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Abstract
The reliable quantum mechanical description of thermodynamic properties of
fermionic many-body systems at high densities and strong degeneracy is of
increasing interest due to recent experimental progress in generating systems
that exhibit a non-trivial interplay of quantum, temperature, and coupling effects.
While quantum Monte Carlo methods are among the most accurate approaches
for the description of the ground state, finite-temperature path integral Monte
Carlo (PIMC) simulations cannot correctly describe weakly to moderately cou-
pled and strongly degenerate Fermi systems due to the so-called fermion sign
problem. By switching from the coordinate representation to a basis of anti-
symmetric Slater-determinants, the Configuration Path Integral Monte Carlo
(CPIMC) approach greatly reduces the sign problem and allows for the exact
computation of thermodynamic properties in this regime.
During this work, the CPIMC algorithm was greatly improved in terms of

efficiency and accessible observables. The first successful implementation of the
diagrammatic worm algorithm for a general Hamiltonian in Fock space with
arbitrary pair interactions gives direct access to the Matsubara Green function.
This allows for the reconstruction of dynamic properties from simulations in
thermodynamic equilibrium and significantly reduces the statistical variance of
derived estimators, such as the one-particle density. The strongly improved MC
sampling, the much more efficient calculation of update probabilities, and the
successful parallelization to thousands of CPU cores, which have been achieved
as part of the new implementation, are essential for the subsequent application
of the method to much larger systems than in previous works.
This thesis demonstrates the capabilities of the CPIMC approach for a model

system of Coulomb interacting fermions in a two-dimensional harmonic trap. The
correctness of the CPIMC implementation is verified by rigorous comparisons
with an exact diagonalization method. Benchmark results are presented which
reveal large errors of the Hartree-Fock approximation in open shell configura-
tions even for weak coupling strengths and a significant deviation of multi-level
blocking PIMC data in the complete basis set limit.

The application of the CPIMCmethod to thewarm dense homogeneous electron
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Abstract

gas (HEG) quantifies the accuracy of recently published restricted PIMC (RPIMC)
results which have been the basis for the construction of exchange-correlation
free energy functionals to be used in finite-temperature density functional theory
calculations of warm dense matter. It is shown that the errors of the RPIMC
data exceed 10 % at intermediate densities. Additionally, highly accurate data
for the exchange-correlation energy at high densities, which are inaccessible
by the RPIMC method, are provided in this work. These results are useful to
significantly increase the quality of future exchange-correlation functionals for
finite-temperature applications.
The benchmark results of this work have already been used in the develop-

ment of other methods such as density-matrix QMC. In particular, thorough
comparisons have been crucial for the successful verification of the accuracy of
the permutation blocking PIMC method, which extends PIMC calculations to
much higher densities and degeneracies. The combination of the complementary
CPIMC and PBPIMC methods allows for an almost complete description of the
HEG at finite temperatures in the thermodynamic limit.
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Zusammenfassung

Die zuverlässige quantenmechanische Beschreibung thermodynamischer Eigen-
schaften fermionischer Vielteilchensysteme bei großen Dichten und starker Ent-
artung ist auf Grund des jüngsten experimentellen Fortschritts bei der Erzeu-
gung von Materiezuständen, die sich durch ein nichttriviales Zusammenspiel
vonQuanten-, Temperatur- und Kopplungseffekten auszeichen, von wachsen-
der Bedeutung. WährendQuanten-Monte-Carlo-Verfahren zu den genauesten
und erfolgreichsten Ansätzen zur Berechnung des Grundzustands gehören, kön-
nen Pfadintegral-Monte-Carlo-Simulationen (PIMC) bei endlichen Temperaturen
schwach bis moderat gekoppelte und stark entartete Fermi-Systeme wegen des so-
genannten fermionischen Vorzeichenproblems nicht korrekt beschreiben. Durch
den Wechsel von der Ortsdarstellung zu einer Basis aus vollständig antisymmetri-
sierten Slater-Determinanten kann der Konfigurations-Pfadintegral-Monte-Carlo-
Ansatz (CPIMC) das Vorzeichenproblem in diesem Parameterbereich erheblich
reduzieren und ermöglicht somit die exakte Berechnung thermodynamischer
Erwartungswerte.

Im Rahmen dieser Arbeit wurde die Effizienz des CPIMC-Algorithmus enorm
verbessert und weitere Observablen zugänglich gemacht. Die erste erfolgrei-
che Implementation des diagrammatischen Wurm-Algorithmus für allgemeine
Hamilton-Operatoren im Fock-Raum mit beliebiger Zweiteilchenwechselwir-
kung öffnet den direkten Zugang zu der Matsubara-Green-Funktion, welche die
statistische Varianz daraus abgeleiteter Schätzer für Erwartungswerte von Ob-
servablen wie die Einteilchendichte signifikant reduziert und die Rekonstruktion
dynamischer Eigenschaften aus den Ergebnissen von Simulationen im thermody-
namischen Gleichgewicht erlaubt. Die durch die neue Implementation erreichte
immense Verbesserung des Monte-Carlo-Algorithmus, einschließlich einer viel
effizienteren Berechnung der Übergangswahrscheinlichkeiten, sowie die erfolg-
reiche Parallelisierung auf tausende CPU-Kerne sind essentiell für die anschlie-
ßende Anwendung der Methode auf im Vergleich zu vorigen Arbeiten wesentlich
größere Systeme.

Die vorliegende Arbeit demonstriert die Fähigkeiten des CPIMC-Ansatzes für
ein Modellsystems aus Coulomb-wechselwirkenden Fermionen in einer zweidi-
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Zusammenfassung

mensionalen harmonischen Falle. Die Korrektheit der CPIMC-Implementierung
wird durch ausgiebige Vergleiche mit einer exakten Diagonalisierungsmethode
verifiziert. Zusätzlich werden Benchmark-Ergebnisse präsentiert, welche für Sys-
teme mit offenen Schalen große Fehler der Hartree-Fock-Näherung schon bei
geringen Wechselwirkungsstärken belegen und eine signifikante Abweichung
der Multi-Level-Blocking-PIMC-Methode im Limes einer vollständigen Basis
aufzeigen.

Die Anwendung der CPIMC-Methode auf das warme, dichte homogene Elektro-
nengas (HEG) erbringt den Nachweis von systematischen Ungenauigkeiten von
vor Kurzem veröffentlichen Restricted-PIMC (RPIMC) Ergebnissen. Diese wurden
bereits zur Parametrisierung der freien Austauschkorrelationsenergie, wie sie
als Funktional für Berechnungen im Rahmen der Dichtefunktionaltheorie bei
endlichen Temperatur benötigt wird, genutzt. Jedoch konnte gezeigt werden, dass
die relativen Abweichung der RPIMC-Daten zu den exakten CPIMC-Resultaten
bei mittleren Dichten 10 % übersteigen. Zusammen mit den äußerst genauen
Ergebnissen für die Austauschkorrelationsenergie bei hohen Dichten, welche
unzugänglich für die RPIMC-Methode sind, können die in dieser Arbeit erzeugten
Daten helfen, die Genauigkeit von zukünftigen Austauschkorrelationsfunktiona-
len bei endlichen Temperaturen signifikant zu erhöhen.

Die Benchmark-Ergebnisse dieser Arbeit wurden bereits für die Entwicklung
anderer Zugänge, wie z.B. der Dichtematrix-QMC-Methode, genutzt. Insbesonde-
re waren ausführliche Vergleiche entscheidend für die erfolgreiche Verifikation
der Permutation-Blocking-PIMC-Methode (PBPIMC), welche den Anwendungs-
bereich von PIMC-Berechnungen von Fermionen zu deutlich höheren Dichten
und Entartungen hin erweitert. Die Kombination der komplementären CPIMC-
und PBPIMC-Methoden erlaubt eine fast vollständige Beschreibung des HEGs
bei endlichen Temperaturen im thermodynamischen Limes.
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1 Introduction

The fundamental laws of physics that govern the behavior of ordinary matter
at microscopic scales and describe, in principle, nearly all phenomena that are
encountered in everyday life are already known for almost a century [1]. The
majority of problems in condensed matter physics, plasma physics, and chemistry
can be formulated within the framework of non-relativistic quantum mechanics,
which is sufficiently accurate for the predominant energy scales found on earth.
However, exactly solving the resulting equations is extremely difficult for all
but the most trivial cases. In general, exact analytical and numerical approaches
are infeasible for more than two or three particles. Therefore, a large part of
theoretical physics has been concerned with the development and improvement
of analytical and numerical approximations.

Especially important is the quantummechanical description of electrons. Quan-
tum effects of electrons are dominantly responsible for the properties of matter,
while the much heavier nuclei can often be treated classically. Electrons, among
protons and many atoms, belong to a class of particles that are called fermions
and have half-integer spins as opposed to bosons which possess integer spins.
Despite all the efforts of several decades of extensive research, a general and
accurate method for the simulation of fermions is still far from being available
in the near future. The present work is another step in a long series of achieve-
ments towards the goal of reliable, large scale computer experiments of fermionic
quantum particles.
Before the advent of computational physics, only analytical approximations

had been available. Among the earliest developments is the Hartree-Fock (HF)
method [2, 3], which is still widely used today. It can be considered as the baseline
in a hierarchy of more and more accurate, but also more and more demanding
approaches. Often, correlations between particles are defined as all effects not
included in the HF picture. With this definition, the HF result is considered
to be uncorrelated while the exact solution includes the complete correlation.
In general, however, even solving the HF equations is computationally too de-
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1 Introduction

manding to be carried out without the help of computers and even more simple
approximations had to be used. Going beyond the level of HF and including
correlations almost always requires numerical computations. Therefore, the
rapid development of faster computers was and still is of key relevance for the
continuous progress in quantum mechanical calculations. Advanced methods
for calculations in the ground-state or in thermodynamic equilibrium include
perturbation expansions of various orders, e.g., the Møller-Plesset perturbation
theory [4], the random phase approximation (RPA) [5], the Montroll-Ward (MW)
and e4 approximation [6, 7], and the Singwi-Tosi-Land-Sjölander (STLS) approx-
imation [8, 9] to mention a few. Dynamic properties can be obtained by the
quantum kinetic theory and non-equilibrium Green function approaches [10, 11].
One of the most popular methods for ground-state calculations of electronic

structure is the Density Functional Theory (DFT) [12–14]. It reduces the many-
body Schrödinger equations to an equation of functionals of only the one-particle
density, which in principle is an exact mapping. However, the so-called exchange-
correlation functional is generally unknown and needs to be approximated. Accu-
rate approximations of the exchange-correlation functional require reliable data
from other methods [15]. The local density approximation (LDA), which is widely
used in solid state physics, relies on exact results for the exchange-correlation
energy of the Homogeneous Electron Gas (HEG) [16]. The need for independent
input data applies to generalizations like Finite-Temperature Density Functional
Theory (FTDFT) [3] and time-dependent DFT [17] as well.
Most of the above approximations have in common that they introduce un-

known errors with no systematic way for improvement. While their results have
been shown to be sufficiently accurate for many applications by comparisons
with experiments, their predictive power cannot be established a priori, i.e., any
of the above methods can yield qualitatively wrong results in some situations. An
especially successful class of algorithms that can overcome this problem belong
to the so called Monte Carlo (MC) methods. These rely on random numbers to
yield results that are only correct on average, with statistical deviations that
typically decrease proportional to the square root of the CPU time. Avoiding
the calculation of exact quantities, which is unnecessary because in all realistic
applications one requires only a finite relative accuracy, greatly increases the
efficiency. As the deviations can in principle be made arbitrary small by extended
calculations, the results can still be considered to be quasi-exact. Well-known
examples are the Diffusion Monte Carlo (DMC) method for the ground-state [18]
and the Path Integral Monte Carlo (PIMC) method for finite-temperatures [19].
WhileQuantum Monte Carlo (QMC) methods are very efficients for bosons

and can be applied to systems consisting of several thousands of particles [20],
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fermionic QMC simulations are hampered by the so-call fermion sign problem,
which leads to an exponential increase of the statistical error in dependence of
the particle number [21]. The sign-problem is a consequence of the required anti-
symmetry of the wave function, a fundamental statistical property of fermions
which also manifests in the Pauli principle, i.e., the observation that no more
than one fermion can occupy the same quantum mechanical state at any instance
of time. Unfortunately, a general solution of the fermion sign problem seems
to be very unlikely [22]. The usual approach is the introduction of approxima-
tions like the fixed-node approximation [23] which completely avoids the sign
problem. However, such approaches reintroduce unknown, systematic errors.
Nevertheless, for the ground-state, fixed-node DMC calculations belong to the
most accurate methods available [24], although only biased results can be ob-
tained for observables that do not commute with the Hamiltonian, e.g., the kinetic
and interaction energies [25]. At finite-temperatures, the Restricted Path Integral
Monte Carlo (RPIMC) method based on the same idea is widely used [26–28],
but its reliability is still an open question. Other approaches to reduce the sign
problem are the Multi-Level Blocking (MLB) MC [29] and the recent very promis-
ing Permutation Blocking Path Integral Monte Carlo (PBPIMC) methods [30]
employing the idea of so-called sign blocking.

In the diploma thesis preceding this work, the new Configuration Path Integral
Monte Carlo (CPIMC) method for the simulation of highly degenerate fermions at
finite-temperatures was developed [31]. Its basic idea is to evaluate the Feynman
path-integral in a basis of already properly anti-symmetrized Slater-determinants
instead of the usual coordinate presentation, thereby avoiding the additional
anti-symmetrization of the wave functions, which is the source of the sign
problem in the PIMC method [32]. Complementary to the latter, the CPIMC
approach has no sign problem at all for ideal fermions at arbitrary degeneracy
but an increasing sign problem for large coupling strengths [33]. For small
particle numbers, the complementary behavior allows for exact calculations at
any coupling strength using always the most efficient method. For larger particle
numbers, it constitutes a valuable benchmark for approximative methods that
try to close the gap between the applicable range of exact CPIMC and PIMC
methods. While being based on the so-called continuous time and diagrammatic
MC (DiagMC) methods [34, 35], which are successfully used for simulations of
bosons and fermions with simplified interactions [36, 37], the CPIMC algorithm
is the first implementation of that approach for Hamiltonians in continuous space
with general pair-interactions including the important case of the full, long range
Coulomb potential. A similar idea of performing DMC calculations without fixed-
nodes in a basis of Slater-determinants is employed by recent Full Configuration
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1 Introduction

InteractionQuantumMonte Carlo (FCIQMC) simulations of the ground state [38].
Very recently, the approach was generalized to finite temperatures by the Density
Matrix Quantum Monte Carlo (DMQMC) method [39].
Among several drawbacks of the original implementation are the low accep-

tance ratios of the MC updates and the high variance of the estimator for the
one-particle density [31]. The goal of this work is to further improve the CPIMC
method, to enable the calculation of new quantities, and to apply the method to
current physical problems of high interest. The main effort is a new implementa-
tion of a CPIMC algorithm based of the so-called worm algorithm which has been
proven to be very successful in increasing the efficiency of MC calculations of
lattice models and in the coordinate representation [20, 40]. The worm algorithm
also enables the direct sampling of grand-canonical expectation values and the
Matsubara Green function. The latter is a generalization of the one-particle
density matrix and even allows for the reconstruction of dynamical properties
from equilibrium simulations [41].
To test the new implementation the method will be applied to fermions in

a two-dimensional harmonic potential. This model system is fairly simple, yet
its Hamiltonian exhibits many properties of a general many-body system of
Coulomb interacting particles in an external potential. Beside being a suitable
toy problem for the development of new quantum mechanical methods, the
model is also used to describe few-electron quantum dots in nano-structures,
which exhibit many interesting phenomena like Wigner crystallization, collective
modes, and superfluidity [42–46].

An important system of increasing interest is the HEG at finite temperatures.
Recent experimental progress in the investigation of plasmas and laser-excited
solids in the so-called warm dense matter regime and open question about the
structure of astrophysical objects like gas giants and white dwarfs increase the
need for improved finite-temperature simulations of large, complex systems [47–
53]. However, the physical properties of warm dense matter are determined by a
non-trivial interplay of coupling, temperature, and quantum effects, all of which
must be accurately included in its reliable theoretical description. A candidate for
such simulations is the FTDFT, which depends on exact data for the exchange-
correlation free energy of the HEG at finite temperatures [54]. While accurate
QMC results for the ground state have been seminal for the success of the DFT,
only recently RPIMC results at finite temperatures have been published [55] and
used to construct suitable exchange-correlation functionals [56–58]. Nevertheless,
no reliable data is available for strongly degenerate electrons at high densities
that occur in the warm dense matter regime and the quality of the available
RPIMC data is unknown. Both problems will be addressed in this work.
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This work consists of three main chapters. After a short general introduction
of the quantum statistics of many-body systems and the fermion sign problem of
the PIMC method in coordinate representation in chapter 2, chapter 3 will give a
complete and detailed description of the CPIMC method and its implementation.
The derivation of the formalism and notes on the development process are kept
very concise because both are carefully covered by the master thesis of Simon
Groth [59] which was co-supervised during this work. Besides contributing to
the design and implementation of several MC updates and the application to the
harmonic oscillator, the main result of his master thesis are the development of a
greatly improved estimator for the Matsubara Green function and an algorithm
to construct an optimized HF basis which reduces the sign problem of the CPIMC
method. For completeness, a summary of both these results is included in this
thesis as well. Despite being rather technical, the MC updates are introduced in
great detail as the algorithm is a central achievement of this work and essential
for the results in the following chapters. The corresponding sections 3.4 and 3.9
serve as a documentation of the CPIMC program code, which until now is the
only implementation of the worm algorithm for a fully general Hamiltonian in
Fock space with arbitrary pair-interactions, but can easily be skipped by the
reader. Further, the chapter covers general optimizations and the parallelization
of the method.
Chapter 4 is dedicated to the application of the CPIMC method to Coulomb-

interacting fermions in a harmonic trap. The chapter demonstrates the correct-
ness of the formalism and the implementation by comparing the results for the
expectation values of various observables with Configuration Interaction (CI)
calculations, which is an exact diagonalization method and can be considered as
an exact reference [60]. The potential of CPIMC simulations for benchmarking
purposes is demonstrated by comparisons with the HF and MLB calculations.
The results of the CPIMC method for the HEG at finite-temperatures are pre-

sented in chapter 5. The chapter also includes a description of the necessary
improvements of the CPIMC method that allow its application to hundreds of
particles and the simulation of the HEG in the warm dense matter regime. Again,
the correctness of the changes to the implementation are thoroughly verified by
comparisons with exact CI and PIMC results. The sign problem is investigated in
detail. The main result of this chapter is the exchange-correlation energy of 33 po-
larized electrons at high densities and low but finite temperatures and the direct
comparison with available RPIMC data. Existing finite-size corrections are evalu-
ated and an attempt is made to yield reliable results for the exchange-correlation
energy of the HEG in the thermodynamic limit. Finally, recent developments in
this direction are summarized.
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2 Statistical Physics of
Quantum Many-Body
Systems

This chapter will provide a concise overview of the basic concepts of statistical
quantummechanics in thermodynamic equilibrium and the prevalent approaches
to the numerical calculation of the associated physical properties. Beside introduc-
ing the PIMC method and the problems that arise by its application to fermionic
systems, which inspired the development of the CPIMC method, this chapter will
also establish the notation and terminology used throughout this work.

2.1 Quantum Statistical Mechanics

The central quantity for the description of quantum-mechanical systems in ther-
modynamic equilibrium is the density operator

ρ̂ =
∑
i

pi |ψi 〉 〈ψi | ,

which is defined by the probability pi to find the system in the many-body
state |ψi 〉 for all members of an ensemble of possible states {|ψi 〉}. Being proper
probabilities, the numbers pi satisfy pi ≥ 0 and

∑
i pi = 1. Thus, the density

operator is an hermitian, ρ̂† = ρ̂, and positive semidefinite, 〈ϕ |ρ̂|ϕ〉 ≥ 0 for all
states ϕ, operator with trace 1, i.e., Tr ρ̂ =

∑
i 〈ϕi |ρ̂|ϕi 〉 = 1 for an arbitrary basis

{|ϕi 〉} of the system’s Hilbert space. The density operator determines all physical
properties of the system, in particular the expectation value of an arbitrary
observable Ô can be calculated according to

〈Ô〉 = Tr Ô ρ̂. (2.1)

If the complete information about the system is known, the system is described
by the pure state |Ψ〉 and the density operator is reduced to the projection op-
erator ρ̂ = |Ψ〉〈Ψ| with ρ̂2 = ρ̂. In that case above equation is equivalent to
the well known definition 〈Ô〉Ψ = 〈Ψ|Ô |Ψ〉 and the relation Tr ρ̂2 = 1 holds. If
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Tr ρ̂2 < 1, some information is missing and the micro-state of the system is not
completely determined. The system is said to be in a mixed state and is described
statistically by an ensemble. A thermodynamic ensemble is determined by a set
of macroscopic observables. The canonical ensemble applies to systems that are
weakly coupled to and in thermal equilibrium with a macroscopic reservoir. The
thermodynamic variables associated with such a system are the total number of
particles N , the absolute Temperature T , and the volume V . Except for a weak
energy exchange, the system is isolated from the reservoir. The density operator
in the canonical ensemble reads

ρ̂(N , β,V ) = 1
Z (N , β ,V )e

−β Ĥ ,

with the partition function Z , the inverse Temperature1 β = 1/T , and the Hamil-
tonian of the system Ĥ . The partition function

Z = Tr e−β Ĥ

is related to the free energy via F (N , β,V ) = −T lnZ (N , β,V ). All thermodynamic
properties of the system are determined by the thermodynamic potential F and
can therefore be calculated knowing only the partition function, e.g.,

U = 〈Ĥ 〉 = −T 2 ∂

∂T

F

T

�����N ,V
= −

∂

∂β
lnZ

�����N ,V

is the internal energy. Alternatively, the same relation can be obtained from
Eq. (2.1) directly.

If the system is also allowed to exchange particles with the reservoir in addition
to exchanging energy, it is described by the grand canonical ensemble. The total
particle number N is now a fluctuating quantity and is replaced by the chemical
potential µ as the thermodynamic variable. The density operator becomes

ρ̂(µ, β ,V ) = 1
Z (µ, β,V )e

−β (Ĥ−µ N̂ ),

where N̂ is the total particle number operator, see 3.1, and the grand canonical
partition function is given by

Z (µ, β ,V ) = Tr e−β (Ĥ−µ N̂ ). (2.2)

Here, the trace is over an arbitrary basis of the Fock space, i.e., over states with
varying particle number N . The associated thermodynamic potential is the grand
potential Ω(µ, β,V ) = −T lnZ (µ, β ,V ). All other thermodynamic properties can
be obtained from Ω using the corresponding thermodynamic relations.
1Throughout this work, natural units with ~ = kB = 1 are used.
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2.2 Metropolis Monte Carlo method

2.2 Metropolis Monte Carlo method

The defining characteristic of MC methods is the use of random samples to
obtain approximate numerical results. Due to the central limiting theorem, the
uncertainty tends to zero in the limit of large numbers and the exact result is
recovered. The idea was first applied to neutron scattering problems by Ulam
and von Neumann at the Los Alamos National Laboratory [61]. Monte Carlo
methods are especially suited for high-dimensional integrals as they appear in
the calculation of expectation values in statistical physics and often are the only
method available for solving such integrals.

The expectation value 〈Ô〉 of an observable Ô in thermodynamic equilibrium,
see Eq. (2.1), can be written as a high-dimensional integral or sum over the multi
variable x describing the micro state of the system,

〈Ô〉 =
∫

dx p(x)O(x).

If p(x) is a probability distribution, i.e., if it is positive, p(x) ≥ 0, and normalized,∫
dx p(x) = 1, the integral can be approximated by the arithmetic mean

〈Ô〉 ≈ 1
NMC

NMC∑
i=1

O(xi ),

where theNMC micro states xi are random samples from the distributionp(x). The
statistical error deceases as O(1/√NMC) and the approximation becomes exact for
NMC → ∞. Choosing the samples xi according to the probability density p(x) is
called importance sampling opposed to sampling xi uniformly in the integration
region. The advantage of this method is that its efficiency depends only weakly
on the number of dimensions.
There exist several methods for drawing random samples from a given dis-

tribution p(x), e.g., the inverse sampling method used in Sec. 3.5 or rejection
sampling methods. However, for problems of statistical physics the normalization
factor of p(x), i.e., the partition function Z , is usually unknown and most of the
methods cannot be applied. A solution was found by Metropolis et. al. in 1953
for the simulation of a two dimensional gas of rigid spheres [62]. The Metropolis
algorithm, which was later generalized by Hastings [63, 64], constructs a Markov
chain by generating a random sample xi+1 from a previous sample xi starting
from an arbitrary initial configuration x0. The procedure of choosing xi+1 from
a given xi is also called a MC step. The distribution of the configurations of
this Markov process approaches the desired distribution p(x) with increasing
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number of samples if two conditions are met. First, the transition probabilities
ν (xi → xi+1) from configuration xi to configuration xi+1 must satisfy the detailed
balance equation:

p(xi )ν (xi → xi+1) = p(xi+1)ν (xi+1 → xi ). (2.3)

And second, the transition probabilities must allow to reach any configuration x ′
starting from any other configuration x within a finite number of MC steps. This
condition is called ergodicity and is sometimes difficult to satisfy and often impos-
sible to prove formally. Even if the transition probabilities are all finite, transitions
between important regions of the configuration spacemay happen so infrequently
that the process is effectively non-ergodic. In the Metropolis-Hastings algorithm,
the transition probability is composed of a proposal density Q(xi → x ′i ) for
proposing a candidate configuration x ′i given the current configuration xi and the
acceptance probability A(xi → x ′i ) for accepting the proposed candidate as the
new configuration xi+1 = x ′i . With probability 1 −A, the proposed candidate is
rejected and the current configuration is chosen instead, i.e., xi+1 = xi . Obviously,
the resulting transition probability ν (xi → xi+1) = Q(xi → xi+1)A(xi → xi+1)
satisfies the detailed balance condition when

A(xi → x ′i ) = min
[
1,
Q(x ′i → xi )p(x ′i )
Q(xi → x ′i )p(xi )

]
. (2.4)

The advantage of the Metropolis algorithm is that only the ratio of the weights
w(x) has to be calculated and the the normalization constant Z of p(x) = w(x)/Z
is not needed. Only the proposal densitiesQ must be normalized as one has to be
able to draw random samples from that distribution. The proposal density can be
chosen freely as long as the resulting MC steps are ergodic. As a rule of thumb,
the algorithm is most efficient if the choice of Q leads to an average acceptance
ratio of about 50 %.

The proposal and acceptance probabilities and thus the transition probabilities
depend only on the current configuration and not on the history of previous
samples, i.e., the Metropolis method has the Markov property and the sampling
process is indeed a Markov chain. Due to the dependence on the current configu-
ration, the sampled configurations are autocorrelated, which has to be taken into
account when estimating the statistical errors of the results. Usually, the autocor-
relation is first reduced by keeping only every n-th configuration and ignoring
the rest in order to avoid unnecessary time-consuming calculations ofO(xi ). The
number n is called the cycle. The optimal cycle depends on the autocorrelation
time and the relative cost of computing O(xi ) compared to the cost of a MC step.
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Another effect of the autocorrelation is the need for an equilibration time or
burn-in period after starting from an initial configuration x0. Because x0 can be
arbitrary and very different from a typical configuration, it can take several ten
to a hundred autocorrelation times until the samples xi are actually distributed
according to p(x). It is therefore necessary to discard an appropriate number of
configurations before collecting samples for the calculation of averages.
Note that the detailed balance equation (2.3) is only a sufficient and not a

necessary condition and often chosen because of its simplicity. In some cases,
using other conditions [65], like the maximum global balance condition, can
significantly increase the efficiency.

2.3 Path Integral Monte Carlo

In order to apply the Metropolis Monte Carlo method to the simulation of quan-
tum mechanical systems, the thermodynamic expectation values have to be
expressed in terms of weights and estimators that can be efficiently calculated.
This is not the case for the trace in Eq. (2.1) as the matrix elements of the density
operator are generally unknown. The common approach to obtaining a suitable
form is the PIMC method based on the Feynman path integral formulation of
quantum mechanics in coordinate representation [66]. Because of the product
property of the exponential function, the canonical density operator at inverse
temperature β can be written as a product of exponentials at an M-times higher
temperature:

ρ̂ =
1
Z
e−β Ĥ =

1
Z

[
e−

β
M Ĥ

] M
.

Expressing the density matrix ρ(R,R′) = 〈R|ρ̂|R′〉 in a basis of N -particle prod-
uct states of eigenfunctions of the coordinate operator, |R〉 = |r1〉 · · · |rN 〉, and
insertingM − 1 identities of the form 1̂ =

∫
dR |R〉〈R| yields

ρ(R,R′, β) = 1
Z (β)

∫
dR1 · · ·

∫
dRM−1 〈R|e− β

M Ĥ |R1〉 · · · 〈RM−1|e−
β
M Ĥ |R′〉 .

The integrals are over all trajectories or paths {R,R1, . . . ,R′} between the fixed
starting point R and end point R′. In the limit M → ∞ the path becomes
continuous, R(τ ), and the resulting expression is connected to the Feynman path
integral by a Wick rotation, giving rise to the notion of imaginary time τ = it .
The M + 1 hyperplanes containing the points Ri are called time slices with an
imaginary time step of ϵ = β/M .
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r
time slice i
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r

time slice i
0 1 2 3 4 5

Figure 2.1: Paths in coordinate representation. Shown are two possible paths
of two particles with five time slices in one dimension. A path is
determined by a coordinate r for each particle and time slice. In
the left example, the trajectories of the particles form two separate
β-periodic loops, while in the right picture, the path consists of a
single loop of length 2β involving both particles due to a pair ex-
change. For fermions, particle exchange induces a sign change for
each transposition.

For indistinguishable particles, the density operator has to be projected on
the subspace of states with the correct symmetry, see Sec. 3.1. Bosonic states
are completely symmetric under arbitrary particle permutations while fermionic
states are completely antisymmetric. In both cases, the projection operator P̂± =
(N±/N !)Ŝ± satisfies P̂2

± = P̂± and commutes with the Hamiltonian, [P̂±, Ĥ ] = 0.
Therefore, only the last state has to be projected:

ρ̂± = P̂†±ρ̂P̂± = ρ̂P̂±.

In the following, only the partition functionZ is considered as all thermodynamic
properties can be calculated from it. With the definition of the (anti-)symmetriza-
tion operator, Eq. (3.2), the partition function becomes

Z =
1
N !

∑
σ ∈Sn

(±1)s
∫

dR
∫

dR1 · · ·

∫
dRM−1 〈R|e−ϵ Ĥ |R1〉 · · · 〈RM−1|e−ϵ Ĥ |PσR〉 ,

where the sum is over all N ! permutations of N particles and the sign of the
permutation has to be included in the case of fermions. The contributions to the
partition function can be interpreted as collections of closed loops or polymers
which represent the trajectories of the particles in imaginary time [67]. Due to
the permutation Pσ of the last coordinate, n particles can form a single closed
loop of length nβ . An example for two particles and five time slices is shown in
Fig. 2.1.
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The above expressions are exact for any M ≥ 1 but cannot be used directly
for a MC integration as the matrix elements 〈R|e−ϵ Ĥ |R′〉 are unknown. If M is
sufficiently large, the matrix elements can be replaced by a high temperature
approximation. The simplest approximation is based on the Trotter decomposi-
tion [68],

e−β (Â+B̂) = lim
M→∞

[
e−

β
M Âe−

β
M B̂

] M
,

for any two Hermitian operators Â and B̂. Splitting the Hamiltonian Ĥ = T̂ + V̂
into the kinetic and potential energy contributions, which in the coordinate
representation are off-diagonal and diagonal, respectively, one obtains

〈R1|e−ϵ Ĥ |R2〉 ≈
∫

dR′ 〈R1|e−ϵT̂ |R′〉 〈R′|e−ϵV̂ |R2〉 ,
with

〈R|e−ϵT̂ |R′〉 ≈ (4πλϵ)−3N /2e−
(R−R′)2
4λϵ ,

〈R|e−ϵV̂ |R′〉 = e−ϵV (R)δ (R − R′).
The approximation for the kinetic matrix elements is only valid if the thermal
wavelength λϵ = ϵ/2m is much smaller than the system volume V . Otherwise,
a Jacobi theta function has to be used [66]. The resulting expression for the
partition function,

Z =
1
N !

