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Abstract 

 

The suitability of the whey protein β-lactoglobulin as nanotransporter for bioactive organosulfur 

compounds of garlic, i.e. allicin and diallyl disulfide, was investigated. Since allicin is relatively 

unstable and causes an intensive smell and pungency, a delivery system is necessary to enable  its 

enrichment in a functional food. The interactions of allicin and diallyl disulfide with β-lactoglobulin 

were comprehensively analyzed, the physico-chemical and organoleptic properties of β-lactoglobulin 

modified with allicin were evaluated and the bioavailability of the bioactive compound transported 

by the protein was assessed. The binding reaction was analyzed by fluorescence quenching, high 

performance liquid chromatography and the spectrophotometric detection of free amino and thiol 

groups. Allicin and diallyl disulfide were covalently bound to the free thiol group of β-lactoglobulin 

under alkaline conditions. The binding resulted in moderate conformational changes of the protein 

structure, primarily on tertiary level. According to mass spectrometric analysis of the intact and 

hydrolyzed protein, the binding reaction with allicin and diallyl disulfide resulted in the formation of 

S-allylmercaptocysteine, a stable, non-volatile, bioactive compound. Through the binding of allicin by 

β-lactoglobulin, the typical smell and taste of garlic was significantly reduced. The food grade 

production of β-lactoglobulin modified with allicin resulted in a consumable beverage that delivered 

physiologically relevant amounts of bioactive organosulfur compounds without significant garlic like 

sensory properties. A double-blind, randomized, diet-controlled cross-over study with nine healthy 

volunteers showed that the bioavailability of S-allylmercaptocysteine was not impaired by the 

incorporation in the protein chain. Conclusively, the covalent binding of allicin to β-lactoglobulin 

provides an innovative approach for the delivery of bioactive compounds. 
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Kurzdarstellung 

 

In der vorliegenden Arbeit wurde die Eignung des Molkenproteins β-Lactoglobulin als 

Nanotransporter für die bioaktiven Schwefelverbindungen Allicin und Diallyldisulfid aus Knoblauch 

untersucht. Allicin ist eine relativ unstabile Verbindung, die bedeutend zu dem typischen Geruch und 

der Schärfe von Knoblauch beiträgt. Für die Anreicherung von Allicin in einem funktionellen 

Lebensmittel ist daher ein Transportsystem notwendig. Die Interaktionen zwischen Allicin bzw. 

Diallyldisulfid und β-Lactoglobulin wurden umfangreich analysiert. Des Weiteren wurden die physiko-

chemischen und organoleptischen Eigenschaften des mit Allicin modifizierten Proteins untersucht. 

Abschließend wurde die Bioverfügbarkeit der transportierten bioaktiven Verbindung ermittelt. Die 

Bindungsreaktion wurde mittels Fluoreszenzlöschung, Hochleistungsflüssigchromatographie und 

Reagenzien zur Bestimmung der freien Amino- und Thiolgruppen erfasst. Allicin und Diallyldisulfid 

wurden kovalent durch die freie Thiolgruppe von β-Lactoglobulin gezielt unter alkalischen 

Bedingungen gebunden. Diese Bindung veränderte die Proteinkonformation geringfügig und 

vorrangig auf tertiärer Strukturebene. Die massenspektrometrische Analyse des intakten und des 

hydrolysierten modifizierten Proteins zeigte, dass durch die Bindung von Allicin bzw. Diallyldisulfid 

eine S-Allyl-Gruppe auf die freie Thiolgruppe der Cysteinseitenkette übertragen wurde, wodurch das 

stabile, nicht-flüchtige, bioaktive S-Allymercaptocystein entstand. Durch die Bindung von Allicin an β-

Lactoglobulin wurde der Knoblauch-typische Geruch und Geschmack signifikant reduziert. Die 

lebensmittelgeeignete Produktion von mit Allicin modifiziertem β-Lactoglobulin ermöglichte die 

Herstellung eines verzehrfähigen Getränks, das physiologisch relevante Mengen bioaktiver 

Schwefelverbindungen enthielt, ohne ein deutlich wahrnehmbares Knoblaucharoma aufzuweisen. 

Durch eine doppelt-blinde, randomisierte, Diät-kontrollierte Cross-Over-Studie mit neun gesunden 

Probanden wurde gezeigt, dass die Bioverfügbarkeit von S-Allylmercaptocystein durch die Integration 

in die Polypeptidkette von β-Lactoglobulin nicht beeinträchtigt wurde. Schlussfolgernd erwies sich 

die kovalente Bindung von Allicin an β-Lactoglobulin als ein innovativer Ansatz zum Transport 

bioaktiver Verbindungen. 
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1. Motivation and objectives 

 

During the last decades research revealed valuable insights into the relation of nutrition and disease. 

Consequently, consumer awareness of their diet influencing their health status and with it the 

demand for healthy food increased (Siró et al., 2008; Urala & Lahteenmaki, 2007). Further, the 

progress in nutrition science provided indications for potential health benefits of specific food 

ingredients, especially of phytochemicals (Benshitrit et al., 2012). Foods with added bioactive 

compounds, namely functional foods, could improve health and reduce the risk of diseases. 

Particularly population groups with defined risk factors could profit from functional foods (Kraus, 

2015). However, food fortification or enrichment of functional ingredients is a technological 

challenge because many potential compounds are relatively instable, poorly water-soluble or cause 

adverse sensory effects. The development of suitable delivery systems could ensure high 

bioaccessibility and bioavailability by protection of the bioactive compounds during food processi ng, 

storage and digestion and their release at the desired absorption site (Benshitrit et al., 2012; Vos et 

al., 2010). In addition, bioactive compounds can cause bitter or astringent tastes or unpleasant off-

flavors. Since consumers are not willing to compromise on taste in favor of health benefits, potential 

adverse effects on sensory properties need to be eliminated (Verbeke, 2006).  

Different delivery systems were developed in order to overcome undesired effects of bioactive 

ingredients, for instance liposome entrapment, coating, coacervation or inclusion complexation 

(Fang & Bhandari, 2010). Referring to food products, the usage of delivery systems needs to be 

simple and cost-efficient (Ezhilarasi et al., 2013). Milk proteins have been reported to meet these 

needs and are involved in natural transport mechanisms (Livney, 2010). The usage of milk proteins is 

further favored by the fact that dairy products belong to the best base products for functional foods 

from the consumer point of view (Kraus, 2015). The whey protein β-lactoglobulin (β-LG) has been 

suggested as a transporter for small, hydrophobic ingredients. The globular protein is folded into a 

hydrophobic calyx which functions as the major non-covalent binding site, beside hydrophobic 

pockets on the surface of the protein (Kuwata et al., 1999; Qin et al., 1998a). Furthermore, β-LG has 

diverse techno-functional properties, GRAS (generally recognized as safe) status, a high nutritional 

value, and is soluble over a wide pH range – thus, it is a multifunctional ingredient (de Wit, 1998) 

The use of β-LG as a transporter for non-covalently bound ligands was frequently reported, but the 

targeted covalent binding of bioactive compounds is a more recent approach (Gutierrez-Magdaleno 

et al., 2013; Teng et al., 2013; Shpigelman et al., 2012; Bello et al., 2012). Thus far, only allyl 

isothiocyanate (AITC) was investigated as covalent bioactive ligand and reacted with amino and thiol 
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groups of β-LG (Keppler et al., 2014a; Rade-Kukic et al., 2011). The thiosulfinate allicin from garlic is 

also an electrophilic phytochemical and could be a potential covalently binding ligand.  

The organosulfur compound contributes largely to the typical smell and taste of garlic and has been 

shown to be mainly responsible for its health benefits, such as the risk reduction of certain cancers 

and of cardiovascular diseases (Butt et al., 2009; Fleischauer et al., 2000). With respect to functional 

foods, these effects are two of the most important health related propertie s for consumers which 

classifie allicin as a potential functional ingredient (Kraus, 2015). However, due to its reactive 

character allicin is relatively unstable and its chemical half-life is ranging from several hours to some 

days, depending on the conditions (Fujisawa et al., 2008a; Hunter et al., 2005; Lawson & Gardner, 

2005). Furthermore, allicin is a pungent compound and can lead to gastrointestinal disturbances if 

ingested in high amounts (Salazar et al., 2008; Taucher et al., 1996). Many people avoid garlic 

because of its pungent taste and the malodorous breath after garlic consumption (Rosin et al., 1992). 

In short, these drawbacks necessitate a technological solution. The covalent binding of allicin to β-LG 

could offer an innovative approach to stabilize the organosulfur compound, mask the strong flavor 

and pungency and finally enable the enrichment in a functional food.  

The aim of the present thesis is to investigate the suitability of β-LG as a transporter for covalently 

bound bioactive ingredients. This work comprises the whole approach from studying the interaction 

between the protein and the ligand, characterization of the physico-chemical properties of the 

modified protein and finally the transfer to the food level by pilot plant production of a functional 

food enriched with the modified protein for sensory analysis and bioavailability assessment in vivo.  

 

Hypothesis 1: β-lactoglobulin can covalently bind allicin and diallyl disulfide at its free thiol group. 

The binding reaction is dependent on reaction conditions. 

Background 

The targeted covalent binding of bioactive compounds to β-LG is a new approach. Only allyl 

isothiocyanate (AITC) was investigated as a covalent bioactive ligand at β-LG so far (Keppler et al., 

2014a; Rade-Kukic et al., 2011). The reaction between allicin or diallyl disulfide and this protein has 

not been analyzed before. According to previous studies, allicin is generally able to react with thiol 

groups by thiol disulfide exchange reaction, where the reaction rate depends on the pH value (Miron 

et al., 2010; Rabinkov et al., 2000). 
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Experimental approach 

The overall binding kinetics of allicin and diallyl disulfide (DADS) to native and thermally denatured β-

LG will be investigated by fluorescence quenching and reverse phase high performance liquid 

chromatography (RP-HPLC). Ellman’s reagent (determination of free thiol groups, RSH) and o-

phthaldialdehyde reagent (determination of free amino groups, OPA) will be used to identify the 

functional groups involved. In order to localize the binding sites more precisely the intact protein and 

the peptides after protein digestion will be analyzed by liquid chromatography-mass spectrometry 

(LC-MS). The influence of the pH value on the binding reaction will be studied (chapter 3 and 4). 

 

Hypothesis 2: The binding of allicin to β-LG provides a stable bioactive derivate which does not 

smell or taste like garlic. 

Background 

Allicin contributes largely to the characteristic odor and taste  of garlic. Due to the strong sensory 

impression, its fortification in food is limited to a relatively low concentration and to consumers who 

like the garlic flavor. If allicin should be used as a health-promoting ingredient in functional foods, the 

absence of its sensory characteristics would be advantageous. β-LG showed the potential to mask 

flavors in previous studies (Bohin et al., 2013; Reiners et al., 2000; Guichard & Langourieux, 2000) . 

The enrichment of allicin in processed foods is also restricted by its low stability (Fujisawa et al., 

2008b). It has been shown that cysteine forms a stable S-allylthio-derivate after reacting with allicin 

(Miron et al., 2010; Hunter et al., 2005). 

Experimental approach 

Quantitative descriptive sensory analysis of garlic powder mixed with whey protein isolate (β-LG 

source) with and without prior binding process will be conducted. Additionally, sensory properties of 

a beverage containing the modified protein in a physiological relevant concentration will be assessed. 

The concentrations of volatile sulfur compounds in garlic powder with and without β-LG will be 

determined after binding and drying processes by headspace gas chromatography-mass 

spectrometry (HS GC-MS). To reduce the garlic flavor to a minimal level, different protein-ligand-

ratios and drying methods shall be tested (chapter 5). 
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Hypothesis 3: The allicin derivate S-allylmercaptocysteine integrated in the polypeptide chain of β-

LG provides the same bioavailability as allicin in vivo. Allyl methyl sulfide is a suitable metabolite to 

assess the bioavailability of allicin and S-allylmercaptocysteine. 

Background 

Although the bioavailability of allicin is high (> 90%), its intake is limited due to its low stability 

(Fujisawa et al., 2008b; Lawson & Wang, 2005; Lachmann et al., 1994). S-allylmercaptocysteine is the 

stable reaction product of allicin and cysteine and was suggested as one of its metabolites (Rabinkov 

et al., 1998; Hunter et al., 2005). Additionally, it is present in garlic products, especially in aged garlic 

extract, even in very low amounts. The metabolism and the bioavailability of S-allylmercaptocysteine 

have not been investigated in humans before. However, studies indicate that the transfer of the thiol 

allyl group, as in form of S-allylmercaptocysteine, seems to play a crucial role in the metabolism of 

allicin and in the mediation of its bioactive effects (Rabinkov et al., 1998). Allyl methyl sulfide (AMS) 

in breath gas was identified as a suitable parameter of the bioavailability of allicin (Lawson & Wang, 

2005). 

Experimental approach 

Garlic powder will be produced and the allicin yield shall be determined. Food grade, allicin-modified 

β-LG will be manufactured in a pilot plant scale. A consumable beverage will be developed, in which 

the modified β-LG shall be incorporated.  

A bioavailability study with 9 healthy, male subjects will be conducted in a double -blinded, diet-

controlled cross-over design. The both test products will comprise the beverage containing modified 

β-LG and also garlic powder in capsules providing allicin. The bioavailability will be assessed by 

quantification of allyl methyl sulfide in breath gas. The corresponding analytical methods have to be 

developed (chapter 6). 
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2. General introduction 

 

2.1 β-Lactoglobulin 

β-Lactoglobulin (β-LG) is a globular protein present in the milk of ruminants and many other 

mammalian species, but not in rodent, lagomorph and human milk (Sawyer & Kontopidis, 2000a). In 

bovine whey it is the major protein (concentration of ≈ 3 g/L) and accounts for about 50% of the total 

proteins (Wit, 1998). β-LG occurs in a number of genetically different variants, at least 12 were 

identified by now (Rachagani et al., 2006). Most common variants in western bovine milk are A and 

B, which differ in two amino acids (A: Asp64, Val118; B: Gly64, Ala118). The small differences in the 

primary structure have a significant effect on their properties, like solubility and thermal stability 

(Keppler et al., 2014c; Qin et al., 1999). 

Historically, whey was considered as waste by dairy industry. But since the value of the whey 

components has been recognized, it has become a valuable dairy stream. Due to its special structural 

characteristics, β-LG contributes essentially to the properties of whey protein concentrates and 

isolates, which are increasingly used in food industry (Wit, 1998). The protein is rich in essential 

amino acids and provides a high nutritional value (Chatterton et al., 2006). Furthermore β-LG has 

multiple techno-functional properties. It can form interfacial films, that stabilize emulsions and 

foams, can associate to networks and build gels or edible films, binds water and contributes to 

viscosity and texture (Foegeding et al., 2002). 

However, the functionality of the protein causes also some drawbacks. Due to its aggregation 

behavior, β-LG contributes to the fouling of heat exchangers, which reduces the efficiency of the 

process and deteriorates product quality (Bansal & Chen, 2006). During thermal treatment of milk, β-

LG tends to aggregate via disulfide bonds with κ-casein which dramatically reduces the rennetability 

of milk and impairs its quality for cheese making (Livney & Dalgleish, 2004). With respect to health 

effects, β-LG can also be problematically for some consumers. Due to its compact globular structure 

and its resistance to gastric conditions, it is the main allergen in bovine milk. A variety of methods has 

been tested to reduce the allergenicity. Through the reduction of disulfide bonds and protein 

hydrolysis, β-LG becomes sensitive to peptic digestion and loses its allergenicity partly till completely 

(del Val et al., 1999; Pecquet et al., 2000). 
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2.1.1 Structure 

β-LG consists of 162 amino acid residues with a molecular weight of approximately 18.3 kDa (Eigel et 

al.). The molecule contains five cysteine residues, where four of them are involved in two disulfide 

bridges (Figure 2-1). Cys66 forms a disulfide bridge with Cys160 that is located at the surface, close to 

the C-terminus. The second bridge between Cys106-Cys119 is in the inner of the protein (Papitz et al., 

1986). The disulfide bonds stabilize the tertiary structure of the protein, which contributes to the 

high resistance against peptic digestion and hence to its allergenicity (del Val et al., 1999). The thiol 

group of Cys121 is free and buried between β-strand H and the α-helix (Burova et al., 1998). 

Contradictory results indicate, that the disulfide bond of Cys106 exists in equilibrium between Cys119 

and Cys121 (Ferranti et al., 2011; Brownlow et al., 1997). Due to the limited accessibility of the free 

thiol group its reactivity is low, but it is strongly influenced by the pH value (Burova et al., 1998). It 

has been shown, that the reactivity of thiol group increases with increasing pH from 4 to 8.5 (Kehoe 

et al., 2007). A remarkable increase in reactivity was observed above pH 6.7 (Dunnill & Green, 1966). 

The dissociation degree and the accessibility of the thiol group cause the change in its reactivity. 

Since the pK value of the group is 8.5, the fraction of the thiolate anion increases until pH 8.5 and 

thus the reactivity of the group which is strongly nucleophilic (Fernandes & Ramos, 2004; Thurlkill et 

al., 2006). The accessibility of Cys121 is increased at a pH above 7.4 due to the Tanford transition (Qin 

et al., 1998a).  

The secondary structure of β-LG comprises 15% α-helix, 50% β-sheet and 30% random coil according 

to spectroscopic methods (Sawyer & Kontopidis, 2000b). The tertiary structure is dominated by the 

β-barrel, the hydrophobic cavity inside the protein. This calyx is made of the antiparallel β-strands A-

D forming one sheet, and strands E-H forming a second. A three-turn α-helix is located on the outer 

surface. The ninth β-strand (I) flanking the first strand forms together with the AB loop the dimer 

interface. The dimeric structure is stabilized by twelve hydrogen bonds and two ion pairs (Brownlow 

et al., 1997; Papitz et al., 1986). Between pH 6 and 8 the structure undergoes a pH-induced 

conformational change, known as Tanford transition, which involves mainly the EF loop acting as a 

gate of the calyx. At a pH value below 7 it blocks the entrance of the calyx, at a pH value above 7.4 

the loop is folded back and reveals the cavity of the protein (Qin et al., 1998a; Tanford et al., 1959). 

As mentioned above the accessibility of the free thiol group is also influenced by the Tanford 

transition and becomes more available if the EF loop flips into the “open” position.  
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Figure 2-1: Schematic structure of β-lactoglobulin. A) The five cysteine residues and the two disulfide 
bonds (Cys66-Cys160, Cys106-Cys119) are indicated. B) β-strands A-I are indicated. Diagram was drawn by 
PDB Protein Workshop 4.2.0 with file 3NPO of Protein Data Bank RCSB provided by Loch et al. (2011) 
(Moreland et al., 2005). 
 
 
In its quaternary structure β-LG is mainly present in monomeric or dimeric form, but the equilibrium 

is influenced by various parameters, as pH value, ionic strength, temperature and protein 

concentration (Figure 2-2). At physiological conditions the dimer is predominant (Aymard et al., 

1996). In the pH range 3.7-5.2, just below the isoelectric point, β-LG associates to larger oligomers, 

like octamers, which is enhanced by a decrease in ionic strength and temperature (Verheul et al., 

1999). With increasing distance from the isoelectric point (pI = 5.2) the repulsive forces get stronger 

and shift the equilibrium towards the monomeric form, which is prevalent at pH 2 and above 7.5 (Yan 

et al., 2013). At a basic pH (pH > 8.0) intermolecular disulfide bonds are formed and induce the 

irreversible formation of larger aggregates (Verheul et al., 1999). Beside the pH range 3.7-5.2, the 

self-association of β-LG to dimers increases with increasing ionic strength, because ions screen the 

electrostatic repulsion (Gottschalk et al., 2003; Renard et al., 1998). 

At a neutral pH, the monomer-dimer equilibrium can also be shifted by covalent modifications of β-

LG. The modification of the free thiol group of Cys121 by a reagent enhances the dissociation into 

monomers (Kontopidis et al., 2004). It was suggested that the introduced group destabilizes the rigid 

hydrophobic core and the nearby dimer interface (Sakai et al., 2000; Burova et al., 1998). The extent 

of the destabilizing effect seems to be dependent on the properties of the thiol reagent. Larger 

molecules, like 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB), or charged groups can induce a molten 

globule-like tertiary structure, beside the dissociation into monomers (Sakai et al., 2000; Cupo & 

Pace, 1983).  
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Figure 2-2: Schema of quaternary structure of β-lactoglobulin as a function of pH value and ionic 
strength. 

 

2.1.2 Denaturation 

The denaturation of β-LG can be induced by different triggers, where temperature, pressure, pH 

value and chemical denaturants are the most important ones. With respect to food processing, 

thermal denaturation is the most relevant process and will be discussed in detail at first. 

The thermal denaturation of β-LG is a stepwise process and strongly influenced by reaction 

conditions like pH value, temperature, protein concentration and ionic strength. Different models 

have been developed to describe the process, like the two-state model and the dissociation coupled 

unfolding model (Busti et al., 2005; Roefs & Dekruif, 1994). But no model meets the requirements of 

a universal validity, all are limited to specific reaction conditions. Under natural conditions, like in 

milk, the process comprises of three main steps: dissociation into monomers, structural unfolding 

and aggregation (Figure 2-3). 

 

 

 

 

 

 

Figure 2-3: Scheme of thermal denaturation of β-lactoglobulin under physiological conditions. 
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With increasing temperature the monomer-dimer equilibrium is shifted to the monomeric form and 

at 55 °C dimers are completely dissociated (Aymard et al., 1996). At temperatures between 60 °C and 

70 °C the protein structure starts to partially unfold. This state is called molten globule state and 

describes a nearly native-like secondary structure with a partially disordered tertiary structure. The 

free thiol group of Cys121 becomes exposed and reactive and hydrophobic residues are revealed 

(Iametti et al., 1996). The unfolding is considered to be a first-order reaction at neutral pH and 

relatively low temperatures (65-75 °C) (de Wit & Swinkels, 1980; Relkin, 1996). With respect to 

reversibility of denaturation, temperatures of 65-70 °C seem to be a threshold for short term heat 

treatments. Between 70 °C and 85 °C small aggregates are formed via thiol/disulfide exchange 

reactions (chemical aggregation) and the denaturation becomes irreversible (Iametti et al., 1996; de 

Wit, 2009). It has been suggested that the exposed free thiol group reacts intramolecularly with 

Cys106-Cys119 resulting in a free Cys119. This free thiol group reacts with the Cys66-Cys160 disulfide bond 

of another molecule, which is located at the surface of the protein (Creamer et al., 2004; Ke hoe et 

al., 2007).  

After the early stages of aggregation, larger aggregates are built by non-specific, non-covalent 

(hydrophobic and salt-induced) interactions (physical aggregation). The disulfide-linked oligomers 

act as building blocks for physical aggregation, which increases with heating time (Schokker et al., 

1999). Below 75 °C non-covalent interactions contribute little to the overall aggregation. At higher 

temperatures the dissociation and unfolding would be very fast, aggregation becomes rate limiting 

and only small disulfide-linked aggregates would be formed (Roefs & Dekruif, 1994). 

The free thiol group of Cys121 plays a crucial role in the thermally induced aggregation. It initiates the 

thiol/disulfide exchange reactions and thus the intermolecular disulfide bonds. The exchange 

reactions stop, if all thiolates are oxidized to disulfides. Hoffmann et al. (1997) confirmed that the 

formation of disulfide-linked oligomers is completely inhibited when β-LG is heated in the presence 

of a thiol-blocking agent. At the early stage of heat treatment two monomeric forms were observed: 

native unfolded monomers with an exposed thiol group of Cys121 and non-native monomers with an 

exposed thiol group of Cys119. The presence of the free Cys119 can be explained by intramolecular 

thiol/disulfide rearrangement during heating. The molten globule with the reactive Cys 121 can 

become reversible after cooling (Croguennec et al., 2003; Croguennec et al., 2004).  

Modification or substitution of the free thiol group enables an effective reduction of aggregation and 

can inhibit the irreversibility of the denaturation reaction to a certain extent. Burova et al. (1998) 

modified Cys121 with a thiol reagent, which resulted in the suppression of aggregation and allowed a 

refolding to the native-like structure. On the other hand, the thermal stability and thus the 

denaturation temperature were reduced by the covalent modification. Cho et al. (1994) introduced a 
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sixth thiol group by site-directed mutagenesis of β-LG. The additional disulfide bond substantially 

enhanced the thermal stability and inhibited chemical aggregation. 

Concerning the overall reaction kinetics two rate limiting steps have been reported. According to 

Verheul et al. (1998) at low heating temperatures (67-78 °C), at pH values close to the isoelectric 

point and at a high ionic strength the structural unfolding is the rate limiting step. In contrary, at high 

heating temperatures (78-82 °C), a pH value far from the isoelectric point and at low ionic strength 

the aggregation reaction is rate limiting.  

As mentioned above the reactivity and accessibility of the free thiol group strongly depends on the 

pH value. Thus, the thermal induced aggregation is very sensitive to this parameter. Bauer et al. 

(1998) reported that the formation of thiol/disulfide stabilized oligomers increased from pH 7.0 to 

8.7 (Bauer et al., 1998). Hoffmann & van Mil (1997) and Hoffmann & van Mil (1999) investigated the 

denaturation at a pH range between 6.0 and 8.0. They observed that the aggregation rate increased 

and the size of the aggregates decreased at higher pH values. At a high pH value a large number of 

reactive intermediates with an exposed thiol group, were formed in early stages of heat treatment. 

The number of reactive thiol groups was quickly reduced and the aggregation process was 

terminated, because small disulfide-linked oligomers without a reactive thiol group were formed. In 

contrast, at a very acidic pH value (pH 2.0) the thiol groups were very unreactive and their 

contribution to the aggregation process would be negligible. At pH values close to the isoelectric 

point physical aggregation was promoted because of the low intermolecular charge repulsion (Zúñiga 

et al., 2010). 

The ionic strength has two opposing effects (Renard et al., 1998; Schokker et al., 1999; Bauer et al., 

1998). A high ionic strength increases the thermal stability due to decreased intramolecular repulsion 

and thus, higher conformational stability. On the other hand, a high ionic strength screens 

intermolecular repulsive forces and enhances the non-covalent aggregation rate. Since the unfolding 

reaction is the crucial initial step, a high ionic strength could finally lead to a reduced aggregation 

rate. The protein concentration mainly influences the size of aggregates. As Hoffmann & van Mil 

(1997) and Iametti et al. (1996) observed, the increase in concentration also increased the aggregate 

size.  

Small structural differences can significantly influence the thermal stability of β-LG. Manderson et al. 

(1998) investigated the denaturation and aggregation behavior of the genetic variants A, B and C. 

They found out that the variant C has the highest and variant A the least stability, which was recently 

confirmed by Keppler et al. (2014c). Barbiroli et al. (2011) observed a stabilizing effect of non-

covalent bound ligands. Bound palmitate induced a more compact structure and stabilized the 
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hydrophobic core and the dimer interface of the protein. It was also suggested that the bound fatty 

acid impeded the movement of the helix region, which retarded the exposure of the Cys121. Mulsow 

et al. (2009) showed the stabilizing effect of the covalent modification of amino groups. Glycation 

enhanced the denaturation temperature of β-LG, probably because of the higher hydrophilicity of 

the protein which reduces hydrophobic aggregation. 

Beside thermal denaturation, pressure induced denaturation of β-LG is practically relevant. Pressure 

denaturation is a stepwise process and starts with a partial collapse of the β-barrel and the exposure 

of the free thiol groups (up to 50 MPa), followed by revealing of hydrophobic regions (up to 123 

MPa) and finally irreversible denaturation through thiol/disulfide exchange reactions at higher 

pressures (>200 MPa) (Stapelfeldt & Skibsted, 1999).  

Uversky et al. (1997) reported that β-LG underwent conformational changes with increasing solvent 

hydrophobicity. Organic solvents caused the formation of a denatured intermediate state, as the 

molten globule state. The molten globule state was also induced by other mild denaturants and at 

acid and alkaline pH values. β-LG has very high pH stability and has even at pH 2.0 a native like 

structure (Molinari et al., 1996). Chaotropic agents, as urea, cause the unfolding of the protein which 

is irreversible due to intra- and intermolecular thiol/disulfide exchange reactions. Yagi et al. (2003) 

investigated the urea induced unfolding behavior of β-LG mutants in which Cys121 was replaced by 

alanine, serine or valine. The unfolding reaction was completely reversible for all mutants due to the 

prevented thiol/disulfide exchange reactions. 

 

2.1.3 Binding properties 

β-LG is similar in sequence and structure to the human serum retinol binding protein and belongs to 

the lipocalin family, a group of β-barrel containing proteins with hydrophobic binding abilities. 

Hence, some members of the lipocalins are also known for their specific transport function, it was 

suggested that the binding of retinol or fatty acids in the calyx is the biological function of β -LG 

(Sawyer & Kontopidis, 2000a). But the question of the physiological function is still in discussion and 

no clear answer can be made so far. The X-ray crystallography of β-LG in complexes with various 

ligands revealed that the central cavity is the main binding site for hydrophobic compounds but 

external binding sites have been suggested as well (Wu et al., 1999; Qin e t al., 1998b; Wang et al., 

1999). The ligand is bound by non-covalent forces like hydrophobic interactions, hydrogen bonding 

and van der Waales forces (Ozdal et al., 2013). The interaction of β-LG with a wide range of potential 

ligands has been studied. The most prevalent ones are retinol, fatty acids, vitamin D2, cholesterol and 

phenols (Kontopidis et al., 2004; Wang et al., 1999). The protein provides a strong affinity for various 
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ligands and thus a low specificity of the binding (Konuma et al., 2007). The non-covalent binding 

reactions were mainly analyzed by fluorescence measurement and equilibrium dialysis (Kontopidis et 

al., 2004). 

The interaction of the protein and a ligand influences the properties of both. The structure, stability, 

digestibility and functional properties of β-LG can be changed by ligand binding (Considine et al., 

2007; Barbiroli et al., 2011; Stanic-Vucinic & Velickovic, 2013). β-LG-retinol complexes were found to 

be less susceptible to trypsin because of the more compact structure ( Puyol et al., 1993). On the 

other hand the protein stabilized the ligand, but also influences its antioxidant activities and its 

bioavailability: EGCG bound to β-LG was protected from oxidative degradation (Shpigelman et al., 

2012). The binding of aroma compounds decreased their release rate and their headspace 

concentration (Tromelin & Guichard, 2003). 

Besides the binding of non-covalent ligands, β-LG can also be modified covalently. The functional 

groups of amino acid residues, like amino and thiol groups, can act as a binding site for covalent 

binding ligands. β-LG contains 15 free amino groups from lysine residues and a further available 

amino group from the N-terminal α-amino group of leucine (Morgan et al., 1999). As mentioned 

above only one free thiol group of Cys121 is available for potential ligands (chapter 2.1.1). Covalent 

modifications can occur naturally or were done for techno-functional reasons. The usage of the 

protein as a transporter for reactive, bioactive ligands is a new approach.  

One of most relevant natural occurring covalent modification in foods is the glycation during 

Maillard reaction. This involves the condensation of reducing sugars with the ε-amino group of lysyl 

residues under heating resulting in Amadori products. Depending on the kind of sugar and the extent 

of glycation thermal stability and functional properties like foaming and emulsifying properties of the 

protein can be improved (Chevalier et al., 2001). The denaturation temperature can be increased by 

about 5 °C if the degree of lysine modification was 22% (Mulsow et al., 2009). The reason is probably 

the enhanced hydrophilicity due to modification by sugar moieties which suppresses the aggregation 

reaction. On the other hand the Gibbs energy of unfolding of glycated β-LG was reduced by 20% (Van 

Teeffelen, Annemarie M.M. et al., 2005).  

Beside the Maillard reaction, electrophilic compounds, like isothiocyanates, quinones, and 

aldehydes, can react with β-LG in food systems. Phenolic compounds are susceptible to oxidation and 

can build reactive o-quinones. By nucleophilic addition the o-quinones can react with functional 

groups of the protein. Mainly amino and thiol groups are the reaction partners, but methionine and 

tryptophan side chains have been reported as well (Rawel & Rohn, 2010). Such covalent reactions 

could affect conformational and functional properties, surface hydrophobicity, thermal stability, 
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digestibility and the nutritional quality of the protein (Ali et al., 2013; Rawel et al., 2003; Rawel et al., 

2001). Unwanted covalent modifications of β-LG can be induced by reactive products of lipid 

oxidation. These reactions may lead to reduction of the nutritional value and functionality may be 

impaired, which could cause negative changes of sensory properties. The aldehyde malondialdehyde 

arose from oxidation of polyunsaturated fatty acids (PUFAs) and reacts with amino groups of the 

protein by formation of Schiff base and dihydropyridine-type adducts (Gürbüz & Heinonen, 2015). 

Since the fortification of foods with PUFAs is a continuing trend, the interaction between proteins 

and lipids should be considered and needs further investigation.  

Various chemical modifications have been tested to improve the techno-functional properties and 

the digestibility of β-LG (Stanic-Vucinic & Velickovic, 2013). By succinylation the stability towards 

gastric conditions was even more improved, providing a suitable protection for gastro-sensitive 

compounds (Poulin et al., 2011). Whereas ethylation increased the peptic digestibility of β-LG, which 

lowered its allergenicity (Chobert et al., 1995). The covalent binding of stearic acid improved the 

emulsifying and foaming properties and decreased the allergenicity as well (Akita & Nakai, 1990). 

