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Summary

Nitrogen (N) is an essential element for cellular functioning in all living organisms. However, the
most abundant form of nitrogen (N2 gas) in not bioavailable, or fixed, and therefore N availability
restricts primary production in large parts of the ocean. Dinitrogen (N2)-fixing, or diazotrophic,
organisms possess a nitrogenase enzyme which converts N2 into bioavailable forms. Aquatic
N2-fixation is a source of new nitrogen, hence where fixed N availability conditions, N2-fixation
can relieve the N-supply bottleneck in the non-diazotrophic organisms and support increased
production - provided there is enough phosphate, light, and warm temperatures to sustain the
energetically demanding N2-fixation.

The Baltic Sea is a semi-enclosed water body under considerable anthropogenic pressure
due to the highly populated drainage basin and limited water exchange. The spring-bloom draws
down inorganic nutrients leading to seasonal N-limitation and provision of a diazotrophic niche
with excess phosphate, increasingly stratified water column and warming sea surface temper-
atures. This is a seasonal niche occupied by filamentous diazotrophic cyanobacteria such as
Nodularia spumigena and Aphanizomenon flos-aquae, which commonly form extensive surface
blooms during the summer period. N2-fixation is particularly important process in the region as
it balances N loss processes and supports an estimated 20 - 45% of primary productivity during
the summer season.

Increasing atmospheric CO2 concentrations due to anthropogenic activity leads not only to
warming of the atmosphere and oceans, but also to measurable shifts in seawater carbonate
chemistry, termed ocean acidification. Single-strain culture studies have shown that N2-fixation
and diazotroph growth is sensitive to changes in the seawater temperature and CO2 concentra-
tions. Until now only a few short-term experiments have been completed to probe changes in
fitness of diazotrophic species in situ. In addition, comparatively little is known about the re-
sponse of low nutrient plankton communities to ocean acidification as more commonly nutrient
induced blooms have been studied.

This doctoral dissertation presents the results from two independent mesocosm studies on
naturally present summer plankton communities in the Baltic Sea. The aim was to investigate
the impact of ocean acidification (increased CO2 concentration and decreased pH) as well as the
combination of ocean acidification and ocean warming (increased seawater temperature) on the
abundance and activity of diazotrophic organisms and on N-limited plankton communities.

In the first study, pelagic mesocosms were deployed off the south-western tip of Finland in
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the Archipelago Sea. To observe differences in organic matter pools and fluxes under realistic
ocean acidification scenarios, CO2 concentrations were adjusted to give a range between 365
and 1231 µatm (average during study period) and the plankton community and biogeochemical
elemental pools were sampled over the 47-day long study. Approximately three weeks after the
initial CO2-manipulation, CO2-related differences in pelagic particulate and dissolved matter
pools became clear. These differences were sustained for a further three weeks until the end
of the experiment. Higher particulate matter and dissolved organic carbon and chlorophyll a
concentrations, and lower dissolved inorganic phosphate (PO 3–

4 ) concentrations under increased
CO2 concentrations were driven by the positive response of picophytoplankton (<2 µm). These
CO2-related differences in the water column could not be traced into the sinking particle flux
within the study period. There were no significant differences in A. flos-aquae abundances, the
dominant filamentous diazotrophic cyanobacterium present, or in diazotroph activity. Hence the
positive response of plankton community biomass, could not be attributed to changes in fixed N
supply.

In the second study using the indoor mesocosm facility in Kiel, the interactive effects of
elevated CO2 and temperature on new N inputs through diazotrophy were studied in four week
long experiment. Here the dominant diazotrophic filamentous cyanobacteria was N. spumigena.
There was a strong negative effect of pCO2 on N. spumigena abundances which was exacerbated
in the higher temperature treatment. This supports results from culture experiments with N.
spumigena and shows that the negative response to increased CO2 concentrations may not be
overridden by biotic interactions such as grazing pressure and resource competition within the
plankton community.

In both studies, abundances of filamentous diazotrophic cyanobacteria were too low to distin-
guish any potential influence on biogeochemical element pools. However, there were noticeable
effects of temperature and CO2 on one of the two common filamentous diazotrophic cyanobacte-
ria species. Growth of N. spumigenamay become restricted at the summer bloom peak in future,
even though the period where blooms occur during summer may expand. How this interacts with
shifts in pCO2 and spring bloom dynamics remains unclear. The more coastal-dwelling species,
A. flos-aquae, seemed better adapted to variable CO2 concentrations, indicating that future CO2-
related changes in abundance in this species are not expected. Previous culture studies have also
shown a diverse response of diazotrophic taxa.

The results included in this dissertation indicate that picoplankton may be able to sustain
higher biomass under ocean acidification despite very low N availability. Hence, there is poten-
tial that this sustained response in picoplankton may shift food web structure with consequences
for long-term changes in organic matter fluxes.



Zusammenfassung

Stickstoff (N) ist ein essenzielles Element für alle Zellfunktionen in Organismen. Die häufigs-
te Form von Stickstoff, das molekulare Gas N2, ist biologisch nicht verfügbar, wodurch die
Primärproduktion in großen Gebieten der Ozeane limitiert ist. Stickstofffixierende, sogenann-
te diazotrophe, Organismen können jedoch mittels des Enzyms Nitrogenase das reichlich vor-
handene N2in biologisch verfügbaren Stickstoff umwandeln. Dieser wiederum kann auch von
nicht-diazotrophen Organismen aufgenommen werden. Stickstofffixierung ist eine neue Quelle
von Stickstoff und ermöglicht demzufolge eine Minderung der Stickstofflimitierung einer gan-
zen Planktongemeinschaft und eine Steigerung der Primärproduktion - vorausgesetzt genügend
Phosphat, Licht und entsprechend hohe Temperaturen sind gegeben, um den hohen energetischen
Ansprüchen der Stickstofffixierer gerecht zu werden.

Die Ostsee ist durch ihr stark besiedeltes Wassereinzugsgebiet und den limitierten Wasser-
austausch erheblich menschlichen Einflüssen ausgesetzt. Während der Frühjahrsblüte des Plank-
tons werden die gelösten anorganischen Nährstoffe in der Wassersäule aufgezehrt, wodurch ei-
ne saisonale Stickstofflimitierung auftritt. Die entstandene Stickstofflimitierung, zusammen mit
einem Phosphatüberschuss, einer zunehmend stratifizierten Wassersäule und warmen Wasser-
temperaturen an der Oberfläche, bilden eine saisonale Nische für Diazotrophe, die in der Ostsee
von fadenförmigen Cyanobakterien, wie zum Beispiel Nodularia spumigena und Aphanizome-
non flos-aquae besetzt wird. Diese Cyanobakterien bilden im Sommer oft ausgedehnte Blüten
an der Meeresoberfläche. Stickstofffixierung durch Cyanobakterien ist ein besonders wichtiger
Prozess in der Ostsee, da sie den Stickstoffverlust in den tieferen, sauerstoffarmen Schichten
ausgleicht und 20-45% der Primärproduktion im Sommer unterstützt.

Die ansteigenden anthropogenen CO2-Emissionen führen nicht nur zu einer Erwärmung der
Atmosphäre und der Ozeane, sondern zusätzlich zu messbaren Änderungen in der Karbonatche-
mie des Meerwassers, der sogenannten Ozeanversauerung. Studien mit Reinkulturen von dia-
zotrophen Organismen haben gezeigt, dass Stickstofffixierung und das Wachstum dieser Orga-
nismengruppe empfindlich auf Veränderungen der CO2-Konzentration (pCO2) und Temperatur
reagieren. Die Fitness der Diazotrophen in-situ wurde bisher jedoch in nur wenigen Kurzzeit-
experimenten erforscht. Zudem ist wenig darüber bekannt, wie Nährstoff-limitierte Planktonge-
meinschaften auf Ozeanversauerung reagieren, da in der Vergangenheit hauptsächlich Nährstoff-
induzierte Blüten untersucht wurden.

In dieser Dissertation wurde sowohl der Einfluss von Ozeanversauerung (ansteigender pCO2

und sinkender pH-Wert im Seewasser) als auch die Kombination von Ozeanversauerung mit

IX



Ozeanerwärmung auf zwei Planktongemeinschaften der Ostsee im Sommer untersucht.

In zwei unabhängigen Mesokosmen-Studien wurden natürlich vorkommende Planktonge-
meinschaften der Ostsee während der Sommermonate untersucht. Ziel der beiden Studien war
es, den Einfluss von CO2-Konzentration auf die Stickstoff-limitierte Planktongemeinschaft und
die diazotrophe Organismen zu untersuchen.

In der ersten Studie wurden pelagische Mesokosmen im Archipel vor der Südwestspitze
Finnlands ausgesetzt. Um Unterschiede in der Menge und dem Umsatz des organischen Mate-
rials unter realistischen Szenarien der Ozeanversauerung zu untersuchen, wurden die Mesokos-
men auf verschiedene CO2-Konzentrationen (von durchschnittlich 365 bis 1231 µatm) eingestellt
und die Planktongemeinschaft 47 Tage lang beprobt. Nach mehr als drei Wochen zeigten sich
deutliche CO2-bedingte Unterschiede im partikulären und gelösten organischen Material. Höhe-
re CO2-Konzentrationen führten zu höheren Konzentrationen im organischen Material und im
Chlorophyll a sowie zu niedrigeren Phosphatkonzentrationen in der Wassersäule. Verantwort-
lich für diese Unterschiede war das Picophytoplankton (< 2 µm), welches unter erhöhten CO2-
Konzentrationen schon früh im Experiment erhöhte Abundanzen erreichte. Die CO2-bedingten
Unterschiede in der Wassersäule konnten jedoch nicht im absinkenden Partikelfluss beobachtet
werden. Abundanz und Aktivität der diazotrophen Cyanobakterien, überwiegend A. flos-aquae,
zeigten ebenfalls keine signifikanten Unterschiede. Daher kann die erhöhte Biomasseprodukti-
on der Planktongemeinschaft nicht auf eine erhöhte Stickstoffverfügbarkeit durch Diazotrophe
zurückgeführt werden.

In einer zweiten Studie wurde über vier Wochen der kombinierte Effekt von erhöhten CO2-
Konzentrationen und Temperatur auf die Bereitstellung fixierten Stickstoffs durch Diazotro-
phe in einer natürlichen Planktongemeinschaft untersucht. Die dominante stickstofffixierende
Art in der Planktongemeinschaft war das fädige Cyanobakterium N. spumigena. Höhere CO2-
Konzentrationen und erhöhte Temperatur führten zu geringerenN. spumigenaAbundanzen. Dies
unterstützt Ergebnisse aus Experimenten mit N. spumigena-Reinkulturen und zeigt, dass die ne-
gative Reaktion auf erhöhte CO2-Konzentrationen und Temperatur trotz Fraßdruck und Nähr-
stoffkonkurrenz innerhalb der Planktongemeinschaft sichtbar ist.

In beiden Studien war der Biomasseanteil der Cyanobakterien zu niedrig, um die Stoffkreis-
läufe signifikant zu beeinflussen. Allerdings zeigten sich deutliche Temperatur- und CO2-Effekte
auf eine der beiden stickstofffixierenden Arten. Das Wachstum von N. spumigena, dem domi-
nanten Stickstofffixierer der offenen Ostsee, könnte in Zukunft deutlich eingeschränkt sein, auch
wenn sich die möglichen Blütezeiten im Sommer durch die globale Erwärmung tendenziell aus-
dehnen werden. Die überwiegend in Küstengewässern zu findende Art A. flos-aquae scheint
an erhöhte CO2-Konzentrationen angepasst zu sein, sodass nach jetzigem Kenntnisstand keine
zukünftigen CO2-bedingten Änderungen zu erwarten sind. Auch bisherige Studien mit Rein-
kulturen zeigen, dass verschiedene Cyanobakterien-Arten unterschiedlich auf CO2-Änderungen
reagieren.

Die Ergebnisse dieser Arbeit deuten auch darauf hin, dass Picoplankton trotz Ozeanversaue-
rung und Stickstofflimitierung in der Lage ist, eine hohe Biomasse zu erhalten. Diese nachhaltige
Reaktion des Picoplanktons könnte die Struktur des marinen Nahrungsnetzes und die marinen
Stoffkreisläufe in Zukunft dauerhaft beeinflussen.
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CHAPTER 1. INTRODUCTION 3

1.1 Phytoplankton and biogeochemical cycling in the aquatic
realm

1.1.1 Phytoplankton and organic matter production

As primary producers of the ocean, phytoplankton harness light energy to fix carbon dioxide
(CO2) into organic carbon through photosynthesis, the first step in the energy cascade of the
pelagic food web. These microscopic organisms are a crucial part of the food web in marine and
freshwater ecosystems accounting for around 50% of global primary production (Field et al.,
1998). This energy, converted into organic matter, can then be transferred through secondary
production and the trophic cascade to higher organisms such as fish, as well as support microbial
community turnover (Azam et al., 1983).

Aquatic photosynthesis is not only an important process in terms of energy transfer in the
food web but also has a defining influence on the cycling of key elements such as carbon (C),
nitrogen (N), phosphorus (P) as well as trace metals such as iron (Fe). The fixed organic matter
can sink out of the euphotic zone where the majority is remineralised back to dissolved inor-
ganic species in the deep ocean layers. Only a small fraction reaches the sea bed and remains
effectively stored in the deep ocean on geological time-scales. The exact fraction is regionally
dependent but is generally within the range of 0.1 to 10% (Sarmiento and Gruber, 2006). This
fixation and sinking of carbon from the surface to the deep ocean layers is called the biological
carbon pump (Volk and Hoffert, 1985). Thus carbon fixation by phytoplankton is effectively me-
diating surface ocean and lower atmospheric CO2 concentrations. N and P are vital elements in
the biosphere as they are key elemental components governing reactivity and biological function
in essential biomolecules and cellular building blocks such as nucleic acids, structural proteins
and phospholipids (Geider and La Roche, 2002). The stoichiometric relationship in organic
matter composition in the ocean in relation to inorganic nutrients generally follows the charac-
teristic ‘Redfield ratio’ (Redfield, 1958) of 106C:16N:1P as illustrated by Eqn. 1.1, which shows
this stoichiometry as a chemical equation for photosynthetic production (forward reaction) and
respiration of organic matter (reverse reaction):

106CO2+16HNO3+H3PO4+122H2O
light−−⇀↽−− (CH2O)106(NH3)16(H3PO4)+ 138O2 (1.1)

This stoichiometry of organic matter composition implies a strong link between the availability
of the macronutrients nitrate (NO –

3 ) and phosphate (PO 3–
4 ) and pelagic productivity and carbon

cycling in the aquatic environment. Deviations in C:N:P from the Redfield ratio however do
occur on a regional or species level due to differences in environmental conditions, physiological
requirements between dominant plankton species and ambient inorganic N:P availability (Geider
and La Roche, 2002; Klausmeier et al., 2004). In turn, nutrient availability affects the species and
average chemical composition of the plankton assemblage (Hunt and Matveev, 2005; Van den
Brink et al., 1994; Gervais and Riebesell, 2001; Franz et al., 2012) with consequences for energy
transfer to higher trophic levels within the marine foodweb (Malzahn et al., 2007).
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The concept of resource limitation

As implied by the stoichiometry in Eqn. 1.1, the supply of either P or N can also limit net
organic matter production in phytoplankton. Liebig’s Law of the minimum (von Liebig, 1855)
suggests that organic matter yield is controlled by the availability of the scarcest resource i.e.
the limiting resource for growth. This principle is commonly inferred to describe macronutri-
ent limitation in the aquatic environment between NO –

3 and PO 3–
4 based on the Redfield ratio,

where N:P >16 is considered P-limited and N:P < 16 N-limited, but can also be used to describe
micronutrient or trace metal limitation, or in the case of diatoms, dissolved silicate limitation.

Resource limitation can also restrict rates of biological processes, in particular those driven
by enzymatic reactions. This kinetically based idea was proposed by Blackman (1905). A clear
example of this is light as a limiting resource for photosynthesis. Increasing light availability
increases the photosynthetic rate and hence phytoplankton growth until growth plateaus, then de-
clines once light levels are too high, thereby forming the characteristic photosynthesis-irradiance
(P vs. I) curves. This concept is in line with the Monod model (Monod, 1950) and Michaelis-
Menten kinetics, a simple approach frequently used to empirically describe microbial growth or
enzyme activity as a function of substrate availability e.g. rates of carboxylation and oxygena-
tion in RuBISCO as a function of CO2 and O2 availability in photosynthetic organisms (Farquhar
et al., 1980).

1.1.2 Overview of key pelagic nitrogen pools in the aquatic environment

On a global scale, N is regarded as the limiting macronutrient for primary production in the
surface ocean (Falkowski, 1997; Tyrrell, 1999), particularly on short time-scales. This is because
most elemental N is not present in a bioavailable or ‘fixed’ state, and is thus inaccessible to most
organisms. Numerous different N species and oxidation states exist ranging from ammonium
(-III) to gaseous N2 (0) to inorganic species (nitrate, V) as well as organic compounds such as
amino acids and urea, of which all but N2 are regarded as fixed N (Table 1.1). Transformations
between these various chemical species and redox states underlies microbial N cycling during
metabolism and growth. This includes the production of key cellular components such as amino
and nucleic acids, energy transfer molecules (ATP: adenosine triphosphate) and light harvesting
pigments (e.g. Chl a). Both NO –

3 and the reduced N form of ammonium (NH +
4 ) are of particular

importance for phytoplankton because they can be directly assimilated into biomass.

In 1967, Dugdale and Goering distinguished between new and regenerative production based
on the N supply mechanisms. Both new and regenerative production can support carbon fixa-
tion. However, only new production through N supply by upwelled NO –

3 or N2-fixation from
atmospheric N2 can relieve N-limitation or influence organic matter export (Karl et al., 2002),
whereas regenerative production is supported by turnover of NH +

4 through organic N remineral-
isation within the euphotic zone (Dugdale and Goering, 1967). Generally productivity in plank-
ton communities is dominated by NO –

3 supply (i.e. new production) during the winter and early
spring bloom before inorganic N pools are exhausted. Consequently, organic matter remineral-
isation, mediated by either zooplankton or bacteria, supplies NH +

4 to primary producers during
summer and autumn (Quéguiner et al., 1986).
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Table 1.1: Summary of selected key N species found in the marine environment and their oxidation states
and classification as fixed or non-fixed.

Oxidation state Chemical species Species name Fixed N
-III NH +

4 , R−NH3 ammonia, organic N fixed

-I NH2OH hydroxylamine fixed

0 N2 dinitrogen gas not fixed

I N2O nitrous oxide fixed

II NO nitric oxide fixed

III NO –
2 nitrite fixed

V NO –
3 nitrate fixed

1.1.3 Nitrogen fixation and the diazotrophic niche

N is highly abundant in elemental form as gaseous N2 constituting up to 78% in our atmo-
sphere and >99% of total N atoms in the ocean (1× 107 TgN as N2 vs. 6.6× 105 TgN as fixed N
in ocean, Gruber 2008). However, the strength of the N−−−N bond and instability of the chemical
intermediates confers a high energy requirement to overcome this energetic barrier as implied
by the strong forcing conditions required in the commercial Haber-Bosch process (500 ◦C and
up to 1000 atm pressure with presence of catalyst, Manahan 2006). Biological fixation of N2
into bioavailable N forms occurs both on land and in the ocean, but only by specialised bacteria
and archaea possessing the nitrogenase enzyme complex which reduces N2 to NH3. Organisms
with this capability are generally called diazotrophs. This is an energetically demanding process,
even for these specialised organisms, with high adenosine triphosphate (16 ATP, Eqn. 1.2) and
iron (Fe) requirements for the multiple enzyme redox centres (Howard and Rees, 1996).

N2 + 8 e− + 8H+ + 16ATP + 6H2O −−→ 2NH3 +H2 + 16ADP + 16Pi (1.2)

Consequently, warm water temperatures (usually >20◦C, (Breitbarth et al., 2007; Luo et al.,
2014)), high ambient inorganic phosphate and Fe availability (Berman-Frank et al., 2007; Mon-
teiro et al., 2011) and high light environments (Kononen et al., 1996; Luo et al., 2014) are re-
quired to satisfy the specific nutritional and high energetic demands for N2-fixation. Diazotrophs
can grow and reproduce successfully under these conditions, which are commonly described as
the ecological niche for N2-fixing organisms. While there is some evidence that N2-fixing or-
ganisms can also utilise inorganic N sources (NO –

3 and NH +
4 ) and persist under high inorganic

N concentrations (Fernandez et al., 2011), their relatively slow growth rates compared to other
competing phytoplankton and high energetic investment in N2-fixation means they no longer
have their competitive advantage in the plankton community. Hence, diazotrophy is only an
advantageous characteristic when N availability limits growth and primary production of the
non-diazotrophic phytoplankton in the community (Tyrrell, 1999).
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The idea of a diazotrophic niche is generally supported by current knowledge on the distri-
bution of autotrophic diazotrophic organisms in the global ocean. Fixed N availability is low
in the tropics and sub-tropics and thus N2-fixation is particularly influential in harnessing the
ubiquitous atmospheric N source (Saito et al., 2011). Prominent communities of diazotrophic
cyanobacteria are primarily found in surface waters of tropical regions, where there is high light,
warm water temperatures (>16◦C), and in regions of high dust (i.e. Fe) deposition (Sohm et al.
(2011) and references therein). Evidence is, however, stronger for the role of irradiance andtem-
perature (i.e. stratification) on N2-fixation than for other environmental controls (Luo et al.,
2014).

1.2 Study area of the thesis: the Baltic Sea

1.2.1 Hydrological and environmental characteristics of the Baltic Sea

The Baltic Sea is situated in northern Europe, spanning latitudes from 53°N to 66°N. It is
a semi-enclosed marginal sea with the only connection to the North Sea through a few narrow,
shallow channels in the Danish Straits. In general the water body is very shallow with just
12% of the total area under 100 m deep, with Landsort Deep the deepest part of the Baltic Sea
at 459 m deep (Leppäranta and Myrberg 2009). This shallow nature confers many important
characteristics to water mass exchange and oxygenation of deep basins in the Baltic Sea.

At only 18 m deep, the shallow and narrow Darss Sill in the Danish Straits presents the
greatest barrier to saline water inflow from the North Sea via the Kattegat to the adjacent basins
in the southern end of the Baltic Sea. This dense seawater of salinity 15 - 25 collects in the deep
basins (Voipio, 1981). In combination with freshwater input from rivers in northern and coastal
areas which remains in the surface layer, this leads to steep salinity gradients from north to south
as well as maintaining the strong, permanent halocline (Leppäranta and Myrberg, 2009) present
at around 60 m deep (Schiewer, 2008). The Baltic Sea is classified as a brackish water body
with a surface water salinity of between 6.5 - 8, much lower than the open ocean (East Gotland
Basin, Leppäranta and Myrberg, 2009). Although the permanent halocline restricts physical
water mass exchange, sinking organic matter can sink below the halocline. As it is remineralised
through aerobic bacterial processes, this consumes oxygen, thereby depleting the deeper waters
in oxygen. Periods of persistent westerly winds can lead to sporadic, short and intensive pulses
of saline oxygenated water over the Darss Sill and into the Baltic Sea (Leppäranta and Myrberg,
2009). While there is always a small degree of subsurface inflow and exchange, this is the only
process which substantially replenishes oxygen below the halocline.

Anthropogenic pressures in the Baltic Sea ecosystem

Around 85million people in 14 countries live in the drainage basin which is almost four times
larger than the sea itself (Hannerz and Destouni, 2006) meaning that anthropogenic activity from
agriculture, urban centres, recreational activities, fishing activities and ship traffic have a large
influence on the water quality in the Baltic Sea. The anthropogenic influence on the Baltic Sea
has intensified over the past two centuries (Elmgren, 2001; HELCOM, 2013; Viitasalo et al.,
2015). Substantial nutrient run-off and ensuing changes in phytoplankton productivity have
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been of particular concern in the region due to the importance of the biological diversity, stable
ecological state, and recreational area in this primarily coastal ecosystem (HELCOM, 2009).

1.2.2 N supply and seasonal plankton succession

The Baltic Sea is a region where fixed N concentrations are low in summer and limit net
autotrophic production in the surface layers (Granéli et al., 1990), similar to the open ocean
(Section 1.1.2). Nutrient supply in the Baltic Sea is not strictly in Redfield proportion as hypoxia
in the bottom water drives preferential phosphate release under hypoxia from the sediments
and N loss processes of annamox and denitification below the halocline and at the oxic/anoxic
interface (Risgaard-Petersen et al., 2005; Lam and Kuypers, 2011). Hence mixing events, such
as coastal upwelling (Kahru et al., 1995), bring up P-rich and N-deplete deep water. Hence
the generally diatom-dominated spring bloom (Wasmund et al., 1998) draws down inorganic N
leaving an excess of inorganic P (Granéli et al. 1990, Fig. 1.1).
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Figure 1.1: Schematic summarising common variations in environmental variables, dominant N source
and succession of select phytoplankton groups in different regions in the Baltic Sea between spring and
autumn. Based on data obtained from Andersson et al. (1996); Wasmund and Siegel (2008). In some
regions, the order of succession of diatoms and dinoflagellates may be reversed e.g. Lignell et al. (1993).
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The residual phosphate, increasingly stratified water column with warm surface waters and
high light availability during the summer, leads to a seasonal diazotrophic niche (Section 1.1.3),
which supports the development of annual blooms of diazotrophic filamentous cyanobacteria.
Due to their buoyancy regulation, these organisms tend to form large aggregates, which accu-
mulate in the surface. These scums occur regularly over large areas of the Baltic Sea and are
highly visible as indicated in this satellite photo as the light green swirls against the dark water
background (Fig. 1.2).

These common annual blooms are generally dominated by filamentous diazotrophic
cyanobacteria with two main genera: Nodularia spumigena in the open Baltic Sea and Aphani-
zomenon flos-aquae in more coastal areas (Fig. 1.3, Olli et al., 2015). This geographical distinc-
tion between these two genera may be attributed to dissolved phosphate (Degerholm et al., 2006;
Olli et al., 2015) or salinity and solar irradiance (Lehtimaki et al., 1997). Both of these genera
have heterocysts, specialised compartments to fix N. This spatially separates the nitrogenase en-
zyme from carbon fixation and associated O2 production from C-fixation in carboxysomes in the
neighbouring vegetative cells as the nitrogenase enzyme is irreversibly inhibited by O2 (Postgate,
1998). In contrast, other autotrophic diazotrophs use temporal rather than physical separation
of C-fixation and the O2-sensitive N2-fixation (Berman-Frank et al., 2003). N. spumigena is a
toxic species, known outside of scientific circles due to the hepatotoxins it produces which can
lead to beach closures during major blooms.

Baltic Sea

Sweden

Poland
Germany

Figure 1.2: Satellite image of a surface bloom of filamentous
cyanobacteria in the southern Baltic Sea taken on 27/7/2012 by the
MODIS satellite. Source: M. Kahru.

N. spumigena

A. flos-aquae

Figure 1.3: Microscopy pho-
tographs of Aphanizomenon
flos-aquae and Nodularia
spumigena, two common,
bloom-forming filamentous
N2-fixing cyanobacteria in the
Baltic Sea. Source: A. Stuhr.
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Estimations vary, however, new N input through N2-fixation in the Baltic Sea is reportedly
on the same order of magnitude as riverine inputs and atmospheric N deposition (Fig. 1.4, Voss
et al. 2011) indicating the importance of diazotrophic organisms in supporting N turnover in
the region. In addition, N2-fixation counteracts the nitrogen lost via anammox and denitrifica-
tion in the anoxic layers below the halocline and in the sediments (Fig. 1.4). This may also act
as a natural feedback system promoting organic matter production, oxygen consumption, phos-
phate release from the sediments under anoxia which in turn increases the niche for N2-fixing
filamentous cyanobacteria (Vahtera et al., 2007).