1
(4πλϵ)3NM/2

∑
σ ∈Sn

(±1)s
∫

dR
∫

dR1 · · ·

∫
dRM−1 e

−
∑M
k=1

(Rk−1−Rk )2
4λϵ −ϵV (Rk ),

converges to the exact value with O(β2/M). Some other approximations of higher
order are described in [66]. For example, the PBPIMC method relies on a fourth
order approximation developed by Chin et. al. [69, 70].

Having expressed the partition function in terms of weights that can be easily
calculated for a given path, i.e., a set of coordinates for each particle on each
time slice, one can find MC steps that satisfy the detailed balance and ergodicity
conditions to efficiently sample the configuration space. In the simplest case,
this is a random displacement of a single randomly chosen particle on a random
time slice. More advanced methods displace several particles at once and can
be found in the literature, e.g, in [66]. The most efficient method, the worm
algorithm [20], constructs non-local updates of the configuration space of Z from
local MC moves in an enlarged configuration space, thereby avoiding the critical
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slowdown in the presence of metastable states. In the case of the PIMCmethod, it
helps to overcome energy barriers between different permutations. An adaption
of the worm algorithm to the CPIMC method will be presented in Sec. 3.7.

The PIMC method, which was only briefly introduced here, is the most success-
ful approach for the simulation of bosonic quantum systems at finite temperatures
that are subject to non-trivial effects such as superfluidity and Bose-Einstein
condensation [66, 71–75]. With advanced sampling techniques it is possible to
simulate several thousand particles on modern computers. For fermions, the
necessary anti-symmetrization of the density operator introduces an alternating
sign. Therefore, the contributions to the partition function cannot be directly
used as weights in the Metropolis algorithm. How the method can be adapted to
integrals with negative weights will be explained in the next section.

2.4 Fermion Sign Problem

The Metropolis-Hastings algorithm is the best sampling method for the MC inte-
gration of high dimensional integrals or sums of the form 〈Ô〉 = ∫

dx O(x)w(x)/Z
when the normalization Z of the probability p(x) = w(x)/Z is unknown. How-
ever, for some systems the weights w(x) are not always positive and p(x) can
thus not be interpreted as a probability. This problem arises, e.g., for quantum
spin systems with frustrated interaction or, as shown above, for path integral
simulations of fermions [22]. In the latter case, the sign of the weights changes
due to particle permutations that are necessary for the anti-symmetrization of
the product states.

The common solution is to incorporate the sign of the weight s(x) = sign
�
w(x)�

into the estimator for the observable and to use the modulus of the weights in
the acceptance probabilities of the Metropolis algorithm. The expectation value
of the observable then becomes

〈Ô〉 =
∫
dx O(x)s(x)p ′(x)∫
dx s(x)p ′(x) =

〈Ôs〉′
〈s〉′ ,

where 〈·〉′ denotes the expectation value in the system where the configurations x
are distributed according to the probabilityp ′(x) = |p(x)|/Z ′withZ ′ = ∫

dx |p(x)|.
In the case of the PIMC method for fermions, this system is equal to the corre-
sponding bosonic system. The average sign 〈s〉′ is defined by

〈s〉′ =
∫
dx s(x)|p(x)|∫
dx |p(x)| =

Z

Z ′
= e−βN (f −f ′) (2.5)
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and decreases exponentially with the particle number N , the inverse temperature
β , and the difference between the free energy per particle of the two systems,
f − f ′. As a consequence forMC simulations, the estimate of the relative statistical
error of the mean increases for small average signs 〈s〉′ � 1 like

∆O

Ō
∼

∆s

s̄
≈

1
√
NMC

eβN∆f ,

which leads to an exponential increase in the number of MC samplesM that are
necessary for a desired accuracy. This so-called fermion sign problem applies not
only to PIMC simulations but to fermionic QMC in general, restricting ab initio
calculations to small system sizes and/or high temperatures.
The common approach to avoid the sign problem is the RPIMC method or

fixed-node approximation [66]. The approximation limits the integration to a
region where the density matrix is strictly positive. In other words, the particle
trajectories are not allowed to cross the nodal surface ρ(R,R′) = 0. As the exact
density matrix is unknown, a trial density matrix is used to determine the nodes,
i.e., the points where the density matrix changes its sign. The use of a trial density
matrix introduces an uncontrollable systematic error. Additionally, even when
the exact nodal surface is known, e.g., for an ideal system, the method does not
reproduce the correct fermionic density matrix [76].
The PBPIMC method takes a different approach and analytically sums con-

tributions of opposite sign by writing the sum over all particle permutations
as a determinant, which can be calculated efficiently using standard software
libraries [30, 77]. Sampling meta-configurations that analytically combine config-
urations of opposite sign is called sign blocking. To increase the effect of blocking,
a high order approximation for the density matrix is used, which significantly re-
duces the necessary number of time slices. Furthermore, the sampling efficiency
is increased by a variation of the worm algorithm. The combination of these
ideas extends the range of applicability of the PIMC method significantly [78]. A
stochastic blocking mechanism is employed by the MLB method [79], but is not
widely used due to its complexity.

Since the fermion sign problem is nondeterministic polynomial (NP) hard,
finding a general exact solution is very unlikely [22]. Nevertheless, the average
sign is not a physical observable and depends on the representation. It can
therefore be increased by finding a suitable equivalent reformulation of the
expressions for the quantities of interest. The basic idea of the CPIMCmethod is to
switch from continuous product states to a discrete basis of already properly anti-
symmetrized Slater-determinants, thereby avoiding the subsequent projection
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on the fermionic Hilbert space, which is the origin of the sign problem in the
path integral formulation in coordinate representation.
A similar approach is taken by the FCIQMC method [38] and its finite-tem-

perature generalization DMQMC [39, 80]. The FCIQMC method implements
the zero-temperature DMC method in a basis of Slater-determinants instead of
coordinate product states in a similar way as the CPIMC method applies a basis
change to the path integral formulation. The discrete basis allows the introduction
of an annihilation step that removes walkers of opposite sign on the same Slater-
determinant, thereby drastically reducing the statistical variance associated with
the sign problem. By replacing the sampling of the wave function in the Hilbert
space of Slater-determinants |{n}〉 with a sampling of the density operator in the
operator space of tensor products of the form |{n}〉〈{n}′|, the DMQMC method
is able to obtain expectation values at finite temperatures instead of ground state
properties. Having a similar range of applicability, DMQMC simulations that
make use of the initiator approximation can reach stronger interactions than the
CPIMC method, while the latter is more efficient at larger basis sizes necessary
for high temperatures and large particle numbers. However, due to the initiator
approximation, the DMQMC methods has difficulties to access observables that
do not commute with the Hamiltonian.
In some special cases, the sign problem can even be solved completely by

choosing an appropriate representation, e.g., for one dimensional systems [81, 82].
Furthermore, if the Hamiltonian can be diagonalized, the trace in its eigenbasis
is just a sum over positive exponential functions of the eigenvalues. In general,
the cost for diagonalizing the Hamiltonian grows exponentially with system
size and can only be applied to very small particle numbers. Exceptions include
non-interacting fermions in the canonical ensemble, where the eigenvalues are
known but expectation values can still not be calculated analytically for large
finite systems.
Finally, it should be mentioned that for the simulation of the real-time evolu-

tion of quantum systems a related dynamical sign problem occurs, restricting
simulation to short time dynamics [83]. A recent paper [84] claims to overcome
the dynamical sign problem and demonstrates a successful application of the so
called inchworm algorithm to the Anderson impurity model.
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Integral Monte Carlo

The main effort of this work was the improvement and extension of the CPIMC
method, which I developed in my diploma thesis [31, 33], towards much larger
and more realistic systems such as the electron component in current warm dense
matter applications. New physical quantities, in particular the Matsubara Green
function, became accessible due to the implementation of the worm algorithm. A
detailed description of the development process can be found in the master thesis
of Simon Groth [59] that I co-supervised during this doctoral research. Since the
completion of that thesis, the Monte Carlo steps for general Hamiltonians with
arbitrary pair-interactions have undergone only minor changes. More recent
advances include efficiency improvements like the heat bath method and massive
parallelization.
In this chapter, a detailed and updated description of the current state of the

general CPIMC method will be given. For the derivations of the formulas and
any reasoning about development choices, reference is made to the previous
works. The adaption of the algorithm to the important special case of the HEG is
part of chapter 5.

3.1 SecondQuantization

The basic idea of the CPIMC approach is to express all quantities, wave functions
and observables alike, in terms of operators. The commutation relations of these
operators completely define the quantum statistical properties of the particles, i.e.,
of fermions and bosons. Thus, the necessary antisymmetrization of the density
operator in coordinate space, which is the source of the sign problem, can be
omitted. This formulation is called second quantization and is fundamental to
the understanding of the remaining chapter. Therefore, a brief introduction will
be given in this section, which will also serve as a reference to the notation and
definitions used throughout this work. Details can be found in [31, 59] and any
textbook on the topic, e.g., [60, 85, 86].
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3.1.1 Indistinguishable Particles

A solution of the stationary many-body Schrödinger equation of N particles

Ĥ |Ψ〉 = E |Ψ〉 ,

with the Hamilton operator Ĥ , is an element of the N -particle Hilbert space
H N =

⊗N
α=1Hα , which is the tensor product of single-particle Hilbert spaces

Hα = Hspace,α ⊗ Hspin,α . The Hilbert space of each particle α is itself the tensor
product of the Hilbert spaces describing spatial and spin degrees of freedom,
respectively. A basis ofH N can be constructed from product states

|i1i2 . . . iN 〉 = |i1〉1 |i2〉2 · · · |iN 〉N . (3.1)

Here, the single-particle states |i〉α ∈ Hα are spin orbitals, i.e., the wave function
〈rσ |i〉 = (〈r | 〈σ |) |i〉 = ϕi (r ,σ ) depends on the spatial coordinate r and spin
coordinate σ . In the following, both coordinates will be combined in the notation
x = {r ,σ}.

As quantum particles of the same species are indistinguishable, all observables
must remain invariant under exchange of two particles. Thus, their state vector
can only change up to a phase factor. The spin-statistic theorem connects the
spin of the particles with the value of this phase factor. Particles with integer
spin are symmetric under particle exchange and are called bosons. Fermions
have a half-integer spin and an anti-symmetric state vector.
States with the proper symmetry can be constructed from product states,

Eq. (3.1), by applying the (anti-)symmetrization operator Ŝ±

|i1i2 . . . iN 〉± = Ŝ± |i1i2 . . . iN 〉
=

1
N±

∑
σ ∈SN

(±1)s |iσ (1)〉1 |iσ (2)〉2 · · · |iσ (N )〉N . (3.2)

The sum is over all N ! elements of the symmetric group SN and the number s
counts the number of transpositions, i.e., the number of exchanges of two particles,
that create the permutation σ . For fermions, the sign of each term is determined
by the parity of the permutation with a minus sign for odd permutations. The
normalization factor is given by

N± =



√
N !

∏∞
i=0 ni !, for bosons

√
N !, for fermions

,
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where ni is the number of times the single-particle state |i〉 appears in the product
state. For Bosons, the sum is often taken only over all different states. In that
case, the normalization factor becomes N+ =

√
N !/

∏∞
i=0 ni !.

The states (3.2) span the two orthogonal subspaces of the symmetric and anti-
symmetric statesH N

± ⊂ H
N . The projections onto these subspaces are given by

the operators P̂± = (N±/N !)Ŝ±. It is P̂2
± = P̂± and P̂+P̂− = 0. The anti-symmetrized

states |Ψ〉 ∈ H N
− can be written as so-called Slater determinants

|i1i2 . . . iN 〉− = 1
√
N !

�����������

|i1〉1 |i2〉1 · · · |iN 〉1
|i1〉2 |i2〉2 · · · |iN 〉2
...

...
...

|i1〉N |i2〉N · · · |iN 〉N

�����������

.

In coordinate representation, this translates to

Ψ(x1,x2, . . . ,xN )− = 〈x1x2 . . . xN |i1i2 . . . iN 〉−

=
1
√
N !

�����������

ϕi1(x1) ϕi2(x1) · · · ϕiN (x1)
ϕi1(x2) ϕi2(x2) · · · ϕiN (x2)
...

...
...

ϕi1(xN ) ϕi2(xN ) · · · ϕiN (xN )

�����������

.

Obviously, there can be no states with two particles occupying the same single-
particle state. Therefore, two indistinguishable fermions must differ in at least
one quantum number, which is known as the Pauli exclusion principle. For
bosons, there is no such principle. Their symmetric states can be represented by
a permanent.

3.1.2 Occupation Number Representation

By restricting the (anti-)symmetric states |i1i2 . . . iN 〉± to those following an
arbitrary but fixed ordering of the single-particle states |i〉, e.g., ik < ik+1∀k ,
one obtains a basis of the corresponding subspaces H N

± . Because the (anti-)
symmetrization procedure (3.2) wipes out any details about which particle occu-
pies which single-particle state, the whole information about the state is given by
specifying the occupied states and how many particles they contain. Therefore, a
basis state of the (anti-)symmetric N -particle Hilbert spaceH N

± can be written
as an Occupation Number Vector (ONV)

|n0n1n2 . . .〉 C |{n}〉 , (3.3)
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where the occupation number

ni ∈



�0, for bosons
{0, 1}, for fermions

specifies the number of particles occupying the single-particle state |i〉. Note that
the particle number

∑∞
i=0 ni = N is fixed. For fermions, the restriction on ni = 0

and ni = 1 automatically satisfies the Pauli exclusion principle and each ONV
can be identified with a Slater determinant.
If the states |i〉 form a Complete Orthonormal System (CONS) of the single-

particle Hilbert spaceH , the states |{n}〉N form a CONS of the (anti-)symmetric
N -particle Hilbert spaceH N

± with the orthogonality relations

〈{n}|{n̄}〉 =
∞∏
i=0

δni ,n̄i C δ{n},{n̄}, (3.4)

and the completeness relation∑
{n}

|{n}〉 〈{n}|δ∑ini ,N = 1̂N . (3.5)

Here, the generalized Kronecker delta δ{n},{n̄} has been defined and the notation

∑
{n}
B




∑∞
n0=0

∑∞
n1=0 · · · , for bosons∑1

n0=0
∑1

n1=0 · · · , for fermions

has been introduced. In the following, the Kronecker delta δ∑ini ,N will often be
omitted, when the restriction on a fixed particle number is clear from the context.

If the restriction to a fixed particle number N is dropped, the ONVs |{n}〉 form
a basis of the so-called Fock space F± = H 0 ⊕ H 1 ⊕ H 2

± · · · . According to (3.4),
the vacuum state |00 . . .〉 = |0〉 without any particles is also normalized to unity
〈0|0〉 = 1. In general, states |Ψ〉 ∈ F± do not have a defined particle number.

3.1.3 Creation and Annihilation Operators

The definition of the Fock space allows one to introduce operators that increase
or decrease the number of particles of a state. A special case are the pairwise
adjoint, so-called creation and annihilation operators. The fermionic creation
operator â†i creates a particle in the single-particle state |i〉. Its action on a ONV
is given by

â†i |{n}〉 = (1 − ni )(−1)α{n},i |. . . ,ni + 1, . . .〉 ,
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3.1 SecondQuantization

where the sign is determined by

α{n},i =
i−1∑
l=0

nl ,

i.e, the number of occupied states before the state |i〉 in the chosen order of
single-particle states. Applying the annihilation operator yields

âi |{n}〉 = ni (−1)α{n},i |. . . ,ni − 1, . . .〉 .
Obviously, it is not possible to create a particle in an already occupied single-
particle state. Likewise, the annihilator âi vanishes in case of an empty state
|i〉.

The creation and annihilation operators can also be defined by their commuta-
tion relations

{â†i , â†j } = {âi , âj} = 0,

{âi , â†j } = δi, j ,

where the braces denote the anti-commutator {Â, B̂} = ÂB̂ + B̂Â. The quantum
statistical properties of fermions are completely determined by these relations,
e.g., the Pauli exclusion principle follows directly from the first equation, i.e.,
(â†i )2 = 0. The ONVs (3.3) can be constructed by repeatedly applying the creation
operators on the vacuum state:

|{n}〉 = ( ∞∏
i=0

(â†i )ni
) |{0}〉 .

The order of the operators is given by the chosen order of the single-particle state
|i〉.
As will be shown in the next section, not only the states of the Fock space

can be expressed in terms of the creation and annihilation operators but also the
operators. A special operator is the occupation number operator

n̂i = â†i âi ,

which acts on a ONV as follows:

n̂i |{n}〉 = ni |{n}〉 .
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A related operator is the particle number operator

N̂ =
∞∑
i=0

n̂i . (3.6)

Its action is given by

N̂ |{n}〉 = N |{n}〉 .
Thus, the ONVs are common eigenvectors of these operators, and their eigenval-
ues are the number of particles occupying a single-particle state and the total
number of particles, respectively. If the underlying single-particle basis is the
eigenbasis of the single-particle Hamiltonian, ĥ |i〉 = ei |i〉, then the ONVs are
also eigenvectors of the interaction-free many-body Hamiltonian Ĥ =

∑N
α=1 ĥα .

A transformation from the single-particle basis |i〉 to a single-particle basis |ν〉
corresponds to the following transformation of the creation and annihilation
operators:

â†ν =
∞∑
i=0

〈i |ν〉 â†i ,

âν =
∞∑
i=0

〈ν |i〉 âi .

This is also valid in case ν is a continuous variable, e.g., for the so-called field
operators Ψ̂†(x) and Ψ̂(x).
Replacing the anti-commutator with the commutator [Â, B̂] = ÂB̂ − B̂Â, one

obtains the commutation relations of the bosonic creation and annihilation oper-
ators

[â†i , â†j ] = [âi , âj ] = 0,

[âi , â†j ] = δi, j .
Their action on a ONV is given by

â†i |n0n1 . . .ni . . .〉 =
√
ni + 1 |n0n1 . . .ni + 1 . . .〉 ,

âi |n0n1 . . .ni . . .〉 =
√
ni |n0n1 . . .ni − 1 . . .〉 .

When constructing the ONVs, one has to account for the multiple occupation of
orbitals,

|{n}〉 = 1√∏
i ni !

( ∞∏
i=0

(â†i )ni
) |{0}〉 .

34



3.1 SecondQuantization

In case of single occupancy, this reduces to the same formula as for fermions. All
other expressions of this section remain unchanged.

3.1.4 Operators in SecondQuantization

In order to calculate their matrix elements, operators in second quantization are
expressed in terms of creation and annihilation operators. For the important
cases of one- and two-particle operators, using the fermionic anti-commutation
relations, one obtains the Slater-Condon rules [60], which will be given below.

A one-particle operator in first quantization is of the form B̂1 =
∑

α b̂α , where
b̂α is an operator acting on the one-particle Hilbert spaceHα . In second quanti-
zation, B̂1 can be expressed as

B̂1 =

∞∑
i, j=0

bi j â
†

i âj ,

with the one-particle integrals

bi j = 〈i |b̂|j〉 =
∫

dx ϕ∗i (x)b(x)ϕ j (x).
Note that the integration over x = {r ,σ} combines an integration over the
spatial coordinates r and a summation over the spin coordinates σ . The matrix
elements of B̂1 can now be calculated from the matrix elements of the creation
and annihilation operators. Let |{n}pq〉 be the ONV one obtains from the state
|{n}〉 by removing a particle from the orbital |q〉 and adding a particle to the
orbital |p〉, e.g.,

|{n}pq〉 = |. . . ,nq − 1, . . . ,np + 1, . . .〉 .
The Slater-Condon rules for one-particle operators are then given by:

〈{n}|B̂1|{n̄}〉 =



∑∞
k=0 bkknk , {n} = {n̄}

bpq(−1)α{n},p,q , {n} = {n̄}pq
0, otherwise

.

The matrix elements are non-zero only if the bra and ket vectors differ by exactly
zero or two occupation numbers. For the latter case, the phase factor is determined
by the number of occupied orbitals between the orbitals |p〉 and |q〉,

α{n},p,q =
max(p,q)−1∑
l=min(p,q)+1

nl .
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A two-particle operator can be written as B̂2 =
1
2
∑N

α,β=1 b̂α,β in first quanti-
zation, where b̂α,β acts on the two-particle Hilbert spaceHα ⊗ Hβ . Its represen-
tation in second quantization is given by:

B̂2 =
1
2

∞∑
i, j,k,l=0

bi jkl â
†

i â
†

j âl âk .

Due to the fermionic anti-commutation relations, the order of the indices is
important. The two-particle integrals are defined as:

bi jkl = 〈ij |b̂|kl〉 =
∫

dx
∫

dy ϕ∗i (x)ϕ∗j (y)b(x ,y)ϕk (x)ϕl (y).

For pair-interactions Ŵ , the operator b(x ,y) = w(x ,y) is symmetric and real, i.e.,
w(x ,y) = w(y,x) andw∗(x ,y) = w(x ,y). Using these symmetries and defining
w−i jkl = wi jkl −wi jlk , the pair-interaction operator can be rewritten:

Ŵ =
∞∑
i=0

∞∑
j=i+1

∞∑
k=0

∞∑
l=k+1

w−i jkl â
†

i â
†

j âl âk .

Calculating the matrix elements of the creation and annihilation operators, one
obtains the Slater-Condon rules for the matrix elements of the pair-interaction
operator:

〈{n}|Ŵ |{n̄}〉 =




∑∞
i=0

∑∞
j=i+1w

−
i ji jninj , {n} = {n̄}∑∞

i=0
i,p,q

w−ipiqni (−1)α{n},p,q , {n} = {n̄}pq
w−pqrs (−1)α{n},p,q+α{n̄},r ,s , {n} = {n̄}p<qr<s

0, otherwise

,

where in the state |{n}p<qr<s 〉 two particles are excited from the orbitals |r 〉 and |s〉
with r < s to the orbitals |p〉 and |q〉with p < q. There are only three distinct cases
where the matrix elements are non-zero: The diagonal elements, i.e., both states
are the same, and if they differ in exactly two or four orbitals. In the case of two
differing orbitals, the phase factor is the same as for the one-particle operator. In
the latter case, the phase factor is given by the sum of occupied orbitals between
p and q in the left state 〈{n}| and between r and s in the right state |{n̄}〉.
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3.2 Derivation of the Partition Function

3.2 Derivation of the Partition Function

In [31], the CPIMC representation of the canonical partition function was origi-
nally derived analogously to the well-known PIMC method in coordinate repre-
sentation using the Trotter formula, see Sec. 2.3. It was subsequently found, that
equivalent expressions were already obtained before in the interaction picture [31,
59, 87]. This more elegant derivation will be presented here.

In a given basis |{n}〉, any time-independent Hamiltonian Ĥ can be split into a
diagonal and off-diagonal part,

Ĥ = D̂ + Ŷ ,

with

〈{n}|Ĥ |{n̄}〉 =



〈{n}|D̂|{n̄}〉 , {n} = {n̄}
〈{n}|Ŷ |{n̄}〉 , {n} , {n̄} .

When switching to the interaction picture, the off-diagonal part becomes time-
dependent,

Ĥ (t) = D̂ + Ŷ (t),
with the time-dependence being governed by the diagonal part,

Ŷ (t) = eit D̂Ŷe−it D̂ .

For the time evolution operator of the Schrödinger picture, the following identity
holds:

Û (t , t0) = e−i D̂(t−t0)T̂ e−i
∫ t
t0

dt ′Ŷ (t ′)
,

where T̂ denotes the time ordering operator. Its action on the exponential function
can be explicitly written as a Dyson series:

T̂ e
−i

∫ t
t0

dt ′Ŷ (t ′)
= 1 − i

∫ t

t0
dt1Ŷ (t1) + (−i)2

∫ t

t0
dt1

∫ t1

t0
dt2Ŷ (t1)Ŷ (t2)

+ · · · + (−i)k
∫ t

t0
dt1· · ·

∫ tk−1

t0
dtkŶ (t1) · · · Ŷ (tk ) + · · ·

=

∞∑
K=0

(−i)K
∫ t

t0
dt1

∫ t

t1
dt2· · ·

∫ t

tK−1
dtK Ŷ (tK ) · · · Ŷ (t2)Ŷ (t1).
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The density operator of the canonical ensemble is connected by a Wick rotation
to the time evolution operator in imaginary time τ = it :

ρ̂(β) = 1
Z
Û (−iβ, 0).

Inserting K − 1 identity operators of the N -particle anti-symmetric Hilbert
space (3.5) in every term K ≥ 2, using that D̂ |{n}〉 = D̂{n} |{n}〉 is diagonal,
and combining all exponential functions, one obtains for the canonical partition
function

Z = Tr Û (−iβ, 0)

=

∞∑
K=0

∑
{n}

∑
{n(1)}

· · ·
∑

{n(K−1)}

∫ β

0
dτ1

∫ β

τ1
dτ2 · · ·

∫ β

τK−1
dτK

· (−1)Ke−
∑K
i=0 D{n(i )}(τi+1−τi )

K∏
i=1

Y{n(i )},{n(i−1)},

(3.7)

with τ0 = 0, τK+1 = β , and {n(0)} = {n(K )} = {n}. The sums are over ONVs with
fixed particle number N . The K = 1 term vanishes because Ŷ is off-diagonal, i.e.,
Y{n},{n̄} = 〈{n}|Ŷ |{n̄}〉 = 0 for {n} = {n̄}. In the following, a compact notation
for the multiple integrations over the imaginary time will be used:∫ ′

dKτ B
∫ β

0
dτ1

∫ β

τ1
dτ2 · · ·

∫ β

τK−1
dτK .

The sum (3.7) can be interpreted as a sum over all possible β-periodic imaginary-
time paths of ONVs |{n}〉 (τ ) in Fock-space. An example path is visualized in
Fig. 3.1. Compared to the analogous path integral picture in coordinate space,
there are instantaneous changes or kinks of the state |{n}〉 (τ ) at distinct positions
in imaginary-time τi while between two kinks, the state is constant. A path C =
(K , {n}, {n(1)}, . . . , {n(K−1)},τ1, . . . ,τK ) is uniquely determined by the number of
kinks K , their imaginary times τi and the occupation numbers between the kinks
{n(i)}. The weight of a path is given by

W (C) = (−1)Ke−
∑K
i=0 D{n(i )}(τi+1−τi )

K∏
i=1

Y{n(i )},{n(i−1)}.

The diagonal part of the Hamiltonian D{n} determines the weight of the con-
stant parts of a path while each kink corresponds to an off-diagonal matrix
element Y{n},{n̄}.
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st
at
e
|{n

}〉
(τ)

{n(0)}

{n(1)}
{n(2)}, {n(4)}

{n(3)}

{n(4)}

0 τ1 τ2 τ3 τ4 τ5 β
imaginary time τ

D{n}(0)

Y{n}(4),{n}(3)

Figure 3.1: Visualization of a path. An N -particle configuration is given by an
“imaginary time path” of ONV states |{n}〉 in the interval [0, β]. The y-
axis represents an arbitrary ordering of states. Occupation changes oc-
cur at imaginary times τ1, . . . ,τ5, i.e., there areK = 5 kinks. From [32].

From the partition function many thermodynamic properties of interest like
the total energy can easily be derived. The resulting expressions are suited for
the integration by the Metropolis Monte Carlo method and are the starting point
for the development of a working implementation in [31]. In the following, a
reformulation that allows for more efficient Monte Carlo updates and is better
suited for the adaption of the worm algorithm will be presented.

For a Hamiltonian in second quantization

Ĥ =
∑
i, j

hi j â
†

i âj +
∑

i<j,k<l

w−i jkl â
†

i â
†

j âl âk ,

where ĥ is the one-particle part and ŵ the pair-interaction, the off-diagonal part
follows directly from the Slater-Condon rules:

Y{n},{n̄} =
∑
i, j

q{n},{n̄}(i, j) +
∑

i<j,k<l

q{n},{n̄}(i, j,k, l),

with the definitions

q{n},{n̄}(p,q) =
(
hpq +

∑
i=0
i,p,q

w−ipiqni

)
(−1)α{n},p,qδ{n},{n̄}pq ,

q{n},{n̄}(p,q, r , s) = w−pqrs (−1)α{n},p,q+α{n̄},r ,sδ{n},{n̄}p<qr<s
. (3.8)

The Kronecker-deltas are meant to be zero if the indices p,q, r , s are not pairwise
different and if p > q or r > s . The two sums can be combined into one by
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introducing the multi-variable s:

Y{n},{n̄} =
∑

s ∈N2∪N4
q{n},{n̄}(s).

Hereby, thematrix elements of the so-called kink operators q̂(s) have been defined.
Inserting this into the partition sum (3.7), one obtains

Z =
∞∑
K=0

∑
{n}

∑
{n(1)}

· · ·
∑

{n(K−1)}

∑
s1

∑
s2

· · ·
∑
sK

∫ ′

dKτ

(−1)Ke−
∑K
i=0 D{n(i )}(τi+1−τi )

K∏
i=1

q{n(i )}{n(i−1)}(si ).

Obviously, the matrix elements of the kink operators q{n},{n̄}(s) are already com-
pletely determined by s and {n̄}, because {n} follows from {n̄} by swapping the
occupation numbers of the orbitals specified by s (if the orbitals are distinct, oth-
erwise the matrix element is zero). Therefore, all but one of the summations over
the occupation numbers {n(i)} can be dropped. Additionally, the requirement for
β-periodicity fixes the last determinant to be equal to the first, i.e., {n(K )} = {n},
so the summation over sK is also not needed. This yields the final expression for
the canonical partition function in the CPIMC formulation:

Z =
∞∑
K=0

∑
{n}

∑
s1

∑
s2

· · ·
∑
sK−1

∫ ′

dKτ

(−1)Ke−
∑K
i=0 D{n(i )}(τi+1−τi )

K∏
i=1

q{n(i )}{n(i−1)}(si ). (3.9)

As before, it is τ0 = 0, τK+1 = β , and {n(0)} = {n(K )} = {n}. The last multi-index
sK is uniquely determined by {n} and all other indices si with i , K .

