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Chapter 1 Introduction 1

Chapter 1

Introduction

Ever since the 1960’s, labor demand in Germany has shown a clear trend: job

requirements have become increasingly related to higher human capital (Bremer,

2007, p. 26). Human capital, broadly defined as a set of skills relating to knowledge

or individual characteristics which increase productivity, has thus become a crucial

asset for workers when competing for jobs. This development especially intensified

as the service sector and the information economy expanded and aiding computer

technology found its way into working life. Working in this knowledge-based society

requires the capability to handle information and communication techniques as well

as meta-knowledge on how to gather, process and create information (Allmendinger,

2009, p. 3).

The economic literature has suggested several mechanisms on how human capital

increases a worker’s productivity and ultimately their income. One established

view is put forward by Becker (1964). His approach regards collected qualifications

as an input factor which directly raises productivity.1 Schultz (1963) and Nelson

and Phelps (1966), on the other hand, regard human capital primarily as leading to

a higher adaptive capability – a beneficial asset in a world marked by increasingly

faster technological change. Since such changes often affect occupational tasks and

structures, the authors emphasize that enhanced ability to adapt to new situations

and thus offering an increased flexibility helps to deal with these changes more

quickly and thereby increase productivity.

These views leave open how human capital materializes and how it is acquired.2

The level of human capital could be determined, for instance, through training,

inherent ability, even the level of motivation or a mix of these. Often, however, a

1Examples for evidence in favor of this theory can be found in Kroch and Sjoblom (1994) and
Chevalier et al. (2004).

2Since Becker (1964) distinguishes between general and firm-specific human capital, it has to be
mentioned that in this thesis only the former is of interest.
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fundamental requirement is the successful completion of school education, for the

reason alone that it imparts essential basic knowledge and builds the foundation

for acquiring further human capital (see e.g. Currie et al., 2009). This idea has

been seized in numerous empirical studies. Assuming that higher productivity is

rewarded monetarily, it is natural to estimate the rate of return to education, as

for instance in the work of Mincer (1974).3 Mincer uses years of schooling, others

use the highest formal education degree, but the two measures have an inherent

relationship since a higher degree typically requires more years of schooling.

Using the highest formal education degree as a measure of human capital is not

obvious from a strictly Beckerian perspective since it is unlikely to carry any

influence on productivity as such. This influence rather stems from the process to

attain the degree because it is where knowledge is acquired. Practically, however,

the completion generates a certificate which proves the existence of pertinent

knowledge to uninformed others and hence signals certain abilities and skills. This

argument corresponds to the human capital view of Spence (1973): Since employers

cannot fully validate an applicant’s skills, a sensible guess can be based on certifi-

cates which are a sign of ability and can be translated into higher productivity.4

Individuals with higher education will be offered the better rewarded jobs. Another

argument why a formal degree is relevant is due to institutional norms. Education

systems are often highly hierarchical – also in Germany: Norms usually require the

formal completion of lower education stages before advancing to the higher, more

specialized ones. For example, first successfully finishing school with an adequate

certificate will open up certain vocational opportunities.

Using school-related characteristics as measures of human capital can be criticized,

however. Years of schooling, in particular, are prone to error due to class repetition.

Class repetition adds an additional year of schooling, but the reason for this extra

year is qualitatively different to a normal year. But there are also disadvantages to

the highest formal education degree. The disadvantage which school achievement

measures share is to not take the quality of schooling into account. A year of

schooling at a bad school is not the same as at a good school which is the reason

differences in quality are likely to have a substantial impact on human capital. The

larger the differences between a good and a bad school are, the more imprecise a

school achievement indicator becomes. Hanushek and Woessmann (2015) contend

an alternative measure. The authors propose using indicators of cognitive skills,

which can be approximated by test scores as, for instance, surveyed in the PISA

studies. Cognitive skills are a compound of many factors of which school quality

3Minding that the schooling effect is likely to be overstated due to the correlation between
earnings and investment in human capital through inherent ability.

4Supportive evidence for the signaling theory is, for instance, due to Lang and Kropp (1986).
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can be one, but they are also affected by families, peers, neighborhood and health

status (Hanushek, 2009, p. 40). This measure hence exhibits variation where the

mentioned school-related measures would remain constant. It is, in particular, the

international perspective on the aggregate economy in which the strengths of the

use of cognitive skills become clear. By referring to numerous empirical studies,

a robust relationship between cognitive skills and the growth trajectory of both

industrialized and developing countries is demonstrated – a relation found to be

more fragile for school achievement indicators (Ibid., p. 41). For the most part,

this can be ascribed to the observation that school quality is more heterogeneous

across nations than within nations, which would make cognitive skills a more

precise measure of human capital.

The concept of cognitive skills as an alternative measure can refer to a large extent

of abilities – some inborn, some learned. The empirical literature typically differ-

entiates between two types of cognitive skills which are sometimes referred to as

intelligence. Difference in origin is what demarcates the two types from each other.

One is fluid intelligence which relates to inherent abilities; the other is crystallized

intelligence which refers to acquired knowledge or behavior (Dahmann, 2015, p.

13). As examples Dahmann names for the first concept the ability to reason and

the capability to process information. Examples for crystallized intelligence are

the abilities to read or to calculate, capabilities that can be acquired through

practice. While fluid intelligence can be viewed as given, crystallized intelligence is

considered influenced by environmental factors, education amongst others. A clear

attribution, however, appears rather difficult as interaction effects between the

two types of intelligence are likely to play a role. For crystallized intelligence is

thought to be more malleable, it is of higher interest in this thesis. When speaking

of cognitive skills in the following, crystallized intelligence alone is referred to.

There being an influence of schooling on cognitive skills, these measures typically

feature a close relation; in fact, the latter are also termed as ”a key dimension

of schooling outcomes” (Hanushek, 2009, p. 42). Emphasizing the importance of

school quality, Hanushek points out that the effect of schooling on key economic

measures can be confounded not only through ability but also through a selection

effect that is caused by differences in school quality. Hanushek et al. (2008) ob-

served that dropout rates are higher in low-quality schools than in high-quality

schools. The individuals who have enjoyed longer schooling have therefore also

enjoyed better school quality on average. Together with a positive correlation of

school quality and key economic outcomes, there is a quality bias in addition to

the well-known ability bias.

Based on these arguments, deciding to measure human capital by school achieve-

ment indicators or test scores depends predominantly on four factors: which theory
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is followed, in particular, how important signaling is considered, the aim and

context of the analysis, the heterogeneity of the data sample with respect to school

quality and finally data availability.

Regardless which measure is chosen, there are certain individual benefits that go

along with the investment into human capital or, more specifically, education. Not

only does income rise on average, the personal risk of unemployment also decreases

through more (occupational) opportunities and the mentioned improved capability

to adapt. Not solely economic benefits complement the many desirable job-related

returns: As a modern society offers a lot of possibilities, options arise. Where

options arise, decisions have to be made and schooling can improve them. Making

better decisions can, for instance, refer to more distant areas like consumption

or marriage (Oreopoulos and Salvanes, 2011). In this sense, more education

corresponds to a larger set of accessible information, which the individual can,

moreover, assess better. There are also indications that higher education enhances

personal health outcomes, like longevity (Lampert et al., 2013, p. 262f.). However,

due to long-term effects there does not exist any causal evidence to my knowledge.

And although an indirect link could be established via unemployment, which

negatively correlates to both education and health indicators, a causal effect of

unemployment on health could not yet be verified (Schmitz, 2011).

The relationships do not only hold on an individual, but also on an aggregate

level. In the context of endogenous growth models, it has been noted that the

accumulation of relevant human capital affects overall productivity and the growth

rate of the economy (Mankiw et al., 1992). But, in particular, cognitive skills

significantly explain variation in economic growth in developed and developing

countries. Causality concerns in this context, for instance through (unobserved)

third-variable effects or reverse causality, are addressed by Hanushek and Woess-

mann (2012) and Kimko and Hanushek (2000) whose evidence points towards the

negligibility of such concerns. Their results portend positive long-term effects of

human capital on the economy.

The relationship between cognitive skills and growth holds internationally. Due to

its demographic development, there are benefits which are particularly important

to Germany. Current calculations predict a rising share of retirees in the total

population, leading to a situation where fewer people in the labor force will have

to sustain more people outside the labor force. This especially concerns the pay-

as-you-go pension scheme, which is the standard in Germany. To sustain financial

feasibility, it is hence all the more important to have sufficient numbers of people

inside the workforce and avoid unemployment for reasons of scarce qualifications.

From a civic viewpoint, education has been found to benefit democratically or-
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ganized societies by increasing vote participation (Milligan et al., 2004) and the

quality of civic knowledge (Dee, 2004). Moreover, studies have found a causal

effect of schooling on the propensity to commit crimes. Exploiting law changes in

the duration of compulsory school, researchers found that longer schooling/higher

education reduces the risk of breaking the law (Lochner, 2004; Machin et al.,

2011).5

A different way to look at the effects of education is to consider the costs that

emerge by insufficient education. For Germany, the costs of insufficient educa-

tion were estimated by Wößmann and Piopiunik (2009), who define insufficient

education as having PISA test scores lower than a particular threshold which is

associated with low competencies. According to their calculations (for data from

2000 and 2003) around 24 % of German pupils’ attained PISA scores which were

lower than this threshold. Defining insufficient education differently, namely as

not having a school leaving certificate or having one less than A-levels but no

vocational qualification, also Allmendinger et al. (2011) estimated the costs of

insufficient education. Their definition concerns about 15 % of a yearly cohort at

that time. Both author groups estimate the economic benefits if a certain share of

insufficiently educated individuals had been sufficiently educated. The basis for

the calculations of Wößmann and Piopiunik stems from a hypothetical educational

reform which would reduce the share of the insufficiently educated by 90 % in 2010.

The corresponding economic gains to the year 2090 would add up to 2,8 trillions in

2010–Euros. In the calculations of Allmendinger et al., the number of insufficiently

educated individuals would be halved which would accumulate in net economic

profits of around 615–1539 million 2011–Euros over a time span of 35 years.

From an individual’s and the society’s perspective, it appears therefore sensible

to foster educational outcomes so that every individual attains the optimal level

conditional upon their inherent potential.

Having demonstrated the importance of education in various contexts, the ques-

tion arises what determines educational outcomes and whether it is possible to

improve them. As the phrase ”conditional upon their inherent potential” suggests,

inherent abilities and other uncontrollable environmental influences may determine

an upper bound. Remaining variation can be due to several sources, the most

important of which typically being the environmental context in which a child

grows up. When influences on school achievement are discussed, consensus is

that a major part of this context is family background - as different as it may be

(Funcke and Menne, 2010). Its relevance can be observed in sibling correlation

studies or by looking at intergenerational changes in achieved education or wealth.

5Or at the very least: the probability of being caught.
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Sibling correlation studies are based on the idea that if family or community

factors have an influence on a child’s outcome, the correlation between the siblings’

outcomes should be higher than for two randomly selected children (Schnitzlein,

2014). The sibling correlation approach has the advantage of capturing observed

as well as unobserved environmental factors that are common to the siblings.

The shared factors are, however, not only related to family background but can

also include community factors. While this method is able to provide a lower

bound on the family influence, it neither readily identifies the underlying factors

themselves nor their relative importance.6 One insight that can be gained from

such an analysis is the comparison of the extent of correlation between countries.

Björklund and Jäntti (2012) examine the influence of factors shared by siblings on

various outcomes such as schooling or long-run income for Sweden and find they

account for about 40 % to 60 % of the variation. Schnitzlein (2014), using the

same approach, compares Denmark, Germany and USA with respect to permanent

earnings, and analyzes education and willingness to take risks for Germany alone.

He finds that sibling correlation is comparably high in Germany and the US (40

%) and significantly lower in Denmark (20 %). The results also suggest stronger

correlations for brothers than for sisters. For education the correlation rises to

even 55 % – 65 % in Germany. Mazumder (2008) examined the issue for the US

and finds a sibling correlation of about 60 % for years of schooling.

The OECD has published statistics on intergenerational changes, the so-called

mobility, in the distribution of education or wealth. Compared to other OECD

countries, mobility in Germany is especially low at the tails of the distribution.

That means the odds of attaining higher (lower) education are considerably lower

for children whose parents have low (high) education than for children whose

parents have high (low) education. This observation has been made on other data

sets as well (Baumert et al., 2001; OECD, 2012a; Pfeffer, 2008).

Taken together, the sibling correlation studies and the descriptive analyses indicate

that children’s achievements depend on their origin. If one assumes the distribu-

tion of inborn ability to be independent of the origin, this implies inequality of

opportunity which results in a waste of potential.

Peculiarities of the German educational school system are suspected to carry some

responsibility for this educational inequality (Hanushek and Woessmann, 2006;

Bauer and Riphahn, 2006). The relatively early stratification into different tracks,

known as tracking or streaming, leaves little time for a school to activating a child’s

potential before they are assigned to one of the tracks. Another factor that might

6A lower bound is estimated because there exist factors which are indeed related to the family
but are not shared by siblings. One example are genes, which are fully related to the family,
but only about half their genes are shared by siblings (Björklund and Jäntti, 2012).
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contribute to this situation is the duration of school days. Although the number of

full-day schools is on the increase, half-day schools are still standard in Germany.

Compared to other countries, a German child spends less time in school and more

time in the home environment. This factor leads parents to take on a weighty role

in the track choice because it partly depends on how parents have aroused their

child’s potential themselves. Thus, family background of all environments plays

a major role when it comes to activate a child’s potential and the formation of

human capital. The main economic theme of this thesis revolves around the topic

of how the family and the social environment affects the development and thereby

the human capital development of children.

Given the importance of family background, the question arises what exactly

family background is, as the term itself is rather unspecific. Nechyba et al. (1999)

emphasize that the parents’ pronounced role lies in the numerous influences on

the child such as their choice of community, the degree of their school involvement,

and their influence on the child’s choice of peers. Haveman and Wolfe (1995)

provide a comprehensive overview of different studies and approaches to explain

educational attainment. They note that in virtually every study parental influences

are partly regarded by their education or income. This comes at no surprise given

the high correlation of these characteristics with a child’s school success. Björklund

et al. (2010) demonstrate, however, that such attributes may not sufficiently

account for the family influence. Applying sibling correlation mixed-effects models

on a Swedish data set, the authors find that parental income, education and

occupation do not explain even half of the sibling correlation for long-run income.

Yet, there are two main reasons for reducing the family background to these two

characteristics. Haveman and Wolfe (1995) point out that one is data scarcity –

there were no other indicators for family attributes available. Secondly, education

and income might have effects on their own but are also potentially correlated

with other beneficial aspects of family background, for instance certain parenting

styles. In particular, the correlation between parental education and child’s school

achievement is substantial, as depicted in the mentioned OECD-statistics. Hence,

parental education predicts a substantial amount of the variation in manifest school

success of children.

But what causes this relation? Black et al. (2005) summarize the two main lines of

argumentation. One is a selection issue, the other is a causal effect. The first line of

argument states that those who opt for higher education differ systematically from

those who do not. An intergenerational correlation in education is hence caused by

certain attributes which influence both the propensity to obtain higher education

and nurturing quality. On the other hand, a causal effect could emerge through

education when the acquired knowledge improves the skills to raise a child. At this
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point it is not relevant whether a direct influence through education is assumed

or an indirect influence, e.g. education rising expectations which then improves

parental nurturing quality as argued by Davis-Kean (2005). The literature on

causal effects of education discloses only small or insignificant effects, though

(Behrman et al., 2002; Black et al., 2005; Plug, 2004). This indicates that selection

is highly likely part of the story, albeit its exact influence is unclear.

The question remains whether education suffices as an indicator for the family

environment, i.e. is parental education truly a sufficiently good projection of

traits like low aspiration and disadvantageous parenting styles? There are coun-

terexamples. Pursuing the selection story, education as indicator will be of minor

relevance if parents did not go for higher education in spite of having the (latent)

traits of a high-aspirational group. In the fifties and sixties of the last century,

for instance, such a refusal may have been caused by societal or family-related

constraints. Such constraints manifested in terms like the ”catholic daughter of

a working class family living in the countryside”7 (Dahrendorf, 1965) - a term

which condenses demographic characteristics linked to structural disadvantages

in education - and also found its way as a theme in literary works (Hahn, 2003).

Geißler (2005) notes in this context that although the disadvantages for some

characteristics have receded over time (e.g. being female), others have remained or

were added (male offspring with migration background). The study by Björklund

et al. (2010) supports the argument: While demographic factors cannot explain

half the variance in long-run income (more concretely: between 13 % - 28 %), the

inclusion of parental variables relating to involvement in schoolwork, parenting

practices, attitudes and the number of books at home increased the amount by

about 40 percentage points.

To structure the discussion about parental characteristics, the concept of primary

and secondary disparities by Boudon (1974) is used. Schindler and Reimer (2010)

describe primary disparities as differences in educational achievement that are

due to a different social origin. Secondary disparities, by contrast, refer to the

notion that certain educational choices are made within a social context and that

these choices are independent of the observed performance of the child. Together,

these terms refer to mechanisms of the reproduction of social inequality which are

especially influential at transition stages like the end of primary and secondary

school. While primary disparities provide an initial distribution in scholastic

performance (Paulus and Blossfeld, 2007, p. 495) which can, for instance, depend

on income or having a migration background, secondary disparities refer to mindset-

related factors like aspirations, the pursuit to maintain a certain status and decisions

7Own translation of the German wording: ”Katholische Arbeitertochter vom Land”
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based on cost-benefit analyses on investment in education.8 The crucial point is

that secondary disparities differ across social contexts but are alterable. A mindset

can be changed more easily than income, when dependencies on environmental

factors are taken into account. One example is parental aspirations that vary

between social contexts, even if the child’s ability was the same. Parents from the

educated middle-class may not consider anything else but academically oriented

schools - all irrespective of the child’s inherent abilities, while parents from the

working class may shy away from sending their child to higher education (Paulus

and Blossfeld, 2007, p. 492). In this example, primary and secondary disparities

work in the same effect direction, but, as demonstrated, this need not be the

case. Stated differently, there might be heterogeneity in the secondary disparities

conditional upon primary characteristics.

The notion of secondary disparities extends the prior thoughts on family background

indicators and is now able to describe the case of lowly educated parents who

provide a fruitful background for their child as well as the other way around.

It is, however, more difficult to argue for highly educated parents providing a

disadvantageous background since the motive of avoiding downward status mobility

is more relevant. This could be reflected in increased expenses for measures that

enhance the child’s school achievement. Moreover, uncertainties with regard to

institutions of higher educational pathways might primarily play a role among

lowly educated parents. Highly educated parents have experienced the curriculum

themselves and are also more likely to have access to sources of information about

it.

Taking secondary disparities into account may hence help to capture heterogeneity

in the family environment, in particular when parents do not exhibit a high

educational background. This view is strengthened by theories in the sociological

literature. With reference to family environments, Teachman (1987) writes, ”Family

educational resources have a positive impact on educational attainment of children

net of demographic indicators of family background.”. Similarly, Corak (2013, p.

98) refers to subtle ways, such as the family culture, and attests it a significant

influence.

One disadvantage of the extension to softer family background characteristics

are less tangible definitions. It is not clear how a fruitful background or family

educational resources are defined. Secondary disparities may be understood rather

as a multidimensional conceptual term rather than a clearly measurable quantity. A

8By cost-benefit analyses it is referred to the model of Breen and Goldthorpe (1997). In this
model, the decision regarding certain types of education is swayed by monetary restrictions but
also to subjective factors such as the current social status, experience, risk aversion and the
(subjective) belief in a successful completion.
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natural point to start the data collection would be to inquire the parents’ aspirations

and plans for the child. Even though it would be possible to ask parents about

their aspirations and assessments of their child’s achievement, it can be ambiguous

how they are related to the child’s development as demonstrated by Stamm (2005).

In her article, she analyzes two expressions of parental aspirations: stimulus and

demand. Stimulus refers to private actions which attempt to foster the child’s

educational achievement, whereas demand refers solely to parental expectations.

Her results suggest that high educational expectations in combination with high

stimulus are associated with good school achievements of the child, while the lack

of stimulus leads to a relatively worse development even when aspirations are on

the same level. Aspirations alone will, hence, not cover the important facets of

family background. Moreover, they are always at risk of being confounded by the

observed achievement, which leads to endogeneity problems.

A different way to approach the topic is to consider a family in its social context.

Since people interact with their social environment in many a way, the latter

may influence their characteristics. For parents, the social context can therefore

have a significant bearing on factors like aspirations or stimulus which makes this

aspect worthwhile to consider. From a broader perspective, the approach is in line

with social structure concepts, which are frequently used in sociology to provide

a description of a society’s composition. The cornerstone of these models is the

identification of groups in a society. These approaches group individuals based

on common characteristics. Through societal changes and developments within

sociology, the groups have evolved from classes, over strata to milieus over time

and thereby become increasingly fine-grained (Bremer, 2007, p. 26ff.). In their

definition, milieus are classifications that describe groups of people living in similar

circumstances and having similar norms and standards (Hradil, 2006, p. 3). The

focus lies, therefore, not on the position in a society as in the class concept, but

on everyday life culture. Nowadays, the milieu concept is commonly applied to

explain behavioral differences in the population, e.g. regarding participation in

further education (Bremer, 2007).

The milieu-related norms and standards may also encompass the educational

resources of interest. Whether this is the case depends on the relationship between

the characteristics which constitute the milieu affiliation and the characteristics

that are relevant for a child’s school success. If the two are closely related or even

the same, milieus pertain as valid approximations for the educational resources of

interest and can be used to capture the desired characteristics. On the other hand,

if a milieu classification is based on factors which are uncorrelated with the traits

of interest, the concept is of no use in the context of this work.

Although the milieu concept appears to be unique in theory, there are several
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approaches to form them in practice. These approaches differ with regard to the

characteristics on which the milieu assignment is based as well as the qualitative

identification and naming of milieus. This calls back to mind that the milieu

representation is only a simplified model of a society and may contain errors.

Irrespective of the concept chosen and the property of whether the milieus are

valid approximations to the factors of interest, there are typically some additional

concerns in empirical work. One is data availability and it applies especially to

the less popular concepts. If the data are available, the next issue is whether the

assignment of individuals to milieus is correct. It might be based on individual

characteristics, but sometimes regional indicators such as location of housing are

used. Another important aspect concerns blurred boundaries between milieus.

Individuals may have characteristics of several milieus at once, which can be

depicted by probabilities or relative shares. Assigning an individual to the one

with highest likelihood, however, threatens a milieu’s homogeneity and possibly

its meaningfulness in a statistical analysis. These points are a brief outline of the

difficulties in using milieu concepts in practice.

The alternative approach pursued in this treatise avoids some of the issues with

existing milieu concepts. While the key idea of similar mindsets is retained, the

empirical implementation differs. Fundamental is the notion that people who differ

in the factors that concern the attitude towards education differ also in other

characteristics, such as personality, preferences or behavior. This corresponds to

the milieu notion that life environments differ across milieus. To elucidate the

approach, it is useful to first review the idea of using milieus in abstract terms:

Milieus, were they suitably defined for this topic, might not be observable without

undertaking efforts to obtain the necessary information on educational resources in

home environments. They are hence unobserved and must be derived. Yet, those

milieus are assumed to influence parental characteristics and the child’s school

achievement. Such relations can be described by a latent variable model.