N2-fixation Atmospheric N 
deposition 

Riverine N 
input 

Denitrification/
anammox 

N burial/ 
sedimentation 

halocline 

Denitrification/
anammox 

370 201 

686 

47 

426 - 652 

North Sea 
water 

exchange 43 

13 

113 

Baltic Sea  

N fluxes 

Microbially-driven 
N assimilation and 
remineralisation 

sediment 

upper 
water 

column 

Units = kt y-1 

deep oxic layer deep anoxic layer 

Figure 1.4: Key N fluxes in Baltic Sea as summarised by Voss et al. (2011). N sources to the Baltic Sea
are indicated as black and N loss processes in red text and arrows. The budget is not balanced, possibly
due to underestimated N loss processes.
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1.3 Ocean acidification and ocean warming

1.3.1 Historical basis and basic underlying principles

Since the beginning of the Industrial Revolution in the 18th century, considerable amounts
of fossil fuel carbon has been burned resulting in increased atmospheric CO2 concentrations
from around 280 ppm reaching over 400 ppm in 2014 (Tans and Keeling, 2015). Increased
atmospheric CO2 concentration works in a similar way to a greenhouse and traps heat energy
in the earth system, observed as an increase in air temperature (i.e. global warming). Due to
the high thermal capacity of water and large volume, a major proportion of the heat energy
is transferred to the oceans resulting in increased water temperature, termed ‘ocean warming’.
In addition to the warming effect, around 30% of anthropogenic CO2 emitted to the atmosphere
ends up in the oceans (Sabine et al., 2004), leading to measurable changes in seawater chemistry.
CO2 dissolves in seawater to form a weak acid which dissociates (Eqn. 1.3), releasing H+ and
causing a shift in the carbonate system in seawater.

CO2 +H2O −−⇀↽−− H2CO3
−−⇀↽−− H+ +HCO −

3
−−⇀↽−− 2H+ + CO 2−

3 (1.3)

This rapid influx of CO2 has been clearly observed in major oceans from the Pacific to the eastern
andwestern Atlantic Oceans (Rhein et al., 2013). This change in seawater chemistry is detectable
above seasonal variation over a number of decades (Tans and Keeling, 2015), and is at a rate of
increase not observed over the geological history (Hönisch et al., 2012). Continued emission
of CO2 is expected to increase atmospheric CO2 concentrations to over 1000 µatm with mean
projected increases in surface air temperature of 4◦C and a decrease of around 0.3 in seawater
pH by the year 2100 (Collins et al., 2013; Ciais et al., 2013).

1.3.2 Ocean acidification and warming in the Baltic Sea

In addition to the anthropogenic pressures mentioned in Section 1.2.1. Additionally, the
Baltic Sea is recognised as a hotspot for both ocean warming and acidification which may change
the baseline ecosystem ecology (Elmgren, 2001). Model-based projections suggest that summer
surface seawater temperature will likely further increase by between 2 and 4◦C by the end of this
century (HELCOM, 2013) and average pH decrease of around 0.3 – 0.4 (Fig. 1.5, Omstedt et al.
2012) under ‘Business as usual’ (scenario BAU-A2).

The respective decrease in surface water pH from ocean acidification is more difficult to ac-
curately predict than for the open ocean because may be partially negated through changes in
riverine alkalinity inputs (Schneider et al., 2015) or extent of anoxia in the deeper basins (Haven-
hand, 2012). Indeed, change in pH will not be uniformly distributed as regional differences in
alkalinity modulate CO2 uptake and the pH decrease (HELCOM, 2013). Nevertheless, it ap-
pears as though the rate of change in the Baltic Sea proper, where the terrestrial influence is less
than coastal regions, pH is decreasing at a rate faster than in the open ocean (Fig. 1.5). Baltic
Sea surface water temperature has increased in all regions since 1990 on the order of 1◦C per
decade (Lehmann et al., 2011), much higher than projections (see above).
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Figure 1.5: (a)Measured pH in Baltic Sea and in tropical North Pacific Ocean (HOT times series). Data
adapted from Dore et al. (2009) and The International Council for Exploration of the Sea (2014).
(b)Modelled pH data indicating projected future pH decrease, figure adapted from Omstedt et al. (2012).

1.3.3 Biotic response to ocean acidification and warming

These physical and chemical changes in seawater from ocean acidification and warming af-
fect the metabolism and pH-sensitive processes and structures in aquatic organisms. Planktonic
organisms are too small for internal temperature regulation thus their metabolism is affected
directly by the ambient environmental temperature. A concerted research effort has been made
over the past two decades which have shown physiological processes in phytoplankton such as C-
fixation, biomineralisation, and enzyme-mediated organic matter degradation are temperature,
pH and/or CO2-sensitive as comprehensively summarised in two recent publications (Pörtner
et al., 2014; Riebesell and Tortell, 2011). RuBISCO is a key enzyme in the fixation of CO2
which is capable of both carboxylation (C-fixation) and photorespiration (remineralisation) ac-
tivity, however diffusion of CO2 into the cell alone may not provide sufficient carbon for efficient
C-fixation (Raven, 1993). Therefore, many phytoplankton invest in carbon concentrating mech-
anisms to increase intracellular CO2 and saturate the RuBISCO enzyme. This increase in CO2
at carboxylating site saturates the enzyme RuBISCO and leads to reduced photorespiration at
high CO2 (Raven and Beardall, 2003). Ocean acidification will increase the concentrations of
dissolved CO2 and hence diffusion into the cell, leading to potential fertilisation of C-fixation
and reducing the need for CCM activity. Some organisms may profit more than others due to
different affinities of RuBISCO and the energetic relief that increased CO2 availability reducing
the need for CCM, indicating likely changes in competitiveness between phytoplankton species
(Dutkiewicz et al., 2015; Reinfelder, 2011). Nonetheless any stimulating effect of increased CO2
availability will be mediated concurrently by the effect of pH on cellular pH homeostasis (Taylor
et al., 2011; Bach et al., 2011).

For diazotrophic organisms studies have shown that H2 production as a by-product of ni-
trogenase activity in the photosynthetic bacterium, Rhodobacter sulfidophilus, is pH dependent
(Peng et al., 1987), with peak enzyme activity for N2-fixation between pH 7 and 8.2 (Pham and
Burgess, 1993). Furthermore, in hetercystous diazotrophic cyanobacteria, such as N. spumi-
gena, N2-fixation rates may be negatively affected by pH due to intercellular transfer of carbon
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and nitrogen between the heterocysts and vegetative cells (Czerny et al., 2009). C-fixation also
provides energy for N2-fixation. N2-fixation is also expected to be affected by increased CO2
hence may provide a natural new N source to relieve N limitation and stimulate primary produc-
tion. Table 1.2 is a current overview of published studies showing how the observed response
of N2-fixation activity both between and within diverse diazotrophic genera to increased CO2
has been far from consistent. How diazotrophic organisms respond to ocean acidification may
therefore be dependent on differences in O2 exclusion strategies and cell morphology, or due to
adaptation of CCMs to the carbonate chemistry of their respective ecological niches as suggested
by Eichner et al. (2014).

Table 1.2: Summary of reported responses of biomass normalised N2-fixation rates to increased
CO2/decreased pH (OA = ocean acidification) in single-strain isolates of a variety of diazotrophic or-
ganisms. HL indicates high light and LL indicates low light conditions and the direction of the arrows
correspond to the observed direction of the response.

Genus Isolated from Cell
morphology

OA
response

OW
response Reference

Trichodesmium marine, tropical
filamentous,
non-
heterocystous

⇔ Mulholland and Bern-
hardt (2005)

⇑ Barcelos e Ramos et al.
(2007)

⇑ ⇔ Hutchins et al. (2007)
⇑ Levitan et al. (2007)
⇑ Kranz et al. (2010)
⇑ Garcia et al. (2011)
+Fe ⇔
- Fe ⇓ Shi et al. (2012)

⇑ Hutchins et al. (2013)
⇑ Fu et al. (2014)

⇑ Hutchins et al. (2015)
Crocosphaera marine, tropical unicellular ⇑ Fu et al. (2008)

⇑ Hutchins et al. (2013)
HL ⇑
LL ⇔ Garcia et al. (2013b)

Garcia et al. (2013a)
⇑ Fu et al. (2014)

Cyanothece marine unicellular ⇑ Brauer et al. (2013)
⇔ Eichner et al. (2014)

Calothrix marine symbiotic ⇑ Eichner et al. (2014)

Nodularia brackish filamentous,
heterocystous ⇓ Czerny et al. (2009)

(Baltic Sea) ⇑ Wannicke et al. (2012)

⇔ Karlberg and Wulff
(2013)

⇓ Eichner et al. (2014)

Aphanizomenon freshwater filamentous,
heterocystous ⇓ Yamamoto and Nakahara

(2005)
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Additionally, temperature stronglymodulates N2-fixation and diazotroph abundances, as pre-
viously described in Section 1.1.3. However as optimum temperature for N2-fixation was com-
monly below 30◦C, interpretation of these studies in terms of ocean warming is complex there-
fore results in Table 1.2 should be interpreted with caution. For example, organisms can also
increase the geographical distribution as populations may shift polewards to escape physiolog-
ically intolerable warm temperatures due to shifting isotherms as suggested for Trichodesmium
by Breitbarth et al. (2007) and indicated in model simulations (Dutkiewicz et al., 2015). Even
less is known about the interactive effects of CO2 and temperature. It has been shown that the
physiological and growth response of phytoplankton to CO2 can be modulated by changing tem-
perature in single-strain cultures (Sett et al., 2014; Fu et al., 2007). There are comparatively few
studies compared to those investigating the individual effects of each driver. Nutrient concentra-
tion and other resource availability such as changing light fields through increased stratification
may also interplay and complicate projections of the biological response of plankton to ocean
acidification and warming (Gunderson et al., 2016).

1.4 Thesis Outline

1.4.1 Overview

Diazotrophic N is a source of new N, giving rise to the description of diazotrophs as ‘gate-
keepers of marine productivity’ by Berman-Frank et al. (2003). Thus, increases in new N inputs
such as from increased N2-fixation under ocean acidification and warming may stimulate pri-
mary production in the surface ocean through relief of N-limitation (Eppley and Peterson, 1979;
Karl et al., 2002). In terms of global change, the combination and interaction of individual
species responses to ocean acidification and ocean warming on all trophic levels will determine
the sustained ecosystem scale response.

Until now, the majority of published studies of the impacts of ocean acidification on plank-
ton communities have occured on short time-scales ranging from a few days until four weeks
and have utilised nutrient replete conditions (see Appendix, Table 5.1 for a current overview of
published studies). Only two short-term studies have included diazotrophic organisms. Hence,
knowledge of the response of diazotrophic organisms in nutrient limited plankton communities
to ocean acidification and warming over a growing season is currently lacking in our understand-
ing of the impacts of global change in the marine environment. Changes in nutrient availability
may influence the relative importance of autotrophic (biomass production by primary produc-
ers) vs. heterotrophic (remineralisation by consumers) activity as well as shape the plankton
community as some species have better strategies for nutrient assimilation.

In this doctoral dissertion, an experimental approach of between 4 to 8 weeks using large-
scale mesocosms (volume > 1000 L) was selected to investigate the impact of ocean acidification
(increased CO2/decreased pH) on two different summer plankton communities in the Baltic Sea
with different dominant filamentous diazotrophic cyanobacteria (A. flos-aquae and N. spumi-
gena). Both studies took place in seasons where fixed N availability was low and environmental
conditions were favourable for development of filamentous diazotrophic cyanobacteria. The aim
was to determinewhether inputs of new diazotrophic Nmay be affected by ocean acidification, as



14 CHAPTER 1. INTRODUCTION

observed in single-strain culture studies, as this may affect new production in the wider plankton
community under the prevailing N-limited conditions.

Chapter 2 presents an overview of organic matter pools in the in situ CO2 manipulationmeso-
cosm experiment using the natural plankton community present in the Archipelago Sea, on the
south-western tip of Finland. Treatment fCO2 ranged from ambient (365 µatm) up to 1231 µatm.
Bioavailable nitrogen concentrations were very low and capped phytoplankton biomass. Partic-
ulate and dissolved matter pools as well as phytoplankton pigment concentrations were sampled
over the 47 day study period to investigate the influence of ocean acidification on biogeochemical
elemental cycling and organic matter partitioning.

In Chapter 3, N2-fixation rates and the abundance of the dominant filamentous diazotrophic
cyanobacteria Aphanizomenon flos-aquae were followed to assess any influence of CO2 on
growth and activity of diazotrophic organisms in the same mesocosm study as Chapter 2. This
chapter aimed to determine the magnitude of diazotrophic N inputs to indicate if this was a
relevant process for the N inventory during the study period.

Chapter 4 reports on the contribution of diazotrophy to the N cycle during an indoor meso-
cosm study in the Kiel Fjord in the south-western Baltic Sea, where both CO2 and temperature
were manipulated to investigate the response of the filamentous diazotrophic cyanobacterum,
Nodularia spumigena, to ocean acidifiation and warming. Filamentous diazotrophic cyanobac-
teria were followed over the 28 days after initial CO2-manipulation to probe the single and inter-
active effects of increased CO2 and temperature on diazotrophic N inputs in a contrasting region
with a different dominant cyanobacterium to Chapter 3.
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1.4.2 List of first-author papers

This doctoral thesis is based on the following three manuscripts which are each considered
one chapter of the thesis:

I Paul, A. J., Bach, L. T., Schulz, K.-G., Boxhammer, T., Czerny, J., Achterberg, E.
P., Hellemann, D., Trense, Y., Nausch, M., Sswat, M. and Riebesell, U.: Effect of
elevated CO2 on organic matter pools and fluxes in a summer Baltic Sea plankton
community, Biogeosciences, 12, 6181–6203, doi:10.5194/bg-12-6181-2015, 2015

II Paul, A. J., Achterberg, E. P., Bach, L. T., Boxhammer, T., Czerny, J., Haunost, M.,
Schulz, K.-G., Stuhr, A. and Riebesell, U.: No measureable effect of ocean acidifi-
cation on nitrogen biogeochemistry in a Baltic Sea plankton community,
Biogeosciences Discussions, 12, 17507-17541, doi:10.5194/bgd-12-17507-2015,
2015

III Paul, A. J., Sommer, U., Paul, C., and Riebesell, U.: Growth of key diazotrophic
species negatively affected by ocean acidification and warming.
To be submitted
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Abstract. Ocean acidification is expected to influence plank-

ton community structure and biogeochemical element cycles.

To date, the response of plankton communities to elevated

CO2 has been studied primarily during nutrient-stimulated

blooms. In this CO2 manipulation study, we used large-

volume (∼ 55 m3) pelagic in situ mesocosms to enclose a

natural summer, post-spring-bloom plankton assemblage in

the Baltic Sea to investigate the response of organic mat-

ter pools to ocean acidification. The carbonate system in

the six mesocosms was manipulated to yield average fCO2

ranging between 365 and ∼ 1230 µatm with no adjustment

of naturally available nutrient concentrations. Plankton com-

munity development and key biogeochemical element pools

were subsequently followed in this nitrogen-limited ecosys-

tem over a period of 7 weeks. We observed higher sustained

chlorophyll a and particulate matter concentrations (∼ 25 %

higher) and lower inorganic phosphate concentrations in the

water column in the highest fCO2 treatment (1231 µatm)

during the final 2 weeks of the study period (Phase III),

when there was low net change in particulate and dissolved

matter pools. Size-fractionated phytoplankton pigment anal-

yses indicated that these differences were driven by pico-

phytoplankton (< 2 µm) and were already established early

in the experiment during an initial warm and more produc-

tive period with overall elevated chlorophyll a and particulate

matter concentrations. However, the influence of picophyto-

plankton on bulk organic matter pools was masked by high

biomass of larger plankton until Phase III, when the contri-

bution of the small size fraction (< 2 µm) increased to up to

90 % of chlorophyll a. In this phase, a CO2-driven increase

in water column particulate carbon did not lead to enhanced

sinking material flux but was instead reflected in increased

dissolved organic carbon concentrations. Hence ocean acid-

ification may induce changes in organic matter partitioning

in the upper water column during the low-nitrogen summer

period in the Baltic Sea.

1 Introduction

The Baltic Sea is a semi-enclosed, brackish epicontinental

sea with a substantial freshwater catchment area which is ap-

proximately 4 times larger than the water body itself. In ad-

dition, the Baltic Sea has limited and infrequent saline deep

water inputs from the North Sea through the Danish Straits

which form an important oxygen supply for the Baltic Sea

bottom waters. Weak circulation, vertical mixing and water

mass exchange in the Baltic Sea lead to strong horizontal and

vertical salinity gradients from north (< 5) to south (∼ 20)

and surface (∼ 7) to deep (∼ 12) in Gotland Deep (station

BY15; International Council for the Exploration of the Sea,

2014). Consequently, the enclosed nature of the water body

Published by Copernicus Publications on behalf of the European Geosciences Union.
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and minimal water exchange mean that terrestrial and an-

thropogenic activities have a considerable influence on water

quality, biogeochemistry and ecosystems in the Baltic Sea.

Global change is expected to have pronounced effects

on the physical and chemical conditions in the Baltic Sea.

Warming, decreasing pH, and increasing freshwater inputs

are expected to affect primary productivity and decrease oxy-

gen concentrations in the deeper basins (HELCOM, 2013). In

combination with higher nutrient loads from changes in agri-

cultural activity, this may lead to increased hypoxia or even

anoxia in subsurface waters (Meier et al., 2011) with feed-

backs on biogeochemical element cycles (Sutton et al., 2011)

as well as ecosystem structure and functioning, particularly

at higher trophic levels (Ekau et al., 2010; Turner, 2001; Wu,

2002). Changes in the Baltic Sea environment have already

been detected. Regular monitoring of the Baltic Sea over the

past 100 years has indicated higher rates of temperature in-

crease (0.08 to 0.11 ◦C per decade) than the global average,

along with a 20 % decrease in annual maximum ice extent

(HELCOM, 2013). Observed shifts in the spring and summer

phytoplankton community dynamics have been primarily as-

sociated with warming in northern Baltic Sea regions over

the past three decades (Suikkanen et al., 2013).

Ocean acidification is another anthropogenic process of

potential relevance for Baltic plankton communities. As CO2

dissolves in seawater, the carbonate system shifts with an as-

sociated decrease in pH. Ocean acidification therefore adds

to the decrease in seawater pH as a result of nitrogen and sul-

fate deposition in the form of acid rain (Doney et al., 2007).

Between 1993 and 2012, pH in the Baltic proper decreased

on the order of 0.1 pH units (International Council for the Ex-

ploration of the Sea, 2014), which is more than 2 times faster

than observed in the Pacific Ocean (∼ 0.04 pH decrease

between 1992 and 2012 in surface 30 m, Station ALOHA,

Hawaii Ocean Time-Series; Dore et al., 2009). Changes in

fCO2 and pH influence phytoplankton physiology, growth

rates, and carbon fixation, with some phytoplankton func-

tional groups such as calcifying organisms more sensitive

than others such as diatoms (Riebesell and Tortell, 2011;

Rost et al., 2008). Thus the relative fitness of each functional

group determines the response of the plankton community as

a whole. Changes in physiological processes in phytoplank-

ton on a cellular level can cascade through trophic levels and

induce shifts in the structure of the planktonic food web.

To date, the majority of ocean acidification experiments

have utilised nutrient-replete starting conditions or added nu-

trients to investigate effects of high CO2 on plankton commu-

nities and biogeochemical cycles (nutrient-replete/addition

(e.g. Biswas et al., 2012; Engel et al., 2005, 2008, 2014; Feng

et al., 2010; Hama et al., 2012; Hare et al., 2007; Hopkins et

al., 2010; Hopkinson et al., 2010; Hoppe et al., 2013; Kim

et al., 2006; Nielsen et al., 2010, 2011; Richier et al., 2014;

Rossoll et al., 2013; Schulz et al., 2008, 2013; Tatters et al.,

2013a, b; Yoshimura et al., 2010, 2013, 2014) vs. nutrient-

depleted (e.g. Law et al., 2012; Lomas et al., 2012; Losh et

al., 2012)). These studies mimic the productive spring bloom,

where nutrient concentrations are relatively high and rela-

tively low light levels initially limit phytoplankton growth.

However, for considerable parts of the year, the opposite is

the case. Growth is not limited by light but by nutrient con-

centrations and biomass tends to be low. This is also the case

during summer in the Baltic Sea. Here, a diatom-dominated

spring bloom in April/May usually draws down dissolved

inorganic nutrients so that concentrations remain low from

early summer. Diazotrophic filamentous cyanobacteria then

commonly bloom in July and August, when surface wa-

ter temperatures peak, calm weather conditions induce wa-

ter column stratification and low nitrogen in a bioavailable

form limits growth in the non-diazotrophic phytoplankton

(Gasiūnaitė et al., 2005; Kanoshina et al., 2003; Stal et al.,

1999).

We undertook a pelagic in situ mesocosm study on a sum-

mer Baltic Sea plankton community to investigate the re-

sponse of this low-nutrient ecosystem to projected changes

in fCO2. Using this approach, many different trophic lev-

els from bacteria and viruses through to zooplankton can

be investigated over extended periods of time. Using the

KOSMOS mesocosm system (Kiel Off-Shore Mesocosms

for future Ocean Simulations; Riebesell et al., 2013), we

were able to enclose large volumes containing whole plank-

ton communities with a low level of disturbance and thereby

utilising natural variability in light and temperature.

2 Methods

2.1 Study area, deployment site, and mesocosm setup

On 12 June 2012 (day− 10= t − 10, 10 days before CO2

manipulation), nine floating, pelagic mesocosms (Fig. 1,

KOSMOS, volume ∼ 55 m3) were deployed and moored at

59◦51.5′ N, 23◦15.5′ E in the Tvärminne Storfjärden, an open

archipelago area on the eastern side of the Hanko peninsula

on the south-west coast of Finland (Fig. 2). The water depth

at the mooring site was approximately 30 m. The bottom ends

of the mesocosm bags were lowered to a depth of 17 m below

the surface to enclose the plankton community with minimal

disturbance to the water column. A mesh of 3 mm was at-

tached to the top, which was submerged ∼ 0.5 m below the

surface, and bottom of the bag, at 17 m deep, to exclude any

large organisms or particles with patchy distribution in the

water column. Initially the mesocosm bags were kept open

and covered with only the 3 mm nets at the top and bottom

openings for 5 days to allow for rinsing of the mesocosm

bags water and free exchange of plankton (< 3 mm). On t−5,

the nets were removed, sediment traps (2 m long, Fig. 1) were

then attached to close the bottom of the mesocosms and the

top ends of the bags were pulled up to 1.5 m above the water

surface, thereby isolating the water in the mesocosms from

the surrounding Baltic Sea.

Biogeosciences, 12, 6181–6203, 2015 www.biogeosciences.net/12/6181/2015/
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Figure 1. Diagram of Kiel Off-Shore Mesocosm for future Ocean

Simulations showing floating frame, mesocosm bag and attached

sediment trap. Source: GEOMAR.

To ensure a homogeneous water column in each meso-

cosm at the start of the experiment, the halocline present

was destroyed by bubbling each mesocosm with compressed

air for 3.5 min on t − 5. A video profile taken in one of the

mesocosms on t − 4 shows the plankton community present

at the beginning of the study period (Boxhammer et al.,

2015a). Figure 3 indicates the experiment timeline includ-

ing important manipulations. Mesocosm bags were cleaned

occasionally inside and outside throughout the experiment

to minimise wall growth and keep the biofilm biomass at

a minimum (see Fig. 3 and Riebesell et al., 2013, for fur-

ther details). An isotope tracer (15N-N2 gas) specific to the

nitrogen-fixing organisms present was injected in two addi-

tions (t22 and t26) into four mesocosm bags (M3, M5, M6,

M8). Further details about the addition are described in Paul

et al. (2015). No dissolved inorganic or organic nutrients

were added to the mesocosms in this study. At the end of

the experiment, the volume of each mesocosm (0–19 m) was

determined through addition of a calibrated salt solution as

described by Czerny et al. (2013). Final mesocosm volumes

ranged between 53.1 and 55.1 m3 with an estimated uncer-

tainty of 2 %. Unfortunately, three mesocosms (M2, M4 and

Figure 2. Map of study area (inset) and mesocosm mooring site

in the Tvärminne Storfjärden, off the Hanko Peninsula close to the

entrance to the Gulf of Finland in the Baltic Sea. Mesocosm repre-

sentation is not to scale. Map contains data from the National Land

Survey of Finland Topographic Database, accessed March 2015.

M9) were lost because of extensive and unquantifiable wa-

ter exchange with the surrounding seawater due to a welding

error on the mesocosm bags and were thus excluded from

sampling and analyses.

2.2 CO2 manipulations

CO2 treatments were achieved by equally distributing filtered

(50 µm), CO2-saturated seawater into the mesocosm as de-

scribed by Riebesell et al. (2013) in four separate additions

(see Table 1 for details). The first addition of CO2-enriched

seawater defined the beginning of the experiment and took

place on t0 following sampling activities. Seawater for the

additions was collected from 10 m depth by a pipe connected

to the laboratory in the research station. Different amounts

of CO2-saturated seawater were added to four mesocosms to

set up an initial gradient in fCO2 treatments from ambient

(∼ 240 µatm) up to ∼ 1650 µatm. On t15, CO2 was manipu-

lated in the upper 7 m to counteract pronounced outgassing

in the mesocosm. Two mesocosms were selected as controls

with no addition of CO2-enriched seawater. Instead, unen-

riched filtered seawater (50 µm) was added for the initial ma-

nipulations. For the later smaller addition, the water distribu-

tor (“spider”; Riebesell et al., 2013) was pulled up and down

in each mesocosm to simulate water column mixing and ma-

nipulation side effects caused by the device on t15.
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Table 1. Volumes of CO2-enriched seawater added for the CO2 manipulation indicating day of addition and total manipulation volumes.

Symbols and colours indicated here are used in all following figures.

Mesocosm M1 M5 M7 M6 M3 M8 Baltic

TargetfCO2 (µatm) ambient/control ambient/control 600 950 1300 1650 ambient

Average fCO2 (µatm) t1–t43 365 368 497 821 1007 1231 417

Average fCO2 (µatm) t1–t30 346 348 494 868 1075 1333 343
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Figure 3. Experiment timeline indicating important activities such

as CO2 manipulations (red), cleaning (dark blue), phases (black,

labelled with 0, I, II and III for Phases 0, I, II and III, respectively),

volume determination (light grey) and isotope addition (dark green).

Distinction of experimental phases is described in Sect. 3.1.

2.3 CTD and light measurements

CTD casts in each mesocosm and in the surrounding wa-

ter were made with a hand-held self-logging CTD probe

(CTD60M, Sea and Sun Technology) from 0.3 m down

to ∼ 18 m (mesocosms) and to ∼ 30 m (surrounding water

in archipelago from Baltic) between 13:30 and 14:30 local

time (LT) daily until t31, and then every second day until t46.

Temperature, pH, dissolved oxygen and PAR (photosynthetic

active radiation) sensors were deployed on the CTD as well

as a conductivity cell. Details on the sensors, their accuracy,

precision, and corrections applied are described in Schulz

and Riebesell (2013). The potentiometric CTD pH was cor-

rected to spectrophotometric measurements (see Sect. 2.5.1).

The depth of average water column light intensity in me-

tres was calculated by averaging all water column PAR data

and relating this to the depth where this intensity of PAR oc-

curred.

