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Chapter 1 INTRODUCTION 

 
1.1 Parkinson’s disease 

Parkinson’s disease (PD) is the second most frequent neurodegenerative disorder, 

affecting up to 2 percent of individuals 65 years and older and nearly 10 percent of people 

older than 80 years (Rijk et al., 1997; von Campenhausen et al., 2005). PD is characterised by 

the loss of specific subsets of dopaminergic neurons in the substantia nigra pars compacta 

which project to the dorsal striatum (McGeer et al., 2004). However, PD is considered a 

multisystemic disorder in which predisposed neuronal types in specific regions of the 

peripheral, enteric and central nervous systems become progressively involved by presenting 

neuronal loss, Lewy bodies and Lewy neuritis (Del Tredici et al., 2002). 

The neuropathology of PD is associated with alpha-synuclein-containing Lewy-Bodies 

(Sabbagh et al., 2009). The distribution pattern of alpha-synuclein develops in a 

topographically predictable sequence in six stages, during which components of the olfactory, 

autonomic, limbic and somatomotor systems become progressively involved. In the final 

stages (Braak V-VI) the pathological process might reach the sensory association cortex, 

prefrontal cortex and finally the entire neocortex (Braak et al., 2006). 

Main clinical symptoms of PD are motor: tremor, rigidity, slowness of movement and 

postural instability. Yet, non-motor symptoms are also common: up to 40% of patients suffer 

from depression, up to 40% have mild cognitive impairment in the early phase of the disease 

and up to 80% of PD patients will develop dementia (Aarsland et al., 2011; Buter et al., 2008; 

Williams-Gray et al., 2007). Other symptoms include sensory, sleep and emotional 

impairments. 

Modern treatment methods are effective in managing the early motor symptoms by 

using levodopa and dopamine agonists. Yet, as the disease progresses the medication 

eventually becomes ineffective and the last resort are surgical interventions like deep brain 

stimulation procedures. 

 

1.2 Motor system 

The clinically manifest phase of PD reveals itself mainly with motor impairments 

(tremor, rigidity) and changes in the motor system. Initial research on the function of motor 

cortex have started around 1950’s with the invasive mapping of the motor cortex (Penfield et 

al., 1950). This led to the description of a motoric map along the precentral gyrus known as 

the primary motor cortex (M1). Further research showed that stimulation of regions anterior 
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to M1 causes more complex movements. Today the cortical motor system can be divided as 

follows (Figure 1.1): 

• Primary motor cortex, responsible for generating nervous impulses that control 

movement’s execution. 

• Premotor cortex, responsible for motor guidance of movements and controlling 

proximal muscles of the body and trunk. 

o dorsal premotor cortex (PMd) 

o ventral premotor cortex (PMv) 

• Supplementary motor area (SMA), responsible for planning and coordinating complex 

movements like those that need both hands. 

• Cingulate motor areas (CMA), responsible for preparing and executing movements 

that have been practiced and memorised (Picard et al., 1996). 

• Posterior parietal cortex, responsible for transformation of visual information in motor 

commands. 

• Other regions involved in motor activity – cerebellum, basal ganglia. 

A B  

Fig. 1.1. The human motor system. Inflated left hemisphere of the brain in lateral (A) 
and medial view (B). M1 = primary motor cortex; PMdr = rostral dorsal premotor 
cortex; PMdc = caudal dorsal premotor cortex; PMv = ventral premotor cortex SMA = 
supplementary motor area; CCZ = caudal cingulate zone RCZp = posterior rostral 
cingulate zone; RCZa = anterior rostral cingulate zone. CMA = CCz+RCZp+RCZa. 
Figure based on Brodmann area maps in FreeSurfer. Figure adapted (Picard et al., 
2001; Rizzolatti et al., 1998b). 

The functional organization of motor regions is based on two gradients (Geyer et al., 2000a; 

Passingham, 1995; Rizzolatti et al., 1998b): 

A. Posterior-to-Anterior („Simple” – to – „Complex”). Posterior areas are active in case of 

”simple” movements (when movement is a routine) while more anterior areas become 

active in case of more ”complex” movements (when movement is not a routine). 
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B. Ventrolateral-to-Dorsomedial („Exteroceptive guidance” – to – „interoceptive guidance”). 

Ventrolateral areas are used when the movement is guided by exteroceptiv triggers (visual, 

auditive) while dorsomedial areas are used when movement is guided by ”internal triggers” 

that can represent internal feedback circuits (e.g., basal ganglia) and/or proprioceptive. 

 

1.2.1 Primary motor cortex 

Structure. The primary motor cortex (M1) is situated in the precentral gyrus. M1 is 

somatotopically organized and the volume of cerebral matter assigned for a specific body part 

represents the volume of control that M1 performs over these areas. M1 is subdivided into a 

rostral area (M1r) and a caudal area (M1c), but this division does not apply to the face area 

(Stepniewska et al., 1993). These two regions show differences with respect to 

cytoarchitectonic (pyramidal cells in M1r are smaller then in M1c), connectivity and 

electrophysiological properties (intracortical micro-stimulation thresholds are higher in M1r) 

(Matelli et al., 1989; Strick et al., 1982). These two areas have each a somatotopic 

representation of the first finger, index and possibly the middle finger (Geyer et al., 1996). 

Morphologically M1 is divided into 6 layers: supragranular, internal granular, two 

infragranular, internal pyramidal and fusiform (multiform) layer. Pyramidal cells are the main 

type of cells within the infragranular and internal pyramidal layers and these cells emit the 

majority of corticobulbar and corticospinal fibres. 

Connectivity. The main output of the motor cortex is the corticospinal tract which has 

several origins: 50% of fibres start from M1, 10-20% from PMd and PMv, 10-20% from SMA 

and 15-20% from CMA (Dum et al., 1991). Subcortically, M1 projects to the striatum, 

mesencephalon, brainstem and the spinal cord (Jones et al., 1977). The majority of inputs to 

M1 come from the parietal cortex (37%, including direct projections from the primary and 

secondary somatosensory cortices, and especially to M1c) and from secondary motor areas 

(27%, including somatotopic projections from PMd, SMA and CMA, and especially to M1r) 

(Ghosh et al., 1987). M1 also receives subcortical inputs (36%) from the basal ganglia (via the 

ventro-anterior thalamic nucleus, VA) and the cerebellum (via the ventro-lateral thalamic 

nucleus, VL) (Matelli et al., 1989; Strick et al., 1974). The posterior parietal cortex (PE, area 

5) provides M1 with information about the location of body parts – the PE-M1 skeletomotor 

circuit (Caminiti et al., 1996). 

Function. The basic function of M1 is to control the movement execution. It is assumed 

that M1r is preferentially involved in early stages of the movement, which include postural 

adjustment for maintaining balance in order to reach the objects, while M1c is involved 
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predominantly in the late stages of the movement, when the cutaneous and kinaesthetic 

feedback is crucial and a fine finger adjustment is needed (Stepniewska et al., 1993). But in 

order to perform a movement, the neurons within M1 have to choose the direction to be 

reached. A single M1 neuron forms synapses and embranchments with multiple groups of 

spinal neurons and can determine the contraction of multiple muscles (Penfield et al., 1950). 

Thus, in order to perform a directed movement, the neuronal population vector initially 

denotes the target, then it rotates until the necessary target is reached and the final reach 

direction is chosen as a sum of vectors of the direction to be reached and the neurons to be 

stimulated (Georgopoulos et al., 1988). As a result, the outputs from a big M1 area converge 

at the level of spinal neurons that control muscles and determine the movement of only one 

body part (Geyer et al., 2000a). This way, the function of M1 represents the activity of each 

cell as a singular ”vote” for a specific direction of movement (Bear et al., 2007). 

 

1.2.2 Premotor cortex 

Structure. Anterior from M1 is situated the premotor cortex, which is subdivided in 

dorsal premotor (PMd) and ventral premotor (PMv) and each of them is further subdivided in 

rostral (PMdr, PMvr) and caudal (PMdc, PMvc) areas (Picard et al., 2001). PMvr was further 

subdivided into PMvrab (located on bank of the arcuate sulcus in primates) and PMvrc (on 

the cortical convexity of the arcuate sulcus). Specifically in PMdr, when compared to M1, 

there is a decreased number of Betz giant cells and an increased intra-cortical micro-

stimulation threshold (Gabernet et al., 1999; Geyer et al., 2000b; Petrides et al., 2000). PMv is 

totally agranular and has somatotopic representations of the arm, neck, face and mouth 

(Gentilucci et al., 1988; Grèzes et al., 2001). PMvc comprises neurons that are primarily 

bimodal (56%) somatosensory and visual receptive fields, and unimodal (44%) which are 

typically tactile field (Graziano et al., 1994). Also, PMvr is specific for the presence of 

“canonic” neurons (in PMvrab) and “mirror” neurons (in PMvrc) with very specialized 

functions (Geyer et al., 2000a; Rizzolatti et al., 1998b). 

Connectivity. PMdc sends projections to M1 and descending projections to the spinal 

cord (Dum et al., 1991; He et al., 1995). PMdr projects to the superior colliculus, reticular 

formation in the brainstem and strong connections to the prefrontal cortex (Geyer et al., 

2000a; Lu et al., 1994). PMdr doesn’t project to M1 or spinal cord and has almost no 

connections with PMdc (Dum et al., 1991; He et al., 1993; Kurata, 1991; Luppino et al., 1993; 

Wang et al., 2001). PMv send projections to M1 from nearly all the PMvc and a small part of 

PMvr (Luppino et al., 1993). Also dorsal PMvc (hand representation) sends projections to 
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reticular formation and spinal cord, while ventral PMvc (face representation) sends 

projections to facial nucleus (Dum et al., 1991; He et al., 1995). Both PMd and PMv receive 

inputs from posterior parietal cortex, from associative sensory cortex as well as feedback from 

basal ganglia through thalamic VA and VL nuclei (Matelli et al., 1998; Rizzolatti et al., 

1998b). PMdc is the target of connections from putamen and pallidum, the ventral part of 

PMdr receives afferents from nucleus caudatus and the dorsal area of PMdr is part of the 

subcortical oculomotor circuit (Matelli et al., 1996). PMvrc receives inputs from prefrontal 

cortex strong connections from pre-SMA, while PMvc has more connections from SMA. 

Subcortically, PMvr receives cerebellar inputs through area X Olszewski, as part of the 

cerebellar-thalamic-cortical loop and additional projections from VPLo and VLc, while PMvc 

receives thalamo-cortical and strio-pallidary inputs from VLo, VLc and VPLo (Geyer et al., 

2000a). 