In this formulation, a path C = (K , {n}, s1, . . . , sK ,τ1, . . . ,τK ) is defined by the
number of kinks K , the occupation numbers {n} at imaginary time τ = 0, the
indices of the kinks si and their positions in imaginary time τi . Between two
kinks at τi and τi+1, a determinant |{n(i)}〉 is determined by {n} and all preceding
indices sj with j ≤ i . A kink with the indices si = (pi ,qi ) corresponds to a
one-particle excitation while si = (pi ,qi , ri , si ) describes a two-particle excitation.
Occasionally, a multi-index s itself will be called a kink. The weight of a path is
given by

W (C) = (−1)Ke−
∑K
i=0 D{n(i )}(τi+1−τi )

K∏
i=1

q{n(i )}{n(i−1)}(si ). (3.10)
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0
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s1 = (3, 5, 1, 4) s5 = (1, 5)|{n(3)}〉 = |101001 . . .〉

Figure 3.2: Visualization of a path in the kink picture. A configuration is given by
the “imaginary time paths” of N -particles in the interval [0, β]. The
y-axis represents the orbitals of the underlying single-particle basis.
Thick lines show occupied orbitals while dotted lines indicate empty
orbitals. Occupation changes occur at imaginary times τ1, . . . ,τ5, i.e.,
there areK = 5 kinks. Each kink corresponds to a one- or two-particle
excitation. Adapted from [119].

Each path can be identified with a path in the previous formulation (3.7) and its
weight has the same value. A typical path is sketched in Fig. 3.2. It is instructive to
compare this illustration with the interpretation of the path integral in coordinate
representation, see Fig. 2.1. Here, the discrete time slices are replaced by an
continuous imaginary time while the continuous coordinate r is replaced by the
discrete orbital number i .
The partition sum (3.9) will be the basis of the CPIMC method developed in

this work. Its form will guide the choice of Monte Carlo steps which will be
explained in detail in section 3.4. Before that, the most important estimators
that can be derived from the partition function will be summarized in the next
section. The introduction of the kink operator q simplifies the development of
the worm-algorithm, which is discussed in section 3.7.
As the efficiency of any QMC method depends strongly on the sign problem,

it is important to note that there are three different sources of sign changes in
the partition function. First, and most obviously, the weight is multiplied by a
negative sign for uneven numbers of kinks K . Second, the phase factors present
in the Slater-Condon rules may change the sign depending on the number of
occupied orbitals between the orbitals affected by the kink. And finally, the matrix
elements themselves can have different signs. The impact of these signs on the
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sign problem depends on the system and will be investigated in the corresponding
chapters.
For a Monte Carlo simulation, the basis size has to be restricted to a finite

number of orbitals or basis functions NB . The single-particle orbitals |i〉 are
ordered according to their orbital energy, i.e., hii ≤ hi+1,i+1, and all but the lowest
NB orbitals discarded. This is the only approximation of the CPIMC method and
it is easy to control as the convergence to the complete basis set limit NB → ∞ is
well-behaved in general. In a given basis |i〉, the matrix elements hi j and w−i jkl
can be calculated in advance with arbitrary accuracy. In some cases, like in the
HEG, the calculation is so fast that one can recalculate the matrix elements each
time they are used, which strongly decreases the memory requirements.

3.3 Expectation Values

Expectation values of thermodynamic observables in equilibrium can be calcu-
lated from the canonical partition function. The partition function (3.9) can be
written as

Z =

∫∑
C

W (C).

If the expectation value of an observable Ô can be expressed as

〈Ô〉 = 1
Z

∫∑
C

O(C)W (C),

it can be estimated by a Monte Carlo simulation by sampling the value O(C)
with the weightW (C). In the context of the Monte Carlo method, the term
O(C) is called an estimator. The estimators of some important quantities will be
summarized in this section.

A central quantity is the total internal Energy of a system. A straightforward
way to obtain an estimator for the energy is to use the well known thermodynamic
relationship

〈Ĥ 〉 = − ∂
∂β

lnZ

=
1
Z

∫∑
C

( K∑
i=0

D{n(i )}
(τi+1 − τi )

β
−
K

β

)
W (C).
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Thus, the contribution of the diagonal part of the Hamiltonian to the estimator of
the total energy E(C) is given by the matrix elements D{n(i )} of the determinants
|{n(i)}〉 that constitute the path C , each weighted by the ratio of the length
(τi+1 − τi ) of the corresponding fraction of the path to the total length β of the
path. The off-diagonal part of the Hamiltonian contributes to the total energy
only indirectly through the number of kinks K . This estimator is unchanged if
the partition function in the form (3.7) is used instead.

A related thermodynamic quantity is the heat capacity at constant volume CV .
Its expectation value is given by

CV =
∂

∂T
〈Ĥ 〉����V

=
1
T 2

1
Z

∫∑
C

( (
E(C) − 〈Ĥ 〉) 2 − K

β2

)
W (C).

This differs from the quadratic fluctuation of the total energy 〈(Ĥ − 〈Ĥ 〉)2〉 by the
term −K/β2.
The matrix elements of the reduced one-particle density matrix dpq = 〈â†pâq〉

can be calculated by a partial differentiation of the partition function with respect
to the one-particle matrix element hpq :

dpq = −
1
β

1
Z

∂Z

∂hpq
.

Its diagonal elements dpp are the average occupation numbers

〈n̂p〉 = 1
Z

∫∑
C

( K∑
i=0

n(i)p
(τi+1 − τi )

β

)
W (C),

where, for a path |{n}〉 (τ ), the occupation number np (τ ) is simply averaged over
β . The off-diagonal case is more complicated. If the weightW (C) does not vanish,
i.e., if the matrix elements q{n(i )}{n(i−1)}(si ) are nonzero for all i , then the estimator
is given by

dpq(C) = − 1
β

K∑
i=1

(−1)α{n(i )},p,q

q{n(i )}{n(i−1)}(si )
δsi ,(p,q). (3.11)

The importance of the reduced one-particle density matrix lies in the fact that
the expectation value of any one-body operator B̂1 can be calculated from it:

〈B̂1〉 =
∞∑

i, j=0
bi jdi j .
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An example is the one-particle density

n(r ) =
∑
σ

〈Ψ̂†(x)Ψ̂(x)〉 =
∑
σ

∞∑
i, j=0

ϕ∗i (x)ϕ j (x)di j . (3.12)

Unfortunately, the variance of the estimator (3.11) is usually very high. The
reason is that paths which contain kinks with a small weight q{n},{n̄}(s) will
rarely be sampled in a Monte Carlo simulation, but the value of the estimator is
large for these paths. This problem is reduced by the introduction of an improved
estimator for the worm algorithm, see section 3.7.
Analogously, the expectation value of any two-body operator B̂2 is given by

the reduced two-particle density matrix dpqrs = 〈â†pâ†qâs âr 〉:

〈B̂2〉 = 1
2

∞∑
i, j,k,l=0

bi jkldi jkl .

In a similar manner to the matrix elements of the one-particle density matrix dpq ,
the matrix elements dpqrs can be calculated by a differentiation of the partition
sum. However, attention must be paid to the order of the indices in the dif-
ferentiation with respect to w−pqrs . If p = r and q = s but q , p, the matrix
elements are given by

dpqpq =
1
Z

∫∑
C

( K∑
i=0

n(i)p n(i)q
(τi+1 − τi )

β

)
W (C).

In the case of p = r but with all other indices being different, the matrix elements
are given by

dpqps = −
1
β

1
Z

∫∑
C

( K∑
i=1

(−1)α{n(i )},q,s

q{n(i )}{n(i−1)}(si )
n(i)p δsi ,(q,s)

)
W (C). (3.13)

This expression is the same as for the off-diagonal element of the one-particle
density matrix up to the additional factor n(i)p . If all indices are pairwise different
as well as p < q and r < s , one obtains

dpqrs = −
1
β

1
Z

∫∑
C

( K∑
i=1

(−1)α{n(i )},p,q+α{n(i−1)},r ,s

q{n(i )}{n(i−1)}(si )
δsi ,(p,q,r,s)

)
W (C). (3.14)
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All remaining matrix elements are given by the following symmetry relations:

dpqrs = dqpsr = −dpqsr = −dqprs .

Obviously, if p = q or r = s , the matrix elements vanish, e.g.,

dpprs = 0.

Note that the expressions for the off-diagonal elements of the d are only valid
if the sum does not include terms with q{n(i )}{n(i−1)}(si ) = 0. This is satisfied in
the context of a MC simulation, where such terms do not occur because of their
vanishing weight. As this estimator suffers from the same variance problem as
the estimator for the one-particle density matrix, it has not been implemented
yet.

The two-particle density or pair-distribution function is given by

д(r1,r2) =
∑
σ1,σ2

〈Ψ̂†(x1)Ψ̂†(x2)Ψ̂(x2)Ψ̂(x1)〉

=
∑
σ1,σ2

∞∑
i, j,k,l=0

ϕ∗i (x1)ϕ∗j (x2)ϕk (x1)ϕl (x2)di jkl . (3.15)

It is normalized to N (N − 1) and proportional to the probability of finding a
particle at coordinate r and another particle at coordinate r ′. In homogeneous
systems, this quantity is a function of the relative coordinate r = r1 − r2 only.
In inhomogeneous systems, it is common to integrate over the center of mass
coordinate R = (r1 + r2)/2:

д(r ) =
∫

dR д
(
R +

r

2
,R −

r

2
)

=

"
dr1dr2 δ

�
r − (r1 − r2)�д(r1,r2).

(3.16)

If the system is isotropic, д(r ) depends only on the distance r . For the two-
dimensional harmonic trap, the integration is carried out in Appendix B.

3.4 Monte Carlo Steps

The high dimensional integrals and sums of the previous sections can be solved
using Monte Carlo techniques. The method of choice is the Metropolis algorithm,
because the normalization of the weightsW (C), i.e., the partition function, is
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unknown, cf. section 2.2. The challenge is to find a set of Monte Carlo updates that
fulfill the detailed balance equation (2.3) and that are both ergodic and efficient.
If the first two conditions are met, the Metropolis algorithm will create a Markov
chain where the paths C are distributed according to their probability p(C) =
W (C)/Z and the expectation values can be estimated by a simple arithmetic mean
over the sampled configurations.

The updates are ergodic if starting from any path with non-vanishing weightC0
every other pathC with initial occupation numbers {n}, K kinks with excitations
si and imaginary times τi , and non-vanishing weightW (C) can be generated
within a finite number of Monte Carlo steps. In the diagrammatic representation
this is identical to the ability to construct any β-periodic path consisting of

• an arbitrary number of type 2 kinks s = (p,q):
q

p

,

• an arbitrary number of type 4 kinks s = (p,q, r , s):
r

s

p

q

,

• and horizontal lines either connecting these kinks or
going from 0 to β undisturbed: .

Note, that for an N particle configuration, there are N horizontal lines at each
imaginary time τ between two consecutive kinks.

In general, the Hamiltonian Ĥ is a sparse matrix. Therefore, the matrix element
q{n},{n̄}(s) of most kinks and accordingly the weight of most paths vanishes. This
makes it difficult to ensure ergodicity, because the forbidden paths can separate
the configuration space into islands that are not connected by a given set of
Monte Carlo moves. Thus, the correctness of the current set of updates has to be
checked for every Hamiltonian with a new structure by comparing with an exact
diagonalization method like CI. For larger systems where a comparison with CI
is not possible, artificial weights can be assigned to all kinks with small matrix
elements |q{n},{n̄}(s)| < qmin. The artificial weights and the cutoff qmin can be
chosen arbitrarily but have to be fixed during a simulation. These so-called virtual
kinks can serve as bridges between separated islands in the configuration space
and hence restore ergodicity. Only paths with no virtual kinks are valid samples
for the calculation of expectation values and all paths containing virtual kinks
have to be discarded. The disadvantage of this method is the need to fine-tune
the virtual weights for every set of system parameters. If the weight is too large,
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the simulation will spend most of its time in virtual configuration and only few
samples can be obtained resulting in large statistical errors. On the other hand, if
the weight is too low, switches between disconnected regions of the configuration
space happen too rarely and the algorithm is effectively non-ergodic. Therefore,
a large amount of time was invested in finding a set of Monte Carlo updates
that are ergodic for the Hamiltonians considered in this work. The Monte Carlo
moves presented here are the result of a lengthy trial-and-error development
process, which is described in [59].

While ergodicity is a necessary condition for correctness, efficiency is usually
a trade-off between the CPU time of a single MC step, the autocorrelation time
of the resulting Markov chain, and the complexity of the implementation. The
efficiency of the Monte Carlo moves depends on the structure of the Hamiltonian
and can be optimized with detailed knowledge about the system under consider-
ation. The following Monte Carlo updates are designed to work with a general
Hamiltonian consisting of arbitrary one-body operators and a two-body operator
describing the pair potential. A set of moves that are optimized by taking the
special structure of the Hamiltonian into account is presented in chapter 5 for
the HEG.
The following rather technical description of the MC moves is included here

because the development and implementation of an ergodic and efficient algo-
rithm constitutes a central achievement of this work. The level of detail ensures
the reproducibility of the results in the following chapters. Nevertheless, the rest
of this section can be easily skip on a first read.

Apart from theMonte Carlo moves of the worm algorithm that are not included
here and will be considered in section 3.7, there are six different MC moves
implemented in the current version of CPIMC. For each of the first five moves,
there are two branches exciting either one or two particles in a specific β-periodic
interval. The sixth MC move excites a particle at all times instead. A β-periodic
interval is denoted by [τa ,τb ]β . It is

τ ∈ [τa ,τb ]β B



τ ∈ [τa ,τb ], if τa ≤ τb
τ ∈ [0,τb ] ∪ [τa , β], if τb < τa

.

The length of such an interval is given by

Lβ (τa ,τb ) B



τb − τa , if τa ≤ τb
β − (τa − τb ), if τb < τa

.

In the following, τmin is defined by the time of the first kink smin that is on the
left of some time τ and that affects some orbital p. Here, the first kink on the
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←→ ←→

Figure 3.3: Illustration of the MC steps for adding and removing a pair of kinks.
The sketches depict only a relevant subset of a path. The orbitals
shown here do not necessarily need to be consecutive or in the same
order in the full path. Due to the β-periodicity, the time interval that is
shown potentially includes the point τ = 0 or τ = β . Left: one-particle
excitation 1.A)↔ 2.A). Right: two-particle excitation 1.B)↔ 2.B).

left of a time τ is the kink which has the smallest interval length Lβ (τmin,τ ) of
all kinks affecting the orbital p, i.e., Lβ (τmin,τ ) < Lβ (τi ,τ ) for all other kinks si
that affect the orbital p at the times τi . An orbital p is affected by a kink s if p ∈ s .
Analogously, the first kink that is on the right of the time τ and that is affecting
the orbital p is denoted by smax with the time τmax. It has the smallest interval
length Lβ (τ ,τmax) of all kinks affecting that orbital.

As the order of the orbitals is only important for the calculation of acceptance
ratios and expectation values, the conditions p < q and r < s for kinks of type 4
are ignored in the Monte Carlo algorithm. The Monte Carlo moves are given in
detail by:

1. Add two kinks
A) Excite one particle

i. Choose a time τa ∈ [0, β) at random.
ii. At τa , randomly choose an occupied orbital p ∈ [0,NB − 1], i.e, an

orbital with np (τa) = 1.
iii. At τa , randomly choose an empty orbital q ∈ [0,NB − 1], i.e., an

orbital with nq(τa) = 0.
iv. If no kink affects the orbitals p and q:

a) Choose a time τb ∈ [0, β) at random. The new kinks are given
by sa = (q,p) and sb = (p,q) at the times τa and τb , respectively.

Otherwise choose randomly between b) left or c) right:
b) Randomly choose τb ∈ [τmin,τa)β , where τmin is the time of the

first kink left of τa that affects at least one of the orbitals p and
q. The new kinks are given by sa = (p,q) and sb = (q,p).
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c) Randomly choose τb ∈ [τa ,τmax)β , where τmax is the time of the
first kink right of τa that affects at least one of the orbitals p
and q. The new kinks are given by sa = (q,p) and sb = (p,q).

B) Excite two particles

i. Choose a time τa ∈ [0, β) at random.

ii. At τa , choose two different random occupied orbitals p and q, i.e.,
p,q ∈ [0,NB − 1], q , p, and np (τa) = nq(τa) = 1.

iii. At τa , choose two different random empty orbitals r and s .

iv. If no kink affects the orbitals p,q, r and s:

a) Choose a time τb ∈ [0, β) at random. The new kinks are given
by sa = (r , s,p,q) and sb = (p,q, r , s).

Otherwise choose randomly between b) left or c) right:

b) Randomly choose τb ∈ [τmin,τa)β , where τmin is the time of
the first kink left of τa that affects at least one of the orbitals
p,q, r and s . The new kinks are given by sa = (p,q, r , s) and
sb = (r , s,p,q).

c) Randomly choose τb ∈ [τa ,τmax)β , where τmax is the time of
the first kink right of τa that affects at least one of the orbitals
p,q, r and s . The new kinks are given by sa = (r , s,p,q) and
sb = (p,q, r , s).

2. Remove two kinks
Choose a kink sa at random. There are two possibilities:

A) The kink is given by sa = (p,q)⇒ one-particle excitation

i. Choose a random direction: a) left or b) right:

a) Find the first kink on the left of sa affecting either p or q. If it is
sb = (q,p), then the two kinks sa and sb form a kink pair and
can be removed.

b) Find the first kink on the right of sa affecting either p or q.
Remove both kinks if sb = (q,p).

B) The kink is given by sa = (p,q, r , s)⇒ two-particle excitation

i. Choose a random direction: a) left or b) right:

a) Find the first kink on the left of sa affecting either one of the
orbitals p,q, s or r . If this kink, sb , and sa form a kink pair, i.e.
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a)
←→

b)
←→

c)

←→

d)

←→

e)

←→

f)

←→

Figure 3.4: Add or remove a single kink, case A). The labels a) to f) correspond to
the cases of point v. of step 3.A) for adding a kink and of point v. of
step 3.B) for removing a kink. See also Fig. 3.3.

if sb is one of (r , s,p,q), (s, r ,p,q), (r , s,q,p) or (s, r ,q,p), then
remove both kinks.

b) Find sb , the first kink on the right of sa affecting either p,q, s
or r . If sb ∈ {(r , s,p,q), (s,q,p,q), (r , s,q,p), (s, r ,q,p)}, remove
both kinks.

3. Add one kink
Choose a kink sa and a direction at random.

A) Excite one particle left of sa
i. Choose a random orbital p from the occupied orbitals left of sa
ii. Choose an empty orbital q. Distinguish the following cases

a) If the kink sa is of type 4 and p < sa , i.e sa = (i, j,k, l)with p , k
and p , l , choose either i or j as the target orbital q

b) In all other cases choose q randomly from all empty orbitals left
of sa . Reject the move if sa = (q,p).
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a)
←→

b)
←→

c)

←→

d)

←→

e)

←→

f)

←→

Figure 3.5: Add or remove a single kink, case B). The labels a) to f) correspond to
the cases of point v. of step 3.B) for adding a kink and of point v. of
step 3.A) for removing a kink. See also Fig. 3.3.

iii. Find the time τmin of the first kink left of τa affecting either p or q

iv. Choose a time τb ∈ [τmin,τa)β at random. The new kink is given by
sb = (q,p)

v. The kink sa is changed to s ′a according to the following cases:

a) sa = (i,p) ⇒ s ′a = (i,q)
b) sa = (q, i) ⇒ s ′a = (p, i)
c) sa = (i, j) ⇒ s ′a = (i,p, j,q)
d) sa ∈ {(q, i,p, j), (i,q,p, j), (q, i, j,p), (i,q, j,p)}⇒ s ′a = (i, j)
e) sa = (i, j,p,k) ⇒ s ′a = (i, j,q,k) or
sa = (i, j,k,p) ⇒ s ′a = (i, j,k,q)

f) sa = (q, j,k, l) ⇒ s ′a = (p, j,k, l) or
sa = (i,q,k, l) ⇒ s ′a = (i,p,k, l)

B) Excite one particle right of sa
i. Choose a random orbital p from the occupied orbitals right of sa .
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ii. Choose an empty orbital q. Distinguish the following cases:

a) If sa is of type 4 and p < sa , i.e., sa = (i, j,k, l) with p , i and
p , j, choose either k or l as the empty orbital q.

b) In all other cases choose q randomly from all empty orbitals
right of sa . Reject the move if sa = (p,q).

iii. Find the time τmax of the first kink right of τa affecting either p or q.

iv. Randomly choose the time τb ∈ [τa ,τmax)β . The new kink is given
by sb = (p,q).

v. The kink sa changes in one of the following ways:

a) sa = (p, i) ⇒ s ′a = (q, i)
b) sa = (i,q) ⇒ s ′a = (i,p)
c) sa = (i, j) ⇒ s ′a = (i,q, j,p)
d) sa ∈ {(p, i,q, j), (i,p,q, j), (p, i, j,q), (i,p, j,q)}⇒ s ′a = (i, j)
e) sa = (p, i, j,k) ⇒ s ′a = (q, i, j,k) or
sa = (i,p, j,k) ⇒ s ′a = (i,q, j,k)

f) sa = (i, j,q, l) ⇒ s ′a = (i, j,p, l) or
sa = (i, j,k,q) ⇒ s ′a = (i, j,k,p)

These correspond to the possibilities of point v. of step 3.A) with the
indices of the creation and annihilation operators exchanged.

C) Excite two particles left of sa
i. Choose a random orbital p from the occupied orbitals left of sa .

ii. Choose a second random orbital q , p from the occupied orbitals
left of sa .

iii. For the choice of an empty orbital r left of sa consider the following
cases:

a) If sa = (i, j) with p , j and q , j, it is r = i .

b) If sa = (i, j,k, l) with either p ∈ [k, l] or q ∈ [k, l] but not both,
choose either r = i or r = j.

c) If sa = (i, j,k, l) and both p < [k, l] and q < [k, l], it is r = i .
d) In all other cases, choose an empty orbital r left of sa at random.
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a)

←→

b)

←→

c)

←→

d)

←→

e)

←→

f)

←→

g)

←→

h)

←→

Figure 3.6: Add or remove a single kink, case C). The labels a) to h) correspond to
the cases of point vii. of step 3.C) for adding a kink and of point vii.
of step 3.D) for removing a kink. See also Fig. 3.3.
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iv. For the choice of an orbital s which is empty left of sa , the following
cases have to be distinguished:

a) If sa = (i, j,k, l) and both p < [k, l] and q < [k, l], it is s = j.

b) In all other cases, choose a random empty orbital left of sa with
r , s . If sa ∈ [(r , s,p,q), (s, r ,p,q), (r , s,q,p), (s, r ,q,p)], reject
the move.

v. From all kinks left of sa that affect the orbitals p, q, r , or s , find the
closest one with time τmin.

vi. Choose a time τb ∈ [τmin,τa)β at random. The new kink is given by
sb = (r , s,p,q).

vii. The kink sa changes in one of the following ways:

a) sa = (r ,p) ⇒ s ′a = (q, s) or
sa = (r ,q) ⇒ s ′a = (p, s) or
sa = (s,p) ⇒ s ′a = (q, r ) or
sa = (s,q) ⇒ s ′a = (p, r )

b) sa = (i,p) ⇒ s ′a = (i,q, r , s) or
sa = (i,q) ⇒ s ′a = (i,p, r , s)

c) sa = (r , j) ⇒ s ′a = (p,q, j, s)
d) sa ∈ [(r , i,p,q), (i, r ,p,q), (r , i,q,p), (i, r ,q,p)]⇒ s ′a = (i, s)

or
sa ∈ [(s, i,p,q), (i, s,p,q), (s, i,q,p), (i, s,q,p)] ⇒ s ′a = (i, r )

e) sa = (r , j,p, l) ⇒ s ′a = (q, j, s, l) or
sa = (r , j,k,p) ⇒ s ′a = (q, j,k, s) or
sa = (r , j,q, l) ⇒ s ′a = (p, j, s, l) or
sa = (r , j,k,q) ⇒ s ′a = (p, j,k, s) or
sa = (i, r ,p, l) ⇒ s ′a = (i,q, s, l) or
sa = (i, r ,k,p) ⇒ s ′a = (i,q,k, s) or
sa = (i, r ,q, l) ⇒ s ′a = (i,p, s, l) or
sa = (i, r ,k,q) ⇒ s ′a = (i,p,k, s)

f) sa ∈ [(i, j,p,q), (i, j,q,p)] ⇒ s ′a = (i, j, r , s)
g) sa ∈ [(r , s,p, l), (s, r ,p, l)] ⇒ s ′a = (q, l) or

sa ∈ [(r , s,q, l), (s, r ,q, l)] ⇒ s ′a = (p, l) or
sa ∈ [(r , s,k,p), (s, r ,k,p)] ⇒ s ′a = (q,k) or
sa ∈ [(r , s,k,q), (s, r ,k,q)] ⇒ s ′a = (p,k)

h) sa = (r , s,k, l) ⇒ s ′a = (p,q,k, l)
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a)

←→

b)

←→

c)

←→

d)

←→

e)

←→

f)

←→

g)

←→

h)

←→

Figure 3.7: Add or remove a single kink, case D). The labels a) to h) correspond to
the cases of point vii. of step 3.D) for adding a kink and of point vii.
of step 3.C) for removing a kink. See also Fig. 3.3.
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D) Excite two particles right of sa
i. Choose a random orbital p from the occupied orbitals right of sa .

ii. Choose a second random orbital q , p from the occupied orbitals
right of sa .

iii. For the choice of an empty orbital r right of sa , consider the following
cases:

a) If sa = (i, j) with p , i and q , i , it is r = k .
b) If sa = (i, j,k, l) with either p ∈ [i, j] or q ∈ [i, j] but not both,

choose either r = k or r = l .

c) If sa = (i, j,k, l) and both p < [i, j] and q < [i, j], it is r = k .
d) In all other cases, choose an empty orbital r right of sa at ran-

dom.

iv. For the choice of a second empty orbital s right of sa , the following
cases have to be distinguished:

a) If sa = (i, j,k, l) and both p < [i, j] and q < [i, j], it is s = l .
b) In all other cases, choose a random empty orbital right of sa
with r , s . If sa ∈ [(p,q, r , s), (p,q, s, r ), (q,p, r , s), (q,p, s, r )],
reject the move.

v. From all kinks right of sa that affect the orbitals p, q, r , or s , find the
closest one. It defines the time τmax.

vi. Choose a time τb ∈ [τa ,τmax)β at random. The new kink is given by
sb = (p,q, r , s).

vii. The kink sa changes in one of the following ways:

a) sa = (p, r ) ⇒ s ′a = (s,q) or
sa = (q, r ) ⇒ s ′a = (s,p) or
sa = (p, s) ⇒ s ′a = (r ,q) or
sa = (q, s) ⇒ s ′a = (r ,p)

b) sa = (p, j) ⇒ s ′a = (r , s, j,q) or
sa = (q, j) ⇒ s ′a = (r , s, j,p)

c) sa = (i, r ) ⇒ s ′a = (i, s,p,q)
d) sa ∈ [(p,q, r , i), (p,q, i, r ), (q,p, r , i), (q,p, i, r )]⇒ s ′a = (s, i)

or
sa ∈ [(p,q, s, i), (p,q, i, s), (q,p, s, i), (q,p, i, s)] ⇒ s ′a = (r , i)
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e) sa = (p, j, r , l) ⇒ s ′a = (s, j,q, l) or
sa = (p, j,k, r ) ⇒ s ′a = (s, j,k,q) or
sa = (q, j, r , l) ⇒ s ′a = (s, j,p, l) or
sa = (q, j,k, r ) ⇒ s ′a = (s, j,k,p) or
sa = (i,p, r , l) ⇒ s ′a = (i, s,q, l) or
sa = (i,p,k, r ) ⇒ s ′a = (i, s,k,q) or
sa = (i,q, r , l) ⇒ s ′a = (i, s,p, l) or
sa = (i,q,k, r ) ⇒ s ′a = (i, s,k,p)

f) sa ∈ [(p,q, i, j), (q,p, i, j)] ⇒ s ′a = (r , s, i, j)
g) sa ∈ [(p, j, r , s), (p, j, s, r )] ⇒ s ′a = (j,q) or

sa ∈ [(q, j, r , s), (q, j, s, r )] ⇒ s ′a = (j,p) or
sa ∈ [(i,p, r , s), (i,p, s, r )] ⇒ s ′a = (i,q) or
sa ∈ [(i,q, r , s), (i,q, s, r )] ⇒ s ′a = (i,p)

h) sa = (i, j, r , s) ⇒ s ′a = (i, j,p,q)
These correspond to the possibilities of point vii. of step 3.C) with
the indices of the creation and annihilation operators exchanged.

4. Remove one kink
Choose a kink sa and a direction at random. If the kink is of type 2, its removal
will result in a one-particle excitation. If it is of type 4, excite two particles
instead. There are four possibilities:

A) Excite one particle right of sa = (p,q)
i. Find the time τmax of the nearest kink that affects one of the orbitals
p or q right of sa .

ii. Choose a kink sb at random in the interval [τa ,τmax]β including only
kinks succeeding sa in the total ordering of kinks.

iii. Reject the step if sb = (q,p), otherwise remove sa .

iv. The kink sb changes according to the cases in point v. of step 3.A).
Reject if none of these conditions applies.

B) Excite one particle left of sa = (q,p)
i. Find the closest kink left of sa that affects one of the orbitals p or q.
It defines the time τmin.

ii. Choose a random kink sb from all kinks preceding sa in the interval
[τmin,τa]β .

iii. Reject the step if sb = (p,q). Otherwise, remove sa .
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←→ ←→

Figure 3.8: Change two kinks. Due to the large number of different cases, only one
example is shown for a one-particle excitation (left) and a two-particle
excitation (right), respectively. See also Fig. 3.3.

iv. The kink sb changes according to point v. of step 3.B). Reject if none
of these conditions applies.

C) Excite two particles right of sa = (p,q, r , s)
i. Find the closest kink on the right of sa that affects one of the orbitals
p, q, r , or s . It defines the time τmax.

ii. Randomly choose a kink in the interval [τa ,τmax]β excluding sa and
kinks preceding it.

iii. If sb ∈ [(r , s,p,q), (r , s,q,p), (s, r ,p,q), (s, r ,q,p)], reject the step. Re-
move sa otherwise.

iv. The kink sb changes according to point vii. of step 3.C). Reject if
none of these conditions applies.

D) Excite two particles left of sa = (r , s,p,q)
i. Find the closest kink left of sa that affects one of the orbitals p, q, r ,
or s . It defines the time τmin.

ii. Choose a random kink sb from all kinks left of sa in the interval
[τmin,τa]β .

iii. Reject the step if sb ∈ [(p,q, r , s), (p,q, s, r ), (q,p, r , s), (q,p, s, r )]. Oth-
erwise, remove sa .

iv. The kink sb changes according to the cases in point vii. of step 3.D).
Reject if none of these conditions applies.

5. Change two kinks

A) One-particle excitation

i. Choose a kink sa at random.

ii. Choose a random orbital p from the occupied orbitals right of sa .
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0 β

←→

0 β

Figure 3.9: Excite whole orbital. Both orbitals
must not contain any kinks in the
whole interval [0, β].

iii. An empty orbital q is chosen analogously to point ii. of step 3.B).

iv. Find the time τmax of the closest kink at the right of sa that affects
either orbital p or q.

a) If no such kink exists, randomly choose a kink sb , sa from all
kinks in the current path.

b) Otherwise, choose a random kink sb in the range [τa ,τmax]β
excluding kink sa and all kinks preceding sa in the total ordering
of kinks.

v. The kinks sa and sb change according to point v. of step 3.B) and
point v. of step 3.A), respectively. Reject if none of these conditions
applies.