Table 2-1 provides an overview of studies which focused on the modification of the thiol groups of β-

LG. Nevertheless the examined ligands differed in size and properties, some common observations 

were made: 

 modification is more efficient at pH values above 7.0 due to the higher reactivity of the thiol 

groups at a basic pH (chapter 2.1.1) 

 modification induces structural changes resulting in:  

o partially enfolded tertiary structure 

o monomer-dimer equilibrium shifted towards monomeric form 

o faster thermally induced unfolding  

o inhibited thermally induced aggregation reaction  

o increased reversibility of unfolding reaction  

 

From the techno-functional point of view the most promising advantage of the thiol specific 

modification is the inhibited disulfide-linked aggregation during heating which enables the 

reversibility of the unfolding reaction to a certain extent. 
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A new approach is the usage of β-LG as a transporter for bioactive, covalent bound compounds. Only 

a small number of studies already addressed this topic. Ferranti et al. (2011) considered β-LG as a 

transporter for covalently bound glutathione and fatty acids. Rade-Kukic et al. (2011) and Keppler et 

al. (2014a) investigated the usage β-LG as a carrier for covalently bound AITC. It was suggested that 

the binding to the protein the volatile compound loses its pungent and lachrymatory effect, improves 

techno-functional properties of the protein and provides its antimicrobial and health promoting 

effects concurrently. The idea was already patented (Rade-Kukic & Schmitt, 2010). AITC reacted with 

amino and thiol groups with a moderate affinity. About four to six molecules AITC were bound per 

molecule protein, if ligand was present in excess (40:1 M/M). Beside the above mentioned structural 

changes, AITC cleaved the disulfide bond of Cys66-Cys160, changed the emulsifying and foaming 

properties of the protein and blocked several tryptic cleavage sites (Keppler et al., 2014a). 

Furthermore the pungent odor and taste of AITC was significantly reduced through the binding to β-

LG and the modified protein showed an antimicrobial activity (Rade-Kukic & Schmitt, 2010).
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Table 2-1: Studies about covalent modification of thiol groups from β-lactoglobulin. 
Ligand Binding sites Analytical methods Results References 

Modification of thiol groups 

Mercapto propionic acid, 

mercaptoethanol 

Cys 121 CD, gel -permeation-HPLC, high-

sensitivity DSC 

 Dimer-monomer equilibrium is shifted to monomeric form  

 Thermal s tability reduced (unfolding reaction) 

 Thermal unfolding reversible 

 

(Burova et 

a l ., 1998) 

Mercapto propionic acid, 

mercaptoethanol, 

mercaptoethylamine, 

propanethiol 

Cys
121

 optical rotation  Urea induced denaturation reversible 

 Reduced conformational s tability, largest effect had aminoethyl derivate 

 

 

 

(Cupo & 

Pace, 1983) 

Thioredoxin/NADP Cys 66, Cys 106, 

Cys
119

, Cys
121

, 

Cys 160 

in vitro digestibility, SDS-PAGE, in 

vivo a l lergenicity test 

 Reduction of disulfide bonds increased pepsin sensitivity and reduced a llergenicity 

 

 

 

(del  Val et 

a l ., 1999) 

Glutathione (oxidized) Cys
119

/ Cys
121

 LC-MS  Natura lly occurring glutathionated β-LG in water buffalo milk 

 Structura l features as transport protein were confirmed 

 Glutathionylation was reversible, can be split by mercaptoethanol 

 

(Ferranti et 

a l ., 2011) 

2-pyridine disulfide, 

DTNB 

Cys 121 DSC, spectro-photometry  PDS was  more reactive than DTNB 

 Cys 121 showed low reactivi ty (pH 7) 

 High NaCl  concentration reduced SH/SS exchange reaction 

 Modification reduced protein stability and prevented dimerization during heating 

 

(Owusu-

Apenten et 

a l ., 2003) 

DTNB Cys 121 CD, fluorescence quenching, 

analytical ultracentrifugation, 1H-

NMR  

 Modification induced confirmatory changes, molten globule-like structure at pH 7.5 

and dimer dissociation 

 

 

(Sakai et al., 

2000) 

IAEDANS, DTNB Cys 66, Cys 106, 

Cys
119

, Cys
121

, 

Cys 160 

spectro-photometry, MALDI MS/MS, 

HP-GPC, RP-HPLC 

 At pH 7 SH group was inaccessible for IAEDANS, at pH 8 partially accessible for 

DTNB (0.18 M SH/M protein), in the presence of 8 M urea 0.99 M SH/M protein 

were accessible  

 Non-native SH groups were released at Cys 66 and Cys 160 a fter heating, indicating the 

SH/SS exchange of the free SH group from Cys
119

 or Cys
121

 with the disulfide bond 

Cys 66-Cys 160 

(Kehoe et al., 

2007) 
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MTSL (spin lable), MMTS Cys
121

 Fluorescence, DTNB-assay, ESR  Modification did not affect retinol binding in the calyx but reduced the affinity for 

pa lmitic acid binding, indicating the fatty acids are bound in a hydrophobic pocket 

at the surface of the protein 

 

(Narayan & 

Berl iner, 

1998) 

p-Chloro-

mercuribenzoate 

Cys 121 spectro-photometry  Reactivity of SH group was low at pH 2.0-6.7 and increased above 6.7 

 Higher accessibility of Cys 121 above pH 7.4 

 

(Dunnill & 

Green, 1966) 

Acrylamide Cys 66, Cys 106, 

Cys 119, Cys 121, 

Cys 160 

LC-MS, LC-MS/MS, protein hydrolysis  One thiol group per intact molecule reacted  

 PH 9.5 a l lowed disengagement of Cys 160 from disulfide bond and reaction with the 

l igand 

(Curcuruto 

et a l ., 1998) 

Modification of amino & thiol groups 

Al lyl  isothiocyanate various amino 

and thiol groups 

DTNB and OPA-assay, ANS 

fluorescence, CD, characterization of 

functional properties 

 Ligand cleaved disulfide bonds at higher concentrations 

 Enhanced protein hydrophobicity 

 Changes in secondary and tertiary s tructure 

 Dissociation of dimers 

 Reduced heat induced aggregation at pH 7 and increased aggregation at pH 4 

 Changed foaming and emulsifying properties 

 

(Rade-Kukic 

et a l ., 2011) 

Al lyl  isothiocyanate various amino 

and thiol groups 

Fluorescence quenching, equilibrium 

dia lysis, headspace-water 

equilibrium, MS, LC-MS/MS 

 Binding to one thiol group and 3 amino groups 

 AITC cleaved disulfide bond Cys 66-Cys 160 
 

 

(Keppler et 

a l ., 2014a) 

Al lyl  isothiocyanate various amino 

and thiol groups 

Protein hydrolysis, LC-MS/MS  AITC binding blocked several cleavage sites of trypsin 

 

 

(Keppler et 

a l ., 2014b) 

5-Caffeoylquinic acid, 

dicaffeoylquinic acid (o-

quinone) 

ε-amino group of 

several lysine 

res idues, Cys 121 

CD, DSC, SDS-PAGE, RP-HPLC, MALDI-

TOF-MS, protein hydrolysis, ANS 

fluorescence, DTNB-assay, TNBS-

assay, fluorescence quenching, TEAC-

assay, DPPH-assay, molecular 

modeling, characterization of 

functional properties 

 Enhanced antioxidative properties of protein 

 Changed secondary s tructure, increase in random coil fraction 

 More hydrophilic surface property 

 Changed functional properties (solubility, emulsification) 

 Higher thermal stability, lower s tability with respect to unfolding reaction 

 

 

 

 

(Al i  et al., 

2013) 
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Quercetin, rutin (o-

quinone, p-quinone 

methide derivatives) 

free amino and 

thiol groups, 

tryptophan 

SDS-PAGE, , TNBS-assay, fluorescence 

quenching, monobrombimane- assay, 

RP-HPLC, SELDI-TOF-MS, CD, ANS 

fluorescence, protein hydrolysis 

 Quercetin was more reactive than rutin 

 One l igand molecule was bound by one protein molecule 

 Increased surface hydrophilicity 

 Perturbation of secondary and tertiary s tructure, especially by rutin 

 Solubility at pH 4 decreased 

(Rawel et al., 

2003) 

Abbreviations : AITC – Allyl  isothiocyanate , ANS – 1-Anilino-8-naphthalenesulfonate , CD – Circular dichroism, DPPH –  1,1-Diphenyl -2-picrylhydarzyl , DSC – Di fferential scanning calorimetry, DTNB 

–  5,5’-di thiobis(2-ni trobenzoic acid), EGCG – (-)-Epigallocatechin-3-gallate , HP-GPC – High performance gel  permeation chromatography, IAEDANS – 5-((((2-

iodoacetyl)amino)ethyl )amino)naphthalene-1-sul fonic acid, LC-MS – Liquid chromatography–mass spectrometry, MALDI – Matrix-assisted laser desorption ionization , MMTS –

Methylmethanethiosul fonate , MS/MS – tandem mass spectrometer, MTSL – (1-oxy-2,2,5,5-tetramethylpyrrolinyl-3-methyl )-methanethiosul fona , NADP – Nicotinamide adenine dinucleotide 

phosphate , PDS – 2-pyridine disulfide , SDS-PAGE – Sodium dodecyl  sulfate polyacrylamide gel  electrophoresis, SELDI – surface-enhanced laser desorption ionization, TEAC – Trolox equivalent 
antioxidative capacity assay, TNBS – Trinitrobenzenesulfonic acid, TOF – Time-of-flight. 
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2.1.4 β-Lactoglobulin as nanotransporter 

Research activities are increasingly focused on the use of β-LG as a functional ingredient, since it has 

the GRAS (generally recognized as safe) status, a high nutritional value, desired technological and 

versatile functional properties (de Wit, 1998). Beyond that, it is remarkably stable against gastric 

conditions and can protect bound ligands against the harsh milieu in the stomach as well as against 

degradation by other compounds of the complex food matrix  (Bossios et al., 2011). All these 

favorable properties qualify β-LG as a suitable transporter for the delivery of bioactive compounds. 

Furthermore, new process developments facilitate enhanced protein quality and enable the 

fractionation of single whey proteins in a cost-efficient way (Etzel, 2004). 

The transport function of β-LG was repeatedly discussed as its natural physiological function (Sawyer 

& Kontopidis, 2000a). Besides the investigation of naturally occurring interactions of β-LG with 

hydrophobic ligands, many studies were performed concerning the targeted, non-covalent binding of 

bioactive agents (Bello et al., 2012; Kanakis et al., 2011; Li et al., 2012; Loch et al., 2013; Shpigelman 

et al., 2012). β-LG as a transporter for covalently bound ligands is a more recent approach. As far as 

known, only allyl isothiocyanate (AITC) was investigated as covalent bioactive ligand for β-LG 

(Keppler et al., 2014a; Rade-Kukic et al., 2011). With respect to the continuing consumer trend for 

health and wellbeing, β-LG is a promising carrier to enable the enrichment of bioactive compounds in 

food. 

 

2.2 Bioactive compounds from garlic 

Garlic, Allium sativum L., is a traditional flavoring agent and known for its health benefits. 

Investigations about the medical effects of garlic revealed that its organosulfur compounds and their 

transformation products are primarily responsible for the pharmacological effect (Butt et al., 2009). 

Furthermore, the volatile organosulfur compounds, like thiosulfinates, contribute mainly to the 

typical smell and pungent taste of garlic and are a part of the defense mechanism of the plant 

(Amagase et al., 2001). Allicin (S-allyl 2-propene-1-sulfinothioate) is the major thiosulfinate in freshly 

crushed garlic (allicin content 0.2-0.6%) and contributes to 70-75% of total thiosulfinates (Lawson, 

1996). For the first time, allicin was discovered in garlic by Cavallito & Bailey (1944). It is a fairly 

hydrophobic agent and its partition coefficients in octanol/water is logP = 1.1 (Miron et al., 2000).   
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2.2.1 Formation and stability 

Allicin is not present in intact garlic cloves. Before processing the major sulfur-containing compounds 

in garlic are the non-proteinogenic amino acid S-allyl-L-cysteine sulfoxide (alliin) and γ-glutamyl-S-

allyl-L-cysteine. If the plant tissue is damaged, like by chopping or chewing, allicin is formed by an 

enzymatic reaction within a few seconds (Figure 2-4) (Stoll & Seebeck, 1949; Cavallito & Bailey, 

1944). The precursor alliin is hydrolyzed by the enzyme alliinase in presence of the cofactor 

pyridoxal-phosphate leading to the formation of allyl sulfenic acid, pyruvic acid and ammonia. Two 

molecules of allyl sulfenic acid condensate spontaneously to one molecule of allicin (Trio et al., 

2014). The enzymatic activity of alliinase is inhibited by common protein denaturants. Hence, acidic 

conditions like in the stomach (pH < 3.5), cooking of garlic, as well as addi tion of ethanol inactivates 

the enzyme and thus the formation of allicin (Lawson, 1996). Alliin is only present in garlic ( Allium 

sativum) and ramsons (Allium ursinum). Onions contain the isomer isoalliin (trans-(+)-S-(1-propenyl)-

L-cysteine sulfoxide) (Lawson, 1996). 

Beside the strong odor, a decisive shortcoming of allicin is its instability. Various authors investigated 

the chemical and biological half-life of allicin, whereby biological half-life was expressed as 

antibacterial activity. Different parameters influencing the stability have been discovered: 

temperature (Lee et al., 2014; Fujisawa et al., 2008b; Lawson & Gardner, 2005), pH value (Lee et al., 

2014; Lawson & Hughes, 1992), solvent (Fujisawa et al., 2008a; Lawson, 1996; Freeman & Kodera, 

1995), and concentration (Lee et al., 2014; Lawson, 1996). The degradation products comprise 

mainly of ajoenes, allyl sulfides and vinyldithiins (Figure 2-4), their prevalence is determined by 

external conditions (Lawson, 1996). 

Under acidic condition thiosulfinates are relatively stable, but at pH values above 6 their degradation 

is remarkable accelerated (Lee et al., 2014). Furthermore, with increasing temperatures the stability 

of thiosulfinates decreases. Fujisawa et al. (2008b) determined a half-life of 347 days at 4 °C of allicin, 

whereas at room temperature it was 9 days and at 37 °C only one day. A high thiosulfinate 

concentration has also a negative effect on the stability of the same (Lee et al., 2014).  

Although, allicin is readily soluble in non-polar solvents, the stability in n-hexane and ethyl acetate is 

poor. A higher stability was shown in more polar solvents, like methanol, ethanol and water 

(Freeman & Kodera, 1995; Fujisawa et al., 2008a). The highest stability was reported to be in 20% 

aqueous ethanolic solution, i.e. a chemical half-live of 12 d at room temperature (Fujisawa et al., 

2008a). The increased stability in polar solvents is probably caused by the formation of hydrogen 

bonds with water or the hydroxyl groups of ethanol. The major degradation products in aqueous 

solutions are diallyl-, allyl methyl-, di- and tri-sulfides, while in non-polar solvents allicin is mainly 

transformed into 2-vinyl-4H-1,3-dithiin, 3-vinyl-4H-2,3-dithiin and (E/Z)-ajoene (Lee et al., 2014). 
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Freeman & Kodera (1995) investigated the stability of allicin in the blood cell and plasma fraction and 

observed that allicin immediately reacts with compounds in the blood. Since it was not detectable 

after 3 minutes in the blood cell fraction, but in the plasma fraction, it had a half live of 50 min.  

With respect to food products, the stability of allicin is not influenced by major components such as 

carbohydrates and proteins. But oils, especially those with a high concentration of polyunsaturated 

fatty acids, negatively influence the stability, resulting in a chemical half-life of 3.1 h in oil (Lee et al., 

2014). 

 

 

Figure 2-4: Basic formation and decomposition processes of allicin. PALP – pyridoxal-phosphate. 

 

2.2.2 Garlic products 

Table 2-2 summarizes the main organosulfur compounds and properties of different garlic 

preparations. The quantitatively most important product is dehydrated garlic, which is used as 

flavoring agent and also as nutraceutical in capsulated form. Garlic cloves are sliced or chopped and 

subsequently dried. Finally the dehydrated product is ground, powdered or granulated (Santhosha et 

al., 2013). Garlic powder is in its composition most similar to fresh garlic, although the content of 
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many bioactive agents are reduced due to processing conditions. The highest quality is obtained by 

freeze drying of the whole garlic cloves without damaging the cell structure, which could completely 

preserve the alliin content and alliinase activity. 

Garlic powder supplements do not contain any allicin until disintegration in the gastrointestinal 

tract, where alliin can be converted to allicin by alliinase. The potential amount of allicin generated is 

called allicin yield or potential and is an important quality parameter. However, allicin formation 

from supplements can be a challenge that should not to be underestimated. The allicin-producing 

enzyme alliinase is irreversibly inactivated below pH 3.5, the usual range of gastric fluid. Therefore, 

most garlic powder supplements are enteric-coated to prevent the inactivation of alliinase in the 

stomach. But even at a natural pH value the enzyme activity decreases fast at body temperature 

(Lawson & Gardner, 2005). Lawson & Wang (2001) investigated the allicin release of 24 brands of 

enteric-coated garlic powder supplements under simulated gastrointestinal conditions. With one 

exception, all brands released less than 15% (on average 13%) of their claimed allicin potential, 

although the enteric coating effectively protected alliinase under gastric conditions. The authors 

suggested that an impaired alliinase activity and slow tablet disintegration were the main reasons for 

the low release. The alliinase activity can be impaired by harsh processing conditions and by the 

presence of tablet excipients. Significant variations in allicin release were also observed between 

different batches of the same brand (Lawson & Gardner, 2005). These variations clearly demonstrate 

the importance of controlling the allicin release under simulated gastrointestinal conditions of the 

used product, particularly in a clinical trial. Otherwise the results of the study are questionable and 

cannot be extrapolated to fresh garlic. It is likely that this problem is responsible for contradictory 

reports in the previous studies.  

Garlic extracts are obtained by an aqueous ethanol extraction of whole or sliced garlic. After certain 

incubation the extract is filtrated, concentrated or dried. A variation of the fresh garlic extract is the 

aged garlic extract (AGE), which is stored at room temperature for up to 20 month (Butt et al., 2009). 

Due to the initial destruction of plant tissue, thiosulfinates, including allicin, are formed. During the 

aging process volatile, unstable organosulfur compounds are transformed into stable, less volatile 

compounds. γ-Glutamyl-cysteine is completely hydrolyzed to S-allyl cysteine (SAC). Due to protein 

hydrolysis cysteine is released and reacts with allicin to S-allylmercaptocysteine. After a storage time 

of three month thiosulfinates are no longer present due to degradation and evaporation (Colín-

González et al., 2012).  

The final product of fresh or aged garlic extraction can be lyophilized and contains mainly water-

soluble organosulfur compounds such as SAC (content is about 0.25%), S-allylmercaptocysteine 

(SAMC) and only small amounts of oil-soluble compounds (Ried et al., 2010). AGE is only used as 
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nutraceutical, mainly in capsulated form, and is claimed to be “odorless”, which means free of garlic 

taste and typical garlic “after breath”. Furthermore it was suggested that AGE is safer and cause less 

adverse effects due to the absence of irritating compounds (Amagase, 2006).  

Garlic essential oil comprises 0.2-0.5% of garlic clove and is obtained by steam distillation. The cloves 

are crushed in water and heat-distilled resulting in a separating oily liquid. Distillation is often 

combined with organic solvent extraction to increase the yield (Lawson, 1996). The major 

organosulfur compounds are di- and polysulfides, like DADS and diallyl trisulfide (DATS), water 

soluble compounds and allicin are completely eliminated. The essential oil is diluted with vegetable 

oil because of the strong smell and commercially available as garlic oil capsules (Amagase et al., 

2001). 

Oil macerates are produced by grinding garlic cloves and mixing them with vegetable oil. The present 

organosulfur compounds are degradation products of allicin, such as dithiins, aj oene and sulfides 

(Amagase et al., 2001). Oil macerates were used as condiments. 

 

Table 2-2: Commercial garlic products. 

Product Main bioactive compound Properties and usage 

Freshly crushed garlic Allicin  Mash, used as food and flavoring agent 

 Highest allicin content 

 Strong taste and smell 

 Not stable, not storable 

Dehydrated garlic Alliin, alliinase  Powder, granulates, used as supplement 

and spices 

 No allicin present, but allicin can be built 

when hydrated (allicin potential/allicin 

yield) 

 Alliin content and alliinase activity 

determine allicin potential 

Aged garlic extract SAC, SAMC, other water-

soluble compounds 

 Liquid or powder, used as supplement 

Garlic essential oil Diallyl disulfide, diallyl 

trisulfide, other di- and 

polysulfides 

 Liquid, used as supplement and spice 

mixtures 

 Strong odor 

 No allicin or other water soluble 

compounds 

Oil macerate Dithiins, ajoene, sulfides  Garlic flavor, used as condiment 

Abbreviations: SAC – S-a llyl  cysteine; SAMC – S-a llylmercaptocysteine. 
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2.2.3 Delivery systems for allicin 

Different methods have been tested to generate a stable, bioactive form of allicin. Two main 

approaches can be distinguished: 1) the transformation of the thioallyl group to another molecule via 

covalent reaction with allicin, 2) the stabilization of allicin itself by carrier systems. The first approach 

was patented two times. Ott (2005) and Parkin & Zhang (2011) described among other claims the 

transformation of the thioallyl-group to a thiol containing protein or peptide for the usage in 

nutraceuticals or food items. For in vitro and animal studies stable thioally-derivates have been 

synthesized with allicin and different thiol containing compounds, such as cysteine, GSH, captopril (D-

3-mercapto-2-methylpropanoyl-L-proline, inhibitor of angiotensin converting enzyme) and 6-

mercaptopurine (immunosuppressive drug) (Miron et al., 2012; Miron et al., 2010; Oron-Herman et 

al., 2005; Miron et al., 2004; Rabinkov et al., 2000). Especially the latter are not suitable for food 

products, but they could be used for multi-functional drugs. Miron et al. (2001) patented the 

formation of S-allylmercaptoglutathione (SAMG) for pharmaceutical use. 

Lu et al. (2014) used the second approach (i.e. stabilization by carrier systems) by encapsulation of 

allicin in liposomes and reported an improved stability of allicin and a sustained-releasing potential 

of liposomes. Nikolic et al. (2004) examined the complexation of allicin with β-cyclodextrin, Wang et 

al. (2012) also encapsulated allicin with β-cyclodextrin and porous starch resulting in enhanced 

temperature and pH stability and solubility of allicin while retaining its antimicrobial activity. The 

three mentioned studies indicated all an enhanced stability of allicin by encapsulation or 

complexation, but did not show how much the half-life of allicin could be prolonged actually. Thus it 

cannot conclude if these techniques are suitable to overcome allicin’s drawbacks and enable the 

enrichment in foods. 

 

2.2.4 Metabolism and bioavailability  

The metabolic pathway of organosulfur compounds of garlic is not completely known and only a few 

studies about their metabolism in the human body are published (Table 2-3). Especially the 

revelation of allicin’s metabolism and bioavailability is difficult, because it is not detectable in blood, 

urine or stool, even after consumption of high amounts of freshly crushed garlic or pure allicin 

(Lawson & Wang, 2005). After in vitro addition to blood allicin disappears within a few minutes 

(Lawson & Wang, 2005; Freeman & Kodera, 1995). It has been shown that allicin easily permeates 

through cell membranes and enters erythrocytes, followed by a rapid reaction with intracellular thiol 

groups, causing its fast disappearance in blood (Miron et al., 2000). Glutathione (GSH) and cysteinyl 

residues of proteins have been reported as probable targets of allicin, resulting in the formation of 

the S-allylmercapto-conjugates and allyl sulfenic acid (Figure 2-5) (Pinto et al., 2006; Rabinkov et al., 
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1998). The released ally sulfenic acid can also react with a thiol group and form a further derivate, or 

form again allicin through self-condensation (Borlinghaus et al., 2014). SAMG can undergo a SH/SS 

exchange with another GSH by releasing allyl mercaptan and formation of oxidized glutathione 

(glutathione disulfide, GSSG). Allyl mercaptan is an intermediary product and can be methylated by 

S-adenosylmethionine to allyl methyl sulfide (AMS) (Lawson & Wang, 2005). 

 

 

Figure 2-5: Main metabolic pathways of allicin, S-allyl cysteine and S-allylmercaptocysteine. Dotted 
arrow indicates a supposed pathway that has not been proved so far. GSSG – glutathione disulfide; 
SAM – S-adenosylmethionine. 

 

Lawson & Wang (2005) analyzed the metabolism of allicin to AMS and found that allicin is almost 

completely (90%) converted into AMS (molar ratio 1:1), which makes AMS a suitable marker for the 

bioavailability of allicin. AMS is absent in breath gas without prior garlic consumption and increases 

in a dose-dependent manner after ingestion. The maximum level is reached after 3-4 hours and it is 

detectable up to 30 hours after consumption, indicating that AMS is a product of systemic 

metabolism (Taucher et al., 1996). 
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Besides AMS, other sulfur containing metabolites in the breath gas have been associated with garlic 

consumption. DADS, diallyl sulfide (DAS), AMS and allyl mercaptan have been detected as well, but at 

lower quantities (Taucher et al., 1996; Hansanugrum & Barringer, 2010). Since garlic products used in 

human studies contain not only allicin, other organosulfur compounds are present simultaneously 

and contribute to the sulfur containing metabolites as well. Therefore the association of a specific 

metabolite to allicin is limited. 

Next to allicin the water soluble derivates SAC and SAMC are of particular interest in this work. SAC is 

the main bioactive component of AGE. Since it is far more stable than allicin, it was found in human 

blood after ingesting AGE. Nagae et al. (1994) descripted the pharmacokinetics of SAC in animal 

models (rats, mice, dogs). SAC was highly absorbed and distributed in plasma, liver and kidney. The 

bioavailability was 103% and 87% in mice and dogs, respectively. Furthermore, they revealed the 

main elimination pathway of SAC: acetylation of SAC by acetyltransferase in liver and/or kidney to N-

acetyl-S-allyl cysteine (NASAC), which is excreted with urine. This elimination pathway is the only one 

known for SAC, because it is not metabolized to AMS in breath gas (Lawson & Wang, 2005). Cope et 

al. (2009) reported a high variability of the conversion rate of SAC to NASAC in humans. The half -life 

of NASAC ranged from “not detectable” to 5 h with high intraindividual variations. Kodera et al. 

(2002) confirmed the high bioavailability, resorption, and stability of SAC in a human study. 

Quantification of SAC in plasma resulted in a half-life of 10 h and a clearance time of more than 30 h.  

SAMC is present in AGE in low quantities and it can also be formed by allicin reacting with free 

cysteine before or after absorption. In the metabolism of allicin, SAMC acts as a stable mediator that 

can transfer the thioallyl group via SH/SS exchange. SAMC is metabolized to AMS in breath gas in a 

molar ratio of 1:1, like allicin (Lawson & Wang, 2005). The detection in plasma was not tested yet. 

The bioavailability of allicin and its water-soluble derivates seems to be high. According to an in vivo 

study with 35S-labeled allicin in rats the absorption rate is at least 65%, thus the cumulative excretion 

in urine and feces was 86% (Lachmann et al., 1994). A human study showed that the molar amount 

of ingested allicin caused a similar extent of excreted AMS in breath gas (Lawson & Wang, 2005). The 

authors concluded an estimated absorption of at least 95%. However, from a chemical point of view 

one molecule allicin could theoretically produce two molecules AMS. 
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Table 2-3: Bioavailability analysis of allicin or its derivates in human studies. 

Garlic product Dose1 
Analyzed metabolites 

Comments References 
Matrix Metabolite 

Human studies      

Fresh garlic 

Garl ic powder, enteric-coated capsule 

AGE 

4 g (12.6 mg a l licin) 

1.4 g (12.8 mg a l licin yield) 

1.8 g (1.8 mg SAC) 

Breath gas AMS Average AMS Cmax=174 ng/l  (after intake of fresh garlic) 

Average AMS Cmax=207 ng/l   (after intake of garlic powder) 

(Lawson & 

Gardner, 2005) 

Fresh garlic 

Al l icin (synthesized), capsulated 

Garl ic powder, enteric-coated capsule 

Garl ic powder, dissolved, capsulated 

7 g, 20 g (38 mg/108 mg a l licin) 

30 mg, 59 mg (a l licin) 

10.5 g (44 mg a l licin) 

3 g (38 mg a l licin) 

Breath gas AMS Average AMS Cmax=1200 ng/l  (after intake of 108 mg a llicin 

from fresh garlic) 

Al l icin, SAMC, DADS were about completely metabolized to 

AMS, SAC and DAS were not metabolized to AMS 

(Lawson & Wang, 

2005) 

Fresh garlic 

 

AGE 

10 g 

 

n.s .                       

Breath gas 

 

Blood 

AMS, DAS, 

DADS 

SAC 

AMS was  main metabolite in breath gas 

SAC Cmax= 500 nM (800 ppb) 

(Rosen et al., 

2001) 

Fresh garlic 6 g (21 mg a l licin) Breath gas  AMS AMS Cmax=11 µg/l  (Suarez et al., 

1999) 

Fresh garlic 38 g Breath gas AMS AMS Cmax=90 µg/l  (Taucher et al., 

1996) 

Garl ic powder, enteric-coated capsule 

(di fferent brands) 

12-21 capsules (48 mg a llicin yield) 
 

Breath gas AMS tota l  AMS CAUC=9.1 µg-h/l (Lawson & Wang, 

2001) 

AGE 2.56 g/d Blood SAC Average serum level of SAC in treated group was 220 ng/ml, 

in control group 100 ng/ml after 45 d 

(Nantz et al., 

2012) 

AGE, l iquid 4 ml  (1.22 g dry matter) Blood SAC  (Budoff et al., 

2004) 

AGE 500 mg (0.67-0.8 mg SAC) Blood SAC SAC Cmax=12-25 ng/ml  (Kodera et al., 

2002) 

AGE 2.4-7.2 g (6-18 mg SAC) Blood SAC SAC base l ine level was 30-60 ppb, after AGE intake > 100 

ppb 

(Steiner & Li , 

2001) 
1Dose of garlic product, dose of bioactive compound in parentheses if known. Abbreviations : AGE – Aged garlic extract; AMS – Allyl methyl  sul fide; DADS – Diallyl  disulfide; DAS – Diallyl  sulfide; n.s. 

– not specified; SAC – S-allyl cysteine; SAMC – S-a llylmercaptocysteine. 
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2.2.5 Bioactivity 

Since ancient times garlic has been known for its therapeutic and health promoting properties, 

including anticancerogenic, antioxidative, antiatherosclerotic, antibacterial, antiinflammatory and 

antidiabetic activities (Borlinghaus et al., 2014; Trio et al., 2014; Miron et al., 2008). Cholesterol- and 

triglyceride-lowering properties have been mentioned as well, but further studies indicated that 

these features are questionable (Zeng et al., 2013; Gardner et al., 2007). A regular intake of a usual 

serving size, like one clove, is sufficient to exert health benefits (Witte et al., 1996; Steinmetz et al., 

1994). Table 2-4 provides an overview of selected in vitro and in vivo studies about biological 

activities of allicin and its derivates SAC and SAMC. 

According to many researchers allicin is the major biologically active compound in garlic and 

responsible for most of its health benefits (Borlinghaus et al., 2014; Butt et al., 2009; Miron et al., 

2000). Since allicin is not detectable in blood after oral  intake or in vitro addition, some authors 

suggest that allicin is not the bioactive compound of garlic (Lawson & Wang, 2005; Freeman & 

Kodera, 1995; Amagase, 2006). However, it has been suggested that allicin readily passes through 

cellular membranes and exerts many of its bioactivities by redox-reaction with intracellular thiol 

containing molecules and by its antioxidative activity (Miron et al., 2010; Rabinkov et al., 1998). The 

reaction with the SH-group of proteins, like enzymes, can change their structure and function and 

thereby allicin is able to regulate the activity of these. GSH and cysteinyl residues are the most 

prevalent targets, resulting in the formation of the corresponding S-allylmercapto-conjugates. The 

transformation of the thioallyl-moiety via SH/SS exchange reactions seems to play a crucial role for 

the mediation of allicin’s effects and it is not clear if the thioallyl or the thiosulfinate group is the key 

pharmacophore (Miron et al., 2010; Hunter et al., 2005; Rabinkov et al., 1998).   

Rabinkov et al. (2000) demonstrated the SH/SS exchange reaction by SAMC and SAMG with thiol 

containing enzymes resulted in inactivated S-allylmercapto-derivates in equal measure as found for 

allicin. The inactivation of the enzymes was reversible and could be restored by SH/SS exchange with 

another thiol containing compound. However, allicin showed a higher efficiency in enzyme 

inactivation than SAMC and SAMG, probably because one molecule allicin can generate two thioallyl-

moieties, in contrast to SAMC and SAMG. The advantage of SAMC over allicin is its stability and it 

may serve as reservoir to prolong the activity of allicin (Miron et al., 2010). The reaction of allicin 

with cysteine or GSH is strongly dependent on pH value. With increasing pH in a range of 4.0 to 7.0 

the reaction rate increased significantly, the maximum yield was observed at pH 8.4 (Miron et al., 

2010; Rabinkov et al., 2000).  

Horev-Azaria et al. (2009) clarified further the mechanism underlying the biological activities of 

allicin. Allicin influenced the gene expression and the GSH level of treated cells. The increased GSH 
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level was probably induced by up-regulation of glutamate cysteine lygaze modifier subunit, the rate 

limiting enzyme in GSH biosynthesis. The increased GSH synthesis enhanced the antioxidant potential 

of the cells, because only the concentration of the reduced form (GSH) was raised. The gene 

expression of phase II detoxifying enzymes thioredoxin reductase 1 and 2 and heme oxygenase-1 was 

up-regulated. This up-regulation could be induced by the mild oxidative conditions caused by the 

oxidant allicin, which leads to the activation of the redox-sensitive transcription factors. The 

induction of the Nrf2/Keap 1 system by allicin was reported and confirmed this hypothesis. The 

Nrf2/Keap 1 system is responsible for the expression of different antioxidative enzymes (Borlinghaus 

et al., 2014). The enhanced antioxidative cellular protective mechanisms induced by allicin can 

protect the cells from oxidative stress, which is associated with many pathological diseases. Other 

authors confirmed the lowering effect of intracellular reactive oxygen species (ROS) by allicin 

(Rabinkov et al., 1998). SAMC exhibits also a cell protective mechanism against ROS by scavenging 

peroxides and increasing the intracellular glutathione level to an even higher extent than allicin 

(Horev-Azaria et al., 2009; Imai et al., 1994).  

The redox-mediated mechanisms induced by allicin or its thioallyl-derivates seem to be responsible 

for many of its health promoting effects, such as anticarcinogenic and antiatherosclerotic properties. 