A PAR sensor (LI-COR LI-192) was placed unobstructed

at the end of a 2 m pole on the roof of Tvärminne Zo-

ological Station (∼ 1 km from mesocosm mooring site) to

record incoming PAR for the mesocosms. Incoming PAR was

recorded from 14:43 LT on 14 June 2012 continuously as the

mean of integrated 60 s intervals until the end of the experi-

ment at 11:23 LT on 7 August 2012.

2.4 Sampling procedures

Water samples were collected regularly from each meso-

cosm and the surrounding water using depth-integrated wa-

ter samplers (IWS, HYDRO-BIOS, Kiel). Unless otherwise

reported, all samples are from the entire water column

(0 to 17 m). For example, inorganic dissolved nutrient and

fluorometric Chl a samples were also taken regularly for the

upper water column (0 to 10 m). Full details of mesocosm

sampling procedures and equipment are described in Riebe-

sell et al. (2013) and Schulz et al. (2013). There were two

intensive sampling periods where sampling took place every

day (t − 3 to t5, t29 to t31), otherwise most variables were

sampled every second day. Table 2 presents sampled vari-

ables, including sampling frequency and respective papers

which report each data set. Samples for carbonate chemistry

Biogeosciences, 12, 6181–6203, 2015 www.biogeosciences.net/12/6181/2015/
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variables and trace gas analyses were the first to be sampled

and were taken from the IWS directly on board the sam-

pling boat. Other samples (e.g. particulate matter, Chl a, phy-

toplankton pigments) were collected into 10 L carboys and

stored in the dark. Carboys were stored at in situ tempera-

ture onshore and subsampling from these carboys was usu-

ally within 1 h and up to a maximum of 5 h after sampling.

Care was taken to mix the water samples in the carboys well

before taking subsamples to ensure homogeneous sampling

for all parameters.

The sediment trap was emptied every second day using

a manual vacuum pump system to acquire the settled mate-

rial via a silicon tube reaching down to the collection cylin-

der of the sediment trap (Boxhammer et al., 2015b; Riebe-

sell et al., 2013). This material was used to quantify and

characterise particle sinking flux. Subsamples of the parti-

cle suspension (< 6 % in total) were taken before the ma-

terial was concentrated. Particles and aggregates were al-

lowed to settle down within 2 h at in situ temperature before

separation of the supernatant. Collected particulate material

was then centrifuged, while subsamples of the supernatant

were filtered and analysed analogous to water column sam-

ples for particulate matter. Centrifuged material was subse-

quently frozen, lyophilised and ground to a fine powder of

homogeneous composition. From this powder small subsam-

ples of between 0.7 and 1.5 mg were weighed and analysed

for carbon, nitrogen, phosphate and biogenic silica content

as described in this paper for water column samples (see

Sect. 2.5.3). Concentrations of particulate material were cal-

culated based on total mesocosm volume (in litres). Meso-

cosm volume determined on t45 by salt addition in kilograms

(Sect. 2.2) was converted using mean mesocosm tempera-

ture and salinity over 0–17 m between t − 3 and t43 (mean

temperature= 11.42 ◦C, mean salinity= 5.70) and the algo-

rithms described by Fofonoff and Millard Jr. (1983). A more

in-depth description of sampling and processing of particles

collected in the sediment traps of the KOSMOS setup is pre-

sented in Boxhammer et al. (2015b).

2.5 Sample analyses

2.5.1 Carbonate system parameters (DIC, TA, pHT )

Samples for total alkalinity (TA), dissolved inorganic car-

bon concentrations (DIC) and total pH (on the total pH

scale: pHT ) were gently pressure-filtered (Sarstedt Filtropur

PES, 0.2 µm pore size) using a membrane pump (Stepdos)

to exclude calcareous particles and particulate organic ma-

terial before analysis. Presence of particulate matter can in-

fluence precision of carbonate chemistry measurements. In

addition, the sterile filtration eliminates the influence of bio-

logical processes on pH and DIC during sample storage by

phytoplankton or bacteria.

Total pH was determined by spectrophotometry as de-

scribed in Dickson et al. (2007). Samples were analysed

on a Cary 100 (Varian) spectrophotometer in a temperature-

controlled 10 cm cuvette using a low-ionic-strengthm-cresol

indicator dye matching the salinity of the sample water

and an appropriate low-salinity pK (Mosley et al., 2004).

CTD pH measurements were corrected to pHT by daily lin-

ear correlations of mean water column potentiometric pH

measurements to spectrophotometric pHT measurements.

DIC concentrations were determined by infrared absorp-

tion using a LI-COR LI-7000 on an AIRICA system (MAR-

IANDA, Kiel). Measurements were made on four replicates

of 2 mL sample volume and DIC was calculated as the mean

of the best three out of four measurements. The precision was

typically better than 1.5 µmol kg−1. Dissolved calcium con-

centrations in seawater were determined by inductively cou-

pled plasma optical emission spectroscopy (ICP-OES) using

a VARIAN 720-ES and quality-controlled with IAPSO ref-

erence material.

TA was analysed by potentiometric titration using a

Metrohm 869 sample changer and a 907 Titrando dosing

unit according to the open-cell method described in Dick-

son et al. (2007). Due to unaccounted contributions to TA

in the range of 20 and 25 µmol kg−1 by components such as

organic acids and bases, spectrophotometric pHT and DIC

were used to calculate carbonate chemistry speciation using

the stoichiometric equilibrium constants for carbonic acid of

Mehrbach et al. (1973) as refitted by Lueker et al. (2000).

Buffering by organic compounds is not accounted for in the

traditional TA definition (Dickson, 1981) and depends on

unknown concentrations and acid–base equilibria of certain

DOM components. Thus, using TA for carbonate chemistry

speciation calculations would have resulted in errors (Koeve

and Oschlies, 2012). Both TA and DIC measurements were

calibrated using measurements of the certified reference ma-

terial batch CRM 115 (Dickson, 2010).

2.5.2 Dissolved inorganic nutrients

Samples for nutrients were collected in acid-cleaned

(1 mol L−1 HCl) 60 mL low-density polyethylene bottles

(Nalgene), stored at 4 ◦C in the dark following sampling and

analysed within 12 h of collection. Dissolved silicate (DSi)

concentrations were determined using standard colorimet-

ric techniques (Grasshoff et al., 1983) at the micromolar

level using a nutrient autoanalyser (Seal Analytical, Quattro).

Nanomolar levels of dissolved nitrate+ nitrite (hereafter ni-

trate) and dissolved inorganic phosphate (DIP) were deter-

mined with a colorimetric method using a 2 m liquid waveg-

uide capillary cell (LWCC) (Patey et al., 2008; Zhang and

Chi, 2002) with a miniaturised detector (Ocean Optics Ltd).

Detection limits were 2 nmol L−1 for nitrate and 1 nmol L−1

for DIP, with a linear range up to 300 nmol L−1. All sam-

ples for inorganic nutrient measurements were filtered us-

ing glass fibre filters (GF/F, nominal pore size of 0.7 µm,

Fisher Scientific) prior to analysis. This was done to reduce

the dissolution of nutrients from particulates during analysis,

www.biogeosciences.net/12/6181/2015/ Biogeosciences, 12, 6181–6203, 2015
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and also to avoid particles blocking the LWCCs and inter-

fering with the spectrophotometric measurements. Ammo-

nium (NH+4 ) measurements were undertaken following the

method by Kérouel and Aminot (1997) with fluorimetric de-

tection (Trilogy, Turner), and featuring a detection limit of

5 nmol L−1.

2.5.3 Particulate material (C, N, P, Si)

Total particulate carbon, particulate organic nitrogen and to-

tal particulate phosphorus (TPC, PON, TPP) samples were

collected onto combusted GF/F filters (Whatman, nomi-

nal pore size of 0.7 µm) using gentle vacuum filtration

(< 200 mbar) and stored in glass Petri dishes at −20 ◦C di-

rectly after filtration until analysis. Filters and glass Petri

dishes were combusted at 450 ◦C for 6 h before use. Fil-

ters were not acidified to distinguish between inorganic

and organic particulate carbon before analyses; hence, we

measured TPC. However, microscopy counts and total al-

kalinity drawdown indicated pelagic calcifying organisms

were not abundant and there was no significant calcifica-

tion; thus it was probably mostly particulate organic car-

bon. In addition to the total particulate matter fraction, gauze

pre-filters were used to separate size-fractionated samples

for C and N analyses (0.7 to 10 µm=TPC/PON< 10, 0.7

to 55 µm=TPC/PON< 55). Filtration volumes ranged from

500 mL for the total fraction (POMtot) to up to 1500 mL for

< 55 µm size fraction to ensure sufficient biomass on the filter

for analyses. Sampling for TPC< 10 and PON< 10 only oc-

curred after isotope tracer addition on t23 in the four meso-

cosms where tracer was added (M3, M5, M6, M8). This

size fraction was sampled to exclude large filamentous di-

azotrophic cyanobacteria.

Filters for TPC/PON were dried at 60 ◦C, packed into tin

capsules and stored in a dessicator until analysis. TPC and

PON measurements were made on an elemental analyser

(EuroEA) according to Sharp (1974), coupled by either a

Conflo II to a Finnigan DeltaPlus isotope ratio mass spectrom-

eter or a Conflo III to a Thermo Finnigan DeltaPlus XP iso-

tope ratio mass spectrometer. Subsamples of sediment mate-

rial powder (1–2 mg) were weighed directly into tin capsules

using an electronic microbalance (Sartorius M2P) with an ac-

curacy of 0.001 mg. In addition to the standard calibration at

the beginning of each run, standard materials (caffeine, pep-

tone, acetanilide, nicotinamide, glutamic acid) were also in-

cluded within runs to identify any drift and ensure accuracy

and full combustion of the samples during analysis. Selected

samples for sediment material TPC and PON were reanal-

ysed on an elemental analyser (EuroEA) not coupled to a

mass spectrometer, using the same method and standard ma-

terials. Total sinking particle flux is the sum of both the par-

ticulate matter concentrations determined in sediment pow-

der and supernatant.

Filters for total particulate phosphorus (TPP) were placed

in 40 mL of deionised water (Milli-Q, Millipore) with oxidis-

ing decomposition reagent (MERCK, catalogue no. 112936)

and autoclaved for 30 min in a pressure cooker to oxi-

dise the organic phosphorus to orthophosphate. Samples

were allowed to cool before concentrations were determined

by spectrophotometric analysis as for dissolved inorganic

phosphate concentrations according to Hansen and Korol-

eff (1999).

For biogenic silica (BSi), samples were collected on cel-

lulose acetate filters (0.65 µm, Whatman) as described above

for TPC, PON and TPP. Particulate silicate was leached from

filtered material using 0.1 mol L−1 NaOH at 85 ◦C for 2 h and

15 min, neutralised with H2SO4 (0.05 mol L−1, Titrisol) and

analysed as dissolved silicate by spectrophotometry accord-

ing to Hansen and Koroleff (1999).

Content of TPP and BSi in finely ground sediment trap

samples was determined from subsamples and analysed ac-

cording to methods described for water column samples.

2.5.4 Dissolved organic matter (C, N, P)

For dissolved organic carbon (DOC) and total dissolved

nitrogen (TDN) analyses, 35 mL of sample was filtered

through pre-combusted GF/F filters (450 ◦C, 6 h) and col-

lected in acid-cleaned and combusted glass vials (450 ◦C,

6 h), acidified with HCl to pH 1.9, and then flame-sealed

and dark-stored in a fridge (4 ◦C) for subsequent analysis.

DOC and TDN concentrations were determined using a high-

temperature catalytic combustion technique with a Shimadzu

TOC-TN V analyser following Badr et al. (2003). Acidi-

fied deep Sargasso Sea water, preserved in glass ampoules

and provided by D. Hansell (University of Miami), served

as a certified reference material. Our analytical precision,

based on the coefficient of variation (SD/mean) of consec-

utive measurements of a single sample (generally between

three and five injections), was typically < 1 %. Dissolved or-

ganic nitrogen (DON) concentrations were calculated from

TDN by the subtraction of the inorganic nitrogen concentra-

tions.

Dissolved organic phosphorus (DOP) samples were col-

lected as for DOC and TDN but stored at −20 ◦C in acid-

rinsed, high-density polyethylene (HDPE) bottles. Total dis-

solved phosphate was decomposed to inorganic phosphate

using an oxidising solution and microwave radiation (MARS

5X microwave, CEM) before analysis according to Hansen

and Koroleff (1983). DOP concentrations were calculated

from total dissolved phosphate by subtracting dissolved inor-

ganic phosphate concentrations. Samples for DOP were only

taken until t30. For further details, please refer to Nausch et

al. (2015).

2.5.5 Phytoplankton pigments

Samples for fluorometric chlorophyll a (Chl a) determina-

tion and for phytoplankton pigment analyses by reverse-

phase high-performance liquid chromatography (HPLC)

www.biogeosciences.net/12/6181/2015/ Biogeosciences, 12, 6181–6203, 2015
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were collected as described for POM with care taken to min-

imise exposure to light. Size fractionation for HPLC samples

was achieved by pre-filtration using a 20 µm mesh and 2 µm

membrane filters (Nuclepore) and sampling was undertaken

every fourth day, except for between t31 and t39, where sam-

pling occurred only on t31, t33 and t39 (Table 2). Filtration

volume for the total and < 2 µm fraction as well as for Chl a

was 500 mL, whereas for the large fraction (> 20 µm) volume

ranged between 3000 and 5000 mL. All HPLC samples were

stored at −80 ◦C for under 6 months and Chl a samples at

−20 ◦C overnight until analysis.

Pigments from both fluorometric and HPLC analyses were

extracted in acetone (90 %) in plastic vials by homogeni-

sation of the filters using glass beads in a cell mill. After

centrifugation (10 min, 800× g, 4 ◦C) the supernatant was

analysed on a fluorometer (TURNER 10-AU) to determine

Chl a concentrations (Welschmeyer, 1994). Samples for phy-

toplankton pigment analyses were also centrifuged (10 min,

5200 rpm, 4 ◦C) and the supernatant was filtered through

0.2 µm PTFE filters (VWR International). Phytoplankton

pigment concentrations were determined in the supernatant

by reverse-phase high-performance liquid chromatography

(HPLC; WATERS HPLC with a Varian Microsorb-MV 100-

3 C8 column; Barlow et al., 1997; Derenbach, 1969) and

peaks were calibrated with the help of a library of pre-

measured commercial standards. Relative contributions of

phytoplankton groups to total Chl a were calculated using

the CHEMTAX matrix factorisation program (Mackey et

al., 1996). Pigment ratios were adapted accordingly to those

reported for Baltic Sea phytoplankton (Eker-Develi et al.,

2008; Schluter et al., 2000; Zapata et al., 2000). The size frac-

tion 2–20 µm was calculated as < 2 and > 20 µm subtracted

from the total size fraction.

2.6 Statistical data treatment

As in previous mesocosm experiments, an fCO2 gradient

was chosen for reasons as outlined in Schulz et al. (2013).

Linear regression analyses were used to determine the rela-

tionship between average fCO2 and average response of the

variables during each experimental phase. Outliers were de-

tected based on Grubb’s test (p < 0.05). This test was applied

to all treatments by experiment phase to account for tem-

poral development of each variable. Detected outliers were

not included in the calculation of experiment phase average.

Exceptions to outlier exclusion include biogenic silicate con-

centrations in M8 on t23 because all data were higher on this

particular sampling day, and C : N in total POM on t19 in M8

because the C : N in this treatment was also markedly higher

than other treatments on the following sampling day (t21).

The same line of reasoning for the latter also applies to the

contribution of cryptophytes to total Ch a M8 on t17 and all

five outliers in contribution of euglenophytes to total Chl a

detected in Phase III for the same line of reasoning as (b). All

data points are included in the figures, with excluded out-

liers clearly marked. Linear regression analyses and outlier

detection and exclusion were undertaken using R software

(http://www.r-project.org/).

3 Results

3.1 Variations in temperature, salinity and

oceanographic conditions

Conditions in the Tvärminne Storfjärden at the beginning of

the experiment and during mesocosm closure were typical

for the early summer season. Daily solar irradiance was at

the annual peak (summer solstice) and surface water temper-

atures were ∼ 10 ◦C. Daily average water column tempera-

ture was highly variable over the experiment ranging from

8.0 to 8.5 ◦C at the beginning of the experiment to 16 ◦C

on t16 (Fig. 4). Temperature variations as well as the first

CO2 manipulation on t0 were used to define different ex-

perimental phases (Phase 0= t − 5 to t0, Phase I= t1 to

t16, Phase II= t17 to t30, Phase III= t31 to t43). Warm-

ing occurred over the first 15 days and average water col-

umn temperatures peaked at 16 ◦C (Phase I). A cooling phase

(Phase II) occurred until t31 (∼ 8 ◦C), followed by a second

warming period (Phase III) which continued until the end

of the experiment, reaching around 12 ◦C on average in the

water column (Fig. 4 and 5c). The cooling in Phase II oc-

curred around the same time as a period of lower incom-

ing PAR between t15 and t25 (land-based PAR measure-

ments, Fig. 6a). Surface water temperatures reached a maxi-

mum of 18 ◦C with a surface-to-depth gradient of 6 ◦C. The

water column in the mesocosms remained thermally strati-

fied throughout the study according to daily CTD profiles.

Stratification strength, defined here as the potential density

anomaly (σT ) difference between the surface 10 m and bot-

tom 7 m above the sediment trap in each mesocosm, was vari-

able but lower in Phase I than in II and III. Detected changes

in density over time were largely driven by changes in tem-

perature within the mesocosms as there was only a minimal

increase in salinity during the experiment probably due to

evaporation (Fig. 5). Here, M8 was arbitrarily selected as

representative of all mesocosms in Figs. 5 and 6. A typical

daily difference in measured average water column tempera-

ture and salinity between mesocosms was 0.04 ◦C and 0.01,

respectively. The increase in salinity on t45 is from addition

of a calibrated salt solution for mesocosm volume determina-

tion. A notable decrease in temperature and increase in salin-

ity in the archipelago between t15 and t31 coincided with

a period of stormy weather and a change in wind direction

from north-easterly to a more westerly direction, indicating

a period of upwelling. During this period, there was slightly

lower incoming PAR, indicating higher cloud cover (Fig. 6).

The depth of average light intensity was relatively stable be-

tween 3.7 and 4.7 m inside the mesocosms and very similar

between treatments over time (Fig. 6).
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Figure 4. Variation in average water column temperature for all

mesocosms and surrounding water during the study period. CO2 en-

richment (after t0) and temperature variations defined experimental

phases. Phase 0: no CO2 treatments; Phase I: warming; Phase II:

cooling; Phase III: second warming phase until end of the experi-

ment at t43. Colours and symbols are described in Table 1.

3.2 Temporal variations in carbonate system

All mesocosms had a similar pHT of around 8.0 prior to CO2

perturbations. Initial CO2 enrichment reached target values

on t4 ranging from ∼ 240 µatm in the two ambient control

mesocosms up to ∼ 1650 µatm in the highest treatment, cor-

responding to a pHT range of ∼ 7.45 to 8.2 (Fig. 7). Aside

from the CO2 addition on t15, fCO2 was allowed to vary

naturally and treatments remained well separated over the en-

tire experiment. The decrease in fCO2 over time in the high

CO2 treatment mesocosms was mostly driven by outgassing

rather than biological uptake as productive biomass remained

relatively low in this experiment (see Sect. 3.3). The effect of

outgassing is evident in the rapid increase in surface pHT
in all treatment mesocosms (Fig. 8). Surrounding water pHT
(0–17 m) ranged from 8.30 initially to 7.75 during the ex-

periment. The profound pHT variability outside the meso-

cosms was due to upwelling of deeper, CO2-rich seawater.

Within each mesocosm, CO2 manipulations over the entire

depth were relatively homogeneous initially. However, a de-

crease in pH in the ambient control mesocosms below 5 m

depth was detected from around t15 onwards, suggesting

heterotrophic activity at depth involving respiration of or-

ganic matter to CO2 (Fig. 8). DIC increased in the control

mesocosms due to gas exchange. This counteracted losses

through uptake by the plankton community leaving the water

column undersaturated in CO2 compared to the overlying at-

mosphere (∼ 230 µatm in control mesocosms vs.∼ 400 µatm

in atmosphere; Schernewski, 2011). Undersaturation of CO2

is typical for post-spring-bloom conditions such as those in

the Tvärminne Storfjärden before the first CO2 enrichment

in this study on t0.

Calcium concentration was 2.17 mmol kg−1, which was

higher than calculated from a typical mean ocean salinity re-

lationship of 1.67 mmol kg−1 (Dickson et al., 2007), because

of high riverine calcium carbonate inputs in the Baltic Sea

(Feistel et al., 2010). We accounted for this in the calcula-

tion of the calcium carbonate saturation state in the water

(Fig. 7d). All mesocosms apart from the two ambient con-

trols during Phase 0 and I were undersaturated with respect

to aragonite (Fig. 7d), and the highest three fCO2 treatments

were also undersaturated with respect to calcite (data not

shown) during the entire experiment.

3.3 Effects of elevated CO2

Out of 105 linear regressions applied to particulate and dis-

solved material from the water column and the accumulated

sediment trap material to analyse the effect of CO2, we de-

tected a significant correlation in 18. These are summarised

in Table 3 and highlighted in the following sections. The ma-

jority of detected responses (14) indicated a positive effect of

CO2, whereas only 4 indicated a negative effect of CO2.

In this study, the low number of fCO2 treatments (six)

due to the exclusion of three mesocosms limited the statisti-

cal power of our conclusions. However the effect of CO2 was

consistent across biogeochemical element pools with higher

sustained particulate matter concentrations and lower dis-

solved phosphate under high CO2. This gives us confidence

that the results of our study are indicative of the response of

this particular plankton community in the Baltic Sea to ocean

acidification.

3.4 Chlorophyll a dynamics

Chl a concentrations were low but typical of a post-spring

bloom period. An increase in Chl a began after t1 and sig-

nified a phase characterised by higher Chl a concentrations

(∼ 2 µg L−1) until t16 (Fig. 9; Phase I: t1 to t16). Chl a

concentrations decreased by ∼ 0.8 µg L−1 in the mesocosms

during Phase II and remained low and relatively stable in

Phase III (∼ 0.9 to 1.2 µg L−1). Between 50 and 80 % of

Chl a was in the upper water column (IWS samples 0–10 m,

Fig. 9c). Chl a concentrations were in general lower (0.9 to

2.5 µg L−1) in the mesocosms than in the surrounding water

(1.2 to 5.5 µg L−1, Fig. 9). CO2-related differences first de-

veloped during Phase II and remained stable during Phase

III, with 24 % higher Chl a in the highest fCO2 treatment in

Phase III (Table 3).

3.5 Dissolved inorganic and organic matter dynamics

No dissolved inorganic or organic nutrients were added to

the mesocosms in this study, and nutrient concentrations re-

mained relatively stable with low inorganic nitrogen concen-

trations throughout the entire experiment. There was low in-

organic nitrogen (∼ 50 nmol L−1 nitrate and∼ 200 nmol L−1

ammonium) relative to phosphate (∼ 150 nmol L−1) in all

www.biogeosciences.net/12/6181/2015/ Biogeosciences, 12, 6181–6203, 2015
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Figure 5. CTD profiles taken between t − 5 and t46 for (a) salinity of surrounding water (Baltic), and (b) salinity, (c) temperature (◦C), and

(d) density anomaly of M8 (σT in kg m−3). M8 profiles are representative of all mesocosms. White vertical lines indicate CTD profiles were

taken every second day after t31.

mesocosms at the start of the study period compared

to the canonical Redfield nutrient stoichiometry (Fig. 10,

C : N : P= 106 : 16 : 1; Redfield, 1958). These concentrations

are within the natural range for this region in a post-

spring/early summer bloom phase (Fig. 10). Fixed nitrogen

availability primarily limited the development of phytoplank-

ton biomass in this system. This is common in the Baltic Sea

following the spring bloom (Matthäus et al., 1999). Tem-

poral dynamics between phosphate and nitrate showed de-

coupling. Nitrate concentrations increased from ∼ 20 up to

∼ 80 nmol L−1 from t1 until the end of the experiment (t43),

whereas phosphate concentrations were slightly more dy-

namic, decreasing in Phase I and increasing in Phases II and

III (Fig. 11). Around t30, differences in phosphate concen-

trations between fCO2 treatments became visible with a sig-

nificant negative relationship between fCO2 and phosphate

concentration in Phase III (Table 3). For further details and

discussion on phosphorus pool sizes, uptake rates and cy-

cling, see Nausch et al. (2015).

Ammonium concentrations decreased from between

∼ 170 and ∼ 280 nmol L−1 on t − 3 to between 40 and

150 nmol L−1 on t39, with a small increase until t43 in all

mesocosms (Fig. 10c). Samples for NH+4 concentration were

lost on t27 and t29 for all mesocosms. The strongest de-

crease occurred during Phase I and concentrations remained

relatively stable in Phase II and III. No significantfCO2

effect was detected during any experimental phase above

the variability in the data. Inside the mesocosms, dissolved

silicate concentrations decreased minimally from around

6.2 µmol L−1 on t−1 to between 5.5 and 5.8 µmol L−1 at the

end of the initial productive Phase I on t16 (Fig. 10d). There-

after, dissolved silicate remained relatively constant until the

end of the experiment. No significant effect of fCO2 on dis-

solved silicate concentrations was detected in any phase.

DOC concentrations ranged between 410 and

420 µmol L−1 on t2 and increased by ∼ 30 µmol L−1

up to between 440 and 450 µmol L−1 on t43 (Fig. 11a). In

Phase III, DOC positively correlated with fCO2 (Table 3).

There was no statistically significant correlation of fCO2

with DON or DOP concentrations in any experimental

phase. No clear temporal trends were distinguished in DOP

concentrations, although DON decreased during Phase I

(Fig. 11). Where data points are missing, DON could not be

corrected for NH+4 concentrations; hence, they are excluded

from the data set.

3.6 Particulate matter dynamics

Particulate C, N and P concentrations were higher in Phase I

than in Phase II and III (Fig. 12), as also observed for Chl a

(Fig. 9a). The importance of small particles was even more

pronounced in Phase III, where up to ∼ 90 % of total partic-

ulate organic matter was attributed to the fraction TPC< 10 in

the four mesocosms sampled for this size fraction (M3, M5,

M6, M8; Fig. 12). In Phase III, there was a significant posi-

tive correlation between fCO2 and average total TPC, PON

and TPP (Table 3).

C : N and C : P ratios in POMtot (Fig. 13) were above the

Redfield ratio (C : N : Ptot = 106 : 16 : 1) during the produc-

tive phase, peaked at the beginning of Phase I (C : Ntot = 7–

8.5, C : Ptot = 110–160) then decreased and became stable

www.biogeosciences.net/12/6181/2015/ Biogeosciences, 12, 6181–6203, 2015
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Figure 6. (a) Daily integrated incoming photosynthetically active

radiation (PAR) measured by a unobstructed sensor on land during

the study period, (b) depth of average water column light intensity

calculated from CTD PAR sensor profiles between 0 and 17 m deep,

and (c) stratification index calculated from σT difference between

the top 10 m and bottom 7 m in M8 as representative of all meso-

cosms. Symbols and colours are described in Table 1.

during Phase II (C : Ntot = 5.8–7.0, C : Ptot = 80–140). Dif-

ferences betweenfCO2 treatments were first observed in

Phase III with higher C : Ntot in the highest fCO2 treatment

(Table 3). No significant effect of fCO2 on N : P or C : P was

detected in any experiment phase or in any size fraction.

BSi decreased from around 1.0 µmol L−1 at the beginning

to ∼ 0.3 µmol L−1 at the end of the experiment (Fig. 12).

During Phase II, there was a statistically significant corre-

lation of BSi with fCO2; however, this was absent in Phases

I and III (Table 3).

