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Abstract

This work is concerned with the mathematical formulation of marine ecosystem models. The
understanding of marine ecosystems is of increasing importance in climate research because
oceanic processes influence global biogeochemical cycles, especially the carbon cycle.

Marine ecosystem models describe the concentrations of all involved constituents (e.g.
phosphate) as solutions of advection-diffusion-reaction equations. The system consisting of
these equations is referred to as “the model equation”. The influence of biogeochemical re-
actions (e.g. consumption of nutrients, growth, decomposition) is modeled by reaction terms
which are, in general, nonlinear functions of all regarded concentrations. The reaction terms
additionally include parameters (e.g. growth rates). The parameters may depend on space
and time although they are assumed to be constant in most applications. The determination
of parameter values enables the model’s adjustment to the ecosystem in question, i.e., to
observed concentrations. In this work, the adjustment takes place within the framework of a
mathematical optimization problem (parameter identification problem).

In applications, the model equation and the parameter identification problem are solved
numerically. A satisfying assessment of numerical solutions requires information about the
continuous model. However, such information is practically never available. In this work, we
fill this gap by investigating the continuous equation of a general ecosystem model and the
corresponding parameter identification problem.

As a result, we obtain existence of transient as well as periodic solutions. In the case
of transient solutions, i.e., solutions with a prescribed initial value, we investigate models
characterized by a combination of monotone and Lipschitz continuous reaction terms. We
prove two existence and uniqueness theorems for transient weak solutions. The proofs rely on
standard methods (Galerkin’s method, Banach’s Fixed Point Theorem) which we adapt to
the nonlinearly coupled systems of equations and the two types of reaction terms. Periodic
solutions are characterized by equal initial and terminal values. We investigate periodic
solutions of an important model class considering conservation of mass. This condition,
which we introduce and investigate separately, effects that the constant zero function is a
periodic solution. Finding a nontrivial periodic solution is a challenging task which is usually
not treated in literature. The existence result we prove in this work ensures that a periodic
solution exists for each prescribed mass in the ecosystem. From this it follows that there are
nontrivial solutions (those corresponding to a nontrivial mass), and that periodic solutions
are not unique.

Concerning parameter identification, we prove the existence of optimal parameter values
for all measured concentrations which are at least quadratically integrable. The existence
theorem, proved by means of an adapted standard method from optimal control theory, treats
both the transient and the periodic case simultaneously and admits variable parameters. In
addition, we indicate first and second order optimality conditions and formulate the first
order condition as an optimality system. The technique we use to obtain the optimality
system is not directly applicable in the periodic case since, in general, periodic solutions are
not unique. For this reason, we investigate an auxiliary problem based on a transient instead
of a periodic model equation. The newly introduced initial value is regarded as an additional
parameter which is optimized in such a way that the solution of the model equation associated
with the optimal parameter value is approximately periodic.

We apply all theoretical results to the PO4-DOP model which is important for testing
purposes. By means of a numerical test based on a two-dimensional version of the PO4-DOP
model, we investigate uniqueness of numerically computed periodic solutions.
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Zusammenfassung

Im Fokus dieser Arbeit steht die mathematische Formulierung mariner Ökosystemmodelle.
Im Bereich der Klimaforschung ist das Verständnis mariner Ökosysteme von wachsender Be-
deutung, da ozeanische Prozesse globale biogeochemische Kreisläufe, insbesondere den Koh-
lenstoffkreislauf, beeinflussen.

Marine Ökosystemmodelle beschreiben die Konzentrationen aller zum System gehörenden
Stoffe (z. B. Phosphat) als Lösungen von Advektions-Diffusions-Reaktions-Gleichungen. Das
System, das aus diesen Gleichungen besteht, wird als

”
die Modellgleichung“ bezeichnet. Der

Einfluss der biogeochemischen Reaktionen (wie etwa der Aufnahme von Nährstoffen, Wachs-
tum, Abbau) wird mittels Reaktionstermen modelliert. Dies sind im Allgemeinen nichtlinea-
re Funktionen aller im Modell betrachteten Konzentrationen. Die Reaktionsterme hängen
zusätzlich von Parametern (z. B. Wachstumsraten) ab. Diese werden oft als konstant an-
genommen, können aber auch von Zeit und Ort abhängen. Die Bestimmung der Parame-
ter ermöglicht eine Anpassung des Modells an das zu beschreibende Ökosystem, d.h. an
tatsächlich gemessene Konzentrationen. In dieser Arbeit erfolgt die Anpassung im Rahmen
eines mathematischen Optimierungsproblems (Parameteridentifikationsproblem).

In Anwendungen werden die Modellgleichung und das Parameteridentifikationsproblem
numerisch gelöst. Eine zufriedenstellende Beurteilung numerischer Lösungen erfordert Infor-
mationen über das kontinuierliche Modell. Solche Informationen sind jedoch für kein uns
bekanntes Modell verfügbar. Mit dieser Arbeit beheben wir diesen Mangel, indem wir die
kontinuierliche Gleichung eines allgemeinen Modells und das zugehörige Parameteridentifika-
tionsproblem untersuchen.

Als Ergebnis erhalten wir Existenzresultate für transiente und periodische schwache Lö-
sungen. Im Falle transienter Lösungen, also Lösungen zu einem vorgegebenen Anfangswert,
untersuchen wir Modelle, die durch eine Kombination monotoner und Lipschitz-stetiger Re-
aktionsterme gekennzeichnet sind. Wir beweisen zwei Aussagen zur Existenz und Eindeu-
tigkeit transienter schwacher Lösungen. Die Beweise beruhen auf Standardmethoden, welche
wir an das nichtlinear gekoppelte System partieller Differentialgleichungen und die genannten
Reaktionsterme anpassen. Periodische Lösungen werden durch gleiche Anfangs- und Endwer-
te charakterisiert. Wir untersuchen periodische Lösungen einer wichtigen Modellklasse, bei
der Massenerhaltung berücksichtigt wird. Diese Bedingung, die wir gesondert einführen und
untersuchen, bewirkt, dass die konstante Nullfunktion eine periodische Lösung der Modell-
gleichung ist. Die Suche nach nichttrivialen periodischen Lösungen ist eine herausfordernde
Aufgabenstellung, die in der Literatur gewöhnlich nicht behandelt wird. Das Existenzresul-
tat, das wir in dieser Arbeit beweisen, sagt aus, dass es zu jeder vorgegebenen Masse im
Ökosystem eine periodische Lösung gibt. Daraus folgt erstens, dass es nichttriviale periodi-
sche Lösungen gibt (nämlich jene, die zu einer nichttrivialen Masse gehören), und zweitens,
dass periodische Lösungen der betrachteten Modelle nicht eindeutig sind.

Im Zusammenhang mit dem Parameteridentifikationsproblem zeigen wir die Existenz op-
timaler Parameterwerte zu jeder gemessenen Konzentration, die mindestens quadratintegrier-
bar ist. Der Existenzsatz, der mithilfe einer Standardmethode aus der Optimalsteuerungs-
theorie bewiesen wird, behandelt den transienten und den periodischen Fall gleichzeitig und
lässt variable Parameter zu. Zusätzlich geben wir Optimalitätsbedingungen erster und zwei-
ter Ordnung an und formulieren die Bedingung erster Ordnung als Optimalitätssystem. Die
dafür verwendete Technik ist nicht unmittelbar auf den periodischen Fall anwendbar, da peri-
odische Lösungen im Allgemeinen nicht eindeutig sind. Daher untersuchen wir in diesem Fall
ein Hilfsproblem, dem eine transiente Modellgleichung zugrunde liegt. Der neu eingeführte
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Anfangswert wird als zusätzlicher Parameter aufgefasst, der so optimiert wird, dass die zum
optimalen Parameterwert gehörende Lösung der Modellgleichung näherungsweise periodisch
ist.

Wir wenden alle theoretischen Ergebnisse auf das PO4-DOP -Modell an, das zu Testzwe-
cken herangezogen werden kann. Mittels eines numerischen Tests, der auf einer zweidimensio-
nalen Version des PO4-DOP -Modells basiert, untersuchen wir die Eindeutigkeit numerisch
berechneter periodischer Lösungen.
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Introduction

The growing concentration of carbon dioxide (CO2) in the atmosphere is considered as a main

cause of climate change. Understanding and control of climate change therefore requires the

understanding of the global carbon cycle. Marine ecosystems are a part of this cycle, and

their significance will probably increase because the oceanic carbon uptake is likely to grow

corresponding to the higher concentration of CO2 in the atmosphere. We refer to Stocker et

al. [25, Chapters 6, 10] for more details.

Marine ecosystems, more specifically, the biogeochemical processes involved in the oceanic

carbon cycle, are described via mathematical models. Well-calibrated models contribute to

the understanding of the complex processes and provide a means to simulate the ecosystem’s

behavior in different scenarios, such as the response to an increased concentration of CO2.

Often, marine ecosystem models include phosphate or nitrogen instead of CO2. The con-

centrations of these constituents can be converted into each other by means of the constant

Redfield Ratio (cf. Redfield et al. [18]). For information about models, we refer to Fennel

and Neumann [6, Section 1.1].

A marine ecosystem model is a system of advection-diffusion-reaction equations. Each

equation corresponds to one of the constituents involved in the processes to be described.

The constituents can be both of inorganic origin (e.g. carbon, phosphate, iron) and organic

origin (e.g. phytoplankton, zooplankton). The solution of one advection-diffusion-reaction

equation indicates the concentration of the corresponding constituent depending on space

and time. The whole system is referred to as “the model equation”, and a solution is a vector

of concentrations.

Each concentration is influenced by advection, diffusion, and biogeochemical reactions.

Advection is defined as the transport induced by the ocean current. It affects all concentra-

tions equally. For the sake of simplicity, the same is assumed for diffusion. This is a reasonable

assumption because turbulent diffusion, which is equal for all constituents, exceeds molecular

diffusion notably.

The biogeochemical processes in the ecosystem, such as predator-prey relationships or the

growth of phytoplankton depending on insolation, are expressed via reaction (or coupling)

terms. Reaction terms can be of varying complexity. Some processes require a nonlinear func-

tion depending on space, time, and all modeled concentrations whereas others are described

via the product of a concentration with a constant. Sinking processes can be modeled via
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“nonlocal” reaction terms. These terms include the concentrations at more than one point

in space (e.g. an integral over one spatial coordinate).

The reaction terms contain parameters associated with the described processes, such

as growth rates, half saturation constants or remineralization rates. Most parameters are

constants. However, some situations require temporally and spatially variable parameters

(cf. Parekh et al. [15, Sec. 2.3]).

The determination of suitable parameter values is called parameter identification or cali-

bration. Since the model corresponding to such parameter values should reflect reality well,

parameter identification can be formulated as an optimization problem. The quantity to be

minimized is the difference between observational data and the solution of the model equa-

tion, regarded as a function of the parameters. Parameter identification via optimization is

an often easier and less expensive alternative to measurements or laboratory experiments.

An important example for a marine ecosystem model is the PO4-DOP -Fe model by

Parekh et al. [15]. It describes the marine phosphorus cycle in relation to the iron cycle by

means of the concentrations of phosphate (PO4), dissolved organic phosphorus (DOP ), and

iron (Fe). It contains a model of the phosphorus cycle, referred to as PO4-DOP model or,

alternatively, as N -DOP model. The alternative name includes the abbreviation “N” for

“nutrient” (cf. Kriest et al. [10, Section 2.2]). Because of its low complexity, the PO4-DOP

model is often used to test numerical methods, for example, in the context of parameter

identification (cf. Prieß et al. [17]).

In applications, the model equation and the parameter identification problem are solved

numerically. Numerical results are considered adequate if they approximate the solutions

of the corresponding continuous problems. Therefore, the validation of numerical results

requires an analysis of the continuous problems, especially concerning solvability. For exam-

ple, if the equation of a continuous model turns out to be unsolvable, the relation between

any numerical “solution” and the ecosystem in question will be unknown. Probably, such a

model will be dismissed as unreliable. By revealing the reasons for the equation’s deficiency

(unsolvability in our example), the analysis can additionally contribute to an improvement

of improper models.

Being used for testing purposes, the PO4-DOP model’s reliability is of particular impor-

tance. However, an analysis of the continuous PO4-DOP model is not available so far. The

same is true for all other models that are known to us. Therefore, this work is dedicated

to the mathematical analysis of a preferably large class of ecosystem models including the

PO4-DOP model. We explicitly use the attribute “mathematical” to point out that we only

consider existing models. The actual modeling of biogeochemical processes, i.e., the finding

of the model’s formulation, is not a part of this work.

The mathematical analysis deals with the solvability of the model equation, uniqueness

of solutions, and the parameter identification problem.

In the first part, we investigate weak solutions, i.e., solutions of a weak formulation of

the model equation as is usually done in the context of advection-diffusion equations and
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optimization with partial differential equations. We regard the weak formulation as a general

operator equation in the sense of Gajewski et al. [7] in order to cover both local and nonlocal

reaction terms. The weak formulation requires boundary conditions. Normally, homogeneous

Neumann boundary conditions, modeling the fact that no material leaves or enters the system

through the boundary (seafloor and surface), are chosen in applications (e.g. in Prieß et al.

[17, Section 2.1]). However, these conditions conflict with conservation of mass if material

accumulates at the boundary (e.g. after sinking). This is the case in the PO4-DOP model,

for instance. Thus, we admit nonlinearly coupled Neumann boundary conditions in this work.

Different types of weak solutions are distinguished by a condition for the initial value,

i.e., the solution’s value at the point of time t = 0.

Transient solutions on the finite time interval [0, T ] are characterized by a prescribed initial

value. Transient weak solutions of single partial differential equations or operator equations

are well investigated. In literature, different methods are applied according to the properties

of the equation’s summands. Evans [5, Theorem 9.2] uses Banach’s Fixed Point Theorem to

solve a nonlinear equation with Lipschitz continuous summands. Galerkin’s method is applied

to monotone or linear summands by Ladyzhenskaya et al. [11], Tröltzsch [26] and Gajewski et

al. [7], for instance, and to pseudo-monotone and coercive operators by Růžička [19]. Casas [2]

uses a truncation method for problems with monotone boundary conditions. However, the

assumptions of the available existence results practically never apply to all reaction terms

of a marine ecosystem model simultaneously. For example, the main reason for missing

monotonicity and coercivity is the coupling of the modeled constituents because of which

many summands appear twice in the equations with different signs. Moreover, the equations

investigated by Casas and Tröltzsch, for instance, do not admit nonlocal reaction terms.

Finally, all of the cited results address single equations instead of systems.

Periodic solutions on [0, T ] are characterized by identical initial and terminal values, i.e.,

identical values at t = 0 and t = T . The name “periodic” indicates that these solutions

may be extended to a function on R with period T (see Gajewski et al. [7, Remark VI.1.8]).

Periodic solutions are most important in applications since measurements from ecosystems

are usually available as an average over several years. Representing a medium year, these

“climatological” data correspond to periodic solutions.

Several authors investigate periodic weak solutions. Gajewski et al. [7] consider equa-

tions with monotone and coercive operators. Shioji [24] assumes coercivity and pseudo-

monotonicity while Sattayatham et al. [23] regard a combination of uniformly monotone and

Hölder continuous operators. For the same reasons as in the transient case, none of these re-

sults can be directly applied to ecosystem models. A further problem occurs in the context of

mass-conserving models, such as the PO4-DOP model. All included source terms are trivial

which has the effect that the constant zero function is a periodic solution. Therefore, results

about nontrivial periodic solutions are required in the context of mass-conserving models.

The classical existence theorems do not consider nontrivial solvability.

The second part of the analysis is dedicated to the parameter identification problem. We
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investigate the existence of optimal parameters in both the transient and the periodic case

as well as first and second order optimality conditions. These conditions may be the basis

for a numerical method which computes optimal parameters.

As a constrained optimization problem for partial differential equations, parameter iden-

tification is an optimal control problem (see e.g. Tröltzsch [26]). Using a standard method,

Hinze et al. [9, Section 1.5.2] prove a general existence theorem about optimal parameters

which requires the unique solvability of the model equation. Since this property is not ful-

filled in the periodic case, the standard theorem is not immediately applicable. The same is

true for the standard results about optimality conditions.

This work is structured according to the topics indicated above.

In the first section of Chapter 1, we shortly introduce our notation and recapitulate

definitions and theorems that are used in this work. The remaining sections of this chapter

are dedicated to the mathematical formulation of a general marine ecosystem model. We

provide the classical formulation and shortly repeat the derivation of a weak formulation.

The important step is the transition to the corresponding operator equation which is the

object of all subsequent investigations. In Section 1.5, we define the important quantity

“mass” and prove a characterization of mass-conserving models.

Chapter 2 includes two results about existence and uniqueness of transient weak solu-

tions. Both theorems treat models with reaction terms consisting of monotone and Lipschitz

continuous summands. The first theorem is proved by means of Galerkin’s method which

we adapt to systems of equations and the two types of reaction terms. To prove the second

existence theorem, we adapt the method of Evans [5, Section 9.2.1], based on Banach’s Fixed

Point Theorem, to the ecosystem model equation. The examples at the end of the chapter

show one reaction term which is admitted in the regarded model class and one which is not.

Chapter 3 is dedicated to periodic solutions of models of N -DOP type. This model class

is introduced in Section 3.1. Like the PO4-DOP model, models of this class consist of two

constituents and reflect remineralization, i.e., the linear transformation of one constituent

into another. Furthermore, they are mass-conserving. In the second section, we prove an

existence result for nontrivial periodic solutions of models of N -DOP type. The proof re-

lies on the structure of the model equation which enables the application of a standard

existence theorem in combination with the Schauder Fixed Point Theorem. The theorem

provides different periodic solutions distinguished by mass. This implicates that there are

nontrivial solutions (corresponding to a nontrivial mass) and that periodic solutions are not

unique. In Section 3.3, we prove the existence of nontrivial stationary solutions. Solving a

time-independent version of the model equation, these solutions are of minor importance in

applications. We incorporate the existence result nevertheless because it can be proved in

the same way as the result about periodic solutions.

In Chapter 4, we deal with the PO4-DOP model and its extension, the PO4-DOP -Fe

model. In the first three sections, we provide a mathematical formulation of the PO4-DOP

model. We formulate the reaction terms in Section 4.2.2 and derive boundary conditions
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under the assumption that the model is mass-conserving in Section 4.2.3. In Section 4.3,

we determine the mathematical formulation of the reaction terms associated with iron. Sec-

tion 4.4 contains the application of the existence results, and the last section is dedicated to

a numerical method which is typically used to compute periodic solutions. A numerical test

based on a two-dimensional version of the PO4-DOP model sheds light on the question of

uniqueness of numerically computed periodic solutions.

The last chapter is concerned with parameter identification. In Section 5.1, we formulate

the continuous optimization problem and prove the existence of an optimal parameter for any

observational data which are at least quadratically integrable. The existence theorem treats

both the transient and the periodic case simultaneously and admits variable parameters. A

corollary studies special situations including the case of constant parameters. The section

ends with examples of typical reaction terms and parameters to which the existence theorem

applies. In Sections 5.2 and 5.3, we give first and second order optimality conditions consid-

ering a transient and a periodic model equation, respectively. In addition, we transform the

first order condition into an optimality system by adapting the technique of Tröltzsch [26] to

parameter identification problems. In the periodic case, the standard technique is not directly

applicable since, in general, periodic solutions are not unique. For this reason, we formu-

late and investigate an alternative optimization problem with a transient model equation

instead. In Section 5.4, we investigate the PO4-DOP model and its parameters with regard

to the previously obtained results about parameter identification. In addition, we consider

the question, unanswered so far, whether two different parameter values may be associated

with the same solution of the PO4-DOP model. This property is undesired because it affects

the reliability of tests. Since some parameters seem to have this property, we suggest an

alternative reaction term which is better suited for testing purposes.

5
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Chapter 1

Formulation and properties of the

model equation

1.1 Mathematical preliminaries

In the first paragraph, we define the basic objects and abbreviations used in this text. The

rest of this section lists important definitions and results from literature.

General assumptions. Throughout this text, let s, np, nd ∈ N, nd ≤ 3 and T > 0. Fur-

thermore, let Ω ⊆ Rnd be an open, connected and bounded set with a Lipschitz boundary1

Γ := ∂Ω in case nd ≥ 2. The outward-pointing unit normal vector at s ∈ Γ is referred to as

η(s). We abbreviate QT := Ω× (0, T ) and Σ := Γ× (0, T ).

Suppose that v ∈ L∞(0, T ;H1(Ω)nd) has the properties div(v(t)) = 0 in Ω and v(t)·η = 0

in Γ, each for almost every t ∈ [0, T ]. Let κ ∈ L∞(QT ) with κmin := ess inf{κ(x, t) :

(x, t) ∈ QT } > 0. Finally, we use the abbreviations vmax := ‖v‖L∞(0,T ;H1(Ω)nd ) and κmax :=

ess sup{κ(x, t) : (x, t) ∈ QT }.

Norms and spaces. All spaces regarded in this work are implicitly assumed to be real.

We use the following notation.

The space of linear and bounded operators between two normed linear spaces B1 and B2

will be denoted by L(B1, B2). We use the abbreviation B∗1 := L(B1,R) for the continuous

dual space of B1.

The identity map on a normed linear space B is denoted by IdB.

The Lebesgue measure of a measurable set M ⊆ Rnd is expressed by |M | instead of λ(M).

Norms will usually be distinguished by an index indicating the corresponding space. An

exception is made for the Hilbert space L2(E)s of s-dimensional vectors of quadratically

integrable functions on a set Ψ. Here, we write ‖.‖Ψs instead of ‖.‖L2(Ψ)s . In the special

case s = 1, the exponent s is omitted. The same rule applies for inner products in Hilbert

1For a definition see e.g. Tröltzsch [26, Section 2.2].
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spaces which are defined by round brackets (. , .) with the corresponding index. The scalar

product in Rnd is indicated by a dot. The application of a linear functional is denoted by

angle brackets 〈. , .〉 subscripted by the corresponding dual space. Dual pairings without any

index belong to the space (H1(Ω)∗)s.

Furthermore, we use the following definitions and results. Given a Hilbert space H, the

Cartesian product Hs is a Hilbert space with the inner product

(x, y)Hs :=
s∑
i=1

(xi, yi)H for all x, y ∈ Hs.

The product Hilbert space is always endowed with the norm induced by this inner product.

Provided that B is a Banach space, the Cartesian product Bs is also a Banach space,

endowed with the norm

‖x‖Bs :=

(
s∑
i=1

‖xi‖2B

) 1
2

for all x ∈ Bs.

The dual space (Bs)∗ is isomorphic to (B∗)s. The application of a functional is given by

〈f, v〉 :=

s∑
i=1

〈fi, vi〉B∗ for all f ∈ (B∗)s and v ∈ Bs.

Let B1 and B2 be Banach spaces. The intersection B := B1∩B2, endowed with the norm

‖y‖B := ‖y‖B1 + ‖y‖B2 for all y ∈ B, is a Banach space as well.

The space B1 is continuously embedded in B2 (in short: B1 ↪→ B2) if B1 ⊆ B2 and the

embedding EB1,B2 : B1 → B2, x 7→ x is continuous. This is equivalent to the existence of a

constant CB1,B2 > 0 with ‖x‖B2 ≤ CB1,B2‖x‖B1 for all x ∈ B1. The space B1 is compactly

embedded in B2 if EB1,B2 is a compact operator.

The following theorem provides a means to “restrict” elements of H1(Ω) to the boundary

of Ω. The proof can be found in Evans [5, Section 5.5].

Theorem 1.1.1. (Trace Theorem) There is a linear and continuous map τ : H1(Ω) →
L2(Γ) that restricts continuous functions y ∈ H1(Ω) ∩C(Ω̄) to the boundary, i.e., (τy)(x) =

y(x) for all x ∈ Γ. The continuity of τ implies the existence of a constant cτ > 0, depending

solely on Ω, with the property ‖τy‖L2(Γ) ≤ cτ‖y‖H1(Ω) for all y ∈ H1(Ω).

Evolution triples. Proofs and further information about the following definitions can be

found in Zeidler [30, Chapter 23] or Gajewski et al. [7].

An evolution triple (V,H, V ∗) consists of a real and separable Hilbert space H and a

real, reflexive and separable Banach space V that is continuously embedded and lies dense

in H. Because of the theorem of Fréchet-Riesz, every element of H can be identified with an

element of H∗. Furthermore, H∗ is embedded in V ∗. Shortly, these relations are indicated by
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the notation V ⊆ H ⊆ V ∗. Given the evolution triple (V,H, V ∗), we define the space

W (0, T ;V ) := {y ∈ L2(0, T ;V ) : y′ ∈ L2(0, T ;V ∗)}.

The space L2(0, T ;V ∗) can be identified with the dual space of L2(0, T ;V ) (Gajewski et al.

[7, Theorem IV.1.14]). We will write L2(0, T ;V ∗) instead of L2(0, T ;V )∗ throughout this

text. For a formal definition of the weak derivative y′, we refer to Zeidler [30].

The following theorem gathers some important facts about an evolution triple (V,H, V ∗).

Theorem 1.1.2. The following properties are valid:

1. The space W (0, T ;V ) is continuously embedded in C([0, T ];H), i.e., there exists a con-

stant CE > 0 with

‖y‖C([0,T ];H) ≤ CE‖y‖W (0,T ;V ) for all y ∈W (0, T ;V ).

2. For all y ∈ W (0, T ;V ), the map t 7→ ‖y(t)‖2H is differentiable almost everywhere with
d
dt‖y(t)‖2H = 2〈y′(t), y(t)〉V ∗.

3. Let y, v ∈W (0, T ;V ). Then, the formula of integration by parts∫ T

0
〈y′(t), v(t)〉V ∗dt+

∫ T

0
〈v′(t), y(t)〉V ∗dt = (y(T ), v(T ))H − (y(0), v(0))H

holds. In particular, this implies the “fundamental theorem”∫ T

0
〈y′(t), y(t)〉V ∗dt =

1

2

(
‖y(T )‖2H − ‖y(0)‖2H

)
.

The first statement implies that an element of W (0, T ;V ) can be evaluated at every

t ∈ [0, T ]. In connection with the frequently used evolution triple (H1(Ω), L2(Ω), H1(Ω)∗),

we use the abbreviation W (0, T ) := W (0, T ;H1(Ω)).

Operators. Let (V,H, V ∗) be an evolution triple and Y be a Banach space in which

W (0, T ;V ) is continuously embedded. We abbreviate X := L2(0, T ;V ). The operator

A : Y → X∗ is generated by the indexed family (A(t))t if there exist a space Λ ⊆ H with the

property

y(t) ∈ Λ for all y ∈ Y and almost all t (1.1)

and operators A(t) : Λ→ V ∗ with A(t)(y(t)) = [A(y)](t) or, in other words,

〈A(y), v〉L2(0,T ;V ∗) =

∫ T

0
〈A(t)(y(t)), v(t)〉V ∗dt for all y ∈ Y, v ∈ X (1.2)

(cf. Gajewski [7, Remark VI.1.2]). If there is no danger of confusion, we write A(y(t)) instead

of A(t)(y(t)).
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Let additionally Y ↪→ X be valid. The operator A is called

• monotone if 〈Ay −Av, y − v〉X∗ ≥ 0 for all y, v ∈ Y ,

• strictly monotone if 〈Ay −Av, y − v〉X∗ > 0 for all y, v ∈ Y with y 6= v,

• coercive if ‖y‖Y →∞ implies 〈Ay, y〉X∗/‖y‖Y →∞,

• hemicontinuous if the map t 7→ 〈A(y+ tv), w〉X∗ is continuous at every t ∈ [0, 1] for all

y, v, w ∈ Y ,

• demicontinuous if the image of a strongly convergent sequence in Y is weakly convergent

in X∗,

• weakly (sequentially) continuous if the image of a weakly convergent sequence in Y is

weakly convergent in X∗,

• strongly continuous if the image of a weakly convergent sequence in Y is strongly

convergent in X∗.

The following theorem is concerned with periodic solutions of operator equations.

Theorem 1.1.3 (Existence theorem of Gajewski et al. [7]). If A : X → X∗ is a hemicontin-

uous, monotone, and coercive operator, the problem

y′ +Ay = f, y(0) = y(T ),

has a solution y ∈ W (0, T ;V ) for every f ∈ X∗. If A is strictly monotone, the solution is

unique.

1.2 Equations in classical form

The following hypothesis introduces the reaction and source terms of a general ecosystem

model.

Hypothesis 1.2.1. Let Y be a Banach space. Suppose that W (0, T )s is continuously embed-

ded in Y and that Λ ⊆ L2(Ω)s fulfills the property (1.1). For every i ∈ {1, . . . , np}, let Ui be

a Banach space of functions on QT or Σ and U := U1 × . . .× Unp. Furthermore, let V ⊆ U .

We assume that the reaction terms

d : V × Y → L2(QT )s and b : V × Y → L2(Σ)s

fulfill the following property: For every fixed u ∈ V , there are indexed families (d(t))t and

(b(t))t of operators

d(t) : Λ→ L2(Ω)s and b(t) : Λ→ L2(Γ)s
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satisfying d(u, y)(x, t) = d(t)(y(t))(x) for all y ∈ Y and almost all (x, t) ∈ QT and an

analogous identity for b.

Let furthermore qQT
: V → L2(QT )s and qΣ : V → L2(Σ)s be the source terms.

Provided that Hypothesis 1.2.1 holds, a marine ecosystem model is given by the s-

dimensional system of advection-diffusion-reaction equations with boundary conditions

∂tyj + v · ∇yj − div(κ∇yj) + dj(u, y) = qQT j(u) in QT

∇yj · (κη) + bj(u, y) = qΣj(u) in Σ
(1.3)

for all j ∈ {1, . . . , s}. The system (1.3) and the associated operator equation (cf. Equa-

tion (1.6) below) are both referred to as “the model equation”.

In all chapters except for Chapter 5 about parameter identification, we regard the model

with a fixed parameter u. For this reasons, we omit the argument u of d, b, qQT
, and qΣ. In

Chapter 5, we will return to the original notation introduced in Hypothesis 1.2.1.

1.3 Weak formulation

Let Hypothesis 1.2.1 be valid. Weak solutions of the system (1.3) have less regularity than

classical solutions in C2(Q̄T )s. However, it is required that weak and classical solutions

coincide as soon as the latter exist. Therefore, the following derivation of a weak formulation

takes a classical solution of the s-dimensional system (1.3) as a starting point.

Suppose that y ∈ C2(Q̄T )s ⊆ Y is a solution of (1.3) and let w ∈ C1(Q̄T )s be a vector of

test functions. In the first step, the j-th model equation, evaluated at (x, t) ∈ Ω × [0, T ], is

multiplied by wj(x, t). Integrating with respect to Ω, we obtain

(∂tyj(t), wj(t))Ω + (v(t) · ∇yj(t), wj(t))Ω − (div(κ(t)∇yj(t)), wj(t))Ω+(dj(y, . , t), wj(t))Ω

= (qQT j(t), wj(t))Ω

for every j ∈ {1, . . . , s}. To relax the regularity of yj , we interpret the temporal derivative

∂tyj as a distributional derivative, i.e.,

(∂tyj(t), wj(t))Ω = 〈y′j(t), wj(t)〉H1(Ω)∗ .

The third summand is transformed using integration by parts based on Gauß’ divergence

theorem. Inserting the boundary condition, we obtain

−
∫

Ω
div(κ∇yj)wjdx =

∫
Ω

(κ∇yj · ∇wj)dx−
∫

Γ
(∇yj · (κη))wjdσ

=

∫
Ω

(κ∇yj · ∇wj)dx+

∫
Γ

(bj(y, σ, t)− qΣj)wjdσ.

In the majority of cases, we omitted the arguments (x, t) and (σ, t).
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All linear summands are gathered in the time-dependent bilinear form Bs : H1(Ω)s ×
H1(Ω)s × [0, T ]→ R, given by Bs(z, v; t) :=

∑s
j=1B(zj , vj ; t) with B defined by

B(zj , vj ; t) :=

∫
Ω

(κ(t)∇zj · ∇vj)dx+

∫
Ω

(v(t) · ∇zj)vjdx.

The first statement of Lemma 1.4.2 below ensures that B and Bs are well-defined. Later, we

apply Bs mostly to the values of abstract functions α, β ∈ L2(0, T ;H1(Ω))s at a fixed t. In

this case, we write Bs(α, β; t) instead of Bs(α(t), β(t); t).

The previous steps lead to the weak formulation

〈y′j(t), wj(t)〉H1(Ω)∗ +B(yj , wj ; t) + (dj(y, . , t), wj(t))Ω + (bj(y, . , t), wj(t))Γ

= (qQT j(t), wj(t))Ω + (qΣj(t), wj(t))Γ

for all t ∈ [0, T ] and all test functions. We obtain a weak formulation for the s-dimensional

problem by integrating with respect to time and summing up the equations for all j ∈
{1, . . . , s}. Because of Lemma 1.4.1 in the next section, the summands associated with

reaction and source terms are well-defined for all y ∈ Y and w ∈ L2(0, T ;H1(Ω))s. Moreover,

the first summand requires y′ ∈ L2(0, T ;H1(Ω)∗)s, and Bs admits arguments belonging to

L2(0, T ;H1(Ω))s. Thus, W (0, T )s is an adequate solution space.

According to these considerations, a weak solution y ∈W (0, T )s fulfills∫ T

0
{〈y′(t), w(t)〉+Bs(y, w; t) + (d(y, . , t), w(t))Ωs + (b(y, . , t), w(t))Γs}dt

=

∫ T

0
{(qQT

(t), w(t))Ωs + (qΣ(t), w(t))Γs}dt (1.4)

for all test functions w ∈ L2(0, T ;H1(Ω))s.

1.4 Weak formulation as operator equation

Many results about weak solutions are obtained using the theory of operator equations. To

adapt our problem to this framework, we prove that the summands of the weak formulation

(1.4) can be identified with operators mapping into L2(0, T ;H1(Ω)∗)s.

First, we address the reaction and source terms (cf. Tröltzsch [26, Theorem 3.12]).

Lemma 1.4.1. Let Hypothesis 1.2.1 be valid. For every y ∈ Y , the definition

F (y) : w 7→
∫ T

0
[(d(y, . , t), w(t))Ωs + (b(y, . , t), τw(t))Γs ]dt for all w ∈ L2(0, T ;H1(Ω))s

describes the operator F : Y → L2(0, T ;H1(Ω)∗)s which is generated by the indexed family
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(F (t))t of operators F (t) : Λ→ (H1(Ω)∗)s with

F (t)(v) : z 7→ (d(t)(v), z)Ωs + (b(t)(v), τz)Γs for all v ∈ Λ, z ∈ H1(Ω)s

in the sense of (1.2). Moreover, the map f , defined by

〈f, w〉L2(0,T ;H1(Ω)∗)s :=

∫ T

0
{(qQT

(t), w(t))Ωs + (qΣ(t), τw(t))Γs}dt

for all w ∈ L2(0, T ;H1(Ω))s, is an element of L2(0, T ;H1(Ω)∗)s.

In the formulation of the lemma, we use the trace operator τ of Theorem 1.1.1 to point

out the different domains of integration in both integrals. Later, we will return to omitting

τ in the boundary integrals.

Proof. The operator F is generated by (F (t))t in the sense of (1.2) because of the relationship

between d, b and (d(t))t, (b(t))t given in Hypothesis 1.2.1. Thus, it remains to be shown that

all operators specified in the lemma are well-defined. We start with the indexed family.

Let v ∈ Λ and z ∈ H1(Ω)s. The operator F (t)(v) belongs to (H1(Ω)∗)s if it is linear and

bounded. The first property holds by definition. Regarding the second, we conclude with

the Cauchy-Schwarz inequality in L2(Γ)s and Theorem 1.1.1

(b(t)(v), τz)Γs ≤ ‖b(t)(v)‖Γs‖τz‖Γs ≤ ‖b(t)(v)‖Γscτ‖z‖H1(Ω)s .

Similarly, we obtain (d(t)(v), z)Ωs ≤ ‖d(t)(v)‖Ωs‖z‖H1(Ω)s . Thus,

‖F (t)(v)‖(H1(Ω)∗)s ≤ ‖d(t)(v)‖Ωs + ‖b(t)(v)‖Γscτ .

The upper bound is finite because d(t)(v) ∈ L2(Ω)s and b(t)(v) ∈ L2(Γ)s.

We proceed with the operator involving time. Given y ∈ Y , the norm of F (y) is equal to

the integral over the norm of F (y(t)) because of (1.2). Using the estimate of the generating

functional and the convexity of the square function on R, we obtain

‖F (y)‖2L2(0,T ;H1(Ω)∗)s =

∫ T

0
‖F (y(t))‖2(H1(Ω)∗)sdt ≤ 2

(
‖d(y)‖2L2(QT )s + ‖b(y)‖2L2(Σ)sc

2
τ

)
. (1.5)

The last expression is finite due to the assumptions about d and b.

The statement about f can be proved by means of the same arguments because f and

F (y) are defined in an analogous way.

The bilinear form Bs(. , .) can be identified with the linear operator

Bs : L2(0, T ;H1(Ω))s → L2(0, T ;H1(Ω)∗)s, 〈Bs(z), v〉L2(0,T ;H1(Ω)∗) :=

∫ T

0

s∑
j=1

B(zj , vj ; t)dt

13



for all z, v ∈ L2(0, T ;H1(Ω))s, generated by the family (Bs(t))t consisting ofBs(t) : H1(Ω)s →
(H1(Ω)∗)s withBs(t)(w) := Bs(w, . ; t) for all w ∈ H1(Ω)s. The first statement of Lemma 1.4.2

below in combination with Hölder’s inequality in L2(0, T ) ensures that the operators Bs and

Bs(t) are well-defined.

Using the previous definitions, we can formulate the weak formulation as the operator

equation

y′ +Bs(y) + F (y) = f in L2(0, T ;H1(Ω)∗)s. (1.6)

A solution y of this equation belongs to W (0, T )s.

We conclude this section with some important statements concerning the bilinear form

Bs( . , . ; t) and the operator Bs.

Lemma 1.4.2. Let 1 ∈ H1(Ω) be the constant function that is equal to one almost every-

where. The following properties hold for all y, v ∈ H1(Ω)s and almost all t ∈ [0, T ].

1. There is a constant CB > 0, independent of t, y, v, such that

|Bs(y, v; t)| ≤ CB‖y‖H1(Ω)s‖v‖H1(Ω)s .

2. κmin‖y‖2H1(Ω)s ≤ B
s(y, y; t) + κmin‖y‖2L2(Ω)s. In particular, Bs(y, y; t) ≥ 0.

3. B(yj , 1; t) = 0 for all j ∈ {1, . . . , s}.

4. B(yj + c, vj ; t) = B(yj , vj ; t) for every measurable function c : [0, T ] → R and all

j ∈ {1, . . . , s}.

5. The operator Bs is monotone.

The proof of Lemma 1.4.2 uses the following auxiliary lemma.

Lemma 1.4.3. Let v ∈ H1(Ω)nd with divv = 0 in Ω and v · η = 0 in Γ. Hence,∫
Ω

(v · ∇w)wdx = 0 for all w ∈ H1(Ω).