Function. Premotor areas are involved in action planning (together with basal ganglia) 

and refinement of movements based on sensory information (together with cerebellum) (Dum 

et al., 1991). Specifically PMd is involved in preparing and generating the movement, but it 

depends on the observational signals (Boussaoud, 1995; Horwitz et al., 2000; van Mier et al., 

1998). PMdc has a dominant function for movement initiation and memorizing after 

analysing proprioceptive, tactile and visual responses, while PMdr is activated only during 

visual stimulus (Halsband et al., 1982; Kurata et al., 1994; Petrides, 1982). Also PMd activity 

evolves when learning a new selection mapping, and especially PMdr is involved in the 

cognitive process (Boussaoud, 2001; Mitz et al., 1991). PMd is also involved in localizing the 

stimulus, even if the stimulus location isn’t task-relevant, thus it’s more associated with 

choosing the target direction, while M1 with limb’s direction (Boussaoud et al., 1993; di 

Pellegrino et al., 1993; Shen et al., 1997). 

PMv is involved in planning and executing hand movements (Schubotz et al., 2003). 

PMvc is activated mainly during proximal hand movements while PMvr during distal 

movements (Gentilucci et al., 1988). Also PMvc codifies a space of specific coordinates for 

the body parts, which are associated with the somatosensory fields of the bimodal neurons 

(Gentilucci et al., 1988; Graziano et al., 1994). The canonic neurons in PMvrab have four 

different functions: grasping, holding, tearing, manipulating (Rizzolatti et al., 1988). 

Specifically, canonic neurons are involved in the transformation of 3D objects in a certain 

hand construction (Gallese et al., 1994; Murata et al., 1997). The mirror neurons in PMvrc are 

active when observing a person performing a specific action and afterwards performing that 

similar action. Simple observation of the person, the object or grasping the object with 
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another object (e.g. forceps) does note reveal any discharges in the mirror neurons. 

Additionally, mirror neurons are active when grasping the object in darkness (Rizzolatti et al., 

1998a). 

 

1.2.3 Supplementary Motor Area 

Structure. As part of the motor system, the supplementary motor area (SMA) is located 

on the medial part of the frontal lobe, as a continuity to M1 and PMd, and is divided into 

SMA proper and pre-SMA based on histochemical, cytoarchitectonical, connectivity and 

physiological criteria (Luppino et al., 1990; Matelli et al., 1985; Matelli et al., 1991; 

Matsuzaka et al., 1992). SMA has an increase of cellular density in the inferior IIIrd layer and 

superior part of Vth layer, while pre-SMA is clearly laminated and one of its features is the Vth 

layer which is dark and well delimited from IIIrd and VIth layers. SMA has a somatotopic 

representation: caudally the leg area and rostrally the hand area and a small oro-facial 

representation. Pre-SMA contains only a somatotopic representation for the hand (Luppino et 

al., 1991). SMA proper has been further suggested to be divided in rostral and caudal SMA 

(Kaas, 1995; Vorobiev et al., 1998). 

Connectivity. SMA sends projections to M1, the spinal cord – thoraco-lumbar (from the 

caudal part of SMA) and cervico-thoracic segments (from the rostral part of SMA), and to the 

contralateral SMA (Barbas et al., 1987; Dum et al., 1991; He et al., 1995; Keizer et al., 1989; 

Lu et al., 1994; Muakkassa et al., 1979; Rizzolatti et al., 1996). Pre-SMA has only 

corticobulbar projections to the superior colliculus and the reticular formation in the 

brainstem (Geyer et al., 2000a; He et al., 1993; Keizer et al., 1989; Lu et al., 1994). SMA 

receives thalamic inputs from VLo, putamen and pallidum and cortical inputs from PMdc and 

PMvc (~25%), PMdr, PMvr, pre-SMA (~20%), secondary somatosensory, posterior parietal 

(~20%), cingulate cortices (~20%) and M1 (~20%). Pre-SMA receives thalamic inputs from 

VApc, area X, dorsal medial thalamic nucleus, caudate and cerebellum and cortical inputs 

from PMdr, PMvr (~40%), prefrontal cortex (~20%), cingulate cortex (~20%), PMdc, PMvc, 

SMA (~15%), posterior parietal and superior temporal areas (~5%) (Alexander et al., 1986; 

Matelli et al., 1996; Rizzolatti et al., 1996; Rouiller et al., 1994). 

Function. SMA is involved in temporal organization of movements and planning of the 

learned sequences (Jenkins et al., 2000). This is the region of preparation potential, which 

starts a second before the movement is initiated and the stimulation of SMA creates the 

necessity of movement (Geyer et al., 2000a). Additionally, a large proportion of SMA cells 

(41%) are specialized in perimovement activity only (the activity immediately before, during 
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or immediately after the movement (Churchland et al., 2010)). In SMA the perimovement is 

movement specific, independent of sequence in 61% of cases, while in pre-SMA, though it is 

less common, the perimovement activity reflects a particular movement in a particular 

sequence (Matsuzaka et al., 1992; Tanji, 1996). It has been shown that bilateral lesions of 

SMA block the learning of new motor sequences, yet pre-SMA has been shown to have a 

stronger involvement in cognitive processes as well as a role in preserving the learned motor 

sequences (Boussaoud, 2001; Grafton et al., 1998; Jenkins et al., 1994). In fact, the neurons 

preferring to learn new sequences are more common for pre-SMA (~25%) than in SMA 

(~10%), yet the pre-SMA activity depends on visual input, because inactivation of pre-SMA 

impairs the performance of motor sequences from memory when visual cues are absent 

(Shima et al., 1998). Pre-SMA is also involved in monitoring the task performance and 

switching between the tasks (Hikosaka et al., 2002; Matsuzaka et al., 1992). Unilateral lesions 

of SMA/pre-SMA cause transient akinesia and bimanual dyscoordination (mirror 

movements), while bilateral SMA/pre-SMA lesions cause a lasting deficit in selecting and 

initiating the movement in the absence of an indication what to do, ”when” – is not important 

(Brinkman, 1981; Goldberg, 1985; Thaler et al., 1995). 

 

1.2.4 Cingulate motor areas 

Structure. The cingulate sulcus contains three separate motor areas which are parts of 

the motor system: the rostral anterior cingulate zone (RCZa), rostral posterior cingulate zone 

(RCZp) and caudal cingulate zone (CCZ) (Picard et al., 1996). RCZa and CCZ have been 

described to have a somatotopic face representation (Picard et al., 1996). 

Connectivity. CMA has been shown to send projections to limbic structures such as 

retrosplenial, parahippocampal, entorhinal, temporal pole (Morecraft et al., 1998). CMA 

receives projections form the dorsolateral prefrontal cortex (8/9/10/46), orbitofrontal, insular, 

posterior cingulate, premotor cortices and M1 (Hatanaka et al., 2003; Morecraft et al., 1993; 

1998; Morecraft et al., 2000; Morecraft et al., 2004; Picard et al., 1996). RCZ receives 

projections from anteromedial occipital, ventral prefrontal, posterior orbitofrontal cortices, 

rostral putamen, ventral anterior and ventrolateral thalamus, while CCZ receives only from 

ventrolateral thalamus (Hatanaka et al., 2003; Morecraft et al., 2004; Picard et al., 1996). 

Additionally, in humans CMA receives projections from M1, while no such connections have 

been described in monkeys (Habas, 2010). CMA is also part of the corticofacial, 

corticopontine and corticorubral tracts (Picard et al., 1996). 
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Function. CMA has a role in preparing and executing movement sequences which have 

been well practiced and memorized (Picard et al., 1996). CCZ specifically, is activated 

especially in relation to movement execution (Fink et al., 1997; Kwan et al., 2000; Petit et al., 

1998; Picard et al., 1996). Also, CCZ and SMA have the tendency to be co-activated during 

manual tasks, but still CCZ activation is well separated from SMA activation (Koski et al., 

2000; Picard et al., 2001). CCZ is also activated during painful stimuli (Kwan et al., 2000). 

RCZ is involved in ”conflict monitoring” (an evaluative function) and „attention/selection of 

action” (a motor function) (Botvinick et al., 1999; Carter et al., 2000; Petersen et al., 2004). It 

was further suggested that conflict monitoring reflects the properties of RCZa while selection 

of action is specific for RCZp (Picard et al., 2001). Additionally RCZ activation was 

associated with a word generating task (Crosson et al., 1999). 

 

1.3 Connectivity 

1.3.1 General aspects of connectivity 

Cortical and subcortical grey matter regions are connected and interact through the 

white matter fibre pathways, which form the brain’s communication network. The physical 

condition of a given pathway will influence how effectively it can be used to transmit signals 

between brain regions and might thereby influence performance of behaviours that rely on 

that pathway (Fields, 2008). Individual differences in white matter structure may therefore be 

expected to correlate with variations in behavioural performance (Johansen-Berg, 2010; 

Scholz et al., 2009). In addition, changes in white matter structure over time might 

accompany behavioural decrements or gains in performance due to disease, recovery or 

learning. 

Brain connectivity has three main categories: structural, functional and effective. 

Structural connectivity describes a physical network of connections, which may correspond 

to fibre pathways or individual synapses (i.e., a network of anatomical links). It includes the 

biophysical attributes of structural connections that are expressed in parameters such as 

connection strength or effectiveness (Bullmore et al., 2009). The physical pattern of these 

connections may be thought of as relatively static at shorter time scales (seconds to minutes), 

but may be plastic or dynamic at longer time scales (hours to days), for example during 

learning or development (Sporns, 2009). 

Functional connectivity is defined as the pattern of activity between distributed and 

often spatially remote neuronal groups (Friston et al., 1993; Friston, 1994). There is a 

significant overlap between anatomical network modules and functional systems in the cortex, 
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yet the functional activity does not necessarily coincide with the actual causal effects of the 

structural model (Chen et al., 2008). Functional connectivity can be empirically measured as a 

correlation/covariance, spectral coherence or phase locking and it is highly time dependent, 

i.e. it changes on time scales that are significant relative to experimental perturbations and the 

temporal progression of cognitive states. In large-scale brain networks functional connectivity 

can change within hundreds of milliseconds.  

Effective connectivity is defined as the network of causal effects of one neural system 

over another (Büchel et al., 2000; Friston, 1994). Inferring effective connectivity is possible 

in two ways – through assessing the effects of perturbations, or by performing sophisticated 

time series analysis. Model-free attempts to reconstruct patterns of causal influence usually 

quantify the gain in information about the future state of one time series from observing the 

past state of another. Effective connections usually change on fast time scales. 