3.7 Phytoplankton succession

The contribution to Chl a by different phytoplankton groups

varied over time, although the temporal trends in all

mesocosms appeared remarkably similar (Fig. 14). Results

from CHEMTAX analyses of the phytoplankton community

present indicate that cryptophytes and chlorophytes had the

highest contribution to total Chl a during Phase I and Phase

II/III, respectively. The total abundances of cryptophytes de-

creased from t − 3 to t17 in all mesocosms, succeeded by a

brief euglenophyte peak around t15, with chlorophytes being

the dominant contributor to Chl a from t17 on (Fig. 14). To-
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Figure 7. Dynamics in carbonate chemistry speciation with (a) cal-

culated fugacity of CO2, (b) measured dissolved inorganic car-

bon concentrations, (c) measured pH on total scale and calculated

for in situ temperatures, and (d) calculated saturation state (�) of

calcium carbonate (aragonite). �arag and fCO2 were calculated

from DIC and TA using the stoichiometric equilibrium constants

for carbonic acid of Mehrbach et al. (1973) as refitted by Lueker et

al. (2000). Colours and symbols are described in Table 1.

tal abundances of cyanobacteria, probably non-diazotrophic

Synechococcus, were highest during both Phase II and III.

Diatoms made up a relatively small proportion of the plank-

ton assemblage and contributed to less than 10 % of Chl a in

Phases I and II and between 10 and 25 % in Phase III. Other

key groups detected included dinoflagellates and prasino-

phytes; however, they made up minor proportions (below

15 % of total Chl a) of the plankton community throughout

the entire experiment (dinoflagellate data not shown).

We analysed the relationship between fCO2 and the con-

tribution of phytoplankton groups to Chl a by linear regres-

sion for each experimental phase (Table 4). These analyses

indicated small differences in plankton community compo-

Biogeosciences, 12, 6181–6203, 2015 www.biogeosciences.net/12/6181/2015/
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Figure 8. Vertical pHT profiles taken using a pH sensor on a hand-operated CTD during the experiment in the mesocosms and in the

surrounding water, here named “Baltic”. For details of CTD operations and pHT calculations, see Sect. 2.5.1. White vertical lines indicate

CTD profiles were taken every second day after t31.
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Figure 9. Temporal dynamics in (a) chlorophyll a (0–17 m) includ-

ing surrounding water and (b) percent of total chlorophyll a in the

upper 10 m. Colours and symbols are described in Table 1. Red as-

terisks denote significant positive effect of CO2 (*=p < 0.05).

sition between CO2 treatments. There was a significant neg-

ative correlation between CO2 and total diatom contribution

to Chl a in Phase III. In Phase III, fCO2 was also negatively

correlated to the contribution of cryptophytes to Chl a and

a significant positive effect on the contribution of prasino-

phytes to Chl a.

Linear regression of the absolute concentrations of a num-

ber of phytoplankton pigments in the size fraction < 2 µm

indicated primarily a positive correlation to fCO2 during

Phase I (i.e. Chl a, violaxanthin, neoxanthin), although a sta-

tistically significant effect was not detected in all pigments

(Table 5). In Phase III, where the highest Chl a concentra-

tions were in the size fraction < 2 µm, mass balance calcula-

tions indicated more than 100 % of total Chl a in this size

range, which is not physically possible. These unbalanced

Chl a measurements are the result of measurement uncer-

tainties at such low absolute concentrations, particularly in

the > 20 µm size fraction and of mass balance calculations

between three independent filtrations. As the increase and

decline in Chl a < 2 µm and 2–20 µm fractions, respectively,

are supported by flow cytometry data for picoeukaryote and

nanoeukaryote abundances, we still consider the observed

temporal variations to be robust. A positive correlation be-

tween picoeukaryote abundance and CO2 treatment was also

already detected in Phase I (Crawfurd et al., 2015). Absolute

concentrations of Chl a, Chl b, prasinoxanthin, violaxanthin

www.biogeosciences.net/12/6181/2015/ Biogeosciences, 12, 6181–6203, 2015
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Table 4. Results of linear regression analyses of CO2 and percentage contribution of phytoplankton groups to chlorophyll a. Bold indicates

a significant positive effect, and italic indicates a significant negative effect of CO2.

Phytoplankton group Phase I Phase II Phase III

p Multiple R2 F statistic p Multiple R2 F statistic p Multiple R2 F statistic

Prasinophytes 0.645 0.058 0.248 0.095 0.543 4.751 0.025 0.754 12.270

Cryptophytes 0.995 0.001 0.004 0.463 0.141 0.657 0.041 0.687 8.789

Chlorophytes 0.631 0.063 0.269 0.244 0.317 1.860 0.008 0.857 24.020

Cyanobacteria 0.224 0.341 2.067 0.421 0.167 0.803 0.153 0.437 3.110

Diatoms 0.866 0.008 0.324 0.515 0.113 0.508 0.009 0.849 22.560

Euglenophytes 0.962 0.001 0.003 0.438 0.156 0.741 0.976 0.000 0.001
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Figure 10. Temporal variation in concentrations of (a) dissolved

nitrate+ nitrite, (b) dissolved inorganic phosphate, (c) ammonium,

and (d) dissolved silicate. Colours and symbols are described in Ta-

ble 1. Blue asterisks denote a statistically significant negative effect

of CO2 (**=p < 0.01). Outliers (Grubb’s test; see methods) are in-

dicated by black circles and were excluded from linear regression

analyses.

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


**O

425

450

475

D
O

C
 (

µm
ol

 L
−1

)

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB



17.5

20.0

22.5

25.0

D
O

N
 (

µm
ol

 L
−1

)

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●
● ● ●

●

● ●

●
●

●

● ●

●

●
●

●

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

OO

0.2

0.3

0.4

−5 0 5 10 15 20 25 30 35 40 45

Day of experiment

D
O

P
 (

µm
ol

 L
−1

)

Figure 11. Temporal variation in concentrations of (a) dissolved

organic carbon, (b) dissolved organic nitrogen, and (c) dissolved

organic phosphorus. CO2 treatments are indicated by colours and

symbols described in Table 1. Red asterisks denote a statistically

significant positive effect of CO2 (**=p < 0.01). Outliers (Grubb’s

test; see methods) are indicated by black circles and were excluded

from linear regression analyses.

and neoxanthin in the total fraction had a statistically signifi-

cant positive correlation withfCO2 during Phase III (see Ta-

ble 5). Fucoxanthin concentrations (key pigment in diatoms

but also present in dinoflagellates) andfCO2 were also posi-

tively correlated in the fraction > 20 µm during Phase III. Size

fractionation of HPLC pigment analyses indicated a higher

proportion of Chl a in all treatments in biomass < 2 µm dur-

ing Phases II and III (Fig. 15).
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Table 5. Summary of linear regression analyses done on absolute concentrations of phytoplankton pigments for the three experiment phases

in different size fractions. Bold indicates significant positive effect and italic indicates significant negative effect of CO2 concentration. ND

indicates pigment was not detected. Where no pigment was detected in any phase in any size fraction, results were not included in this table.

Pigment Size fraction Phase I Phase II Phase III

p Multiple R2 F statistic p Multiple R2 F statistic p Multiple R2 F statistic

Chlorophyll a total 0.470 0.137 0.636 0.008 0.854 23.440 0.081 0.573 5.377

< 2 µm 0.014 0.815 17.650 0.658 0.053 0.228 0.659 0.057 0.227

> 20 µm 0.009 0.850 22.720 0.011 0.836 20.440 0.273 0.288 1.616

Chlorophyll b total 0.143 0.454 3.321 0.034 0.713 9.920 0.885 0.006 0.024

< 2 µm 0.815 0.015 0.063 0.726 0.034 0.141 0.369 0.204 1.025

> 20 µm 0.001 0.944 66.940 0.004 0.896 34.320 ND ND ND

Chlorophyll C2 total 0.283 0.278 1.538 0.026 0.750 12.010 0.371 0.202 1.015

< 2 µm 0.877 0.007 0.027 0.437 0.157 0.745 0.876 0.007 0.028

> 20 µm ND ND ND 0.094 0.544 4.765 ND ND ND

Canthaxanthin total 0.031 0.726 10.590 ND ND ND ND ND ND

< 2 µm 0.078 0.582 5.576 ND ND ND 0.973 ND 0.001

> 20 µm ND ND ND ND ND ND ND ND ND

Fucoxanthin total 0.876 0.007 0.028 0.420 0.168 0.807 0.371 0.202 1.012

< 2 µm 0.131 0.472 3.581 0.374 0.200 1.000 0.257 0.304 1.743

> 20 µm 0.649 0.057 0.242 0.370 0.201 1.020 0.037 0.705 9.560

Myxoxanthophyll total 0.056 0.642 7.157 0.755 0.027 0.112 ND ND ND

< 2 µm ND ND ND ND ND ND ND ND ND

>20 µm ND ND ND ND ND ND ND ND ND

Neoxanthin total 0.940 0.002 0.007 0.006 0.880 29.310 0.089 0.555 4.986

< 2 µm 0.030 0.730 10.820 0.660 0.053 0.225 0.820 0.015 0.059

>20 µm 0.005 0.890 32.470 0.003 0.907 39.090 ND ND ND

Prasinoxanthin total 0.040 0.691 8.947 0.001 0.945 68.540 ND ND ND

< 2 µm 0.517 0.112 0.504 0.072 0.595 5.883 0.503 0.119 0.539

>20 µm 0.001 0.951 77.440 0.003 0.917 44.360 ND ND ND

Violaxanthin total 0.030 0.731 10.840 0.002 0.929 52.580 0.035 0.711 9.839

< 2 µm 0.017 0.797 15.710 0.854 0.010 0.038 0.882 0.006 0.025

>20 µm 0.002 0.926 49.770 0.002 0.925 49.480 0.982 ND 0.001

3.8 Sinking material flux

The amount of material collected in the sediment traps in

each phase reflected biomass (here POM and Chl a) build-

up from the water column. We calculated that > 84 % of total

carbon sinking into the sediment trap was collected during

Phases I and II and less than 16 % during Phase III (Fig. 16).

This corresponds to average accumulation rates (±SD) of

0.303± 0.011, 0.203± 0.033 and 0.094± 0.029 µmol C L−1

day−1 across all mesocosms in Phases I, II and III, respec-

tively. No significant CO2 trends were detected during any

phase with regard to the total amount of C, N, P and BSi in

the sediment trap material.

4 Discussion

4.1 Phase I: productive phase with high organic matter

turnover

Phase I (t1 to t16) was characterised by the highest sustained

Chl a and particulate matter concentrations in the water col-

umn. Relatively high light availability, particularly between

t6 and t15 (Fig. 6a), accompanied by increasing water col-

umn temperatures likely supported autotrophic growth. How-

ever, no increase in particulate matter pool size was observed

in any treatment during this productive phase. Instead car-

bon was diverted into the sinking particle flux and DOC pool

(Fig. 11) with a net daily accumulation of DOC of between

10 and 15 % of the total TPC pool between t3 and t13. As

inorganic nitrogen availability was very low, we assume this

is due to carbon overconsumption (Toggweiler, 1993). Thus,

organic matter turnover in the system appeared to be high

during this period, although overall phytoplankton biomass

production was limited by low inorganic nitrogen availabil-

ity.

Although phytoplankton carbon fixation is expected to be

stimulated by increased CO2 availability (Hein and Sand-

Jensen, 1997; Losh et al., 2012; Riebesell et al., 2007), pre-

vious CO2 enrichment experiments using natural plankton

assemblages under various conditions of nutrient repletion in

different regions have shown no consistent response of pri-

mary production to elevated CO2 (Engel et al., 2005; Hop-

kins et al., 2010; Hopkinson et al., 2010; Nielsen et al., 2011;

Riebesell et al., 2007; G. K. Schulz, personal communica-

tion, 2015; Yoshimura et al., 2013). During high organic mat-

ter turnover in Phase I, we detected no statistically signifi-

cant differences in bulk organic matter concentrations or el-

www.biogeosciences.net/12/6181/2015/ Biogeosciences, 12, 6181–6203, 2015
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Figure 12. Temporal dynamics in concentrations of (a) total partic-

ulate carbon, (b) particulate carbon < 55 µm, (c) particulate carbon

< 10 µm, (d) particulate organic nitrogen, (e) total particulate phos-

phorus, and (f) particulate biogenic silica. Colours and symbols are

described in Table 1. Red asterisks denote significant positive ef-

fect of CO2 (*=p < 0.05, **=p < 0.01). Outliers (Grubb’s test;

see methods) are indicated by black circles and were excluded from

linear regression analyses.

emental stoichiometry between CO2 treatments. No effect of

CO2 treatment could be detected in the most abundant, and

presumably most productive, phytoplankton size class (2–

20 µm, Fig. 15). Instead, detected differences between fCO2

treatments in particulate matter in Phase I were mostly con-

fined to pigment concentrations in the smallest size frac-

tion (< 2 µm). Here, pigment concentrations were generally

higher in the highest CO2 treatment (Table 5). This is in line

with flow cytometry counts which revealed a positive effect

of CO2 on the abundance of picoeukaryotes (Crawfurd et al.,

2015.) and is in agreement with studies in the Arctic (Brus-

saard et al., 2013), the subarctic North Pacific (Endo et al.,

2013), and North Atlantic Ocean (Newbold et al., 2012) but

contrasts the results from Richier et al. (2014) from shelf seas

in the north-east Atlantic Ocean. The positive influence of

CO2 on phytoplankton pigment concentrations was also de-

tected in the largest size fraction (> 20 µm) in Phase I; how-

ever, this size class made up only a small portion of total

Chl a (< 10 % Fig. 15, size fractionated pigment analyses).

Thus, small CO2-driven differences in plankton community

structure in the smallest and largest phytoplankton were not

relevant for biogeochemical element cycling in this plankton

assemblage during this productive phase.
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Figure 13. Temporal dynamics of elemental stoichiometry in

particulate organic matter: (a) carbon to nitrogen, (b) nitro-

gen to phosphorus, (c) carbon to phosphorus, (d) carbon to

biogenic silica. Horizontal lines indicate Redfield stoichiometry

(C : N : P : Si= 106 : 16 : 1 : 15; Redfield, 1958). Colours and sym-

bols for different treatments are described in Table 1. Red aster-

isks denote significant positive effect of CO2 (*=p < 0.05). Out-

liers (Grubb’s test; see methods) are indicated by black circles and

were excluded from linear regression analyses.

4.2 Phase II: decline in autotrophic biomass and

organic matter turnover

The distinct changes in the phytoplankton communities in

the mesocosms coincided with the decrease in temperature

during the upwelling even in the archipelago in Phase II

(t17 to t30). Temperature decreases of greater than 10 ◦C in

surface water, as observed in this study, have been reported

for upwelling events during periods of thermal stratification

(Lehmann and Myrberg, 2008) with considerable influence

on the ecosystem productivity (Nômmann et al., 1991). Here

we assume that the combination of higher grazing pressure,

lower PAR and cooler temperatures likely slowed down phy-

toplankton productivity and contributed to decreased phyto-

Biogeosciences, 12, 6181–6203, 2015 www.biogeosciences.net/12/6181/2015/
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Figure 14. Contribution to total chlorophyll a by different phytoplankton groups as calculated by CHEMTAX from HPLC pigment analyses:

(a) cryptophytes, (b) chlorophytes, (c) euglenophytes, (d) cyanobacteria, (e) diatoms, and (f) prasinophytes. Colours and symbols for each

CO2 treatment are described in Table 1. Red asterisks denote significant positive effect and blue asterisk a significant negative effect of CO2

(*=p < 0.05, **=p < 0.01). Outliers are indicated by black circles and were excluded from linear regression analyses.
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Figure 15. Relative contribution of different size fractions to to-

tal chlorophyll a. Size fraction 2–20 µm was calculated as a mass

balance from total fraction and the two size fractions < 2 µm and

> 20 µm. Colours and symbols for different treatments are described

in Table 1. Values larger than 100 % or smaller than 0 % are due to

errors in mass balance calculation.
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Figure 16. Temporal dynamics in (a) collected sediment trap mate-

rial mass and cumulative (b) total particulate carbon, (c) particulate

organic nitrogen, (d) total particulate phosphorus, and (e) particu-

late biogenic silica. Concentrations in (b–e) were calculated based

on individual mesocosm volumes determined at the end of the study.

Colours and symbols for different treatments are described in Ta-

ble 1.

plankton biomass, observed here as a decrease in Chl a, dur-

ing this period (Fig. 9).

An increase in TPCtot : Chl a from ∼ 10 µmol µg−1 on t17

to over 15 µmol µg−1 on t29 indicates that carbon was being

shifted from autotrophic to heterotrophic organisms, assum-
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ing that the Chl a content of the autotrophs remained con-

stant. CTD profiles showed a decrease in pHT below 10 m in

both control mesocosms (Fig. 8) at the same time as surface

Chl a (0 to 10 m) decreased between t18 and t30. This pH

decrease (i.e. CO2 increase) could indicate a possible change

in the equilibrium between dominance of autotrophic (CO2

uptake) and heterotrophic (CO2 release) processes during a

phase of strong cooling in the lower water column. Higher

organic material availability seemed to stimulate bacterial ac-

tivity up until t23 (Hornick et al., 2015). Furthermore, higher

zooplankton abundances after t17 (Lischka et al., 2015), as

well as a peak in abundance of a potential mixotroph around

t17 (Euglenophycaea), also likely contributed to higher or-

ganic matter remineralisation and CO2 release. Hence Phase

II is defined by increased heterotrophy and organic matter

remineralisation. Carbon was primarily channelled into sink-

ing material flux and higher trophic levels rather than accu-

mulating in the DOC pool, mediated by increased zooplank-

ton grazing pressure on primary producers.

Differences between CO2 treatments in the dissolved and

particulate matter pools developed during the Chl a decrease

and apparent increase in net heterotrophy in Phase II. In ad-

dition, size-fractionated pigment analyses indicated a shift in

phytoplankton community size to smaller organisms with up

to ∼ 90 % of Chl a in phytoplankton < 2 µm at the end of

Phase II. This was not caused by a remarkable gain in Chl a

in the smaller size class but instead due to Chl a loss in the

larger size class, which we think was driven by high graz-

ing pressure from abundant zooplankton at this time (Lis-

chka et al., 2015). This removal of larger phytoplankton un-

masked the underlying positive CO2 response of picoplank-

ton that was already present since Phase I but now became

clearly visible. In other words, a positive CO2 effect on pi-

cophytoplankton seemed to be present throughout the entire

experiment. However, their ecological and biogeochemical

relevance within the plankton community was too small ini-

tially, so that the CO2 effect was not detectable in the other

bulk biogeochemical element pools.

Interestingly, measured carbon fixation rates did not show

any fertilising effect of CO2 (Spilling et al., 2015), whereas

both respiration (Spilling et al., 2015) and bacterial pro-

duction rates between t14 and t23 (Hornick et al., 2015;

Nausch et al., 2015) were lower at higher CO2. This suggests

slower net particulate matter loss rather than increased pro-

duction under ocean acidification (see Hornick et al., 2015,

and Spilling et al., 2015) in this issue for more on this topic).

4.3 Phase III: inactive plankton community

While temperature increased again during Phase III, there did

not seem to be any recovery of phytoplankton biomass to the

same level as in Phase I. In Phase II autotrophic growth was

apparently dampened so severely that it could not recover

within the duration of this study and was likely strongly con-

trolled by high zooplankton grazing pressure. There was very

little change in the amount or stoichiometry of the partic-

ulate or dissolved matter pools, suggesting that production

and loss of particulate matter in the water column were ei-

ther very low or relatively well balanced in Phase III. Only

a small amount of TPC (∼ 1 µmol L−1, ∼ 16 % of total sus-

pended TPC) was collected in the sediment traps, implying

low particulate matter sinking flux strength in this phase. The

positive (picoplankton-mediated) effect of CO2 on particu-

late and dissolved pools unmasked in Phase II was sustained

throughout Phase III in Chl a, TPC, PON, TPP and DIP.

Thus, in this study, higher autotrophic biomass was sustained

under elevated CO2 in this plankton community during the

post-bloom phase and had a significant influence on biogeo-

chemical pool sizes.

Variations in water column particulate matter concentra-

tions did not translate into statistically significant differences

in the amount of accumulated sediment trap material be-

tween CO2 treatments. This may be because the response of

CO2 was the strongest in phytoplankton < 2 µm, which taxo-

nomically were likely to be chlorophytes and prasinophytes

(Fig. 14b and f, Table 4). The unicellular organisms are, how-

ever, too small to sink as individual cells. Instead picoplank-

ton contribute indirectly to carbon export through secondary

processing of sinking picoplankton material (Richardson and

Jackson, 2007). The positive effect of CO2 on particulate

matter pools was reflected positively in the DOC pool, sug-

gesting that a higher proportion of freshly produced or-

ganic matter was directed into the microbial food web, rather

than being exported during the period of low organic matter

turnover in Phase III. A similar channelling of carbon and

the positive CO2 response in the DOC pool was observed

during nutrient-depleted conditions in an Arctic CO2 enrich-

ment mesocosm study (Engel et al., 2013). Here, this could

be a consequence of continued reduced organic matter rem-

ineralisation at elevated CO2 (Spilling et al., 2015), as hy-

pothesised for Phase II (see also Sect. 4.2), although unfor-

tunately no respiration data for Phase III are available.

Based on our results, we hypothesise that, under future

ocean acidification the Baltic Sea in low nitrogen, summer

periods may shift towards a system where more organic mat-

ter is retained for longer time periods in the upper water col-

umn but may not result in increased particulate matter sink-

ing flux.

4.4 Potential ecosystem resilience under elevated CO2

Although a significant, but small, response to CO2 was de-

tected in a number of particulate and dissolved matter pools,

in numerous others no significant effect of CO2 was detected

in any phase (e.g. DON and DOP concentration, N : P and

C : P in POM). The muted response of the plankton commu-

nity and biogeochemistry to elevated CO2 observed in this

experiment might be linked to higher tolerance or resilience

of the plankton community. The Baltic Sea is a highly dy-

namic system with much larger annual temperature, light pe-
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riod, inorganic nutrient, pH, and salinity fluctuations than in

many other major water bodies and the open ocean. Thus

the community present in this study may have consider-

able physiological plasticity through exposure to large nat-

ural diurnal and annual fluctuations in carbonate chemistry

speciation and pH (see also Joint et al., 2011, and Nielsen

et al., 2011). Low nitrogen availability in this study may

have dampened underlying trends particularly in larger phy-

toplankton size classes. In past CO2 enrichment experiments,

nutrient addition amplified the existing effect of CO2 be-

tween treatments (for example Schulz et al., 2013). This is

one of few plankton community experiments where nutri-

ent concentrations were very low initially and concentrations

and nutrient ratios were not manipulated. Such conditions

are representative of a steady-state stratified water column

present in many ecosystems for most of the year.

5 Conclusions

We observed higher post-bloom Chl a, particulate organic

matter and DOC concentrations under elevated fCO2 in

this low nitrogen plankton community. No effect of CO2

was identified in larger organisms (2 to 20 µm) which were

dominant in the phytoplankton community during the pe-

riod of higher productivity in Phase I. Hence their dominance

masked the CO2 signal from picophytoplankton in bulk par-

ticulate and dissolved pools. As a result of the shift in phy-

toplankton community size structure towards dominance of

smaller phytoplankton size classes around 3 weeks after ini-

tial CO2 enrichment, the underlying positive effect of CO2

present on picophytoplankton (< 2 µm) biomass since Phase

I was revealed in particulate and dissolved matter pools. This

signal could not be explained by a detectable increase in car-

bon fixation in this study (Spilling et al., 2015).

Differences in water column biomass did not directly

translate into increased particle sinking flux at higherfCO2.

Instead, higher organic matter concentrations are more likely

due to decreased net respiration at higher fCO2 with the

positive CO2 effect on biomass channelled into the DOC

pool. Alternatively, secondary processing of sinking material

may have removed the CO2 signal present in the water col-

umn particulate matter, driven by picophytoplankton so that

it was not reflected in the collected sinking material during

the study period. Hence we suggest CO2-induced changes in

productivity in the upper water column may be decoupled

from particle sinking flux.

In this study, it took almost 4 weeks until we first ob-

served CO2-related differences in the size and stoichiometry

of some bulk biogeochemical pools. In many other variables,

simulated ocean acidification did not have any significant ef-

fect at all. This slow response or lack of detected effect to

ocean acidification may have been modulated by overall low

inorganic nitrogen availability and high natural pH variabil-

ity in the ecosystem. Therefore we recommend running fu-

ture experiments for as long as practically feasible, focus-

ing on the vast oligotrophic regions and avoiding nutrient

additions. Changes in the abundance of key phytoplankton

groups in steady-state systems due to higher CO2 may un-

derpin sustained fundamental changes in biogeochemical cy-

cling in these regions.
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Abstract
Nitrogen fixation by filamentous cyanobacteria supplies significant amounts of new nitrogen

(N) to the Baltic Sea. This balances N loss processes such as denitrification and anammox and
forms an important N source supporting primary and secondary production in N-limited post-
spring bloom plankton communities. Laboratory studies suggest that filamentous diazotrophic
cyanobacteria growth and N2-fixation rates are sensitive to ocean acidification with potential
implications for new N supply to the Baltic Sea. In this study, our aim was to assess the ef-
fect of ocean acidification on diazotroph growth and activity as well as the contribution of
diazotrophically-fixed N to N supply in a natural plankton assemblage. We enclosed a natu-
ral plankton community in a summer season in the Baltic Sea near the entrance to the Gulf of
Finland in six large-scale mesocosms (volume ∼55 m3) and manipulated fCO2 over a range
relevant for projected ocean acidification by the end of this century (average treatment fCO2

range of 365 – 1231 µatm). The direct response of diazotroph growth and activity was followed
in the mesocosms over a 47 day study period during N-limited growth in the summer plankton
community. Diazotrophic filamentous cyanobacteria abundance throughout the study period
and N2-fixation rates (determined only until day 21 due to subsequent use of contaminated com-
mercial 15N-N2 gas stocks) remained low. Thus estimated new N inputs from diazotrophy were
too low to relieve N limitation and stimulate a summer phytoplankton bloom. Instead, regen-
eration of organic N sources likely sustained growth in the plankton community. We could not
detect significant CO2-related differences in inorganic or organic N pools sizes, or particulate
matter N:P stoichiometry. Additionally, no significant effect of elevated CO2 on diazotroph ac-
tivity was observed. Therefore, ocean acidification had no observable impact on N cycling or
biogeochemistry in this N-limited, post-spring bloom plankton assemblage in the Baltic Sea.
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3.1 Introduction

Nitrogen (N) is an essential element for cell functioning in the biosphere due to its presence
in many important biomolecules such as nucleic acids and proteins. However, in many marine
ecosystems N is considered the limiting nutrient for important cellular processes in phytoplank-
ton (Vitousek and Howarth, 1991), as indicated through a stimulation in carbon fixation and
pigment synthesis through addition of inorganic N (e.g. Moore et al., 2008, 2013). This low N
availability also prevails in post-spring bloom plankton communities in the Baltic Sea, as the
nitrate pool is exhausted during the spring-bloom leaving behind an excess of dissolved inor-
ganic phosphorus (Wasmund et al., 2001). Consequently, filamentous diazotrophic (N2-fixing)
cyanobacteria, in particular heterocystousNodularia spumigena andAphanizomenon flos-aquae,
capitalise on this excess phosphate and increasing water column temperatures in summer months
(Kononen et al., 1996; Pliński and Jóźwiak, 1999; Wasmund, 1997) and commonly form exten-
sive blooms and surface aggregations (e.g. Kahru and Elmgren, 2014).