Proof. Let w ∈ H1(Ω). For all c ∈ H1(Ω) und x ∈ H1(Ω)nd , we obtain

div(cx) =

nd∑
i=1

∂i(cxi) =

nd∑
i=1

(c(∂ixi) + xi(∂ic)) = c

nd∑
i=1

∂ixi +

nd∑
i=1

xi(∂ic) = cdivx+ x · ∇c,

a product rule for the divergence. This formula applied to c := w and x := v yields∫
Ω
div(vw)wdx =

∫
Ω
w2divvdx+

∫
Ω
(v · ∇w)wdx =

∫
Ω
(v · ∇w)wdx.
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The summand with w2 vanishes because of the assumption about the divergence of v. By

means of the product rule applied to c := w and x := vw, the same integral proves equal to

an integral over the divergence of vw2 which can be transformed into a boundary integral by

virtue of Gauß’ divergence theorem. In detail, we obtain∫
Ω

div(vw)wdx =

∫
Ω

div(vw2)dx−
∫

Ω
((vw) · ∇w)dx

=

∫
Γ
(v · η)w2dσ −

∫
Ω

(v · ∇w)wdx = −
∫

Ω
(v · ∇w)wdx.

The first integral in the second line vanishes because the product of v with the outward-

pointing normal η is assumed to be zero. The difference of the last two equations is equal

to

2

∫
Ω

(v · ∇w)wdx =

∫
Ω

div(vw)wdx−
∫

Ω
div(vw)wdx = 0.

This equality implies the statement of the lemma.

Proof of Lemma 1.4.2. Throughout this proof, let y, v ∈ H1(Ω)s, j ∈ {1, . . . , s}, and t ∈
[0, T ] \M with M being a suitable subset of [0, T ] with |M | = 0.

We start proving the first statement for the summand B(yj , vj ; t). The Cauchy-Schwarz

inequality in L2(Ω)nd yields∣∣∣∣∫
Ω

(κ(t)∇yj · ∇vj)dx
∣∣∣∣ ≤ κmax |(∇yj ,∇vj)Ωnd | ≤ κmax‖∇yj‖Ωnd‖∇vj‖Ωnd and∣∣∣∣∫

Ω
(v(t) · ∇yj)vjdx

∣∣∣∣ = |(v(t)vj ,∇yj)Ωnd | ≤ ‖v(t)vj‖Ωnd‖∇yj‖Ωnd .

For every i ∈ {1, . . . , nd}, Hölder’s inequality with the exponents p = 3
2 and q = 3 provides

‖vi(t)vj‖Ω =

(∫
Ω

vi(t)
2v2
jdx

) 1
2

≤
(∫

Ω
vi(t)

3dx

) 1
3
(∫

Ω
v6
jdx

) 1
6

= ‖vi(t)‖L3(Ω)‖vj‖L6(Ω)

and therefore

‖v(t)vj‖Ωnd =

(
nd∑
i=1

‖vi(t)vj‖2Ω

) 1
2

≤

(
nd∑
i=1

‖vi(t)‖2L3(Ω)‖vj‖
2
L6(Ω)

) 1
2

= ‖v(t)‖L3(Ω)nd‖vj‖L6(Ω).

For each r ∈ {3, 6}, H1(Ω) is continuously embedded in Lr(Ω). Thus, there is a constant

cr > 0 with ‖w‖Lr(Ω) ≤ cr‖w‖H1(Ω) for all w ∈ H1(Ω). We estimate∣∣∣∣∫
Ω
(v(t) · ∇yj)vjdx

∣∣∣∣ ≤ c3‖v(t)‖H1(Ω)nd c6‖vj‖H1(Ω)‖∇yj‖Ωnd ≤vmaxc3c6‖vj‖H1(Ω)‖yj‖H1(Ω).
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Combining the results, we obtain

|B(yj , vj ; t)| ≤ CB‖yj‖H1(Ω)‖vj‖H1(Ω)

with the constant CB := κmax + vmaxc3c6. The Cauchy-Schwarz inequality in Rs yields the

assertion for Bs.

To prove the second statement for B(yj , yj ; t), we observe primarily that the summand

containing v vanishes according to Lemma 1.4.3, applied to v(t) and yj . We estimate the

summand containing diffusion by∫
Ω
κ(t)(∇yj · ∇yj)dx ≥ κmin

∫
Ω

(∇yj · ∇yj)dx = κmin‖∇yj‖2Ωnd .

Hence,

κmin‖∇yj‖2Ωnd ≤ B(yj , yj ; t). (1.7)

Finally, we add κmin‖yj‖2Ω on both sides of (1.7). The sum of the resulting inequalities for

j ∈ {1, . . . , s} corresponds to the assertion. The sum of (1.7) for j ∈ {1, . . . , s} yields the

additional assertion of (2).

Before proving the third statement, we observe that the product rule for the divergence

in the proof of Lemma 1.4.3, applied to c := yj and x := v(t), in combination with the

assumption about v(t) yields div(v(t)yj) = yjdiv(v(t)) + v(t) · ∇yj = v(t) · ∇yj . This

equality admits the transformation of the second summand of B(yj , 1; t). In addition, we

apply Gauß’ divergence theorem and the assumption about v. We obtain

B(yj , 1; t) =

∫
Ω

(κ∇yj ·∇1)dx+

∫
Ω

div(v(t)yj)1dx = 0+

∫
Γ
(v(t)yj)·ηdσ =

∫
Γ
yj(v(t)·η)dσ = 0.

To prove the fourth assertion, we regard c(t) as an element of H1(Ω) which is independent

of x. We obtain

B(c(t), vj ; t) = c(t)

(∫
Ω

(κ(t)∇1 · ∇vj(t))dx+

∫
Ω

(v(t) · ∇1)vj(t)dx

)
= 0.

The original assertion holds because B is bilinear.

Let w, z ∈ L2(0, T ;H1(Ω))s. The last assertion is a consequence of the additional state-

ment of (2) applied to w(t)− z(t) instead of y. Additionally considering the definition of the

operator Bs and the bilinearity of Bs( . , . ; t), we conclude

〈Bs(w)−Bs(z), w − z〉L2(0,T ;H1(Ω)∗) =

∫ T

0
Bs(w − z, w − z; t)dt ≥ 0.

Thus, the lemma is proved.
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1.5 Conservation of mass

Many ecosystem models are designed to describe cycles, such as the phosphorus cycle. In

this case, the model equation usually lacks external sources and sinks, i.e., qQT
= 0 and

qΣ = 0 as well as d(0) = 0 and b(0) = 0. Moreover, no material leaves or enters the system

through the boundary (seafloor and surface). These conditions imply that the total mass

in the ecosystem remains constant with respect to time. Conservation of mass is a crucial

property when it comes to the analysis of periodic solvability.

In this section, we formalize the concept of mass and indicate a condition under which

the reaction and source terms ensure that an ecosystem model is mass-conserving.

The mass can be defined very generally.

Definition 1.5.1. • The function

mass : L1(Ω)s → R, mass(v) :=
s∑
j=1

∫
Ω
vjdx

relates any vector of functions on Ω to its total mass in Ω.

• An s-dimensional vector of concentrations y ∈ C([0, T ];L1(Ω))s has a constant mass if

there exists C ∈ R with

mass(y(t)) = C for all t ∈ [0, T ].

The mass of a solution y ∈W (0, T )s of an ecosystem model will prove weakly differentiable

with respect to time. In this case, “having a constant mass” can be characterized by a

vanishing derivative.

Proposition 1.5.2. Let y ∈ C([0, T ];L1(Ω))s such that

mass(y) : [0, T ]→ R, t 7→ mass(y(t))

is an element of H1(0, T ). Then, y has a constant mass if and only if d
dt mass(y) = 0.

Proof. The first implication holds because the (weak) derivative of every constant function

is zero.

Regarding the second implication, mass(y) is constant almost everywhere because the

weak derivative with respect to time vanishes. In addition, the choice of y implies that

mass(y) is continuous. Thus, there exists C ∈ R with mass(y(t)) = C for all t ∈ [0, T ].

By means of this characterization, we are able to prove a sufficient property of models

conserving mass.

Theorem 1.5.3. Let Y be a Banach space with W (0, T )s ↪→ Y . Consider the functional

f̃ ∈ L2(0, T ;H1(Ω)∗)s and the operator F̃ : Y → L2(0, T ;H1(Ω)∗)s, generated by the family
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of operators F̃ (t) : Λ→ (H1(Ω)∗)s with Λ ⊆ L2(Ω)s fulfilling property (1.1). By 1 we denote

the element of H1(Ω) that is equal to one almost everywhere. Suppose that the operator

equation

y′ +Bs(y) + F̃ (y) = f̃

has a solution y ∈W (0, T )s. If the “conservation of mass conditions”

s∑
j=1

〈F̃j(z(t)), 1〉H1(Ω)∗ = 0 and
s∑
j=1

〈f̃j(t), 1〉H1(Ω)∗ = 0 (1.8)

are fulfilled for almost all t ∈ [0, T ] and all z ∈ Y , the function mass(y) defined in Proposi-

tion 1.5.2 is weakly differentiable and the weak derivative is equal to zero almost everywhere.

In particular, the solution y has a constant mass.

Lemma 1.4.1 immediately yields the following remark, stating that reaction and source

terms of mass-conserving models cancel each other out in some sense.

Remark 1.5.4. If the operator equation of Theorem 1.5.3 corresponds to the weak formula-

tion of an ecosystem model, the operator F̃ and the right-hand side f̃ are defined by reaction

and source terms according to Lemma 1.4.1. In this case, the conservation of mass conditions

(1.8) are equal to
s∑
j=1

(∫
Ω
dj(z, x, t)dx+

∫
Γ
bj(z, σ, t)dσ

)
= 0

and
s∑
j=1

(∫
Ω
qQT j(x, t)dx+

∫
Γ
qΣj(σ, t)dσ

)
= 0

for all z ∈ Y and almost every t ∈ [0, T ].

Proof of Theorem 1.5.3. Let the conservation of mass conditions (1.8) be valid, and let y ∈
W (0, T )s be a solution of the operator equation specified in the theorem.

To show that mass(y) is weakly differentiable, let ϕ ∈ C∞0 (0, T ) be a test function. Since

the support of ϕ is compact in (0, T ), we have ϕ(0) = ϕ(T ) = 0. The test function ϕ can

be interpreted as an element of W (0, T ) that is constant with respect to x. In this case, we

identify the derivative ϕ′ with the element of L2(0, T ;H1(Ω)∗) given by∫ T

0
〈ϕ′(t), v(t)〉H1(Ω)∗dt =

∫ T

0
ϕ′(t)

∫
Ω
v(t)dxdt for all v ∈ L2(0, T ;H1(Ω)).

The definition of mass(y(t)), the equation for ϕ′, and Theorem 1.1.2(3) yield

−
∫ T

0
mass(y(t))ϕ′(t)dt = −

∫ T

0
ϕ′(t)

∫
Ω

s∑
j=1

yj(t)dxdt = −
∫ T

0
〈ϕ′(t),

s∑
j=1

yj(t)〉H1(Ω)∗dt
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=
s∑
j=1

(∫ T

0
〈y′j(t), ϕ(t)〉H1(Ω)∗dt− (ϕ(T ), yj(T ))L2(Ω) + (ϕ(0), yj(0))L2(Ω)

)
.

The summands with ϕ(0) and ϕ(T ) vanish since ϕ ∈ C∞0 (0, T ). The operator equation at

(ϕ, . . . , ϕ) ∈ L2(0, T ;H1(Ω))s yields for the first summand

s∑
j=1

∫ T

0
〈y′j(t),ϕ(t)〉H1(Ω)∗dt

=
s∑
j=1

∫ T

0

(
〈f̃j(t), 1〉H1(Ω)∗ −B(yj , 1; t)− 〈F̃j(y(t)), 1〉H1(Ω)∗

)
ϕ(t)dt = 0.

The right-hand side is equal to zero because of Lemma 1.4.2(3), the assumed conditions (1.8),

and y ∈ Y . Hence, mass(y) is weakly differentiable, and the weak derivative is equal to zero

almost everywhere. Since y ∈W (0, T )s can be identified with an element of C([0, T ];L2(Ω))s

according to Theorem 1.1.2(1), the additional assertion of the theorem follows from Propo-

sition 1.5.2.

1.6 Types of solution

We are basically interested in two types of solutions. A third one is added for completeness.

Definition 1.6.1. Let Hypothesis 1.2.1 be valid. Suppose that the operator equation (1.6)

has the solution y ∈W (0, T )s.

• Let y0 ∈ L2(Ω)s. The solution y is called transient (with the initial value y0) if yj(0) =

y0j for all j ∈ {1, . . . , s}.

• The solution y is called periodic if yj(0) = yj(T ) for all j ∈ {1, . . . , s}.

In the context of parameter identification, the solution of a model equation (the “model

output”) is compared to observational data from the investigated ecosystem (cf. Chapter 5).

Available data are often “climatological”, i.e., they represent an average over several years.

Since periodic solutions correspond to this type of data, they are of particular interest.

Transient solutions, on the other hand, correspond to data related to an actual year.

The additional type of stationary solutions reflects the equilibrium concentrations that

are reached if the “forcing”, caused by velocity, diffusion, reaction terms, and right-hand

sides, is constant with respect to time. The characterizing equation is a time-independent

variant of the model equation (1.6). In particular, the temporal derivative is equal to zero.

Let v ∈ H1(Ω)nd and κ ∈ L∞(Ω). We define the time-independent linear operator

Bs
stat : H1(Ω)s → (H1(Ω)∗)s by

〈Bs
stat(v), w〉 :=

s∑
j=1

(∫
Ω

(κ∇vj · ∇wj)dx+

∫
Ω

(v · ∇vj)wjdx
)

for all v, w ∈ H1(Ω)s.
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Moreover, we consider the operator Fstat : Λ → (H1(Ω)∗)s and the right-hand side fstat ∈
(H1(Ω)∗)s. A stationary solution y ∈ H1(Ω)s ∩ Λ is characterized by solving the equation

Bs
stat(y) + Fstat(y) = fstat. (1.9)

A stationary solution in H1(Ω)s can be identified with an element of W (0, T )s. Being

constant with respect to time, this element is periodic in the sense that initial and terminal

values coincide. However, it is not a periodic solution of the time-dependent equation (1.6)

because, unlike periodic solutions, stationary solutions correspond to a constant forcing.

Therefore, the existence of stationary solutions does not imply the existence of a constant

periodic solution.

Periodic and stationary solutions are closely related as we will see in Chapter 3. As a

consequence, the method we develop to prove the existence of periodic solutions applies also

to stationary solutions after only slight modifications. Mainly for this reason, we incorporate

a result about stationary solutions in this work. In applications, they are less important than

transient or periodic solutions because a constant forcing is not realistic.
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Chapter 2

Transient solutions for a general

model class

2.1 Introduction to the model class

In this chapter, we investigate transient solutions of a specific class of ecosystem models. The

class is distinguished by reaction terms containing a monotone and a Lipschitz continuous

part. As we will see in Chapter 4, the PO4-DOP model belongs to this class because all

featured reaction terms are Lipschitz continuous.

We prove existence and uniqueness of transient solutions with the help of two different

techniques. The first proof relies on Galerkin’s method which is a standard approach in

connection with transient solutions of partial differential equations. The second proof is based

on Banach’s Fixed Point Theorem. Evans [5, Section 9.2.1, Theorem 2] uses this technique

to solve an initial boundary value problem with purely Lipschitz continuous reaction terms

and homogeneous Dirichlet boundary conditions. Following both approaches, we obtain two

different existence results, formulated in the theorems 2.2.1 and 2.3.2. The second result,

based on Banach’s theorem, has the advantage of being constructive. However, its proof

relies on a special case of the first result. Since the latter additionally permits a slightly

larger domain of definition for the reaction terms, it is worth being stated on its own.

The ideas of both proofs can be found in literature; especially, Galerkin’s method has

been applied in many variations. Our achievement will consist in adapting the standard

methods to the special situation of ecosystem models.

To specify the model class, we need the following fundamental assumptions.

Hypothesis 2.1.1. Let f ∈ L2(0, T ;H1(Ω)∗)s and i ∈ {1, 2}. Suppose that Yi are Banach

spaces with W (0, T )s ↪→ Yi and that Λi ⊆ L2(Ω)s and Yi fulfill property (1.1). Furthermore,

we assume that the operators Fi : Yi → L2(0, T ;H1(Ω)∗)s are generated by the indexed

families (Fi(t))t of operators Fi(t) : Λi → (H1(Ω)∗)s in the sense of (1.2).
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The model class covered in this chapter is characterized by the operator equation

y′ +Bs(y) + F1(y) + F2(y) = f in L2(0, T ;H1(Ω)∗)s.

The properties of the operators F1 and F2 are specified in Theorem 2.2.1 below. The con-

siderations before Equation (1.6) show the connection between the general operators F1, F2

and the reaction terms d, b of an ecosystem model.

2.2 An existence and uniqueness result with Galerkin’s method

Theorem 2.2.1. Beside Hypothesis 2.1.1, let L2(0, T ;H1(Ω))s be continuously embedded in

Y2. We assume that the operators Fi are homogeneous, i.e., Fi(0) = 0. Suppose that F2 is

demicontinuous and F2(t) is continuous and monotone, i.e.,

〈F2(y(t))− F2(v(t)), y(t)− v(t)〉 ≥ 0 for almost all t ∈ [0, T ]

given y, v ∈ L2(0, T ;H1(Ω))s. Furthermore, F1(t) satisfies the Lipschitz condition

‖F1(y(t))− F1(v(t))‖(H1(Ω)∗)s ≤ L1‖y(t)− v(t)‖Ωs for almost all t ∈ [0, T ]

given y, v ∈ L2(QT )s ∩ Y1 with L1 > 0 independent of t. Moreover, let one of the conditions

1. The embedding W (0, T )s ↪→ Y := Y1 ∩ Y2 is compact;

2. F2 = 0 and F1 is weakly continuous;

3. F2 6= 0 and F1 is strongly continuous;

be valid. Then, the initial value problem

y′ +Bs(y) + F1(y) + F2(y) = f

y(0) = y0

(2.1)

has a unique solution y ∈W (0, T )s for every y0 ∈ L2(Ω)s.

The proof of Theorem 2.2.1 follows after a proposition about a priori estimates.

Proposition 2.2.2. Suppose that the operators Fi : Yi → L2(0, T ;H1(Ω)∗)s fulfill the as-

sumptions of Theorem 2.2.1. Furthermore, let Z be a closed subspace of H1(Ω).

1. Let z1, z2 be elements of W (0, T )s in case Z = H1(Ω) or else of H1(0, T ;Z)s. Suppose

that the difference z := z1 − z2 fulfills

〈z′(t), v〉+Bs(z, v; t) +

2∑
i=1

〈Fi(z1(t))− Fi(z2(t)), v〉 = 〈f(t), v〉 (2.2)
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for all v ∈ Zs and almost all t ∈ [0, T ]. Here, we define 〈z′(t), v〉 := (z′(t), v)Ωs if z′(t)

is a function. Then, there exists a constant C > 0 independent of z, f, F2 with

‖z‖C([0,T ];L2(Ω))s + ‖z‖L2(0,T ;H1(Ω))s ≤ C(‖f‖L2(0,T ;H1(Ω)∗)s + ‖z(0)‖L2(Ω)s).

2. Let M > 0. We define the set KM as a subset of W (0, T )s in case Z = H1(Ω) or else

of H1(0, T ;Z)s as follows: An element z of W (0, T )s or H1(0, T ;Z)s belongs to KM if

and only if ‖z(0)‖L2(Ω)s ≤M and the variant of Equation (2.2)

〈z′(t), v〉+Bs(z, v; t) +
2∑
i=1

〈Fi(z(t)), v〉 = 〈f(t), v〉 (2.3)

holds for all v ∈ Zs and almost all t ∈ [0, T ]. Then, there exists a constant M∗ > 0

independent of z with

‖z′‖L2(0,T ;H1(Ω)∗)s ≤M∗ for all z ∈ KM .

In case F2 = 0, the derivative of every z ∈ W (0, T )s or z ∈ H1(0, T ;Z)s satisfying

(2.3) can be estimated by

‖z′‖L2(0,T ;H1(Ω)∗)s ≤ C̃
(
‖f‖L2(0,T ;H1(Ω)∗)s + ‖z‖L2(0,T ;H1(Ω))s

)
with a constant C̃ > 0 independent of z and f .

Proof. Concerning the first assertion, Equation (2.2) implies

〈z′(t), z(t)〉+Bs(z, z; t) +

2∑
i=1

〈Fi(z1(t))− Fi(z2(t)), z(t)〉 = 〈f(t), z(t)〉 (2.4)

almost everywhere since z(t) belongs to Zs for almost all t ∈ [0, T ]. First, we observe

〈F2(z1(t))− F2(z2(t)), z(t)〉 = 〈F2(z1(t))− F2(z2(t)), z1(t)− z2(t)〉 ≥ 0

because of the monotonicity assumed for F2(t). Using additionally Theorem 1.1.2(2), Equa-

tion (2.4) leads to the estimate

1

2

d

dt
‖z(t)‖2Ωs +Bs(z, z; t) ≤ 〈f(t), z(t)〉 − 〈F1(z1(t))− F1(z2(t)), z(t)〉.

Both of the summands on the right-hand side are estimated by means of Cauchy’s inequality

with an arbitrary ε > 0 (see, for instance, Evans [5, Appendix B.2]). We obtain for the first

summand

〈f(t), z(t)〉 ≤ ‖f(t)‖(H1(Ω)∗)s‖z(t)‖H1(Ω)s ≤
1

4ε
‖f(t)‖2(H1(Ω)∗)s + ε‖z(t)‖2H1(Ω)s .
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Employing the Lipschitz condition, we similarly conclude for the second summand

|〈F1(z1(t))−F1(z2(t)), z(t)〉| ≤ ‖F1(z1(t))− F1(z2(t))‖(H1(Ω)∗)s‖z(t)‖H1(Ω)s

≤ L1‖z1(t)− z2(t)‖Ωs‖z(t)‖H1(Ω)s ≤
L2

1

4ε
‖z(t)‖2Ωs + ε‖z(t)‖2H1(Ω)s . (2.5)

Estimating Bs according to Lemma 1.4.2(2), we arrive at

1

2

d

dt
‖z(t)‖2Ωs ≤

1

4ε
‖f(t)‖2(H1(Ω)∗)s + ε‖z(t)‖2H1(Ω)s +

L2
1

4ε
‖z(t)‖2Ωs

+ ε‖z(t)‖2H1(Ω)s + κmin‖z(t)‖2Ωs − κmin‖z(t)‖2H1(Ω)s .

We choose ε := κmin/4. Rearranging the summands and gathering the coefficients in c1 =

2κmin + 2L2
1/κmin, we transform the inequality into

d

dt
‖z(t)‖2Ωs ≤

1

2ε
‖f(t)‖2(H1(Ω)∗)s + c1‖z(t)‖2Ωs − 2(κmin − 2ε)‖z(t)‖2H1(Ω)s

≤ 2

κmin
‖f(t)‖2(H1(Ω)∗)s + c1‖z(t)‖2Ωs − κmin‖z(t)‖2H1(Ω)s (2.6)

≤ 2

κmin
‖f(t)‖2(H1(Ω)∗)s + c1‖z(t)‖2Ωs .

Gronwall’s lemma (see, for instance, Evans [5, Appendix B.2]) yields

‖z(t)‖2Ωs ≤ etc1
[
‖z(0)‖2Ωs +

∫ t

0

2

κmin
‖f(σ)‖2(H1(Ω)∗)sdσ

]
(2.7)

≤ C1

[
‖z(0)‖2Ωs + ‖f‖2L2(0,T ;H1(Ω)∗)s

]
for all t ∈ [0, T ] with C1 := exp(Tc1) max{1, 2/κmin}. This yields the desired estimate of the

C([0, T ];L2(Ω))s-norm of z.

To derive an analogous result in L2(0, T ;H1(Ω))s, we return to Equation (2.6) and add

κmin‖z(t)‖2H1(Ω)s on both sides of the inequality. Integration with respect to t yields

∫ T

0

d

dt
‖z(t)‖2Ωsdt+ κmin‖z‖2L2(0,T ;H1(Ω))s ≤

∫ T

0
c1‖z(t)‖2Ωsdt+

2

κmin
‖f‖2L2(0,T ;H1(Ω)∗)s .

The first integral is transformed by virtue of Theorem 1.1.2. The integrand on the right-hand

side is bounded by the C([0, T ];L2(Ω))s-norm of z. We conclude

‖z(T )‖2Ωs+ κmin‖z‖2L2(0,T ;H1(Ω))s≤ Tc1‖z‖2C([0,T ];L2(Ω))s +
2

κmin
‖f‖2L2(0,T ;H1(Ω)∗)s +‖z(0)‖2Ωs .

The summand ‖z(T )‖2Ωs is nonnegative. Using the estimate of the C([0, T ] ;L2(Ω))s-norm of

z, we obtain

‖z‖2L2(0,T ;H1(Ω))s ≤ C2

[
‖z(0)‖2Ωs + ‖f‖2L2(0,T ;H1(Ω)∗)s

]
(2.8)
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with C2 := (C1Tc1 + max{2/κmin, 1})/κmin. Combining the square roots of the two estimates

for z and estimating the right-hand side using the binomial theorem, we obtain the theorem’s

first assertion with the constant C :=
√
C1 +

√
C2.

We proceed with the theorem’s second part. Let z ∈ KM . First, we estimate F2(z) using

Corollary III.1.2 of Gajewski et al. [7]. By assumption, F2, regarded as an operator from

L2(0, T ;H1(Ω))s to L2(0, T ;H1(Ω)∗)s, is monotone. Furthermore, Equation (2.8), applied to

z1 = z and z2 = 0, and the condition for the initial value yield

‖z‖L2(0,T ;H1(Ω))s ≤ C2

[
‖f‖L2(0,T ;H1(Ω)∗)s +M

]
=: M1.

We use the techniques of the proof of the theorem’s first part to show the existence of a con-

stant M2 > 0 with 〈F2(z), z〉L2(0,T ;H1(Ω)∗)s ≤ M2. Repeating all steps in the transformation

of (2.2) into (2.6) except for the estimate of the summand with F2, we obtain

〈F2(z(t)), z(t)〉 ≤ 2

κmin
‖f(t)‖2(H1(Ω)∗)s + c1‖z(t)‖2Ωs −

d

dt
‖z(t)‖2Ωs .

Integration with respect to t and Theorem 1.1.2 yield

〈F2(z), z〉L2(0,T ;H1(Ω)∗)s ≤
2

κmin
‖f‖2L2(0,T ;H1(Ω)∗)s + c1‖z‖2L2(0,T ;L2(Ω))s − ‖z(T )‖2Ωs + ‖z(0)‖2Ωs

≤ 2

κmin
‖f‖2L2(0,T ;H1(Ω)∗)s + c1M

2
1 +M2 =: M2.

The constants M1 and M2 are independent of z. Thus, the corollary of Gajewski et al.

provides a constant MF with

‖F2(z)‖L2(0,T ;H1(Ω)∗)s ≤MF for all z ∈ KM . (2.9)

To prove the proposition’s second statement, let v ∈ H1(Ω)s with ‖v‖H1(Ω)s = 1. First,

we express 〈z′(t), v〉 by means of Equation (2.3). To this end, we write v = v1 + v2 with

v1 ∈ Zs and v2 ∈ (Zs)⊥. This representation of v exists because Z is a closed subset of

H1(Ω).

In case Z 6= H1(Ω), the derivative z′(t) belongs to Zs and is thus orthogonal to v2

in H1(Ω)s. This implies (z′(t), v2)Ωs = 0 because L2(Ω)s and H1(Ω)s have a simultaneous

orthogonal basis (see, for instance, Evans [5, Section 7.1.2]). Furthermore, v1 ∈ Zs is admitted

as a test function in Equation (2.3). We conclude

〈z′(t), v〉= (z′(t), v)Ωs = (z′(t), v1)Ωs = 〈f(t), v1〉 −Bs(z, v1; t)−
2∑
i=1

〈Fi(z(t)), v1〉

for almost all t ∈ [0, T ]. The same equation holds if Zs = H1(Ω)s. In this case, v2 = 0, and

v = v1 ∈ H1(Ω)s itself is admitted as a test function in (2.3).

In the next step, we estimate the right-hand side of the equation for 〈z′(t), v〉. Since
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F1(0) = 0, the Lipschitz continuous summand can be estimated by

〈F1(z(t))− F1(0), v1〉 ≤ L1‖z(t)‖Ωs‖v1‖H1(Ω)s ≤ L1‖z(t)‖H1(Ω)s‖v1‖H1(Ω)s . (2.10)

Similar estimates hold for the summands including f(t) and F2(z(t)). Lemma 1.4.2(1) pro-

vides an estimate for Bs. Furthermore, the orthogonality of v1 and v2 in combination with

the Pythagorean theorem in the Hilbert space H1(Ω)s yields

‖v1‖2H1(Ω)s ≤ ‖v1‖2H1(Ω)s + ‖v2‖2H1(Ω)s = ‖v‖2H1(Ω)s = 1.

Finally, the norm in L2(Ω)s is bounded by the norm in H1(Ω)s. We conclude

‖z′(t)‖2(H1(Ω)∗)s = sup
‖v‖=1

〈z′(t), v〉2 ≤
(
‖f(t)‖(H1(Ω)∗)s + C3‖z(t)‖H1(Ω)s + ‖F2(z(t))‖(H1(Ω)∗)s

)2
≤ 3

(
‖f(t)‖2(H1(Ω)∗)s + C2

3‖z(t)‖2H1(Ω)s + ‖F2(z(t))‖2(H1(Ω)∗)s

)
with C3 := CB+L1. The last estimate is valid because of the convexity of the square function

on R. We integrate this estimate with respect to t and insert the upper bounds derived for

z and F2(z). The result is

‖z′‖2L2(0,T ;H1(Ω)∗)s≤ 3(‖f‖2L2(0,T ;H1(Ω)∗)s + C2
3‖z‖2L2(0,T ;H1(Ω))s + ‖F2(z)‖2L2(0,T ;H1(Ω)∗)s)

≤ 3(‖f‖2L2(0,T ;H1(Ω)∗)s + C2
3M

2
1 +M2

F ) =: M∗2.

We obtain the proposition’s second assertion by extracting the square root.

The additional statement about equations with purely Lipschitz continuous operators is a

consequence of the first line of the last estimate. The norm of F2(z) vanishes in this case.

Proof of Theorem 2.2.1. Let y0 ∈ L2(Ω)s. Choose an orthogonal basis (vj)j∈N of the separa-

ble Hilbert space H1(Ω). It can be considered an orthonormal basis of L2(Ω) after a possible

orthonormalization (cf. Evans [5, Section 7.1.2]).

We will approximate the desired solution by a sequence (yn)n consisting of the members

yn = (y1n, . . . , ysn). Let n ∈ N. For every l ∈ {1, . . . , s}, the l-th component of the sequence’s

n-th member belongs to the finite-dimensional subspace span{v1, . . . , vn} of H1(Ω) and is

described by the ansatz

yln(t) =
n∑
i=1

luni (t)vi

at every point of time t. We will determine the coefficients

un : [0, T ]→ Rn×s with un =


1un1 · · · sun1

...
. . .

...
1unn · · · sunn
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in such a way that yln(t) solves

(y′ln(t), vj)Ω +B(yln, vj ; t) +
2∑

m=1

〈Fml(yn(t)), vj〉H1(Ω)∗ = 〈fl(t), vj〉H1(Ω)∗ (2.11)

and that (y0l, vj)Ω = (yln(0), vj)Ω holds for all j ≤ n and all l ≤ s.
We insert the ansatz for yln(t) into (2.11). The linearity of the first two summands and

the orthonormality of the basis yield for the left-hand side of the equation

(

n∑
i=1

luni
′
(t)vi, vj)Ω +B(

n∑
i=1

luni (t)vi, vj ; t) +

2∑
m=1

〈Fml((
n∑
i=1

kuni (t)vi)k≤s), vj〉H1(Ω)∗

= lunj
′
(t) +

n∑
i=1

luni (t)B(vi, vj ; t) + Φjl(t, u
n(t)).

Here, we gather the last two terms in a function of the coefficient matrix un, namely

Φjl(t, u
n(t)) :=

2∑
m=1

〈Fml((
n∑
i=1

kuni (t)vi)k≤s), vj〉H1(Ω)∗ .

The same arguments yield (y0l, vj)Ω = (yln(0), vj)Ω = (
∑n

i=1
luni (0)vi, vj)Ω = lunj (0) for the

initial value.

Combining these equations for all j ≤ n and l ≤ s, we observe that the coefficient matrix

un solves the (n× s)-dimensional nonlinear system of ordinary differential equations

d

dt
un(t) = r(t)−A(t)un(t)− Φ(t, un(t)) (2.12)

un(0) = ((y0l, vj)Ω) j=1,...,n,
l=1,...,s

.

Here, we use the abbreviations

Φ := (Φjl) j=1,...,n,
l=1,...,s

: [0, T ]× Rn×s → Rn×s, r := (〈fl( . ), vj〉) j=1,...,n,
l=1,...,s

: [0, T ]→ Rn×s

and A := (B(vi, vj ; . )) j=1,...,n,
i=1,...,n

∈ L2(0, T )n×n. In each case, the index above counts the

number of lines.

We prove the solvability of (2.12) after stating an a priori estimate for an absolutely

continuous solution un ∈ H1(0, T )n×s. If the entries of the vector yn = (y1n, . . . , ysn) are

defined by the ansatz with the coefficients un, the orthonormality of (vj)j∈N in L2(Ω) yields

‖yn(t)‖2Ωs =
s∑
l=1

‖
n∑
i=1

luni (t)vi‖2Ω =
s∑
l=1

n∑
i=1

luni (t)2 = ‖un(t)‖2Rn×s .

Thus, an a priori estimate for yn provides an estimate for un as well.

An estimate for yn follows from Proposition 2.2.2, applied to the finite-dimensional and
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therefore closed subspace Z := span{v1, . . . , vn} of H1(Ω) and the set KM := {yn}.

We show that KM fulfills the assumptions of the proposition’s second part. Since the

coefficient matrix un belongs to H1(0, T )n×s, the associated ansatz function yn is an element

of H1(0, T ;Z)s. To obtain an equivalent of (2.3), we use that all elements of Z are linear

combinations of v1, . . . , vn. We multiply the equations (2.11), which are equivalent to (2.12),

by an arbitrary constant cjl and summate across j ∈ {1, . . . , n} and l ∈ {1, . . . , s}. Further-

more, the initial value yn(0) is bounded by M := ‖y0‖Ωs . This is shown by the initial value

condition in (2.12), the orthonormality of the basis elements and Bessel’s inequality. These

arguments enable the estimate

‖yn(0)‖2Ωs =
s∑
l=1

‖
n∑
i=1

luni (0)vi‖2Ω =
s∑
l=1

‖
n∑
i=1

(y0l, vi)Ωvi‖2Ω =
s∑
l=1

n∑
i=1

(y0l, vi)
2
Ω

≤
s∑
l=1

‖y0l‖2Ω = ‖y0‖2Ωs . (2.13)

Thus, both parts of Proposition 2.2.2 yield an upper bound Mup > 0 independent of yn

such that

sup
t∈[0,T ]

‖yn(t)‖Ωs + ‖yn‖W (0,T )s ≤Mup. (2.14)

Note that the considerations above remain valid for the set KM := {yñ : ñ ∈ N}. Thus,

(2.14) holds for every member of the sequence (yñ)ñ∈N and Mup is independent of ñ.

In particular, we obtain the a priori estimate ‖un(t)‖Rn×s ≤ Mup for each solution of

(2.12) on a subinterval of [0, T ].

The existence of a solution un of (2.12) on [0, T ] follows from Problem 30.2(iv) in Zeidler

[29], proved by means of the existence theorem of Carathéodory (cf. Coddington and Levinson

[3, Theorem 2.1.1]). To apply this result, we define the compact set K := {un ∈ Rn×s :

‖un‖Rn×s ≤ 2Mup}. First, we prove that the right-hand side

R : [0, T ]×K → Rn×s, R(t, un) := r(t)−A(t)un − Φ(t, un)

satisfies the Carathéodory condition. Clearly, t 7→ r(t)−A(t)un −Φ(t, un) is measurable for

every un ∈ K. Furthermore, un 7→ r(t) − A(t)un − Φ(t, un) is continuous for almost every

t ∈ [0, T ]. This is the case because the linear summand is given by a matrix multiplication and

un 7→ Φ(t, un) is a composition of continuous functions. The component F2(t) is continuous

by assumption, and the continuity of F1(t) is a consequence of the Lipschitz condition.

Finally, let un ∈ K. We prove that the norm of R( . , un) is bounded by a Lebesgue-

integrable function. The upper bound in

‖r(t)−A(t)un‖Rn×s ≤ ‖r(t)‖Rn×s + ‖A(t)‖Rn×n2Mup
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is integrable with respect to t since this is true for r and all entries B(vi, vj ; .) of the

matrix A(.). The two summands of Φ( . , un) are estimated separately. Referring to the

ansatz function belonging to un as yn, we estimate the (j, l)-th entry of the first summand

〈F1l(t)(yn), vj〉H1(Ω)∗ for almost every t by means of the Lipschitz condition, the homogeneity

of F1, and the fact that yn(t) and un(t) have the same norm. Since un belongs to K, we

obtain the upper bound 2L1Mup‖vj‖H1(Ω), which is constant and therefore integrable with

respect to t.

For almost every t, we regard the (j, l)-th entry of the second summand as the function ft :

K → R, ft(un) = 〈F2l(t)(yn), vj〉H1(Ω)∗ using again the abbreviation yn for the ansatz function

belonging to un. We have already shown that the function ft is continuous. Furthermore, ft

maps the compact set K into R and thus has a minimum at unmin(t) ∈ K and a maximum at

unmax(t) ∈ K. It remains to be shown that the upper bound in

|ft(un)| ≤ max{|ft(unmin(t))|, |ft(unmax(t))|}

is integrable with respect to t. Since unmin(t) belongs to K, the corresponding ansatz function

yn,min is an element of L2(0, T ;H1(Ω))s and therefore also of the domain of definition Y2 of

F2. As a consequence, F2(yn,min) lies in L2(0, T ;H1(Ω)∗)s. Thus, a standard estimate yields

that ft(u
n
min(.)) is integrable with respect to t. The same holds for ft(u

n
max(.)).

Thus, all assumptions of Problem 30.2 of Zeidler [29] are fulfilled. It provides a solution

of (2.12) which is absolutely continuous on [0, T ] and fulfills (2.12) almost everywhere.

For every n ∈ N, let yn ∈ W (0, T )s be the ansatz function associated with the solution

un of (2.12). Since the a priori estimate (2.14) holds for all n ∈ N and the upper bound is

independent of n, the sequence (yn)n∈N is bounded in W (0, T )s which is a Hilbert space and

thus reflexive. The theorem of Eberlein-Shmulyan (see, for instance, Yosida [27, Appendix

to Chapter V]) yields a subsequence (ynk
)k∈N and a limit y ∈ W (0, T )s with ynk

⇀ y in

L2(0, T ;H1(Ω))s and y′nk
⇀ y′ in L2(0, T ;H1(Ω)∗)s for k →∞.

