Pt
break junctions, we have investigated these systems and found conductances in the range
of 0.75 to 0.9 2e2/h and an AMR of up to 20%. During elongation these values vary,
which can be attributed to changes in the electronic structure caused by the emergent
magnetism and the bonding characteristics for the different elongations. Qualitatively,
our findings agree well with the experimental data.

In chapter 9, a new magnetotransport effect has been presented. The TNCMR was
recently discovered in STM experiments with non-magnetic tips probing large non-
collinear spin structures, i.e., skyrmions. Here, we provided the first understanding
by a two-orbital TB model incorporating the full spin structure adapted to results from
DFT calculations of spin-spiral states. A pronounced peak shift in the experimental
dI/dU signal when the STM tip is moved from the ferromagnetic environment to the
center of the skyrmion can be attributed to the mixing between states of majority and
minority spin due to the non-collinearity of the spin structure. The TNCMR provides
a possibility for an all-electrical detection of skyrmions in ferromagnetic environments
and could be used to detect skyrmions in future devices.
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[30] M. Büttiker, Symmetry of electrical conduction, IBM J. Res. Dev. 32, 317
(1988).

[31] D. S. Fisher and P. A. Lee, Relation between conductivity and transmission
matrix, Phys. Rev. B 23, 6851 (1981).

[32] F. Guinea, C. Tejedor, F. Flores and E. Louis, Effective two-dimensional
hamiltonian at surfaces, Phys. Rev. B 28, 4397 (1983).

[33] M. Wimmer, Quantum transport in nanostructures: From computational concepts
to spintronics in graphene and magnetic tunnel junctions, Ph.D. thesis, University
of Regensburg (2008).

[34] Y. Meir and N. S. Wingreen, Landauer formula for the current through an
interacting electron region, Phys. Rev. Lett. 68, 2512 (1992).

[35] R. Lake, G. Klimeck, R. C. Bowen and D. Jovanovic, Single and multiband
modeling of quantum electron transport through layered semiconductor devices, J.
Appl. Phys. 81, 7845 (1997).

[36] C. Caroli, R. Combescot, P. Nozieres and D. Saint-James, Direct
calculation of the tunneling current, J. Phys. C: Solid State 4, 916 (1971).

[37] A. Svizhenko, M. P. Anantram, T. R. Govindan, B. Biegel

and R. Venugopal, Two-dimensional quantum mechanical modeling of
nanotransistors, J. Appl. Phys. 91, 2343 (2002).

[38] M. Levy, Universal variational functionals of electron densities, first-order
density matrices, and natural spin-orbitals and solution of the v-representability
problem, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).

139



Bibliography

[39] J. C. Slater, A simplification of the hartree-fock method, Phys. Rev. 81, 385
(1951).

[40] O. K. Andersen, Linear methods in band theory, Phys. Rev. B 12, 3060 (1975).

[41] D. D. Koelling and G. O. Arbman, Use of energy derivative of the radial
solution in an augmented plane wave method: application to copper, J. Phys. F:
Met. Phys. 5, 2041 (1975).

[42] P. M. Marcus, Variational methods in the computation of energy bands, Int. J.
Quantum. Chem. 1, 567 (1967).

[43] D. D. Koelling and B. N. Harmon, A technique for relativistic spin-polarised
calculations, J. Phys. C: Solid State 10, 3107 (1977).

[44] G. H. Wannier, The structure of electronic excitation levels in insulating crystals,
Phys. Rev. 52, 191 (1937).

[45] N. Marzari and D. Vanderbilt, Maximally localized generalized wannier
functions for composite energy bands, Phys. Rev. B 56, 12847 (1997).

[46] I. Souza, N. Marzari and D. Vanderbilt, Maximally localized wannier
functions for entangled energy bands, Phys. Rev. B 65, 035109 (2001).

[47] F. Freimuth, Y. Mokrousov, D. Wortmann, S. Heinze and S. Blügel,
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chain formation in transition-metal break junctions, Phys. Rev. Lett. 103, 217201
(2009).

[101] J. Fernández-Rossier, D. Jacob, C. Untiedt and J. J. Palacios,
Transport in magnetically ordered pt nanocontacts, Phys. Rev. B 72, 224418 (2005).

[102] A. Delin and E. Tosatti, Magnetic phenomena in 5d transition metal
nanowires, Phys. Rev. B 68, 144434 (2003).

[103] A. Smogunov, A. Dal Corso, A. Delin, R. Weht and E. Tosatti, Colossal
magnetic anisotropy of monatomic free and deposited platinum nanowires, Nature
Nanotechnology 1, 22 (2008).

[104] A. Thiess, Y. Mokrousov and S. Heinze, Competing magnetic anisotropies
in atomic-scale junctions, Phys. Rev. B 81, 054433 (2010).

[105] V. M. Garcia-Suarez, D. Z. Manrique, C. J. Lambert and J. Ferrer,
Anisotropic magnetoresistance in atomic chains of iridium and platinum from first
principles, Phys. Rev. B 79, 060408 (2009).

[106] A. Smogunov, A. Dal Corso and E. Tosatti, Magnetic phenomena,
spin-orbit effects, and landauer conductance in pt nanowire contacts: Density-
functional theory calculations, Phys. Rev. B 78, 014423 (2008).

[107] L. Sandratskii, Noncollinear magnetism in itinerant-electron systems: theory
and applications, Adv. Phys. 47, 91 (1998).
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C. M. Schneider, R. Hertel, F. Freimuth,Y. Mokrousov and S. Blügel,
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