The atmospheric nitrogen gas (N2) fixed by these heterocystous cyanobacteria during the
summer months forms a key N source for the wider plankton community in the Baltic Sea, since
a significant fraction of the fixed N can be released as ammonium (Ohlendieck et al., 2000;
Ploug et al., 2010; Stal et al., 2003; Wannicke et al., 2013) and dissolved organic N compounds
(Ohlendieck et al., 2007, 2000; Wannicke et al., 2013). Thus in addition to N in diazotroph
biomass, newly fixed N is also available for direct assimilation by phytoplankton and bacteria
and is estimated to support up to 20 – 45% of annual primary production in the Baltic Sea
(Gustafsson et al., 2013). This newN input partly replenishes N loss processes such as anammox
and denitrification in the deep anoxic basins (Vahtera et al., 2007). Furthermore, this fixed N can
also be directly transferred to higher trophic levels through grazing by zooplankton (Engström-
Öst et al., 2011; Hogfors et al., 2014; Wannicke et al., 2013).

Changes in seawater carbonate chemistry due to increased atmospheric CO2 concentrations
are expected to induce changes in phytoplankton physiology. The associated decrease in seawa-
ter pH is called ocean acidification. Numerous single-strain culture studies have investigated the
physiological responses of a variety of diazotrophic organisms and generally indicated increased
N2-fixation and diazotroph growth rates under elevated CO2 (Barcelos e Ramos et al., 2007; Fu
et al., 2008; Hutchins et al., 2007; Kranz et al., 2010; Levitan et al., 2007), with contrasting ev-
idence under iron limitation (Shi et al., 2012) and with freshwater strains of A. flos-aquae (Ya-
mamoto and Nakahara, 2005). Three studies on the common Baltic Sea species, N. spumigena,
produced contrasting results with two studies under phosphate repletion suggesting a negative
effect (Czerny et al., 2009; Eichner et al., 2014), and one study under low inorganic phosphate
availability, indicating a positive effect (Wannicke et al., 2012) of increased CO2 on growth and
N2-fixation rates. This discrepancy may, however, be due to differences in phosphate availability
(Eichner et al., 2014). Considering the contribution of diazotrophs to the N budget and primary
productivity in the Baltic Sea, it is vital to understand the influence of future changes in CO2 on
new N inputs by diazotrophs.

In this mesocosm study, our aim was to assess diazotroph growth and rates of N2-fixation
under a range of CO2 concentrations in a natural plankton community. N limitation of phyto-
plankton growth was reported in the study area in the Finland Archipelago Sea (Kirkkala et al.,
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1997; Tamminen and Andersen, 2007). By utilizing the naturally occurring low N conditions in
the Baltic Sea we wanted to examine the importance of new N inputs by diazotrophic organisms
to the wider plankton community N supply under projected future ocean acidification scenarios.

3.2 Materials and methods

3.2.1 Experimental set-up and sampling

The study took place in the period between June and August 2012 in Tvärminne Storfjärden
which is situated in the Archipelago Sea on the southwestern tip of Finland. Six pelagic meso-
cosms (total volume∼55m3 , KOSMOS, Riebesell et al. 2013) were deployed on 12 June 2012
(day of experiment -10 = t-10, i.e. 10 days before CO2 manipulation) and moored at 59° 51.5’
N, 23° 15.5’ E. The cylindrical mesocosm bags of 2 m in diameter extended from 1.5 m above to
19 m below the water surface and were closed at the bottom by a 2 m long sediment trap funnel
on t-5. A 3 mm net was used to exclude larger organisms or particles before mesocosm closure.

A gradient of CO2 treatments across the mesocosms was established over a four day period
by additions of filtered (50 µm), CO2-saturated seawater evenly distributed in the water column,
as described by Riebesell et al. (2013). CO2 additions were carried out in the afternoons of t0
– t4 not to interfere with the daily sampling. A CO2 addition was also made in the upper 7 m
on t15 to counter strong outgassing in the upper water column. Initial fCO2 ranged from ∼240
µatm in the two ambient control mesocosms to up to 1650 µatm (Fig. 3.1). Unenriched filtered
(50 µm) seawater was added to the two control mesocosms (M1, M5). The seawater used for the
additions to the mesocosms was collected from the Tvärminne Storfjärden from a depth of 10 m
by a pipe connected to the laboratory at the research station.

Depth-integrating water samplers (IWS, HYDRO-BIOS, Kiel) were used to collect water
from 0 – 17 m depth in each mesocosm for analysis of particulate matter, dissolved inorganic
and organic matter, phytoplankton pigments, phytoplankton abundances, carbonate chemistry
variables. Samples for carbonate chemistry variables were taken directly from the IWS on board
the sampling boat whereas all other samples were pooled in 10 L plastic carboys and stored on
board in the dark until sub-sampling on shore (Paul et al., 2015). Particulate matter collected
in the sediment trap was pumped to the surface and collected in sampling bottles (Boxhammer
et al., submitted).

Particulate matter (C, N, P) was collected onto GF/F filters (nominal pore size of 0.7 µm,
25 mm diameter, Whatman) by gentle vacuum filtration (pressure <200 mbar). Filters and glass
petri dishes were combusted at 450°C for 6 hours before use. Collected particulate sediment ma-
terial was concentrated, freeze-dried and ground to a homogenous powder, while supernatant
subsamples were filtered and subsequently analysed as for water column material. Total par-
ticulate carbon and nitrogen (TPC and PON) content and isotopic composition were analysed
according to Sharp (1974) using an elemental analyser (EuroEA) coupled by either a Conflo II
to a Finnigan DeltaPlus isotope ratio mass spectrometer or by a Conflo III to a Thermo Finni-
gan DeltaPlus XP isotope ratio mass spectrometer. Stable N isotope composition of particulate
N is reported in permil (%�) relative to the atmospheric N2 standard (AIR). Total particulate
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phosphorus (TPP) concentrations were determined spectrophotometrically following sample di-
gestion as described in Hansen and Koroleff (1999). Samples for biogenic silica (BSi) analyses
were collected on cellulose acetate filters (pore size of 0.65 µm, 25 mm diameter, Whatman) by
filtration as described above for particulate matter. Concentrations were determined spectropho-
tometrically following sample digestion according to Hansen and Koroleff (1999). Samples for
determination of nanomolar concentrations of dissolved inorganic nutrients were filtered (GF/F,
nominal pore size of 0.7 µm, Fisher Scientific). Nitrate and nitrite (hereafter nitrate) and dis-
solved inorganic phosphate concentrations were then analysed colorimetrically using a 2m liquid
waveguide capillary cell (Patey et al., 2008; Zhang and Chi, 2002) and a miniaturised detector
(Ocean Optics Ltd). Concentrations of ammonium (NH +

4 ) were determined fluorimetrically
(Trilogy, Turner) according to Kérouel and Aminot (1997). Total dissolved nitrogen (TDN) was
analysed using a high-temperature catalytic combustion technique with a Shimadzu TOC-TN V
analyser as described by Badr et al. (2003). Samples were filtered (GF/F, nominal pore size of
0.7 µm, Fisher Scientific) to remove particulate material and collected in clean glass vials, acidi-
fied with HCl to pH 1.9 and flame sealed. Filters and vials were combusted for 6 hours at 450°C
before use. Dissolved organic nitrogen (DON) concentrations were calculated by subtracting
the inorganic N concentrations from TDN. Phytoplankton pigments were extracted in acetone
(90%) and after homogenisation and centrifugation, the supernatant was filtered (0.2 µm PTFE
filters, VWR International) and concentrations were determined by reverse phase high perfor-
mance liquid chromatography (HPLC; WATERS HPLC with a Varian Microsorb-MV 100-3 C8
column; Barlow et al. 1997, Derenbach 1969). A library of pre-measured commercial standards
was used to calibrate peaks.

Phosphate excess (P*, Deutsch et al. 2007) was calculated from the dissolved inorganic
phosphate (PO 3–

4 ), nitrate (NO –
3 ) and ammonium (NH +

4 ) concentrations according to:

P* = [PO 3–
4 ]− [NO –

3 ] + [NH +
4 ]

16
(3.1)

Dissolved silicate (DSi) drawdown was calculated as the difference in DSi concentration on a
given sampling day (tx) and t1:

DSi drawdown = [DSi]t1 − [DSi]tx (3.2)

A comprehensive description of mesocosm deployment, set-up and sampling procedures includ-
ing sample collection, handling and analyses for particulate matter, dissolved inorganic and or-
ganic matter, phytoplankton pigments, and sediment trap particulate matter is covered in (Paul
et al., 2015), also in this special issue. An overview table of sampled variables for the entire
experiment, including sampling frequency, is also presented in this accompanying manuscript.

3.2.2 N2-fixation rate incubations

Incubations for determination of N2-fixation rates were carried out according to Mohr et al.
(2010). Seawater used for 15N-N2 enrichments was filtered (polycarbonate Isopore™ filter, pore
size of 0.22 µm, 47 mm diameter) before being pumped through a degassing membrane (Mem-
brana Mini Module G542) attached to a water-jet pump to remove ambient N2. The degassing
system was cleaned with 5% HCl before and after use, followed by cycling with deionised water
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(MilliQ, Millipore) to remove any traces of acid. Seawater from the Tvärminne Storfjärden was
collected from a depth of 10 m and cycled once through the degassing system before collection
in an air-tight, acid-cleaned bag with septum (SKC Tedlar® Bag with single polypropylene fit-
ting) without exposure to the atmosphere. 1 mL of 15N-N2 gas (98 atom % 15N, Sigma Aldrich,
Lot no.: CX0937 until t21, SZ1670V after t21) was injected through the septum into the bag for
every 100 mL of sample. The resulting bubble was dissolved and the 15NN2-enriched seawater
was stored at in situ temperature of the mesocosms until addition to incubation bottles. Seawater
for the blank incubations was prepared in a separate bag using the same process however ambient
air was added instead of isotopically labelled 15N-N2 gas.

Water samples for N2-fixation rate incubations were directly transferred in a gentle manner
from the integrating water sampler into 2.3 L polycarbonate bottles on board the sampling boat
using silicon tubing. The bottles were stored in a closed cool box to control temperature and to
block sunlight until return to the on shore laboratory. Each bottle was weighed and homogenised
by gentle rotation before 70 – 90 mL of water was removed to make space for the 15N-N2-
enriched seawater. Enriched or ‘blank’ seawater was transferred from the Tedlar® bags to the
respective bottles through Tygon™ tubing, immersed in the sample bottle, using a peristaltic
pump tominimise tracer loss through exposure to atmosphere. Incubation bottles were filledwith
no headspace. After addition, the caps were immediately screwed on to seal the bottles air tight.
During these procedures, the bottles were reweighed at each step in order to determine the exact
amount of isotope label inside each bottle. The final 15N-enrichment of dissolved N2 gas in each
bottle was between 1.0 – 3.5 atom %. The bottles were then mixed by gentle rotation and placed
in a climate chamber at in situ temperature and under controlled light conditions (73 ± 1 µmol
photonsm−2 s−1, mean ± S.D). Light was measured using a LI-COR LI-1000 DataLogger light
meter. Measured light intensities were within the range of average depth-integrated (0 – 17 m)
intensities in the mesocosms taken from daily CTD profiles at between 13:30 and 14:30 LT (20 to
300 photonsm−2 s−1). The light-dark cycle followed the natural sunrise-sunset variation which
on the summer solstice (21 June 2012, t-1) was 19:5 hours (L:D). Climate chamber temperature
was programmed to follow the daily integrated water column temperature as recorded by the
afternoon CTD sampling and thus is reported as in situ temperature. Identical light conditions
at each bottle position were achieved by a rotation regime. Bottles were rotated gently to mix and
the bottle position rotated systematically approximately every three hours during the light cycle.
Time of rotation was recorded allowing the calculation of average light conditions between each
individual bottle.

Incubations were terminated after 24 hours by filtration through a combusted (6 h at 450◦C)
and acid rinsed (1% HCl) GF/F filter (0.7 µm pore size, 25 mm diameter, Whatman) under re-
duced vacuum (<200 mbar). Filters were placed in glass petri dishes (combusted 6 h, 450◦C),
frozen immediately and stored at -20◦C until analysis on a mass spectrometer as described for
particulate C and N analyses above and also in Paul et al. (2015). Rates were calculated accord-
ing to Montoya et al. (1996). Estimated internal analytical uncertainty in calculated N2–fixation
rates was less than ±10% when rates were above the detection limit. The detection limit was
determined as a difference in δ15N between initial and final values of larger than 1.0%�. This
corresponded to a calculated rate of more than 0.15 nmol N L−1 d−1.
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3.2.3 Enrichment of mesocosms with 15N-N2

Four of six mesocosms spanning the range of treatments were enriched with the isotopically
labelled 15N-N2 gas to investigate the fate of newly fixed N in this plankton community under
future ocean acidification conditions. A similar approach to Mohr et al. (2010), as described
for the N2-fixation incubations (see Section 3.2.2), was employed on a larger scale. A total of
approximately 1500 L of unfiltered seawater was collected from the Baltic at ca. 10 m depth and
pumped into the laboratory building at Tvärminne Zoological Station. Mesocosm enrichment
occurred in two pulses on t22 and t26. We added this in two steps because of the limited number
of bags available for preparing the 15N-N2 enriched seawater. For the first step, seawater was
filtered and collected as for the N2-fixation incubations in bags (thermoplastic polyurethane,
∼30 L capacity) with a tap and a crimp sealed septum (N20 grey butyl rubber plugs, Macherey
and Nagel) on opposite ends of the bag. The large physical effort required to dissolve the gas by
‘bag-slapping’, as commonly done for small volumes using the method described by Mohr et al.
(2010), led to a modification of the enrichment method for the second enrichment step. Water
was collected and degassed as previously described through the degassing membrane. Instead of
collecting thewater directly after this step, thewater then passed through a secondmembrane that
was floodedwith 15N-N2 gas andwas connected to an overflow systemwhich allowedmonitoring
of gas dissolution (Fig. 3.2). The high surface area in the membrane enhanced the labelled gas
dissolution. This enriched water was then pumped directly into the empty collection bags using
a peristaltic pump without contact with the atmosphere. One complete cartridge of gas (500 mL,
nitrogen - 15N-N2, 98 atom % 15N Sigma Aldrich, Lot no.: SZ1670V, SZ1423V, CX0937) was
added per bag through the septum. A total of 150 L of enriched seawater prepared was added to
four mesocosms (M3, M5, M6, M8), and 100 L unenriched filtered seawater was added to the
other two mesocosms (M1, M7) as isotope label controls on t22 and t26.

3.2.4 Phytoplankton counts

Counts of phytoplankton cells >20 µmwere made from 50 mL samples fixed with acidic Lugol’s
iodine solution (1% final concentration). Samples were concentrated using gravitational settling
and counted under an inverted microscope (ZEISS Axiovert 100) after Utermöhl (1958) and
following the guidelines for determination of phytoplankton species composition, abundance
and biomass for the COMBINE programme provided by HELCOM (Annex C-6). The cells were
counted either on half of the chamber at 100 fold or on 3 to 4 strips at 200 fold magnification.
Filamentous cyanobacteria were counted in 50 µm length units. Plankton were identified where
possible to the species level according to Tomas (1997), Hoppenrath et al. (2009), and Kraberg
et al. (2010). Biovolumes of counted plankton cells were calculated according to Olenina et al.
(2006) and converted to cellular organic carbon quotas by the equations of Menden-Deuer and
Lessard (2000).

3.2.5 Statistical analyses

A linear regression analysis was applied to determine the relationship between mean fCO2

and the mean response of each variable for the three experimental phases (Phase I, II and III),
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as described in Paul et al. (2015). Linear regression analyses were undertaken using R (R Core
Team, 2014).

3.3 Results
Three experimental phases after initial CO2 manipulation on t0 were defined in Paul et al. (2015)
using temperature and chlorophyll a (Chl a) fluctuations: Phase I (t1 – t16), Phase II (t17 – t30)
and Phase III (t31 – t43). These phases are also used to assist with data interpretation in this
manuscript.

3.3.1 Inorganic nutrient availability and nutrient limitation

There were low concentrations of inorganic N present throughout the study period with inorganic
nitrate concentrations in the range of 3 – 107 nmol L−1 (Fig. 3.1). Ammonium (NH +

4 ) was
the dominant source of inorganic N with concentrations ranging between 20 and 289 nmol L−1.
Hence NH +

4 was also included in the calculations of P* (excess phosphate) and inorganic nutrient
elemental stoichiometry according to the Redfield ratio (Fig. 3.3, Eqn. 3.1).

There was an excess of inorganic phosphate to inorganic N in all mesocosms (P*> 0 nmol
L−1, Fig. 3A) and the surrounding waters throughout the study period, with phosphate con-
centrations ranging between 72 and 214 nmol L−1 in the mesocosms and up to 410 nmol L−1

outside the mesocosms in the surrounding Archipelago Sea. Inorganic phosphate concentrations
decreased during Phase I, followed by an increase during Phase II with more stable concentra-
tions in Phase III. Nitrate concentrations increased throughout the experiment with a possible
small drawdown after t39 in all treatments, whereas NH +

4 concentrations were variable. Samples
for NH +

4 analyses were lost on t27 and t29. There did not appear to be any remarkable relation-
ship linking accumulated precipitation (between sampling days), and the increase in nitrate (Fig.
3.1), indicating that wet atmospheric deposition of nitrate into the mesocosms was effectively
prevented by the mesocosm roofs and did not affect the nitrate pool. Precipitation data for the
Hanko weather station (ID no.: GHCND:FIE00142025, latitude: 59.8439, longitude: 23.2517)
were obtained from the National Oceanographic Data Center (NOAA).

3.3.2 Diatom abundance, silicate dynamics and dissolved N utilisation

Diatoms were mostly abundant at the beginning of the experiment with the species Chaetoceros
sp. and Skeletonema marinoi present in the large size class (>20 µm, Fig. 4). Fucoxanthin
marker pigment concentrations in this size class and suspended BSi concentrations (>0.65 µm)
declined markedly during the first few days in Phase I and the dynamics fitted well to the mi-
croscopy counts of bothChaetoceros sp. and S. marinoi. Dissolved silicate (DSi) concentrations
continued to decrease up until t13. No statistically significant difference between CO2 treatments
was detected for diatom abundance (microscopy counts), DSi drawdown or BSi concentrations
(Table 3.1, Fig. 3.4), apart from BSi in Phase II where a positive effect was detected (p = 0.034,
see Paul et al. (2015) for statistical analyses).
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Dissolved organic nitrogen (DON) concentrations ranged between 20 and 25 µmol L−1 (Fig.
3.4). DON concentrations appeared to decrease during Phase I, however considerable variability
in the data meant this DON drawdown could not be accurately quantified.

3.3.3 Diazotroph abundance, N2-fixation rates, and δ15N in particulate N

The abundance of filamentous diazotrophic cyanobacteria remained low throughout the exper-
iment with no significant bloom development (<6 µg C L−1 , Fig. 3.5). The most dominant
species, A. flos-aquae, had a maximum biomass of 4.9 µg C L−1 in the mesocosms (M1, t27),
whereas the next most abundant species, Anabaena sp., had a maximum biomass in the water
column of 0.18 µg C L−1 (M1, t17). Aphanizophyll, a pigment present in A. flos-aquae and
Anabaena sp. (Schluter et al., 2004), was detected in both suspended material in the water col-
umn, and in the sinking material collected in the sediment trap. Concentrations of this pigment
increased at the end of Phase I concurrent with an increase in N2-fixation rates (Figs. 3.5 C and
B respectively). Although numbers in the mesocosms remained generally low, A. flos-aquae
abundances based on microscopy counts and phytoplankton pigment analyses, were highest in
Phases II/III and lowest in Phase I (Fig. 3.5). A. flos-aquae biomass outside the mesocosms was
up to 30 µg C L−1 on t15 and is supported by high Aphanizophyll pigment concentrations of
109 ng (mg TPC)-1 also on t15 (data not shown).

Rates of N2-fixation until t21 ranged from below the detection limit at the beginning of the
experiment, up to 4.4 nmol L−1 d−1 inside the mesocosms and up to 37.9 nmol L−1 d−1 in the
waters outside. We observed a substantial increase in the N2-fixation rates from 2.6 to 4.4 nmol
L−1 d−1 up to 50 to 60 nmol L−1 d−1 between t21 and t23 without any remarkable change in
diazotroph abundance of the same magnitude (Fig. 3.5). This is also evident in A. flos-aquae
biomass-related N2-fixation rates (Fig. 3.6). This increase coincided with the use of a new 15N-
N2 gas bottle with a lot number (Sigma Aldrich, Lot no. SZ1670V) which was reported two
years later as contaminated with 15N-labelled NH +

4 and NO –
3 by Dabundo et al. (2014). The

measured rates from t23 on are therefore not exclusively N2-fixation and are not reliable thus
they were excluded from analyses. In addition to the bottle assays, the 15N-N2 isotope tracer
was also added directly to all mesocosms except for M1 (control) and M7. Therefore these two
mesocosms were not affected by this contamination issue. Hence, the natural abundance δ15N
data from the suspendedmaterial in the water column and the sinkingmaterial from the sediment
trap is reported for the entire experiment (t-3 until t43) for M1 and M7 mesocosms (Figs. 3.5
E and F) but only until t21 for M3, M5, M6 and M8. Any NH +

4 or nitrate added to the four
mesocosms with the isotope tracer was highly isotopically enriched in 15N but was in very low
concentration and so was insignificant for the nutrient budget.

The natural abundance δ15N in suspended particulate N in the mesocosms decreased during
the period of higher Chl a in Phase I from 6.0 ± 0.5%� on t1 to 2.6 ± 0.5%� on t15 (mean ± S.D.).
This indicated potential input of atmospheric N with a low δ15N into particulate matter via N2-
fixation during this period. A sharp decrease in δ15N in the sinking particulate material occurred
on t17, the same day that considerable amounts of Aphanizophyll and Fucoxanthin were found in
the sediment trapmaterial (Figs. 3.5 D and F, Fucoxanthin not shown). This was one day after the
mesocosm walls were cleaned indicating that there were likely diazotrophic species and diatoms
attached to the mesocosm walls. Identification from microscope photos revealed the presence of
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filamentous cyanobacteria with heterocysts in the collected sediment trap material. Aside from
this, there were no remarkable fluctuations in δ15N in either the suspended or sinking particulate
matter pools, including after t21 in M1 and M7 (Figs. 3.5 E and F).

Assessment of in situ N2-fixation rates based on 15N-uptake from the combined dissolved
N pool of NO –

3 , NH +
4 and N2 was abandoned due to high uncertainty in initial 15N enrichment

and concentrations of the combined dissolved N pool, and fast saturation of label uptake after
ca. four days (two successive sampling days). To assess the contribution of diazotrophy to N
supply in the mesocosms, we calculated a theoretical cumulative diazotrophic N input using
measured N2-fixation rates from bioassays up until t21 (M1 = 20 nmol L−1), and then assumed
a constant N2-fixation rate of 4 nmol L−1 d−1 into particulate N between t23 and t43 (total =
80 nmol L−1). The assessment for between t23 and t43 is based on the premise of continued
elevated A. flos-aquae biomass and assuming 50% exudation of fixed N as DON or NH +

4 (<t21
= 20 nmol L−1, >t21 = 80 nmol L−1, total = 100 nmol L−1). This yielded a theoretical new N
input from A. flos-aquae of only 200 nmol L−1, amounting to∼ 5% of mean PON pool standing
stock (3 µmol L−1) and is clearly at the higher end of estimations. We calculated corresponding
N requirement of the plankton community of 27.2 nmol L−1 d−1 from the average phosphorus
uptake rate across all treatments of 1.7 nmol PO 3–

4 L−1 d−1 from t1 – t30 as reported by (Nausch
et al., 2015), by assuming Redfield nutrient uptake stoichiometry (16N:1P). This is almost seven
times larger than estimated daily diazotrophic N inputs of ∼ 4 nmol L−1 d−1, corresponding to
14% of calculated community N requirement.

Low filamentous diazotrophic cyanobacteria abundances exacerbated the inherent sampling
error in both microscopy and pigment analyses due to patchy distribution and the tendency of
filaments to aggregate. Hence, unfortunately no reliable statistical analyses on the effect of
higher fCO2 on diazotroph abundance or marker pigment concentration could be undertaken,
for any phase of the experiment. Any potential CO2 effect on diazotroph abundance was also
not obvious on visual data inspection, and no effect could be detected on N2-fixation rates or
δ15N natural abundance in suspended particulate matter from the water column or sediment trap
particulate matter up until t21 (Table 3.1), when rates were reliable and there was data from a
sufficient number of CO2 treatments.

3.4 Discussion

3.4.1 Effects of elevated CO2 on diazotrophic N inputs

Bioavailable N was present in low concentrations and was probably the limiting macronutrient
in the plankton community. Hence, higher phytoplankton biomass and lower phosphate con-
centrations at higher CO2 observed in this same mesocosm study (Paul et al., 2015), may have
suggested relief of N limited growth by potentially increased N2-fixation. However we have no
strong evidence to support this hypothesis based on N pool standing stocks and estimated dia-
zotrophic N inputs. The only statistically significant, but very minor, correlation was a positive
relationship between CO2 and PON concentrations (Fig. 3.3B, 0.08 µmol L−1, 3% difference in
PON, slope = 1.75× 10−4 µmol L−1 µatm−1, data from Paul et al., 2015).
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No significant difference in N2-fixation rates (until t21) or A. flos-aquae abundance at ele-
vated CO2 compared to the ambient treatments was detected (Table 3.1, Fig. 3.5). Phosphate
turnover rates, a potential indicator of P demand for N2-fixation, were also unaffected by CO2
in Phases I or II (Nausch et al., 2015). These variables N2-fixation and phosphate uptake rates)
provide a more sensitive measure of turnover rates of N and P than assessing changes in N
pool standing stocks in this tightly-coupled regenerative plankton community. Unfortunately,
we only have reliable N2-fixation rates from incubations until t21 due to contamination of 15N-
N2 gas with bioavailable N compounds (Dabundo et al., 2014) and not after ∼ t25 when sig-
nificant CO2-related differences in C and P pools were apparent. Hence, in the later stages of
the experiment (Phase II and III), it is possible that there was a divergence in N2-fixation rates
between treatments that was missed, despite low abundances of A. flos-aquae, the dominant fila-
mentous diazotrophic cyanobacterium present. Nonetheless we estimate that the contribution of
diazotrophy to N supply in the mesocosms over the study duration of 43 days was small (∼200
nmol L−1).

Maximum measured N2-fixation rates of 4.4 nmol L−1 d−1 were low compared to reported
for the Baltic Sea in mid-summer which range from 1.7 up to 550 nmol L−1 d−1 (Farnelid et al.,
2013; Ohlendieck et al., 2000, 2007; Wasmund et al., 2001). This is due to the rather low A. flos-
aquae biomass in the mesocosms compared to literature values (this study: maximum biomass
= 5 µg C L−1 integrated over 0 – 17 m; Gulf of Finland: 22 – 26 µg C L−1 in the surface 5 m, 6
– 7 µg C L−1 at 20 m deep in July, Laamanen and Kuosa, 2005). Thus even if all newly-fixed N
by diazotrophs was transferred to diazotroph and plankton biomass (i.e. PON pool), this small
accumulation would most likely remain below the detection limits in the suspended PON pool
(∼10% = 0.3 µmol L−1). On top of this, any CO2–related differences in N2-fixation would be
near impossible to resolve in this small contribution by diazotrophs.