The ansatz functions ynk
fulfill Equation (2.11) for almost every t ∈ [0, T ]. To transform

(2.11) into an operator equation in L2(0, T ;H1(Ω)∗)s, we choose m ∈ N and arbitrary smooth

functions djl : [0, T ] → R for all j ∈ {1, . . . ,m}, l ∈ {1, . . . , s}. We multiply (2.11) by the

corresponding coefficient djl(t), summate across j ∈ {1, . . . ,m} and l ∈ {1, . . . , s}, and

integrate with respect to t. We obtain∫ T

0
{〈y′nk

(t), w(t)〉+Bs(ynk
, w; t) + 〈F (ynk

(t)), w(t)〉}dt =

∫ T

0
〈f(t), w(t)〉dt (2.15)

with the special test function w ∈ C∞([0, T ];H1(Ω))s defined by the components

wl =
m∑
j=1

djlvj ∈ C∞([0, T ];H1(Ω)) for all l ∈ {1, . . . , s}. (2.16)

Functions of this type lie dense in L2(0, T ;H1(Ω))s since (vj)j∈N is a basis of H1(Ω) and
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the space of smooth functions is dense in the space of quadratically integrable functions, see

Rudin [21, Theorem 3.14] and Emmrich [4, Theorem 8.1.9]. Thus, Equation (2.15) holds for

all w ∈ L2(0, T ;H1(Ω))s and all k ∈ N.

Equation (2.15) and the considerations concerning the test functions reveal that each ynk

solves the operator equation in (2.1). To prove that the same is true for the limit y, we

investigate the convergence of the summands on the left-hand side of (2.15).

Since, in particular, the sequence of the l-th components (ylnk
)k∈N converges weakly with

respect to the norm of L2(0, T ;H1(Ω)) for every l ∈ {1, . . . , s}, we conclude for an arbitrary

w ∈ L2(0, T ;H1(Ω))s∫ T

0
(κ(t)∇ylnk

(t),∇wl(t))L2(Ω)nddt→
∫ T

0
(κ(t)∇yl(t),∇wl(t))L2(Ω)nddt and∫ T

0
(v(t) · ∇ylnk

(t), wl(t))L2(Ω)dt→
∫ T

0
(v(t) · ∇yl(t), wl(t))L2(Ω)dt

and thus 〈Bs(ynk
), w〉L2(0,T ;H1(Ω)∗)s → 〈Bs(y), w〉L2(0,T ;H1(Ω)∗)s if k →∞. The weak conver-

gence y′nk
⇀ y′ implies

∫ T

0
〈y′nk

(t), w(t)〉dt→
∫ T

0
〈y′(t), w(t)〉dt for all w ∈ L2(0, T ;H1(Ω))s.

Analogous results for the operators F1 and F2 depend on the properties of Y = Y1 ∩ Y2.

Let us first consider the case that W (0, T )s is compactly embedded in Y . Then, the

bounded sequence (ynk
)k has a subsequence, denoted again by (ynk

)k, converging strongly in

Y and therefore in both Y1 and Y2. Since strong convergence implies weak convergence and

the weak limit is unique, the strong and the weak limit are both equal to y. The operator F1

is continuous due to the assumed Lipschitz condition and thus, in particular, demicontinuous.

Since F2 is demicontinuous as well, we obtain for the sum F := F1 + F2∫ T

0
〈F (ynk

(t)), w(t)〉dt→
∫ T

0
〈F (y(t)), w(t)〉dt for all w ∈ L2(0, T ;H1(Ω))s. (2.17)

In summary, we conclude from (2.15)∫ T

0
{〈y′(t), w(t)〉+Bs(y, w; t) + 〈F (y(t)), w(t)〉}dt =

∫ T

0
〈f(t), w(t)〉dt

for all w ∈ L2(0, T ;H1(Ω))s. Thus, in the first case, the proof is complete.

Now we consider the case that the embedding W (0, T )s ↪→ Y is not compact.

In the purely Lipschitz continuous case (F2 = 0), the assumed weak continuity of F1

yields F1(ynk
) ⇀ F1(y) in L2(0, T ;H1(Ω)∗)s. This is true because W (0, T )s is continuously

embedded in Y1 and thus (ynk
)k converges weakly to y in Y1. Hence, we obtain a result

analogous to (2.17), and the proof is complete.

At last, we consider the case that F2 6= 0 and F1 is strongly continuous. Since, in particu-
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lar, F1 is weakly continuous, the weak convergence F1(ynk
) ⇀ F1(y) is deduced as in the last

paragraph. To deduce an analogous result for F2 : Y2 → L2(0, T ;H1(Ω)∗)s, we recall that the

set KM := {ynk
: k ∈ N} fulfills the assumptions of Proposition 2.2.2. Thus, an equivalent

of Equation (2.9) holds, i.e., there exists a constant MF with ‖F2(ynk
)‖L2(0,T ;H1(Ω)∗)s ≤MF

for all k ∈ N. This estimate yields a subsequence, again denoted by (F2(ynk
))k, and a limit

D ∈ L2(0, T ;H1(Ω)∗)s with F2(ynk
) ⇀ D in L2(0, T ;H1(Ω)∗)s. By passing to limits in

(2.15), we obtain∫ T

0
{〈y′(t), w(t)〉+Bs(y, w; t) + 〈D(t), w(t)〉}dt =

∫ T

0
〈f(t)− F1(y(t)), w(t)〉dt (2.18)

for all w ∈ L2(0, T ;H1(Ω))s.

The proof is finished if F2(y) = D holds. Following Tröltzsch [26], we establish this

identity by means of a lemma from monotone operator theory.

In addition, we will utilize the following lemma about the sequence (ynk
)k.

Lemma 2.2.3. Let t ∈ [0, T ]. Then, (ynk
(t))k converges weakly to y(t) in L2(Ω)s. Moreover,

the sequence (ynk
(0))k converges strongly to the initial value y0 ∈ L2(Ω)s. In particular, the

initial value condition y(0) = y0 is satisfied.

Proof. The operator Et : C([0, T ];L2(Ω))s → L2(Ω)s, y 7→ y(t) is obviously linear and

bounded due to ‖Ety‖Ωs = ‖y(t)‖Ωs ≤ supτ∈[0,T ] ‖y(τ)‖Ωs = ‖y‖C([0,T ];L2(Ω))s and thus con-

tinuous. Hence, it is also weakly sequentially continuous, see e.g. Tröltzsch [26, Section 2.4.2].

Furthermore, (ynk
)k converges weakly to y in C([0, T ];L2(Ω))s because of Theorem 1.1.2(1).

The weak sequential continuity of Et yields the first statement of the lemma.

To prove the second assertion, we consider the ansatz for ylnk
(0) and the Fourier repre-

sentation y0l =
∑∞

i=1(y0l, vi)Ωvi of y0l in L2(Ω) for every l ∈ {1, . . . , s}. We estimate their

difference by using the properties of inner products and orthonormal bases as in (2.13) as

well as the initial value condition in (2.12). The convergence in the last step results from the

quadratic summability of the Fourier coefficients. We obtain

‖ynk
(0)− y0‖2Ωs =

s∑
l=1

‖
nk∑
i=1

lunk
i (0)vi −

∞∑
i=1

(y0l, vi)Ωvi‖2Ω =
s∑
l=1

‖
∞∑

i=nk+1

(y0l, vi)Ωvi‖2Ω

=

s∑
l=1

∞∑
i=nk+1

(y0l, vi)
2
Ω → 0 for k →∞.

Finally, ynk
(0) → y0 in L2(Ω)s implies the weak convergence ynk

(0) ⇀ y0. On the other

hand, the first part of the lemma states ynk
(0) ⇀ y(0). The uniqueness of the weak limit

yields y(0) = y0.

Now we are able to prove the identity D = F2(y) in the space L2(0, T ;H1(Ω)∗)s. As

announced above, we use the following lemma of Gajewski et al. [7, Lemma III.1.3] about

monotone operators.
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Lemma 2.2.4. Suppose that the Banach space H is reflexive and that the operator A : H →
H∗ is monotone and demicontinuous. Let there be y, yn ∈ H for all n ∈ N and w ∈ H∗ with

the properties yn ⇀ y in H as well as

(i) A(yn) ⇀ w in H∗ and (ii) lim sup
n→∞

〈A(yn), yn〉H∗ ≤ 〈w, y〉H∗ .

Hence, A(y) = w in H∗.

To be conform with the notation of Lemma 2.2.4, we restrict F2 to H := L2(0, T ;H1(Ω))s.

This is possible because H is assumed to be continuously embedded in Y2. In addition, we

regard (2.18) as the operator equation

y′ + w = R(y) (2.19)

where the functional w ∈ H∗ and the operator R : Y1 → H∗ are defined by

〈w, v〉H∗ :=

∫ T

0
{Bs(y, v; t) + 〈D(t), v(t)〉}dt and

〈R(ỹ), v〉H∗ :=

∫ T

0
{〈f(t), v(t)〉 − 〈F1(ỹ(t)), v(t)〉}dt

for all v ∈ H, ỹ ∈ Y1. Moreover, we introduce the operator A : H → H∗ with

〈A(ỹ), v〉H∗ :=

∫ T

0
{Bs(ỹ, v; t) + 〈F2(ỹ(t)), v(t)〉}dt for all ỹ, v ∈ H.

To be able to apply Lemma 2.2.4 to A and w, we check the assumptions. Since F2 : Y2 →
L2(0, T ;H1(Ω)∗)s is assumed to be monotone and demicontinuous, these properties remain

valid for the operator’s restriction to H. Lemma 1.4.2(5) states the monotonicity of Bs and

1.4.2(1) the continuity since Bs is linear. As a consequence, the sum A is monotone and

demicontinuous on H.

We have already seen that the sequence (ynk
)k converges weakly to y in H and that

A(ynk
) ⇀ w in H∗, i.e., property (i) holds. To verify property (ii), we deduce∫ T

0
〈y′nk

(t), ynk
(t)〉dt+ 〈A(ynk

), ynk
〉H∗ = 〈R(ynk

), ynk
〉H∗

from (2.11) (with nk instead of n) by multiplying this equation by the coefficient lunk
j (t),

summating across l ∈ {1, . . . , s} and j ∈ {1, . . . , nk}, and integrating with respect to t. Ap-

plying Theorem 1.1.2(3) to the integral on the left-hand side and rearranging the summands,

we obtain

〈A(ynk
), ynk

〉H∗ = 〈R(ynk
), ynk

〉H∗ +
1

2
‖ynk

(0)‖2Ωs −
1

2
‖ynk

(T )‖2Ωs . (2.20)
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Lemma 2.2.3, applied to t = T , yields ynk
(T ) ⇀ y(T ) in L2(Ω)s which implies ‖y(T )‖Ωs ≤

lim infn→∞ ‖ynk
(T )‖Ωs (see, for instance, Yosida [27, Theorem V.1.1(ii)]). Since the upper

limit of a real sequence is always greater or equal to the lower limit, we deduce

− lim sup
k→∞

‖ynk
(T )‖2Ωs ≤ − lim inf

k→∞
‖ynk

(T )‖2Ωs ≤ −‖y(T )‖2Ωs .

Furthermore, Lemma 2.2.3 implies limk→∞ ‖ynk
(0)‖2Ωs = ‖y(0)‖2Ωs .

Now we investigate the convergence of 〈R(ynk
), ynk

〉H∗ . Since f ∈ H∗ and (ynk
)k converges

weakly in H, we conclude 〈f, ynk
〉H∗ → 〈f, y〉H∗ for k → ∞. Moreover, we obtain for the

second part of R

|〈F1(ynk
), ynk

〉H∗ − 〈F1(y), y〉H∗ | ≤ |〈F1(ynk
)− F1(y), ynk

〉H∗ |+ |〈F1(y), ynk
− y〉H∗ |

≤ ‖F1(ynk
)− F1(y)‖H∗‖ynk

‖H + |〈F1(y), ynk
− y〉H∗ |.

Since F1(y) ∈ H∗, the hindmost summand converges to zero. The same is true for the first

summand because F1 : Y1 → H∗ is strongly continuous and (ynk
)k converges weakly in Y1.

In addition, the weakly convergent sequence (ynk
)k is bounded in H. Thus, we conclude

〈R(ynk
), ynk

〉H∗ → 〈R(y), y〉H∗ for k →∞.

Using these results, we obtain for the upper limit of (2.20)

lim sup
k→∞

〈A(ynk
), ynk

〉H∗= lim
k→∞

(
〈R(ynk

), ynk
〉H∗ +

1

2
‖ynk

(0)‖2Ωs

)
− 1

2
lim sup
k→∞

‖ynk
(T )‖2Ωs

≤ 〈R(y), y〉H∗ +
1

2
‖y(0)‖2Ωs −

1

2
‖y(T )‖2Ωs

= 〈R(y), y〉H∗−
∫ T

0
〈y′(t), y(t)〉dt =〈R(y), y〉H∗−〈y′, y〉H∗=〈w, y〉H∗ .

In the last line, we apply again Theorem 1.1.2(3). The last equality sign is valid because

y ∈ H is both a solution and a proper test function of the operator equation (2.19).

Thus, Lemma 2.2.4 yields A(y) = w, i.e.,∫ T

0
{Bs(y, v; t) + 〈F2(y(t)), v(t)〉}dt =

∫ T

0
{Bs(y, v; t) + 〈D(t), v(t)〉}dt for all v ∈ H.

By subtracting the linear summand on both sides, we obtain D = F2(y) in H∗, and the proof

of existence is complete.

To prove uniqueness, let y1, y2 ∈ W (0, T )s be two solutions of the initial value problem

(2.1). We show that the difference y := y1 − y2 is equal to zero. Since both y1 and y2 have

the same initial value, we obtain y(0) = y1(0) − y2(0) = y0 − y0 = 0. The difference of the

equations for y1(t) and y2(t), endowed with an arbitrary test function v ∈ H1(Ω)s, is equal
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to

〈y′(t), v〉+Bs(y, v; t) + 〈F1(y1(t))− F1(y2(t)), v〉+ 〈F2(y1(t))− F2(y2(t)), v〉 = 0

for almost all t ∈ [0, T ]. Thus, the assumptions of the first part of Proposition 2.2.2 with

Z = H1(Ω), f = 0, and zi = yi ∈W (0, T )s are fulfilled. The proposition yields

‖y1 − y2‖L2(0,T ;H1(Ω))s ≤ C(‖0‖L2(0,T ;H1(Ω)∗)s + ‖y(0)‖Ωs) = 0.

We immediately conclude y1 − y2 = 0.

2.3 An existence and uniqueness result with Banach’s Fixed

Point Theorem

In this section, we prove a second result about existence and uniqueness of transient solu-

tions for the regarded model class. The assumptions about Y1 are slightly stricter than in

Theorem 2.2.1 whereas the operator F1 is only required to be Lipschitz continuous even if

W (0, T )s is not compactly embedded in Y1 ∩ Y2. Moreover, the proof, based on Banach’s

Fixed Point Theorem, is constructive. We cite this important theorem below. The proof can

be found in Zeidler [28, Theorem 1.A].

Theorem 2.3.1. (Banach) Let X be a Banach space and the map A : X → X be Lipschitz

continuous with a constant L ∈ (0, 1). Hence, a unique fixed point of A exists in X, i.e.,

there is x∗ ∈ X with the property A(x∗) = x∗.

The rest of this section is dedicated to the existence theorem and its proof.

Theorem 2.3.2. Beside Hypothesis 2.1.1, we assume that C([0, T ];L2(Ω))s ↪→ Y1 and

L2(0, T ;H1(Ω))s ↪→ Y2 hold. Let the operators Fi be homogeneous, i.e., Fi(0) = 0. Sup-

pose that F2 is demicontinuous and that F2(t) is continuous and monotone, i.e.

〈F2(y(t))− F2(v(t)), y(t)− v(t)〉 ≥ 0 for almost all t ∈ [0, T ],

given y, v ∈ L2(0, T ;H1(Ω))s. Furthermore, F1(t) satisfies the Lipschitz condition

‖F1(y(t))− F1(v(t))‖(H1(Ω)∗)s ≤ L1‖y(t)− v(t)‖Ωs for almost all t ∈ [0, T ],

given y, v ∈ C([0, T ];L2(Ω))s, with L1 > 0 independent of t.

Hence, there is a unique solution y ∈W (0, T )s of the initial value problem (2.1) for every

initial value y0 ∈ L2(Ω)s. Moreover, the estimate

‖y‖L2(0,T ;H1(Ω))s + ‖y‖C([0,T ];L2(Ω))s ≤ Csol(‖f‖L2(0,T ;H1(Ω)∗)s + ‖y0‖Ωs)

holds with a constant Csol > 0 independent of f, F2, y, and y0.
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Proof of Theorem 2.3.2. We will adapt the method of Evans [5, Section 9.2.1] who treats one-

dimensional, purely Lipschitz continuous problems with homogeneous boundary conditions.

Banach’s Fixed Point Theorem will be applied to the space X := C([0, T ];L2(Ω))s, endowed

with the norm ‖y‖2C := supt∈[0,T ] ‖y(t)‖2L2(Ω)se
−Ct. The constant C > 0 is a priori arbitrary

and will be specified later on. As this modified norm is equivalent to the usual maximum

norm, (X, ‖.‖C) is a Banach space.

Let y0 ∈ L2(Ω)s. First, we eliminate the Lipschitz continuous reaction term from the

operator equation by inserting a fixed z ∈ X. Since F1(z) belongs to L2(0, T ;H1(Ω)∗)s,

Theorem 2.2.1, applied to F1 = 0, yields a unique solution y(z) ∈W (0, T )s of the monotone

problem

y′ +Bs(y) + F2(y) = f − F1(z)

y(0) = y0.
(2.21)

Because of Theorem 1.1.2(1), the operator

A : z 7→ y(z) for all z ∈ X

maps X into itself. Obviously, y is a fixed point of A if and only if it solves the original

problem (2.1).

Thanks to Banach’s Fixed Point Theorem, it suffices to show the Lipschitz continuity of

A with a constant in the interval (0, 1). To this end, we choose z1, z2 ∈ X and abbreviate

yi := A(zi) for i ∈ {1, 2}.

To establish an estimate for the difference δ := y1 − y2, we consider the equations for

yi(t) for almost every t ∈ [0, T ]. Each of them can be tested with an arbitrary v ∈ H1(Ω)s.

Subtracting the equations from each other, we obtain due to the linearity of the first two

summands on the left-hand side

〈δ′(t), v〉+Bs(δ, v; t) + 〈F2(y1(t))− F2(y2(t)), v〉 = 〈F1(z2(t))− F1(z1(t)), v〉. (2.22)

The right-hand side f vanishes because it appears in both equations. Equation (2.22) cor-

responds to (2.2) in Proposition 2.2.2. The proof of the proposition’s first part, applied to

Z = H1(Ω) and zi = yi, states that the equivalent of Equation (2.7)

‖δ(t)‖2Ωs ≤ etc1
∫ t

0

2

κmin
‖F1(z2(σ))− F1(z1(σ))‖2(H1(Ω)∗)sdσ

holds for all t ∈ [0, T ] with the constant c1 = 2κmin > 0. The norm of δ(0) vanishes since

y1(0) = y0 = y2(0). Applying the Lipschitz condition assumed for F1, we arrive at

‖δ(t)‖2Ωs ≤ etc1
∫ t

0
Ψ‖(z1 − z2)(σ)‖2Ωsdσ

with the constant Ψ := 2L2
1/κmin. In the next step, we estimate the exponential function
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and the integrand after an appropriate extension. We obtain

‖δ(t)‖2Ωs ≤ eTc1
∫ t

0
Ψ‖(z1 − z2)(σ)‖2Ωse−CσeCσdσ ≤ ΨeTc1‖z1 − z2‖2C

∫ t

0
eCσdσ

≤ ΨeTc1

C
‖z1 − z2‖2CeCt.

In the last step, the remaining integral was estimated by∫ t

0
eCσdσ =

1

C
[eCt − 1] ≤ 1

C
eCt.

Having multiplied both sides of the estimate for ‖δ(t)‖2Ωs by e−Ct, we regard its supremum.

We obtain

‖A(z1)−A(z2)‖2C = sup
t∈[0,T ]

‖δ(t)‖2Ωse−Ct ≤
ΨeTc1

C
‖z1 − z2‖2C .

Thus, A is Lipschitz continuous with the constant

LA :=

√
1

C

2L2
1

κmin
e2Tκmin .

The proof is valid for any C > 0. Choosing C > 2L2
1κ
−1
min exp(2Tκmin), we obtain LA < 1

due to the strict monotonicity of the square root function on R>0. Hence, the map A is a

contraction on the Banach space (X, ‖.‖C). Banach’s Fixed Point Theorem 2.3.1 provides

a unique fixed point y ∈ X of A. Since the solutions of the initial value problem (2.1) are

characterized by being a fixed point of A, the proof of existence and uniqueness is complete.

The asserted estimate of the solution y is a direct consequence of the first part of Proposi-

tion 2.2.2. By inserting an arbitrary element v ∈ H1(Ω)s as a test function into the equation

for y(t), we obtain

〈y′(t), v〉+Bs(y, v; t) + 〈F1(y(t)), v〉+ 〈F2(y(t)), v〉 = 〈f(t), v〉

for almost every t ∈ [0, T ], an equivalent of Equation (2.2) with z1 = z = y and z2 = 0.

Proposition 2.2.2(1) yields a constant Csol > 0 with

‖y‖L2(0,T ;H1(Ω))s + ‖y‖C([0,T ];L2(Ω))s ≤ Csol(‖f‖L2(0,T ;H1(Ω)∗)s + ‖y(0)‖Ωs).

This is equal to the asserted estimate since y(0) = y0.

2.4 Examples

In this section, we present two reaction terms both of which are superposition operators (cf.

Appell and Zabrejko [1]) associated with real functions. The first one is admitted in the
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regarded model class whereas the second is not.

Square root. This paragraph deals with a reaction term that fulfills the assumptions of

both existence theorems of this chapter. Consider the monotone increasing and continuous

real function

ϕ : R→ R, ϕ(y) =


√
y if y ≥ 0,

0 otherwise.

The function ϕ is associated with the superposition operator d : L2(QT )→ L2(QT ), defined

by

d(y)(x, t) = ϕ(y(x, t)) for all y ∈ L2(QT ) and almost all (x, t) ∈ QT .

To demonstrate that d is well-defined, we observe that the function (x, t) 7→ ϕ(y) is constant

and therefore measurable for all y ∈ R. Furthermore, the function y 7→ ϕ(y) is continuous.

Finally, the estimate ϕ(y) ≤ 1 + |y| is valid for all y ∈ R. As a consequence, d is well-defined

and continuous (cf. Appell and Zabrejko [1]). The same arguments ensure that the operators

d(t) : L2(Ω) → L2(Ω), defined by d(t)(w) = ϕ(w), are well-defined for every t. Finally,

W (0, T ) ↪→ L2(QT ). Thus, Hypothesis 1.2.1 is fulfilled.

Using Lemma 1.4.1, we can define F : L2(QT )→ L2(0, T ;H1(Ω)∗) and the family (F (t))t

of operators F (t) : L2(Ω) → H1(Ω)∗ on the basis of d and (d(t))t, respectively. The lemma

guarantees that (F (t))t generates F in the sense of (1.2). Moreover, the domains of definition

Y2 := L2(QT ) and Λ2 := L2(Ω) fulfill (1.1).

The operators F and F (t) are continuous because of the continuity of d. The continuity of

F implies its demicontinuity. Furthermore, F (t) is monotone because ϕ is monotone increas-

ing. Since additionally L2(0, T ;H1(Ω)) ↪→ Y2, the operator F fulfills the assumptions about

F2 in both existence theorems. Thus, F is an admissible reaction term for the investigated

model class. Note that F does not fulfill the assumptions about the Lipschitz continuous

part F1 because ϕ is not Lipschitz continuous. Thus, it makes sense to distinguish between

the two types of reaction terms.

Quadratic function. This paragraph presents a monotone reaction term that does not

fulfill the assumptions of the existence theorems. Consider the monotone increasing and

continuous real function

ϕ : R→ R, ϕ(y) = |y|y

and the family of operators F (t) : H1(Ω)→ H1(Ω)∗ defined by

〈F (t)(w), z〉H1(Ω)∗ :=

∫
Ω
ϕ(w(x))z(x)dx for all w, z ∈ H1(Ω), t ∈ [0, T ].

To demonstrate that these operators are well-defined, let w, z ∈ H1(Ω). Hölder’s inequal-

ity with the exponents 3/2 and 3 and the continuous embedding of H1(Ω) in L3(Ω) for nd ≤ 3
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yield

∫
Ω
ϕ(w(x))z(x)dx ≤

(∫
Ω
|w(x)|3dx

) 2
3
(∫

Ω
|z(x)|3dx

) 1
3

= ‖w‖2L3(Ω)‖z‖L3(Ω) <∞. (2.23)

The operators F (t) are continuous and monotone but not Lipschitz continuous. Therefore,

Hypothesis 2.1.1 and the existence theorems require the family (F (t))t to generate a demicon-

tinuous operator F on a domain Y2. The domain Y2 has to be a superset of L2(0, T ;H1(Ω)),

and the range of F has to be L2(0, T ;H1(Ω)∗).

The smallest possible domain is L2(0, T ;H1(Ω)). However, there seems to be no continu-

ous embedding even of this space in L3(QT ) (or in another Lp-space with p > 2) comparable

to the embedding of H1(Ω) in L3(Ω). As a consequence, finiteness of the time-dependent

integral ∫ T

0

∫
Ω
ϕ(y(x, t))v(x, t)dxdt

with y, v ∈ L2(0, T ;H1(Ω)) cannot be proved by means of Hölder’s inequality.

It can be shown that the integral is finite for all v ∈ L2(0, T ;H1(Ω)) and y ∈ W (0, T ),

i.e., the family (F (t))t generates an operator F : W (0, T )→ L2(0, T ;H1(Ω)∗). However, the

domain of definition Y2 = W (0, T ) does not fulfill the assumptions of the existence theorems.

Thus, it seems that models with quadratic reaction terms belong to another class. A

certain part of this class is covered by the existence result of Casas [2].
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Chapter 3

Periodic solutions of models of

N-DOP type

Periodic solutions are not as well investigated as transient solutions. A typical existence

result for equations with monotone operators is represented by Theorem 1.1.3. Here, as well

as in Shioji [24], who applies Galerkin’s method to pseudo-monotone operators, a crucial as-

sumption is the operator’s coercivity. However, reaction terms belonging to mass-conserving

ecosystem models normally lack this property since the conservation of mass condition (1.8)

implicates that each summand added in one model equation is subtracted in another. Further-

more, most standard theorems are confined to results about existence. This is not sufficient

for mass-conserving models with vanishing source terms, such as the PO4-DOP model, since

these models have the trivial function as a periodic solution.

We overcome these difficulties for an important model class to which the PO4-DOP model

belongs. The result is stated in Theorem 3.2.1. The proof is based on the standard theorem

1.1.3 and the Schauder Fixed Point Theorem, taken from Zeidler [28, Theorem 2.A]:

Theorem 3.0.1 (Schauder Fixed Point Theorem). Let M be a nonempty, closed, bounded,

convex subset of a Banach space X. Suppose A : M → M is continuous and maps bounded

sets into relatively compact sets (i.e., A is a compact operator). Then A has a fixed point.

3.1 Models of N-DOP type

Models of N -DOP type generalize the PO4-DOP model of Parekh et al. [15], presented

in Chapter 4. This is already indicated by the names: The letter N is an abridged form

of “nutrient” whereas PO4 stands for the special nutrient phosphate. Like the PO4-DOP

model, a model of N -DOP type is characterized by s = 2 equations and a reaction term

describing remineralization, i.e., a linear term multiplied with a constant (“remineralization

rate”). Beyond that, models of N -DOP type can feature further reaction terms as well as

nonzero source terms. In Section 4.4.2, we show that the PO4-DOP model belongs to the

class of models of N -DOP type.
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As in the last chapter, we formulate a model of N -DOP type as an operator equation,

i.e., as a variant of Equation (1.6). In the following hypothesis, we introduce the necessary

spaces and operators.

Hypothesis 3.1.1. Let f = (f1, f2) ∈ L2(0, T ;H1(Ω)∗)2, and let Y be a Banach space

in which W (0, T )2 is compactly embedded. We assume that the operator F = (F1, F2) :

Y → L2(0, T ;H1(Ω)∗)2 is generated by the indexed family (F (t))t of operators F (t) : Λ →
(H1(Ω)∗)2 in the sense of (1.2) with Λ ⊆ L2(Ω)2 fulfilling property (1.1). Furthermore, we

abbreviate B := B1.

Given λ > 0, the operator λId : L2(0, T ;H1(Ω))→ L2(0, T ;H1(Ω)∗) is defined by

〈λId(z), v〉L2(0,T ;H1(Ω)∗) :=

∫ T

0

∫
Ω
λz(t)v(t)dxdt for all z, v ∈ L2(0, T ;H1(Ω)).

As in the proof of Lemma 1.4.1, we can show by means of Hölder’s inequality that the

operator λId is well-defined. We use the slightly imprecise name Id for the embedding of

L2(0, T ;H1(Ω)) in L2(0, T ;H1(Ω)∗) to emphasize the connection between classical model

equation and the corresponding operator equation. The reaction term corresponding to

λId(z) in the classical equation is λIdC2(QT )(z) (abbreviated by λz). In the following con-

siderations, we will use λz to abbreviate λId(z) as well.

Given Hypothesis 3.1.1, a model of N -DOP type corresponds to the system of operator

equations

y′1 +B(y1)− λy2 + F1(y) = f1

y′2 +B(y2) + λy2 + F2(y) = f2.

3.2 Existence of periodic solutions

Theorem 3.2.1. Let Hypothesis 3.1.1 be valid and let C ∈ R. We assume that the reaction

term F : Y → L2(0, T ;H1(Ω)∗)2 is continuous and that there is a constant Mrea > 0 with

max{‖F1(y)‖L2(0,T ;H1(Ω)∗), ‖F2(y)‖L2(0,T ;H1(Ω)∗)} ≤Mrea for all y ∈ Y. (3.1)

Suppose that the conservation of mass conditions

2∑
j=1

〈Fj(y(t)), 1〉H1(Ω)∗ = 0 and
2∑
j=1

〈fj(t), 1〉H1(Ω)∗ = 0 (3.2)

hold for almost all t ∈ [0, T ] and all y ∈ Y . The symbol 1 stands for the element of H1(Ω)

that is equal to one almost everywhere. Hence, the periodic problem

y′1 +B(y1)− λy2 + F1(y) = f1

y′2 +B(y2) + λy2 + F2(y) = f2

y(0) = y(T )

(3.3)
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has a solution y ∈W (0, T )2 with mass(y(t)) = C for all t ∈ [0, T ].

In particular, there are nontrivial periodic solutions of (3.3), even in case f1 = f2 = 0.

Proof. To justify the additional statement, we regard C 6= 0. The theorem’s main statement

yields a periodic solution with the constant mass C. Since the mass is not equal to zero, the

solution is nontrivial.

The proof of the main statement is divided into two steps. First, the equations are

linearized and solved with the help of monotone operator theory. Afterwards, the Schauder

Fixed Point Theorem yields a solution of the nonlinear problem.

Periodic solution of a linearized problem. Let z ∈ Y be arbitrary. In this step, we

show that the linear problem

y′1 +B(y1)− λy2 = f1 − F1(z)

y′2 +B(y2) + λy2 = f2 − F2(z) (3.4)

y(0) = y(T )

mass(y(t)) = C for all t ∈ [0, T ]

has a unique solution y = (y1, y2) ∈ W (0, T )2. To this end, we apply Theorem 1.1.3 by

Gajewski et al. to each equation separately. This is possible because the linearization renders

the two equations in (3.4) decoupled. In particular, the problem

y′2 +B(y2) + λy2 = f2 − F2(z), y2(0) = y2(T )

can be solved independently of the first component y1. The operator A := B + λId :

L2(0, T ;H1(Ω)) → L2(0, T ;H1(Ω)∗) is linear and therefore hemicontinuous. Using Equa-

tion (1.7) in the proof of Lemma 1.4.2, we estimate

〈B(y2) + λy2, y2〉L2(0,T ;H1(Ω)∗) ≥
∫ T

0
{κmin‖∇y2(t)‖2L2(Ω)nd + λ‖y2(t)‖2L2(Ω)}dt

≥ min{κmin, λ}‖y2‖2L2(0,T ;H1(Ω))

for all y2 ∈ L2(0, T ;H1(Ω)). From this it follows that A is coercive and strictly monotone.

Hence, Theorem 1.1.3, applied to the evolution triple (H1(Ω), L2(Ω), H1(Ω)∗), yields a unique

periodic solution y2 := y2(z) ∈W (0, T ).

Next, we consider a periodic solution y1 of the first equation. The operator B is not

coercive in the space L2(0, T ;H1(Ω)) because B(y1, y1; t) is bounded from below only by the

norm of the gradient. Therefore, we restrict B to an appropriate domain of definition, based

on a new evolution triple (V,H, V ∗).

We define V := {v ∈ H1(Ω) : mass(v) = 0} and H := V
L2(Ω)

as the closure of V

in L2(Ω). As a sub-Hilbert space of H1(Ω), V is reflexive and separable. Furthermore,
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‖ . ‖V : V → R, v 7→ ‖∇v‖L2(Ω)nd is a norm in V which is equivalent to the usual H1(Ω)-

norm due to Poincaré’s inequality (see e.g. Evans [5, Theorem 5.8.1]). By definition, V lies

dense in H and the embedding is continuous. Therefore, (V,H, V ∗) is an evolution triple. In

addition, we observe

Remark 3.2.2. Let v ∈ H. Then mass(v) = 0.

Indeed, given v ∈ H, there exists a sequence (vn)n ⊆ V with vn → v in L2(Ω). Since

mass(vn) = 0 for all n, we conclude

mass(v) =

∫
Ω
vdx =

∫
Ω

(v − vn)dx ≤
√
|Ω|‖v − vn‖L2(Ω) → 0.

Instead of the first equation, we solve the sum of both equations. Having obtained a

periodic solution S of the sum in W (0, T ), the desired solution y1 will be defined by the

difference of S and y2. By adding up both equations, we obtain the sum

S′ +B(S) = f1 + f2 − (F1(z) + F2(z))

S(0) = S(T ).
(3.5)

The condition for the mass is considered later on.

The application of Theorem 1.1.3 to (3.5) requires the coercivity of B. Therefore, we

restrict the summands of the operator equation to B̃ : L2(0, T ;V ) → L2(0, T ;V ∗) and f̃1 +

f̃2 − (F̃1(z) + F̃2(z)) ∈ L2(0, T ;V ∗). The restrictions are well-defined since L2(0, T ;V ) ⊆
L2(0, T ;H1(Ω)).

The restriction B̃ is still hemicontinuous. In addition, we estimate

〈B̃(S), S〉L2(0,T ;V ∗) ≥ κmin

∫ T

0
‖∇S(t)‖2L2(Ω)nddt = κmin

∫ T

0
‖S(t)‖2V dt = κmin‖S‖2L2(0,T ;V )

for all S ∈ L2(0, T ;V ) using again Equation (1.7). This estimate shows that B̃ is strictly

monotone and coercive. Theorem 1.1.3, applied to the evolution triple (V,H, V ∗), yields

a unique periodic solution S = S(z) ∈ W (0, T ;V ) of problem (3.5). Because of Theo-

rem 1.1.2(1) and Remark 3.2.2, mass(S(t)) = 0 for all t ∈ [0, T ].

Next, we prove S ∈ W (0, T ). Obviously, the initial value S(0) ∈ H belongs to L2(Ω).

Thus, Theorem 2.2.1 provides a unique solution Sτ ∈W (0, T ) of the non-restricted, transient

problem

S′τ +B(Sτ ) = f1 + f2 − (F1(z) + F2(z)), Sτ (0) = S(0).

The function S0 ∈ C([0, T ];L2(Ω)), defined by S0(t) := Sτ (t) − |Ω|−1 mass(Sτ (t)) for all

t ∈ [0, T ], is a modification of Sτ with the constant mass 0. We investigate S0 in the

following lemma.

Lemma 3.2.3. The modified solution has the properties S0 ∈ L2(0, T ;V ), S′0 = S′τ , and

S′0 ∈ L2(0, T ;H1(Ω)∗). Furthermore, S0 ∈W (0, T ) fulfills the same equation as Sτ .
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Proof. The first property is fulfilled if S0 ∈ L2(0, T ;H1(Ω)) and mass(S0(t)) = 0 for all t.

First, the modified solution S0 belongs to L2(0, T ;H1(Ω)) since Sτ ∈ L2(0, T ;H1(Ω)) and

mass(Sτ ) ∈ L2(0, T ). The latter is proved by an easy estimate using the definition of mass

and Hölder’s inequality. Second, let t ∈ [0, T ]. We compute

mass(S0(t)) =

∫
Ω

[
Sτ (t)− |Ω|−1 mass(Sτ (t))

]
dx = mass(Sτ (t))− |Ω||Ω|−1 mass(Sτ (t)) = 0.

Since S′τ ∈ L2(0, T ;H1(Ω)∗), the third assertion follows from the second. Because of the

definition of S0, the second assertion is equivalent to the weak differentiability of the map

mass(Sτ ) : [0, T ]→ R with the derivative mass(Sτ )′ = 0.

The function Sτ solves the operator equation investigated in Theorem 1.5.3 with s = 1,

F̃ = 0 and f̃ = f1 + f2− (F1(z) +F2(z)). Since 〈f̃(t), 1〉H1(Ω)∗ = 0 for almost all t ∈ [0, T ] by

assumption, the theorem yields d
dt mass(Sτ (t)) = 0 for almost all t. This proves the second

claim of the lemma.

Finally, the third assertion and S0 ∈ L2(0, T ;H1(Ω)), proved in connection with the first

assertion, imply S0 ∈ W (0, T ). The second assertion, the definition of S0, Lemma 1.4.2(4),

applied to c(t) = −|Ω|−1 mass(Sτ (t)), and the equation for Sτ yield

S′0 +B(S0) = S′τ +B(Sτ − |Ω|−1 mass(Sτ )) = S′τ +B(Sτ ) = f1 + f2 − (F1(z) + F2(z)).

Therefore, the forth assertion of the lemma holds true as well.

In particular, the lemma shows that S0 belongs to W (0, T ). Below, we will prove that S0

equals S. These properties imply the desired statement S ∈W (0, T ).

To prove S0 = S, we show that δ := S − S0 vanishes. The difference δ belongs to

L2(0, T ;V ) and therefore also to L2(0, T ;H1(Ω)). Thus, δ(t) can be inserted into the op-

erators of the equations for both S0(t) and S(t). The difference of both equations equals

〈δ′(t), δ(t)〉V ∗ +B(δ, δ; t) = 0 for almost every t. Theorem 1.1.2(2) and Equation (1.7) in the

proof of Lemma 1.4.2 yield

d

dt
‖δ(t)‖2H ≤ −2κmin‖∇δ(t)‖2L2(Ω)nd ≤ 0 for almost all t.