 

1.3.2 Connectivity in Parkinson’s disease 

Although the main site of neurodegeneration in Parkinson’s disease (PD) is a small 

subcortical region in the basal ganglia, neuroimaging studies showed widespread changes in 

the neuronal activity within both subcortical and cortical structures (Jahanshahi et al., 1995; 

Playford et al., 1992; Rascol et al., 1997; Sabatini et al., 2000a; Samuel et al., 1997; Thobois 

et al., 2004; Turner et al., 2003). Basal ganglia controls the functioning of the frontal regions 

by five segregated basal ganglia thalamo-cortical circuits: the lateral orbitofrontal circuit, the 

“motor circuit” (which is primarily directed to the precentral motor fields), two prefrontal 

circuits and the oculomotor circuit (Alexander et al., 1986; Alexander et al., 1990; Mehler-

Wex et al., 2006). Further, it has been suggested that in PD there is a switch from the use of 

striato-mesial frontal circuits to parietal-lateral premotor circuits (Samuel et al., 1997). 

Several studies confirmed this shift. For example a Wisconsin Card Sorting Task study in 

non-demented PD patients, determined a significant activation bilaterally in the RCZa (BA 

32), PMv, PMd (BA 6) and other non-motor areas, while in healthy controls these regions 

showed a reduction of the signal (Monchi et al., 2001). Other studies showed changes in the 

functional and effective connectivity in PD during rest, motor tasks and cognitive tasks, 

suggesting that normal functional networks are disrupted by the basal ganglia degeneration in 

PD, and alternative networks may be activated as a compensatory strategy (Helmich et al., 

2009a; Palmer et al., 2009; Rowe et al., 2002; Wu et al., 2009). Helmich and colleagues 

showed in a recent study the presence of alternative networks in PD when compared to 

healthy controls, e.g. the anterior putamen presented an increase of functional connectivity 
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with parietal operculum, supramarginal gyrus, insula and inferior temporal gyrus (Helmich et 

al., 2009b). On the other hand, previous MRI studies showed that in PD the posterior putamen 

is affected the most, and indeed the posterior putamen showed reduced functional 

connectivity with CMA, primary and secondary somatosensory cortices and supramarginal 

gyrus, suggesting the presence of a shift in cortico-striatal connections from posterior 

putamen to anterior putamen (Brück et al., 2006; Caspers et al., 2006; Helmich et al., 2009b). 

Other studies reported a functional disconnection of SMA, with compensatory 

amplification of lateral premotor systems, probably determined by primary pre-SMA and 

SMA dysfunction, regions that are especially vulnerable in PD (Haslinger et al., 2001).  

Palmer and colleagues also reported connectivity differences between control subjects 

and PD with respect to basal ganglia, thalamic and cortical connections (Figure 1.2), 

suggesting that not only the output from the basal ganglia is disrupted in PD, but the input 

connections to the basal ganglia are functionally impaired as well (Palmer et al., 2010; 

Rektorova et al., 2007). Additionally PD subjects had a unique pattern of connectivity from 

the cerebellum, putamen, globus pallidus, thalamus and right caudate (Figure 1.2). 

Nevertheless, novel connections reflected the functional connections, rather than anatomical 

ones (Palmer et al., 2010). 
 

 
Fig. 1.2. Cortical connectivity patterns in healthy controls and PD patients. 
Right/Left = right/left hemisphere. Blue connections are present only in healthy 
controls. Red connections are present in healthy controls and PD patients. Green 
connections are present only in PD patients. PFC = prefrontal cortex, M1 = primary 
motor cortex, SMA = supplementary motor area, RCZ = rostral (anterior) cingulate 
cortex, CCZ = caudal (posterior) cingulate cortex, PRC = precuneus. Figure adapted 
(Palmer et al., 2010). 

 
1.3.3 Connectivity research methods. Transcranial magnetic stimulation. 

A widely used tool for measuring the connectivity is the transcranial magnetic 

stimulation (TMS). TMS is a non-invasive method for stimulating the human cortex through 

intact skull (Barker et al., 1985). Using the principle of electromagnetic induction, the rapidly 
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alternating magnetic pulses passing through a coil placed over subject’s head, reach the brain 

with neglectable attenuation and inducing a secondary ionic current in the brain. The power of 

electric current in the coil is 2-10 kA, power of induced magnetic field is 1-2 T, magnetic 

field is present for approximately 200 µs and the area that can be stimulated is almost 3 cm2 

and 2 cm in depth (Ebmeier et al., 2001; Maeda et al., 2003). The region to stimulate a 

nervous fibre is the place along its length in which sufficient current passes through its 

membrane and causes a depolarization (Abdeen et al., 2002; Barker, 2002; Maccabee et al., 

1993). 

In the field of motor control TMS is used to study the function in two main ways: by 

testing the connectivity between structures and by interfering with the function of specific 

brain areas. The simplest example of TMS connectivity is the motor evoked potential (MEP) 

in response to stimulation of motor cortex. This is the consequence of an impulse transmitted 

through at least two synaptic connections from corticospinal tract to spinal motoneuron at the 

spinal cord and from peripheral motor axon to muscle in the periphery. However, though the 

consequence of activity in corticospinal tract is easy to measure, many other outputs are 

activated by TMS applied on the level of motor cortex. A number of techniques are now 

available to detect motor control outputs after applying the TMS to a variety of sites in 

cortical, subcortical and brainstem regions. 

One method for studying connectivity with TMS is the usage of multifocal TMS, using 

several coils to detect inputs from other areas of the cortex onto the motor cortex (Siebner et 

al., 2003). This method uses a standard single TMS pulse to motor cortex evoking an MEP in 

the target muscle, but prior to this pulse a conditioning TMS pulse can be given by a second 

stimulator on another region of the scalp. If the conditioning stimulus changes the MEP 

amplitude, then we can conclude that there is an influence of the conditioning site on the 

motor cortex. If the interval of this influence is short, then the effect is likely to be produced 

by a direct pathway linking the two regions (Rothwell, 2010). 

 

1.4 Concepts of the study 

1) It has been shown that PD patients have an impaired RT with an increase of more than 

30% in RT when compared to age-matched healthy controls (Wilson, 1925). Yet, other 

studies revealed the presence of large variations with respect to RT in PD – some 

parkinsonians being quite slow, whereas others having a relatively normal RT (Evarts et al., 

1979). This can be caused by the fact that the speed of movement and the speed of response 

initiation may be independently impaired in PD even in the same patient when comparing the 
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two limbs (Evarts et al., 1981). RT is a valuable parameter for understanding the functional 

activity in the cortical motor regions, the correlation between RT and cortical parameters 

might reveal the specific changes in the cortical motor regions. 

2) It has been reported that neurons within the cerebral cortex are organized into 

ontogenetic columns that run perpendicular to the surface of the brain (Mountcastle, 1997). 

The radial unit hypothesis of cortical development argues that the cells within a column share 

a common origin and the size of the cortical area is driven by the number of columns while 

the cortical thickness is influenced by the number of cells within a column (Rakic, 1988; 

Rakic, 2007). Additionally, it has been suggested that this parameter reflects the state of the 

underlying white matter fibres, and more tension or shrinkage of the white matter fibres could 

lead to deeper sulci and extended cortical area indirectly imaging white matter tract damage 

(Van Essen, 1997). Thus, cortical thickness and cortical area are parameters that can be used 

to analyse the cortical morphology. 

3) Five segregated basal ganglia thalamo-cortical circuits have been described, by which 

the control over the functioning of the frontal regions is performed (Alexander et al., 1986). 

The “motor circuit” (which is primarily directed to the precentral motor fields) together with 

the two prefrontal circuits (which project to the dorsolateral prefrontal and lateral 

orbitofrontal cortex), the oculomotor circuit (leading to the frontal and supplementary eye 

fields), and the limbic circuit (connected to the cingulate and medial orbitofrontal cortex) 

might be mainly involved in inducing the structural cortical changes in PD (Alexander et al., 

1990; Mehler-Wex et al., 2006). Based on this concept, PD patients might present changes in 

the cortical thickness and cortical area parameters in the motor areas, dorsolateral prefrontal 

cortex, the orbitofrontal cortex and the cingulate region. 

4) Previously is has been shown that caudate, putamen and thalamic nuclei volumes are 

significantly smaller in PD than in age-matched healthy controls, and the volume decline in 

PD did not correlated with age or sex (Lisanby et al., 1993). Nevertheless, the changes in the 

parameters of cortical morphology in the motor areas in PD might reveal a correlation with 

the volumes of subcortical nuclei. 
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Chapter 2 HYPOTHESIS AND AIMS 

 

This study had the following aims: 

1) to determine the reaction time in patients with Parkinson’s disease in comparison to 

healthy controls. 

2) to analyse the changes of the cortical integrity in patients with Parkinson’s disease in 

comparison to healthy controls. 

3) to analyse the correlation between reaction time and cortical thickness in patients with 

Parkinson’s disease. 

4) to analyse the correlation between the cortical (specifically the cortical area parameter) 

and the subcortical changes (specifically the volumes of segmented subcortical 

structures) in patients with Parkinson’s disease. 

 

The hypotheses for this study were: 

1) Reaction times in patients with Parkinson’s disease are significantly slower compared 

to healthy controls. 

2) Reaction times in patients with Parkinson’s disease correlate with cortical thickness. 

This correlation differs in healthy controls and in patients with Parkinson’s disease. 

3) Cortical thickness and cortical area show significant changes in Parkinson’s disease 

when compared to healthy controls. 

4) Cortical integrity correlates with the volumes changes of segmented subcortical gray 

matter structures. 
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Chapter 3 PARTICIPANTS AND METHODS 

 

3.1 Inclusion/exclusion criteria 

TMS criteria. For healthy controls the criteria were chosen according to safety aspects 

for TMS and MRI, in order to minimize the adverse effects. Inclusion: (a) healthy controls, 

men and women, with age corresponding to the PD group (mean 60 years) (b) no neurological 

pathologies, (c) written consent of the participant. The exclusion criteria are in accordance 

with those previously described in the safety guidelines (Rossini et al., 1994). 

MRI criteria. The inclusion criteria for MRI images were: (1) only MRI images of 3 

Tesla, (2) MRI examination should be the performed the closest possible to the TMS testing 

day, (3) no visible neurological, structural deficits or specific anomalies on MRI images. 