B) Two-particle excitation

i. Choose a kink sa at random.

ii. Choose a random orbital p from the occupied orbitals right of sa .

iii. Choose a second random orbital q , p from the occupied orbitals
right of sa .

iv. Choose an empty orbital at the right of sa as in point iii. of step 3.D).

v. Choose a second empty orbital right of sa as in point iv. of step 3.D).

vi. Find the time τmax of the closest kink at the right of sa that affects
one of the orbitals p, q, r , or s .

vii. Choose a kink sb at random in the range [τa ,τmax]β other than sa
and its predecessors.

viii. The kinks sa and sb change according to point vii. of step 3.D) and
point vii. of step 3.C), respectively. Reject if none of these conditions
applies.

6. Excite whole orbital

i. Randomly choose an occupied orbital p that is not affected by any
kink.
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3 Configuration Path Integral Monte Carlo

ii. Randomly choose an empty orbital q that does not contain any kinks.

iii. Excite the particle from p to q.

The steps 1. to 5. are chosen with equal probability. For steps 1., 3., and 5.,
the branch is chosen with equal probability as well, while for steps 2. and 4.
the number of excitations is determined by the chosen kink. With probability
1/K , step 6. is chosen instead of step 5.A). If one of the steps is not possible,
e.g., because there are not enough occupied or unoccupied orbitals at the chosen
times, the whole update is simply rejected.
The steps above are able to satisfy the detailed balance condition because

for each MC move there exists another move that transforms the path back to
the previous configuration when executed consecutively. For all such pairs of
MC moves, the acceptance probabilities are determined by the detailed balance
equation (2.3) as given below.
Despite being chosen uniformly in the current implementation as described

above, the probability to choose a certain move is denoted by pap and prp for
adding and removing a pair of kinks, pak and prk for adding and removing a
single kink, pck for changing two kinks and peo for exciting a whole orbital,
respectively. This will allow to change the probabilities in future simulations,
which may increase their efficiency. In the current program code, it is also
possible to adapt the probabilities for choosing between a one and a two-particle
excitation, but here this is neglected for simplicity. A configuration or path is
denoted by C = (K , {n}, s1, . . . , sK ,τ1, . . . ,τK ) and its weight by (cf. Eq. (3.10))

W (C) = (−1)Ke−
∑K
i=0 D{n(i )}(τi+1−τi )

K∏
i=1

q{n(i )}{n(i−1)}(si ).

The number of choices for the orbital i are denoted by Ni while the number
of occupied (filled) and empty orbitals are denoted by Nf and Ne , respectively.
The orbitals are chosen with an equal probability of 1/Ni . The total probability
to choose all orbitals is denoted by 1/No . A new imaginary time τ can as well
be chosen uniformly in the interval [τmin,τmax)β , in which case the distribution
is given by p(τ ) = 1/Lβ (τmin,τmax). In addition, it is possible to improve the
efficiency by finding a new time τ according to the heat bath idea as explained in
the next section. If a kink has to be chosen from the kinks in a certain range, the
number of kinks in that range will be denoted with NK . How that range is found
is described in the corresponding step above. In the following, the factors in the
detailed balance will be listed in the order of random choices used in the above
description of the MC moves.
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3.4 Monte Carlo Steps

1.↔2. The detailed balance for the transition between a configuration C with K
kinks and a configuration C ′ with K + 2 kinks by adding and removing a
pair of kinks as shown in Fig. 3.3 is given by:

pap
1
2
1
β

1
No

p(τb )|W (C)|ν (C → C ′)

= prp
1

K + 2
|W (C ′)|ν (C ′ → C),

where p(τb ) = 1/β if no kink affects the orbitals p and q, see case iv.a),
and p(τb ) = 1/Lβ (τmin,τa) or p(τb ) = 1/Lβ (τa ,τmax) in case iv.b) or iv.c),
respectively. The probability to choose a direction does not appear in the
equation, because in each case it is canceled by a factor of 2 due to the two
different ways to create the same configuration. It is No = NpNq = Nf Ne
for a one-particle excitation, case A), and No = NpNqNrNs = Nf (Nf −

1)Ne (Ne − 1) for a two-particle excitation, case B).
3.↔4. This pair of steps changes the configuration C with K kinks to a configu-

ration C ′ with K + 1 kinks and vice versa via a one-particle excitation. All
qualitatively different possibilities for the cases A) to D) are depicted in
figures 3.4 to 3.7. The detailed balance equation is given by:

pak
1
2
1
K

1
2

1
No

p(τb )|W (C)|ν (C → C ′) (3.17)

= prk
1

K + 1
1
2

1
NK
|W (C ′)|ν (C ′ → C).

The probability for choosing the time τb of the new kink is either p(τb ) =
1/Lβ (τmin,τa) in the cases A) and C) or p(τb ) = 1/Lβ (τa ,τmax) in the cases
B) and D), while the probability for choosing the orbitals, 1/No , depends on
both the randomly chosen and the added kink. For a one-particle excitation,
it is 1/No = 1/NpNq with Np = Nf . In addition, it is Nq = 2 in case v.f) of
A) or B), and Nq = Ne otherwise.

The two-particle excitation in cases C) and D) is chosen with probability
1/No = 1/NpNqNrNs , where NpNq = Nf (Nf − 1)/2 always applies. The
additional factor of 1/2 corresponds to the two different ways the same
two occupied orbitals can be chosen. The cases a) to h) in point vii. can be

61
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assigned to five groups that determine the remaining two factors:

NrNs =




Ne (Ne − 1)/2, cases a), b), d) and f),
1(Ne − 1), case c),
2(Ne − 1), case e),
2(Ne − 1)/2, case g),
1, case h).

Again, factors of 1/2 occur when two different choices can lead to the same
configuration.

5.↔5. Changing two kinks via a one- or two-particle excitation switches between
two configurations, C and C ′, with the same number of kinks K . The
detailed balance can be written as:

pck
1
2
1
K

1
No

1
NK
|W (C)|ν (C → C ′)

= pck
1
2
1
K

1
No

1
N ′K
|W (C ′)|ν (C ′ → C),

where in case B) NK = N ′K , because the second kink sb always affects one
of the orbitals p, q, r , and s . The choices of the orbitals are the same as
in 3.↔4. on both sides of the equation and thus cancel each other in the
acceptance probability. Two examples for this step are shown in Fig. 3.8.

6.↔6. The excitation of a whole orbital, as illustrated in Fig. 3.9, satisfies the
simple detailed balance equation

peo
1
Ñp

1
Ñq
|W (C)|ν (C → C ′)

= peo
1
Ñp

1
Ñq
|W (C ′)|ν (C ′ → C),

where Ñp and Ñq are the number of occupied and empty orbitals that are
not affected by any kink in the current path.

The MC steps presented above show increased acceptance probabilities com-
pared to the steps in [31] because they take into account some properties of the
general structure of the Slater-Condon rules. Since all different cases for adding
kinks are known, it can be avoided to propose particle excitations that would
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result in a difference other than in two or four orbitals between two determinants.
Yet, there are still many possible improvements for these steps. For example,
in the MC step for changing two kinks, only the first kink is considered when
choosing the excitation and the proposal is simply rejected if the second kink
cannot be changed accordingly. For removing kinks, an advanced option would
be to maintain a list of all removable kinks and kink pairs and randomly choose
only from this list instead from all kinks in a configuration. Nevertheless, because
of the exponential growth of the sign problem, the slightly larger parameter range
for which simulations are feasible may not be worth the increased complexity
of the algorithm. Despite being relatively easy to apply graphically, the correct
implementation of only the current set of MC moves is already quite involved.

3.5 Heat Bath Method

The heat bath sampling method, also known as Gibbs sampling [64], is a special
case of the Metropolis algorithm. Under certain circumstances, the heat bath
method can be used to increase the efficiency of the MC algorithm by increasing
the acceptance probability. This is achieved by choosing the proposal density
of a single variable equal to its conditional probability. Of course, this is only
possible, if that conditional probability is known and samples can be drawn from
it efficiently.

The detailed balance equation (2.3) determines the acceptance probability for
a MC update of a single component xi of the configuration vector x when all
remaining components x−i = (x1, ...,xi−1,xi+1, ...) are fixed:

A(xi → x ′i |x−i ) = min
[
1,
Q(x ′i → xi |x−i )p(x ′i |x−i )
Q(xi → x ′i |x−i )p(xi |x−i )

]
.

As in Sec. 2.2, Q and p are the proposal and equilibrium probability density,
respectively. Note, that this equation is just a special case of Eq. (2.4) for the
update of a single componentxi . From the definition of the conditional probability,
p(xi |x−i ) = p(x)/p(x−i ) and p(x ′i |x−i ) = p(x ′)/p(x−i ), it follows that the common
denominator p(x−i ) cancels in the ratio above.

If the conditional probability p(xi |x−i ) is known, one can choose the proposal
density Q(xi → x ′i |x−i ) = p(x ′i |x−i ) and the acceptance probability becomes unity,
i.e. every MC update of the component xi is always accepted. Usually, this means
that the normalization factor

∫
p(xi ,x−i )dxi has to be calculated in every MC step

and a random variable x ′i has to be drawn from the resulting distribution. This is
efficient if p(xi |x−i ) is a simple analytic expression or if xi is a discrete random
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variable with only a small number of different values so that it can be summed
efficiently.

In the case of the CPIMC algorithm, the time τl of a kink in the configuration
C = (K , {n}, s1, . . . , sK ,τ1, . . . ,τl , . . . ,τK ) is distributed in the interval [τl−1,τl+1)
according to,

p(τl |C−l ) =
1
Zl
|W (C−l )|e−(D{n(l−1)}−D{n(l )})(τl−τl−1),

with the weights

W (C−l ) = (−1)Ke
−

∑K
i=0

i,l−1,l
D{n(i )}(τi+1−τi )−D{n(l )}(τl+1−τl−1) K∏

i=1
q{n(i )}{n(i−1)}(si ),

and the normalization factor

Zl = |W (C−l )|
∫ τl+1

τl−1
e
−(D{n(l−1)}−D{n(l )})(τl−τl−1)dτl

= |W (C−l )|
1 − e−(D{n(l−1)}−D{n(l )})(τl+1−τl−1)

D{n(l−1)} − D{n(l )}
.

As in Eq. (3.10), it is τ0 = 0 and τK+1 = β .
The inverse transform sampling method, see, e.g., [88], can be used to draw a

time τl from this distribution. The cumulative distribution function of p(τl |C−l ) is
given by

Fl (x) =
∫ x

τl−1
p(τ |C−l )dτ

=
1
Zl
|W (C−l )|

1 − e−(D{n(l−1)}−D{n(l )})(τ−τl−1)

D{n(l−1)} − D{n(l )}

for x ∈ [τl−1,τl+1]. Furthermore, it is Fl (x) = 0 for x ≤ τl−1 and Fl (x) = 1 for
x ≥ τl+1 by definition. This function can easily be inverted yielding

F−1l (y) = − ln
�
1 − yZl (D{n(l−1)} − D{n(l )})/|W (C−l )|

�

(D{n(l−1)} − D{n(l )})
+ τl−1.

Given a uniformly distributed random number y ∈ [0, 1), F−1l (y) is a random
number distributed according to p(τl |C−l ) in the interval [τl−1,τl+1). Therefore, a
MC move that updates τl ∈ [τl−1,τl+1) can be implemented efficiently by using
the heat bath idea resulting in an acceptance probability of A(τl → τ ′l ) = 1.
Compared to the simple example above, the use of the heat bath sampling

method for the choice of a new imaginary time τ in the MC steps described in
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Sec. 3.4 is more complex for two reasons. First, a new kink is not only added
between two adjacent kinks at times τi and τi+1 but in a range [τmin,τmax)β
spanning multiple kinks. And second, besides τ , the MC moves update multiple
variables of the configuration C . For those variables, implementing the heat bath
method might be much more difficult or not feasible at all. The latter problem can
easily be solved by realizing that the heat bath method is just a special case of the
Metropolis algorithm. Thus, the uniform distribution p(τ ) = 1/Lβ (τmin,τmax) in
the detailed balance equations above is just replaced by the conditional probability
p(τ |C) and the rest of the steps remains unchanged. The solution to the former
problem will be the focus of the remainder of this section. Due to the difficulties
involved in writing down the general case in a concise way, only the special case
of adding a kink to the right of an existing kink will be considered in detail. All
other cases can be derived analogously and only the end result will be presented.
The detailed balance equation for adding a single kink sb right of an existing

kink sa , Eq. (3.17), is satisfied by the acceptance probability

A(C → C ′) = min
[
1,
prk
pak

2K
K + 1

No

NK

1
p(τb )

�����
W (C ′)
W (C)

�����

]
.

Like in the description of the corresponding step 3., τa is the time of the chosen
kink sa and sb is the new kink to be inserted in the range [τa ,τmax)β . Because of the
asymmetry between the proposal densities for adding and removing a kink, the
proposal density for choosing the new imaginary time τb will be constructed to be
proportional to the ratios of the configuration weights, i.e., p(τb ) ∝ |W (C ′)/W (C)|.

In the configurationC , the range [τa ,τmax)β is composed ofm adjacent intervals
[τa ,τa+1)β , [τa+1,τa+2)β , . . . , [τa+m−1,τmax)β determined by the the times of the
kinks sa+1, . . . , sa+m−1 between τa and τmax. If the imaginary time of the new
kink sb is restricted to a single interval [τi ,τi+1)β with i = a, . . . ,a +m − 1, the
probability density to choose the time τ = τb in that interval is given by

pi (τ |C, sb ) = 1
Zi

�����
W (C ′)
W (C)

�����
=

1
Zi
γie
−ηi (τ−τi ),

where ηi denotes the change of the diagonal energy due to the excitation induced
by sb , e.g., in the case sb = (p,q) one gets

ηi = hqq − hpp +
NB∑
j=0
j,p,q

(w−jqjq −w−jp jp )nj .

Furthermore, the definition γi = |πi |e−κi is used, with κi =
∑i

j=a+1 ηj−1(τj − τj−1)
summing the corresponding diagonal energy changes in all previous intervals
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and with πi reflecting the change in the weights of the kinks. For example, if
sb = (p,q), the ratio of the weights is given by

πi = πa

∏i
j=a+1
sj=(kj ,lj )

�
q{n(j )},{n(j−1)}(kj , lj ) +w−qkjqlj −w−pkjplj

�

∏i
j=a+1
sj=(kj ,lj )

q{n(j )},{n(j−1)}(kj , lj )

with

πa =
q{n(a)′},{n(a−1)}(s ′a)q{n(i )},{n(i )′}(sb )

q{n(a)},{n(a−1)}(sa)
.

Note that the products are over all kinks of type 2 that are between sa and
sb and (kj , lj ) denotes the one-particle excitation associated with kink sj . The
normalization constant can then be calculated as above:

Zi = γi
1 − e−ηi (τi+1−τi )

ηi
.

Likewise, the cumulative density function and its inverse can be found:

Fi (x) = 1
Zi
γi
1 − e−ηi (x−τi )

ηi
, x ∈ [τi ,τi+1)β ,

F−1i (y) = − ln(1 − yZiηi/γi )
ηi

+ τi , y ∈ [0, 1).

Note, that in the limit ηi → 0, the inverse density function becomes F−1(y) →
y(τi+1 − τi ) + τi , i.e., the uniform distribution pi (τ ) = 1/(τi+1 − τi ) is recovered.
As pi is the probability to add sb in the interval [τi ,τi+1)β , it vanishes outside of
that interval, i.e., pi (τ ) = 0 for τ < [τi ,τi+1)β .
The proposal density for adding the kink sb in the whole range [τa ,τmax)β is

the piecewise continuous function

p(τ |C, sb ) = 1
Ztot

a+m−1∑
i=a

Zipi (τ |C, sb ),

with the normalization constantZtot =
∑a+m−1

i=a Zi . The corresponding cumulative
density function is continuous and for x ∈ [τa ,τmax)β given by

F (x) =
∫ x

τa
p(τ |C, sb )dτ

=
1

Ztot

(τix −1∑
j=a

Z j + Zix Fix
)
,
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Figure 3.10: Inverse sampling method for a piecewise exponential distribution.
The figure shows the probability density p(x) (red) which is propor-
tional to an exponential function in each interval and its cumulative
distribution function F (x) (green). The black arrows indicate how a
random variabley ∈ [0, 1) is mapped to a variable x that is distributed
according to p(x). The blue filled curve represents a histogram of
1 × 106 random samples.

where ix is determined by the condition that x ∈ [τix ,τix+1)β . A possible proba-
bility density p(τ ) and its cumulative density function F (x) are shown in Fig. 3.10.
The inverse of the latter is given by

F−1(y) = − ln
�
1 − (yZtot −

∑iy−1
j=a Z j )ηiy /γix

�

ηiy
+ τiy , (3.18)

where iy is determined by
∑iy−1

j=a Z j ≤ yZtot <
∑iy

j=a Z j . Fig. 3.10 includes a
histogram of onemillion random samples to show that F−1(y) is indeed distributed
according to p(τ |C, sb ) for uniformly distributed y ∈ [0, 1).
As γi has to be calculated for each of them intervals in every MC step, it is

important to implement this as efficient as possible. Naively using the equations
above would require a lot of redundant computations. A better approach is to
use the following recursion formulas for i ∈ [a + 1,a +m − 1] andm > 1, which
avoid the redundancy:

πi = pi−1




q{n(i )},{n(i−1)}(ki ,li )+w−qki qli −w
−
pki pli

q{n(i )},{n(i−1)}(ki ,li ) , si = (ki , li )
1, otherwise

,

κi = κi−1 + ηi−1(τi − τi−1),

67



3 Configuration Path Integral Monte Carlo

where πa given above and κa = 0. The full sum in the change of the pair
interaction ηi has to be calculated only in the first interval, i.e., for ηa . In each of
the following intervals, the immediately preceding kink si determines the change
ηi −ηi−1, thus further reducing the computational time from O(mN ) to O(m+N ).

A similar recursion relation can be found for adding a kink sb left of sa :

πi = pi+1




q{n(i+1)},{n(i )}(ki+1,li+1)+w−qki+1qli+1−w
−
pki+1pli+1

q{n(i+1)},{n(i )}(ki+1,li+1) , si+1 = (ki+1, li+1)
1, otherwise

,

κi = κi+1 + ηi+1(τi+2 − τi+1),
for i ∈ [a −m,a − 2] with πa−1 = πa and κa−1 = κa Here, the algorithm steps
through the intervals from the rightmost to the leftmost interval instead of
the opposite direction as in the previous case. The inverse of the cumulative
distribution function is given by:

F−1(y) =
ln
�(yZtot −

∑a−1
j=iy+1 Z j )ηiy /γiy + e−ηiy (τiy +1−τiy )

�

ηiy
+ τiy+1, (3.19)

where the definitions of ηi , γi , and Zi are the same as before1, Ztot =
∑a−1

j=a−m Z j ,
and iy is determined by

∑a−1
j=iy+1 Z j ≤ yZtot <

∑a−1
j=iy Z j . Because of y = 1−(1−y),

the expression above can be rewritten to:

F−1(y) =
ln
�
1 − ((1 − y)Ztot −

∑a−1
j=iy+1 Z j )ηiy /γix

�

ηiy
+ τiy+1,

with
∑a−1

j=iy+1 Z j < (1 − y)Ztot ≤
∑a−1

j=iy Z j . This form more closely resembles the
formula for adding the new kink right of sa and avoids the calculation of an
additional exponential function.

Moving an existing kink τa with imaginary time τa , i.e., choosing a new time
τ ′a ∈ [τmin,τmax)β , where [τmin,τmax)β consists ofml intervals left of τa andmr
intervals right of τa , can be accomplished by the following procedure: First one
calculates Zl =

∑a−1
j=a−ml

Z j and Zr =
∑a+mr−1

j=a Z j using the formulas above for
the left and right case, respectively, with an appropriate definition of πa−1 and
πa . Then, one uses Eq. (3.19), if yZtot < Zl , and Eq. (3.18), otherwise.

The heat bath method for the CPIMC algorithm results in a significant speedup
if ηLβ (τmin,τmax) is large. If it is small, this method can even be slower than
a simple uniform sampling of the kink times, but only by a small factor. The
1In the actual implementation, ηi is replaced by −ηi in these formulas for historical reasons.
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reason is thatW (τ ′)/W (τ ) has to be calculated for the maximum possible range
[τmin,τmax)β , instead of only the range that actually changes, i.e., for the range
[τ ,τ ′]β . Nevertheless, the heat bath idea is essential for greatly increasing the
sampling efficiency of the Matsubara Green function, see Sec. 3.7.

In a recent paper [89], Holmes et. al. propose a heat bath method for choosing
the excitation s with a probability proportional to the matrix element q{n},{n′}(s).
They report large efficiency gains for FCIQMC simulations of different molecular
test systems. Compared to choosing uniformly between all possible one- and two-
particle excitation as presented in the previous section, this idea could result in
similar gains for CPIMC simulations. A potential drawback is that usually more
than one matrix element determines the acceptance probability in the CPIMC
method. Therefore, the usefulness of the idea for CPIMC simulations remains
unclear.

3.6 Parallelization

The high computational demands of the numerical treatment of state-of-the-art
quantum mechanical problems cannot be satisfied by serial calculations on a
single processor core. Thus, the computational work has to be split among a
large amount of processors. On modern high-performance-computing clusters,
several thousand processors are available. While Moore’s law, which states that
the CPU transistor counts double approximately every two years, is still valid, the
growth of single-thread performance slowed down significantly in recent years
and programs are forced to use the increasing number of cores per processor
unit even on desktop machines to benefit from current technological advances.
These developments are especially beneficial for MC simulations as they belong
to a class of so-called “embarrassingly parallel” computations.
For a problem of fixed size, the effective speedup S of a program that only

partly benefits from additional resources can be described by Amdahl’s law [90]

S =
1

(1 − p) + p/P , (3.20)

where P denotes the ideal speedup due the additional resources and p denotes
the fraction of the program to which that speedup applies to. In the case of
parallelization, P is the number of cores and p is the fraction of the work that can
be done in parallel while 1 − p is the serial part of the program. Fig. 3.11 shows
the speedup of a CPIMC simulation compared to the calculation of an observable
with fixed accuracy on a single core. A fit of Amdahl’s law to the data reveals
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Figure 3.11: Speedup of CPIMC due to parallelization. The test system consists of
N = 33 particles in the HEG at temperature θ = 4 and rs = 2. Blue
dots show the measured speedup with increasing number of cores
P for the fixed size problem of calculating the total energy with an
relative statistical error of 6 × 10−5. A fit of Amdahl’s law (3.20) to
the data is given by the blue dashed line. The ideal speedup is shown
in black for comparison.

a parallel fraction of p = 99.88 % for this test system of N = 33 particles in the
HEG at temperature θ = 4 and rs = 2 with a relative accuracy of the total energy
of 6 × 10−5. In this particular test case, the speedup is approximately optimal
for up to 100 cores. This nearly ideal behavior with respect to parallelization
is inherent to MC methods. Ignoring possible autocorrelation, which is only
important for the error estimation, the result of a simulation is just the average
over independent samples. Thus, producing NMC samples can be split among
P processor cores each producing NMC/P samples. The very small serial part
consists mainly of the time needed for equilibration and the time to collect and
average the results of the independent simulations.
It is important to ensure that the simulations are indeed independent. Be-

cause in the current implementation of the CPIMC method all simulations start
from the same initial configuration, the equilibration time of each simulation
should amount to the order of hundred autocorrelation times. This is the largest
contribution to the serial part of the CPIMC method. Furthermore, the random
number generator needs to provide independent streams of random numbers
that do not overlap. The current implementation relies on the very long period
of the Mersenne Twister [91]. The random number generator of each simulation
is initialized with a random seed. Typically far less than 1 × 106 streams each
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consisting of less than 1 × 1012 random numbers are used. Because of the period
of 219937 − 1 ≈ 4.3 × 106001 it is very unlikely that an overlap occurs.
As the results of each simulation can be considered being independent, the

calculation of statistical errors is even easier than in a serial MC simulation
where the autocorrelation time needs to be accurately estimated2. However, a
potential pitfall arises when averaging the results. Due to the sign problem, all
results for physical observables are ratio estimators of the form r = a/b. The
naive summation, r 1 = 1

M
∑M

i=1 ri , will lead to a bias of the average r 1 that only
depends on the relative uncertainty of the denominator bi , i.e., the average sign
of a MC simulation, and not on the number of simulationsM . Since the statistical
error of r 1 decreases with 1/

√
M , the bias will become significant with increasing

number of simulations. A better way to estimate r is to average nominator and
denominator separately before calculating the ratio:

r 2 =
a

b
=

1
M

∑M
i=1 ribi

1
M

∑M
i=1 bi

.

Thebias of the ratio estimator r 2 will decrease with 1/M and is thus asymptotically
unbiased. For the estimation of the statistical error of r 2, one has to take the
cross-correlation between a and b into account:

σ 2
r 2
= r 22

[ (σa
a

) 2
+

(σb
b

) 2
− 2

σab

ab

]
, (3.21)

with the sample standard deviation of the mean

σ 2
x =

σ 2
x

M
=

1
M(M − 1)

M∑
i=1

(xi − x)2 = x2 − x2

M − 1
,

and the sample covariance of the means

σab =
σab
M
=

1
M(M − 1)

M∑
i=1

(ai − a)(bi − b) = ab − ab

M − 1
.

For most applications, the bias of r̄2 can be neglected because the statistical
uncertainty is much larger for any reasonable M . However, if several similar
values r̄2(x) for different parameters x are combined, e.g., when integrating a
smooth function r (x) using the points r̄2(x), the bias of the aggregated value may
2Calculating the autocorrelation time may still be useful to estimate the necessary equilibration
time and the most efficient cycle.
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Figure 3.12: Comparison of ratio estimators. The points denote the expected
mean of averaging overM independent samples r = a/b according
to three different estimators r 1, r 2, and r 3. The error bars show the
corresponding expected standard deviation of the mean σr . The true
mean is r = a/b = 1, shown by the black line. The relative error
of a and b of a single sample is 20 %. The naive estimator r 1 has a
constant bias independent of the number of samples, while the bias
of the standard and Beale’s estimator decrease like 1/M and 1/M2,
respectively. Note that the standard deviation is not a good estimate
for the true error in such an extreme case because the distribution of
r is heavily skewed.

still become significant compared to its statistical error. In that case, one can
either increase the number of samples of the serial simulations to reduce the
relative error of the values bi at the cost of a longer runtime or use a higher order
estimator, e.g., Beale’s estimator [92–94]:

r 3 = r 2

1 +
1
M

σab

ab

1 +
1
M

σ 2
b

b
2

.

The bias of this second order estimator decreases with 1/M2. Up to the order of
1/M , the statistical error of r 3 equals that of r 2, i.e., σr 2 ' σr 3 . As the covariance
has to be already calculated for a reliable error estimation, Beale’s estimator
reduces the bias with little overhead. A comparison of the three ratio estimators
r 1, r 2, and r 3 is shown in Fig. 3.12.
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3.7 The Worm Algorithm

Proposed for lattice models by Prokof’ev et. al. [40] and adapted to continuous-
space PIMC simulation by Boninsegni et. al. [20], the worm algorithm is one
of the most successful MC methods for the simulation of quantum many body
problems at finite temperatures. It is widely used for classical and quantum lattice
models [95–97], the Anderson impurity model [36, 98, 99], the PIMC method
in coordinate representation [74], and Diagrammatic Monte Carlo (DiagMC)
simulations of polaron models [35]. Its basic idea is to extend the configuration
space of the partition function consisting of closed world lines by introducing
two discontinuities called the head and the tail of the worm. The advantage of the
worm algorithm is twofold. First, it enables the direct sampling of the Matsubara
Green Function (MGF), which is generally difficult to obtain from expansions
of the partition function but allows for the calculation of dynamic quantities
from equilibrium simulations by a reconstruction of the one-particle spectral
function [41]. And second, it greatly increases the sampling efficiency in cases
of critical slow down in the presence of metastable states, like in the vicinity of
phase transitions. Since MC updates do not have to resemble physical dynamics,
local updates are performed in the extended configuration space of the MGF
resulting in non-local updates in the configuration space of the partition function.
Several variations that, e.g., restrict the movement of the worm in imaginary
time or introduce multiple worms, have been developed [30, 100, 101].

Based on the observed enhancements of other methods by the introduction of
the worm algorithm, the first goal of this work was its adaption to the CPIMC
method to overcome low acceptance probabilities preventing the simulation of
larger systems [31]. Chronologically, the steps in the next section have been
implemented before the development of the closed-path updates presented in
Sec. 3.4. However, even after the implementation of a second worm, it was not
possible to find MC steps that are ergodic due to the sparse structure of the
Hamiltonian. Thus, the local updates of Sec. 3.4 are necessary in addition to
the worm moves to ensure ergodicity of the algorithm. Additionally, the strong
dependence of the number of kinks on the particle number causes a runaway
effect for calculations with varying particle numbers, cf. Sec. 5.4. These problems
could not be overcome during this work, although ideas exist to partly mitigate
them. Therefore, the usefulness of the worm algorithm for the CPIMC method is
reduced to the sampling of the MGF and related quantities and it is not used if
only canonical expectation values are of interest.
In the grand-canonical ensemble, it is convenient to switch to a modified

interaction picture with respect to D̂ ′ = D̂ − µN̂ , where D̂ is the diagonal part of
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the Hamiltonian Ĥ = D̂ + Ŷ in the chosen basis as usual, N̂ is the total particle
number operator, Eq. (3.6), and µ the chemical potential. As it is always clear from
the context which ensemble is used, the prime will be dropped in the following.
In this modified interaction picture, the MGF can be written as [87]

Gi j (τ ,τ ′) = 1
Z
Tr

{
e−β D̂T̂

[
e−

∫ β
0 Ŷ (τ̄ )dτ̄ âi (τ )â†j (τ ′)

] }
,

with the grand-canonical partition function, cf. Eq.(2.2),

Z (µ, β,V ) = Tr
{
e−β D̂T̂ e−

∫ β
0 Ŷ (τ̄ )dτ̄

}
.