A latent variable model consists of two main components: a set of few latent

(unobserved) variables and a set of observed variables. The latent variables are

assumed to shape the observed variables to a certain degree. In this context, milieus

can be considered as latent variables and the child’s school achievement as an

observed variable. However, the child’s school achievement is not the only observed

variable that is affected by milieu-specific characteristics. Since milieus are marked

by common views on life, they can be reflected in many other observed instances

such as personality, norms and attitudes, time use indicators and demographic

information. Those patterns in observed characteristics are conjectured to allow

inference on the hidden latent variables.
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The approach in this treatise exploits this argument and does two things in

addition. Firstly, it explicitly considers observed family background characteristics

in the model. These are viewed as noisy products of the latent variables, which

means that they are influenced by the latent variables but do not feature a one-

to-one relationship with them. Secondly, instead of defining latent variables as

a priori defined milieus, the observed characteristics are used to infer the latent

variables. The approach therefore retains the basic structure of the milieu-model,

but generalizes the latent variables to being more flexible constructs. Denoting

those constructs as milieus would be somewhat assumptive, however, because

milieu concepts have deeper-rooted theoretical foundations and it is unclear to

which degree they can be identified in a given set of observed characteristics.

Instead, the latent variables in this version of the model are called facets, common

patterns, or dimensions of family background and correspond to latent variables

within the sub-population of parents.

In sum, the approach generalizes the principle of milieu concepts towards facets of

family background. The main components of the model are the latent variables,

which are assumed to influence both the set of observed characteristics and the

child’s achievement, and makes their identification of interest. To identify them,

structures in the set of observed variables are exploited. Those variables are,

however, measured with noise such that there is no one-to-one correspondence to

the latent variables. Moreover, they can be influenced by several latent variables at

once. An illustration for the model concept is given in figure 1.1, where relations

between the elements of the model are indicated by the arrows’ directions. In

practice, the strength of relations varies and all latent variables are connected to

all observed variables. For clarity, such details are omitted in this figure.

Figure 1.1: Latent variable model
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Practically, the dimensions of family background are of key interest. However,

they are not known beforehand because educational resources can be of manifold

type and substitutable. Neither is it known, which observed variables are required

to identify them. One example for this is the number of books at home that might

well correlate with parental valuing of education; the latter could be viewed as a

latent variable of interest. However, the number of books is typically measured

with error and the same latent variable can find its expression in many other

ways, too. As a given set of observed variables plays the major role in identifying

latent variables of interest, it is crucial to have a theoretical foundation for their

selection. Since the only interest lies in the family background, the rationale is

to choose family background characteristics according to whether a child is in

some way exposed to them. This ensures that the latent variables relate to the

child as well. By focusing on family background characteristics, any school-related

information, about the peer-group or gender-specific (dis-)advantages for instance,

is not considered by definition.

Exposure to parental characteristics can be summarized in four (partly interre-

lated) categories: parental time use, parental attitudes and preferences, parental

personality and general endowment characteristics, such as demographic indicators.

Besides a possible direct exposure, there is a second way to affect the development

of children. For a number of characteristics, the empirical literature has discovered

a correlation between generations. This observation is interpreted as an intergen-

erational transmission. It extends the parental influence to an indirect effect when

the child takes on traits that influence its educational achievement.

Based on the four categories, various characteristics are selected that function as

observed indicators of family background. For some of them a direct or causal

relation to the outcome has been detected in the literature. But, by virtue of

modeling the problem as a latent variable model, every characteristic is primarily

interpreted as stemming from latent variables. And although the selection is

focused on parental indicators, the notion of a social environment’s influence is

also contained because it is likely reflected in various characteristics.

As a result of the rationale for selecting variables and the comprehensive data

set at hand, the approach pursued in this treatise is based on a large number of

observed parental characteristics. These are used to infer typical facets of family

background or the parental mindset. Given the theme of heterogeneity within

groups of education, the economic premise of this dissertation is to explore the

patterns within discovered facets of family background and to evaluate whether,

and how much, they contribute to explaining a child’s school achievement. In the

process of evaluating those facets, the importance of the standard demographic



Chapter 1 Introduction 14

indicators education and income can be assessed. This allows the identification

of two cases: The first is to detect significant associations of facets that have

hardly a relation to the standard indicators education and income. This case

would confirm the hypothesis of remaining heterogeneity in levels of education and

income. Otherwise, all relevant dimensions of family background relate to these

indicators in some way, which would not support the stated hypothesis.

The modeling strategy that has been described up to here is expanded in chapter

2 which provides the theoretical foundation for the approach of this thesis. The

chapter elucidates the issue why milieus are of interest in theory but may not

suitable for the identification of educationally relevant facets of family background

in practice. The outlined approach is explained more exhaustively, particularly

addressing why it overcomes some of the disadvantages of using the milieu concepts.

The chapter also discusses the variable selection rationale and elaborates on the four

channels in greater detail. This discussion, in particular for the provided examples,

takes place in deference to the data set at hand and is hence in anticipation of the

empirical analysis at a later point.

One challenge that arises in an empirical treatment is that the set of selectable

predictors can be large in relation to the number of observations. Transmission

channels, like the time use/activity channel, can comprise many variables because

there are many activities whose frequency could be measured. A further property

of such a data set is the existence of clusters of correlated variables, which can

be exploited and should not be ignored. Chapter 3 demonstrates the pitfalls of

standard regression methods in such data-rich environments. The main argument

is that the inclusion of too many variables leads to sample-specific models that can

hardly be generalized. Choosing a set of variables beforehand is arbitrary, leads

to unnecessary exposure to measurement error and would also not correspond to

the argumentation of a latent variable model. The data structure requires using

techniques that directly address the properties of the data set.

Reducing the dimensionality, which means to reduce the number of explanatory

variables, is an approach to deal with such a data set. Such a reduction facilitates

the interpretation of the resulting model because fewer variables need to be

considered. In this dissertation, two classes of methods that achieve a dimensional

reduction are examined in greater detail: Methods forming indices and a certain

type of shrinkage (regularization) methods. As there are many candidates within

the realm of these methods, the examination concentrates on the subset of suitable

and popular ones, namely principal component regression types, factor regression

types and regularization methods with variable selection.

An empirical depiction of the latent variable model theory is achieved most closely
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by an index model. The basic idea is to combine the observed variables to indices,

whereby the total number of indices is chosen to be smaller than the number of

original variables. The resulting indices may be interpreted as the latent variables

of interest and, hence, be subject to further analysis. Shrinkage methods, on the

other hand, use all characteristics in a regression model but penalize a large effect

size by pulling the coefficients towards zero. A variable selection takes place, as

only the characteristics with a coefficient absolutely larger than zero are kept.

Uncovering latent family facets is, however, difficult using these techniques. On

the other hand, they are known for finding sparse models with good predictive

performance and give a hint on the strength of the single predictors’ association, an

information that is not immediately apparent for index models. These arguments

make it worthwhile to examine regularization methods. As it is unclear whether

one of these methods is preferable to the others, a simulation study is conducted. In

chapter 4, the selected methods are detailedly discussed regarding their dimension

reduction feature and economic interpretability of the statistical output.

The simulation study presented in chapter 5 evaluates the performance of the

introduced methods under conditions as described in chapter 3. Two models of

data generation are studied in this context. One is the latent variable model,

the other is a model in which the observed variables directly affect the outcome.

Starting with baseline models which attempt to approximate the structure of

the empirical data at hand, the model parameters are changed under different

scenarios. This yields varying data structures, and thereby exposes the conditions

on which a method’s performance depends.

Using the results of the simulation study, the most promising method is used to

examine the topic empirically with survey data. The empirical analysis is presented

in chapter 6. The data set used for this analysis is the German Socio-Economic

Panel Study (Wagner et al., 2007), short SOEP, which is a representative panel

survey containing data about 11000 German households per year. Each year the

DIW rolls out a comprehensive questionnaire asking for demographic aspects as

well as life circumstances. Since 2000, the household head’s children, when they

turn 17, have been invited to the survey. This special ’Youth questionnaire’ is

useful in this context, as it asks for school-related information, such as the school

type and the last grades obtained. Moreover, detailed information on the family

environment during the childhood is gathered. In 2006, the DIW introduced a

supplementary cognitive skills test. All those data can be matched to the parents’

data from the normal questionnaires. Details on this matching process as well as on

the generation of the endogenous variable(s) and the treatment of the explanatory

variables is described in chapter 6.
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This work adds to the literature in several ways. Motivated by the need for method

selection specific to this data environment and the requirements, the simulation

study additionally attempts to address several general research gaps. This is

done by carefully examining methods whose properties fulfill the conditions of

dimensional reduction and interpretability. Different data environments allow an

evaluation of the conditions under which methods perform well or not. Owing to

the interpretable model condition, rarely examined methods are included. Many

simulation studies focus on predictive capability only, a fact that often excludes

methods which aim to produce interpretable results. Another point not often

addressed is the difference between in-sample and out-of-sample performance.

This omission is examined here and gives an indication of the method’s ability to

produce sparse models. Moreover, two methods combining the strengths of index

building methods and shrinkage models are proposed and examined for the first

time. Since only general features of the data are defined, the insights from the

simulation study can also be useful in other contexts where similar data structures

and aims are present.

Concerning the implementation of the described theory, the following aspects

add to the existing literature. Although it is not a novel idea to examine the

relation between social milieus and the child’s school success, there are, to my

knowledge, only qualitative analyses on this topic. The connected idea of using

characteristics beyond demographic ones is also not new, but the implemented

approach is the first one that explicitly aims to detect facets of family background.

Founded on the idea of a social milieu’s influence on observed characteristics,

the approach addresses the potential drawbacks while retaining the notion of

identifying patterns in society by means of observed characteristics. Owing to the

latent variable model implementation, the facets are based on a conglomerate of

relevant indicator variables. Thereby the approach circumnavigates the reliance on

single indicators and instead provides information on family background structures.

While no causal relationship can be established, this analysis gives insights into

the association of these structures with the child’s school achievement. This

may increase the understanding of different life environments and potentially also

their substitutability. The approach also examines the relation of the standard

demographic indicators to other, softer indicators. On the basis of these results,

the approach additionally adds to the literature by identifying key indicator

variables that support future research taking account of the heterogeneity in family

environments. Since the set of included characteristics is relatively large, the

results may be useful in other data sets than the SOEP, too.
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Chapter 2

Modeling approach

2.1 Milieus

This chapter starts with a theoretical discussion of why milieus could approximate

the family background characteristics that are relevant for the educational success

of a child. Despite their theoretical appeal, drawbacks related to the definition

of milieus occur in practice which motivate introducing a modified approach. Its

starting point is to describe the problem as a latent variable model, in which

milieus are interpreted as the latent variables. The proposed approach improves

upon some of the drawbacks by generalizing the framework to a more flexible

variant. After the concept of this approach has been elucidated, the importance

of identifying the latent variables in this model is pointed out. As a consequence

of the approach and the model, their identification depends on having suitable

parental characteristics. A debate on how to select those follows upon that.

The selection rule emerging from this discussion requires that parental charac-

teristics describe the family background to which the child is exposed. Since

this rule does not limit the parental characteristics substantially, the chapter’s

remainder deals with the choice of variables in greater detail. Its focus lies on

characteristics which are available in the data set at hand, so that the description

occasionally anticipates section 6.1. The discussion is structured by grouping

parental characteristics into four categories, which are personality, attitudes, time

uses and demographic characteristics. Some parental characteristics can exceed

the role of being an expression of a family background dimension. Then, they may

involve a specific influence on the child’s achievement. This may occur indirectly

via intergenerational transmission of characteristics or directly by affecting issues

concerning the child’s scholastic performance. Relevant results from the literature

on such matters is recapitulated during this discussion.
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As argued in the introduction, the central idea is to find characteristics which

indicate the parental (dis-)approval of a child’s education. This is of interest,

since the attitude towards education is influential for exploiting the scholastic

potential a child has. Disapproval of education can concern the school achievement

in unfavorable ways. It is unlikely to lead to the necessary encouragement, which

leads eventually to a worse than possible outcome. A parental home, however,

which provides a fruitful background, can pave the way for a good development of

the child. The arguments given in the introduction point at possible deficiencies

of demographic indicators. They are suspected to insufficiently represent the

manifold family background influences on the child’s school achievement. The

factors of interest are arguably related to the parental mindset because it influences

preferences, also towards education matters, which influences the choices made.

These choices in turn affect the environment in which a child grows up and hence

its development.9 A parental mindset is, however, a vague term, which can have

many manifestations. Since it is unclear which dimensions of the parental mindset

are of interest, observations from sociology are used to approach the topic.

In the broader context of society, sociological studies point out that an individual’s

mindset bears resemblances with the social environment that surrounds the individ-

ual. This environment is called milieu. By definition, this term describes a group

of people living in similar circumstances and having similar norms and standards

(Hradil, 2006, p. 3). Those who belong to a certain social milieu interpret and

shape the environment in similar ways and create a group affiliation by dissociating

themselves from other milieus (Barth and Flaig, 2013, p. 12). Given this definition,

it is not clearly defined in which respect people in milieus resemble each other.

In principle, this notion permits likeness in aspects that are relevant for a child’s

school success. For example, there could be a milieu which comprises parents who

value education and act accordingly. This could find expression in appreciating a

child’s efforts in school or the encouragement to achieve a good scholastic result.

By contrast, another milieu, disapproving of education, might be marked by doing

exactly the opposite. If these milieus were identified and quantified, they could be

examined closer. For instance, their relation to demographic characteristics, such

as parental income and education, could be scrutinized.

These thoughts demonstrate the power the milieu concept has in theory. In

comparison to other models of society, it has several properties rendering it suitable

for this analysis. First and foremost, it emphasizes the meaning of less tangible

characteristics. Albeit rather generally defined, a milieu is demarcated from the

9For the time being, it is assumed that both parents share the same mindset and therefore offer a
homogeneous family background. This assumption is made for simplicity’s sake and is discarded
in the empirical analysis.
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concept of social classes in that it considers characteristics such as mentalities in

addition to demographic ones such as income or occupational status (Hradil, 2006,

p. 5). Moreover, milieus are often considered with regard to close surroundings,

but this need not always be the case. Durkheim (1988, p. 44) distinguishes two

dimensions of milieus. One is called the objective dimension, which is tangibly

defined by close relationships, for instance, to relatives or colleagues; the other

is the subjective dimension, which is based on common moral rules and specific

bearings of a group of people for whom a close relationship is not required. One

difference between the two dimensions is the degree of choice: The objective

dimension can be taken as given, whereas the subjective one reflects decisions

in the past. But since the two dimensions can greatly overlap, e.g. through

self-selection, they are usually indistinguishable.

In view of these arguments, a mindset and a social milieu feature likely a close

relation. However, a milieu always remains a simplifying abstraction. A mindset

is an individual factor, whereas a milieu subsumes a larger group of individuals

who resemble each other in some predefined criteria. Hence, a milieu is at best

homogeneous only with respect to those criteria, while other (important) aspects

of a mindset might nevertheless differ.10 And it is indeed the definition of those

criteria which causes problems with using milieu indicators for the purpose of this

dissertation.

Before this issue is examined in detail, it is beneficial to address the question of

the mutual dependence between milieu and mindset, i.e. to which degree a milieu

shapes a mindset or the other way round. While a social milieu holds up certain

norms and rules to which an individual is expected to conform, the individual needs

to select this milieu beforehand. This choice is based on individual preferences

and it seems plausible that a milieu is chosen according to the largest conformance

with individual personality and opinions, true to the motto ’birds of a feather flock

together’. However, an individual’s preferences are not independently given. Not

only are they malleable but they might also have been previously shaped by social

interactions and can therefore not be regarded as exogenous. Barth and Flaig

(2013, p. 14f.) name three factors influencing the milieu choice: current societal

norms, individual inclinations and predispositions and the social environment of

the family home. The habitus concept by Bourdieu (1987) supports dismissing

exogenous preferences by emphasizing the importance of childhood for forming

preferences. Despite arguing in the framework of social classes, the insights can be

10Some authors go as far as to reject the notion of a societal influence on the individual’s behavior.
In his individualization thesis, Beck (1986, Ch. 5) argues that one’s existence has become
increasingly independent of socio-structural aspects and core values have to be derived from
one’s own biography.



Chapter 2 Modeling approach 20

transferred to milieus. He explains the affiliation to a social class as the result of

an individual’s economic capital (wealth), social capital (relations to other people)

and cultural capital (education, knowledge of the culture). According to Bourdieu,

a certain habitus, i.e. a specific thinking and behavioral pattern, is unknowingly

created through growing up in certain circumstances. Thus, one can conjecture

that the magnitude of each type of capital has been significantly determined in

childhood already (Vester, 2009, p. 39f.; Hradil, 2006, p. 5f.). A complementary

note concerns time stability of preferences: Barth and Flaig (2013, p. 16) state

that (milieu) preferences are relatively stable from adolescence on although changes

are within the bounds of possibility. Hence, changing milieus as an adult is still

possible.

Given these arguments, it is normally indistinguishable whether immanent indi-

vidual or environmental factors cause preferences at a certain point in time. This,

in turn, makes it difficult to establish whether oneself or the social milieu accounts

for the observed characteristics. Are, for example, an individual’s frequent cinema

visits due to the milieu in which frequent visits are the norm or due to the individ-

ual’s genuine interest in movies? Without additional information on the individual

biography or friends and colleagues, both explanations are equally plausible, so is

a combination of both. The same argument pertains for other characteristics, too,

e.g. educational aspirations for the child or the time investment into the child.

The data used in this work do not provide any information about this issue

either. However, for the theoretical justification and the approach that follows,

this differentiation is no longer necessary. This is because the approach does not

rely on predefined milieu indicators but on patterns in observed characteristics.

Referring to the above example, only the fact that an individual frequently goes to

the cinema is regarded as important. To develop the argument for this approach,

it is nevertheless necessary to maintain the differentiation between the individual

mindset and milieu influences.

Up to here, milieus have been outlined as groups within a society that live in similar

circumstances and have similar views on life. Next to it, the concept of parental

mindsets was introduced. For a statistical analysis, it is necessary to have a clear

operationalization for a concept. This raises the question of measurement, which

yields a twofold answer. A parental mindset can be considered too comprehensive,

if it is not narrowed down to specific dimensions. Milieus, by contrast, are found to

be defined quite clearly in practice since several scholars have dedicated themselves

to this topic. Depending on the definition, there are different criteria along which

individuals are assigned to milieus. These resulting groups are identified and

qualitatively interpreted. Practical milieus concepts differ in the classification
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criteria but also in the number of identified milieus and in their qualitative

interpretation. There being available several approaches to milieus, the apparent

uniqueness of this concept is undermined. Hence, practical milieu concepts differ

from ideal milieus in the sense that they might not yield an optimal classification

with respect to the child’s school success.

In many cases, individuals are grouped according to two criteria: The social status

and basic life-value-orientations. The criteria are used by the most popular milieu

concepts, the Sigma milieus R© (s. for instance Ascheberg, 2006) and the Sinus

milieus R© (s. for instance Sinus Sociovision, 2005). Hence, any distinction between

milieus is attributable to a combination of these two criteria. Other concepts are

put forward by Schulze (Schulze, 1992), called Experience milieus 11, and Vester

et al. (Vester et al., 2001), called Agis milieus. A further alternative are Delta

milieus R© by Wippermann (Wippermann, 1998). Table 2.1 presents an overview of

these milieus’ characteristics. Details such as the number of milieus, their labels

and descriptions are omitted owing to variation over time.

Table 2.1: Overview of renowned milieu concepts (for Germany)

Name Author Criteria

Sinus milieus R© Sinus Sociovision GmbH Social Status /
Basic life-value orientations

Sigma milieus R© SIGMA Gesellschaft für interna-
tionale Marktforschung und Be-
ratung mbH

Social Status /
Basic life-value orientations

Experience milieus G. Schulze Preferences for
complexity / simplicity
and order / spontaneity

Agis milieus M. Vester Habitus / principles of lifestyle

Delta milieus R© DELTA-Institut für Sozial- und
Ökologieforschung GmbH

Social Status / Basic orientations

Notwithstanding the concepts can be similar in their criteria, they differ in their

segmentation and their qualitative interpretation. The question of which concept

to choose emerges as a consequence. This in turn requires to assess which concept

qualifies best for this research topic. In an ideal concept, these milieus would

separate family environments into different groups by their degree of appreciation

of educational efforts of the child. In the real world, however, the grouping criteria

are not necessarily related to this. The main objective of milieu concepts is to

describe social environments of a society, sometimes the concepts are adduced

for commercial use. The concepts group individuals who are similar in attitudes

towards work, family, leisure and consumption (Schräpler et al., 2010, p.10).

Whether these criteria coincide with parental factors of interest, is indeterminate

11Personal translation of ”Erlebnismilieus”
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a priori. Bremer and Kleemann-Göhring (2012) brought forward arguments in

favor of it for Sinus Milieus but they remain of qualitative nature. The different

objectives form the critique on using practical milieu concepts in this context.

Practically, there are precisely two ways that existing milieu concepts qualify as

useful for this research. This applies if the criteria on which the segmentation is

based either constitute the characteristics of interest or correlate strongly with

them. But neither of the two is ensured. The first case can even be excluded, since

the effort to enhance a child’s school achievement is not a segmentation criterion

in any of the milieu concepts. This has the simple reason that parents constitute

a subset of society. As it is already challenging to determine nurturing quality for

parents, determining it hypothetically for non-parents is even harder. Hence, the

correlation option remains the sole possibility.

For Sinus milieus this implies that income and basic life-values must be able to

explain variation in a child’s school success. If the two criteria were unrelated to

the child’s outcome, the created milieus would be, too. One must hence conjecture

that the factors of interest are systematically related to the classification criteria

that form the milieus in order to make use of the actual milieu indicators. Were

the classification criteria sufficiently good, however, one could pass on milieus and

instead work directly with these criteria. The extensive qualitative descriptions

are the only advantage milieu concepts offer in this respect.

A further critique of milieu concepts concerns the individual’s assignment to

a milieu. For some individuals boundaries between milieus may overlap, i.e.

an individual might stand between two or even several milieus. Such overlaps

could be reduced by expanding the number of milieus. However, a concept with

countless milieus is not convincing, as it is after all a model intended to reduce

reality’s complexity. Overlaps are hence acknowledged and could be expressed

by probabilities. If one wants to work with clear-cut assignments, in contrast to

probabilities, though, an assignment has to be made. In such cases, a difficulty lies

in imposing the correct milieu on an individual. The decision is likely to increase

the heterogeneity within a milieu because the resemblance of individuals assigned

to it decreases; in a statistical analysis, this may change the interpretation of

the milieu indicators and thereby the results. Moreover, in the case of several

classification criteria, whereof only one is suitable (i.e. correlating with the factors

of interest), an error is made if the assignment is predominantly based on the

unsuitable ones.

While the previous point relates to the way in which milieus are considered in

statistical analysis, a further issue concerns the collection data and how probabilities

are calculated. This is often based on large-level demographic features such as a

street or a quarter, but not necessarily on an individual basis. Underlying this is
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the assumption that residence and milieu correlate, which is not unreasonable, but

neglects potential heterogeneity.