Consequentially, we obtain using Gronwall’s lemma

‖δ(t)‖2H ≤ exp(0)‖δ(0)‖2H = ‖S(0)− [Sτ (0)− |Ω|−1 mass(Sτ (0))]‖2H
= ‖S(0)− S(0) + |Ω|−1 mass(S(0))‖2H = 0

for every t ∈ [0, T ]. The first equality sign holds because of the definition of S0, and the

second is due to Sτ (0) = S(0). In the last step, we use mass(S(0)) = 0. We conclude

S(t) = S0(t) for all t ∈ [0, T ], i.e., S = S0.

In summary, we have verified that S(z) := S ∈W (0, T )∩L2(0, T ;V ) solves problem (3.5)
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and has the constant mass zero. Thus, we are able to define the candidate for a solution of

the first equation

y1 := S − y2 + C|Ω|−1 ∈W (0, T ).

The constant summand C|Ω|−1 serves to adjust the mass. The candidate y1 is periodic since

the same is true for S, y2, and the constant C|Ω|−1. Moreover, it solves the first equation of

problem (3.4). Indeed, if we insert the definition of y1 into B and the temporal derivative

on the left-hand side of this equation, the constant C|Ω|−1 vanishes. Then, we rearrange the

remaining summands and use the equations for S and y2. We obtain

y′1 +B(y1)− λy2 = (S − y2 + C|Ω|−1)′ +B(S − y2 + C|Ω|−1)− λy2

= S′ +B(S)− (y′2 +B(y2) + λy2) = f1 + f2−(F1(z)+F2(z))−(f2 − F2(z))

= f1 − F1(z).

Finally, the mass of y := (y1, y2) ∈W (0, T )2 is equal to

mass(y(t)) =

∫
Ω

(y1(t) + y2(t))dx =

∫
Ω

(S(t) + C|Ω|−1)dx = C for all t ∈ [0, T ]

since mass(S(t)) = 0 for all t. Thus, y solves problem (3.4). The uniqueness of y is an

immediate consequence of the previous results. Given two solutions y, ỹ of (3.4), the existence

theorem 1.1.3 yields y2 = ỹ2. The difference δ := y1− ỹ1 is a periodic solution of the equation

δ′ +B(δ) = 0. Since both y and ỹ have the constant mass C and y2 = ỹ2, we obtain

mass(δ(t)) = mass(y1(t))−mass(ỹ1(t)) = C −mass(y2(t))− (C −mass(ỹ2(t))) = 0

for all t ∈ [0, T ], i.e., δ belongs to L2(0, T ;V ). In connection with the difference S − S0, we

have shown that the equation δ′ + B(δ) = 0 is uniquely solvable in L2(0, T ;V ). Obviously,

the constant zero function is this solution. Thus, δ = 0, and the solution of (3.4) is unique.

Result 3.2.4. Given a fixed z ∈ Y , the pair y(z) := (y1, y2) ∈W (0, T )2 is a unique solution

of the linearized problem (3.4).

Periodic solution of the nonlinear problem. The solution y(z) of problem (3.4) belongs

to Y since W (0, T )2 is a subset of Y by assumption. For this reason, the operator

A : Y → Y, z 7→ y(z)

is well-defined. Obviously, y is a fixed point of A if and only if it is a solution of the original

problem (3.3) with mass(y(t)) = C for all t ∈ [0, T ].

We will prove the existence of a fixed point of A by means of the Schauder Fixed Point

Theorem. For this, we need an estimate of periodic solutions.
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Lemma 3.2.5. Let W ∈ {V,H1(Ω)}, R ∈ L2(0, T ;H1(Ω)∗), and γ ≥ 0. Suppose that

w ∈W (0, T ;W ) is a periodic solution of w′ +B(w) + γw = R.

If either γ > 0 or W = V , there is a constant K, only depending on γ, κmin, and the

Poincaré constant, such that

‖w‖L2(0,T ;H1(Ω)) ≤ K‖R‖L2(0,T ;H1(Ω)∗).

Proof. Applying the operator equation to w ∈W (0, T ;W ) itself, we obtain

〈w′(t), w(t)〉W ∗ +B(w,w; t) + γ‖w(t)‖2L2(Ω) = 〈R(t), w(t)〉H1(Ω)∗ for almost every t.

We transform the first two summands using Theorem 1.1.2(2) and Equation (1.7) and es-

timate the right-hand side by means of Cauchy’s inequality with ε (see e.g. Evans [5, Ap-

pendix B.2]). We conclude

1

2

d

dt
‖w(t)‖2L2(Ω)+ κmin‖∇w(t)‖2L2(Ω)nd + γ‖w(t)‖2L2(Ω) ≤

1

4ε
‖R(t)‖2H1(Ω)∗+ ε‖w(t)‖2H1(Ω)(3.6)

for every ε > 0. Since H and L2(Ω) have the same norm, the first summand is the same for

both possible spaces W . In case γ > 0, Equation (3.6) with ε1 := min{κmin, γ}/2 > 0 can be

transformed into

1

2

d

dt
‖w(t)‖2L2(Ω) +

1

2
min{κmin, γ}‖w(t)‖2H1(Ω) ≤

1

2 min{κmin, γ}
‖R(t)‖2H1(Ω)∗ .

In case γ = 0, we assume W = V . Since the norm of the gradient is equivalent to the usual

H1(Ω)-norm on V , there is a constant k > 0, depending only on the Poincaré constant, with

k‖w(t)‖H1(Ω) ≤ ‖∇w(t)‖L2(Ω)nd . We infer from (3.6) with ε2 := k2κmin/2

1

2

d

dt
‖w(t)‖2L2(Ω) +

1

2
k2κmin‖w(t)‖2H1(Ω) ≤

1

2k2κmin
‖R(t)‖2H1(Ω)∗ .

Thus, a comparable inequality holds in both cases. The first summand vanishes after an

integration over [0, T ] because of Theorem 1.1.2(3) and the periodicity of w. As a consequence,

the desired estimate holds with K := max{1/k2κmin, 1/min{κmin, γ}}.

In the remainder of this proof, we demonstrate that the operator A fulfills the assumptions

of the Schauder Fixed Point Theorem. To define the domain of definition M of A, we

show that the range of A is bounded in W (0, T )2, i.e., that the norm of A(z) is bounded

independently of z ∈ Y .

Let z ∈ Y . As to the second component of y := A(z), Lemma 3.2.5, applied to w := y2,

γ := λ > 0 and R := f2 − F2(z), yields ‖y2‖L2(0,T ;H1(Ω)) ≤ K1‖f2 − F2(z)‖L2(0,T ;H1(Ω)∗).

Since the first component is defined by y1 = S − y2 + |Ω|−1C, the boundedness of S implies

the boundedness of y1. The lemma, applied to w := S, γ := 0, W := V and R := f1 + f2 −
(F1(z) + F2(z)), yields ‖S‖L2(0,T ;H1(Ω)) ≤ K2‖f1 + f2 − (F1(z) + F2(z))‖L2(0,T ;H1(Ω)∗).
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Because of the boundedness condition (3.1), we obtain ‖y2‖L2(0,T ;H1(Ω)) ≤ C1 and

‖y1‖L2(0,T ;H1(Ω)) ≤ ‖S‖L2(0,T ;H1(Ω)) + ‖|Ω|−1C‖L2(0,T ;H1(Ω)) + ‖y2‖L2(0,T ;H1(Ω)) ≤ C2

with C1 and C2 depending on Mrea as well as on Kj and fj for each j ∈ {1, 2} but not on z.

Furthermore, the derivative y′ = (y′1, y
′
2) can be estimated according to the additional

statement of Proposition 2.2.2(2) because the reaction term (−λId, λId) is homogeneous and

Lipschitz continuous. The proposition provides a constant C̃ > 0 with

‖y′‖L2(0,T ;H1(Ω)∗)2 ≤ C̃
(
‖f − F (z)‖L2(0,T ;H1(Ω)∗)2 + ‖y‖L2(0,T ;H1(Ω))2

)
.

According to the previous results and the assumption (3.1), the right-hand side of this esti-

mate is bounded from above by a constant C3 > 0 which is independent of z.

Result 3.2.6. Given z ∈ Y , the W (0, T )2-norm of A(z) is bounded independently of z by a

constant C4.

Because of the compact and thus continuous embedding of W (0, T )2 in Y , there is a

constant cW > 0 with ‖w‖Y ≤ cW ‖w‖W (0,T )2 for all w ∈W (0, T )2. We define the set

M := {y ∈ Y : ‖y‖Y ≤ cWC4}.

The set M is an appropriate domain of definition for A if the range A(M) lies in M . To

prove this, let z ∈M . Result 3.2.6 and the continuous embedding yield

‖A(z)‖Y ≤ cW ‖A(z)‖W (0,T )2 ≤ cWC4. (3.7)

Thus, A(M) ⊆M , and the operator A : M →M is well-defined.

Since M is a closed ball in Y with a positive radius, it is nonempty, closed, bounded,

and convex. In addition, we prove the compactness of A, i.e., first, that A is continuous

and, second, that A maps bounded sets into relatively compact sets. To prove the second

property, let M̃ ⊆ M be a bounded set. According to Result 3.2.6, A(M̃) lies in the closed

ball with radius C4 in W (0, T )2. Being bounded, this ball is relatively compact in Y because,

by assumption, the identity map from W (0, T )2 to Y is compact. As a subset of a relatively

compact set, A(M̃) itself is relatively compact.

To prove the continuity of A, let z, z̃ ∈ Y . The difference δ := A(z)− A(z̃) is a periodic

solution of

δ′1 +B(δ1)− λδ2 = F1(z̃)− F1(z)

δ′2 +B(δ2) + λδ2 = F2(z̃)− F2(z).
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Lemma 3.2.5, applied to w := δ2, γ := λ, and R := F2(z̃)− F2(z), yields the estimate

‖A(z)2 −A(z̃)2‖L2(0,T ;H1(Ω)) ≤ K3‖F2(z̃)− F2(z)‖L2(0,T ;H1(Ω)∗)

for the second component of δ with a constant K3 > 0. Because of

δ1 = S(z) + |Ω|−1C −A(z)2 − (S(z̃) + |Ω|−1C −A(z̃)2) = S(z)− S(z̃)− δ2,

it suffices to estimate the difference S(z)− S(z̃) ∈ L2(0, T ;V ), the periodic solution of

(S(z)− S(z̃))′ +B(S(z)− S(z̃)) = F1(z̃) + F2(z̃)− (F1(z) + F2(z)),

instead of δ1. Lemma 3.2.5, applied to w := S(z) − S(z̃), γ := 0, W := V , and R :=

F1(z̃)− F1(z) + F2(z̃)− F2(z), and the triangle inequality yield

‖S(z)−S(z̃)‖L2(0,T ;H1(Ω))≤K4

(
‖F1(z̃)− F1(z)‖L2(0,T ;H1(Ω)∗)+‖F2(z̃)− F2(z)‖L2(0,T ;H1(Ω)∗)

)
with a constant K4 > 0. Combining the previous results, we obtain a constant K5 > 0 with

‖A(z)−A(z̃)‖L2(0,T ;H1(Ω))2 ≤ K5‖F (z̃)− F (z)‖L2(0,T ;H1(Ω)∗)2 .

As above, δ′ can be estimated by means of the additional statement of Proposition 2.2.2(2).

Combining all results, we obtain a constant K6 > 0 with

‖A(z)−A(z̃)‖W (0,T )2 ≤ K6‖F (z̃)− F (z)‖L2(0,T ;H1(Ω)∗)2 for all z, z̃ ∈ Y .

Let ε > 0. The continuity of F : Y → L2(0, T ;H1(Ω)∗)2 implies that there exists ζ > 0

with

‖F (z̃)− F (z)‖L2(0,T ;H1(Ω)∗)2 <
ε

cWK6
provided that ‖z̃ − z‖Y < ζ.

This estimate, combined with the continuous embedding of W (0, T )2 in Y and the estimate

of A(z)−A(z̃) in W (0, T )2, yields

‖A(z)−A(z̃)‖Y ≤ cW ‖A(z)−A(z̃)‖W (0,T )2 ≤ cWK6‖F (z̃)− F (z)‖L2(0,T ;H1(Ω)∗)2 < ε

provided that ‖z̃ − z‖Y < ζ. Thus, A is continuous.

Since A fulfills all assumptions of the Schauder Fixed Point Theorem, we obtain a fixed

point y ∈M of A. The definition of A ensures that y belongs to W (0, T )2, solves

y′1 +B(y1)− λy2 − F1(y) = f1

y′2 +B(y2) + λy2 − F2(y) = f2

y(0) = y(T ),
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and fulfills mass(y(t)) = C for all t ∈ [0, T ].

3.3 Stationary solutions

This section is concerned with stationary solutions of models of N -DOP type. Since station-

ary and periodic solutions are related, the existence of both types of solutions can be proved

with the same strategy (linearization and fixed point argument). In the stationary case, the

linearized equation is solved by means of the Browder-Minty theorem. We cite this theorem

from Zeidler [29, Theorem 26.A]).

Theorem 3.3.1 (Browder-Minty). Let A : X → X∗ be a monotone, coercive, and hemicon-

tinuous operator on the real, separable, reflexive Banach space X. Then, for each b ∈ X∗ the

operator equation A(u) = b has a solution in X. If the operator A is strictly monotone, then

the equation is uniquely solvable.

The assumptions about the operator A (monotone, coercive, hemicontinuous) reveal the

relationship between the theorems of Browder-Minty and Gajewski et al. (Theorem 1.1.3).

Let Hypothesis 3.1.1 be valid with the additional assumption that F and f are constant

with respect to time. We formulate the stationary problem as in Section 1.6. The linear

operator Bstat : H1(Ω) → H1(Ω)∗ is defined by Bstat := B1
stat. The additional assumption

permits the restriction of F and f to time-independent domains of definition. We denote the

restrictions by Fstat : Λ→ (H1(Ω)∗)2 and fstat ∈ (H1(Ω)∗)2. Similarly, λId can be regarded

as an operator from H1(Ω) to H1(Ω)∗.

A stationary solution y belongs to H1(Ω)2 ∩ Λ and satisfies

Bstat(y1)− λy2 + Fstat,1(y) = fstat,1

Bstat(y2) + λy2 + Fstat,2(y) = fstat,2.
(3.8)

Theorem 3.3.2. Beside Hypothesis 3.1.1, we assume that F and f are constant and that

H1(Ω)2 is compactly embedded in Λ. Let Bstat, Fstat, and fstat be defined as above and let

C ∈ R. We assume that Fstat is continuous and that there is a constant Mstat > 0 with

max{‖Fstat,1(y)‖H1(Ω)∗ , ‖Fstat,2(y)‖H1(Ω)∗} ≤Mstat for all y ∈ Λ.

Suppose that the conservation of mass conditions

2∑
j=1

〈Fstat,j(y), 1〉H1(Ω)∗ = 0 and

2∑
j=1

〈fstat,j , 1〉H1(Ω)∗ = 0

hold for all y ∈ Λ. The symbol 1 stands again for the element of H1(Ω) that is equal to

one almost everywhere. Hence, the stationary equation (3.8) has a solution y ∈ H1(Ω)2 with

mass(y) = C.

Even if fstat,1 = fstat,2 = 0, there are nontrivial solutions of (3.8).
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Proof. We proceed as in the proof of Theorem 3.2.1 and concentrate on explaining the dif-

ferences. In the first step, we choose an arbitrary element z ∈ Λ and solve the problem

Bstat(y1)− λy2 = fstat,1 − Fstat,1(z)

Bstat(y2) + λy2 = fstat,2 − Fstat,2(z).

The Browder-Minty Theorem 3.3.1 yields the unique solutions y2(z) ∈ H1(Ω) of the second

equation and S(z) ∈ V of the sum equation Bstat(S) =
∑2

j=1 (fstat,j − Fstat,j(z)) restricted

to V ∗. Coercivity and strict monotonicity of Bstat are proved as in the periodic case.

The solution S := S(z) ∈ H1(Ω) fulfills the sum equation in H1(Ω)∗ instead of V ∗.

This is an immediate consequence of the representation w = w0 + |Ω|−1 mass(w) with w0 :=

w − |Ω|−1 mass(w) ∈ V for every test function w ∈ H1(Ω). Since w0 ∈ V is a proper test

function for the sum equation in V ∗, we obtain

〈Bstat(S), w〉H1(Ω)∗ = 〈Bstat(S), w0〉V ∗ + 〈Bstat(S), |Ω|−1 mass(w)〉H1(Ω)∗

=

2∑
j=1

〈fstat,j − Fstat,j(z), w0〉V ∗ =

2∑
j=1

〈fstat,j − Fstat,j(z), w〉H1(Ω)∗ .

The expression 〈Bstat(S), |Ω|−1 mass(w)〉H1(Ω)∗ vanishes because of Lemma 1.4.2(3). In the

last step, we use
∑2

j=1〈fstat,j − Fstat,j(z), |Ω|−1 mass(w)〉H1(Ω)∗ = 0, a conclusion from the

conservation of mass condition. Thus, S is a solution of the sum equation in H1(Ω)∗.

As in the periodic case, we conclude that y1(z) := S(z)− y2(z) + |Ω|−1C solves the first

equation and that y(z) := (y1(z), y2(z)) ∈ H1(Ω)2 ⊆ Λ is a unique solution of the linearized

problem. As a consequence, the operator Astat : Λ→ Λ, z 7→ y(z) is well-defined.

The fixed point argument in the second step can be transferred almost directly from the

periodic case. The proof of Lemma 3.2.5, adapted to the time-independent case, shows that

the H1(Ω)-norms of y2(z) and S(z) are bounded by the norms of the corresponding right-

hand sides. These estimates, combined with the boundedness condition for Fstat, yield that

the range Astat(Λ) is bounded in H1(Ω)2. The range is bounded in Λ as well since H1(Ω)2 is

continuously embedded in Λ. As a consequence, Astat maps a closed ball M ⊆ Λ, bounded

in Λ as well as in H1(Ω)2, into itself.

The range Astat(M̃) of a bounded subset M̃ of M is also a subset of M and thus bounded

in H1(Ω)2. This property, combined with the compact embedding of H1(Ω)2 in Λ, yields

that Astat(M̃) is relatively compact in Λ. As in the periodic case, the continuity assumed

for Fstat implies the continuity of Astat. Thus, the Schauder Fixed Point Theorem yields a

fixed point of Astat which is a solution of the nonlinear stationary problem and has the mass

C.

Remark 3.3.3. In the proof of Theorem 3.3.2, the Browder-Minty Theorem is applied to

linear equations only. Therefore, it is possible to use the Lax-Milgram Theorem (cf. Evans [5,

Section 6.2.1]) instead. However, we choose the more abstract result by Browder and Minty
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to emphasize the analogy to the periodic case. Furthermore, the Browder-Minty Theorem

applies to operator equations. To use the Lax-Milgram Theorem, we would have to regard

Bstat as a bilinear form, i.e., return to a weak formulation in the sense of Equation (1.4).
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Chapter 4

The PO4-DOP (-Fe) model

The PO4-DOP model of Parekh et al. [15] is a well-known example for a marine ecosystem

model of N -DOP type. Because of its relatively low complexity, this model is valuable for

testing purposes. In the hierarchy of models by Kriest et al. [10], it is the second simplest.

The PO4-DOP model describes the marine phosphorus cycle by means of the concentrations

of phosphate (PO4) and dissolved organic phosphorus (DOP ). It is introduced as a part

of the PO4-DOP -Fe model, representing the relation between the iron concentration and

the phosphorus cycle. The extended model consists of three equations characterizing the

concentrations of PO4, DOP , and iron (Fe). The underlying ocean domain is assumed to

be three-dimensional, i.e., nd = 3.

In Section 4.4, we investigate the PO4-DOP -Fe model regarding transient and the PO4-

DOP model regarding transient, periodic and stationary solutions. Prior to that, we intro-

duce the models according to Parekh et al. [15]. We enhance the model’s original formulation

by important information required for the mathematical analysis, such as the definition of

the domain Ω, the underlying function spaces, and boundary conditions.

4.1 The domain

The modeled ecosystem is located in a three-dimensional bounded domain Ω ⊆ R3. The

domain is determined by the open, bounded water surface Ω′ ⊆ R2 and the depth h(x′) > 0

at every surface point x′ ∈ Ω′. The function h : Ω′ → R+ is Lipschitz continuous and bounded

by the total depth of the ocean hmax > 0. Thus, Ω = {(x′, x3) : x′ ∈ Ω′, x3 ∈ (0, h(x′))}. The

boundary Γ := ∂Ω is the union of the surface Γ′ := Ω′ × {0} and the boundary inside the

water.

The domain is separated into two layers, the euphotic, light-flooded zone Ω1 below the

surface and the subjacent aphotic zone Ω2 without incidence of light. The maximum depth

of the euphotic zone is denoted by h̄e. The actual depth of the euphotic zone beneath a

surface point x′ ∈ Ω′ is defined by he(x
′) := min{h̄e, h(x′)}. We split the surface into the

part Ω′2 := {x′ ∈ Ω′ : h(x′) > h̄e} above the aphotic zone and the rest Ω′1 := Ω′ \ Ω′2. Using
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these definitions, we divide Ω and Γ into the sets

• the euphotic zone Ω1 := {(x′, x3) : x′ ∈ Ω′, x3 ∈ (0, he(x
′))},

• the aphotic zone Ω2 := {(x′, x3) : x′ ∈ Ω′2, x3 ∈ (h̄e, h(x′))},

• the euphotic boundary Γ1 := {(x′, h(x′)) : x′ ∈ Ω′1},

• the aphotic boundary Γ2 := {(x′, h(x′)) : x′ ∈ Ω′2},

• the surface Γ′ := Ω′ × {0}.

4.2 The PO4-DOP model

To be consistent with the notation of the previous chapters, we abbreviate the two model

variables by y1 := PO4 and y2 := DOP , assembled in the vector y = (y1, y2). The model in

classical form is the equivalent of the system (1.3) with two equations

∂tyj + v · ∇yj − div(κ∇yj) + dj(y) = qQT j in QT

∇yj · (κη) + bj(y) = qΣj in Σ

}
for all j ∈ {1, 2}.

The PO4-DOP model describes a cycle. Therefore, the right-hand sides are zero, i.e.,

qQT
:= 0 and qΣ := 0.

We introduce the reaction term d in Section 4.2.2 and derive the boundary term b in

Section 4.2.3. The most important reaction, the uptake of phosphate in the context of

photosynthesis, is described by Michaelis-Menten kinetics. According to this theory, the

reaction rate approaches a maximum at high concentrations of the influencing factors (here

nutrients and light). Mathematically, this limitation is expressed by saturation functions.

First of all, we introduce this kind of function.

4.2.1 Saturation functions

Let K > 0. A saturation function with half saturation constant K is defined by

fK : R→ R, fK(x) :=
x

|x|+K
.

The constant indicates the concentration x at which the reaction rate fK is half of the

maximum (here 1).

Variants of the function fK appear in many ecosystem models, such as the PO4-DOP

model, the NPZD model of Oschlies and Garçon [14] (see also Rückelt et al. [20]), or

the model of McKinley et al. [12]. In these examples, the modulus in the denominator is

missing since concentrations are considered to be nonnegative. However, in the context of

the mathematical analysis, we cannot assume without further investigation that the solutions

of ecosystem model equations are nonnegative. Beyond that, the modulus ensures that
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reaction terms based on fK are defined on a whole Banach space Y which is required by

Hypothesis 1.2.1.

In the next lemma, we state some essential properties of fK .

Lemma 4.2.1. The real function fK is Lipschitz continuous with the constant 1/K, and

|fK | is bounded by 1. Furthermore, fK is once, but not twice differentiable.

Proof. If x 6= 0, we use |x|+K ≥ |x| to conclude

|fK(x)| =
∣∣∣∣ x

|x|+K

∣∣∣∣ ≤ |x||x| = 1.

Since fK(0) = 0, the function |fK | is bounded by 1. Next, we show that fK is once differen-

tiable. The modulus |x| in the denominator forces us to regard the differentiability at x = 0

separately. Since the occurring limits exist, we conclude

f ′K(0+) = lim
t↓0

fK(0 + t)− fK(0)

t
= lim

t↓0

1

t

t

t+K
= lim

t↓0

1

t+K
=

1

K
=

K

(|0|+K)2
,

f ′K(0−) = lim
t↑0

fK(0 + t)− fK(0)

t
= lim

t↑0

1

t

t

−t+K
= lim

t↑0

1

−t+K
=

1

K
=

K

(|0|+K)2
.

Since the one-sided limits are equal, fK is differentiable at x = 0. The differentiability at

x ∈ R \ {0} follows from the fact that fK is a composition of differentiable functions. The

derivative can be determined via the quotient rule as

f ′K(x) =
d

dx

x

x+K
=
x+K − x
(x+K)2

=
K

(x+K)2
=

K

(|x|+K)2
for x > 0,

f ′K(x) =
d

dx

x

−x+K
=
−x+K + x

(−x+K)2
=

K

(−x+K)2
=

K

(|x|+K)2
for x < 0.

Thus, fK is once differentiable.

We prove the Lipschitz continuity by virtue of the mean value theorem. The estimate

|x|+K ≥ K implies |f ′K(x)| = K/(|x|+K)2 ≤ 1/K. The mean value theorem yields

|fK(x)− fK(y)| ≤ sup
ξ∈R
|f ′K(ξ)||x− y| ≤ 1

K
|x− y| for all x, y ∈ R,

the Lipschitz continuity of fK with the constant 1/K.

Finally, we demonstrate that f ′K is not differentiable at x = 0. To this end, we compute

the difference quotient

f ′K(0 + t)− f ′K(0)

t
=

1

t

(
K

(|t|+K)2
− 1

K

)
=
K2 − (|t|+K)2

t(|t|+K)2K
=
−t− sgn(t)2K

(|t|+K)2K

for all t ∈ R \ {0}. This result directly yields that the one-sided limits f ′′K(0+) = −2/K2 and

f ′′K(0−) = 2/K2 are not equal. Thus, fK is not twice differentiable.
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4.2.2 Reaction terms in Ω

A typical biogeochemical process considered in models of N -DOP type is the remineralization

of organic material (cf. Section 3.1). The PO4-DOP model includes this reaction as well.

Remineralization is modeled as a linear transformation of y2 into y1 with a remineralization

rate λ > 0. Being independent of light, this process occurs in the whole domain Ω.

The remaining processes are influenced by light and thus differ depending on the layer.

The most important process is the consumption (or uptake) of phosphate in the context of

photosynthesis in the euphotic zone Ω1. The maximum uptake rate α > 0 is limited by

the light intensity and the available concentrations of phosphate and iron. Using saturation

functions to model these limitations, Parekh et al. [15] express the uptake at (x, t) ∈ Ω1×[0, T ]

by

G(y1, y3, x, t) := α
y1(x, t)

|y1(x, t)|+KP

I(x′, t)e−x3KW

|I(x′, t)e−x3KW |+KI

y3(x, t)

|y3(x, t)|+KF
. (4.1)

In anticipation of the PO4-DOP -Fe model, we refer to the concentration of iron as y3

although it is not variable in the PO4-DOP model. The positive half saturation constants

for phosphate, insolation, and iron are called KP ,KI , and KF , respectively. Insolation at the

water surface is expressed by a nonnegative, bounded function I : Ω′ × [0, T ]→ R+ which is

continuous with respect to t. Beneath the surface, the light intensity exponentially decreases

with depth. The decrease is controlled by the attenuation coefficient for water KW > 0 (cf.

Rückelt et al. [20], Prieß et al. [17]).

Parekh et al. [16] formulate the uptake slightly differently to comply with Liebig’s law

of the minimum. In their version, the product of the saturation functions for y1 and y3 is

replaced by the minimum. However, this alternative function is not differentiable and thus

incompatible with the hypothesis of Chapter 5 about parameter identification. Therefore, we

use the original formulation of Parekh et al. [15].

In the context of the PO4-DOP model, the iron concentration y3 is assumed to be constant

and nonnegative. As a consequence, the fraction y3(x, t)/(|y3(x, t)| + KF ) is constant and

nonnegative as well. If α is redefined as the product of the original α and the constant

fraction, the fraction and y3 leave the definition of G.

In the remainder of this section, we formulate the PO4-DOP model’s reaction terms

in compliance with Hypothesis 1.2.1, i.e., as operators on the space Y := L2(QT )2 with

associated indexed families on the domain of definition Λ := L2(Ω)2. The spaces Y and Λ

are in accordance with Hypothesis 1.2.1 since the lemma of Aubin and Lions (Růžička [19,

Lemma 3.74]) guarantees that the space W (0, T ) is compactly and therefore continuously

embedded in L2(QT ) in case nd = 3. Furthermore, Λ obviously fulfills the condition (1.1).

We start with the definition of the reaction term modeling uptake in Ω1. The expression
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(4.1) suggests that the reaction term is a superposition operator of the real function

G : R× Ω× [0, T ]→ R, G(y1, x, t) := α
y1

|y1|+KP

I(x′, t)e−x3KW

|I(x′, t)e−x3KW |+KI
. (4.2)

Obviously, the functions x 7→ G(y1, x, t) and (x, t) 7→ G(y1, x, t) are measurable for every

fixed y1 ∈ R and, in the first case, t ∈ [0, T ]. The function y1 7→ G(y1, x, t) is continuous

for almost every (x, t) ∈ Ω × [0, T ]. Furthermore, Lemma 4.2.1 shows |G(y1, x, t)| ≤ α for

all y1 ∈ R, x ∈ Ω, and t ∈ [0, T ]. Thus, the theorems 3.1 and 3.7 of Appell et Zabrejko [1]

can be applied twice. First, we consider a fixed point of time t ∈ [0, T ]. Then, the function

G(t) : R × Ω → R, G(t)(y1, x) := G(y1, x, t) defines the continuous superposition operator

G(t) : L2(Ω) → L2(Ω). Analogously, the real function G is associated with the continuous

superposition operator G : L2(QT ) → L2(QT ). Obviously, the operator G is defined by the

indexed family (G(t))t in the sense of Hypothesis 1.2.1. Henceforth, we will write G(y1, x, t)

instead of both G(t)(y1)(x) and G(y1)(x, t) for all y1 ∈ L2(Ω) and y1 ∈ L2(QT ), respectively.

We will adopt this notation for the operators E, F̄ , d, and b defined below as well.

Furthermore, the model describes the transformation of a fraction ν ∈ (0, 1) of the uptake

G into y2. The remnants are exported into Ω2. For the sake of simplicity, it is assumed that

the material of a whole water column enters Ω2 at the same time, i.e., sinking processes in

Ω1 are neglected. The accumulated export at a fixed t ∈ [0, T ] is modeled by the nonlocal

reaction term E(t) : L2(Ω)→ L2(Ω′) with

E(y1, x
′, t) := (1− ν)

∫ he(x′)

0
G(y1, (x

′, x3), t)dx3 for all y1 ∈ L2(Ω), x′∈ Ω′.

Proposition 4.2.3 at the end of Section 4.2.3 shows that E(t) is well-defined and that the

family (E(t))t defines an operator E : L2(QT )→ L2(0, T ;L2(Ω′)) in the sense of Hypothesis

1.2.1.

Sinking through the lower layer, the export is remineralized into phosphate. The amount

of remineralized export at t ∈ [0, T ] is described by F̄ (t) : L2(Ω)→ L2(Ω2) with

F̄ (y1, x, t) := −E(y1, x
′, t)

β

h̄e

(
x3

h̄e

)−β−1

for all y1 ∈ L2(Ω), x ∈ Ω2.

This expression is equal to the derivative of x3 7→ E(y1, x
′, t)

(
x3/h̄e

)−β
. The exponent β > 0

describes how remineralization responds to depth. Again Proposition 4.2.3 ensures that

F̄ (t) is well-defined and the family consisting of these operators defines the time-dependent

operator F̄ : L2(QT )→ L2(0, T ;L2(Ω2)).

Summing up, the described processes, regarded at a fixed point of time t ∈ [0, T ], are
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represented by the nonlinear reaction term d(t) : L2(Ω)2 → L2(Ω)2 with

d1(y, x, t) :=

−λy2(x) +G(y1, x, t) if x ∈ Ω1,

−λy2(x) + F̄ (y1, x, t) if x ∈ Ω2

and

d2(y, x, t) :=

λy2(x)− νG(y1, x, t) if x ∈ Ω1,

λy2(x) if x ∈ Ω2

for all y ∈ L2(Ω)2 and almost all x ∈ Ω. The families (G(t))t and (F̄ (t))t define time-

dependent operators in the sense of Hypothesis 1.2.1. The same is obviously true for (λId)t.

Thus, the family (d(t))t defines the reaction term d : Y → L2(QT )2.

In Table 4.2.1, we provide a list of the PO4-DOP model’s parameters. They will be of

interest in Chapter 5. The model features seven parameters which are all constant. Thus,

the parameter space is equal to U = R7.

Table 4.2.1: The parameters of the PO4-DOP model. The descriptions are partly taken from
Prieß et al. [17].

Name Description Range

λ remineralization rate of DOP R>0

α maximum uptake rate R>0

KP half saturation constant of PO4 R>0

KI half saturation constant of light R>0

KW attenuation of water R>0

β sinking velocity exponent R>0

ν fraction of DOP (0, 1)

4.2.3 Boundary conditions

The original formulation of the PO4-DOP model lacks boundary conditions. Hence, this

section is dedicated to the choice of an appropriate coupling term b on the boundary.

Since the PO4-DOP model describes a cycle, possible solutions should have a constant

mass. Theorem 1.5.3 and Remark 1.5.4 state that this is the case if the conservation of mass

condition
2∑
j=1

(∫
Ω
dj(z, x, t)dx+

∫
Γ
bj(z, σ, t)dσ

)
= 0

is fulfilled for every z ∈ Y and almost every t ∈ [0, T ]. We use this equality to derive an

appropriate b for the PO4-DOP model. To this end, we transform the integrals over the

reaction terms dj into boundary integrals.
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Let z ∈ Y . The definition of d yields

2∑
j=1

∫
Ω
dj(z, x, t)dx =

∫
Ω1

G(z1, x, t)dx−
∫

Ω2

E(z1, x
′, t)

β

h̄e

(
x3

h̄e

)−β−1

dx−
∫

Ω1

νG(z1, x, t)dx.

The summands with λ cancel each other out. The last term on the right-hand side can be

subtracted from the first. Because of the definition of Ω2, the middle term is equal to

M :=

∫
Ω2

E(z1, x
′, t)dx3

β

h̄e

(
x3

h̄e

)−β−1

dx =

∫
Ω′2

E(z1, x
′, t)

β

h̄e

∫ h(x′)

h̄e

(
x3

h̄e

)−β−1

dx3dx
′.

The integral with respect to x3 is transformed into

β

h̄e

h(x′)∫
h̄e

(
x3

h̄e

)−β−1

dx3 =

(
1

h̄e

)−β[
−x−β3

]h(x′)

h̄e
=

(
1

h̄e

)−β[
h̄−βe − h(x′)−β

]
= 1−

(
h(x′)

h̄e

)−β
.

Therefore, M is equal to

M =

∫
Ω′2

E(z1, x
′, t)dx′ −

∫
Ω′2

E(z1, x
′, t)

(
h(x′)

h̄e

)−β
dx′.

Because of Ω′ = Ω′1 ∪̇Ω′2, we obtain for the first summand∫
Ω′2

E(z1, x
′, t)dx′ =

∫
Ω′
E(z1, x

′, t)dx′ −
∫

Ω′1

E(z1, x
′, t)dx′.

Using the definitions of E and Ω1, the integral over Ω′ can be transformed into∫
Ω′
E(z1, x

′, t)dx′ = (1− ν)

∫
Ω′

∫ he(x′)

0
G(z1, (x

′, x3), t)dx3dx
′ = (1− ν)

∫
Ω1

G(z1, x, t)dx.

Combining the results, we arrive at

2∑
j=1

∫
Ω
dj(z, x, t)dx =

∫
Ω′1

E(z1, x
′, t)dx′ +

∫
Ω′2

E(z1, x
′, t)

(
h(x′)

h̄e

)−β
dx′

which implies that the boundary reaction term b should fulfill

2∑
j=1

∫
Γ
bj(z, σ, t)dσ = −

∫
Ω′1

E(z1, x
′, t)dx′ −

∫
Ω′2

E(z1, x
′, t)

(
h(x′)

h̄e

)−β
dx′

for every z ∈ Y to comply with the conservation of mass condition. This equation is fulfilled

by the boundary reaction term b(t) : L2(Ω)2 → L2(Γ)2 at a fixed t ∈ [0, T ], defined by
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b2(t) = 0 and

b1(y, x, t) :=


−E(y1, x

′, t) if x = (x′, h(x′)) ∈ Γ1,

−E(y1, x
′, t)

(
h(x′)

h̄e

)−β
if x = (x′, h(x′)) ∈ Γ2,

0 if x = (x′, 0) ∈ Γ′

for all y ∈ L2(Ω)2 and almost all x ∈ Γ. Proposition 4.2.3 ensures that the family (b(t))t

defines the boundary reaction term b : Y → L2(Σ)2 in the sense of Hypothesis 1.2.1.

In summary, we obtain the following result for the PO4-DOP model.

Result 4.2.2. The spaces Λ = L2(Ω)2 and Y = L2(QT )2, the reaction terms d and b, and the

right-hand sides qQT
and qΣ of the PO4-DOP model are in accordance with Hypothesis 1.2.1.

Furthermore, reaction terms and right-hand sides fulfill the conservation of mass conditions

of Remark 1.5.4.

The final proposition provides estimates for the reaction terms.

Proposition 4.2.3. There exists a constant MGEF > 0 such that

max{‖G(y1(t))‖L2(Ω1), ‖E(y1(t))‖L2(Ω′), ‖F̄ (y1(t))‖L2(Ω2), ‖b1(y(t))‖L2(Γ)} ≤MGEF

holds for all y ∈ L2(QT )2, t ∈ [0, T ].

Proof. First, we observe that the coordinate indicating depth x3 belongs to (h̄e, h(x′)] if

(x′, x3) ∈ Ω2 ∪ Γ2. Given an arbitrary γ > 0, we conclude(
x3

h̄e

)−γ
=

(
h̄e
x3

)γ
≤
(
h̄e
h̄e

)γ
= 1 for all (x′, x3) ∈ Ω2 ∪ Γ2. (4.3)

Let y ∈ L2(QT )2 and t ∈ [0, T ]. The estimate for G relies on Lemma 4.2.1. Using result and

notation of this lemma, we obtain

‖G(y1(t))‖2L2(Ω1) =

∫
Ω1

[
αfKP

(y1(t))fKI
(I(t)e−x3KW )

]2
dx ≤ α2|Ω1|.

Regarding E, we estimate G as before. Using additionally he(x
′) ≤ h̄e, we arrive at

‖E(y1(t))‖2L2(Ω′) =

∫
Ω′

(1− ν)2

[∫ he(x′)

0
G(y1, (x

′, x3), t)dx3

]2

dx ≤ α2h̄2
e(1− ν)2|Ω′|.

As to F̄ , we estimate the fraction by Equation (4.3) and treat E as above. We obtain

‖F̄ (y1(t))‖2L2(Ω2) =

∫
Ω2

[
E(y1, x

′, t)
β

h̄e

(
x3

h̄e

)−β−1
]2

dx ≤ |Ω2|α2h̄2
e(1− ν)2β

2

h̄2
e

.
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Finally, the definition of b1 and Equation (4.3) yield

‖b1(y(t))‖2L2(Γ) =

∫
Ω′1

E(y1, x
′, t)2dx′ +

∫
Ω′2

E(y1, x
′, t)2

(
h(x′)

h̄e

)−2β

dx′ ≤ ‖E(y1(t))‖2L2(Ω′).