The absence of any detectable effect may of course be influenced by the relatively low abun-
dances of filamentous diazotrophic cyanobacteria in this study, as temperatures were mostly be-
low temperatures thought to stimulate bloom development (16◦C, (Wasmund, 1997); this study
8 – 16◦C, (Paul et al., 2015)). Nevertheless our results from this CO2 manipulation study are in
agreement with studies from both the marine (Böttjer et al., 2014; Law et al., 2012) and freshwa-
ter (Shapiro, 1997; Yamamoto, 2009) realms which detected no significant effect of decreased
pH/increased CO2 on diazotroph abundance and/or activity in natural plankton communities.
These four independent studies all contradict physiological investigations in single-strain cul-
ture experiments where diazotroph growth and activity was modulated by CO2 availability (e.g.
Barcelos e Ramos et al., 2007; Czerny et al., 2009; Eichner et al., 2014; Fu et al., 2008; Hutchins
et al., 2013; Wannicke et al., 2012). Diazotrophic organisms typically have slower growth rates
than other organisms. Hence any potential influence of ocean acidification on their physiology
may take longer to become apparent in biogeochemical parameters sampled in larger-scale field
studies. However to the best of our knowledge, there are no direct N2-fixation rate measure-
ments from CO2-manipulation studies with A. flos-aquae in the field which could shed light on
any underlying physiological response of this diazotroph and confirm laboratory findings in the
field. Furthermore, high grazing pressure, hence top-down control, particularly after t17 (Lis-
chka et al., in preparation) may have overridden any potential CO2 effect of bottom-up control
on diazotroph growth.
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In addition to these highly visible filamentous N2-fixers, there is growing evidence to support
the role of heterotrophic and non-phototrophic N2-fixation by smaller unicellular organisms in
diverse ecosystems (Halm et al., 2012; Loescher et al., 2014; Moisander et al., 2010; Zehr et al.,
2008) including in the Baltic Sea and Kattegat (Bentzon-Tilia et al., 2015; Farnelid et al., 2009),
which cannot be quantified by common microscopic methods used in this experiment. Hence,
while there appeared to be a good correlation between A. flos-aquae abundance and N2-fixation
rates until t21 in this study, we cannot rule out the contribution of heterotrophic organisms to
the measured rates. However, regardless of the diazotroph community present, N2-fixation rates
were low and diazotrophy made only a small contribution (< 200 nmol L−1) to the N cycle in
this study. Thus we have no direct evidence from observations in this study that N2-fixation or
diazotroph abundance (Fig. 3.5) were significantly influenced by CO2 nor that this could explain
the observed higher particulate matter concentrations or lower phosphate concentrations in the
higher CO2 treatments (Paul et al., 2015) based on hypothesised relief of N-limitation.

In this area of the Baltic Sea, plankton communities, containing filamentous diazotrophic
cyanobacteria, are exposed to large diurnal and seasonal changes in pH (Almén et al., 2014;
Brutemark et al., 2011). In addition, filamentous cyanobacteria form characteristic surface ag-
gregations, similar to the tufts and puffs formed by Trichodesmium. Inside these aggregations,
microenvironments can create substantially different conditions compared to the surrounding
water with large diurnal fluctuations in pH (7.4 vs 9.0) and O2 concentrations (∼150 – 450 µmol
O2 L

−1) and thus also inorganic carbon availability (Ploug, 2008). Hence natural exposure to
highly variable carbonate chemistry conditions may have also played a role in dampening any
potential influence of ocean acidification in this plankton community.

3.4.2 Evidence from N pools of the importance of regenerative production
and effects of CO2

Productivity in this plankton community appeared to be dominated by regenerative production
(sensu Dugdale and Goering 1967) under low nitrate availability during Phase I, as has been
observed in summer plankton communities in the Baltic Sea (Kuparinen, 1987; Sahlsten and
Sörensson, 1989; Tamminen, 1995). DON appeared to be a more important N source than N
derived fromN2-fixation. Any relatively fresh and labile N-rich dissolved organic matter (DOM)
present after the decline of the spring bloomwas likely remineralised by the bacterial community.
Here, simultaneous drawdown of DSi and DON between t-1 and t15 suggests that in particular
diatoms, also persisting from the spring bloom, were beneficiaries of this organic N turnover.

Available NH +
4 (∼100 nmol L−1) could not have supported the DSi uptake (∼0.4 µmol L−1)

as the sole N source based on∼1:1 molar Si:N requirement by diatoms, thus suggesting instead
potential rapid resupply of NH +

4 through remineralisation of organic N by the heterotrophic com-
munity particularly in Phase I and Phase II. Although there is no indication of a high level of NH +

4
production above the variability in the data set, we presume this bioavailable NH +

4 would have
been very quickly assimilated into particulate N in the N-limited plankton community. This rate
of N regeneration probably limited net phytoplankton growth such that significant phytoplankton
biomass could not accumulate in the water column. Nevertheless, neither the readily available
NH +

4 nor the nitrate pool were fully exploited by the plankton assemblage with up to 50 nmol
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L−1 of nitrate and 170 nmol L−1 of NH +
4 remaining at the end of the study period on t43. In fact,

nitrate concentrations continually increased throughout the experiment at an average net rate of
1 nmol L−1 d−1 (Fig. 3.1 C) despite proportionally high phosphate availability. This suggests
a small net imbalance in N cycle processes and may be connected to ammonium inhibition of
nitrate uptake during spring-bloom decline and post-bloom period in the study area (Tamminen,
1995), leading to this small accumulation of nitrate in the water column.

No significant effect of CO2 was detected on the DON pool, nor DSi drawdown, or PON or
BSi cumulative sinking fluxes (see also Paul et al. 2015 in this special issue). Likewise, if there
was any difference in uptake of N from the N-rich DOM pool (N:P ∼80:1) between CO2 treat-
ments, we could not detect the small signal (nmol L−1) outside of the analytical precision (µmol
L−1) of the DON measurements. Thus this organic N drawdown via regenerative production
in diatoms in this study appeared to be either unaffected or immeasurable by simulated ocean
acidification.

Summary

Plankton biomass build-up in this study was limited by low inorganic N availability there-
fore organic N pools were utilised supporting regenerative production during the more produc-
tive period in Phase I, with diatoms benefitting from this N turnover. Estimated N2-fixation
rates and abundances of the most dominant filamentous diazotroph, A. flos-aquae remained
very low, therefore diazotrophs probably made only a minor contribution to overall N supply in
this plankton community. Hence we did not observe relief of N limitation and stimulation of
a summer plankton bloom by non-diazotrophic organisms. Indeed, dissolved inorganic nitrate
present increased throughout the experiment indicating higher supply than consumption, despite
a considerable phosphate excess present.

We detected no significant differences in N pool sizes between CO2 treatments apart from
the PON pool. However, the detected positive effect of CO2 on PON standing stocks was minor
(<3% difference in PON concentration). Thus N uptake rates were well balanced with supply
or any net differences were too small to be detected in N pool sizes across the range of simu-
lated ocean acidification scenarios. In addition, we found no conclusive evidence from our data
until t21 (N2-fixation rates, A. flos-aquae abundances, natural δ15N abundances) that CO2 had a
measurable impact on N inputs via diazotrophy. The absence of any detectable effect may have
been influenced by the low abundances of filamentous diazotrophic cyanobacteria in this study.
However, the lack of response was consistent with other studies of diazotrophic organisms in nat-
ural plankton communities where resource competition with other plankton functional groups
and top-down control may also play important roles in mediating the physiological response of
N2-fixing organisms.

Nonetheless, it appears that increased CO2 may have slightly enhanced the ability of the
N-limited plankton community in the Baltic Sea to exploit the low N sources available thereby
potentially explaining lower phosphate concentrations, higher particulate matter concentrations
and Chl a observed under higher CO2 (Paul et al., 2015). However, we have no direct evidence
of increased new N inputs via diazotrophy or changed N biogeochemistry within the first three
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weeks and no conclusive indirect evidence from N pool sizes up to six weeks after CO2 manip-
ulation. Therefore we conclude that elevated CO2 had no observable impact on the N cycle in
this summer Baltic Sea plankton community.
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Tables and figures

Table 3.1: Summary of linear regression analyses of fCO2 and nutrient stoichiometry, dissolved silicate
drawdown, abundance of large (>20 µm) dominant diatom species present (Chaetoceros sp., Skeletonema
marinoi), N2-fixation rates and stable nitrogen isotope natural abundance. Numbers in bold indicate
variable had a negative correlation with average fCO2. Dashes indicate no regression was completed to
avoid any bias in the conclusions because either no data or no complete data set is available. Degrees of
freedom, n = 4.

Variable Phase p F-
statistic R2 Variable Phase p F-

statistic R2

N2-fixation
rate

I 0.764 0.104 0.025 Chaetoceros
sp.
abundance

I 0.737 0.129 0.031

II – – – II – – –

III – – – III 0.075 5.726 0.589

δ15N in
suspended
particulate
matter

I 0.417 0.819 0.17
Skeletonema
marinoi
abundance

I 0.772 0.097 0.024

II – – – II – – –

III – – – III – – –

δ15N in
sinking
particulate
matter

I 0.289 1.494 0.272 Excess
phosphate
(P*)

I 0.493 0.569 0.125

II – – – II 0.783 0.086 0.021

III – – – III 0.004 37.56 0.904

DSi
drawdown

I 0.927 0.01 0.002 DIN:DIP
(includes
NH +

4 )

I 0.647 0.569 0.125

II 0.52 0.496 0.11 II 0.556 0.412 0.093

III 0.966 0.001 0.002 III 0.797 0.076 0.019
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Figure 3.1: Temporal development in A) calculated fCO2 using measured DIC and pHT, B) chlorophyll
a concentrations, C) dissolved inorganic nitrate concentrations, D) dissolved inorganic phosphate con-
centrations over the study period, E) accumulated precipitation between sampling days recorded at the
Hanko weather station (ID no.: GHCND:FIE00142025, latitude: 59.8439, longitude: 23.2517), and F)
measured dissolved ammonium concentrations. Data for A – D, and F is from Paul et al. (2015) and for
E from National Oceanographic Data Center, NOAA. * = p < 0.05, ** = p < 0.01 where red indicates
positive and blue a negative detected effect of fCO2. Legend indicates colours and symbols for each
mesocosm. Average treatment fCO2 was calculated for each mesocosm between t1 and t43.
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Figure 3.2: Diagram of set-up used for large-scale preparation of 15N-N2-enriched seawater which was
added to selected mesocosms.
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Figure 3.3: Temporal development in A) excess dissolved inorganic phosphate (P*) calculated according
to Eqn. 3.1, and B) suspended particulate organic nitrogen (PON) concentration. Data and statistical
significance is from Paul et al. (2015). Colours and symbols are the same as for Fig. 3.1. ** = p < 0.01
where red indicates positive and blue a negative detected effect of fCO2.
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Figure 3.4: Temporal development in A) dissolve organic nitrogen concentrations (DON), C) dissolved
silicate (DSi) drawdown and E) particulate biogenic silicate (BSi) concentrations (data from Paul et al.
2015), the abundances of the two dominant diatom species determined by microscopy (B, D) and F),
Fucoxanthin marker pigment concentrations (>20 µm), a key pigment in diatoms. Colours and symbols
are the same as for Fig. 3.1. Red asterisk denotes significant positive effect of CO2 (* = p < 0.05).
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Figure 3.5: Variables indicating abundance and activity of filamentous diazotrophic cyanobacteria: A)
biomass of A. flos-aquae calculated from microscopy abundance data, B) N2-fixation rates determined by
stable isotope incubations, C) carbon-normalisedAphanizophyll marker pigment concentration relative as
a proxy for A. flos-aquae abundance in the water column and D) in the sediment trap material, E) natural
abundance δ15N of particulate organic nitrogen (PON) in the water column and F) natural abundance
δ15N in the sinking particle organic nitrogen collected in the sediment trap determined by analyses on
an isotope ratio mass spectrometer. The green shaded area in B) between t23 and t43 indicates when
contaminated 15N-N2 gas was used in incubations (see Dabundo et al. 2014). Colours and symbols are
as described in Fig. 3.1.
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Figure 3.6: A. flos-aquae carbon-normalised N2-fixation rates over the study period. Where data points
are missing before t9, rates were either below detection limit (0.15 nmol N L−1 d−1) or did not coincide
with sampling for phytoplankton abundance counts. Green shaded area between t23 and t43 indicates
when contaminated 15N-N2 gas was used in incubations (see Dabundo et al. 2014) and added to meso-
cosms. Colours and symbols are as described in Fig. 3.1.
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Abstract
Nitrogen fixation is a key source of nitrogen in the Baltic Sea which counteracts nitrogen loss
processes in the deep anoxic basins. Laboratory and field studies have indicated that single-strain
N2-fixing cyanobacteria from the Baltic Sea are sensitive to ocean acidification and warming,
two drivers of marked future change in the marine environment. Here we enclosed a natural
plankton community in twelve indoor mesocosms (volume ∼1400 L) and manipulated pCO2 to
yield six CO2 treatments each two different temperature treatments (16.6◦C and 22.4◦C, pCO2

range = 360 – 2030 µatm). We followed the filamentous diazotrophic cyanobacteria community
(primarily Nodularia spumigena) over four weeks. Our results confirmed results from single-
strain studies, and show that filamentous diazotrophic cyanobacteria may become less compet-
itive in natural plankton communities under ocean acidification due to the negative effects of
elevated CO2 on their growth rate. This may be exacerbated by warming and have consequences
for new nitrogen inputs and primary and secondary production in the Baltic Sea in future.
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4.1 Introduction

The Baltic Sea is a semi-enclosed water body with under high anthropogenic stress due to the
large and highly-populated catchment area (Sweitzer et al., 1996) and long water residence times
of over 30 years due to low water exchange through the Danish Straits (Voipio, 1981). Eutroph-
ication from increased nutrient loads from agricultural run-off has been of particular concern
in the Baltic Sea over the past few decades. This has increased phytoplankton growth, thereby
stimulating oxygen consumption and nitrogen (N) loss processes in the deep anoxic basins, and
increasing the phosphate pool available for supporting bloom development of filamentous, dia-
zotrophic (N2-fixing), and potentially toxic cyanobacteria (Vahtera et al., 2007).

Nodularia spumigena is a filamentous diazotrophic cyanobacteria species found in the Baltic
Sea which commonly blooms during the N-limited summer period. These extensive blooms are
reported as a common occurrence since around 1960’s (Finni et al., 2001) and form an important
annual N source. N. spumigena and other diazotrophic cyanobacteria assimilate the residual
phosphate present after the spring-bloom (Kononen et al., 1996) and fix atmospheric N2, thereby
supplying the wider plankton community with bioavailable N. This N input replenishes N pools
which are lost through annamox and denitrification in the anoxic bottom waters (Vahtera et al.,
2007) and supports between 20-45% of primary productivity in the region annually (Gustafsson
et al., 2013).

The threat of climate change introduces new potential drivers of aquatic ecosystem change:
increasing anthropogenic CO2 emissions not only leads to warming of the atmosphere and the
oceans, but also dissolves and reduces pH in the surface waters (Rhein et al., 2013). These
changes are termed ocean warming and ocean acidification, respectively. Increases in summer
surface temperature of 2-4◦C (Storch et al., 2015), concurrent with an average surface ocean
pH decrease of up to 0.4 pH units (Schneider et al., 2015) are projected for the Baltic Sea by
the year 2100. In some regions such as the Baltic Sea, short-term and seasonal fluctuations
already markedly exceed projected changes (Thomsen et al., 2010). However these fluctuations
may be exacerbated under ocean acidification (Omstedt et al., 2012). Diazotrophic organisms
appear to be sensitive to ocean acidification (Barcelos e Ramos et al., 2007; Czerny et al., 2009;
Eichner et al., 2014; Fu et al., 2008; Hutchins et al., 2007, 2013, 2015; Wannicke et al., 2012)
and warming (Fu et al., 2014). To date there are only a couple of studies from the Pacific Ocean
investigating the effects of elevated CO2 on dizaotrophic organisms in a plankton community
(Böttjer et al., 2014; Law et al., 2012) and the Baltic Sea remains even less studied.

In this mesocosm study, we wanted to stimulate a bloom of N. spumigena and observe the
response of diazotroph growth and activity to future ocean acidification and warming scenar-
ios in a natural plankton community to observe any potential changes in new N inputs. When
using a natural community, important factors such as grazing and resource availability and com-
petition will likely modulate bloom initiation and the response of N. spumigena to increasing
CO2 concentrations, in contrast to the physiological response observed in single-strain culture
studies. This experimental set-up used shallow mesocosms (∼1.5 m deep) with high light avail-
ability, similar to the conditions present in surface waters in the Baltic Sea during summer, where
strong stratification, high light availability and high temperatures encourage development of ex-
tensive blooms of filamentous diazotrophic cyanobacteria. Based on laboratory experiments
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using N. spumigena (Czerny et al., 2009; Eichner et al., 2014), we expected diazotroph activity
and growth to be negatively affected by increased CO2 concentrations under phosphate repletion
but positively affected by increased temperature (Suikkanen et al., 2013), a controlling factor
of diazotrophy in the Baltic Sea (Wasmund, 1997). Furthermore, we anticipated that CO2- or
temperature-related changes in diazotroph activity and growth will be visible in plankton com-
munity biomass due to potential relief of N-limitation in the plankton community.
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4.2 Materials and methods

4.2.1 Experimental set-up and sampling

This mesocosm study took place using the indoor mesocosm facilities at GEOMAR Helmholtz
Centre for Ocean Research Kiel between August 13th and September 13th 2013. In four tem-
perature controlled rooms each with three mesocosms (volume ∼1400 L, surface area ∼ 1.54
m2) we set-up a crossed experimental design with two temperature treatments (cold = 16.5◦C,
warm = 22.5◦C) each containing a range of six target pCO2 treatments spanning ambient (∼500
µatm) up to of 3000 µatm. The temperature in the warm and cold treatments was increased and
decreased by 3◦C, respectively, from ambient temperature to exclude the effect of any potential
temperature shock.

The twelve mesocosms were filled simultaneously on August 13th (t-3 = three days before
first CO2 enrichment) with unfiltered seawater from the Kiel Firth collected from approximately
2 m deep containing a natural summer plankton community from the western Baltic Sea includ-
ing bacteria, phytoplankton and protozoa. In addition, 1.75 L of Nodularia spumigena culture
(cell density = 4.131× 106 cells L−1) was added to each mesocosm on August 14th (t-2) to en-
courage formation of a filamentous diazotrophic cyanobacteria bloom. Mesozooplankton (90%
copepods, mixed species and stages) collected from the Kiel Bight were also added to the meso-
cosms on t-1 at a density of 20 individuals L−1, simulating levels reported for this region in the
summer season (Behrends, 1997) to replenish those lost during mesocosm filling. This addition
was made as described in Garzke et al. (2015).

A light permeable, polyvinylchloride cover on eachmesocosmmaintained a headspace above
the water surface to reduce outgassing of CO2 during the experiment. In each mesocosm an
electrical propeller gently mixed the water and ensured homogenous distribution of particulate
matter and reduced sedimentation. The irradiance and period reflected natural conditions for
this latitude and season as calculated by the astronomic model of Brock (1981). The five spot-
lights (100WHIBay-LED lamps, lamp unit: HL3700 and Profilux II) were computer controlled
(GHL Groß Hard- und Softwarelösungen, Kaiserslautern, Germany). The light:dark cycle of
14.05:9.95 h and included a sunrise/sundown simulation of approximately two hours long and
an average maximum irradiance of 382.7 µmol photons m−2 s−1 around noon. Irradiance was
measured using a LICOR Li-250A light meter.

Regular sampling from all mesocosms took place every Monday, Wednesday and Friday be-
tween t-2 (Wednesday 14th August 2013) and t28 (Friday 13th September 2013) between 07:00
and 09:30 local time (LT). Samples for dissolved inorganic carbon (DIC) were taken directly
from the centre of the mesocosms at approximately 0.5 m depth using flexible silicon tubing.
Samples for total alkalinity (TA) were taken on the previous day to enable analyses in time for
calculating required CO2 enrichments on each sampling day. TA fluctuations over the 48-72
sampling periods were small and thus the difference in sampling timing had minimal influence
on calculation of CO2 system. Dissolved organic matter was also sampled directly from the
mesocosms to minimise the risk of contamination. Water for all other variables (e.g. partic-
ulate matter, dissolved inorganic nutrients) was collected into plastic carboys for subsequent
sub-sampling. Samples for analysis of nutrient concentrations in the water used for the CO2-
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enrichments were collected on the day of mesocosm filling as well as on the last day of CO2
enrichment (t26).

For a more comprehensive description of the experimental set-up, mesocosm infrastructure
and sampling procedures used, see Paul et al. (under revision).

4.2.2 Carbonate system manipulations

A range of CO2 treatments were attained by the addition of CO2-saturated seawater. Different
amounts of CO2 enriched seawater were added to each treatment to set up and maintain a regres-
sion of on average∼420 – 1670 atm pCO2 in the warm treatment and∼365 – 1920 atm pCO2 in
the cold treatments throughout the study period. CO2-enrichment started on t-2 and took place
every sampling day after general sampling until t10 where CO2-enriched seawater was added
every day, apart from t15, t16 and t23, to maintain more stable CO2 treatments. Seawater for the
CO2 enrichments for the whole experiment was collected at the beginning of the study when the
mesocosms were being filled, sterile filtered (0.2 µm) and stored at 15◦C. Water was bubbled
with CO2 gas for at least 6 hours on the day of addition.

4.2.3 Analytical procedures

Carbonate chemistry (TA, DIC)

Samples for total alkalinity (TA) and dissolved inorganic carbon concentrations (DIC)were taken
directly from the centre of each mesocosm and gently pressure-filtered (Sarstedt Filtropur PES
0.2 µm) to exclude particulate material before analysis. DIC samples were collected as gas
samples into 50 mL glass flasks (Schott Duran) with at least 100 mL of overflow. TA was
analysed by potentiometric titration on an autosampler Metrohm 869 Sample Changer and a
907 Titrando Dosing unit according to the open cell method described in Dickson et al. (2007).
DIC was analysed by infrared detection of CO2 by a LICOR LI-7000 on an AIRICA system
(MARIANDA, Kiel). Reported values were calculated as the mean of the three best out of four
measurements with typical precision of 1.5 µmol kg−1. Certified reference material provided by
Andrew Dickson (CRM 115, Scripps Institute for Oceanography of the University of California,
San Diego) was used to correct for any drift during analyses for both TA and DIC between
sampling days and within a run. Carbonate system parameters and pCO2 were calculated using
measured DIC and TA and the carbonic acid dissociation constants of Millero et al. (2006)
in the CO2SYS program (Pierrot et al., 2011) taking into account measured ambient nutrient
concentrations, temperature and salinity.

Dissolved inorganic and organic matter

Dissolved inorganic nitrate (DIN =NO –
3 +NO –

2 ), phosphate (PO 3–
4 ) and ammonium (NH +

4 ) were
filtered (cellulose acetate, 0.8 µm pore size, Sartorius Stedim) and frozen until analysis at -20°C.
Concentrations were determined on an auto-analyser (Skalar, SANPLUS Breda/Netherlands) as
described by Hansen and Koroleff (1999). The actual detection limit varied between sampling
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days but was on average 0.57 µmol L−1, 0.09 µmol L−1 and 0.34 µmol L−1 for DIN, PO 3–
4 and

NH +
4 respectively. Phosphate excess (P*, Deutsch et al. 2007) was calculated from dissolved

inorganic phosphate, nitrate and ammonium concentrations according to:

P* = [PO 3–
4 ]− [NO –

3 ] + [NH +
4 ]

16
(4.1)

For dissolved organic nitrogen and phosphorus (DONandDOP, respectively) analyses, 60mL
of samples was filtered through pre-combusted GF/F filters (450°C, 6 hours) and collected in
acid-rinsed, high density polyethylene (HDPE) bottles and stored at -20°C until analysis. Total
dissolved nitrogen and phosphate were converted to inorganic nitrate and phosphate using an
autoclave (20 mins) and an oxidising solution and concentrations were determined colorimetri-
cally as described by Hansen and Koroleff (1999). DON concentrations were calculated from
total dissolved nitrate by subtracting dissolved inorganic nitrate and ammonium concentrations.
DOP concentrations were calculated from total dissolved phosphate by subtracting dissolved
inorganic phosphate concentrations.

Both DOP concentrations and P* were analysed to detect the as indicators of diazotrophic
activity (Deutsch et al., 2007; Deutsch and Weber, 2012). Filamentous diazotrophic cyanobac-
teria can also use DOP as a source of phosphorus (Unger et al., 2013). N2-fixation also increases
N while consuming P hence differences in DOP drawdown and P* between treatments may be
attributed to differences in N2-fixation.

Particulate matter (C, N, P)

Samples for particulate nitrogen analyses were collected on GF/F filters (Whatman, nominal
pore size of 0.7 µm, diameter 25 mm) by filtration under reduced vacuum (< 200 mbar) between
t1 and t28. Filtration volumes ranged between 100 and 250 mL to ensure sufficient biomass on
the filters for analysis. Samples for analysis by mass spectrometry were stored at -20°C until
analysis before drying overnight at 60°C and packing into tin capsules. Particulate nitrogen was
converted to N2 gas using the method of Sharp (1974), and the stable isotope ratio (15N/14N) was
analysed on a Finnigan DeltaPlus isotope ratio mass spectrometer coupled by a Conflo II to an
elemental analyser (EuroEA). In addition to the standard calibration at the beginning of each run,
standard materials (caffeine, peptone, acetanilide) were also included within runs to identify any
drift and ensure accuracy and full combustion of the samples during analysis. Isotope enrichment
in particulate N (δ15N-PN) is reported in per mil (%�) compared to atmospheric N2 (AIR). Due
to analytical problems (S.D. > 0.2 %� in standard material δ15N) with the samples on t1 (biomass
too low) and t28 (problems with calibration), these data points were excluded from analyses.

The isotopic composition of particulate N (δ15N-PN) can be used as an indicator of dia-
zotroph activity (Carpenter et al., 1997). Atmospheric N fixed by diazotrophs is isotopically
light (Delwiche and Steyn, 1970) thus can be distinguished from uptake of themore 15N-enriched
nitrate (Montoya et al., 2002).
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Statistical analyses

We tested the effects of temperature and measured pCO2 on diazotroph abundance (Nostocales)
and indicators of diazotroph activity (δ15N-PN, P*, DOP) by building non-linear mixed-effects
models (NLME) using the R-package nlme (Pinheiro et al., 2015) and R software (R Core Team,
2014). The experiment was divided into a bloom and a post-bloom phase, as described in Paul
et al. (under revision). AnNLMEwas chosen for this particular analysis because the longitudinal
data set included repeated measures, potentially non-constant correlation between observations
and non-linear variable response (Lindstrom and Bates, 1990).

Diazotroph abundance was zero-skewed therefore data was log-transformed to satisfy the
assumption of normality in the model residuals. We used pCO2 and temperature as fixed effects
to test Nostocales abundance in the first model (pCO2 x temperature). We then tested the effect
of diazotroph biomass, CO2 and temperature on key biogeochemical indicators (δ15N-PN, P*,
DOP) using the model Nostocales abundance x pCO2 x temperature. In both models, mesocosm
was included as a random effect. We simplified themodels to exclude all non-significant terms (p
> 0.05). Normality of residuals and heteroscedascity were inspected visually and satisfied model
assumptions before performing an ANOVA to test significance of each variable. No collinearity
was detected between pCO2 and Nostocales abundance.

4.3 Results

4.3.1 Carbonate system and environmental variables

Temperature treatment levels of 22.4 ± 0.1°C (warm) and 16.6 ± 0.4°C (cold) were reached
(mean ± S.D.) by t2 and remained within 0.4°C of these values until the end of the experiment
on t28. A gradient of CO2 treatments was present from t3 onwards with average pCO2 ranging
from 420 to 1760 µatm in the warm treatment, and from 360 to 2030 µatm in the cold treatment
(Fig. 4.1). However there was a high level of variability within each treatment, particularly in the
highest pCO2 treatments primarily due to the high concentration difference to the atmospheric
level and corresponding high level of outgassing in the shallow mesocosms. Daily additions of
CO2-enriched seawater appeared to improve stability within each treatment.