Note that the trace has to be evaluated in the Fock space. Following the derivation
of the CPIMC expression for the canonical partition sum, Eq. (3.9), a similar
formula can be found for the so-called Green function sum

G B
∞∑

i, j=1

∫ β

0
dτh

∫ β

0
dτtZGi j (τh ,τt )

=

∞∑
K=0

∑
{n}

∑
i, j

∑
s1

∑
s2

· · ·
∑
sK

∫ β

0
dτh

∫ β

0
dτt

∫ ′

dKτ

(−1)K 〈{n}|e−β D̂T̂ �q̂(sK ,τK ) · · · q̂(s1,τ1)âi (τh)â†j (τt )
�|{n}〉 ,

where q̂(s,τ ) = eτ D̂q̂(s)e−τ D̂ are the kink operators defined by Eq. (3.8) and the
sum over {n} includes Slater-determinants with varying particle number. Af-
ter inserting K + 1 identity operators and explicitly applying the time ordering
operator, one arrives at

G =
∞∑
K=0

∑
{n}

∑
i, j

∑
s1

∑
s2

· · ·
∑
sK−1

∫ β

0
dτh

∫ β

0
dτt

∫ ′

dKτ
∑

σ ∈SK+2

θ̄ (τσ (1), . . . ,τσ (K+2))

(−1)K+θ (τt−τh )e−
∑K+2
k=0 D{n(σ (k ))}(τσ (k+1)−τσ (k ))

K+2∏
k=1

q̄{n(σ (k ))},{n(σ (k−1))}(sσ (k )),

where σ ∈ SK+2 is a permutation of K + 2 indices, σ (0) = 0, σ (K + 3) = K + 3,
τ0 = 0, τK+1 = τh , τK+2 = τt , τK+3 = β , and the sum over sK was dropped
because one kink is uniquely determined by all other kinks under the condition
{n(0)} = {n(σ (K+2))} = {n}, i.e., β-periodicity. Because of the definitions sK+1 = i
and sK+2 = j, the variable sk denotes a multi index s ∈ N2 ∪ N4 only in the case
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Figure 3.13: Open path in the worm algorithm with K = 3 kinks of type 2 and
type 4 at τ1, τ2, and τ3. In addition to a closed path as show in Fig. 3.2
an open path contains a single pair of worm operators at τh and τt ,
respectively. The particle number now depends on the imaginary
time and varies between N = 2 and N = 3. Note, that due to the
time ordering permutation of the kinks it is {n(σ (4))} = {n(5)}.

k ∈ {1, . . . ,K}. To ensure the correct time ordering the following notations have
been introduced:

ˆ̄q(sσ (k ),τσ (k )) B




âi (τh), σ (k) = K + 1

â†j (τt ), σ (k) = K + 2

q̂(sσ (k ),τσ (k )), σ (k) ∈ {1, . . . ,K}

,

which defines the generalized kink operator ˆ̄q(s), and
θ̄ (τσ (1), . . . ,τσ (K+1)) B θ (τσ (2) − τσ (1)) · · · θ (τσ (K+2) − τσ (K+1)),

which is non-zero only if the permutation σ corresponds to the correct time
ordering of the integration variables τ1, . . . ,τK ,τh ,τ , t , i.e., for any given set of
imaginary times θ̄ picks exactly one permutation of the kink indices.
Due to the time ordering, the Green function sum looks more complicated

than the partition sum, Eq. (3.9), but it can be interpreted in the same way
with the addition of a single pair of the two new kink operators âi (τh) and
â†j (τt ), called the head and tail of the worm, respectively. A visualization of a
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typical contribution to G is given in Fig. 3.13. In contrast to the partition sum,
where all trajectories are closed loops, the contributions to the Green function
sum are β-periodic open paths. Such a configuration is uniquely defined by
CG = (K , {n}, i, j, s1, . . . , sK ,τh ,τt ,τ1,τK ) and its weight is given by

WG (CG ) =
∑

σ ∈SK+2

θ̄ (τσ (1), . . . ,τσ (K+2))

(−1)K+θ (τt−τh )e−
∑K+2
i=0 D{n(σ (i ))}(τσ (i+1)−τσ (i ))

K+2∏
i=1

q̄{n(σ (i ))},{n(σ (i−1))}(sσ (i))

where just one term of the sum is non-zero. The worm’s contribution to the
weight is only a sign change. The sign depends on the order of the head and the
tail as well as the total number of particles in orbitals below the orbitals i and j
at the imaginary time τh and τt , respectively.

3.8 Green Function Estimator

Finding an estimator for the MGF that has a low variance and is free of discretiza-
tion errors is a difficult task. The trivial estimator that just counts the number of
times that the head and the tail of the worm are in the bin associated with the
pointGi j (τh ,τt ) fails at both demands. Increasing the bin size can improve the
statistical error but comes at the cost of a large discretization error. On the other
hand, a small bin size results in only a few counts per bin and therefore has a
large variance. An estimator without discretization error proposed by Boninsegni
et. al. [20] works well for the PIMC method in coordinate representation but
exhibits large statistical fluctuations in the case of CPIMC, rendering it unusable
for interesting system sizes. A significantly better estimator, developed together
with Simon Groth, will be presented in the following. A detailed comparison of
different estimators for the MGF can be found in his master thesis [59].
Comparing the definition of the Green function sum, Eq. 3.7, and its final

expression, Eq. 3.7, one finds

Gi j (τh ,τt ) = 1
Z

∫∑
C

WG (C, i, j,τh ,τt ),

with the previously used abbreviation for the summation and integration over
all closed paths C = (K , {n}, s1, . . . , sK ,τ1, . . . ,τK ). Because the MGF is homoge-
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neous in imaginary time,Gi j (τ ,τ ′) = Gi j (τ − τ ′, 0), one can write

Gpq(τ , 0) = Gpq(τ + τt ,τt ) = 1
β

∑
i, j

∫ β

0
dτtδi,pδ j,qGi j (τ + τt ,τt )

=
1
Z

1
β

∫∑
C

∑
i, j

∫ β

0
dτtδi,pδ j,qWG (C, i, j,τ + τt ,τt ).

Dropping all arguments ofWG apart from the time of the head τh for clarity, the
following identities hold:

WG (τ + τt ) =
∫ ′β
0 dτh |WG (τh)|WG (τh)/WG (τh)∫ ′β

0 dτ ′ |WG (τ ′)|
WG (τ + τt )

=

∫ ′β

0
dτh

WG (τ + τt )/WG (τh)∫ ′β
0 dτ ′ |WG (τ ′)/WG (τh)|

WG (τh).

The prime on the integral denotes a restriction of the integration to the region
where the weight of the current path is non-zero,WG (τh) , 0. Defining the ratio
of the weights

R(τh → τ + τt ) = WG (C, i, j,τ + τt ,τt )
WG (C, i, j,τh ,τt )

and multiplying by G/G, one arrives at

Gpq(τ , 0) = G

Z

1
G

1
β

∫∑
CG

′(
δi,pδ j,q

R(τh → τ + τt )∫ ′β
0 dτ ′ |R(τh → τ ′)|

)
WG (CG ). (3.22)

As the MC algorithm will only sample configurations with non-vanishing weight,
the restriction of the integration toWG , 0 will be taken into account implicitly
and the prime of the outer integral can be dropped. In a given path, the integral
in the denominator is at least restricted to the interval [τl ,τr ]β defined by the
times of the nearest kinks left and right of τh that affect the orbital i . Depending
onWG (τ ), the integration region may be even smaller. As will be shown in the
next section, the ratio R also appears in the acceptance probability for moving
the head of the worm in imaginary time. Therefore, the estimator forGpq(τ , 0) is
related to the normalized probability for moving the head from its position τh
in the configuration CG to the new position τ + τt while all other components
of CG are fixed. Therefore, one can reuse the implementation of the heat bath
sampling for the calculation of estimator, see Seq. 3.5.
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The evaluation of Eq. (3.22) requires the calculation of the ratio G/Z . While,
in general, the Metropolis algorithm cannot calculate the partition functions Z
or G separately, their ratio has a rather simple estimator if one samples both
the configurations CG , which contribute to the MGF, and the configurations C ,
which contribute to thermodynamic expectation values, in a single simulation by
constructing a Markov chain in the combined configuration space of the quantity

Ztot = Z + ωG =

∫∑
C

W (C) +
∫∑
CG

ωWG (CG ) C
∫∑
Ctot

Wtot(Ctot).

Here, the sum overCtot combines the sums overC andCG andWtot(Ctot) is either
W (C) or ωWG (CG ) depending on Ctot. The parameter ω can be freely chosen to
balance the relative weight between Z and G and thus the time spent by the
algorithm in the respective configuration spaces. Using Eq. (2.5) and the relations

Z =

∫∑
Ctot

δZ (Ctot)Wtot(Ctot),

G =

∫∑
Ctot

1
ω
δG (Ctot)Wtot(Ctot),

where δZ /G (Ctot) = 1 if Ctot is a closed (open) path and δZ /G (Ctot) = 0 otherwise,
one gets

G

Z
=
G ′

Z ′
〈s〉′G
〈s〉′Z

=
1
ω

〈δG 〉′tot
〈δZ 〉′tot

〈s〉′G
〈s〉′Z
.

In other words, one just has to count the numbers of samples in the respective
configuration spaces and measure the corresponding average signs to get an
accurate estimate for the desired ratio. The MC steps that sample configurations
inG and switch between the configuration space of Z andG are presented in the
next section.
The estimator for the MGF still has a relatively large variance because the

denominator
∫
0
′βdτ ′ |R(τh → τ ′)| can be small if the interval between the kinks

adjacent to the head on orbital i is small. This leads to occasionally very large
values and the distribution of the samples is heavily skewed. Nevertheless, as
shown in [59], it performs significantly better than other estimators and can yield
accurate results if the number of kinks is not too large. In particular, Eq. (3.22)
is an improvement over the closed path estimator for the off-diagonal part of
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the reduced one-particle density matrix, Eq. (3.11). The MGF is connected to the
one-particle density matrix by

dpq = lim
τ→0−

Gqp (τ , 0). (3.23)

The limit has a defined particle number and thus allows for the sampling of the
canonical density matrix in addition to the grand-canonical expectation value.

3.9 Monte Carlo Steps for the Worm Algorithm

For the evaluation of the expectation value of the MGF, the MC algorithm has
to sample configurations in the combined configuration space of Z and G. In
addition to all β-periodic closed paths constructed from the elements depicted in
Sec. 3.4, the algorithm must be able to create all possible open paths containing a
so-called worm, i.e., a single pair of a head, , and a tail, . In contrast to the
worm algorithm in lattice systems or in the coordinate representation, no ergodic
set of updates involving only the worm could be found for the systems governed
by the full Coulomb pair interaction studied in this work. Therefore, the steps
presented in the following have to be used in addition to the steps from Sec. 3.4,
mitigating the advantage of effective non-local sampling observed in simpler
systems. There are four different MC steps involving the head of the worm, i.e,
being applicable to open paths only. These steps move the head in imaginary
time or between orbitals, thereby creating new kinks or changing existing ones.
Due to the symmetry of the MGF, one can restrict these additional MC updates to
the head only and does not need to move the tail. Two MC steps add or remove
the worm by adding and removing a line segment, i.e., they switch between the
configuration spaces of open and closed paths. The steps from Sec. 3.4 are applied
to closed and open paths as well. In the following, a detailed description of the
six additional steps is presented:

1. Add the worm
Choose a random orbital p and a time τt uniformly distributed in (0, β). There
are two possibilities:

A) At time τt the orbital p is occupied

i. Find the time τmin of the first kink on the left of τt affecting the
orbital p if there exists such a kink.

ii. If τmin exists, choose a time τh in the interval (τmin,τt )β at random.
Otherwise, choose τh ∈ (0, β). Head and tail of the worm are given
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←→
tail head

←→
head tail

Figure 3.14: Illustration of the MC steps for adding and removing a worm, i.e., a
pair of a head operator âi (τh) and a tail operator â†j (τt ). Left: a worm
is added into an empty orbital or removed according to case b) of
both branches of step 2., respectively. Right: a worm is inserted into
an occupied orbital or removed according to case a) of both branches
of step 2., respectively. The sketches depict only a relevant subset of
the path. For details see also Fig. 3.3.

by âp (τh) and â†p (τt ), respectively. This corresponds to removing a
particle in the interval [τh ,τt ]β .

B) At time τt the orbital p is empty

i. If there are kinks affecting orbital p, find the time τmax of first one
on the right of τt .

ii. Randomly choose a time τh in the interval (τt ,τmax)β , or in (0, β)
if there are no kinks affecting the orbital p. Head and tail of the
worm are given by âp (τh) and â†q(τt ), respectively. This corresponds
to adding a particle in the interval [τt ,τh]β .

2. Remove the worm
Head and tail of the worm are given by âp (τh) and â†q(τt ), respectively. Reject
the step if p , q. Otherwise, there are two possibilities:

A) There are no other kinks affecting the orbital p

i. Choose one of the following two cases at random:

a) Remove the worm while occupying the interval [τh ,τt ]β .
b) Deleting the worm removes a particle in the interval [τt ,τh]β .

B) There is at least one additional kink affecting the orbital p

i. There are two possibilities:

a) The head of the worm is the first kink on the left of the tail
on the orbital p. Removing both adds a particle in the interval
[τh ,τt ]β .

b) The head is the first kink affecting the orbital p right of the tail
of the worm. Delete the worm while removing a particle in the
interval [τt ,τh]β .
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τh
←→

τ ′h

Figure 3.15: Move the head of the worm in
imaginary time. This simple MC step is essen-
tial for the sampling of the MGF.

3. Move the head in time
The head is given by âp (τh).

i. On the orbital p, find the time of the first kink on the left of τh , τmin,
and the time of the first kink on the right, τmax. If there is only one
other kink affecting orbital p, it is τmin = τmax.

ii. Randomly find a new time for the head, τ ′h , τh , in the interval
(τmin,τmax)β , or in (0, β) if τmin = τmax.

iii. Move the head of the worm from τh to τ ′h . Distinguish the following
two cases:

a) If τ ′h is left of τh in the β-periodic time ordering, moving the
head corresponds to removing a particle in the interval [τ ′h ,τh]β .

b) If τ ′h is on the right of τh , a particle is added in [τh ,τ ′h]β while
moving the head.

4. Add a kink
The head is given by âp (τh). Choose an orbital q , p at random. There are two
possibilities:

A) The orbital q is occupied at time τh
i. Find the time τmax of the first kink right of τa affecting either orbital
p or q.

ii. Choose a random time τa in the interval [τh ,τmax)β . The new kink is
given by sa = (q,p) at τa .

iii. Move the head from orbital p to orbital q, thereby exciting a particle
from q to p in the interval [τh ,τmax]β .

B) At time τh , there is no particle on orbital q

i. From all kinks left of τh that affect the orbitals p or q, find the closest
one with time τmin.

ii. Randomly choose a time τa in the interval (τmin,τh]β . The new kink
is given by sa = (p,q).

iii. Move the head from orbital p to orbital q. In the interval [τmin,τh]β ,
a particle is excited from p to q.
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←→ ←→

Figure 3.16: Add and remove a kink by moving the head of the worm between
orbitals. Left: the head is moved to an empty orbital and thus a kink
is added or removed to the left of τh . Right: moving the head to an
occupied orbital adds or removes a kink to the right of τh . In both
cases, only type 2 kinks can be added or removed.

5. Remove a kink
The head is given by âp (τh). Choose one of the following two cases at random:

A) Remove a kink left of τh
i. Find the kink sa that is closest to the left of τh of all kinks affecting
orbital p.

ii. Reject the step if sa , (q,p).
iii. Remove the kink sa and change the orbital of the head from p to q,

thereby exciting a particle from p to q in the interval [τa ,τh]β .
B) Remove a kink right of τh

i. Find the nearest kink right of τh that affects orbital p.

ii. If the kink is not of type 2, i.e., not given by sa = (p,q), reject the
move.

iii. Delete the kink sa and move the head from orbital p to orbital q. This
corresponds to a one-particle excitation from q to p in the interval
[τh ,τa]β .

6. Change a kink
The head is given by âp (τh). Choose one of the following two cases at random:

A) Change a kink on the left of τh
i. In the time ordering of all kinks, let sa be the kink immediately
preceding the head of the worm.

ii. For the choice of a random orbital q, consider the following cases:

a) If sa = (i, j,k, l) and p , [i, j], choose q ∈ [k, l].
b) In all other cases, choose q , p at random from the occupied

orbitals at τh .

82



3.9 Monte Carlo Steps for the Worm Algorithm

a)
←→

b)
←→

c)
←→

d)

←→

e)
←→

f)

←→

Figure 3.17: Change a kink by moving the head of the worm between empty
orbitals, case A). The labels a) to f) correspond to the cases of point
iv. Cases c) and e) allow for the insertion of a type 4 kink into the
path, but rely on the existence of a matching type 2 kink.

iii. If sa = (p,q), reject the step. The orbital of the head changes from p
to q otherwise.

iv. The kink sa changes in one of the following ways:

a) sa = (p, j) ⇒ s ′a = (q, j)
b) sa = (i,q) ⇒ s ′a = (i,p)
c) sa = (i, j) ⇒ s ′a = (i,q, j,p)
d) sa = (p, j,k, l) ⇒ s ′a = (q, j,k, l) or

sa = (i,p,k, l) ⇒ s ′a = (i,q,k, l)
e) sa ∈ [(p, j,q, l), (j,p,q, l), (p, j, l ,q), (j,p,q, l)] ⇒ s ′a = (j, l)
f) sa = (i, j,q, l) ⇒ s ′a = (i, j,p, l) or
sa = (i, j,k,q) ⇒ s ′a = (i, j,k,p)

B) Change a kink on the right of τh
i. The kink immediately following τh in the β-periodic time ordering
of all kinks is sa .

ii. Choose an orbital q at random depending on the following cases:

a) If sa = (i, j,k, l) and p , [i, j], choose q ∈ [k, l].
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a)
←→

b)
←→

c)
←→

d)

←→

e)
←→

f)

←→

Figure 3.18: Change a kink by moving the head of the worm between occupied
orbitals, case B). The labels a) to f) correspond to the cases of point iv.
of branch A). Cases c) and e) allow for the insertion of a type 4 kink
into the path, but rely on the existence of a matching type 2 kink.

b) Otherwise, choose q , p randomly from all orbitals that are
occupied at τh .

iii. Reject the step if sa = (p,q). Otherwise, move the head from orbital
p to orbital q.

iv. The kink sa changes according to the rules in point iv. of case A).

The steps 1. to 6. are chosen with the probabilities paw and prw for adding
and removing the worm, pmht for moving the head in time, and phak, phrk, phck
for adding, removing, and changing a kink by moving the head in orbital space.
In a closed-path configuration, these probabilities are set to zero, except for paw,
which is set to zero in open-path configurations instead. Usually, the non-zero
probabilities are set equally to the probabilities of the steps that do not involve
the worm. The free parameter ω, which balances the relative weight of open and
closed paths, is determined during the equilibration time so that the acceptance
ratios for adding and removing the worm are about the same. This choice was
found to be sufficiently efficient for all parameters, while strongly biased ratios
can lead to wrong results. An open-path configuration is denoted by CG and
its weights byWG (CG ), while closed-path configuration are described by C and
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3.9 Monte Carlo Steps for the Worm Algorithm

W (C) as in Sec. 3.4. All other notations used in the following detailed balance
equations are defined there as well.

1.↔2. The detailed balance for switching between the configuration spaces of
closed and open paths, i.e., between a configuration C without a worm
and a configuration CG = (C,p,q,τh ,τt ) containing a worm, as shown in
Fig. 3.14, is given by:

paw
1
β

1
NB

p(τh)|W (C)|ν (C → CG )

= prw
1
d
ω |WG (CG )|ν (CG → C),

where d = 2 if the orbital p is not affected by any kink apart from the worm.
Otherwise, it is d = 1.

3.↔3. This step moves the head of the worm in imaginary time as shown in
Fig. 3.15. Moving the head between τh in the configuration CG and τ ′h in
C ′G fulfills the detailed balance equation

pmhtp(τ ′h)WG (CG )ν (CG → C ′G )
= pmhtp(τh)WG (C ′G )ν (C ′G → CG )

Using the heat bath idea and thus setting the distribution of the imag-
inary time τ ′h to p(τ ′h) = |R(τh → τ ′h)| /

∫
|R(τh → τ ′h)|dτ ′h with the ratio

R(τh → τ ′h) =WG (C, i, j,τ ′h ,τt )/WG (C, i, j,τh ,τt ), results in the acceptance
probability A(CG → C ′G ) = 1, i.e., the step is never rejected.

4.↔5. These steps, which are illustrated in Fig. 3.16, move the head of the worm
from one orbital to another by changing a configuration CG with K + 2
kinks to a configurationC ′G withK+3 kinks and vice versa. The acceptance
probabilities are determined by:

phak
1

NB − 1
p(τa)|WG |(CG )ν (CG → C ′G )

= phrk
1
2
|WG (C ′G )|ν (C ′G → CG ).

6.↔6. Moving the head of the worm in orbital space while changing an existing
kink switches between the configurations CG and C ′G as illustrated in
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Figs. 3.17 and 3.18. This leads to the following detailed balance equation:

phck
1
2

1
Nq

WG (CG )ν (CG → C ′G )

= phck
1
2

1
Nq

WG (C ′G )ν (C ′G → CG ),

where Nq = Ne in case A)ii.b) and Nq = Nf in case B)ii.b). In case ii.a), it
is Nq = 2 for both directions.

If not stated otherwise, for the random choice of a new imaginary time, the heat
bath method is used, see Sec. 3.5.
Together, the steps presented here and in Sec. 3.4 are ergodic and fulfill the

detailed balance, thus creating a Markov chain in the extended configuration
space of open and closed paths. The combined sampling is needed to determine
the ratio G/Z occurring in the estimator for the MGF. The MGF itself has to
be sampled in the subspace of open paths containing any number of particles,
while the calculation of thermodynamic estimators in the canonical ensemble,
like the ones presented in Sec. 3.3, has to be restricted to closed paths with a
given particle number N . As the weightWtot(CN ) of a configuration with N
particles in the total configuration space contributing to Ztot differs from its
weightWN (CN ) in the canonical configuration space contributing to Z (N ) only
by a normalization factor that is constant for a given N during the simulation,
the subset of closed path samples CN ,i with particle number N is distributed
according toWN (CN )/Z (N ). Therefore, an estimate for an expectation value
〈O〉N in the canonical ensemble is simply given by the arithmetic mean over
O(CN ,i ). Likewise, estimates in the grand-canonical ensemble and of the MGF
can be calculated by only considering the subset of samples belonging to the
corresponding configuration spaces and ignoring the rest. As each subspace is
visited with a different frequency, the autocorrelation time between samples of
one subset differs from the autocorrelation time between samples belonging to
another one. It is therefore advantageous to use an optimized cycle, cf. Sec. 2.2,
for each subset, e.g., a large cycle for samples belonging to the grand-canonical
ensemble and a small cycle for samples contributing to an expectation value for a
certain particle number N . This non-trivial sampling procedure is demonstrated
in Fig. 3.19. Note, that conditional sampling, like taking always the first sample
after entering an associated subspace, leads to a wrong result.

As mentioned above, the six MC steps presented in this section are not ergodic
on their own. An obvious limitation is that the creation of a type 4 kink with a
non-zero weight requires the existence of a matching type 2 kink in the current
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3.9 Monte Carlo Steps for the Worm Algorithm

All samples: C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 · · ·

Contr. to G(µ, β ,V ): C2 C3 C4 C7 C9 C10 C14 · · ·

Contr. to Z (µ, β,V ): C1 C5 C6 C8 C11 C12 C13 · · ·

Contr. to Z (N1, β,V ): C1 C8 · · ·

Contr. to Z (N2, β,V ): C5 C6 C11 C12 C13 · · ·

... · · ·

Figure 3.19: Example for the sampling procedure in the total configuration space.
Shown are the first 14 configurations after the end of the equili-
bration time. While all configurations contribute to the ratio G/Z ,
only a certain subset of configurations contributes to other quanti-
ties, e.g., only CN1,1 = C1 and CN1,2 = C8 contribute to expectation
values in the canonical ensemble with N1 particles. To reduce the
autocorrelation time, only every second sample CN1,i is taken into
account for calculating averages over O(CN1,i ) as indicated by the
blue background. Because of a larger autocorrelation time, a cycle
of n = 3 is chosen for the samples contributing to the MGF and the
grand-canonical partition function, respectively, and n = 4 forG/Z .
In real simulations, the cycles are much larger and can span several
thousand MC steps.

configuration. For example, in the HEG, because of momentum conservation,
type 2 kinks do not exist at all, i.e., all kinks inducing a one-particle excitation
have a vanishing weight. For similar reasons, some type 4 kinks are incorrectly
missing from all configurations in simulations for other Hamiltonians as well. In
an attempt to solve the violation of the ergodicity condition, a second worm was
introduced and a step that moves both heads at the same time was implemented.
Although this step can add type 4 kinks directly without relying on the existence
of a matching type 2 kink in the path, it is not sufficient for the algorithm to
be ergodic, as revealed by comparison with simulations involving virtual kinks.
The remaining missing configurations include combinations of at least three
different type 4 kinks and no variation of the worm updates could be found to
construct them, see. [59]. Therefore, the closed path updates of Sec. 3.4 had to be
implemented in addition. However, as two worms allow for the direct sampling of
the two-particle Green function Gi jkl (τ1,τ2,τ ′1,τ ′2) = 〈T̂ âi (τ1)âj (τ2)â†k (τ ′2)â†l (τ ′1)〉,
the step might be useful in the future and will therefore be briefly presented here
in detail.
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τl τr

←→

τl τr

τl τr

←→

τl τr

τl τr

←→

τl τr

Figure 3.20: Moving the heads of two worms
at once, thereby adding or removing a type 4
kink directly. The short horizontal lines mark
the times of additional kinks in the path that
determine the limits τmin, τ ′min, τmax, or τ ′max.
The limits τl and τr of the interval I that are
indicated by the horizontal dashed lines deter-
mine the possible range for the time τa of the
kink to be added. Top: The kink sa is added or
removed left of both heads corresponding to
the cases 7.A) and 8.iv.a), respectively. Mid-
dle: The kink sa is located on the right of
both heads corresponding to the cases 7.B)
and 8.iv.b), respectively. Bottom: The cases
7.C), 7.D), 8.iv.c), and 8.iv.d) refer to adding
or removing the kink sa between both heads
of the worms.

7. Add kink by moving two heads
The first head is given by âp (τh) and the second by âq(τ ′h). Choose an orbital
r < [p,q] and an orbital s < [p,q, r ] among all NB orbitals. There are three
possibilities:

A) Both orbitals r and s are unoccupied at the times τh and τ ′h , respectively

i. Find the time τmin of the first kink on the left of τh affecting either
orbital p or orbital r .

ii. Find the time τ ′min of the first kink on the left of τ ′h affecting either
orbital p or orbital r .

iii. Determine the interval I = (τmin,τh)β ∩ (τ ′min,τ
′
h)β taking the β-

periodicity into account.

B) Orbital r is occupied at τh and orbital s is occupied at τ ′h
i. Find the time τmax of the first kink on the right of τh affecting either
orbital p or orbital r .

ii. Find the time τ ′max of the first kink on the right of τ ′h affecting either
one of the orbitals q and s .

iii. Determine the interval I = (τh ,τmax)β ∩ (τ ′h ,τ ′max)β taking the β-
periodicity into account.
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C) Orbital r is empty at τh and orbital s is occupied at τ ′h
i. Find the first kink on the left of τh that affects either orbital p or r .
Its time defines τmin.

ii. Find the time τ ′max of the first kink on the right of τ ′h affecting either
one of the orbitals q and s .

iii. Determine the interval I = (τmin,τh)β ∩ (τ ′h ,τ ′max)β taking the β-
periodicity into account.

D) Orbital r is occupied at τh and orbital s is empty at τ ′h
i. Find the time τmax of the first kink on the right of τh affecting either
one of the orbitals p and r .

ii. Find the first kink on the left of τ ′h that affects either one of the
orbitals q and s . Its time defines τmin’.

iii. Determine the interval I = (τh ,τmax)β ∩ (τ ′min,τ
′
h)β taking the β-

periodicity into account.

In all cases, reject the step if I is empty. Choose a time τa ∈ I at random. The
new kink is given by sa = (r , s,p,q).

8. Remove kink by moving two heads
The first head is given by âp (τh) and the second by âq(τ ′h).

i. Choose a kink sa randomly among

a) The kink immediately preceding τh .

b) The first kink after τh .

c) The latest kink before τ ′h .

d) The kink immediately succeding τ ′h .

In all cases, the position refers to the β-periodic time ordering of all
kinks.

ii. If the kink is not given by sa = (p,q, i, j) with arbitrary i and j , reject
the step.

iii. Choose either a) or b) at random:

a) r = i and s = j.

b) r = j and s = i .
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iv. There are four possibilities:

a) The orbitals r and s are each empty at the times τh and τ ′h ,
respectively. If sa is not the first kink on the left of τh that
affects the orbitals p or r or not the first kink on the left of τ ′h
affecting the orbitals q or s , reject the step.

b) Orbital r is occupied at τh and orbital s is occupied at τ ′h . The
kink sa must be the first kink on the right of τh affecting the
orbitals p or r and the first kink on the right of τ ′h affecting the
orbitals q or s . Otherwise, reject the step.

c) Orbital r is empty at τh and orbital s is occupied at τ ′h . The kink
sa must be the first kink on the left of τh that affects the orbitals
p or r and the first kink on the right of τ ′h that affects the orbitals
q or s . Reject the step otherwise.

d) Orbital r is occupied while orbital s is empty at their respective
times. Reject the step, if the kink sa is not the first kink on the
right of τh that affects the orbitals p or r or not the first kink on
the left of τ ′h affecting either one of the orbitals q and s .

v. Move the head at τh from orbital p to orbital r and the head at τ ′h
from q to s , thereby deleting the kink sa .

For adding the second worm, the step 1. can be used without changes. For the
removal of the second worm, one of the heads and one of the tails is chosen
randomly. Afterwards, the step 2. is executed as before. For all other steps
that involve only one worm, one of the two heads is chosen at random before
proceeding as described above. With these changes, the MC steps construct a
Markov chain in the combined configuration space determined by the quantity
Ztot,2 = Z + ωG + ω2G2, where G2 is the two-particle Green function sum ob-
tained by summing over all indices and integrating over all time arguments. The
parameterω2 can be chosen freely to balance the relative weight among the three
subspaces of paths containing none, one, or two worms.
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For the development of the CPIMC method, in [31, 33] the one-dimensional
harmonic oscillator was chosen as a test system because its Hamiltonian exhibits
many basic properties of general Coulomb interacting particles in continuous
space while being relatively simple and easy to implement. As a model, the
system is investigated in the context of ultracold atoms and electrons in quantum
wires [102]. In this work, the application is extended to the two dimensional case,
which is of broader interest for the understanding of the fundamental physics of
few-body interacting quantum systems found in semiconductor quantum dots,
often referred to as artificial atoms [42–46]. The MC steps of the CPIMC method
are not tailored to the particular structural properties of the this Hamiltonian
apart from the Slater-Condon rules. Therefore, the observations of this chapter
should be transferable to systems with more complex Hamiltonians, which can
easily be simulated by providing the corresponding one- and two-particle matrix
elements as input data to the CPIMC method. In the following, only the fully
polarized system will be considered for simplicity.

4.1 System Parameters

A two dimensional system of N Coulomb interacting particles trapped in a
harmonic potential with rotational symmetry is described by the Hamiltonian

Ĥ =
1
2

N∑
α=1

(p̂2
α + r̂

2
α ) +

∑
1≤α<β

λ

|r̂α − r̂β | ,

in standard dimensionless oscillator units with length scale r0 =
√
1/mω and

energy scale E0 = ω. The coupling parameter λ = EC/E0 is the ratio of the
characteristic Coulomb energy EC = e2/r0 and the characteristic energy of the
confinement.
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Figure 4.1: Total energy (orange line) and sum over the absolute values of all
anti-symmetrized matrix elements with pairwise different indices
(blue line) for each of the 150 iterations of a single ground-state HF
calculation for N = 6 particles with a coupling parameter λ = 0.8
and NB = 45 basis function. While the energy converges quickly, the
large fluctuations of ΣT4 indicate that the basis continues to rotate.
Data from [59].

TheHamiltonian of the ideal system ofN non-interacting particles, correspond-
ing to λ = 0, can be diagonalized analytically. In polar coordinates, r = (r ,φ),
the eigenstates of the one-particle problem are the well-known Fock-Darwin
orbitals ϕnrmφ (r ,φ) with radial quantum number nr ≥ 0 and angular quan-
tum number mφ ∈ Z, see, e.g., [103]. The energy eigenvalues are given by
Enrmφ = 2nr + |mφ | + 1. Thus, the eigenvalues are degenerate for all but the
lowest energy, giving rise to a shell structure where the i-th shell consists of
i eigenstates of equal energy. In this basis, the two-particle interaction matrix
elements

wi jkl = 〈nr,imφ,inr, jmφ, j |ŵ |nr,kmφ,knr,lmφ,l 〉δσi ,σkδσj ,σl
are calculated in advance of a simulation using a program implemented by
David Hochstuhl. The program employs the Talmi-Brody-Moshinsky transfor-
mation [104, 105] to reduce the original four dimensional integral to a finite
sum of one dimensional integrals which can be numerically solved by half-open
Gauss-Hermite integration [106], see App. A.
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Figure 4.2: Dependence of the average sign on the value of ΣT4 for N = 6 par-
ticles, inverse temperature β = 10, NB = 45 basis functions, and
different coupling parameters λ in the canonical ensemble. Each point
corresponds to a single CPIMC simulation using a basis set from a
different iteration of a) a ground-state or b) a grand-canonical HF cal-
culation. For each coupling strength, the basis with the smallest value
of ΣT4 leads to an approximately maximum sign, while the difference
between a) and b) is neglectable. Figure taken from [59].