Allicin showed diverse mechanisms of cardiovascular disease prevention: suppression of cholesterol 

biosynthesis (coenzyme A modulated), reduction of platelet-aggregation, reduction of hypertension 

(mediated by H2S) and inhibition of endothelia cell damage caused by low density lipoprotein 

oxidation (Gonen et al., 2005; Shouk et al., 2014; Supakul et al., 2014; Zeng et al., 2013).  

Epidemiological studies revealed that a high consumption of garlic is inversely associated with the 

incidence of different types of cancer (Fleischauer et al., 2000). Animal and in vitro studies confirmed 

the anticarcinogenic effect of allicin. The induction of apoptosis, suppression of metastasis and 

inhibition of cell proliferation are the mainly suggested underlying mechanisms (Trio et al., 2014; 

Arditti et al., 2005; Oommen et al., 2004). Similar anticarcinogenic effects were also shown for SAMC 

(Liang et al., 2011; Howard et al., 2007; Xiao et al., 2003; Shirin et al., 2001; Sigounas et al., 1997a). 

Allicin is known for its antibacterial activity that was already described by Cavallito & Bailey (1944) 

and several times confirmed (Fujisawa et al., 2009; Cutler & Wilson, 2004). Its antibacterial power 

corresponds only to 0.2-8% of clinically used antibiotics (streptomycin, vancomycin, colistin) on 

weight basis, but allicin was able to inhibit 30 different strains of methicillin-resistant Staphylococcus 

aureus, which is increasingly prevalent in hospitals (Fujisawa et al., 2009; Cutler & Wilson, 2004). The 

supposed underlying mechanism is again the modification of SH-containing enzymes. If allicin reacted 

prior with thiol-containing compounds or it was degraded to DADS, its antibacterial activity was lost 

(Fujisawa et al., 2009). 
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Beside the numerous incidences for the biological activity of allicin and its derivates, several 

contradictory results were generated, especially from in vivo studies (Zeng et al., 2013; Khoo & Aziz, 

2009; Banerjee et al., 2003). The diversity of the garlic products used is one of the major reasons for 

the differences between studies. As mentioned above, the kind and concentration of bioactive 

organosulfur compounds in garlic products varies a lot, because of the enzyme-related and 

degradation processes depending on the production conditions.  Large quality differences between 

garlic supplements have been revealed, because most garlic powder products release far less allicin 

than it ought to be (Lawson & Wang, 2001). 
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Table 2-4: Bioactivity of allicin and its derivates. 

Bioactive compound Effect Assay Results References 

In vitro s tudies 

Al l icin Anticarcinogenic Lymphocytic leukemia cells  In s itu generation of allicin by s ite-directed reaction 

 Al l icin induced apoptosis of cancer cells 

(Ardi tti  et a l., 2005) 

Al l icin Anticarcinogenic, 

antioxidative 

Human promyelocytic 

leukemia-derived cells, human 

myelomonocytic cells 

 Al l icin inhibited growth of cancer cells and induced apoptotic 

events 

 Mechanism: allicin activated mitochondrial apoptotic 

pathway by GSH depletion and by changes in the 

intracellular redox s tatus 

(Miron et al., 2008) 

Al l icin, SAMC Anticarcinogenic Human and murine tumor cell 

l ines (colon carcinoma, 

colorectal carcinoma, cervical 

carcinoma) 

 Al l icin induced apoptosis of cancer cells and antiproliferative 

mechanisms  

(Oommen et al., 2004) 

Al l icin Antioxidative ESR (spin trapping), enzymatic 

assay 

 Antioxidative properties 

 Inactivation of thiol-containing enzymes by reaction with 

a l licin 

(Rabinkov et al., 1998) 

Al l icin Antibacterial S. aureus (Gram-positive), E. 

col i  (Gram-negative) 
 Al l icin was only 0.2-8% as potent as clinically used antibiotics 

 Antibacterial activity of allicin was completely abolished by 

addition of thiol containing compounds 

(Fujisawa et al., 2009) 

SAC, SAMC Anticarcinogenic Human colon cancer cells  SAMC, but not SAC, inhibited the growth of cancer cell  

 SAMC induced apoptosis, associated with an increase in 

caspase3-like activity 

 SAMC enhanced jun kinase activity and increased 

endogenous levels of reduced glutathione 

(Shirin et al., 2001) 

SAMC Anticarcinogenic Human colon adenocarcinoma 

cel ls 

 SAMC suppressed significantly the growth and metastasis of 

cancer cells 

(Liang et al., 2011) 

SAMC, other disulfide 

conjugates with cysteine 

and GSH 

Anticarcinogenic, anti-

inflammatory 

Murine hematoma cells  SAMC and SAMG showed highest activity in induction of 

phase II detoxification enzymes and inhibition of NO 

production 

 Cancer-preventive and anti-inflammatory activi ties 

(Zhang et al., 2010) 
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SAC, SAMC Anticarcinogenic Human prostate carcinoma 

cel ls 

 SAMC, but not SAC, showed antiproliferative effect 

 SAMC and SAC induced higher level of reduced GSH 

(Pinto et al., 1997) 

SAC, SAMC, AGE Antioxidative Chemi luminescence assay, 

TBARS assay, DPPH assay 

 SAC and SAMC showed radical scavenging activity and are 

mainly responsible for the antioxidative effect of AGE 

(Imai et a l., 1994) 

In vivo s tudies 

Al l icin Antiatherosclerotic Apol ipoprotein E-deficient and 

LDL-receptor knockout mice 

 Reduced the atherosclerotic plaque area 

 Suggested mechanisms: lipoprotein modification, inhibition 

of LDL uptake and degradation by macrophages 

(Gonen et al., 2005) 

Garl ic Anticarcinogenic Cohort of 41,837 women (212 

pos itive cases) 

 Epidemiologic s tudy 

 Regular, high intake of garlic (≥ 1 serving/week) was 

associated with 50% lower risk for colon cancer 

(Steinmetz et al., 1994) 

Garl ic Anticarcinogenic Humans (325 men, 163 

women, 488 controls) 

 Epidemiologic s tudy 

 Inverse association between high garlic consumption (≥ 3 

servings/week) and adenomatous polyps incidence (can 

progress to colorectal carcinomas) 

(Witte et al., 1996) 

SAMC Anticarcinogenic Prostate cancer mouse model  SAMC s ignificantly inhibited tumor growth and reduced 

number of metastases 

(Howard et al., 2007) 

SAMC Anticarcinogenic Mice, inoculated with prostate 

cancer cells 
 SAMC reduced proliferation and metastasis of cancer cells (Liang et al., 2011) 

AGE Antihypertensive Humans, with uncontrolled 

systolic hypertension (n = 79) 

 Mean systolic blood pressure was significantly reduced (Ried et al., 2013) 

AGE Cardiovascular disease 

preventive 

Humans, healthy (n = 34)  Inhibited platelet aggregation (Steiner & Li , 2001) 

AGE Immunmodulatory Humans, healthy (n = 120)  Indications for enhanced immune cell function and reduction 

of cold and flu severity 

(Nantz et al., 2012) 

AGE Cardiovascular disease 

preventive 

Humans, with coronary artery 

disease (n = 19) 

 Rate of progression of coronary calcification was inhibited (Budoff et al., 2004) 

Abbreviations : AGE – Aged garlic extract; AMS – Allyl methyl  sul fide; ESR – Electron spin resonance; DADS – Diallyl disul fide; DAS – Diallyl  sulfide; DPPH – 2,2-diphenyl -1-picrylhydrazyl ; GSH – 

Reduced glutathione; LDL – Low density l ipoprotein; SAC – S-a llyl cysteine; SAMC – S-a llylmercaptocysteine; SAMG – S-a llylmercaptoglutathione; TBARS – Thiobarbituric acid reactive substance. 
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3.1 Abstract 

The binding reaction of allicin and diallyl disulfide with β-lactoglobulin and the influence of pH value 

and protein denaturation on this reaction have been examined in the present study. Regardless of 

the structural similarity of the both organosulfur compounds, their binding behavior was significantly 

different. Both ligands were covalently bound by the free thiol group of the protein whereas the 

affinity for allicin was significantly higher. In addition, diallyl disulfide was non-covalently bound. The 

binding reaction of both ligands was very sensitive to the pH value during incubation. The optimal pH 

range was between pH 8.0 and 9.0. Protein denaturation increased the reaction rate and reduced the 

number of binding sites for allicin whereas the number of non-covalent binding sites increased for 

diallyl disulfide. Based on these findings, it can be proposed that the covalent modification of β -

lactoglobulin functions as a specific transporter stabilizing allicin or diallyl disulfide. 

 

3.2 Introduction 

Garlic, Allium sativum L., is a traditional flavoring agent and known for its health benefits. 

Epidemiological studies revealed that a high consumption of garlic is inversely associated with the 

incidence of different types of cancer (Fleischauer et al., 2000). Furthermore garlic may reduce the 

risk of cardiovascular diseases (Butt et al., 2009). Allicin (diallyl thiosulfinate) is the major biologically 

active compound derived from garlic. Numerous health promoting effects of garlic can be attributed 

to allicin, which include antimicrobial, antioxidant, antiatherosclerotic and anticancerogenic 

properties (Borlinghaus et al., 2014; Miron et al., 2008). Allicin is enzymatically formed from alliin (S-

allyl-L-cysteine sulfoxide) by alliinase upon tissue damage like crushing (Rahman, 2007). Due to its 

reactive character allicin is relatively unstable and contributes largely to the typical garlic smell and 

pungency which limits the usage as a bioactive ingredient in functional foods (Amagase et al., 2001). 

Diallyl disulfide (DADS) is a volatile degradation product of allicin showing bioactive properties as well 

(Butt et al., 2009). Allicin exerts many of its biological effects by redox-reaction with intracellular free 

thiol groups (Miron et al., 2010). Whereby S-mercapto conjugates, such as S-allylmercaptocysteine 

(SAMC) the reaction product of allicin and cysteine, are produced. These conjugates can react with 

further thiol groups by transferring the S-allyl moiety via thiol-disulfide exchange reaction 

(Borlinghaus et al., 2014; Pinto et al., 2006; Rabinkov et al., 1998).  

The present study investigates the binding of allicin and DADS towards β-lactoglobulin (β-LG), the 

major protein in whey of ruminant milk. The binding to β-LG could form a stable, non-volatile 

derivate which is less sensory perceptible and has a higher solubility in water.  The application of β-LG 

as transporter for non-covalently bound ligands had been reported frequently (Bello et al., 2012; 
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Loch et al., 2013; Shpigelman et al., 2012). To use β-LG as a transporter for covalently bound ligands 

is more recent approach. To our knowledge only allyl isothiocyanate (AITC) was investigated as 

covalent bioactive ligand at β-LG (Keppler et al., 2014a; Rade-Kukic et al., 2011). Covalent 

modifications of β-LG occur naturally as well as during food processing, e.g. glycation of amino 

groups through Maillard reaction, reaction with electrophilic compounds like aldehydes and 

quinones (Ali et al., 2013; Curcuruto et al., 1998).  

We hypothesize that allicin or DADS can be bound by the whey protein β-LG under specific 

conditions. Therefore the overall binding reaction, the reaction with different functional groups of β-

LG and the reaction conditions have been investigated in the present study. 

 

3.3 Materials and Methods 

3.3.1 Materials 

β-LG was isolated according to Keppler et al. (2014a). Briefly, whey protein isolate (DSE 6668, 

Fonterra, New Zealand) was dissolved and α-lactalbumin, bovine serum albumin and 

immunoglobulins were precipitated at pH 3.8. Subsequently, the supernatant was freeze dried and 

resulted in a final product containing 98% β-LG in the protein fraction; 90.3% protein (Kjeldahl 

analysis, N x 6.38); 0.18% lactose; < 0.3% fat; 7.16% ash and 2.3% moisture.  

For the synthesis of allicin a modified procedure from Small et al. (1947) was used. A solution of m-

chloroperbenzoicacid (7.52 g, 43.71 mM) in dichloromethane was added to an ice cooled solution of 

diallyl disulfide (6.4 mL, 43.71 mM) in 125 ml dichloromethane. The reaction mixture was stirred for 

90 minutes followed by addition of anhydrous Na2CO3 (40 g) with vigorous stirring for another hour. 

Then the reaction mixture was filtered and the excess solvent was removed by rotary evaporation.  

The crude substance was purified by flash column chromatography using ethyl acetate and pentane. 

The product was isolated as a pale yellow oil (5.02 g, 86%). 1H NMR (CDCl3, 500 MHz): δ 5.83-5.96 (m, 

2H), 5.16-5.46 (m, 4H), 3.71-3.86 (m, 4H); 13C NMR (CDCl3, 125 MHz): δ 132.88, 125.81, 124.02, 

119.05, 59.84, 35.02. 

DADS, 5,5′-Dithiobis(2-nitrobenzoic acid) (DTNB), o-phthalaldehyde (OPA) and L-leucine were 

purchased from Sigma-Aldrich (St. Louis, USA). N-Acetyl-L-cysteine (NAC) was purchased from Carl 

Roth GmbH & Co. KG (Karlsruhe, Germany). 
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3.3.2 Sample preparation 

The experiments were conducted with native and heat-denatured β-LG. For heat denaturation a 100 

µM β-LG solution was heated at 90 °C for 30 min and freeze dried (48 h, Gamma 1-16 LSCplus, Martin 

Christ Gefriertrocknungsanlagen GmbH, Osterode, Germany) afterwards. The preparation of the β-

LG/ligand mixtures was similar to Keppler et al. (2014a). β-LG (native or denatured) was dissolved in 

water and was stirred for 1 h and stored overnight at 4 °C to complete hydration. Afterwards usually 

pH was adjusted to 8.5 using 0.1 M NaOH. To examine the influence of the pH value on the binding 

reaction pH values of 4.0, 7.0 (adjusted with 0.1 M HCl) and 8.0, 9.0 (adjusted with 0.1 M NaOH) 

were tested as well. The final concentration of β-LG was 500 µM. The ligand solution was prepared 

freshly before each trial. The stock solutions of DADS and allicin were prepared with ethanol and 

diluted to obtain different concentrations (5 to 750 mM). β-LG was mixed with each ligand 

separately. To one volume of β-LG solution 2% ligand solution at different concentrations was added 

under stirring to obtain different ligand/β-LG molar ratios ranging from 0.2 to 20 and 0.25 to 30 for 

allicin and DADS, respectively. As a control 2% ethanol was added to the β-LG solution. The samples 

with allicin and DADS were incubated for 24 h protected from light at 4 °C and room temperature. 

Preliminary experiments (analyzed by RP-HPLC) showed that an incubation time of 24 h is necessary 

to complete the binding reaction. All analyses were done after incubation, followed by equilibration 

at room temperature for 2 h. All samples were prepared in triplicate. 

 

3.3.3 Characterization of the binding between β-LG and allicin or DADS 

Determination of free thiol groups (RSH) 

The amount of free thiol groups was determined using Ellman’s assay according to Kehoe et al. 

(2007) and Keppler et al. (2014a). The samples with different β-LG/ligand ratios were diluted 20-fold 

in 50 mM Tris-glycine buffer (pH 8) with and without 8 M urea. 40 µl of DTNB (10 mM in Tris-glycine 

buffer) was added to 2 ml of the diluted solution and incubated for 10 min. If DTNB reacts with thiol 

groups the yellow dianion of 5-thio-2-nitrobenzoate is formed. The absorbance of the samples was 

measured at 412 nm using a spectrophotometer (Helios Gamma, UV-Vis, Thermo Spectronic, 

Cambridge, UK) and was corrected for the absorbance of the corresponding ligand concentration and 

DTNB. By means of the molar absorption coefficients of 13600 M-1 cm-1 the concentration of 5-thio-2-

nitrobenzoate and thus the amount of free thiol groups per molecule of β-LG was calculated (Ellman, 

1959).   
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Determination of free amino groups (OPA) 

The amount of free amino groups was determined according to the method of Rade-Kukic et al. 

(2011) and Keppler et al. (2014a). The method is based on the reaction of OPA in conjunction with 

reduced sulfhydryl groups with primary amines of the protein with formation of fluorescent 

derivatives. 0.1 ml of the sample was mixed with 0.5 ml water and 9.1 ml NAC solution (0.3% NAC 

(w/v) in 0.1 M borate buffer, pH 9.3) and incubated at 50 °C for 10 min. 0.3 ml OPA solution (3.4% 

OPA (w/v) in MeOH) was added and the mixture was incubated for further 30 min at 50 °C. After 

cooling down to room temperature for 30 min the absorbance of the mixture was measured at 340 

nm using the same spectrophotometer as was mentioned above. The absorbance value was 

corrected for the absorbance of the corresponding ligand concentration and OPA. The concentrat ion 

of free amino groups was calculated using a calibration function of L-leucine in a concentration range 

of 10-150 µM. 

 

Fluorescence quenching 

Fluorescence measurements were carried out according to Keppler et al. (2014a). The quenching of 

tryptophan fluorescence of β-LG was used to analyze the binding of allicin and DADS. Therefore the 

samples with different ligand/protein molar ratios (0-30 M/M) were diluted to 15 µM β-LG. The 

fluorescence was measured at room temperature using a Varian Cary Eclipse right angle fluorescence 

spectrophotometer (Varian Australia PTY Ltd.) and a 1 x 1 cm quartz cell. The excitation and emission 

wavelength were 294 nm and 340 nm, respectively, employing 5 nm bandwidths. The fluorescence 

values were corrected for the inner-filter effect by measuring the absorbance at the applied 

excitation and emission wavelength for each sample using the spectrophotometer as was mentioned 

above. According to van de Weert (2010) the observed fluorescence Fobs was corrected to Fcorr in the 

following way: 

𝐹corr = 𝐹obs ∗ 10
𝐴ex+𝐴em

2  

Where Aex and Aem are the absorption values at the excitation (294 nm) and at the emission 

wavelength (340 nm), respectively. To verify that the observed fluorescence quenching is related to 

true binding reactions two further experiments were conducted. Binding decreases at higher 

temperatures and quenching should be less as well (van de Weert & Stella, 2011). Therefore the 

fluorescence was determined at 40 °C additionally to the measurements at room temperature. The 

UV absorption spectrum of β-LG was compared with the spectrum of β-LG with each ligand because 

true binding changes the absorbance (Keppler et al., 2014b). 
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RP-HPLC analysis 

The samples were diluted to a β-LG concentration of 15 µM and were filtered through 0.2 µm syringe 

filters (regenerated cellulose membrane, Carl Roth GmbH & Co. KG, Karlsruhe, Germany). RP-HPLC 

was performed using the Agilent 1100 Series HPLC with a diode-array detector and PLRP-S column 

(300 Å, 8 µm, 150 x 4.6 mm, Agilent Technologies, Santa Clara, USA). For the analytical separation the 

injection volume was 20 µl at a flow rate of 1 ml/min and a column temperature of 40 °C using 

eluents A (0.1 % (v/v) TFA in water) and B (0.1 % TFA (v/v) in ACN). The elution used gradient steps of 

35-38% B (1-8 min), 38-42% B (8-16), 42-46% B (16-22 min), 46-100% B (22-22.5 min) and 100-35% B 

(23-23.5 min). The detection wavelength was 205 nm. 

 

Calculation of binding parameters 

The binding constants of allicin and DADS to β-LG were calculated by nonlinear regression of the 

saturation-binding curves using the software Graphpad Prism version 6 (Graphpad Software, La Jolla, 

USA). The binding curves were obtained by plotting the molar binding ratio of ligand  to β-LG (B, 

M/Ml) against the ligand concentration (mM). 

From the analysis of free thiol and amino groups, B was calculated based on the assumption that 

each free functional group can bind one molecule of ligand. Only the RSH values that were 

determined with urea were used for the calculation of binding parameters. The corrected 

fluorescence values were transformed to a saturation-binding curve using the fractional quench 

method of Levine, 1977 according to Keppler et al. (2014a). The area of the unmodified and modified 

β-LG A and B (genetic variants) in the RP-HPLC chromatogram was used to determine the binding 

parameters. The relative amount of the modified β-LG of each sample with ligand in relation to the 

area of β-LG without ligand (control) was calculated and corresponded to the molar binding ratio B. 

Because the calculation model is limited to a maximum of one binding site, only the affinity of the 

binding reaction was calculated. The number of binding sites was assessed by the number of peaks of 

the modified β-LG A and B, based on the assumption that the protein becomes more hydrophobic 

through each bound ligand. All binding parameters were calculated as means ± standard error of the 

mean (SEM) of the samples prepared in triplicate. 
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3.4 Results and discussion 

The interaction of allicin and DADS with β-LG was characterized on different levels: total binding was 

evaluated using RP-HPLC and FQ and specific binding sites were analyzed with colorimetric methods 

(detection of free thiol and amino groups).  

 

3.4.1 Total Binding 

The overall binding was measured by RP-HPLC and FQ. Figure 3-1 presents the RP-HPLC 

chromatograms of β-LG A and B (genetic variants) with the ligands in different molar ratios. With 

increasing concentration of allicin the area of the native β-LG decreased. Concurrently a new peak 

appeared for each genetic variant at a higher retention time. Based on these results it is very likely 

that only one binding site of β-LG was modified by allicin. At a molar ratio of 0.6 M/M the maximum 

transformation was reached. The affinity constant Ka  (i.e. 151.1 mM-1, Table 3-1) was calculated by 

using the relative amount of the modified β-LG of each sample with ligand in relation to the area of 

β-LG without ligand. The binding parameters for allicin based on FQ data were similar to the results 

of the RP-HPLC analysis and gave n=1.07 [M/M] binding site on β-LG and an apparent affinity of 

138.9 mM-1.  

The chromatograms of β-LG and DADS showed as well a decrease of the native β-LG peak areas with 

increasing ligand concentration but to a much lesser extent than for allicin (Figure 3-1, B). Even at a 

high molar ratio (40 M/M) about 60% of the protein remained unmodified. The first peaks of the 

modified β-LG A and B exhibited the same retention time as β-LG which was modified by allicin. 

Interestingly, further small peaks of the modified β-LG A and B were formed at an even higher 

retention time. The additional peak for each genetic variant indicated a more hydrophobic 

modification of β-LG A and B and thus a further binding site. Based on the RP-HPLC findings it can be 

concluded that the additional binding sites resulted in slightly more hydrophobic physico-chemical 

properties. The maximum number of binding sites determined by FQ was n=3.56 ± 0.17 M/M.  

Figure 3-2 A and B show the saturation-binding curves of allicin and DADS obtained by different 

methods. The curves and Ka for allicin indicate the high binding affinity. Depending on the method 

used the saturation level was reached at a molar ratio of 0.6-1.0 M/M. For DADS a five times higher 

ligand concentration was necessary to reach the saturation level.  

The higher binding affinity of allicin in comparison to DADS in the present study was expected. Due to 

the thiosulfinate group allicin is more electrophilic and reactive than DADS which causes the higher 

affinity (Hunter et al., 2005). 
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Figure 3-1: Detail of the RP-HPLC chromatograms of β-lactoglobulin (β-LG) with allicin (A) and diallyl 
disulfide (B). The number at the end of each profile indicates the corresponding molar ligand-protein 
ratio (M/M). Numbers at the profile peaks: 1 – native β-LG B; 2 – native β-LG A; 3 – modified β-LG B 
(one ligand/molecule bound); 4 – modified β-LG A (one ligand/molecule bound); 5, 6 – modified β-LG 
(probably >1 ligand/molecule bound or protein aggregates). 
 

 

 
Figure 3-2: Molar binding ratio of the ligands allicin (A) and diallyl disulfide (DADS) (B)  to 500 µM 
native β-LG as a function of the molar ratio between ligand and protein. Binding was determined by 
measurement of free thiol groups (RSH), fluorescence quenching (FQ) and RP-HPLC. Incubation pH 
was 8.5.  B – bound ligand per M β-LG; DADS – diallyl disulfide; β-LG – β-lactoglobulin.  
 
 

Both FQ and RP-HPLC are suitable methods to gather the overall binding reaction of the protein and 

were used in similar studies (Keppler et al., 2014a; Rade-Kukic et al., 2011). Rade-Kukic et al. (2011) 

observed as well a peak shift to higher retention times in RP-HPLC chromatogram of β-LG induced by 

covalent binding of AITC.  
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Table 3-1: Binding parameters of allicin and diallyl disulfide to native β-LG measured at pH 8.5 by 
different methods. 

 Al l i cin Dia l lyl  disul fide  

Method 
Maximum number of 

binding s i tes  n [M/M] 

Apparent affini ty 

constant Ka [mM-1] 

Maximum number of 

binding s i tes  n [M/M] 

Apparent affini ty 

constant Ka [mM-1] 

RSH 0.71 ± 0.01 139.8 ± 5.74 0.67 ± 0.03 24.3 ± 2.87 

OPA 0 - 0 - 

FQ 1.07 ± 0.02 138.9 ± 7.74 3.56 ± 0.17 38.0 ± 4.27 

RP-HPLC ≈1* 151.1 ± 6.41 ≈2* 15,5 ± 4.42 

FQ – fluorescence quenching; Ka – apparent affinity; n – number of binding sites; OPA – measurement of free amino groups; RP-HPLC – 
reversed phase high pressure liquid chromatography; RSH – measurement of free thiol groups. * Values are based on the number of new 
formed peaks for each genetic variant and not on calculations. All results were measured in triplicate and listed as mean ± standard error 
mean. 

 

A higher number of binding sites was determined by FQ for DADS compared to RP-HPLC method. 

With respect to non-covalent interactions FQ is a frequently utilized and might detect non-covalent 

interactions more sensitive than RP-HPLC. Nevertheless, an overestimation of the binding reaction by 

FQ cannot be ruled out. The high ligand excess of DADS may have induced protein aggregation due to 

competition with water molecules. Oligomer formation of the protein was shown to cause binding 

overestimation by FQ (Muresan et al., 2001). To verify that the change in fluorescence was only 

related to static binding, possible interferences (i.e. inner filter effect, collisional quenching) had to 

be either excluded or corrected (van de Weert & Stella, 2011; Keppler et al., 2014b). The inner filter 

effect was corrected by using absorption calculations. To investigate collisional quenching the 

fluorescence was measured at different temperatures (20 °C, 40 °C) and the absorption spectrum 

(250-300 nm) of β-LG with and without ligand was determined (data not shown). The results of both 

methods indicated that collisional quenching can be ruled out.  

In summary, FQ and RP-HPLC provide complementary and supportive information on the binding 

characteristics. The analysis by RP-HPLC is less influenced by confounding factors than FQ and the 

data interpretation is easier (van de Weert & Stella, 2011). In addition, information about physico-

chemical characteristics of the modified protein are obtained, hence the higher retention time 

indicates a higher hydrophobicity of the molecule. Thus, binding parameters based on RP-HPLC 

results are able to determine the proportion of the modified β-LG, the detection of different species 

(number of peaks), but not the degree of modification.  
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3.4.2 Binding of functional groups 

Allicin binding. The concentration of the free amino groups did not significantly change with 

increasing allicin concentration (data not shown). In contrast the measurement of the free thiol 

groups (RSH) revealed that allicin bound to one thiol group. The binding parameters determined by 

RSH corresponded to the results of RP-HPLC and FQ (Table 3-1). The RSH data of allicin further 

showed that after the complete binding of free thiol groups the concentration of SH-groups per 

molecule β-LG was slightly increased with an increasing molar ratio (Figure 3-3). At a molar ratio of 

0.6 M allicin/1 M β-LG 94% of thiol groups were blocked. 

It is highly probable that the free thiol group of Cys121 is the main binding site because it is the only 

free thiol group of β-LG. Cys121 is located in the inner area of the protein and its accessibility is limited 

(Burova et al., 1998). Due to this steric hindrance only about 20% of the free thiol groups can react 

with the DTNB and are detectable by the RSH method (Figure 3-3), which is in accordance with other 

studies (Kehoe et al., 2007). Nevertheless the results of RSH method, RP-HPLC and FQ taken together 

indicated that allicin reacted immediately and almost quantitatively with the free thiol group. 

Presumably the reaction was not retarded by the steric hindrance because of the small size of allicin 

(molecular weight 162.27 g/M) and its amphiphilic character that facilitates the diffusion into the 

inner part of the protein. 

 

 
Figure 3-3: Reactive thiol groups (RSH) per molecule β-lactoglobulin (β-LG) as function of molar ratio 
between allicin and β-LG. The determination of RSH was done without (circles) and with urea 
(squares). 
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Figure 3-4: Reaction between allicin and thiol groups in general (1) and of cysteine (2). The released 
2-propenesulfenic acid can form allicin again by self-condensation (3). 

 

The binding of allicin with 94% of the free thiol groups of β-LG at a ratio close to 2:1 between β-LG 

and allicin as found in the present study was also reported by Miron et al. (2000) and Hunter et al. 

(2005). If allicin reacts with a thiol group, 2-propenesulfenic acid is formed, which can react with a 

further thiol group or can form allicin by self-condensation (Trio et al., 2014). In consequence, the 

theoretical stoichiometric ratio is 2:1, as shown in Figure 3-4, and the reaction product of allicin and 

cysteine is S-allylmercaptocysteine (Rabinkov et al., 2000). The results of RSH and RP-HPLC are in 

accordance with the proposed mechanisms, i.e. the thiol-disulfide exchange reaction between allicin 

and thiol containing proteins (Rabinkov et al., 1998; Miron et al., 2010).  

The increase of thiol group concentration found in the present study may be caused by the cleavage 

of disulfide bonds of β-LG through the high concentration of free ligand, as it was shown for AITC 

(Keppler et al., 2014a; Rade-Kukic et al., 2011). Since the results of FQ and RP-HPLC indicate that it is 

unlikely that allicin binds a further thiol group by cleaving a disulfide bridge, another explanation 

seems to be more likely: the release of 2-propensulfenic acid through the degradation of allicin 

favored by the basic conditions reduced the pH value and hence the reactivity of thiol groups ( Figure 

3-4). With increasing allicin excess the reduction of the pH value during incubation was caused. The 

lowest pH value measured after incubation was 7.4. At this pH the affinity for the reaction is 

significantly reduced, as shown in Figure 3-5, and only a part of the thiol groups react which explains 

the slight increase of free thiol groups at high allicin excess (Figure 3-3). 

DADS binding. DADS also reacted only with the free thiol group of β-LG. The reaction was not 

detectable without previous denaturation of the protein. If β-LG was unfolded about 75% (0.75 ± 

0.03 M/M β-LG) of the free thiol groups were detectable. 70% of these reacted with DADS at the 

saturation level. According to the analysis of thiol and amino groups there were only 0.7 M/M 
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binding sites for DADS, contrary to the results of RP-HPLC and FQ indicating a molar ratio of circa 2 

M/M and 3.6 M/M (Table 3-1), respectively. Thus, about one binding site can be assigned to the 

covalent reaction with the free thiol group, further binding sites seem to be attributed to  non-

covalent interactions. The stable and hydrophobic character of DADS could enable the binding in the 

calyx or in the hydrophobic pockets at the surface of β-LG (Kontopidis et al., 2002). 

The measurement of the free thiol (RSH) and amino groups (OPA) revealed that both ligands react 

only with the thiol groups and the binding to amino groups can be ruled out. At the incubation pH of 

8.5 the majority of the thiol groups of cysteine (pK 8.5) were deprotonated and thus more reactive 

than the protonated amino groups (pK 10.4) (Thurlkill et al., 2006). The reaction of allyl sulfides with 

thiol groups has been described in several studies but not the reaction with amino groups which is in 

accordance with our findings (Miron et al., 2010; Rabinkov et al., 1998; Hunter et al., 2005). In 

contrast other covalent ligands, like AITC and caffeoylquinic acids, bind to the amino groups of the 

protein although with a low affinity (Rade-Kukic et al., 2011; Ali et al., 2013). In case of AITC, the 

reason is the higher electrophilicity compared to allicin and DADS and therefore the higher attraction 

to the less nucleophilic amino groups. AITC binds to the free thiol group at Cys 121 as well but the 

affinity constant Ka was considerably lower (Ka=4.35 mM-1) than for allicin and DADS (Keppler et al., 

2014a; Rade-Kukic et al., 2011). The attack of the deprotonated thiolate of cysteine is much stronger 

for the disulfide exchange reaction with the sulfur containing compounds of garlic than for the 

electrophilic AITC (Nagy, 2013). 

In summary, RSH and OPA methods revealed the involved functional groups in the reaction and the 

data enable the calculation of binding parameters. However, for very reactive ligands like allicin the 

methods are not applicable to test the influence of the pH value during incubation. Because of the 

required alkaline buffer systems (pH 8.0, 9.3) the thiol groups are in a reactive state. Furthermore if 

urea is used the free thiol group is exposed and more accessible due to the unfolding of the protein. 

Even the incubation conditions were not appropriate for the binding reaction, as any non-bound, 

reactive ligand can immediately bind to the protein when the sample was mixed with the buffer and 

urea. This observation has been made for allicin and β-LG at an incubation pH of 7.0 and 4.0. The 

results of RSH in the presence of urea were the same for the different incubation pH values contrary 

to all other methods. Thus the sample preparation of the RSH method provides favorable binding 

conditions, the original state after incubation can be changed until DTNB is added which causes false 

positive results. 
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3.4.3 Influence of the pH value during incubation 

The influence of different pH values (4.0-9.0) on the binding reaction of allicin or DADS with β-LG was 

tested by RP-HPLC and FQ. According to RP-HPLC method the maximum number of binding sites n 

and the highest affinity (Ka) for the binding reaction of allicin was achieved at the pH value of 8.5 

(n=1.0 ± 0.02 M/M; Ka=151.1 ± 5.6 mM-1).Whereas the results of FQ indicated that the maximum 

binding was at pH 8.0 (n=1.1 ± 0.01 M/M; Ka=166.9 ± 18.8 mM-1) (Figure 3-5). Compared to pH 8.5 

(n=1.1 ± 0.01 M/M; Ka=138.9 ± 7.7 mM-1) and at pH 9.0 (n=1.1 ± 0.01 M/M; Ka=124.1 ± 6.5 mM-1) n 

was the same, but Ka decreased slightly. At a pH value below 8.0 the binding reaction was 

significantly reduced. By RP-HPLC a minor binding reaction was measured at pH 7.0 (n=0.1 ± 0.04 

M/M; Ka=23.1 ± 4.2 mM-1). With FQ no binding reaction was detectable under these conditions. For 

DADS the results were similar. The maximum binding was at pH 8.5, no binding reaction was 

measured at 7.0 and 4.0 by RP-HPLC and FQ. 

