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Abstract
In representation theory one studies modules to get an insight of the linear structures
in a given algebraic object. Thanks to the theorem of Krull-Remak-Schmidt, any finite-
dimensional module over a finite-dimensional algebra can be decomposed in a unique
way into indecomposable modules. In this way, one reduces this problem to the study of
indecomposable modules. In this work we are interested in representation theory of the
group algebra of a finite group scheme. Examples of these algebras are given by group
algebras of ordinary groups or by universal enveloping algebras of Lie algebras. Our main
interest lies in the finite group schemes of domestic representation type. By definition, in
each dimension all but finitely many indecomposable modules of their group algebras are
parametrized by a bounded number of parameters. One of the main results in this work
provides a full classification of the indecomposable modules for a certain subclass of the
domestic finite group schemes.

Based on this classification we will make some observations regarding the Auslander-
Reiten quiver and geometric invariants which lead us to more general results. With the
Auslander-Reiten quiver of an algebra one can describe its indecomposable modules and
their irreducible morphisms. The vertices of this quiver are the isomorphism classes of
indecomposable modules and the arrows correspond to irreducible morphisms between
these modules. The shape of these quivers is well understood for the algebras we are in-
vestigating in this work. We will give a concrete description of the Euclidean components
with respect to the McKay quiver of a certain binary polyhedral group scheme. The
McKay quiver of these group schemes consists of their simple modules and the arrows
are determined by tensor products with a given module.

An important fact for this work is that the module category of a group scheme is closed
under taking tensor products. Besides the classification and the McKay-quivers we
also use them for obtaining geometric invariants of a group scheme and its modules.
Friedlander and Suslin proved that the even cohomology ring of a finite group scheme
is a finitely generated commutative algebra. The variety defined by this algebra is
the cohomological support variety of the group scheme. These varieties contain many
interesting information about the representation theory of the group schemes they are
assigned to. In this work we will study the ramification index of a morphism between
two support varieties. As we will see, this number has a connection to the ranks of the
tubes in the Auslander-Reiten quivers.
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Zusammenfassung
In der Darstellungstheorie studiert man Moduln, um einen Einblick in die linearen
Strukturen eines gegebenen algebraischen Objektes zu erhalten. Laut dem Satz von
Krull-Remak-Schmidt kann über einer endlich-dimensionalen Algebra jeder endlich-
dimensionale Modul in eindeutiger Weise in unzerlegbare Moduln zerlegt werden. Auf
diese Weise reduziert man dieses Problem auf das Studium unzerlegbarer Moduln. In
dieser Arbeit interessieren wir uns für die Darstellungstheorie der Gruppenalgebra eines
endlichen Gruppenschemas. Beispiele für diese Algebren sind Gruppenalgebren von
gewöhnlichen Gruppen sowie die universelle einhüllende Algebra einer Lie-Algebra. Unser
Hauptinteresse liegt in den endlichen Gruppenschemata von domestischem Darstel-
lungstyp. Per Definition sind in jeder Dimension alle bis auf endlich viele unzerleg-
bare Moduln dieser Gruppenalgebren durch eine beschränkte Anzahl von Parametern
parametrisiert. Eines der Hauptergebnisse dieser Arbeit liefert eine vollständige Klassifika-
tion der unzerlegbaren Moduln für eine gewisse Unterklasse von domestischen endlichen
Gruppenschemata.

Basierend auf dieser Klassifikation machen wir einige Beobachtungen bezüglich des
Auslander-Reiten-Köchers und geometrischen Invarianten, welche uns auch zu allge-
meineren Ergebnissen führen. Mit dem Auslander-Reiten-Köcher einer Algebra kann man
die unzerlegbaren Moduln sowie ihre irreduziblen Morphismen beschreiben. Die Punkte
dieses Köchers sind die Isomorphieklassen von unzerlegbaren Moduln und seine Pfeile
entsprechen den irreduziblen Abbildungen zwischen diesen Moduln. Für die Algebren,
die wir in dieser Arbeit untersuchen, ist die Form dieses Köchers allgemein bekannt. Wir
werden eine konkrete Beschreibung der Euklidischen Komponenten in Bezug auf den
McKay-Köcher eines gewissen binären Polyeder-Gruppenschemas geben. Der McKay
Köcher dieses Gruppenschemas besteht aus seinen einfachen Moduln und die Pfeile sind
durch das Tensorprodukt mit einem bestimmten Modul festgelegt.

Eine wichtige Tatsache in dieser Arbeit ist, dass die Modulkategorie eines Gruppenschemas
abgeschlossen unter der Bildung von Tensorprodukten ist. Neben der Klassifikation und
den McKay-Köchern benutzen wir sie um geometrische Invarianten eines Gruppenschemas
und seiner Moduln zu erhalten. Friedlander und Suslin haben gezeigt, dass der gerade
Kohomologiering eines endlichen Gruppenschemas eine endlich erzeugte kommutative
Algebra ist. Die durch diese Algebra definierte Varietät ist die kohomologische Trägerva-
rietät des Gruppenschemas. Diese Varietäten enthalten viele interessante Informationen
über die Darstellungstheorie der Gruppenschemata, welchen sie zugeordnet sind. In
dieser Arbeit studieren wir den Verzweigungsindex eines Morphismus zwischen zwei
Trägervarietäten. Wie wir sehen werden, hat diese Zahl eine Verbindung zu den Rängen
der Röhren in den Auslander-Reiten-Köchern.
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1. Preliminaries
1.1. Introduction
In representation theory we have a trichotomy of representation types. Over an alge-
braically closed field any algebra A has either finite, tame or wild representation type.
We say that A has finite representation type if A possesses only finitely many isomorphism
classes of indecomposable modules. An algebra A has tame representation type if it is
not of finite representation type and if in each dimension almost all isomorphism classes
of indecomposable modules occur in only finitely many one-parameter families.
The representation type of group algebras of finite groups was determined in [4]. Let
k be a field of characteristic p > 0 and G be a p-group. Then the group algebra kG
has tame representation type if and only if p = 2 and G is a dihedral, semidihedral or
generalized quaternion group. The classification of modules for a tame algebra can be a
hard endeavour. For example up to now there is no such classification for the quaternion
group Q8.
Another class of examples are tame hereditary algebras ([8]). These algebras have the
additional property, that the number of one-parameter families is uniformly bounded. In
general an algebra with this property is called of domestic representation type. The only
p-group with domestic group algebra is the Klein four group. Its representation theory is
clearly related to that of the 2-Kronecker quiver.
In the setting of group algebras for finite group schemes there occur more domestic group
algebras. We call a finite group scheme G domestic if its group algebra kG := (k[G])∗ is
domestic.
In [17] Farnsteiner classified the domestic finite group schemes over a field of character-
istic p > 2. Let G be a domestic finite group scheme, then the principal block of kG
is Morita-equivalent to the trivial extension of a radical square zero tame hereditary
algebra. Moreover, the principal blocks of these group schemes are isomorphic to the
principal blocks of certain domestic finite group schemes, the so-called amalgamated
polyhedral group schemes.
The goal of this work is the classification of the indecomposable modules of the amalga-
mated polyhedral group schemes. A foundation for this is Premets work ([41]) on the
representation theory of the restricted Lie algebra sl(2). Farnsteiner started in [15] to
extend these results to the infinitesimal case, the group schemes SL(2)1Tr for r ≥ 1.
These results will be summarized in section 4.1. The missing part was a realization of
the periodic SL(2)1Tr-modules. This gap will be closed in section 4.3:

Let G be a finite group scheme and N a normal subgroup scheme of G such that G/N is
infinitesimal. For an N -module Z Voigt [51] introduced a filtration

Z = N0 ⊆ N1 ⊆ N2 ⊆ . . . ⊆ Nn−1 ⊆ kG ⊗kN Z

by N -modules and used it to give a generalized version of Clifford theory in form of a
splitting criterion of the short exact sequences

0→ Nl−1 −→ Nl −→ Nl/Nl−1 → 0.

1



Introduction

We develop in section 4.2 a criterion which ensures that none of these sequences split. For
certain quasi-simple modules Z this result implies that all constituents of the filtration
belong to the same AR-component. In section 4.3 we show when these assumptions are
true for modules over SL(2)1. Therefore we obtain new realizations of those modules
and are able to show when they have an SL(2)1Tr-module structure. These are exactly
those modules which were missing in [15].
We then turn to a different topic in section 5.1. If G is a finite group scheme then
G := G(k) acts on the projectivized rank variety P(Vg) where g denotes the restricted
Lie algebra of G. This action gives nice properties for the stabilizers of periodic modules.
If the action of G on P(Vg) is faithful and the variety P(Vg) is smooth and irreducible,
then the stabilizer GM of any periodic module M is contained in GLr(k), where r is the
dimension of P(Vg). Especially, if the connected component G0 of G is tame, we obtain
that the stabilizer GM is cyclic.
The goal of section 5.2 is to prove a generalized Clifford theory decomposition result of
induced modules for certain group schemes. For this we need a normal subgroup scheme
N of a finite group scheme G which is contained in G0 such that G0/N is multiplicative.
The indecomposable N -modules in consideration need to be restrictions of G-modules and
under the assumption of an additional stability criterion the decomposition of the induced
module corresponds to the decomposition of k(G/N ) into projective indecomposable
modules.
In section 2.4 we pick up results of [32] about the application of Clifford theory over
strongly group graded algebras to Auslander-Reiten quivers. We analyse the effects of
the restriction functor between components of the occurring Auslander-Reiten quivers
for cyclic groups. Especially, if the components are tubes, we can give a relation between
their ranks.
Section 5.3 combines the results of prior sections to describe the structure of the amalga-
mated polyhedral group schemes. Now we are able to give a complete classification of
the indecomposable modules for these group schemes in chapter 8.

Thanks to this classification, we obtain many new examples of modules for finite group
schemes. Consequently we can use them to test conjectures or to search for new general
results of their representation theory.
In this work we will use these results to get a better understanding of the Auslander-Reiten
components of a domestic finite group scheme. As noted above, any such group scheme
can be associated to an amalgamated polyhedral group scheme and the non-simple blocks
of an amalgamated polyhedral group scheme are Morita-equivalent to a radical square
zero tame hereditary algebra. In this way the components of the Auslander-Reiten quiver
of these group schemes are classified abstractly. Our goal is to describe these components
in a direct way by using tensor products, McKay-quivers and ramification indices of
certain morphisms.

In chapter 7 we will describe the Euclidean components. For this purpose, we show in
chapter 6 how to extend certain almost split sequences over a normal subgroup scheme
N ⊆ G to almost split sequences over G if the group scheme G/N is linearly reductive.

2



Notation and Prerequisites

Moreover, for a simple G/N -module S we will show that the tensor functor −⊗k S sends
these extended almost split sequences to almost split sequences. In chapter 7 we will use
these results to show that for any amalgamated polyhedral group scheme G there is a
finite linearly reductive subgroup scheme G̃ ⊆ SL(2) such that the Euclidean components
of Γs(G) can be explicitly described by the McKay-quiver ΥL(1)(G̃).
Of great importance for the proofs of these results is the fact that the category of
G-modules is closed under taking tensor products over the field k. This comes into play
in the definition of the McKay quiver, for the construction of new almost split sequences
and in the description of the Euclidean components. Thanks to this property, we are
also able to introduce geometric invariants for the representation theory of G. If G is
any finite group scheme, one can endow the even cohomology ring H•(G, k) with the
structure of a commutative graded k-algebra. Thanks to the Friedlander-Suslin-Theorem
([22]), this algebra is finitely-generated. Therefore, the maximal ideal spectrum VG of
H•(G, k) is an affine variety. As H•(G, k) is graded, we can also consider its projectivized
variety P(VG).
Now let us again assume that N ⊆ G is a normal subgroup scheme such that G/N is
linearly reductive. Then the ramification indices of the restriction morphism P(VN )→
P(VG) will give upper bounds for the ranks of the corresponding tubes in the Auslander-
Reiten quiver. Here a tube Z/(r)[A∞] of rank r can be regarded as a quiver which is
arranged on an infinite tube with circumference r. Moreover, if G is an amalgamated
polyhedral group scheme and N = G1 is its first Frobenius kernel, the ranks are equal to
the corresponding ramification indices. Hence we will prove the following:

Theorem. Let G be an amalgamated polyhedral group scheme and Θ a component of the
stable Auslander-Reiten quiver Γs(G). Then the following hold:

(i) If Θ is Euclidean, then there is a component Q of the separated quiver ΥL(1)(G̃)s
and a concrete isomorphism Θ ∼= Z[Q].

(ii) Let Θ be a tube and eΘ the ramification index of the restriction morphism P(VG1)→
P(VG) at the corresponding point xΘ. Then Θ ∼= Z/(eΘ)[A∞].

There seems to be a connection to a result of Crawley-Boevey ([6]), which states that
a finite-dimensional tame algebra has only finitely many non-homogeneous tubes. On
the other hand, the restriction morphism P(VN ) → P(VG) is finite and has constant
ramification on an open dense subset of P(VN ). Hence, there are only finitely many
exceptional ramification points. In our situation, all but finitely many points will be
unramified and a tube can only be non-homogeneous, if it belongs to the image of a
ramification point.

1.2. Notation and Prerequisites
If not otherwise mentioned, k will always denote an algebraically closed field of charac-
teristic p > 2 and all modules and algebras occurring in this work are supposed to be
finite-dimensional over k.

3



Group graded algebras

In the following sections we will give a short introduction to some concepts and results
that are used in this work. Introductions to representation theory can be found in
[1], [2] and [3]. Throughout this work we will use tools from homological algebra and
category theory. For these topics we refer the reader to [45], [53] and [31]. Moreover,
some knowledge in algebraic geometry is helpful. Thorough introductions to this topic
may be found in [23], [7] and [25].

1.3. Group graded algebras
In this section we will give a short overview of the theory of group graded algebras.
For more details, we refer the reader to [26]. In the following, k will always denote an
arbitrary field.

Definition 1.3.1. Let G be a group and A be a k-algebra which admits a decomposition
A = ⊕

g∈GAg as k-vector spaces. Then A is called G-graded if for all g, h ∈ G we have
AgAh ⊆ Agh. If we always have equality, the algebra A is called strongly G-graded.

Remark 1.3.2. Let G be a group and A be a G-graded k-algebra.

1. Let H ⊆ G be a subgroup. Then the subalgebra AH := ⊕
g∈H Ag is H-graded. If

A is strongly G-graded, then AH is strongly H-graded.

2. Let N ⊆ G be a normal subgroup of G. Then A can be regarded as a G/N -graded
algebra via AgN := ⊕

x∈gN Ax for all g ∈ G. If A is strongly G-graded, then it is
also strongly G/N -graded.

3. For all g ∈ G, the space Ag is an (A1, A1)-bimodule.

Example 1.3.3. If G acts on a k-algebra A by algebra automorphisms, we let A ∗G be
a free A-module with basis G and multiplication

(rg)(sh) = rg(s)gh for all r, s ∈ A and g, h ∈ G.

This algebra is a strongly G-graded algebra and called the skew group algebra of G over
A. If the operation of G is trivial we get the group algebra AG of G over A.

Definition 1.3.4. Let G be a group, A be a G-graded k-algebra and H ≤ U ≤ G be
subgroups. Then

indUH := indAU
AH

: modAH → AU ,M 7→ AU ⊗AH
M

is the induction functor and

resUH := resAU
AH

: modAU → AH ,M 7→M |AH

is the restriction functor. For H = {1} we will write indU1 and resU1 .

4



Hopf algebras and Hopf-Galois extensions

Definition 1.3.5. Let G be a group, A be a G-graded algebra and M be an A1-module.
For g ∈ G we denote by M g the A1-module Ag ⊗A1 M .
The subgroup GM := {g ∈ G | M g ∼= M} is called the stabilizer of M . If G = GM we
say that M is G-invariant.

Remark 1.3.6. If A ∗G is a skew group algebra and M an A-module, then M g can be
identified as a k-space with M and A1-action twisted by g−1, i.e.

a.m := g−1(a)m for all a ∈ A1 and m ∈M.

To conclude this section, we will give some results concerning this topic which will come
up later in this work.

Lemma 1.3.7 ([38, Corollary 2.10]). Let G be a finite group and A be a strongly G-graded
k-algebra. Then A is self-injective if and only if A1 is self-injective.

Theorem 1.3.8 ([26, 4.5.2]). Let G be a finite group and A be a finite-dimensional
strongly G-graded k-algebra. Let M be an A1-module and indGM

1 M = ⊕n
i=1Mi be a

decomposition into indecomposable AGM
-modules. Then indG1 M = ⊕n

i=1 indGGM
Mi is a

decomposition into indecomposable A-modules. Moreover, indGGM
Mi
∼= indGGM

Mj if and
only if Mi

∼= Mj.

Corollary 1.3.9. Let G be a finite group, H ⊆ G a subgroup and A be a finite-
dimensional strongly G-graded k-algebra. Let N be an A1-module with GN ⊆ H and M
be an indecomposable direct summand of indG1 N . Then there is an indecomposable direct
summand V of resGHM such that indGH V ∼= M .

Proof. Let indGN
1 N = ⊕n

i=1 Ui be a decomposition into indecomposable AGN
-modules.

By 1.3.8 this yields a decomposition indG1 N = ⊕n
i=1 indGGN

Ui into indecomposable A-
modules and a decomposition indH1 N = ⊕n

i=1 indHGN
Ui into indecomposable AH-modules.

Assume M = indGGN
Ui. Then V := indHGN

Ui is an indecomposable direct summand of
resGHM with indGH V = M .

Proposition 1.3.10 ([26, 4.5.15, 4.5.17]). Let k be an algebraically closed field of
characteristic p, G be a finite cyclic group of order n such that p - n, A be a strongly G-
graded k-algebra and M be a finite-dimensional indecomposable G-invariant A1-module.
Then indG1 M has a decomposition ⊕n

i=1Ni into indecomposable A-modules such that
resG1 Ni = M for all i ∈ {1, . . . , n}.

1.4. Hopf algebras and Hopf-Galois extensions
We start this section by giving a short introduction to the theory of Hopf algebras. After
that, we will introduce Hopf-Galois extensions. These extensions are a generalization
of strongly group graded algebras. We will also include an overview of some properties
of these extensions, which we will use later in this work. For more details we refer the
reader to [33] and [47].

5



Hopf algebras and Hopf-Galois extensions

Definition 1.4.1. Let k be a field. A tuple (H,m, u,∆, ε, η) is called Hopf algebra if
the following holds:

1. The tuple (H,m, u) is a k-algebra with multiplication m : H ⊗k H → H and unit
u : k → H.

2. The tuple (H,∆, ε) is a k-coalgebra, i.e. ∆ : H → H ⊗k H and ε : H → k are
k-linear maps such that
a) (idH ⊗∆) ◦∆ = (∆⊗ idH) ◦∆ and
b) (idH ⊗ε) ◦∆ = idH = (ε⊗ idH) ◦∆.

The map ∆ is called comultiplication and the map ε is called counit.

3. The maps ∆ and ε are k-algebra homomorphisms (Or equivalently, the maps m
and u are k-coalgebra homomorphisms).

4. The map η : H → H is k-linear such that

u ◦ ε(h) =
∑
(h)
h(1)η(h(2)) =

∑
(h)
η(h(1))h(2) for all h ∈ H.

The map η is called the antipode of H.

Remark 1.4.2. In the last property we used the Sweedler notation. For each h ∈ H we
write ∆(h) = ∑

(h) h(1) ⊗ h(2).

Definition 1.4.3. LetH be a Hopf algebra and τ : H⊗kH → H⊗kH with τ(a⊗b) = b⊗a
for a, b ∈ H. Then H is called cocommutative if τ ◦∆ = ∆.

Definition 1.4.4. Let H be a Hopf algebra. A subalgebra K ⊆ H of the k-algebra H is
called Hopf subalgebra of H if:

1. ∆(K) ⊆ K ⊗k K.

2. η(K) ⊆ K.

Definition 1.4.5. Let H be a Hopf algebra. An ideal I ⊆ H of the k-algebra H is called
Hopf ideal of H if:

1. ∆(I) ⊆ I ⊗k H +H ⊗k I.