Salinity ranged between 15.2 and 15.3 (Paul et al., under revision), and TA remained rela-
tively stable and ranged between 1950 and 1970 µmol kg−1. There was a small TA drawdown
later in the study period during the post-bloom phase. This was slightly higher under lower CO2
and higher temperature.

4.3.2 Filamentous diazotrophic cyanobacteria abundances and
contribution to phytoplankton community biomass

Nodularia spumigena was the dominant filamentous diazotrophic cyanobacterium identified in
all the mesocosm. Biomass increased with additions of N. spumigena culture to all mesocosms
with an average biomass on t0 of 3.08 ± 0.50 and 3.07 ± 0.58 µg C L−1 (mean ± S.D.) in the
warm and cold treatments respectively (Fig. 4.2). The next dominant species identified in the
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Nostocales genuswasAnabaena sp. which contributed on average to less than 15%ofNostocales
biomass (N. spumigena = 1.4 ± 1.7 µg C L−1, Anabaena sp. = 0.2 ± 0.5 µg C L−1, mean ± S.D.),
but up to 100% of biomass in some warm treatments during the post-bloom phase when N.
spumigena was no longer present.

Total phytoplankton biomass declined during the experiment and remained low (89.7 ± 66.7
µg C L−1, mean ± S.D.) and within the range of reported values for the Kiel Fjord (Wasmund and
Siegel, 2008). There was a higher variability in starting phytoplankton community biomass on
t-2 between mesocosms in the cold treatment (157.6 ± 49.5 µg C L−1, mean ± S.D) than in the
warmer treatment (168.3 ± 13.1 µg C L−1, mean ± S.D). In general, Nostocales biomass declined
over time, and was considerably lower than other studies with artificial blooms (∼460 µg C
L−1, Engström-Öst et al. 2002) contributing on average to less than 3% of total phytoplankton
biomass throughout the study period. In some cold treatment mesocosms the contribution of
Nostocales to phytoplankton community biomass increased after t20 to up to 23% (Fig. 4.2).

No significant direct effect of temperature was detected but there was a strong effect of CO2
on Nostocales biomass in both the bloom and post-bloom periods and in both temperature treat-
ments. A highly significant interactive effect between CO2 and temperature was detected (p <
0.0001, Table 4.1). Hence biomass was generally highest under low CO2 and low temperature
and lowest under high CO2 and high temperature (Fig. 4.2). Net growth of Nostocales after the
N. spumigena culture addition on t0 was only discernible in the lowest CO2 treatments.

4.3.3 Indicators of diazotrophic activity

While N2-fixation rates were analysed as described by Mohr et al. (2010), contaminated 15N-
N2 gas was used (Dabundo et al., 2014) and thus the measured rates are considered unreliable
for this study. Nevertheless, we analysed δ15N-PN, DOP and P* as indicators of diazotrophic
activity as described in the following two sections.

Stable isotope abundances in particulate nitrogen

δ15N-PN decreased from 3.5 ± 1.2 %� on t3 to reach a minimum of -0.2 ± 1.2 %� on t10 before
increasing again in the post-bloom period to reach 2.2 ± 1.7 %� on t26. There was a significant
negative effect of temperature on δ15N-PN in both the bloom and post-bloom periods (p = 0.0054
and p = 0.0008, Table 4.2), but no significant effect of CO2 concentration. In the post-bloom
period, there was a significant interaction between CO2 concentration and Nostocales abundance
on δ15N-PN which suggested that there was a crossover effect, possibly with some carryover
in the signal from the bloom period. This means that the negative relationship between CO2
concentration and δ15N-PN, insignificant in the bloom phase, became significant in the post-
bloom period and changed to a positive relationship as Nostocales abundances increased between
CO2 treatments (p <0.0001, Table 4.2).
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Inorganic and organic nutrient concentrations

Nutrient concentrations directly after mesocosms were filled on t-3 were 0.6, 1.83 and 0.66 µmol
L−1 for NO –

3 , NH +
4 , PO 3–

4 respectively. NO –
3 and NH +

4 concentrations in almost all samples were
below the detection limits which were on average 0.6 and 0.34 respectively as is common for the
summer season in the Kiel Fjord (Smetacek, 1985). There was an excess of inorganic phosphate
in all mesocosms throughout the study period (Fig. 4.3, 0.33 ± 0.10 µmol L−1, mean ± S.D.),
compared to inorganic nitrogen (N) according to the Redfield ratio of 106C:16N:1P (Redfield,
1958). As NO –

3 and NH +
4 were below detection limits, they are reported as 0 µmol L−1 and P*

therefore was equivalent to PO 3–
4 concentration. During the bloom phase, Nostocales abundance,

pCO2 and temperature all had a significant negative effect on PO 3–
4 (Table 4.2), whereas in the

post-bloom period only temperature still had a significant negative effect (p < 0.0001).

Through the regular additions of CO2-enriched seawater to maintain more constant pCO2 in
the mesocosms, we also inadvertently added small amounts of inorganic nutrients (NH +

4 , NO –
3

and PO 3–
4 ). However overall amounts added (0.017 µmol L−1 NO –

3 , 0.024 µmol L−1 PO 3–
4 , 0.071

µmol L−1 NH +
4 ) were small and remained well below the ambient N pool size (e.g. DON ∼17

µmol L−1, PON ∼ 2 µmol L−1) in the mesocosms. We consider the minor nutrient input during
CO2 manipulations had no remarkable effect on Nostocales growth or relief of N-limitation of
the phytoplankton present. Amounts of added NH +

4 were not of a magnitude shown to affect N.
spumigena growth or activity (Huber, 1986; Lehtimaki et al., 1997; Sanz-Alférez and Campo,
1994; Vintila and El-Shehawy, 2010).

DOP concentrations in the mesocosms were on average 0.32 ± 0.08 µmol L−1 (mean ± S.D.)
over the entire study period and there was no significant effect of time, Nostocales abundance,
pCO2 or temperature.

4.4 Discussion

4.4.1 Ocean acidification had a more significant effect than temperature
on diazotroph growth

In thismesocosm study, rising CO2 suppressed net growth of filamentous diazotrophic cyanobac-
teria of the order Nostocales, predominantly, N. spumigena and Anabaena sp., under a phosphate
excess. Thus, this mesocosm study using a natural plankton community agrees with the results of
two monoculture studies which indicated reduced growth rates in N. spumigena with rising CO2
(Czerny et al., 2009; Eichner et al., 2014). However despite warm temperatures (>16°C), light
and phosphate availability fitting a suggested requirements for diazotrophic growth (Wasmund,
1997), no large bloom of N. spumigena was observed. The small artificial N. spumigena bloom
was sustained for longer in the lowest CO2 treatments in both the warm and cold treatments
indicating net growth (Fig. 4.2). In contrast, there was no clear period of net positive growth
in all CO2 treatments above 1000 µatm (average treatment pCO2) in the warm treatment. The
CO2 treatment levels selected here (up to an average of 2000 µatm) spanned a much wider range
than the widely-recognise projections by 2100 (up to ∼1000 µatm, Ciais et al. 2013) but are
within the natural range of the Kiel Fjord which can reach up to 3000 µatm during late summer
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(Thomsen et al., 2010). Nevertheless the clearest difference between treatments appeared early
on, before pCO2 was close to the target values, indicating a potential threshold for N. spumigena
growth of under 1000 µatm. Similarly, the most significant changes in diazotroph activity and
growth in a variety of taxa in culture were evident across a comparable pCO2 range (Hutchins
et al., 2013) suggesting that most critical changes in diazotroph physiology may occur within
the range of realistic future average pCO2 levels.

Rising temperature has been proposed as a key driver of the observed increased filamentous
cyanobacteria presence in summer in the Baltic Sea (Suikkanen et al., 2013) with suggestions
that future warming will continue this positive trend (HELCOM, 2013). Warmer temperatures
have been shown to promote the development in slow-growing diazotrophs, enabling them to
increase in abundance and effectively compete with other autotrophic organisms in plankton
communities (Paerl, 2012), and stimulate blooms of N. spumigena in the field (Kononen et al.,
1996; Pliński and Jóźwiak, 1999). However, we could not identify any direct relationship be-
tween temperature and Nostocales abundance, in either the bloom or post-bloom phases as the
warm temperature treatment (22.4°C) was exactly in the reported optimum temperature range of
20 – 25°C for N. spumigena growth (Lehtimaki et al., 1994). We only observed a significant ef-
fect on the interaction between temperature and CO2 concentrations. In the highest temperature
treatment, the effect of increasing CO2 was exacerbated during both the bloom and post-bloom
phases. Higher temperature also induced a faster loss of Nostoscales biomass consistent with the
idea that heterotrophic activity and biomass is more enhanced with warming than autotrophic
activity or biomass as shown in food web studies (Biermann et al., 2014; O’Connor et al., 2009;
Wohlers et al., 2009).

Furthermore, elevated CO2 had a stronger effect than higher temperature on Nostocales
biomass. This is contrary to the response of the wider plankton community in this experiment
(Paul et al., under revision) as well as in numerous studies on the interactive effects of CO2 and
temperature in plankton communities (Coello-Camba et al., 2014; Hare et al., 2007; Kim et al.,
2011; Maugendre et al., 2015; Sett, 2014; Sommer et al., 2015) and on growth parameters in
single strain culture experiments in the laboratory (Fu et al., 2007) and structural equation mod-
elling (Alsterberg et al., 2013). This may be due to the experimental design used in this study.
Unlike many previous experiments, where pCO2 has fluctuated with the plankton bloom dynam-
ics (Engel et al., 2008; Schulz et al., 2013), daily additions of CO2-enriched seawater were used
to maintain pCO2 levels as close to target values as possible. Thus, the maintenance of CO2 treat-
ments, and hence maintenance of treatment stress, may have contributed to the comparatively
strong CO2 response in diazotroph biomass in this study. However, we would be careful to ex-
trapolate this lack of any individual temperature effect that we observed outside the framework of
this particular experimental set-up, considering the substantial evidence and widespread agree-
ment in the literature on the critical role of temperature on growth of filamentous diazotrophic
cyanobacteria (Breitbarth et al., 2007; Paerl and Huisman, 2008; Staal et al., 2003) including
in the Baltic Sea (Suikkanen et al., 2013; Wasmund, 1997). Selected temperature treatments
(16.6°C and 22.4°C) may have also spanned the species and strain specific optimum tempera-
ture for Nostocales growth, as observed in other phytoplankton species (e.g. Zhang et al. 2014).
Thus, the warm and cold treatments in this study may lie an equal distance above and below the
ambient temperature for the species and strains present in this study.
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4.4.2 Negative effect of ocean acidification on net diazotroph growth not
reflected in indicators of diazotroph activity

δ15N-PN decreased during the period of highest Nostocales biomass (t3 – t10) in both temper-
ature treatments, thereby indicating potential increased uptake of isotopically light diazotrophic
N into plankton community biomass. Yet there is no direct evidence that δ15N-PN, a possible
proxy for diazotroph activity, was at all affected by CO2, despite the strong negative response to
CO2 observed in Nostocales biomass (Table 4.1, see discussion above).

In contrast to Nostocales abundances, it appears as though temperature had a stronger influ-
ence than CO2 on δ15N-PN. Warmer temperature had a negative effect on δ15N-PN however this
could not be attributed to higher diazotroph biomass (Table 4.2). Additional factors such as an
high importance of regenerative production (Sigman et al., 2009) and differential nitrate isotope
fractionation between phytoplankton species (Needoba et al., 2003) and N source concentration
(Pennock et al., 1996;Waser et al., 1998) also complicate interpretation of this diazotrophic δ15N
signature in δ15N-PN, particularly as exact inorganic N concentrations remain unknown (below
detection limit). Indeed, higher zooplankton abundances (Paul et al., under revision), and pre-
sumably also zooplankton organic matter respiration in the warmer treatments fits well to this
picture and could thereby account for the overriding negative temperature signal on δ15N-PN
(Table 4.2). Hence increased regeneration of isotopically light inorganic nitrogen by zooplank-
ton appears to better explain variation in δ15N-PN than diazotroph activity.

Other indicators of diazotroph activity, such as P*, are also contradictory. On the one hand,
Nostocales abundance had a strongest negative effect on P*, fitting with the idea from Deutsch
et al. (2007) that diazotrophs addN and use P thereby reducing P*. However P*was also strongly
negatively correlated with both CO2 and temperature (Table 4.2), which if true, would suggest
higher N2-fixation activity under higher CO2 and higher temperature. This is in disagreement
with the negative correlation between P* and both Nostocales biomass and CO2 (Table 4.2).
Considering the very low abundances, or even absence of N2-fixing cyanobacteria in the highest
CO2 treatments, we believe that additional factors, not explicitly incorporated in the model used
in the statistical analysis, were more important for determining P* than Nostocales abundance.
Other phytoplankton present were in much higher abundance than Nostocales, thus would have
had a much stronger influence on nutrient concentrations than the dominant diazotrophic organ-
isms present. Further more, non-diaztrophic phytoplankton may have consumed relatively more
P than that dictated by the Redfield ratio (Geider and La Roche, 2002). Hence, while diazotroph
biomass was clearly affected by elevated CO2, we have no clear indication of any temperature or
CO2 effect on diazotroph activity within the study time frame, based on our analysis of δ15N-PN
and P*, as proxies of diazotrophic N supply.

4.4.3 Potential influence of diazotrophs on N supply to the Baltic Sea in
future

The negative growth response of the dominant diazotrophic cyanobacterium N. spumigena to
increasing CO2 reported in physiological studies, verified here in a natural plankton community,
strengthens projections of reduced filamentous diazotrophic cyanobacteria biomass under ocean
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acidification. The direction of this negative physiological response was not modified through re-
source competition with other phytoplankton functional groups or by top-down grazing pressure.
Nostocales did not dominate the plankton community in this study and generally contributed to
less than 1% of total phytoplankton biomass (Fig. 4.2). This is considerably less than field stud-
ies reporting large surface aggregates contributing around 20 to 30% of plankton community
biomass (Andersson et al., 2015; Stal et al., 1999), consequently their influence on biogeochem-
ical pools was limited. However, if we assume that this negative CO2 effect on biomass cascades
through the food web over longer time periods, this may lead to a decrease in diazotroph N in-
puts, with consequences for productivity in the wider plankton community. Results from field
and laboratory experiments suggest that zooplankton growth and development can be supported
by the presence of filamentous diazotrophic cyanobacteria (Brutemark and Engström-Öst, 2013;
Hogfors et al., 2014), particularly during bloom decay, despite their poor food quality and hep-
atoxicity (Karlson et al. 2015 and references therein). This study also supports the idea of
this potential link indicating a negative correlation between both grazing pressure (Paul et al.,
under revision) and diazotroph biomass (this study) with increasing CO2. Hence the poten-
tially negative effect of ocean acidification on diazotroph biomass in future may also reduce
secondary production and therefore also transfer of energy to higher trophic levels such as fish
(Hansson et al., 2007). Nonetheless, the Baltic Sea sedimentary record indicates that ocean
warming increases anoxia (Kabel et al., 2012) which in turns sustains cyanobacterial blooms
through hypoxia-driven phosphate recycling (Funkey et al., 2014) although this may not result
in increased N2-fixation (Neumann et al., 2012). How this negative response of diazotrophs in
the Baltic Sea to warming and acidification may be modulated by hypoxia and eutrophication
remains an open question.
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Tables and figures

Table 4.1: Summary of detected significant fixed effects in mixed effects model analyses for diazotroph
abundances (Nostocales sp.). Initial model tested (pCO2 x temperature) was simplified to remove all
insignificant fixed effects. Bloom and post-bloom indicate t-2 to t10 and t12 to t28 respectively with
degrees of freedom (df) indicated in brackets. Nostocales sp. was log-transformed to satisfy assumption of
normally-distributed residuals in the simplified model. Dashes (–) indicate fixed effect had no significant
effect on variable.

log(Nostocales sp. abundance)

Significant fixed effect
bloom post-bloom

(df = 46) (df = 82)

pCO2 39.243 *** ↓ 9.556 ** ↓

temperature – –

pCO2 x temperature 23.517 *** ↓ 57.044 *** ↓

Table 4.2: Summary of detected significant fixed effects in mixed effects model analyses of and indirect
indicators of diazotroph activity (δ15N in particulate nitrogen (δ15N-PN) and dissolved inorganic phos-
phate concentration (PO 3–

4 ). Initial model tested (Nostocales sp. abundance x pCO2 x temperature) was
simplified to remove all insignificant fixed effects. Bloom and post-bloom indicate t-2 to t10 and t12 to
t28 respectively with degrees of freedom (df) indicated in brackets. Dashes (–) indicate fixed effect had
no significant effect on variable.

δ15N-PN PO 3–
4

Significant fixed effect
bloom post-bloom bloom post-bloom

(df = 35) (df = 69) (df = 55) (df = 81)

Nostocales sp.
abundance – – 23.700 *** ↓ –

pCO2 – – 20.890 *** ↓ –

temperature 8.806 ** ↓ 12.241*** ↓ 8.793 ** ↓ 19.609 *** ↓

Nostocales sp. abundance x
temperature – 16.499 *** ↓ – 7.296 ** ↓

pCO2 x temperature – – – –

Nostocales sp. abundance x
pCO2 x temperature – – – –
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Figure 4.1: Carbonate chemistry variables during the study period: A) and B) calculated pCO2 (µatm),
C) and D) measured total alkalinity (µmol kg−1), and E) and F) measured dissolved inorganic carbon
(DIC, in µmol kg−1), with the left column for the 16.5◦C and the right column for the 22.5◦C treatments
respectively. Vertical line indicates division between bloom and post-bloom phases.
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Figure 4.2: Development of A) and B) filamentous diazotrophic cyanobacteria biomass (order: Nos-
tocales), calculated from microscopy counts of Nodularia spumigena and Anabaena sp. using reported
biovolumes (Olenina et al., 2006) and cellular carbon content (Menden-Deuer and Lessard, 2000); C)
and D) % contribution to phytoplankton community biomass; and E) and F) δ15N-PN (%�) is reported
as potential indicator of diazotroph activity during the study period, with the left column for the 16.5◦C
and the right column for the 22.5◦C treatments respectively. The grey vertical line indicates when the N.
spumigena culture was added to the mesocosms. Colours and symbols are as described in Fig. 4.1.
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Figure 4.3: A) and B) total phytoplankton community biomass (µg C L−1), calculated from microscopy
phytoplankton abundances using reported biovolumes (Olenina et al., 2006) and cellular carbon content
(Menden-Deuer and Lessard, 2000), and C) and D) dissolved inorganic phosphate (DIP in µmol L−1)
dynamics during the study period, with the left column for the 16.5◦C and the right column for the 22.5◦C
treatments respectively. Colours and symbols are as described in Fig. 4.1.
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In this chapter, ideas and common themes arising from the combined knowledge gained in studies
presented in Chapters 2 - 4 are discussed and amalgamated to contribute to a better understanding
of the impacts of ocean acidification and warming on filamentous diazotrophic cyanobacteria
and biogeochemical cycling in N-limited growing seasons and regions such as the Baltic Sea.

Based on this, I then draw attention to and suggest areas where future research efforts should
be made. The considerable methodological issues which limit the scope of conclusions from this
study are discussed including suggestions for future application of an ecosystem scale isotope
tracer approach.

5.1 Potential consequences of ocean acidification and warm-
ing on filamentous diazotrophic cyanobacteria in the
Baltic Sea

In Chapters 3 and 4, results were presented from two plankton community CO2-manipulation
studies with different filamentous diazotrophic cyanobacteria, A. flos-aquae and N. spumi-
gena respectively. Experimental set-up in both mesocosm studies were designed to facilitate
cyanobacteria bloom development by providing conditions fitting the niche for this group with
excess phosphate, low inorganic N, high light intensities and warm temperatures. However in
these two mesocosm studies, abundances of filamentous diazotrophic cyanobacteria remained
well below levels characteristic of annual Baltic Sea blooms. While in Chapter 3, ambient sea-
water temperatures remained below the threshold for cyanobacteria bloom development (16◦C,
Wasmund, 1997) and likely contributed to the absence of a bloom, unidentified factors seem to
have been more important to bloom formation than the phosphate excess and warm temperatures
in Chapter 4. It is unlikely that either system was limited by iron availability as concentrations
are not thought to be limiting in the Baltic Sea (Breitbarth et al., 2009) or in mesocosm studies
where strict trace-metal clean procedures are not followed (L. Hoffmann, pers. comm.).

Despite low abundances, the results of two independent physiological studies on N. spumi-
gena and ocean acidification (Eichner et al., 2014; Czerny et al., 2009) were confirmed in the
indoor mesocosm experiment in Chapter 4. Hence, grazing pressure and resource competition
did not override the direction of the negative physiological growth response to CO2 observed in
culture studies. On this basis, there is increased confidence that the presence of N. spumigena
in the summer in the Baltic Sea may decrease under ocean acidification, with warming poten-
tially enhancing this effect. There was no significant effect of temperature alone on N. spumi-
gena abundances, contrary to current suggestions from the literature (Breitbarth et al., 2007;
Hobson and Fallowfield, 2003; Karlberg and Wulff, 2013; Paerl and Huisman, 2008; Suikkanen
et al., 2013; Yamamoto, 2009). Hence, selected CO2 treatments had a stronger influence on dia-
zotrophic cyanobacteria abundances than the selected temperature treatments in this study. The
upper end of average treatment pCO2 during the study period of 2030 µatm was much higher
than typical pCO2 during N. spumigena blooms during summer, but was within the range of lo-
cally observed pCO2 in the Kiel Fjord in late summer and autumn (Thomsen et al., 2010) . Thus,
the strong negative effect observed even below 1000 µatm in both this mesocosm study (Chapter
3) and culture studies (Czerny et al., 2009; Eichner et al., 2014) implies that the changes in N.
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spumigena abundance in the Baltic Sea may occur within the relevant CO2 range for projected
ocean acidification of up to around 1000 µatm by 2100 (Collins et al., 2013).

Unfortunately, there is no conclusive data on CO2- or temperature related differences in di-
azotroph activity as the more sensitive N2-fixation rate measurements were unreliable due to
contamination of the supplied gas (Dabundo et al., 2014, see also Chapters 3 and 4). It is there-
fore challenging to draw and justify strong conclusions on potential consequences on the Baltic
Sea N cycle based on the available data sets. Nevertheless, it is reasonable to assume that lower
abundances of N. spumigena the dominant filamentous diazotrophic cyanobacterium species in
the open Baltic Sea, observed at higher pCO2 in Chapter 4 would translate into to a decline in
total diazotrophic N inputs in the Baltic Sea in the future, as it is unlikely that such dramatic
loss in abundance could be compensated by any potential large increase in cell-normalised N2-
fixation rates. Considering the importance of N2-fixation to the N cycle in the Baltic Sea, any
decrease in N2-fixation may have marked impacts on benthic and pelagic food webs (Karlson
et al., 2015) and the oxygen inventory below the halocline (Vahtera et al., 2007). However, a
decrease in abundance should not be viewed as an entirely negative consequence of ocean acidi-
fication and warming. N. spumigena is a toxic species of filamentous cyanobacteria, hence fewer
toxic blooms may indeed be of economic benefit to regional tourism and the fishing industry.

5.2 Potential modification of seasonal diazotrophic niche un-
der ocean acidification and warming

The response of an organism to an environmental variable generally has an optimum curve
shape, indicating a particular range where growth (or any physiological process) is possible.
This has been nicely shown for phytoplankton growth in response to temperature (Eppley, 1972)
and more recently for calcification in coccolithophores in response to CO2 (Bach et al., 2011;
Sett et al., 2014). The benefit of increased substrate (carbon) availability with increased pCO2,
is balanced with the costs due to increased presence of an inhibitor (protons) through decreased
pH. Under low pH, extra energy is required to maintain net calcification. The relative success of
Emiliania huxleyi is then dependent on the ratio of cost to benefit: E. huxleyi is only competitive
in this natural environment when this ratio lies above the threshold value (’Cost-Benefit Thresh-
old’, Bach et al. 2015). Hence, in a monoclonal culture study, the range in CO2 where a species
can survive, defines the fundamental niche for CO2, whereas, outside monoclonal culture envi-
ronments additional factors such as grazing pressure and resource availability may increase this
cost-benefit threshold thereby reducing the range in CO2 where the organism remains competi-
tive. This is viewed as the realised niche, where an organism may be found in the environment
(Hutchinson, 1957). As such, the formation of extensive blooms of filamentous diazotrophic
cyanobacteria in the Baltic Sea is due to summer conditions satisfying their niche conditions
with warm temperatures, high light and excess phosphate (see Section 1.2.2).

Using the observations from the indoor mesocosm experiment which manipulated both CO2
concentrations and temperature (Chapter 4), combined with reported threshold on bloom ini-
tiating conditions and the physiological response to pCO2 and temperature from the literature
(Wasmund, 1997; Eichner et al., 2014; Czerny et al., 2009; Eppley, 1972), this same concept
developed by Bach et al. (2015) was applied to growth in N. spumigena in response to CO2 and
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temperature (Fig. 5.1). In principle, this idea can be applied to any species or strain as this
would simply change the thresholds and boundary conditions which need to be satisfied for the
fundamental and realised niche.

Not competitive 

G
ro

w
th

 r
at

e
 Competitive 

Not 
competitive 

Potential shift in realised CO2 
niche under OW 

Growth rate 

Competitive 

=  current average  
          summer conditions pCO2 

Te
m

p
e

ra
tu

re
 

16°C 

~20°C 

OW 

OA 

Realised  
niche box  

cu
rr

en
t  

w
a

rm
in

g
 

a) 

b) 

c) 

0 
0

 

Figure 5.1: Conceptual figure showing how the current realised niche box for N. spumigena may be
influenced by changes in pCO2 (OA= ocean acidification) and temperature (OW= oceanwarming) as well
as how OA and OW may create conditions outside the realised niche (orange arrows). The fundamental
niche box (a), is based on the physiological capabilities of N. spumigena to (b) temperature and (c) pCO2

under two temperature scenarios. Results from studies in this doctoral dissertation and commonly cited
observations from the literature (Wasmund, 1997) were used to define the response curves and the black
horizontal lines defining the thresholds for competitiveness indicated here in (b) and (c). The smaller
realised niche box indicates the conditions where N. spumigena may be found.

The large box (a) defines the fundamental niche for CO2/temperature. That is, in the ab-
sence of grazing pressure and resource competition, such as in a monoclonal culture experiment,
growth in N. spumigena can be expected (Fig. 5.1 (b) and (c)). Within the bounds of the ’re-
alised niche box’, presence and potential bloom formation can be expected in N. spumigena as
it lies within the realised niche of CO2 and temperature range of N. spumigena. Nevertheless
it is important to recognise that the interaction of additional environmental variables with the
CO2 and temperature response curves would in turn modify the area of the realised niche. For
example, in Chapter 4 the negative growth response in N. spumigena to CO2 was exacerbated
in the highest temperature treatment. Hence, shifts in environmental conditions (CO2/pH and
temperature) may not only push N. spumigena outside the range of the realised niche, but also
reduce the width of the niche CO2 conditions (Fig. 5.1 (c)), thereby reducing the overall area of
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the realised niche under ocean acidification and warming.