The strong influence of the pH value during incubation of ligand and protein on the binding reaction 

is caused by the pH dependent reactivity of the thiol groups (Fernandes & Ramos, 2004). Only at a 

basic pH the majority of the thiol groups of Cys121 (pK 8.5) were deprotonated and reactive, which is 

crucial for the binding reaction. Rabinkov et al. (2000) analyzed the pH dependency of the binding of 

allicin to a thiol containing peptide. They also observed an increasing reaction rate with increasing pH 

value (pH 4.5-7.0). In contrast to our results the reaction took also place at acidic conditions even 

though at a low rate. The crucial difference to a thiol containing peptide is the limited accessibility of 

the thiol group of β-LG and the influence of the vicinal amino acids. Beside the reactivity of the 

functional group the pH influences the conformation of the protein (Hoffmann & van Mil, 1999; 

Dunnill & Green, 1966). At pH above 7.4 the accessibility of the thiol group is increased through the 

Tanford transition (Tanford et al., 1959). Below this pH the thiol group is buried in the inner part of 

the protein and less available for the reaction. In combination with the low reactivity of the thiol 

group at a neutral and acidic pH the binding reaction is inhibited. Therefore covalent modifications of 

β-LG have been reported mainly at alkaline conditions (Curcuruto et al., 1998; Ali et al., 2013; Rade -

Kukic et al., 2011; Keppler et al., 2014a). 

 

3.4.4 Influence of the protein heat denaturation on binding 

The influence of protein heat denaturation (i.e. at a given protein concentration for a defined time 

period as described in materials and methods part) on the overall binding reaction of allicin and 

DADS to β-LG was measured by FQ. 
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Figure 3-5: Maximum number of binding sites (n [M/M]) of allicin to 500 µM native β-LG as a 
function of the pH value during incubation. Binding was determined by fluorescence quenching (FQ) 

and RP-HPLC. (****) for P < 0.001. 

 

According to FQ the maximum number of binding sites after protein denaturation was n=0.86 ± 0.08 

M/M and the affinity Ka was 527.7 ± 359.0 mM-1 for allicin. The measurement of the different 

functional groups revealed that there was no binding at the amino groups like under all other 

conditions. According to RSH method n of allicin was lowered to 0.22 ± 0.01 M/M but the affinity of 

the reaction was tenfold higher (Ka=1264.1 ± 2718.0 mM-1) compared to the native state of the 

protein (Ka=139.8 ± 5.74 mM-1). With regard to DADS, FQ showed an increase in the maximum 

number of binding sites (n=6.1 ± 0.05 M/M) and a lower affinity (Ka=17.8 ± 7.9 mM-1) compared to 

the native β-LG, whereas RSH resulted in a lower number of binding sites (n=0.16 ± 0.02 M/M) and a 

lowered affinity as well (Ka=12.8 ± 5.2 mM-1).  

The apparently lower number of binding sites of the denatured β-LG according to RSH is caused by 

the reduced number of available thiol groups per molecule (SH/β-LG=0.24 ± 0.01 M/M). Probably 

heat induced covalent and non-covalent aggregation was responsible for lower availability, since the 

free thiol groups becomes exposed during heating and can form i ntermolecular disulfide bonds 

(Croguennec et al., 2003; Creamer et al., 2004). Allicin and DADS were bound to a similar extent as by 

the native protein concerning the reduced number of available thiol groups. According to FQ and RSH 

the main difference compared to the native protein state is the affinity of reaction. Due to the 

unfolding of the protein during heating the free thiol group of Cys121 becomes exposed and its 

reactivity is enhanced which finally causes the high affinity (Creamer et al., 2004). To prevent the 

lower number of available thiol groups suitable physicochemical conditions (like temperature < 90 

°C) during heat treatment can be chosen to obtain a non-native monomer with an exposed free thiol 

group (Croguennec et al., 2003).  
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The increased affinity of the denatured protein was not detected for DADS. Instead, the number of 

binding sites increased according to FQ. The thermally induced unfolding of β-LG exposes adhesive 

hydrophobic regions which enables more interactions with small hydrophobic ligands such as DADS 

(Busti et al., 2005). Therefore, the number of non-covalent binding sites for DADS was presumably 

increased by denaturation of β-LG which is consistent with the findings for other hydrophobic non-

covalently binding ligands (Li et al., 2012; Shpigelman et al., 2010). In conclusion, the prevalence of 

non-covalent interactions (shown by FQ) with DADS was increased by denaturation, whereas 

covalent interactions (shown by RSH) were reduced. 

 

3.5 Conclusions 

It has been demonstrated that the closely structural related organosulfur compounds allicin and 

DADS were bound by β-LG in a different manner. The affinity for the covalent reaction with the free 

thiol group of the protein was significantly higher for allicin compared to DADS. Additionally, non-

covalent interactions were detected for DADS. The methods used for binding analysis enabled the 

differentiation between covalent and non-covalent interactions. The pH value influenced the 

interaction with both ligands in the same way, protein denaturation gave rise to partly contrary 

effects. The binding can be formed specially, as the strong pH dependency of the reaction, it can be 

assumed that the reaction would not take place in a significant extent under neutral or acidic 

conditions. The binding allows stabilization of the bioactive garlic constituents allicin and DADS. 

Further, binding may reduce the flavor-activity. With respect to a functional food ingredient allicin is 

probably the more appropriate ligand because it was completely bound by the protein in a stable 

manner. While DADS remained partly free, even if the protein was in excess, thus it can still 

contribute to the garlic like sensory perception.  
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4.1 Abstract 

The whey protein β-lactoglobulin has been proposed as a transporter for covalent bound bioactive 

compounds in order to enhance their stability and reduce their sensory perception. The garlic 

derived compounds allicin and diallyl disulfide were bound covalently to the native and heat 

denatured protein. The binding site and the influence of the modification on the digestibility were 

determined by mass spectrometric analysis of the modified β-lactoglobulin. Further, the 

conformation of the modified protein was assessed by circular dichroism and dynamic light 

scattering. The free thiol group of Cys121 turned out to be the major binding site. After proteolysis 

with trypsin at pH 7 but not with pepsin at pH 2, a limited transfer to other cysteinyl residues was 

observed. The covalently bound ligands did not mask any proteolytic cleavage site of pepsin, trypsin 

or chymotrypsin. The modified β-lactoglobulin showed a native like conformation, besides a 

moderate loosening of protein folding. The covalent binding of organosulfur compounds to β-

lactoglobulin provides a bioactive ingredient without impairing the digestibility and functional 

properties of the protein. 

 

4.2 Introduction 

β-Lactoglobulin (β-LG) is the major protein in whey of ruminant milk. The globular molecule consists 

of 162 amino acids and has a molecular weight of approximately 18.3 kDa. β-LG possesses two 

intramolecular disulfide bonds (Cys66-Cys160, Cys106-Cys119) and one free thiol group (Cys121) which is 

buried between the β-barrel and the major α-helix (Burova et al., 1998). Furthermore, β-LG contains 

16 free amino groups that can act as binding site for potential covalent ligands as well (Morgan et al., 

1999). The tertiary structure is dominated by the β-barrel and consists of nine anti-parallel β-sheets 

and a major α-helix at the C-terminal end of the polypeptide chain (Brownlow et al., 1997). The β-

barrel forms a hydrophobic cavity inside the protein, where hydrophobic compounds can be bound 

(Kuwata et al., 1999). In its quaternary structure β-LG is mostly present in monomeric or dimeric 

form. At physiological conditions the dimer is predominant, but the equilibrium is influenced by 

different parameters (Aymard et al., 1996). Due to the solubility of β-LG over a wide pH range (pH 2-

9), its GRAS (generally recognized as safe) status, various techno-functional properties and high 

nutritional value it is frequently used as an additive in food products. It contributes largely to the 

functional properties of whey protein concentrate and isolate, like emulsification, gelation, water 

binding, viscosity development and foaming (de Wit, 1998; Renard et al., 1998; Morr & Ha, 1993). In 

addition, it has been shown that peptides derived by enzymatic proteolysis of β-LG exert biological 

activities, e.g. antihypertensive, antioxidant and antimicrobial effects (Hernandez-Ledesma et al., 

2008). All these properties together qualify β-LG as a suitable transporter of bioactive compounds.  
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Allicin (S-allyl 2-propene-1-sulfinothioate) is the major thiosulfinate derived from freshly crushed 

garlic and mainly responsible for the typical garlic flavor and many health-promoting effects 

(Borlinghaus et al., 2014). Dially disulfide (DADS) is a stable degradation product of allicin that exerts 

these health benefits to a lesser extent (Reuter et al., 1996). Due to the reactive character of allicin it 

is relatively unstable, i.e. the chemical half-life is ranging from several hours to some days, depending 

on the conditions (Fujisawa et al., 2008; Hunter et al., 2005; Lawson & Gardner, 2005). The binding of 

organosulfur compounds (allicin, DADS) to β-LG could form a stable bioactive derivate, but the 

properties of the protein could be changed by the modification as well. Changes of the conformation, 

physico-chemical properties and digestibility have been observed after covalent modifications of β-

LG by different ligands (Rade-Kukic et al., 2011; Chevalier et al., 2001; Sakai et al., 2000; Rawel et al., 

1998). Recently we have shown that β-LG is able to bind allicin and DADS covalently (Wilde et al., 

2016). The free thiol group was hypothesized to provide the binding site for the organosulfur 

compounds, but it was not proved so far. Through hydrolysis of the modified protein followed by 

mass spectrometry the modified amino acid can be identified and the digestibility can be assessed 

(Keppler et al., 2014b; Ali et al., 2013). 

The aim of this study was to investigate the structure of β-LG modified with allicin or DADS. By 

proteolysis and subsequent mass spectrometry (MS) the binding site was determined. In addition, 

the influence of the modification on the digestibility and conformation of β-LG were analyzed.  

 

4.3 Materials and Methods 

4.3.1 Materials 

β-LG was isolated according to Keppler et al. (2014a) and contained 98% β-LG in the protein fraction; 

90.3% protein (Kjeldahl analysis, N x 6.38); 0.18% lactose; < 0.3% fat; 7.16% ash and 2.3% moisture. 

Allicin was synthesized as described by Wilde et al. (2016) and the purity was 86%. All other chemical 

compounds were analytical grade and were purchased from Sigma-Aldrich (Sigma-Aldrich Chemie 

GmbH, Steinheim, Germany).  

 

4.3.2 Sample preparation 

Sample preparation was done as previously described in Wilde et al. (2016). Shortly, native and heat-

denatured β-LG were solved in water to give a final concentration of 500 µM. The pH value was 

adjusted to 8.5. The ligands were separately solved in ethanol and diluted to different concentrations 

(5 to 750 mM). One volume of β-LG was mixed with 2% of ligand solution at different concentrations 
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resulting in ligand/β-LG molar ratios of 0.2 to 20 and 0.25 to 30 for allicin and DADS, respectively. 

Ethanol was used for control sample. The samples were incubated for 24 h, under protected from 

light, at 4 °C. All samples were prepared in triplicate. 

 

4.3.3 LC-MS analysis of intact β-LG 

To analyze the modification of the free sulfhydryl-group after incubation with allicin or DADS 

respectively, high accuracy mass spectra of the intact proteins were acquired with a Fourier 

transform mass analyzer. LC-ESI MS analysis was performed on an Ultimate 3000 nano-HPLC system, 

equipped with an Acclaim PepMap100 nano-column (75 µm x 15 cm, 3 µm, 100 Å, Dionex), coupled 

online to an LTQ Orbitrap Velos mass spectrometer (Thermo, Bremen, Germany) via a nanospray ion 

source with a 30 µm PicoTip emitter (New Objective, Woburn, MA). β-LG samples were diluted to a 

concentration of 5 pmol/µl with 0.1% formic acid. After injection of 1 µl the analyte was washed for 5 

min on a PepMap C18 guard column (300 µm x 10 mm, Dionex) with 0.1% aqueous TFA at a flow rate 

of 30 µl/min. Ion paring reversed-phase (IP-RP) HPLC separation was performed using a 27 min linear 

gradient from 95% eluent A (water with 0.1% FA) to 90% eluent B (80% ACN, 0.1% FA) at a flow rate 

of 300 nl/min, followed by isocratic elution for 13 min; afterwards, the column was equilibrated with 

5% B for 15 min. UV detection was performed at 214 nm. 

The mass spectrometer was operated with Xcalibur software (v2.1.0.1140). The spray voltage was set 

to 1.37 kV at capillary temperature of 197 °C. MS conditions were: AGC target 1 x 106; maximum 

inject time 500 ms. Full scans of 300 – 2000 m/z range were acquired in positive ion mode and 

recorded in profile, with a resolution of 100000 and calibrated by lock mass of the polysiloxane 

contaminant peak at m/z 445.120024.   

 

4.3.4 Enzymatic hydrolysis of modified β-lactoglobulin 

Pepsin digestion was performed with the native and heat-denatured β-LG samples without 

modification and after modification by equal molar amounts of allicin and twice the amount of DADS. 

β-LG reaction mixtures were adjusted to pH 2.5 with 0.1 M HCl. Pepsin was added in a 

protease/protein ratio of 1:5 (w/w) and incubated for 16 h at 37 °C. 2 pmol of the digested protein 

were analyzed by LC-MS/MS. 

Prior digestion with trypsin or chymotrypsin a washing step was performed by using molecular 

weight cut-off filters (MWCO 3 kDa, Millipore). Briefly, 200 µg of β-LG which had been incubated at 

1:0 or 1:1 with allicin (M/M) or at 1:0, 1:1, 1:2, 1:5 or 1:15 with DADS (M/M) were made up to 500 µL 
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using 100 mM HEPES buffer (pH 7). Samples were spun down for 20 min at room temperature at 

14000 x g and washed once with HEPES buffer. Samples were spun down (20 min, 14 000  x g) and 10 

µg were digested overnight at 37 °C with either trypsin or chymotrypsin at a ratio of 1:100 (w/w). 

Samples were diluted to 500 fmol/µL using 0.1% trifluroacetic acid and 1 µL was injected for LC-

MS/MS analysis. 

 

4.3.5 LC-MS/MS analysis of β-LG digests 

LC-MS/MS analysis of digested β-LG was performed on the same instruments described for intact 

protein LC-MS analysis. HPLC separation was performed using a 60 min linear gradient from 95% 

eluent A (water with 0.1% FA) to 55% eluent B (80% ACN, 0.1% FA) at a flow rate of 300 nl/min, 

followed by a sharp increase to 95% eluent B in 1 min and isocratic elution for 10 min; afterwards, 

the column was equilibrated with 5% B for 10 min. For MS analysis scans of 300 – 2000 m/z range 

were recorded in profile mode with a resolution of 30000. The five most intense precursors 

(minimum signal intensity 500 and rejecting charge state 1) were selected for both CID fragmentation 

and HCD fragmentation with a repeat count of 2, a repeat duration of 20 s and subsequent dynamic 

exclusion of the selected m/z values (±5 ppm) for 60 s. The CID isolation window was set to 3 Da, the 

AGC target was 1 x 104 with a maximum inject time of 400 ms, activation time of 10 ms, and an 

Activation Q of 0.25. Normalized collision energy (NCE) for CID fragmentation was set to 36%. The 

isolation window for HCD precursors was set to 3 Da, AGC target was 1 x 105 with a maximum inject 

time of 500 ms and activation time was 0.1 ms. NCE of 45% was used for fragmentation and HCD 

spectra were acquired with a resolution of 15000. All MS2 spectra were recorded in centroid mode. 

 

4.3.6 Data processing 

MSConvert was used for peak picking and conversion of Thermo raw files to “mgf” file format 

(Chambers et al., 2012). The MassMatrix MS/MS search engine was used to search MS data against a 

sequence database containing 112 common laboratory contaminants (http://www.thegpm.org/crap) 

in addition to the β-LG sequence variants A and B (Xu et al., 2008). Peptides between 6 and 40 amino 

acids were considered. Cleavage sites were restricted to the peptidase used for digestion, allowing 3, 

6 or 9 (maximum) missed cleavages for trypsin, chymotrypsin or pepsin digests, respectively. The 

peptide mass tolerance was set to 10 ppm with a fragment mass tolerance of 0.04 Da. The 5 most 

confident protein identifications were searched for disulfide cross linkages, considering a maximum 

of 2 cross links per peptide.  
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4.3.7 Circular dichroism 

The influence of allicin binding on secondary and tertiary structure of β-LG was investigated. Before 

CD analysis, samples were diluted in distilled water to the final β-LG concentrations of 5.4 µM, and 

54 µM, for the far-UV analysis and near-UV analysis, respectively. 

CD spectra were acquired at room temperature using a Jasco J-700 spectropolarimeter (Jasco, 

Germany). The instrument is regularly calibrated with camphorsulfonic acid in water (1 mg/ml in 1 

mm cell), whose CD spectrum provides a two-point calibration: a negative CD band at 192.5 nm 

(ellipticity = ca. - 69 mdeg, molar ellipticity = ca. - 15600 deg. cm2.dmole-1) and a positive band at 

290.5 nm (ellipticity = ca. 33 mdeg; molar ellipticity = ca. 7800 deg. cm2.dmole-1). Far and near-UV CD 

spectra covered 178-260 and 250-320 nm, respectively, and readings were recorded every 0.5 nm. 

Spectra were obtained using quartz cells (Jasco, Germany). The far-UV CD spectroscopic 

measurements were carried out with a 0.1 cm light path-length cell, whereas for near-UV CD 

spectroscopic measurements a 0.5 cm light path-length cell was used. Scan speed was 50 nm/min 

and each spectrum was the average of 4 scans integrated with the data processor. All CD spectra 

were baseline corrected using appropriate blanks and converted to molar ellipticity using the 

available software option. The measurements were also monitored by the corresponding pattern of 

the high tension voltage traces (HTV). Measurements of the protein solutions (178-260 nm) gave 

values of 300-800 V and for tertiary structure 280-350 V. Thus, the measured values were in 

reasonable range. For the calculation of the secondary structure allocation the data was truncated to 

190 nm. 

The secondary structural content of the protein was calculated by analyzing CD spectra between 190 

and 240 nm, with the curve-fitting software CDPro using CONTIN method that compared spectrum 

with the spectra of 43-protein reference set containing proteins of different conformations 

(Sreerama & Woody, 2000; Sreerama et al., 2000). Prior to analysis, CD spectra were corrected for 

the concentration of solutions, the path length of the scanning cell (0.1 cm) and the mean residue 

weight (113 Da, according to β-lg-bovine-p02754 – http://www.uniprot.org/uniprot/P02754 ; MW= 

18355 Da; 162 amino acid residues). 

 

4.3.8 Particle size measurement 

The particle size of native β-LG solutions with and without allicin were measured by dynamic light 

scattering (DLS) on a Zetasizer Nano System (Malvern Instruments Inc., Worcester, UK). The 

measurements were performed at 25 °C in a quartz cell with square aperture and at a scattering 
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angle of 173 ° (viscosity of the sample: 0.88 cP; refractive index of protein: 1.45; refractive index of 

water: 1.33). The samples were prepared in triplicate and each sample was measured three times. 

 

4.4 Results and discussion 

4.4.1 Mass spectrometry of the intact protein 

The mass spectrum of the unmodified β-LG showed the presence of the two β-LG variants A and B 

(molecular weights: 18238.07 Da and 18277.15 Da). Table 4-1 (Supplementary) summarizes the 

masses of the native and reduced form of both variants. The mass spectrum of native β-LG shows a 

signal cluster of intact protein ions between m/z 900 and m/z 2000 with charge states ranging from 

+10 to +20 (Supplementary, Figure 4-1). The most abundant charge states observed for native β-LG 

signals in ESI-MS spectra were +13 and +14. The calculated average m/z for charge state +14 of β-LG 

B is 1306.5183 (monoisotopic m/z: 1305.6778) with the most abundant isotope peak expected at m/z 

1306.4653. The m/z signal of β-LG A at charge state +14 is expected at m/z 1312.6676 (monoisotopic 

m/z: 1311.8233) with the base peak at m/z 1312.6108. The calculated masses and isotopic 

distribution are in agreement with the acquired spectra (Figure 4-1). Denatured β-LG shows a second 

charge state series of m/z signals (ranging from +21 to +25) corresponding to masses of the three 

possible dimers of β-LG variants A and B, i.e. A-A, B-B and A-B. (Supplementary, Figure 4-2). The 

signals observed at m/z 1314.2443 and 1308.1012 correspond to the sodium adducts of variants A 

and B respectively (ΔM experimental: +22.973; ΔM calculated: +22.989) and were absent or of much 

lower intensity in samples cleaned by liquid chromatography prior to MS analysis.  

The m/z values and isotopic distribution acquired for the modified protein correspond to a single 

modification of cysteine to S-allylmercaptocysteine (+C3H4S; ΔM experimental: +72.016; ΔM 

calculated: +72.028). The calculated average m/z for charge state +14 of modified β-LG variant B is 

1311.6704 (monoisotopic m/z: 1310.8209) with the most abundant isotope peak expected at m/z 

1311.6084. The m/z signal of modified β-LG variant A at charge state +14 is expected at m/z 

1317.8197 (monoisotopic m/z: 1316.9664) with the base peak at m/z 1317.7539 (Figure 4-1). The 

formation of the S-allylmercapto-derivate of cysteine through the reaction with allicin is in 

accordance with previous studies (Pinto et al., 2006; Rabinkov et al., 1998).  

MS analysis of heat-denatured or native β-LG after modification did not show signals indicating 

doubly or triply modified β-LG. With respect to allicin, these findings are in accordance with the 

results of the binding analysis used in the previous study (RP-HPLC, fluorescence quenching (FQ), 

detection of free thiol groups/RSH assay) (Wilde et al., 2016). Regarding DADS, the results are in 
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accordance with the findings of the RSH assay, i.e. DADS was bound at only one binding site like 

allicin. In contrast, results of RP-HPLC (n ≈ 2 M/M) and FQ (n = 3.56 M/M) indicated more than one 

binding site for DADS (Wilde et al., 2016). It can be suggested that DADS is bound in a covalent and 

non-covalent way by β-LG which explains the higher number of overall binding sites detected by RP-

HPLC and FQ. Further, the high ligand excess can induce the formation of larger protein aggregates, 

as shown by Table 4-3, which can cause binding overestimation by FQ.  

At a molar ratio of 0.5 M allicin/1 M β-LG the signals of unmodified β-LG are barely detectable and 

almost all β-LG molecules were modified, in agreement with the supposed stoichiometric ratio of 2:1 

(Figure 4-1) (Hunter et al., 2005). In presence of DADS β-LG was mostly unmodified even at a molar 

ratio of 15 M DADS/1 M β-LG (data not shown). The observed extent of the reaction with allicin and 

DADS is in accordance with the results of RP-HPLC and RSH assay in the previous study (Wilde et al., 

2016). After reaction with allicin at high excess (molar ratios of 7.5 or 10) the MS spectra showed 

signals corresponding to the unmodified protein. This phenomenon was caused by the reduction of 

the pH value during incubation, which reduced the reactivity of thiol groups. By degradation of 

allicin, favored by the basic conditions, 2-propensulfenic acid can be released and lower the pH 

value. Incomplete binding was also indicated by the results of RSH method in the previous study 

(Wilde et al., 2016). In contrast, high excess of the stable DADS did not affect the pH, which supports 

the mentioned hypothesis. 

The modification of β-LG both by allicin and DADS resulted in the formation of S-

allylmercaptocysteine. Subsequent measurements were only conducted with allicin, exemplarily for 

both ligands. 

 

4.4.2 Mass spectrometry of the hydrolyzed protein 

To locate the site of modification, modified and native β-LG were digested with the proteases 

trypsin, chymotrypsin or pepsin prior to LC-MS analysis of the resulting peptide mixtures. The 

modified protein was formed at a ligand-protein ratio of 1:1 resulting in the complete binding of the 

ligand. Thus, inhibition of the enzyme activity by the free ligand can be excluded. 

LC-MS analysis of chymotryptic and tryptic digested β-LG samples showed a sequence coverage of 

98% and 100% respectively; pepsin digestion resulted in a sequence coverage of 70%. In all three 

digestions sequence coverage did not differ between modified and unmodified β-LG. In contrast, 

pepsin digestion of heat denatured β-LG consistently showed a sequence coverage of 90%.  
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Figure 4-1: LC-MS spectra of the intact β-lactoglobulin (β-LG) ion z=14 after modification with 
increasing molar ratios of allicin (0:1 M/M – 1:1 M/M). M/z – mass/charge. 
 

 

Table 4-1: S-allylmercaptocysteine modification sites detected by LC-MS/MS analysis of allicin 
modified β-lactoglobulin (β-LG) digests. The number of peptide spectrum matches for modifications 
on the five cysteine residues of β-LG digested by the proteases trypsin, chymotrypsin and pepsin are 
shown in addition to the sum identification scores of the peptide spectrum matches (PSM).  

  Tryps in Chymotryps in Peps in Peps in, β-LG denatured 

Cysteine 
Modified 

PSM 

∑ pp-

score 

Modified 

PSM 

∑ pp-

score 

Modified 

PSM 

∑ pp-

score 

Modified 

PSM 

∑ pp-

score 

C66 3 86.5 0 0 2 102.7 1 26.1 

C106 27 298.6 0 0 1 11.1 0 0 

C119 16 220.8 4 69.8 128 3131 105 2018.6 

C121 32 477.6 11 189.3 357 6616.5 116 2435.4 

C160 4 114.6 2 62.8 0 0 0 0 

 

40 

 
30 
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These results indicate that S-allylmercaptocysteine modification of the substrate did not noticeably 

affect the efficiency of digestion by e.g. changing the accessibility of β-LG to the enzymes as was the 

case with the denatured protein. Furthermore, the derived peptides contained fragments of 

bioactive peptides (e.g. VLDTDYK, YLLF, CMENSA) that can be released by further digestion 

(Hernandez-Ledesma et al., 2008) (Supplementary, Table 4-2). The main specificity of trypsin is 

peptide bonds that contain arginine and lysine; chymotrypsin cleaves preferentially at aromatic 

amino acids like tryptophan, tyrosine and phenylalanine; while pepsin is a non-specific protease but 

prefers aromatic and hydrophobic amino acid residues (Rawlings et al., 2012).  As the digestion of the 

modified β-LG was not affected, it can be concluded that modification was restricted to cysteinyl 

residues. Under physiological conditions β-LG is resistant to pepsin, but trypsin and chymotrypsin 

contribute largely to its digestion (Mandalari et al., 2009; Reddy et al., 1988). Hence, it can be 

assumed that the covalent modification of β-LG by allicin does not affect the protein digestion in 

vivo, at least with respect to gastric and small intestine enzymes. 

 

 

Figure 4-2: Schematic depiction of the primary and secondary structure of β-lactoglobulin. Cysteine 
residues are bold. Schema modified according to Keppler et al. (2014a). Amino acid sequence 

according to Vincenzo Fogliano et al. (1998). 

 

The protein samples were not treated with a reducing agent, leaving disulfide bonds and cysteine 

modifications intact. Identified modification sites are summarized in Table 4-1 by the number of 
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peptide spectrum matches (PSM) corresponding to the modification at the five cysteine residues and 

the sum of the identification scores of these PSMs.  All identified peptides with a p-value < 0.05 (pp-

score > 2.5 and pptag-score > 1.3) were counted. In addition, Table 4-2 and Supplementary Table 4-2 

show the sequence of identified peptides after tryptic and chymotryptic digestion of modified β-LG. 

Figure 4-2 illustrates the position of cysteinyl residues and disulfide bonds within the sequence of the 

intact protein.  

 

Table 4-2: Identified peptides after chymotryptic and tryptic digestion of β-lactoglobulin (β-LG) 
incubated with allicin at a molar ratio of 1:1. Cysteine residues are bold. The listed peptides are 
exemplary, not all identified peptides are shown.  

Peptide Cysteine residue β-LG 

variant 

Charge 

[z] 

m/z RT 

[min] 

TIC 

Chymotryptic digestion 

ENDEC
66

AQKKIIAEKTKIPAVF-

SFNPTQLEEQC
160

HI 

Disulfide A 4 980.24 30.12 2.88E+06 

C
106

MENSAEPEQSLVC
119

QC
121

L Disulfide, All icin* A 2 986.39 33.33 1.67E+07 

C
106

MENSAEPEQSLAC
119

QC
121

L  Disulfide, All icin* B 2 972.37 32.70 9.32E+05 

C
106

MENSAEPEQSLVC
119

QC
121

 Disulfide, All icin* A 2 920.84 39.22 1.96E+06 

C
106

MENSAEPEQSLAC
119

QC
121

 Disulfide, All icin* B 2 906.83 36.96 1.35E+07 

SFNPTQLEEQC
160

HI Allicin A,B 2 809.36 39.00 7.87E+05 

SFNPTQLEEQC
160

HI SH A,B 2 773.35 33.70 1.90E+06 

Tryptic digestion 

WENDEC
66

AQK SH A 2 561.73 27.39 3.67E+06 

WENDEC
66

AQK Allicin A 2 597.73 27.27 1.62E+05 

WENDEC
66

AQKK-LSFNPTQLEEQC
160

HI Disulfide A 5 582.07 30.15 2.19E+06 

YLLFC
106

MENSAEPEQSLVC
119

QC
121

LVR Disulfide, SH* A 3 891.74 42.92 2.79E+04 

YLLFC
106

MENSAEPEQSLVC
119

QC
121

LVR Disulfide, All icin* A 3 915.74 46.75 1.36E+06 

LSFNPTQLEEQC
160

HI SH A,B 2 829.90 37.94 3.32E+06 

LSFNPTQLEEQC
160

HI Allicin A,B 2 865.90 42.68 1.15E+06 

* A site speci fic attribution to individual cysteine residues is  not possible. Abbreviations: m/z – mass/charge; RT – retention 
time; SH – thiol group; TIC – tota l ion current. 
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Peptides containing an S-allylmercapto-derivate exhibited belated retention times compared to 

peptides with the same sequence and a free thiol group, indicating a higher hydrophobicity 

(Supplementary, Table 4-2). Digestion with chymotrypsin and in particular with pepsin demonstrated 

that Cys121 and Cys119 were the prevalent sites of modification. Due to the close proximity of both 

cysteine residues in the protein secondary structure detected peptides usually contain both cysteine 

residues (Calleri et al., 2005; Creamer et al., 2004). An unequivocal differentiation between the 

modification of Cys121 and Cys119 by allicin is not possible as the two co-eluting peptide species are 

isobaric and are co-isolated for fragmentation. Interestingly, the residue at position 121 was 

nonetheless identified by more than twice the number of spectra in the peptic digest of modified 

native β-LG, while the modified heat-denatured β-LG showed almost equal numbers of spectra for 

both residues. This observation is in line with the results of various methods by which Cys121 is 

assigned as the free thiol of the native β-LG (i.e. NMR spectroscopy, crystallography, MS/MS) 

(Kuwata et al., 1999; Brownlow et al., 1997; Yen et al., 2000). However, denaturation was shown to 

favor the alternating topology with the free thiol on Cys119 (detected by crystallography and MS/MS) 

which is in line with the present findings (Yen et al., 2000; McKenzie & Shaw, 1972). With respect to 

the native β-LG, it can be concluded that the free thiol group at position 121 is the binding site for 

allicin and DADS. 

After chymotrypsin and pepsin digestion the modification by the thiol allyl moiety was mainly 

restricted to peptides containing Cys121 and Cys119. In contrast, S-allylmercaptocysteine modifications 

were more distributed in trypsin digested samples, which was probably due to disulfide exchange 

reactions (Miron et al., 2010). The disulfide bond might not be stable under the digestion conditions 

of 37 °C and pH 7. Thus, the native disulfide topology is more stable upon digestion at pH 2, 

preventing disulfide interchange reactions as well as the diffusion of the modification to other 

cysteine residues. 

 

4.4.3 Influence of the ligand binding on protein folding of β-LG 

The secondary protein structure of β-LG was further analyzed by the far-UV CD spectrum. The native 

protein contained 13.8% α-helix, 35.6% β-sheet, 22.0% β-turn and 28.7% unordered structure 

elements. Only minor differences in secondary structure between the native and the modified β-LG 

were detected. The content of α-helix (modified: 8.5%) decreased absolutely by about 5% and 

concurrently the content of β-sheet (modified: 39.7%) increased. The near-UV spectrum showed a 

decrease of the maximum at 270 nm, 280 nm and 288 nm (Figure 4-3). Binding of allicin reduced the 

ellipticity at 267 nm and 258 nm, the bands are attributed to cysteine and disulfide bonds, 
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respectively. Furthermore the minimum at 285 nm which is ascribed to Trp61 was also reduced. An 

increase and blue shift was observed at the maximum 255 nm.  

The observed structural elements of the native state of the protein is in accordance with other 

studies (Ali et al., 2013; Rade-Kukic et al., 2011). The bound allicin affected the tertiary structure of β-

LG which was clearly indicated by the changes in the near-UV CD spectrum. In our previous study the 

increased hydrophobicity of β-LG modified by allicin was shown by RP-HPLC (Wilde et al., 2016). 

Thus, it can be suggested that the loosening of the globular structure and the attached thiol allyl 

moiety contribute to a higher hydrophobicity of the protein. This finding is consistent with the 

observations of other thiol binding ligands to β-LG (Ali et al., 2013; Rade-Kukic et al., 2011). The 

conformational changes induced by AITC led also to a higher hydrophobicity and consequently to a 

better absorption to interfaces, as air/water or oil/water, resulting in enhanced emulsification and 

foaming properties of the modified protein (Rade-Kukic et al., 2011). A similar effect on the techno-

functional properties of β-LG can be assumed for the modification by allicin. Burova et al. (1998) 

modified the free thiol group of β-LG with other thiol reactants (i.e. mercaptopropionic acid, 

mercaptoethanol) and observed no significant effect on far-UV CD spectrum, but changes of the 

aromatic bands in the near-UV CD spectrum, which is in agreement with our results.  