2. ε(I) = 0.

3. η(I) ⊆ I.

Remark 1.4.6.

1. The ideal H† := ker ε is a Hopf ideal of H. It is called the augmentation ideal of H.

2. If I is a Hopf ideal of H, then H/I is a Hopf algebra.

6



Hopf algebras and Hopf-Galois extensions

Definition 1.4.7. Let H be a Hopf algebra. The map Adl : H → Endk(H) with
Adl(h)(x) = ∑

(h) h(1)xη(h(2)) for h, x ∈ H is called the left adjoint representation of H.
Dually, the map Adr : H → Endk(H) with Adr(h)(x) = ∑

(h) η(h(1))xh(2) for h, x ∈ H is
called the right adjoint representation of H.
A Hopf subalgebra K ⊆ H is called normal, if it is invariant under both adjoint
representations.

Remark 1.4.8. If K is a normal Hopf subalgebra of a Hopf algebra H, then HK† is a
Hopf ideal of H.

Definition 1.4.9. LetH be a Hopf algebra. A k-vector spaceM is called anH-comodule,
if there is a k-linear map ρM : M →M ⊗k H such that

1. (idM ⊗∆) ◦ ρM = (ρM ⊗ idH) ◦ ρM , and

2. (idM ⊗ε) ◦ ρM = idM ⊗1.

If M is an H-comodule, then the subspace

M coH := {m ∈M | ρM(m) = m⊗ 1}

is called the space of H-coinvariants in M .
If M is an H-module, then the subspace

MH := {m ∈M | h.m = ε(h)m for all h ∈ H}

is called the space of H-invariants in M .

Definition 1.4.10. Let H be a Hopf algebra over k and A be a k-algebra.

1. The algebra A is called an H-comodule algebra if it is an H-comodule such that
the comodule map ρA : A → A ⊗k H is an algebra homomorphism. Denote by
B := AcoH the coinvariants of H. Then A : B is called an H-extension.

2. An H-extension A : B is called H-Galois if the map β : A⊗B A→ A⊗k H with
β(a⊗ b) = aρA(b) is bijective.

3. The algebra A is called an H-module algebra if
a) A is an H-module,
b) h.(ab) = ∑

(h)(h(1).a)(h(2).b) for all h ∈ H and a, b ∈ A, and
c) h.1 = ε(h)1 for all h ∈ H.

4. Let A be an H-module algebra. Then the smash product A#H is the algebra with
underlying space A⊗k H and multiplication

(a#h)(b#k) =
∑
(h)
a(h(1)b)#h(2)k

for all a, b ∈ A and h, k ∈ H.
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Remark 1.4.11. Let L : k be a field extension, G ⊆ Autk(L) a finite subgroup and
K = LG the subfield of G-invariants. If H = k[G] = (kG)∗, then L is a H-comodule
algebra. One can show (c.f. [34, 2.3]) that L : K is a Galois extension in the classical
sense if and only if L : K is an H-Galois extension.

Example 1.4.12. 1. The smash product algebra A#H gives rise to an H-Galois
extension A#H : A.

2. If H = kG is the group algebra of a group, then the smash product A#H is
isomorphic to the skew group algebra A ∗G.

3. Let H be a Hopf algebra with normal Hopf subalgebra K ⊆ H. Set H̄ := H/(HK†).
Then H : K is an H̄-Galois extension.

Let A : B be an H-Galois extension and M be an A-module. Then EndB(M) is an
H-module algebra via

(h.f)(m) =
n∑
i=1

aif(bim)

for h ∈ H, f ∈ EndB(M), m ∈M and ∑n
i=1 ai ⊗ bi = β−1(1⊗ η(h)) ∈ A⊗B A.

The following result is an analogue of [50, 2.3] for left modules which itself is a general-
ization of [26, 4.5.4] from the group graded case:

Lemma 1.4.13. Let H be a finite-dimensional Hopf-algebra, A : B be a H-Galois
extension of k-algebras and M be a B-module. Then EndA(A⊗B M) ∼= EndB(M)#H.

Definition 1.4.14. Let H be a Hopf algebra over k and A be an H-module algebra. We
define the following two radicals of A:

1. RadH(A) := {x ∈ Rad(A) | hx ∈ Rad(A) for all h ∈ H} and

2. RadH(A) := Rad(A#H) ∩ A.

Proposition 1.4.15 ([55, 3.2, 3.3], [5, 4.3]). Let H be a Hopf algebra over k and A be
an H-module algebra. Then the following statements hold:

1. RadH(A) ⊆ RadH(A), with equality if H is finite-dimensional,

2. RadH(A)#H ⊆ Rad(A#H), and

3. if H = kG is the group algebra of a finite group G, then Rad(A)#kG ⊆ Rad(A#kG).

Definition 1.4.16. We say that an extension A : B of k-algebras is separable if the
multiplication A⊗B A→ A is a split surjective homomorphism of (A,A)-bimodules.

Remark 1.4.17. Let A : B be a separable extension of k-algebras. Using basic properties
of separable extensions ([39, 10.8]), we obtain for every indecomposable A-module M
an indecomposable direct summand N of the B-module resABM such that M is a direct
summand of indAB N .
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Proposition 1.4.18 ([9, 3.15]). Let H be a finite-dimensional semisimple Hopf algebra
over k and A : B be an H-Galois extension. Then A : B is separable.

Definition 1.4.19. We say that an extension A : B of k-algebras is a free Frobenius
extension of first kind, if

(a) A is a finitely generated free B-module, and

(b) there is an (A,B)-bimodule isomorphism A→ HomB(A,B).

If A : B is an extension of rings, the functor

coindAB : modB → modA, M 7→ HomB(A,M)

is called coinduction functor.

Theorem 1.4.20 ([36, 2.1]). Let A : B be a free Frobenius extension of first kind. Then
the induction and coinduction functors are equivalent.

Theorem 1.4.21 ([30, 1.7(5)]). Let H be a Hopf algebra over k and A : B be an H-Galois
extension. Then A : B is a free Frobenius extension of first kind.

1.5. Finite group schemes
The goal of this section is to give a short introduction to affine group schemes. We will
mainly concentrate on finite group schemes. For more details and more general results,
we refer the reader to [25], [7] and [16].
For two commutative k-algebras R and S we denote by Algk(R, S) the set of k-algebra
homomorphisms from R to S. Denote by Mk the category of commutative k-algebras,
by Sets the category of sets and by Grp the category of groups.

Definition 1.5.1.

1. A functor F : Mk → Sets is called representable if there is a commutative k-algebra
A and a natural equivalence F ' Algk(A,−).

2. A representable functor G : Mk → Grp is called an (affine) group scheme. By
Yonedas Lemma, the commutative k-algebra A with G ' Algk(A,−) is uniquely
determined, up to isomorphism. This algebra is called the coordinate ring of G and
will be denoted by k[G].

3. Let G be a group scheme. A subfunctor H ⊆ G is called subgroup scheme if there
is an Hopf ideal I ⊆ H such that

H(R) = {g ∈ G(R) | g(I) = (0)}

for every commutative k-algebra R. A subgroup scheme N ⊆ G is called normal, if
N (R) is a normal subgroup of G(R) for every commutative k-algebra R.
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4. Let k : k′ be an extension of fields and F : Mk →Mk′ be the forgetful functor. If
G is a group scheme over k′, then Gk := G ◦ F is the base change to k. A group
scheme H over k is said to be defined over k′, if there is a group scheme G over k′
with H ∼= Gk.

5. A group scheme G is called finite, if k[G] is finite-dimensional.

6. A group scheme G is called reduced, if k[G] is reduced.
Remark 1.5.2. If G is a group scheme, its coordinate ring k[G] is a commutative Hopf
algebra. In particular, if G is finite, the k-linear dual k[G]∗ is a cocommutative Hopf
algebra.
Definition 1.5.3. Let G be a finite group scheme.

1. The algebra kG := k[G]∗ is called the group algebra of G.

2. We call |G| := dimk kG the order of G.

3. If k[G] is local, we call G infinitesimal.

4. If kG is semisimple, we call G linearly reductive.

5. The group X(G) of k-algebra homomorphisms kG → k with multiplication given
by the convolution product

(f ∗ g)(h) =
∑
(h)
f(h(1))g(h(2)) ∀f, g ∈ X(G), h ∈ kG

is called the character group of G.

6. The group scheme G is called diagonalizable if the coordinate ring k[G] is isomorphic
to the group algebra kX(G). Over an algebraically closed field these group schemes
are also called multiplicative.

Example 1.5.4. For r ∈ N let µ(r) be the group scheme given by

µ(r)(R) = {x ∈ R | xr = 1}

for every commutative k-algebra R. Then k[µ(r)] ∼= k[T ]/(T r − 1) and kµ(r) ∼= kr as
k-algebras. Hence µ(r) is a linearly reductive finite group scheme. Now assume that k
is a field of characteristic p > 0. If p - r, then µ(r) is reduced and if r = pn, then µ(r) is
infinitesimal.
Definition 1.5.5. Let G be a group scheme and M be a k-vector space. Consider the
functor Ma : Mk → Sets, R 7→ M ⊗k R. Then M is called a G-module if there is a
natural transformation ρ : G ×Ma →Ma such that ρR : G(R)×Ma(R)→Ma(R) is an
R-linear group action of G(R) on M ⊗k R for any commutative k-algebra R.
Let M be a G-module. We denote by MG the subspace of G-invariants of M given by

MG
a (R) = {m ∈Ma(R) | g.m = m for all g ∈ G(R)}

for every commutative k-algebra R.
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Remark 1.5.6 ([25, I.5.5(6)]). Let G be a finite group scheme and N ⊆ G be a
normal subgroup scheme. Then the quotient G/N is given by the coordinate ring
k[G/N ] := k[G]N .

Proposition 1.5.7 ([16, I.5.2]). Let G be a finite group scheme and N ⊆ G be a normal
subgroup scheme. Then kGkN † is a Hopf ideal of kG such that k(G/N ) ∼= kG/(kGkN †).

Remark 1.5.8. Let G be a finite group scheme and ε the counit of the group algebra
kG. As an algebra, kG has a block decomposition

kG = B0 ⊕ . . .⊕ Bn,

where we assume that B0 is the block belonging to the trivial module k defined by ε.
This block is called the principal block of kG and will be denoted by B0(G).

Proposition 1.5.9 ([13, 1.1]). Let G be a finite group scheme and Glr be the largest
linearly reductive normal subgroup scheme of G. Then the canonical projection kG →
k(G/Glr) induces an isomorphism B0(G) ∼= B0(G/Glr).

Remark 1.5.10. Any finite group scheme decomposes into a semi-direct product G0oGred
with an infinitesimal normal subgroup scheme G0 and a reduced group scheme Gred. The
group algebra kG is isomorphic to the skew group algebra (kG0) ∗G where G = G(k).
The subgroup scheme G0 is called the connected component of G. Its coordinate ring
k[G0] is the principal block of the Hopf algebra k[G].

As in the case of group graded algebras one can define the stabilizer for a module of a
normal subgroup scheme of a finite group scheme. The following construction – which
will be used in some situations in this work – shows how these notions are connected in
certain cases:

Lemma 1.5.11. Let G be a finite group scheme, N ⊆ G be a normal subgroup scheme
with G0 ⊂ N and set G := (G/N )(k). Then kG has the structure of a G-graded k-algebra
with (kG)1 = kN and if M is an N -module there is a unique subgroup scheme GM of G
with kGM = (kG)GM

.

Proof. As above, the group algebra kG is isomorphic to the skew group algebra kG0∗G(k).
As G0 ⊆ N , we therefore obtain that kG has the structure of a G-graded k-algebra with
(kG)1 = kN . Let M be an N -module. Then the Hopf-subalgebra (kG)GM

of kG
determines a unique subgroup scheme GM of G with kGM = (kG)GM

.

Theorem 1.5.12 ([15, 2.1.2]). Let G be an infinitesimal group scheme and N ⊆ G be a
normal subgroup scheme of G. Then the restriction functor

resGN : modG → modN , M 7→M |N

sends indecomposable modules to indecomposable modules.
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Definition 1.5.13. Let G be a group scheme over a field k of characteristic p > 0. For
r ≥ 0 we denote by k[G](r) the k-algebra with same underlying space but with scalar
multiplication given by

α.f := αp
−r

f for all α ∈ k, f ∈ k[G].

We denote by G(r) the group scheme with coordinate ring k[G(r)] = k[G](r).
The k-algebra homomorphism k[G](r) → k[G], f 7→ fp

r induces a morphism Fr : G → G(r)

of group schemes. This morphism is called the r-th Frobenius morphism of G. The group
scheme Gr := kerFr is called the r-th Frobenius kernel of G.

Remark 1.5.14 ([25, I.9]).

1. The group scheme Gr is infinitesimal.

2. If G is defined over Fp, then there is an isomorphism G ∼= G(r) of group schemes.

Proposition 1.5.15 ([16, I.3.5]). Let G be a finite group scheme. Then G is infinitesimal
if and only if there is an r ≥ 0 with G = Gr.

Definition 1.5.16. Let G be an infinitesimal group scheme. The number

ht(G) := min{r ∈ N0 | G = Gr}

is called the height of G.

Definition 1.5.17. Let k be a field of characteristic p > 0, G be a group scheme which
is defined over Fp and M be a G-module. Denote by ρ : G → GL(M) the corresponding
representation. As G is defined over Fp, we can regard the r-th Frobenius morphism
as a morphism Fr : G → G. We denote by M [r] the G-module corresponding to the
representation ρ ◦ Fr. The module M [r] is called the r-th Frobenius twist of M .

Remark 1.5.18. Let G be a finite group scheme over a field of characteristic p > 0 and
∆ be the comultiplication of kG. Then the p-restricted Lie algebra

Lie(G) := {x ∈ kG | ∆(x) = x⊗ 1 + 1⊗ x}

is called the Lie algebra of G.

1.6. Support and rank varieties
Support varieties are very helpful geometric invariants, which enable us to use geometric
methods in the study of finite group schemes and their representation theory. As we will
only give a short overview to this topic, we refer the reader to [16],[20],[21] and [18] for
further details.
Let k be an algebraically closed field of characteristic p > 0 and (g, [p]) be a restricted
Lie algebra. We denote by Vg = {x ∈ g| x[p] = 0} the nullcone of g. For any x ∈ Vg the
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algebra U0(kx) is a subalgebra of U0(g). For any U0(g)-module M we define its rank
variety by

Vg(M) := {x ∈ Vg |M |U0(kx) is not projective} ∪ {0}.
The dimension of this rank variety is equal to the complexity cxg(M) of the module M ,
i.e. the polynomial rate of growth of the dimensions of a minimal projective resolution of
M (c.f. [19]).
Example 1.6.1. For g = sl(2) the nullcone is given by

Vsl(2) = {( a b
c −a ) | a2 + bc = 0}.

Let G be a finite group scheme and M be a G-module. We denote by

Hn(G,M) := ExtnG(k,M)

the n-th cohomology of G with coefficients in M . We define

H•(G, k) :=


⊕

n≥0H
2n(G, k) if p > 2⊕

n≥0H
n(G, k) if p = 2.

Then the Yoneda product endows H•(G, k) with the structure of a commutative, graded
k-algebra and Ext∗G(M,M) with the structure of an H•(G, k)-module.
Theorem 1.6.2 (Friedlander-Suslin, [22]). Let G be a finite group scheme and M be a
finite-dimensional G-module. Then

1. H•(G, k) is a finitely generated k-algebra.

2. Ext∗G(M,M) is a finitely generated H•(G, k)-module.

Definition 1.6.3. Let G be a finite group scheme and M be a finite-dimensional G-
module. Then the spectrum VG = MaxspecH•(G, k) of maximal ideals of H•(G, k) is
called the cohomological support variety of G. The projectivization of the cohomological
support variety will be denoted by P(VG).
There is a natural homomorphism ΦM : H•(G, k)→ Ext∗G(M,M) of graded k-algebras.
The cohomological support variety of the module M is then defined as the subvariety
VG(M) = Maxspec(H•(G, k)/ ker ΦM) of VG.
For a subgroup scheme H of G let ι∗,H : P(VH) → P(VG) be the morphism which is
induced by the canonical inclusion ι : kH → kG.
Theorem 1.6.4 ([20, 5.6],[18, 3.3]). Let G be a finite group scheme and M be a G-module.
Then the following holds:

1. If G is infinitesimal of height 1 and g = Lie(G), then VG and Vg are homeomorphic.

2. Let H ⊆ G be a subgroup scheme. Then ι−1
∗,H(VG(M)) = VH(resGHM).

3. If M is indecomposable, then P(VG(M)) is connected.

4. dimVG(M) = cxG(M).
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2. Auslander-Reiten theory
In Auslander-Reiten theory one studies the representations of an algebra with the help of
so-called almost split sequences. These sequences give rise to a very powerful combinatorial
invariant of the representation theory of an algebra, the so-called Auslander-Reiten quiver.
This quiver describes almost all indecomposable modules and their irreducible morphisms.
In the following sections we will introduce almost split sequences and the stable Auslander-
Reiten quiver of a self-injective algebra. In the end we will give an alternate introduction
via a functorial approach. For further details we refer to [2] and [1].

2.1. Almost split sequences
In this section k is an arbitrary field and all modules and algebras are supposed to be
finite-dimensional over k.

Definition 2.1.1. Let A be a finite-dimensional k-algebra and let M , N and E be
finite-dimensional A-modules.

1. An A-module homomorphism ϕ : M → N is called irreducible if
a) ϕ is neither a split monomorphism nor a split epimorphism and
b) if ϕ = ϕ1 ◦ ϕ2 then either ϕ1 is a split epimorphism or ϕ2 is a split monomor-

phism.

2. A short exact sequence
0→ N

ϕ−→ E
ψ−→M → 0

of A-modules is called almost split, if ϕ and ψ are both irreducible.

Theorem 2.1.2 ([2, V.1.15]). Let A be a finite-dimensional k-algebra and M be a
non-projective indecomposable A-module. Then there exists an almost split sequence

0→ N
ϕ−→ E

ψ−→M → 0

which is unique up to equivalence of short exact sequences.

Remark 2.1.3. The module N is uniquely determined up to isomorphism. In the
following we will denote it by τA(M) and τA is called the Auslander-Reiten translation of
A. If A is a symmetric k-algebra, then τA = Ω2

A, where ΩA denotes the Heller shift of
modA (c.f. [3, 4.12.8]).

Proposition 2.1.4 ([2, V.2.2]). Let A be a finite-dimensional k-algebra, M be a non-
projective indecomposable A-module and E : 0→ τA(M) −→ E

ϕ−→M → 0 a non-split
short exact sequence. Then E is almost split if and only if each non-isomorphism
ψ : M →M factors through ϕ.

For future reference we record the following consequence of the previous proposition:
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Lemma 2.1.5 ([2, V.2.4]). Let A be a finite-dimensional k-algebra and M be a non-
projective indecomposable A-module such that EndA(M) ∼= k. Then every short exact
sequence 0→ τA(M) −→ E −→M → 0 is either split or almost split.

Definition 2.1.6. Let A be a finite-dimensional k-algebra. For indecomposable A-
modules M and N we define the radical of HomA(M,N) as

RadA(M,N) := {ϕ ∈ HomA(M,N) | ϕ is not an isomorphism}.

Moreover, we define the k-vector spaces

Rad2
A(X,M) := {α | ∃Z ∈ modA,ϕ ∈ RadA(X,Z), ψ ∈ RadA(Z,M) : α = ψ ◦ ϕ}

and IrrA(X,M) := RadA(X,M)/Rad2
A(X,M).

Proposition 2.1.7. Let A be a finite-dimensional k-algebra, M and N be indecomposable
A-modules and ϕ : M → N be A-linear. Then ϕ is an irreducible morphism if and only
if ϕ ∈ RadA(M,N) \ Rad2

A(M,N).

2.2. Auslander-Reiten quiver
Definition 2.2.1. Let A be a finite-dimensional self-injective k-algebra. The stable
Auslander-Reiten quiver Γs(A) is the stable translation quiver given by the following
data:

• The vertices are the isomorphism classes of non-projective indecomposable finite-
dimensional A-modules.