Criteria for patients with Parkinson’s disease. For patients with PD the criteria for 

Inclusion were: (a) patients with diagnosis of Parkinson’s disease and without confirmed 

dementia according with DSM-IV, (b) patient’s written consent. Additional exclusion 

criterion was the absence of intracerebral implants (e.g. deep brain stimulation electrodes). 

 

3.2 Study design 

3.2.1 Reaction time in patients with Parkinson’s disease 

3.2.1.1. Healthy subjects collective description 

In this study thirteen healthy controls (HC) were included (nine men, mean age ± s.d.: 54.4 

±7.4 years) and fourteen patients with PD (five men, mean age ± s.d.: 66.5 ±7.6 years). All 

subjects were right-hanged, according with Edinburgh Handedness Inventory, and all 

presented written informed consent for the study (Oldfield, 1971). Procedures for the 

experiment have been approved by the Ethics Committee of Christian-Albrechts University in 

Kiel, and were processed according to Helsinki Declaration (Annas, 1998). 

 

3.2.1.2.Transcranial Magnetic Stimulation 

We applied TMS to examine the corticospinal motor projections’ functional integrity. 

Specifically, this study was based on the property of TMS to produce a synchronized 

activation of cortical neurons, followed by a long-lasting inhibition – a transient effect that is 

usually mentioned as a ”virtual lesion” and was widely used to examine the functional 

relevance of the stimulated area in behaviour (Jahanshahi et al., 1999; Pascual-Leone et al., 

2000; Walsh et al., 2000). 
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For this study we used two ”P Stim 160 stimulator” devices (MAG & MORE Gmbh, 

München, Germany), connected with two minicoils of special modified configuration of 

figure-eight design with an external diameter of ~10 cm, that were applied over left M1 and 

PMd regions. The coils of figure-eight design are capable to stimulate the brain regions more 

focally (Daskalakis et al., 2002; Gershon et al., 2003). The changed geometry of the used 

coils, shifted the maximal stimulation in the x-axis away from the geometric centre of the coil 

towards one edge of the coil (Groppa et al., 2012). The magnetic stimulus that was used had a 

biphasic configuration of the pulse, which was shown to produce a quick alternative electric 

field with a lower energetic usage then the monophasic pulse (Daskalakis et al., 2002). 

The electrical potential, which represents the response to motor cortex or motor 

pathways stimulation and is defined as the Motor Evoked Potential (MEP), was registered 

from the peripheric muscle using surface electrodes (Maeda et al., 2003). Based on the 

highest evoked MEP results in the contralateral FDI muscle, we found the spot on the skull of 

the hand motor area in the region of the left M1. The optimal position for activating the FDI 

muscle was found by moving the coil in steps of 0.5 cm around the hand motor area. The 

regions where the applied stimulus with a slight over threshold intensity, produced 

permanently the highest MEPs with the deepest waves in the contralateral first dorsal 

interosseus (FDI) muscle (the motor hot spot), were marked with a red marker by colouring 

the coil’s borders. After that, the position of the coil for the left PMd was defined, based on 

the position of the motor hot spot. One positron emission tomography study showed that the 

localization of PMd is ~2 cm anterior from the hand area in the motor cortex (Fink et al., 

1997). The coil was fixed under an angle of 45-55 degrees from the medium line of the 

central sulcus, inducing a postero-anterior current in the stimulated cortex. In the coil applied 

over the PMd site, the direction of the pulse was changed, in order to make the stimulation in 

the same direction as in M1. The small diameter of these coils and the type of the handle, 

allowed the positioning of each coil over the target region at the optimal level. 

MEPs were registered bilaterally from the FDI and adductor pollicis brevis muscles on 

the right hand, using electrodes with 9 mm diameter and AgCl surface. The active electrode 

was placed on the muscle pulp, and the reference electrode at the level of metacarpo-

phalangeal joint of the indicis finger. FDI muscle was the target for MEP registrations. MEP 

responses were amplified using Digitimer D360 amplifier (Digitimer Ltd, Welwyb Garden 

City, Herts, UK), by filtering from 3 Hz up to 1 kHz. Signals were digitalized using 

laboratory interface CED 1401 and were saved at the frequency of 5 kHz. In order to register 

base EMG activity during the measurements, EMG signals were continuously monitored 



 21 

acoustically. The peak-to-peak amplitude of MEPs were analysed using a personal computer 

and the software NuCursor (J. Rothwell, Neurology Institute, London University College, 

GB). 

After positioning the coils, the rest motor threshold (RMT) was determined. RMT is 

defined as the minimum TMS intensity (expressed as a percentage of maximum stimulator 

output) that elicits reproducible MEPs in a fully relaxed target muscle in 50% of 10 to 20 

successive trials (Rossini et al., 1994). 

Test pulse (TP) over M1 was adjusted to evoke an MEP of 0.5 mV peak-to-peak 

amplitude. For stimulating the PMd, we used the intensity of 90% of the RMT (conditioning 

pulse) determined over M1. The conditioning pulse over PMd was applied after the TP on 

M1. 

 
Fig. 3.1. Reaction time research paradigm 

 

3.2.1.3. Description of the choice reaction time task 

We used a choice reaction time task (CRTT) paradigm – a selection task, because in 

elderly people CRTT impairment is greater than simple RT (Simon, 1967). During the task, 

on a screen placed in front of subject’s central visual field, at a distance of 30 cm, two shapes 

were presented – a circle and a square, and they remained on the screen until the subject 

initiated an answer by pressing a tab on the keyboard (using the CEDRUS type keyboard, RB 

series, Cedrus Corporation, San Pedro, USA) with the indicator finger of the right hand. The 

stimuli were modelled and presented using the E-PRIME software on a personal computer 
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(Psychology Software Tools, Pittsburgh, USA), and initiated by CED 1401. After applying a 

stimulation asynchrony (SA) of 100 ms or 125 ms after presenting the image, a sequence of 

TMS pulses was applied in the form of a singular TP over M1 on the left side or a double 

pulse over M1-PMd on the left side at ISI of 0.8 ms, 1.2 ms and 2.0 ms. For each ISI, 10 

MEPs were registered. Additionally 20 unconditional TPs were applied. Until the appearance 

of the next image, an interval of 5 seconds was maintained. The sequence of SA trials was in 

a different order for each subject. 

 

3.2.1.4. Statistical analysis 

For statistically analysing the results we used SPSS 17.0 software (SPSS, Chicago, IL, 

USA). Differences were considered significant if p≤0.05. The analysis of ANOVA variates 

was performed based on the factors included in the study: Group (on 2 levels: Parkinson 

group and HC group), Hand (on 2 levels: right, left), SA (on 2 levels: 100, 125 ms) and Pulse 

(on 5 levels: without pulse, single pulse, double pulse and at ISI 0.8, 1.2, 2.0 ms). 

Additionally for the significant values, we performed a pared post-hoc comparison after 

Fisher (p≤0.05; without adjustment for multiple comparisons) and Scheffé (p≤0.05; with 

adjustment for multiple comparisons). 

 

3.2.2 Changes of cortical thickness, cortical area and correlation with reaction 

time 

3.2.2.1. Group collective description 

To study the changes of cortical thickness and cortical area, we analysed the MRI-T1 

images of 84 patients with Parkinson’s disease (56 men, mean age ± s.d.: 59.3 ± 9.9 years) 

and 43 HC (mean age ± s.d.: 59.35±9.91). Further, to perform the correlation between cortical 

thickness and RT, we included only the patients that participated in the first TMS study, i.e.: 

13 HC (nine men, mean age ± s.d.: 54.4 ±7.4 years) and 14 patients with PD (five men, mean 

age ± s.d.: 66.5 ±7.6 years). All subjects were right-handed, according to Edinburgh 

Handedness Inventory, and all presented writing consent for the study (Oldfield, 1971). The 

procedures for experiment were approved by the Ethics Committee of Christian-Albrechts 

University in Kiel, and were processed according to Helsinki Declaration (Annas, 1998). 
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3.2.2.2. Description of MRI analysis 

Acquisition of MRI images was performed using Achieva 3-Tesla scanner (Philips 

Medical System, Best, the Netherlands), using an 8 channel head coil. Structural data were 

acquired using an echo-planar imagery sequence T1-weighted (slice thickness of 1 mm, 

matrix 208 x 208, TE = 3,6 ms, TR = 7,8 ms, rotation angle = 8 degrees). For each image 

automated correction was applied for intensity non-uniformity and standardization (Sled et 

al., 1998). 

The construction of cortical surface was based on 3D MPRAGE images using 

Freesurfer version 5.0 (Massachusetts General Hospital, Harvard Medical School; 

http://surfer.nmr.mgh. harvard.edu), an integrated software package for the surface-based 

cortical thickness analysis. The detailed procedure for the surface construction with Freesurfer 

has been described and validated in previous papers (Dale et al., 1999; Fischl et al., 1999; 

Fischl et al., 2000). In brief, each resampled T1-weighted MR image underwent a correction 

for intensity inhomogeneity and intensity standardization (Sled et al., 1998). MRI images 

were linearly registered afterwards in a stereotactic standardized space on the bases of 

Talairach atlas (Collins et al., 1994; Talairach et al., 1988). Then the skull strip and the 

tessellation of the grey/white matter junction with intensity gradient and connectivity among 

voxels was performed. Misclassification of tissue types was corrected by minimal manual 

adjustment. After that, images underwent inflation of the folded surface tessellation patterns 

and automatic correction of topological defects in the resulting manifold. This surface was 

then used as the starting point for a deformable surface algorithm designed to find the 

grey/white and pial (Note: refers to pia mater) surfaces with submillimetre precision. This 

method uses both intensity and continuity information from the surfaces in the deformation 

procedure in order to interpolate surface locations for regions in which the MRI image is 

ambiguous. For each subject, the thickness of the cortical ribbon was computed on a uniform 

grid with 1mm spacing across both cortical hemispheres, with the cortical thickness being 

defined as the shortest distance between the grey/white matter border and pial surface border, 

providing in essence the estimates of submillimetre differences (Fischl et al., 2000). 

Thickness measures were mapped to the inflated surface of each subject’s brain 

reconstruction, allowing visualization of data across the entire cortical surface. All images 

were aligned to a common surface template using a high-resolution surface-based averaging 

technique that aligned cortical folding patterns. By inflating the cortical sulci, the inflated 

white matter surface model was created and used for statistical analysis. 
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Using a general linear model in the QDEC module (integrated in Freesurfer), we 

investigated the regional difference pattern of cortical thickness between subjects with 

Parkinson’s disease and age-matched HC. Cortical thickness was smoothed with a 10-mm full 

width at half height Gaussian kernel to reduce local variations in the measurements for further 

analysis. Significance was set to a p-value of 0,001 without correction for logically accepted 

group errors. For each cluster significant at p=0.001 value we registered a region of interest 

(ROI), and the thickness value of each ROI was computed. 