 

 

Figure 4-3: Near-UV CD spectrum of native β-lactoglobulin (β-LG) and β-LG incubated with allicin at a 
molar ratio of 1:1. 

 

4.4.4 Influence of the ligand binding on protein aggregation of β-LG 

Size measurements revealed that the binding of allicin has no influence on the quaternary structure 

of β-LG. Table 4-3 summarizes the results. The unmodified protein had an average hydrodynamic 
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diameter of 5.6 nm which corresponds to the dimeric structure. With increasing ligand concentration 

up to a molar ratio of 2 M allicin/1 M β-LG the hydrodynamic diameter increased slightly (6.1 nm). If 

allicin was present in excess (i.e. all free thiol groups are blocked, remaining free allicin in solution, 

ligand-protein ratio of 0.75 M/M) a small fraction of larger aggregates (> 30 nm) was observed. At a 

ligand excess of 5 M/M the predominant particle size sharply increased to about 140 nm. The 

remaining free allicin in solution or its degradation products seemed to induce the non-covalent 

aggregation of β-LG. It can be hypothesized that this phenomena is based on a competition of  allicin 

with water molecules in the solvation shell of the protein molecule. 

The prevalence of the dimeric form at the present condition (neutral pH, 25 °C) is in accordance with 

literature (Bauer et al., 1998; Aymard et al., 1996). However, after ligand addition other studies with 

thiol-modifying ligands found a shift towards the monomeric form (diameter of about 4 nm) of β-LG 

(Owusu-Apenten et al., 2003; Sakai et al., 2000; Burova et al., 1998), which was not detectable in the 

present study. It was suggested that the bound ligand enhances the dissociation into monomers by 

destabilizing the rigid hydrophobic core and the nearby dimer interface (Sakai et al., 2000; Burova et 

al., 1998). The extent of the destabilizing effect was shown to be dependent on the  properties of the 

thiol reagent (Sakai et al., 2000; Cupo & Pace, 1983). None of the above named studies used allicin 

for thiol group modification. Most likely the small size and uncharged nature of allicin is responsible 

for the different behavior, i.e. not causing dimer dissociation. 

 

Table 4-3: Particle size of β-LG with increasing allicin concentration measured by 
dynamic light scattering. All measurements were conducted in triplicate and 
listed as mean ± standard deviation (SD). 

Al l icin/β-LG [M/M] Peak 
Hydrodynamic diameter 

Size (± SD) [nm]  Volume (± SD) [%]  

0 I  5.6 (± 0.21) 99.8 (± 0.11) 

0.25 I  5.6 (± 0.08) 99.9 (± 0.10) 

0.5 I  5.8 (± 0.20) 99.7 (± 0.16) 

0.75 I  5.8 (± 0.25) 99.7 (± 0.02) 

1.0 I  

I I  

6.0 (± 0.46) 

44.29 (± 19.48) 

91.0 (± 14.82) 

6.36 (± 10.49) 

2.0 I  

I I  

6.2 (± 0.36) 

75.65 (± 4.05) 

99.1 (± 0.13) 

0.9 (± 0.13) 

5.0 I  

I I  

141.1 (± 2.79) 

29.03 (± 50.29) 

97.3 (±4.66) 

2.69 (±4.66) 
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4.5 Conclusions 

The covalent binding of allicin and DADS to β-LG and their influence on the protein structure have 

been examined in the present study. Both ligands led to a single covalent modification of a cysteine 

residue to S-allylmercaptocysteine. This relatively small structural modification did not induce 

considerable conformational changes beside a more loosely protein folding and higher 

hydrophobicity. Hence, similar techno-functional properties as the native protein and improved 

interfacial properties can be assumed. Further, the digestibility by physiological relevant proteases 

and the release of bioactive peptides was not impaired. The major modification site in peptides of β-

LG was Cys121. Following this, β-LG seems to be a suitable transporter for the bioactive thiol allyl 

moiety of allicin and DADS. A bioavailability study of β-LG modified by allicin is presently underway. 
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4.6 Supplementary 

Supplementary Table 4-1: Mass spectrometry results of native β-lactoglobulin (β-LG). 

β-LG variant Monoisotopic mass [Da] Molecular weight [Da] Formula 

β-LG A, native 18226.3393 18238.0736 C821H1318N206O250S9 

β-LG A, reduced cysteine 

res idues 

18230.3706 18367.276 C821H1322N206O250S9 

β-LG B, native 18265.3871 18277.1541 C817H1312N206O248S9 

β-LG B, reduced cysteine 

res idues 

18269.4184 18281.1859 C817H1316N206O248S9 

 

 

Supplementary Figure 4-1: Full high resolution MS spectra of the modified (A) and unmodified (B) β-

LG ion cluster. 

 

 

Supplementary Figure 4-2: Full high resolution MS spectra of denatured β-LG ion cluster. The insert 

(grey circle) shows signals of the dimers with a charge z=21. 
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Supplementary Table 4-2: Identified peptides after chymotryptic and tryptic digestion of β-
lactoglobulin (β-LG) incubated with allicin at a molar ratio of 1:1. Cysteine residues are bold. The 
listed peptides are exemplary, not all identified peptides are shown.  

Peptide Cysteine 

modification 

β-LG 

variant 

Charge 

[z] 

m/z RT 

[min] 

TIC 

Chymotryptic digestion 

SFNPTQLEEQC
160

HI SH A,B 2 773,35 33,70 1,90E+06 

SFNPTQLEEQC
160

HI Allicin A,B 2 809,36 39,00 7,87E+05 

NPTQLEEQC
160

HI SH A,B 2 656,30 27,10 1,14E+06 

C
106

MENSAEPEQSLAC
119

QC
121

L  Disulfide, All icin B 2 972,37 32,70 9,32E+05 

C
106

MENSAEPEQSLAC
119

QC
121

L  Disulfide, Allicin  B 3 648,58 32,62 1,01E+05 

C
106

MENSAEPEQSLVC
119

QC
121

L Disulfide, All icin A 3 657,93 33,34 2,06E+05 

C
106

MENSAEPEQSLVC
119

QC
121

L Disulfide, Allicin  A 2 986,39 33,33 1,67E+07 

EEQC
160

HI SH B 2 379,66 19,26 1,43E+04 

C
106

MENSAEPEQSLVC
119

QC
121

L-

SFNPTQLEEQC
160

H 

2 x Disulfide A 3 1142,15 36,30 6,65E+05 

ENDEC
66

AQKKIIAEKTKIPAVF-

SFNPTQLEEQC
160

HI 

Disulfide A 6 653,83 30,12 7,19E+05 

ENGEC
66

AQKKIIAEKTKIPAVF-

SFNPTQLEEQC
160

H 

Disulfide B 6 644,16 29,60 3,50E+05 

C
106

MENSAEPEQSLAC
119

QC
121

L-

SFNPTQLEEQC
160

HI 

2x Disulfide B 3 1132,80 34,90 4,02E+05 

C
106

MENSAEPEQSLAC
119

QC
121

L Disulfide, All icin B 3 648,58 32,62 1,01E+05 

C
106

MENSAEPEQSLAC
109

QC
121

 Disulfide, All icin B 2 906,83 36,96 1,35E+07 

C
106

MENSAEPEQSLVC
109

QC
121

 Disulfide, All icin A 2 920,84 39,22 1,96E+06 

C
121

LVRTPEVDDEALEKF-

SFNPTQLEEQC
160

HI 

Disulfide A,B 2 852,40 33,21 5,60E+04 

ENDEC
66

AQKKIIAEKTKIPAVF-

SFNPTQLEEQC
160

HI 

Disulfide A 4 980,24 30,12 2,88E+06 

ENGEC
66

AQKKIIAEKTKIPAVF-

SFNPTQLEEQC
160

HI 

Disulfide B 4 965,74 29,60 2,23E+06 

ENGEC
66

AQKKIIAEKTKIPAVF- 2x Disulfide B 4 1042,74 30,67 1,81E+04 
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C
106

MENSAEPEQSLAC
119

QC
121

L 

ENDEC
66

AQKKIIAEKTKIPAVF-

C
106

MENSAEPEQSLVC
119

QC
121

L 

2x Disulfide A 4 1064,26 32,20 2,85E+04 

Tryptic digestion 

WENDEC
66

AQK SH A 2 561,73 27,39 3,67E+06 

WENGEC
66

AQK Allicin B 2 568,73 26,28 4,20E+05 

WENDEC
66

AQK Allicin A 2 597,73 27,27 1,62E+05 

WENDEC
66

AQKK SH A 2 625,78 27,39 1,24E+04 

WENGEC
66

AQK SH B 2 532,73 27,74 4,14E+04 

WENGEC
66

AQKK-LSFNPTQLEEQC
160

HI Disulfide B 5 570,47 29,92 2,06E+06 

WENDEC
66

AQKK-LSFNPTQLEEQC
16

0HI Disulfide A 5 582,07 30,15 2,19E+06 

WENGEC
66

AQK-LSFNPTQLEEQC
160

HI Disulfide B 4 680,81 31,42 5,23E+06 

WENDEC
66

AQ-LSFNPTQLEEQC
160

HI Disulfide A 4 695,31 31,68 4,66E+06 

WENGEC
66

AQKK-LSFNPTQLEEQC
160

HI Disulfide B 4 712,83 29,92 6,45E+06 

WENDEC
66

AQKK-LSFNPTQLEEQC
160

HI Disulfide A 4 727,33 30,15 8,06E+06 

WENGEC
66

AQK-LSFNPTQLEEQC
160

HI Disulfide B 3 907,41 31,42 2,34E+07 

WENDEC
66

AQK-LSFNPTQLEEQC
160

HI Disulfide A 3 926,74 31,68 1,99E+07 

WENGEC
66

AQKK-LSFNPTQLEEQC
160

HI Disulfide B 3 950,11 29,92 1,69E+07 

WENDEC
66

AQKK-LSFNPTQLEEQC
160

HI Disulfide A 3 969,44 30,15 1,97E+07 

WENDEC
66

AQK-LSFNPTQLEEQC
160

HI Disulfide A 2 1389,61 31,68 8,76E+05 

WENGEC
66

AQK-LSFNPTQLEEQC
160

HI Disulfide B 2 1360,61 31,42 1,24E+06 

WENGEC
66

AQK-

YLLFC
106

MENSAEPEQSLAC
119

QC
121

LVR 

2x Disulfide B 3 1236,21 35,75 8,65E+04 

YLLFC
106

MENSAEPEQSLVC
119

QC
121

LVR Disulfide, All icin A 3 915,74 46,75 1,36E+06 

YLLFC
106

MENSAEPEQSLAC
119

QC
121

LVR Disulfide, All icin B 2 1359,10 45,12 3,04E+05 

YLLFC
106

MENSAEPEQSLVC
119

QC
121

LVR Disulfide, All icin A 2 1373,11 46,75 1,41E+05 

YLLFC
106

MENSAEPEQSLAC
119

QC
121

LVR Disulfide, SH B 3 882,40 41,78 6,31E+04 

YLLFC
106

MENSAEPEQSLVC
119

QC
121

LVR Disulfide, SH A 3 891,74 42,92 2,79E+04 

YLLFC
106

MENSAEPEQSLAC
119

QC
121

LVR Disulfide, All icin B 3 906,40 45,12 4,46E+06 

LSFNPTQLEEQC
160

HI Allicin A,B 3 577,60 42,68 2,67E+04 
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LSFNPTQLEEQC
160

HI SH A,B 2 829,90 37,94 3,32E+06 

LSFNPTQLEEQC
160

HI Allicin A,B 2 865,90 42,68 1,15E+06 

VLVLDTDYKKYLLFC
106

MENSAEPEQSLV 

C
119

QC
121

LVR 

Disulfide, All icin A 4 980,73 44,4 2,16E+04 

Abbreviations: m/z – mass/charge; RT – retention time; SH – thiol group; TIC – total ion current. 
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5.1 Abstract 

The thiosulfinate allicin is a labile, bioactive compound of garlic. In order to enrich allicin in a 

functional food, a delivery system which stabilizes the compound and masks its intensive flavor is 

necessary. In the present study allicin was covalently bound to the whey protein β-lactoglobulin and 

the incorporation of this transporter in a food matrix was tested. The sensory properties of the pure 

functional ingredient as well as of an enriched beverage were characterized by quantitative 

descriptive analysis. The concentration of volatile compounds was analyzed by head space gas 

chromatography-mass spectrometry. The garlic related organoleptic properties of garlic powder 

were significantly improved by the binding of allicin in combination with spray drying. After 

purification of the modified β-lactoglobulin the garlic taste and smell were barely perceptible. β-

Lactoglobulin modified with allicin provided a stable functional ingredient that can be used to enrich 

a broad range of food products. 

 

5.2 Introduction 

The continuing demand of consumers for health and well-being promoting products has led to an 

enormous increase in the number of functional foods that contain specific bioactive compounds 

(Benshitrit et al., 2012). The enrichment and fortification of these compounds in food i s a major 

scientific and technologic challenge because many bioactive ingredients are relatively labile, resulting 

in a fast inactivation or degradation during food processing, storage and digestion. To ensure their 

high bioaccessibility and bioavailability, delivery systems have been developed to protect the 

compounds from degradation and enable their release at the desired absorption site (Vos et al., 

2010). In addition, bioactive compounds, such as phytochemicals, can cause bitter or astringent 

tastes or unpleasant off-flavors. Since consumers are not willing to compromise on taste for health 

benefits, potential adverse effects on sensory properties need to be overcome (Verbeke, 2006).  

The whey protein β-lactoglobulin (β-LG) provides structural and physico-chemical properties that 

facilitate the transport of small, hydrophobic ingredients. The globular protein is folded into a 

hydrophobic calyx which functions as the major non-covalent binding site beside hydrophobic 

pockets on the surface of the protein (Qin et al., 1998). Furthermore, β-LG has diverse techno-

functional properties, GRAS (generally recognized as safe) status, a high nutritional value, and is 

soluble over a wide pH range (de Wit, 1998). Additionally, the protein can reduce the sensory 

perception of hydrophobic or volatile compounds due to its binding properties (Shpigelman et al., 

2012; Seuvre et al., 2002). However, due to its compact globular structure and its resistance to 

gastric conditions, it is the main allergen in bovine milk (del Val et al., 1999). The use of β-LG as a 
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transporter for non-covalently bound ligands was frequently reported, but the targeted covalent 

binding of bioactive compounds is a more recent approach (Keppler et al., 2014; Teng et al., 2013; 

Shpigelman et al., 2012; Rade-Kukic et al., 2011). 

Allicin, the major thiosulfinate in fresh crushed garlic, is mainly responsible for the characteristic 

taste and smell of garlic (Bautista et al., 2005; Salazar et al., 2008). The organosulfur compound 

exerts various health promoting effects, such as the reduction of the risk of certain cancers and 

cardiovascular diseases (Borlinghaus et al., 2014; Fleischauer et al., 2000). With respect to functional 

foods, these effects are two of the most important health related properties for consumers, 

therefore allicin is an interesting functional ingredient (Kraus, 2015). However, allicin is fairly 

unstable (e.g. at pH values above 6, at higher temperatures, in the presence of oil) and rapidly 

degrades during food processing and storage which limits its bioaccessibility (Lee et al., 2014). For 

example, spray drying has been reported to cause 25-70% degradation of allicin (Rodriguez-Jimenes 

et al., 2014). Beside the instability of allicin, a decisive shortcoming is its smell. Frequent garlic 

consumers associate garlic with its health promoting effects, whereas the aversion of seldom and 

non-users is mainly caused by the malodorous odor, especially in breath (Rosin et al., 1992).  

Through the covalent binding of allicin to β-LG a stable, non-volatile S-allylmercapto-derivate of the 

free cysteinyl residue is formed. The digestibility of β-LG modified by allicin is not affected and S-

allylmercaptocysteine could be released and absorbed like other amino acids (Wilde et al., 2016a). S-

allylmercaptocysteine is a metabolite of allicin and acts as a stable reservoir of the S-allyl moiety to 

mediate and prolong its activity. Therefore the health related effects of S-allylmercaptocysteine were 

suggested to be similar to those of allicin (Miron et al., 2010; Rabinkov et al., 1998). So far, the 

transfer to a food-grade level and the sensory properties of the bound allicin have not been tested. 

Therefore, the objective of the present study was to produce β-LG modified with allicin at a food-

grade level by taking the influence of various process parameters into account. Further, a suitable 

food matrix for the enrichment of the functional ingredient was developed. Finally, the sensory 

properties of the modified protein and the functional food were assessed.  

 

5.3 Materials and Methods 

5.3.1 Materials 

For the production of the modified β-LG and the study drink (beverage model for experiments) only 

food and pharmaceutical grade ingredients were used. Whey protein isolate (WPI) (BiPRO, Davisco 

Foods International, Inc., Eden Prairie, US) with 97.7% protein and 75% β-LG in dry matter. Fresh 
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garlic bulbs, instant coffee, sugar, lactose, cocoa powder, coffee whitener (main ingredients: glucose 

syrup, vegetable fat) and cream were purchased from a local grocery store. Carrageen Satiagum ADC 

25 (Cargill Deutschland GmbH, Krefeld, Germany) and vanilla flavor (Symrise AG, Holzminden, 

Germany) were generous gifts. Sodium hydroxide (Panreac Applichem, Darmstadt, Germany) and 

hydrochloric acid (Merck, Darmstadt, Germany) were food and pharmaceutical grade, respectively. 

All chemicals used for chemical analysis were analytical grade. Allicin was synthesized according to a 

modified procedure from (Small et al., 1947) as described by Wilde et al. (2016b). 

 

5.3.2 Preparation of garlic powder 

Garlic cloves of five different garlic cultivars (white and purple-type, from China, Spain and France) 

were separately processed to garlic powder. At first garlic cloves were manually peeled and cut into 

3-4 mm thick slices. In a perforated plastic bag the slices were frozen in liquid nitrogen and freeze 

dried afterwards (laboratory freeze dryer, Gamma 1-16 LSCplus, Martin Christ 

Gefriertrocknungsanlagen GmbH, Osterode, Germany). The dried slices were ground by an analysis 

mill. The allicin content of the garlic powder was measured by RP-HPLC with an Agilent 1200 Series 

system (Agilent Technologies, Santa Clara, US). Therefore, the powder was dissolved in water (5 

mg/ml) and filtrated by a syringe filter (0.2 µm pore size). RP-HPLC analysis was conducted with a C-

18 column Nucleodur Gravity (100 mm x 2 mm i.d., 1.8 µm particle size, Macherey-Nagel GmbH & 

Co. KG, Düren, Germany). The mobile phase consisted of 5 mM ammonium acetate dissolved in 

water, pH 6.6 (eluent A) and acetonitrile with 0.1% formic acid (eluent B) at a flow rate of 0.2 ml/min 

with a gradient program as follows: 40% B (0-10 min), 100% B (15-19 min), 5% B (20-22 min), 40% B 

(25-35 min). The injection volume was 5 µl, the UV detector operated at 205 nm and the column 

temperature was 25 °C. Quantification of allicin was done by calibration with allicin standard.  

 

5.3.3 Preparation of β-LG modified with allicin  

For the binding reaction of allicin from garlic powder to β-LG from WPI, the WPI was dissolved and 

stirred for one hour. The powder of the garlic cultivar with the highest allicin yield, rose garlic (Ail 

rose de Lautrec), was used for the binding experiments with β-LG. The garlic powder was dissolved 

separately and filtered before it was added to the protein solution. The pH of the mixture was 

adjusted to 8.5 by 0.1 M NaOH and the final concentration of WPI was 26 g/L (corresponds to 1000 

µM β-LG). To test different ligand-protein ratios the final concentration of garlic powder was varied 

between 2.9-5.8 g/L (corresponds to 250-500 µM allicin). For the control sample no garlic powder 

was added. The solution was stirred for one hour and incubated at 4 °C for 24 h. Two different drying 
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techniques were tested. For the freeze drying the solution was filled in dishes after incubation, 

frozen at -25 °C and freeze dried using the same freeze dryer (see 5.3.2). For spray drying two 

different pH values of the solution during the drying process were tested. A part of the samples was 

left unchanged after incubation and had a pH value of about 8.0. The other part was adjusted to pH 

6.0 by 0.1 M HCl. Finally, the solutions were spray dried on a pilot plant spray dryer (Mobile Minor 

2000, Niro A/S, Copenhagen, Denmark) using a rotating atomizer disc at a flow rate of 47 ml/min, at 

180 °C/70 °C inlet/outlet temperature and an outlet pressure of 4 bar. 

For the analysis of the thermal stability of unmodified and modified β-LG pure β-LG and allicin were 

used. The samples were prepared as described by Wilde et al. (2016b) by using different molar ratios 

(β-LG/allicin: 1:0 mol/mol; 2:1 mol/mol; 1:1 mol/mol). 

 

5.3.4 Characterization of modified β-lactoglobulin 

Degree of denaturation 

The influence of the covalent modification by allicin on the thermal stability of β-LG was analyzed. 

Therefore, pure β-LG modified by pure allicin was diluted to 100 µM β-LG and heated in a water bath 

for 30 min at different temperatures (70, 75, 80, 85, 90 °C). Afterwards the samples were cooled 

down in an ice bath and the degree of denaturation was determined. In addition,  the degree of 

denaturation was measured of the samples prepared with β-LG from WPI and with allicin from garlic 

powder, before and after drying processes.  

The determination was done by the content of acid soluble β-LG in the samples according to 

methodical provision of the German Industrial Standard (DIN 10473) (German Industrial Standard, 

1997). The method is based on the isoelectric precipitation of denatured β-LG at pH 4.6. The β-LG 

concentration was analyzed by RP-HPLC using the Agilent 1100 Series HPLC with a diode-array 

detector and PLRP-S column (300 Å, 8 µm, 150 x 4.6 mm, Agilent Technologies, Santa Clara, USA). 

The injection volume was 20 µl at a flow rate of 1.0 ml/min and a column temperature of 40 °C using 

eluents A (0.1% (v/v) TFA in water) and B (0.1% TFA (v/v) in ACN). The elution used gradient steps of 

35-38% B (1-8 min), 38-42% B (8-16), 42-46% B (16-22 min), 46-100% B (22-22.5 min) and 100-35% B 

(23-23.5 min). The detection wavelength was 205 nm. The relative difference of the β-LG 

concentration in a sample before and after precipitation corresponded to the degree of 

denaturation. 
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Degree of modification 

The area of the unmodified and modified β-LG A and B (genetic variants) in the RP-HPLC 

chromatogram was used to determine the degree of modification. The WPI powder containing 

unmodified (control) or modified β-LG was dissolved (0.9 mg/ml) and analyzed by RP-HPLC with the 

same method as mentioned above for acid soluble β-LG. The unmodified product showed two peaks 

for β-LG genetic variants A and B. These peaks had a higher retention time when β-LG reacted with 

allicin. The relative difference of the unmodified β-LG concentration in the sample, to the control, 

corresponded to the degree of modification (Wilde et al., 2016b). 

 

5.3.5 Study drink development 

The study drink was proposed to be comparable to a chilled ready to drink coffee drink. 

Commercially available coffee drinks consist of about three quarters of milk. For the study drink milk 

was replaced by WPI, containing unmodified or modified β-LG, to assure that β-LG was the most 

prevalent protein in the drink. A commercial coffee drink was used for comparison during the 

development process. Table 5-1 (Supplementary) shows the ingredients of the final product. The 

production process is shown in Figure 5-1 (Supplementary) schematically. The beverage was chilled 

at 4 °C until sensory analysis. 

 

5.3.6 Sensory analysis 

Sensory evaluation was done by a trained panel with 10 panelists. Through quantitative descriptive 

analysis the intensity of defined attributes was measured on a six-point-scale (0 = not perceptible, 5 = 

strongly perceptible) (Stone et al., 1974). The panel selected 5 attributes for a garlic powder solution, 

concerning odor and taste. White bread and filtered tap water were used as palate cleansers.  

Samples were prepared as follows. Dried WPI containing β-LG modified with allicin was tested in 

water and in the study drink (see 5.3.5). In a pretrial appropriate concentrations for both media were 

alternated. Four aqueous samples were prepared which were composed as follows: 1) garlic powder 

(0.25 mg/ml); 2) garlic powder (0.25 mg/ml) and WPI (1.7 mg/ml), added separately without prior 

binding reaction; 3) WPI containing modified β-LG (1.95 mg/ml), containing WPI and garlic powder, 

after binding reaction and drying; 4) ultrafiltrated WPI containing modified β-LG (1.95 mg/ml). The 

ultrafiltration was done to remove the remaining free compounds of the garlic powder that were still 

present in the product after binding reaction and drying. Therefore, the WPI containing modified β-

LG was dissolved in water (mg/ml) and filtrated by using ultrafiltration units (Vivaspin, MWCO: 10 

kDa, Sartorius AG, Göttingen, Germany). After centrifugation (8000 x g, 15 min) permeate was 
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removed. 10 ml water were added to the retentate and centrifugation was repeated to wash the 

protein fraction. Afterwards further 10 ml water were added to the retentate in the upper part of the 

filtration unit and the protein adhering to the membrane was dissolved by vigorous shaking. The final 

protein concentration was determined by RP-HPLC and adjusted to the same level as the non-

filtrated WPI sample (1.95 mg/ml).  

Four study drinks (see 5.3.5) were prepared which contained the following additives: 1) garlic powder 

(3.1 mg/ml) and WPI (29.0 mg/ml), added separately without prior binding reaction; 2) WPI 

containing modified β-LG (32.1 mg/ml), containing WPI and garlic powder, after binding reaction and 

drying; 3) WPI containing unmodified (native) β-LG (29.0 mg/ml). For the sensory analysis 30 ml of 

each sample was filled in white cups. 

 

5.3.7 Headspace gas chromatography-mass spectrometry (HS GC-MS) 

The volatile sulfur-containing compounds from garlic powder with and without WPI were analyzed by 

HS GC-MS using a 6890 gas chromatograph equipped with a MS detector 5975 and a DB-5MS 

column, 60 m x 0.32 mm i.d., 0.25 µm film thickness (all from Agilent Technologies, Santa Clara, US). 

1 ml of sample solution was transferred to a 20 ml headspace vial which was incubated at 50 °C for 

30 min. After incubation the syringe, tempered to 75 °C, transferred 500 µl gas sample into the 

injector. The operating conditions were as follows: injector temperature 230 °C, split ratio 1:1, carrier 

gas flow 1 ml/min, temperature program: 40 °C - 250 °C, heating rate 10 °C/min, initial and final 

temperatures were held for 3 min and 2 min, respectively. The MS detector conditions were as 

follows: electron ionization mode at 70 eV over the range of 27-600 amu. The source temperature 

was maintained at 230 °C and the GC-MS interface at 250 °C. Standard reagents of allicin and diallyl 

disulfide were used for calibration. 

 

5.3.8 Statistical analysis  

The results were subjected to a statistical analysis of variance (ANOVA) and Tukey's multiple 

comparisons test. The calculations were performed by using GraphPad Prism (version 6.00, GraphPad 

Software, San Diego, USA). 
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5.4 Results and discussion 

5.4.1 Food grade production of modified β-lactoglobulin (β-LG) 

WPI rich in β-LG (i.e. β-LG >70%) and garlic powder with a high allicin potential were used to modify 

β-LG with allicin. After the binding reaction of allicin to β-LG the mixture of WPI and garlic powder 

was dried by freeze- or spray drying. 

 

Garlic powder 

To obtain a garlic powder with a high allicin yield different garlic cultivars were examined. The allicin 

concentration and the diallyl disulfide (DADS) signal intensity of the headspace of five different garlic 

powders were analyzed (Supplementary Figure 5-2). The cultivar with the highest allicin yield was a 

rose garlic from Lautrec in France (Ail rose de Lautrec). The allicin and DADS abundance correlated 

strongly (r=0.99) which indicated the prevalence of allicin and its degradation to DADS during GC 

measurement, which was also reported elsewhere (Block, 2011). Further, a high pungency, which 

indicates a high allicin yield, has been previously described for purple-type cultivars (Pardo et al., 

2007), confirming the present results. Following this, the powder of the rose garlic was used for the 

binding experiments with β-LG from WPI to minimize the necessary amount of garlic powder added.  

 

Modification of β-LG 

The modification of β-LG through the binding reaction with compounds from garlic powder was 

analyzed using RP-HPLC (Figure 5-1). The chromatogram of the WPI containing unmodified β-LG 

shows the different whey proteins: α-lactalbumin, bovine serum albumin and the genetic variants A 

and B of β-LG. After the incubation with allicin the area of the native protein peaks decreased and 

two new peaks at higher retention times were formed revealing a higher hydrophobicity for the 

modified protein. Through the binding reaction the free thiol group of β-LG at Cys121 is modified to S-

allylmercaptocysteine (SAMC), as shown by Wilde et al., 2016a. Different ratios of allicin to β-LG 

were tested (1:2; 1:3; 1:4). The degree of modification was 64.3 ± 0.05% at a molar ratio of 1:3. The 

stoichiometric ratio of the reaction between allicin and β-LG is 1:2 (Wilde et al., 2016b). I.e. allicin 

reacted completely with the protein. Corresponding to the molar ratio the degree of modification 

changed: 1:2 mol/mol – 86.9 ± 0.83% modified; 1:4 mol/mol – 56.4 ± 0.95% modified.  
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Figure 5-1: Detail of the RP-HPLC chromatograms of unmodified and modified WPI. The molar ratio 
of allicin to β-lactoglobulin (β-LG) was 1:3 mol/mol in the sample with the modified WPI. Identified 
peaks in A and B: 1) α-lactalbumin; 2) bovine serum albumin; 3) β-LG B; 4) β-LG A. Additionally 
identified peaks in B: 5) modified β-LG B; 6) modified β-LG A. 

 

Drying of modified β-LG 

After protein modification with garlic powder the influence of the drying process (freeze or spray 

drying) and the ligand-protein ratio on the DADS concentration in the headspace was analyzed.  

Since allicin was completely bound the detected amount of DADS in the headspace of the mixture 

decreased significantly (Figure 5-2). As shown before allicin contributes largely to the detected DADS 

intensity of garlic powder (Supplementary Figure 5-2). After the binding of allicin the remaining 

amount of DADS is probably caused by DADS originally present in garlic powder. The concentration of 

the volatile DADS was 94% lower after spray drying compared to freeze drying (P ≤ 0.001) (Figure 5-

2). The higher loss of volatile sulfur compounds during the drying process at elevated temperatures 

compared to freeze drying has been shown before (Leino, 1992). Rodriguez-Jimenes et al. (2014) 

reported a decrease of the allicin concentration of garlic extract of 23-73% through spray drying 

under different conditions. They demonstrated that the kind of carrier material, its concentration as 

well as the inlet and outlet air temperatures were crucial for the retention of allicin. It has been 

shown that a high concentration of carrier material (i.e. 60%) enables an extensive encapsulation of 

the organosulfur compounds and a high retention during drying (Balasubramani et al., 2015). In the 

present study it was intended to achieve the opposite, namely an extensive loss of free volatile 

organosulfur compounds to reduce the garlic smell and taste of the dried WPI containing modified β-

LG. Therefore the low dry matter of the WPI feed solution (about 3%) was used for spray drying.  
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With respect to the ligand-protein ratio, an influence on the headspace DADS concentration was only 

seen after freeze drying (Figure 5-2). Presumably because the total amount of volatile DADS was 

already very low after spray drying, a higher protein excess did not induce a further significan t 

reduction. In contrast after freeze drying a higher ligand to protein ratio (1:8) significantly reduced 

the DADS concentration in the headspace (P ≤ 0.01). This result can be explained by the ability of β-

LG to increase the retention of volatile aroma compounds by hydrophobic interactions (Seuvre et al., 

2002). With increasing ligand-protein ratio this effect was enhanced as well. 

 

 

Figure 5-2: Diallyl disulfide (DADS) abundance ± SD analyzed by headspace GC-MS of dissolved WPI 
and garlic powder with different ligand-protein ratios. Samples were freeze dried (FD) or by spray 
dried (SD) at pH 8.0. Molar ratios of allicin from garlic powder to β-lactoglobulin from WPI varied 
from 1:2 to 1:8 mol/mol. The binding reaction was carried out prior the drying process. 8 mg sample 
was dissolved in 2 ml water for headspace analysis. For comparison one sample contained WPI and 
garlic powder without prior binding reaction (unbound) and drying. Different letters denote 
significantly different values (P < 0.01). 

 

Denaturation of β-Lactoglobulin 

The influence of the modification by garlic powder, on the thermal stability of β-LG was analyzed 

(Figure 5-3). After heat treatment for 30 min at different temperatures (70, 75, 80, 85, 90 °C) the 

degree of denaturation was determined. The modification by garlic powder significantly reduced the 

degree of denaturation after heating at temperatures in the range of 70-90 °C. If β-LG was modified 

at a molar ratio of 1:2 mol/mol allicin to β-LG, this effect was only observed at temperatures <90 °C. 

Samples modified at the ligand-protein ratio of 1:1 mol/mol showed a low degree of denaturation (≤ 

11%) even after heating at 90 °C. Further, the degree of denaturation of the sample at this protein-
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ligand ratio did not correlated with the heating temperature as shown for the other samples, i.e. 

unmodified β-LG and modified β-LG (allicin/ β-LG 1:2 mol/mol). 

The results clearly demonstrated that the modification of the thiol group of β-LG reduced the 

irreversible denaturation of the protein. This effect was dependent on the degree of modification, 

since only the modification of all thiol groups prevented denaturation efficiently. Croguennec et al. 

(2003) also observed a decreased denaturation of β-LG during heat treatment if the free thiol group 

was blocked by the reagent N-ethylmaleimide. The free thiol group plays an important role in the 

thermal denaturation process of β-LG, hence it induces the formation of disulfide linked aggregates 

which leads to the irreversibility of the process (Busti et al., 2005; Hoffmann & van Mil 1999). If the 

free thiol group is blocked the formation of covalent stabilized aggregates is limited (Croguennec et 

al., 2003). Therefore the derivatization of Cys121 by allicin influenced the denaturation behavior of the 

protein notably. 