• The arrows between two classes [M ] and [N ] are in bijective correspondence to a
k-basis of IrrA(M,N).

• The translation is the Auslander-Reiten translation τA of A.

Definition 2.2.2. Let Q be a quiver. We denote by Z[Q] the translation quiver with
underlying set Z×Q, arrows (n, x)→ (n, y) and (n+ 1, y)→ (n, x) for any arrow x→ y
in Q and translation τ : Z[Q]→ Z[Q] given by τ(n, x) = (n+ 1, x).

Theorem 2.2.3 (Struktursatz of Riedtmann [43]). Let Θ ⊆ Γs(A) be a connected
component. Then there is an isomorphism of stable translation quivers Θ ∼= Z[TΘ]/Π,
where TΘ denotes a directed tree and Π is an admissible subgroup of Aut(Z[TΘ]).

Remark 2.2.4. The underlying undirected tree TΘ is called the tree class of Θ. If Θ
has tree class A∞, then there is for each vertex M only one sectional path to the end of
the component ([2, VII.2]). The length of this path is called the quasi-length ql(M) of
M . The modules of quasi-length 1 are also called quasi-simple. Components of the form
Z[A∞]/(τn), n ≥ 1, are called tubes of rank n. These components contain for each l ≥ 1
exactly n modules of quasi-length l. Tubes of rank 1 are also called homogeneous tubes
and all other tubes are called exceptional tubes.
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Remark 2.2.5. Let Θ be a homogeneous tube in the stable Auslander-Reiten quiver Γs(A)
and denote by Vl the module in Θ of quasi-length l. If V1 is a brick (i.e. EndA(V1) ∼= k),
then basic properties of almost split sequences ([2, V.1]) imply that dimk HomA(Vi, Vj) =
min{i, j}.

If G is a finite group scheme, we denote the Auslander-Reiten quiver Γs(kG) also by
Γs(G).

Proposition 2.2.6 ([14, 3.1]). Let G be a finite group scheme and Θ be a connected
component of Γs(G). If A and B are G-modules which belong to Θ, then VG(A) = VG(B).

Thanks to 2.2.6 we can define VG(Θ) := VG(A) for some G-module A belonging to Θ.

Proposition 2.2.7 ([14, 3.3(3)]). Let G be a finite group scheme and Θ be a connected
component of Γs(G). Then |P(VG(Θ))| = 1 if and only if T̄Θ is a finite Dynkin diagram
or if Θ is a tube.

Lemma 2.2.8. Let G be an infinitesimal group scheme of height 1, M a G-module which
belongs to a homogeneous tube and E : 0 → M −→ E −→ M → 0 the almost split
sequence ending in M . Then E possesses no non-zero projective direct summand.

Proof. Let B be the block of M and assume that E has a non-zero projective in-
decomposable direct summand P . By [1, IV.3.11] the sequence E is equivalent to
0→ Rad(P ) −→ Rad(P )/ Soc(P )⊕ P −→ P/ Soc(P )→ 0. We obtain an isomorphism
M ∼= P/ Soc(P ) and therefore cxB(P/ Soc(P )) = cxB(M) = 1. Let (Pi)i≥0 be a pro-
jective resolution of Soc(P ) and set Qi := Pi+1, Q0 = P . Then (Qi)i≥0 is a projective
resolution of P/ Soc(P ). Therefore the simple module Soc(P ) has complexity 1. Now [12,
3.2(2)] yields that B is a Nakayama algebra and therefore representation finite. Hence
M belongs to a finite component, a contradiction.

2.3. Functorial approach
In this section we will give a short overview to the functorial approach of almost split
sequences. For further details we refer the reader to [1, IV.6].
Let A be a finite-dimensional k-algebra. Denote by Funop A and Fun A the categories
of contravariant and covariant k-linear functors from modA to mod k. A functor F in
Funop A is finitely generated if the functor F is isomorphic to a quotient of HomA(−,M)
for some M ∈ modA. A functor F in Funop A is finitely presented if there is an exact
sequence

HomA(−,M)→ HomA(−, N)→ F → 0

of functors in FunopA for someM,N ∈ modA. The full subcategory of FunopA consisting
of the finitely presented functors will be denoted by mmodA. Up to isomorphism the
finitely generated projective functors in Funop A are exactly the functors of the form
HomA(−,M). Such a functor is indecomposable if and only if the A-module M is
indecomposable.
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The functor RadA(−,M) is a subfunctor of HomA(−,M) and we define the functor
SM := HomA(−,M)/RadA(−,M). Up to isomorphism the simple functors in Funop A
are exactly the functors of the form SM with an indecomposable A-module M . The
projective cover of SM is HomA(−,M). Let N be an indecomposable A-module. An
A-module homomorphism g : M → N is (minimal) right almost split if and only if the
induced sequence

HomA(−,M)→ HomA(−, N)→ SN → 0

of functors in FunopA is a (minimal) projective presentation of SN .
A functor F : modA → modB induces a functor F : mmodA → mmodB via
F (HomA(−,M)) = HomB(−, F (M)). There are dual notions and results for left al-
most split morphisms and functors in Fun A.

Remark 2.3.1 ([2, V.1]). A short exact sequence

0→ N
ϕ−→ E

ψ−→M → 0

is almost split if and only if ϕ is left almost split and ψ is right almost split.

2.4. Auslander-Reiten quiver of group graded algebras
The Auslander-Reiten quiver of a group algebra of a finite group has been studied by
Kawata in [27] and [28]. These results where generalized in [32] to the context of strongly
group graded algebras. In this section we will present some of these results and we
investigate how the restriction functor behaves for algebras which are graded by a cyclic
group.

Definition 2.4.1. A morphism σ : (Γ, τΓ) → (Λ, τΛ) of stable translation quivers is a
morphism of quivers which commutes with the translation σ ◦ τΓ = τΛ ◦ σ. For a stable
translation quiver (Γ, τΓ) we will denote by Aut(Γ) = Aut(Γ, τΓ) its automorphism group.

Remark 2.4.2. If Γ = Z[A∞]/(τn) is an exceptional tube of rank n, then the group
Aut(Γ) = 〈τΓ〉 has order n.

Let G be a group and A be a finite-dimensional strongly G-graded k-algebra such that
A1 is self-injective. (Thanks to 1.3.7 this implies that A is self-injective, too.) The group
G acts on the module category modA1 via equivalences of categories

modA1 → modA1, M 7→M g for g ∈ G.

Since these equivalences commute with the Auslander-Reiten translation of Γs(A1), each
g ∈ G induces an automorphism tg of the quiver Γs(A1). As tg permutes the components
of Γs(A1), we can conclude that G acts on the set of components of Γs(A1). For a
component Θ we write Θg = tg(Θ) and let GΘ = {g ∈ G |Θg = Θ} be the stabilizer of Θ.
If g ∈ G and Θ is a component, then we have Θ = Θg or Θ ∩Θg = ∅. Hence, if M is an
A1-module which belongs to the component Θ, this implies GM ⊆ GΘ.
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Lemma 2.4.3. Let Θ be a component of Γs(A1) with finite automorphism group Aut(Θ)
such that |GΘ| and |Aut(Θ)| are relatively prime. Let M be an A1-module which belongs
to Θ. Then GM = GΘ.

Proof. The action of GΘ on Θ induces a homomorphism ψ : GΘ → Aut(Θ) of groups.
The kernel of this homomorphism is given by kerψ = ⋂

N∈ΘGN . Since |GΘ| and |Aut(Θ)|
have no common divisor, the homomorphism ψ is trivial. Hence GΘ = ⋂

N∈ΘGN and
thus GM = GΘ.

Now let N be an indecomposable non-projective A1-module and Ξ the corresponding
component in Γs(A1). Assume there is an indecomposable non-projective direct summand
M of indG1 N and let Θ be the corresponding component in Γs(A). Since GN is contained
in GΞ, 1.3.9 provides an indecomposable direct summand U of resGGΞ

M such that
indGGΞ

U = M . Denote by Ψ the component of U in Γs(AGΞ).

Lemma 2.4.4 ([32, 4.5.8]). Let W be an indecomposable A-module which belongs to Θ.
Then every indecomposable direct summand of resG1 W belongs to ⋃g∈G Ξg.

Theorem 2.4.5 ([32, 4.5.10]).

1. Let V be an AGΞ-module which belongs to Ψ. Then indGGΞ
V is indecomposable.

2. The functor indGGΞ
: modAGΞ → modA induces an isomorphism of stable transla-

tion quivers indGGΞ
: Ψ→ Θ.

For the proof of the following result we will need the following:

Theorem 2.4.6 ([48, Theorem 6]). Let k be a field, G be a finite group such that |G|
is invertible in k and A be a strongly G-graded finite-dimensional k-algebra. Then the
induction functor indG1 : A1 → A (or the restriction functor resG1 : A→ A1) sends almost
split sequences over A1 (or over A, respectively) to direct sums of almost split sequences
over A (or over A1, respectively).

Proposition 2.4.7. Let k be an algebraically closed field. Suppose that all A1-modules
which belong to Ξ are GΞ-stable and that GΞ is a cyclic group such that char k - |GΞ|.
Then the following hold:

(a) resGΞ
1 : Ψ→ Ξ, [X] 7→ [resGΞ

1 X] is a morphism of stable translation quivers,

(b) for all [Y ] ∈ Ξ we have |(resGΞ
1 )−1([Y ])| ≤ |GΞ|,

(c) if Ξ and Ψ have tree class A∞, then resGΞ
1 : Ψ→ Ξ preserves the quasi-length, and

(d) if Ξ and Ψ are tubes of finite rank n and m, then m ≤ |GΞ|n.
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Auslander-Reiten quiver of group graded algebras

Proof. We first show that under our assumptions the restriction of every AGΞ-module in
Ψ is an indecomposable A1-module which belongs to Ξ. Let V be an indecomposable
AGΞ-module in Ψ and let resGΞ

1 V = ⊕n
i=1 Ui be its decomposition into indecomposable

A1-modules. Applying 2.4.4 to the GΞ-graded algebra AGΞ yields that all these modules
belong to ⋃g∈GΞ Ξg = Ξ and therefore are GΞ-stable. Let r = |GΞ|. Since GΞ is cyclic,
char k - |GΞ| and k is algebraically closed, we get due to 1.3.10 a decomposition indGΞ

1 Ui =⊕r
j=1Wi,j into indecomposable AGΞ-modules of dimension dimkWi,j = dimk Ui for all

i ∈ {1, . . . , n}. In particular, the restriction resGΞ
1 Wi,j is isomorphic to Ui. As the ring

extension AGΞ : A1 is separable, the module V is a direct summand of indGΞ
1 resGΞ

1 V =⊕n
i=1

⊕r
j=1Wi,j and therefore isomorphic to one of the Wi,j. In particular, the module

resGΞ
1 V ∼= resGΞ

1 Wi,j
∼= Ui is indecomposable.

(a) Let X → Y be an arrow in Ψ. Then there is an almost split sequence of AGΞ-
modules

E : 0→ τΨ(Y ) −→ E −→ Y → 0
such that X is a direct summand of E and the indecomposable A1-modules resGΞ

1 X
and resGΞ

1 Y belong to Ξ. By 2.4.6, the sequence resGΞ
1 E is a direct sum of almost

split sequences. Since resGΞ
1 Y and resGΞ

1 τΨ(Y ) are indecomposable, the sequence
resGΞ

1 E is almost split. In particular, resGΞ
1 τΨ(Y ) ∼= τΞ(resGΞ

1 Y ). Moreover, this
gives us an arrow resGΞ

1 X → resGΞ
1 Y . Therefore, resGΞ

1 : Ψ→ Ξ, [X] 7→ [resGΞ
1 X]

is a morphism of stable translation quivers.

(b) Let [Y ] ∈ Ξ and [X] ∈ Ψ with resGΞ
1 ([X]) = [Y ]. As before, we have a decomposition

indGΞ
1 Y = ⊕r

i=1 Yi into indecomposable AGΞ-modules and X is a direct summand
of indGΞ

1 resGΞ
1 X = indGΞ

1 Y = ⊕r
i=1 Yi. Therefore the number of preimages of [Y ]

is bounded by r.

(c) Let [M ] ∈ Ψ. If [N ] ∈ Ψ is a successor of [M ] in Ψ then resGΞ
1 [N ] is a successor of

resGΞ
1 [M ] in Ξ. Hence, we only need to show that resGΞ

1 : Ψ→ Ξ sends quasi-simple
modules to quasi-simple modules. Let Y be a quasi-simple module in Ψ and let

0→ τΨ(Y ) −→ E −→ Y → 0

be the almost split sequence ending in Y . As shown in (a), the sequence resGΞ
1 E

is almost split. As Y is quasi-simple, the module E is the direct sum X ⊕ P of
an indecomposable module X and a projective module P . Since X belongs to
Ψ, the module resGΞ

1 X is indecomposable, so that resGΞ
1 E = resGΞ

1 X ⊕ resGΞ
1 P is

the direct sum of an indecomposable and a projective module. Hence resGΞ
1 Y is

quasi-simple.

(d) Let Y1, . . . , Yn be the quasi-simple modules in Ξ. As resGΞ
1 preserves the quasi-length,

every module belonging to (resGΞ
1 )−1([Yi]) is quasi-simple. Applying (b) yields that

Ψ has, up to isomorphism, at most rn quasi-simple modules.
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3. Domestic Finite Group Schemes
In representation theory we have a trichotomy of representation types for finite dimensional
algebras. Any such algebra is either of finite, tame or wild representation type. The class
of algebras having tame representation type consists of those algebras, which have up
to isomorphism infinitely many indecomposable modules such that in each dimension
all but finitely many indecomposable modules are parametrized by a finite number of
parameters. The algebras of domestic representation type are those with a common
bound of this number for all dimensions.
The finite group schemes of domestic representation type were described in [13] and [17].
Any such group scheme can be associated to an amalgamated polyhedral group scheme.
The goal of this chapter is to introduce the amalgamated polyhedral group schemes and
to explain how they relate to the domestic finite group schemes.

3.1. Representation Type
Definition 3.1.1. Let A be a finite dimensional k-algebra.

1. The algebra A is referred to be of finite representation if it admits only finitely
many isomorphism classes of indecomposable A-modules. Otherwise it is referred
to be of infinite representation type.

2. The algebra A is of tame representation type if it is of infinite representation type
and if for any d ∈ N there are (A, k[T ])-bimodules M1, . . . ,Mn(d) which are free
k[T ]-modules of rank d such that all but finitely many indecomposable A-modules
are isomorphic to Mi ⊗k[T ] k[T ]/(T − λ) for some 1 ≤ i ≤ n(d) and λ ∈ k. For
d ∈ N denote by µA(d) the smallest possible choice for the number n(d).

3. The algebra A is of domestic representation type if it is of tame representation
type and if there is m ∈ N such that µA(d) ≤ m for all d ∈ N.

4. If G is a finite group scheme we say that G is domestic (or tame), if the algebra kG
is of domestic (or tame) representation type.

5. The algebra A is of wild representation type if there is a (A, k〈X, Y 〉)-bimodule
M which is a finitely generated free right k〈X, Y 〉-module, such that the functor
M ⊗k〈X,Y 〉 − : mod k〈X, Y 〉 → modA preserves indecomposables and reflects
isomorphism classes.

As already mentioned, we have the following trichotomy for finite dimensional algebras:

Theorem 3.1.2 (Drozd [10]). Let A be a finite dimensional algebra over an algebraically
closed field k. Then exactly one of the following cases occurs:

1. A is of finite representation type.

2. A is of tame representation type.

20



Amalgamated polyhedral group schemes

3. A is of wild representation type.

In the case of group algebras of finite groups we have a complete classification of the
groups having a certain representation type.

Theorem 3.1.3 ([3, 4.4.4]). Let G be a finite group and k be an infinite field of charac-
teristic p. Then the following holds:

1. The group algebra kG has finite representation type if and only if the p-Sylow
subgroups of G are cyclic.

2. The group algebra kG has domestic representation type if and only if p = 2 and the
2-Sylow subgroups of G are isomorphic to the Klein four group.

3. The group algebra kG has tame representation type if and only if p = 2 and the
2-Sylow subgroups of G are isomorphic to a dihedral, semidihedral or generalized
quaternion group.

4. In all other cases the group algebra kG is of wild representation type.

For later use we mention at this the point the following results concerning the represen-
tation type of group graded algebras and group schemes.

Lemma 3.1.4 ([17, 4.1.3]). Let k be a field of characteristic p and G be a finite group
with p - |G|. Let A be a G-module algebra. Then A has domestic representation type if
and only if A ∗G has domestic representation type.

Proposition 3.1.5 ([13, 6.2.1]). Let k be an algebraically closed field of characteristic
p ≥ 3 and G be a finite group scheme with tame principal block B0(G). Then p - |G(k)|.

3.2. Amalgamated polyhedral group schemes
Let k be an algebraically closed field of characteristic p > 2. In this section we will give
first examples of domestic finite group schemes, the so-called amalgamated polyhedral
group schemes. Every such group scheme is of the following form:
Let Z be the center of the group scheme SL(2) and G̃ be a binary polyhedral subgroup
scheme of SL(2). Then the group scheme SL(2)1G̃/Z is an amalgamated polyhedral
group scheme. If G̃ is reduced, we say that SL(2)1G̃/Z is an amalgamated reduced-
polyhedral group scheme. Analogously, if G̃ is not reduced, we say that SL(2)1G̃/Z is
an amalgamated non-reduced-polyhedral group scheme. The binary polyhedral group
schemes were classified in [13, Section 3] and are given as follows:

For m ∈ N consider the subgroup scheme T(m) ⊆ SL(2) given by

T(m)(R) := {
(
x 0
0 x−1

)
| x ∈ µ(m)(R)},

for any commutative k-algebra R. Then T(2m) is a binary cyclic group scheme.
Let H4 be the reduced subgroup scheme of NSL(2)(T ) with H4(k) = 〈w0〉. Then there is
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The McKay quiver of a binary polyhedral group scheme

h4 ∈ GL(2)(k) such that H4 = h4T(4)h
−1
4 . For m ≥ 2 the group scheme N(m) := T(m)H4

is a binary dihedral group scheme.
For m ≥ 1 with (p,m) = 1 let ζm ∈ k be a m-th primitive root of unity. We define the
following elements of SL(2)(k):

x(ζ2m) :=
(
ζ2m 0

0 ζ−1
2m

)
, y(ζ4) := 1

ζ4 − 1
(

1 1
ζ4 −ζ4

)
, y(ζ5) := 1

ζ2
5 − ζ3

5

(
ζ5+ζ4

5 1
1 −(ζ5+ζ4

5 )

)
.

By [13, 3.2] there are unique reduced subgroup schemes T̂ , Ô and Î of SL(2) such that

T̂ (k) = 〈w0, x(ζ4), y(ζ4)〉, Ô(k) = 〈w0, x(ζ8), y(ζ4)〉

for p 6= 2, 3 and
Î(k) = 〈w0, x(ζ5), y(ζ5)〉

for p 6= 2, 3, 5. The group schemes T̂ , Ô and Î are called binary tetrahedral group scheme,
binary octahedral group scheme and binary icosahedral group scheme, respectively.

Definition 3.2.1. The following are the amalgamated polyhedral group schemes:

• For m ∈ N the group schemes PSC(m) := SL(2)1T(2m)/Z are the amalgamated
cyclic group schemes.

• For m ≥ 2 the group schemes PSQ(m) := SL(2)1N(2m)/Z are the amalgamated
dihedral group schemes.

• PST̂ := SL(2)1T̂ /Z is the amalgamated tetrahedral group scheme.

• PSÔ := SL(2)1Ô/Z is the amalgamated octahedral group scheme.

• PS Î := SL(2)1Î/Z is the amalgamated icosahedral group scheme.

3.3. The McKay quiver of a binary polyhedral group scheme
The binary polyhedral group schemes can be classified with the help of their McKay
quivers in the following way:
Let H be a finite linearly reductive group scheme, S1, . . . , Sn a complete set of pairwise
non-isomorphic simple H-modules and L be an H-module. For each 1 ≤ j ≤ n there are
aij ≥ 0 such that

L⊗k Sj ∼=
n⊕
i=1

aijSi.