For analysing the changes of the cortical area, we excluded 4 patients who revealed 

extensive errors in the subcortical segmentations. This was done in order to have the same 

group as in the third study (Chapter 3.2.1). The procedure in the FreeSurfer underwent the 

same steps as described previously, but in the QDEC module we analysed the cortical area. 

For analysing the correlation between RT and cortical thickness, the MRI images of the 

groups from the first study were chosen and the RT data was introduced in the QDEC module 

in order to perform the correlation with the cortical thickness. The analysis was performed for 

HC alone, for PD patients alone, and for PD group compared with HC. 

 

3.2.3 Correlation between regional cortical area and the volumes of subcortical 

structures in PD 

3.2.3.1. Group collective description 

This study included initially the same group as for the second study, yet 4 PD patients 

revealed extensive subcortical grey matter errors and were excluded from the study. As a 

result, we included 80 patients with Parkinson’s disease (mean age ± s.d.: 63.86±9.08) and 43 

HC (mean age ± s.d.: 59.35±9.91). 

 

3.2.3.2.Measurement of cortical area and volumes of subcortical structures 

In order to analyse the cortical area, we registered the regions of interest for each 

expounded cluster of cortical thickness from the second study, at p=0.001 threshold, and 

computed the parameter of cortical area for each region of interest. 

In order to determine the volumes of subcortical grey matter structures, we used the 

fully automated segmentation software FSL/FIRST (http://www.fmrib.ox.ac.uk/fsl/first/ 

index.hmtl) to measure the volume of four structures: caudate, putamen, pallidum and 

thalamus (Morey et al., 2009; Patenaude, 2007). The data from all subjects were nonlinearly 

aligned into a standard MNI 152 space at 1-mm resolution, by means of affine 

transformations based on 12 degrees of freedom (i.e. three translations, three rotations, three 
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scalings and three skews). After this, subcortical maps were applied to locate the different 

subcortical structures, the maps being generated from the probabilistic atlas without previous 

threshold, followed by segmentation based on shape models and voxel intensities (Mazziotta 

et al., 1995). After that all segmented subcortical regions were visually checked for errors in 

registration and segmentation. None were found. Finally a boundary correction is used to 

determine which boundary voxels belong to the structure or not. We used a Z-value of 3, 

corresponding to a 99.998% certainty that the voxel belonged to a specific subcortical 

structure. Brain tissue volume was estimated with SIENAX, part of FSL (Smith et al., 2002; 

Smith et al., 2004). After extracting brain and skull images from the single whole-head input 

data, the tissue-type segmentation with partial volume estimation is carried out in order to 

calculate total volume of brain tissue (including separate estimates of volumes of grey matter, 

white matter) (Smith et al., 2002; Zhang et al., 2001). For this study we used the absolute 

volumes generated by the algorithm. Next, automated segmentation proceeded via a Bayesian 

probabilistic approach using shape and appearance models. These models were constructed 

from a library of manually segmented images, parameterized as surface meshes and then 

modelled as point distributions. Using the learned models, FIRST searched through linear 

combinations of shape modes of variation (principal components) to find the most probable 

shape instance given the observed intensities from the input image. FIRST uses an empirically 

determined fixed number of modes (iterations) for each structure. Finally, the vertex 

information or models were transformed to the native space where the boundaries were 

corrected and the volumes (labels) were generated. 

 

3.2.3.3. Statistical analysis 

SPSS 17.0 software (SPSS, Chicago, IL, USA) was used to perform the correlations 

between volumes of subcortical grey matter structures and the cortical area of the ROIs for 

both PD patients and HC. The spreadsheet shows all correlation coefficients that were 

significant at p<0.05 (two-tailed). The first result displayed the correlation coefficients, the p-

value and the pairwise N. 
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Chapter 4 RESULTS 

 

4.1 Reaction time in patients with Parkinson’s disease 

The procedures were well tolerated by all participants. Mean rest motor threshold 

(RMT) for the left M1 was 58.8 ± 10.9% (for HC) and 68.6 ± 17.3% (for patients with PD) of 

maximal stimulation output. Test pulses (TP) over M1 constituted 66.3 ± 11.4% (HC) and 

74.5 ± 17.4% (PD), whereas conditioning pulses over PMd were 52.9 ± 9.7% (HC) and 61.7 ± 

15.6% (PD). 

The calculated ANOVA was significant for the interaction (Group x Hand x SA x 

Pulse) (F(4,40) = 3.1623, p=0.023) (Figure 4.1). The main factor Pulse was significant (F(4, 

40)=11.43; p≤0.0001). The further main factors and interactions did not present any 

significant results or trends (Figure 4.2). 

     
Fig. 4.1. ANOVA between factors Group x Hand x SA x Pulse (F(4, 

40)=3.1623; p=0.023). A= patients with Parkinson’s disease; B= healthy controls; 

right= right hand; left= left hand; red line = SA 125 ms; blue line = SA 100 ms; 

No= no TMS pulse was applied; Ps= one M1 pulse was applied; 0.8/ 1.2/ 2.0 = 

two pulses were applied at an interstimulus interval of 0.8/ 1.2/ 2.0 ms. 

 

A Fisher post-hoc test revealed that RT in the absence of TMS was statistically 

significantly slower in patients with PD when compared to HC, and this significance was 

bilateral at SA 125 ms (right hand, RT (PD/HC)= 592.9/ 551.5, p=0.00002; left hand, RT= 

639.7/ 548, p<0.0001) and in the right dominant hand at SA 100 ms (right hand, RT 

(PD/HC)= 602/ 542.2, p=0.00006; left hand, RT= 618.2/ 612.1, p=0.9). Additionally, in the 

absence of TMS, the left hand was statistically significantly slower than the right hand in the 

PD group at SA 125 ms (RT (right/left)= 592.9/ 639.7, p=0.0009) but not at SA 100 ms, while 
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in HC this difference was present at SA 100ms (RT (right/left)= 542.2/ 612.1, p=0.00006) but 

not at SA 125 ms. A further analysis showed that applying a single pulse over M1 facilitated 

the neuronal transmission and determined a significantly quicker RT in the PD group in both 

hands at SA 125 ms in comparison to the No pulse condition (right hand, RT [pulse/No 

pulse]= 562.6/ 592.9, p=0.007; left hand, RT= 574.4/ 639.7, p<0.00001) and in the right hand 

at SA 100 ms (RT= 574.2/ 602, p=0.022). In the HC group, this facilitation was also present 

in the right dominant hand at SA 125 ms (RT (1 pulse/No pulse)= 513.2/ 551.5, p=0.009) and 

in the left hand at SA 100 ms (RT= 556.1/ 612.1, p=0.0002). 

 

 
Fig. 4.2. ANOVA for the factor Pulse (F(4, 40)=11.43; p≤0.0001). No= no TMS 

pulse was applied; Ps= one M1 pulse was applied; 0.8/ 1.2/ 2.0 = two pulses were 

applied at an interstimulus interval of 0.8/ 1.2/ 2.0 ms. 

 

When the double stimulation over M1 and PMd was applied, both groups preserved the 

same pattern of facilitating effect. The PD group had a significantly quicker RT at ISI 0.8 ms 

compared to the No pulse condition, at SA 125 ms in both hands (right hand, RT(ISI 0.8 

ms/No pulse)= 567.9/ 592.2, p=0.003; left hand, RT= 516.3/ 551.5, p<0.001) and in the right 

hand at SA 100 ms (RT= 566.7/ 602, p=0.01) and the HC group had a quicker RT in the right 

hand at SA 125 ms (RT= 516.3/ 551.5, p=0.007), and in the left hand at SA 100 ms (RT= 

553.8/ 612.1, p=0.0003). An opposite answer has been depicted during the double pulse 

stimulation at ISI 1.2 ms when compared to the No Pulse variable. The HC group showed an 

inhibition effect from PMd over M1 by blocking the facilitating pulse applied over M1 and 

presented an absence of significant differences between the two variables in both hands at SA 

125 ms (right hand, RT(ISI 1.2 ms/ No pulse)= 527/551.5, p=0.06; left hand, RT= 534.6/548, 
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p=0.7) and in the right hand at SA 100 ms (RT= 534.4/542.2, p=0.42;), while in the PD group 

this effect was weaker and the significant differences between the two variables were 

preserved in the left hand at SA 125 ms (RT= 573.1/639.7, p<0.001 and) and in the right hand 

at SA 100 ms (RT= 564.3/602, p=0.01). A distinction between SA has also been determined 

between the two groups in the left hand. In the absence of any TMS pulses there was a 

statistically significant difference in RT between the two SA variables in both groups in the 

left hand (PD, RT(SA 100ms/ SA 125ms)= 618.2/639.7, p=0.001; HC, RT= 612.1/548, 

p<0.001), but after applying the TMS stimulation the HC group preserved the significant 

difference with respect to SA (1 Pulse, RT= 556.1/512.3, p=0.006; ISI 1.2ms, RT= 

566.1/534.6, p=0.006; ISI 2.0ms, RT= 569.1/522.9, p=0.002), while in the PD group these 

differences were wiped out (1 Pulse, RT= 590.8/574.4, p=0.32, ISI 1,2ms, RT= 586.3/573.1, 

p=0.3, ISI 2.0ms, RT= 567.9/570.7, p=0.5). 

 

4.2 Correlation between reaction time and cortical thickness 

The analysis for HC (Figure 4.3) revealed a positive correlation bilaterally in the insula, 

the right superior and inferior temporal regions, right posterior cingulate, right lingual region 

and left orbito-frontal area. 

Correlation of RT with cortical thickness in the PD group (Figure 4.4), showed mainly a 

negative correlation in the bilateral middle temporal, right inferior parietal, right lingual and 

left inferior temporal regions. Additionally, a positive correlation has been revealed in the 

right anterior rostral cingulate and the left insula. 

The direct comparison between the PD and HC groups (Figure 4.5), presented only 

negative correlation bilateral in the temporal pole and insula, in the right middle temporal, 

right lingual and left orbito-frontal regions. It is interesting to note that several clusters - 

bilateral insula, right middle temporal, left medial orbitofrontal – which showed positive 

correlation in the analysis of HC alone (Figure 4.3) were also depicted in the analysis of the 

PD group and the between groups analysis (Figure 4.5), yet in the later cases these regions 

revealed a strong negative correlation, suggesting that the between groups results have been 

driven by the PD patients. 
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Fig. 4.3. Correlation between reaction time and cortical thickness in healthy controls. 