The final point of critique applies to the time-varying nature of milieus. As

societies and preferences change, old milieus vanish and new ones arise. Many

milieu concepts are updated to keep track with these developments by shifting the

discriminating boundaries or relabeling the identified milieus. Yet, it is unclear

how to compare different milieus over time if the data cover a longer period.

The previous arguments indicate that several limitations may occur by using

milieu indicators. From a theoretical point of view, the first point referring

to the classification criteria is the most crucial one: It cannot be ensured that

the classification criteria are sufficiently correlated with the factors of interest.

Practically, the availability of data in reasonable quality constitutes a second

important hurdle.

The approach in this work extends the notion of milieus. The central idea is to

view the problem in the context of a latent variable model. This model assumes the

existence of latent variables, which impact on all observed characteristics including

the child’s school achievement. Owing to this mechanism, patterns between certain

parental characteristics and the scholastic outcome arise. In the framework of

milieu theory, the latent variables can be interpreted as the milieu indicators since

they are thought to stand behind specific customs and attitudes which influence

the child’s school achievement. The patterns in parental characteristics would then

reflect the existence of such milieus. To avoid the drawbacks of milieu concepts in

practice, the model is generalized, however. By defining the latent variables as the

(educationally relevant) facets of family background, which may include aspects of

the parental mindset and social influences, a more flexible variant arises. On the

downside, the latent variables are no longer accessible, so they have to be derived

from patterns in the observed characteristics.

While latent variable models and milieus have not been linked in the literature,

the modeling approach in this thesis explicitly assumes such a model. The open

definition of the latent variables implies that they need to be derived instead

of predefined. As their qualitative definition lacks, they are no longer milieus

but instead labeled as facets of family background. They are assumed to have

a bearing on both parental observed characteristics and the child’s achievement.

From a latent variable model view, the observed characteristics are interpreted as

expressions of the latent variables.

As to the underlying rationale, the example from the introduction serves as a

suitable case. The observed variable of the number of books at home might be a

noisy proxy variable for a possible latent variable that relates to parental valuing of
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education. Yet, it is not necessarily the number of books at home, but rather the

latent variable that causes both the purchase of numerous books and the educational

stimulus for the child. This is an example of a one-to-one correspondence, but a

single latent variable can also influence multiple characteristics. Moreover, the

configuration of the model allows the case of multiple latent variables influencing

a single characteristic.

Describing the problem as a latent variable model addresses the drawbacks of the

milieu approach for various reasons. Generally speaking, there is some similarity

to the milieu approach because the model attempts to depict typical patterns

occurring in society. But instead of focusing on the social status or basic life

values alone, the approach is able to consider a variety of possible patterns in

family background. This fact alone does not render the approach superior, however.

Certain facets of family background could occur more often in certain milieus than

in others. If these facets are significantly associated with the child’s school success,

milieu indicators are also useful. But as argued, this is not ensured. The proposed

approach addresses the main disadvantages of the milieu approach as follows:

Firstly, the extraction of relevant facets is data driven; it is not predetermined

(up to the general selection of input variables) which characteristics exert the

discriminating function. This avoids prior commitment to using characteristics,

which are possibly unrelated to the outcome, and ensures flexibility.

Secondly, the facets’ relations to the child’s achievement are explicitly taken into

account, such that the facets are ensured to be relevant. Taken together, the two

points address the argument that milieus are indeed good descriptions of societal

groups but do not necessarily correlate highly with aspects that regard education.

The proposed approach instead identifies typical patterns of family background

that are relevant conditional on the data at hand.

Finally, there is no binary assignment to a group but rather a gradual propensity

to a pattern or a facet. There may even be a vector of facets, representing the

multiple dimensions of family background and possible manifold aspects of home

environments. This provides finer-grained information than the dichotomous

assignment to a milieu and could therefore yield additional insights.

In sum, the conjecture of this approach is that parents who differ in their observed

characteristics, differ in their mindset and therefore also in factors that concern

the child’s educational success. In this case, the patterns in the observed character-

istics can be used to draw conclusions about beneficial or disadvantageous family

background factors. The linchpin of the approach is that the whole idea rests on

the choice of inputs, i.e. the selection of parental characteristics which constitute

the observed characteristics. If they are unsuitable, the discovery of relevant
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facets fails. Bad characteristics either exhibit little variation or are independent

of the latent variables of interest. An artificial example for little variation is the

number of ingested meals per day, which can be expected to be roughly similarly

across family environments. Choosing some bad characteristics is not problematic,

however, as long as there are sufficiently many other useful characteristics, which

provide the desired information. Since it is not readily clear which characteristics

appertain to this, the following section’s focus lies on this issue.

2.2 Family background indicators

The proposed approach requires finding observed characteristics which relate to the

latent variables of interest in some way. As the latter are unknown, however, the

selection must be based on a different reasoning. Here the idea is to gather as much

information on the family background as possible. Once a characteristic is related

to the family background, the child is likely to be exposed to this characteristic

because it lives in this environment. From the exposure, an influence can be

inferred. Whether this influence is decisive for the educational achievement, is not

important at the selection stage - detecting relevant relations is done in a second

step distinct from the theoretical considerations that follow. The characteristics in

sum serve the purpose at finding significant patterns across families. On the face

of it, one can divide parental characteristics into four broad categories:

• Personality traits

• Attitudes

• Time use indicators

• Demographic indicators

Based on the remarks on what characterizes milieus in theory, it becomes appar-

ent that the last three groups of variables can be connected to milieus because

they relate to similar attitudes and time uses. Additionally, milieus are linked

to demographic indicators such as living in certain circumstances. However, it is

not possible to clearly separate family-idiosyncratic and milieu characteristics. By

gathering information on family background characteristics, possible milieu influ-

ences might be captured simultaneously. Before examples for the four categories

are named, some general remarks about their scope are given.
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While time use indicators and demographic indicators can be easily demarcated

from the rest, delimiting personality from attitudes is sometimes hazy. One example

of such a case is risk preferences. This name suggests they belong to attitudes, yet

they are closely connected to personality and some researchers indeed view them as

that (e.g. Checchi et al., 2014). A reason for potential ambiguity originates from

the close relation between personality and attitudes. Some personality traits often

accompany certain attitudes. Moreover, since personality is not yet physically

measurable, indicative information drawn from attitudes is used to infer personality.

However, the scope of attitudes goes beyond providing measures for personality.

This work follows the elaborations by Ajzen (2005) who provides the following

distinction between personality and attitudes on the first pages of his book:

Elements belonging to personality characteristics are categorized by drawing on the

trait concept in social psychology. Personality traits ”describe response tendencies

in a given domain, such as the tendency to behave conscientiously, to be sociable,

to be self-confident, and so forth.” (p.6). They hence refer to general dispositions,

i.e. tendencies to respond in particular manners to certain situations.

Elements of the second group are attitudes to which also norms and preferences

count. The definition of attitudes has been subject to various changes over time.

Nowadays, the evaluative character is considered to be the main attribute. This

evaluation often consists of ’pro-con’ or ’pleasant-unpleasant’ statements directed

towards a specific object or topic. Attitudes are thus heavily influenced by morals,

(social) norms and beliefs. Like personality traits, the concept is not physically

tangible and needs to be approached by overt or covert responses of the individual

of interest.

The main difference between personality and attitudes is hence the specificity

and evaluative nature; importantly however, Ajzen (2005) further notes that

attitudes are typically seen as more malleable than personality traits. In case of

new information about an issue, beliefs can be updated and attitudes change. The

ability to change can be of economic importance if attitudes are to play a major

role for the child’s school success and justifies the differentiation between the two

categories in this work. Also, the empirical results by Becker et al. (2012) indicate

the complementary relation of personality and preferences. The authors scrutinize

the relation between personality and preferences such as risk and trust preferences.

There being some exceptions, their results generally indicate that personality and

preferences are hardly related and so to be treated complementarily.

Time use characteristics are more easily defined, as they measure the frequency

and/or the duration of activities. Therefore, the term ’time use’ also encompasses

behavioral aspects.

Demographic characteristics encompass factors such as age, family size or income,
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which may or may not reflect certain latent traits but are often related to a social

environment. Such information adds to the family background picture and is

therefore regarded.

As indicated above, the categories cannot be considered as independent from each

other – mutual influences are likely to occur. For example, it can be argued that

personality traits influence attitudes which in turn may have a bearing on the

type of activities. If the relation was sufficiently strong, details about attitudes

and activities would be rendered redundant, as personality traits already contain

the important information. However, the relation might not be as strong, because

preferences exhibit a higher degree of malleability. An additional argument is

provided by the theory of social milieus (Hradil, 2006): Attitudes and behavior can

be significantly influenced by the social environment, depleting their dependence

on personality traits. Personality traits, on the other hand, are not only considered

more stable than attitudes but they are also less likely to be related to milieus. In

sum, characteristics of these groups are expected to give a description of different

facets of family background. They cover parental characteristics, their social

environment as well as demographic indicators.

Up to here, the condition for considering a certain variable is that it describes the

family background to which the child is exposed. The function is hence restricted

to being a descriptive element for the facets of interest. For some characteristics,

however, there is evidence of being more than a mere proxy variable. An exam-

ple is parental risk preferences, which have been found to influence educational

decisions (e.g. Checchi et al., 2014). When parents have to make educationally

relevant decisions that contain a risky aspect, a direct influence from the parents’

characteristics on the child’s outcome is conceivable. There is an additional line

of argument through which some parental characteristics exert an influence on

the child. It has been observed that many parental traits correlate with those of

their offspring (Duncan et al., 2005).12 This observation is called intergenerational

transmission and has been found, for instance, for personality traits (Zumbühl

et al., 2013), attitudes (Dohmen et al., 2012) and time use pattern (for instance in

employment: Couch and Dunn, 1997).

Different mechanisms for this observation have been suggested, whereby the mecha-

nism typically depends on the specific trait. Some psychologists argue for a genetic

origin in the case of personality traits. Duncan et al. (2005) name socioeconomic

resources, parenting practices and role modeling as further mechanisms. The role

12It has to be noted that speaking of parental traits only is a simplification. Correctly, the
traits should refer to the role model of the child. However, there are only few cases for which
biological parents deviate from social parents in the empirical analysis of this work, which
justifies the linguistic shortcut.
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modeling argument is often used with regard to time use, for which it is called

learning by imitation. In some of these instances, the role of learning to appreciate

something is stressed, e.g. high cultural activities like theater or museum visits

(comp. de Vries and de Graaf, 2008). Dohmen et al. (2012) scrutinized the topic for

attitudes. Their findings emphasize the effects of socialization, i.e. by the child’s

parents and their local environment. The transmission becomes stronger, the more

similar both parents’ attitudes are to each other. The behavior of finding a partner

who is similar to oneself, the so-called assortative mating, may be considered a

strategy to pass one’s attitudes more effectively towards the next generation. But

not all children are equally strongly influenced. The results by Zumbühl et al.

(2013) suggest that the extent to which preferences are transmitted depends on

the parental time investment in common time with the child.

In sum, children are influenced by their parents traits in two ways: They are

exposed to the parental characteristics in general, but might also take on their

traits which in turn has an influence on factors like success in school. With this

twofold influence in mind, traits of the four categories are detailedly described in

the following, giving concrete examples and summarizing the relevant literature.

The examples have been chosen chiefly with regard to availability in the data set

at hand that is described in 6.1.

2.2.1 Personality traits

Parental personality traits can have a significant influence on the family environ-

ment, for they have a bearing on decisions like where to live, the organization of life

and how much social contact is around – factors a child is directly exposed to. Their

personality might also influence school-related decisions. These are examples of

direct influences and they are complemented by the intergenerational transmission

of traits to the offspring. Its relevance for the school achievement results from

the child taking on those personality traits. This in turn might influence certain

school-related behaviors and so affect its achievement in the long-run, resulting in

two ways parental personality can affect the child’s achievement.

Having pointed out the importance of parent’s personality in abstract terms, it re-

mains to substantiate its meaning and how it is operationalized. The impossibility

of a physical measurement has led scientists to theorize and set up models. No

model is left undisputed, but there are some more prominent ones. A common,

probably the most often used taxonomy to measure human personality is the Big-5

scheme by Costa and McCrae (1985). The authors identify five broad dimensions

or tempers, which are depicted in table 2.2. Examples of typical personality traits

are used to describe each personality dimension (a dash denotes an untypical
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Table 2.2: Overview of Big-5 personality traits.

Dimension Typical attributes

is inventive

Openness likes to reflect, play with ideas

values artistic/aesthetic experiences

tends to be disorganized (–)

Conscientiousness perseveres until a task is finished

does a thorough job

is talkative

Extroversion is outgoing, sociable

is sometimes shy, inhibited (–)

is sometimes rude (–)

Agreeableness is considerate and kind to almost everyone

has a forgiving nature

gets nervous easily

Neuroticism is emotionally stable, not easily upset (–)

is relaxed, handles stress well (–)

personality trait).13 The Big-5 model has several beneficial traits: Firstly, it is able

to account for different traits mostly without intersections. Secondly, it has been

used frequently, and has shown stable results even in different cultural contexts

(Dehne and Schupp, 2007, p.26).

Big-5 personality traits were found to be linked to many outcomes, some directly,

others indirectly. Next to the Big-5 scheme there are also numerous other concepts,

but Saucier and Goldberg (1998) supply evidence that this concept contains many

others and is hence a suitable candidate to model personality. However, another

model of importance is the locus of control framework by Rotter (1966). It is of

interest here because of its implications for economically relevant decisions (comp.

Becker et al., 2012). The concept emphasizes the (dis-)belief of having control over

circumstances in life. In contrast to five-dimension model before, this concept has

a single dimension with the internal locus of control on one side and the external

one on the other. Being closer to the internal locus of control means a higher

degree to which events are seen as the consequence of one’s own behavioral actions,

while the tendency to be on the opposite side is higher the more events are viewed

as under control of others or due to luck/destiny/chance. The implications can be

far-reaching and influence important attitudes. A high internal locus of control

is, for example, associated with a higher intensity in job searching and higher

13For a more detailed overview, s. McCrae and John (1992, p. 178f.).
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reservation wages (Caliendo et al., 2015).

Generally, both personality concepts are likely to exert an influence on the character-

istics that are described in the three following subsections, i.e. attitudes/preferences,

time use indicators and demographic characteristics. However, the evidence is not

unequivocal as the mentioned study by Becker et al. (2012) suggests.

With the difficulties defining personality and its multiple influences, any identifica-

tion of a causal effect is a difficult task in many respects. But since this is not the

objective of this work – associations are sufficient here – it remains to introduce

what the literature has found about the relation of personality traits to educational

achievements. With the double-track influence in mind, this paragraph continues

with the associations of personality with educational success. This part refers to

the intergenerational transmission of traits, i.e. the indirect link between parent’s

personality and a child’s school success. Subsequently, educationally relevant

correlations on the child directly brought about by the parental personality itself

are presented.

General results are provided by Cunha et al. (2010) who estimate the non-cognitive

skills’ share (under which personality traits fall) of variation in educational achieve-

ment at 12%. Komarraju et al. (2009) find positive associations of the Big-5

factors conscientiousness and extroversion with the college grade point average.

The analysis by Anger (2013) distinguishes between children from low and high

socio-economic status (SES) and two outcomes (University-entrance diploma and

university degree). Her findings indicate that openness to experience is beneficial

for males with low SES, whereas personality traits play no role for those with

high SES. The results for young women are mixed. The analysis by Peter and

Storck (2015) investigated the relevance of personality traits for the intention to

study. Using the Big-5 indicators, they find openness to new experiences positively

related to the decision of studying, while neuroticism was found to be negatively

related. Also in this study, the openness trait is particularly decisive for children of

families with lower (here defined as non-academic) socio-economic backgrounds.

The economic literature on parental personality traits and their direct relation

with the offspring’s school achievement is comparatively small which is likely on

grounds of identification issues. Much of it revolves around parental risk attitudes

that are viewed as a personality trait by some authors, but belong to attitudes

under the applied taxonomy here. Literature from other fields has pointed out

the relationship of personality traits to parenting styles. The meta-analysis by

Prinzie et al. (2009) examines the Big-5 factors’ relations to warmth, behavioral

control and autonomy support. The authors find higher levels of all traits but

neuroticism to be associated with more warmth and behavioral control. Moreover,
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higher autonomy support is associated with higher degrees of agreeableness and

lower levels of neuroticism. Such parenting styles in turn have an effect on the

child’s achievement (Kordi and Baharudin, 2010).

Considering parental personality traits in such an analysis cannot uncover whether

possible influences are due to intergenerational transmission, a direct influence or

a mix of both. The association must therefore be regarded as a total influence.

One argument shifting the weight towards a direct influence is that the examined

sample in this thesis consists of adolescents, where it has been observed that the

intergenerational resemblance is relatively low at this age (Busch, 2013; Anger,

2011). This observation is attributed to personality developing over time and first

stabilizing at a later age and because teenage years are particularly distempered.

2.2.2 Attitudes

Attitudes are informative indicators of the parental mindset and the social milieu

and likely play a crucial role in identifying the facets of interest. Examples of

such attitudes include core life values and norms, interests, opinions and (religious)

beliefs. They can refer to manifold topics. However, in some cases an attitude’s

meaning can surpass being a pure expression of a milieu or a mindset. Evidence

has been found that certain attitudes, for instance the parental one towards risk,

have an effect on the child’s school achievement. As with personality traits, a

relation can be of direct or indirect nature. A direct one is marked by parental

decisions on school-related factors which are significantly affected by their own

attitudes. Whether the child is encouraged to go to a more demanding school type,

for instance, may depend on parental risk attitudes. The indirect case would be

one where the child adopts the parental attitude and acts accordingly. An example

is the degree of interest in politics, which is linked to higher educational aspirations

(Lange and Print, 2013, p. 73) and has also been found to be intergenerationally

correlated (Shani, 2009, p. 229). This two-way influence is once more only

highlighted with the purpose to show the possible effect channels – in the empirical

analysis they cannot be distinguished from each other.

The remaining descriptions in this section focus on attitudes for which an influence

has been attested in the literature and which can be found in the data set at hand.

This is done because the number of attitudes for which a link to the child’s school

achievement has not yet been established is theoretically endless. And although

one can hypothesize on the direction of association of such characteristics, attitudes

are treated primarily as reflections of a mindset or a milieu. As with personality

models, there are also specific value models, e.g. the Schwartz Values Inventory
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(Schwartz, 2009). Data restrictions render a detailed description unnecessary,

however. An exception is the value classification by Kluckhohn and Strodtbeck

(1961) that considers the importance of certain life areas like family, career or

altruism (Headey et al., 2013, p. 732).

Parental attitudes that have been linked to the child’s achievement include gender

roles, self-esteem and risk preferences. There is ample evidence for the transmission

of gender role views (Cunningham, 2001; Fortin, 2005; Farre and Vella, 2013). The

experimental study by Spencer et al. (1999) indicates that gender can work as

a stereotype threat to math performance.14 Time, risk and trust preferences are

also likely to play a role for school success, because all have been linked to key

economic outcomes (Becker et al., 2012).

One particular factor is self-esteem, which is the attitude toward the self. It is

closely connected to personality, especially the locus of control (Judge et al., 2002)

and the Big-5 dimensions (Amirazodi and Amirazodi, 2011). Following Kaplan

et al. (2001), low parental self-esteem negatively relates to educational aspirations

and through this channel harms the child’s educational outcome. Closely connected

to self-esteem and related to a high external locus of control is the attitude of

status fatalism. It is the belief in social impermeability for oneself and constitutes

an antithesis to aspirations. One can hypothesize that parental status fatalism

is not only an expression of a certain milieu, but also has relevant ramifications

when it leads to a lack of aspiration and encouragement.

Several scholars have analyzed the direct effect of parental risk aversion on indi-

cators of education. Huebener (2015) examines the relation between parental, in

particular the paternal, risk attitudes and a son’s long-run educational achieve-

ment. Using a quasi-experimental setting he finds that lower levels of paternal risk

aversion are associated with higher levels of son’s education. Checchi et al. (2014)

investigated the dependence of a child’s college decision on parental risk attitudes

when parents defray the cost of their child’s education. The authors’ results for

Italian data suggest a negative link between risk aversion and the decision to

attend a college. Brown et al. (2012), using the 1996 US Panel Study of Income

Dynamics, find that parental risk aversion is inversely related to both college

attendance, which is linked to achievements in adolescence, and early academic

scores. While many an analysis deals with middle or long-term results, there are

also studies focusing on early outcomes. Germany as a country with early tracking

is a suitable object of study because parents often strongly influence the decision.

14Making people (subliminally) conscious about negative stereotypes linked to the social group
they are in is called a stereotype threat. It is considered a threat because people are afraid to
confirm these stereotypes which results in worse performance.
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The results by Wölfel and Heineck (2012) for German data show that daughters of

risk-averse mothers, in comparison to risk-neutral ones, have a higher probability

of being enrolled in a lower secondary school track. Their results suggest that

daughters are more strongly affected by parental risk preferences. In contrast to

the results of Huebener (2015), however, they find the father’s risk aversion less

clearly related.

Another topic is the propensity to behave reciprocal. In a social context, reciprocity

refers to the expectation of repaying something someone else has given to one.

When this is something positive, failing to live up to this expectation in the eyes of

others can lead to social isolation. On the other end, taking actions of reciprocity

might strengthen the social network of a person. For these reasons, Putnam (1995)

relates reciprocity to social capital, which in this case is to have access to a network

of people. This network may be supportive, for instance provide the family with

school-related information or even offer time for childcare when needed. Moreover,

it may lead to increased social interaction which could improve the child’s social

skills.

2.2.3 Time use indicators

”Let’s Read Them a Story!” is the title of an OECD publication about the parent

factor in the educational success of children.15 With the focus on reading books

to children, the title highlights the importance of spending quality time with the

child. In the context of this work, reading to children is an example of an observed

variable that stems from a specific mindset but might also have some causal effect

itself. In this treatise, time use indicators encompass a broad set of behavioral

characteristics. These include habits, work and leisure activities and behavior.

The underlying theory of this category is similar to the one behind attitudes, but

these indicators measure concrete behavioral aspects whereas attitudes may remain

hidden if they are not expressed. Time use indicators could also be separated

according to whether parents include the child in their activities or not. However,

in either case the child is concerned because not including the child has also an

implication, which could, for instance, be less parental care.

Taking account of time use indicators in this thesis is done for several reasons.

One of them is their function in the latent variable model where they aid in

the description of family background and possibly also of milieu characteristics.

Activities, in particular social ones, are often influenced by the social surroundings.

15OECD (2012b)
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For this category of characteristics, the presumption is that the frequency of certain

activities differs with the affinity to or the appreciation of education.