Thus, the proposition’s assertion holds with MGEF := αmax{
√
|Ω1|, h̄e(1 − ν)

√
|Ω′|, (1 −

ν)β
√
|Ω2|}.

4.3 The iron equation

The PO4-DOP -Fe model describes how the phosphorus cycle reacts to a variable concen-

tration of iron. As the name implies, the model considers the s = 3 constituents phosphate,

dissolved organic phosphorus, and iron. The concentrations of PO4 and DOP , y1 and y2, are

modeled by the two equations of the PO4-DOP model adapted to the variable iron concen-

tration y3. The uptake of phosphate, represented by the operator G, is the only reaction that

is influenced by iron. Thus, in the context of the PO4-DOP -Fe model, we regard G in the

form of Equation (4.1) depending on y1 and y3. The corresponding superposition operators

G(t) and G, now defined on L2(Ω)2 and L2(QT )2, respectively, fulfill the same properties as

the original ones, defined on L2(Ω) and L2(QT ), because the saturation function for iron is

bounded by 1 according to Lemma 4.2.1. Similarly, all properties of E, F̄ , d, and b remain

valid if their domain of definition is extended accordingly.

The concentration of iron y3 is characterized by

∂ty3 + v · ∇y3 − div(κ∇y3) + d3(y, x, t) = qQT 3 in QT

∇y3 · (κη) + b3(y, x, t) = qΣ3 in Σ.
(4.4)

This and the following section is dedicated to the definition of d3, b3, qQT 3, and qΣ3.

We deal with the right-hand sides first. Unlike the other constituents, iron is supplied by

an external source qQT 3 ∈ L2(QT ). This term, describing an aeolian source of iron, is nonzero

only in the euphotic zone. The right-hand side on the boundary is zero, i.e., qΣ3 = 0.

The reaction term d3 considers the influence of the phosphorus cycle, complexation, and

scavenging. We deal with the last two phenomena in a separate section. The phosphorus

cycle causes an increase of the iron concentration due to remineralization and a decrease due

to consumption. A multiplication with the constant ratio RFe > 0 turns phosphorus units

into iron units. Thus, iron increases by λy2RFe in Ω and decreases by G(y1, y3)RFe in Ω1.

We formulate the complete reaction terms d3 and b3 at the end of the next section after

introducing scavenging and complexation.

4.3.1 Scavenging and complexation

Scavenging provides an additional sink of iron. Since only free iron is subject to scavenging,

this reaction is influenced by the complexation of iron with organic ligand. We consider
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complexation by splitting the total iron concentration y3 into free iron Fe′ and complexed

iron FeL. Similarly, the amount of total ligand LT is the sum of free ligand L′ and complexed

ligand. The amount of the latter is equal to the complexed iron FeL. These relations are

formally expressed by y3 = Fe′ + FeL and LT = L′ + FeL. Parekh et al. [15] assume that

the total ligand concentration is constant.

The reaction term for scavenging, referred to as JFe, is given by the first order loss process

JFe := kscFe
′. The scavenging rate ksc determines the part of free iron that is subject to

scavenging. The rate depends on the available particle concentration and thus varies with

depth. Parekh et al. assume that ksc is positive and belongs to L∞(QT ).

Hypothesis 1.2.1 requires JFe to depend at least on one of the concentrations y1, y2 or

y3. Therefore, we express Fe′ as a function of y3 using the equilibrium relationship K =

FeL/(Fe′L′) with a constant K > 0 (cf. Parekh et al. [15, Section 2.3]). To begin with, we

assume that all appearing concentrations are real numbers and, additionally, that Fe′ and

L′ are nonzero.

Inserting the expression L′ = FeL/(KFe′), an equivalent of the equilibrium relationship,

into the equation for ligand, we obtain

LT = FeL+ L′ = FeL+
FeL

KFe′
= FeL

(
1 +

1

KFe′

)
.

The quantity FeL can be replaced by y3 − Fe′. This gives

LT = (y3 − Fe′)
(

1 +
1

KFe′

)
= y3 − Fe′ +

y3

KFe′
− 1

K
.

With the abbreviation H(y3) := LT + 1/K − y3, this proves equivalent to

Fe′ 2 +H(y3)Fe′ − y3

K
= 0.

Thus, we obtain a relationship between Fe′ and y3. To ensure that the solutions of the

quadratic equation are real, we prove that the expression r := (LT + 1/K − y3)2/4 + y3/K

is positive. This is obvious whenever y3 is nonnegative. In the negative case, we transform r

into

r =
1

4

(
LT +

1

K
− y3

)2

+
y3

K

=
1

4

(
LT +

1

K

)2

− 1

2

(
LT +

1

K

)
y3 +

1

4
y2

3 +
y3

K

=
1

4

(
LT +

1

K

)2

+
1

4
y2

3 −
1

2
y3

(
LT −

1

K

)
.

Parekh et al. set K = exp(11) and LT = 1. Therefore, it is reasonable to assume that

LT − 1/K is nonnegative. Under this assumption, y3 < 0 implies −y3(LT − 1/K)/2 ≥ 0 and,
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as a consequence, r > 0.

It is known that the quadratic equation for Fe′ has the two solutions

Fe′1(y3) = −1

2
H(y3) +

√
H(y3)2

4
+
y3

K
and Fe′2(y3) = −1

2
H(y3)−

√
H(y3)2

4
+
y3

K

which are both real because the radicand r is positive. In the following lemma, we prove that

the second solution is unsuited for describing a concentration.

Lemma 4.3.1. The function Fe′2 maps R into R<0.

Proof. Let ỹ3 ∈ R with ỹ3 < LT + 1/K. Since the square root is nonnegative, we conclude

Fe′2(ỹ3) ≤ −(LT + 1/K − ỹ3)/2 < 0. Thus, Fe′2 has negative values.

To show that Fe′2 has only negative values, we argue by contradiction. Suppose that

Fe′2 had a nonnegative value. Then, the intermediate value theorem yields a root of the

continuous function Fe′2, i.e., an element y3 ∈ R with

−1

2

(
LT +

1

K
− y3

)
=

√
1

4

(
LT +

1

K
− y3

)2

+
y3

K
.

Squaring both sides, we obtain (LT + 1/K − y3)2/4 = (LT + 1/K − y3)2/4 + y3/K and

therefore y3 = 0. However, because of 0 < LT + 1/K, the first statement of this proof yields

Fe′2(y3) = Fe′2(0) < 0. This contradicts the property that y3 is a root.

Because of the monotonicity of the square root function, the first solution Fe′1 is non-

negative for all input values y3 ≥ 0 and otherwise negative. Thus, only unrealistic input

values (negative concentrations of total iron) cause unrealistic output values (negative con-

centrations of free iron). For this reason, we will use Fe′ := Fe′1 in the following definition

of JFe.

To define the reaction term JFe for scavenging, let ksc ∈ L∞(QT ) be nonnegative almost

everywhere. Furthermore, we choose K > 0 and LT ∈ L∞(QT ) in such a way that LT ≥ 1/K

holds almost everywhere. The values Parekh et al. [15] use for K and LT fulfill this property.

However, we admit a variable concentration of total ligand.

To ensure that the real function Fe′ is associated with a superposition operator from

L2(QT ) to L2(QT ), we show that y3 ∈ L2(QT ) implies

Fe′(y3) = −1

2

(
LT +

1

K
− y3

)
+

√
1

4

(
LT +

1

K
− y3

)2

+
y3

K
∈ L2(QT ).

The first summand is quadratically integrable because of the choice of y3 and LT . The

radicand belongs to L1(QT ) since (LT + 1/K − y3) ∈ L2(QT ) and, in particular, y3/K ∈
L1(QT ). As a consequence, the square root belongs to L2(QT ). We conclude Fe′(y3) ∈
L2(QT ). For almost every t, the same arguments with QT replaced by Ω show that Fe′(t) :
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L2(Ω)→ L2(Ω), given by

Fe′(t)(v3) = −1

2

(
LT (t) +

1

K
− v3

)
+

√
1

4

(
LT (t) +

1

K
− v3

)2

+
v3

K
for all v3 ∈ L2(Ω),

is well-defined as well.

Using the preliminary results, we define the reaction term for scavenging and complexation

JFe : L2(QT )→ L2(QT ) by

JFe(y3) := kscFe
′(y3) for all y3 ∈ L2(QT )

as well as the operators JFe(t) = ksc(t)Fe
′(t) for almost every t. Obviously, the family

(JFe(t))t is associated with JFe in the sense of Hypothesis 1.2.1.

Finally, we provide the complete reaction terms of the PO4-DOP -Fe model. The reaction

terms are defined on the domain of definition Y = L2(QT )3 and the generating families

on Λ = L2(Ω)3. Obviously, these spaces fulfill the condition (1.1). Concerning boundary

conditions for iron, we observe that it is not appropriate to claim conservation of mass

because of the nontrivial source term qQT 3. Since the source of iron is not defined via a

boundary condition, we choose homogeneous Neumann boundary conditions for y3.

Definition 4.3.2 (The PO4-DOP -Fe model). Let Y := L2(QT )3 and Λ := L2(Ω)3. The

reaction term d : Y → L2(QT )3 is defined by the family (d(t))t consisting of operators d(t) :

Λ→ L2(Ω)3 with the components

d1(y, x, t) :=

−λy2(x) +G(y1, y3, x, t) if x ∈ Ω1,

−λy2(x) + F̄ (y1, y3, x, t) if x ∈ Ω2,

d2(y, x, t) :=

λy2(x)− νG(y1, y3, x, t) if x ∈ Ω1,

λy2(x) if x ∈ Ω2,

and

d3(y, x, t) :=

−λy2(x)RFe + JFe(y3, x, t) +G(y1, y3, x, t)RFe if x ∈ Ω1,

−λy2(x)RFe + JFe(y3, x, t) if x ∈ Ω2

for all y ∈ Λ, almost all x ∈ Ω, and almost all t ∈ [0, T ].

The boundary reaction term b : Y → L2(Σ)3 is defined by the family (b(t))t consisting of

b(t) : Λ→ L2(Γ)3 with the components b2(t) = b3(t) = 0 and

b1(y, x, t) :=


−E(y1, y3, x

′, t) for x = (x′, h(x′)) ∈ Γ1,

−E(y1, y3, x
′, t)

(
h(x′)

h̄e

)−β
for x = (x′, h(x′)) ∈ Γ2,

0 for x = (x′, 0) ∈ Γ′

62



for all y ∈ Λ, almost all x ∈ Γ, and almost all t ∈ [0, T ].

The right-hand side qQT
∈ L2(QT )3 consists of the components qQT 1 = qQT 2 = 0 and

qQT 3 ∈ L2(QT ) with qQT 3(x, t) = 0 for almost all (x, t) ∈ Ω2 × [0, T ]. On the boundary, we

assume qΣ = 0 ∈ L2(Σ)3.

4.4 Application of the existence theorems

4.4.1 Transient solutions of the PO4-DOP -Fe model and the PO4-DOP

model

Let y0 ∈ L2(Ω)3 be an initial value. In this section, we apply Theorem 2.3.2 to prove that

the PO4-DOP -Fe model has a unique transient solution.

The reaction terms and right-hand sides, given in Definition 4.3.2, fulfill Hypothesis 1.2.1.

The same is true for the domains of definition Y = L2(QT )3 and Λ = L2(Ω)3 since W (0, T )3

is continuously embedded in Y and the condition (1.1) is fulfilled.

We define the operator F1 : Y → L2(0, T ;H1(Ω)∗)3 by means of the reaction terms and

f ∈ L2(0, T ;H1(Ω)∗)3 by means of the right-hand sides according to Lemma 1.4.1. Moreover,

let F2 = 0. Thus, Hypothesis 2.1.1 is fulfilled with Y1 = Y2 = Y .

The rest of this section is dedicated to the remaining assumptions of the existence theorem

2.3.2. Clearly, C([0, T ];L2(Ω))3 is continuously embedded in Y . Furthermore, d(0) = b(0) =

0 because the components λId, G, E, F̄ , and Fe′ all fulfill this property. This implicates

that F1 is homogeneous. Regarding the Lipschitz condition for F1(t), Lemma 1.4.1 yields

‖F1(y(t))− F1(z(t))‖(H1(Ω)∗)3≤‖d(y, . , t)− d(z, . , t)‖Ω3 +cτ‖b(y, . , t)− b(z, . , t)‖Γ3

for all y, z ∈ Y and almost all t. Thus, it suffices to prove the required Lipschitz condition

for d(t) and b(t) instead of F1(t).

Let t be a suitable element of [0, T ] and y, z ∈ L2(QT )3. As a preparation, we prove the

Lipschitz condition for G,E, F̄ and JFe. We will leave out some arguments of the appearing

integrands (mostly x and t) for the sake of shortness. Employing notation and result of

Lemma 4.2.1, we obtain

‖G(y1, y3, . , t)−G(z1, z3, . , t)‖2Ω≤
∫

Ω
α2f2

KI
(Ie−x3KW )[fKP

(y1)fKF
(y3)− fKP

(z1)fKF
(z3)]2dx

≤
∫

Ω
α2 [fKP

(y1)|fKF
(y3)− fKF

(z3)|+ fKF
(z3)|fKP

(y1)− fKP
(z1)|]2 dx

≤
∫

Ω
α2

[
1

KF
|y3(x, t)− z3(x, t)|+ 1

KP
|y1(x, t)− z1(x, t)|

]2

dx

≤ 2α2 max

{
1

K2
P

,
1

K2
F

}[
‖y1(t)− z1(t)‖2Ω + ‖y3(t)− z3(t)‖2Ω

]
≤ L2

G‖y(t)− z(t)‖2L2(Ω)3
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with the Lipschitz constant LG :=
√

2αmax{K−1
P ,K−1

F }.
Regarding the export, we apply Hölder’s inequality to the integral over [0, he(x

′)] in the

definition of E. Since he(x
′) ≤ h̄e and the latter is independent of x′, we arrive at the norm of

L1(Ω1) in the third line of the following estimate. Finally, we employ the Lipschitz property

of G. All in all, we obtain

‖E(y1, y3, . , t)−E(z1, z3, . , t)‖2Ω′ =

∫
Ω′

(1− ν)2

(∫ he(x′)

0
[G(y1, y3)−G(z1, z3)]dx3

)2

dx′

≤ (1− ν)2

∫
Ω′
he(x

′)

∫ he(x′)

0
[G(y1, y3, x, t)−G(z1, z3, x, t)]

2dx3dx
′

≤ (1− ν)2h̄e‖G(y1, y3, . , t)−G(z1, z3, . , t)‖2Ω1

≤(1− ν)2h̄eL
2
G‖y(t)− z(t)‖2L2(Ω)3 .

Next, we consider F̄ . This reaction term is bounded independently of x3 because of (4.3).

Thus, the integral over [h̄e, h(x′)] is equal to the difference h(x′)− h̄e. In the third line of the

following estimate, h(x′) is estimated by the constant maximum depth, and the remaining

integral over Ω′2 is written as a norm. Finally, since Ω′2 ⊆ Ω′, the Lipschitz property of E

can be employed. These arguments lead to

‖F̄ (y1, y3, . , t)− F̄ (z1, z3, . , t)‖2Ω2
=

∫
Ω′2

∫ h(x′)

h̄e

β2

h̄2
e

(
x3

h̄e

)−2(β+1)

(E(y1, y3)− E(z1, z3))2dx3dx
′

≤
∫

Ω′2

β2

h̄2
e

(h(x′)− h̄e)(E(y1, y3)− E(z1, z3))2dx′

≤ β2

h̄2
e

(hmax − h̄e)‖E(y1, y3, . , t)− E(z1, z3, . , t)‖2Ω′2

≤ β2

(
hmax

h̄e
− 1

)
(1− ν)2L2

G‖y(t)− z(t)‖2L2(Ω)3 .

At last, we treat the reaction term for scavenging JFe. To this end, we prove the Lipschitz

continuity of the function Fe′ : R→ R.

Lemma 4.4.1. Let (x, t) ∈ QT such that LT (x, t) ≥ 1/K and LT := LT (x, t). Then, the real

function Fe′ : R→ R, defined by

Fe′(y3) = −1

2

(
LT +

1

K
− y3

)
+

√
1

4

(
LT +

1

K
− y3

)2

+
y3

K
,

is Lipschitz continuous, and LF := 1 is a Lipschitz constant. In particular, the Lipschitz

constant is independent of t.

Proof. Because of the mean value theorem for differentiable real functions, it suffices to prove

that the first derivative of Fe′ is bounded by 1. This derivative exists because Fe′ is composed
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of differentiable functions. Given y3 ∈ R, the usual differentiation rules yield

dy3Fe
′(y3) =

1

2

1 +
1
2

(
y3 −

(
LT + 1

K

))
+ 1

K√
1
4

(
y3 −

(
LT + 1

K

))2
+ y3

K

 .

Referring to the fraction as Φ, we obtain the abridged notation dy3Fe
′(y3) = (1+Φ)/2. First,

we prove Φ ∈ [−1, 1] for all y3 ∈ R. To this end, we distinguish between two cases for y3. For

the sake of shortness, we abbreviate MKL := LT + 1/K.

In the first case, we assume y3 < LT −1/K. This assumption ensures that the numerator

and therefore the whole fraction Φ is negative, i.e., bounded from above by zero. The following

transformations show that it is bounded from below as well. In the first step, suitable

summands are added on both sides of the clearly true first inequality. Then, we apply the

binomial identity and extract the square root which is bijective on the nonnegative real

numbers. We obtain

−LT
K

≤ 0

⇐⇒ 1

4
(y3 −MKL)2 +

1

K
(y3 −MKL) +

1

K2
≤ 1

4
(y3 −MKL)2 +

y3

K

⇐⇒
(

1

2
(y3 −MKL) +

1

K

)2

≤ 1

4
(y3 −MKL)2 +

y3

K

⇐⇒
∣∣∣∣12 (y3 −MKL) +

1

K

∣∣∣∣ ≤
√

1

4
(y3 −MKL)2 +

y3

K

⇐⇒ −
(

1

2
(y3 −MKL) +

1

K

)
≤

√
1

4
(y3 −MKL)2 +

y3

K
.

In the last line, we use that the numerator of Φ is negative according to the choice of y3. The

last inequality is equivalent to Φ ≥ −1. Therefore, Φ ∈ [−1, 0].

In the second case, we assume y3 ≥ LT − 1/K. Under this assumption, the numerator of

Φ is nonnegative. Thus, it can be written as a square root. Further transformations yield

Φ =

√√√√(1
2

(
y3 −

(
LT + 1

K

))
+ 1

K

)2
1
4

(
y3 −

(
LT + 1

K

))2
+ y3

K

=

√√√√ 1
4

(
y3 −

(
LT + 1

K

))2
+
(
y3 −

(
LT + 1

K

))
1
K + 1

K2

1
4

(
y3 −

(
LT + 1

K

))2
+ y3

K

=

√√√√1−
LT
K

1
4

(
y3 −

(
LT + 1

K

))2
+ y3

K

.

We abbreviate the expression beneath the last square root by 1−Ψ and show that it belongs

to [0, 1].

The numerator of Ψ is nonnegative because of the assumptions LT ≥ 1/K and K > 0.

The denominator is equal to the positive expression r which was defined and investigated on

page 60. As a consequence, the fraction Ψ is nonnegative and thus 1 − Ψ ≤ 1. In addition,

the computation above shows that 1−Ψ equals ((y3−(LT + 1
K ))/2+1/K)2/r which is clearly
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nonnegative. We conclude 1−Ψ ∈ [0, 1].

From this it follows that Φ =
√

1−Ψ belongs to [0, 1] under the assumption of the second

case.

Combining both cases, we obtain Φ ∈ [−1, 1] for every y3 ∈ R. In particular, 1 + Φ ≥ 0

and Φ ≤ 1. Both facts ensure that the estimate

∣∣dy3Fe′(y3)
∣∣ =

∣∣∣∣12(1 + Φ)

∣∣∣∣ =
1

2
(1 + Φ) ≤ 1

2
(1 + 1) = 1

holds for all y3 ∈ R. Thus, the mean value theorem yields the Lipschitz continuity of Fe′

with the Lipschitz constant LF = 1.

The lemma and the definition of JFe yield the desired estimate

‖JFe(y3, . , t)− JFe(z3, . , t)‖2Ω ≤ ‖ksc‖2L∞(QT )L
2
F ‖y(t)− z(t)‖2L2(Ω)3 .

In the next step, we employ the preparatory results to prove the Lipschitz conditions for

d and b. As to d1, the triangle inequality in combination with the convexity of the square

function on yields

‖d1(y, . , t)− d1(z, . , t)‖2Ω
≤ 3

(
λ2‖y2(t)− z2(t)‖2Ω+ ‖G(y1, y3, t)−G(z1, z3, t)‖2Ω1

+ ‖F̄ (y1, y3, t)− F̄ (z1, z3, t)‖2Ω2

)
≤ 3

(
λ2‖y2(t)− z2(t)‖2Ω + L2

G

(
1 +

(
hmax

h̄e
− 1

)
β2(1− ν)2

)
‖y(t)− z(t)‖2Ω3

)
≤ 3

(
λ2 + L2

G

(
1 +

(
hmax

h̄e
− 1

)
β2(1− ν)2

))
‖y(t)− z(t)‖2Ω3 .

Concerning d2, we similarly conclude

‖d2(y, . , t)− d2(z, . , t)‖2Ω ≤ 2
(
λ2‖y2(t)− z2(t)‖2Ω + ν2‖G(y1, y3, t)−G(z1, z3, t)‖2Ω1

)
≤ 2

(
λ2 + L2

Gν
2
)
‖y(t)− z(t)‖2Ω3 .

Finally, we obtain for the third component

‖d3(y, . , t)− d3(z, . , t)‖2Ω
≤ 3

(
λ2R2

Fe‖y2(t)− z2(t)‖2Ω+R2
Fe‖G(y1, y3)−G(z1, z3)‖2Ω1

+‖JFe(y3)− JFe(z3)‖2Ω
)

≤ 3
(
λ2R2

Fe‖y2(t)− z2(t)‖2Ω +
(
L2
GR

2
Fe + ‖ksc‖2L∞(QT )L

2
F

)
‖y(t)− z(t)‖2Ω3

)
≤ 3

(
λ2R2

Fe + L2
GR

2
Fe + ‖ksc‖2L∞(QT )L

2
F

)
‖y(t)− z(t)‖2Ω3 .

Hence, the operator d(t) : L2(Ω)3 → L2(Ω)3 is Lipschitz continuous. The Lipschitz constant

Ld is equal to the sum of the constants for dj(t), j ∈ {1, 2, 3}, and thus independent of t.

The nonlinear boundary reaction term b1 is treated similarly. By definition, the euphotic
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boundary Γ1 corresponds to Ω′1 and the aphotic boundary Γ2 to Ω′2. Using Equation (4.3)

with γ := 2β and the Lipschitz continuity of E(t), we obtain

‖b1(y, . , t)− b1(z, . , t)‖2Γ

=

∫
Ω′1

(E(y1, y3)− E(z1, z3))2dx′ +

∫
Ω′2

(E(y1, y3)− E(z1, z3))2

(
h(x′)

h̄e

)−2β

dx′

≤ ‖E(y1, y3, . , t)− E(z1, z3, . , t)‖2Ω′ ≤ (1− ν)2h̄eL
2
G‖y(t)− z(t)‖2Ω3 .

Since b2 = b3 = 0, the complete reaction term b(t) : L2(Ω)3 → L2(Γ)3 is Lipschitz

continuous. The Lipschitz constant Lb is equal to the one for b1 and thus independent of t.

In summary, the reaction terms of the PO4-DOP -Fe model, given in Definition 4.3.2,

fulfill the assumptions of Theorem 2.3.2. Therefore, this model has a unique transient solution

with the initial value y0 ∈ L2(Ω)3. In particular, the PO4-DOP model, defined in the sections

4.2.2 and 4.2.3, has a unique transient solution for each initial value y0 ∈ L2(Ω)2.

4.4.2 Periodic solutions of the PO4-DOP model

Let C ∈ R. In this section, we employ Theorem 3.2.1 to find a periodic solution with the

constant mass C of the PO4-DOP model.

The reaction terms, introduced in the sections 4.2.2 and 4.2.3, fulfill Hypothesis 1.2.1

with Y = L2(QT )2 and Λ = L2(Ω)2 according to Result 4.2.2. To comply with the notation

of Section 3.1, we assume that the operator F : Y → L2(0, T ;H1(Ω)∗)2 consists of the

components F1, defined by d1 + λId and b1 in the sense of Lemma 1.4.1, and F2, defined

by d2 − λId. Furthermore, we regard the right-hand side f = 0 ∈ L2(0, T ;H1(Ω)∗)2. Since,

in addition, W (0, T )2 is compactly embedded in Y (see Růžička [19, Lemma 3.74]), and

λ > 0 holds by assumption, all statements of Hypothesis 3.1.1 are satisfied. In particular,

the PO4-DOP model belongs to the class of models of N -DOP type.

The next three paragraphs address the remaining assumptions of Theorem 3.2.1.

Continuity. Section 4.4.1 yields the Lipschitz continuity of the PO4-DOP model’s reaction

terms d(t) and b(t) with time-independent Lipschitz constants Ld and Lb. Thus, we obtain

for the time-dependent operator d : L2(QT )2 → L2(QT )2

‖d(y)− d(z)‖2Q2
T
≤
∫ T

0
‖d(y, . , t)− d(z, . , t)‖2Ω2dt ≤ L2

d

∫ T

0
‖y(t)− z(t)‖2Ω2dt = L2

d‖y − z‖2Q2
T

for all y, z ∈ L2(QT )2. An analogous estimate holds for b : L2(QT )2 → L2(Σ)2. Thus,

both reaction terms are Lipschitz continuous in L2(QT )2. Using the definition of F and the

arguments leading to Equation (1.5) in the proof of Lemma 1.4.1, we obtain

‖F (y)− F (z)‖2L2(0,T ;H1(Ω)∗)2 ≤ 3
(
‖d(y)− d(z)‖2Q2

T
+ ‖b(y)− b(z)‖2Σ2c

2
τ + 2λ‖y2 − z2‖2Q2

T

)
.
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Thus, the Lipschitz continuity of d and b implies the continuity of F .

Boundedness. The boundedness condition (3.1) is due to Proposition 4.2.3 in combination

with Equation (1.5) in the proof of Lemma 1.4.1. We conclude for the first component of F

‖F1(y)‖2L2(0,T ;H1(Ω)∗) ≤ 2
(
‖d1(y) + λy2‖2L2(QT ) + ‖b1(y)‖2L2(Σ)c

2
τ

)
= 2

∫ T

0

(
‖G(y1(t))‖2L2(Ω1) + ‖F̄ (y1(t))‖2L2(Ω2) + ‖b1(y(t))‖2L2(Γ)c

2
τ

)
dt

≤ 2TM2
GEF (2 + c2

τ )

for all y ∈ Y = L2(QT )2. Regarding the second component, we estimate similarly

‖F2(y)‖2L2(0,T ;H1(Ω)∗) ≤ 2‖d2(y)− λy2‖2L2(QT ) = 2

∫ T

0
ν2‖G(y1(t))‖2L2(Ω1)dt ≤ 2TM2

GEF ν
2.

The choice of ν implies ν2 ≤ 2 + c2
τ . Therefore, the boundedness condition (3.1) holds with

Mrea :=
√

2T (2 + c2
τ )MGEF .

Conservation of mass. We state in Result 4.2.2 that the reaction terms (d1, d2) and b as

well as the right-hand sides of the PO4-DOP model fulfill the conservation of mass condition

given in Remark 1.5.4. The same is true for the reaction terms (d1 + λId, d2 − λId) and b

because d1 + λId + d2 − λId = d1 + d2. Remark 1.5.4 states that the conservation of mass

condition for (d1 + λId, d2 − λId) and b is equivalent to the desired condition (3.2) for the

operator F .

4.4.3 Stationary solutions of the PO4-DOP model

Let C ∈ R. In this section, we verify the assumptions of Theorem 3.3.2 by modifying the

arguments of Section 4.4.2. Theorem 3.3.2 provides a stationary solution with the constant

mass C of the time-independent PO4-DOP model.

First, we introduce the time-independent PO4-DOP model. Let Λ = L2(Ω)2. The right-

hand side is fstat = 0 ∈ (H1(Ω)∗)2. The operator Fstat : Λ → (H1(Ω)∗)2 is defined by a

time-independent version of the PO4-DOP model’s reaction terms. Since their dependence

on time originates from the continuous insolation function I, we fix I in some point of time,

for example, in t = 0. The results of Section 4.2.2 guarantee that G(0) : L2(Ω) → L2(Ω) is

well-defined. The same is true for E(0) and F̄ (0) and therefore also for d(0) : Λ→ L2(Ω)2 and

b(0) : Λ→ L2(Γ)2. Thus, we can define Fstat by means of (d1(0)+λIdL2(Ω), d2(0)−λIdL2(Ω))

according to Lemma 1.4.1.

All arguments used to prove continuity, boundedness, and conservation of mass in the

periodic case are either valid for almost all t ∈ [0, T ] (Lipschitz continuity in Section 4.4.1,

Proposition 4.2.3, conservation of mass condition in Result 4.2.2) or have a time-independent

equivalent (Equation (1.5) in the proof of Lemma 1.4.1). In particular, these properties hold
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for t = 0 because of the continuity of I. Therefore, continuity, boundedness, and conservation

of mass can be proved as in the periodic case, the only difference being the missing integrals

with respect to time.

4.5 The fixed point iteration and uniqueness

This section addresses the fixed point iteration, a method that is used to compute periodic

solutions of the PO4-DOP model. In addition, we present the results of a numerical test

concerning uniqueness of periodic solutions.

4.5.1 The fixed point iteration

According to Section 4.4.1, a transient solution of the PO4-DOP model associated with a

known initial value is unique. Therefore, a periodic solution is uniquely determined by its

initial (and terminal) value. To describe the initial value as a fixed point, we refer to the

unique solution associated with the initial value y0 ∈ L2(Ω)2 as y ∈ W (0, T )2. Then, the

operator

A : L2(Ω)2 → L2(Ω)2, y0 7→ y(T )

maps the initial to the terminal value of y. The expression y(T ) is an abridged form of

(ET ◦ E2
C)(y). The insertion operator ET is defined in the proof of Lemma 2.2.3, and E2

C

is the continuous embedding of W (0, T )2 in C([0, T ];L2(Ω))2 (cf. Theorem 1.1.2(1)). Both

operators are linear and continuous. The uniqueness of the solution y ensures that A is

well-defined.

Obviously, an element ȳ0 ∈ L2(Ω)2 is the initial value of a periodic solution if and only if

it is a fixed point of A. According to Remark VI.1.9 of Gajewski et al. [7], A is contractive if

the operators in the model equation, B2 and F , fulfill a variant of strict monotonicity. In this

case, Banach’s Fixed Point Theorem yields a unique fixed point ȳ0 ∈ L2(Ω)2 and therefore a

unique periodic solution. In addition, the fixed point is equal to the limit of the iteratively

defined sequence (xn)n∈N, given by

x0 := y0 ∈ L2(Ω)2 and xn = A(xn−1) for all n ∈ N \ {0}. (4.5)

The starting value x0 is an arbitrary element of L2(Ω)2. The n-th member is the terminal

value of the transient solution associated with the initial value xn−1.

The fixed point iteration approximates a periodic solution by computing the sequence

(4.5) iteratively. The iteration stops as soon as the difference between two successive mem-

bers, i.e., between the initial value xn and the terminal value xn+1 of a transient solution,

is sufficiently small. In this case, the transient solution corresponding to the initial value

xn approximates a periodic solution. Banach’s Fixed Point Theorem provides information

about the quality of approximation in the form of error estimates.
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In the context of ecosystem models, the fixed point iteration is often called spin-up.

Periodic solutions are considered as an equilibrium that is reached after a sufficient number

of years (= iterations).

The PO4-DOP model’s reaction terms do not fulfill the variant of strict monotonicity

required for the convergence of the sequence (4.5). Parts of the reaction terms are not even

monotone, for example, the integral with respect to x3 in E and the summand −λy2 in the

equation for y1. The absence of the variant of strict monotonicity is in accordance with

Theorem 3.2.1. This theorem provides several periodic solutions distinguished by mass. If

the reaction terms were strictly monotone, however, Banach’s Fixed Point Theorem would

yield a unique fixed point of A and therefore a unique periodic solution.

Despite the missing mathematical justification, the fixed point iteration is frequently

used to compute periodic solutions of the PO4-DOP model, for example, by Prieß et al. [17,

Section 2.4] or Parekh et al. [15, Section 3]. After a large number of iterations (3000 or 3500

years in the examples), the method actually yields an approximation of a periodic solution.

The fixed point iteration is considered feasible if all starting values with the fixed mass C ∈
R yield the same periodic solution. Because of the uncertainty with regard to convergence,

analytical results about feasibility cannot be expected. For this reason, we approach the

question of feasibility by means of a numerical test, using a two-dimensional version of the

PO4-DOP model.

We describe the implementation of the fixed point iteration for the two-dimensional ver-

sion of the PO4-DOP model in the next section. Afterwards, we explain the test in detail

and give the results.

4.5.2 Implementation

The fixed point iteration for the two-dimensional PO4-DOP model is built on the software

NaSt2D by Griebel et al. [8] which is available on the homepage1 of the authors. Since

the program is described in detail in the cited book, we provide only the main features and

concentrate on our adaptions.

Written in the C programming language, the original program is designed to solve the

Navier-Stokes equations for incompressible fluids on a quadratic domain in a finite time in-

terval. Beside the equations for the two velocity components and pressure, the program

considers an advection-diffusion equation modeling the influence of temperature. The equa-

tions for velocity, pressure, and temperature are iteratively solved via the Euler method. In

one time step, each quantity is described by a matrix whose dimension corresponds to the

discretization of the quadratic domain.

The original program covers different types of problems. We exclusively regard the case

of driven cavity flow. This flow originates from a forcing at the upper side of the quadratic

domain, such as a ribbon that is pulled over the surface or wind blowing in one direction. The

1http://wissrech.ins.uni-bonn.de/research/projects/NaSt2D/index.html. Retrieved February 1,
2016
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forcing is modeled by a boundary condition. An input file, adapted to the problem of driven

cavity flow, gives the opportunity to specify many influencing factors for the iteration, such

as the size and structure of the domain, constants (e.g. Reynolds number), initial values,

and boundary conditions for velocity. For the sake of comparability, we use a fixed input

file in all test runs. In particular, the finite time interval on which the solution is computed

is specified as [0, 10]. Furthermore, the quadratic domain is discretized by a grid of 50 × 50

quadratic cells.

We proceed with a list of our changes and additions to the original program.

• The equation for temperature is eliminated. The values for temperature remain con-

stant throughout the iteration.

• Two additional advection-diffusion-reaction equations describe the concentrations of

PO4 and DOP . The discretization of advection is taken directly from the equation

for temperature; the discretization of diffusion is additionally enhanced by a constant

diffusion matrix. The reaction terms of the PO4-DOP model are added to the equa-

tions. The depth of the upper (euphotic) layer is set to h̄e = 0.4, the total depth being

hmax = 1.

• The values for the PO4-DOP model’s parameters are taken from Kriest et al. [10].

• The constant boundary condition for driven cavity flow is replaced by the time-dependent

function bd(t) = (0.2t − 1)|0.2t − 1| − 0.2t + 1 on the time interval [0, 10]. Because of

bd(0) = 0 = bd(10), the function can be extended periodically to R+. Figure 4.5.1

shows bd and a part of the extension.
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Figure 4.5.1: The function bd on [0, 10] (solid line) and the periodic extension on [10, 20]
(dashed line).

The choice of bd guarantees a periodic forcing in the fixed point iteration.

• The fixed point iteration is implemented by means of a while loop. In each step, a

transient solution on [0, 10] with a suitable initial value is computed. The important

features of the iteration are described below.
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– The starting values, i.e., the initial values of PO4 and DOP in the first step, are

matrices of random numbers. The multiplication with a suitable factor ensures

that their mass is equal to C := 2.17. To compute the mass, we implement

the trapezoidal rule as an auxiliary function. The starting values of the velocity

components and pressure are zero.

– In all other steps, the initial values for velocity, pressure, PO4, and DOP are equal

to the terminal values of the previous step. The terminal values are stored in a

special file after each step and imported again when they are needed.

– After the transient solution is computed, we determine the difference between ini-

tial and terminal value of each quantity (velocity, pressure, PO4, and DOP ). The

sum of the differences’ 2-norms defines the residual res. We use the unweighted

2-norm since the two-dimensional domain is divided into cells of the same size.

– The while loop continues until res lies beneath a specified limit of tolerance c.

We run the program with different values for c.

– During an additional time step following the while loop, the values of PO4 and

DOP at t = 0, t = 2.5, t = 5, and t = 7.5 are stored in an output file.

The described fixed point iteration computes periodic solutions for PO4 and DOP as well

as for velocity and pressure. This kind of computation, called “online” mode, is applied by

Parekh et al. [15, Section 2.1] as well. The alternative “offline” mode requires a given velocity

which is equal throughout the iteration. Prieß et al. [17], for instance, use special matrices

to approximate both velocity and the diffusion coefficient. Because of the prescribed velocity

v, the method (4.5) is a continuous version of an “offline” computation. We indicate in the

next section why the fixed point iteration described above nevertheless approximates (4.5).

The fixed point iteration can be easily adapted to stationary solutions (cf. Section 3.3).

Since the boundary condition bd is responsible for the solution’s periodicity, it suffices to

replace bd by a constant value.

4.5.3 Numerical test

As explained above, the fixed point iteration is considered feasible if all solutions computed

with starting values with the same mass C are equal. To investigate feasibility, we run the

fixed point iteration using four random starting values with the mass C = 2.17. Afterwards,

we compare the four periodic solutions for PO4 and DOP . We perform this test twice using

the limit of tolerance c = 10−4 and c = 10−5, respectively.

In all of the eight test runs, the final residuals of the two velocity components and pressure

are approximately 10−13, 10−16, and 10−11, respectively. This implies that the change of

velocity and pressure is negligible compared to the change of PO4 and DOP in the last

steps of the iteration. In this sense, the “online” fixed point iteration can be regarded as a

numerical version of the “offline” method (4.5).
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Before we proceed with the results concerning PO4 and DOP , we clarify when two

solutions are considered equal in the numerical context. Regarding one test consisting of

four runs, we refer to the solution obtained in the i-th run as (PO4(i), DOP (i)) for each i ∈
{1, . . . , 4}. The solutions (PO4(i), DOP (i)) and (PO4(j), DOP (j)) for i, j ∈ {1, . . . , 4} are

considered equal if their residual, i.e., the sum of ‖PO4(i)−PO4(j)‖ and ‖DOP (i)−DOP (j)‖
with ‖.‖ denoting the discrete C([0, T ];L2(Ω))-norm, falls below c. Since the contribution of

velocity and pressure to the total residual res is negligible, this definition is in accordance

with the stopping criterion in the fixed point iteration.

We explain the discrete C([0, T ];L2(Ω))-norm using PO4(1) − PO4(2) as an example.