(significant regions at p<0.001 uncorrected). A=right hemisphere, B=left 
hemisphere. 1=temporal superior, 2=insula, 3=cingulate posterior, 4=lingual, 
5=temporal inferior, 6=medialorbitofrontal (results in figure are shown at p=0.05). 

 

 
Fig. 4.4. Correlation of reaction time with cortical thickness in patients with Parkinson’s 

disease (significant regions at p<0.001 uncorrected). A=right hemisphere, B=left 
hemisphere. 1=parietal inferior, 2=middle temporal, 3=cingulate rostral anterior, 
4=lingual, 5=insula, 6=temporal inferior (results in figure are shown at p=0.05). 
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Fig. 4.5. Correlation of reaction time with cortical thickness in patients with Parkinson’s 

disease compared to healthy controls (significant regions at p<0.001 
uncorrected). A=right hemisphere, B=left hemisphere. 1=insula, 2=middle 
temporal, 3=temporal pole, 4=lingual, 5=medial orbito-frontal (results in figure are 
shown at p=0.05). 

 

4.3 Changes of cortical thickness and cortical area in patients with Parkinson’s 

disease 

Direct comparison of the results between the PD and the healthy control groups 

presented regions with severe atrophy in patients (Figure 4.5), localised both bilaterally 

(superior frontal and inferior parietal regions) as well as unilaterally in the right superior 

temporal, fusiform, cingulate isthmus and right precuneus, as well as left superior parietal and 

pars orbitalis cortices. The correction using false discovery rate revealed no significant effects 

(Benjamini et al., 2001). Only the clusters at p≤0.001 are presented, yet the diminishment of 

this threshold revealed a tendency of bilateralization for the majority of regions (right 

hemisphere: superior parietal region p=0.012; pars orbitalis p=0.0035; left hemisphere: 

superior temporal p=0.0013; fusiform p=0.0045; cingulate isthmus p=0.0066; precuneus 

p=0.012). 

The analysis of cortical area (Figure 4.6), depicted similar clusters as in the 

corresponding cortical thickness study. PD patients showed lower cortical area in the bilateral 

frontal superior areas (SMA/ pre-SMA), bilateral precentral gyrus, right temporal lobe 

(specifically the temporal pole bilaterally, right middle temporal, superior temporal and 
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parahippocampal regions), right isthmus cingulate and precuneus, left postcentral gyrus and 

left supramarginal area. Only regions significant at p≤0.001 were considered for this study. 

 

 
Fig. 4.6. Regions with changed cortical thickness in patients with Parkinson’s disease, 

compared to healthy controls (significant regions at p<0.001 uncorrected). 
A=right hemisphere, B=left hemisphere. 1=parietal inferior (right: p=0.0008; left: 
p=0.0004) 2=temporal superior (p=0.00009), 3=frontal superior (right: p=0.0005; 
left: p=0.0004), 4=isthmus cingulate (p=0.0008), 5=precuneus (p=0.0003), 
6=fusiform (p=0.0002), 7=parietal superior (p=0.00006), 8=orbito-frontal 
(p=0.0002) (results in figure are shown at p=0.05). 

 
Table 3.1. Changes of cortical thickness in patients with Parkinson’s disease compared 
to healthy controls 
 Talairach coordinates PD patients 

(mm) 
Healthy 

controls (mm) 
Difference 

(%) 
x y Z Media SD Media SD 

R parietal inferior 39.77 -65.05 39.91 2.58 0.39 2.82 0.31 - 8.63 
R temporal superior 41.63 11.24 -27.86 3.36 0.44 3.65 0.26 - 8.02 
R frontal superior 10.28 -0.52 29.78 2.55 0.35 2.76 0.26 - 7.73 
R isthmus cingulate 8.52 -41.19 25.25 2.17 0.42 2.43 0.34 - 10.6 
R precuneus 7.57 -65.30 38.67 2.16 0.31 2.35 0.19 - 8.00 
R fusiform 34.37 -34.71 -15.66 2.48 0.33 2.70 0.27 - 8.17 
L parietal inferior -38.47 -64.51 43.90 2.61 0.33 2.82 0.25 - 7.28 
L frontal superior -7.35 -0.24 50.11 2.72 0.38 2.95 0.25 - 7.88 
L parietal superior -20.50 -36.79 55.49 1.68 0.21 1.86 0.26 - 9.66 
L orbito-frontal -43.76 29.21 -11.63 2.69 0.36 2.93 0.24 - 7.95 
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Fig. 4.7. Regions with changed cortical area in patients with Parkinson’s disease 

compared to healthy controls. (significant regions at p<0.001 uncorrected). 
A=right hemisphere, B=left hemisphere. 1=precentral, 2=temporal superior, 
3=middle temporal, 4=temporal pole, 5=frontal superior, 6=isthmus cingulate, 
7=precuneus, 8=parahippocampal, 9=precentral, 10=postcentral, 11=parietal 
inferior, 12=supramarginal, 13=temporal pole, 14=frontal superior, (results in figure 
are shown at p=0.05). 

 

4.4 Correlation between regional cortical area and the volumes of subcortical 

structures in patients with Parkinson’s disease 

The analysis displayed positive correlations between the segmented cortical areas and 

the subcortical grey matter structures and no negative correlations were revealed. Left M1 

(precentral cluster) showed a positive correlation with bilateral caudate nucleus and the left 

pallidum. Left SMA/pre-SMA area (frontal superior clusters) showed positive correlation 

with the bilateral putamen, the left caudate nucleus and the left pallidum. The right cortical 

areas did not reveal any significant correlations with the volumes of the analysed subcortical 

structures. 
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Table 3.2. Correlation matrix between volumes of subcortical segmentations and regional cortical area. 
Area 

Volume 
Right (area) Left (area) 

Precentral Postcentral Frontal superior Precuneus Precentral Postcentral Frontal superior Precuneus 

R
ig

ht
 (v

ol
um

e)
 Thalamus -.0712 .0172 -.0411 .0860 -.0223 .0527 .0322 -.0378 

p=.434 p=.850 p=.651 p=.344 p=.807 p=.562 p=.723 p=.678 

Caudate .1446 .1161 .0413 .1353 .2222 .0836 .0847 .1044 
p=.110 p=.201 p=.650 p=.136 p=.014 p=.358 p=.352 p=.251 

Putamen .0389 .1675 .0087 .1030 .0613 .0631 .2351 -.0400 
p=.670 p=.064 p=.924 p=.257 p=.501 p=.488 p=.009 p=.661 

Pallidum -.0209 .0748 .0560 .0571 .0975 .0978 .1190 .1127 
p=.818 p=.411 p=.539 p=.530 p=.283 p=.282 p=.190 p=.214 

L
ef

t (
vo

lu
m

e)
 Thalamus -.0801 .0429 -.0023 .0661 -.0065 .0354 .1156 .0021 

p=.378 p=.637 p=.980 p=.468 p=.943 p=.698 p=.203 p=.981 

Caudate .1345 .1528 .0966 .1742 .2771 .0552 .2400 .1020 
p=.138 p=.092 p=.288 p=.054 p=.002 p=.544 p=.007 p=.262 

Putamen .0201 .1683 -.0135 .0888 .0989 .0185 .2275 .0247 
p=.825 p=.063 p=.883 p=.329 p=.277 p=.839 p=.011 p=.786 

Pallidum .0729 .1595 .1255 .1501 .2299 .1681 .2427 .1196 
p=.423 p=.078 p=.167 p=.098 p=.011 p=.063 p=.007 p=.188 

The results display the correlation coefficients, the pairwise N and the p-values. 
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Chapter 5 DISCUSSION 

 

5.1 General considerations 

The main findings of our study are: (1) patients with PD have a slower RT than HC; (2) 

the functional connectivity in PD has a changed pattern with respect to the cortical motor 

regions, when compared to HC; (3) cortical motor regions in PD have decreased cortical 

thickness and decreased cortical area, when compared to HC; (4) cortical changes in the 

motor regions in patients with PD correlate with the volumes of the caudate, putamen and the 

pallidum. 

During the first two stages of PD morphological development, the pathology is confined 

only to the olfactory sites, medulla oblongata and the pontine tegmentum and does not present 

the full clinical picture (Braak et al., 2004). Nevertheless, it is already a fact that PD is much 

more than just the loss of nigro-striatal neurons, this morphological feature being only one 

aspect in the whole picture of the disease (Tolosa et al., 2009). In future it will be important to 

diagnose PD in presymptomatic stages to initiate a causal or progression modifying therapy 

and the subsequent loss in the substantia nigra could be entirely prevented (Cronin-Golomb, 

2013). 

New clinical approaches for diagnosing the PD have developed and the features of 

“premotor phase” in PD became better defined, allowing to consider the disease by years and 

perhaps even decades before the development of the classical motor features of PD (Tolosa et 

al., 2009). Apart from the clinical assessment, the consideration of imaging and 

neuropsychological data, by analysing the structural and functional brain changes, can also be 

used to characterise the PD evolution and maybe control the long term trajectory of treatment 

interventions. The results of this work could bring further insights into this possibility. 

 

5.2 Reaction time. Correlation between reaction time and cortical thickness. 

Functional connectivity 

Our results showed that PD patients had a slower RT compared with HC in both hands 

in the absence of TMS stimulation. These results are in good agreement with previous data, 

which revealed that PD patients show impairments of RT (Kojovic et al., 2014; Wilson, 

1925). Furthermore, the results of our study showed a difference between the left and the right 

hands with respect to the SA variable, which is in accordance with another study which 

showed an independently impaired speed of movement and speed of response initiation in PD 

patients and this impairment was even in the same patient between the two limbs (Evarts et 
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al., 1979). In our study, the HC group showed a significant difference between the two SA 

variables in the left hand during the TMS stimulation while the PD group did not reveal this 

change of perception dependant connectivity for the visual stimuli. Thus, the normal 

distinction between the hands, which is present in age-matched HC, was wiped out in patients 

with PD. These divergences confirm both the change of functional connectivity in PD with 

respect to motric responses (a slower RT), as well as changes with respect to visual 

perception. By reports, there are no direct connections between visual areas and the primary 

motor cortex, yet the animal studies showed that visual pathways, have their main stations in 

the posterior parietal cortex and subsequently secondary motor areas (Merchant et al., 2001; 

Mushiake et al., 1991; Schwartz, 1994). Another pathway is through the thalamus, which 

links the visual and somatosensory perception to the motor output (Guillery et al., 2002; 

Guillery, 2003). The data of our study might imply the loss of functional connectivity in PD 

patients in the motor and visual cortical areas or in the described visual-motor pathways. 