Drawing on the relation between time use indicators and the social environment,

one can explicitly relate certain time use indicators to social capital: Since ties

are more likely to be forged in social situations, joint activities may enhance a

parent’s social capital. This topic was examined by Büchel and Duncan (1998)

who link extrafamilial parental activities, i.e. activities outside the family, to the

notion of social capital. Extrafamilial activities allow parents to generate possibly

useful ties outside the family and extend their network. For these reasons, the

authors examined the hypothesis that parental social activity fosters the child’s

school success. Using a data set for Germany, they found particularly strong

effects through the father’s engagement in different activities on sons of low-income

families. The direction of this effect depends on the considered activity. While

exercise is linked positively, going out with friends has a negative association. A

limitation of these insights lies in the way some variables are measured. Only the

frequency but not the degree of social company is recorded.

Another function relates to the activities themselves. When parents are viewed

as role models, whose behavior is adapted by their descendants, the type of time

use can make a difference. This point relates to the educational value of this

activity. An illustrating example is time spent on further education which signals

the importance of education to the child. On the other hand, there might be

activities which yield little or no educational stimulus, but this likely depends on

how the activity is presented to the child.

The idea of the parental role model can be directly integrated into the framework

of the intergenerational transmission of habits. Evidence for such is plenty. There

is, for example, evidence on smoking (Loureiro et al., 2009), watching TV (Bleakley

et al., 2013), volunteering (Bekkers, 2007) and high cultural activities (de Vries and

de Graaf, 2008). Time use also refers to labor market activities: Morrill and Morrill

(2013) have observed a correlation in labor force participation for mother-daughter

pairs, the findings of Couch and Dunn (1997) suggest a correlation in annual

work hours for father-son and mother-daughter pairs. A child does not participate

in the labor market but the observed correlations give an idea of the extent of

intergenerational transmissions in the long-run. Moreover, the literature points out

that working mothers transmit a set of skills which benefits the children outside

the home (McGinn et al., 2015). As mentioned before, the type of time use may

be influenced by personality traits and attitudes. One example is the frequency

of exercising for which researchers found a link to the internal locus of control

(Cobb-Clark et al., 2014).
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2.2.4 Demographic indicators

The fourth group of variables contains demographic indicators; they differ from the

first three groups by relating to external life circumstances or endowment rather

than to internal parental characteristics. Demographic characteristics encompass

several aspects such as family type, household size, education or income. Such

variables are likely to have a causal effect on the child’s scholastic achievement.

However, identifying these links by means of non-experimental survey data is usually

not possible. The causal relation of education is discussed in the introduction, but

there are also theories on the effect of parental income. Underlying a model in which

the educational achievement can be impelled by purchasable goods. Examples

include moving to a better neighborhood or purchasing private tuition for the

child. Other studies emphasize the psychological effects, for instance less stress,

especially in low-income backgrounds (e.g. Duncan et al., 1998). The sociological

view of this goes under the term economic capital. In a non-experimental setting,

however, income stemming from different sources cannot be treated the same

and added up since selection issues arise from unobserved confounding factors.

Parents who receive income from public transfers, for example, are likely to be

different from those who gain their income through work.16 Depending on the

source of public transfers, a high receipt typically either indicates transfers due to

parental unemployment or due the number of kids in the household. This can lead

to the observation that in spite of additional disposable income through public

transfers, income is negatively related to the child’s school achievement. In case

of parental unemployment, a negative association can be attributed to the effects

of unemployment (comp. e.g. Gregg et al., 2012) or latent characteristics which

influence both the probability of being employed and the child’s school success.

The latter reason would at hint a pattern which is located in a certain milieu.

High public transfers owing to many kids in the household are a different matter,

as negative effects could arise through less parental care time and income that is

left per child.

Similarly, private transfers often consist of alimony payments, their receipt hence

indicates a household with separated parents. Based on these arguments, it is

necessary to differentiate types of income according to their source.

The demographic characteristics considered here are likely to reflect underlying

latent factors as well, which is one reason why they are included in this analysis. The

second reason is that the added value of explaining the child’s school achievement

16Next to different propensities there can also an economic reason to treat separate income
sources differently. Zhan (2006) argues that properties of income, such as the flow or stock
character can play a role which is why one should differentiate between labor income and asset
income.
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with indicators beyond demographic ones can only be evaluated if the latter are

regarded.

The term endowment can be broadened in definition as to cover family circum-

stances like parental separation or divorce. An obvious reason to include such

variables is the varying propensity for such events across milieus. The likelihood

of a divorce can be assumed to be much lower in a religious or conservative milieu

than in other, more liberal milieus. In the style of this argumentation, the number

of offspring and the area of habitation should also be regarded. Other important

aspects are parental age, a migration background and living in former East Ger-

many. While the latter two aspects could hint at cultural differences, parental age

is owed to the passing of time and societal changes which influence attitudes but

also the time spent on certain activities.
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Chapter 3

Methodological approach

The previous chapter dealt with linking observed parental characteristics to a

child’s school achievement via latent variables. Since identifying latent variables

depends on the input of observed variables, a selection rationale for the latter was

proposed and four non-independent categories established. Although each category

contained some concrete examples, their definitions are comprehensive enough to

allow for a large number of suitable choices. An example for such a category is the

time use and activity category. Depending on the data set at hand, there could be

many parental activities whose frequencies are recorded and possibly contribute to

drawing a more detailed picture of family background.

If no further processing takes place, this can result in a large (in the sense of wide)

data set and may cause difficulties in interpretation due to its sheer complexity.

Limiting the choice of characteristics to those that approximate the aspects of

interest best is, hence, expedient. However, in a latent-variable model setting

it is not obvious which ones to choose. This is primarily the case because the

characteristics are conceived as proxy variables with no exact causal interpretation

while the aspects of interest are presumed to be latent. Limited data might make

the decision in cases where one has a prior idea about the latent variables, but

doing so would contradict the rationale of the proposed approach.

Discussing the treatment of such a data set, it should be regarded that some

variables might correlate strongly with each other. Such overlaps in variation are

not restricted to a specific category of variables – they can also occur across them if,

for instance, certain personality traits correlate with certain types of activities.

The data set used in this dissertation indeed provides many potential candidate

variables. In the empirical part of this dissertation, the main task is, thus, to

find a method which filters out the important bits of information, which are the

variables that significantly contribute to explaining variation in the child’s school

achievement.
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One could stop here and find a method producing a model which explains the child’s

school achievement best according to some criterion. Insights and subsequent

use of this model might be limited, however. To ensure a further use, methods

dealing with variable selection ideally have two favorable traits in addition: First,

they produce a result which can be (economically) sensibly interpreted to be able

to draw conclusions. Here, it is particularly expedient to allow inference on the

emphasized latent structures. Parsimony by variable selection is a less preferred

criterion, when this is not possible. This simplifies interpretation by reducing

the dimensionality of the model parameters. On the downside, pure variable

selection shows a deficit by not indicating latent structures in the data. Hence,

it is less preferable than a model identifying latent structures in this context.

Producing a sufficiently general model is the second property a method should

exhibit. General is to be understood here as not sample specific, so a resulting

model holds approximately also in others than the drawn sample. This property

can be examined by evaluating the predictive capability of the model on new

data. Hardly general findings are portended if the predictive power breaks down

in comparison to the model fit. In the context of method evaluation later, the first

property is called (weak) interpretability and the second one generalization ability

or stability. The remainder of this chapter approaches and deepens the topic

of variable selection, in which a larger set of correlated predictor variables with

relatively few observations is assumed to be at hand. Moreover, the dependent

variable is assumed to be continuous.

In the search for a suitable method, it is insightful to begin with the analysis of

a frequently used one. This is a linear regression model containing all predictors

whose parameter estimates are obtained by Ordinary Least Squares (OLS). As

the drawbacks of the approach in such a data environment are pointed out,

the concepts of multicollinearity and the bias-variance trade-off are expounded.

Those two play an important role for attaining the desired properties. With

this in mind, using more involved methods addressing these shortcomings is

motivated subsequently. Regarding terminology, the names predictor(s), input

variable(s), feature(s) regressor(s), explanatory and right-hand-side variable(s) are

used interchangeably. The dependent variable is sometimes also called left-hand-

side variable or outcome.

When developing a model, a useful and often suitable simplification is to assume a

linear relationship between the dependent variable and the predictors. Defining

a different functional form requires a theoretical justification or will be tedious

if the data set contains numerous right-hand-side variables. Moreover, linearity

only refers to linearity in parameters, a linear model’s flexibility can always be
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enhanced by considering transformed features, e.g. through squared terms. In the

full linear regression model all available predictors plus selected transformations

serve as regressors. Under the mean squared error loss function, OLS minimizes

the loss and yields the parameters of the best linear predictor (Hayashi, 2000, p.

139).17 The OLS estimate is unbiased with respect to estimation bias.18

When no variable selection occurs, the resulting model will be difficult to interpret

for its complexity alone. If there are more than a hundred variables, it becomes

challenging to analyze each coefficient. Assuming the usual conditions being

fulfilled, two additional drawbacks may occur in a regime with many, potentially

good regressors. The first refers to inflated standard errors and emerges when

some regressors are highly correlated, i.e. there are large overlaps in explaining

variation. The other is called overfitting and becomes apparent when a prediction

based on the estimated parameters is made, i.e. the generalization ability of the

model is checked. Overfitted models lead with high likelihood to a much worse

model fit when predictions on new data are made.

The first phenomenon is called partial multicollinearity or, simply, multicollinearity.

As opposed to full multicollinearity which violates the full-rank condition models

with partial multicollinearity among the predictors can be estimated by OLS. The

phenomenon can yet cause misleading interpretations.

To reconstruct the effects on the parameter estimates when two regressors are

strongly correlated, it is worthwhile to recapitulate how their parameters are

calculated. A multiple regression of y on three explanatory variables x1, x2 and x3

shall serve as an example. The model with the residual term denoted as u can be

written as

y = β0 + β1x1 + β2x2 + β3x3 + u. (3.1)

Let the parameter estimate of interest be β1. One way to obtain the multiple

regression coefficient of variable x1 is to first regress x1 on a constant, x2 and x3

and obtain the corresponding residual vector ũ from

x1 = β̃0 + β̃2x2 + β̃3x3 + ũ (3.2)

.

Then conduct a regression of y on ũ. The estimated coefficient of ũ will equal β1

17Taking into account other loss functions such as absolute loss or asymmetric loss in the context
of school achievement may be interesting for special purposes but lacks a justification here.

18This is a statistically controllable bias, which is, however, not necessarily free from model bias
which originates from a wrong specification. Model bias is different, as it rests on exogeneity
of the predictors. Hence, when it is referred to the unbiasedness of Ordinary Least Squares,
estimation bias is meant.
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from 3.1

y = β0 + β1ũ+ u. (3.3)

This is called ’partialing out’ or ’netting out’ the effect of other variables. In the

case of x1 being highly correlated with the other two variables, ũ will be close to

zero and its coefficient will be unstable, i.e. sensitive to minor changes in the data

set accompanied by a large standard error (Hastie et al., 2009, p. 55; Dormann

et al., 2013, p. 28).

This can also be seen by considering the variance formula

V ar[β1|X] =
σ2

(1−R2
1)
∑n

i=1(xi1 − x1)2
, (3.4)

where R2
1 is the multiple coefficient of determination from 3.2. Hence the higher

the correlation of x1 with the other variables, the higher the R2
1, and the larger

becomes the variance. In the limiting case, where x1 is a linear combination of the

other variables, the variance becomes infinitely large (Greene, 2012, p. 129ff.).

The presence of multicollinearity drives up the concerned variables’ standard

errors, so they become less statistically significant. Therefore, too often the null

hypothesis of a coefficient equaling zero will fail to be rejected. Methods trying to

yield parsimonious models based on the predictors’ significance can fail because

inflated standard errors conceal true relations.

On the other hand, multicollinearity does not lead to systematically biased coeffi-

cients. Large variances, however, will cause the coefficients to be unstable especially

in small samples (Mittelhammer, 1996, p 457f.). This has also an implication for

prediction. While there is no problem in ”predicting” the data in the estimation

sample, true predictions, i.e. for yet unknown y, can be poor (Dormann et al., 2013,

p. 29). In real-world data, explanatory variables are seldom if ever orthogonal to

each other, there is hence always some slight effect induced by multicollinearity,

so that the passage is a fluent one to when the consequences become more severe.

Different ways to judge the degree of multicollinearity are described in Dormann

et al. (2013, p. 30ff.).

In a data-rich environment, meaning that a data set is wide, often a second issue

called overfitting occurs. As with multicollinearity it is not a dichotomous property

but a gradual phenomenon. The term describes cases in which a model is too

complex, which means it has few degrees of freedom. This is a result from having

(too) many explanatory variables relative to the number of observations. For a

given sample, this is not an immediately visible problem: Overfitting makes a

model more precise for known data, since adding an additional predictor to the



Chapter 3 Methodological approach 41

model never decreases the explained variation. However, it can adversely affect

the model’s predictive ability since higher precision comes at the price of higher

variance. Variance indicates how strongly the model parameters vary in different

samples. In other words, an overly precise model is typically custom-tailored for

the specific sample at hand but this limits the model in its generalization ability.

This property originates from sample-specific noise in the data. With increasing

complexity of the model, noise instead of information is explained. This is of

limited or no use in other samples.

The formal concept to grasp this relation is the so-called bias-variance trade-off.

The following description is based on Lebanon (2010). The bias-variance trade-off

stems from an analytical decomposition of the mean squared error (MSE). The

MSE is defined as the expected squared difference between the true parameter

vector β ∈ Rq, and its estimate β̂(x1, ..., xq) which depends on the estimator as

well as the sample observations at hand and is thus a random variable.

In order to increase readability, the estimator’s dependence on the sample is

omitted in notation, such that β̂ ∈ Rq. In the following, it can be shown that the

mean squared error is composed of the sum of the squared bias, i.e. the squared

deviation of the estimated coefficients from their true values, and the variance.

As the estimate is a random variable, the expected value needs to be calculated:

Writing the MSE in expectation notation and extending by E
[
β̂
]

yields:

MSE
(
β̂
)

= E

[
q∑
j=1

(
β̂j − βj

)2]
= E

[(
β̂ − β

)2]
= E

[(
β̂ − E

[
β̂
]

+ E
[
β̂
]
− β

)2]
(3.5)

Expanding gives:

E

[(
β̂ − E

[
β̂
])2

+ 2
((
β̂ − E

[
β̂
])(

E
[
β̂
]
− β

))
+
(
E
[
β̂
]
− β

)2]
(3.6)

Using the rules of the expectation operator on sums and products obtains:

E

[(
β̂ − E

[
β̂
])2]

+ 2
((
E
[
β̂
]
− E

[
β̂
])(

E
[
β̂
]
− β

))
+ E

[(
E
[
β̂
]
− β

)2]
(3.7)

As the middle term cancels out, the following is left:

E

[(
β̂ − E

[
β̂
])2]

+ E

[(
E
[
β̂
]
− β

)2]
= V ar

(
β̂
)

+Bias
(
β̂, β

)2
. (3.8)

Although this decomposition holds, it does not imply the existence of parameter

values which exploit this trade-off. It depends on the relative gains and losses in
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MSE induced by modifying the parameter values. Moreover, it is also possible

to increase both bias and variance, for instance by enlarging unbiased parameter

estimates. In such a case, there is no trade-off.

While overfitting refers to strong reactions in the predicted outcome through

small changes in the input data, one can also establish a model too general. The

extreme case for a model with low variance is a constant value function which is

supremely robust to unsystematic changes in the data set. For different (large

enough) random samples, the mean value hardly varies. But it is also biased

as the predicted value is the same for every data point. Such a model is rather

uninformative. For the researcher, the drawbacks of low precision and few insights

arise. Analogously, one could speak of underfitting in this case.

The points made so far can be illustrated for the two-dimensional case in which a

dependent variable, whose values are denoted on the ordinate, is explained by a

variable, whose values are denoted on the abscissa. The following two illustrations

show two small samples drawn from the same distribution. The points denote the

observed sample values and the curve is the predicted dependent variable from a

model containing polynomials up to 6th-order in the explanatory variables. Hence

the model consists of seven explanatory variables in total. It is observable that the
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Figure 3.1: 6-th order polynomial approximation of the data.

coefficients and hence the shape of the predicted polynomial are quite different

between the samples.

The figures shown next present the results of a linear approximation, a polynomial

of order 1 which is an intercept and a slope parameter, for the same data points

as in the previous cases.

As expected, the more complex model is much more precise for the given data,

indicated by the larger R2. The linear model, however, is relatively more robust

across different samples. The slope coefficient and the intercept change only slightly,
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Figure 3.2: Linear approximation of the data.

whereas the coefficients vary wildly in the more complex model.

The robustness property itself is of value, but what is its relation to prediction?

In this context, prediction is forecasting the value on the ordinate given a value on

the abscissa. For example, a prediction of the values in the right-hand-side figures

based on the estimated models of the left-hand side figures means the following:

The respective line or curve of the left-hand-side figures has to be copied into the

right-hand-side diagrams and its fit to those data points needs to be evaluated. The

linear model would perform only slightly worse in the right-hand-side sample data,

while the more complex model would perform considerably worse. This difference

in model fit between estimation and prediction sample for the high-polynomial

model displays overfitting.

The previous observations indicate that a trade-off between precision and generality

can occur. Its extent depends on the complexity of the true model, the model

specification and the noise in the data. In general, however, a relation as depicted

in figure 3.3 holds. It exemplifies the magnitude of the mean squared forecast error

in dependence of the model complexity. The dotted line denotes the squared bias

which decreases with increasing model complexity. The variance, the dashed line,

increases on the other hand. The total error is minimized at about the middle.

Finally, the permitted degree of complexity also depends on the number of observa-

tions at hand. More data points for a fixed degree of complexity yield more degrees

of freedom and the model comes closer to attaining asymptotic properties.

The trade-off between precision and variance as well as the value of sparse models

for interpretability and generalization ability motivate the need for methods which

manage to find such models.

In this thesis two strands of methods are deemed suitable for this goal and are

examined more closely for this reason. The first one achieves weak interpretability
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Figure 3.3: Visualization of Bias-Variance Trade-Off

and possibly also generalization ability by condensing common variance of the

predictors into a smaller number of new predictors, so-called indices. Certain

methods in this category even achieve interpretability, as the created indices can

often be meaningfully interpreted.

The other group is motivated by the bias-variance trade-off observation. This

strand embarks at the full model and deliberately induces bias by shrinking

all coefficients towards zero. Thereby variance is reduced, yielding a model

that has improved predictive capabilities. Such methods are called shrinkage or

regularization methods. They are expected to yield a sparse model with good

generalization ability while interpretability usually only emerges from variable

selection and is hence weak. An exception is a combination of shrinkage methods

with index-building methods. Two variants are proposed in this thesis, which differ

in the type of shrinkage method applied but not in the method to create indices.
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Chapter 4

Overview of empirical methods

This chapter presents a selection of methods that can be applied to address the

issues related to having too many predictors. It is divided into four sections. The

first deals with procedures which are fundamental ingredients to more involved

methods. This section comprises the description of two procedures which condense

information in the explanatory variables, called Principal Component Analysis

and Factor Analysis. Moreover, the technique of rotation is presented which can

aid in the interpretation of the output of information-condensing procedures. The

final method described is Cross-Validation which is a particularly useful technique

for model selection. The latter can cause problems in small samples since splitting

the data into a training, a validation and a test sample results in too small sample

sizes. Cross-Validation supports the selection of a model under these conditions

by repeatedly splitting the data.

The next section is devoted to subset selection methods. These methods choose a

subset of the original variables by repeated testing of the same sample. Subset

selection methods are introduced prior to the more involved methods because they

are often used for variable selection. Although being intuitive and easy to apply,

they generally have some undesirable properties.

The idea of a factor or component model which exploits overlapping explanatory

power within the set of predictor variables to reduce the dimensionality is pursued in

the following section. The methods in this section produce indices, which are linear

combinations of the original explanatory variables. Following the terminology of Tu

and Lee (2012), such procedures are classified into being supervised or unsupervised.

This differentiation refers to the manner by which the indices are created. Tu and

Lee differentiate between methods which create indices by explicitly regarding

their relations to the dependent variable, in which case they call them supervised,

or if the creation is independent of the dependent variable, unsupervised.

Subsequently, a family of methods is presented which exploit the trade-off between

bias and variance described in chapter 3 in order to improve the quality of a forecast.
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The fundamental idea is to shrink the coefficients of the full linear model towards

zero to reduce the overall variance of the model. In contrast to the dichotomous

decision of purely selective methods on whether to include a variable in the model

or not, the methods in this family gradually shrink their influence. The presented

methods cover several variations as well as a procedure that combines linear index

models with the idea of regularization.

Each approach is discussed with regard to its accomplishment of yielding a sparse

and interpretable model. Moreover, a method has usually additional setscrews

which can be subsumed under model selection criteria. They can be of high

importance, in particular in small samples. These criteria are discussed for each

method separately. Based on the results of the theoretical arguments, promising

or frequently used methods and their model selection criteria (algorithms) are

selected. The corresponding evaluation of their performance takes place by means

of a simulation, which is presented in chapter 5.

4.1 Basic procedures

This section portrays techniques which often serve as fundamental parts in more

involved methods. One is Principal Component Analysis and its underlying

spectral decomposition as a key technique of dimensional reduction and Factor

Analysis as a related procedure. After that, rotation techniques are introduced

and Cross-Validation as a method used for model selection is presented.

4.1.1 Principal Component Analysis

A basic method for many dimensional reduction techniques is Principal Component

Analysis (PCA) which dates back to Pearson (1901) and Hotelling (1933). Because

of some similarities, PCA is sometimes confused with Factor Analysis; there are

important differences, however. To avoid misunderstandings, the two methods are

strictly separated in this thesis. This also concerns the naming of the constructs

that are created in these methods: In PCA and methods that rely on its technique,

they are called components, whereas in Factor Analysis they are called factors.

This naming is done despite the use of the same notation. Another difference lies

in the name of the vectors and matrices that connect the original variables with

the constructs. In PCA and related techniques they are called weights, in Factor
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Analysis loadings. The following description of PCA follows Timm (2002), Jolliffe

(2002) and Jackson (1991) if not stated otherwise.

PCA is a descriptive technique with no causality structure assumed in the data.

The method basically transforms a set of q variables, which are here assumed

standardized and not pairwise orthogonal, into a set of q new variables, called

components. These components are linear combinations of the original variables.

In contrast to the original variables, however, the new components are not only

uncorrelated with each other but also contain differing amounts of variance. While

each original variable has a variance of one owing to standardization, some com-

ponents will have higher variance, others lower. This is exploited to achieve the

standard objective of PCA of finding fewer components than original variables

(k << q) that comprise as much of the original variance as possible. Dimensional

reduction is induced by selecting the components that contain the highest amount

of variance and discarding the components with little variance. Since the compo-

nents are uncorrelated, PCA can also be used to overcome problems in the original

variables owing to multicollinearity.

Let x1, . . . , xq ∈ RN be q standardized predictor variables. A matrix of weights

W is searched for in order to construct k components f1, . . . , fk ∈ RN which are

linear combinations of the predictors. Component-wise, this can be formulated as

follows

f1 = w11x1 + w21x2 + · · ·+ wq1xq
...

fk = w1kx1 + w2kx2 + · · ·+ wqkxq.