 

 

Figure 5-3: Degree of denaturation ± SD of unmodified and modified β-lactoglobulin (β-LG) after heat 
treatment at different temperatures. Heating time was 30 min. β-LG concentration was 100 µM, pH 
value was 7.0. Control samples were not heat-treated. Different letters denote significantly different 

values between samples heated at the same temperature (P < 0.05). 

 

Further, the degree of denaturation was determined for samples prepared by β-LG from WPI and 

allicin from garlic powder. Figure 5-4 shows the influence of the pH value (i.e. pH 6.0 or pH 8.0) and 

the ligand-protein ratio (1:2, 1:3 or 1:4) on the degree of β-LG denaturation during spray drying. The 

pH value of the solution significantly influenced the denaturation and had the strongest effect among 
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the tested conditions: If the solution was dried at a pH of 6.0 the denatured β-LG proportion was 

remarkably lower compared to drying at pH 8.0 with the same ligand-protein ratio (P ≤ 0.0001).  An 

alkaline pH value (pH 8.0) during drying favored the denaturation which has been reported by other 

authors before (Hoffmann & van Mil, 1999; Verheul et al., 1998). Due to rising intramolecular 

electrostatic repulsion the conformational stability of β-LG decreases with increasing pH value from 

the isoelectric point to an alkaline pH value. Additionally, the reactivity of the free thiol group of 

Cys121 is much higher at pH 8.0 compared to 6.0 which leads to a higher reaction rate of the 

aggregation process (Hoffmann & van Mil, 1999; Verheul et al., 1998). Further, the accessibility of the 

thiol group is increased due to the Tanford transition at pH ≈ 7.4 and the presence of the thiolate 

anion is increased because it is closer to the pK value (pH 8.5) (Thurlkill et al., 2006; Tanford et al., 

1959). 

The ligand-protein ratio affected the degree of denaturation because of the different thermal 

stability of the unmodified and modified β-LG, as shown above for the samples prepared with pure β-

LG and allicin (Figure 5-3): When the majority of the free thiol groups was modified by allicin, the 

proportion of denatured β-LG after spray drying was significantly reduced (P ≤ 0.0001). This effect 

was only obvious for the ligand-protein ratios of 1:2 mol/mol to 1:3 mol/mol (Figure 5-4). Between 

1:3 mol/mol and 1:4 mol/mol no further difference regarding the degree of denaturation was 

observed (1:3 = 64.3%; 1:4 = 56.4%).  

 

 

Figure 5-4: Degree of denaturation ± SD of modified β-lactoglobulin (β-LG) from WPI with garlic 
powder after spray drying at pH 8.0 and 6.0. Molar ratios of allicin from garlic powder to β-LG varied 
from 1:2 to 1:4 mol/mol. Different letters denote significantly different values (P < 0.01). 
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5.4.2 Sensory evaluation of aqueous solutions with garlic constituents combined with whey protein  

For the description of the taste, following attributes were determined by the panel: “fresh garlic”, 

“garlic powder” and “pungency”, for the description of the odor: “fresh garlic”, “garlic powder” and 

“musty”. The evaluation of garlic powder in aqueous solution showed that the binding of allicin to β-

LG had an enormous influence on the perceived intensity for all attributes (Figure 5-5A). The effect 

on the taste was even more distinct compared to the odor. With respect to the odor the intensity for 

“fresh garlic” was significantly lower if allicin was bound to the protein (P ≤ 0.01). The odor intensity 

of “garlic powder” was also reduced but a remarkable reduction of the intensity was only reached by 

ultrafiltration (P ≤ 0.01). The same effects were shown for the attribute “mustiness” (P ≤ 0.05). This 

means that the perception of “garlic powder” and “mustiness” was not caused by bound allicin but 

by other non-bound organosulfur compounds of garlic powder which were removed by ultrafiltration 

of the WPI containing modified β-LG.  

With respect to the taste the intensity of “fresh garlic” and the “pungency” were significantly 

reduced by the binding of allicin (P ≤ 0.0001). The strong correlation of the intensity of these 

attributes is probably caused by allicin because it is a strong flavor compound and the major 

thiosulfinate (Bautista et al., 2005; Salazar et al., 2008). The control sample containing WPI and 

unbound allicin from garlic powder underlined the importance of the binding reaction for the taste 

perception, because the presence of the whey proteins in the control sample had a minor effect on 

the taste intensity. In contrast to the odor perception, the taste of “garlic powder” was mainly 

reduced by the binding of allicin but no further reduction through the ultrafiltration was noticed. 

Probably because of the low intensity of “garlic powder” no further differentiation was possible.  

Through the binding reaction of allicin the free cysteinyl residue of β-LG is modified to SAMC. There 

is nothing known about the excitation of sensory neurons by SAMC. Allicin mediates its pungency by 

activating members of the transient receptor potential (TRP) family of cation channels that also 

respond to a variety of pungent compounds, like capsaicin and allyl isothiocyanate  (Bautista et al., 

2005). The covalent modification of cysteine residues is the supposed mechanism of the channel 

activation of TRPV1 (Salazar et al., 2008). Since SAMC is less reactive than allicin and is buried in the 

inner of the globular protein it is very unlikely that it is able to mediate pungency. Furthermore, 

SAMC is covalently bound within the polypeptide chain of β-LG and is not volatile like the odor-

causing organosulfur compounds of garlic (Amagase, 2006). 

Besides allicin, garlic powder contains various other dialkyl sulfinates (e.g. allyl methanethiosulfinate, 

methyl 2-propenethiosulfinate, allyl trans-1-propenethiosulfinate) and degradation products (e.g. 

diallyl disulfide, diallyl trisulfide) that contribute to the remaining garlic like sensory impression 

(Lawson & Hughes, 1992). In particular the formation of degradation products is very likely during 24 
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h incubation at an alkaline pH value and heating during spray drying (Lawson, 1996). The results of 

GC-MS analysis confirmed the presence of DADS in the headspace of the WPI containing modified β-

LG, even at a very low level (Figure 5-2).  

 

5.4.3 Study drink 

Development of the study drink matrix 

The aim was to obtain a palatable beverage containing an amount of about 10 g WPI with β-LG 

modified with allicin from garlic powder. This amount delivered 18 mg of bound allicin corresponding 

to the uptake of approximately one garlic clove. Further, a matrix was required which can mask the 

garlic flavor of residual organosulfur compounds from the WPI-garlic-powder-mixture.  

The final product exhibited a similar sensory profile as commercially chilled coffee drinks. The crucial 

difference was that the developed drink contained no fresh milk as WPI was the main protein source 

in the drink of the present study. Referring to commercial coffee drinks milk is usually the main 

ingredient (75-80%). For the development of the study drink no milk was used, to exclude the effects 

of other proteins than β-LG. An interaction of allicin with α-lactalbumin and bovine serum albumin 

from WPI was ruled out by RP-HPLC analysis (Figure 5-1). Beside the WPI other ingredients, like 

lactose, coffee whitener and cream, were added to create a similar sensory profile to a milk 

containing drink. The addition of coffee whitener and cream resulted in an increased fat content in 

order to contribute to the masking effect of garlic flavor and pungency. The notable bitterness of the 

drink was probably caused by WPI, instant coffee and cocoa powder (Ye et al., 2012; Beecher et al., 

2008; Frank et al., 2007). Carrageen was added to improve the mouthfeel, but also to reduce the 

perception of garlic flavor. This effect was described before (Cook et al., 2003). Finally, at the drink-

serving temperature of 4 °C of the beverage contributed to a low volatility of the organosulfur 

compounds. Even if a slight garlic flavor was still perceived, the combination of coffee, chocolate and 

garlic flavor was harmonious and the overall sensory impression was positive. 
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Figure 5-5: Sensory evaluation by quantitative descriptive analysis of WPI with garlic powder (bound) 
and without (unbound) prior binding reaction. Molar ratio of allicin from garlic powder to β-
lactoglobulin from WPI was 1:3 mol/mol. The modified WPI was spray dried at pH 6.0. The  intensity 
of the attributes for odor and taste was measured on a six-point-scale (0 = not perceptible, 5 = 
strongly perceptible). A) Samples solved in water. B) Samples solved in the study drink. N.d. – not 

detectable. Error bars indicate standard deviation. 
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Sensory evaluation of garlic constituents in the study drink  

The concentration of garlic powder (bound or unbound) in the study drink (Figure 5-5B) was about 

twelve times higher than in the analyzed aqueous solution (Figure 5-5A) in order to correspond to 

the amount of allicin from one garlic clove. Nevertheless, allicin bound the odor intensity of the 

attribute “fresh garlic” of the drink was lower than of the aqueous solution (P < 0.05). In contrast to 

the aqueous solution containing 0.17% protein, the higher protein concentration of 3% in the study 

drink probably enabled the retention of volatile compounds. Next to proteins, the presence of fats 

was shown to reduce the volatility of the hydrophobic organosulfur compounds, like DADS 

(Hansanugrum & Barringer, 2010). Since milk provides a homogenous mixture of proteins and fat, it 

reduces the garlic like odor which was also shown by Negishi et al. (2002). The authors reported that 

the addition of milk decreased the headspace concentration of a DADS solution by 95%.  

The sensory panel detected no garlic like odor of the WPI containing modified β-LG. With respect to 

taste the perceived intensity of all attributes was significantly lower for the samples with modified β-

LG compared to the WPI and garlic powder without prior binding (P ≤ 0.0001). This difference can be 

attributed to two crucial factors. One is the already mentioned binding of allicin to β-LG. The other is 

the drying process of the WPI after the binding reaction. Through the spray drying a considerable 

amount of volatile compounds was removed (Figure 5-2). 

 

5.4.4 Influence of pH and ligand-protein ratio on sensory properties 

Figure 5-6 shows the influence of the ligand-protein ratio (1:2, 1:3, 1:4) and the pH-value during 

spray drying (pH 8, pH 6) on the taste perception. A higher protein excess had no influence on the 

garlic flavor, which was expected. Since the stoichiometric ratio of allicin and β-LG is 1:2, at a molar 

ratio of 1:2 allicin was completely bound and a further increase in protein concentration did not 

enhance the effect. In contrast to the protein-ligand ratio the pH value of the solution during the 

drying process seemed to have an influence on the sensory perception of the final product. The 

samples which were dried at an alkaline pH had lower garlic flavor intensity than the sample dried at 

pH 6.0, especially the intensity of “fresh garlic” was significantly lower (P < 0.05). A basic pH of the 

solution during the drying process promoted the degradation of thiosulfinates (Lawson, 1996). On 

the other hand a basic pH during drying increased the denaturation of β-LG (Figure 5-4). 
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Figure 5-6: Taste evaluation by quantitative descriptive analysis of samples with different ligand-
protein-ratios [mol/mol] and different pH values during spray drying (6.0, 8.0). Allicin was added as 
garlic powde, β-lactoglobulin was added as WPI. The intensity of the attributes for taste was 
measured on a six-point-scale (0 = not perceptible, 5 = strongly perceptible). Samples were solved in 

the study drink. Error bars indicate standard diviation. 

 

5.4.5 Influence of sugar content on sensory properties  

Different sugar concentrations of the study drink were examined. As expected, with increasing sugar 

content the intensity of sweetness increased (P ≤ 0.01) and the intensity of bitterness decreased (P ≤ 

0.05). There was no clear effect on the garlic related taste attributes (Supplementary Figure 5-3). In 

contrast, Lee & Kim (2013) reported that the combination of fat and sugar enhances the reduction of 

the pungent sensation.  

 

5.5 Conclusions 

β-LG from WPI was covalently modified with allicin from garlic powder. The used protein and ligand 

source were suitable for the application in food and enabled an efficient binding reaction. The 

modified β-LG was stable during drying processes and showed a high solubility which enables the 

enrichment in a wide range of food products. Due to the modified thiol group heat induced 

aggregation was prevented which resulted in an increased thermal stability compared to the native 

protein. In addition, β-LG modified by allicin was shown to be nearly free of any garlic odor and taste. 

An ultrafiltration process before drying of the WPI containing modified β-LG would enable to 

produce the product without any residual garlic flavor compounds and thus with a relatively neutral 

taste. The developed beverage was an appropriate food matrix for the enrichment of modified β-LG 

without prior purification, since remaining flavor-active ingredients were considerably masked by the 

protein rich emulsion. β-LG proved to be a suitable transporter for allicin, particularly the stability, 
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the absence of undesired sensory properties and the simple, low-cost process enables the 

application in food systems. 
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5.6 Supplementary 

Supplementary Table 5-1: Composition of the 
developed beverage. 

Ingredient Content [%] 

water 85.6 

coffee whitener* 4.3 

WPI** 3 

sugar 2.1 

lactose 2.5 

cream 0.9 

instant coffee  0.8 

cocoa powder 0.4 

carrageen 0.3 

aroma 0.1 

*Main ingredientens: glucose syrup, vegetable fat. 
**Modified or unmodified form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 5-1: Schematic production 

process for the developed beverage. 



CHAPTER 5: SENSORY PROPERTIES AND APPLICATION IN FOOD 

 

91 
 

 

Supplementary Figure 5-2: Allicin concentration ± SD analyzed by HPLC and diallyl disulfide (DADS) 
abundance ± SD analyzed by headspace GC-MS of dissolved garlic powders from five different 
cultivars. Garlic samples: 1 –white garlic from China; 2 – purple-type single bulb garlic from China; 3 – 
white garlic from Spain; 4 white garlic from China; 5 – purple-type garlic from France. 1.2 mg garlic 
powder was dissolved in 2 ml distilled water. DADS signal from GC-MS analysis correlates with allicin 

concentration of the sample (pearson correlation r=0.993). 

 

 

 

Supplementary Figure 5-3: Taste evaluation by quantitative descriptive analysis of modified WPI 
(ligand-protein-ratio 1:3) solved in the study drink with different sugar concentrations. The intensity 
of the attributes for taste was measured on a six-point-scale (0 = not perceptible, 5 = strongly 

perceptible). N.d. – not detected. Error bars indicate standard diviation. 
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6.1 Abstract 

The whey protein β-lactoglobulin was proposed as nanotransporter for allicin, a small bioactive 

compound from garlic. However, the bioavailability of the covalently bound ligand was not examined 

so far. In the present study, the bioavailability of S-allylmercaptocysteine from β-lactoglobulin 

modified with allicin was investigated in a double-blind, randomized, diet-controlled cross-over 

study. Nine male volunteers ingested a single oral dose of β-lactoglobulin modified with allicin (111 

µM allicin use), garlic powder in capsules (111 µM allicin potential), and aged garlic extract in 

capsules (111 µM S-allyl cysteine). The concentration of allyl methyl sulfide in breath gas, N-acetyl-S-

allyl cysteine in urine as well as the S-allyl cysteine in plasma were analyzed. The ally methyl sulfide 

excretion caused by the modified β-lactoglobulin was significantly higher than for the other 

treatments which indicated the efficient release of S-allylmercaptocysteine. In contrast, the allicin 

release from garlic powder in acid-resistant capsules (15%) and thus the excretion of allyl methyl 

sulfide was low. β-Lactoglobulin delivered S-allylmercaptocysteine, a stable allicin derivate, without 

impairing its bioavailability due to the incorporation in the protein chain. 

 

6.2 Introduction 

Garlic is known for its therapeutic and health promoting properties which are mainly provided by 

allicin (S-allyl 2-propene-1-sulfinothioate), the major thiosulfinate in freshly crushed garlic 

(Borlinghaus et al., 2014; Butt et al., 2009; Miron et al., 2000).  It has been suggested that allicin 

exerts many of its bioactivities by transforming the thioallyl -moiety via SH/SS exchange reactions 

with intracellular thiol containing molecules, resulting in the formation of the corresponding S-

allylmercapto-conjugates (Miron et al., 2010; Rabinkov et al., 1998).  

Due to the manifold beneficial effects a regular intake of garlic is recommendable. However, many 

people avoid garlic because of the pungent taste and the malodorous breath after garlic 

consumption (Rosin et al., 1992). Therefore, different garlic supplements are commercially available, 

the most prevalent forms are coated tablets filled with garlic powder or dried aged garlic extract 

(AGE). Garlic powder supplements do not contain any allicin until disintegration in the 

gastrointestinal tract, where alliin can be converted to allicin by alliinase (Lawson & Hughes, 1992). 

AGE contains mainly the stable, water-soluble, non-volatile organosulfur compounds S-allyl cysteine 

(SAC) and S-allylmercaptocysteine (Ried et al., 2010). It is claimed to be odorless, which means free 

of garlic taste and typical garlic breath. Furthermore, it was suggested that AGE is safer and causes 

less adverse effects due to the absence of irritating compounds (Amagase, 2006). However, 

supplements are not part of a natural balanced diet and large quality differences between garlic 

supplements have been revealed, because most garlic powder products release far less allicin than it 
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ought to be (Arnault et al., 2005; Lawson & Wang, 2001). Furthermore, the production of AGE is very 

time consuming, as it takes about 20 month (Butt et al., 2009).  

To enable the regular intake of allicin within the usual diet but without the pungent smell and taste, 

the enrichment in functional foods through an appropriate transporter could be a solution. Delivery 

systems like liposomes, microcapsules, and chitosan complexes have been tested to improve the 

stability and solubility of allicin (Lu et al., 2014; Wang et al., 2012; Pirak et al., 2012). Even if the 

stability was improved, it was still insufficient for the demands of processed foods. Further, the 

sensory properties of the mentioned delivery systems have not been assessed.  

The binding of allicin to the whey protein β-lactoglobulin (β-LG) is an innovative approach to stabilize 

the organosulfur compound and mask the strong flavor and pungency. β-LG has been suggested as a 

suitable transporter, since it has the GRAS (generally recognized as safe) status, a high nutritional 

value, desired technological and versatile functional properties. According to previous studies allicin 

can be bound to the free thiol group of β-LG by forming the stable S-allylmercaptocysteine which is 

free of garlic odor and flavor (chapter 3-5).  

The aim of the present study is to investigate the systemic availability of S-allylmercaptocysteine 

from with allicin modified β-LG in comparison with free allicin and free S-allylmercaptocysteine. 

Garlic powder in acid-resistant capsules was used to provide free allicin and AGE capsules were used 

to deliver S-allylmercaptocysteine and the structural similar SAC. Since different metabolic pathways 

of these organosulfur compounds have been reported, it was necessary to analyze various 

metabolites. The excretion products N-acetyl-S-allyl cysteine (NASAC) in urine and allyl methyl sulfide 

(AMS) in breath gas were detected. Further, the concentration of SAC in plasma was determined.  

 

6.3 Materials and Methods 

6.3.1 Subjects 

Nine male non-smoking volunteers aged 20-29 years participated in the study. They were normal 

weight (BMI in range of 19-25 kg/m2) and in good health conditions, confirmed by anamnesis form 

and blood baseline characteristics (Table 6-1). Exclusion criteria were overweight, metabolic and 

endocrine diseases, allergies, malabsorption syndromes, smoking, alcohol abuse, use of dietary 

supplements or any form of medication. All subjects were asked to maintain their usual lifestyles 

throughout the study. The study was approved by the ethics committee of the Medical Faculty of the 

Christian-Albrechts-University of Kiel, Germany. Written informed consent was obtained from all 

subjects. 
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Table 6-1: Baseline characteristics of subjects (n = 9). 

Variable Mean SD 

Age (years) 26.0 2.92 

Body weight (kg) 73.1 9.02 

Body height (m) 1.81 0.06 

BMI (kg/m2) 22.2 1.74 

Haematocrit (%) 42.0 2.06 

Blood Hb (g/dl) 142.1 7.10 

Fasting plasma glucose (mg/dl) 85.6 11.47 

 

6.3.2 Study design 

The study was conducted in a double-blinded, diet-controlled cross-over design comprising three 

treatment days at intervals of two weeks. The treatments had following composition:  

 A: garlic powder in acid-resistant capsule, allicin yield: 18 mg (111 µM) + placebo beverage  

 B: dried aged garlic extract in gelatin hard capsule, SAC content: 18 mg (111 µM) + placebo 

beverage  

 C: placebo capsule + beverage with WPI, containing 3.7 g with allicin modified β-LG (189 µM) 

 For each subject the treatments A, B and C were randomly assigned to the different treatment days, 

in order that every participant ingested each capsule-drink combination once after the three 

treatment days. One week before each treatment day, participants were instructed to avoid the 

consumption of vegetables and spices of genus Allium and foods containing them (wash-out period). 

A list of corresponding food items (e.g. garlic, onion, leek, numerous processed foods) was provided 

for detailed information. Compliance was controlled by a self-completed three-day dietary record. 

Inspection of records showed no deviation from the Allium-restricted diet. Between treatment days 

was a break of one week without any diet restrictions, followed by the next wash-out period.  

At treatment days, the capsule-drink combinations were given in the morning after a 12 h overnight 

fast. Each time the subjects ingested five capsules with a glass of water (200 ml) plus the chilled 

coffee drink (300 ml). A standardized Allium-free diet was offered during the whole day. The first 

meal was served one hour after treatment intake. A total amount of 2.6-2.8 l water was drunk over 

the whole day allocated to glassful portions at regular time points. Other drinks were not allowed. 
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6.3.3 Breath gas sampling and analysis 

Breath gas samples were collected from six subjects (same subjects at each treatment day). At 

treatment days the subjects used the provided toothpaste that was free of herbs and other strong 

flavors and they were not allowed to use mouthwashes. For breath-sampling the subjects were 

introduced to breathe naturally and relaxed (avoiding deep inhaling and exhaling), hold their breath 

for 15 s and then exhale into the sample bag until it was mostly full (up to 80% of maximum volume). 

The breath samples were collected in 1.0 l Tedlar bags (polyvinylfluoride bags, Restek GmbH, Bad 

Homburg, Germany) containing a polypropylene valve with a septum fitting and a mouthpiece. 

Breath gas samples were taken prior consumption of the capsule-drink treatment and 2, 4, 6, 8, and 

24 hours after ingestion. AMS concentration was analyzed by GC-MS within 24 hours after sample 

collection. A 6890 gas chromatograph equipped with a MS detector 5975 and a DB-5MS column, 60 

m x 0.32 mm i.d., 0.25 µm film thickness was used (all from Agilent Technologies, Santa Clara, US). 

The tedlar bag and a gastight syringe (2.5 ml) were incubated at 50 °C for 30 min before 2 ml breath 

gas sample was manually transferred into the injector. Between samples the syringe was manually 

washed with air three times to remove potential residues. The injector worked at 230 °C in the 

splitless mode with a purge flow of 7 ml/min for 0.4 min. Helium flow rate was 1 ml/min and column 

temperature was programmed from 40 °C for 3 min, increase to 60 °C at a rate of 10 °C/min, then 

increase to 180 °C at a heating rate of 20 °C/min, held for 2 min at 180 °C. The MS detector worked in 

the electron ionization mode at 70 eV, the source temperature was maintained at 230°C and the GC-

MS interface at 250 °C. Mass spectrometer worked in the selected ion mode (SIM) and monitored 

target ions were m/z 61, 71, 73 and 88 at dwell time of 100 ms. 

Before usage, the bags were pre-conditioned with nitrogen to reduce the background emission of 

contaminants. Therefore, bags were flushed with pure nitrogen, incubated at 50 °C for 1 h. After 

removing of the gas, the bags were again flushed with nitrogen and evacuated by a vacuum pump. 

Calibration was done by standard reagent of AMS (98%, Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany) at each day of analysis twice. Therefore, AMS was diluted with ethanol to give a solution of 

500 µg/l (solution 1), 1000 µg/l (solution 2) and 2000 µg/l (solution 3). Tedlar bag was filled with 500 

ml nitrogen and 10 µl of AMS solution 1 were added by a gastight syringe through the septum. The 

sample bag was incubated (50 °C, 30 min) to ensure complete evaporation, and 2 ml gas sample was 

taken and analyzed. Then, the AMS concentration was increased by the next injection of standard 

solution 1. The procedure was repeated several times with solution 1 and afterwards with 2 and 3 to 

get a calibration curve ranging from 6 ng/l to 400 ng/l, which provided a linear response (R2 in range 

of 0.998-0.999). For calculation of AMS concentration the volume change due to sample taking was 

corrected. Three independent measurements were performed of each concentration level. LLOQ was 

at 5 ng/l. 
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6.3.4 Blood sampling, processing and analysis 

Blood samples were collected before treatment administration (baseline) and then hourly until 8 

hours after the dose plus once after 24 hours. Blood was drawn into tubes containing lithium-heparin 

(Sarstedt, Nümbrecht, Germany) and immediately centrifuged (2000 x g, 10 min, 4 °C). The plasma 

fraction was collected and stored at -80°C until analysis. Baseline parameters (haematological:  

leucocyte count, erythrocyte count, platelet count, Hb concentration, haematocrit, mean corpuscular 

volume, mean corpuscular Hb and mean corpuscular Hb concentration) were analyzed from 

additional fasting blood at the first treatment day.  

Every plasma sample was prepared in triplicate. Plasma concentrations of SAC were analyzed by RP-

HPLC after o-phthalaldehyde (OPA)-labeled precolumn derivatization and with fluorescence 

detection. The OPA reagent solution was prepared by mixing 2 ml OPA (Sigma-Aldrich Chemie GmbH, 

Steinheim, Germany) solution (40 mM, in methanol) with 10 µl MPA and addition of 7.99 ml borate 

buffer (0.1 M, pH 10.5). The reagent solution was stored at -80 °C until usage. Plasma analysis was 

conducted without the knowledge of the treatment assignment. S-carboxymethyl-L-cysteine (Sigma-

Aldrich Chemie GmbH, Steinheim, Germany) was used as internal standard. To precipitate proteins, 

300 µl cooled ethanol (-80 °C) were added to 100 µl plasma sample, vortexed for 20 s and incubated 

at -80 °C for 30 min. After repeated vortexing the sample was centrifuged (10000 x g, 10 min, 4 °C) 

and 250 µl supernatant were collected and lyophilized by vacuum drying. Derivatization of the 

sample was performed by adding 100 µl of reaction solution to the residue and vortex ing vigorously 

for at least 20 s. The sample was analyzed by RP-HPLC equipped with a C18 column (Nucleoshell RP 

18, particle size 2.7 µM, 3 x 150 mm, Macherey-Nagel, Düren, Germany) at 30 °C and eluted with 50 

mM sodium acetate buffer, pH 5.5, 0.5 % THF (eluent A) and methanol (eluent B) at a flow rate of 0.3 

ml/min. The samples were placed in a refrigerated autosampler (4 °C) and were analyzed within 24 h. 

The injection volume was 10 µl and detection was performed at 235 nm and 455 nm as excitation 

and emission wavelength, respectively. 

Method validation was conducted with SAC standard in accordance with the FDA “Bioanalytical 

Method Validation, Guidance for Industry” (Food and Drug Administration, 2001). Validation was 

performed on three separate days, each day including nine non-zero calibration standards and five 

replicates of samples at low (1 µM), middle (5 µM) and high levels (8 µM). Stock solution of SAC was 

made by dissolving appropriate amounts in water and dilution to concentrations ranging from 0.5-60 

µM. Stock and working solutions were stored at -80 °C. The calibration standards were prepared by 

spiking SAC-free plasma with SAC standard solution. The lower limit of quantification (LLOQ) of SAC 

was set at 100 nM. Accuracy and precision (intra- and inter-day) of the method were determined 
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from the calibration curves and responses from five replicates of each calibration sample (low, 

middle and high level) on each day of validation. The coefficient of variation (CV) of the inter-analysis 

and inter-day precision for SAC was < 10%. The recovery was determined by comparing the peak area 

of SAC spiked to plasma before protein precipitation with the peak area of the same concentration of 

pure standard (low, middle and high standard level). The recovery of SAC was 52 ± 5.1% and after 

correction by the internal standard the recovery was 95 ± 15.1 %.  The stability of the processed 

samples was assessed by repeated measurements of SAC spiked plasma at low (1 µM) and high (8 

µM) concentrations in triplicate. The detected SAC concentration was within 15% of the nominal 

concentration during 30 h after processing. For method verification a mobile phase blank, a quality 

control sample (plasma spiked with known concentration of SAC and internal standard) and a zero-

sample (plasma without SAC and SAMC, internal standard added after protein precipitation) were 

prepared and measured with every run. 

 

6.3.5 Urine sampling, processing and analysis 

At treatment days subjects took a sample of their first void urine and collected afterwards the urine 

over 24 hours. After 24-h collection, urine volume was determined and an aliquot of 10 ml was 

transferred into a plastic tube and stored at -80°C until analysis. First void urine samples were stored 

at -80 °C as well. Analysis was conducted without the knowledge of the treatment assignment. 

Every urine sample was prepared in triplicate. Urine concentration of N-acetyl-S-ally cysteine 

(NASAC) was analyzed by OPA-labeled precolumn derivatization and RP-HPLC with fluorescence 

detection. At first, NASAC was deacetylated by acylsase I (from porcine kidney, 572 units/mg 

protein, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) to SAC. Therefore, 200 µl urine were 

mixed with 200 µl  acyslase solution (0.5 mg/ml in 66.7 mM potassium phosphate buffer, pH 7.4) and 

incubated at 37 °C for 30 min. Then, 800 µl methanol were added, followed by vortexing and 

incubation at room temperature for 10 min. The sample was centrifuged (14000 rpm, 5 min) and 

1000 µl supernatant was collected and lyophilized by vacuum drying. Derivatization of the sample 

was performed by adding 100 µl of OPA reaction solution to the residue and vortexing for 20 s. The 

RP-HPLC analysis was the same as mentioned above for SAC.  

Method validation was conducted in accordance with the FDA “Bioanalytical Method Validation, 

Guidance for Industry” and conducted in the same way as described for metabolites in plasma (Food 

and Drug Administration, 2001). Stock solution of NASAC was made by dissolving appropriate 

amounts in water and dilution to concentrations ranging from 1-40 µM. Stock and working solutions 

were stored at -80 °C. The calibration standards were prepared by spiking NASAC-free urine (control 
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urine) with NASAC standard solutions. The lower limit of quantification (LLOQ) was at 140 nM 

NASAC. The coefficient of variation (CV) of the inter-analysis and inter-day precision for NASAC was < 

10%. The recovery (70 ± 8.4%) was determined by comparing the peak area of with NASAC spiked 

control urine (low middle and high standard level) with the peak area of control urine samples where 

SAC was spiked to the supernatant after enzyme treatment. For method verification a mobile phase 

blank, a zero-sample (urine without SAC and NASAC) and quality control sample (urine spiked with 

known concentration of NASAC) were prepared and measured with every analytical run.  

Creatinine analysis was based on the Jaffe reaction according to the method of the German Research 

Foundation (DFG) (Blaszkewicz & Liesenhoff-Henze, 2002), forming a yellow-orange complex of 

creatinine and picric acid under alkaline conditions and measurement of absorption at wavelength of 

492 nm by a spectrophotometer (Helios Gamma, UV-Vis, Thermo Spectronic, Cambridge, UK). 

Quantification was done by a linear calibration function. The performance of creatinine analysis was 

controlled by commercial reference material (Duotrol Urin Liquid Level 1, Biomed Labordiagnostik 

GmbH, Oberschleissheim, Germany) in each analysis series.  

 

6.3.6 Biokinetic calculations 

The following pharmacokinetic parameters were estimated for the metabolites in plasma and breath 

gas: time to reach maximum metabolite concentration (tmax), maximum metabolite concentration 

(cmax), and the area under the plasma concentration–time curve (AUC) (by using the trapezoidal rule). 

The calculations were performed by using GraphPad Prism (version 6.00, GraphPad Software, San 

Diego, USA). 

Due to the variability of urine volume and consequently of metabolite concentrations, the 

concentration of NASAC in 24-h collected urine was standardized by creatinine excretion rate 

according to (Garde et al., 2004). The excreted amount of NASAC within 24 hours was expressed as 

ΔNASAC24 = ([NASAC]urine/[creatinine]) ∙ Kcreatinin e, whereas the excretion creatinine rate Kcreatinine (mM 

creatinine per day) is defined as Kcreatinine = ([creatinine] ∙ ΔV)/Δt.  

 

6.3.7 Study product preparation 

Preparation and analysis of garlic powder 

Garlic cloves were manually peeled and cut into 3-4 mm thick slices. In a perforated plastic bag the 

slices were frozen in liquid nitrogen and freeze dried afterwards (laboratory freeze dryer, Gamma 1-

16 LSCplus, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode, Germany). The dried slices 
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were ground by an analysis mill. The allicin content of the garlic powder was measured by RP-HPLC 

with an Agilent 1200 Series system (Agilent Technologies, Santa Clara, US). Therefore, the powder 

was solved in water (5 mg/ml) and filtrated by a syringe fil ter (0.2 µm pore size). RP-HPLC analysis 

was conducted on a C-18 column Nucleodur Gravity (100 mm x 2 mm i.d., 1.8 µm particle size, 

Macherey-Nagel GmbH & Co. KG, Düren, Germany). The mobile phase consisted of 5 mM ammonium 

acetate dissolved in water, pH 6.6 (eluent A) and acetonitrile with 0.1% formic acid (eluent B) at a 

flow rate of 0.2 ml/min with a gradient program as follows: 40% B (0-10 min), 100% B (15-19 min), 

5% B (20-22 min), 40% B (25-35 min). The injection volume was 5 µl, the UV detector operated at 205 

nm and the column temperature was 25 °C. Quantification of allicin was done by calibration with 

allicin standard. Allicin was synthesized according to Small et al. (1947), as described in chapter 3. 

The allicin potential was 1.9% and was constant for at least 3 month. 

 

Preparation and analysis of dried aged garlic extract 

Liquid aged garlic extract (Kyolic liquid, Wakunaga of America Co., Ltd., Madero, USA) was freeze 

dried and pulverized. SAC content was analyzed by RP-HPLC after precolumn derivatization with OPA 

and as descripted above. The SAC content was 0.62%. 