Already in the preceding diploma thesis [31], it was discovered that the use of
the HF basis instead of the eigenstates of the ideal Hamiltonian greatly increases
the average sign of CPIMC simulations. The HF basis sets are obtained via a self-
consistent, iterative diagonalization of the HF operator. However, in subsequent
investigation by Simon Groth [59], it was shown that even after the energy and
the reduced one-particle density are converged, the approximate eigenstates of
the HF operator continue to rotate with every iteration which leads to large
fluctuations of the average sign. The fluctuations occur independent of the
ensemble at finite temperature but only for closed shell systems at T = 0. He
found that the sum of the absolute values of all antisymmetrized matrix elements
with four pairwise different indices,

ΣT4 B
∑

i<j,k<l
i,k,i,l, j,k, j,l

|w−i jkl |,

is strongly correlatedwith the average sign of a CPIMC simulation. The parameter
ΣT4 can be calculated in every HF iteration and an example for its continued
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fluctuation after the convergence of the total energy is depicted in Fig. 4.1. Fig. 4.2
shows that an approximately maximum sign corresponds to a minimum value
of ΣT4. This allows to find an approximately optimal set of basis functions by
continuing the HF iteration after convergence is reached and picking the basis
with the lowest value of the sum ΣT4. Such a basis set can increase the average sign
of a CPIMC calculation by up to one order of magnitude, resulting in a reduction
of the CPU time by two orders of magnitude for a given accuracy. Simon Groth
also showed that the average sign depends only weakly on the temperature of the
HF calculation. Therefore, the basis functions from ground state HF calculations
can be used for all CPIMC simulations, avoiding the computation of a unique
basis set for each temperature.

4.2 Results

In this section, CPIMC results for several Coulomb interacting fermions in a
two-dimensional harmonic trap will be presented to verify the correctness of
the implementation of the algorithm and to demonstrate the capabilities of
the method for simulating a general inhomogeneous many body system where
coupling, temperature, and quantum degeneracy effects play an important role
simultaneously. More results from CPIMC calculations for this system can be
found in [59]. In all cases a HF basis was used as the underlying one-particle
basis set. Where necessary, an optimized basis was chosen from additional HF
iterations as described in the previous section. CPIMC results are subject to basis
incompleteness and statistical errors only. All reported statistical uncertainties
correspond to a carefully estimated one σ standard deviation, see Eq. (3.21) and
the appendix in [31]. The basis size incompleteness error arises from the use of
a finite number of basis functions, NB , and is the same for otherwise exact CI
and approximate HF calculations. The convergence with basis size is generally
well-behaved and in most cases the remaining error is smaller than 0.1 %. For
the purpose of comparing with CI and HF calculations, convergence towards
the complete basis set limit is not always possible due to the restriction of these
methods to small basis sizes.
The total energy per particle for two closed shell systems with N = 3 and

N = 6 particles and various system parameters in the canonical ensemble is
shown in Fig. 4.3 in dependence on the basis size. CPIMC and exact CI results
are given for intermediate interaction strengths between λ = 0.5 and λ = 1.5 and
two temperatures of β = 1 and β = 10, the latter being close to the ground-state.
For a single data point, in total 1.2 × 108 samples with a cycle of 200 have been
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Figure 4.3: Comparison of energies per particle with CI calculations for a) N =
3 and b) N = 6 particles in the canonical ensemble for different
number of basis functions, temperatures and coupling strengths. Red
points denote exact CI results and blue points results from CPIMC
simulations. Solid lines are guide to the eyes for points corresponding
to β = 1 calculations while results for β = 10 are connected by dotted
lines. Where CI results are available, the points lie exactly on top of
each other.

accumulated during a parallel CPIMC run on 12 CPU cores, corresponding to
2.4 × 1010 MC steps and a total CPU time between 6 h and 24 h. The availability
of CI calculations depends only on the size of the Hilbert space Ndet =

�Nb
N

�
. With

the finite temperature CI implementation by David Hochstuhl that is used in this
work, system sizes of up to Ndet = 25 000 are feasible, restricting calculations to
NB = 45 for N = 3 particles and NB = 15 for N = 6 particles. On the other hand,
CPIMC calculations are hampered by the fermion sign problem, which depends on
temperature and coupling strength as well and will be investigated below. Where
both methods are applicable, the energies are in perfect agreement with relative
statistical errors smaller than 5 × 10−5, rigorously verifying the correctness of
the method and the implementation. For N = 6, NB = 10, β = 10, and λ = 0.5
the relative statistical accuracy is even as high1 as 2.8 × 10−7. Compared with
CI, the CPIMC method allows for much larger system sizes. For λ = 0.5 and
in the case of β = 1 also for λ = 1, Hilbert space sizes up to Ndet = 6.7 × 108

1The highest accuracy is found for the more difficult N = 6 particle system because the HF basis
has not been optimized for N = 3 particles.
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Figure 4.4: One-particle density n(r ) in the canonical ensemble. a) Comparison
of results from CPIMC simulations using two different estimators
with CI calculations (black line) for N = 3, NB = 28, β = 10, and
λ = 2. b) Effect of Coulomb interaction for N = 20, NB = 91 and
β = 5. The blue and red curves represent the CPIMC results for the
non-interacting and weakly interacting systemwith λ = 0 and λ = 0.2,
respectively. In b) the density was rescaled by 1/3.5.

do not pose a problem. Therefore, for all parameters apart from N = 6 and
λ = 1.5, convergence towards the complete basis size limit better than 0.1 % can
be achieved, which is not possible with CI calculations except for small particle
numbers and very low temperatures.
Another basic quantity is the reduced one-particle density (3.12), which is

shown in Fig. 4.4 for N = 3 and N = 20 particles in the canonical ensemble. Due
to the rotational symmetry of the trap, the density depends only on the radial
distance from the center and statistical errors can be reduced by averaging over
all angles. In all cases, one observes a rich structure, which is present even in
the non-interacting case for λ = 0 because the Pauli exclusion principle forces
the occupation of excited orbitals. In contrast to bosons, which form a simple
Gaussian shaped density in the weakly interacting case [30], for fermions, the
maximum density is located in a ring around the center, i.e., outside the region
with the lowest potential energy. For larger particle numbers, further rings begin
to emerge already at a rather weak interaction strength of λ = 0.2. Fig. 4.4 a)
compares the densities obtained from the closed path (CP) estimator, Eq. (3.11),
and from the worm algorithm (WA) estimator, Eqs. (3.22) and (3.23), with the exact
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CI density for N = 3 particles in NB = 28 basis functions, an inverse temperature
β = 10, and a coupling parameter λ = 2. Both CPIMC results are from the same
simulation using 30 CPU hours on a single core. While the CP estimator is useless
in this case due to the large variance, the WA estimator agrees nicely with the
result from the CI calculation. The relative accuracy is about 0.3 % in the center
and smaller than 0.05 % at the first peak at rpeak ≈ 1. The uncertainty increases
rapidly for r & 3 where the density drops below 0.005 but is always smaller than
the accuracy of the CP estimator. This result demonstrates the huge improvement
that was achieved by the development of the worm algorithm in this work. The
new estimator allows for the calculation of the density for much larger systems as
shown in Fig. 4.4 b). For N = 20 particles in NB = 91 basis functions, β = 5, and
λ = 0.2, the variance of the CP estimator is too large to even be estimated reliably
so that it is not shown. However, the WA estimator results in a relative accuracy
of 0.01 % in the center region, which is higher compared to the N = 3 case due to
the reduced coupling strength. Despite the weak interaction, the differences to
the ideal case with λ = 0 are obvious as the particles are pushed away from the
center of the trap. There, the density is about 13 % lower. Additionally, density
fluctuations are more pronounced.
Due to the large system size, CI and canonical HF calculations are infeasible

even for N = 20 ideal particles. Therefore, in Fig. 4.5, HF and CPIMC densities
are compared for smaller system sizes where HF calculations are possible for the
grand-canonical as well as the canonical ensemble. For intermediate coupling
strengths of λ = 1.5 and λ = 1, respectively, and low temperatures close to
the ground-state, the HF density is in reasonable agreement with the CPIMC
result only for closed shell configurations like in Fig. 4.5 a), where the blue
lines show the density of a grand-canonical ensemble with an average particle
number of 〈N 〉 = 3, while the deviation in the center amounts to 25 % for the
open shell configuration in Fig. 4.5 b) with N = 4 particles. In both ensembles,
HF calculations fail to resolve temperature effects at intermediate temperatures
around β = 3 with deviations of about 10 % in the trap center. For higher
temperatures, the system becomes more classical and more ideal and at β = 0.5,
any structure in the density is lost. In that case, the differences between both
methods are small. Note, that for such a high temperature a much larger basis
would be necessary for a converged result. The comparison shows that the quality
of HF results varies strongly with temperature and particle number and an exact
method like CPIMC is necessary to identify parameters where HF calculations
are problematic.

In addition to an increased accuracy of the one-particle density, the implemen-
tation of the worm algorithm for the CPIMC method also enables the calculation
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Figure 4.5: Temperature dependence of the one-particle density from CPIMC
(solid lines) and HF (dotted lines) calculations. a) Grand-canonical
ensemble with λ = 1.5, NB = 28, and µ = 4.4, corresponding to
〈N̂ 〉 ≈ 4.7 at β = 0.5 (red lines) and 〈N̂ 〉 ≈ 3 at β = 3 (green line) and
β = 10 (blue lines). b) Canonical ensemble with N = 4, NB = 45, and
λ = 1. The statistical error of CPIMC calculations is smaller than the
line width.

of the MGF. Given accurate data for the MGF, different methods allow for the
reconstruction of the spectral function A(q,ω) and thus of dynamical properties
from simulations in the thermodynamic equilibrium [41, 107, 108]. As the re-
construction of A(q,ω) is an ill-posed problem, it is essential for reliable results,
that the systematic and statistical errors of the MGF data are below 0.1 %. Fig. 4.6
compares the diagonal elements of the MGF from HF and CPIMC calculations
for a system consisting of N = 4 particles, a basis size of NB = 36, moderate
inverse temperature β = 2, and coupling strength λ = 0.9. Except for the nearly
unoccupied orbital i = 10, for which the agreement between both methods looks
reasonable, the deviations are obvious. For each orbital, the HF errors exceed
5 % at some point in imaginary time. This confirms the observation, that HF
calculations are not reliable for open shell systems. The statistical errors of the
otherwise exact CPIMC results are larger than 0.1 % only for the smallest values,
e.g., at τ = 2 for i = 10, but never exceed 0.5 %. Of course, the CPU time can
always be extended beyond the 48 h used for this plot to further decrease the
error. This shows that the CPIMC calculation can yield data with the necessary
accuracy for the reliable reconstruction of the single-particle spectral function.
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Figure 4.6: Diagonal elements of the Matsubara Green function from CPIMC
(solid lines) and HF (dotted lines) calculations over imaginary time for
N = 4, NB = 36, β = 2, and λ = 0.9. The color indicates the orbital
number. The statistical error of the CPIMC results is smaller than the
line thickness.

Even if the differences between HF and CPIMC results for the energy and
single-particle density are small for closed shell systems at low temperature for
coupling strengths accessible to CPIMC simulations, the availability of an exact
method is still valuable. On the one hand, it can provide benchmark results
that allow for the quantification of the errors of approximative methods and
help with the development of other new methods [30, 80]. On the other hand,
other quantities are much more sensitive to approximations. An example is the
single-particle entanglement entropy

S1 B −
∑
i

λi log λi ,

where the λi denote the natural orbital occupation numbers, i.e., the eigenvalues
of the reduced single-particle density matrix. At T = 0, S1 is a measure for the
entanglement of a single particle with all others and hence, the single-particle
entanglement entropy of a non-interacting system is zero. Fig. 4.7 shows the
dependence of the entanglement entropy on the coupling parameter for a closed
shell system in the canonical ensemble with N = 3 particles at low, β = 10, and
moderate, β = 3, temperatures. Starting at nearly zero for λ = 0 and β = 10,
which shows how close this temperature is to the ground-state, the entanglement
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Figure 4.7: Dependence of the entanglement entropy on the coupling strength.
Shown are results from exact CI (solid lines), CPIMC (symbols with
errorbars) and HF (dotted lines) calculations for N = 3 and NB = 28
in the canonical ensemble. Red and blue colors correspond to β = 3
and β = 10, respectively.

entropy increases with increasing interaction strength and temperature. Within
statistical errors, the CPIMC results are in perfect agreement with the results
from CI calculations. However, while for the corresponding system in the grand-
canonical ensemble the HF density is in reasonable agreement with the exact
CPIMC data, cf. Fig. 4.5 a), HF calculations yield the opposite trend of a decreasing
entropy with increasing coupling strength. Because for β = 10, both ensembles
nearly coincide, this behavior cannot be explained with the difference between
the canonical and grand-canonical ensembles, but must be attributed to the
neglect of correlations in the HF approximation.

Another example demonstrating the potential of the CPIMCmethod to quantify
the accuracy of other methods is depicted in Fig. 4.8. For a system of N =
3 particles at a temperature of β = 10 and a coupling strength of λ = 2 in
the canonical ensemble, the total energy obtained from calculations using the
MLB algorithm [29] is compared with the corresponding CPIMC result. As the
MLB approach is based on the PIMC method in coordinate representation, it is
free of any basis incompleteness error that is inherent for wave-function based
methods like CPIMC. Therefore, the CPIMC results have to be extrapolated to
the complete basis size limit. Although the extrapolation introduces a small
systematic uncertainty because the functional dependency on the number of
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Figure 4.8: Total energy for N = 3, β = 10, and λ = 2 from CPIMC (red circles)
and MLB [29] (brown line) calculations. For CPIMC, the convergence
with basis size is shown, while theMLB result is basis size independent.
Where available, CI results are given by black squares. At NB = 36,
the CI energy for the ground state is denoted by an orange diamond.
A linear extrapolation of the CPIMC results to the complete basis
size limit is shown by the blue line. Shaded areas indicate statistical
uncertainties.

basis functions is unknown, the deviation between the CPIMC and the MLB
energy is significant. To further rule out any error in the basis functions that
are used in both the CI and CPIMC calculations, the energy from independent
ground-state CI calculations [103] is shown for NB = 36. The observed small
deviation is expected for a very low but finite temperature of β = 10, supporting
the reliability of the CPIMC results. The most likely explanation for the deviation
of the MLB energy is an insufficient convergence with the number discretization
factors as only up toM = 32 time slices have been used for all results reported
in [29]. Alternatively, the number of K = 600 samples per time slice, which
constitutes an additional approximation in the MLB algorithm, introduces a
larger bias than expected for certain system parameters. This example shows
how important CPIMC calculations are for providing exact results at system sizes,
temperatures, and coupling strengths that cannot be accessed by other methods.
The range of applicability of QMC methods is predominantly determined

by the fermion sign problem because the number of samples and thereby the
runtime needed for a desired accuracy scales quadratically with the inverse of
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in Fig. 4.9.

102



4.2 Results

average sign. When the average sign 〈s〉′ is lower than 0.01, calculations become
very costly, and they become generally infeasible for an average sign below
0.001. Fig. 4.9 shows the average sign of the standard PIMC and the CPIMC
method in dependence of the coupling parameter for different particle numbers
and temperatures. For strong repulsion, λ � 1, the inter-particle distances are
large compared to the spatial extent of the particles and thus the overlap of the
wave functions is small and particle exchange, which is the source of the sign
problem in PIMC calculations, plays only a minor role. For such systems of
nearly classical, point-like particles, the average sign of the PIMC method is
close to 1 and simulations are highly efficient. When the coupling strength is
reduced, i.e., when the confinement is strengthened compared to the Coulomb
interaction, the quantum nature of the particles becomes more important and
the average sign decreases exponentially. This decrease of the average sign is
more pronounced for larger particle numbers and lower temperatures. Therefore,
weakly interacting systems are inaccessible for PIMC calculations.

The CPIMC method, on the other hand, has no sign problem at all in the non-
interacting case, but becomes more challenging for larger coupling parameters.
At certain critical value of λ, the average sign starts to decrease rapidly, eventually
resembling a step function for large N . The critical coupling strength λcrit at
which this drop is observed depends mainly on the particle number and to a
lesser degree on the temperature. It occurs at weaker interaction for larger
particle numbers and lower temperatures. Therefore, the CPIMC method is most
efficient for weak to intermediate interaction strengths, making it completely
complementary to PIMC methods in the coordinate representation.
The sign problem of the CPIMC method vanishes for the ideal system and

becomes more severe towards stronger interactions because the expression (3.9)
is a series expansion of the partition function in terms of the coupling parameter
λ around λ = 0. The larger the parameter λ, the more terms in the series are
necessary for convergence, resulting in an increasing number of kinks in the
simulation, as shown in Fig. 4.10. As each kink potentially changes the total
sign of a configuration, the average sign decreases with an increasing number of
kinks.
One observes three distinct regions with different functional dependence of

the average number of kinks on the coupling parameter. Starting with zero kinks
in the non-interacting limit, the number of kinks grows quadratically with λ for
weak interactions. The coefficient of this quadratic growth increases with particle
number and inverse temperature (not shown here). When the average number
of kinks is of the order of one, it starts to increase rapidly until the functional
dependence becomes approximately linear for stronger interactions. For large
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particle numbers, this transition happens almost instantaneously, increasing the
average number of kinks by several orders of magnitude within a rather small
region around the critical coupling parameter λcrit. In the case of the HEG, see
Sec. 5.4, where much larger basis sizes are available, it was checked carefully
that the approximately linear growth for λ � 1 is not an effect of the finite basis
size or of the finite simulation time. The observed behavior is similar to a phase
transition in a finite-size system where certain parameters like the energy exhibit
a discontinuity for N → ∞. However, since the average number of kinks is not
a physical observable, there is no connection to a physical phase transition of
the system at λcrit. For a way to obtain accurate results for interaction strengths
beyond λcrit, see Sec. 5.5.
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5 The Homogeneous Electron
Gas

Despite its apparent simplicity, the accurate investigation of the HEG is of tremen-
dous importance for the understanding of the physics of complexmatter. Accurate
data for the HEG are an essential ingredient for DFT, one of the most widely
used methods in solid-state physics and chemistry. In their seminal paper [109],
Ceperley and Alder calculated the exchange-correlation energies for the complete
density range of the ground-state HEG using a fixed-nodes QMC method, thus
allowing for the construction of the first accurate exchange-correlation function-
als in the local density approximation [16] and thereby laying the basis for the
large success of DFT at zero temperature.
In recent years, experimental progress, e.g., new inertial confinement fusion

(ICF) devices at the National Ignition Facility (NIF) [47, 110, 111], Rochester [48],
and Sandia [49, 112], increased the demand for an accurate theoretical under-
standing of warm dense matter. At such conditions, going beyond the ground
state approximation is crucial. DFT for finite temperatures FTDFT is in principle
long known [3] but requires data for the HEG over the entire density-temperature
plane. However, at finite temperatures, fixed-node QMC methods cannot be ap-
plied to the high densities in the warm dense matter regime, cf. available data in
Fig. 5.1, and are additionally afflicted with significant uncontrollable systematic
errors [55]. Therefore, improving the exchange-correlation functionals which
are based on existing data [58] is of key relevance for the development of FTDFT.
Furthermore, the HEG in the warm dense matter regime is a fundamental model
system to study the non-trivial interplay between quantum degeneracy, correla-
tion, and thermal excitation effects as well as finite-size corrections in periodic
boundary conditions [113–115].

5.1 System Parameters

The HEG, also called the uniform electron gas (UEG) or jellium, is a model
system of Coulomb-interacting electrons embedded in a homogeneous, positively
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Figure 5.1: Overview over the density-temperature plane of the HEG and the
warm dense matter regime. The degeneracy parameterΘ = T /EF mea-
sures the importance of a quantum mechanical description. For Θ < 1
quantum effects dominate. Γ = e2/(r )T is the classical coupling param-
eter. In the quantum regime, rs is the relevant measure for the inter-
action strength. Available RPIMC results for finite-temperatures [55]
and FCIQMC results for the ground state [116] are denoted by red
squares and blue dots. The green dots show the main results of this
work. Typical parameters for ICF experiments [111] are indicated by
the orange shaded area. From [117].

charged background ensuring charge neutrality. It is the quantum mechanical
analog to the one-component plasma of classical physics [118]. In themacroscopic
limit, the HEG is described by only three parameters: the Brückner parameter
rs = (3/4πn)1/3 which depends on the density n = N /V and corresponds to
the mean inter-particle distance, the degeneracy parameter Θ = T /TF which is
given by the ratio of the temperatureT to the Fermi temperatureTF , and the spin
polarization ξ = (n↑ −n↓)/n where n↑ and n↓ denote the separate densities of the
electrons with spin up and down, respectively. In the following, unless explicitly
mentioned, only the fully spin polarized case, i.e. ξ = 1, is studied.
As the CPIMC method cannot simulate the thermodynamic limit directly, a

system of N electrons in a cubic box of side length L and volume V = L3 with
periodic boundary conditions is considered. Following Fraser et. al. [114], the
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Hamiltonian in coordinate representation reads1:

Ĥ = −
N∑
i=1
∇2i +

N∑
i=1

N∑
j=1
j,i

ψ (ri ,r j ) + EM ,

where the Ewald pair potentialψ (ri ,r j ) accounts for the long-range nature of the
Coulomb interaction in periodic boundary conditions and EM is the Madelung
energy due to the self-interaction of the electrons with all their periodic images.
The Ewald potential is derived by splitting the sum of all Coulomb interactions
in the periodic array of images of the central simulation cell into a short-range
and a long-range contribution. Evaluating the short-range part in real space and
the long-range part in Fourier space one arrives at

ψ (ri ,r j ) = 1
V

∑
G,0

e−π
2G 2/κ2

e2π iG (ri−r j )

πG2 −
π

κ2V
+

∑
R

erfc(κ |ri − r j + R |)
|ri − r j + R |

,

where R and G are the real and reciprocal lattice vectors of the periodically
repeated simulation cell, satisfying G · R ∈ Z. The positive constant κ can be
chosen arbitrarily to control the speed of convergence. For sensible choices of κ,
both sums converge much faster than the direct Coulomb sum2. The Madelung
energy per particle is given by

EM/N =
1
V

∑
G,0

e−π
2G 2/κ2

πG2 −
π

κ2V
+

∑
R,0

erfc(κ |R |)
|R |

−
2κ√(π )

and can be numerically calculated to EM ≈ −2.837297 · (3/4π )1/3N 2/3r−1s .
Using a single-particle basis of plane waves, which is the eigenbasis of the

ideal, non-interacting system and in coordinate representation given by

ϕi (r ,σ ) = 1
√
V
eiki ·r δσi ,σ ,

with wave vector ki = 2π
L mi andmi ∈ Z

3, the Hamiltonian can be written in
second quantization as

Ĥ =
∑
i j

hi j â
†

i âi + 2
∑

i<j,k<l
i,k, j,l

w−i jkl â
†

i â
†

j âl âk ,

1Throughout this chapter Rydberg units are used.
2Note that the Coulomb sum of an infinite system of oppositely charged particles is only con-
ditionally convergent, i.e., the result depends on the order of the summation. On the other
hand, the limit of taking finite, neutral clusters of larger and larger size is well defined and it is
assumed that the Ewald summation is a good approximation of this limit.
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wherehi j = k2
i δi, j is the ideal kinetic energy contribution andw

−
i jkl = wi jkl−wi jlk

with

wi jkl =
4π

V (ki − kk )2δki+kj ,kk+klδσi ,σkδσj ,σl
are the anti-symmetrized two-particle integrals. Here, the total momentum and
spin are conserved due to the Kronecker-deltas. Note that the matrix elements of
the Ewald interaction are equal to the Fourier components of the bare Coulomb
potential. The divergent contributions for ki = kk and kj = kl are canceled by
the interaction with the positive background and are therefore excluded from
the sum.

In the plane wave basis, the CPIMCmethod is also naturally capable of simulat-
ing the ideal, non-interacting system, which is recovered for rs → 0. As the above
expression in Rydberg units diverges in that limit, the following expressions are
internally used for all numerical simulations instead:

h̃i j = k
2
i δi, j ,

w̃i jkl =
λ

2
1

(ki − kk )2δki+kj ,kk+klδσi ,σkδσj ,σl , (5.1)

with ki ∈ Z3. The internal units implied by these relations are connected to
Rydberg units by

λ =
4

(2π )3L =
4

(2π )3
( 4π
3

) 1
3
rsN

1
3 ,

Ẽ =
(2π )4
16

λ2E,

T̃ =
(6π 2N ) 23
(2π )2 Θ.

In these units it is obvious that the limit λ = rs = 0 corresponds to the ideal Fermi
gas3.

5.2 CPIMC for the HEG

The algorithm outlined in Sec. 3.4 is sufficiently general to yield exact results given
precomputed tables of the kinetic and interaction matrix elements hi j andwi jkl .
3It should be noted that the description of the HEG given in this section is exact only at the
Schrödinger level. For densities higher than rs = 0.1 the kinetic energy of the electrons
corresponds to about 10 % of the speed of light and a relativistic treatment would be more
appropriate.
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Figure 5.2: Choosing two-particle excitations. The grid shows available wave
vectors in the 2D HEG. Blue points indicate occupied orbitals. After
two random occupied orbitals p and q have been chosen, an excitation
vector д with д < дmax is chosen at random. The new orbitals are then
given by kr = kp + д and ks = kq − д.

However, a very large number of basis functions is necessary for convergence
to the complete basis set limit. Fortunately, the matrix elements can easily be
computed on demand, thereby dramatically reducing the memory requirements
of a simulation. Additionally, the simple form of the matrix elements allows
to construct MC steps explicitly tailored to the HEG for a greatly enhanced ef-
ficiency of the Metropolis algorithm. In the following, the adapted MC steps,
which have been published in [119], will be described.

The first property of the HEG Hamiltonian to note is that

〈{n}|Ĥ |{n̄}〉 = 0 for {n} = {n̄}pq .
In the picture of the CPIMC method, this means that there exist no kinks of
type 2, i.e., q{n},{n̄}(p,q) = 0. Therefore, any MC step involving type 2 kinks
can be omitted which greatly reduces the number of required updates. The only
remaining step involving a one particle excitation is the excitation of a fully
occupied orbital, i.e., an orbital that is not affected by any kinks. This step is still
necessary because the trace over the antisymmetric subspace of the Hilbert space
involves a summation over different total momentums.
Further, the new orbitals in a two-particle excitation were both chosen ran-

domly in correspondence to the general structure of the Slater-Condon rules.
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However, given two particles in the occupied orbitals p and q, the momentum
conservation in the HEG requires that the chosen empty orbitals r and s satisfy
ks = kp +д and kr = kq −д with д ∈ Z 3 and д , 0. The resulting matrix element
is then proportional to 1/д2 − 1/(kp − kq + д)2. This allows for two changes of
the algorithm that are depicted in Fig. 5.2. First, instead of choosing the orbitals
s and r randomly, an excitation vector д is chosen at random instead. It is then
proposed to excite the two particles from the orbitals p and q to the orbitals
given by kr = kp + д and ks = kq − д. The step is rejected, if either r or s is
affected by a kink or fully occupied. Second, as the matrix elements are non-zero
for any vector д, an arbitrary excitation with |д | > дmax can be achieved by a
finite number of excitations where the vectors дi of the individual excitations are
chosen from only the vectors with |дi | < дmax. The number дmax can be chosen to
maximize the efficiency of the simulations. In the following, дmax = 2, as shown
in Fig. 5.2, is used for all calculations.
Finally, due to the large number of single-particle orbitals necessary for the

convergence to the complete basis size limit, the excitation of a single fully
occupied orbital p was improved. All orbitals are grouped into shells i = 0, 1, . . .
with shell i containing orbitals p with energy ep ∈ [i∆e, (i + 1)∆e), where the
shell width ∆e depends on temperature. Instead of choosing a target orbital q
among all empty orbitals that are not affected by kinks, only orbitals in the shells
i − 1, i , and i + 1 are considered. Still, arbitrary orbitals can be reached by several
consecutive excitations, ensuring ergodicity. This improvement is independent
of the HEG and will be useful for any system where a large number of basis
functions is needed.

Apart from these changes, it was necessary to improvemanymore details of the
implementation to allow for efficient simulations with basis sizes of NB > 10 000.
Some of these improvements are already included in Sec. 3.5 and Sec. 3.6.

5.3 Comparison with CI

As a consequence of the complexity of the Metropolis algorithm in the case of the
CPIMC method, the correctness of the results has to be verified for each different
Hamiltonian because the ergodicity of the MC steps cannot be guaranteed. For-
tunately, such a test can be performed without difficulties due to the equivalence
between CPIMC and CI calculations.

A highly accurate comparison between CPIMC andCI results for a small system
of N = 4 particles in NB = 19 basis functions is shown in Fig. 5.3. N = 4 is the
smallest particle number allowing for all MC steps to occur, i.e., comparisons for
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Figure 5.3: Energies for the 4 particle HEG. Shown are a) the total kinetic energy,
b) the total interaction energy, and, in c) and d), the corresponding
relative deviations from exact CI calculations for N = 4 particles
in NB = 19 basis functions for various densities. Colors indicate
temperatures of Θ = 0.0625 (blue) and Θ = 0.5 (red). Dots with
errorbars represent CPIMC results while solid lines connect CI results.

N = 3 or less particles cannot detect problems in all of the MC steps. Earlier,
slightly less accurate results for the total energy of the N = 4 particle system
have been published in [119]. Here, for different densities between rs = 0.01 and
rs = 10 and temperatures of Θ = 0.0625 and Θ = 0.5, the kinetic energy times
r 2s and the interaction energy times rs are compared separately. This is more
sensitive to systematic errors because a cancellation of errors may occur for the
total energy. For each data point, 1.6 × 108 samples with a cycle n = 200 have
been used, resulting in a total runtime of about 6CPUh. As already mentioned in
Sec. 4.2, the runtime of the CI calculations depends only on the system size but
scales exponentially with the number of basis functions and number of particles.
On the other hand, the CPIMC algorithm is applicable to much larger systems, but
is afflicted with the sign problem which grows additionally with the interaction
strength, i.e., with the density parameter rs in the case of the HEG. Although the
sign problem is less severe for higher temperatures, the variance of the estimators
grows with temperature. For high densities, i.e., small rs , the latter effect can
dominate the statistical error, as can be seen in the figure. The sign problem will
be investigated in more detail in the next section. The comparison with the CI
results reveals a relative accuracy of the CPIMC calculation up to 1 × 10−6 for
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Figure 5.4: Energies for the 7 particle HEG. Shown are the temperature depen-
dence of a) the total kinetic energy, b) the total interaction energy,
and, in c) and d), the corresponding relative deviations from exact CI
calculations for N = 7 particles in NB = 19 basis functions for rs = 1.
Dots with errorbars represent CPIMC results while solid lines connect
CI results. CI data courtesy of Fionn Malone.