The McKay quiver ΥL(H) ofH relative to L is the quiver with underlying set {S1, . . . , Sn}
and aij arrows from Si to Sj.

Proposition 3.3.1 ([13, Section 3]). Let H be a finite linearly reductive group scheme.
Then the following holds:

1. If L is a faithful H-module, then ΥL(H) is connected.
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Classification of domestic finite group schemes

2. If L is two-dimensional and self-dual, then the matrix (aij) is symmetric.

Set A := (aij) and assume that L is two-dimensional and self-dual. Then C := 2In − A
is a generalized Cartan matrix. In this situation the valued graph ῩL(H) associated to
C is called the McKay graph of H relative to L.
The next theorem characterizes the finite linearly reductive subgroup schemes of SL(2)
with respect to their McKay graph. The diagrams occurring in the table can be found in
the appendix.

Theorem 3.3.2 ([13, 3.3]). Let k be an algebraically closed field of characteristic p > 2
and H be a finite linearly reductive subgroup scheme of SL(2). Denote by L the two-
dimensional standard module of H. Then there is g ∈ SL(2)(k) such that gHg−1 and its
McKay graph ῩL(H) belong to the following list:

gHg−1 ῩL(H)
ek L̃0

T(npr) Ãnpr−1
N(npr) D̃npr+2

T̂ Ẽ6

Ô Ẽ7

Î Ẽ8

where (n, p) = 1, n+ r 6= 1 and r is the height of G0.

3.4. Classification of domestic finite group schemes
For a finite group scheme G denote by Glr the largest linearly reductive normal subgroup
scheme of G. The domestic finite group schemes are well understood in the following
way:

Theorem 3.4.1 ([17, 4.3.2]). Let G be a finite group scheme over an algebraically closed
field of characteristic p > 2. The following statements are equivalent:

1. G is domestic.

2. The principal block B0(G) of kG is of domestic representation type.

3. The principal block B0(G) is Morita-equivalent to the trivial extension of a radical
square zero tame hereditary algebra.

4. The group scheme G/Glr is isomorphic to an amalgamated polyhedral group scheme.

Proposition 3.4.2 ([13, 7.4.1]). Let G be a finite group scheme with tame principal block
B0(G) over an algebraically closed field of characteristic p > 2. Then kG is symmetric.

Remark 3.4.3. 1. Let G be a finite group scheme over an algebraically closed field
of characteristic p > 2 with tame principal block B0(G). If Glr is trivial, then all
non-simple blocks of kG are Morita-equivalent to the principal block B0(G). (see
[13, 7.3.2])
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2. The Auslander-Reiten theory of trivial extension of radical square zero tame
hereditary algebra is well understood (c.f. [24, V.3.2]). Let Q be a Euclidean
diagram, A be the trivial extension of a radical square zero tame hereditary
algebra of type Q and (n1, . . . , nl) the tubular type of Q (c.f. [44, 3.6(5)]). Then
the Auslander-Reiten quiver of A has two Euclidean components Z[Q], for each
i ∈ {1, . . . , l} two exceptional tubes of rank ni and infinitely many homogeneous
tubes.
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4. Modules for the infinitesimal amalgamated cyclic
group schemes

Each infinitesimal amalgamated cyclic group scheme is isomorphic to one of the group
schemes SL(2)1Tr for some r ≥ 1. In the case r = 1, Premet gave a complete characteri-
zation of its indecomposable modules. His work was extended in [15] to the case r > 1.
The classification given there lacks a concrete realization of the modules belonging to
the homogeneous tubes of its Auslander-Reiten quiver. The goal of this section is to
complete the classification by developing a new method to realize the missing modules.
We start by giving an overview of the results from [41] and [15]. After that we will use
a filtration of induced modules, which was introduced by Voigt ([51]), to describe the
modules in the homogeneous tubes.

4.1. The modules and Auslander-Reiten quiver of SL(2)1Tr

Let k be an algebraically closed field of characteristic p > 2. The group algebra kSL(2)1
is isomorphic to the restricted universal enveloping algebra U0(sl(2)) of the restricted
Lie algebra sl(2). There are one-to-one correspondences between the representations
of SL(2)1, U0(sl(2)) and the restricted representations of sl(2). The indecomposable
representations of the restricted Lie algebra sl(2) were classified by Premet in [41]. In
[15, 4.1] Farnsteiner incorporated these results into the Auslander-Reiten theory of this
algebra. Let T ⊆ SL(2) be the standard torus of diagonal matrices. Following [15, 4.1],
we will give here an overview of the representation theory of the group schemes SL(2)1Tr,
which is based on Premet’s work.
Let {e, f, h} denote the standard basis of sl(2). For d ∈ N0 we consider the (d + 1)-
dimensional Weyl module V (d) of highest weight d. These are rational SL(2)-modules
which are obtained by twisting the 2-dimensional standard module with the Cartan
involution (x 7→ −xtr) and taking its d-th symmetric power. Each of these modules V (d)
possesses a k-basis v0, . . . , vd such that

e.vi = (i+ 1)vi+1, f.vi = (d− i+ 1)vi−1, h.vi = (2i− d)vi.

For d ≤ p− 1 we obtain in this way exactly the simple U0(sl(2))-modules.
For s ∈ N, a ∈ {0, . . . , p − 2}, and d = sp + a Premet introduced the sp-dimensional
maximal U0(sl(2))-submodule W (d) of V (d) generated by va+1, . . . , vd. These modules
are stable under the action of the standard Borel subgroup B ⊆ SL(2) of upper triangular
matrices.
The group SL(2, k) operates on U0(sl(2)) via the adjoint representation and for each
element g ∈ SL(2, k) the space g.W (d) is a U0(sl(2))-module which is isomorphic to
W (d)g, the space W (d) with action twisted by g−1. For each g ∈ SL(2, k) the rank
variety of g.W (d) can be computed as Vsl(2)(g.W (d)) = k(geg−1).

Let b be the Borel subalgebra of sl(2) which is generated by h and e. For each i ∈
{0, . . . , p−1} let ki be the one-dimensional U0(b)-module with h.1 = i and e.1 = 0. Then
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The modules and Auslander-Reiten quiver of SL(2)1Tr

the induced U0(sl(2))-module Z(i) := U0(sl(2))⊗U0(b)ki is called a baby Verma module
of highest weight i.

Lemma 4.1.1 ([15, 4.1.2]). Let s ∈ N, a ∈ {0, . . . , p− 2}, d = sp+ a and g ∈ SL(2, k).
Then the AR-component Θ ⊆ Γs(sl(2)) containing g.W (d) is a homogeneous tube with
quasi-simple module Z(a)g. Moreover, we have ql(g.W (d)) = s.

The Auslander-Reiten quiver of each non-simple block of kSL(2)1 consists of two com-
ponents of type Z[Ã1,1] and infinitely many homogeneous tubes Z[A∞]/(τ). Thanks
to [15, 4.1], each of the p− 1 Euclidean components Θ(i) contains exactly one simple
SL(2)1-module L(i) with 0 ≤ i ≤ p− 2. This component is then given by

Θ(i) = {Ω2n(L(i)),Ω2n+1(L(p− 2− i)) | n ∈ Z}

with almost split sequences

0→ Ω2n+2(L(i)) −→ Ω2n+1(L(p− 2− i))⊕ Ω2n+1(L(p− 2− i)) −→ Ω2n(L(i))→ 0.

The Auslander-Reiten quiver of each block of kSL(2)1Tr consists of two components of
type Z[Ãpr−1,pr−1 ], four exceptional tubes Z[A∞]/(τ pr−1) and infinitely many homogeneous
tubes Z[A∞]/(τ).
Denote by w0 := ( 0 1

−1 0 ) the standard generator of the Weyl group of SL(2). The spaces
W (sp + a) and w0.W (sp + a) are stable under the action of SL(2)1Tr and therefore
already SL(2)1Tr-modules. These modules (and certain twists of them) belong to the
exceptional tubes. There was no realization given in [15] of the modules belonging to
homogeneous tubes. But the following was shown:

Lemma 4.1.2 ([15, 4.3], [15, 4.2.3]). For each l ∈ N, g ∈ SL(2) \ (B ∪ w0B) and
i ∈ {0, . . . , p− 2} there is, up to isomorphism, a unique indecomposable SL(2)1Tr-module
X(i, g, l) with resSL(2)1 X(i, g, l) ∼= g.W (lpr + i). Moreover, we have an isomorphism
X(i, g, 1) ∼= kSL(2)1Tr ⊗kSL(2)1 Z(i)g of SL(2)1Tr-modules.

We will see in section 4.3 how to realize these modules. The SL(2)1Tr-modules are then
classified in the following way:

Theorem 4.1.3 ([15, 4.3.1]). Let C ⊆ SL(2, k) be a set of representatives of SL(2, k)/B
such that {1, w0} ⊆ C and M be a non-projective indecomposable SL(2)1Tr-module.
Then M is isomorphic to a module of the following list of pairwise non-isomorphic
SL(2)1Tr-modules:

• V (d) ⊗k kλ, V (d)∗ ⊗k kλ, V (i) ⊗k kλ for d ≥ p, λ ∈ X(µ(pr−1)), d 6≡ − 1 (mod p)
and 0 ≤ i ≤ p− 1. (Modules belonging to Euclidean components)

• wj0.W (d) ⊗k kλ for j ∈ {0, 1}, d = sp + a with a ∈ {0, . . . , p − 2}, s ∈ N and
λ ∈ X(µ(pr−1)). (Modules belonging to exceptional tubes)

• X(i, g, l) for g ∈ C \ {1, w0} and d = sp + a with l ∈ N and i ∈ {0, . . . , p − 2}.
(Modules belonging to homogeneous tubes)
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4.2. Filtrations of induced modules
Let k be a field of characteristic p > 0, G a finite group scheme and N ⊆ G a normal
subgroup scheme such that G/N is infinitesimal. Let J be the kernel of the canonical
projection k[G] → k[N ]. The algebra k[G]N ∼= k[G/N ] is local and consequently the
ideal I := k[G]N ∩ J is nilpotent. Moreover, I is the augmentation ideal of k[G]N and
therefore J = Ik[G] by [52, 2.1]. Hence J is also nilpotent. Thus setting

Hl := (J l+1)⊥ = {v ∈ kG | v(J l+1) = (0)}

gives us an ascending filtration of kG consisting of (kN , kN )-bimodules

(0) = H−1 ⊆ kN = H0 ⊆ H1 ⊆ . . . ⊆ Hn = kG.

Now let Z be anN -module. Due to [51, 9.5], the canonical maps ιl : Hl⊗kNZ → kG⊗kNZ
are injective. Set Nl := im ιl. In [51, 9] Voigt introduced the following ascending filtration
by N -modules of the G-module Nn = kG ⊗kN Z:

(0) = N−1 ⊆ Z ∼= N0 ⊆ N1 ⊆ . . . ⊆ Nn.

The algebra kG becomes a (k[G]N , kN )-bimodule via (x.h)(y) = h(yx) and h • h′ = hh′

for all h ∈ kG, h′ ∈ kN , x ∈ k[G]N and y ∈ k[G]. Hence the induced module kG ⊗kN Z
has also a k[G]N -module structure. Voigt has given an alternative description of the
modules occurring in the above filtration:

Proposition 4.2.1 ([51, 9.6]). In the above situation we get the following equality:

Nl = {n ∈ Nn | ∀f ∈ I l+1 : f.n = 0}.

Moreover, the N -module Nl/Nl−1 is isomorphic to a direct sum of dimkHl/Hl−1 copies
of Z.

Let f1, . . . , fql
be generators of the k[G]N -ideal I l+1 and

vl : kG → (kG)ql , h 7→ (f1.h, . . . , fql
.h).

By the proof of [51, 9.6], the map ul := vl ⊗ idZ : Nn → N ql
n is N -linear and has kernel

Nl.
For 1 ≤ j ≤ n we define the N -linear maps pl,j := ul|Nj

. Note that these maps depend
on the choice of the generators f1, . . . , fql

. In the case that I is a principal ideal, we fix a
generator f of I and will always choose f l+1 as the generator of I l+1.

Proposition 4.2.2. Assume that I is a principal ideal. Then the following hold:

(a) ul is an N -linear endomorphism of Nn with kerul = Nl,

(b) the dimension of Nl is equal to (l + 1) dimk Z,

(c) im pl,j = Nj−l−1 for 1 ≤ l ≤ j ≤ n, and

27



Filtrations of induced modules

(d) pm,i ◦ pl,j = pm+l+1,j for all 1 ≤ j ≤ i ≤ n.

Proof. Since I is a principal ideal the same holds for I l+1. Therefore ul is an N -linear
endomorphism of Nn, so that (a) holds.
Due to 4.2.1, the image of the restriction ul|Nl+1 must lie in N0 ∼= Z. Hence the N -module
Nl+1/Nl is isomorphic to a submodule of Z. But by 4.2.1 it is also isomorphic to a
non-zero direct sum of copies of Z. Therefore it must be isomorphic to Z, which yields
(b). For l ≤ j ≤ n another application of 4.2.1 yields Nj/Nl

∼= im pl,j ⊆ Nj−l−1, with
equality due to dimension reasons.
To show that (d) holds, we first note that pm,i ◦ pl,j = pm,j ◦ pl,j. Now consider the
map vl : kG → kG, h 7→ f l+1.h, where f is the generator of I. Then we obtain
vm ◦ vl(h) = fm+l+2.h = vm+l+1(h) for all h ∈ kG. This yields pm,j ◦ pl,j = pm+l+1,j.

Voigt also gave a generalized version of Clifford theory for the decomposition of an
induced module ([51, 9.9]):

Remark 4.2.3. The stabilizer GZ of Z (see [51, 1.3]) equals G if and only if for all
l ∈ {0, . . . , n} the short exact sequence

0→ Nl−1 −→ Nl −→ Nl/Nl−1 → 0

splits.

The modules of our interest are in a somewhat opposite situation. We are interested in
conditions, when none of these sequences split.
We say that for a k-algebra A an A-module M is a brick, if EndA(M) ∼= k.

Proposition 4.2.4. Assume that the following conditions hold:

(i) I is a principal ideal,

(ii) dimk Ext1
N (Z,Z) = 1, and

(iii) kG ⊗kN Z is a brick.

Then for all l ∈ {1, . . . , n} the short exact sequence

0→ Nl−1 −→ Nl −→ Z → 0

does not split.

Proof. Since Nn = kG ⊗kN Z is a brick, it is indecomposable and the sequence

0→ Nn−1 −→ Nn
pn−1,n−→ Z → 0

cannot split. Hence there is a minimal l ∈ {1, . . . , n} such that the short exact sequence

0→ Nl−1 −→ Nl
pl−1,l−→ Z → 0

does not split. Assume l > 1. Then the diagram with exact rows
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0 Nl−1 Nl Z 0

0 Nl−2 Nl−1 Z 0

pl−1,l

pl−2,l−1

p0,l−1 p0,l id

is commutative. If we identify the rows with elements in Ext1
N (Z,Nl−1) and Ext1

N (Z,Nl−2),
then the map p∗0,l−1 : Ext1

N (Z,Nl−1)→ Ext1
N (Z,Nl−2) sends the first row to the second

row ([45, 7.2]).
By assumption (iii) and Frobenius reciprocity we have

1 ≤ dimk HomN (Z,Z) ≤ dimk HomN (Z, kG ⊗kN Z) = dimk EndG(kG ⊗kN Z) = 1.

As HomN (Z,−) is left exact, the spaces HomN (Z,Nl−1) and HomN (Z,Nl−2) can be
identified with subspaces of HomN (Z, kG ⊗kN Z). As l > 1 they are non-trivial and
consequently also one-dimensional. By assumption (ii) we have dimk Ext1

N (Z,Z) = 1.
Therefore the short exact sequence

0→ Z −→ Nl−1
p0,l−1−→ Nl−2 → 0

induces the long exact sequence

0→ HomN (Z,Z) ∼−→ HomN (Z,Nl−1) 0−→ HomN (Z,Nl−2)

∼−→ Ext1
N (Z,Z) 0−→ Ext1

N (Z,Nl−1)
p∗0,l−1−→ Ext1

N (Z,Nl−2).

Hence p∗0,l−1 is injective and sends non-split exact sequences to non-split exact sequences
([45, 7.2]). Thus the short exact sequence

0→ Nl−2 −→ Nl−1
pl−2,l−1−→ Z → 0

does not split, a contradiction. Consequently l = 1.

The following proposition gives us a tool for realizing modules belonging to homogeneous
tubes. The assumptions are for example fulfilled for SL(2)1Tr.

Proposition 4.2.5. Assume that N is infinitesimal of height 1 and that the following
conditions hold:

(a) I is a principal ideal,

(b) kG ⊗kN Z is a brick, and

(c) Z belongs to a homogeneous tube Θ of the stable Auslander-Reiten quiver Γs(N ).

Then Nl is the indecomposable N -module of quasi-length l + 1 in Θ.
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Proof. We first show, that Z is the quasi-simple module in Θ. Let

E : 0→ Z
α−→ E

β−→ Z → 0

be the almost split sequence ending in Z. By 2.2.8 we have a decomposition E = ⊕n
i=1Ei

into non-projective indecomposable N -modules. Applying HomN (Z,−) to E yields the
sequence

0→ EndN (Z) β∗→ HomN (Z,E) α∗→ EndN (Z)
As E does not split and EndN (Z) is isomorphic to k we obtain α∗ = 0 and that β∗ is
an isomorphism. Since for each i ∈ {1, . . . , n} there is an irreducible map Z → Ei we
obtain HomN (Z,Ei) 6= 0. Consequently n ≤ dimk HomN (Z,E) = dimk EndN (Z) = 1, so
that n = 1. This is only possible if Z is quasi-simple.
Now define for all l, j ∈ {1, . . . , n} with j ≥ l the maps δl := ∑l−1

i=0 pi,l : Nl → Nl−1 and
the injections ιl,j : Nl → Nj. Then we get:

p0,l+1 ◦ δl =
l−1∑
i=0

p0,l+1 ◦ pi,l =
4.2.2(d)

l−1∑
i=0

pi+1,l =
l∑

i=1
pi,l =

l−1∑
i=1

pi,l = δl − p0,l.

This gives us

( ιl−1,l , p0,l+1 ) ◦
(

−δl
ιl,l+1+δl

)
= −δl + p0,l + p0,l+1 ◦ δl = 0.

Therefore we obtain a short exact sequence:

0 Nl Nl−1 ⊕Nl+1 Nl 0.

(
−δl

ιl,l+1+δl

)
( ιl−1,l , p0,l+1 )

Now we show by induction over l that Nl belongs to Θ and has quasi-length l + 1. By
2.1.5, every exact sequence

0→ Z −→ X −→ Z → 0

is either split or almost split. Hence we have dimk Ext1
N (Z,Z) = 1. Thanks to 4.2.4, the

short exact sequence
0→ Nj−1 −→ Nj

pj−1,j−→ Z → 0
does not split for all j ∈ {1, . . . , n}. Especially the exact sequence

0→ Z −→ N1 −→ Z → 0

does not split and therefore is almost split. As Z is the quasi-simple module in Θ and
since by 2.2.8 the middle term of the above sequence has no non-zero projective direct
summand, it follows that N1 is the indecomposable N -module of quasi-length 2 in Θ.
Now let l ≥ 1 and assume for all j ≤ l that Nj is a module of quasi-length j + 1 in Θ.
As Nl and Nl−1 are indecomposable N -modules which are not isomorphic to each other
the exact sequence
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0 Nl Nl−1 ⊕Nl+1 Nl 0

(
−δl

ιl,l+1+δl

)
( ιl−1,l , p0,l+1 )

cannot split. Applying standard properties of almost split sequences ([2, V.1]) we
obtain dimk HomN (Nl, Nl) = l + 1. As for all −1 ≤ i ≤ l − 1 the map ιl−i−1,l ◦ pi,l
with image Nl−i−1 belongs to HomN (Nl, Nl), we get that these maps form a k-basis
of HomN (Nl, Nl). The only isomorphism of these maps is ιl,l ◦ p−1,l = idNl

. Hence if
ϕ = ∑l−1

i=−1 λi ιl−i−1,l ◦ pi,l ∈ HomN (Nl, Nl) is not an isomorphism, then λ−1 = 0. Thus
the image of ϕ must be a submodule of Nl−1. But then ϕ factors through

(
ιl−1,l
p0,l+1

)
and

by 2.1.4 the above exact sequence is almost split. Moreover, by 2.2.8 the middle term
of this sequence has no non-zero projective direct summand. Therefore Nl+1 must be a
successor of Nl in Θ. As Θ is a homogeneous tube, the module Nl of quasi-length l + 1
has exactly two successors, one of quasi-length l and one of quasi-length l + 2. Since
Nl−1 has quasi-length l it follows that Nl+1 must be the indecomposable N -module of
quasi-length l + 2 in Θ.