 

Capsule preparation 

952.4 mg of garlic powder (allicin yield 18 mg) was filled into acid resistant hard capsules (DRcapsTM, 

composed of hypromellose), where for aged garlic extract (2640.0 mg, containing 18 mg SAC) hard 

gelatin capsules (both Capsugel, Colmar, France) were used. The placebo capsules contained 

maltodextrin. 

 

In vitro release of allicin 

In vitro dissolution test for solid dosage forms was conducted according to the European 

Pharmacopoeia (method 2.9.3) by using a dissolution tester (PT-DT70, Pharma Test AG, Hainburg, 

Germany) with a rotation speed of 100 rpm at 37 °C (Council of Europe, 2005). One capsule was 

placed in a basket with stirrer adapter in a covered round bottom glass vessel containing 750 ml 

medium. The dissolution test comprised four different media: first acidic solution pH 3.0 (0.1 M HCl, 

0.2% NaCl) for 2 h, then sodium acetate buffer pH 4.5 for 0.5 h, phosphate buffer pH 6.8 for 2 h and 

finally phosphate buffer pH 7.4 for 1 h. The basket was transferred from one vessel to another after 

each incubation step. The allicin concentration of each medium was determined by RP-HPLC as 
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described above. As reference the maximum allicin yield was determined by sti rring vigorously one 

capsule in 100 ml phosphate buffer (pH 6.8) for 30 min. Complete disintegration of the capsule and 

solvation of the content was assured. The allicin concentration of the solution corresponded to 100% 

allicin release.  

To analyze the release behavior of the acid resistent capsules compared to the gelatin capsule (used 

for AGE) without the formation difficulties of allicin riboflavin was used as an easily detectable model 

substance. The capsules were filled with a mixture of maltodextrin (200 mg) and riboflavin 5′-

monophosphate sodium salt hydrate (68 mg, Sigma-Aldrich Chemie GmbH, Steinheim, Germany). 

Dissolution test was conducted as described above. Additionally, preprandial gastric fluid (pH 1.2) 

was used for comparison. Every 30 min a sample of the dissolution medium was taken and riboflavin 

concentration was measured by the absorbance at 445 nm using a spectrophotometer (Helios 

Gamma UV-Vis, Thermo Spectronic, Cambridge, UK). Quantification was done by using a calibration 

curve of the riboflavin standard. All tests were done in triplicate.  

 

Preparation of modified WPI 

For the production of the modified β-LG only food and pharmaceutical grade ingredients were used. 

First, the β-LG content of the WPI (BiPRO, Davisco Foods International, Inc., Eden Prairie, US) was 

determined. Therefore, WPI was solved in water (0.3 mg/ml) and filtered through 0.2 µm syringe 

filters (regenerated cellulose membrane, Carl Roth GmbH & Co. KG, Karlsruhe, Germany). RP-HPLC 

was performed as described in chapter 3. Quantification of β-LG was done by calibration with β-LG 

AB standard. The WPI contained 97.7% protein and 74% β-LG in dry matter. 

The covalent binding of allicin from garlic powder to β-LG from WPI was done by dissolving WPI and 

garlic powder separately. Garlic powder of the same batch as applied for the garlic powder capsules 

was used. The garlic powder was filtered before it was added to the protein solution. The pH of the 

mixture was adjusted to 8.5 by 0.1 M NaOH and the final concentration of WPI and garlic powder 

was 26 g/l (corresponds to 1000 µM β-LG) 2.9 g/l (corresponds to 333 µM allicin), respectively. The 

solution was stirred for one hour and incubated at 4 °C for 24 h. Afterwards the pH was adjusted to 

6.0 by 0.1 M HCl, followed by spray drying on a pilot plant spray dryer (Mobile Minor 2000, Niro A/S, 

Copenhagen, Denmark) using a rotating atomizer disc at a flow rate of 47 ml/min, at 180 °C/70 °C 

inlet/outlet temperature and an outlet pressure of 4 bar. The degree of modification was determined 

by RP-HPLC, as described elsewhere (chapter 3). The treated WPI contained 57% of modified β-LG 

(based on total β-LG amount). 
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Beverage production 

The beverage was proposed to be like a chilled ready to drink coffee drink, but without using the 

usual main ingredient milk. Milk was replaced by the unmodified or modified WPI in order that β-LG 

was the most prevalent protein in the drink. Table 6-2 shows the ingredients of the final product. All 

ingredients were purchased from a local grocery store, except carrageen (Satiagum ADC 25, Cargill 

Deutschland GmbH, Krefeld, Germany) and vanilla flavor (Symrise AG, Holzminden, Germany), which 

were generous gifts. At first coffee whitener, cacao powder, lactose and carrageen were solved in 

water by vigorous stirring. The solution was heated to 80 °C, hold for 15 min and cooled down in a 

water bath. As temperature was below 30 °C, sugar, instant coffee, cream, aroma and unmodified 

(placebo) or modified WPI were added under stirring. Finally, the drink was mixed by an immersion 

blender and filled in plastic bottles (300 ml per bottle). The test drink contained 10.7 g modified WPI 

and the placebo drink 9.7 g unmodified WPI per serving size (300 ml). The placebo drink was 

comparable with the drink containing the modified β-LG with respect to appearance, texture and 

taste confirmed by sensory analysis chapter 5. The beverage was produced one day before 

consumption and stored at 4 °C. 

 

Table 6-2: Composition of the developed beverage. 

Ingredient Content [%] 

water 85.6 

coffee whitener* 4.3 

WPI** 3 

sugar 2.1 

lactose 2.5 

cream 0.9 

instant coffee  0.8 

cacao powder 0.4 

carrageen 0.3 

aroma 0.1 

*Main ingredientens: glucose syrup, vegetable fat. 

**Modified or unmodified form. 

 

6.3.8 Synthesis of metabolites 

S-allyl-cysteine 

SAC was synthesized as described by Besada et al. (2005) (Figure 6-1). To an ice cooled solution of L-

cysteine (0.5 g, 4.132 mM) in ethanol (10 ml) allyl bromide (0.54 ml, 6.198 mM) was added, followed 
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by sodium ethoxide (0.28 g, 4.132 mM). The reaction mixture was stirred for an hour. Ethanol was 

removed by rotary evaporation and the residue was diluted with water, acidified with 1M HCl and 

extracted with ethyl acetate. After drying over anhydrous sodium sulfate, the solvent was removed 

by rotary evaporation to provide the product as white powder (801.1 mg yield). 1H NMR (500 MHz, 

CD3OD) 5.81-5.89 (m, 1H); 5.14-5.26 (m, 2H); 3.68 (dd, 1H, J = 3.85, 8.51); 3.21-3.29 (m,2H); 3.12 (dd, 

1H, J = 3.95, 14.6); 2.87(dd, 1H, J = 8.55, 14.55). HRMS: m/z 162.0592 [M+H]+, calculated: m/z 

162.0583 [M+H]+. 

 

N-acetyl-S-allylcysteine 

N-acetyl-S-allylcysteine (NASAC) was synthesized according to the method described by Jandke & 

Spiteller (1987) (Figure 6-1). Briefly, to a solution of N-acetyl cysteine (0.5 g, 3.068 mM) in water (10 

ml) allyl bromide (0.29 ml 3.374 mM) was added and the system was brought to pH 10 by addition of 

2M NaOH. Ethanol was added to the above mixture until it became clear solution. The reaction 

mixture was stirred for four hours at room temperature. Ethanol was removed by rotary evaporation 

and the residue was diluted with water (20 ml), acidified with 1M HCl and extracted with ethyl 

acetate (3 x 50 ml). The organic layer was dried over anhydrous sodium sulfate, filtered and the 

solvent was removed in rotary evaporator to provide the product as a white powder (510.9 mg 

yield). 1H NMR (500 MHz, CD3OD) 5.76-5.82 (m, 1H); 5.10-5.17 (m, 2H); 4.57 (dd, 1H, J = 4.75, 8.20); 

3.14-3.22 (m,2H); 2.97 (dd, 1H, J = 4.90, 13.95); 2.75 (dd, 1H, J = 8.15, 13.95); 2.03 (s, 3H). HRMS: m/z 

202.0500 [M-H]-, calculated: m/z 202.0532 [M-H]-. 

 

 

 

Figure 6-1: Synthesis of S-allyl-cysteine (1) and N-acetyl-S-allyl cysteine (2). 

 

1) 

 

2) 
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6.4 Results and discussion 

6.4.1 Composition of study products 

The concentration of the bioactive compounds of interest was analyzed in each study product and 

the results are summarized in Table 6-3. About 60% of β-LG present in WPI incubated with garlic 

powder was modified by allicin which is in line with the reported reaction of allicin and β-LG (chapter 

3). The applied amount of allicin (111 µM) produced 189 µM SAMC which was less than the maximal 

possible amount (222 µM) according to the stoichiometric ratio of 2:1 (allicin/β-LG). This was 

probably caused by partial degradation of allicin previously to the binding reaction, favored by the 

incubation conditions (pH 8.5). The SAC content (0.68%) of the dried AGE was in accordance with the 

findings of other studies (Colín-González et al., 2012; Lawson, 1996). The allicin potential of the garlic 

powder (2.03%) used in the present study was relatively high compared to garlic powder used in 

other studies (allicin potential: 0.9-1.3%) (Lawson & Gardner, 2005; Lawson & Wang, 2005). To 

minimize the necessary amount of garlic powder a garlic cultivar yielding a particularly high allicin 

amount was chosen (chapter 5).  

To determine the allicin release from the garlic powder in acid resistant hard capsules under 

simulated gastrointestinal conditions, an in vitro dissolution test was applied using a dissolution 

tester with the rotating basket method and simulated gastric fluid for 2 h followed by sodium acetate 

buffer at pH 4.5 for 0.5 h, phosphate buffer at pH 6.8 and pH 7.4 for 2h and 1 h, respectively. The pH 

value of the simulated gastric fluid was set to 3.0 because the capsules were ingested immediately 

after the protein rich beverage, resulting in an increased gastric pH value (Koziolek et al., 2013). 

About 15.4 ± 1.10 % of the potential allicin was released in total after 5.5 h of in vitro digestion, of 

which a proportion of 48% were already released during gastric stage (i.e. after 2 h) and the residual 

allicin was detected in the phosphate buffers simulating the intestinal stage.  

Gastric resistant capsules were used in the present study for garlic powder to maintain the activity of 

the inherent alliinase as a limited formation of allicin from garlic powder during digestion is a known 

problem: Since garlic powder contains only alliin and no alli cin itself, the enzymatic activity of the 

inherent alliinase is crucial for the formation of allicin from alliin when the powder is dissolved. 

However, alliinase is irreversibly inactivated below pH 3.5, the usual range of gastric fluid, and even 

at a natural pH value the enzyme activity decreases fast at body temperature  (Lawson & Gardner, 

2005). Therefore, gastric resistant capsules are required. However, the allicin release of most of the 

garlic powder supplements is less than 15% of their claimed allicin potential, despite their enteric-

coating. It has been suggested that an impaired alliinase activity and slow tablet disintegration are 

the main reasons for the low release (Lawson & Wang, 2001). In the present study the low allicin 

release of the garlic powder capsules was caused by the insufficient integrity of the capsule under 
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gastric conditions. Since half of the released allicin concentration was already detected in the 

simulated gastric fluid, solvent had to be able to penetrate into the capsule. 

In addition, the disintegration behavior of the capsules was investigated by using riboflavin as model 

substance. Figure 6-2 illustrates the release of riboflavin from the gelatin hard capsule and the acid 

resistant capsule in preprandial (pH 1.2) and postprandial (pH 3.0) gastric fluid. The riboflavin release 

of the gelatin capsule started rapidly (< 15 min) under both conditions and the capsule dissolved and 

disappeared completely after 2 h of incubation. The release from the acid resistant capsule started 

after 30 min and was delayed under fed conditions. Nevertheless, the majority of riboflavin was 

released at the end of the gastric stage under both conditions. Even though the capsule material 

remained intact it became soft and instable, leading to leaks between the body and the cap where 

the acid solution can penetrate into the inner of the capsule.  

Marzorati et al. (2015) investigated the dissolution behavior of the same acid resistant capsule 

material (DRcaps™, Capsugel) as used in the present study. In contrast to our results, they reported 

that this capsule was able to protect the viability of probiotics and stability of enzymes across gastric 

passage. However, they observed that the capsules were partially damaged after the simulated 

gastric stage under and released their content quite soon during intestinal simulation. The simulated 

gastric stage used by Marzorati et al. (2015) comprised 1 h instead of 2 h which was used in this 

study. The authors noted that the longer digestion time had a significant impact on the capsule 

stability. Thus, the limited protection of capsule content against gastric fluid observed in this study 

were probably due to the longer incubation time applied during in vitro dissolution and caused by 

postprandial conditions in vivo. 

 

Table 6-3: Composition of study products. 

Study product Main bioactive compounds  

Product Administered 

amount 

Compound Amount of substance [µM] 

Whey protein isolate with 

modified β-lactoglobulin 

10.7 g S-allylmercaptocysteine 

(bound to protein) 

189 

 

Garlic powder 952.4 mg Allicin 111 

Aged garlic extract 2640.0 mg S-allyl cysteine 

S-allylmercaptocysteine 

111 

24* 

* Calculated value based on S-allyl cysteine concentration and S-allylmercaptocysteine/S-allyl cysteine ratio reported by 
Col ín-González et al. (2012). 
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Figure 6-2: Dissolution test of acid resistant capsule () and gelatin capsule () in simulated gastric 
fluid under fasted (A) and fed (B) conditions. Values represent mean ± standard error mean.  

 

6.4.2 Breath gas analysis 

Breath gas samples were collected from six subjects before and 2, 4, 6, 8 and 24 hours after 

treatment ingestion. The concentration of the metabolite allyl methyl sulfide (AMS) was analyzed by 

GC-MS. Figure 6-3 shows the average AMS concentration in breath gas during 24 hours after 

ingestion and Table 6-4 summarizes the corresponding calculated pharmacokinetic parameters of the 

three different treatments. Before treatment intake AMS was absent in the breath gas of all subjects 

at each study day confirming that all subjects followed the Allium-restricted diet. The maximum and 

total AMS concentration after ingestion of the modified β-LG was significantly higher compared to 

garlic powder and aged garlic extract in capsules (P < 0.001). SAMC released from modified β-LG 

contributed to a nearly ten times higher maximum AMS concentration (Cmax) and a six times higher 

area under the AMS concentration-time curve (AUC). 24 hours after each treatment intake low 

concentrations of AMS were still detectable.  

Since neither allicin nor its known metabolites have yet been found in blood or urine, breath AMS is 

the only established method for determining the bioavailability of allicin or allyl thiosulfinates 

(Lawson & Gardner, 2005). Several studies confirmed that AMS is a product of the systemic 

metabolism of allicin and a suitable marker of its bioavailability (Lawson & Gardner, 2005; Lawson & 

Wang, 2001; Rosen et al., 2001; Suarez et al., 1999; Taucher et al. , 1996). Further, Lawson & Wang 

(2005) observed that equimolar amounts of S-allyl moieties provided by allicin and SAMC contributed 

to the same amount of AMS, whereas SAC did not produce AMS (Lawson & Wang, 2005). Thus, the 

dithioallyl group was suggested to be necessary for AMS formation.  

The maximum AMS concentration generated by SAMC from modified β-LG in the present study is in 

line with previous studies. Lawson & Wang (2005) detected a similar ratio between breath AMS 
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concentration and ingested SAMC amount (Cmax = 1110 ng/l, after 730 µM SAMC intake). Apparently, 

SAMC from modified β-LG was completely released and metabolized like pure SAMC in capsules.  

Since SAC does not contribute to AMS formation the detected amount of AMS from AGE was 

probably provided by SAMC (Lawson & Wang, 2005). The AGE in capsules contained 111 µM SAC 

which is the main organosulfur compound of this product. However, SAMC is present as well, even in 

a lower extent (about 25% of SAC content) (Colín-González et al., 2012). On the assumption of the 

reported SAC/SAMC ratio in AGE, 24 µM SAMC were ingested with the administered AGE amount 

which corresponds to 13% of SAMC from the modified β-LG. The detected amount of AMS per 

molecule SAMC from AGE was similar to SAMC from the modified β-LG. This result confirms that 

SAMC of modified β-LG was released and metabolized to the same extent as free SAMC from AGE in 

capsules. Thus, the bioavailability of SAMC was not reduced through the integration in the 

polypeptide chain of the protein. To our knowledge the breath gas after AGE intake was not analyzed 

before, this study provides the first insight into the extent of breath AMS excretion after ingestion of 

AGE. 

 

 

Figure 6-3: Concentration of allyl methyl sulfide in breath gas before and 24 hours after intake of the 
different preparations. Values represent mean ± standard error mean (n = 6). β-LG – β-lactoglobulin. 
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Table 6-4: Biokinetic variables of allyl methyl sulfide in the breath gas after a single oral dose of the 
functional beverage containing modified β-lactoglobulin, garlic powder in capsules or aged garlic 
extract in capsules. Values represent mean ± standard error mean (n = 6).  

 Modified β-lactoglobulin Garlic powder Aged garlic extract 

Main delivered 

organosulfur compounds 

S-allymercaptocysteine Allicin S-ally cysteine,  

S-allymercaptocysteine 

Cmax [ng/l] 127.2 ± 15.25 15.8 ± 2.77 14.0 ± 1.61 

tmax [h] 2.3 ± 0.33 3.6 ± 0.40 2.3 ± 0.33 

AUC24h [ng · h/l] 894.5 ± 134.32 160.3 ± 35.93 145.4 ± 13.03 

Abbreviations : AUC – area  under the allyl methyl  sulfide concentration –time curve; Cmax – maximum allyl methyl  sulfide 
concentration; tmax – time to reach the maximum. 

 

The relatively low AMS concentration after the intake of garlic powder capsules was due to the 

incomplete allicin release confirmed by in vitro dissolution testing (ref. 3.1). If the maximum allicin 

yield (111 µM) would be released an equivalent AMS concentration as formed by 222 µM SAMC of 

modified β-LG would be assumed. Allicin delivers two S-allyl groups per molecule, hence two 

molecules of AMS can be formed (Lawson & Wang, 2005). Based on the detected amount of AMS 

from 189 µM SAMC the expected AMS concentration for the release of 111 µM allicin (AUC24h = 1050 

ng · h/l) was calculated by assuming that allicin was metabolized to AMS in the same extent as SAMC. 

According to this the detected AMS amount from garlic powder corresponded to 15.3% allicin release 

(Lawson & Wang, 2005). This value is in line with the release determined by the simulated 

gastrointestinal dissolution test (15.4%) showing a good in vivo-in vitro correlation of the dissolution 

model used. 

The interindividual variation of AMS concentration (Cmax) was about 29% for modified β-LG and AGE, 

whereas the variation was higher (39%) for garlic powder. Since the formation of allicin and 

consequently AMS from garlic powder is strongly dependent on gastrointestinal conditions, the 

individual physiological differences can have a high influence on the alli cin formation. Lawson & 

Gardner (2005) also reported a higher interindividual variation for garlic powder compared to fresh 

crushed garlic where allicin was already formed before ingestion. 

No difference in time needed to reach the maximum AMS level was observed between SAMC from 

AGE and modified β-LG. Hence, the metabolism of SAMC was not delayed by the integration into the 

protein chain. After intake of the garlic powder capsules it took about one hour longer to reach the 

maximum AMS concentration than for the two other treatments. The reason was the delayed release 

by the acid resistant capsules used for the garlic powder. The dissolution test confirmed that the 

release of content started about half an hour later under the used simulated gastrointestinal 

dissolution conditions than the release by the gelatin capsules used for AGE (Figure 6-2). 
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6.4.3 Plasma analysis 

The concentration of SAC in plasma was analyzed before and hourly (1-8 h, 24 h) after treatment 

intake. As expected, the highest SAC levels were generated by AGE (Figure 6-4, Table 6-5). Garlic 

powder in capsules and the functional beverage contributed to an increased SAC level in plasma as 

well. AUC and Cmax after intake of AGE were about twice as much as after intake of the other 

treatments. Further, the course of the plasma SAC concentration curve was different between AGE 

and the other treatments. AGE induced a sharp increase in plasma SAC level, since tmax was reached 

immediately after intake. However, the level decreased relatively fast within three hours after tmax 

and remained stable during the further four hours. In contrast, the SAC plasma curve formed a 

plateau throughout eight hours after ingestion of the other treatments.  

Since fresh garlic (SAC content 0.006% of fresh weight) or garlic powder contains only traces of SAC, 

the SAC level in plasma induced by garlic powder and the functional beverage was presumably 

caused by γ-glutamyl-S-allyl-cysteine (Lawson & Wang, 2005). The concentration of γ-glutamyl-S-

allyl-cysteine in garlic (fresh/powder) is about 0.3-1.7% of dry matter (Lawson & Gardner, 2005; 

Mütsch-Eckner et al., 1992). During aqueous extraction γ-glutamyl-S-allyl-cysteine is transformed to 

SAC causing the relatively high SAC content of AGE (Amagase, 2006). However, the enzymatic 

transformation by γ-glutamyl transferase can take part in vivo as well, leading to the formation of 

SAC as observed. However, this has not been analyzed before. Assuming an average γ-glutamyl-S-

allyl-cysteine concentration of 1% of dry matter garlic, the garlic powder capsules and the functional 

beverage contained about 9.5 mg γ-glutamyl-S-allyl-cysteine. Accordingly, the detected differences 

of the AUC between AGE and the other treatments were in line with the different ingested amounts 

of SAC (18 mg, AGE) and γ-glutamyl-S-allyl-cysteine (10 mg, garlic powder in capsules and in the 

beverage).  

The observed SAC level induced by AGE was in accordance with findings of other human studies 

(Nantz et al., 2012; Kodera et al., 2002; Rosen et al., 2001). Kodera et al. (2002) observed the 

maximum SAC concentration one hour after ingestion as well. Further, they observed that SAC was 

stable in blood and had a half-life of more than 10 h which is in line with the relatively slow decrease 

of SAC level in the present study. The delayed tmax after intake of garlic powder, both in capsules and 

the functional beverage, was probably due to the transformation reaction of γ-glutamyl-S-allyl-

cysteine to SAC. Since the present study is the first one where the SAC level in plasma was analyzed 

after intake of garlic powder or garlic, there is no comparison. 
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Figure 6-4: Concentration of S-allyl cysteine (SAC) in plasma before and 24 hours after intake of the 
different treatments. Values represent mean ± standard error mean (n = 4). β-LG – β-lactoglobulin. 

 

Table 6-5: Biokinetic variables of S-allyl cysteine (SAC) in plasma after a single oral dose of the 
functional beverage containing modified β-lactoglobulin, garlic powder in capsules or aged garlic 
extract in capsules. Values represent mean ± standard error mean (n = 4).  

 Modified β-lactoglobulin Garlic powder Aged garlic extract 

Cmax [µM SAC /l] 0.95 ± 0.316  1.07 ± 0.390  2.35 ± 0.909 

tmax [h] 4.3 ± 1.71 3.3 ± 1.5  1.5 ± 1  

AUC24h [µM SAC · h/l] 11.7 ± 6.26  13.9 ± 6.40  25.4 ± 12.36 

Abbreviations : AUC – area under the SAC concentration–time curve; Cmax – maximum SAC concentration; tmax – time to 
reach the maximum. 

 

6.4.4 Urine analysis 

The NASAC concentration of the first void urine and 24h-urine samples was analyzed and 

standardized by creatinine excretion rate. All first void urine samples did not contain NASAC 

confirming the compliance with the diet regulations. The ingestion of AGE contributed to the urinary 

NASAC excretion ranging from 0-0.7 µM NASAC/mM creatinine with an average concentration of 

0.17 ± 0.23 µM NASAC/mM creatinine (Figure 6-5). The average total amount of excreted NASAC was 

0.83 ± 1.14 mg. Urinary NASAC was detectable in the 24h-urine of 7 out of 9 subjects after ingestion 

of garlic powder capsules but at a lower level than for AGE (Table 6-6). After intake of the functional 

beverage NASAC was only detected in the urine of 3 out of 9 subjects. The variation of NASAC 

concentration between subjects was high for all treatments. 
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According to animal studies the bioavailability of SAC is > 90% and NASAC has been suggested as a 

suitable biomarker and excretion product of SAC which is transformed by N-acetyltransferase in the 

liver and kidney (Amano et al., 2015; Krause et al., 2002; Nagae et al., 1994; Amano et al., 2015). This 

relation was also observed in the present study. The detected NASAC excretion corresponded to the 

SAC plasma levels induced by the different treatments. Since AGE provided the highest SAC amount, 

SAC plasma level and urinary NASAC excretion were higher than for the other treatments. The 

contribution of fresh garlic or garlic powder to the urinary NASAC excretion has been observed 

before by deRooij et al. (1996), Verhagen et al. (2001) and also in the present study. Cope et al. 

(2009) detected an even higher NASAC excretion after ingestion of 5 g fresh garlic compared to 3 g 

AGE confirming the high bioavailability and transformation of γ-glutamyl-S-allyl-cysteine. 

DeRooij et al. (1996) investigated NASAC excretion in humans after ingestion of garlic. The detected 

total amount of NASAC within 24 hours reached 0.43 mg after intake of 100 mg garlic powder and 

1.4 mg NASAC after intake of additional garlic which is in a similar range as in the present study 

(Table 6-6). Since the elimination half-life of NASAC was reported to be 6 h, the collection of 24h-

urine was supposed to be sufficient for a reliable assessment of NASAC excretion.  In contrast, the 

detected plasma SAC levels were remarkable stable until eight hours after ingestion (Figure 6-4). 

Especially garlic powder and the functional beverage caused a relatively late tmax (3-4 h after intake) 

which could have induced a delayed NASAC excretion as well. Presumably therefore, the NASAC 

concentration in 24h-urine after intake of garlic powder and the functional beverage was low. 

Verhagen et al. (2001) and deRooij et al. (1996) reported that some humans had a deviating 

excretion of NASAC, i.e. no NASAC excretion after intake of significant amounts of garlic products or 

an irregular elimination profile. In the present study one out of nine subjects did not excrete NASAC 

regardless of the treatment. Further, high variations between subjects were observed, whereas 

intraindividual variations were smaller, i.e. the same subjects excreted the highest and the lowest 

NASAC amount regardless the treatment. Following this, NASAC analysis in urine is not a reliable 

quantitative biomarker for bioavailability studies, however it can be used as qualitative marker.  
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Figure 6-5: Concentration of N-acetyl-S-allyl cysteine (NASAC) in 24 Hour-urine of each subject after a 
single oral dose of aged garlic extract in capsules. NASAC concentration was corrected by the 
excretion rate of creatinine. Values represent mean ± standard error mean. N.d. – not detectable. 

 

Table 6-6: Analysis of N-acetyl-S-allyl-cysteine (NASAC) in 24h-urine after intake of the different 
treatments. Values represent the numbers of subject samples out of nine.  

Urinary NASAC  Modified β-LG Garlic powder Aged garlic extract 

Positive, quantifiable 

total NASAC24h [mg]* 

2 

0.9 ± 0.88 

5 

0.6 ± 0.70 

7 

1.1 ± 1.20 

Positive, below LLOQ 1 2 1 

Negative 6 2 1 

* Values express the mean ± s tandard deviation of samples with quantifiable NASAC concentration. Abbreviations : LLOQ – 

lower limit of quantification; NASAC – N-acetyl-S-allyl -cysteine; β-LG – β-lactoglobulin. 

 

6.5 Conclusions 

The present study demonstrated that the allicin derivate SAMC was delivered and released by β-LG in 

the same extent as free SAMC in capsules. Hence, β-LG is a suitable transporter for the bioactive 

thioallyl moiety of allicin. The reaction of allicin with β-LG generates SAMC in a simple and fast 

process, enables the enrichment in a functional food and provides a higher level of allicin’s bioactive 

metabolites than the most garlic powder supplements. The breath AMS concentration after ingestion 

of AGE was analyzed the first time and showed the formation of AMS correspondingly to its SAMC 

content. Further, it was shown that γ-glutamyl-S-allyl-cysteine from garlic powder in capsules as well 

as in the functional beverage provided significant amounts of SAC in pl asma and NASAC in urine. 

Conclusively, the beverage enriched with garlic powder delivered physiological relevant amounts of 

S-allylmercaptocysteine and S-allyl cysteine with an unimpaired high bioavailability but without a 
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significant perceivable garlic taste due to the binding of allicin to β-LG. The breath AMS was a 

suitable metabolite to assess the bioavailability of SAMC and allicin. NASAC in urine was shown to be 

a marker compound for the intake of AGE and garlic powder at least at a qualitative level whereas 

SAC in plasma was a reliable marker at a quantitative level. 
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7. General discussion 

 

This thesis presents an innovative concept for the delivery and stabilization of bioactive compounds 

in food. The central aim was the assessment of the suitability of β-LG as a transporter for covalently 

bound organosulfur compounds from garlic, i.e. allicin and DADS. This approach comprised the 

investigation of the protein-ligand interactions, the transfer to a food grade level resulting in the 

production of a functional food and the assessment of the bioavailability of the transported 

compound in a human study. Further insights into the structural features of the whey protein were 

provided. Figure 7-1 illustrates the structure of this work. The following discussion refers to the 

hypotheses in chapter 1. 

Figure 7-1: Schematic structure of the present thesis. 

 

7.1 Binding of allicin and diallyl disulfide 

The interaction of allicin and DADS with β-LG has been comprehensively characterized in chapter 3 

and 4. Referring to hypothesis 1, it was proved that both ligands, allicin and DADS, can be covalently 

bound by the free thiol group of β-LG.  

The free thiol group is buried in the inner core of the globular structure (chapter 2.1.1). Therefore, 

the thiol group is protected against oxidizing agents except for compounds whi ch are very small and 
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amphiphilic such as allicin. For many enzymes substrate specificity is mediated by limitation of the 

access to a thiol containing active center through steric hindrance (Nagy, 2013). Additionally, 

neighboring functional groups influence the reaction rate. For example, a hydrophobic environment 

lowers the activation energy of thiol-disulfide exchange reactions (Nagy, 2013). Referring to the 

structure of β-LG, it can be assumed that the hydrophobic pocket consisting of the α-helix and β-

strand H has a catalytic effect on the reaction with allicin and DADS. Figure 7-2 illustrates the 

hydrophobic environment of Cys121. These structural features known from enzymes contribute to the 

suitability of β-LG as a transporter for thiol reagents. 

 

 

Figure 7-2: Structure of β-lactoglobulin colored according to hydrophobicity. Backbone color 
indicates highest hydrophobicity in red whereas least hydrophobicity is shown in blue. Side chain of 
Cys121 is shown in green. Diagram was drawn by PDB Protein Workshop 4.2.0 with file 3NPO of 
Protein Data Bank RCSB provided by Loch et al. (2011) (Moreland et al., 2005). 

 

The deliverance of SAMC by binding of allicin to cysteine containing proteins has been patented by 

Ott (2005, WO 2005115173 A1), but no application of this patent is known. Miron et al. (2001) 

patented the binding of allicin to GSH to form S-allylmercaptoglutathione (WO 0136450 A1). Both 

patents were primarily proposed for the application in pharmaceutical and nutraceutical products.  

Beside β-LG, alternative food proteins containing at least one free thiol group are bovine serum 

albumin (BSA) and ovalbumin (Anand & Mukherjee, 2013; Tatsumi et al., 1998). BSA can form 

disulfide-linked dimers but the monomeric form is prevalent at neutral conditions (Barbosa et al., 

2009). Nevertheless, the covalent binding of a bioactive compound by the free thiol group has not 

been reported for both proteins, as far as known. 



CHAPTER 7: GENERAL DISCUSSION 

 

119 
 

Factors influencing binding reaction 

The binding kinetics of the ligands allicin and DADS with β-LG have been analyzed in detail in the 

present thesis (chapter 3). Despite the structural similarity of both organosulfur compounds, the 

affinity and type of binding were significantly different. From the chemical point of view, the reaction 

with β-LG is a substitution between the nucleophilic thiolate anion of Cys121 and the sulfur of the 

disulfide moiety (Nagy, 2013). Due to the thiosulfinate group of allicin, its strong electrophilic 

character accelerates the reaction rate compared to DADS (Block, 1992). On the other side, the lower 

reactivity of DADS contributes to its higher stability and favors the non-covalent binding.  

The interaction between ligand and protein can be categorized in covalent and non-covalent binding 

reactions (Rawel & Rohn, 2010). The present results revealed that DADS is able to interact in both 

ways as demonstrated by fluorescence quenching (FQ), RP-HPLC and the concentration of reactive 

thiol groups (RSH). The simultaneous covalent and non-covalent binding is relatively rare. Prigent et 

al. (2003) and Ali et al. (2012) reported, that chlorogenic acid was both covalently and non-covalently 

bound to different proteins. However, it has been indicated that not the chlorogenic acid itself bound 

covalently but its corresponding quinone.   

The versatile binding characteristics of β-LG are of particular interest when it comes to a mixture of 

potential ligands usually found in food systems. Based on the covalent and non-covalent binding of 

DADS, it could be expected that β-LG can bind and thereby mask the flavor of other organosulfur 

compounds from garlic powder as well. Thus, the presence of the protein, even without prior 

targeted covalent binding at basic conditions, should reduce the garlic like odor and taste. However, 

this effect was only marginally recognized in the present thesis which demonstrates the high 

contribution of allicin to the sensory perception of garlic powder (Figure 5-7). Referring to isolated 

ingredients, the sensory perception of allicin could be completely masked through the covalent 

binding to β-LG. This is in contrast to DADS which remains partly unbound even at a high protein 

excess. 

As expected, the covalent binding reaction was significantly influenced by the pH value ( Figure 3-5). 