Θ = 0.5 and even 3 × 10−8 for Θ = 0.0625. The relative accuracy of the kinetic
energy is comparable to that of the interaction energy for the high temperature
but higher by an order of magnitude for the low temperature. For all data points,
the agreement is excellent, which confirms the correctness of the algorithm and
its implementation.
Another comparison for a slightly larger number of particles is shown in

Fig. 5.4. For N = 7 particles in NB = 19 basis functions and a density of rs = 1,
the kinetic and interaction energy from CI and CPIMC calculation is compared
for various temperatures between Θ = 0.086 and Θ = 1.71. Again, for all data
points an excellent agreement is achieved with relative deviations smaller than
1.8 × 10−5. As the CI data points are obtained from independent calculations
by Fionn Malone, this comparison additionally verifies the correctness of the
Hamiltonian matrix elements, which in the previous figure were computed by a
program code that is partly shared between the CI and CPIMC implementation
used in this work.
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Figure 5.5: Average sign versus a) basis size and b) temperature forN = 4 particles
and densities given by rs ∈ [1, 2, 3, 4, 5], indicated by the colors green,
blue, red, violet, and orange, respectively. In a), the temperature is
Θ = 0.0625 and in b), NB = 515 basis functions are used. Solid lines
are guides to the eye. Note the different scales of the abscissa. Adapted
from [119].

5.4 Sign Problem

The main advantage of the CPIMC approach compared to other PIMC methods
has already been shown to be the complementary behavior with respect to the
sign problem in the case of the harmonic oscillator, cf. Sec. 4.2 and also earlier
works [31, 59]. In this section it will be investigated if this advantage applies to
the HEG in the same way and how the system parameters, i.e., particle number,
density, and temperature, determine the average sign, which is themost important
measure for the applicability of any method afflicted with the sign problem.
As will been shown later, for the HEG a large number of basis functions are

necessary to achieve an accurate convergence to the complete basis size limit.
Therefore, a weak scaling of the average sign with the number of basis functions
is important for efficient simulations. As shown in Fig. 5.5 for a system of N = 4
particles at a temperature of Θ = 0.0625, the average sign scales favorably and
converges towards a minimum value which depends on the density parameter rs .
The larger rs , the smaller is the infinite basis size limit of the average sign. If the
minimum value is sufficiently large for a given density, e.g., higher than 1 × 10−2,
simulations with an almost arbitrary large number of basis functions are feasible,
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because the runtime of the current implementation scales only with O(NB) for a
given number of MC steps.
Fig. 5.5 b) shows the dependence of the average sign on the dimensionless

inverse temperature 1/Θ = TF β for the same N = 4 particle system as in panel
a) but with a fixed basis size of NB = 515. For all densities, one observes ap-
proximately straight lines. Due to the logarithmic presentation this corresponds
to an exponential scaling of the average sign with the inverse temperature in
accordance to the general relation, Eq. (2.5). However, the coefficient f − f ′ in
the exponential, i.e., the difference of the free energy per particle in the original
and the actually simulated system, depends strongly on the density. Thus, for
moderately high densities, even temperatures close to the ground state can be
reached with acceptable computational costs.
As mentioned in the introduction to this chapter and shown in Fig. 5.1, prior

to this work, QMC data only cover densities with rs ≥ 1. For higher densities no
reliable results existed at finite temperatures. Therefore, it is of particular interest
how the average sign depends on the density. The upper part of Fig. 5.6 shows
the dependence on rs for various particle numbers in NB = 2108 plane waves at
Θ = 0.125. Since the density parameter rs is proportional to the coupling strength
λ in the internally used units, see Eq. (5.1), it is not surprising that the curves
exhibit the same trend as in the case of the harmonic trap, cf. Fig. 4.9. Again,
the CPIMC method has no sign problem at all for the ideal system in the limit
of rs → 0 and its efficiency depends only weakly on rs for high densities. Then,
at a density rs,crit which is determined by the number of particles, the average
sign starts dropping rapidly for lower densities. The critical density is higher for
larger numbers of particles and the slope is also steeper. Therefore, the CPIMC
method is applicable to high densities and allows to investigate the properties of
the HEG at densities complementary to those achievable by PIMC calculations in
coordinate representation. However, at low temperatures and strong degeneracy,
a comparison with available RPIMC results for rs = 1 and N = 33 is impossible
without further improvements, because for this particle number and Θ ≤ 0.5,
the average sign vanishes almost instantaneously at rs ≈ 0.5, restricting direct
CPIMC calculations to densities higher than rs ≤ 0.4.

The explanation for the behavior of the average sign given in Sec. 4.2 applies to
the HEG as well. Fig. 5.6 b) shows how the average number of kinks grows with
the density parameter rs for the same system parameters as above. As in the case
of the harmonic oscillator, the rapid decrease of the average sign is accompanied
by a similarly rapid increase of the average number of kinks. In the CPIMC
simulation, a configuration with a large number of kinks represents a high order
term in the series expansion of the partition sum with respect to the coupling
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Figure 5.6: Density and particle dependence of a) the average sign and b) the
average number of kinks for Θ = 0.125 and NB = 2109. Particle
number are indicated by colors from N = 4 (red, rightmost curve)
to N = 33 (orange, leftmost curve). Solid lines are guides to the eye.
Note the logarithmic scale. From [120].

parameter λ, cf. Eq. (3.9). The larger λ, the larger the magnitude of high order
terms which corresponds to a larger weight of configurations with many kinks.
As each kink is a possible source of a sign change, this causes the dependence of
the average sign on the coupling strength. However, it is an open question why
the average number of kinks grows by several orders of magnitudes around the
critical density rs,crit but then continues to grow approximately linearly with rs
for lower densities. The different slope for N = 33 particles in Fig. 5.6 b) is likely
an effect of the finite basis or runtime.

Note that for the application of the Metropolis algorithm it is necessary to take
the absolute values of the expansion terms in the Dyson series into account. If the
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Figure 5.7: Convergence test of the average number of kinks with a) runtime and
b) basis size for N = 4 particles at rs = 10 and Θ = 0.125. The results
are averages of 1 × 106 measurements. The cycle n determines the
number of skipped MC steps between two measurements and thereby
the runtime. In each simulation, the first 1 × 105 measurements are
thrown away, i.e., the equilibration time is always about 10 % of the
total runtime. In a), the basis size is fixed at NB = 24405, while in b),
a cycle of n = 2000 is used. The solid lines are linear fits to all data
points.

partition function was only conditionally convergent, the sum of absolute values
might not even converge at all. To exclude the possibility that the observed finite
number of kinks is only an artifact of the finite basis size or the finite simulation
time, the convergence of the average number of kinks with both variables is
depicted in Fig. 5.7 for N = 4 particles at rs = 10 and Θ = 0.125 which is beyond
the the rapid increase and at the beginning of the approximately linear regime.
Each data point corresponds to a simulation with 1 × 106 measurements and
an equilibration time of 1 × 105 full cycles. Thus, the total runtime is implicitly
determined by the cycle n, which is the number of skipped MC steps between two
measurements. For NB = 24405 basis functions, the left panel a) demonstrates
that even for a small cycle of n = 100 the equilibration time is sufficiently
long to yield a statistically correct result, although the autocorrelation time
is much larger as can be seen by the decreasing error bars for longer cycles.
An estimate of the integrated autocorrelation time is τint ≈ 6.5 × 106. Using a
cycle of n = 2000, which yields reasonable small error bars, the convergence
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with basis size is shown in panel b) of the figure. It is already known [80] that
the total energy converges with N −5/3B , which will also be demonstrated later.
Here, the convergence behavior of the average number of kinks is in very good
agreement with the same power law. Therefore, it can be concluded that neither
the finite basis size nor the finite simulation time is the reason for the observed
finite average number of kinks in the CPIMC simulations, and thus, the CPIMC
formulation of the partition sum is likely absolutely convergent. However, a
deeper understanding of the reason for the observed behavior is still needed
as further insight might reveal strategies to reduce the sign problem and allow
simulation of larger particle numbers and lower densities.
In the case of the harmonic oscillator, switching to the HF basis significantly

improved the average sign of the simulations, see Sec. 4.2. However, for the HEG,
the plane wave basis, i.e., the eigenbasis of the ideal system, coincides with the HF
basis and also with the natural orbitals, i.e., the reduced single-particle density
matrix is diagonal in this basis. Thus, there is no obvious choice of another
single-particle basis set that could enable CPIMC simulations at lower densities.
An explicitly correlated plane wave basis is proposed in [121], but has not been
implemented yet for the CPIMC method due to the increased complexity. Instead,
a different approach is explored in the next section.

5.5 Kink Potential

In order to limit the number of kinks and to increase the average sign, an addi-
tional factor VK (κ,δ ) = 1/(e−δ (κ−K+0.5) + 1) is introduced in the partition sum:

Z (κ,δ ) =
∞∑
K=0

∑
{n}

∑
s1

∑
s2

· · ·
∑
sK−1

∫ ′

dKτ

VK (κ,δ )W (K , {n}, s1, . . . , sK ,τ1, . . . ,τK ).
The factor VK (κ,δ ) was chosen to strongly reduce the weight of configurations
with a lot of kinks but to converge to the exact solution in the limit κ → ∞.
The parameter δ controls the smoothness of the potential. In the limit δ → ∞,
the potential VK (κ,δ ) reduces to a step function that excludes all configurations
with K > κ. The additional constant 0.5 was added for symmetry. Because the
exponential decrease of VK with K is not strong enough to prevent the jump in
the average number of kinks for all densities, the potential is set to zero ifVK <Vc
with an arbitrarily chosen constant cutoff Vc . A small value for this constant, e.g,
Vc = 1e − 9, is usually sufficient. Performing simulations with different values of
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κ allows to extrapolate the results to the exact limit with VK = 1. This so-called
kink potential was developed and compared to similar summation techniques for
divergent series like Lindelöf and Cesàro [35, 122] by Simon Groth during his
doctoral research. His investigation surprisingly revealed that the ad-hoc choice
of a Fermi function generally results in a more favorable convergence behavior
allowing a more reliable extrapolation compared to the other methods.

Plotting the total energy for a fixed set of simulation parameters for different
values of 1/κ and δ = 1, one observes a smooth S-shaped curve. For small values
of κ, the curve is concave and shows an accelerated decrease of the energy with
increasing κ. At some point, the decrease of the energy begins to decelerate
until it converges to the exact value for κ → ∞, resulting in a convex tail of
the curve for large κ. For a reliable extrapolation, the error bars have to be
sufficiently small for the onset of the convergence after the inflection point to be
clearly visible. Fig. 5.8 shows the extrapolation of the kink potential parameter
κ to the limit 1/κ → 0 for three especially difficult cases. For all three curves,
the condition of a distinguishable convex tail is fulfilled. The top panel a) of
Fig. 5.8 demonstrates the convergence of the total energy to the correct limit
for a small system of N = 4 particles in NB = 19 basis functions where an
exact result from a CI calculation is available. At a temperature of Θ = 0.5, the
density parameter rs = 40 is at the edge of the range of applicability of direct
CPIMC calculations with an average sign of 〈s〉′ = 0.00417(8). Nevertheless, the
extrapolated black point includes the exact CI result shown by an orange point
within the errorbars given by the extrapolation procedure explained below. A
second demonstration of the reliability of this method is shown in panel b) for
a large system of N = 33 particles with a temperature of Θ = 8 and a density
of rs = 10. The large basis size of NB = 44473 ensures that the difference to the
complete basis set limit is negligible relative to the statistical error. For these
parameters, the system is almost classical so that direct PIMC simulations are
available [55]. The systematic error of a finite number of time slices can be easily
controlled and the results can be considered exact. Again, the extrapolation of the
CPIMC results for the different values of κ shown by the black point with error
bars agrees nicely with orange PIMC data point. The relative errors between the
extrapolated estimates and the exact reference results amount to 0.15 % and 0.06 %
for the comparisons with CI and PIMC, respectively. As a final example, the
most challenging extrapolation for a system without an exact reference energy
is shown in the bottom panel of Fig. 5.8. For N = 33 particles in NB = 2109 basis
functions with rs = 1 and Θ = 0.0625 only RPIMC results with an uncontrollable
systematic error are available, which will be shown in the next section. The
shape of the curve for these parameters closely resembles the one shown in panel
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Figure 5.8: Extrapolation with respect to the kink potential parameter κ. Green
dots with error bars are CPIMC results. The red lines and blue lines
are horizontal and linear worst case fits (see text). The black dot is
the mean value of the extreme cases, its error bar is given by their
difference. a) For N = 4 particles in NB = 19 basis functions the
extrapolated value can be compared to exact CI results (orange dot).
Shown is an example for Θ = 0.5 and rs = 40. Taken from [120].
b) The same as in a), but for N = 33, NB = 44473, Θ = 8, and rs = 10,
where an exact PIMC data point is available [55]. In both cases, the
exact results lie between the error bars of the extrapolated value.
c) Extrapolation from [117] for N = 33, NB = 2109, Θ = 0.0625, and
rs = 1 . At the time of that writing, no exact value for comparison
existed.
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a). Therefore, one can safely assume that the extrapolated result with a relative
error of 0.07 % is a reliable estimate for the correct energy. In this case, the
total runtime for all points amounts to 20 000 CPUh. For all other densities and
temperatures in this work the sign problem is less severe and the extrapolation
is even more accurate.
The extrapolation to the exact limit 1/κ → 0 is performed as follows. After

discarding all points with an statistical error exceeding 1 %, the remaining points
are shifted upwards by 1σ and a horizontal line is fitted to the 5 points with the
largest value of κ. To find a worst case estimate for the upper bound, further
consecutive points with smaller κ are included in the horizontal fit one by one.
The first time a newly added point deviates more than 4σ from the resulting fit
the previous value of the horizontal fit is taken as the upper bound Emax. The fit
is considered unreliable if less than 6 points are included in the horizontal fit.
The lower bound is found by shifting the point with an error smaller than 1 %
downwards by 1σ and performing a linear fit to the consecutive points with κ
values included in the horizontal fit. Additional linear fits are performed with
further points added one by one. The smallest intersect of all linear fits with
fewer than 4 points deviating more than 2σ and fewer than 2 points deviating
more than 3σ from the fit is taken as the lower bound Emin. The mean of these
two extreme values is taken as the estimate with half of the difference as the
error bar. For some quantities, e.g., for the kinetic energy, the results for different
κ converge to the exact limit from below. In such cases, the above procedure
is inverted. By the above approach, conservative estimates of the worst case
errors of the extrapolation are obtained, always enclosing the correct value for
VK = 1 within the resulting error bars. The uncertainty and the small bias of
the estimated confidence region can be further reduced by relaxing some of the
above conditions, but that requires a more elaborate detection of the onset of the
convergence to exhibit a comparable robustness.

With the introduction of the kink potential VK (κ,δ ), the range of applicability
of the CPIMC method could be extended from rs = 0.4 to rs = 1 for N = 33 and
Θ = 0.0625 and up to rs = 10 for Θ = 8. This result is even more remarkable if
one considers that in the last case, a nearly converged result for the total energy
can be obtained with κ = 10, corresponding to an average number of kinks of
〈K〉′ = 8.4169(25) and an average sign of 〈s〉′ = 0.076918(43), whereas the direct
simulation of the same system involves on average configurations with more than
1000 kinks leading to an average sign that is indistinguishable from zero within
statistical error bars. This discrepancy in the average number of kinks of more
than 2 orders of magnitude can be explained by a nearly complete cancellation
of high order contributions with opposite signs to the series expansion of the
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partition sum. It is in the special case of the CPIMC simulations, where only the
absolute weights of the configurations are take into account and consequently
determine the distribution of the number of kinks, that such high order terms
are important for the convergence of the series. By reducing the weight of high
order contributions, only the most important configuration of a given order
occur during a simulation while higher orders are even completely removed by a
non-vanishing cut-off Vc . This corresponds to the assumption, that all neglected
terms approximately sum to zero when their sign is taken into account. The
error of this assumption can be reliably estimated by the extrapolation procedure
described above.

5.6 Ab initio results for 33 polarized electrons

With the introduction of the kink potential extrapolation technique it is now
possible to close the gap between direct CPIMC calculations and available RPIMC
results for N = 33 particles for a large range of finite temperatures. The results
shown in the following are restricted to the fully polarized system, i.e., ξ = 1,
at low temperatures with Θ ≤ 0.5. For particles with only a single spin state,
N = 33 corresponds to a closed shell with respect to the degenerate energy states
of the ideal system. It is expected that this choice minimizes finite basis set errors,
which are investigated in the next section. Results for higher temperatures and
the unpolarized system will be outlined in the last section of this chapter.
Simulations in the coordinate representation, such as used by the PIMC and

RPIMC methods, are automatically performed in the complete basis set limit. For
a meaningful comparison, the error that is introduced by using only a finite basis
set in wave-function-based methods like CPIMC has to be accurately quantified.
It is already known that for a large number of basis functions, the convergence of
the total energy follows a power law of N −5/3B in the fully polarized system [80].
Because it constitutes a valuable test for the CPIMC method at large basis sizes,
the convergence behavior is thoroughly investigated here as well. Fig. 5.9 shows
the incomplete basis set error of the total energy over N −5/3B for a system of N = 4
particles close to the ground state at Θ = 0.0625 and two densities of rs = 0.5 and
rs = 2where CPIMC calculations with the necessary accuracy are possible. While
for a small basis set with NB < 257 the error deviates from a straight line and
thus from the expected power law, the inset clearly demonstrates that for large
basis sizes the CPIMC results are in good agreement with a N −5/3B convergence
as shown by the linear fit depicted by the dotted line. It can also be seen that
the absolute finite basis set error is larger for higher densities. The reason is
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Figure 5.9: Basis size incompleteness error of the total energy for N = 4 particles,
Θ = 0.0625, and rs = 0.5 (green, upper curve) and rs = 2 (blue, lower
curve). respectively. The dashed lines are linear fits to data points
with NB ≥ 257, see inset. The scaling with N −5/3B [80] is accurately
reproduced for all but the smallest basis sizes. The solid lines are
guides to the eye.

the much larger total energy at higher densities in Rydberg units. Conversely,
the relative finite basis size error is larger for lower densities. The relatively
slow convergence to the complete basis set limit in the plane wave basis is an
effect of the slow convergence of the Fourier transform of the Coulomb potential.
Fortunately, due to the similar convergence of the average sign, cf. Fig. 5.5, and
the ability to calculate the matrix elements during the calculation, the efficiency
of the CPIMC algorithm depends only weakly on the number of basis function
in the case of the HEG and therefore allows for basis sizes orders of magnitude
larger than what is possible for other exact wave-function-based methods.

The influence of finite temperatures on the convergence behavior is illustrated
in Fig. 5.10. In addition to the curve for rs = 2 and Θ = 0.0625 from Fig. 5.9, the
finite basis set error at Θ = 0.5 is shown for the same system. For large basis
sizes, the results are in agreement with a power law of N −5/3B . However, due to
the increased variance of the estimator at high temperatures the error bars are
too large to determine a specific functional dependence. At small basis sizes,
the convergence behavior is fundamentally different. While the total energy is
slightly overestimated at low temperatures, it is far too low at high temperatures.
The reason is that high temperatures lead to the occurrence of highly excited
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Figure 5.10: Influence of temperature on the basis size incompleteness error for
N = 4 particles and rs = 2. The blue curve and the dashed line
for Θ = 0.0625 are the same as in Fig. 5.9. For Θ = 0.5 (red curve),
the basis size incompleteness error scales exponentially for small
numbers of basis functions, but converges within errorbars towards
the N −5/3B scaling of the ground state, see inset.

states which cannot be represented by a small number of basis function. In the
ideal Fermi gas in the grand-canonical ensemble, the occupation numbers are
given by the Fermi distribution, corresponding to an exponentially decreasing
finite basis set error. In the canonical ensemble and for finite coupling strengths,
the Fermi distribution is still applicable as a qualitative approximation. The
total convergence can thus qualitatively be described by a superposition of the
power law observed at finite rs close to the ground state and the exponential
convergence caused by the Fermi distribution.
The insights gained in the above considerations can be used to estimate the

finite basis set errors arising in CPIMC simulations of the polarized HEG with
N = 33 electrons. Fig. 5.11 shows the extrapolation to the complete basis set
limit according to N −5/3B for rs = 0.4 and different temperatures. Due to the large
error bars, the slope of the linear fits are not reliable and all curves are consistent
with a horizontal line for basis sizes larger than NB = 925. For basis sizes with
NB ≥ 2109, the finite basis set error is negligible compared to the statistical error.
Although the relative finite basis set error increases for larger rs , it remains small
relative to the uncertainties of the CPIMC results which grow much faster due to
the necessary use of the kink potentialVK (κ,δ ) and the extrapolation to the limit
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Figure 5.11: Accuracy of incomplete basis calculations for N = 33 particles and
rs = 0.4. Colors denote different temperatures. The figures demon-
strates that the statistical error dominates over the basis size incom-
pleteness error for large basis sizes NB ≥ 2109. In all cases, the slope
is consistent with a horizontal within error bars. Taken from [117].

κ → ∞. Therefore, one can avoid a costly extrapolation towards the complete
basis set limit for all combinations of temperature and density and simply use
NB = 2109 basis functions for all simulation with rs ≤ 1 and Θ ≤ 0.5.

Having thoroughly verified the accuracy the of the CPIMCmethod for the HEG
at finite temperatures, it can now be applied to calculate the exchange-correlation
energy EXC = Etot−E

id forN = 33 electrons over thewhole density range between
the known HF limit for rs → 0 and the available RPIMC results for rs ≥ 1 at finite
temperatures with Θ ≤ 0.5. The results for the exchange-correlation energy per
particle times rs , which are a starting point for the construction of exchange-
correlation free energy functionals used in FTDFT calculations, are shown in
Fig. 5.12. The plot reveals a significant mismatch between the two methods at
rs = 1 for all depicted temperatures. While the CPIMC results reproduce the
constant HF limit for rs < 0.1 and can be smoothly connected to the RPIMC
data for rs & 6 as indicated by the monotonically decreasing blue dotted line,
the RPIMC curves exhibit a positive slope between rs = 1 and rs = 2 that would
indicate a non-monotonic convergence to the HF limit. As the uncertainties of
the CPIMC method are well controlled, the discrepancy must be attributed to
the RPIMC results [55] which are afflicted with an unknown systematic error
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Figure 5.12: Exchange-correlation energy times rs for 33 particles in NB = 2109
basis functions for various densities and temperatures. CPIMC re-
sults denoted by filled symbols are compared to RPIMC results [55]
represented by open symbols. Colors indicate temperatures from
Θ = 0.0625 (blue) to Θ = 0.5 (red). The dotted line is a fourth order
spline interpolation for Θ = 0.0625 between the CPIMC results and
RPIMC data with rs ≥ 8 (RPIMC data for rs > 10 not shown here).
The black diamond shows a data point taken from [123]. Figure taken
from [117].

caused by the fixed-node approximation4. Another data point for the exchange-
correlation energy by DuBios et. al. [123] for rs = 1 and Θ = 0.125 has a too
large statistical error to be of any significance for this comparison. Interestingly,
both methods agree in the non-monotonic behavior of the exchange-correlation
energy with respect to the temperature which indicates the presence of non-
trivial physics in this warm dense matter regime. The increasingly large error bars
of the CPIMC results for rs < 1 stem from the fact that the exchange-correlation
energy is only a tiny fraction of the total energy for such nearly ideal systems,

4Recently the accuracy of the CPIMC results has been confirmed by independent DMQMC
calculations [124].
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especially at higher temperatures. The relative statistical uncertainty of the total
energy at rs = 0.01 is not larger than 0.0015 %.

5.7 Finite-Size Corrections

The CPIMC results for the exchange-correlation energy EXC for N = 33 polarized
electrons establish a valuable benchmark for other methods and could already
quantify the problems of the fixed-node approximation that biases the available
RPIMC results for the HEG at finite temperatures, but this is only an intermediate
step for providing input data for FTDFT calculations that rely on an accurate
exchange-correlation functional for the HEG in the thermodynamic limit, i.e.,
for N → ∞ and V → ∞ with N /V = const. Using a finite number of particles in
periodic boundary conditions inevitably introduces systematic errors that have
to be corrected. For example, the energy in the thermodynamic limit is given
by E∞ = E(N ) + ∆E where E(N ) is the energy of the periodic system and ∆E
is the so-called finite-size error. Finding accurate corrections for these errors
is a general problem for any method that approximates a macroscopic system
by a small simulation box in periodic boundary conditions. However, existing
finite-size corrections have been developed only for the ground state or at low
densities [55, 113–115, 125] and their validity for finite temperatures and densities
larger than rs has to be tested.

A finite-size correction for the ground state was proposed by Chiesa et. al. [125]
and is valid at low densities. Drummond et. al. [115] added a 1/r 2s dependent
extension for intermediate densities. The resulting corrections are given by

∆T =
ωp

4
+

C3D

πr 2s (2N )1/3
1

(1 + ξ )2/3 + (1 − ξ )2/3 ,

∆V =
ωp

4

, (5.2)

where ∆T and ∆V are the corrections to be applied to the kinetic and potential
energy, respectively, ξ is the spin polarization, and ωp = 2

√
3/r 3s is the plasma

frequency. For a simple cubic simulation cell, they find C3D = 5.264.
For the finite-size correction of their RPIMC results at finite temperatures,

Brown et. al. [55] proposed to multiply these expressions by a temperature
dependent factor derived in the random phase approximation (RPA). For the
kinetic energy the additional factor is given by tanh(βωp/2) and for the potential
energy by coth(βωp/2). The finite-size correction will be applied to CPIMC
results below. As will be shown, both are incorrect at high densities. Due to the
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5.7 Finite-Size Corrections

lack of a better alternative, a direct extrapolation to the macroscopic limit will be
attempted in the following.
An advantage of the CPIMC method is, that it can be directly applied to the

ideal system where the thermodynamic limit is known analytically. Note that for
the ideal, finite-size HEG in the canonical ensemble, there exists no exact analytic
formula that is applicable to large systems with more than N = 30 particles.
Therefore, numerical MC simulations like CPIMC are the only available tool that
can provide unbiased results for this system. The limit is identical to the ideal
Fermi gas with the total energy per particle given by

Eid∞ = (2 − ξ ) r 3s
3πβ5/2

I3/2(αid)

with the Fermi integral Iν defined as

Iν (α) =
∫ ∞

0
dx

xν

e−α+x + 1
.

The ideal chemical potential αid = βµid is determined by I1/2(αid) = 2
3Θ
−3/2.

For high densities, the volume V = L3 of the simulation cell is very small for
the particle numbers in typical QMC calculations. In fact, in the ideal limit rs → 0
the cell is even infinitesimal small, but it can be rescaled to a finite system with
non-interacting electrons. Therefore, the main source of the finite-size error in
the nearly ideal HEG is the discretization of the plane wave basis giving rise to
large shell effects for small system sizes. This discretization error mainly effects
the kinetic energy and can be greatly reduced by so-called twist averaging [113].
Recall that a wave function in periodic boundary conditions is only determined
up to a phase factor

Ψ(r1 + Lm,r2, . . . ,rN ) = e2π iθLmΨ(r1,r2, . . . ,rN )
withm ∈ Z3 and θ ∈ R3. The so called twist angle θ can be freely chosen as only
physical observables like the density have to be periodic with L. For plane waves,
above condition is satisfied by a discrete grid of wave vectors

ki =
2π
L
mi +

2π
L
θ ,

where the usual definition is obtained for θ = 0, cf. Sec. 5.1. Independent of θ , the
grid is very coarse if the length of the cell L is small, e.g., for small particle number
N or high densities. In the gound state, this results in a bad approximation of the
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Figure 5.13: Finite twist angle. Shown is the kx -ky -plane of the 3D HEG in
internal units (5.1). Blue circles indicate allowed wave vectors when
the twist angle is zero, while the red squares correspond to a finite
twist angle θ = (0.4, 0.3, 0). Filled symbols represent occupied states
in the ground state of the ideal Fermi gas with N = 57 particles. The
Fermi surface of the macroscopic system is also shown.

Fermi spheres, which is given by the spherical volume of occupied wave vectors
in the macroscopic system. Fig. 5.13 shows the grid of possible wave vectors
and the occupied states in the kx -ky plane for the ground state of the ideal HEG
with N = 57 particles for two different twist angles and the Fermi sphere of the
corresponding macroscopic system. Such a coarse approximation will lead to
aforementioned shell effects, i.e., large fluctuations of expectation values with
particle number and twist angle θ . At finite but low temperatures, the transition
from occupied to unoccupied state is still sharp and shell effects will occur in this
case, too. Because for finite system sizes the expectation value of an observable
Ô depends on θ , an improved approximation with reduced fluctuations can be
obtained by averaging over all distinct twist angles

〈Ô〉 ≈
∫ 0.5

−0.5
d3θ 〈Ô〉 (θ ). (5.3)

Note that each twist angle can be mapped to an equivalent twist angle inside the
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Figure 5.14: Twist angle dependence of the total energy of the ideal Fermi gas with
N = 33 particles relative to the macroscopic limit Eid∞. The energy
deviation is shown along different directions and for temperatures of
a) Θ = 0.01, b) Θ = 0.125, and c) Θ = 0.5. The twist angle is given by
θ = θd for d = (1, 0, 0) (blue), d = (1, 1, 0) (green), and d = (1, 1, 1)
(red).

cube defined by −0.5 ≤ θi < 0.5 for i = x ,y, z. It can be shown that this integral
is exact for ideal particles in the grand-canonical ensemble [113].

The dependence of the total energy on the twist angle θ relative to the energy
of the macroscopic system is shown in Fig. 5.14 for N = 33 ideal particles. Each
curve represents the relative energy deviation for values of θ = θd along a
different direction d . At low and intermediate temperatures, panel a) and b),
the energy for different twist angles can deviate by several percent. The strong
fluctuations at Θ = 0.01 are the result of allowed wave vectors crossing the
sharp Fermi surface. At Θ = 0.5, panel c), the transition between occupied and
unoccupied states is so smooth, that the twist angle has only a small influence
on the total energy.

At low temperatures, integrating a complicated function as in Fig. 5.14 a) needs
many twist angles to ensure a high degree of accuracy and hence, greatly increases
the computational costs of deterministic methods like HF and CI. Fortunately,
the calculation of (5.3) can be combined with the CPIMC integration of the
expectation values with relatively little overhead. Similar to the ways parallel
computations are performed, cf. 3.6, accumulating results that include statistical
errors will further reduce the total error even if the results are obtained for dif-
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Figure 5.15: Effect of twist averaging on the total energy for the ideal Fermi gas at
different temperatures. Shown is the convergence with particle num-
ber to the macroscopic limit Eid∞ for Θ = 0 (violet), Θ = 0.0625 (blue),
and Θ = 1.0 (red). Light colors denote results without twist averag-
ing (hidden by the twist averaged results in case of Θ = 1.0). Results
denoted by normal colors have been averaged over 1 × 104 twist
angles. Data for Θ = 0 (Θ = 1.0) are shifted upwards (downwards)
by 5 percentage points.

ferent twist angles. In this work, a simple MC integration is used. This is most
efficient if the error of the individual MC calculations is larger than the statistical
error of the integration over θ . Thus, each individual MC simulation should be
made as short as possible without wasting a significant amount of time with the
equilibration steps that are necessary for each new twist angle. However, special
care must be taken when averaging results from methods afflicted with a sign
problem. For small average signs, the results are biased. As explained in Sec. 3.6,
the bias can only be neglected for individual calculations, because it decreases
linearly with the number of sample NMC while the statistical error is reduced with
√
NMC, but the bias becomes significant when the many independent results are

averaged. Therefore, one either has to increase the number of samples per twist
angle, which reduces the number of different twist angles that can be calculated
within a given amount of time, or use a high order ratio estimator, e.g., Beale’s
estimator.