Considering the studies of functional connectivity remodelling in PD patients, our data might 

reveal that some of the cortico-cortical connections in PD patients are less efficient (Palmer et 

al., 2010). 

The correlation between RT and cortical thickness in the PD group, presented a distinct 

pattern in comparison to HC. Temporal areas, bilateral insula, left orbitofrontal area and the 

right lingual region presented a positive correlation in HC (Figure 4.3), while in PD patients 

these regions had a negative correlation, meaning that the higher are the RT values in patients 

with PD (respectively the slower is the RT response), the lower is the cortical thickness in 

those specific regions (Figure 4.5). On the other hand, RT correlation for PD alone (Figure 

4.4) showed that in the insula region, in the left hemisphere the same positive correlation was 

attested, but at a lower significance. These results could reveal a progressive loss of functional 

connectivity in these areas, but could also be in line with the functional connectivity-

remodelling pattern in PD. 

An important result of our work is the involvement of the orbito-frontal area, which 

showed a negative correlation with RT in patients with PD. It has been shown that the orbito-

frontal region is involved in the coordination of decision-making, being an intermediate 

connection between the limbic emotional structures and the frontal decision applying 

structures (Bechara et al., 2000). The orbitofrontal region (part of the ventromedial prefrontal 

cortex) represents aspects of reinforcing value that govern instrumental choice behaviour 

(Cardinal et al., 2002). This area is implicated in affective and motivated behaviours and 

damages to this region causes profound changes in emotional and social behaviours, including 
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impairments in certain aspects of decision making (Bechara et al., 1997; Drevets et al., 1995). 

One reinforcement mechanism that may well contribute to these behaviours is conditioned 

reinforcement, whereby this mechanism is disrupted in primates with lesions of the 

orbitofrontal but not medial prefrontal cortex (Pears et al., 2003). Similar results with the 

involvement of the orbitofrontal area were described in other studies. An fMRI study in non-

demented PD patients presented an extensive brain network under-recruitment including 

bilateral orbito-frontal and striatal regions (Ekman et al., 2012). Interestingly, the orbito-

frontal region has been revealed to have structural changes in PD, specifically one study 

showed cortical atrophy and another one revealed increased cortical area (Burton et al., 2004; 

Lyoo et al., 2010; Nagano-Saito et al., 2005). As such, cortical changes in the orbito-frontal 

region seem to have specific correlations with the development of PD. The negative 

correlation revealed in our study in patients with PD, which show that a thinner cortex in the 

orbito-frontal region correlates with a slower RT, might be considered as a marker that 

reveals the impairment in decision-making and executive functions in the PD group, and this, 

might be one of the causes for a slower RT in PD patients. 

Our results present a shift of functional connectivity from the posterior cingulate area, 

present only in HC (Figure 4.3) to the anterior rostral cingulate area that is present in PD 

patients alone (Figure 4.4). This change is in accordance with a previous study, which 

reported a connectivity shift in PD patients, with the loss of connections from posterior 

cingulate to SMA (which was present in HC) and the creation of new connections from 

anterior cingulate to prefrontal cortex and caudate (which were absent in HC) (Palmer et al., 

2010). Our results clearly correspond with the previous study and support the hypothesis of 

functional connectivity remodelling of the posterior cingulate region and the CMA. These 

changes can be considered as cerebral plastic adaptation measures due to loss of activity in the 

posterior cingulate area. Anatomical particularities in the CMA region in PD have been 

reported by other studies. Anterior cingulate region has been shown to be especially 

vulnerable for Lewy body inclusions in PD (Hurtig et al., 2000; Rüb et al., 2002), and the 

structural reducing of the anterior cingulate region in PD patients has been associated with the 

attention deficits that were previously described in this pathology (Salmon et al., 1996; 

Summerfield et al., 2005). Of interest is as well why the connections from the posterior 

cingulate region to SMA could change to CMA and prefrontal cortex (Palmer et al., 2010). It 

has been shown that in healthy people the cingulate and SMA regions present separate 

activations, even if they have proximity and have a tendency to be co-activated during manual 

activities (Kwan et al., 2000; Petit et al., 1998). According to Helmich and colleagues in 
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patients with PD, changes in CMA are predominantly with respect to functional connectivity, 

which was revealed in our results by the correlation analysis between RT and cortical 

thickness (Helmich et al., 2009b). Indeed our results show that the regions specific for the HC 

group (insula bilaterally, temporal regions, left orbitofrontal and right lingual area) present a 

strong negative correlation in PD patients, confirming the new functional connectivity pattern. 

Our results presented significant changes in the occipital lobe, the left lingual area that 

showed a positive correlation with RT in HC (Figure 4.3) and a negative correlation in the PD 

group (Figure 4.4; 4.5). A previous VBM study in PD patients with dementia revealed that the 

lingual region (BA 19) had bilateral cerebral atrophy (Burton et al., 2004). Other studies 

outlined the changes in the occipital cortex. In patients with milder PD (Hoehn and Yahr I and 

II) the greatest hypoperfusion was observed in the occipital cortex (Nagamachi et al., 2008). 

A PET study showed that the greatest cerebral glucose metabolic rate reduction in PD vs. 

healthy controls occurred in the occipital lobe and that there was an inverse correlation 

between this rate and the tapping performance in the contralateral hand in PD patients 

(Bohnen et al., 1999). Our results are in accordance with the previous study, and showed the 

same pattern – the higher the RT values in patients with PD (meaning the slower the RT 

response), the lower was the cortical thickness in the lingual region. 

 

5.3 Cortical thickness and cortical area in PD. Correlation between cortical area 

and volumes of subcortical structures. Structural connectivity. 

The results of cortical thickness and cortical area analysis in our study showed cortical 

thinning and decreased cortical area in the parietal lobe, temporal lobe, posterior cingulate 

region and SMA. According to Braak and colleagues cortical changes in PD pathology in the 

premotor and primary sensory areas appear in the final 6th stage of disease development 

(Braak et al., 2003). Nevertheless, previous VBM studies reported changes in non-demented 

PD patients with regional atrophy of grey matter in the frontal, temporal and parietal cortices 

(Burton et al., 2004; Nagano-Saito et al., 2005; Summerfield et al., 2005). The corticometry 

data showed areas of surface expansion in the bilateral superior parietal cortex, left cingulate 

region, left insula and right superior frontal gyrus and a cortical thinning associated with PD 

in the left medial SMA and the right dorsal pre-SMA (Jubault et al., 2011). 

The changes depicted in the somatosensory cortex and the inferior parietal area 

(corresponding to the supramarginal and angular gyruses) are in accordance with previously 

reported cortical thinning in the inferior parietal region as well as superior parietal cortex 

(Jubault et al., 2011; Lyoo et al., 2010). Other studies revealed that in non-demented PD 
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patients the topographic distribution of the hypometabolism and hypoperfusion is more 

located in the posterior parieto-temporal and occipital regions (Abe et al., 2003; Bohnen et al., 

1999; Eberling et al., 1994; Hu et al., 2000). One fMRI study about the involvement of brain 

areas in speech production and initiation showed that the left primary orofacial sensorimotor 

cortex was more engaged in PD patients then in HC (Rektorova et al., 2007). A pattern of 

connectivity remodelling in PD in the somatosensory cortex, has been revealed by another 

study, which showed that responses to fearful facial expression in patients with PD are 

generated within the parietal somatosensory cortex, whereas in normal subjects the responses 

are located in the amygdala and visual temporal cortex (Yoshimura et al., 2005). The cortical 

thinning distribution pattern in the parietal cortex, overlaps with the area in which cortical 

Lewy bodies and Lewy neuritis were found in patients with advanced Parkinson’s disease, 

corresponding with Braak stage 4 and stage 5 (Braak et al., 2003). From this point of view, 

our results of cortical changes in the parietal lobe are in line with previous reports. 

An important degree of cortical thinning (about -8%) and bilateral decrease of cortical 

area has been revealed in PD in the superior frontal region (SMA and pre-SMA areas) when 

compared to HC. The SMA/ pre-SMA region was shown previously to have structural 

changes, specifically cortical thinning in PD compared to HC in a study which used the 

SurfStat toolbox in Matlab and cortical atrophy using VBM (Brück et al., 2004; Jubault et al., 

2011). White matter abnormalities with decreased fractional anisotropy have been reported in 

the SMA, pre-SMA and the cingulate regions (Karagulle Kendi et al., 2008). Pre-SMA region 

in PD patients was shown to have a significant loss of cortico-cortical projecting pyramidal 

neurons, but with no loss of other pyramidal neurons or interneurons in this region or in the 

dorsolateral premotor region, indicating a highly selective loss of pyramidal cells in the SMA 

(MacDonald et al., 2002). Functional changes in the SMA have also been described. One 

fMRI study showed a relatively decreased signal in the rostral part of the SMA (Sabatini et 

al., 2000b). An fMRI investigation of the causal connectivity of basal ganglia networks in PD, 

from the substantia nigra pars compacta during movement and during resting state, revealed 

that in healthy people the activity in the substantia nigra predicted increased activity in the 

SMA while in patients with PD the activity in the substantia nigra predicted decreased activity 

in the SMA (Wu et al., 2001). Excessive metabolic activity in SMA have been associated with 

motor deficits while the hypometabolism in pre-SMA has been identified in relation to 

cognition deficits (Huang et al., 2007). Connectivity studies have revealed important patterns 

in SMA. One study reported connectivity losses in SMA and M1 in patients with PD, but 

instead new connections have been described between the motor regions, cerebellum and 
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subcortical nuclei that were specific only for PD (Palmer et al., 2010). In PD patients 

substantia nigra pars compacta showed decreased connectivity with cortical regions like 

SMA, insula, the temporal lobe when compared to controls and the levodopa administration 

partially normalized the pattern of connectivity (Wu et al., 2001). As such, our results are in 

accordance with previous studies and present additional changes in SMA/ pre-SMA region 

with respect to cortical thickness and cortical area parameters. 