4.3. Realizations of periodic SL(2)1Tr-modules
Let k be an algebraically closed field of characteristic p > 2, T ⊆ SL(2) be the torus
of diagonal matrices and B ⊆ SL(2) the standard Borel subgroup of upper triangular
matrices. Let C ⊆ SL(2, k) be a set of representatives for SL(2, k)/B with {1, w0} ⊆ C
and g ∈ C \ {1, w0}. Set G := SL(2)1Tr for r ≥ 1 and N := SL(2)1. For 0 ≤ a ≤ p− 2
we consider the filtration by N -modules

Z(a)g ∼= N0 ⊆ N2 ⊆ . . . ⊆ Npr−1−1 = kG ⊗kN Z(a)g

of the induced module kG ⊗kN Z(a)g.

Proposition 4.3.1. For all l ∈ {0, . . . , pr−1 − 1}, the N -module Nl is isomorphic to
g.W ((l + 1)p+ a).

Proof. The augmentation ideal of k[G/N ] ∼= k[µ(pr−1)] = k[T ]/(T pr−1 − 1) is a principal
ideal. By 4.1.2 the restriction of the induced G-module kG⊗kNZ(a)g toN is isomorphic to
g.W (pr+a). Therefore 2.2.5 and Frobenius reciprocity yield dimk EndG(kG⊗kN Z(a)g) =
dimk HomN (Z(a)g, g.W (pr+a)) = 1, so that kG⊗kNZ(a)g is a brick. By 4.1.1, the module
Z(a)g is quasi-simple and belongs to a homogeneous tube Θ of the stable Auslander-
Reiten quiver Γs(N ). Additionally, 4.1.1 yields that g.W (lp + a) is the N -module of
quasi-length l in Θ. The assertion now follows by applying 4.2.5.

Remark 4.3.2. The above result can also be applied if g ∈ {1, w0}. One only has to
use another torus T̂ such that the induction of Z(a) respectively Z(a)w0 to SL(2)1T̂r is
indecomposable.

Our next result will now use this new description of these SL(2)1-modules and the
filtration of induced modules to obtain a realization of the SL(2)1Tr-modules which
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belong to homogeneous tubes. Moreover, for a subgroup scheme H of NSL(2)(T ) ∩Bg we
are able to extend these modules to SL(2)1TrH, which later will be of interest for the
classification of modules for domestic group schemes.
Denote by Bg the subgroup of SL(2) which is obtained by conjugating all elements of
B by g. Then Z(a)g ∼= g.W (p+ a) is stable under the action of Bg, so that Z(a)g is an
SL(2)1B

g-module.

Theorem 4.3.3. Let g ∈ C \ {1, w0}, 0 ≤ a ≤ p − 2 and H be a subgroup scheme of
NSL(2)(T ) ∩ Bg. For n ≥ 1 let H(n) := SL(2)1TnH and N := SL(2)1. Let r, s ≥ 1,
Y := kH(r) ⊗kH(1) Z(a)g and denote the filtration by H(r)-modules of the induced module
N := kH(r+s) ⊗kH(r) Y by

kH(r) ⊗kH(1) Z(a)g ∼= N0 ⊆ N1 ⊆ . . . ⊆ Nps−1 = N.

Then resH(r)
N Nl−1 ∼= g.W (lpr + a) for all 1 ≤ l ≤ ps.

Proof. Set G := SL(2)1Tr+s. AsH(r+s)/H(1) ∼= µ(pr+s−1)
∼= G/N we obtain k[H(r+s)]H(1) ∼=

k[µ(pr+s−1)] ∼= k[G]N . Denote the filtration by H(1)-modules of the induced module
N ∼= kH(r+s) ⊗kH(1) Z(a)g by

Z(a)g ∼= M0 ⊆M1 ⊆ . . . ⊆Mpr+s−1−1 = N.

The H(r+s)-module N is over G isomorphic to kG ⊗kN Z(a)g. These modules are also
isomorphic over k[µ(pr+s−1)] with respect to the action defined in section 4.2. Applying
4.2.1 yields that the restriction of the modules Mi to N is the filtration by N -modules
of the induced module kG ⊗kN Z(a)g. Let J be the kernel of the canonical projection
k[H(r+s)] → k[H(1)]. Then the ideal Jpr−1 is the kernel of the canonical projection
k[H(r+s)]→ k[H(r)]. By 4.2.1, we get the equality Mpr−1l−1 = resH(r)

H(1)
Nl−1 for all 1 ≤ l ≤

ps.
By 4.1.2, there is for any l ≥ 1 a unique SL(2)1Tr-module X(i, g, l) which is isomorphic
to g.W (lpr + a) over N . Thanks to 4.3.1, this module is isomorphic to resH(1)

N Mpr−1l−1 =
resH(r)
N Nl−1.

Remark 4.3.4. Thanks to this result we have realized the SL(2)1Tr-modules X(i, g, l).
Consequently, we have completed the classification of the indecomposable SL(2)1Tr-
modules.
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5. Modules for domestic finite group schemes
In this section we will develop the tools for the classification of the indecomposable
modules of an amalgamated polyhedral group scheme. At first, we will investigate a
group action on the rank variety of the Lie algebra associated to a finite group scheme.
The stabilizers of this action are connected to the stabilizers of the corresponding modules.
The main result will be that for a tame group scheme these stabilizers are cyclic groups.
After that, we will consider the decomposition of an induced module. Under certain
circumstances we are able to give a description of this decomposition. In the last
subsection we will combine our results to obtain methods for describing the modules of
an amalgamated polyhedral group scheme.

5.1. Actions on rank varieties and their stabilizers
Let k be an algebraically closed field. We say that X is a variety, if it is a separated
reduced prevariety over k and we will identify it with its associated separated reduced
k-scheme of finite type (c.f. [25],[23]). A point x ∈ X is always supposed to be closed
and therefore also to be k-rational, as k is algebraically closed. The structure sheaf of X
will be denoted by OX . Let x ∈ X be a point. The local ring of X at x will be denoted
by OX,x and its maximal ideal mX,x. The tangent space TX,x of x is defined as the dual
space (mX,x/m

2
X,x)∗.

Definition 5.1.1. Let X be a variety. A point x ∈ X is called simple, if OX,x is a
regular local ring.

The following result can be found in [40, Lemma 4] for char k = 0, but the proof can
easily be modified such that it applies to finite groups whose order are relatively prime
to the characteristic of the field.

Lemma 5.1.2. [40, Lemma 4] Let X be an irreducible variety and G be a finite group
with p - |G| which acts faithfully on X. Let x ∈ X be a fixed point of G. Then the induced
action of G on TX,x is faithful.

Remark 5.1.3. The result can also be generalized to finite linearly reductive group
schemes acting on X. Consequently there are also generalizations of the following results
to this situation.

Let k be a field of characteristic p > 0, G a finite group scheme and g := Lie(G) its
Lie algebra. The nullcone Vg is a cone, so that we can consider the projective variety
P(Vg). There is an action of the group-like elements of kG on its primitive elements and
therefore we obtain an action of G(k) on g. Moreover, this action induces an action of
G := G(k) on P(Vg).
Now the rank variety of a twisted module M g can be computed as P(Vg(M g)) =
g.P(Vg(M)). If P(Vg(M)) = {x}, then it is easy to see that GM ⊆ Gx, where Gx

is the stabilizer of x.
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Lemma 5.1.4. Let G be a finite group scheme with Lie algebra g := Lie(G) such that
the variety P(Vg) is irreducible. Assume that the order of G := G(k) is relatively prime to
p and that G acts faithfully on P(Vg). Moreover, let r := dimP(Vg) and x ∈ P(Vg) be a
simple point. Then there is an injective homomorphism Gx → GLr(k).
Proof. Since x is a fixed point of Gx and x is a simple point, the action of Gx on TP(Vg),x
is faithful, by Lemma 5.1.2. As the point x is simple, we have r = dimk TP(Vg),x. So, there
is an injective homomorphism Gx → GL(TP(Vg),x) ∼= GLr(k).
Remark 5.1.5. Let G ⊆ SL(2) with G0 ∼= SL(2)1 and M be a G0-module which belongs
to a homogeneous tube Θ. Then there are g ∈ SL(2, k) and d ∈ N with M ∼= g.W (d)
and P(Vsl(2)(g.W (d))) = {g.[e]}. Let h ∈ Gg.[e]. Then g−1hg.[e] = [e] and hence g−1hg is
an element of the standard Borel subgroup of upper triangular matrices B. From this
follows that hg.W (d) = g.W (d) and thus h ∈ Gg.W (d). Therefore we obtain

Gg.W (d) = Gg.[e].

Corollary 5.1.6. Let G be a finite group scheme with Lie algebra g = Lie(G) such that
P(Vg) is smooth and irreducible. Assume that G/G1 is linearly reductive and that G = G(k)
acts faithfully on P(Vg). Let r := dimP(Vg) and M be an indecomposable G0-module of
complexity 1. Then there is an injective homomorphism GM → GLr(k). If additionally
r = 1 (for example when kG0 is tame), then GM is a cyclic group.
Proof. By 1.4.18, the extension kG0 : kG1 is separable, so that there is an indecomposable
direct summand N of resG0

G1 M such that M is a direct summand of indG0

G1 N . Thanks
to 1.5.12 the module resG0

G1 M is indecomposable and therefore N = resG0

G1 M . General
properties of the complexity ([16, II.2]) yield

1 = cxkG0(M) ≤ cxkG0(indG0

G1 N) ≤ cxkG1(N) ≤ cxkG1(M) ≤ cxkG0(M) = 1.

Hence N has also complexity 1 and the variety P(Vsl(2)(M)) has dimension 0. By 1.6.4,
the indecomposability of M yields that the variety P(Vsl(2)(M)) consists of only one point
x. Thus GM ⊆ Gx. The first assertion now follows from 5.1.4. If r = dimP(Vg) = 1,
then GM is isomorphic to a finite subgroup of k× and therefore cyclic.
Example 5.1.7. Let H be a finite reduced linearly reductive subgroup of GLn. Then
H acts naturally on the n-fold product Gn

a(1) of the first Frobenius kernel of the additive
group Ga. Hence we can form the semi-direct product G := Gn

a(1) oH. Then G0 = Gn
a(1),

Gred = H and g := Lie(G0) is an n-dimensional abelian restricted Lie algebra with trivial
p-map. The nullcone can be computed as P(Vg) ∼= P(g) ∼= Pn−1 and G := G(k) = H(k)
acts faithfully on this variety. Hence we can apply 5.1.6, so that the stabilizer GM of
every periodic G0-module M is isomorphic to a finite subgroup of GLn−1(k).

5.2. Decomposition of induced modules
For strongly group graded algebras there are ways to describe the decomposition of an
induced module ([26, 4.5]). This decomposition is connected to the ring structure of the
endomorphism ring of this induced module via the following ring theoretic results:
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Lemma 5.2.1 ([26, 4.5.11]). Let R be a ring, N be a nil ideal of R and π : R→ R/N
be the canonical projection. Assume that R/N has a decomposition ⊕n

i=1 Ji into finitely
many indecomposable left ideals. Then R has a decomposition ⊕n

i=1 Ii into indecomposable
left ideals such that

1. π(Ii) = Ji for all i ∈ {1, . . . , n}, and

2. Ii ∼= Ij as R-modules if and only if Ji ∼= Jj as R/N-modules.

Lemma 5.2.2 ([26, 4.5.12]). Let R be a ring, M be an R-module and assume that
E := EndR(M)op has a decomposition ⊕n

i=1 Ii into finitely many indecomposable left
ideals. Then the following statements hold:

1. M ∼=
⊕n
i=1M ⊗E Ii is a decomposition into indecomposable R-modules.

2. M ⊗E Ii ∼= M ⊗E Ij as R-modules if and only if Ii ∼= Ij as E-modules.

We want to generalize the result for group graded algebras to the context of certain
modules of a finite group scheme. In the situation of G-graded algebras, these decompo-
sition results hold for G-invariant modules. In our situation this is not enough. There
are already some generalized results in the context of H-Galois extensions and H-stable
modules. Some of these results can be found in [51], [47] and [50]. In general, it is not
possible for these induced modules to obtain a decomposition as in the group graded
case. Therefore, we want to consider modules satisfying a stronger stability condition.
LetM be a multiplicative group scheme. Then we obtain for anyM-module M a weight
space decomposition M = ⊕

λ∈X(M) Mλ with

Mλ := {m ∈M | hm = λ(h)m for all h ∈ kM}.

Let G be a finite group scheme and N ⊆ G0 a normal subgroup scheme of G such that
G0/N is linearly reductive. By Nagata’s Theorem [7, IV,§3,3.6], an infinitesimal group
scheme is linearly reductive if and only if it is multiplicative.
Let M be a G0-module. For any λ ∈ X(G0/N ) we obtain a G0-module M ⊗k kλ, the
tensor product of M with the one-dimensional G0/N -module defined by λ. This defines
an action of X(G0/N ) (here we identify X(G0/N ) with a subgroup of X(G0) via the
canonical inclusion X(G0/N ) ↪→ X(G0) which is induced by the canonical projection
G0 � G0/N ) on the isomorphism classes of G0-modules and we define the stabilizer of a
G0-module as X(G0/N )M := {λ ∈ X(G0/N ) |M ⊗k kλ ∼= M}. A G0-module M is called
G0/N -regular if its stabilizer is trivial.

Proposition 5.2.3. Let G be a finite group scheme over an algebraically closed field k
and N be an infinitesimal normal subgroup scheme such that G0/N is multiplicative. Let
k(G/N ) = ⊕n

i=1 Pi be the decomposition into projective indecomposable G/N -modules.
Let M be a G-module such that resGG0 M is indecomposable and M is G0/N -regular. Then
kG ⊗kN M is isomorphic to the direct sum ⊕n

i=1M ⊗k Pi of indecomposable G-modules
and M ⊗k Pi ∼= M ⊗k Pj as G-modules if and only if Pi ∼= Pj as G/N -modules.
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Proof. Let G = G(k). Then kG0 ⊆ kG is a kG-Galois extension and kN ⊆ kG0 is a
k(G0/N )-Galois extension. We set E := EndG(kG ⊗kN M) and E ′ := EndN (M). As M
is a G-module, we can apply 1.4.13 twice to get isomorphisms

E ∼= EndG0(kG0 ⊗kN M)#kG ∼= (E ′#k(G0/N ))#kG.

Denote by π : kG0 → k(G0/N ) the canonical projection. Then the comodule map
ρ : kG0 → kG0 ⊗ k(G0/N ) is given by ρ(a) = ∑

(a) a(1) ⊗ π(a(2)). This yields

β(
∑
(a)
η(a(1))⊗ a(2)) = 1⊗ π(a).

Therefore the k(G0/N )-action on E ′ is given by

(h.f)(m) =
∑
(a)
a(1)f(η(a(2))m)

for h ∈ k(G0/N ), f ∈ E ′, m ∈ M and a ∈ kG0 with π(a) = h. Hence we obtain
(E ′)G0/N = EndG0(M).
Since G0/N is multiplicative, the space E ′ affords a decomposition into weight spaces
E ′ = ⊕

λ∈X(G0/N ) E
′
λ with E ′0 = (E ′)G0/N = EndG0(M). As M is regular we have: (c.f.

for example the proof of [15, 3.1.4])

Rad(E ′) = Rad(EndG0(M))⊕
⊕

λ∈X(G0/N )
λ 6=0

E ′λ.

Hence the Jacobson radical Rad(E ′) is stable under the action of G0/N so that Rad(E ′) =
Radk(G0/N )(E ′). By 1.4.15, we get

Rad(E ′)#k(G0/N ) ⊆ Rad(E ′#k(G0/N )).

Moreover, by 1.4.15, we have

Rad(E ′#k(G0/N ))#kG ⊆ Rad((E ′#k(G0/N ))#kG).

Therefore, (Rad(E ′)#k(G0/N ))#kG is nilpotent. By 1.5.12, the indecomposability
of resGG0 M yields that resGN M is indecomposable and therefore E ′ is local. As k is
algebraically closed, we obtain isomorphisms

(E ′#k(G0/N ))#kG)/((Rad(E ′)#k(G0/N ))#kG)
∼=(k#k(G0/N ))#kG ∼= k(G0/N )#kG
∼=k(G/N ).

Now let p : E → k(G/N ) be the surjection given by the above isomorphisms. Then the
map ψ : kG⊗kNM⊗EopEop →M⊗kk(G/N ) with ψ(a⊗m⊗ϕ) = ∑

(a) a(1)m⊗π(a(2))p(ϕ)
is an isomorphism of G-modules:
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The G-linearity follows directly from the definition of the operation on M ⊗k k(G/N ).
Let m ∈M and y ∈ kG. Then

ψ(
∑
(y)
y(1) ⊗ η(y(2))m⊗ 1) =

∑
(y)
y(1)η(y(2))m⊗ π(y(3))

=
∑
(y)
ε(y(1))m⊗ π(y(2)) = m⊗ π(y),

so that ψ is surjective and therefore bijective for dimension reasons.
Hence we have a decomposition kG ⊗kN M ∼=

⊕n
i=1M ⊗k Pi of G-modules. Now let

e1, . . . , en ∈ k(G/N ) be primitive idempotents with Pi = k(G/N )ei and set Qi :=
eik(G/N ). Then k(G/N )op = ⊕n

i=1 Qi is a decomposition into indecomposable left ideals
and by 5.2.1 this decomposition lifts to a decomposition Eop = ⊕n

i=1 Ii of indecomposable
left ideals of Eop such that p(Ii) = Qi. Let f1, . . . , fn ∈ Eop be primitive idempotents
such that p(fi) = ei. Then

ψ(kG ⊗kN M ⊗Eop Ii) = M ⊗k k(G/N )p(fi) = M ⊗k k(G/N )ei = M ⊗k Pi.

By 5.2.2 the G-module kG ⊗kN M ⊗Eop Ii is indecomposable so that M ⊗k Pi is also
indecomposable. Moreover, we have M ⊗k Pi ∼= M ⊗k Pj as a G-module if and only if
kG ⊗kN M ⊗Eop Ii is isomorphic to kG ⊗kN M ⊗Eop Ij as a G-module and by 5.2.2 these
are isomorphic if and only if Ii ∼= Ij as left ideals of Eop. By 5.2.1 we have Ii ∼= Ij as left
ideals of Eop if and only if Qi

∼= Qj as left ideals of k(G/N )op and these are isomorphic
if and only if Pi ∼= Pj as G/N -modules.

Example 5.2.4. There is a somewhat weaker result for non-regular M . Let G be
infinitesimal and M ∼= M ⊗k kλ for all λ ∈ X(G/N ). By [15, 2.1.5], the ring EndN (M)
is isomorphic to a crossed product EndG(M)#σkX(G/N ). Since M is a G-module,
we get as above an isomorphism EndG(kG ⊗kN M) ∼= EndN (M)#k(G/N ). Due to
the isomorphism (k(G/N ))∗ ∼= kX(G/N ) and [33, 9.4.17], there is an isomorphism
E := EndG(kG⊗kNM) ∼= EndG(M)⊗Mn(k). Hence Rad(E) ∼= Rad(EndG(M))⊗kMn(k)
and E/Rad(E) ∼= Mn(k). Consequently

kG ⊗kN M ∼= Mn ∼=
⊕

λ∈X(G/N )
M ⊗k kλ.