The effect of twist averaging on the finite-size error is demonstrated in Fig. 5.15
which shows the relative deviation of the total energy in dependence of the
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Figure 5.16: Linear extrapolation of the total energy to the thermodynamic limit
for the ideal Fermi gas. Shown are the twist averaged results from
Fig. 5.15 (without shift). The shaded areas mark the range of possible
linear fits with every second number between 100 and 200 as starting
point and every fifth number between 500 and 800 as end point.

particle number for different temperatures with and without twist averaging. In
the latter case, the energy can change by several percent for different particle
numbersN when the temperature is low, similar to the observed fluctuations with
θ . Even for N = 800 particles, the fluctuations are too large to allow for a reliable
extrapolation to the thermodynamic limit given by N → ∞ for fixed rs . With
twist averaging, the curves are much smoother and are almost indistinguishable
from a horizontal line with the correct limit at this scale. On the other hand,
twist averaging has no visible effect for high temperature as shown by the red
curve for Θ = 1.

Zooming in reveals that even after averaging over 1 × 104 twist angles signif-
icant fluctuations of the total energy remain at low temperatures, see Fig. 5.16.
As indicated by the small errorbars, averaging over more twist angles would
have a negligible effect. At a relatively high temperature of Θ = 1, the results
form an approximately monotonic curve but have relatively large error bars for
large particle numbers. In all cases, assuming a convergence with 1/N seems
justified, but due to the fluctuations, the extrapolation to the macroscopic limit
depends on the starting- and endpoint of the linear fit. Therefore, a separate
fit is performed for every even particle number between N = 100 and N = 200
as the starting point and every fifth particle number between N = 500 and
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Figure 5.17: Linear extrapolation of the total energy to the thermodynamic limit.
Blue points with errorbars denote CPIMC data and the shaded area
marks the range of possible fits with starting points Ns and end
points Ne . The black point with errorbars is an estimate from the
extrapolation. a) rs = 0.1, Θ = 0.0625, Ns ∈ [81, 200], and Ne ∈

[400, 568]. b) rs = 0.1, Θ = 0.5, Ns ∈ [100, 200], and Ne ∈ [600, 800].
c) rs = 0.3, Θ = 0.0625, Ns ∈ [80, 100], and Ne ∈ [120, 150]. In the
last case, an approximation using only pairs of kinks has been used,
cf. main text. The calculations have been performed in a variable
number of basis function up to NB = 24405. Adapted from [126].
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N = 800 as the endpoint. The two fits with the minimum and maximum intercept
are then used to draw the shaded region shown in the figure. For all three
temperatures, the energy Eid∞ of the thermodynamic limit is enclosed between
the two intercepts with relative deviations smaller than 0.01 %, confirming the
validity of the asymptotic convergence with 1/N for the non-interacting system.
However, for particle numbers N < 100 there are significant deviations from
the linear fits. Therefore, extrapolations relying on a 1/N convergence for small
particle numbers have only a limited reliability.
The linear convergence with 1/N for large particle numbers is also found for

low densities as can be seen in the leading terms in Eq. (5.2). This functional de-
pendence has been shown to be inaccurate for the kinetic energy at intermediate
densities around rs = 1 and thus a higher order term proportional to 1/N 1/3 has
been added [115]. Nevertheless, a linear extrapolation over 1/N is attempted
for twist averaged results at high densities as shown in Fig. 5.17. For rs = 0.1
and Θ = 0.0625, panel a), the sign problem restricts the CPIMC calculation to
less than N = 600 particles. Despite the large errorbars and using a wide range
of starting- and endpoints, the difference between the intercepts of the fits is
relative small with 0.01 %. The extrapolation for the same density but Θ = 0.5
in b) closely resembles the red curve for Θ = 1 in the ideal system depicted in
Fig. 5.16. Here, particle numbers between N = 100 and N = 200 and N = 600
and N = 800 have been used as the starting- and endpoint of the fit, respectively.
The uncertainty from the fit procedure is 0.006 %.
At lower densities, the sign problem of the CPIMC method prevents a direct

extrapolation. Instead, Fig. 5.17 c) shows approximate results obtained by only
allowing to add and remove pairs of kinks. As such pairs always have a sign of
1, this approximation does not suffer from the sign problem. Investigations by
Simon Groth have shown, that the systematic error of this approach is small for
high densities and low temperatures and should be negligible compared to the
uncertainty of the finite-size extrapolation. Including up to N = 150 particles
into the fit results in an expectedly large uncertainty of 0.15 %.

Another approach for a finite-size correction that was investigated during this
work is based on the idea of using the difference of HF at finite sizes and the well
known analytic HF solution for the macroscopic limit as an approximation for the
finite-size effects of exact CPIMC simulations. However, there apparently exist
no HF calculations for finite temperatures in the canonical but only in the grand
canonical ensemble. For the particle number accessible by the CPIMC methods,
the difference between the canonical and grand-canonical ensemble at finite
temperatures introduces another unknown systematic error in addition to the
finite-size effects that affect canonical CPIMC calculations. Thus, no finite-size

133



5 The Homogeneous Electron Gas

0.01 0.1 1 10
rs

−1.40

−1.35

−1.30

−1.25

−1.20

−1.15

−1.10

E
xc
/N
·
r s Θ = 0.0625

0.01 0.1 1 10
rs

Θ = 0.5
RPIMC (I)
CPIMC (I)
CPIMC (II)
CPIMC (III)
Karasiev

Figure 5.18: Comparison of finite-size corrections of the exchange-correlation
energy for Θ = 0.0625 (left) and Θ = 0.5 (right). Filled symbols
denote CPIMC results and open symbols correspond to RPIMC datas.
(Open) circles use the finite-size correction5 of Brown et. al. [55],
diamonds use the ground-state finite-size correction of Drummond
et. al. [115], and crosses show the extrapolated values from Fig.5.17.
The dotted line is a fit to the RPIMC data by Karasiev et. al. [58].
Adapted from [117].

correction with the necessary accuracy could be obtained. It is an open question,
if this approach will be useful for grand canonical CPIMC simulations using the
worm algorithm.

In Fig. 5.18, the three different finite-size corrections are compared to a fit to
the available RPIMC data [58] for two temperatures of Θ = 0.0625 and Θ = 0.5.
CPIMC (I), shown by closed circles, denotes the finite temperature extension by
Brown et. al. [55] applied to the CPIMC results from the previous section5. The
same correction is included in the RPIMC results (open circles) that were used as
a basis for the fit shown by the dotted line. The fit incorporates the correct HF
limit for rs → 0. For both temperatures, the correction seems to overestimate
the finite-size error at rs = 1, thereby canceling the systematic error of the
RPIMC calculations to some degree. For higher densities, the trend is completely
unreasonable. The data points denoted CPIMC (II) have been obtained by applying

5The data in the supplementary material of [55] deviates from the formula given in the main
paper. The data for the finite-size corrections at high densities have been obtained by private
communication with Ethan Brown.
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the ground state corrections of Drummond et. al. , Eq. (5.2), to properly twist
averaged CPIMC results. For rs = 1 at Θ = 0.0625 and, interestingly, also for
Θ = 0.5, the results differ only slightly from the fit, albeit in different directions.
However, also this finite-size correction is not applicable at high densities. The
failure of existing finite-size corrections at high densities led to the attempt of
directly extrapolating the CPIMC result for different particle numbers to the
macroscopic limit as described above. The resulting 3 data points from Fig. 5.17
are denoted CPIMC (III) and shown by crosses. Except for an insignificant
deviation at rs = 0.1 and Θ = 0.0625, the agreement with the fit is surprisingly
good, considering that the original RPIMC data is systematically too low at
intermediate densities. Still, the error bars are too large for a definitive statement
about the quality of the fit and the derived exchange-correlation free energy
functional.
Although the reliability of its error estimation is not entirely certain, the

direct extrapolation scheme appears to yield reasonable results at high densities.
However, extending this approach to lower densities and increasing its accuracy
will be challenging because of the sign problem and the unknown convergence
behavior in the warm dense matter regime around rs = 1. Therefore, better
methods for the correction of finite-size errors are urgently needed.

5.8 Recent developments

Recently, as part of this thesis, several contributions have been made to the
works of Simon Groth and Tobias Dornheim, who extended the investigation of
the HEG towards higher temperature and arbitrary polarizations [78, 120]. The
combination of the CPIMC and PBPIMC methods yields thermodynamic results
for a broad range of system parameters with an unprecedented accuracy. For the
unpolarized case, all MC steps had to be adapted to avoid proposals of updates
that would change the value of the total spin. For completeness, the results of
these works are presented here, although the main effort has to be ascribed to
my colleagues mentioned above.
Due to the sign problem, no single method is able to yield results with the

necessary accuracy over the whole range of densities and temperatures in the
warm dense matter regime. While the CPIMC approach is applicable to high
densities, direct PIMC calculations are restricted to low densities. With the
development of the PBPIMC algorithm, which extends the PIMCmethods towards
lower densities with a much higher accuracy than the RPIMC approximation, it
is now possible to close the gap between the different approaches and provide
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Figure 5.19: Exchange-correlation energies times rs versus density for tempera-
tures of Θ ≤ 0.5 and N = 33 particles. Filled circles with error bars
denote CPIMC data and crosses with error bars mark results from
PBPIMC calculations. Colors are associated with temperature. At
each Θ and rs value, the most accurate result of these two methods
have been chosen. Additionally, open circles with error bars (light
colors) show RPIMC data for comparison. For Θ = 0.5, the dotted
line is an interpolation between the CPIMC and PBPIMC results.
Solid lines are guides to the eye. Adapted from [120].

highly accurate results for the exchange correlation energy of the finite size HEG
with N = 33 polarized electrons for all densities and temperatures with Θ ≥ 0.5.
Each normal colored data point in Fig. 5.19 shows the result with the smaller
statistical error of either the CPIMC or the PBPIMC method. It was carefully
checked that both methods are in perfect agreement with each other where there
ranges of applicability overlap, cf. [77]. Note that forΘ = 8, the CPIMCmethod is
most accurate up to rs = 6. For comparison, RPIMC results are shown in lighter
colors, revealing significant deviations even for intermediate temperatures and
densities. At Θ = 0.5, the small remaining gap could be closed by a fourth order
spline interpolation.
In the same way, the dependence of the exchange correlation energy per
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Figure 5.20: Exchange-correlation energies times rs versus temperature for var-
ious densities distinguished by color and N = 33 particles. Shown
are results from CPIMC (filled circles with error bars) and PBPIMC
(crosses with error bars) simulations For rs = 1 and rs = 4, these
results are compared to RPIMC data (open circles with error bars,
light colors). Solid lines are guides to the eye. From [120].

particle on the degeneracy parameter Θ is shown in Fig. 5.20 for various densities.
For rs ≤ 1, CPIMC calculations are feasible even close to the ground atΘ = 0.0625.
For lower densities, no accurate results are available as the PBPIMC method is
restricted to temperatures with Θ & 0.5. In accordance with Figs. 5.19 and 5.12,
significant, systematic deviations of the RPIMC to the CPIMC and PBPIMC results
can be observed for almost all temperatures, albeit the sign of the deviations is
inconsistent for different densities. The deviations are most pronounced for rs = 1
and Θ = 0.25. This is in similar to the non-monotonic behavior of the exchange
correlation energy reaching its maximum magnitude also around intermediate
temperatures between Θ = 0.25 and Θ = 0.5.

So far, only results for fully polarized systems have been shown. This is not a
principle limitation of the CPIMC methods but was chosen only for simplicity.
In fact, the formulation in Sec. 3.2 is fully general with respect to the single-
particle basis of spin orbitals |i〉. However, there are two complications that
need to be considered: first, not using the spin symmetry of the Hamiltonians
studied in this work would result in eight times larger memory requirement

137



5 The Homogeneous Electron Gas

0.02 0.03 0.04 0.05 0.06 0.07
Θ

6.824

6.825

6.826

6.827

6.828

6.829

6.83

en
er
gy

pe
rp

ar
tic

le
E
/N

Θ = 0
CPIMC

Figure 5.21: Comparison of unpolarized CPIMC results for N = 14 particles
and rs = 0.5 with FCIQMC data for the ground-state energy [127].
Blue circles with error bars, connected by the blue solid line, denote
results from finite-temperature CPIMC calculations. The black solid
line shows the FCIQMC ground-state energy per particle. The gray
shaded area is the corresponding statistical uncertainty. From [126].

because the interaction matrixwi jkl is a 4-tensor. Second, the trace over the full
antisymmetric subspace of the Hilbert space in Eq. (2.1) automatically includes a
summation over all possible values of the total spin, but typically simulations are
performed with a fixed number of spin-up and spin-down particles. Therefore,
several improvements of the CPIMC implementation have been made to address
these issues, as mentioned above. A first test of the correctness of these changes
is shown in Fig. 5.21 for the unpolarized HEG with N = 14 particles at rs =
0.5. The convergence of the total energy per particle with temperature to the
ground state energy is compared with a result from a highly accurate FCIQMC
calculation [127]. As can be seen, the CPIMC energies converge nicely to the
correct limit. At Θ = 0.02, both methods agree perfectly within error bars of
similar size. Thus, for not too large particle numbers and coupling strength,
the CPIMC method is capable of providing results for zero temperature with
comparable accuracy to explicit ground state methods. Of course, the correctness
of themethod for the unpolarized system is also confirmed by further comparisons
with CI results for smaller particle numbers not shown here.

Similar to the case of the fully polarized HEG the complementarity of the
CPIMC and the PBPIMC approaches allows for the calculation of highly accurate
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Figure 5.22: Exchange-correlation energy times rs versus density parameter for
the unpolarized HEG with N = 66 particles. Temperatures are dis-
tinguished by color. Filled circles and crosses with error bars mark
CPIMC and PBPIMC results, respectively. For comparison, RPIMC
results are shown by open circles with error bars and light colors.
Solid lines are guides to the eye. From [78].

exchange-correlation energies of N = 66 unpolarized particles in the entire
density range for Θ ≥ 1. Because of the larger particle number and a more severe
sign problem of the CPIMC method in case of unpolarized particles, the gap
between the approaches cannot be closed for lower temperatures. At Θ = 0.75,
CPIMC results with reasonable errorbars and computation times are available
for rs . 0.7 and PBPIMC results for rs & 3. At Θ = 0.5, PBPIMC simulations
are infeasible for the whole depicted density regime. The comparison with
RPIMC results shows that the fixed-node error is not significant for the available
temperatures, albeit at lower temperatures there are signs for a systematic drop
of the exchange-correlation energy as has been found in the polarized system.

To conclude, in this chapter it has been demonstrated that the CPIMC method
is a valuable tool for the investigation of the HEG at finite temperatures. The
complementary behavior of the sign problem compared to PIMC methods in
coordinate representation enables highly accurate, unbiased simulations of finite

139



5 The Homogeneous Electron Gas

polarized and unpolarized systems at high densities in the warm dense matter
regime. With the help of the kink potential extrapolation technique, its range
of applicability can be extended by a factor of two to three with respect to rs
while still providing small and reliable errorbars. Depending on the particle
number, the CPIMC method can cover a wide range of parameters, from highly
degenerate systems indistinguishable from the ground state at Θ = 0.01 and
rs = 0.5 to almost classical systems at Θ = 8 and rs = 10. Because of the weak
scaling of the runtime with the number of basis functions, large basis sizes can
be used, yielding an incomplete basis size error that is negligible compared to
the statistical error. For N = 33 polarized and N = 66 unpolarized particles, the
first quasi-exact exchange-correlation energies for densities larger than rs = 1
at finite temperatures could be obtained, revealing significant deviations of the
existing RPIMC results. By combining the best results from CPIMC and PBPIMC
calculations, the complete density range is accessible for temperatures with
Θ & 1. The CPIMC method can also help to study finite-size effects in periodic
boundary conditions at high densities as simulations with hundreds of particles
in thousands of basis functions are feasible, corresponding to Hilbert spaces of up
to Ndet ≈ 101527 slater determinants. If existing finite-size corrections, which are
inapplicable in the high density regime, can be improved, a complete and accurate
exchange-correlation free energy of the HEG at finite temperatures usable by
FTDFT calculations will be within reach in the near future. For temperatures
of Θ & 0.5 this was recently achieved by Simon Groth and Tobias Dornheim
using a combination of the CPIMC and the PBPIMC methods with the analytic
finite-temperature Singwi-Tosi-Land-Sjölander (STLS) approximation [128].
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In this work, the worm algorithm was successfully implemented for the CPIMC
method1. In conjunction with the improvements of massively parallel computa-
tion, as well as higher acceptance ratios of the MC steps and their much more
efficient calculation, this refined CPIMC method is several orders of magnitude
faster for large systems than the original implementation. While its previously
observed advantages for the efficiency of the MC sampling cannot be utilized to
the full extent as local updates in the configuration space of the partition function
are still necessary to ensure ergodicity for general Hamiltonians with arbitrary
pair interactions, the worm algorithm enables grand canonical simulations with
varying particle number and the direct sampling of the Matsubara Green func-
tion, which gives access to new observables and leads to a greatly improved
estimator for the one-particle density. Additionally, the accuracy of the results
for the Matsubara Green function will allow for the reconstruction of dynamic
properties like the spectral functions from equilibrium calculations. Furthermore,
variants of the MC steps that are specifically tailored to the properties of the
HEG Hamiltonian resulted in an additional significant increase of the efficiency
of at least the order of the basis size in the case of the HEG. The introduction
of the kink potential extrapolation technique by Simon Groth further extended
the range of applicability to larger coupling strengths. These enormous advances
have been essential for the simulations of systems at high temperatures and the
investigation of finite size errors presented in this work. The results of these
applications feature an unprecedented accuracy unattainable with conventional
finite-temperature methods.
The correctness of the new algorithm has been demonstrated by rigorous

comparisons with CI calculations for Coulomb interacting fermions in a two-
dimensional harmonic trap as well as the HEG at finite temperatures. For all
investigated system parameters, the accuracy of the algorithm is verified by the
1With additional contributions from Simon Groth during his master thesis which was co-
supervised as part of this research.
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perfect agreement within relative statistical errors as small as 10−8. In the case of
the two-dimensional harmonic trap, the improved benchmarking capabilities of
the CPIMC method revealed large deviations of the HF approximations for open
shell configurations even at small coupling strengths and a significant deviation
of the MLB method in the complete basis set limit.

As a major achievement of this work, the first quasi-exact results of the HEG at
finite temperatures in the warm dense matter regime could be obtained, thereby
providing the first accurate assessment of the fixed-node error of the RPIMC
method. It was discovered that the systematic biases of the available RPIMC data
are significant even at intermediate densities of rs ≈ 5 and exceed 10 % at rs ≈ 1.
An investigation of the finite size effects utilizing extensive twist-averaging
revealed a rather low quality of the available formulas for the correction of
finite size errors at high densities. An attempt of a direct extrapolation to the
thermodynamic limit with system sizes more than 101527 determinants offered
accurate estimates at rs = 0.1 as a stepping stone for the necessary development
of improved finite size corrections and the subsequent construction of accurate
free energy exchange-correlation functionals that are essential for the successful
application of FTDFT. In the light of the recent developments, which are, in parts,
based on the CPIMC method and include contributions from this work, this can
be considered a significant advancement for simulations of fermions in the warm
dense matter regime.

Being a versatile method for gauging the accuracy of other approaches, CPIMC
calculations support the search for quantum statistical simulation techniques, in
particular, efficient approximations applicable to real physical systems. The exact
benchmark results obtained during this work already facilitated the development
of two innovative approaches for accurate simulations of fermionic quantum
systems at warm dense matter conditions. Without rigorous comparisons with
CPIMCdata for awide range of densities and temperatures, the quality of PBPIMC
calculations using just two time slices could not have been established [30].
Likewise, large scale comparisons stimulated improvements of the DMQMC
method while perfectly verifying the correctness of the CPIMC method [124].
Nevertheless, due to the initiator approximation which is necessary for DMQMC
calculations of large systems, the CPIMC method remains the most accurate
approach with acceptable computational requirements for a wide range of system
parameters. Finally, the errors of the Montroll-Ward, the e4, the random phase,
and the Singwi-Tosi-Land-Sjölander approximation for the HEG were reliably
quantified for the first time [117, 128].
Future work will include a generalization of the CPIMC implementation to

several particle species and arbitrary spin polarizations, the development and
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testing of approximations within the CPIMC formulation to allow for larger
particle numbers and coupling strengths while still providing a high degree of
accuracy, the calculation of important observables such as the momentum and
pair distribution function as well as reconstructed dynamical properties using
the Matsubara Green function, and, last but not least, the investigation of more
complex Hamiltonians that contain, e.g., magnetic or relativistic effects.
While this thesis was focused on the application of the CPIMC method to

fully spin-polarized systems, the formalism is fully general with regard to the
simulation of arbitrarily fixed and also alternating spin configurations. The recent
applications to the unpolarized HEG have been very successful but revealed an
increased fermion sign problem compared to the polarized case. Since kinks that
differ only with respect to the spin of the involved particles (but are otherwise
identical) have opposite signs, the so-called blocking approach could be used to
reduce the sign problem in this case.
Even if blocking for arbitrary spin polarizations is successfully employed,

exact CPIMC simulations will still be restricted to intermediate densities, rs . 1,
for low temperatures and particle numbers required for reliable calculations
of observables in the thermodynamic limit. More than doubling the range of
applicability appears only to be possible with additional approximations. One
approach is to propose only certain classes of diagrams in the MC updates.
Very promising is the restriction to add and remove only pairs of kinks, which
completely avoids the sign problem and is very accurate at low temperatures. The
weights of the remaining diagrams can be either set to zero or strongly decreased.
The latter technique would allow for a systematic improvement of the errors by
reducing the suppression of the weights at the cost of a smaller average sign.
Subsequently, one could attempt an extrapolation to the exact limit without any
constraints, similar to the kink potential extrapolation.
An interesting first step towards the investigation of real two-component

plasmas would be the simulation of a single atom at finite temperatures, possibly
embedded in a HEG, described by an external Coulomb potential. Screening ef-
fects, the dependence of the ionization on temperature and density, and the exact
potential of ions in the HEG are still open questions, which recently stimulated
controversial discussions in the literature [129–137]. Exact CPIMC calculations
could verify the approximate DFT results [132, 134] and yield ab initio data of
the decreased ionization energies of atoms in warm dense matter. A challenge is
the accurate description of the continuum and bound states with a single basis
set. Using a mixed basis as in Refs. [138, 139] could help to alleviate this problem.

The direct simulation of the two-component plasma without approximations is
extremely challenging because of the large mass difference of electrons and ions.
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While in the warm dense matter regime the electrons are highly degenerate and
weakly coupled and therefore well suited for the CPIMC method, the ions are still
nearly classical and strongly coupled. Pure CPIMC calculations would only be
feasible at much higher densities, which can be found in the crust of neutron stars
or in situations where the electrons form a nearly ideal, relativistic Fermi gas.
Alternatively, the CPIMC method can be applied to a dense plasma of electrons
and positrons [140], which have equal mass, coupling strengths, and degeneracy.
In any case, the attractive Coulomb potential does not need a special treatment
due to the non-local basis function used in the CPIMC method. Relativistic
effects can be added approximately, e.g., by simply using the relativistic energy-
momentum dispersion relation, which can be directly employed in the CPIMC
algorithm.
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A Matrix Elements of the
2D Harmonic Oscillator

In Cartesian coordinates, the eigenstates of the Hamiltonian of a single particle in
a two dimensional harmonic confinement are simple product states ϕnxny (x ,y) =
ϕnx (x)ϕny (y) of the well-known solution for the one dimensional problem with
the Hamiltonian ĥ = 1

2 (p̂2 + x̂2):

ϕn(x) =
√

1
n!2n
√
π
Hn(x)e−x 2/2,

with the quantum number n ≥= 0 and the Hermite polynomials

Hn(x) = (−1)nex 2 dn

dxn
e−x

2
,

and the energy eigenvalues E = n + 1
2 . Calculating the two-particle integrals

of the Coulomb interaction in this basis is numerically challenging and it is
advantageous to switch to polar coordinates with r = (r ,φ). One then obtains
the eigenstates of the two-dimensional harmonic oscillator which are known as
the Fock-Darwin orbitals, see e.g., [103], and can be written as

ϕnrmφ (r ,φ) = Rnrmφ (r )
eimφφ
√
2π
, (A.1)

Rnrmφ (r ) = (−1)nr√2
√

nr !
(nr + |mφ |)!r

|mφ |L
|mφ |
nr (r 2)e−r 2/2,

with the quantum numbersnr ≥ 0,mφ ∈ Z, the generalized Laguerre polynomials
L, and the energy Enrmφ = 2nr + |mφ |+1. For the sign of Rnrnφ and all following
expressions, the convention given in [105] is used. Switching to relative and
center-of-mass coordinates, R = (r1 +r2)/

√
2 and r = (r1 −r2)/

√
2, and dropping

the indices of the quantum numbers, nr = n andmφ = m, the spacial part of

145



A Matrix Elements of the 2D Harmonic Oscillator

two-particle integrals can be simplified:

wn1m1n2m2n3m3n4m4

=

"
ϕ∗n1m1(r1)ϕ∗n2m2(r2)

1
|r1 − r2 |

ϕn3m3(r1)ϕn4m4(r2)dr1dr2

=
∑

NMnm

∑
N ′M ′n′m′

M∗NMnm
n1m1n2m2M

N ′M ′n′m′
n3m3n4m4∫

ϕ∗NM (R)ϕN ′M ′(R)dR
∫

ϕ∗nm(r ) 1
√
2|r |

ϕn′m′(r )dr

=
∑

NMnmn′m′
M∗NMnm

n1m1n2m2M
NMn′m′
n3m3n4m4vnmn′m′, (A.2)

where the Talmi-Brody-Moshinsky transformation coefficients are defined by,
see, e.g., [104],

ϕn1m1(r1)ϕn2m2(r2) =
∑

NMnm

MNMnm
n1m1n2m2ϕNM (R)ϕnm(r ).

The functions on the left- and right-hand side of that equation are both of the
form (A.1) and only a finite number of coefficients are non-zero. Because the
eigenfunctions form a basis, the integral over the center-of-mass coordinate is
simply given δN ,N ′δM,M ′ . Further, the integral over the relative coordinate can
be reduced to

vnmn′m′ =

∫ 2π

0

ei(m−m′)φ

2π
dφ

1
√
2

∫ ∞

−∞

Rnm(r )Rn′m′(r )1
r
rdr

= δmm′
1
√
2

∫ ∞

−∞

Rnm(r )Rn′m′(r )dr .

The remaining integral can be numerically solved by half-open Gauss-Hermite
integration [106]. An explicit expression for the Talmi-Brody-Moshinsky coef-
ficients is given by [105]:

MNMnm
n1m1n2m2 = MN+n+

n+,1n+,2M
N−n−
n−,1n−,2 (A.3)

with an alternative definition of the polar quantum numbers

n+ = (2n + |m | +m)/2,
n− = (2n + |m | −m)/2,
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and the coefficients

MNn
n1n2 = δN+n,n1+n2

√
n1!n2!
N !n!

( 1
√
2

) N+n(−1)n2 min(N ,n)∑
k=max(0,n2−n)

(−1)k
(
N

k

) (
n

n2 − k

)
.

TheKronecker-deltas in the coefficients reflect the conservation of energy, En1,m1+

En2,m2 = EN ,M +En,m , and conservation of angular momentum,m1+m2 = M+m.
Together with δm,m′ , the latter also impliesm1 +m2 =m3 +m4. Using this pro-
cedure, the calculation of the two-particle matrix elements is several orders of
magnitude faster than the direct integration in Cartesian coordinates.
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B Pair-distribution of the
2D Harmonic Oscillator

The Talmi-Brody-Moshinsky transformation that is described in the previous sec-
tion can also be used to calculate the integral over the center-of-mass coordinate
R of the pair-distribution function, Eq. (3.16), in a two-dimensional harmonic
trap. Expressing the pair-distribution function д(r1,r2) in terms of the reduced
two-particle density matrix di jkl , Eq. (3.15), in the basis of Fock-Darwin orbitals
ϕnimi (r )δσ ,σi , one gets

д(r ) =
"

dr1dr2 δ
�
r − (r1 − r2)�д(r1,r2)

=
∑

n1m1,n2m2,n3m3,n4m4,σ1,σ2

dn1m1σ1,n2m2σ2,n3m3σ1,n4m4σ2In1m1,n2m2,n3m3,n4m4(r ),

where the integral is given by

In1m1,n2m2,n3m3,n4m4(r )
=

"
ϕ∗n1m1(r1)ϕ∗n2m2(r2)δ

�
r − (r1 − r2)�ϕn3m3(r1)ϕn4m4(r2)dr1dr2

=
∑

NMnmn′m′
M∗NMnm

n1m1n2m2M
NMn′m′
n3m3n4m4vnmn′m′(r ).

The last step is an analog switch to center-of-mass and relative coordinates as in
Eq. (A.2) with the Talmi-Brody-Moshinsky coefficients given by Eq. (A.3). While
the center-of-mass integration is again trivial, the remaining integral over the
relative coordinate reads

vnmn′m′(r ) =
∫

ϕ∗nm(r ′)δ (r −
√
2r ′)ϕn′m′(r ′)dr ′

=
1
2
ei(m′−m)φ

2π
Rnm

( r
√
2

)
Rn′m′

( r
√
2

)
.
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Figure B.1: Pair-distribution of a) N = 3 and b) N = 6 fermions in a 2D harmonic
trap with coupling parameter λ = 1 and inverse temperature β = 5
and β2, respectively. Shown are results from CPIMC (blue line), CI
(gray line), and PIMC (orange line) calculations, the former two using
NB = 21 and NB = 15 basis functions, respectively. The bottom panels
show the respective deviation from the CI data. The CPIMC results
have been obtained with the implementation from [31] and the PIMC
data are from Alexey Filinov.

As the reduced two-particle density matrix has the same symmetry as the Hamil-
tonian, it is subject to the same constraints. In particular, for all terms that lead
tom ,m′, it is d = 0. Therefore, one can replace vnmn′m′(r ) with

vnmn′m′(r ) = δm,m′
1
4π

Rnm

( r
√
2

)
Rn′m′

( r
√
2

)
in above expression and the relative pair-distribution becomes a function of the
particle distance only, д(r ) = д(r ).
A comparison of the pair-distribution function from CPIMC, CI, and PIMC

calculations for N = 3 and N = 6 particles is shown in Fig. B.1. The curves
are in reasonable agreement with each other and clearly show the correlation
hole at r = 0 due to the Pauli blocking. In contrast to a homogeneous system,
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the pair-distribution approaches zero for large distances in the finite trap. The
statistical errors of the CPIMC and PIMC data are of the same order of magnitude.
For N = 6, a part of the deviation of the PIMC data can be explained by the small
basis size of only NB = 15, which is a restriction of the CI method. The reason
for the relatively large deviation of the CPIMC results are the large fluctuations
of the estimator for the reduced two-particle density, Eqs. (3.13) and (3.14). It
should be possible to derive a much better estimator from the two-particle Green
function, which can be sampled using two worms as explained in Sec. 3.9.
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