Or more compactly for a specific component j

fj = Xw·j (4.1)

where w·j (q × 1) denotes the j-th column of the weight matrix W and represents

the weights vector belonging to j-th component. For all components

F = XW. (4.2)

Let Cov [X] denote the empirical covariance matrix of X = [x1, x2, ..., xq]. Due

to prior standardization of the predictors, it is a correlation matrix in this case,

hence Cov [X] = Corr [X] = V ar [X] = E
[
XTX

]
; it plays a key role in PCA.

When the original variables are unstandardized, PCA can also be conducted on

the covariance matrix. One has to bear in mind, however, that PCA is only

invariant under orthogonal transformations. Therefore, the result is sensitive to
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the units of measurement and not necessarily equivalent using standardized or

non-standardized variables.

The basic procedure of PCA can be formulated iteratively, that is to find the

principal components one after another. To begin with, the goal is to find the first

principal component, f1, of X being the linear combination of the predictors that

has maximal variance. Since X is given by the data, maximizing the variance of

f1 implies finding the vector w·1 that maximizes

V ar [f1] = E
[
fT1 f1

]
= E

[
wT·1X

TXw·1
]

= wT·1Cov [X]w·1 (4.3)

subject to the normalization restriction that wT·1w·1 = 1. This restriction is neces-

sary for the principal component to be unique up to the sign. The rearrangement

in 4.3 is exploiting that V ar [f1] = E
[
fT1 f1

]
− (E [f1])

2 = E
[
fT1 f1

]
− 0. This

relation holds because the predictors were assumed to be centered. The problem

can be solved using the Lagrangian Multiplier method, such that the maximization

problem for the first component can be formulated as

max wT·1Cov [X]w·1 + λ · (1− wT·1w·1). (4.4)

Partial derivation with respect to w·1 and setting to zero yields

(Cov [X]− λIq) · w·1 = 0. (4.5)

To solve the system of homogeneous equations, the q eigenvalues of Cov [X] need

to be calculated. Knowing the eigenvalues, the orthonormal19 eigenvector υ1 which

corresponds to the largest eigenvalue of Cov [X], λ1, can be calculated. This

eigenvector is the weight vector w·1 that maximizes 4.3, i.e.

f1 = Xw·1 (4.6)

where w·1 = υ1. The value of the largest eigenvalue contemporaneously represents

the variance the first component comprises. Unless the original variables are pair-

wise orthogonal, the eigenvalue is larger than 1 so that the first component binds

more variation in X than a single original variable. The individual observations on

the components are called scores. Like tall people are more inclined to the variable

measuring height than small people, scores measure how inclined someone is to a

certain principal component. Scores play an important role when the components

are further utilized.

19Orthonormal: Unit length and uncorrelated to the other eigenvectors.
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The second component can be obtained in the same fashion; however, the addi-

tional restriction of being orthogonal to the first component is imposed, that is

fT1 f2 = 0. This means the second component will account for as much variance

as possible from the variance not already covered by the first component. Alter-

natively formulated, one could subtract the explained variance of component 1,

so that Cov [X]− υ1υT1 = Cov [X]1, and apply the same maximization procedure

on Cov [X]1 as for component 1 in 4.3, i.e. without the orthogonality restriction.

From here on the procedure continues in one or the other fashion until the last

component fq is reached.

However, this iterative calculation is not necessary. A useful generalization can be

carried out by a spectral decomposition (SD) of the symmetric matrix Cov [X].

Obtaining the eigenvectors by a spectral decomposition factors Cov [X] in the

following way

Cov [X] = V ΛV T . (4.7)

Λ is the diagonal matrix of eigenvalues and V is an orthogonal matrix of dimension

q × q containing the standardized eigenvectors. Then, arranging the eigenvalues

by size [λ1 ≥ λ2 ≥ ... ≥ λq] and their associated eigenvectors υ1, . . . , υq in order,

the complete weight matrix W is given by V = [υ1, . . . , υq]
T .

Having obtained the eigenvectors and keeping all components (k = q), the N × k
matrix of component scores is calculated using the relation in 4.2.

PCA only leads to a new coordinate system through a principal axis rotation.

One implication is that the sum of the original variable’s variances equals the

sum of the eigenvalues. In the case of standardized variables and extracting all

components, this implies tr [Cov [X]] = tr [Cov [F ]] =
∑q

i=1 λi = q.

It has to be noted that PCA is sensitive to outliers which may cause the existence

of single components. Timm (2002) recommends detecting outliers a priori or

using robust estimates of the correlation matrix.

As mentioned, dimensional reduction is often the primary reason why PCA is

applied. This can be achieved by only using k principal components with the

highest variance and discarding the remaining. Then some original variance will be

left unexplained, leading to a loss of information. But simultaneously a dimensional

reduction of the data takes place. The criterion of which or how many components

to keep has been discussed extensively in the literature without a final conclusion,

one reason being that the optimal choice depends on the researcher’s aim. At this

point the discussion is deferred to section 4.3.1 on Principal Component Regression

because it is the regression procedure for which PCA plays the key role and there

are additional aspects, such as rotation, that need to be considered.
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4.1.2 Factor Analysis

A related method to PCA is Factor Analysis (FA), sometimes also called Classic

Factor Analysis or Exploratory Factor Analysis. It is the foundation for the

methods which correspond best with the theoretical ideas given in the previous

chapters. This section follows the elaborations of Überla (1968), Timm (2002, p.

496–510) and Jackson (1991, p. 388–423).

The development of Factor Analysis goes back to Spearman (1904) and Thurstone

(1931). Typically, its objective is described as ”explaining” the correlation struc-

ture amongst the set of (noisy) observed variables by means of a few common

factors. These common factors are interpreted as latent variables and thought of

as influencing the observed variables so that they become correlated. Because the

common factors are unknown a-priori, they have to be derived from the observed

variables. The observed variables, however, are not completely dependent on the

common factors: A differing share of variation in the observed variables is left

unexplained. This remaining share is often interpreted as measurement error or

noise and is depicted by an error term.

One useful feature in Factor Analysis is that the common factors are often mean-

ingfully interpreted. The model formulation makes it appealing for the analysis

of the economic problem whose structure was formulated similarly. In contrast

to PCA, which has the goal to compress the variance in the predictors, the re-

sulting components’ meaning might be recondite. Why the procedures differ in

interpretation is grounded in the formulation of the model and accordingly how

the indices are obtained: In PCA, the components are linear combinations of

the original variables, whereas in Factor Analysis the original variables are linear

combinations of the latent factors. Nevertheless, the procedures can often yield

similar results but this depends, as will be demonstrated, on the data structure

and on the manner of conducting Factor Analysis. In contrast to PCA, there is no

single way to do Factor Analysis so some confusion might arise. Thus, this section

attempts to carefully point out the differences between the main procedures of

Factor Analysis.

Assuming all variables are standardized, the basic model of Factor Analysis can

be formulated as the observed variables x being a weighted linear combination of

the latent factors f and an error term ε:

x1 = l11f1 + l12f2 + · · ·+ l1kfk + ε1
...

xq = lq1f1 + lq2f2 + · · ·+ lqkfk + εq.
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The loadings link the factors and the original variables. The above system can be

compactly written as

X = FLT + E. (4.8)

In order to obtain estimates for the unknowns in the model, some assumptions

have to be made. The error term and the factors have zero mean on expectation,

so E [εi] = 0 and E [fj] = 0. Moreover, the latent factors are uncorrelated with

each other (strictly speaking, this assumption is not necessary) and have variance

of one, so that Cov [F ] = Ik. This condition leads to non-unique solutions, a

property particular to Factor Analysis which makes it different from PCA.

The variable-specific errors are assumed to be uncorrelated with each other and

are allowed to have different variances, Cov [E] = Ψ = diag [ψ1, ψ2, ...ψq]. The

variance ψi is referred to as the uniqueness of variable i and stands for the variance

in variable i that is not explained by the factors. The errors are also assumed to

be uncorrelated with the common factors, Cov [F,E] = 0j,i.

Based on these assumptions, the following important relations, which are part of

the fundamental theorem of Factor Analysis, are shown:

Cov [X] = E
[
XTX

]
= E

[
(FLT + E)T (FLT + E)

]
= E

[
LF TFLT

]
+ E

[
LF TE

]
+ E

[
ETFLT

]
+ E

[
ETE

]
= E

[
LLT

]
+ E

[
ETE

]
= LLT + Ψ (4.9)

so: Var [xi] = l2i1 + l2i2 + ...+ l2ik + ψi ≡ h2i + ψi (4.10)

This shows that the variance of an observed variable i is split into the sum of its

squared loadings on the factors, called communality h2i , plus its uniqueness, ψi.

Communality corresponds to the explained variance, while uniqueness describes

the unexplained part. When the variables are standardized, the communality and

specific variance must hence sum up to 1.

The identification of the factor loadings does not lead to a unique solution, since

the correlation matrix Cov [X] can be reproduced equally well under different

loading structures. Let T be an orthogonal matrix of dimension k× k, by plugging

T TT into equation 4.8, a transformed factor model arises:

X = FT TTLT + E (4.11)

Redefining F ∗ = FT T and LT∗ = TLT and replacing L in 4.9 by L∗, gives:

Cov [X] = L∗LT∗ + Ψ = (LT T )(TLT ) + Ψ

= LT TTLT + Ψ = LLT + Ψ (4.12)



Chapter 4 Overview of empirical methods 52

This shows that any orthogonal transformation is also a permissible solution. Since

this is an orthogonal axis rotation, the loadings will be different, but the factors

remain orthogonal to each other and the communalities stay constant, too. The

indefiniteness seems to be a drawback at first, but can be exploited to make the

common factors better interpretable.

If the assumption of uncorrelated factors is given up, such that Cov [F ] = Φ, where

Φ is any valid covariance matrix, it holds that

Cov [X] = E
[
LΦLT

]
+ E

[
ETE

]
= LΦLT + Ψ. (4.13)

The factors are now said to be oblique.

Finally, for reasons of interpretation, the relation between the variables and the

factors is examined which is the second part of the fundamental theorem of Factor

Analysis

Cov [X,F ] = E
[
XTF

]
= E

[
(FLT + E)TF

]
(4.14)

= E
[
LF TF

]
+ E

[
ETF

]
= L (4.15)

for which some of the above assumptions were exploited. The equation shows that

a loading lij equals the correlation coefficient between factor j and variable i.

Having discussed the basic properties of a factor model, it remains to elucidate

how the parameters are obtained. At first, one attempts to estimate the loading

matrix L in 4.8. For L cannot be obtained by the basic equation, the relation in

equation 4.9 is exploited for this purpose. This process is the so-called extraction

of factors to which end different methods exist. Table 4.1 names several possible

procedures to obtain L. Some of them will be explained in more detail. In order to

emphasize that the loading matrix is non-unique, even irrespective of any rotation,

it is tagged with a hat.

Table 4.1: Procedures to extract factors

Extraction of L̂

Principal Factors*

Principal Component Factors

Iterated Principal Factors*

Maximum Likelihood

Image Analysis

Rao’s Canonical Factoring
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The typical algorithm used for extracting the loading matrix is called Principal

Factors (PF). Another frequently used algorithm is Iterated Principal Factors (IPF).

Apart from those two, two others will be introduced briefly but not further pursued

for reasons explained later on; Principal Component Factors, which constitutes a

bridge between PCA and Factor Analysis and the maximum likelihood approach.

The following description of the factor extraction methods is based on the work by

Rencher (Rencher, 2003, p. 415-430).

A property that a certain class of factor extraction algorithms shares is to use

4.9 to obtain an estimate for the loadings. Since Cov [X] is given by the data,

only L and Ψ need to be specified. These factor extraction procedures make an

assumption about the uniqueness matrix Ψ and then L is sought such that the

relation in 4.9 is approximated as closely as possible. Let Ψ̂ be the assumed matrix

of uniqueness, then

Cov [X] = LLT + Ψ̂ = L̂L̂T (4.16)

where the last term has absorbed Ψ̂. To obtain L̂, Cov [X] can be factored which

can be done by means of a spectral decomposition, as described in 4.1.1:

Cov [X] = V ΛV T (4.17)

To end up in the desired form, it is exploited that Λ can be written as Λ = Λ
1
2 Λ

1
2 ,20

such that

Cov [X] = V Λ
1
2 Λ

1
2V T . (4.18)

But instead of defining V Λ
1
2 = L̂, which would be a q × q matrix, a dimensional

reduction should take place. In the established manner only k eigenvectors, for

example those with the largest corresponding eigenvalues, are selected, such that

V1 = [v1, v2, ...vk]. Then the loading matrix is calculated as

L̂ = V1Λ
1
2 = (

√
λ1v1,

√
λ2v2, ...,

√
λkvk). (4.19)

Independent of the selected number of factors, it becomes clear that the result

depends on the initial uniqueness estimate, and it is indeed what often leads to

differences across the extraction methods.

Principal factors uses the multiple coefficient of determination R2 of variable xi

on the other q − 1 variables to obtain a uniqueness estimate of variable i

ψ̂i = 1−R2
i . (4.20)

20A matrix to the power of 1
2 denotes a square root of a matrix. A matrix Z is defined to be a

square root of a matrix Y if ZZ = Y holds (Higham, 1986). Since Λ is a diagonal matrix with
positive or zero values, the relation holds.
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It has been shown that R2
i constitutes a lower bound for a variable’s communality

and that with an increasing number of variables and a constant number of factors,

the lower bound holds with equality (Überla, 1968).

In the next step, the reduced correlation matrix Cov [X]R is calculated as the

difference of the empirical correlation matrix and the estimated uniqueness,

Cov [X]R = Cov [X] − Ψ̂. Since Ψ̂ is diagonal, the off-diagonal elements stay

the same, while the diagonal elements are reduced by the ψ-estimates. Thereby,

the total variability is reduced to the variability that the original variables have in

common. The variance which is unique to each variable is discarded.

In the next step Cov [X]R is factorized by means of a spectral decomposition.

Cov [X]R is almost always no longer positive semi-definite, so negative eigenvalues

will emerge. By first deleting the eigenvectors with the negative eigenvalues, and

then applying 4.19, one obtains the final loading matrix. The goal of a dimensional

reduction has already been achieved by discarding the eigenvectors with negative

eigenvalues. In practice, however, the number of factors might still be quite high,

motivating a further selection thereafter.

Iterated Principal Factors is related to Principal Factors but seeks to improve

the communality estimate. The method continues where Principal Factors stops.

Having obtained the loading matrix one can calculate the communalities anew.

They are different because negative eigenvectors have been discarded. Iterated

Principal Factors uses these quantities to improve the prior estimates. It replaces

the diagonal elements of the reduced correlation matrix Cov [X]R by the newly

calculated communalities.

This updated reduced correlation matrix undergoes a factorization in the estab-

lished manner whereupon the loading matrix is calculated anew. As indicated by

the name, the algorithm proceeds iteratively until the changes become very small.

Rencher (2003) notes that the procedure can be similar to Principal Factors if either

the number of variables or the correlations between them are large. Moreover,

there is a tendency to end up in the Heywood case in which communalities are

falsely estimated to be larger than one.

Not pursued in this work are Principal Component Factors and estimation by

Maximum Likelihood. The first carries a similarity to PCA not only by its name:

Principal Component Factors sets all communalities to one, so Ψ̂ becomes a matrix

of zeros. The resulting spectral decomposition hence yields the same results as in

PCA. It also implies that q factors can be extracted. The only difference is that

PCA uses so-called ”raw eigenvectors” as loadings, while in Principal Component

Factors formula 4.19 is used to calculate the loadings. The difference is merely one

of scaling. With PCA already considered, little is lost by omitting this algorithm.
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With regard to estimation by Maximum Likelihood, the assumption of a multivari-

ate normal distribution of the predictors is made. The next step is to formulate

the (log-)likelihood and numerically maximize it. However, the initial tests in the

simulations lasted long and disclosed unstable, sometimes far-off results. Moreover,

the method seems prone to end up in the Heywood case and is therefore omitted.

The solution by Maximum Likelihood was shown to be equal to the one Rao’s

Canonical Factoring gives (Timm, 2002, p. 505). Having decided upon a method

to extract the factors, one can rotate the system for convenience in interpretation.

Rotation uses the indefiniteness property depicted in 4.12 and is discussed in detail

in the next section.

The last missing part of the system is the factor scores F . These cannot be

calculated immediately. The factor model is different to PCA as it requires an

inversion of equation 4.8. So far only the q original variables, the (rotated) loadings

matrix and the uniqueness-estimates are available, but there are k unknown factors

f and q unknown unique factors ε remaining. Hence, the system is underdetermined

and inverting the relation in 4.8 is infeasible. Therefore estimation or some other

approximation method is required.

DiStefano et al. (2009) partitions the methods into refined and non-refined methods.

One example for the latter is the surrogate variable technique which chooses the

variable that loads highest on a factor in absolute terms as a representative for the

factor. Hereby, several disadvantages occur. The surrogate variables can be highly

correlated with each other and are also misleading in interpretation. If unique

variance is interpreted as measurement error, then relying on a single variable

unnecessarily exposes the model to measurement error and potential advantages

of using Factor Analysis remain unexploited. There are other methods which are

unclear with respect to their properties, for example the creation of sum scores,

which for each factor forms the loading-weighted sum of those variables that load

highly on a factor.

Refined methods, on the other hand, create scores by estimating them. The

estimation of factor scores stands in contrast to calculating the component scores

in PCR. There are several techniques available to this end. Table 4.2 summarizes

the most common options to obtain F . If a procedure is marked by a star, a more

detailed explanation is provided in this section.

Among the presented extraction methods, a general point concerns the non-

existence of an unbiased and correlation-preserving estimator. That means there

exists no estimator for factor scores which is unbiased and simultaneously preserves

the correlation pattern of the factor model (McDonald and Burr, 1967). Embarking

from an orthogonal factor model this implies that factor scores are either correlated
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Table 4.2: Overview of factor scores estimation methods

Estimation of F

Bartlett*

Thurstone*

Anderson-Rubin

Non-refined methods

or biased.

One estimation approach views the factor model as a regression model. Bartlett

(1937) proposed a weighted least squares estimate

f̂j = (L̂T Ψ̂−1L̂)−1L̂T Ψ̂XT (4.21)

which for all factors becomes

F̂ = XΨ̂−1L̂(L̂T Ψ̂−1L̂)−1. (4.22)

The estimate reduces the influence of variables with high uniqueness and is unbiased.

It requires Ψ to be nonsingular. Another approach is regression scoring (Thomson,

1951)

F̂ = XCov [X]−1 L̂Φ (4.23)

where Φ = Iq if the common factors are orthogonal. It requires that Cov [X] is

nonsingular. The method is biased but has a low mean squared error.

A third strand of estimators attempts to preserve the correlation of the common

factors. The topic was scrutinized by Ten Berge et al. (1999). The first estimator

in this area was due to Anderson and Rubin (1956) which, however, only works if

Cov [F ] = Ik and Ψ is nonsingular. McDonald (1981) expanded the solution to

oblique factor models. This class of estimators is omitted here for two reasons:

The correlation structure between factors is not substantially changed by both the

Bartlett and Thurstone method, moreover, in oblique factor models, the correlation

structure does not play an important role.

4.1.3 Rotation

When conducting Principal Component Analysis and Factor Analysis, interest lies

in being capable of interpreting the indices meaningfully. To this end, the patterns

in the loading or weight matrix are examined. The single indices are labeled

according to what the original variables that load highest in absolute terms on a
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component have in common. This is a subjective aspect where different researchers

might emphasize different aspects and therefore yield different conclusions. In

general, however, any interpretation of the indices as they come out of the model

process is often challenging because they usually carry a high degree of ambiguity.

A clearer picture arises if a so-called simple structure (Thurstone, 1931) is present.

Loosely speaking, such a structure characterizes a loading or weight pattern where

each single original variable loads either highly or low on an index in absolute

terms, rarely with intermediate values. Thereby, only few variables with high

loadings need to be considered for interpreting the constructs. Rotation techniques

can aid in achieving this goal.

Through the formulation of the models, there are differences concerning Principal

Component Analysis and Factor Analysis when it comes to rotation. Therefore,

the discussion continues with general principles of rotation and is detached from

the two methods. Aspects linked to rotation within PCA and FA are elucidated

subsequently.

The general principle of rotation can be illustrated best by using diagrams and

considering a two-dimensional space of variables. A simple structure is to be

obtained with respect to the points in this system, where the points are an ordered

pair of values. A rotation towards a simple structure means to rotate the axes,

which are the constructs for which an interpretation is required, such that one

value of the pair gets either small or large in absolute terms. This is visually

exemplified in figure 4.1.

The initial situation corresponds to one, where both values of the pair exhibit

similarly high values on both axes. Their use for giving a meaning to the axes,

which are the factors, is hence limited. The rotation is indicated by arrows in

this picture, whereby the axes a1 and a2 are rotated orthogonally. After rotation,

giving an interpretation to the axes is simplified.

Rotation methods are classified into orthogonal rotations, which turn the axes but

keep them orthogonal to each other, and oblique rotations, which are often closer

to a simple structure at the expense of the orthogonality property. Supposing

L denotes the matrix of weights or loadings, then rotated loadings are given by

L̃ = LT , where T is a rotation matrix. The elements of L are found by choosing

T such that a specific criterion is maximized.

Starting with orthogonal rotation methods, the most commonly used is the Varimax

procedure (Jolliffe, 2002, p. 154). Let l̃ denote the loadings after rotation and k
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Figure 4.1: Example for rotation.

the number of axes, the criterion to maximize is

QVM =
k∑
j=1

[
q∑
i=1

l̃4ij −
1

q
(

q∑
i=1

l̃2ij)
2

]
. (4.24)

The solution is obtained by numerical procedures and maximizes the sum of squares

of L column-wise. Noting the fact that loadings are 0 ≤ l̃ ≤ 1, it is apparent that

QVM becomes larger as the difference between a single loading, the first term, and

the average loading, the second part of the sum, on a factor becomes larger. The

maximum is hence attained when the loadings are either 1 or 0. There are also

other orthogonal rotation methods but Varimax is the most popular one.

An often-used oblique rotation is the Promax method (Hendrickson and White,

1964). The algorithm starts with a loading matrix and applies at first a Varimax-

rotation to it. This result is then attempted to be improved (in terms of attaining

a simple structure) by considering the matrix Q, which is defined element-wise

as

qij = |lg+1
ij |/lij, (4.25)

where g > 1 and lij referring to the Varimax-rotated loadings. The consequence

of raising the loadings to a higher power is that small loadings are driven further

to zero, while large loadings are only slightly diminished. In the next step the

Promax-rotated loadings are obtained by the least-squares fit formula

L̃ = (LTL)−1LTQ. (4.26)

The last step consists of normalizing L, such that each column’s sum of squares
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equals unity. A value between 2 and 4 is typically recommended as value of g.

A consequence of an oblique rotation is the increased focus on large correlations.

It leads to more pronounced loadings, which reduces the likelihood of factors to

encompass numerous variables.

Having discussed two important rotation procedures, it remains to illumine the

application of rotation in Factor Analysis and Principal Component Analysis. First

of all, and this holds in both procedures, the number of factors must be smaller

than the number of original variables. Otherwise the simplest structure of all is

attained, i.e. the components equal the original variables up to the sign. Another

point that arises from the rotation idea is that the result depends on the number

of considered indices.