5.3. Modules of domestic finite group schemes
For any amalgamated polyhedral group scheme G there is an r ≥ 1 such that G0 is iso-
morphic to SL(2)1Tr. Recall that for l ∈ N, i ∈ {0, . . . , p− 2} and g ∈ SL(2)\ (B∪w0B)
there is a unique SL(2)1Tr-module X(i, g, l) such that resSL(2)1 X(i, g, l) ∼= g.W (lpr + i).
For g ∈ B ∪w0B, the SL(2)1-module g.W (lp+ i) is stable under the action of SL(2)1Tr.
By abuse of notation we write in this situation X(i, g, l) = g.W (lp+ i).
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Let Z be the center of the group scheme SL(2). As p > 2, the group scheme Z is
reduced with Z(k) = 〈

(
−1 0
0 −1

)
〉. Let H := NSL(2)(T ) ∩ Bg, G := SL(2)1TrH/Z and

π : SL(2)1TrH → G be the canonical projection. For all g ∈ SL(2)(k) the module
X(i, g, l) can be viewed as an SL(2)1TrH-module as in 4.3.3 and

(
−1 0
0 −1

)
acts via (−1)i.

Therefore, for even i the action factors through π, so that X(i, g, l) is a G-module. For
odd i we need to twist the action by a special character γ : SL(2)1TrH → µ(1). To define
this character consider the homomorphism

ϕ : SL(2)1TrH → SL(2)1T
g−1

r Hg−1
, x 7→ xg

−1

of group schemes and the character

γ̃ : SL(2)1T
g−1

r Hg−1 → µ(1) , ( a bc d ) 7→ dp
r

(this is a character as Hg−1 ⊆ B and as it is trivial on SL(2)1T
g−1
r ). Then γ := γ̃ ◦ϕ. By

definition γ|SL(2)1Tr is trivial and
(
−1 0
0 −1

)
acts trivially on X(i, g, l)⊗k kγ . Consequently,

the action of SL(2)1TrH on X(i, g, l)⊗k kγ factors through π. Therefore we can lift the
SL(2)1TrH-module X(i, g, l) to a G-module Y (i, g, l) for all i ∈ {0, . . . , p− 2}.
In the same way we can twist the Weyl modules V (d) and obtain a module Ṽ (d) for any
amalgamated polyhedral group scheme.

As in 4.1.3, let C ⊆ SL(2, k) be a set of representatives for SL(2, k)/B with 1, w0 ∈ C.
Let G be a group scheme, N be a normal subgroup scheme of G with G0 ⊆ N and Y be
an N -module. As in 1.5.11, the stabilizer GY is uniquely determined by the stabilizer
G(k)Y . In the same way, for h ∈ G(k), the conjugated subgroup scheme GhY is determined
by G(k)hY .
We denote by h4 ∈ GL(2)(k) the element which appears in the definition of the binary
dihedral group scheme (c.f. 3.2).

Proposition 5.3.1. Let G be an amalgamated polyhedral group scheme and r be the
height of G0. Then the following statements hold:

(a) For all l ∈ N, i ∈ {0, . . . , p− 2} and g ∈ C there is an h ∈ SL(2)(k) such that the
group scheme GhY (i,g,l) is either equal to PSQ(pr) or to PSC(npr) for one n ∈ N with
(n, p) = 1.

(b) If GhY (i,g,l) is equal to PSQ(pr), then hg ∈ h4B ∪ h4w0B.

(c) If GhY (i,g,l) is equal to PSC(npr) and n > 1, then hg ∈ B ∪ w0B.

(d) Y (i, g, l) is a GY (i,g,l)-module.

Proof. (a) The variety P(Vsl(2)) ∼= P1 is smooth. Let G := G(k). Then kG ∼= kG0 ∗G
and kGY (i,g,l) ∼= kG0 ∗ GY (i,g,l). Thanks to 3.4.1 the group scheme G is domestic.
By 3.1.4 this yields that G0 and GY (i,g,l) are domestic. Another application of 3.4.1
now shows that GY (i,g,l) is isomorphic to an amalgamated polyhedral group scheme.
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Modules of domestic finite group schemes

In particular, by 3.3.2 this isomorphism is given via conjugation by an element
h ∈ SL(2)(k). Due to 5.1.6, the stabilizer GY (i,g,l)(k) = GY (i,g,l) is a cyclic group,
so that we obtain (a) from 3.4.1 and the table in 3.3.2.

(b) A direct computation shows GhY (i,g,l) = GY (i,hg,l). Assume GY (i,g,l) = PSQ(pr). Let π :
SL(2)(k)→ PSL(2)(k) be the canonical projection, Ĝ := π−1(G) and ĜY (i,g,l) :=
π−1(GY (i,g,l)). By definition of PSQ(pr), the group ĜY (i,g,l) is a subgroup of T h4 .
Therefore ĜY (i,g,l) does only stabilize the points [h4.e] and [h4w0.e] in P(Vsl(2)). By
5.1.5, we have ĜY (i,g,l) = Ĝ[g.e]. Therefore we obtain [g.e] ∈ {[h4.e], [h4w0.e]} which
yields the assertion.

(c) Assume GY (i,g,l) = PSC(npr) with n > 1 and (n, p) = 1. By definition of PSC(npr),
the group ĜY (i,g,l) is a subgroup of T . The only points in P(Vsl(2)) which are
stabilized by T are [e] and [w0.e]. This yields as above g ∈ B ∪ w0B.

(d) First let GY (i,hg,l) = GhY (i,g,l) = PSC(npr) with n > 1 and (n, p) = 1. By (c), we
obtain hg ∈ B ∪ w0B. Therefore T(2n) ⊆ NSL(2)(T ) ∩ Bhg and Y (i, hg, l) is an
SL(2)1T(2npr)-module. As

(
−1 0
0 −1

)
acts trivially on Y (i, hg, l), it is also a PSC(npr)-

module.
If GY (i,hg,l) is equal to PSQ(pr), we obtain hg ∈ h4B ∪ h4w0B by (b). Hence
H4 ⊆ NSL(2)(T ) ∩Bhg. As (SL(2)1TrH4)/Z = PSQ(pr), we obtain that Y (i, hg, l)
is a PSQ(pr)-module.
In both cases conjugation by h−1 yields that Y (i, g, l) is a GY (i,g,l)-module.

Let G be an amalgamated polyhedral group scheme. Then G(k) acts on X := SL(2)/B
via left multiplication of the preimage of the projection SL(2)(k) → PSL(2)(k). We
denote by CG a set of representatives for X/G(k) with 1 ∈ CG and w0 ∈ CG, if w0 is not
in the same orbit as 1.

Theorem 5.3.2. Let G be an amalgamated polyhedral group scheme. Let M be an
indecomposable G-module of complexity 1. Then there are unique l ∈ N, i ∈ {0, . . . , p−2}
and g ∈ CG such that M is isomorphic to indGGY (i,g,l)

(Y (i, g, l) ⊗k kα) for a character
α ∈ X(GY (i,g,l)). Moreover, the character α can be chosen as a unique element of a
subgroup of X(GY (i,g,l)) determined by the following cases:
(a) If g ∈ {1, w0}, then α ∈ X(GY (i,g,l)/G1).

(b) If g 6∈ {1, w0}, then α ∈ X(GY (i,g,l)/G0).
Proof. The group algebra kG is isomorphic to kG0#kG(k) and thanks to 3.1.5 the group
G(k) is linearly reductive. By 1.4.18, the extension kG : kG0 is separable, so that there is
an indecomposable direct summand N of resGG0 M such that M is a direct summand of
indGG0 N . General properties of the complexity ([16, II.2]) yield

1 = cxkG(M) ≤ cxkG(indGG0 N) ≤ cxkG0(N) ≤ cxkG0(M) ≤ cxkG(M) = 1.
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Modules of domestic finite group schemes

Hence N has also complexity 1 and consequently there is g ∈ C with Vsl(2)(N) = {g.[e]}.
We first assume that g ∈ {1, w0}. Then there are unique l ∈ N and i ∈ {0, . . . , p − 2}
with resG0

G1 N
∼= g.W (lp + i). Moreover, as G0/G1 is linearly reductive, 1.4.18 yields

that kG0 : kG1 is separable. Therefore, N is isomorphic to a direct summand of
indG0

G1 g.W (lp+ i). As p does not divide dimk Y (i, g, l), [15, 2.1.4] shows that Y (i, g, l) is
G0/G1-regular. As GY (i,g,l) ∼= PSC(npr) we have that k(GY (i,g,l)/G1) = ⊕

β∈X(GY (i,g,l)/G1 kβ
is a decomposition into simple GY (i,g,l)/G1-modules. Hence an application of 5.2.3 yields
a decomposition

indGY (i,g,l)
G1 Y (i, g, l) ∼=

⊕
β∈X(GY (i,g,l)/G1)

Y (i, g, l)⊗k kβ.

Since resGY (i,g,l)
G1 Y (i, g, l) is isomorphic to g.W (lp+ i), the module indGY (i,g,l)

G0 N is a direct
summand of indGY (i,g,l)

G1 Y (i, g, l). The group algebra kG is isomorphic to the skew group
algebra kG0#kG(k). Therefore an application of 1.3.8 yields that the indecomposable
direct summands of indGG0 N are isomorphic to indGGY (i,g,l)

(Y (i, g, l)⊗k kα) with a unique
α ∈ X(GY (i,g,l)/G1).
If g 6∈ {1, w0}, then there are unique l ∈ N and i ∈ {0, . . . , p − 2} with N ∼= X(i, g, l).
Similar arguments as above now yield the second assertion.
Now let h ∈ C withM ∼= indGGY (i,h,l)

(Y (j, h,m)⊗kkβ) for β in X(GY (j,h,m)/G1) respectively
X(GY (j,h,m)/G0), m ∈ N and j ∈ {0, . . . , p− 2}. Then

resGG1 M
∼=

⊕
u∈G(k)

ug.W (lp+ i) ∼=
⊕

v∈G(k)
vh.W (mp+ j).

Thanks to 4.1.2, we obtain m = l, j = i and there is v ∈ G(k) such that vh is represented
in C by g. Therefore h and g are in the same G(k)-orbit and we obtain a unique element
g̃ ∈ CG with M ∼= indGGY (i,g̃,l)

(Y (i, g̃, l)⊗k kα).

Theorem 5.3.3. Let G be a finite subgroup scheme of PSL(2) with G1 ∼= PSL(2)1 and
tame principal block. Let M be an indecomposable G-module of complexity 2. Then M is
isomorphic to one of the following pairwise non-isomorphic G-modules:

1. Ṽ (d) ⊗k S or M ∼= Ṽ (d)∗ ⊗k S for d ≥ p with d 6≡ −1 (mod p) and a simple
G/G1-module S

2. Ṽ (i)⊗k S with 0 ≤ i ≤ p− 1 and a simple G/G1-module S.

Proof. Since G/G1 is linearly reductive, 1.4.18 yields that the extension kG : kG1 is
separable, so that there is an indecomposable direct summand N of resGG1 M such that M
is a direct summand of indGG1 N . As in the proof of 5.3.2, we obtain cxG0(N) = cxG(M) = 2.
Since G1 is isomorphic to PSL(2)1 ∼= SL(2)1, we obtain that N is isomorphic to V (d),
V (d)∗ or V (i) for a unique d ≥ p with d 6≡ −1 (mod p) or a unique 0 ≤ i ≤ p − 1. As
noted at the beginning of this section these modules are the restrictions of the G-modules
Ṽ (d), Ṽ (d)∗ and Ṽ (i). Hence we can assume that N is a G-module which is isomorphic
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Modules of domestic finite group schemes

to one of these modules. By [15, 2.1.4], the module N is G0/G1-regular and 5.2.3 yields
that the indecomposable direct summands of indGG1 N are of the form N ⊗k S for a unique
G/G1-module S.

Remark 5.3.4. The modules listed in (2) are exactly the simple G-modules.
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6. Induction of almost split sequences
Let k be an algebraically closed field. Given a finite group scheme G with normal
subgroup scheme N , we want to investigate conditions under which the induction functor
indGN : modN → modG sends an almost split exact sequence to a direct sum of almost
split exact sequences.

6.1. Almost split sequences for skew group algebras
In [42, 3.8] Riedtmann and Reiten used the functorial approach of almost split sequences
to show the following:

Theorem 6.1.1 ([42, 3.8]). Let k be a field, G be a finite group such that |G| is invertible
in k and be A ∗G a skew group algebra. Then the induction functor indG1 : A→ A ∗G
(or the restriction functor resG1 : A ∗ G → A) sends almost split sequences over A (or
over A ∗G, respectively) to direct sums of almost split sequences over A ∗G (or over A,
respectively).

The proof relies on the following properties of the involved functors:

(A) (i) There is a split monomorphism of functors idmodA → resG1 indG1 .
(ii) There is a split epimorphism of functors indG1 resG1 → idmodA∗G.

(B) (indG1 , resG1 ) and (resG1 , indG1 ) are adjoint pairs of functors.

(C̃) The finite group G is acting on modA such that for every A-module M there
is a decomposition resG1 indG1 M = ⊕

g∈GM
g and if ϕ : M → N is A-linear, then

resG1 indG1 (ϕ) = (g.ϕ)g∈G : ⊕g∈GM
g →⊕

g∈GN
g.

Recall from 1.3.5 thatM g = Ag⊗AM and N g = Ag⊗AN . The morphism g.ϕ : M g → N g

is therefore given by g.ϕ = Ag ⊗A ϕ.
It was shown that these properties also hold for the induced functors

indG1 : mmodA→ mmodA ∗G and resG1 : mmodA ∗G→ mmodA

and that they imply the following property:

(C) indG1 : mmodA → mmodA ∗ G and resG1 : mmodA ∗ G → mmodA preserve
semisimple objects and projective covers.

6.2. Induction of almost split sequences for finite group schemes
We want to apply the ideas of the proof of 6.1.1 in the context of group algebras of
finite group schemes. In this situation we will not always have analogous results for the
induction and restriction functor. For example, in [15, 3.1.4] it was already shown that
for the restriction functor this is possible if and only if the ending term of the almost
split sequence fulfills a certain regularity property.
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Induction of almost split sequences for finite group schemes

Let N be a normal subgroup scheme of a finite group scheme G. The N -modules which
will be of our interest are restrictions of G-modules. To obtain an analogue of property
(C̃) we will use the following result:

Lemma 6.2.1. Let G be a finite group scheme and N be a normal subgroup scheme of G.
Denote by C the full subcategory of modN consisting of direct sums of indecomposable
N -modules which are restrictions of G-modules. Then for each M ∈ C we have a
natural isomorphism resGN indGN M ∼= Mn where n = dimk k(G/N ). In particular, if
ι : C → modN denotes the canonical embedding, we have a split monomorphism
idmodA → resGN ◦ indGN ◦ι of functors.

Proof. Let M be a G-module. Then there is a G-linear isomorphism

ψM : indGN resGN M →M ⊗k k(G/N )

which is natural in M :
This follows directly from the tensor identity. Alternatively, exactly as in the proof of
5.2.3 one can show that the map

ψM : indGN M →M ⊗k k(G/N ), a⊗m 7→
∑
(a)
a(1)m⊗ π(a(2))

is an isomorphism of G-modules, where π : kG → k(G/N ) is the canonical projection. A
direct computation shows that it is natural in M . As a direct consequence we obtain the
assertion.

Proposition 6.2.2. Let G be a finite group scheme and N be a normal subgroup scheme
such that G/N is linearly reductive. Let X, Y and E be N -modules such that

1. every indecomposable direct summand of the modules X, Y and E is the restriction
of a G-module, and

2. E : 0→ X
ϕ−→ E

ψ−→ Y → 0 is an almost split exact sequence of N -modules.

Then indGN E is a direct sum of almost split exact sequences.

Proof. Denote by C the full subcategory of modN consisting of direct sums of indecom-
posable N -modules which are restrictions of G-modules. Denote by ι : C → modN the
canonical embedding. We first show that the following analogues of (A),(B) and (C̃)
hold:

(Â) (i) There is a split monomorphism of functors idC → resGN ◦ indGN ◦ι.
(ii) There is a split epimorphism of functors indGN resGN → idmodG.

(B̂) (indGN , resGN ) and (resGN , indGN ) are adjoint pairs of functors.

(C̆) For everyM ∈ C there is a decomposition resGN indGN M = Mn with n = dimk k(G/N )
and if ϕ : M → N is N -linear in C, then resGN indGN (ϕ) = (ϕ, ϕ, . . . , ϕ) : Mn → Nn.
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In 6.2.1 we have already seen that the properties (Â)(i) and (C̆) hold. As G/N is linearly
reductive, the k(G/N )-Galois extension kG : kN is separable by 1.4.18. Basic properties
of separable extensions (c.f. [39, Proposition 10.8]) yield that property (Â)(ii) holds.
Thanks to 1.4.21, the ring extension kG : kN is a free Frobenius extension of first kind.
Hence, by 1.4.20 the induction and coinduction functors are equivalent, so that property
(B̂) holds. As in [42, 3.5] the properties (Â), (B̂) and (C̆) also hold for the induced
functors on the functor categories.
Since ψ is minimal right almost split, the exact sequence

HomN (−, E)→ HomN (−, Y )→ SY → 0

is a minimal projective presentation of SY . From this point, we can proceed as in
the proof of [42, 3.6] to show that the functor indGN preserves semisimple objects and
projective covers which are finitely presented over C:
We start by showing that if the functor F is indecomposable in mmodG and resGN F is
semisimple in mmodN , then F is simple. If F is not simple, then there is a non-split
exact sequence

0→ H −→ F −→ G→ 0.

Since by (B̂), resGN and indGN are both left and right adjoint functors, they are exact. By
assumption, the functor resGN F is semisimple. Therefore, the sequence

0→ resGN H −→ resGN F −→ resGN G→ 0

splits. This yields a commutative diagram with exact rows:

0 indGN resGN H indGN resGN F indGN resGN G 0

F G 0

Due to (Â)(ii) the vertical arrows split. As the upper row splits, this yields the splitting
of the lower row, a contradiction.
Now let F be a simple functor that is finitely presented over C. Then property (C̆) yields,
that resGN indGN F = ⊕n

i=1 F is semisimple. Thanks to the above, this yields that indGN F is
semisimple.
Next we show that indGN SY = SindGN Y for Y ∈ C (this shows that indGN preserves
projective covers). Applying indGN to the exact sequence

HomN (−, Y )→ SY → 0

yields the exact sequence

HomG(−, indGN Y )→ indGN SY → 0.

44
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Hence there is a direct summand X of indGN Y such that

HomG(−, X)→ indGN SY → 0

is a projective cover. Applying resGN to this sequence yields the exact sequence

HomN (−, resGN X)→ resGN indGN SY → 0.

By (C̆) we obtain resGN indGN SY = ⊕
SY . The projective cover of this functor is

HomN (−,⊕Y ). As resGN X is a direct summand of resGN indGN Y = ⊕
Y , this yields

resGN X = resGN indGN Y and hence X = indGN Y .

Therefore, the functor indGN SY is semisimple and the exact sequence

indGN HomN (−, E)→ indGN HomN (−, Y )→ indGN SY → 0

is a minimal projective presentation of indGN SY ∼= SindGN Y . Hence, indGN ψ is a direct sum
of minimal right almost split homomorphisms.
Dually, one can show that indGN ϕ is a direct sum of minimal left almost split homomor-
phisms.

Lemma 6.2.3. Let G be a reduced group scheme, N be a normal subgroup scheme of
G and X and M be G-modules such that X|N and M |N are indecomposable. Then
RadN (X,M) and Rad2

N (X,M) are G-submodules of HomN (X,M).

Proof. As G is reduced, we only need to prove that RadN (X,M) and Rad2
N (X,M) are

G(k)-submodules of HomN (X,M) (see [25, Remark after 2.8]).
Let g ∈ G(k) and ϕ ∈ RadN (X,M). Assume that g.ϕ is an isomorphism with inverse ψ.
Then g−1.ψ is an inverse of ϕ, a contradiction.
Let g ∈ G(k) and ϕ ∈ Rad2

N (X,M). Then there is an N -module Z, α ∈ RadN (X,Z)
and β ∈ RadN (Z,M) such that ϕ = β ◦ α. Denote by Zg the N -module Z with action
twisted by g−1, i.e. h.z = hg

−1
z for h ∈ kN and z ∈ Zg. As X and M are G-modules,

we can define the N -linear maps

α̃ : X → Zg, x 7→ α(g−1x) and β̃ : Zg →M, z 7→ gβ(z).