This can be also viewed on a seasonal basis (Fig. 5.2). A projected temperature increase of
up to 4°C (HELCOM, 2013) would mean that the threshold temperature for bloom development
would be reached earlier in summer. Hence the period where bloom formation is possible is
longer. In addition there is also a minimum in pCO2 after strong drawdown during the spring
bloom (Thomas and Schneider, 1999). However under projections of increased CO2 of up to
1000 µatm (Ciais et al., 2013), this drawdown may not reach current levels of between 100 -
250 µatm in May/June (Thomas and Schneider, 1999). This would have the opposing effect
to increased temperature and reduce the time window where cyanobacteria, with their efficient
carbon concentrating mechanism (Price et al., 2008) are highly competitive and have potentially
positive net growth (Chapter 4, Czerny et al. 2009, Eichner et al.2014) when sufficient excess
PO 3–

4 is present. How the combination of these two factors will play out in determining the
seasonal realised niche for diazotrophic filamentous cyanobacteria such as N. spumigena is yet
to be investigated.
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Figure 5.2: Schematic indicating variation in temperature (top panel) and pCO2 (bottom panel) between
spring and autumn in the Baltic Sea and how this may be expected to change in future. Key temperature
and pCO2 to fit the niche for N. spumigena are indicated in text in the figure. The arrows show how the
temperature window for bloom formation in N. spumigena may expand in future (increase in presence of
seasonal niche), whereas ocean acidification may have the opposite effect.

Neither migration and evolutionary adaptation are explicitly incorporated in either model
above and thus are assumed to be constant. However these may also modify the realised niche
area. Warming of the open ocean is suggested to lead to latitudinal shift in species distribution
(Boyd et al., 2013; Thomas et al., 2012) as organisms maymigrate to remain within their thermal
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tolerance windows (Perry et al., 2005). If migration is not an option, organisms must then either
adapt to the new and changing environmental conditions or face becoming uncompetitive within
the plankton assemblage. However any potential retreat of Baltic Sea species northwards is lim-
ited geographically by the northern enclosed end of the Baltic Sea. In addition these organisms
must also be able to cope or adapt to the decrease in salinity from south to north (Leppäranta and
Myrberg, 2009) and the projected further decrease under climate change (HELCOM, 2013). An
experimental evolution study with Trichodesmium indicates that there is potential for long-term
changes in regulation of N2-fixation due to increased CO2 (Hutchins et al., 2015). Nevertheless,
there is still uncertainty as to how the upregulation of this energetically demanding process may
influence the ability of Trichodesmium to occupy it’s current realised niche in future.

5.3 Variable response of diazotrophic cyanobacteria growth
to ocean acidification

Results from the two mesocosm studies in this dissertation indicated variability in the re-
sponse to the CO2 gradient between these two Baltic Sea species of filamentous, heterocystous
diazotrophic cyanobacteria. This was not expected based on physiological experiments, where
both N. spumigena and A. flos-aquae responded negatively in terms of growth and/or activity in
single-strain culture studies to increased pCO2 and/or decreased pH under replete PO 3–

4 avail-
ability (Yamamoto and Nakahara, 2005; Czerny et al., 2009; Eichner et al., 2014).

The response to CO2 was less clear for A. flos-aquae despite evidence of the sensitivity of
bloom formation in this species to pH (Yamamoto and Nakahara, 2005). However, low abun-
dances and natural patchiness in the distribution of filamentous cyanobacteria may have intro-
duced noise into the data set during sub-sampling thereby masking any potential CO2 effect.
Furthermore, there were a number of differences in the experimental designs in the two studies
such as artificial vs. natural light conditions, plankton community composition and resource
availability, and temperature. One noteable difference between experimental set-ups is that PO 3–

4
concentrations were twice as high in the indoor mesocosm study (Chapter 4), compared to the
study in the Finnish Archipelago Sea (Chapter 3). PO 3–

4 concentration has been hypothesised
to modulate the magnitude or even direction of the CO2-response of a filamentous diazotrophic
cyanobacteria due to shifts in the allocation of energy between cellular processes (Eichner et al.,
2014), as has been suggested for carbon assimilation and N2-fixation in Trichodesmium under
varied irradiance (Kranz et al., 2010). Hence a difference in allocation of energy between PO 3–

4 uptake and N2-fixation in these diazotrophic species may have lead to the different growth
response observed. Lower PO 3–

4 concentrations may have diminished the response of A. flos-
aquae species in the Baltic Sea (Chapter 3), compared to N. spumigena (Chapter 4), thereby
supporting Eichner et al. (2014).

A diverse response to CO2 between taxa has been previously reported between filamen-
tous and unicellular morphologies of tropical diazotrophic species (Trichodesmium, and Cro-
cosphaera respectively, Hutchins et al. 2013) and between diazotrophs of a variety of mor-
phologies and from environments of salinities/temperature (Calothrix, Cyanothece, Nodularia,
Eichner et al. 2014). In the experiments in Chapter 4, a clear negative response in N. spumigena
growth to increased CO2 was observed which contradicts the expected response of diazotrophic
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organisms derived from species such as Trichodesmium sp., where ocean acidification promotes
cellular carbon and N2-fixation (Barcelos e Ramos et al., 2007; Hutchins et al., 2007; Levitan
et al., 2007; Kranz et al., 2010; Garcia et al., 2011; Hutchins et al., 2013, 2015).

While we have an increasing appreciation of the diverse response within autotrophic dia-
zotrophic taxa, the question remains is whether CO2 or pH (or both) is the driving factor(s) in
the cyanobacterial response to ocean acidification. Indeed, the mechanism of potential pH/CO2-
sensitivity remains unknown. Cyanobacteria have an efficient carbon concentrating mecha-
nism which saturates the RuBISCO (carboxylating enzyme for carbon fixation) with CO2 even
when ambient concentrations are low (Price et al., 2008). Hence, in general, cyanobacteria
are thought to be less competitive in plankton communities under ocean acidification and high
CO2. Nonetheless this does not explain the range in direction of autotrophic diazotrophs to in-
creased CO2. Czerny et al. (2009) suggested that lower pH interferes with transport of charged
amino acids between heterocysts and neighbouring vegetative cells, cellular structures which
Trichodesmium and unicellular cyanobacteria do not have. The exact process of fixed N transfer
is not known, however, this intercellular transfer probably occurs within the periplasm, a contin-
uous space between the inner cytoplasmic membrane and the outer membrane of the bacterial
cell wall (Flores et al., 2006; Montesinos et al., 1995), which conceivably may buffer changes
in seawater pH to some degree.

5.4 Nutrient-poor regions and seasons as drivers of change

Biomass in both plankton communities were dominated by small phytoplankton (<2 µm,
Chapter 2, C. Paul, pers. comm.), as is typical in regions and seasons where ambient inorganic
nutrient concentrations are low. There were no clear bloom periods in either mesocosm study.
Instead suspended particulate matter and Chl a concentrations declined, in part due to grazing.
The estimated contribution of filamentous diazotrophic cyanobacteria in Chapters 3 and 4 to
the overall N cycle and other biogeochemical element pools was minimal, primarily due to the
low observed abundances. Yet there were significant detected CO2-related differences in phy-
toplankton biomass, despite very low inorganic N availability which was presumed to restrict
biomass development (Chapter 2). If it is assumed that CO2 is a rate-limiting resource (Low-
Décarie et al., 2014) and nutrient availability limited biomass yield (sensu Liebig), this would
suggest that there was either undetectable but relevant differences in N input from diazotrophs,
or that CO2 was a co-limiting or even the proximate limiting nutrient for picoplankton. This
supported sustained higher biomass of these organisms under higher CO2 and low inorganic N
concentrations.

However, there is no strong evidence from Chapter 2 to support the idea of CO2 as a rate-
limiting resource as CO2-related difference in organic matter pools could be attributed to differ-
ences in respiration and bacterial activity, rather than primary production. Thus, it is difficult to
disentangle any effects of CO2 on net biomass production as nutrient supply via continuous con-
sumption of organic matter and regeneration of inorganic N by zooplankton and bacteria in the
water column capped biomass accumulation. Processes such as amino acid and sugar hydroly-
sis are enzymatically-degraded by bacteria therefore may directly affected by pH (Endres et al.,
2014; Piontek et al., 2010) but not directly by CO2. Evidence from other field studies for stim-
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ulated production under ocean acidification is also inconclusive (Hein and Sand-Jensen, 1997;
Egge et al., 2009; Engel et al., 2013; Kim et al., 2011; Lomas et al., 2012; Sala et al., 2015), thus
giving weight to the idea that organic matter loss processes (respiration, organic matter reminer-
alisation, zooplankton grazing e.g. Lewandowska et al. 2014) are more affected by changes in
pH and temperature than production is by CO2 concentrations under low N availability (Sala
et al., 2015).

Additionally, in nutrient-poor regions, production is generally tightly coupled and organic
nutrient regeneration supports supply along with N2-fixation. Hence, looking at the bigger pic-
ture in terms of biogeochemical cycling can mean that key internal processes and turnover rates
within the N cycle may have be overlooked such as in Chapters 3 and 4. It may take some
time for small, CO2-driven differences in organic matter turnover (e.g. Endres et al. 2014)
to be above analytical detection limits in bulk biogeochemical pools. In Chapter 2, CO2-related
differences in particulate and dissolved matter pools were revealed three weeks after initial CO2-
manipulation, during a low productive phase when picoplankton were the dominant size class
of Chl a-containing organisms. This appeared to be a positive and sustained effect detected over
more than a two week period before the study ended with around 25% difference in particulate
carbon and phosphorus pools sizes between the lowest and highest CO2 treatments (Chapter 2).
A similar positive response to increased CO2 in Chl a was reported by Sala et al. (2015) un-
der low nutrient concentrations with no response observed under high nutrient concentrations
during the 9 day study period. Picoplankton biomass (Chl a as a biomass proxy), responded
positively to increased CO2 regardless of nutrient status.

Many studies on the biological effects of ocean acidification on a plankton community have
ranged from 1.5 days to three weeks (see Appendix, Table 5.1). In others, phytoplankton blooms
were induced via naturally and artificially available inorganic nutrients. Thus, a sustained, and
initially underlying, response in tightly coupled plankton assemblages such as observed in Chap-
ter 2 may have been missed in previous short-term incubations. Small and sustained changes in
these tightly coupled ecosystems have the potential to shift foodweb structure and lead to long-
term change in organic matter fluxes, as alluded to in Chapter 2. Evidence for permanent changes
in regulation of physiological processes from long-term, high CO2 exposure studies with select
phytoplankton is mixed (Hutchins et al., 2015; Schaum and Collins, 2014). Hence, the ques-
tion remains if higher picoplankton biomass and particulate and dissolved matter pools under
elevated CO2 is a sustained or transient response over even longer periods covering multiple
generations and growing seasons.
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5.5 Future research perspectives

The amount of nitrogen fixed biologically is difficult to estimate because of the
heterogeneity of nitrogen-fixing organisms, the heterogeneity of their distribution,
the heterogeneity of the environment in which they function, and our extremely lim-
ited but improving database.

Hardy and Havelka (1975)

This quote by Hardy and Havelka was made in reference to terrestrial N2-fixation 40 years ago,
nonetheless it is also an apt description of the difficulties and current stand of current aquatic
N2-fixation research: there is not only a paucity of data on the distribution and activity of di-
azotrophic organisms (visualised in Luo et al. 2012 and 2014), but also unresolved method-
ological issues, detection of diaztrophy in previously unconsidered environments and organism
groups (Blais et al., 2012; Farnelid et al., 2013; Fernandez et al., 2011; Loescher et al., 2014)
and an incoherent response of diazotrophs across well-recognised diazotrophic taxa (Eichner et
al., 2014; Hutchins et al., 2013).

Current methods to directly estimate N2-fixation rates are continuously improving but still
do not incorporate many key pathways of newly-fixed N. This may mean an even greater under-
estimation of the importance of diazotrophic N in the global N budget than previously suggested
(Großkopf et al., 2012). The picture is even less clear how cell morphology (also interactions
with grazers and symbionts), N2-fixing strategy (autotrophic, heterotrophic) may play in modu-
lating diazotrophic N inputs may interact with environmental drivers such CO2 and temperature.
Detailed here are some experimental approaches, on amicroscopic to plankton assemblage-scale
which could be used to gain a better appreciation of the contribution of diazotrophic organ-
isms within marine foodwebs and how this could be incorporated into studies of environmental
change.

Diazotroph-specific isotope tracer applicable from molecular level pro-
cesses to ecosystem scale studies

Low N ecosystems, such as the Baltic Sea in the summer are typically reliant primarily on
remineralised and/or diazotrophically-fixed N to support autotrophic growth: N fluxes are likely
well-balanced and N pools remain stable. In these nutrient-poor plankton communities, elemen-
tal budgeting is particularly challenging as the absolute changes in biogeochemical pools can be
so small during study periods (usually days to weeks) that it is not detectable above analytical
detection limits. This was a considerable limitation in the studies in Chapters I and II where
most rate measurements were hindered due to methodological problems. A solid estimation of
N2-fixation rates may have enabled the N elemental budget to be closed in the two low N plank-
ton communities studied. Hence, it is difficult to determine if there was any underlying effect of
increased CO2 and/or temperature on diazotrophic N inputs.

Annual diazotrophic N inputs are regarded as very important to the Baltic Sea region and
can be traced throughout the food web (Karlson et al., 2015) via natural abundance isotope
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signals (Loick-Wilde et al., 2012; Rolff, 2000), and genetic material (Engström-Öst et al., 2011).
However, the impact of diazotrophs on particulate and dissolvedmatter pools was minimal, if not
undetectable in both plankton community studies presented in this dissertation (Chapter 2 and
4), possibly due to the low abundances (generally <1% of phytoplankton biomass, Chapter 4).
In Chapter 4, CO2- or temperature-related differences in filamentous cyanobacteria abundances
did not appear to cascade through the food web or into particulate or dissolved N or P pools. A
considerable proportion of the N fixed by filamentous diazotrophs is thought to be retained in
the cell until cell death and degradation during bloom decay, a stage not included in the study
period. Any immediate release and uptake of newly fixed N from N. spumigena (Wannicke
et al., 2013) likely remained below analytical detection limits in dissolved and particulate N
pools. Thus, diazotrophic N may be important on longer time-scales that were not covered in
this study timeframe, is not incorporated in proportions or rates which could be distinguished by
bulk biogeochemical pools, or plankton biomass assessments on this scale of experimentation
when the abundances are low.

In light of the reported contaminated gas stocks, it is critical that the tracer is firstly checked
for presence of isotopically labelled contaminants. If present, these contaminants will interfere
with estimations of N2-fixation, particularly when ambient nutrient concentrations are very low
as described in Chapter 3. However, even if the problem of contamination of the 15N-N2 gas is
excluded, currently accepted methods may not accurately estimate gross diazotrophic N inputs.
Despite a number of studies reporting direct release of NH +

4 or DON by a variety of diazotrophic
species, these 15N-N2 assays only assess uptake into particulate N. Thus how much diazotrophic
N is directly released as dissolved N remains an unknown but important component which may
be largely missed in current estimates of diazotrophic nitrogen inputs. Is this the critical missing
input in the global marine nitrogen budget? A better appreciation of the baseline in N2-fixation
on both a regional and global level is important for tracking future global change. This in it-
self is not a new idea, but is particularly important in light of potentially shifting baselines in
biogeochemical elemental cycling in the aquatic realm.

Considering the high energetic investment that N2-fixation requires, active DON liberation
by diazotrophic organisms (Ploug et al., 2010; Wannicke et al., 2013; Mulholland et al., 2004;
Glibert and Bronk, 1994) seems counterproductive for the N2-fixers. However there is currently
no mechanistic understanding of how this exudation occurs and any critical controls on this
process. Direct release of bioavailable N, in particular NH +

4 and DON, may have a direct impact
on primary productivity or bacterial production and shape the plankton community (Berg et al.,
2003), although this is still poorly understood (McDonald et al., 2010). Filamentous diazotrophic
cyanobacteria reportedly liberate DONmaking the use of the 15N-N2 tracer ideal for probing the
molecular characteristics of freshly produced DON and ensuing microbial reworking of labile
DON over time. It is conceivable that this may be a CO2/pH- and temperature-sensitive process
as suggested for DOC exudation by phytoplankton (Engel et al., 2013; Riebesell et al., 2007;
Taucher et al., 2012). It would be interesting to take closer look at the isotope tracers used in
relation to the reported rates of DON or NH +

4 released is perhaps required to exclude any possible
interference of 15N-labelled dissolved contaminants before any concrete conclusions are drawn
on the magnitude of this process.

Furthermore, diverse heterotrophic bacteria with the ability to fix N2 have been recently dis-
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covered in the Baltic Sea (Farnelid et al., 2013), after these two studies took place. Although
not explicitly studied in this thesis, estimated rates until t21 reported in Chapter 3 include N2
fixed by all organisms larger than 0.7 µm, capturing some bacteria present. Indications from
ecosystems where inorganic N availability is high (Fernandez et al., 2011) and oxygen minimum
zones (OMZs) indicate N2-fixation may be overlooked below the euphotic zone which may in-
ternally balance N-loss at the anoxic-oxic interface (Loescher et al., 2014). Temperature, pH
and particulate and dissolved organic matter availability influence heterotrophic processes with
increased organic matter degradation through changes in bacterial growth and enzyme efficiency
with ocean acidification and warming (Endres et al., 2014; Piontek et al., 2009, 2010). Here,
higher DOC concentrations were observed under elevated CO2 during the steady state period in a
N-starved plankton assemblage indicating potential for stimulated heterotrophic N2-fixation un-
der ocean acidification. In contrast to autotrophic N2-fixation, heterotrophic N2-fixation would
act as a positive feedback on CO2 concentrations via concurrent production of inorganic carbon
with production of bioavailable N.

Assessment of heterotrophic N2-fixation using common analyses in bulk seawater particu-
late matter contains numerous hurdles as it is challenging to accurately estimate only the het-
erotrophic contribution N2-fixation rates, and not N2 fixed by autotrophic diazotrophs who fix N2
in the dark, such as Crocosphaera watsonii and Cyanothece (Berman-Frank et al., 2007; Mohr
et al., 2010). No known cultures of these organisms exist and their physiological characterisation
is poor. Hence how important they are for the N budget, or environmental controls on N2-fixation
in these organisms is still unknown. Widely used incubation methods must be applied carefully
and in combination with genetic marker identification to accurately estimate the contribution
of heterotrophic organisms to N2-fixation in regions like OMZs. These organisms may not be
trapped on the GF/F filters used to collect particulate matter for isotope abundance analysis. By
analysing the isotope uptake into total N (dissolved and particulate components) would capture
both the contribution of heterotrophic N2-fixing organisms as well as release of DON and NH +

4
in the bioassays. Complimentary to this would be the determination of cellular N2-fixation rates
using a dual-isotope labelling (13C-glucose and 15N-N2) and analysed by nano secondary ion
mass spectrometry (nanoSIMS). Cells which contain both the 13C and 15N label indicate uptake
organic C as well as fix N2, thereby providing evidence of heterotrophic organisms fixing N.

The isotope tracer, 15N-N2 gas, used frequently in bottle assays for N2-fixation rate estima-
tions can also be used to determine the fate of newly-fixed N in the food web in situ and at a
much higher sensitivity than assessment of bulk biogeochemical standing stocks. The value of
using this particular tracer lies in the high specificity for diazotrophic N and has potential to be
a powerful tool when combined with ecosystem scale experimental infrastructure such as large-
scale mesocosms. It enables quantification of not only net N2-fixation rates, as in bottle assays
(uptake into particulate N), but also comprehensive sampling of all relevant N pools (DON, DIN,
particulate N, zooplankton, N sinking flux) in a closed system over extended periods of time.
This facilitates estimation of gross N2-fixation rates within an ecosystem and a clearer idea of
how this newly-fixed N cascades through the food web and internal cycling within trophic levels.

Variable sensitivity within the diazotrophic community to increased temperature and CO2
(Eichner et al., 2014; Fu et al., 2014) will likely change the competitiveness and hence domi-
nance of particular diazotrophic species under ocean acidification and temperature. In addition,
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there may also be differing responses between metabolic processes within an organism. For ex-
ample, ocean acidification stimulated N2-fixation in the symbiotic Calothrix but did not affect
growth rates or organic matter production (Eichner et al., 2014). Furthermore, a recent study
indicated that different diazotroph morphologies have different N2-fixation and N-utilisation
strategies with consequences on sinking particulate flux (Berthelot et al., 2015). Higher pro-
portions of production were collected in the 15 m deep sediment trap when fuelled by UCYN-C
N2-fixation, than by diatom-diazotroph associations, even though there was no significant dif-
ference in the proportion of primary production supported by diazotrophic N (Berthelot et al.,
2015). Thus, it is not only the amount of N which is fixed, but also the shape of the diazotroph
assemblage which may affect the efficiency of the biological carbon pump. What proportion
of diazotrophic N remains within the microbial food web compared to consumers such as zoo-
plankton? Does diazotrophic N remain in the upper water column? How fast is it transferred
into sinking fluxes? These are highly under-explored research avenues, including any potential
changes in these processes under projected ocean acidification and warming which could be
tackled using this diazotroph-specific tracer.

Probing the underlying physiological mechanisms

The apparent interaction between PO 3–
4 availability, PO 3–

4 requirements and the response
of diazotrophic organisms to ocean acidification has been proposed both in this doctoral dis-
sertation and in a previous study (Eichner et al., 2014). This deserves further attention as it is
particularly relevant for the Baltic Sea and other coastal areas, where nutrient run-off and up-
welling of PO 3–

4 -rich waters occurs. One possible parallel study site to probe the sensitivity of
diverse diazotrophic organisms could be the North Atlantic and South Atlantic Oceans. These
sub-tropical gyres have contrasting contributions of dissolved inorganic and organic species to
the available phosphorus pool (Mather et al., 2008).

Although there is a growing body of literature which shows a range of sensitivity in N2-fixing
organisms to ocean acidification, the mechanism of pH/CO2-sensitivity still remains unknown.
Decoupled carbonate system studies with a variety of N2-fixing species such as that on E. huxleyi
(Bach et al., 2011), could disentangle the influence of increased CO2 and decreased pH on C-
fixation and N2-fixation, thus improving our understanding of the physiological mechanisms.

Importance of long-term monitoring data

Chapter 2 revealed the relatively long time it took for the impacts of elevated CO2 to be-
come apparent in bulk biogeochemical pools in a plankton assemblage under low inorganic N
availability. While manipulation studies are useful to highlight potential for changes in biogeo-
chemical cycling and plankton community structure, these need to be set against these natural
observations. The complexity of entire ecosystem cannot be incorporated into any feasible ex-
perimental set-up. There are often limitations to how long even such large-scale infrastructure (>
1000 L) can be used. Sufficient replication for strong statistical analyses becomes increasingly
difficult with increasing size of experiment enclosure for practical reasons.

As seen in a number of CO2-manipulation studies (Sala et al., 2015; Brussaard et al., 2013;
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Newbold et al., 2012), picoplankton were the key plankton size class driving the changes in com-
munity functioning, despite depleted inorganic N availability in some cases. Currently, phyto-
plankton counts under a microscope are commonly used to determine abundances in long-term
monitoring programs in the Baltic Sea (Suikkanen et al., 2007, 2013). Hence these monitor-
ing data sets may have overlooked crucial underlying shifts in community structure which may
impact biogeochemical cycling and ecosystem function. One way to resolve this would be to
include flow cytometry and phytoplankton pigment analyses in time-series sampling regimes to
observe changes in lower community structure over time as has been done for the Hawaii Ocean
Time-series (HOT) and Bermuda Atlantic Time-Series (BATS). Flow cytometry, in particular,
is a simple and relatively quick and cheap technique to use.

By utilising satellite data on surface blooms of filamentous diazotrophic cyanobacteria in
combination with large data bases on environmental variables (e.g. HELCOM) could be used
to better evaluate changes in niche over time and provide further evidence to better constrain
the niche model developed in Section 5.2. Introducing N2-fixation assays into long-term moni-
toring programmes would be helpful to reduce variability in the data sets, particularly as these
filamentous cyanobacteria are often patchy in their distribution.
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Table 5.1: Summary of known published studies to date testing the effect of ocean acidification on phy-
toplankton communities, current as of 11th October, 2015. Short-term studies over a few days were com-
pleted in bottle incubations, whereas longer studies over a few weeks commonly used seawater volumes
of >100 L. Low indicates inorganic nitrogen concentrations (< 2 uM), and replete indicates relatively high
nutrient concentrations which were either naturally present or artificially supplemented. Deplete followed
by addition indicates that the nutrient addition did not occur at the beginning of the study period and did
not coincide with CO2-enrichment.

Location Nutrient status Length of study Citation(s) (Author, Year, Journal)

Baltic Sea, coastal low 44 days Paul et al., 2015, Biogeosciences

Sea of Okhotsk low 14 days Yoshimura et al., 2010, Journal of Experi-
mental Marine Biology and Ecology

Arctic, coastal low followed by addition 36 days Schulz et al., 2013, Biogeosciences

Bering Sea, shelf and oceanic low followed by addition 9 - 10 days Hare et al., 2007, Marine Ecology Progress
Series

Korea Straits, coastal low followed by addition 14 days Kim et al., 2006, Limnology and Oceanogra-
phy

Mediterranean, coastal low followed by addition 7 days
Mercado et al., 2014, Aquatic Biology; Neale
et al,. 2014, Aquatic Biology; Sobrino et al.,
2014, Aquatic Biology

North Atlantic, coastal low followed by addition 20 days Calbet et al., 2014, PLoS ONE

North Atlantic, coastal low followed by addition 22 days Hopkins et al., 2010, Proceedings of the Na-
tional Academy of Sciences

North Atlantic, shelf sea low followed by addition 4 days Richier et al., 2014, Biogeosciences;
MacGilchrist et al., 2014 Biogeosciences

North Atlantic, tropical, oceanic low followed by addition 1.5 - 3.2 days Lomas et al., 2012, Aquatic Microbial Ecol-
ogy

North Pacific, sub-tropical low followed by addition 3 - 4 days Losh et al., 2012, Marine Ecology Progress
Series

Australia, subtropical estuary replete 14 days Nielsen et al. 2011, Aquatic Microbial Ecol-
ogy

Baltic Sea, coastal replete 21 days
Engel et al., 2014, Journal of Plankton Re-
search; Schulz and Riebesell 2012, Marine
Biology

Baltic Sea, coastal replete 28 days Rossoll, et al., 2013, Marine Ecology
Progress Series

Bay of Bengal, coastal replete 5 days Biswas et al., 2012, Biodiversity and Conser-
vation

Equatorial Pacific, coastal Peru replete 12 days Tortell et al., 2002, Marine Ecology Progress
Series

Korea, coastal replete 20 days Kim et al., 2011, Geophysical Research Let-
ters

North Atlantic, coastal replete 26 days Engel et al., 2005, Limnology and Oceanog-
raphy

North Atlantic, coastal replete 19 days Engel et al., 2008, Biogeosciences
North Atlantic, coastal replete 22 days Schulz et al., 2008, Biogeosciences
North Pacific, coastal replete 14 days Hama et al., 2012, Journal of Oceanography

Oresund Strait/Baltic Sea, coastal replete 14 days Nielsen et al., 2010, Marine Biology Re-
search

Ross Sea, HNLC replete 18 days Feng et al., 2010, Deep-Sea Research I
Weddell Sea replete 18 - 30 days Hoppe et al., 2013, PLoS ONE

Bering Sea, HNLC replete, Fe replete 14 days
Yoshimura et al., 2013, Journal of Oceanog-
raphy, Yoshimura et al., 2014, Deep Sea Re-
search I

Gulf of Alaska, HNLC replete, Fe replete 3.5 - 5.5 days Hopkinson et al. 2010, L&O

Subarctic Pacific, HNLC replete, Fe replete 14 days
Yoshimura et al., 2013, Journal of Oceanog-
raphy, Yoshimura et al., 2014, Deep Sea Re-
search I
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Ich erkläre mich einverstanden, dass diese Arbeit an die Bibliothek des GEOMAR Helm-
holtz Zentrum für Ozeanforschung Kiel und die Universitätsbibliothek der Christian-Albrechts-
Universität zu Kiel weitergeleitet wird.

Kiel, November 2015 Allanah Joy Paul
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