Rotation in PCA leads to the following changes (following the elaborations by

Jolliffe, 2002, p. 272ff.): Rotating k eigenvectors orthogonally does not only change

the loadings but also a component’s (co-)variance. Thereby, rotation destroys

maximum variance characteristics while the total variability of the concerned

components remains constant. But a caveat arises through the fact that the

components are no longer uncorrelated – even under orthogonal rotation. This

stems from the properties of PCA, which include orthonormal component weights

and orthogonal components. After rotation one of the two properties will be lost.

The first k components’ scores can be calculated as Fk = XWk. Rotation implies

to multiply this equation by a k × k rotation matrix T so that

FkT = XWkT = XL̃ = FR
k . (4.27)

Because of orthogonal weights L̃T L̃ = T TW T
k WkT = T TT , they keep this property

in case of an orthogonal rotation. However, with unrotated components it holds that

F TF = W TCov [X]T Cov [X]W = W TWΛW TWΛW TW = Λ2 which is diagonal,

whereas with any rotation FRT
k FR

k = T TΛ2
kT which implies non-orthogonality of

the components. This observation is of particular importance when the scores are

used in regression analysis.

Rotation in Factor Analysis is uncomplicated with regard to these issues. After

having decided on the procedure and the number of retained factors, formula 4.9,

which shows that any orthogonal rotation is a permissible solution, is exploited.

This is because rotation refers to the k-dimensional space of retained factors

and not the q-dimensional one of the original variables. When it comes to the

interpretation of the indices created by the two methods, factors are suspected to

have advantages over components.
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4.1.4 Cross-Validation

This section describes a useful algorithm to do model selection in light of limited

data and threat of overfitting. The description mainly follows the explanations

provided by Arlot and Celisse (2010), James et al. (2013) and Hastie et al. (2009).

As mentioned in chapter 3, a way to protect oneself from overfitting models is

to conduct model selection on a data set that is split into three independent sub

samples. Using these three parts, a training, a validation and a test data set,

correctly, reduces the likelihood of using too optimistic models. Yet this procedure

requires sufficiently many observations, which is not always the case in practice.

For such situations, cross-validation may constitute a well-working alternative.

Given a model, the idea of cross-validation is to omit the validation and test

sample and instead work with splits of the training data. In k-fold cross-validation

the training data N are randomly split into k mutually exclusive, roughly equally

sized chunks denoted as n1, ..., nk. In the next step, the first chunk n1 of data is

separated from the remaining data n2, ..., nk. Using only the observations N\n1, a

model is estimated and used to predict yn1 , the outcome observations in chunk

n1. These predictions ŷn1 , which are out-of-sample, are recorded and are estimates

of the test error because the samples are independent of each other. To increase

the number of observations with which the test error is calculated, the procedure

continues with excluding chunk n2. The chunks n1, n3, ..., nk are used for fitting

the model anew. Based on this model the outcome yn2 in n2 is predicted and also

recorded. The procedure follows in this fashion until all splits have been excluded

once. Thereby, the structure of the model must stay the same over the folds to

ensure comparability, only the parameter estimates are allowed to differ. Then:

CVk =
1

N

k∑
i=1

L(ŷni , yni) (4.28)

denotes the cross-validated prediction error, where L(•) is a custom loss function

for the discrepancy between the true values and the prediction - often the mean

squared error, which is a consistent estimate of the test error. To use CV for model

selection the same procedure as before is conducted for every other rival model.

The model with the smallest cross-validation error should be favored.

Of interest in the current context are the questions of which properties CV has

and, more importantly, how k should be chosen; arguably the properties of CV

are likely to depend on the choice of k as well as the total number of observations.

It is insightful to consider the extreme cases. One case is the leave-one-out cross-

validation (LOOCV), where k = N − 1, which constitutes the most exhaustive

type where only one observation per fold is taken out. Its use can be costly in
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terms of calculation time, but there is a shortcut for OLS type problems (Zhang,

1993, p. 301ff.). The other extreme is called hold-out or simple validation, where

k = 2, and the sample is hence split in half. One risk here are too few observations

in one or the other half. In addition, there is a risk of having an unfortunate split.

Compromises are found in the range 2 < k < N − 1.

James et al. (2013) note that the simple validation might turn out to be quite

variable if repeated several times. The LOOCV, however, virtually always gives

similar results. The authors further argue that there is also a bias-variance

trade-off for the choice of k with regard to the estimation of the prediction error.

Approximately unbiased estimates of the test error are obtained by applying

LOOCV - on the other hand, the single training sets are highly correlated which

tends to increase the variance by the amount of covariance (Clarke et al., 2009, p.

594). In analogy to the problem of variable selection, it can be argued that the bias

for the estimated prediction error is low for the sample at hand but this error will

hardly be generalizable for different samples. When k is reduced, bias is increased

while variance lowered. However, due to the smaller fold sizes, the variance can

also increase if the training samples exhibit sufficiently variable structures. This

danger alleviates when the total number of observations in the sample increases.

A typical choice, independent of the sample size, is 5 ≤ k ≤ 10 (Hastie et al., 2009,

p. 243).

4.2 Subset selection methods

This section summarizes the most important types of subset selection methods.

The common feature of these approaches is to choose a subset from the set

of original predictor variables and so mitigate the problems of having too many

(similar) predictors. The resulting model should be parsimonious and have desirable

properties, i.e. be interpretable and to accurately predict the response variable.

Since the procedures differ in obtaining a subset, the results often differ. To avoid

naming ambiguities among the procedures, this paragraph follows the terminology

of James et al. (2013).

Best Subset Selection

The most comprehensive method is the Best Subset Selection method. Starting

with the baseline model of a constant only, it compares the fit of all possible

combinations of predictors while proceeding from a model with one predictor to



Chapter 4 Overview of empirical methods 62

the model with all predictors. Since the R2 in training samples never decreases,

the evaluation of the model battery should be done by means of an information

criterion (AIC, BIC) or an appropriate statistic (Cp, Adj.R2). Computational

difficulties arise when the number of variables increases since 2q models have to be

estimated in this procedure.

Alternatively, one can consider optimizing an information criterion directly. The

typical structure of an information criterion consists of some measure of goodness

of fit and a term that penalizes the model complexity. The minimization criterion

for an information criterion in general can be expressed as follows (Savin and

Winker, 2013, p. 169)

β̂IC = argmin
β

(‖y −Xβ‖22 + λ‖β‖0). (4.29)

The first bit seeks to minimize the discrepancy between the observed and predicted

responses via β̂. The second part is the `0 norm on β̂, also representable as∑q
i=1 |βi|0; it is the count of non-zero elements in the coefficient vector (strictly

speaking, zero-coefficients are removed from the vector prior to summing up).

Through this optimization criterion the number of variables with non-zero coef-

ficients is penalized. The penalty’s strength is determined by λ. The `0 norm

implies, however, that the optimization takes place in a discrete space of models

which means that standard gradient methods cannot be used (Ibid.). Thus, esti-

mating 2q models cannot be avoided. The practical difficulties for this method

in data-rich environments has led to alternatives such as Backward or Forward

Stepwise Selection.

Backward Stepwise Selection

A faster procedure is Backward Stepwise Selection regression (BSSR). The algo-

rithm is depicted in table 4.3.

A variation of BSSR is to ignore the threshold α1 and continue elimination until

no predictors are left in the model. At each elimination step, the current model is

evaluated with respect to the information criteria above and the best is picked.

Forward Stepwise Selection

Forward Stepwise Selection regression (FSS) works the other way round. Its

algorithm is described in table 4.4.
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Table 4.3: Algorithm for Backward Stepwise Selection

Initialize: Determine a minimum significance level α1, whereby significance is
the variable-individual probability of rejecting the null hypothesis of
a zero coefficient when it is true. It specifies the minimum p-value
that each variable in the final model has to meet or to be beneath.

Step 1: Include all input variables in the model, obtain fitted parameters
by OLS and eliminate the least significant variable if its p-value is
larger than α1.

Step 2: The remaining predictors are fitted anew and, as before, the least
significant variable is removed from the set.

Step 3: Step 2 is repeated until all variables in the model are at least as
significant as α1.

Table 4.4: Algorithm for Forward Stepwise Selection

Initialize: Determine a minimum significance level α1. It specifies the level of
significance which all variables in the final model have to meet or
to exceed.

Step 1: Starting with constant-only model, the most significant predictor is
added to the subset.

Step 2: Exit, if the predictor is not at least as significant as α1, otherwise
continue.

Step 3: Given the constant and the first predictor, the next most significant
predictor, is added.

Step 4: Exit, if the predictor is not at least as significant as α1, otherwise
continue.

Step 5: Step 3 and 4 are repeated until all variables in the model are at
least as significant as α1.

As in the previous procedure, there is a variation of the method. The algorithm

continues until all variables are in the model and evaluation takes place as for

BSSR.

A hybrid approach of BSSR and FSSR is also possible. In FSSR this boils down

to removing non-significant variables from the present model after having added a

new variable to the model.

Subset selection methods typically have several drawbacks. One occurs in the

presence of multicollinearity where t-statistics are inflated and so disguise a

predictors’ importance. Good predictors might be dropped too quickly or not

added. As mentioned, multicollinearity per se does not lead to biased parameter

estimates, stepwise selection methods can nevertheless do so when a variable from

the set of multicollinear variables is removed. Moreover, small changes in the

data can cause different selection choices which may affect the subsequent choices
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substantially (Hesterberg et al., 2008, p 65). More technically, there are problems

to repeated testing of the same sample. This includes R2 values which are biased

upwards, while standard errors of the parameter estimates are too small (Flom

and Cassell, 2007). It resembles the custom-tailored properties mentioned in the

context of overfitting - the chosen model is likely too optimistic.

Incremental Forward Stagewise Regression

The last method presented in this section is Incremental Forward Stagewise Regres-

sion which differs fundamentally from the previously described selection methods.

This paragraph follows the descriptions by Hastie et al. (2007) and Tibshirani

(2014).

The main difference to BSSR and FSSR lies in an r-step algorithm which se-

quentially adds a small amount ε to the coefficient of the variable that has the

largest inner product (or correlation, if variables are standardized) with the current

residual of the outcome. Instead of adding or removing a variable completely, only

its coefficient is changed slightly. Assuming the outcome y and the predictors

x1 − xq are standardized, the algorithm proceeds as depicted in table 4.5:

Depending on the choice of ε and the number of variables it will take many steps to

obtain reasonable estimates for the coefficients. As demonstrated later in section

4.4, this algorithm has many similarities with the solving algorithms for specific

regularization methods.
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Table 4.5: Algorithm for Incremental Forward Stagewise Regression

Initialize: Set the step size ε > 0, but small, and let the vector of coefficients
β̂ initialize with zeros.

Step r=0: Choose the variable xi which has the largest absolute correla-
tion with the residual outcome, i.e. find the i that maximizes

Corr
[
xi, y −Xβ̂

]
. Since the vector β̂ contains only zeros in the

first round, this reduces to Corr [xi, y]. Then update the coef-

ficient value of β̂i, which is the coefficient belonging to xi, by:
β̂i
r

= 0 + ε · Sign [Corr [xi, y]].

The upper index of β̂i refers to value of β̂i at step r. Hence the
coefficient value of the variable with the highest correlation to the
outcome is increased or decreased by the amount ε.

Step r=1: Choose the variable xi which has the largest correlation with the

residual outcome, i.e. maximize Corr
[
xi, y −Xβ̂r−1

]
. The latter

term no longer cancels out, since the vector β̂r−1 no longer contains
zeros only. Again, update the coefficient of xi by the formula: β̂i

r
=

β̂i
r−1

+ ε · Sign
[
Corr

[
xi, y −Xβ̂r−1

]]
. This takes the coefficient’s

value of xi from the previous step, β̂i
r−1

, and adds or subtracts ε

to it. Hence, if xi from r = 0 equals xi from r = 1, then β̂i
r−1
6= 0,

otherwise β̂i
r−1

= 0.

Further steps: Continuing in the fashion of the previous step, such that for each
step one element of the vector β̂ is updated. This is done until
some termination criterion is reached. All variables having zero
correlation with the residual is the typical criterion.

4.3 Linear index methods

Index models, sometimes also called factor models, are methods in which a set of

predictors is combined in some fashion into new variables, called indices (compo-

nents, factors). In many applications and also here, these indices are weighted

linear combinations of the predictors, constructed in a way that they condense

the original variables’ information with as little loss as possible. In the next

step, the derived indices instead of the original variables act as predictors in a

regression. Practically, the reduction is conducted by exploiting linear relation-

ships, e.g. correlations, between the predictor variables. Intuitively, if several

predictor variables are highly correlated with each other, they have overlapping

explanatory power. An artificial variable which summarizes this shared variance

will bundle a lot of the variation and can hence function as a representative for it.

Using this artificial variable as an explanatory variable instead of the original ones

reduces the dimensionality of the model with, ideally, little loss of information.

The magnitude of the information loss depends on the covariance structure of the

original predictors and the number of selected indices.
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It has to be noted that in all cases in which the predictor’s matrix has full rank,

some information in the data will be discarded when the number of indices is chosen

to be smaller than the number of original variables. The disregarded variation

is sometimes interpreted as noise. On the other hand, if all predictor variables

are already orthogonal to each other, no dimensional gains are feasible. As this

rarely occurs, problems induced by having too many predictors are suspected to

be effectively addressed by dimensional reduction techniques.

Apart from pure dimensional reduction, the analysis can have the goal of inspecting

and interpreting the indices. This concerns particularly the weights or loadings, in

order to obtain an overview of the data structure and patterns in it. Corresponding

to the goal of interpretability, the indices might be meaningfully viewed as latent

variables. This corresponds to the interpretation of the predictors’ correlation

structure as stemming from latent variables. There is, however, no proof for the

validity of any interpretation and it is up to the researcher to come up with a

plausible and credible interpretation.

Not only relationships within the set of predictor variables can be exploited. If the

indices are eventually used as regressors, it may be beneficial to regard associations

between the predictors and the dependent variable in the index-building process.

On grounds of these methodical differences, methods can be classified accordingly.

If the indices are created independently of the dependent variable, the procedure

is called unsupervised. Principal Component Regression and all types of Factor

Regression fall into this category. If, on the other hand, the dependent variable

is systematically regarded in this process the analysis is termed supervised. In

other words, regardless what the dependent variable is, the unsupervised analysis

always yields the same indices as regressors, while there would be different ones in

supervised index models – possibly to fit the dependent variable better.

This definition uncovers one main weakness of unsupervised methods: The explana-

tory relevance of the indices for the dependent variable is not directly controllable.

Only a good prior choice of predictors is able to yield improvements. Supervised

models draw on this disadvantage. Such approaches seek to achieve a balance

between reducing dimensionality and good prediction (Principle Covariates Re-

gression) or use regression techniques to find the weights in the indices (Partial

Least Squares).
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4.3.1 Unsupervised index models

Principal Component Regression

Principal component regression (PCR) is a procedure which is based on the results

of a Principal Component Analysis. The extension is straightforward. The scores

that have been obtained by equation 4.2 (or a rotated version of them) measure an

individuals’ propensity toward each component. These scores are consequently used

in a regression on the dependent variable. Given the components, the minimization

criterion reads as follows

γ̂PCR = argmin
γ

(‖y − Fγ‖22). (4.30)

As indicated by the 2-index, its core is the `2 norm, which in this case can also be

written as (
∑N

n=1 |yn − Fnγ|2)1/2. In order to remove the effect of the square root,

the norm is squared.

In the context of this work, PCR becomes meaningful only if fewer components than

original variables are chosen, i.e. k << q, for otherwise no dimensional reduction

takes place. It triggers the questions of which and how many components should

be retained.

This decision partly depends on whether the components were rotated or not,

since rotation changes the properties of the components. The conclusions drawn in

the section on rotation were the following: Without rotation the components are

uncorrelated but normally difficult to interpret. With rotation, the components are

correlated and probably better to interpret. The result of the rotation, however,

depends on the number of selected components. The maximum number of selectable

components is q − 1, because for q selected components the original variables are

retrieved through rotation (up to the sign). One implication of this relationship is

that a selection of components cannot be based on the set of rotated components

but must refer to the unrotated ones. Rotation can therefore only be the second

step after having made a decision on certain unrotated components. Additionally,

the variance distribution in a subset of components changes through rotation while

the total variance remains constant. Even if no rotation is intended, at least one

component must be discarded, otherwise q = k. This is different to methods which

are based on Factor Analysis where k < q by procedure.

One popular criterion developed by Kaiser and Guttman (Guttman, 1954) is

to use all components whose corresponding eigenvalue is larger or equal to one

λj ≥ 1. The motivation is that only those components compress variance more
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efficiently than a single variable. Another way is to look at the size-arranged plot

of eigenvalues and visually identify the ”elbow” in the plot, the so-called scree

plot test. This criterion can be subjective and hard to formulate mathematically

which renders it unsuitable for evaluating a battery of models as in a simulation.

Another suggestion, Parallel Analysis (Horn, 1965) has the rationale to compare

the original data with random data and in this way to infer on the share of noise

in the former. The decision rule is to keep those components from the original

data whose eigenvalue is larger than the average corresponding eigenvalue from the

random data set. Additional propositions, like the Bartlett’s test on the equality

of roots (Bartlett, 1950) or the average root procedure, can be found in chapter 2

in Jackson (1991).

One disadvantage all these approaches share is that it is unclear how well the

components explain the outcome. Caused by the PCA’s pure orientation towards

dimensional reduction, the goal of explaining variation in the predictors is indeed

achieved but this happens independently of the outcome. Unfortunate situations

arise when important variation for explaining the dependent variable is excluded by

selecting the wrong components. The extreme case would be where the component

with the smallest eigenvalue contains all the relevant variation (Jolliffe, 2002,

p.174). This issue is called here last-factor-phenomenon. Such a situation seems

unlikely to occur in practice where a sensible choice of predictors minimizes this

risk but it can not be expected in general that the components’ explanatory power

correlates sufficiently with the size of the eigenvalue. Hence, an ad hoc selection

that takes account of the results of PCA and the components’ relation to the

dependent variable is needed. The procedure obtains a tinge of supervision in this

way.

One idea to tackle this problem is to use cross-validation. Here the first step is to

calculate the scores for all q components. Starting with a one-component model,

where the component is the one with the largest eigenvalue, cross-validation is

conducted for this model. In the next step, the component with the second largest

eigenvalue is added to the model, which is also cross-validated. This is done until

the model with all components is cross-validated. The model in the step which

has the lowest test average error will constitute the choice.

This is a costly procedure, since many cross-validations have to be conducted.

Moreover, using the eigenvalue-ordering to sequentially add components to the

model has the possible drawback of picking up bad predictors on the way: if, for

instance, components 1− 10 are bad predictors and first number 11 is relevant,

then the optimal choice due to CV is larger or equal to 11, although the first ten

components could be dropped.
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This argument points back in the direction of Best Subset Selection, which removes

bad predictors. Given the computational efforts, the orthogonality property of

the (unrotated) principal components is exploited by conducting a selection on

values of t-statistics. Adding or removing a component from the model does not

change the t-statistics of the other components. Therefore one can state a certain

threshold level of a t-statistic and keep all components which are good enough at

the cost of one regression. The threshold level itself could be determined using CV,

i.e. searching through different levels of significance. One suggestion is to start

at a level of α = 0.01 and incrementally increase the level until 0.15 is reached.

However, Jolliffe (2002, p. 175) notes that t-tests for components with small

variance have low power and are therefore less likely to be retained. Moreover,

including components with high predictive power but low variance can lead to

instability, which negatively affects the generalization ability. The compromise

the author suggests is to start eliminating components with the lowest variance

onwards until a component is found which is sufficiently significant. As with

selection by CV, this approach has the drawback that bad components with higher

variance but little explanatory power remain in the model. In consideration of

this, the risks of selection by p- or t-value seem acceptable.

When it comes to interpretation, the weight structure of the included components

is relevant. An interpretable structure is important because the components’

meanings are traced back to it. A simple way to obtain the loadings of a specific

component is to conduct a regression of the component on the set of predictor

variables. The resulting coefficient estimates equal the weights. This relation holds

for both unrotated and rotated components.

Rotation in the context of the suggested model selection algorithms means for

the Kaiser-Guttman approach that after rotation some components with variance

less than 1 are included. For sequential extraction methods, it implies that a

components’ meaning depends on the number of extracted components. In both

methods, the total variability and thereby the model fit stays constant. The same

also holds for selection on t-values. However, it has to be noted that rotation

of hand-picked components is typically not implemented in statistical software.

Usually one is only able to rotate k sequential components.

In the simulation presented in chapter 5, two different options of using Principal

Component Regression are examined:

• Due to its popularity and calculation speed: The Kaiser-Guttman criterion

keeping all components with λ ≥ 1.

• Significance level cut-off. Threshold selection by CV, using the levels 15 %,
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10 %, 5 % and 1 %.

Factor Regression

A method related to PCR is Factor Regression (FAR). The general procedure is

similar, apart from FAR relying on Factor Analysis instead of Principal Component

Analysis. Therefore some issues that occur in PCR also occur in FAR. Yet it is

worthwhile to take a closer look at the approach, because its theoretical foundations

correspond well to the encountered economic problem.

Having discussed the basic properties of a factor model, one proceeds as follows

in Factor Regression: After the decision which procedure is used to extract the

factors, the extracted loading matrix is typically rotated to facilitate interpretation.

Rotation in FAR is distinctly less problematic than in PCR, as the factor scores

can still be estimated as being (nearly) orthogonal to each other. Having estimated

them, the factor scores, marked by hat due to their origin, are utilized as regressors.

The optimization criterion is as follows:

γ̂FAR = argmin
γ

(‖y − F̂ γ‖22). (4.31)

The general points made in PCR also apply mostly here. In particular the point,

that the outcome from rotation depends on the number of extracted factors. There

are two important differences, however: One is that the number of factors will be

lower than the number of original variables in FAR if the factor extraction is one

that works on the reduced correlation matrix. It is hence possible to consider all

factors and still achieve a dimensional reduction.21 Despite this initial dimensional

reduction, it is not guaranteed that it is enough to yield an interpretable model.

Due to the construction of factor models, there arises a second difference which

concerns cut-off criteria such as the one of Kaiser-Guttman. Factor Analysis seeks

to explain correlations - variables that do not correlate highly with others often

end up on factors with small eigenvalues. Although the theoretical basis of this

work assumes correlating structures within the set of explanatory variables, this

need not be the case for each single variable. A single variable which is important

and only weakly correlated to other variables is presumably disregarded when

cut-off criteria are applied. But even if the variable showed substantial correlations

to other variables, it might still be outnumbered if larger clusters of correlated

variables existed.

21Strictly speaking: Factors with eigenvalues larger than 0, for statistical software sometimes
displays negative eigenvalues.
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Rotation of factors is omitted in the simulations, although it is likely to have an

effect on the Kaiser-Guttman approach. There is a difference between first selecting

factors with variance larger than 1 and then rotating them or first rotating all

factors and then selecting factors according to Kaiser-Guttman. Usually, there

are fewer factors in the first variant because variance is maximized for each factor

according to the procedure described in section 4.1.1. Common practice seems to

be the first variant.