Then we obtain g.ϕ = β̃ ◦ α̃. If α̃ is an isomorphism with inverse γ : Zg → X, then the
N -linear map

γ̃ : Z → X, z → g−1γ(z)
is an inverse of α, a contradiction. In the same way, β̃ is not an isomorphism. Hence
g.ϕ = β̃ ◦ α̃ ∈ Rad2

N (X,M).

Proposition 6.2.4. Let G be a finite subgroup scheme of a reduced group scheme H and
N ⊆ G a normal subgroup scheme of H such that G/N is linearly reductive. Let X and
M be G-modules such that X|N and M |N are indecomposable and such that there is an
almost split exact sequence

E : 0→ τN (M) −→ Xn −→M → 0
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of N -modules. Then there is a short exact sequence

Ẽ : 0→ N −→ X ⊗k IrrN (X,M) −→M → 0

of G-modules such that resGN Ẽ = E.

Proof. Consider the map

ψ̃ : X ⊗k HomN (X,M)→M, x⊗ f 7→ f(x)

of G-modules. As G/N is linearly reductive, the short exact sequence

0→ Rad2
N (X,M) −→ RadN (X,M) −→ IrrN (X,M)→ 0

of G-modules splits. This yields a decomposition

RadN (X,M) ∼= Rad2
N (X,M)⊕ IrrN (X,M).

Hence there results a G-linear map ψ : X ⊗k IrrN (X,M) → M by restricting ψ̃ to
X ⊗k IrrN (X,M). Let (fi)1≤i≤n : Xn → M be the surjection given by E . Since E is
almost split, the maps (fi)1≤i≤n form a k-basis of IrrN (X,M) (c.f. [1, IV.4.2]). Therefore
the restriction resGN (ψ) equals (fi)1≤i≤n.

In 6.2.2 we have seen that if we apply the induction functor to certain almost split
sequences, they will be the direct sum of almost split sequences. Our next result enables
us to describe this decomposition under a certain regularity condition.

Proposition 6.2.5. In the situation of 6.2.4 assume that M and N are G0/N -regular.
Let S be a simple G/N -module. Then the short exact sequence Ẽ ⊗k S is almost split.

Proof. Let k(G/N ) = ⊕n
i=1 Si be the decomposition into simple G/N -modules. Due to

6.2.1, there is for any G-module U a natural isomorphism ψU : indGN U → U ⊗k k(G/N ).
Therefore, we obtain the following commutative diagram with exact rows:

0 indGN N indGN (X ⊗k IrrN (X,M)) indGN M 0

0 N ⊗k k(G/N ) X ⊗k IrrN (X,M)⊗k k(G/N ) M ⊗k k(G/N ) 0

ψN ψX⊗kIrrN (X,M) ψM

As all vertical arrows are isomorphisms, the two exact sequences indGN E and ⊕n
i=1 Ẽ ⊗k Si

are equivalent.
Thanks to 6.2.2 the exact sequence indGN E is a direct sum of almost split sequences. By
5.2.3, the G-modules M ⊗k S and N ⊗k S are indecomposable. Moreover, the sequence
Ẽ ⊗k S does not split. Otherwise, the sequence resGN (Ẽ ⊗k S) would split and therefore
also E . Hence, the sequence Ẽ ⊗k S is equivalent to an indecomposable direct summand
of indGN E . As the Krull-Schmidt theorem holds in the category of short exact sequences
of finite-dimensional G-modules (as the space of morphisms between those sequences is
finite-dimensional, c.f. [29]), it follows that Ẽ ⊗k Si is almost split.
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7. The McKay and Auslander-Reiten quiver of domestic
finite group schemes

By 1.5.9, the principal block of a domestic finite group scheme is isomorphic to the
principal block of an amalgamated polyhedral group scheme. Hence, to determine the
Auslander-Reiten quiver of this block, it is enough to understand the Auslander-Reiten
quiver of the amalgamated polyhedral group schemes. Due to 3.4.3, the blocks are
Morita-equivalent to a trivial extension of a radical square zero tame hereditary algebra
and therefore the Auslander-Reiten quiver is known in an abstract way. In this chapter
we will compute the Euclidean components of this quiver by giving a concrete connection
to the McKay quiver of the associated binary polyhedral group scheme.

7.1. Euclidean AR-components of amalgamated polyhedral group
schemes

In the following it will be convenient to have a common notation for the Weyl modules
and their duals. We set

V (n, i) :=

V (np+ i) if n ≥ 0
V (−np+ i)∗ if n ≤ 0

for n ∈ Z and 0 ≤ i ≤ p− 1.

Lemma 7.1.1. Let G be a finite subgroup scheme of SL(2) with SL(2)1 ⊆ G such that
G/SL(2)1 is linearly reductive. Let 0 ≤ i ≤ p− 2 and n ∈ Z. Then

Ω2n
G (L(i)) ∼= V (2n, i)

and
Ω2n+1
G (L(i)) ∼= V (2n+ 1, p− 2− i)

In particular, Θ(i) = {V (n, i) | n ∈ Z}.

Proof. By [54, 7.1.2], there is for n ≤ 0 a short exact sequence

0→ V (n, i) −→ P (i)⊗k (V (n)∗)[1] −→ V (n− 1, p− 2− i)→ 0

of SL(2)-modules. Here P (i) denotes the SL(2)-module such that P (i)|SL(2)1 is the
projective cover of L(i). The projectivity of P (i)|SL(2)1 and Frobenius reciprocity yield
Ext1

G(indGSL(2)1
P (i),−) ∼= Ext1

SL(2)1(P (i),−) ◦ resGSL(2)1
= 0. Consequently indGSL(2)1

P (i)
is projective and as G/N is linearly reductive the module P (i)|G is a direct summand of
indGSL(2)1

P (i). Hence P (i)|G is projective and consequently the G-module P (i)⊗k(V (n)∗)[1]

is projective. Hence there is a projective G-module P with ΩG(V (n− 1, p− 2− i))⊕P ∼=
V (n, i). Since V (n, i) is a non-projective indecomposable G-module, we obtain

ΩG(V (n− 1, p− 2− i)) ∼= V (n, i).
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Euclidean AR-components of amalgamated polyhedral group schemes

Dualizing the above sequence yields ΩG(V (n, i))) = V (n+ 1, p− 2− i) for n ≥ 0 in the
same way.

Lemma 7.1.2. For all n ∈ Z and 0 ≤ i ≤ p− 2 the SL(2)-module L(1)[1] is isomorphic
to IrrSL(2)1(V (n+ 1, i), V (n, i)).

Proof. As in the proof of 7.1.1 there is for all n ∈ Z a short exact sequence

0→ V (n+ 1, i) −→ P −→ V (n, p− 2− i)→ 0

of SL(2)-modules with P being projective over SL(2)1. Applying HomSL(2)1(−, V (n, i))
to this sequence yields the exact sequence

HomSL(2)1(P, V (n, i)) α→ HomSL(2)1(V (n+ 1, i), V (n, i))
β→Ext1

SL(2)1(V (n, p− 2− i), V (n, i))→ Ext1
SL(2)1(P, V (n, i))

of SL(2)-modules. As P is projective, we obtain Ext1
SL(2)1(P, V (n, i)) = (0). Hence the

map β is surjective. By [11, 2.4], the SL(2)-module Ext1
SL(2)1(V (n, p− 2− i), V (n, i)) is

isomorphic to L(1)[1]. Hence L(1)[1] ∼= HomSL(2)1(V (n+ 1, i), V (n, i))/ ker β. As imα =
ker β is contained in Rad2

SL(2)1(V (n+ 1, i), V (n, i)), we obtain a surjective morphism

L(1)[1] → IrrSL(2)1(V (n+ 1, i), V (n, i))

of SL(2)-modules. Since both modules are 2-dimensional, this map is an isomorphism.

If G = (SL(2)1G̃)/Z is an amalgamated polyhedral group scheme we set Ĝ := SL(2)1G̃.
For any Euclidean diagram (Ãn)n∈N, (D̃n)n≥4 and (Ẽn)6≤n≤8 we will denote in the same
way the quiver where each edge • − • is replaced by a pair of arrows •� •. As shown
in the proof of [13, 7.2.3], the McKay quiver ΥL(1)[1](Ĝ/Ĝ1) is isomorphic to one of the
quivers Ã2npr−1−1, D̃npr−1+2, Ẽ6, Ẽ7, Ẽ8, where r is the height of Ĝ0 and (n, p) = 1.
For any quiver Q we denote by Qs its separated quiver. If {1, . . . , n} is the vertex set of
Q, then Qs has 2n vertices {1, . . . , n, 1′, . . . , n′} and arrows i→ j′ if and only if i→ j is
an arrow in Q. The separated quiver of one of the quivers Ã2npr−1−1, D̃npr−1+2, Ẽ6, Ẽ7, Ẽ8
is the union of 2 quivers with the same underlying graph as the original quiver and each
vertex is either a source or a sink.

Theorem 7.1.3. Let G be an amalgamated polyhedral group scheme and Θ a component
of Γs(G) containing a G-module of complexity 2. Let Q be a connected component of
ΥL(1)[1](Ĝ/Ĝ1)s. Then Θ is isomorphic to Z[Q].

Proof. Thanks to 3.4.3, all the non-simple blocks of kG are Morita equivalent to the
principal block B0(G) of kG. Additionally, by 1.5.9, the block B0(G) is isomorphic to the
block B0(Ĝ). Therefore it suffices to prove this result for G := Ĝ.
In view of 1.6.4 and 2.2.6, all modules belonging to the component Θ have complexity
2. Let S1, . . . , Sm be the simple G/G1-modules and M ∈ Θ. Due to 5.3.3, there are
0 ≤ l ≤ p− 2, n ∈ N and 1 ≤ j ≤ m such that M ∼= V (n, l)⊗k Sj.
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Euclidean AR-components of amalgamated polyhedral group schemes

Thanks to 3.4.2, the group algebra kG is symmetric. Therefore the Auslander-Reiten
translation τG equals Ω2

G (see 2.1.3). Applying 6.2.4 and 6.2.5 to the almost split exact
sequence

0→ V (n+ 2, l) −→ V (n+ 1, l)⊕ V (n+ 1, l) −→ V (n, l)→ 0

of SL(2)1-modules yields the almost split exact sequence

0→ τG(V (n, l)) −→ V (n+ 1, l)⊗k IrrSL(2)1(V (n+ 1, l), V (n, l)) −→ V (n, l)→ 0

of G-modules. Due to 7.1.1, we have τG(V (n, l)) ∼= Ω2
G(V (n, l)) ∼= V (n + 2, l). In

conjunction with 7.1.2 and 6.2.2, we now obtain the almost split exact sequence

0→ V (n+ 2, l)⊗k Sj −→ V (n+ 1, l)⊗k L(1)[1] ⊗k Sj −→ V (n, l)⊗k Sj → 0.

Hence τG(V (n, l) ⊗k Sj) ∼= V (n + 2, l) ⊗k Sj. Moreover, due to the decomposition
L(1)[1] ⊗k Sj ∼=

⊗m
i=1 aijSi, there are aij arrows V (n+ 1, l)⊗k Si → V (n, l)⊗k Sj and aij

arrows V (n+ 2, l)⊗k Sj → V (n+ 1, l)⊗k Si in Θ. Without loss we can now assume that
n = 0, so that V (0, l)⊗k Sj belongs to Θ.
Denote by {1, . . . ,m} the vertex set of ΥL(1)[1](G/G1) and by {1, . . . ,m, 1′, . . . ,m′} the
vertex set of its separated quiver. Let Q be the connected component of ΥL(1)[1](G/G1)s
which contains j′. If N is another module in Θ, then there are µ ∈ Z, 0 ≤ l̃ ≤ p− 2 and
t ∈ {1, . . . ,m} with N ∼= V (µ, l̃)⊗k St. By the above, M and N can only lie in the same
component if l = l̃. If µ = 2ν is even, then τ−νG (N) ∼= V (0, l)⊗k St. As M and N are in
the same component, there is a path

V (0, l)⊗l Sj ← V (1, l)⊗l Si1 → V (0, l)⊗l Si2 ← . . .← V (1, l)⊗l Sir → V (0, l)⊗l St
in Θ. This gives rise to a path

j′ ← i1 → i′2 ← . . .← ir → t′

in the separated quiver ΥL(1)[1](G/G1)s. Consequently, t′ ∈ Q. Similarly, if µ is odd, we
obtain t ∈ Q.
Moreover, for each arrow i→ t′ in Q and µ ∈ Z we have arrows

ϕi,t′,µ : V (µ+ 1, l)⊗k Si → V (µ, l)⊗k St and

ϕt′,i,µ+1 : V (µ+ 2, l)⊗k St → V (µ+ 1, l)⊗k Si
in Θ.
Now let ψ : Z[Q]→ Θ be the morphism of stable translation quivers given by

ψ(ν, t) = V (2ν + 1, l)⊗k St for each ν ∈ Z and t ∈ {1, . . . ,m},

ψ(ν, t′) = V (2ν, l)⊗k St for each ν ∈ Z and t′ ∈ {1′, . . . ,m′},
ψ((ν, i)→ (ν, t′)) = ϕi,t′,2ν ,

ψ((ν + 1, t′)→ (ν, i)) = ϕt′,i,2ν+1.

One now easily checks that this is an isomorphism.

49



8. Classification of modules for amalgamated polyhedral
group schemes

Let k be an algebraically closed field of characteristic p > 2. In this section we will classify
the modules of an amalgamated polyhedral group scheme. As for any domestic finite
group scheme G, the factor group G/Glr is isomorphic to an amalgamated polyhedral
group scheme and the principal blocks of these group schemes are isomorphic, we obtain
a classification of all indecomposable modules of the principal blocks of domestic finite
group schemes.
Moreover, we are able to assign to each module its component in the Auslander-Reiten
quiver by using the results in this work.

8.1. Amalgamated cyclic group schemes
Due to 3.4.3, the stable Auslander-Reiten quiver of the p−1

2 non-simple blocks of kPSC(m)

consists of two Euclidean components of type Z[Ã2npr−1−1], four exceptional tubes
Z[A∞]/(τnpr−1) and infinitely many homogeneous tubes.
For r = 1 and n = 1 we obtain PSC(m) ∼= PSL(2)1 ∼= SL(2)1. Therefore, we do not have
to consider this case.

Proposition 8.1.1. Let m ≥ 1 with m = prn, (n, p) = 1 and r > 1 or n > 1. Let
G = PSC(m) and assume {1, w0} ⊆ CG. Let M be an indecomposable non-projective
G-module. Then M is isomorphic to one of the modules belonging to the following list of
pairwise non-isomorphic G-modules:

(i) Ṽ (d)⊗k kλ, Ṽ (d)∗⊗k kλ, Ṽ (i)⊗k kλ for d ≥ p, d 6≡ −1 mod p, λ ∈ X(µ(npr−1)) and
0 ≤ i ≤ p− 1. (Modules belonging to Euclidean components)

(ii) Y (i, wj0, l) ⊗k kλ for i ∈ {0, . . . , p − 2}, l ∈ N, j ∈ {0, 1} and λ ∈ X(µ(npr−1)).
(Modules belonging to exceptional tubes of rank npr−1)

(iii) indGPSC(pr)
Y (i, g, l) for g ∈ CG \ {1, w0}, i ∈ {0, . . . , p − 2} and l ∈ N. (Modules

belonging to homogeneous tubes)

Proof. This proof has two parts. The first part uses the results of chapter 5 to determine
the modules as listed above. In the second part we will use the results about the
Auslander-Reiten quiver and stabilizers to assign these modules to their components in
the Auslander-Reiten quiver.

1. If M has complexity 2 it is by 5.3.3 isomorphic to one of the modules in (i).
Hence we can assume that M has complexity 1. Then an application of 5.3.2
yields unique l ∈ N, i ∈ {0, . . . , p− 2} and g ∈ CG such that M is isomorphic to
indGGY (i,g,l)

(Y (i, g, l)⊗k kα) for a unique character α.
Let G := G(k). By 5.1.5 we know GY (i,g,l) = G[g.e]. By computing the stabilizers
for the action of G on P(Vsl(2)), we obtain the following cases:
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Amalgamated non-reduced-dihedral group schemes

a) If g ∈ {1, w0} then GY (i,g,l) = PSC(m) and α ∈ X(GY (i,g,l)/G1) ∼= X(µ(npr−1)).

b) Otherwise GY (i,g,l) = PSC(pr) and α ∈ X(GY (i,g,l)/G0) ∼= X(µ(1)) = {1}.

These are exactly the cases (ii) and (iii).

2. IfM has complexity 2 then by 2.2.7 the component ofM is not a tube and therefore
Euclidean.
Let M be of complexity 1 and g ∈ CG be arbitrary. Thanks to 2.4.5, the component
Θ ⊆ Γs(GY (i,g,l)) of the GY (i,g,l)-module Y (i, g, l)⊗kkα is isomorphic to the component
of M . As M has complexity 1, an application of 2.2.7 yields that the component
Θ is a tube. Let Ξ ⊆ Γs(G0) be the component of resGY (i,g,l)

G0 Y (i, g, l). Then Ξ is
a tube of rank s ∈ {1, pr−1}. Denote by q the rank of Θ. Due to 2.4.7 we obtain
q ≤ |GY (i,g,l)|s.
Assume that Θ is a tube of rank npr−1. Then npr−1 ≤ |GY (i,g,l)|s ≤ npr−1 and
therefore |GY (i,g,l)| = n and s = pr−1. If r > 1, then Vsl(2)(Ξ) ∈ {ke, kf} and
therefore g ∈ {1, w0}. If n > 1, the only points in P(Vsl(2)) stabilized by GY (i,g,l) =
G[g.e] are [e] and [w0.e]. Hence we have in both cases g ∈ {1, w0}. The quasi-length
of resGY (i,g,l)

G0 Y (i, g, l) in Ξ is l. By 2.4.7 the morphism resGY (i,g,l)
G0 : Θ→ Ξ preserves

the quasi-length, so that the module Y (i, g, l) ⊗k kβ has also quasi-length l. As
the number of G-modules of quasi-length l belonging to exceptional tubes of rank
npr−1 is (p− 1)npr−1 and this number equals the number of modules in (ii) for a
fixed l, all these modules belong to an exceptional tube of rank npr−1.
Now the remaining modules in (iii) have to belong to homogeneous tubes.

8.2. Amalgamated non-reduced-dihedral group schemes
By [13, 7.4], the stable Auslander-Reiten quiver of the p−1

2 non-simple blocks of the
group scheme kPSQ(m) consists of two Euclidean components of type Z[D̃npr−1+2], two
exceptional tubes Z[A∞]/(τnpr−1), four exceptional tubes Z[A∞]/(τ 2) and infinitely many
homogeneous tubes.
The representation theory of the amalgamated dihedral group schemes is the most
complicated case. If n = 2 and r = 1 we are not able to distinguish the two cases
of exceptional tubes and all exceptional tubes are of rank 2. For r > 1 we are in the
non-reduced case.

Proposition 8.2.1. Let m ≥ 2 with m = prn and (n, p) = 1. Assume r > 1 or n > 2.
Let G = PSQ(m) and assume {1, h4, h4w0} ⊆ CG. Let M be an indecomposable non-
projective G-module. Then M is isomorphic to one of the modules belonging to the
following list of pairwise non-isomorphic G-modules:

(i) Ṽ (d)⊗kS, Ṽ (d)∗⊗kS, Ṽ (i)⊗kS for d ≥ p, d 6≡ −1 mod p, S a simple G/G1-module
and 0 ≤ i ≤ p− 1. (Modules belonging to Euclidean components)

51



Amalgamated non-reduced-dihedral group schemes

(ii) indGPSC(m)
(Y (i, 1, l) ⊗k kλ) for i ∈ {0, . . . , p − 2}, l ∈ N and λ ∈ X(µ(npr−1)).