According to the definition of the algorithm in Section 4.5.2, the solutions PO4(1) and PO4(2)

on [0, 10] are represented by vectors of values at t = 0, t = 2.5, t = 5, and t = 7.5. The

entries of PO4(1), for instance, are displayed in Figure 4.5.2. To measure PO4(1)−PO4(2) in

the desired norm, we subtract each entry of PO4(2) from the corresponding entry of PO4(1)

and compute the 2-norm of the resulting matrices. The maximum of these four numbers

corresponds to the discrete C([0, T ];L2(Ω))-norm of PO4(1)− PO4(2).
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Figure 4.5.2: Contour lines of the entries of PO4, obtained in the first run of Test 1. The
axes show the discretization of the quadratic domain (50× 50 cells).

The results of the two tests are presented in the Tables 4.5.1 and 4.5.2 on page 74. The

four rows of each table correspond to the test runs. The first column indicates the number of

steps required to reach the respective limit of tolerance. For all i ∈ {1, 2, 3}, the i-th of the

remaining columns is divided into three subcolumns each of which has four entries. The j-th

entry of the i-th column contains ‖PO4(i)−PO4(j)‖ in the first and ‖DOP (i)−DOP (j)‖ in

the second subcolumn. The third subcolumn includes the residual between (PO4(i), DOP (i))

and (PO4(j), DOP (j)), i.e., the sum of the entries of the first two subcolumns. To avoid

double entries, we consider only the residuals associated with the indices j ∈ {i, . . . , 4} in the

i-th column. Accordingly, a potential fourth column “Difference to Run 4” would contain

only empty cells and zeros. Therefore, it is omitted.

We proceed with an interpretation of the results. Regarding the number of steps, we

observe that all associated test runs have a similar length irrespective of the starting value.

In particular, the fixed point iteration actually reaches a solution of the desired accuracy in

all test runs. Thus, there is no indication that some starting values are better suited than
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others or that the fixed point iteration does not converge at all.

We compare the solutions by regarding the residuals listed in the third subcolumns. In

the first test (c = 10−4), the residuals range between 1.3 · 10−5 and 9.5 · 10−5. In the second

test (c = 10−5), the residuals range between 1.5 · 10−6 and 5.8 · 10−6. Thus, in both tests, all

residuals lie beneath the corresponding limit of tolerance. This implies that all solutions are

equal in the sense of the definition above.

In summary, the test provides no indication that the fixed point iteration might be infea-

sible.

Table 4.5.1: Residuals between all solutions of Test 1 (c = 10−4). The norms of the differences
are rounded to six decimal places and divided by 10−5.

Difference to Run 1 Difference to Run 2 Difference to Run 3
Run Steps PO4 DOP Res. PO4 DOP Res. PO4 DOP Res.

1 356 0 0 0 - - - - - -

2 357 4.4 3.6 8.0 0 0 0 - - -

3 355 0.9 0.4 1.3 4.5 4.0 9.5 0 0 0

4 357 1.7 0.9 2.6 3.2 2.7 5.9 1.5 1.4 2.9

Table 4.5.2: Residuals between all solutions of Test 2 (c = 10−5). The norms of the differences
are rounded to seven decimal places and divided by 10−6.

Difference to Run 1 Difference to Run 2 Difference to Run 3
Run Steps PO4 DOP Res. PO4 DOP Res. PO4 DOP Res.

1 441 0 0 0 - - - - - -

2 441 1.0 0.5 1.5 0 0 0 - - -

3 440 3.2 2.6 5.8 2.6 2.1 4.7 0 0 0

4 440 3.0 2.2 5.2 2.4 1.7 4.1 1.4 0.4 1.8
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Chapter 5

Parameter identification in a

marine ecosystem model

In this chapter, we consider the reaction terms’ dependence on parameters. Model validation

can be effected by adjusting the parameters in such a way that the model reproduces ob-

servational data “optimally” in some sense (cf. Fennel and Neumann [6, Section 1.1]). The

process of finding “optimal” parameters is called parameter identification.

In the first subsection, we introduce parameter identification as an optimization problem

and define optimal parameters. Furthermore, we prove the existence of optimal parameters

under certain assumptions and give examples for reaction terms that are in accordance with

these assumptions. Sections 5.2 and 5.3 are concerned with first and second order conditions

for optimal parameters.

5.1 Existence of optimal parameters

We start with a hypothesis providing all important assumptions.

Hypothesis 5.1.1. In addition to Hypothesis 1.2.1, we assume that the set of admissible

parameters Uad ⊆ V is nonempty, closed, bounded, and convex. Let the data yd ∈ L2(QT )s

and ud ∈ Uad be given. Let furthermore γ ≥ 0 and y0 ∈ L2(Ω)s. We abbreviate the initial

value condition by A(y) ∈ {y(0)− y0, y(0)− y(T )} for all y ∈W (0, T )s.

Remark 5.1.2. In the context of parameter identification, the admissible set Uad is often

defined by box constraints. For each i ∈ {1, . . . , np}, these are given by the bounds ua,i, ub,i ∈
L∞(QT ) or L∞(Σ) depending on the character of Ui with ua,i ≤ ub,i almost everywhere.

Then, u ∈ Uad if and only if u ∈ V and

ua,i(x, t) ≤ ui(x, t) ≤ ub,i(x, t) for all i ∈ {1, . . . , np} and almost all (x, t) ∈ QT or Σ.

Clearly, the set Uad defined in this way is a nonempty, closed, bounded, and convex subset of

V .
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We formulate the parameter identification problem for the general operator equation (1.6),

extended by the reaction terms’ dependence on the parameters, i.e., for

y′ +Bs(y) + F (u, y) = f(u) in L2(0, T ;H1(Ω)∗)s (5.1)

with F : V × Y → L2(0, T ;H1(Ω)∗)s and f : V → L2(0, T ;H1(Ω)∗)s.

First of all, we introduce and explain the components of the optimization problem asso-

ciated with parameter identification.

1. In the context of parameter identification, we minimize the difference between model

output and data yd as well as the difference between parameter and target parameter ud.

Therefore, the associated optimization problem includes the least-squares cost function

J : U × L2(QT )s → R, J(u, y) :=
1

2
‖y − yd‖2L2(QT )s +

γ

2
‖u− ud‖2U .

The coefficient γ controls the influence of the last summand on the minimum. Target

parameters ud corresponding to real observational data yd are seldom available. In this

case, γ is set to zero, and the second summand of the cost function vanishes.

2. The optimization problem additionally features side conditions for y and u. The first

side condition guarantees that y equals the model output corresponding to u. This

condition is formulated by means of the operator e : V ×W (0, T )s → L2(0, T ;H1(Ω)∗)s,

defined by

e(u, y) := y′ +Bs(y) + F (u, y)− f(u) for all (u, y) ∈ V ×W (0, T )s.

In addition, the initial value condition A(y) = 0 specifies if transient or periodic solu-

tions are considered. The second side condition ensures that u belongs to Uad.

Combining these components, we obtain the optimization problem

min J(u, y)

subject to e(u, y) = 0, A(y) = 0, u ∈ Uad.

To formulate the optimization problem without explicitly stating the side conditions, we

define the set of all admissible pairs, i.e., all pairs that agree with the side conditions,

Xad := {(u, y) ∈ Uad ×W (0, T )s : e(u, y) = 0 and A(y) = 0} ⊆ U × L2(QT )s.

Using this definition, the optimization problem can be written as

min
(u,y)∈Xad

J(u, y). (5.2)

Optimal parameters are defined by means of this optimization problem.

76



Definition 5.1.3. The parameter ū ∈ Uad is called optimal for (5.1) and (ud, yd) if there

exists a state ȳ ∈ W (0, T )s in such a way that the pair (ū, ȳ) belongs to Xad and solves the

minimization problem (5.2), i.e.,

J(ū, ȳ) ≤ J(u, y) for all (u, y) ∈ Xad.

The following existence theorem about optimal parameters covers the general case of

parameters depending on space and time. Variable parameters are appropriate in some situ-

ations. Oschlies [13, Section 4], for instance, uses a variable growth rate to model fertilization

with iron. The authors of the PO4-DOP -Fe model state that one of their parameters “is

unlikely to be uniform in space and time” (Parekh et al. [15, Section 2.3]). However, most

parameters in marine ecosystem models are assumed to be constant. To account for that, we

provide a corollary adapted to models with constant parameters in addition to the theorem.

Hinze et al. [9, Section 1.5.2] prove a similar existence result under the assumption that the

model equation is uniquely solvable. We adapt their proof in such a way that the assumption

of unique solvability can be dispensed with. The generalization is important for the periodic

PO4-DOP model which is not uniquely solvable.

Theorem 5.1.4. In addition to Hypothesis 5.1.1, let the Banach space U be reflexive and

F : V × Y → L2(0, T ;H1(Ω)∗)s and f : V → L2(0, T ;H1(Ω)∗)s be weakly sequentially

continuous. We assume that for every u ∈ Uad there exists y ∈ W (0, T )s such that (u, y) ∈
Xad. Furthermore, let the set of admissible states Yad := {y ∈ W (0, T )s : ∃u ∈ Uad : (u, y) ∈
Xad} be bounded in W (0, T )s by a constant Mad. Hence, there is an optimal parameter

ū ∈ Uad for (5.1) and (ud, yd).

Proof. Since the set J(Xad) is bounded from below by zero, the infimum j := inf J(Xad) is

finite. By definition of the infimum, there is a sequence ((un, yn))n ⊆ Xad with J(un, yn)→ j.

Being an element of Xad, the pair (un, yn) satisfies

y′n +Bs(yn) + F (un, yn)− f(un) = e(un, yn) = 0

A(yn) = 0

}
for all n ∈ N.

Since Uad is bounded in U , so is the sequence (un)n. Furthermore, yn belongs to Yad which is

assumed to be bounded by Mad. Thus, the sequence ((un, yn))n is bounded in U ×W (0, T )s.

Since U is assumed to be reflexive, so is U ×W (0, T )s. Thus, we obtain a subsequence,

denoted by ((un, yn))n as well, and a pair (ū, ȳ) ∈ U ×W (0, T )s with (un, yn) ⇀ (ū, ȳ).

We will prove that ū is an optimal parameter according to Definition 5.1.3, i.e., that (ū, ȳ)

belongs to Xad and minimizes J on Xad. To verify the first property, we use that the closed

and convex set Uad is weakly sequentially closed. This is a consequence from the Theorem

of Mazur (see Yosida [27, Theorem V.1.2]). Thus, un ⇀ ū and (un)n ⊆ Uad imply ū ∈ Uad.
Thus, (ū, ȳ) belongs to Xad if A(ȳ) = 0 and e(ū, ȳ) = 0.

Using the notation of the proof of Lemma 2.2.3, we can define the initial value condition
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more precisely as A(yn) = E0 ◦ EsC(yn) − y0 or A(yn) = E0 ◦ EsC(yn) − ET ◦ EsC(yn). Here,

EsC is the continuous embedding of W (0, T )s in C([0, T ];L2(Ω))s (cf. Theorem 1.1.2(1)). We

have proved before that the operators ET and E0 : C([0, T ];L2(Ω))s → L2(Ω)s are weakly

sequentially continuous. The same is true for the linear and bounded operator EsC . Thus, the

weak convergence of (yn)n in W (0, T )s implies A(yn) ⇀ A(ȳ) for both versions of A. Since

A(yn) = 0 for all n ∈ N, and the weak limit is unique, we arrive at A(ȳ) = 0.

Because of the continuous embedding of W (0, T )s in Y , the sequence (yn)n converges

weakly to ȳ in Y . In particular, (un, yn) ⇀ (ū, ȳ) in U × Y . The weak sequential continuity

of F and f yields F (un, yn) ⇀ F (ū, ȳ) and f(un) ⇀ f(ū) in L2(0, T ;H1(Ω)∗)s. Additionally

regarding the weak convergence of (yn)n to ȳ in W (0, T )s, we conclude e(un, yn) ⇀ e(ū, ȳ).

As in the last paragraph, the fact e(un, yn) = 0 for all n ∈ N implies e(ū, ȳ) = 0.

At last, we show that (ū, ȳ) minimizes J on Xad. Since W (0, T )s is continuously embedded

in L2(QT )s, the sequence (yn)n converges weakly to ȳ in L2(QT )s as well. Using the definitions

of j and J as well as Theorem V.1.1(ii) of Yosida [27], applied to both sequences (yn − yd)n
and (un − ud)n, we estimate

j = lim
n→∞

J(un, yn) = lim inf
n→∞

(
1

2
‖yn − yd‖2L2(QT )s +

γ

2
‖un − ud‖2U

)
≥ 1

2
‖ȳ − yd‖2L2(QT )s +

γ

2
‖ū− ud‖2U = J(ū, ȳ) ≥ j.

The last estimate J(ū, ȳ) ≥ j holds because (ū, ȳ) ∈ Xad and j is the infimum of J(Xad).

We conclude that j = J(ū, ȳ) is a minimum of J(Xad). By definition, ū ∈ Uad is an optimal

parameter for (5.1) and (ud, yd).

In the following corollary, we consider spaces U and Y with special properties. The last

two statements concern the case of constant parameters.

Corollary 5.1.5. Theorem 5.1.4 remains valid if the weak sequential continuity of F : V ×
Y → L2(0, T ;H1(Ω)∗)s and f : V → L2(0, T ;H1(Ω)∗)s is replaced by one of the following

alternative assumptions.

1. The space W (0, T )s is compactly embedded in Y ; F is weakly sequentially continuous

with respect to the first component and demicontinuous with respect to the second, i.e.,

F (un, yn) ⇀ F (u, y) for all (un)n ⊆ V with un ⇀ u in U and all (yn)n ⊆ Y with

yn → y in Y . The functional f is weakly sequentially continuous.

2. The parameter space U is finite-dimensional; F is demicontinuous with respect to the

first component and weakly sequentially continuous with respect to the second compo-

nent, i.e., F (un, yn) ⇀ F (u, y) for all (un)n ⊆ V with un → u in U and all (yn)n ⊆ Y

with yn ⇀ y in Y . The functional f is demicontinuous.

3. The space W (0, T )s is compactly embedded in Y , U is finite-dimensional, and F and f

are demicontinuous.
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Proof. In the proof of Theorem 5.1.4, the weak sequential continuity of F and f is used

to conclude F (un, yn) ⇀ F (ū, ȳ) and f(un) ⇀ f(ū). Clearly, the proof remains valid if

F (unk
, ynk

) ⇀ F (ū, ȳ) and f(unk
) ⇀ f(ū) hold for a subsequence of ((un, yn))n. We prove

the existence of such a subsequence under each of the corollary’s three assumptions.

First, we regard the case that W (0, T )s is compactly embedded in Y . Converging weakly

in W (0, T )s, the sequence (yn)n is bounded in this space. The compact embedding ensures

that a subsequence (ynk
)k converges strongly in Y . Because of the uniqueness of the weak

limit, the strong limit is equal to ȳ. The assumptions yield the desired convergence result.

Second, we consider a finite-dimensional parameter space U . Here, weak and strong

convergence coincide, and the sequence (un)n thus converges strongly to ū. The desired

convergence result follows from the assumptions about F and f .

In the final case, the considerations above are combined. Because of the finite dimension

of U , the sequence (un)n converges strongly to ū. As in the first case, a subsequence (ynk
)k of

(yn)n converges strongly to ȳ in Y because of the assumed compact embedding. The strong

convergence of ((unk
, ynk

))k to (ū, ȳ) in U × Y and the assumed demicontinuity of F and f

imply the desired convergence result.

In the following subsection, we present two typical reaction terms which are in accordance

with Corollary 5.1.5.

5.1.1 Examples

Linear growth. Choose 2 < p < ∞ and 1 < q < ∞ in such a way that 2
p + 2

q = 1 holds

and that W (0, T ) is compactly embedded in Y := Lq(QT ) for all dimensions nd ∈ {1, 2, 3}.
A possible choice is p = 6 and q = 3 (cf. Růžička [19, Corollary 3.98]). The parameter space

U = V = Lp(QT ) is reflexive because of the choice of p. Let Uad ⊆ U be a nonempty, closed,

bounded, and convex set. Consider the reaction term

d : Lp(QT )× Lq(QT )→ L2(QT ), d(a, y)(x, t) = a(x, t)y(x, t).

For a fixed a ∈ Lp(QT ), the family consisting of the operators d(t) : Lq(Ω) → L2(Ω) with

d(t)(v) = a(. , t)v for all v ∈ Lq(Ω) defines d in the sense of Hypothesis 1.2.1. Hölder’s

inequality with p/2 and q/2 ensures that d and d(t) are well-defined. The spaces Λ := Lq(Ω)

and Y = Lq(QT ) comply with (1.1). Thus, Hypothesis 1.2.1 is fulfilled.

We prove that d satisfies the assumption of Corollary 5.1.5(1). First, W (0, T ) is compactly

embedded in Lq(QT ) by assumption. Furthermore, we have to prove that, given an ⇀ a in

Lp(QT ), yn → y in Lq(QT ), and v ∈ L2(0, T ;H1(Ω)), the operator F , defined by d in the

sense of Lemma 1.4.1, fulfills

〈F (an, yn)− F (a, y), v〉L2(0,T ;H1(Ω)∗) =

∫
QT

(anyn − ay)vd(x, t)→ 0.
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We investigate the convergence of both summands on the right-hand side of∫
QT

(anyn − ay)vd(x, t) =

∫
QT

an(yn − y)vd(x, t) +

∫
QT

(an − a)yvd(x, t) (5.3)

separately. Preliminarily, we deduce

1

q
=

1

2
− 1

p
=
p− 2

2p
(5.4)

from the assumption about p and q. To treat the first summand on the right-hand side of

(5.3), we use Hölder’s inequality twice, first with the exponent q and the Hölder conjugate(
1− 1

q

)−1

=

(
1− p− 2

2p

)−1

=

(
p+ 2

2p

)−1

=
2p

p+ 2
,

computed by means of (5.4), and second with (p+ 2)/p and the Hölder conjugate(
1− p

p+ 2

)−1

=

(
p+ 2− p
p+ 2

)−1

=
p+ 2

2
.

We obtain∫
QT

an(yn − y)vd(x, t) ≤
(∫

QT

|anv|
2p
p+2d(x, t)

) p+2
2p

‖yn − y‖Lq(QT )

≤

[(∫
QT

v2d(x, t)

) p
p+2
(∫

QT

|an|pd(x, t)

) 2
p+2

] p+2
2p

‖yn − y‖Lq(QT )

= ‖v‖L2(QT )‖an‖Lp(QT )‖yn − y‖Lq(QT ).

The first norm is finite because L2(0, T ;H1(Ω)) is continuously embedded in L2(QT ). Fur-

thermore, the sequence (an)n is weakly convergent and therefore bounded in Lp(QT ). Thus,

the strong convergence of (yn)n to y in Lq(QT ) ensures that the first summand on the right-

hand side of (5.3) converges to zero.

Since (an)n converges weakly to a in Lp(QT ), the second summand on the right-hand side

of (5.3) converges to zero if yv belongs to L
p

p−1 (QT ) which is isomorphic to the dual space

of Lp(QT ). We apply Hölder’s inequality with 2(p− 1)/(p− 2) and the Hölder conjugate(
1− p− 2

2(p− 1)

)−1

=

(
2p− 2− p+ 2

2(p− 1)

)−1

=

(
p

2(p− 1)

)−1

=
2(p− 1)

p

and obtain using (5.4) twice

‖yv‖
p

p−1

L
p

p−1 (QT )
=

∫
QT

|yv|
p

p−1d(x, t) ≤
(∫

QT

|y|qd(x, t)

) p−2
2(p−1)

(∫
QT

v2d(x, t)

) p
2(p−1)
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=

(∫
QT

|y|qd(x, t)

) 1
q
· q(p−2)
2(p−1)

(∫
QT

v2d(x, t)

) 1
2
· p
p−1

=
(
‖y‖Lq(QT )‖v‖L2(QT )

) p
p−1 .

Because of the choice of y and v, the last expression is finite. Thus, yv belongs to L
p

p−1 (QT )

which implies that the second summand on the right-hand side of (5.3) converges to zero.

A saturation function. Choose p and q as in the previous example and consider the

reaction term

d : Lp(QT )× R>0 × Lq(QT )→ L2(QT ), d(α,K, y)(x, t) = α(x, t)
y(x, t)

|y(x, t)|+K

featuring the parameter vector u = (α,K). The operator d models a reaction with a half

saturation constant K and a variable maximum rate α. A reaction term of this kind, featuring

a constant maximum rate, plays a central role in the PO4-DOP model (cf. Section 4.2.2).

We set U := Lp(QT ) × R, V := Lp(QT ) × R>0, and Y := Lq(QT ). The parameter

space U is reflexive. For a fixed (α,K) ∈ V , the family consisting of the operators d(t) :

Lq(Ω) → L2(Ω) with d(t)(v) = α( . , t)v/(|v|+K) for all v ∈ Lq(Ω) defines d in the sense

of Hypothesis 1.2.1. The operators d and d(t) are well-defined since the fraction is bounded

by 1 according to Lemma 4.2.1, and p > 2 implies that Lp(Ψ) is continuously embedded in

L2(Ψ) for Ψ ∈ {Ω, QT }. The spaces Λ = Lq(Ω) and Y = Lq(QT ) fulfill condition (1.1). Thus,

Hypothesis 1.2.1 is satisfied. The set of admissible parameters is given by

Uad := {(α,K) ∈ Lp(QT )× R : αa ≤ α ≤ αb almost everywhere and Ka ≤ K ≤ Kb}

using the bounds αa, αb ∈ L∞(QT ) with αa ≤ αb almost everywhere and Ka,Kb ∈ R>0 with

Ka ≤ Kb. Obviously, Uad ⊆ V .

We prove that d satisfies the assumption of Corollary 5.1.5(1). First, W (0, T ) is compactly

embedded in Lq(QT ) by assumption. The proof of Theorem 5.1.4 reveals that it suffices to

prove the second property of Corollary 5.1.5(1) for parameter sequences in Uad. Thus, let

(αn,Kn), (α,K) ∈ Uad with (αn,Kn) ⇀ (α,K) in U and yn → y in Lq(QT ). Since the second

parameter is real, Kn converges strongly to K. Let F be the operator defined by d in the

sense of Lemma 1.4.1. We have to verify that

〈F (αn,Kn, yn)− F (α,K, y), v〉L2(0,T ;H1(Ω)∗) =

∫
QT

(
αn

yn
|yn|+Kn

− α y

|y|+K

)
vd(x, t)

=

∫
QT

(αn − α)
yn

|yn|+Kn
vd(x, t) +

∫
QT

α

(
yn

|yn|+Kn
− y

|y|+K

)
vd(x, t) (5.5)

converges to zero for all v ∈ L2(0, T ;H1(Ω)).

Let v ∈ L2(0, T ;H1(Ω)). To begin with, we prove that (ynv)/(|yn|+Kn)−(yv)/(|y|+K)

converges strongly to zero in L
p

p−1 (QT ). Given a fixed (x, t) ∈ QT , we obtain, omitting the
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argument (x, t) for the sake of shortness,∣∣∣∣ ynv

|yn|+Kn
− yv

|y|+K

∣∣∣∣ ≤ ∣∣∣∣ ynv

|yn|+Kn
− yv

|y|+Kn

∣∣∣∣+

∣∣∣∣ yv

|y|+Kn
− yv

|y|+K

∣∣∣∣
≤ |v|
Kn
|yn − y|+ max

K̃∈[Ka,Kb]

|yv|
(|y|+ K̃)2

|Kn −K| ≤
|v|
Ka

(|yn − y|+ |Kn −K|) .

In the second line, we use Lemma 4.2.1 to estimate the first summand and the mean value

theorem to estimate the second. Both Lipschitz constants are bounded because of the box

constraints. In particular, we estimate the second one by

|y||v|
(|y|+ K̃)2

≤ (|y|+ K̃)|v|
(|y|+ K̃)2

=
|v|

|y|+ K̃
≤ |v|
Ka

using |y| ≥ 0 and K̃ ≥ Ka.

We estimate the upper bound |v| |yn − y|+ |v| |Kn −K| in L
p

p−1 (QT ). Treating the norm

of the first summand in the same way as yv in the last section, we conclude

‖v(yn − y)‖
p

p−1

L
p

p−1 (QT )
≤
(
‖v‖L2(QT )‖yn − y‖Lq(QT )

) p
p−1 .

An analogous estimate holds for the second summand. Here, the constant function 1 takes

on the role of |yn − y| after the constant expression |Kn −K| has left the integral.

Combining the results, we arrive at∥∥∥∥ ynv

|yn|+Kn
− yv

|y|+K

∥∥∥∥
L

p
p−1 (QT )

≤
‖v‖L2(QT )

Ka

(
‖yn − y‖Lq(QT ) + |QT |

1
q |Kn −K|

)
.

The right-hand side converges to zero because v belongs to L2(QT ) and the sequences (yn)n

and (Kn)n converge strongly to y and K, respectively.

Finally, we deal with the convergence of the two summands in (5.5) to zero. The sequence

αn−α converges weakly to zero in Lp(QT ). In addition, (ynv)/(|yn|+Kn) converges strongly

in L
p

p−1 (QT ) which is isomorphic to the dual space of Lp(QT ). Thus, the first summand in

(5.5) converges to zero.

The second summand can be estimated using Hölder’s inequality with the exponents p

and p/(p − 1). The upper bound obtained in this way converges to zero since α ∈ Lp(QT ),

and the difference (ynv)/(|yn|+Kn)− (yv)/(|y|+K) converges strongly in L
p

p−1 (QT ) to zero.

Thus, the reaction term d fulfills all assumptions of Corollary 5.1.5(1).

5.2 Optimality conditions in the transient case

Optimality conditions provide a means to describe optimal parameters. In this section, we

show that, given certain assumptions, optimality conditions for the parameter identification

problem associated with a transient model equation exist. Because of Theorem 2.2.1, it is
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reasonable to assume that the transient model equation is uniquely solvable. On the basis

of this assumption, we can formulate an equivalent of the parameter identification problem

(5.2) depending on u instead of (u, y) (cf. Section 5.2.1). Section 5.2.2 is concerned with first

and second order optimality conditions for this “reduced” optimization problem.

Let the following hypothesis be valid throughout this section.

Hypothesis 5.2.1. In addition to Hypothesis 5.1.1 with A(y) := y(0)− y0, we assume that

U is a Hilbert space and that the equation (5.1) has a unique transient solution y(u) for

each parameter u ∈ V . Furthermore, let F : V × Y → L2(0, T ;H1(Ω)∗)s and f : V →
L2(0, T ;H1(Ω)∗)s be twice continuously Fréchet differentiable.

Suppose that, for every (ū, ȳ) ∈ V ×Y , the operator F ′y(ū, ȳ) : Y → L2(0, T ;H1(Ω)∗)s has

a linear extension F̂ : L2(0, T ;H1(Ω))s → L2(0, T ;H1(Ω)∗)s, characterized by

F̂ (ỹ) = F ′y(ū, ȳ)ỹ for all ỹ ∈ Y .

The extension F̂ is generated by a family (F̂ (t))t, defined on Λ = H1(Ω)s, and the operators

F̂ (t) : H1(Ω)s → (H1(Ω)∗)s fulfill the Lipschitz condition

‖F̂ (t)(y(t))− F̂ (t)(z(t))‖(H1(Ω)∗)s ≤ L′‖y(t)− z(t)‖Ωs for all y, z ∈ L2(0, T ;H1(Ω))s

with a Lipschitz constant L′ > 0 independent of t.

5.2.1 Parameter-to-state map and reduced cost function

The following map connects a parameter with the corresponding solution of the equation

(5.1). Hypothesis 5.2.1 ensures that the definition is meaningful.

Definition 5.2.2. The map S : V →W (0, T )s, u 7→ y(u), is called parameter-to-state map.

The next theorem treats the Fréchet differentiability of S. As a corollary, we obtain that

transient solutions depend continuously on the parameters.

Theorem 5.2.3. The parameter-to-state map S : V → W (0, T )s is twice continuously

Fréchet differentiable. For every u ∈ V , the derivative S′(u) ∈ L(U,W (0, T )s) maps v ∈ U
to the solution h := S′(u)v of the initial value problem

h′ +Bs(h) + F ′y(u, S(u))h = f ′(u)v − F ′u(u, S(u))v

h(0) = 0.

The second derivative S′′(u) ∈ L(U,L(U,W (0, T )s)) maps v, w ∈ U to the solution a :=
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[S′′(u)v]w of the initial value problem

a′ +Bs(a) + F ′y(u, S(u))a = [f ′′(u)v]w − [F ′′yu(u, S(u))v]S′(u)w − [F ′′yy(u, S(u))S′(u)v]S′(u)w

− [F ′′uu(u, S(u))v]w − [F ′′uy(u, S(u))S′(u)v]w

a(0) = 0.

Following Zeidler [28, Remark 4.6], we will henceforth omit the squared brackets separat-

ing the arguments of the second derivatives. Furthermore, two equal arguments are denoted

by one squared argument. For instance, we use S′′(u)vw instead of [S′′(u)v]w and S′′(u)v2

instead of S′′(u)vv.

Proof. First of all, we ensure that the initial value problems formulated in the theorem

are uniquely solvable. Thanks to Hypothesis 5.2.1, the restriction F1 := F ′y(u, S(u)) of

F̂ is generated by the family (F̂ (t))t. The components F̂ (t) fulfill the Lipschitz condition

with a Lipschitz constant independent of t. Furthermore, F ′y(u, S(u)) is linear and therefore

homogeneous. Linearity and (Lipschitz) continuity imply that F ′y(u, S(u)) is also weakly

continuous. The right-hand sides of both equations belong to L2(0, T ;H1(Ω)∗)s by definition

of F and f . Thus, Theorem 2.2.1 with F2 := 0 yields a unique solution for each initial value

problem. Both solutions belong to W (0, T )s.

We employ the Implicit Function Theorem (cf. Zeidler [28, Theorem 4.B(d)]) to show

that S is twice continuously Fréchet differentiable and to compute the derivatives.

Using the abbreviations W := W (0, T )s and Z := L2(0, T ;H1(Ω)∗)s, we define

Φ : V ×W → Z × L2(Ω)s, Φ(u, y) := (y′ +Bs(y) + F (u, y)− f(u), y(0)− y0).

Let ū ∈ V and ȳ := S(ū). The definition of S yields Φ(u, S(u)) = 0 for all u ∈ V and

thus, in particular, Φ(ū, ȳ) = 0. It remains to be shown that Φ is twice continuously Fréchet

differentiable, that the partial derivative Φ′y is continuous at (ū, ȳ), and that Φ′y(ū, ȳ) is

bijective.

Concerning the first property, we prove that all summands of Φ are twice continuously

Fréchet differentiable at (ū, ȳ).

The temporal derivative, the operator Bs, the insertion operator E0 : C([0, T ];L2(Ω))s →
L2(Ω)s (see the proof of Lemma 2.2.3), and the continuous embedding EsC : W (0, T )s →
C([0, T ];L2(Ω))s are linear and bounded and thus twice continuously Fréchet differentiable.

So are the constant y0 and the right-hand side f . By assumption, the embedding EY : W → Y

is continuous and linear, and F : V × Y → Z is twice continuously Fréchet differentiable.

Thus, the composition F |V×W = F ◦ (IdU |V , EY ) is twice continuously Fréchet differentiable

as well.

In summary, Φ : V × W → Z × L2(Ω)s is twice continuously Fréchet differentiable.

All first and second partial derivatives exist and are continuous according to Zeidler [28,

Proposition 4.14]. In particular, this is true for Φ′y.
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We proceed with the bijectivity of Φ′y(ū, ȳ) ∈ L(W,Z × L2(Ω)s), given by

Φ′y(ū, ȳ)h = (h′ +Bs(h) + F ′y(ū, ȳ)h, h(0)) ∈ Z × L2(Ω)s for every h ∈W .

To show that Φ′y(ū, ȳ) is onto, let (z, z0) ∈ Z × L2(Ω)s. The surjectivity of Φ′y(ū, ȳ) is

equivalent to the existence of an element h ∈W that fulfills the initial value problem

h′ +Bs(h) + F ′y(ū, ȳ)h = z, h(0) = z0. (5.6)

At the beginning of this proof, we argued that an initial value problem with the “reaction

term” F ′y(ū, ȳ) is uniquely solvable in W . Therefore, Φ′y(ū, ȳ) is onto.

Being linear, Φ′y(ū, ȳ) is injective if and only if the kernel is trivial. An element h of the

kernel is characterized by solving the initial value problem

h′ +Bs(h) + F ′y(ū, ȳ)h = 0, h(0) = 0.

Again, the arguments above show that this problem has a unique solution which is obviously

equal to the zero function. Thus, h = 0, and the operator Φ′y(ū, ȳ) is injective.

As a result, Φ′y(ū, ȳ) is bijective and has the inverse Φ′y(ū, ȳ)−1 : Z × L2(Ω)s → W ,

mapping (z, z0) ∈ Z × L2(Ω)s to the solution h of the initial value problem (5.6).

The Implicit Function Theorem yields an open neighborhood Ṽ ⊆ V of ū and a twice

continuously differentiable map S̃ : Ṽ → Z × L2(Ω)s such that Φ(u, S̃(u)) = 0 for all u ∈ Ṽ .

However, this condition implies

S̃(u)′ +Bs(S̃(u)) + F (u, S̃(u))− f(u) = 0, S̃(u)(0)− y0 = 0

and thus S = S̃ in the neighborhood Ṽ according to Definition 5.2.2. As a consequence, S is

twice continuously differentiable at every u ∈ Ṽ . Since ū was chosen arbitrarily, this result

can be extended to every u ∈ V .

The proof of the Implicit Function Theorem [28, Equation (23), p. 153] reveals that the

derivative of S′(ū) ∈ L(U,W ) is equal to

S′(ū)v = −Φ′y(ū, ȳ)−1(Φ′u(ū, ȳ)v) = Φ′y(ū, ȳ)−1(−Φ′u(ū, ȳ)v) for all v ∈ U .

We calculate that Φ′u(ū, ȳ) ∈ L(U,Z × L2(Ω)s) is given by

Φ′u(ū, ȳ)v = (F ′u(ū, ȳ)v − f ′(u)v, 0) ∈ Z × L2(Ω)s for all v ∈ U .

The last identities in combination with Equation (5.6) yield the assertion of the theorem.

The proof of the Implicit Function Theorem [28, Equation (25), p. 154] also contains

a formula for the second derivative S′′(ū) ∈ L(U,L(U,W )). Provided that v, w ∈ U , this
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formula yields

S′′(ū)vw = Φ′y(ū, ȳ)−1
(
[−Φ′′yu(ū, ȳ)v − Φ′′yy(ū, ȳ)S′(ū)v]Φ′y(ū, ȳ)−1[−Φ′u(ū, ȳ)w]

)
+ Φ′y(ū, ȳ)−1

(
[−Φ′′uu(ū, ȳ)v − Φ′′uy(ū, ȳ)S′(ū)v]w

)
.

(5.7)

To transform this expression, we compute the second partial derivatives of Φ. Given v, w ∈ U
and y, z ∈W , these are equal to

Φ′′yy(ū, ȳ)yz = (F ′′yy(ū, ȳ)yz, 0);

Φ′′uu(ū, ȳ)vw = (F ′′uu(ū, ȳ)vw − f ′′(ū)vw, 0);

Φ′′yu(ū, ȳ)vy = (F ′′yu(ū, ȳ)vy, 0);

Φ′′uy(ū, ȳ)yv = (F ′′uy(ū, ȳ)yv, 0).

Our previous results show that the object Φ′y(ū, ȳ)−1[−Φ′u(ū, ȳ)w] at the end of the first line

of (5.7) equals S′(ū)w. Inserting the second derivatives of Φ into (5.7), we obtain

S′′(ū)vw = Φ′y(ū, ȳ)−1(−F ′′yu(ū, ȳ)vS′(ū)w − F ′′yy(ū, ȳ)S′(ū)vS′(ū)w

− (F ′′uu(ū, ȳ)vw − f ′′(ū)vw)− F ′′uy(ū, ȳ)S′(ū)vw, 0).

This is equivalent to the theorem’s last assertion.

We use a variant of the parameter-to-state map S to eliminate the variable y in the cost

function J .

Definition 5.2.4. Let J be defined as in Section 5.1 and S as in Definition 5.2.2. We refer

to the continuous embedding of W (0, T )s in L2(QT )s as EsW .

1. The variant of the parameter-to-state map S := EsW ◦ S : V → L2(QT )s is called

observation operator.

2. The function Jred : V → R, defined by Jred = J ◦ (IdU |V ,S), i.e.,

Jred(u) =
1

2
‖S(u)− yd‖2L2(QT )s +

γ

2
‖u− ud‖2U for every u ∈ V ,

is called reduced cost function.

The name “observation operator” is due to the fact that the range of S lies in the same

space as the observation yd.

Henceforth, we regard the minimization problem

min
u∈Uad

Jred(u) (5.8)

instead of (5.2). The following lemma ensures that (5.8) and (5.2) are equivalent.
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Lemma 5.2.5. The parameter ū ∈ Uad is optimal for (5.1) and (ud, yd) if and only if it

solves the minimization problem (5.8).

Proof. Let ū ∈ Uad. Definition 5.1.3 states that ū is optimal for (5.1) and (ud, yd) if and only

if there exists a state ȳ ∈W (0, T )s in such a way that (ū, ȳ) ∈ Xad and J(ū, ȳ) ≤ J(u, y) for

all (u, y) ∈ Xad. The definition of S yields the characterization of Xad

(ũ, ỹ) ∈ Xad ⇐⇒ ũ ∈ Uad and ỹ = S(ũ) for all (ũ, ỹ) ∈ V ×W.

In combination with the definition of Jred and the identity S(ū) = S(ū), the characterization

shows that the inequality above is equal to Jred(ū) = J(ū,S(ū)) ≤ J(u,S(u)) = Jred(u) for

all u ∈ Uad. This condition is fulfilled if and only if ū is a solution of (5.8).

Proposition 5.2.6. The reduced cost function Jred is twice continuously Fréchet differen-

tiable at every u ∈ V . The first derivative J ′red(u) ∈ L(U,R) is given by

J ′red(u)v = (S ′(u)v,S(u)− yd)L2(QT )s + γ(v, u− ud)U for all v ∈ U.

The second derivative J ′′red(u) ∈ L(U,L(U,R)) is defined by

J ′′red(u)vw = (S ′′(u)vw,S(u)−yd)L2(QT )s+(S ′(u)v,S ′(u)w)L2(QT )s+γ(v, w)U for all v, w ∈ U.

Proof. First of all, we ensure that the components of Jred are twice continuously Fréchet

differentiable. The observation operator S is the composition of the parameter-to-state map

S and the linear and bounded operator EsW . Thus, Theorem 5.2.3 and the chain rule yield

its twice continuous differentiability. Furthermore, the first derivative at u ∈ V is equal to

S ′(u) = EsW ◦ S′(u). An analogous result holds for S ′′(u). In particular, since EsW equals

the identity map, the values of S ′(u) and S ′′(u) are represented by the initial value problems

specified in Theorem 5.2.3.

Moreover, an easy computation shows that the squared norm ‖ . ‖2H of a Hilbert space H

is twice continuously Fréchet differentiable at every h ∈ H with ‖ . ‖2H
′
(h)v = 2(v, h)H and

‖ . ‖2H
′′
(h)vw = 2(v, w)H for all v, w ∈ H.