The thiolate anion is a much stronger nucleophilic than the thiol group, resulting in inhibition of the 

reaction at pH values below 8 where the protonated form is prevalent (Thurlkill et al., 2006). Since 

food systems are mostly at a neutral or acidic pH value, a covalent binding reaction is unlikely under 

these conditions, e.g. when milk and crushed garlic are mixed together. The interaction with native β-

LG in milk was not tested yet. Therefore, the present results indicate the necessity of an alkaline pH 

value (pH 8-9) to produce β-LG modified with allicin or DADS which emphasizes the specificity of the 

presented reaction. In contrast, once the ligand reacted with the thiol group of the protein, the 

bonding was stable at a wide pH range as shown by analytical methods at alkaline, neutral and acidic 
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conditions, i.e. by RSH assay (pH 8), RP-HPLC (pH 7) and LC-MS after peptic digestion (pH 2) (Figures 

3-1, 3-3, Table 4-1). Conclusively, the covalent binding enables a reliable stabilization of the ligand 

against various external conditions, e.g. in the food matrix or during digestion, in contrast to non-

covalently bound ligands (Ron et al., 2010; Zimet & Livney, 2009). 

With respect to thermal denaturation, the applied conditions resulted in an increased affinity but a 

lower number of covalent binding sites (chapter 3). Due to the reduced number of free thiol groups, 

it can be assumed that covalent aggregation reactions during heating took place. On the one hand, 

heating leads to the exposure of the free thiol group resulting in a higher reactivity. As a 

consequence, the affinity of the binding reaction increases, as observed. On the other hand, the 

thermally induced formation of intermolecular disulfide bonds reduces the number of free thiol 

groups (chapter 2.1.2). Further, the denaturation of β-LG favored the non-covalent interactions as 

shown by the higher number of binding sites for DADS. Similar observations were made for the non-

covalent interaction of β-LG with epigallocatechin gallate (Shpigelman et al., 2010). Due to the 

thermally induced unfolding of the globular protein, hydrophobic domains are revealed and offer 

further surface elements for hydrophobic interactions (Tolkach & Kulozik, 2007; Busti et al., 2005). 

 

Influence on protein properties 

Referring to ligand binding, desirable and undesirable effects on properties of β-LG have been 

reported in literature. As an example, the covalent binding of phenols reduced solubility and 

digestibility of the protein and thus lowered the techno-functional and nutritional value (Rawel et al., 

2001). AITC binding improved the emulsifying and foaming properties of β-LG, but it blocked 

cleavage sites of digestive enzymes resulting in a reduced nutritional value (Rade-Kukic et al., 2011). 

Since allicin and DADS reacted with the free thiol group only, the digestibility was not interfered 

(chapter 4). Further, the surface hydrophobicity was slightly enhanced due to conformational 

changes which could lead to improved interfacial absorption behavior without impairing the 

solubility (Rade-Kukic et al., 2011) (chapter 3 and 4).  

Additionally, the covalent modification of the free thiol group significantly enhanced the thermal 

stability of β-LG (chapter 5, Figure 5-5). This effect was even more obvious, if the thiol groups of all 

protein molecules were blocked. The thiol group of Cys121 plays a crucial role during heat 

denaturation. It contributes to thermally induced intermolecular aggregation reactions of β-LG and 

thus to the irreversibility of denaturation (chapter 2.1.2). The disulfide bond can occur between two 

β-LG molecules, but with respect to milk processing other proteins can be involved as well. For 

example, β-LG can form aggregates with κ-casein during heating which dramatically reduces the 
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rennetability of milk and impairs its quality for cheese making (Livney & Dalgleish, 2004; Cho et al., 

2003). Further, β-LG containing disulfide linked aggregates are involved in fouling in heat exchangers 

which is an important issue in dairy processing (Petit et al., 2013). As the modification of the free 

thiol group inhibits the aggregation reactions of β-LG via disulfide bonds, these heating related 

problems could be reduced by the covalent binding of allicin or DADS (Hoffmann et al., 1997). 

 

Influence on ligand properties 

According to the results of MS analysis, the reaction product of allicin or DADS with cysteine was 

SAMC, which is in line with the findings of Miron et al. (2010) and Rabinkov et al. (1998) (chapter 4). 

As distinguished from allicin, SAMC is a stable, non-volatile and water-soluble compound (Colín-

González et al., 2012; Sigounas et al., 1997b). When incorporated into the protein structure, it does 

not contribute to sensory perception and its stability enables processing and storage without 

significant losses. The health related effects of SAMC were suggested to be similar to those of allicin, 

since SAMC is an allylic disulfide in contrast to the structural similar SAC. According to various in vitro 

and animal studies, SAMC is a metabolite of allicin and acts as a stable reservoir of the S-allyl moiety 

to mediate and prolong its activity (Liang et al., 2011; Miron et al., 2010; Howard et al., 2007; 

Pedraza-Chaverrí et al., 2004; Rabinkov et al., 1998) (chapter 2.2.5).  

 

7.2 Application of covalently modified β-lactoglobulin in food 

Food grade production 

In order to obtain a consumable product for the sensory and bioavailability evaluation, the 

modification of β-LG with allicin had to be transferred to a food grade level. Besides safety and 

regulatory issues, the resources had to meet technological requirements. The content of the target 

compounds (i.e. β-LG and allicin, respectively) ought to be as high as possible to minimize the 

required amounts of resources and reduce possible interferences by other present compounds. 

Furthermore, the concentration ought to be able to be standardized to a constant level because the 

reproducible adjustment of the protein-ligand ratio is important. Finally, the resources must be 

appropriate for processes commonly used in food industry. 

Allicin can be generated by fresh garlic or garlic powder only (Trio et al., 2014). Since garlic powder 

can be stored over month without significant loss of its allicin potential, it was chosen as allicin 

resource (Lawson & Gardner, 2005). In order to preserve a high allicin potential of the final powder, 

the fresh garlic was sliced as little as necessary and freeze drying was used. Considering process 
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efficiency, a garlic cultivar with a particularly high allicin potential was chosen for the production 

(Figure 5-2). WPI (75% β-LG in dry matter) was used as resource for β-LG. The interference of the 

binding with allicin by other whey proteins was ruled out by RP-HPLC (Figure 5-3). Therefore, the 

complex isolation process of β-LG was not required. 

The targeted binding of allicin to β-LG was achieved by incubating dissolved WPI mixed with garlic 

powder at pH 8.5. Subsequently, the solution was dried wherefore different methods have been 

tested (chapter 5). Under the tested conditions, spray drying at slightly acidic conditions provided the 

best results with respect to protein denaturation and concentration of volatile organosulfur 

compounds. Lowering pH to 6 after protein-ligand incubation (at pH 8.5) reduced the degree of 

denaturation because of the lower reactivity of the thiol groups and thus the lower extent of 

chemical aggregation (Bauer et al., 1998; Hoffmann & van Mil, 1997) (chapter 2.1.2). Additionally, 

the escape of free volatile organosulfur compounds during spray drying further reduced the garlic 

like sensory properties of the final product. 

In essence, the process comprises the incubation of WPI and garlic powder at an alkaline pH value (8-

9), the ultrafiltration to remove remaining low molecular compounds from garlic powder, the 

acidification of the solution to prevent denaturation during drying and finally spray drying of the 

protein solution. An online heating step before drying could additionally ensure the microbiological 

quality of the product. The process does not require any sophisticated equipment and would be 

feasible for a usual dairy. An upscaling of the process should be possible without special effort . 

 

Sensory characterization 

The sensory properties of β-LG modified by allicin from garlic powder were analyzed by quantitative 

descriptive analysis. With respect to hypothesis 2, it was clearly demonstrated that the binding of 

allicin to β-LG significantly reduced the garlic like odor, flavor and pungency (chapter 5, Figure 5-7). 

However, the garlic like odor of modified β-LG in aqueous solution was still notable. This was 

presumably caused by the presence of other organosulfur compounds from garlic powder beside 

allicin, since this odor was almost absent after ultrafiltration of the product. Nothing is known about 

the sensory properties of pure SAMC, beside its non-volatile character which prevents the olfactory 

perception (Kodera et al., 2002). Even if the thiol allyl group contributed to a garlic like flavor, the 

perception would be prevented by the embedded position within the globular structure of β-LG. 

The developed beverage provided a suitable matrix in which the remaining garlic odor and flavor of 

the enriched modified β-LG was barely perceivable. It was already shown that milk efficiently reduces 

the concentration of organosulfur compounds in the headspace of crushed garlic (Hansanugrum & 
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Barringer, 2010; Negishi et al., 2002). This effect is presumably based on the emulsifying effect of 

whey proteins in combination with the hydrophobic phase provided by triglycerides. Both ingredients 

were also present in the milk free developed beverage and contributed to the considerable masking 

effect. Conclusively, products containing milk or milk ingredients seem suitable for the enrichment of 

the modified β-LG. Further, ultrafiltration of β-LG after the binding reaction with allicin may provide a 

functional ingredient without any garlic like sensory properties which would enable the application in 

diverse food products.  

Alternative delivery systems for allicin tested so far focused mainly on the stabilization of the 

compound (chapter 2.2.3). Liposomes, microcapsules, and chitosan complexes were shown to 

improve the stability and solubility of allicin (Lu et al., 2014; Wang et al., 2012; Pirak et al., 2012).  

However, it has not been demonstrated if these systems are sufficient for the demands of processed 

foods and the sensory properties have not been assessed yet. Generally, taste is an important factor 

for customer food choice and also with respect to functional foods, customers are not willing to 

compromise on taste for health (Verbeke, 2006; Urala & Lähteenmäki, 2004; Grunert et al., 2000). 

Therefore, one of the main functions of a delivery system is the masking of unpleasant flavors. β-LG 

considerably masked the odor and flavor of allicin and is hence a suitable transporter from the 

sensory point of view. 

 

7.3 Bioavailability of S-allylmercaptocysteine from modified β-lactoglobulin 

The bioavailability of allicin and its cysteine derivates SAC and SAMC was shown to be higher than 

80% (Lawson & Gardner, 2005; Lachmann et al., 1994; Nagae et al., 1994) (chapter 2.2.4). Therefore, 

the function of a delivery system for allicin is not the enhancement of the bioavailability as such. The 

major limitation of allicin intake is its instability leading to low concentrations in processed foods and 

the sensitivity of alliinase that causes the low allicin release from garlic powder supplements 

(Fujisawa et al., 2008b; Lawson & Wang, 2001) (chapter 2.2.1 and 2.2.2). For that reason, the aim of 

the present study was to generate a more stable, bioactive form of allicin without impairing the 

bioavailability.  

As discussed in chapter 6, the bioavailability of SAMC from β-LG modified with allicin seems to be as 

high as that of free SAMC of AGE and that of allicin from garlic powder in capsules which confirmed 

hypothesis 3 (Figure 6-3, Table 6-4). Since no reliable biomarkers for allicin in plasma have been 

reported so far, breath AMS is the most appropriate metabolite to determine the bioavailability 

(Lawson & Wang, 2005; Lawson & Gardner, 2005). Due to its stability, it can be presumed that SAMC 

is detectable in plasma like SAC (Kodera et al., 2002). The detection of SAMC in plasma would provide 
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a further insight in its bioavailability. The formation of allicin from garlic powder in acid-resistant 

capsules resulted in lower amounts of absorbable allicin than the amount of SAMC from modified β-

LG which limited the comparability of the present results. The formation of allicin from garlic powder 

in capsules is a known problem and emphasizes the difficulty of allicin delivery (Lawson & Wang, 

2001). Nevertheless, considering the different amounts of ingested target compounds, the 

bioavailability of SAMC from β-LG modified by allicin seemed not to be impaired by the incorporation 

in the protein chain. This result is additionally supported by the findings of MS/MS analysis of the 

hydrolyzed protein (chapter 4) and by the literature, as SAMC has been reported to be a stable 

compound. Following this, losses due to SAMC degradation during processing or digestion were not 

expected (Amagase, 2006). Further, the modification of the free thiol group should not impair the 

digestibility and thus the release of SAMC, since the pancreatic peptidases do not cleave specifically 

at cysteine (Rawlings et al., 2012). 

The analysis of SAC in plasma and NASAC in urine gave valuable insights into the contribution of γ-

glutamyl-S-allyl-cysteine of garlic powder to the formation of SAC that has not been reported before. 

Garlic powder in capsules as well as in the functional beverage which contained modified β-LG 

increased the SAC level in plasma significantly (Figure 6-4, Table 6-5). Accordingly, the beverage 

enriched with garlic powder delivered physiological relevant amounts of S-allylmercaptocysteine and 

S-allyl cysteine with an unimpaired high bioavailability. The enrichment of relatively high amount of 

garlic powder, without causing a significant perceivable garlic smell or taste, was possible due to the 

binding of allicin to β-LG (Figure 5-7). Since allicin is the main flavor-active compound in garlic 

powder, the residual intensity of garlic flavor is significantly reduced when allicin is bound. 

Conclusively, the functional beverage enabled not only the deliverance of the main bioactive 

compound allicin but also of other bioactive organosulfur compounds from garlic in considerable 

amounts. According to various studies mixtures of components, like in natural products or in 

extracts, have shown a higher bioactivity than isolated single active ingredients due to synergistic 

interactions (Schmidt et al., 2007; Williamson, 2001). 

The excretion of AMS in the present study was an indicator of the high bioavailability of SAMC and 

thereby for the possibility to exert health promoting effects, which is the desired result for the 

consumer (Figure 6-3, Table 6-4). However, AMS contributes largely to the persistent garlic odor in 

breath that is an unpleasant consequence and would negatively influence the customer’s choice 

(Suarez et al., 1999; Taucher et al., 1996; Rosin et al., 1992). Therefore, the presence of AMS in 

breath after ingestion of modified β-LG is the main drawback of the presented concept. The 

formation of AMS by allicin and SAMC seems to be an essential part of their metabolism and thus an 

unavoidable compromise (Lawson & Gardner, 2005). Additionally, the formation of the same 
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excretion product is an indication for the same metabolic pathway and in that way probably also for 

similar bioactive effects of allicin and SAMC. 

In contrast, SAC is not metabolized to AMS, but indications for a lower bioactivity have been 

reported (Lawson & Gardner, 2005; Shirin et al., 2001; Pinto et al., 1997). Studies about the health 

promoting effects of garlic were mostly focused on the activity of allicin and SAC, since these 

compounds are the prevalent organosulfur compounds in garlic powder and AGE, respectively. 

Because of its low concentration in natural products, the bioactivity of SAMC was only tested in vitro 

and in animals so far (Howard et al., 2007; Liang et al., 2011; Pedraza-Chaverrí et al., 2004; Shirin et 

al., 2001; Sigounas et al., 1997a). Hence, SAMC of modified β-LG would provide an alternative 

ingredient which can be added to food products and enables the investigation of its bioactivity in 

vivo. Furthermore, the biological effects of SAMC, such as antioxidative and antihypertensive, were 

also observed for peptides released by β-LG during digestion which could result in an enhanced 

bioactive effect of the combined compound (Ried et al., 2013; Hernandez-Ledesma et al., 2008; 

Mullally et al., 1997; Imai et al., 1994).  

 

7.4 Closing remarks and outlook 

The covalent interaction between the whey protein β-LG and organosulfur compounds of garlic was 

investigated in the present thesis for the first time. β-LG was shown to provide the structural 

features for the covalent binding of allicin and diallyl disulfide. The formed S-allylmercapto-derivative 

is a stable, non-volatile compound which can be enriched in food without causing a garlic like flavor. 

The techno-functional properties of the whey protein were not adversely affected by the covalent 

modification. The bioavailability of SAMC was not impaired by the incorporation into the protein 

chain. Overall, the results underline the potential of β-LG as a transporter for covalently bound 

ligands, such as allicin and DADS. 

Nonetheless, some further questions arose during this work. The physico-chemical characterization 

of the modified β-LG indicated a slightly higher surface hydrophobicity and a less rigid protein 

folding, which is likely to improve the interfacial behavior. An investigation of the emulsifying and 

foaming properties may clarify how these properties are influenced by the covalent modification. 

Moreover, the modified thiol group may limit the disulfide-linked aggregation, which is of particular 

practical importance with respect to denaturation of β-LG, aggregation with κ-casein and fouling on 

surfaces. Therefore, the effect of the covalent modification on the behavior of β-LG during thermal 

processes ought to be examined. 
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Further, it is of interest to accelerate the reaction rate for an up-scaling of the ligand binding. As 

indicated in the present thesis, the affinity of the binding reaction is increased by unfolding of the 

protein. Consequently, a gentle preheating (< 80 °C) which favors the unfolding of the globular 

structure without inducing disulfide linked aggregation or heating in presence of the ligand could 

significantly shorten the required incubation time. However, the sensitivity of allicin against higher 

temperatures should be considered. In the present work, the covalent modification was only tested 

with isolated β-LG and β-LG from WPI. Since milk is a complex matrix, the interaction of allicin with β-

LG and the other proteins in milk is interesting as well and would provide a further understanding of 

the natural occurring interactions between proteins and secondary plant compounds.  
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9. Summary 

 

Scientific advances revealed the impact of specific food components on metabolic processes and 

their contribution to disease prevention and health promotion. The thiosulfinate allicin is an 

interesting bioactive compound because it is responsible for many of the health promoting effects 

that have been attributed to garlic. However, allicin is fairly unstable and rapidly degrades during 

processing and storage. Further, it contributes largely to the strong smell and pungency of garlic. In 

order to enrich allicin in a functional food, a delivery system is required to stabilize the compound 

and mask its sensory perception. However, thus far, no appropriate transporter has been proposed. 

The whey protein β-lactoglobulin (β-LG) has been reported to stabilize small hydrophobic bioactive 

compounds by non-covalent binding. β-LG is widely available, has diverse techno-functional 

properties combined with a high nutritional value, contains bioactive peptides and is soluble over a 

wide pH range. The covalent binding of allicin to β-LG could form an innovative functional ingredient. 

The aim of the present thesis was to investigate if β-LG is a suitable nanotransporter for organosulfur 

compounds from garlic, i.e. allicin and diallyl disulfide (DADS). Therefore, the interaction between the 

protein and the ligands was analyzed, the induced protein modification was characterized and finally 

the functional ingredient was incorporated into a food product to evaluate the sensory properties 

and the bioavailability of the bioactive compound. 

The overall binding reaction of allicin and DADS with native and heat denatured β-LG was analyzed 

by fluorescence quenching and reverse phase high performance liquid chromatography (RP-HPLC). 

Further, the reaction with the amino and thiol groups of the protein was determined by o-

phthaldialdehyde reagent and Ellman’s reagent, respectively (chapter 3). Both ligands were 

covalently bound by the free thiol group of β-LG, whereby the affinity for allicin was significantly 

higher than for DADS. Fluorescence quenching and RP-HPLC revealed that DADS was additionally 

bound through non-covalent interactions. The binding reaction of both ligands was sensitive to the 

pH value during incubation. The maximum reaction rate was reached at pH 8-9, whereas the rate 

decreased remarkably below pH 8. The strong influence of the pH value is caused by the pH 

dependent reactivity of the thiol group. Thermal denaturation of β-LG reduced the maximum 

number of covalent binding sites due to the lower number of available free thiol groups that might 

have been caused by heat induced aggregation. In contrast, the exposure of additional hydrophobic 

surface regions of the denatured protein resulted in an increased number of non-covalent binding 

sites for DADS. Furthermore, unfolding of the protein structure exposed the free thiol group which 

resulted in a significantly increased affinity for the reaction with allicin but not for that with DADS. 
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In order to localize the covalent binding site precisely, the intact protein and the peptides after 

protein digestion were analyzed by mass spectrometry (MS) (chapter 4). According to the mass 

difference of the native and the modified β-LG, one cysteinyl moiety was transformed into S-

allylmercaptocysteine by allicin and DADS. The stoichiometric ratio of the reaction between allicin 

and β-LG turned out to be 2:1. The analysis of the hydrolyzed modified protein showed that the 

major binding site was the free thiol group of Cys121. The modification of the thiol group did not 

influence the enzymatic digestion by pepsin, trypsin or chymotrypsin.  The S-allyl moiety remained 

stable under digestive conditions. Beside tryptic digestion partially favored the thiol-disulfide 

exchange with other cysteinyl residues. Conformational changes induced by the binding of allicin 

have been analyzed by circular dichroism and dynamic light scattering. The relatively small S-allyl 

moiety caused a moderate loosening of the tertiary structure which was in line with the increased 

surface hydrophobicity detected by RP-HPLC. The dissociation of β-LG dimers was not induced by the 

binding of allicin. 

In order to obtain a consumable product for sensory and bioavailability evaluation, the production of 

the functional ingredient, β-LG modified with allicin, was transferred to a food grade level (chapter 

5). The process comprised the incubation of whey protein isolate (β-LG source) and garlic powder 

(allicin source) at an alkaline pH value (8.5), followed by drying. The influence of the drying process 

(freeze versus spray drying), the pH value during drying (6.0; 8.0) and the protein-ligand ratio on 

protein denaturation and concentration of volatile organosulfur compounds was investigated. Spray 

drying at slightly acidic conditions resulted in a low degree of denaturation and a remarkable loss of 

volatile flavor-active compounds which were measured by headspace gas chromatography-mass 

spectrometry. Due to the blocked thiol group of the modified β-LG, heat induced disulfide linked 

aggregation was prevented which resulted in a higher thermal stability than the native protein. The 

sensory properties of the functional ingredient in aqueous solution as well as within the developed 

beverage were evaluated by quantitative descriptive sensory analysis. The covalent binding of allicin 

in combination with spray drying of the modified protein significantly reduced the garlic related 

organoleptic properties. Further, the pure modified β-LG was nearly free of any garlic taste and 

smell. The developed beverage provided a suitable matrix for the enrichment of the functional 

ingredient even without removal of residual compounds of garlic powder.  

Finally, the bioavailability of the allicin derivate S-allylmercaptocysteine integrated in the polypeptide 

chain of modified β-LG was determined in a double-blind, randomized, diet-controlled cross-over 

study (chapter 6). Nine healthy volunteers ingested three different preparations: garlic powder in 

acid-resistant capsules (111 µM allicin yield), aged garlic extract in capsules (111 µM S-allyl cysteine) 

and the modified β-LG (111 µM allicin use) incorporated in a beverage. Different metabolites in 
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blood, urine and breath gas were analyzed. Allyl methyl sulfide in breath gas turned out to be a 

suitable marker for the bioavailability of S-allylmercaptocysteine. The excretion of allyl methyl sulfide 

caused by the modified β-LG indicated that the bioactive compound was completely released from 

the protein and excreted in the same way as allicin. Free S-allylmercaptocysteine from aged garlic 

extract contributed in a similar extent to the excretion of allyl methyl sulfide as the S-

allylmercaptocysteine from the modified protein. The amount of allicin delivered by garlic powder in 

capsules was relatively low due to the insufficient capsule stability under gastric conditions. The 

plasma level of S-allyl cysteine, a further bioactive compound from garlic, showed its high 

bioavailability from aged garlic extract. Further, S-allyl cysteine was released from γ-glutamyl-S-allyl-

cysteine of garlic powder and of the functional beverage which contained residues of garlic powder 

as well. Urinary N-acetyl-S-allyl cysteine was shown to be a qualitative marker for the bioavailability 

of S-allyl cysteine from aged garlic extract and from garlic powder. Taken together, the beverage 

containing the functional ingredient was a consumable product which delivered significant amounts 

of S-allylmercaptocysteine and S-allyl cysteine without garlic taste. 

In conclusion, the present work demonstrated that the free thiol group of β-LG can bind allicin and 

diallyl disulfide in a specific, targeted manner under alkaline conditions. As a result, β-LG stabilized 

allicin, masked its organoleptic properties and delivered a highly bioavailable bioactive compound. 

Thus, β-LG was proved to be a suitable nanotransporter for organosulfur compounds of garlic.  
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10. Zusammenfassung 

 

Wissenschaftliche Untersuchungen haben gezeigt, dass spezifische Inhaltsstoffe von Lebensmitteln 

zum Erhalt der Gesundheit und zur Prävention von Krankheiten beitragen können. Das Thiosulfinat 

Allicin gehört zu dieser Gruppe bioaktiver Substanzen, da es für verschiedene gesundheitsförderliche 

Wirkungen von Knoblauch verantwortlich ist. Allerdings weist Allicin eine geringe chemische 

Stabilität auf und wird während der Verarbeitung und Lagerung von Lebensmitteln schnell abgebaut. 

Des Weiteren trägt es zu dem intensiven Geruch und der Schärfe von Knoblauch bei. Um Allicin 

dennoch als bioaktive Substanz in einem funktionellen Lebensmittel anreichern zu können, ist ein 

Transporter zur chemischen Stabilisierung und zur Maskierung der sensorischen Eigenschaften 

notwendig. Bisher ist kein dafür geeignetes Verfahren bekannt. Das Molkenprotein  β-Lactoglobulin 

(β-LG) wurde bereits häufig als stabilisierender Transporter für nicht-kovalent bindende, hydrophobe 

Substanzen beschrieben. β-LG ist in großen Mengen verfügbar, besitzt diverse technofunktionelle 

Eigenschaften sowie einen hohen ernährungsphysiologischen Wert und ist über einen großen pH-

Wertbereich löslich. Die gezielte kovalente Bindung von Allicin an β-LG könnte einen innovativen 

funktionellen Inhaltsstoff darstellen. Das Ziel dieser Arbeit war es, zu untersuchen, ob β-LG ein 

geeigneter Nanotransporter für die Schwefelverbindungen Allicin und Diallyldisulfid (DADS) aus 

Knoblauch ist. Zu diesem Zweck wurden die Interaktionen zwischen den Schwefelverbindungen und 

β-LG sowie die dadurch bedingten Veränderungen umfangreich analysiert. Außerde m wurde der 

funktionelle Inhaltsstoff (Allicin gebunden an β-LG) in einem Lebensmittel angereichert, um die 

sensorischen Eigenschaften zu bestimmen und die Bioverfügbarkeit des bioaktiven Stoffes zu 

untersuchen. 

Die Bindungsreaktion von Allicin bzw. DADS an das native und thermisch denaturierte β-LG wurde 

mittels Fluoreszenzlöschung und Umkehrphasen-Hochleistungsflüssigkeitschromatographie (RP-

HPLC) analysiert. Die Reaktion mit Amino- und Thiolgruppen wurde durch die Reagenzien o-

Phthaldialdehyd und 5,5′-Dithiobis-2-nitrobenzoesäure detektiert (Kapitel 3). Beide Liganden 

reagierten kovalent mit der freien Thiolgruppe von β-LG, wobei die Reaktion mit Allicin eine 

signifikant höhere Affinität aufwies als für DADS. Hingegen wurde DADS zusätzlich durch nicht-

kovalente Wechselwirkungen gebunden. Die Bindungsreaktion war stark von dem pH-Wert abhängig. 

Bei pH 8-9 war die Reaktionsgeschwindigkeit maximal, unterhalb von pH 8 sank sie jedoch deutlich 

ab. Der Einfluss des pH-Wertes wurde durch die pH-abhängige Reaktivität der Thiolgruppe bedingt. 

Die thermische Denaturierung von β-LG führte zu einer geringeren Anzahl verfügbarer kovalenter 

Bindungsstellen, was wahrscheinlich durch kovalente Aggregationsreaktionen während der Erhitzung 
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hervorgerufen wurde. Allerdings wurden hydrophobe Oberflächenregionen durch die Entfaltung des 

Moleküls freigelegt, die zusätzliche nicht-kovalente Bindungsstellen für DADS boten. Die 

Denaturierung steigerte auch die Zugänglichkeit der freien Thiolgruppe, wodurch die Affinität der 

Reaktion mit Allicin signifikant erhöht wurde, nicht aber für DADS. 

Zur genaueren Bestimmung der kovalenten Bindungsstelle wurden sowohl das intakte Protein als 

auch die durch enzymatische Hydrolyse gebildeten Peptide mittels Massenspektrometrie untersucht 

(Kapitel 4). Anhand der Massendifferenzen zwischen dem nativen und dem modifizierten β-LG 

konnte geschlossen werden, dass durch die Bindung von Allicin bzw. DADS die Seitenkette eines 

Cysteins zu S-Allylmercaptocystein derivatisiert wurde. Das stöchiometrische Verhältnis der Reaktion 

zwischen Allicin und β-LG betrug 2:1. Die Analyse der Peptide des modifizierten Proteins zeigte, dass 

die freie Thiolgruppe des Cys121 die Hauptbindungsstelle darstellte. Die kovalente Bindung von Allicin 

beeinträchtigte nicht die enzymatische Proteinverdauung durch Pepsin, Trypsin oder Chymotrypsin. 

Die Cystein-Modifikation blieb während der Verdauung stabil, lediglich während der tryptischen 

Proteolyse wurde ein Thiol-Disulfid-Austausch mit anderen Cysteinresten des Proteins in begrenztem 

Umfang beobachtet. Der Einfluss der kovalenten Modifikation auf die Proteinkonformation wurde 

mittels Zirkulardichroismus-Spektroskopie und dynamischer Lichtstreuung analysiert. Die gebundene 

S-Allyl-Gruppe führte zu geringen strukturellen Veränderungen, insbesondere auf Ebene der 

Tertiärstruktur war eine moderate Lockerung der Proteinfaltung zu erkennen. Eine Dissoziation der 

β-LG-Dimere durch den kovalenten Liganden war nicht zu beobachten. 

Für die sensorische und pharmakokinetische Beurteilung des mit Allicin modifizierten β-LGs wurde 

ein Prozess zur Produktion des funktionellen Inhaltsstoffs in lebensmitteltauglicher Qualität etabliert 

(Kapitel 5). Der Prozess umfasste die Inkubation von gelöstem Molkenproteinisolat (β-LG-Quelle) 

zusammen mit Knoblauchpulver (Allicin-Quelle) unter alkalischen Bedingungen (pH 8,5) sowie die 

anschließende Trocknung. Der Einfluss der Trocknungsmethode (Gefrier- und Sprühtrocknung), des 

pH-Wertes während der Trocknung (pH 6; 8) sowie des Protein-Liganden-Verhältnisses auf die 

Proteindenaturierung und den Gehalt flüchtiger Schwefelverbindungen im Endprodukt wurde 

untersucht. Die Sprühtrocknung bei leicht saurem pH-Wert ermöglichte einen geringen 

Denaturierungsgrad und gleichzeitig die umfangreiche Entfernung flüchtiger Schwefelverbindungen, 

die mittels Gaschromatographie gekoppelt mit Massenspektrometrie detektiert wurden. Die 

kovalente Bindung des Liganden führte dazu, dass das β-LG-Molekül über keine freien Thiolgruppen 

verfügte. Dadurch wurde die thermisch induzierte Bildung von intermolekularen Disulfidbindungen 

und somit die Irreversibilität der Denaturierung unterbunden, was zu einer erhöhten 

Temperaturstabilität des Proteins führte. Die sensorischen Eigenschaften des mit Allicin modifizierten 

Proteins wurden in wässriger Lösung und in einem speziell entwickelten Getränk durch quantitative, 
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deskriptive Analyse ermittelt. Durch die kovalente Bindung von Allicin in Kombination mit der 

Sprühtrocknung des Inhaltsstoffes wurden die Knoblauch-typischen organoleptischen Eigenschaften 

signifikant reduziert. Das reine, modifizierte β-LG hatte einen nahezu neutralen Geruch und 

Geschmack. Das entwickelte Getränk bot eine geeignete Matrix für die Anreicherung des 

funktionellen Inhaltsstoffes, auch in Anwesenheit der übrigen Bestandteile des Knoblauchpulvers.  

Abschließend wurde die Bioverfügbarkeit des gebildeten Allicin-Derivates innerhalb der 

Polypeptidkette von β-LG durch eine doppelt-blinde, randomisierte, Diät-kontrollierte Cross-Over-

Studie untersucht (Kapitel 6). Neun gesunden Probanden wurden drei verschiedene Präparate 

verabreicht: Knoblauchpulver in säureresistenten Kapseln (111 µM Allicin-Potential), fermentierter 

Knoblauchextrakt in Kapseln (111 µM S-Allylcystein) und modifiziertes β-LG (111 µM Allicin-Einsatz) 

angereichert in einem Getränk. Verschiedene Metabolite in Blut, Urin und Atemgas wurden 

analysiert. Allylmethylsulfid im Atemgas erwies sich als geeigneter Marker für die Bioverfügbarkeit 

von S-Allylmercaptocystein. Die Ausscheidung von Allylmethylsulfid bedingt durch die Aufnahme von 

modifiziertem β-LG zeigte, dass die bioaktive Substanz scheinbar vollständig aus dem Proteinverband 

freigesetzt wurde und zu dem gleichen Ausscheidungsprodukt wie auch Allicin metabolisiert wurde. 

Freies S-Allylmercaptocystein aus fermentiertem Knoblauchextrakt führte in gleichem Maß zu der 

Ausscheidung von Allylmethylsulfid wie S-Allylmercaptocystein des modifizierten Proteins. Aus den 

Knoblauchpulver-Kapseln wurde nur eine geringe Menge Allicin freigesetzt, da die Kapseln unter 

gastrischen Bedingungen nicht ausreichend stabil waren. Wie erwartet, konnte S-Allylcystein im 

Plasma nach Aufnahme von fermentiertem Knoblauchextrakt deutlich nachgewiesen werden. Des 

Weiteren konnte jedoch gezeigt werden, dass γ-Glutamyl-S-Allylcystein aus dem Knoblauchpulver 

und dem funktionellen Getränk ebenfalls zu erhöhten S-Allylcystein-Konzentrationen im Plasma 

führte. N-Acetyl-S-Allylcystein im Urin stellte sich als qualitativer Marker für die Bioverfügbarkeit von 

S-Allylcystein und γ-Glutamyl-S-Allylcystein heraus. Schlussfolgernd erwies sich das mit dem 

funktionellen Inhaltstoff angereicherte Getränk als ein verzehrfähiges Lebensmittel ohne 

Knoblauchgeschmack, dass physiologisch relevante Mengen S-Allylmercaptocystein und S-Allylcystein 

mit unbeeinträchtigt hoher Bioverfügbarkeit lieferte. 

Zusammenfassend zeigt die vorliegende Arbeit, dass Allicin und DADS gezielt durch die freie 

Thiolgruppe des β-LGs unter alkalischen Bedingungen kovalent gebunden werden können. Dadurch 

wird eine Stabilisierung und sensorische Maskierung ermöglicht, ohne die hohe Bioverfügbarkeit zu 

beeinträchtigen. Demnach erwies sich β-LG als geeigneter Nanotransporter für 

Schwefelverbindungen aus Knoblauch. 
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