(Modules belonging to exceptional tubes of rank npr−1)

(iii) indGPSQ(pr)
(Y (i, h4w

j
0, l) ⊗k kλ) for j ∈ {0, 1}, i ∈ {0, . . . , p − 2}, l ∈ N and λ ∈

X(µ(2)). (Modules belonging to exceptional tubes of rank 2)

(iv) indGPSC(pr)
Y (i, g, l) for g ∈ CG\{1, h4, h4w0}, i ∈ {0, . . . , p−2} and l ∈ N. (Modules

belonging to homogeneous tubes)

Proof. This proof has two parts. The first part uses the results of chapter 5 to determine
the modules as listed above. In the second part we will use the results about the
Auslander-Reiten quiver and stabilizers to assign these modules to their components in
the Auslander-Reiten quiver.

1. If M has complexity 2 it is by 5.3.3 isomorphic to one of the modules in (i).
Hence we can assume that M has complexity 1. Then an application of 5.3.2
yields unique l ∈ N, i ∈ {0, . . . , p− 2} and g ∈ CG such that M is isomorphic to
indGGY (i,g,l)

(Y (i, g, l)⊗k kα) for a unique character α.
Let G := G(k). By 5.1.5 we know GY (i,g,l) = G[g.e]. By computing the stabilizers
for the action of G on P(Vsl(2)), we obtain the following cases:
a) If g = 1, then GY (i,1,l) = PSC(m) and α ∈ X(GY (i,1,l)/G1) ∼= X(µ(npr−1)).

b) If g ∈ {h4, h4w0}, then GY (i,g,l) = PSQ(pr) and α ∈ X(GY (i,g,l)/G0) ∼= X(µ(2)).

c) Otherwise, GY (i,g,l) = PSC(pr) and α ∈ X(GY (i,g,l)/G0) ∼= X(µ(1)) = {1}.

These are exactly the cases (ii)-(iv).

2. IfM has complexity 2 then by 2.2.7 the component ofM is not a tube and therefore
Euclidean.
Let M be of complexity 1 and g ∈ CG be arbitrary. Thanks to 2.4.5, the component
Θ ⊆ Γs(GY (i,g,l)) of the GY (i,g,l)-module Y (i, g, l)⊗kkα is isomorphic to the component
of M . As M has complexity 1, an application of 2.2.7 yields that the component
Θ is a tube. Let Ξ ⊆ Γs(G0) be the component of resGY (i,g,l)

G0 Y (i, g, l). Then Ξ is
a tube of rank s ∈ {1, pr−1}. Denote by q the rank of Θ. Due to 2.4.7, we obtain
q ≤ |GY (i,g,l)|s. An application of 5.1.6 yields that |GY (i,g,l)| = |G[g.e]| ≤ n.
Assume that Θ is a tube of rank npr−1. Then npr−1 ≤ |GY (i,g,l)|s ≤ npr−1 and
therefore |GY (i,g,l)| = n and s = pr−1. If r > 1, then Vsl(2)(Ξ) ∈ {ke, kf} and
therefore g ∈ {1, w0}. If n > 2, the only points in P(Vsl(2)) stabilized by the group
GY (i,g,l) = G[g.e] are [e] and [w0.e]. Hence we have in both cases g = 1, as w0 is in
the same G-orbit as 1. The quasi-length of resGY (i,g,l)

G0 Y (i, g, l) in Ξ is l. By 2.4.7,
the morphism resGY (i,g,l)

G0 : Θ → Ξ preserves the quasi-length, so that the module
Y (i, g, l)⊗k kβ has also quasi-length l. As the number of G-modules of quasi-length
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l belonging to exceptional tubes of rank npr−1 is (p − 1)npr−1 and this number
equals the number of modules in (ii) for a fixed l, all these modules belong to an
exceptional tube of rank npr−1.
Now assume that Θ is a tube of rank 2. Then g 6= 1. By 8.1.1, the equality s = pr−1

is only given for g ∈ {1, w0}. As w0 is in the same orbit as 1 we therefore obtain
s = 1. Moreover, we are now in the cases (b) and (c) so that |GY (i,g,l)| ≤ 2. Since
2 ≤ |GY (i,g,l)|s = |GY (i,g,l)| we obtain |GY (i,g,l)| = 2. Therefore M is isomorphic to
a module in (iii). With the same arguments as above, all modules in (iii) belong to
an exceptional tube of rank 2.
Now the remaining modules in (iv) have to belong to homogeneous tubes.

8.3. Amalgamated reduced-polyhedral group schemes
Let G be an amalgamated reduced-polyhedral group scheme so that G/G1 is reduced and
set G := G(k). Then G acts faithfully on P(Vsl(2)). The map

ζ : P1 → P(Vsl(2)), (a : b) 7→
[(

ab a2

−b2 −ab

)]

is an isomorphism of varieties and induces a faithful action of G on P1 such that ζ is
G-equivariant. Up to an automorphism of P1, this action is given by the natural action of
PSL(2)(k) on P1. This action plays a role in the classification of the polyhedral groups.
Let F be the set of points in P1 with non-trivial stabilizer. Then G acts on the finite set
F . Let p1, . . . , pd be a complete set of representatives of the orbits of this action. For
each i ∈ {1, . . . , d}, there is gi ∈ SL(2)(k) such that ζ(pi) = [gi.e]. Set ci := |Gpi

| and
c := |G|. Thanks to [49, 4.4], we have d = 2 if G is cyclic and d = 3 otherwise. For d = 3
the tuple (c, c1, c2, c3) belongs to the set {(2n, 2, 2, n), (12, 2, 3, 3), (24, 2, 3, 4), (60, 2, 3, 5)}.
Define

Q :=


D̃n+2 if (c, c1, c2, c3) = (2n, 2, 2, n)
Ẽ6 if (c, c1, c2, c3) = (12, 2, 3, 3)
Ẽ7 if (c, c1, c2, c3) = (24, 2, 3, 4)
Ẽ8 if (c, c1, c2, c3) = (60, 2, 3, 5)

Note that these numbers also coincide with the tubular types of Q ([44, 3.6]). Moreover,
this quiver coincides with the McKay quiver of G.
By 3.4.3, the stable Auslander-Reiten quiver of the p−1

2 non-simple blocks of kG consists
of two Euclidean components of type Z[Q], two exceptional tubes Z[A∞]/(τ c1), two
exceptional tubes Z[A∞]/(τ c2), two exceptional tubes Z[A∞]/(τ c3) and infinitely many
homogeneous tubes.

Proposition 8.3.1. Let G be an amalgamated reduced-polyhedral group scheme and set
G := G(k). Let M be an indecomposable non-projective G-module. Then M is isomorphic
to one of the modules belonging to the following list of pairwise non-isomorphic G-modules:
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(i) Ṽ (d)⊗kS, Ṽ (d)∗⊗kS, Ṽ (i)⊗kS for d ≥ p, d 6≡ −1 mod p, S a simple G/G1-module
and 0 ≤ i ≤ p− 1. (Modules belonging to Euclidean components)

(ii) indG
PSCg1

(c1)
(Y (i, g1, l)⊗k kλ) for i ∈ {0, . . . , p−2}, l ∈ N and λ ∈ X(µ(c1)). (Modules

belonging to exceptional tubes of rank c1)

(iii) indG
PSCg2

(c2)
(Y (i, g2, l)⊗kkλ) for j ∈ {0, 1}, i ∈ {0, . . . , p−2}, l ∈ N and λ ∈ X(µ(c2)).

(Modules belonging to exceptional tubes of rank c2)

(iv) indG
PSCg3

(c3)
(Y (i, g3, l)⊗kkλ) for j ∈ {0, 1}, i ∈ {0, . . . , p−2}, l ∈ N and λ ∈ X(µ(c3)).

(Modules belonging to exceptional tubes of rank c3)

(v) indGSL(2)1
Y (i, g, l) for g ∈ CG \ {g1, g2, g3}, i ∈ {0, . . . , p− 2} and l ∈ N. (Modules

belonging to homogeneous tubes)

Proof. If M has complexity 2, it is by 5.3.3 isomorphic to one of the modules in (i). By
2.2.7, the component of M is not a tube and therefore Euclidean.
Hence we can assume thatM has complexity 1. Then an application of 5.3.2 yields unique
l ∈ N, i ∈ {0, . . . , p−2} and g ∈ CG such thatM is isomorphic to indGGY (i,g,l)

(Y (i, g, l)⊗kkα)
for a unique character α.
As G/G1 is reduced and the group GY (i,g,l) is cyclic, we obtain GY (i,g,l) = PSCg(n) for
n = |GY (i,g,l)| = |G[g.e]|. Let Θ ⊆ Γs(G) be the component of M and Ξ ⊆ Γs(GY (i,g,l)) be
the component Y (i, g, l)⊗k kα. As G/G1 is reduced, 2.4.5 yields that indGGY (i,g,l)

: Ξ→ Θ
is an isomorphism of stable translation quivers. Moreover, Ξg−1 ⊆ Γs(PSC(n)) is the
component containing Y (i, 1, l). By 8.1.1, the component Ξ is an exceptional tube of
rank n. Hence, Θ also has rank n and all modules belonging to Θ are of the form
indGPSCg

(n)
(Y (i, g, s)⊗k kβ) with s ∈ N and β ∈ X(µ(n)).

Now the assertion follows from the description of the stabilizers given above.

Remark 8.3.2. The problem, that we have to analyze the non-reduced case separately,
is due to the fact that we do not have the isomorphism indGGY (i,g,l)

: Ξ→ Θ (c.f. [15, 4.3]).
Therefore, one has to find a functor that can substitute the induction functor in this
context.
One way could be, to use an alternate approach to realize the modules X(i, g, l). The
filtration we used seems to be connected to a filtration in the context of Hopf-Galois
extensions introduced in [47].
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9. Quotients of support varieties and ramification
The goal of this chapter is to describe a geometric connection between the tubes in the
Auslander-Reiten quiver of a finite group scheme G and the corresponding tubes in the
Auslander-Reiten quiver of a normal subgroup scheme N of G. We will see that the
support variety of N is a geometric quotient of the support variety of G. The geometric
connection will then be given via the ramification indices of the quotient morphism.

9.1. Quotients of varieties and ramification
Let x ∈ X, R be a commutative k-algebra and ιR : k → R be the canonical inclusion.
Then we denote by xR := X(ιR)(x) the image of x in X(R). An action of a group scheme
on a variety is always supposed to be an action via morphisms of schemes.
Definition 9.1.1. Let H be a group scheme acting on a variety X.

1. A pair (Y, q) consisting of a variety Y and an H-invariant morphism q : X → Y
is called categorical quotient of X by the action of H, if for every H-invariant
morphism q′ : X → Y ′ of varieties there is a unique morphism α : Y → Y ′ such
that q′ = α ◦ q.

2. A pair (Y, q) consisting of a variety Y and an H-invariant morphism q : X → Y of
varieties is called geometric quotient of X by the action of H if the following holds:
a) The underlying topological space of Y is the quotient of the underlying

topological space of X by the action of the group H(k).
b) q : X → Y is an H-invariant morphism of schemes such that the induced

homomorphism of sheafs OY → q∗(OX)H is an isomorphism.

3. If x ∈ X is a point, then the stabilizer Hx is the subgroup scheme of H given by
Hx(R) = {g ∈ H(R) | g.xR = xR} for every commutative k-algebra R.

Thanks to [37, 12.1], there is for any finite group scheme H and any quasi-projective
variety X an up to isomorphism uniquely determined geometric quotient which will be
denoted by X/H. Moreover, the quotient morphism q : X → X/H is a finite morphism,
i.e. there exists an open affine covering X/H = ⋃

i∈I Vi such that q−1(Vi) is affine and
the homomorphism k[Vi]→ k[q−1(Vi)] of rings is finite for all i ∈ I.
Example 9.1.2. Let H be a finite group scheme and A be a finitely generated commuta-
tive k-algebra. Then the set X := MaxspecA of maximal ideals of A is an affine variety.
An action of H on X gives A the structure of a kH-module algebra. Then the set

AH := {a ∈ A | h.a = ε(h)a for all h ∈ kH}

of H-invariants is a subalgebra of A. As H is finite, the subalgebra is also finitely
generated and X/H = MaxspecAH.
Let A = ⊕

n≥0An be additionally graded with A0 = k and A+ = ⊕
n>0An be its irrelevant

ideal. Then the set X = ProjA of maximal homogeneous ideals which do not contain
A+ is a projective variety. If H acts on X, then X/H = ProjAH.
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Quotients of varieties and ramification

Let X be a variety with structure sheaf OX . For a point x ∈ X we denote by OX,x the
local ring at the point x. We say that a point x ∈ X is simple, if its local ring OX,x
is regular. If R is a commutative local ring, we will denote by R̂ its completion at its
unique maximal ideal. Let V be a k-vector space of dimension n with basis b1, . . . , bn.
Let t1, . . . , tn be the corresponding dual basis of V ∗. We define the ring of polynomial
functions of V as k[V ] := k[t1, . . . , tn]. Its completion k[[t1, . . . , tn]] at the maximal ideal
(t1, . . . , tn) will be denoted by k[[V ]].
For future reference we will recall the following facts:

Remark 9.1.3. Let X be an n-dimensional variety and x ∈ X.

(i) A point x ∈ X is simple if and only if ÔX,x ∼= k[[x1, . . . , xn]].

(ii) Let H be a finite group scheme acting on X and assume that there is a geometric
quotient (Y, q) of this action. Then ÔY,q(x) ∼= (ÔX,x)Hx ([35, Exercise 4.5(ii)]).

(iii) Let H be a linearly reductive group scheme acting on k[[x1, . . . , xn]] via algebra
automorphisms. Then there is an n-dimensional H-module V such that there is an
H-equivariant isomorphism k[[V ]] ∼= k[[x1, . . . , xn]] of k-algebras. (c.f. [46, Proof of
1.8])

Definition 9.1.4. Let f : X → Y be a finite morphism, x ∈ X and y = f(x). Let my

be the maximal ideal of the local ring OY,y. Then ex(f) := dimkOX,x/myOX,x is called
the ramification index of f at x.

As the morphism f is finite, the induced homomorphism OY,y → OX,x endows OX,x with
the structure of a finitely generated OY,y-module. Therefore the number ex(f) is finite.

Lemma 9.1.5. Let H be a finite linearly reductive group scheme which acts faithfully
on a 1-dimensional irreducible quasi-projective variety X. Let q : X → X/H denote the
quotient morphism. If x ∈ X is a simple point, then Hx

∼= µ(n) for some n ∈ N and
ex(q) = |Hx|.

Proof. Since x is a simple point andX is one-dimensional, 9.1.3 (i) yields aHx-equivariant
isomorphism ÔX,x ∼= k[[T ]]. By 9.1.3 (iii), we can assume that the one-dimensional k-
vector space 〈T 〉k is an Hx-module. As X is irreducible, the field of fractions of OX,x
is the function field k(X) of X. If K is the kernel of the action of Hx on OX,x, then
it acts also trivially on k(X) and therefore also on X. As H acts faithfully on X, it
follows that K is trivial. Therefore, 〈T 〉k is a faithful Hx-module and we can assume
Hx = µ(n) ⊆ GL1 where n = |Hx|. As Hx acts via algebra automorphisms, this yields
k[[T ]]Hx = k[[T n]]. By 9.1.3 (ii), we have ÔX/H,q(x) ∼= ÔHx

X,x. Since ÔX,x is the completion
of OX,x at is maximal ideal mx and the ideal mq(x)OX,x is contained in mx, we obtain an
isomorphism ÔX,x/mq(x)ÔX,x ∼= OX,x/mq(x)OX,x. As a result, we obtain

ex(q) = dimk ÔX,x/mq(x)ÔX,x = dimk k[T ]/(T n) = n = |Hx|.
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Ramification of the restriction morphism

9.2. Ramification of the restriction morphism
If N is a normal subgroup scheme of G then G/N acts via automorphisms of graded
algebras on H•(N , k) and therefore on P(VN ).

Proposition 9.2.1. Let G be a finite group scheme and N be a normal subgroup scheme
of G such that G/N is linearly reductive. Then (P(VG), ι∗,N ) is a geometric quotient for
the action of G/N on P(VN ).

Proof. Since G/N is linearly reductive, the Lyndon-Hochschild-Serre spectral sequence
([25, I.6.6(3)]) yields an isomorphism ι• : H•(G, k)→ H•(N , k)G/N . Therefore, (P(VG), ι∗,N )
is a geometric quotient for the action of G/N on P(VN ).

Let G be a finite group scheme and N ⊆ G be a normal subgroup scheme with G0 ⊆ N .
Set G := G/N (k). As in 2.4, the group G acts on the set of components of Γs(N ). As
before, there is a unique subgroup scheme GΘ ⊆ G with kGΘ = (kG)GΘ .
As in 2.4, let N be an indecomposable non-projective N -module and Ξ the corresponding
component in Γs(N ). Assume there is an indecomposable non-projective direct summand
M of indGN N and let Θ be the corresponding component in Γs(G).
Now assume that Θ and Ξ are tubes. Then the varieties P(VG(Θ)) and P(VN (Ξ)) consist
of single points xΘ and xΞ, respectively. Thanks to [20, 5.6], we have ι−1

∗,N (P(VG(M))) =
P(VN (resGN M)). By 2.4.4, the module resGN M has an indecomposable direct summand
which belongs to Ξ. Hence,

xΞ ∈ ι−1
∗,N (P(VG(M))) = ι−1

∗,N (xΘ),

so that ι∗,N (xΞ) = xΘ.

Proposition 9.2.2. Let Ξ be a tube of rank n and Θ be a tube of rank m. Assume that
G0 ⊆ N and set G := (G/N )(k). Moreover, assume the following

1. G/N is linearly reductive, i.e. p does not divide the order of G,

2. G acts faithfully on P(VN ),

3. the variety P(VN ) is one-dimensional and irreducible,

4. xΞ is a simple point of P(VN ), and

5. all modules belonging to Ξ are GΞ stable.

Then m ≤ exΞ(ι∗,N )n.

Proof. The group algebra kG is a strongly G-graded k-algebra with (kG)1 = kN . As G
acts faithfully on the one-dimensional irreducible variety P(VN ) with simple point xΞ,
we obtain due to 9.1.5, that the stabilizer GxΞ is a cyclic group and we have the equality
exΞ(ι∗,N ) = |GxΞ|. Now the assertion follows directly from 2.4.7.
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Ramification of the restriction morphism

In the case of amalgamated polyhedral group schemes we can show that the ramification
index is actually equal to the ranks of the corresponding tubes.

Proposition 9.2.3. Let G be an amalgamated polyhedral group scheme, N := G1 its first
Frobenius kernel and Θ be a tube. Then Θ has rank exΞ(ι∗,N ).

Proof. If G is an amalgamated non-reduced-dihedral group scheme or an amalgamated
cyclic group scheme, then one obtains this result directly from 8.2.1 and 8.1.1 by
comparing the numbers. The other cases are either proved in the same way by using the
corresponding classification or with the following arguments:
Assume that G is an amalgamated reduced-polyhedral group scheme. Then the group
algebra kG is isomorphic to the skew group algebra kSL(2)1 ∗ G(k). Let M be an
indecomposable G-module which belongs to Θ and U be an indecomposable direct
summand of resGGΞ

M with indGGΞ
U = M . Denote by Λ the Auslander-Reiten component

of Γs(GΞ) which contains U . Then 2.4.5 yields, that indGGΞ
: Λ→ Θ is an isomorphism of

stable translation quivers. Now the assertion follows from the cyclic case, as GΞ(k) is a
cyclic group.
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A. Euclidean Diagrams
The following list shows the Euclidean diagrams which occur in this work:

Ãn:

• • . . . • •

•

n+ 1 nodes

D̃n:

• •

• . . . •

• •

n+ 1 nodes

Ẽ6:

•

•

• • • • •

Ẽ7:

•

• • • • • • •

Ẽ8:

•

• • • • • • • •
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The arrows of the directed graph Ãn,n with underlying diagram Ã2n−1 are directed as
follows:

Ãn,n:

•

• •

• •

... ...

• •

• •

•

2n nodes

Another diagram which may come up at some point is the point with two loops:

L̃0: •
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