Since the reduced cost function Jred : V → R is equal to the composition

Jred =
1

2
‖( . )− yd‖2L2(QT )s ◦ S +

γ

2
‖( . )− ud‖2U ,

it is twice continuously Fréchet differentiable according to the chain rule. Considering the

derivative of the squared norm, we obtain that the first derivative J ′red(u) ∈ L(U,R) at u ∈ V
is given by

J ′red(u)v =

(
1

2
‖( . )− yd‖2L2(QT )s

)′
(S(u))[S ′(u)v] +

[(γ
2
‖( . )− ud‖2U

)′
(u)

]
v

= (( . ),S(u)− yd)L2(QT )s [S ′(u)v] + γ(( . ), u− ud)U [v]
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= (S ′(u)v,S(u)− yd)L2(QT )s + γ(v, u− ud)U

for all v ∈ U . To compute the second derivative, we define the auxiliary functions

f1 : V → L(U,L2(QT )s)× L2(QT )s, f1(u) := (S ′(u),S(u)− yd),

f2 : L(U,L2(QT )s)× L2(QT )s → L(U,R), f2(ϕ, y) := (ϕ, y)L2(QT )s .

Because of the differentiability of S and the product rule for the scalar product, the auxiliary

functions are continuously Fréchet differentiable at u ∈ V and (ϕ, y) ∈ L(U,L2(QT )s) ×
L2(QT )s, respectively, and the derivatives are given by

f ′1(u)v = (S ′′(u)v,S ′(u)v) for all v ∈ U,

f ′2(ϕ, y)(ψ, z) = (ϕ, z)L2(QT )s + (ψ, y)L2(QT )s for all (ψ, z) ∈ L(U,L2(QT )s)× L2(QT )s.

Thus, the first summand of the first derivative, J ′red1 := f2◦f1 : V → L(U,R), is continuously

Fréchet differentiable at u ∈ V and

J ′′red1(u)v = f ′2(f1(u))f ′1(u)v = (S ′(u),S ′(u)v)L2(QT )s + (S ′′(u)v,S(u)− yd)L2(QT )s

for all v ∈ U . The assertion about the second derivative of the second summand of Jred is a

direct consequence of the result about squared Hilbert space norms indicated above.

5.2.2 First and second order conditions for optimal parameters

On the basis of the equivalent formulation (5.8) of the parameter identification problem,

we can formulate conditions for locally optimal parameters. A parameter ū ∈ Uad is called

locally optimal for (5.1) and (ud, yd) if it is optimal in a neighborhood of ū, i.e., if a constant

ε > 0 exists such that

Jred(ū) ≤ Jred(u) for all u ∈ Uad with ‖u− ū‖U ≤ ε.

The admissible set Uad is convex by assumption, and Jred is twice continuously Fréchet

differentiable at every element of the superset V of Uad due to Proposition 5.2.6. Thus,

Theorem 4.23 of Tröltzsch [26] is applicable to the optimization problem (5.8). It states

that ū ∈ Uad is locally optimal for (5.1) and (ud, yd) if the first order condition (variational

inequality)

J ′red(ū)(u− ū) ≥ 0 for all u ∈ Uad (5.9)

and the second order condition

J ′′red(ū)u2 ≥ δ‖u‖2U for all u ∈ U (5.10)

with a constant δ > 0 are fulfilled. According to Tröltzsch [26, Lemma 2.21], the variational
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inequality (5.9) is a necessary condition for (globally) optimal parameters. This is already

true for a Gâteaux differentiable cost function Jred.

In the remainder of this section, we regard the optimality conditions (5.9) and (5.10)

more closely. Concerning (5.10), Proposition 5.2.6 yields

Result 5.2.7 (Second order condition). The second order condition (5.10) for a parameter

ū ∈ Uad has the form

(S ′′(ū)u2,S(ū)− yd)L2(QT )s + ‖S ′(ū)u‖2L2(QT )s + γ‖u‖2U ≥ δ‖u‖2U for all u ∈ U

with a constant δ > 0.

The first order condition

In addition to inserting the definition of Jred, we reformulate the variational inequality (5.9)

using the solution of an initial value problem (“state”) and the solution of a terminal value

problem (“adjoint state”). The set containing the variational inequality and the two problems

is called optimality system. The representation in the form of an optimality system has the

advantage that all information needed to compute the variational inequality is included.

To determine the optimality system, let ū ∈ Uad. According to Proposition 5.2.6, the

variational inequality (5.9) is equal to

(S ′(ū)(u− ū),S(ū)− yd)L2(QT )s + γ(u− ū, ū− ud)U ≥ 0 for all u ∈ Uad.

To combine both summands, we express the L2(QT )s-scalar product on the left-hand side

by means of the scalar product in the parameter space U . To this end, we use the “adjoint

state” p ∈W (0, T )s. The following considerations prepare the definition of the adjoint state

as the solution of a terminal value problem called adjoint equation. The actual definition is

given in Theorem 5.2.9.

Hypothesis 5.2.1 claims that the domain of definition of the reaction term’s partial deriva-

tive with respect to y can be extended to L2(0, T ;H1(Ω))s. Being more precise, it is assumed

that the operator

F̂ : L2(0, T ;H1(Ω))s → L2(0, T ;H1(Ω)∗)s with F̂ |Y = F ′y(ū, S(ū))

exists and that the elements F̂ (t) of the generating family satisfy a Lipschitz condition for

almost every t.

We proceed with the definition of the adjoint equation’s summands. For almost every

t, the generating operators Bs(t) and F̂ (t) : H1(Ω)s → (H1(Ω)∗)s are linear and bounded

according to Lemma 1.4.2 and Hypothesis 5.2.1, respectively. Therefore, the adjoint operators

B∗(t) and F ∗(t) exist (cf. Rudin [22, Theorem 4.10]). Since the space H1(Ω)s is reflexive,

the adjoints’ domain of definition (H1(Ω)∗∗)s can be identified with H1(Ω)s. Consequently,
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the adjoints are defined by

B∗(t) : H1(Ω)s → (H1(Ω)∗)s, 〈B∗(t)(p), h〉(H1(Ω)∗)s := 〈Bs(t)(h), p〉(H1(Ω)∗)s ,

F ∗(t) : H1(Ω)s → (H1(Ω)∗)s, 〈F ∗(t)(p), h〉(H1(Ω)∗)s := 〈F̂ (t)(h), p〉(H1(Ω)∗)s

for all p, h ∈ H1(Ω)s. The families (B∗(t))t and (F ∗(t))t generate operators B∗ and F ∗ from

L2(0, T ;H1(Ω))s to L2(0, T ;H1(Ω)∗)s which are well-defined according to Lemma 1.4.2 and

Hypothesis 5.2.1, respectively.

The families’ dependence on time, which has not been regarded so far, is represented by

the operators B̄∗ : [0, T ] → L(H1(Ω)s, (H1(Ω)∗)s) with B̄∗(t) := B∗(t) and F̄ ∗ defined in

an analogous way. We show that both B̄∗ and F̄ ∗ belong to L2(0, T ;L(H1(Ω)s, (H1(Ω)∗)s)).

First, Lemma 1.4.2(1) gives

‖B̄∗(t)‖L(H1(Ω)s,(H1(Ω)∗)s) ≤ CB.

Second, the definitions of F̄ ∗ and F ∗(t) as well as the Lipschitz condition for F̂ (t) yield

‖F̄ ∗(t)‖L(H1(Ω)s,(H1(Ω)∗)s) = sup
y,w

〈F ∗(t)(y), w〉(H1(Ω)∗)s

‖y‖H1(Ω)s‖w‖H1(Ω)s
= sup

y,w

〈F̂ (t)(w), y〉(H1(Ω)∗)s

‖y‖H1(Ω)s‖w‖H1(Ω)s
≤ L′.

The upper bounds are constants and therefore quadratically integrable with respect to time.

The operators B̄∗ and F̄ ∗ will appear in the proof of Theorem 5.2.9 below.

The following corollary of the existence theorem 2.2.1 will be used to prove the existence

of an adjoint state.

Corollary 5.2.8. All statements of Theorem 2.2.1 and Proposition 2.2.2 remain valid if Bs

is replaced by an operator that fulfills the conditions (1)-(3) and (5) of Lemma 1.4.2. The

same is true if the assumption (2) of Theorem 2.2.1 holds and the Lipschitz condition for

F1(t) is replaced by the following properties: Given an arbitrary ε > 0, there exists a positive

constant C1 in such a way that

|〈F1(z1(t))− F1(z2(t)), z(t)〉| ≤ C1‖z(t)‖2Ωs + ε‖z(t)‖2H1(Ω)s (5.11)

holds for all z1, z2 ∈ Y with z := z1 − z2. Furthermore, F1(t) : Λ→ (H1(Ω)∗)s is continuous

almost everywhere and bounded independently of t.

Proof. The first statement follows from the fact that the proofs of both Theorem 2.2.1 and

Proposition 2.2.2 use no other properties of Bs than (1)-(3) and (5) of Lemma 1.4.2.

To prove the second statement, we peruse both proofs and show that all conclusions

involving the Lipschitz condition for F1(t) are still valid under the alternative assumptions.

In the proof of Proposition 2.2.2, the Lipschitz condition appears twice, contributing

to Equation (2.5) on page 24 and to Equation (2.10) on page 26. Given the alternative

assumptions, Equation (2.5) holds because it is equal to (5.11). Equation (2.10) is valid since
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F1(t) is continuous and bounded independently of t.

We proceed with the proof of Theorem 2.2.1. In connection with the assumption (2), the

Lipschitz condition appears only once on page 28. The continuity of F1(t) which is proved

here is a part of the alternative assumptions.

In the next theorem, we define the adjoint equation and prove that it is solvable.

Theorem 5.2.9. The terminal value problem, called adjoint equation,

−p′ +B∗(p) + F ∗(p) = S(ū)− yd
p(T ) = 0

(5.12)

has a unique solution p ∈W (0, T )s, called adjoint state. Here, the right-hand side S(ū)−yd ∈
L2(QT )s is identified with an element of L2(0, T ;H1(Ω)∗)s in the sense of Lemma 1.4.1.

Proof. Instead of the terminal value problem (5.12), we solve an equivalent initial value prob-

lem obtained by a transformation with respect to time. We adapt this standard technique,

used, for example, by Tröltzsch [26, Lemma 3.17], to operator equations. To this end, we

define the bijective and continuously differentiable involution

Φ : [0, T ]→ [0, T ], Φ(t) = T − t.

Furthermore, we regard the families consisting of the members B̃∗(τ) := (B̄∗ ◦ Φ−1)(τ) and

F̃ ∗(τ) := (F̄ ∗ ◦Φ−1)(τ), respectively, for every τ ∈ [0, T ]. Since these families have the same

members as (B∗(t))t and (F ∗(t))t, they generate operators B̃∗ and F̃ ∗ from L2(0, T ;H1(Ω))s

to L2(0, T ;H1(Ω)∗)s. Similarly, we define r̃ := (S(ū)− yd) ◦ Φ−1 ∈ L2(0, T ;H1(Ω)∗)s.

By means of Corollary 5.2.8, applied to L2(0, T ;H1(Ω))s instead of Y and to F̃ ∗ instead

of F1, we show that the initial value problem

p̃′ + B̃∗(p̃) + F̃ ∗(p̃) = r̃ and p̃(0) = 0

has a unique solution p̃ ∈ W (0, T )s. As to the assumptions of Corollary 5.2.8, we observe

that the space W (0, T )s is continuously embedded in L2(0, T ;H1(Ω))s. The right-hand side

r̃ belongs to L2(0, T ;H1(Ω)∗)s. Since the adjoint operator B̃∗ is equal to Bs with inverted

arguments, the statements (1)-(3) and (5) of Lemma 1.4.2 hold for B̃∗ as well. The linear

operator F̃ ∗ fulfills F̃ ∗(0) = 0.

The assumption (2) of Theorem 2.2.1 additionally requires the weak continuity of F̃ ∗. Let

(yn)n be a sequence that converges weakly to y in L2(0, T ;H1(Ω))s. Using the definitions of

F̃ ∗(τ) and F̄ ∗ as well as integration by substitution, we obtain for all w ∈ L2(0, T ;H1(Ω))s

〈F̃ ∗(yn)− F̃ ∗(y), w〉L2(0,T ;H1(Ω)∗)s =

∫ T

0
〈F̄ ∗(Φ−1(τ))(yn(τ)− y(τ)), w(τ)〉(H1(Ω)∗)sdτ

=

∫ T

0
〈F̂ (t)(w(Φ(t))), yn(Φ(t))− y(Φ(t))〉(H1(Ω)∗)sdt
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= 〈F̂ (w ◦ Φ), yn ◦ Φ− y ◦ Φ〉L2(0,T ;H1(Ω)∗)s .

The last expression converges to zero since F̂ (w ◦Φ) ∈ L2(0, T ;H1(Ω)∗)s and yn ◦Φ ⇀ y ◦Φ

in L2(0, T ;H1(Ω))s because of integration by substitution. This proves F̃ ∗(yn) ⇀ F̃ ∗(y) in

L2(0, T ;H1(Ω)∗)s since L2(0, T ;H1(Ω))s is reflexive. Thus, F̃ ∗ is weakly continuous.

We proceed with the remaining assumptions of Corollary 5.2.8. First, we estimate using

the definition of F̃ ∗(τ) and the Lipschitz condition for F̂ (t)

‖F̃ ∗(τ)(w)‖(H1(Ω)∗)s = sup
a∈H1(Ω)s

〈F̂ (Φ−1(τ))(a), w〉(H1(Ω)∗)s

‖a‖H1(Ω)s
≤ L′‖w‖H1(Ω)s

for all w ∈ H1(Ω)s. This shows that F̃ ∗(τ) is bounded independently of τ . Being linear,

F̃ ∗(τ) is also continuous for almost every τ .

To verify (5.11), let ε > 0 and z1, z2 ∈ L2(0, T ;H1(Ω))s. We abbreviate z := z1 − z2.

Using the linearity of F̃ ∗(τ) as well as Cauchy’s inequality with ε in the final step, we obtain

|〈F̃ ∗(τ)(z1(τ))− F̃ ∗(τ)(z2(τ)), z(τ)〉(H1(Ω)∗)s | = |〈F̂ (Φ−1(τ))(z(τ)), z(τ)〉(H1(Ω)∗)s |

≤ L′‖z(τ)‖Ωs‖z(τ)‖H1(Ω)s ≤
L′ 2

4ε
‖z(τ)‖2Ωs + ε‖z(τ)‖2H1(Ω)s .

The constant C1 := L′ 2/(4ε) is positive.

Thus, Corollary 5.2.8, applied to F1 = F̃ ∗ and F2 = 0, yields a unique solution p̃ ∈
W (0, T )s of the auxiliary initial value problem.

We demonstrate that p := p̃ ◦ Φ ∈ W (0, T )s solves the reverse problem (5.12). The

definition immediately yields p(T ) = p̃(Φ(T )) = p̃(0) = 0. Moreover, the chain rule implies

p̃′(τ) = (p ◦ Φ−1)′(τ) = Φ−1′(τ)p′(Φ−1(τ)) = −p′(Φ−1(τ)).

Given w ∈ L2(0, T ;H1(Ω))s, the composition w̃ := w ◦ Φ−1 belongs to L2(0, T ;H1(Ω))s as

well. Since p̃ solves the forward equation, we obtain

0 =

∫ T

0
〈p̃′(τ) + B̃∗(p̃)(τ) + F̃ ∗(p̃)(τ)− r̃(τ), w̃(τ)〉(H1(Ω)∗)sdτ

=

∫ T

0
〈−p′(Φ−1(τ)) + B̄∗(Φ−1(τ))(p(Φ−1(τ))) + F̄ ∗(Φ−1(τ))(p(Φ−1(τ)))

− (S(ū)− yd)(Φ−1(τ)), w(Φ−1(τ))〉(H1(Ω)∗)sdτ

=

∫ T

0
〈−p′(t) + B̄∗(t)(p(t)) + F̄ ∗(t)(p(t))− (S(ū)− yd)(t), w(t)〉(H1(Ω)∗)sdt.

In the second line, we insert the result about p̃′(τ) and the definitions of B̃∗, F̃ ∗, r̃ and w̃. In

the last line, we use integration by substitution. According to the definitions of B̄∗ and F̄ ∗,

it is possible to omit the bars. Since w is arbitrary and the terminal value condition holds,
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p ∈W (0, T )s is a solution of (5.12).

In addition, the last computation reveals that every solution p of the adjoint equation is

associated with a solution p̃ := p◦Φ−1 of the auxiliary initial value problem. The uniqueness

of p̃ and the bijectivity of Φ yield the uniqueness of the adjoint state.

Let v ∈ U and ȳ := S(ū). We will use the adjoint state p to express (S ′(ū)v,S(ū) −
yd)L2(QT )s by means of the scalar product in U . According to Theorem 5.2.3 and the consider-

ations at the beginning of the proof of Proposition 5.2.6, the derivative h := S ′(ū)v ∈ L2(QT )s

actually belongs to W (0, T )s and solves

h′ +Bs(h) + F ′y(ū, ȳ)h = [f ′(ū)− F ′u(ū, ȳ)]v and h(0) = 0.

Both the adjoint state p and the derivative h are elements of W (0, T )s. Inserting p as a

test function into the equation for h and vice versa, we obtain∫ T

0
{〈h′(t), p(t)〉+ 〈Bs(h), p(t)〉+ 〈F ′y(ū, ȳ)h, p(t)〉}dt = 〈[f ′(ū)− F ′u(ū, ȳ)]v, p〉L2(0,T ;H1(Ω)∗)s ,∫ T

0
{〈−p′(t), h(t)〉+ 〈B∗(p), h(t)〉+ 〈F ∗(p), h(t)〉}dt = (S(ū)− yd, h)L2(QT )s .

For the sake of clarity, we omit the dependence on time in some summands.

We prove that the left-hand sides of both equations are equal. This is clear for the second

summands because of the definition of B∗(t). Moreover, the definition of F ∗(t), the property

of a generating family, and Hypothesis 5.2.1 yield

〈F ∗(t)(p(t)), h(t)〉 = 〈F̂ (t)(h(t)), p(t)〉 = 〈F̂ (h)(t), p(t)〉 = 〈F ′y(ū, ȳ)h(t), p(t)〉

since h ∈ W (0, T )s belongs to Y . Finally, we apply integration by parts in W (0, T )s (cf.

Theorem 1.1.2(3) with V = H1(Ω)s) to the first summand of the first equation and insert

the conditions h(0) = 0 and p(T ) = 0. We obtain∫ T

0
〈h′(t), p(t)〉dt =

∫ T

0
〈−p′(t), h(t)〉dt+ (h(T ), p(T ))Ωs − (h(0), p(0))Ωs =

∫ T

0
〈−p′(t), h(t)〉dt.

The equality of the left-hand sides of both equations implies the equality of the right-hand

sides, i.e.,

〈[f ′(ū)− F ′u(ū, ȳ)]v, p〉L2(0,T ;H1(Ω)∗)s = (S(ū)− yd, h)L2(QT )s .

In combination with the definition of h, this equality yields

(S ′(ū)v,S(ū)− yd)L2(QT )s = 〈[f ′(ū)− F ′u(ū, ȳ)]v, p〉L2(0,T ;H1(Ω)∗)s

= ([f ′(ū)− F ′u(ū, ȳ)]∗p, v)U .
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The last equality sign is due to the definition of [f ′(ū) − F ′u(ū, ȳ)]∗ : L2(0, T ;H1(Ω))s → U ,

the adjoint of the operator [f ′(ū)− F ′u(ū, ȳ)].

Using the last result, we transform the left-hand side of the variational inequality (5.9)

into

J ′red(ū)(u− ū) = (S ′(ū)(u− ū),S(ū)− yd)L2(QT )s + γ(u− ū, ū− ud)U
= ([f ′(ū)− F ′u(ū, ȳ)]∗p, u− ū)U + γ(ū− ud, u− ū)U

= ([f ′(ū)− F ′u(ū, ȳ)]∗p+ γ(ū− ud), u− ū)U

for every u ∈ Uad. Thus, the variational inequality is determined by the optimal parameter

ū, the optimal state ȳ = S(ū), and the adjoint state p. The optimality system contains

the variational inequality as well as the defining equations for ȳ and p. To eliminate the

parameter-to-state map from the formulation, we replace S(ū) on the right-hand side of the

adjoint equation by ȳ. This is possible because S(ū) and S(ū) are equal.

Result 5.2.10 (Optimality system). The first order necessary condition (5.9) for the pa-

rameter ū ∈ Uad corresponds to the variational inequality

([f ′(ū)− F ′u(ū, ȳ)]∗p+ γ(ū− ud), u− ū)U ≥ 0 for all u ∈ Uad

with ȳ, p ∈W (0, T )s solving the state equation and the adjoint equation

ȳ′ +Bs(ȳ) + F (ū, ȳ) = f(ū) −p′ +B∗(p) + F ∗(p) = ȳ − yd
ȳ(0) = y0 p(T ) = 0.

Special case: Constant parameters. Parameters in marine ecosystem models are often

assumed to be constant. This implies that the parameter space is equal to U = Rnp . In this

special case, [f ′(ū)−F ′u(ū, ȳ)]∗p can be identified with an element of Rnp . We will determine

this element below.

Let Z := L2(0, T ;H1(Ω)∗)s. First, the reaction term’s derivative F ′u(ū, ȳ) ∈ L(Rnp , Z)

can be identified with the Jacobian matrix

F ′u(ū, ȳ) =


∂u1F1(ū, ȳ) . . . ∂unp

F1(ū, ȳ)
...

. . .
...

∂u1Fs(ū, ȳ) . . . ∂unp
Fs(ū, ȳ)

 ∈ L2(0, T ;H1(Ω)∗)s×np .

Let v ∈ Rnp . The definition of the adjoint operator yields

(
F ′u(ū, ȳ)∗p, v

)
Rnp = 〈F ′u(ū, ȳ)v, p〉Z =

s∑
j=1

〈
np∑
i=1

∂uiFj(ū, ȳ)vi, pj〉L2(0,T ;H1(Ω)∗)
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=

np∑
i=1

vi

s∑
j=1

〈∂uiFj(ū, ȳ), pj〉L2(0,T ;H1(Ω)∗) =

np∑
i=1

vi〈F ′ui(ū, ȳ), p〉Z .

Here, the expression F ′ui(ū, ȳ) ∈ Z describes the i-th column of the matrix F ′u(ū, ȳ) for all

i ∈ {1, . . . , np}. The computation shows that F ′u(ū, ȳ)∗p ∈ Rnp can be identified with

F ′u(ū, ȳ)∗p =
(
〈F ′u1(ū, ȳ), p〉Z , . . . , 〈F ′unp

(ū, ȳ), p〉Z
)
.

Like F ′u(ū, ȳ), the derivative f ′(ū) belongs to L(Rnp , Z). Thus, it is represented by an

equivalent of the Jacobian matrix above with the entries ∂uifj(ū) instead of ∂uiFj(ū, ȳ) for

all i ∈ {1, . . . , np} and j ∈ {1, . . . , s}. The same arguments as above show that f ′(ū)∗p ∈ Rnp

can be identified with

f ′(ū)∗p =
(
〈f ′u1(ū), p〉Z , . . . , 〈f ′unp

(ū), p〉Z
)
.

The expression f ′ui(ū) describes the i-th column of the matrix f ′(ū) for all i ∈ {1, . . . , np}.

5.3 Optimality conditions in the periodic case

In this section, we investigate optimality conditions for the minimization problem (5.2) with

a periodic initial value condition, i.e., A(y) = y(T ) − y(0). In this case, it is not realistic to

assume unique solvability of the model equation because important model classes, such as

models of N -DOP type, lack this property. Thus, we cannot directly transfer the proceeding

of Section 5.2 based on Theorem 4.23 of Tröltzsch [26].

An alternative result about a first order necessary condition is given by Zowe and Kurcyusz

[31]. However, in the case of models of N -DOP type, this approach fails as well because

we are unable to prove the required regularity condition. This condition involves periodic

solutions of a variant of the model equation with general, inhomogeneous right-hand sides.

However, the available existence result Theorem 3.2.1 covers only right-hand sides fulfilling

the conservation of mass condition.

To formulate optimality conditions nonetheless, we regard an alternative optimization

problem with a transient instead of a periodic model equation. The newly introduced initial

value becomes an additional parameter which is considered optimal if its difference to the

terminal value of the model equation’s solution is minimal. Thus, optimal parameters are

associated with an approximately periodic solution of the model equation. The alternative

optimization problem can be treated with the methods of Section 5.2.

5.3.1 Formulation of the alternative parameter identification problem

In this section, we use the terminology of Section 5.1 and postulate Hypothesis 5.1.1.

The alternative optimization problem includes the side condition e(u, y) = 0 and y(0) =
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y0. The initial value y0 is regarded as an additional parameter in the Hilbert space L2(Ω)s.

The set of admissible initial values Iad ⊆ L2(Ω)s is assumed to be convex and bounded. In

case of models of N -DOP type, the boundedness is not a strong restriction as long as Iad is

chosen according to the upper bound given in Result 3.2.6 on page 46.

Considering the aim that an optimal initial value should be close to the terminal value

of the model equation’s solution, we define the alternative cost function J̃ : U × L2(Ω)s ×
L2(QT )s → R by

J̃(u, y0, y) :=
1

2
‖y − yd‖2L2(QT )s +

γ

2
‖u− ud‖2U +

ε

2
‖y(T )− y0‖2L2(Ω)s .

The coefficient ε > 0 controls the importance of the last summand in the optimization. With

the definition X̃ad := {(u, y0, y) ∈ Uad × Iad × W (0, T )s : e(u, y) = 0 and y(0) = y0}, we

obtain the alternative optimization problem

min
(u,y0,y)∈X̃ad

J̃(u, y0, y). (5.13)

A pair (ũ, ỹ0) ∈ Uad × Iad is called optimal for (ud, yd) and a periodic state if there exists an

element ỹ ∈W (0, T )s such that (ũ, ỹ0, ỹ) ∈ X̃ad solves the optimization problem (5.13). The

following theorem ensures that such optimal pairs exist.

Theorem 5.3.1. Let the assumptions of either Theorem 5.1.4 or Corollary 5.1.5 be valid,

modified in such a way that for every (u, y0) ∈ Uad × Iad there exists y ∈W (0, T )s such that

(u, y0, y) ∈ X̃ad. Furthermore, the set of admissible states Ỹad := {y ∈ W (0, T )s : ∃(u, y0) ∈
Uad × Iad : (u, y0, y) ∈ X̃ad} is assumed to be bounded in W (0, T )s. Hence, the minimization

problem (5.13) has a solution.

Proof. The space Ũ := U × L2(Ω)s is reflexive, and the set Ũad := Uad × Iad is bounded.

Thus, we can transfer the proofs of Theorem 5.1.4 and Corollary 5.1.5 almost completely to

the situation of problem (5.13) by simply replacing U by Ũ and Uad by Ũad. Only the weak

continuity of the initial value condition

A : L2(Ω)s ×W (0, T )s → L2(Ω)s, A(y0, y) = y(0)− y0

requires a special consideration because A depends on the new parameter y0. The proof of

Theorem 5.1.4 yields the weak continuity of the first summand of A. The second summand

is the identity map on L2(Ω)s which is obviously weakly continuous.

5.3.2 Parameter-to-state map and reduced cost function

As in Section 5.2, we prepare the formulation of optimality conditions by defining a “re-

duced” version of problem (5.13) only depending on (u, y0). To this end, we postulate Hy-

pothesis 5.2.1 adapted to the optimization problem (5.13) in such a way that the model
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equation (5.1) has a unique, transient solution y(u, y0) for all initial values y0 ∈ L2(Ω)s and

all parameters u ∈ V . This assumption enables the definition of the parameter-to-state map

S̃ : V × L2(Ω)s →W (0, T )s, S̃(u, y0) = y(u, y0).

Theorem 5.3.2. The parameter-to-state map S̃ is twice continuously Fréchet differentiable

at every u = (u, y0) ∈ V × L2(Ω)s. The first derivative S̃′(u) ∈ L(U × L2(Ω)s,W (0, T )s)

maps v = (v, v0) ∈ U × L2(Ω)s to the solution h := S̃′(u)v of

h′ +Bs(h) + F ′y(u, y)h = f ′(u)v − F ′u(u, y)v

h(0) = v0.

The second derivative S̃′′(u) ∈ L(U×L2(Ω)s,L(U×L2(Ω)s,W (0, T )s)) maps v = (v, v0),w =

(w,w0) ∈ U × L2(Ω)s to the solution a := S̃′′(u)vw of

a′ +Bs(a) + F ′y(u, y)a = f ′′(u)vw − F ′′yu(u, y)vS̃′(u)w − F ′′yy(u, y)S̃′(u)vS̃′(u)w

− F ′′uu(u, y)vw − F ′′uy(u, y)S̃′(u)vw

a(0) = 0.

In both initial value problems, we use the abbreviation y := S̃(u).

Proof. We proceed as in the proof of Theorem 5.2.3. First, we observe that the considerations

concerning solvability at its beginning hold for inhomogeneous initial values as well. Thus,

both initial value problems introduced in the theorem are uniquely solvable.

The auxiliary operator Φ is defined in the same way as in the proof of Theorem 5.2.3

with the exception that the domain of definition is extended to (V × L2(Ω)s) ×W (0, T )s.

Concerning the twice continuous Fréchet differentiability of Φ, we have to additionally regard

the operator (u, y0, y) 7→ −y0. Being linear and bounded, it is twice continuously Fréchet

differentiable. The first derivative is the identity map on L2(Ω)s with a minus sign, and the

second derivative is zero. Since the partial derivative with respect to y is independent of y0,

the extended domain of definition does not affect the result about its bijectivity obtained

in the proof of Theorem 5.2.3. Thus, the implicit function theorem yields that S̃ is twice

continuously Fréchet differentiable at every (u, y0) ∈ V × L2(Ω)s.

To determine the first derivative of S̃, we compute the partial derivative of Φ at u =

(u, y0) ∈ V × L2(Ω)s. Using the abbreviation y := S̃(u), we obtain

Φ′(u,y0)(u, y)v = (F ′u(u, y)v − f ′(u)v, v0) ∈ Z × L2(Ω)s for all v = (v, v0) ∈ U × L2(Ω)s.

In combination with the definition of Φ′y(u, y)−1 according to (5.6), this identity proves the

assertion about the first derivative. In addition, we observe that the first partial derivatives

of Φ are independent of y0. For this reason, the second partial derivatives are equal to the
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ones computed in the proof of Theorem 5.2.3 except for the notation (S̃ instead of S). This

proves the assertion about the second derivative.

We proceed with the definition of a reduced version of the optimization problem (5.13).

Since the solution y appears twice in the cost function J̃ , two different observation operators

are required to eliminate y.

Definition 5.3.3. Let J̃ and S̃ be defined as above. We refer to the continuous embedding of

W (0, T )s in L2(QT )s as EsW and to the continuous embedding of W (0, T )s in C([0, T ];L2(Ω))s

as EsC (cf. Theorem 1.1.2(1)). Let the operator ET : C([0, T ];L2(Ω))s → L2(Ω)s be given as

in the proof of Lemma 2.2.3.

1. We define the two observation operators

• S̃ := EsW ◦ S̃ : V × L2(Ω)s → L2(QT )s,

• g̃ := ET ◦ EsC ◦ S̃ : V × L2(Ω)s → L2(Ω)s, g̃(u, y0) = [(EsC ◦ S̃)(u, y0)](T ).

2. The function J̃red : V × L2(Ω)s → R, defined by J̃red = J̃ ◦ (IdU |V , g̃, S̃), i.e.,

J̃red(u, y0) =
1

2
‖S̃(u, y0)− yd‖2L2(QT )s +

γ

2
‖u− ud‖2U +

ε

2
‖g̃(u, y0)− y0‖2L2(Ω)s

for every (u, y0) ∈ V × L2(Ω)s, is called reduced cost function.

The proof of Lemma 5.2.5, slightly adapted to the notation of this section, ensures that

the minimization problem (5.13) is equivalent to the reduced problem

min
(u,y0)∈Uad×Iad

J̃red(u, y0). (5.14)

The last preparatory result of this section concerns the Fréchet differentiability of J̃red.

Proposition 5.3.4. The reduced cost function J̃red is twice continuously Fréchet differen-

tiable at every u = (u, y0) ∈ V × L2(Ω)s. The first derivative J̃ ′red(u) ∈ L(U × L2(Ω)s,R) is

given by

J̃ ′red(u)v = (S̃ ′(u)v, S̃(u)− yd)L2(QT )s + γ(v, u− ud)U + ε(g̃′(u)v − v0, g̃(u)− y0)L2(Ω)s

and the second derivative J̃ ′′red(u) ∈ L(U × L2(Ω)s,L(U × L2(Ω)s,R)) by

J̃ ′′red(u)vw = (S̃ ′′(u)vw, S̃(u)− yd)L2(QT )s + (S̃ ′(u)v, S̃ ′(u)w)L2(QT )s + γ(v, w)U

+ ε(g̃′′(u)vw, g̃(u)− y0)L2(Ω)s + ε(g̃′(u)w − w0, g̃
′(u)v)L2(Ω)s

for all v = (v, v0),w = (w,w0) ∈ U × L2(Ω)s.
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Proof. Both S̃ and g̃ are compositions of the twice continuously Fréchet differentiable param-

eter-to-state map S̃ and operators which are linear and bounded. Thus, the observation oper-

ators are twice continuously Fréchet differentiable. The same holds for J̃red : V ×L2(Ω)s → R
because of the chain rule.

We determine the derivatives of J̃red. The first two summands differ from Jred only in

the domain of definition (U × L2(Ω)s instead of U). Thus, the derivatives can be computed

as in Proposition 5.2.6.

Let u = (u, y0) ∈ V × L2(Ω)s and v = (v, v0),w = (w,w0) ∈ U × L2(Ω)s. The third

summand of J̃red is given by the composition

J̃red3 :=
ε

2
‖ . ‖2L2(Ω)s ◦ (g̃ − IdL2(Ω)s) : V × L2(Ω)s → R.

To differentiate the functional J̃red3, we modify the arguments concerning the first component

of Jred in the proof of Proposition 5.2.6. According to the chain rule, the first derivative

J̃ ′red3(u) ∈ L(U × L2(Ω)s,R) is given by

J̃ ′red3(u)v =
(ε

2
‖ . ‖2L2(Ω)s

)′
(g̃(u)− y0)[g̃′(u)v − v0] = ε(g̃′(u)v − v0, g̃(u)− y0)L2(Ω)s .

To compute the second derivative of J̃red3, we define the auxiliary functions

f1 : V × L2(Ω)s → L(U × L2(Ω)s, L2(Ω)s)× L2(Ω)s, f1(x) := (g̃′(x)− IdL2(Ω)s , g̃(x)− y0),

f2 : L(U × L2(Ω)s, L2(Ω)s)× L2(Ω)s → L(U × L2(Ω)s,R), f2(ϕ, y) := ε(ϕ, y)L2(Ω)s .

The second auxiliary function is continuously Fréchet differentiable according to the product

rule. The derivative of the first auxiliary function is f ′1(u)v = (g̃′′(u)v, g̃′(u)v). The chain

rule yields that the first derivative J̃ ′red3 = f2 ◦ f1 : V × L2(Ω)s → L(U × L2(Ω)s,R) is

continuously Fréchet differentiable with

J̃ ′′red3(u)v = ε(g̃′(u)− IdL2(Ω)s , g̃
′(u)v)L2(Ω)s + ε(g̃′′(u)v, g̃(u)− y0)L2(Ω)s .

Thus, the assertions of the theorem are proved.

Remark 5.3.5. Let u ∈ V ×L2(Ω)s. The operators EsW , ET , and EsC are linear and bounded.

Thus,

S̃ ′(u) = EsW ◦ S̃′(u) ∈ L(U × L2(Ω)s, L2(QT )s),

g̃′(u) = ET ◦ EsC ◦ S̃′(u) ∈ L(U × L2(Ω)s, L2(Ω)s).

Let additionally v ∈ U×L2(Ω)s. The second line indicates that g̃′(u)v is the terminal value of

S̃′(u)v. Furthermore, the functions S̃ ′(u)v and S̃′(u)v are equal because EsW is the identity

map. Comparable results hold for the second derivatives.
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5.3.3 Optimality conditions

Let u = (ũ, ỹ0) ∈ Uad × Iad. The pair u is called locally optimal for (ud, yd) and a periodic

state if a constant ε > 0 exists such that

J̃red(u) ≤ J̃red(v) for all v = (v, v0) ∈ Uad × Iad with ‖v − ũ‖2U + ‖v0 − ỹ0‖2L2(Ω)s ≤ ε
2.

Proposition 5.3.4 shows that J̃red, defined on the superset V × L2(Ω)s of the convex set

Uad × Iad, is twice continuously Fréchet differentiable. Thus, Theorem 4.23 of Tröltzsch [26]

is applicable to the optimization problem (5.14). We obtain that the first and second order

optimality conditions

J̃ ′red(u)(v − u) ≥ 0 for all v ∈ Uad × Iad, (5.15)

J̃ ′′red(u)v2 ≥ δ
(
‖v‖2U + ‖v0‖2L2(Ω)s

)
for all v = (v, v0) ∈ U × L2(Ω)s (5.16)

with a constant δ > 0 imply local optimality of u.

Proposition 5.3.4 yields

Result 5.3.6 (Second order condition). The second order condition (5.16) is equal to

(S̃ ′′(u)v2, S̃(u)− yd)L2(QT )s + ‖S̃ ′(u)v‖2L2(QT )s + γ‖v‖2U + ε(g̃′′(u)v2, g̃(u)− ỹ0)L2(Ω)s

+ ε(g̃′(u)v − v0, g̃
′(u)v)L2(Ω)s ≥ δ

(
‖v‖2U + ‖v0‖2L2(Ω)s

)
for all v = (v, v0) ∈ U × L2(Ω)s with a constant δ > 0.

The first order condition

The aim of this section is the derivation of an optimality system containing the variational

inequality (5.15). Let w := (w,w0) ∈ U × L2(Ω)s. As in Section 5.2.2, we express the

derivative on the left-hand side of the variational inequality

J̃ ′red(u)w = (S̃ ′(u)w, S̃(u)− yd)L2(QT )s + γ(w, ũ− ud)U + ε(g̃′(u)w − w0, g̃(u)− ỹ0)L2(Ω)s

(cf. Proposition 5.3.4) by means of the scalar product in U × L2(Ω)s and a suitable adjoint

state. Let B∗ and F ∗ be given as in Section 5.2.2 with F̂ being the extension of F ′y(ũ, S̃(u))

instead of F ′y(ū, S(ū)). We define the adjoint equation

−p̃′ +B∗(p̃) + F ∗(p̃) = S̃(u)− yd
p̃(T ) = ε(g̃(u)− ỹ0).

(5.17)

Equation (5.17) differs from the transient adjoint equation (5.12) only in the inhomogeneous

terminal value. The transient adjoint equation has a unique solution due to Theorem 5.2.9.

However, this theorem, based on the general existence result in Theorem 2.2.1, holds for
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arbitrary terminal values in L2(Ω)s. Thus, it yields also a unique solution p̃ of (5.17).