Factor Regression models will be evaluated with respect to the following variations

both for Principal Factors and Iterated Principal Factors as factor extraction

methods and the Bartlett Method as factor scores estimation method:

• Due to its popularity and calculation speed: The Kaiser-Guttman criterion

keeping all components with λ ≥ 1.

• Using all available factors, i.e. λ > 0. Dimensional reduction occurs through

factor extraction.

Selection on t-values is omitted here because oblique rotations are particularly

appealing in Factor Analysis. But with correlated factors, selection on t-values

becomes at least as computationally expensive as Best Subset Selection. If the

minimum level of significance shall be additionally determined by cross-validation

instead of using an information criterion, a multiple of 2k models has to be

computed. Instead one specification will combine FAR with regularization methods.

Because this variant requires an additional technique, it is introduced in section

4.4.

Comparison between PCR and FAR

This comparison section mainly follows (Jolliffe, 2002, p.158-161). Comparing PCR

and FAR essentially boils down to two important differences between PCA and

Factor Analysis. One is the different model structure which results in estimating

(Factor Analysis) or calculating (PCA) the scores. The second point concerns

the procedure to obtain the loading/weights matrix. Both procedures apply an

SD on a correlation matrix. However, the diagonal elements of Cov [X] remain

unchanged in PCA whilst they are typically reduced in Factor Analysis. In PCA the

objective is to account for as much variance as possible, which often also explains

the off-diagonal elements well because covariance is common variance. In Factor

Analysis it depends on how the regressors are interrelated. If the variables are

strongly correlated, the uniqueness share is low; if they are virtually independent

the uniqueness will be almost as large as the variance. It is for these reasons
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that Factor Analysis is known for explaining covariance and PCA for explaining

variance.

These notions become clearest through the following example of a variable which

is uncorrelated to the other variables: it will get its own component in PCA but

not a common factor in Factor Analysis. To be considered by Factor Analysis, it

must be in a group of at least two correlated variables. Results of Schneeweiss and

Mathes (1995) point in this direction, suggesting that PCA and Factor Analysis

are most similar, if the number of predictors is high and their uniqueness low.

Drawbacks for Factor Analysis arise through the somewhat arbitrary choice of

factor extraction, rotation and score estimation. On the contrary, rotation as a

medium of easing interpretation has less disadvantageous implications.

4.3.2 Supervised index models

Principal Covariates Regression

Principal Covariates Regression (PCovR) (De Jong and Kiers, 1992) is another

index-creating method and can be motivated by the drawbacks of PCR and

multivariate regression. The following description of the method rests mainly on

the works of De Jong and Kiers (1992), Kiers and Smilde (2007) and Vervloet

et al. (2013).

If dimensional reduction of the predictors and good prediction of some criterion

are not concurrent, owing to the mentioned last-factor-phenomenon for instance,

a recourse may be to find a compromise between the two goals. Hence a lower-

dimensional subspace is searched for, which seeks to balance variance compression

in the predictor variables with explaining or predicting the outcome. This is done

by extracting certain linear combinations of the predictors, the principal covariates

(or more general: components). The core idea of PCovR is to minimize a weighted

sum of dimensional reduction error and prediction error.

The model is explicitly formulated by the following three equations (De Jong and

Kiers, 1992)

F = XW

X = FLT + E

y = FγT + u.

(4.32)

The first equation is the dimensional reduction feature, where F is a N × k

index matrix, X is a N × q vector of predictors and W is a q × k weight matrix.

Dimensional reduction is achieved when k < q, which implies that some of the

original variance in the X is cast away unless perfectly collinear variables were
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among them. In this formulation the notion of PCA is depicted. The second

and the third equation amend the relation in a latent variable model style. X

is explained by the index matrix via L, a k × q loading matrix. Its unexplained

variance is denoted as E. The aim is to keep it low. The third equation describes

the relation of the outcome to the components, where γ denotes the regression

coefficients and u the unexplained variation in y. The aim at this step is likewise

to minimize the residuals but now of the outcome. Since the minimization goals

are unlikely to coincide, a weighted average may be a compromise.

Given the two minimization goals and a quadratic loss function, the following

minimization criterion is formulated in PCovR (assuming all concerned variables

to be standardized) as

min Ξ(W,L, γ) =
α
∥∥X −XWLT

∥∥2
F

‖X‖2F
+

(1− α)
∥∥y −XWγT

∥∥2
‖y‖2

, (4.33)

where ‖•‖F is the Frobenius matrix norm. For identification purposes, the compo-

nent scores are often constrained to being column-wise orthonormal, i.e. F TF = I.

The first term is the reduction term seeking to minimize the discrepancy between

the original predictors and the components. The second term is the prediction

term, minimizing the residual sum of squares u. The parameter α regulates the

weight that is given to either and eventually needs to be given a value by the

researcher; convention is a value on the interval between 0 and 1.

Here, it is worthwhile to analyze the limit cases α = 1 and α = 0, because they

turn out to lead to familiar procedures. In the first case, α = 1, all weight is put

on dimensional reduction, none on reduction in prediction error. This leads to

PCR. When α = 0 the emphasis is completely on reducing prediction error, then

PCovR will produce results equal to multivariate regression or, when F is of lower

rank than both y and X, reduced rank regression (for instance described in Aldrin,

2006).

An expedient aspect of PCovR is that it has a closed-form solution for a specific α

and a specific number of components k (Vervloet et al., 2013, p. 37). Hereby F is

set equal to the first k normalized eigenvectors of the matrix G given by

G = α
XXT

‖X‖2F
+ (1− α)

Hxyy
THx

‖y‖2
(4.34)
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where Hx = X(XTX)−1XT . Then W , L and γ are calculated as

W = (XTX)−1XTF

L = XTF

γ = yTF.

(4.35)

The final equation in terms of the original predictors that can also be used for

prediction is

y = XWγT (4.36)

How to choose α and the number of components k has only been addressed for the

limit cases so far. However, neither PCR nor OLS/RRR are desirable. De Jong and

Kiers (1992) seem most convinced of using cross-validation, which can be justified

by the general applicability of the procedure. This implies running through two

nested loops, one with different values of alpha, the other with the number of

components. This approach is called simultaneous selection procedure by Vervloet

et al. (2015). Choosing this procedure can result in long calculation time; the

magnitude depends on the size of the data set, how fine the grid is chosen (i.e. how

many combinations of α and k are considered) and the number of cross-validation

folds. An alternative adapted by Vervloet et al. (2013) is the so-called sequential

procedure. Its principle is to first determine α based on assumptions on the errors

E and u in equation 4.32 which make estimation by maximum likelihood feasible.

These assumptions concern the distributions, which are taken to be normal with

mean zero. Variances are either predetermined or estimated through PCA and

multiple regression respectively. Once a value for α has been found, the number

of components can be determined by either cross-validation or an information

criterion. With the results of number of components at hand, one could optionally

return to α and check for optimization potential.

Vervloet et al. observe that the estimate for α moves towards 1 when the predictor

data become noisier relative to the outcome and when the number of predictors

increases. Choosing α can hence be statistically approached, but there are also

theoretical considerations which may be taken into account. The authors further

note that the choice matters especially little when compression in X and predicting

y are concurrent. This would be the same case where PCR is expected to perform

well and a low risk for the last-factor-phenomenon predominates. The advantages

of PCovR become therefore relevant, when compression and prediction are not

concurrent or there even is a trade-off between them.

Empirical results on this topic are mixed, but tend to favor a larger to a smaller α.

The study by Heij et al. (2007) finds the optimal α between 0.9 and 1 but also

dependent on the amount of error in the predictor variables. Also the study by
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Kiers and Smilde (2007) indicates the optimal value larger than 0.5. Vervloet et al.

(2013) find that choosing α by the sequential procedure performs well in case of

having precise information about the error in the regressors. If such information is

not available, they advocate the use of cross-validation.

In this dissertation, the sequential procedure with subsequent cross-validation on

the number of components is applied. Prior checks did not indicate large differences

between the procedures and their modifications, so that the speed argument gains

weight in simulations with many replications.

A note concerns the properties of the components in the context of prediction on

new data. Since future/out-of-sample outcomes are assumed to be unknown, the

procedure cannot be applied to these data. Merely the right-hand-side variables

are known. An out-of-sample prediction, comp. equation 4.36, therefore implies

combining coefficients belonging to the ”old” sample with predictor data from the

unused sample. One consequence is that the predicted component scores will no

longer be orthogonal to each other. This is a property that supervised methods

share and which does not apply to unsupervised methods unless one separates the

training data from the new data also in the process of index building.

The last point in the context of desired properties is to be able to interpret the

components. As seen by equation 4.36, both γ and W are of importance. The

rotation suggested by Vervloet et al. (2015) refers only to the loading matrix L

and hence does not affect the other two matrices. Since the matrices stem from

an optimization criterion directed to mathematical distances, interpretation of

components might turn out to be as difficult as in the case of PCR.

Univariate Partial Least Squares

Partial Least Squares (PLS) is a method accredited to Herman Wold (Wold

et al., 1984) and has gained considerable popularity in fields like chemometrics,

sociology and marketing. Although PLS was originally developed for several

endogenous variables, the method is described for a single one only as it is

sufficient and simplifies the description. PLS features a strong similarity to

Canonical Correlation Analysis, because the comovement of two sets of variables

is maximized. In Canonical Correlation Analysis, the correlation is maximized,

while PLS maximizes the covariance in the case of non-standardized variables.

The relevant difference lies in the number of components that are created. In

the case of a single endogenous variable, the maximum number of components

for Canonical Correlation Analysis is one, whereas PLS can have more. If not
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otherwise stated, this section follows the descriptions by Boulesteix and Strimmer

(2007), Wang et al. (2005) and Mevik and Wehrens (2007).

Partial Least Squares is based on the factor model

X = FLT + E

y = FγT + u
(4.37)

where F denotes the component scores, L the loading matrix and γ the vector of

regression coefficients. The residual term in the regression equation is denoted by

u.

The components themselves stem from the observed variables

F = XW (4.38)

where W denotes the loading weights. To obtain the components, the matrix

of loading weights being of dimension q × k needs to be calculated. Once W is

obtained, F can be derived and the elements of the vector γ estimated by an

OLS-regression.

The approach in PLS to find W is such that the covariance between y and F ,

which is the linear combination of the variables in X, is maximized. The scaling

of variables affects the solution, so standardized variables are assumed here for

simplicity and comparability to other methods that encourage standardization.

The maximization criterion for the loading weights vector w,1 of dimension q × 1,

abbreviated as w1 to unclutter notation, belonging to the first component can be

written as follows (Boulesteix and Strimmer, 2007)

w1 = argmax
w

wT1X
TY Y TXw1, subject to:

wT1 w1 = 1 and wT1X
TXw1 = 0.

(4.39)

Once w1 has been found, the vector is used to calculate the first component f1

which is, in turn, put into action as a regressor in the regression models

X = f1l
T
1 +X1 and

y = f1γ
T
1 + y1

(4.40)

where l,1 and γ1 denote the first component’s loadings and the regression coefficient

respectively. X1 and y1 denote the residuals. In the subsequent step, these residuals

substitute X and y in equation (4.39) and the above procedure is repeated to

obtain w,2 and f2. In this fashion, the procedure continues until the desired number

of components k with fk is reached.
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For a final model, the dimensionality of W with respect to number of components,

k, must be determined. The number of regarded components can lie between 1

and min(N, q). Contrary to PCA where the eigenvectors are calculated through a

SD, the maximization problem in PLS is typically solved by iterative algorithms,

of which several exist. In this dissertation, the NIPALS-algorithm is applied. With

a single dependent variable, the NIPALS-algorithm leads to the same results as

the SIMPLS-algorithm (Kiers and Smilde, 2007, p. 200). Table 4.6 presents the

NIPALS-algorithm after Mevik and Wehrens (2007).

Table 4.6: NIPALS-algorithm for Partial Least Squares

Initialize: Standardize all variables.

Step 1: Calculate w,1 as the cross-product X1y1, where the number in the
subscript denotes the iteration step.

Step 2: Normalize w,1 by w,1 = w,1√
wT

,1w,1
, and calculate the first component

as f1 = X1w,1

Step 3: Conduct a regression of y1 on f1 and save the vector of residuals in
y2.

Step 4: Conduct regression of each variable in X1 on f1 and save the residuals
in X2.

Further steps: Iteratively repeat Step 1-4, thereby increasing the iteration step
by one each time, i.e. using y2 instead of y1 and X2 instead of X1

to calculate w,2 in the second iteration, until the last iteration, i.e.
min(N, q), is reached.

The issue of how many components to choose can be approached with cross-

validation. Moreover, in the special case when the variables in matrix X are

orthogonal, PLS yields the OLS estimates after one step (Hastie et al., 2009, p.

81).

An important aspect, in particular when compared to other supervised methods,

such as Principal Covariates Regression, is how the procedure implicitly balances

variance compression in comparison to the correlation with the dependent variable.

This aspect could be operationalized by the percentage of explained variance in y

and X to get a feeling for the goodness of fit and the amount of compression. Hastie

et al. note that the compression of variance tends to dominate the correlation to

the dependent variable.

When it comes to the interpretation of the results, it begins with the analysis of

the significance of the latent components. Typically, it will be of descending order

from the first to the k-th component. In the second step, the predictor’s weights

on those latent components have to be examined. Interpretability will depend on

whether it is possible to determine the most important original variables for the

most important components. Due to the deflation of the original variables, the
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interpretation has to be conducted carefully for other than the first component.

For interpretation, in PLS similar issues as in PCovR arise. Rotation methods,

such as proposed by Wang et al. (2005), refer to the loading matrix, which is of

minor help here. It may therefore be difficult to obtain meaningful interpretations

from this method.

4.4 Regularized models

This subsection is about regularized linear models, which are marked by two

characteristics. They assume a direct linear functional relationship of the predictor

variables’ parameters to the outcome and the parameters are subject to regular-

ization, which means to introduce a penalty on their size. While the methods

presented in the previous section also belong to the category linear models, their

predictors are linear combinations of the original variables. For the methods of

this subsection the set of original variables enters the model directly as in a classic

regression model.

The arguments given in chapter 3 highlight the risk of applying OLS on a linear

model with all available regressors. This chapter introduces modifications which

make the linear model more suitable for (generalizable) predictions.

As with OLS, the starting point of regularized linear models is to minimize the

residuals of a given linear model. The difference lies in an additional constraint

(the penalty) which is taken account of in the estimation of the model. This

constraint refers to the values of the parameters and stipulates an upper bound for

their sum of their values. The constraint ensures that the upper bound cannot be

exceeded. If the value is chosen small enough, the solution becomes one in which

parameters have been dragged away from their OLS estimates towards zero. If the

upper bound is too large, i.e. the constraint is not binding, the OLS solution will

result. The introduction of estimation bias constitutes an immediate consequence

of a binding constraint because the coefficients no longer equal the OLS estimates.

But since the coefficients are reduced in absolute size, the variance of the model is

reduced.

The methods in this group differ conceptually in the transformation applied to the

coefficient values before they are summed up. Among the best-known methods in

this area is Ridge Regression (Hoerl and Kennard, 1970). Its constraint consists

of the sum of squared coefficient values, the L2-norm, which must be lower than

or equal to some threshold value. The Lasso (Least Absolute Shrinkage and
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Selection Operator) introduced by Tibshirani (1996) uses the sum of absolute

coefficient values, the L1-norm. There are also hybrid methods such as the Elastic

net (Zou and Hastie, 2005). One feature they all share is to shrink parameters

gradually. By contrast, the general minimization criterion for information criteria

(comp. equation 4.29) can also be viewed as a type of regularization. But the

L0-norm leads to the fact that a parameter is either not shrunk at all or set to

zero. Generally, the type of constraint influences two important aspects. One is

feasibility of estimation and with that the uniqueness of the estimates, the other

factor is interpretability. In the next section, it is demonstrated that the Lasso, in

particular, has some beneficial traits which other regularization techniques do not

have.

A general disadvantage of regularized linear models is their lack of interpretability

in a latent variable model sense. There are no derived factors, only the set of

original predictors, which consists of proxy variables. On the other hand, one gets

to see the strength of each predictor’s association with the outcome, something

that is not immediately evident in index model regression types. Moreover, there

are indications of a superior predictive ability of regularized linear models, which

provides a useful reference point to compare the performance of linear index

models.

Lasso

The Lasso is a technique that seeks to minimize the residual sum of squares of

the linear model under the constraint that the sum of absolute coefficient values

is lower than a specified value. If not otherwise stated, the descriptions in this

paragraph follow Hesterberg et al. (2008), Savin and Winker (2013) and Tibshirani

(1996).

As pointed out, the difference between estimation by the Lasso and OLS lies in

the additional constraint on the parameters. The optimization problem can be

written as

β̂Lasso = argmin
β

(‖y −Xβ‖22), subject to:

q∑
i=1

|βi| ≤ t.

The first part in the optimization argument is the usual criterion to minimize the

distance between the outcome and a linear combination of the predictors. The

part in the constraint says that the sum of β in absolute terms shall not exceed t.
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Bringing the two parts together yields the Lagrangian formulation

β̂Lasso = argmin
β

(‖y −Xβ‖22 + λ

q∑
i=1

|βi|).

The complexity parameter λ ≥ 0 and t feature a one-to-one correspondence. The

smaller the lambda, the stronger the shrinkage. The scale of the predictors generally

affects the solution which is why they are standardized. Moreover, the constant

in the model, whose coefficient is non-zero if the outcome is not centered, is not

subject to shrinkage. Otherwise the solution would depend on the origin.

To obtain the estimates for the βs, one cannot resort to a closed-form solution

because the constraint makes the solution non-linear in y. But since the problem

is convex (when X is of full rank) it can be solved for a given λ. There are two

acknowledged options for this. One is numerical optimization using the coordinate

descent algorithm (s. Friedman et al. (2010) for details). Another possibility

is using the Least angle regression (LARS) algorithm in the Lasso modification

(Hastie et al., 2009, p. 76), which offers computational advantages and is therefore

used in this dissertation. The algorithm is described in detail in table 4.7.

The practical aspect of this algorithm lies in its calculation time. It has been

demonstrated that with one run only it produces the entire path of Lasso solutions,

that is as the shrinkage parameter λ ascends from zero to infinity. The algorithm

features strong similarities to the one for Incremental Forward Stagewise Regression.

This is because the latter is also a modification of the LARS-method (Efron et al.,

2004). Both variations can deliver similar or under certain conditions even equal

results (Tibshirani, 2014). Hence the added value of Incremental Forward Stagewise

Regression is expected to be low and therefore not regarded in the simulation.

The Lasso is not the first method to apply a shrinkage approach. Precedent to it

was Ridge Regression whose drawbacks are addressed by the Lasso. To elucidate

the Lasso’s advantages, it is insighful to consider Ridge Regression in more detail.

Given the quadratic constraint, the minimization criterion for Ridge Regression

is

β̂Ridge = argmin
β

(‖y −Xβ‖22), subject to:

q∑
i=1

β2
i ≤ t,

and its Lagrangian formulation is hence

β̂Ridge = argmin
β

(‖y −Xβ‖22 + λ

q∑
i=1

β2
i ).

There is no need for an iterative algorithm, because this problem has a closed form
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Table 4.7: Algorithm for the Lasso

Initialize: Center the outcome and standardize the predictors. Let the vector
of coefficients β̂ initialize with zeros.

Step 1: Choose the variable xi which has the largest absolute correla-
tion with the residual outcome, i.e. find the i that maximizes

Corr
[
xi, y −Xβ̂

]
. Since the vector β̂ contains only zeros, this

term reduces to Corr [xi, y]. Define a set A which denotes the set
of active variables in the model and add xi to A.

Step 2: The coefficient of xi is gradually moved from zero towards its uni-
variate least squares estimate. Along the way the residual outcome
is steadily updated, i.e. y = y − xiβ̂i. β̂i is moved as long as no
other predictor has a higher correlation with the current residual
outcome. This procedure results in a steadily decreasing correlation
between xi and the current residual of the outcome.

Step 3: Once another variable, say xg, has as much absolute correlation
with the current residual, xg is added to the model and to the set A.
Now both xi and xg are in the model and equally correlated with
the current residual. Then a regression of the current residual of
the outcome on the set A is conducted. Based on these results, the
coefficients of the variables in set A are moved into the direction of
their joint least squares estimates. As in step 2, the current residual
is steadily updated during the movement.

Further steps: The updating takes place until another variable has as much cor-
relation and step 3 is repeated. If a non-zero coefficient becomes
zero again in this process (e.g. by changing it’s sign) then the
connected variable is dropped from the set A and the joint least
squares estimates are obtained anew. The algorithm stops if the
correlation is zero for all predictors.

solution which is

β̂Ridge = (X ′X + λI)−1X ′y.

The difference between Ridge Regression and the Lasso finds expression when

the constraint binds sufficiently strongly. Such a situation is illustrated in figure

4.2. It shows the following: The picture on the left side belongs to the Lasso, the

picture on the right side to Ridge Regression. Depicted is the case of a linear

model with two predictors whose parameter values are displayed on the axes. The

point β̂, which is the same in the two pictures, is the parameter pair emerging

under estimation by Ordinary Least Squares where no shrinkage occurs. When

these parameters are changed, the mean squared error for the given sample rises,

because OLS provides the unbiased estimates. Around the point β̂, contours of

the error function are displayed. A contour illustrates combinations of parameters

with a constant mean squared error for the estimation sample. They are elliptical

due to the quadratic first part of the minimization criterion and are hence the

same in both illustrations. The solid areas around the area where the axes cross
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Figure 4.2: Contour plot of optimization rationale

�
�

�

�
�

� �

�
�

�

�
�

are the constraint functions. The parameters have to lie within or at the margin

of these areas. When optimization takes place, both methods will find the first

coordinate where a contour meets the constraint. In the graphical example for

Ridge Regression, this point will be one where both parameters are non-zero. For

the Lasso, however, one parameter will be zero.

This observation has an implication for the interpretation of a model. Because

the reduction in the coefficients proceeds proportionally, no parameter estimate is

exactly zero in Ridge Regression estimates, which means that all variables have to

be taken account of in the interpretation. The only advantage over OLS estimates

is the better predictive ability caused by exploiting the bias-variance trade-off.

The Lasso, on the other hand, performs an actual variable selection in addition. In

comparison to unbiased methods such as OLS, however, an important disadvantage

occurs. Standard errors and therefore confidence intervals cannot be calculated

easily, even using bootstrap. Goeman et al. (2016) even argue that it is almost

always impossible in practical cases to obtain standard errors. Their argument

being that one needs to obtain unbiased estimates of the bias since it is part of

the mean squared error. For shrinkage methods and their associated modification

of the bias, these are normally not available, however. Reporting standard errors

would ignore the bias in the coefficients and is therefore misleading. However,

Lockhart et al. (2014) have recently provided an approach to significance testing

in the Lasso-framework. However, it is not undisputed (for instance in Fan and Ke

(2014) and its corresponding implementation in R did not show convincing results

under commonly applied thresholds. Another approach is to use the Lasso-selected

regressors in a subsequent OLS-regression. However, significance tests there do

not account of the prior selection procedure and therefore type-I errors will be

overstated. A third alternative is calculating credible intervals with a Bayesian

approach, but this is not pursued here. It seems therefore most appropriate to
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state the coefficient size only.