Two clusters with significantly decreased cortical area have been revealed in the right 

and left precentral regions, corresponding to M1 on the right side and to PMv and posterior 

prefrontal cortex to the left side. The PMv/ posterior prefrontal cortex was shown to have 

lower activation in PD patients compared with HC subjects when matching after both 

negative and positive feedback (Monchi et al., 2004). This same study presented greater 

activation in the PD group compared to HC in the right lateral premotor areas and the right 

motor cortex, corresponding to the M1 cluster in our results. One study revealed that lesions 

confined to this prefrontal region cause impairment in the selection of alternative responses 

on the bases of conditional rules and it has been shown that PD patients are impaired at 

making choices that require learning from trial and error (Cools, 2006; Petrides, 1990; 

Shohamy et al., 2004). Thus, our results show that M1 and PMv/ posterior prefrontal cortex 

reveal decreased cortical area in PD patients compared to HC (Figure 4.6, 4.7). This would 

imply that PD has extensive white matter tract damage (Van Essen, 1997). 

The correlations between cortical areas and the volumes of subcortical grey matter 

structures revealed that cortical changes in the motor regions, M1 and SMA correlated with 

the volumes of the caudate nucleus and pallidum. Cortical area of SMA correlated with the 

volume of the putamen. In healthy people M1 both sends projections to the striatum and 

receives inputs from striatum and pallidum via VA (Jones et al., 1977; Matelli et al., 1989; 

Strick et al., 1974). SMA also receives inputs from the putamen, pallidum and caudate 

nucleus (Alexander et al., 1986; Matelli et al., 1996; Rizzolatti et al., 1996). From this point 

of view, the correlations between cortical morphology and the volumes of these subcortical 

structures are in line with their connectivity patterns. Thus, we could argue that the cortical 

changes are in direct relation with the changes in subcortical structures due to PD. 
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Hypothesis discussion 

To evaluate the specific changes of connectivity in the motor regions, we designed a 

multimodal approach, by directly measuring functional motor responses, correlating these 

results with cortical thickness and cortical area measurements, and revealing the correlation 

between cortical area and the volumes of subcortical grey matter structures. As expected our 

group of PD non-demented patients exhibited significantly lower RT compared with HC 

subjects, and all PD patients had slower RT results, compared with previous study where 

some PD patients had normal RT (Evarts et al., 1979; Evarts et al., 1981; Wilson, 1925). In 

contrast to above mentioned studies we applied a CRTT, and it has been shown previously 

that CRTT impairments are greater than simple RT in elderly subjects (Simon, 1967). Further, 

correlation of RT with cortical thickness revealed strong changes of connectivity pattern in 

PD compared to HC: (1) disappearance of positive correlation in the orbito-frontal region 

(Figure 4.4), (2) strong diminishment of the positive correlation in the insular region in PD 

patients alone (Figure 4.4) and appearance of clusters with negative correlation in this region 

when compared with HC (Figure 4.5) (3) a shift of connectivity in the cingulate region, from 

posterior to rostral anterior (Figure 4.4), corresponding with previous results on 

morphological changes and functional connectivity changes in the cingulate area in PD 

patients (Hurtig et al., 2000; Palmer et al., 2010; Rüb et al., 2002). 

We presented evidence that changes in the motor cortex in PD patients show specific 

patterns both for functional and structural connectivity. We revealed extensive regions of 

cortical thinning and changes of cortical area in the motor regions (specifically M1, PMv, 

SMA, CMA). We aimed to see specific changes in the five basal ganglia – thalamo-cortical 

circuits (motor circuit, two prefrontal circuits, oculomotor circuit, limbic circuit) (Alexander 

et al., 1986; Alexander et al., 1990; Mehler-Wex et al., 2006). Indeed we revealed correlation 

between M1 (Figure 4.7, precentral region, nr. 1) and the volumes of the caudate nucleus, and 

pallidum, between the left PMv area (Figure 4.7, precentral region, nr. 9) and bilateral 

caudate, between bilateral SMA (Figure 4.7, superior frontal region, nr. 5, 14) and bilateral 

striatum and left pallidum. These results suggest that the changes in the subcortical grey 

matter structures correlate with the degenerative changes in the motor regions in PD patients 

due to the development of the disease. 

As hypothesized, we did find significant changes of cortical thickness and cortical area 

in PD patients, which are in line with previous studies (Palmer et al., 2010). These results of 

decreasing cortical structural connectivity account from 7% in the SMA area, to up to 10% in 

the isthmus cingulate. Furthermore we considered that in a post-mortem pathology study on 



 41 

PD patients with slight or moderate dementia, quantitative neuronal counting did not show 

any global or regional neocortical neuronal loss and in healthy adults, cortical thinning could 

appear in cerebral areas where no neuronal loss was determined (Freeman et al., 2008; 

Pedersen et al., 2005). This way, as suggested by other studies, variations in the cortical 

thickness could be due to differences in myelination or the underlying white matter, reduction 

of dendritic arborizations or presynaptic terminals loss, rather than the number of cells within 

the column (Freeman et al., 2008; Panizzon et al., 2009). Furthermore, given that MRI 

measures do not have the resolution to examine brain structure at the cellular level, we cannot 

tell whether lower cortical thickness is due to different numbers of cells (respectively cell 

degradation) or the size of the cells (i.e., cell atrophy), but our results clearly present the re-

distribution pattern of connections in PD patients. 

Our results reveal cortical degradation and might further characterise PD before the 

clinical condition starts to manifest. Tracing the motor and non-motor cortical areas analysed 

in this study, can help improve and characterise specific rehabilitation treatments. At last, the 

present results allow to determine the main directions of changes that occur in the brain in the 

motor regions due to this disease, and to draw brain’s tendencies of creating new connections. 

Future usage of connectivity shifting technics might be applied in order to increase brain’s 

adaptability to such degradation processes, by stimulating the creation of new connections, 

primarily in the direction in which the brain already has its own natural tendency. 
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5.4 Summarizing remarks 
1) PD patients had a significantly slower RT compared with HC, and these results were 

determined in all our patients. Such decrease of RT was associated with significant 

changes of functional connectivity in the cortical areas involved in this motor and visual 

act. 

2) Single pulse TMS improves the RT both in PD patients and in HC. 

3) M1 in PD showed decreased cortical area and this parameter revealed a positive 

correlation with the volumes of the caudate nucleus and pallidum, meaning that the smaller 

the volumes of the caudate nucleus and the pallidum, the less is the cortical area in M1. 

4) SMA region seems to have a much more specific involvement in the development of 

PD motor degradation. It presented bilateral changes with both cortical thinning as well as 

decreased cortical area and it showed a positive correlation with the volumes of the 

striatum and pallidum. 

5) CMA revealed a strong change of functional connectivity in patients with PD, being 

line with previous studies (Helmich et al., 2009b). CMA showed a diminishment/ 

reprofilation or inactivation of posterior cingulate region and, possibly as a compensatory 

response – the activation or connectivity amplification of anterior cingulate region. 

6) Cortical changes in the motor regions correlate with changes in the volumes of 

subcortical grey matter structures  

 
5.5 Conclusions 

This thesis provided evidence that the motor regions in patients with Parkinson’s 

disease are involved structurally and functionally. Primary motor area showed mainly 

structural changes that correlated with the volume of the caudate nucleus and pallidum. 

Cingulate motor area showed only functional connectivity changes that correlated positively 

with the slower reaction time. The ventral premotor area and supplementary motor area 

presented both structural and functional connectivity changes and correlated with the volumes 

of subcortical structures. Our study did not reveal any changes in the dorsal premotor area. As 

such, primary motor cortex and supplementary motor area are the motor regions the most 

involved in the PD pathology and can be used as markers for identifying the disease in the 

early stages. 
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Chapter 6 SUMMARY 
 

Parkinson’s disease is the second after Alzheimer’s disease, most frequent chronic 

neurodegenerative disorder affecting up to 2% of individuals aged 65 years and older and 

nearly 10% of people older than 80 years. The process that ultimately leads to the full clinical 

picture of PD does not merely involve substantia nigra. The loss of nigro-striatal neurons is 

only a stage in cortical and subcortical neurodegeneration. 

In this thesis we applied transcranial magnetic stimulation and structural MRI imaging 

(by the aid of FreeSurfer and FSL software) in order to study the reaction time, the 

morphometric brain parameters of cortical thickness, cortical area, volumes of subcortical 

grey matter structures and correlated between the reaction time and the cortical thickness in 

non-demented patients with Parkinson’s disease. In the first study, fourteen patients (mean 

age ± s.d.: 66.5 ±7.6 years) and thirteen healthy controls (mean age ± s.d.: 54.4 ±7.4 years) 

were included in the choice reaction time task. Each participant performed a choice reaction 

time task during primary motor cortex and dorsal premotor area transcranial magnetic 

stimulation. In the second study we analysed the brain morphometric properties of eighty-four 

patients (mean age ± s.d.: 59.3 ± 9.9 years) and fourty-three healthy controls (mean age ± s.d.: 

59.35±9.91). They underwent an MRI investigation and the T1 images were used to measure 

the cortical thickness, cortical area and the volumes of thalamus, caudate nucleus, putamen 

and pallidum. Further, we performed correlation analysis between choice reaction time task 

and cortical thickness on one side. Further, we calculated the correlation of cortical area of the 

significant regions of interest and the volumes of the above-mentioned subcortical structures. 

In the first study we could show that patients with Parkinson’s disease had a slower 

reaction time when compared to healthy controls. During the application of magnetic 

stimulation pulses in both groups the reaction time decreased. Nevertheless, patients with 

Parkinson’s disease still had a slower reaction time when compared to healthy controls. The 

slower reaction time correlated with a higher cortical thickness in the cingulate motor region 

and with a lower cortical thickness in the temporal and parietal regions. The second study 

revealed that Parkinson’s disease is associated with a decreased cortical thickness and area in 

the motor regions, especially in the primary motor area, the ventral premotor area and the 

supplementary motor cortex. The decreased cortical area in the motor regions positively 

correlated with the volumes of the caudate nucleus, putamen and pallidum. 

The present study showed that patients with Parkinson’s disease presented a different 

pattern of functional and structural interactions in the motor regions when compared to 
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healthy controls. Structural parameters’ changes were revealed in the motor cortex and these 

are mirrored in the subcortical volumes of the caudate nucleus and pallidum. The cingulate 

motor area revealed only functional changes, which showed a positive correlation with the 

slower reaction times in patients with Parkinson’s disease. The ventral premotor and the 

supplementary motor area underwent both functional as well as structural remodelling due to 

PD and these changes correlated with the volumes of the caudate nucleus, putamen and 

pallidum. 

The present study showed that PD is associated with distinct connectivity patterns in 

motor regions. Both degeneration processes as well as compensatory mechanisms of the brain 

can explain these changes. These parameters might develop to primary or additional 

biomarkers for identifying the pathology in the early stages of the disease or track its 

progression. 
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