As in the transient case, we compare the equations for h := S̃′(u)w and p̃. For the sake

of simplicity, we henceforth abbreviate the optimal state by ỹ := S̃(u). Inserting p̃ as a test

function into the equation for h and vice versa, we obtain∫ T

0
{〈h′(t), p̃(t)〉+ 〈Bs(h), p̃(t)〉+ 〈F ′y(ũ, ỹ)h, p̃(t)〉}dt = 〈[f ′(ũ)− F ′u(ũ, ỹ)]w, p̃〉L2(0,T ;H1(Ω)∗)s ,∫ T

0
{〈−p̃′(t), h(t)〉+ 〈B∗(p̃), h(t)〉+ 〈F ∗(p̃), h(t)〉}dt = (S̃(u)− yd, h)L2(QT )s ,

leaving out the argument t in some summands. In addition, the initial and terminal value

conditions h(0) = w0 and p̃(T ) = ε(g̃(u)− ỹ0) hold.

As in Section 5.2.2, the second and the third summand of both equations coincide.

The first summand of the first equation is transformed by means of integration by parts

in W (0, T )s and the initial and terminal value conditions. Hence,∫ T

0
〈h′(t), p̃(t)〉dt =

∫ T

0
〈−p̃′(t), h(t)〉dt+ (h(T ), p̃(T ))Ωs − (h(0), p̃(0))Ωs

=

∫ T

0
〈−p̃′(t), h(t)〉dt+ (h(T ), ε(g̃(u)− ỹ0))Ωs − (w0, p̃(0))Ωs .

Therefore, the difference of the equations is equal to

(h(T ), ε(g̃(u)− ỹ0))Ωs − (w0, p̃(0))Ωs

= 〈[f ′(ũ)− F ′u(ũ, ỹ)]w, p̃〉L2(0,T ;H1(Ω)∗)s − (S̃(u)− yd, h)L2(QT )s .

According to Remark 5.3.5, h(T ) can be replaced by g̃′(u)w and h by S̃ ′(u)w. Additionally

rearranging the summands, we conclude from the last identity

(S̃(u)− yd, S̃ ′(u)w)L2(QT )s + (g̃′(u)w, ε(g̃(u)− ỹ0))Ωs

= 〈[f ′(ũ)− F ′u(ũ, ỹ)]w, p̃〉L2(0,T ;H1(Ω)∗)s + (w0, p̃(0))Ωs

= ([f ′(ũ)− F ′u(ũ, ỹ)]∗p̃, w)U + (p̃(0), w0)Ωs .

The first line is equal to J̃ ′red(u)w + (ε(g̃(u)− ỹ0), w0)Ωs − γ(ũ− ud, w)U . Thus, we arrive at

the desired expression

J̃ ′red(u)w = ([f ′(ũ)− F ′u(ũ, ỹ)]∗p̃+ γ(ũ− ud), w)U + (p̃(0)− ε(g̃(u)− ỹ0), w0)L2(Ω)s .

We observe that ε(g̃(u)− ỹ0) could be replaced by p̃(T ).

As in Section 5.2.2, the results are summarized in an optimality system. Again, we replace

the auxiliary operators S̃ and g̃ using the optimal state ỹ.

Result 5.3.7 (Optimality system). The necessary optimality condition (5.15) for the pair
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(ũ, ỹ0) ∈ Uad × Iad corresponds to the variational inequality

([f ′(ũ)− F ′u(ũ, ỹ)]∗p̃+ γ(ũ− ud), v − ũ)U + (p̃(0)− ε(ỹ(T )− ỹ0), v0 − ỹ0)L2(Ω)s ≥ 0

for all (v, v0) ∈ Uad × Iad with ỹ, p̃ ∈ W (0, T )s solving the state equation and the adjoint

equation

ỹ′ +Bs(ỹ) + F (ũ, ỹ) = f(ũ) −p̃′ +B∗(p̃) + F ∗(p̃) = ỹ − yd
ỹ(0) = ỹ0 p̃(T ) = ε(ỹ(T )− ỹ0).

5.4 Application to the PO4-DOP model

In this section, we apply the results about parameter identification to the PO4-DOP model

(cf. Sections 4.2.2 and 4.2.3). The parameters in question are listed in Table 4.2.1 at the end

of Section 4.2.2. First, we ensure that the basic assumptions of Hypotheses 1.2.1 and 5.1.1

are valid.

Concerning Hypothesis 1.2.1, we define the domain of definition Y := L3(QT )2 in which

W (0, T )2 is even compactly embedded (cf. Růžička [19, Corollary 3.98]). This space is

convenient in connection with derivatives of superposition operators. The spaces Y and

Λ := L3(Ω)2 fulfill the property (1.1). The model contains np := 7 real parameters. Therefore,

the parameter spaces are Ui := R for all i ∈ {1, . . . , 7} and U = R7. The last column of

Table 4.2.1 suggests the definition V := R6
>0×(0, 1) ⊆ U . Sections 4.2.2 and 4.2.3 reveal that

the restrictions of the PO4-DOP model’s reaction terms to V × Y fulfill the assumptions of

Hypothesis 1.2.1.

Concerning Hypothesis 5.1.1, we define the admissible set Uad by box constraints. Let

ua, ub ∈ R7 with 0 < ua,i ≤ ub,i for each i ∈ {1, . . . , 7} and ub,7 < 1. Then, the admissible

set, defined by

Uad := {u ∈ R7 : ua,i ≤ ui ≤ ub,i for all i ∈ {1, . . . , 7}},

is a nonempty, closed, bounded, and convex subset of V . This kind of admissible set is used,

for instance, by Prieß et al. [17, Section 5] for the identification of the PO4-DOP model’s

seven parameters.

Furthermore, we consider the prescribed data yd ∈ L2(QT )2 and the target parameter

ud ∈ Uad. Let γ ≥ 0 and ε > 0 be the controlling coefficients in the cost function. The initial

value of a transient solution is denoted by y0 ∈ L2(Ω)2, and the initial value condition is

abbreviated by A(y) ∈ {y(0)− y0, y(0)− y(T )} for all y ∈W (0, T )2.
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5.4.1 Existence of optimal parameters

Let y0 ∈ L2(Ω)2 and M ∈ R. We apply Corollary 5.1.5(3) to prove the existence of optimal

parameters for the PO4-DOP model and (ud, yd). The corollary is applicable because U

is finite-dimensional and W (0, T )2 is compactly embedded in L3(QT )2. In the following

paragraphs, we verify the remaining assumptions of Theorem 5.1.4 and Corollary 5.1.5(3).

Reflexivity of U and solvability. The space U is a Hilbert space and therefore reflexive.

Furthermore, Sections 4.4.1 and 4.4.2 ensure that the PO4-DOP model has a transient

solution with the initial value y0 and a periodic solution with mass M for each fixed parameter

vector u ∈ Uad.

Boundedness of Yad. To show that the set of admissible states Yad = {y ∈ W (0, T )2 :

∃u ∈ Uad : e(u, y) = 0 and A(y) = 0} is bounded, we choose y ∈ Yad. The set is nonempty

because of the solvability proved in the last paragraph. The solution y of the PO4-DOP

model is associated with a parameter u = (λ, α,KP ,KI ,KW , β, ν) ∈ Uad and fulfills either

the transient or the periodic initial value condition.

In the transient case, Proposition 2.2.2, applied to F2 = f = 0, yields the estimate

‖y‖W (0,T )2 ≤ C
√

1 + C̃2‖y0‖L2(Ω)2 . (5.18)

The initial value is independent of the parameters. The proof of Proposition 2.2.2 reveals

that C and C̃ continuously depend on the Lipschitz constant L1 and thus on the Lipschitz

constants of d1, d2, and b1, computed in Section 4.4.1. Therefore, we have to check that these

constants, whose squares are equal to

2

(
λ2 +

2α2

K2
P

(
1 +

(
hmax

h̄e
− 1

)
β2(1− ν)2

))
, 2

(
λ2 +

2α2ν2

K2
P

)
, and (1− ν)2h̄e

2α2

K2
P

,

are bounded independently of u. All Lipschitz constants are nonnegative. Furthermore, the

parameters λ, β, ν, α are each bounded from above by the associated component of ub, the

difference 1 − ν is strictly less than 1, and the parameter KP is bounded from below by

the positive lower bound ua3. Thus, the box constraints provide upper bounds for the three

Lipschitz constants.

In the periodic case, Result 3.2.6 states that the periodic solution y is bounded by a real

number C4. The computations preceding Result 3.2.6 reveal that C4 continuously depends

on the constant C̃ from Proposition 2.2.2 and the upper bound Mrea introduced in (3.1). All

other components of C4 are independent of the parameters. Thus, the proof is complete if

C̃ and Mrea are bounded independently of the parameters. Concerning C̃, we checked this

above. In Section 4.4.2, we showed that Mrea is the product of MGEF = αmax{
√
|Ω1|, h̄e(1−

ν)
√
|Ω′|, (1−ν)β

√
|Ω2|} and a positive real number. The upper bound MGEF is nonnegative

and continuously depends on α, ν, and β. The parameters α and β are bounded from above
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by the corresponding components of ub, and 1− ν is bounded by 1.

Demicontinuity. The right-hand sides of the PO4-DOP model are zero and therefore

demicontinuous. According to Section 4.4.1, the reaction terms are Lipschitz continuous for

almost every t, and the Lipschitz constants are independent of t. Integrating the results of

Section 4.4.1 with respect to t, we obtain the Lipschitz continuity and thus the continuity of

d : L2(QT )2 → L2(QT )2 and b : L2(QT )2 → L2(Σ)2. The reaction terms remain continuous

if the domain of definition is restricted to L3(QT )2 since this space is continuously embedded

in L2(QT )2. Continuity implies demicontinuity.

5.4.2 Optimality conditions for the transient PO4-DOP model

This section is dedicated to the question if the optimality conditions (5.9) and (5.10) hold in

connection with locally optimal parameters of the transient PO4-DOP model. Section 5.2

reveals that this is the case if U is a Hilbert space and Hypothesis 5.2.1 holds.

The finite-dimensional parameter space U = R7 is a Hilbert space. Moreover, Hypoth-

esis 5.1.1 is valid (see above), and the PO4-DOP model has a transient solution for each

u ∈ V = R6
>0 × (0, 1) (see Section 4.4.1).

The remaining claims of Hypothesis 5.2.1 include the twice continuous Fréchet differen-

tiability of the reaction terms. According to Lemma 4.2.1, a saturation function is not twice

continuously differentiable. For this reason, the uptake operator G, defined by means of

the saturation function (4.2), cannot be twice continuously Fréchet differentiable either. We

conclude that the assumptions of Hypothesis 5.2.1 are not fulfilled. However, it is possible to

prove the continuous Fréchet differentiability of the reaction terms. In combination with the

remaining assumptions of Hypothesis 5.2.1, this property ensures that an optimal parameter

fulfills the first order condition (5.9) in the form of an optimality system.

In the first of the following two paragraphs, we prove the claims of Hypothesis 5.2.1

about the partial derivative with respect to y. The second one is dedicated to the continuous

Fréchet differentiability. In both cases, we investigate the reaction terms d : Y → L2(QT )2

and b : Y → L2(Σ)2 instead of the corresponding operator F . According to Lemma 1.4.1,

the operator is defined by a continuous embedding which does not affect differentiability.

Partial derivative with respect to y. In this paragraph, we investigate the reaction

terms’ partial derivative with respect to y concerning existence, continuity, and Lipschitz

condition. We proceed gradually starting with the uptake operator G : L3(QT ) → L2(QT )

which is a superposition operator based on the real function in (4.2). Henceforth, we refer

to the real function as G in order to express the difference between the function and the

operator.

According to Appell and Zabrejko [1, Theorem 3.13], the superposition operator G :

L3(QT )→ L2(QT ) is differentiable if G is differentiable with respect to y and if the derivative

defines a superposition operator from L3(QT ) to L6(QT ).
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Lemma 4.2.1 states that G is continuously differentiable with respect to y. The proof of

this lemma reveals that the derivative is equal to

G′y : R× Ω× [0, T ]→ R, G′y(y1, x, t) =
αKP

(|y1(x, t)|+KP )2

J(x, t)

|J(x, t)|+KI
.

We abbreviate insolation by J(x, t) := I(x′, t)e−x3KW for all (x, t) ∈ QT . Since both fractions

are bounded independently of (y1, x, t), the real function G′y defines a continuous superposition

operator from L3(QT ) to L6(QT ). As a result, the operator G : L3(QT )→ L2(QT ) is Fréchet

differentiable, and the derivative G′(y1) ∈ L(L3(QT ), L2(QT )) at y1 ∈ L3(QT ) is given by

G′(y1)v1 :=
αKP

(|y1|+KP )2

J

|J |+KI
v1 for all v1 ∈ L3(QT ).

The product of the fractions and v1 still belongs to L2(QT ) if v1 ∈ L2(0, T ;H1(Ω)). In addi-

tion, the extension of G′(y1) to L2(0, T ;H1(Ω)) fulfills the desired Lipschitz condition. Both

statements are due to the fractions’ boundedness by the constant α/KP which is independent

of t. Furthermore, G′ depends continuously on y1.

The reaction terms’ components E and F̄ consist of an integral with respect to the third

spatial variable over G, multiplied by an essentially bounded function with a suitable domain

of definition. The following lemma is concerned with reaction terms of this type.

Lemma 5.4.1. Let Ψ ∈ {QT ,Σ}. Provided that g ∈ L∞(Ψ), we define the nonlocal operator

Fg : L3(QT )→ L2(Ψ) at y1 ∈ L3(QT ) by

Fg(y1)(x, t) = g(x, t)

∫ he(x′)

0
G(y1)(x′, x̃3, t)dx̃3 for almost all (x, t) = (x′, x3, t) ∈ Ψ.

The operator Fg is continuously Fréchet differentiable at y1 ∈ L3(QT ), and the derivative,

evaluated at v1 ∈ L3(QT ), is equal to

[F ′g(y1)v1](x, t) = g(x, t)

∫ he(x′)

0
[G′(y1)v1](x′, x̃3, t)dx̃3 for almost all (x, t) = (x′, x3, t) ∈ Ψ.

The expression defining F ′g(y1)v1 still belongs to L2(Ψ) if v1 ∈ L2(0, T ;H1(Ω)). The extension

of F ′g(y1) to L2(0, T ;H1(Ω)) fulfills the desired Lipschitz condition.

Proof. The operator Fg is well-defined since the integrand is bounded independently of y1,

x′, x̃3, and t according to Lemma 4.2.1. Concerning differentiability, we consider the case

Ψ = Σ first and point out the difference to the case Ψ = QT afterwards. Let y1, v1 ∈ L3(QT ).

Temporarily, we refer to the candidate for F ′g(y1) as A. Using the essential boundedness of g

and he, Hölder’s inequality, the definition of Ω1, and Ω1 × [0, T ] ⊆ QT , we obtain

‖Fg(y1 + v1)− Fg(y1)−Av1‖2Σ ≤ ‖g‖2
∫ T

0

∫
Ω′

(∫ he

0
[G(y1 + v1)−G(y1)−G′(y1)v1]dx̃3

)2

dx′dt
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≤ ‖g‖2
∫ T

0

∫
Ω′
h̄e

∫ he

0
[G(y1 + v1)−G(y1)−G′(y1)v1]2dx̃3dx

′dt

≤ ‖g‖2h̄e‖G(y1 + v1)−G(y1)−G′(y1)v1‖2L2(QT ).

Here, ‖g‖ stands for the norm of g in L∞(Ψ). In case Ψ = QT , we obtain the same estimate,

multiplied by the additional coefficient hmax. This is due to the fact that QT requires an

additional integral over [0, h(x′)].

The last expression divided by ‖v1‖L3(QT ) converges to zero for ‖v1‖L3(QT ) → 0 since

G : L3(QT ) → L2(QT ) is Fréchet differentiable. Thus, Fd is Fréchet differentiable as well.

The Fréchet derivative A is continuous since G′ depends continuously on y1.

Since the fractions are bounded by a constant and g and he are essentially bounded, the

expression

g

∫ he

0

αKP

(|y1(x3)|+KP )2

J(x3)

|J(x3)|+KI
v1(x3)dx3

belongs to L2(Ψ) for each v1 ∈ L2(0, T ;H1(Ω)). The extension of F ′g(y1) to L2(0, T ;H1(Ω))

fulfills the required Lipschitz condition. To justify this, we realize that the extension has the

same structure as F̄ defined in Section 4.2.2. In Section 4.4.1, the Lipschitz condition for F̄ is

reduced to the Lipschitz continuity of G. In the same way, we deduce the Lipschitz condition

for the extension of F ′g(y1) from the Lipschitz continuity of the extension of G′(y1).

The reaction terms d and b of the PO4-DOP model are composed of G, F̄ , and E as

well as λId. The identity map Id from L3(QT ) to L2(QT ) is linear and bounded and thus

continuously Fréchet differentiable. The derivative at y1 ∈ L3(QT ) is equal to the identity

map. Its extension to L2(0, T ;H1(Ω)) is continuous and fulfills the Lipschitz condition.

The previous lemma implies that the operators F̄ : L3(QT ) → L2(0, T ;L2(Ω2)) and

E : L3(QT ) → L2(0, T ;L2(Ω′)) are continuously Fréchet differentiable. Furthermore, the

derivatives have a linear extension to L2(0, T ;H1(Ω)) and fulfill the required Lipschitz condi-

tion. We proved above that all these properties hold for G as well. Thus, the reaction terms

fulfill the desired properties concerning the partial derivative with respect to y.

Fréchet differentiability. This paragraph is dedicated to the continuous Fréchet differ-

entiability of both the right-hand sides and the reaction terms of the PO4-DOP model.

The right-hand sides are equal to zero and thus continuously Fréchet differentiable. To

obtain a comparable result for the reaction terms, let (ũ, ỹ) ∈ V × Y . According to Proposi-

tion 4.14c) of Zeidler [28], it suffices to prove that all partial derivatives at (ũ, ỹ) are existent

and continuous. The last paragraph shows that this is true for the partial derivative with

respect to y. For this reason, the current paragraph is concerned with the continuous differ-

entiability with respect to each of the seven parameters.

Let i ∈ {1, . . . , 7}. Since the parameters are real, the partial Fréchet derivative of d at

ũi can be identified with an element of L2(QT )2. To determine this element, we consider

the real function di,x,t : ui 7→ d(ũ1, . . . , ui, . . . , ũ7, ỹ)(x, t) for a fixed (x, t) ∈ QT . If di,x,t is
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continuously differentiable at ũi, the derivative enables the definition D̃ : (x, t) 7→ d′i,x,t(ũi).

This function equals the partial derivative of d at ũi if it belongs to L2(QT )2 and if the

residual
1

|h|
‖d(ũ1, . . . , ũi + h, . . . , ũ7, ỹ)− d(ũ, ỹ)− D̃h‖L2(QT )2

converges to zero for |h| → 0. An analogous consideration holds for b.

We prove the existence of D̃ and the convergence of the residual for i = 1 and i = 3. The

other parameters can be treated similarly. In both cases, we consider only a relevant part δ

of d instead of the whole reaction term.

First, we regard the remineralization rate ũ1 = λ̃ and differentiate δ : R>0 → L2(QT ),

λ 7→ λỹ2. We immediately obtain the candidate D̃ = ỹ2 ∈ L2(QT ) for the Fréchet derivative.

The expression ‖(λ̃+ h)ỹ2− λ̃ỹ2− hỹ2‖L2(QT ) is equal to zero for every h. As a consequence,

the residual converges to zero for |h| → 0. The fact that the residual actually vanishes for

every h is due to the linear dependence on λ. Therefore, similar considerations are valid for

the derivatives with respect to ũ2 = α̃ and ũ7 = ν̃.

Second, we consider the half saturation rate ũ3 = K̃P and differentiate δ : R>0 → L2(QT ),

KP 7→ (α̃ỹ1)/(|ỹ1| + KP ). The quotient rule yields the candidate D̃ = −(α̃ỹ1)/(|ỹ1|+ K̃P )2

which belongs to L2(QT ). The continuous differentiability of δ3,x,t at ũ3 = K̃P implies that

the residual in question converges almost everywhere in QT . We additionally show that it is

dominated by a quadratically integrable function. Hence, Lebesgue’s dominated convergence

theorem yields the desired convergence in L2(QT ). Abbreviating ỹ1(x, t) by ỹ1, we calculate

1

|h|

∣∣∣∣ α̃ỹ1

|ỹ1|+ K̃P + h
− α̃ỹ1

|ỹ1|+ K̃P

+
α̃ỹ1h

(|ỹ1|+ K̃P )2

∣∣∣∣
=
|α̃ỹ1|
|h|
|(|ỹ1|+ K̃P )2 − (|ỹ1|+ K̃P )(|ỹ1|+ K̃P + h) + h(|ỹ1|+ K̃P + h)|

(|ỹ1|+ K̃P )2(|ỹ1|+ K̃P + h)

=
|α̃ỹ1|
|h|
| − (|ỹ1|+ K̃P )h+ h(|ỹ1|+ K̃P + h)|

(|ỹ1|+ K̃P )2(|ỹ1|+ K̃P + h)
=

|α̃ỹ1h|
(|ỹ1|+ K̃P )2(|ỹ1|+ K̃P + h)

.

Choosing |h| ≤ K̃P /2, we estimate

(|ỹ1|+ K̃P + h)(|ỹ1|+ K̃P )2 ≥ (|ỹ1|+ K̃P )3 − |h|(|ỹ1|+ K̃P )2 ≥ 1

2
(|ỹ1|+ K̃P )3 ≥ 1

2
K̃3
P .

Thus, the residual is dominated by α|ỹ1(x, t)|/K̃2
P almost everywhere for all sufficiently small

h. The upper bound belongs to L2(QT ).

The differentiability with respect to the half saturation constant ũ4 = K̃I is shown analo-

gously. The remaining parameters ũ6 = β̃ and ũ5 = K̃W are treated with similar arguments.

5.4.3 Optimality conditions for the periodic PO4-DOP model

This section is concerned with the periodic PO4-DOP model. We prove that optimal pa-

rameters of the associated transient auxiliary problem, introduced in Section 5.3, fulfill the
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variational inequality (5.15) in the form of an optimality system. As in the last section,

we cannot expect the validity of the second order condition because the PO4-DOP model’s

reaction terms are not twice continuously Fréchet differentiable.

Most of the required assumptions have been established before. At the beginning of

Section 5.4, we deal with Hypothesis 5.1.1 and define the Hilbert space U = R7 as well as the

domain of definition V = R6
>0× (0, 1). According to the last section, the PO4-DOP model’s

reaction terms are continuously Fréchet differentiable, and all claims of the original version

of Hypothesis 5.2.1 (except for twice continuous Fréchet differentiability) hold. In addition,

Section 4.4.1 shows that the PO4-DOP model is uniquely solvable for all parameters u ∈ V
and all initial values in L2(Ω)2.

Finally, we deal with the assumptions of Theorem 5.3.1. In Section 5.4.1, we prove

that the PO4-DOP model fulfills the assumptions of Corollary 5.1.5(3). Additionally, the

solvability of the model equation for every (u, y0) ∈ Uad × Iad and the boundedness of the

set Ỹad := {y ∈ W (0, T )2 : ∃(u, y0) ∈ Uad × Iad : (u, y0, y) ∈ X̃ad} in W (0, T )2 are required.

The first property is regarded above. As to the second property, Equation (5.18) shows that

a transient solution y of the PO4-DOP model with the initial value y0 fulfills

‖y‖W (0,T )2 ≤ C
√

1 + C̃2‖y0‖L2(Ω)2 .

If y belongs to Ỹad, the initial value y0 stems from the bounded set Iad. Furthermore, the ex-

pression C
√

1 + C̃2 is bounded according to Section 5.4.1. Thus, we obtain the boundedness

of Ỹad.

5.4.4 Unique identifiability of parameters in the PO4-DOP model

Because of its relatively low complexity, the PO4-DOP model is suitable for tests in the

context of parameter identification (see, for instance, Prieß et al. [17]). A test involves the

identification of an optimal parameter for the PO4-DOP model and the data (ud, yd) ∈ Xad.

This choice of data guarantees that (ud, yd) itself is a solution of the minimization problem

(5.2) because J(ud, yd) = 0. Thus, the parameter ud is optimal for the PO4-DOP model and

(ud, yd). In the context of a test, a numerical method is assessed by its ability to identify

the known optimal parameter ud. However, the explanatory power of such a test depends on

whether the optimal parameter ud is unique.

In case γ > 0, the optimal parameter ud is unique irrespective of the model equation. To

justify this, let (ũd, ỹd) be a minimum of (5.2). Then, the cost function J vanishes at (ũd, ỹd)

because it vanishes at (ud, yd) as well. Thus, the two summands of J(ũd, ỹd) are equal to

zero. This yields ỹd = yd and ũd = ud.

In the predominant case γ = 0, however, the considerations of the last paragraph yield

only ỹd = yd. A corresponding result for the parameters requires the additional information

that the equality of two states implies the equality of the associated parameters. In the

transient case, this property corresponds to the injectivity of the parameter-to-state map S.
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Parameters that fulfill this property are introduced in the following definition.

Definition 5.4.2. For all i ∈ {1, . . . , 7}, the parameter ui is called uniquely identifiable if

the equality of two admissible states implies the equality of the associated i-th parameters.

Investigation of unique identifiability

Let both components of y0 ∈ L2(Ω)2 be nontrivial. We regard the elements u1 = (λ1, α1,KP1,

KI1,KW1, β1, ν1) and u2 = (λ2, α2,KP2,KI2,KW2, β2, ν2) of Uad and the associated transient

solutions y(u1) = (y1, y2) and y(u2) of the PO4-DOP model with the initial value y0. To

investigate unique identifiability, we assume y := y(u1) = y(u2).

The choice of the initial value ensures that the components y1 and y2 of the solution y

are nontrivial. Furthermore, we assume that Ω2 is nonempty and that∫ he

0
G(u1, y1)dx3 6= 0 in a subset M ⊆ Ω′2 × [0, T ] with |M | > 0. (5.19)

These preconditions enable us to draw conclusions about all seven parameters of the PO4-

DOP model.

By assumption, the solution y fulfills the equations∫ T

0
{〈y′1(t), v1(t)〉H1(Ω)∗ +B(y1, v1; t) + (d1(ui, y, t), v1(t))Ω + (b1(ui, y, t), v1(t))Γ}dt = 0∫ T

0
{〈y′2(t), v2(t)〉H1(Ω)∗ +B(y2, v2; t) + (d2(ui, y, t), v2(t))Ω}dt = 0

for i ∈ {1, 2} and v = (v1, v2) ∈ L2(0, T ;H1(Ω))2. Subtracting the equations with i = 2 from

the equations with i = 1, we obtain∫ T

0
{(d1(u1, y, t)− d1(u2, y, t), v1(t))Ω + (b1(u1, y, t)− b1(u2, y, t), v1(t))Γ}dt = 0 (5.20)∫ T

0
(d2(u1, y, t)− d2(u2, y, t), v2(t))Ωdt = 0. (5.21)

To draw conclusions about identifiability, we restrict the integrands in (5.20) and (5.21)

to different subsets of QT and Σ. To this end, we test the equations with an arbitrary v

that vanishes everywhere except for the desired subset. Then, we apply the fundamental

lemma of calculus of variations (see, for instance, Emmrich [4, Lemma 3.1.5]) to eliminate

the integrals. Finally, we insert the definition of the reaction terms on the subset in question.

First, we restrict Equation (5.21) to Ω2×[0, T ] and obtain λ1y2 = λ2y2 almost everywhere.

Since y2 is nontrivial, we conclude λ1 = λ2. Thus, λ is uniquely identifiable.

Since λ1 = λ2, the restriction of Equation (5.20) to Ω1 × [0, T ] yields

G(u1, y1) = G(u2, y1) almost everywhere. (5.22)
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Here, unlike before, the parameters are included in the argument of G.

Combining the restriction of (5.21) to Ω1 × [0, T ] with Equation (5.22), we conclude

0 = ν1G(u1, y1)− ν2G(u2, y1) = (ν1 − ν2)G(u1, y1) + ν2(G(u1, y1)−G(u2, y1))

= (ν1 − ν2)G(u1, y1).

Since α1 and y1 are nontrivial, so is G(u1, y1). Thus, ν1 = ν2, i.e., ν is uniquely identifiable.

In the next step, we deal with the parameter β. Because of 1− ν 6= 0, the restriction of

(5.20) to the aphotic boundary Γ2 × [0, T ] yields

0 =

∫ he(x′)

0
G(u1, y1)dx3

(
h(x′)

h̄e

)−β1
−
∫ he(x′)

0
G(u2, y1)dx3

(
h(x′)

h̄e

)−β2
=

∫ he(x′)

0
G(u1, y1)dx3

((
h(x′)

h̄e

)−β1
−
(
h(x′)

h̄e

)−β2)

+

(
h(x′)

h̄e

)−β2 ∫ he(x′)

0
(G(u1, y1)−G(u2, y1))dx3

for almost all (x′, t) belonging to the set M from Equation (5.19). The arguments of the

integrand in the last summand belong to Ω1 × [0, T ]. Thus, the whole summand vanishes

because of (5.22). Since the integral over G(u1, y1) is assumed to be nontrivial on M , we

conclude (
h(x′)

h̄e

)−β1
−
(
h(x′)

h̄e

)−β2
= 0.

The fraction q := h̄e/h(x′) is strictly less than 1 since (x′, t) ∈ M implies x′ ∈ Ω′2. The

properties of the natural logarithm ln : R>0 → R yield

β1 ln(q) = ln(qβ1) = ln(qβ2) = β2 ln(q).

The fact ln(q) 6= 0 implies β1 = β2.

Provided that a certain condition is fulfilled, the remaining four parameters are not

uniquely identifiable. We derive this condition from Equation (5.22) which is equal to

α1
y1(x, t)

|y1(x, t)|+KP1

I(x′, t)e−x3KW1

I(x′, t)e−x3KW1 +KI1
= α2

y1(x, t)

|y1(x, t)|+KP2

I(x′, t)e−x3KW2

I(x′, t)e−x3KW2 +KI2

for almost all (x, t) ∈ Ω1 × [0, T ]. This equation provides information about the parameters

only if y1(x, t) 6= 0 and I(x′, t) > 0. Therefore, we define the set My1,I ⊆ Ω1× [0, T ] consisting

of all pairs (x, t) with these properties. The assumptions ensure that |My1,I | > 0.

Let (x, t) ∈My1,I such that (5.22) holds. Omitting the arguments of y1 and I, we conclude

α1

α2
=
|y1|+KP1

y1

Ie−x3KW1 +KI1

Ie−x3KW1

y1

|y1|+KP2

Ie−x3KW2

Ie−x3KW2 +KI2
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=
|y1|+KP1

|y1|+KP2

Ie−x3KW1 +KI1

Ie−x3KW2 +KI2
e−x3(KW2−KW1)

which is equivalent to

α1

α2
(|y1|+KP2)(Ie−x3KW2 +KI2) = (|y1|+KP1)(Ie−x3KW1 +KI1)e−x3(KW2−KW1).

Using the abbreviation C := α1/α2, we calculate

0 = C(|y1|+KP2)(Ie−x3KW2 +KI2)− (|y1|+KP1)(Ie−x3KW1 +KI1)e−x3(KW2−KW1)

= C|y1|(Ie−x3KW2 +KI2) + CKP2(Ie−x3KW2 +KI2)

− |y1|(Ie−x3KW2 +KI1e−x3(KW2−KW1))−KP1(Ie−x3KW2 +KI1e−x3(KW2−KW1))

= |y1|{C(Ie−x3KW2 +KI2)− (Ie−x3KW2 +KI1e−x3(KW2−KW1))}

+ CKP2(Ie−x3KW2 +KI2)−KP1(Ie−x3KW2 +KI1e−x3(KW2−KW1)).

Rearranging the summands, we obtain

|y1|{((C − 1)I−KI1ex3KW1)e−x3KW2 + CKI2}

= ((KP1 − CKP2)I +KP1KI1ex3KW1)e−x3KW2 − CKP2KI2. (5.23)

In case ((C − 1)I −KI1ex3KW1)e−x3KW2 + CKI2 6= 0, we can divide Equation (5.23) by this

expression. Expanding the resulting fraction by ex3KW2 , we obtain

|y1| =
(KP1 − CKP2)I +KP1KI1ex3KW1 − CKP2KI2ex3KW2

(C − 1)I −KI1ex3KW1 + CKI2ex3KW2
. (5.24)

Equation (5.24) provides a condition for non-identifiability of the parameters α,KP ,KI ,

and KW .

Result 5.4.3. At least one of the parameters α,KP , KI , and KW is not uniquely identifiable

if the following condition holds: There exists a parameter vector u1 ∈ Uad such that the first

component of the associated solution y(u1) = (y1, y2) fulfills

|y1(x, t)| = c1I(x′, t) + c2ex3c7 − c3ex3c8

c4I(x′, t)− c5ex3c7 + c6ex3c8
(5.25)

for almost all (x, t) ∈ My1,I . Furthermore, it is possible to define admissible parameters

α2,KP2,KI2, and KW2 by means of the constants c1, . . . , c8 ∈ R such that (5.24) holds.

Proof. We assume that the condition holds. At least one of the parameters α2,KP2,KI2,KW2

differs from the corresponding entry of u1 since the denominator in (5.25) is nonzero. Thus,

the parameter vector u2 := (λ1, α2,KP2,KI2,KW2, β1, ν1) ∈ Uad is different from u1. The

argumentation above shows that Equation (5.24) implies (5.22). In addition, the parame-

ters λ1, β1 and ν1 are equal in both vectors u1 and u2. Thus, we conclude d(u1, y(u1)) =
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d(u2, y(u1)) and b(u1, y(u1)) = b(u2, y(u1)). This implies that u1 and u2 are both associated

with the solution y(u1).

Since we can neither prove nor disprove the condition given in Result 5.4.3, the four

parameters α,KP ,KI , and KW may not be uniquely identifiable. This conclusion seems to

support the results of Prieß et al. [17, Figure 5]. These authors are able to identify λ, β (here

referred to as b) and ν (σ) satisfyingly. The computed optima for the remaining parameters

differ from the desired values, some of them considerably. The most dissatisfying results are

obtained for the half saturation constants KP (KN ) and KI .

Creating unique identifiability

Result 5.4.3 suggests that some parameters of the PO4-DOP model may be unsuitable for

the assessment of numerical methods because of their missing unique identifiability. In the

following paragraphs, we present two possible ways to eliminate this deficit.

Identification of less parameters. Problematic parameters can be fixed with suitable

values (obtained, for instance, by experiments or estimates). Thus, they become an invariable

part of the reaction terms and leave both the vector u and the cost function. Accordingly,

the optimization is reduced to the remaining, uniquely identifiable parameters.

Regarding the PO4-DOP model, we suggest fixing the parameters associated with light,

KI and KW . Then, the five parameters λ, α,KP , β and ν remain to be identified via opti-

mization in U = R5.

We justify our suggestion by proving the unique identifiability of the five variable param-

eters. To this end, let ui = (λi, αi,KPi, βi, νi) for i ∈ {1, 2} be two admissible parameter

vectors, each associated with the transient solution y = (y1, y2). Again, we assume that

y1, y2, and Ω2 are nontrivial and that (5.19) holds. In the same way as above, we obtain

λ1 = λ2, β1 = β2, and ν1 = ν2 as well as the equivalent of Equation (5.22)

α1
y1(x, t)

|y1(x, t)|+KP1
= α2

y1(x, t)

|y1(x, t)|+KP2
for almost every (x, t) ∈ Ω1 × [0, T ] .

Restricted to the set My1,I , this equation can be transformed into

α1

α2
=
|y1(x, t)|+KP1

|y1(x, t)|+KP2
= 1 +

KP1 −KP2

|y1(x, t)|+KP2
.

Since the left-hand side is constant, the same is true for the right-hand side. If the numerator

on the right-hand side were nonzero, the fraction and thus the entire right-hand side would

vary in My1,I because we excluded the only possible constant solution y1 = 0. Thus, the

numerator is equal to zero, i.e., KP1 = KP2. As an immediate consequence, we obtain

α1 = α2.
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Introduction of new reaction terms. Suitable values for the non-identifiable parame-

ters might be unavailable, or a fixation of single parameters might be undesirable for other

reasons. In these cases, the reaction terms containing non-identifiable parameters can be re-

placed entirely. This procedure might yield new, artificial parameters which are not directly

associated with the biogeochemical processes modeled.

The previous results indicate that non-identifiability, if existent, arises from the prod-

uct of saturation functions. Therefore, we approximate the real saturation function h :

y1 7→ αy1/(|y1| + KP ), depending on the parameters α and KP , by the function g : y1 7→
µ arctan(y1) with one parameter µ. Figure 5.4.1 shows that the curves of both functions with

appropriate parameter values behave similarly.
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Figure 5.4.1: The saturation function h with α = KP = 1 compared to the function g with
µ = 0.6 on the interval [0, 8].

Accordingly, the operator G in the PO4-DOP model’s reaction terms is replaced by

G̃(µ,KI ,KW , y1) := µ arctan(y1)
Ie−x3KW

Ie−x3KW +KI
.

The altered model contains six parameters belonging to an appropriately adapted admissible

set Uad. In the remainder of this section, we prove that all of the six parameters are uniquely

identifiable. To this end, let ui = (λi, µi,KIi,KWi, βi, νi) for i ∈ {1, 2} be admissible param-

eter vectors which are both associated with the transient solution y = (y1, y2) of the altered

model. As usual, we assume that y1, y2, and Ω2 are nontrivial and that (5.19) holds. In the

same way as above, we obtain λ1 = λ2, β1 = β2, and ν1 = ν2 as well as the equivalent of

Equation (5.22)

µ1 arctan(y1(x, t))
I(x′, t)e−x3KW1

I(x′, t)e−x3KW1 +KI1
= µ2 arctan(y1(x, t))

I(x′, t)e−x3KW2

I(x′, t)e−x3KW2 +KI2
.
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Restricted to the set My1,I , this equation is equivalent to

µ1

µ2
= e−x3(KW2−KW1) I(x′, t)e−x3KW1 +KI1

I(x′, t)e−x3KW2 +KI2
= 1 +

KI1e−x3(KW2−KW1) −KI2

I(x′, t)e−x3KW2 +KI2
(5.26)

since I(x′, t) > 0 and arctan(y1(x, t)) 6= 0 for all (x, t) ∈My1,I .

The right-hand side of (5.26) varies with x′ if and only if the fraction is not equal to zero.

Since the left-hand side is constant, the fraction vanishes, i.e., KI1e−x3(KW2−KW1)−KI2 = 0.

The right-hand side of the equivalent equation

e−x3(KW2−KW1) =
KI2

KI1

is constant with respect to x3. The same is true for the left-hand side if and only if KW2 =

KW1. This equality implies KI2 = KI1. Finally, Equation (5.26) yields µ1 = µ2.

The function g, defined by means of the arc tangent, is one example for an approximation

of the saturation function h. Alternatively, g could be defined by means of another, similarly

shaped function (“sigmoid function”). Depending on the range of y1, further alternatives

might exist. For example, if the range is sufficiently small, a linear function provides an

acceptable approximation of h.
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