The remaining task in the estimation of a model is to determine the shrinkage

parameter λ. Since the Lasso algorithm computes the path of solutions for all λ,

cross-validation can be easily applied. In addition to cross-validation, a popular

choice is to use a model selection criterion, often the minimum of a Mallows’s

Cp-type statistic Zou et al. (2007). Similar to other criteria such as the AIC, it

becomes more favorable for models with a good fit or a number of observations

and sanctions a high number of regressors, in particular weak ones. The authors

deliver the following definition

Cp(ŷ) =
‖y − ŷ‖2

n
+

2df(ŷ)

n
σ2. (4.41)

One challenge applying this formula in the context of the Lasso arises with the

degrees of freedom df(ŷ). They cannot be determined in the conventional way,

as all variables remain in the model even though with shrunken coefficients. The

authors, based on both theory and simulations, propose to estimate the degrees of

freedom by the number of non-zero coefficients in the model. A model selection

can then be done by choosing the λ for which the Cp statistic has its minimum.

Advantages of this statistic may occur when sample sizes are small or the sample

is particularly homogeneous, as CV, depending on the number of folds, may yield

unstable results in such situations.

In regard to the Lasso’s properties, the ability to yield parsimonious models could

often be confirmed. Savin and Winker note a drawback, though: in a setting of

pairwise highly correlated predictors, Lasso fails to select the complete set of ’true’

predictors. If there are one or more groups of highly correlated variables, the Lasso

tends to randomly pick only one of each group. Methods such as Elastic Net and

Adaptive Lasso deal with the potential drawbacks.

Adaptive Lasso

Adaptive Lasso introduced by Zou (2006) is an extension of the Lasso. The author

motivates the use of the Adaptive Lasso by emphasizing potential variable selection

inconsistencies occurring in Lasso. To point this out, he introduces new terminology.

If a procedure asymptotically achieves correct identification of variables with zero

coefficients, and the difference between the true and the estimated parameters

converges in distribution to a normal distribution, it is said to have the ”oracle

property”. Accomplishing this goal also improves the estimation of the nonzero
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coefficients (Fan and Li, 2001). The improvement can hence be seen as yielding a

sparser model.

The basic idea is to include prior information about the importance of the variables

into the estimation process of a Lasso. This information is regarded as a weight

in the estimation. Important predictors will be shrunk less than unimportant

predictors. This results in a re-weighted Lasso. Prior information can, for example,

stem from sources, such as univariate OLS regressions or a Lasso estimation. The

optimization criterion is

β̂AdaLasso = argmin
β

(‖y −Xβ‖22 + λ

q∑
i=1

ωi|βi|),

where ωi = 1/|β̂init,i|ξ for ξ > 0 is the additional weighting term in which the prior

information enters as β̂init,i.

The computation of the Adaptive Lasso does not involve many extra steps compared

to the Lasso. As soon as the predictors’ individual weights are obtained, the

predictors are divided by their corresponding weight and afterwards used in a

Lasso estimation. In a final step the coefficients are divided by the corresponding

weight.

In this thesis the individual weights are obtained by Lasso estimates using a

5-fold Cross-Validation. Also the shrinkage factor λ is retrieved by using Cross-

Validation.

Elastic Net

The Elastic Net by Zou and Hastie (2005) is a method that, amongst others,

addresses the Lasso’s issue with groups of highly correlated right-hand side variables.

The description of this method follows Zou and Hastie (2005) and Hesterberg et al.

(2008). The starting point is the observation that the Lasso selects one predictor

in a group of highly correlated variables, which is called sparsity property, while

Ridge Regression shrinks the coefficients of these variables toward each other,

the so-called grouping effect (Hastie et al., 2009, p 662). In the extreme case

of perfectly collinear predictors, a desirable property of an estimator would be

identical coefficients for the concerned variables.

The Elastic Net approach connects both shrinkage types in an optimization criterion

and so exploits the sparsity property of the Lasso and the grouping effect of Ridge

Regression. In general, the method tends to keep or drop groups of highly correlated

predictors when Lambda grows, whereas the Lasso, by contrast, tends to drop
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smaller groups or single predictors.

The optimization criterion for the Elastic Net is as follows

β̂ElasticNet = argmin
β

(‖y −Xβ‖22 + λ1

q∑
i=1

|βi|+ λ2

q∑
i=1

β2
i ).

Determining the pair of tuning parameters can be carried out by running CV over

a predefined grid of value pairs for λ1 and λ2.

The literature emphasizes that a corrective calculation should be applied. Because

the Elastic Net performs a double shrinkage, it is likely to introduce too much

bias. This is corrected through rescaling the estimated parameters by

β̂∗ElasticNet =
1√

1 + λ2
β̂ElasticNet.

This last step, however, plays a more important role in the simulation study than

for the interpretation of a model. For making sense of the predictors, only the

relative importance of variables with non-zero coefficients is considered. Rescaling

them by a constant term does therefore not change the picture.

Combing Factor Regression with regularization

An approach that combines the strengths of latent variable models and regulariza-

tion methods is what I call the Factor Regression with Lasso variable selection,

short FarLasso. The starting point is to extract all (rotated) factors, but instead of

an OLS-regression, apply the Lasso technique to them. The optimization criterion

is hence defined by

γ̂FarLasso = argmin
γ

(‖y − F̂ γ‖22 + λ
k∑
i=1

|γ̂i|).

It can be observed that the shrinkage is applied directly on the factors, which yields

an additional dimensional reduction provided the chosen shrinkage parameter is

large enough. Interpretability of the factors is ensured within the boundaries of the

Factor Analysis model, because factor scores can be computed from the rotated

loading matrix. Since the Lasso is expected to perform satisfactorily when the

regressors are moderately correlated, factors arising from oblique rotations should

not be problematic. In the case of high correlations between factors, the Elastic

Net or the Adaptive Lasso could pose alternatives to the Lasso.

To the best of my knowledge, combining Factor Regression and the Lasso is a new
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approach. Compared to the approach of using all factors in the regression model –

thereby exploiting merely the inherent dimensional reduction of Factor Analysis –

FarLasso will shrink some factors’ influences to zero and therefore likely produce a

more parsimonious model.

With regard to interpretation, the same remarks as for Factor Regression hold.

Loadings indicate the correlation between the original variables and the factors,

and the (shrunken) coefficient size expresses a factor’s relative importance in the

model. A drawback from the viewpoint of interpretation can arise, if only few

factors attain a zero coefficient, and many others are equipped with a small but

non-zero coefficient. While the induced bias might have improved the predictive

capability, the model is still hard to overview on grounds of a large number of

retained factors. Such a situation can occur if coefficients vary strongly in size.

Using different shrinkage factors, such as the Adaptive Lasso does, has the potential

to mitigate this issue since weak predictors are penalized beforehand. For that

reason, the FarAdaLasso is also considered. Its optimization criterion is

β̂FarAdaLasso = argmin
β

(‖y − F̂ γ ‖22 + λ

q∑
i=1

ωi|γi|),

where the parameter meanings and the procedures to obtain them are defined as

before.
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Chapter 5

Simulation

The earlier chapters revolved around the topic how a latent variable model can

be used to describe the family background’s influence on a child’s school success.

In this framework, observed variables are interpreted as manifest variables which

are expressions of latent variables, but do not necessarily carry a causal effect

on the outcome. Choosing them according to whether they are an expression of

family background led to having many potentially powerful regressors. With a

data set rather small in observations and multicollinearity structures among the

predictors, the need for a dimensional reduction was highlighted. Several methods

that could achieve this were proposed and their potential advantages and caveats

discussed. In particular, performance dependencies on the data structure were

debated. However, the discussion so far could only allude to the important aspects

of fit and generalization ability. To answer whether one method is preferable to

others, a simulation study is conducted. By means of synthetically generated

data, the researcher can control the data environment and obtain insights into the

performance of methods within particular data structures. The objective of this

exercise is to deliver a further basis for the decision on the method applied on real

data.

Two models are proposed as simulation frameworks in this dissertation: One is a

latent variable model, the other a regression model. These models were chosen

owing to theoretical considerations and specify the data generating process (DGP)

by their structural model equations. These structures are fixed, but they contain

various parameters that can be altered. Changing those, changes the DGP and

thereby the data structure. The data can, for instance, exhibit different degrees

of multicollinearity or let the regressors vary in their explanatory contribution

to the outcome. Additional setscrews concern general settings - for instance the

number of observations a model is estimated on. If small-sample and large-sample

properties are different, a simulation study will show.
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A specific parametrization and setting configuration is called scenario. In this

dissertation, there is one main scenario that serves as a baseline. It is the most

important one, for it resembles the real data structure closely. The remaining

scenarios differ to this baseline scenario in only one particular property at a

time. Examining the performance in different data environments facilitates the

identification of strengths and weaknesses of the proposed methods. Insights into

whether a method’s performance is affected by structural changes in the data set

or a setting will support the overall assessment.

The measure of performance applied here is the average fit, i.e. how close the

model predicts the observed values. On observation basis, a quadratic loss function

is applied. Since the amount of explicable variation differs across scenarios and

replications, relative performance differences between the methods constitute the

final measure of performance. Relying on the fit as a performance measure has

the advantage that different ideas, such as regularization and index models, can

be easily compared. A disadvantage of this measure is that it does not take into

account a model’s sparsity in terms of the number of retained variables/factors.

An alternative goal to measuring the fit is parameter recovery, that is to calculate

the difference between the true and estimated parameter values. Achieving this goal

is not of primary theoretical interest, however. As stressed in the theory section,

the explanatory variables are interpreted as proxy variables and not as structural

determinants causally affecting the outcome. However, parameter recovery and

fit are correlated since close recovery of true parameters means that a method

is not significantly influenced by error in variables. In addition, out-of-sample

predictions are good when the estimated model parameters are close to the true

ones (Vervloet et al., 2013).

The fit as performance measure makes checking the accuracy of out-of-sample

predictions intuitive. In this simulation, data are randomly split into in-sample

data (training data) and out-of-sample data (test data). To obtain the model

and its corresponding parameter estimates, only the training data are used. The

test data are held back and are used exclusively for comparing the predicted with

the actual dependent variable. Since in-sample and out-of-sample data differ,

performance is measured separately for each data set.

Partitioning the data in this fashion has several reasons. The most important is to

check the generalization ability of a model. If a model fits the training data well

but fails in the test sample, doubt is cast on the model’s validity as a whole (Kiers

and Smilde, 2007). Ideally, the model would perform on average only slightly

worse on test data, otherwise there could be an indication of overfitting (comp.

explanations on the MSE in chapter 3). A property closely linked to this aspect

is the stability of a model: small changes in the data set should not cause severe
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changes in the model. To be generalizable, a model must be stable. Considering

only in-sample performance for the quality of a model may be misleading, as it is

difficult to ascertain how it performs in other data sets, even if a model selection

criterion was applied. Evaluating out-of-sample prediction accuracy is, therefore,

a natural and fair way to compare different methods.

Another reason for partitioning the data in this manner is practical advice; the

intention of this approach is to mimic real situations. When observations are scarce,

the researcher merely has sufficiently many observations to employ a training data

set. There is no possibility to divert data for a validation or even a test set to

do sophisticated model selection. In order to obtain a sparse model nevertheless,

model selection must take place on training data set as well, e.g. choosing the λ

in the Lasso or the number of factors in Factor Regression. Hence, model selection

criteria are additional elements that influence a method’s performance and so add

an algorithmic flavor to the procedure.

The remaining chapter is structured as follows. The next section presents the

results from related research to point out the gaps this inquiry addresses. After

that, the two simulation models are introduced, followed by a detailed discussion

of the implemented specifications, the scenarios, and remaining technical aspects.

Thereupon the replications and evaluation are described, followed by the results.

Finally, a conclusion is provided.

5.1 Related Literature

Relevant literature has been selected with respect to performance comparisons

which involve the presented methods. There being many ways to select a model

given a method, it is not required to have the same choice on model selection algo-

rithms. This section gives an impression of the proposed methods’ performances

and presents the reasons for the need to conduct a simulation study as proposed.

Heij et al. (2007) compare the performance of Principal Component Regression and

Principal Covariates Regression for time-series data in which one-step ahead out-

of-sample forecasts are used to evaluate the predictive capabilities. For component

selection in PCR the authors use different types of information criteria. Applying

PCovR, the number of components is chosen ad hoc and the weighting parameter

α is varied over five values on the interval between 0+ε and 0.9. Instances of

dynamic factor models are used as underlying data-generating processes. Those

models are based on different parameter values to examine the performance under

various data structures. Among others the absolute number of regressors and
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their correlation structure is subject to change. The authors’ results suggest that

PCovR can exhibit superior predictive power when there are many underlying

factors in the data. However, the method is prone to overfitting if the number of

factors and/or the α is chosen inadequately. Another insight is that the BIC as

selection criterion for the number of components in PCR outperforms related ones

such as the AIC.

Another study set in a time-series framework is by Savin and Winker (2013) who

examine and compare the performance of the Lasso, the Adaptive Lasso and

the Elastic Net to a modified version of the BIC on OLS. Their data-generating

processes are based on Autoregressive Distributed Lag models and contain varia-

tions of a larger number of predictors with varying degrees of collinearity situated

in time-series of short or middle-length with different number of observations.

Moreover, they add few noise regressors, which have no relation to the outcome,

into the set of predictors. The authors conduct the evaluation on out-of-sample

data once with regard to the correct choice of predictors, i.e. possibly discarding

all noisy regressors, and once in terms of accuracy by means of the mean squared

error. Their results show that modified information criteria dominate the Lasso-

type methods in medium or larger sized samples with low noise both in terms

of accuracy and selection. When observations are scarce, however, Lasso-types

perform better. Among the Lasso-type methods, the Adaptive Lasso often provides

relatively better results.

The simulation study that is included in a work by Bair et al. (2006) deals among

others with variants of Principal Component Regression, Partial Least Squares

and the Lasso. Particular to this simulation study is that the number of regressors

exceeds the number of observations by far but only a sliver of them actually

contributes to the outcome. This setting emphasizes the danger of overfitting and

excludes methods that rely on having more observations than variables such as

OLS. To compare the methods, the authors define two data-generating processes.

The first has a rather simple structure, which makes the identification of impor-

tant variables and thereby the prediction not too difficult. The second process

is harder since clusters of relevant information correlate substantially with noise.

The methods’ performances are compared by means of measuring cross-validated

and out-of-sample error. The author’s results suggest that the fit differences are

not particularly large. One exception is Principal Component Regression using

only the first component which performs particularly badly. However, due to the

special data structure, merely careful overall conclusions can be drawn from this

study.

Multicollinear data structures are explicitly addressed in a study by Kiers and

Smilde (2007). The authors compare among others Principal Component Re-
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gression, Partial Least Squares and Principal Covariates Regression. Their work

pursues a two-track approach to evaluation by not only considering predictive

ability but also recovery of the true parameter values from the data-generating

process. Both measures are evaluated by means of average absolute deviations.

The simulation designs applied in their work involve manifold data structures.

Relevant conclusions – from the viewpoint of this dissertation – include that in

settings with many variables and high collinearity, PCR and PLS perform poorly

in terms of predictive power. PCovR, on the other hand, produces reasonable

results in many settings. For all methods the authors analyzed they found that the

performance with respect to prediction works better than with respect to recovery.

Also, the work by Dormann et al. (2013) deals with the issue of multicollinearity.

The group of authors examine several methods they consider to be suitable to

address the drawbacks that come with clusters of highly correlated data. Amongst

the examined methods are the Lasso, types of Principal Component Regression and

Partial Least Squares. The author’s simulation setting is one where the number of

variables is relatively low in comparison to the number of observations. Variations

concern the complexity of the relationship between the predictors and the outcome

as well as correlation patterns between the predictors. The latter are designed

as having clusters of predictors in which the degree of correlation varies across

specifications. The prediction error in test data is taken as a measure of success

here, too. The results portend that rather the collinearity structure of the data

than the complexity of the model underlying the DGP plays a role. In more detail,

the authors found the Lasso performing well in settings with no multicollinearity

while PCR and PLS perform worse. In settings with moderate collinearity, all

three methods perform sufficiently well. In all settings, however, the predictive

ability of the Lasso is at least slightly better than that of PLS and PCR.

Another relevant study in this context is by Vigneau et al. (1997). The authors

compare Ridge Regression, PCR, a combination of the two, which has some simi-

larities to the one proposed in section 4.4, and PLS to OLS. The performance is

evaluated by considering the cross-validation error over two data sets with different

degrees of collinearity among the predictor variables. With a special focus on

the way components are selected, their results portend that PLS and PCR can

yield unstable results, while Ridge Regression as well as the combination of Ridge

Regression and PCR exhibit stable and relatively good results.

Most of the research presented in this section concentrates on forecasting perfor-

mance, ignoring the property of (non-)interpretability. This explains why models

based on Factor Analysis are rarely considered; their main pro, and the reason

they play a significant role in the methods proposed, is the promise of the factors’

superior interpretability. A better predictive performance than models which are



Chapter 5 Simulation 92

based on Principal Component Analysis can hardly be expected.

Unfortunately, many studies do not explicitly state the applied model selection

criteria. This is problematic – in particular for methods like PCR where a va-

riety of different criteria could be used. As to the remaining methods, different

data-generating processes render comparisons between the simulation studies diffi-

cult. Hence, at most careful conclusions in the direction of general performance

tendencies can be drawn. Regularized linear models typically perform as least as

good as index models. Within the realm of the latter, the results are ambiguous.

According to my best knowledge, there exists no simulation study which analyzes

the performance of the suggested methods in a data environment as it has been

described here.

In addition to be able to adjust the parametrization, a customized simulation

study has two crucial advantages: The first is to allow a comparison between

methods that yield highly interpretable models and methods with less interpretable

results but presumably good generalizing capabilities. The insights gained help in

the decision process for the most suitable method. Secondly, the newly proposed

methods combining Factor Analysis with Lasso-type factor selection methods can

be evaluated directly. Theoretically, these methods are particularly promising

for fulfilling the purpose from a theoretical point of view, conducting a separate

simulation study is hence beneficial at this stage.

5.2 Models

5.2.1 Latent variable model

One model is the latent variable model, as for instance described in Timm (2002),

which corresponds to the theoretical considerations in this work. In this model

the existence of a set of latent variables, so-called factors f1 − fk, is assumed.

They shape both the observable outcome y and the set of observed variables

x1 − xq. In the context of this work, these factors are interpreted as dimensions of

family background, the outcome as the child’s school achievement. If the observed

variables are allowed to have a certain share of idiosyncratic variance εi which

cannot be traced back to the latent factors, they can be interpreted as noisy

proxy-variables for the factors.

As family background factors do not explain school achievement completely, there

is a specific factor fs in this model which captures sources of remaining variation;

this could be attributed to community factors outside the family environment,
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school, teachers or peers. This factor may or may not be correlated with the other

factors but is assumed not to affect the parents’ observed explanatory variables.

In its general formulation, the underlying latent variable model for the simulations

is described by the following two equations

y = f1b1 + ...+ fkbk + fsbs (5.1)

xi = f1li,1 + ...+ fkli,k + εi. (5.2)

To obtain realized values for the simulation, one needs to specify the joint distri-

bution of the elements in the model. It determines the distributions from which

both f1 − fk and y are drawn in the simulation. Moreover, it stipulates how the

factors relate both to the dependent variable by specifying the vector b, and the

set of explanatory variables by defining the loading matrix L. These parameters

are the principal setscrews with which the model can be altered to obtain different

data structures.

In the simulations, the set of observed variables x1 − xq function as the input

variables for the candidate methods, which have to somehow select the most

useful ones. From the model equations, it is apparent that an observed variable’s

relevance for the outcome depends on two elements: the parameter vector b and

the loadings matrix L. For variable xi to be an important predictor, the loading

li,j must be large but also the parameter bj belonging to factor j must be large

relative to the other parameters. The interpretation is that an observed variable

is relevant for the outcome if it is highly correlated with a latent factor which

is sufficiently relevant for the outcome. If, on the contrary, a predictor has high

correlations with irrelevant factors only or has a particularly large share of specific

variance, then it could turn out to be a poor predictor.

5.2.2 Regression model

The second model is a regression model in which the observed variables cause the

endogenous variable and consequently involve no intermediate factors. As in the

latent variable model, however, an additional factor that leaves some unexplainable

variance in the dependent variable is present.

y = x1b1 + ...+ xkbk + fsbs (5.3)

Specifying the parameters defines the joint distribution of the outcome, the regres-

sors and the factor. In comparison to the previous model, solely the parameter b
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determines an observed variable’s relevance for the outcome.

5.3 Specifications

Underlying all specifications is a so-called basic scenario which provides the

baseline configuration of the model. Alternations are introduced by changing a

single setscrew at a time. Starting with a detailed description of the basic scenario,

table 5.3 summarizes the other scenario’s specifications and how they are realized.

An initial remark concerns the random elements described in the following. At

first, and thereby prior to the replications, the true model is created. This creation

is based on drawing random numbers from prespecified distributions, which differ

across the scenarios. The resulting model is fixed for the replications, which

means that at the beginning of each replication the same data set is accessed.

Stochastic elements enter the process only by disturbing the observed variables

in the replications. To sum up, although the true model is also based on random

draws from certain distributions, the difference is that it only occurs once per

scenario and before the replications.

Latent variable model - Basic scenario The simulations are based on N = 1000

observations, whereof n1 = 800 serve as the training sample and the remaining

observations n2 = 200 as the test sample (deviations occur in the small sample

size scenario). The data set will consist of k = 15 unobserved factors and q = 100

observed variables.

Generation of f1− fk: In the first step the factors f1− f15 and fs are drawn from a

standard normal distribution, i.e. with zero mean and variance one.22 In addition,

it is ensured that the factors are independent of each other, so that

f∼N(0, Ik). (5.4)

Generation of y: The values of the parameter vector b, which define the single

factors’ impacts on the outcome are likewise drawn from a standard normal

distribution. Based on these data and added normally distributed noise, the

outcome y is calculated.

22For information on how actual values are obtained consult the article on random number
generation by L’Ecuyer (1998) and the description of obtaining specially distributed numbers
by Cheng, R.C.H. (1998).
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Generation of x1−xq: In the next step the factors f1−f15 have to be related to the

observed explanatory variables. To avoid scaling effects through single variables,

they should have the same variance, which is set to one here but could be any

other number. It corresponds to the usual standardization of variables, though.

By specifying the loading matrix the connections between factors and variables

is established. One condition for the basic scenario is that it resembles the data

structure encountered in the real data set. The arbitrary assumptions on the

factors so far are permissible since the true factors are unknown and the dependent

variable can always be rescaled. The loading matrix L, however, cannot be chosen

completely arbitrarily for it affects the correlation matrix of the observed variables.

For this matrix a real counterpart exists. Designing the loading matrix is done

by inspecting Varimax-rotated loading matrices in the data. The implications of

Varimax-rotations and eyeballing suggest that the observed variables often load

highly on only one factor, seldom on two or three; rarely, variables do not load

highly on any factor at all but instead exhibit a high degree of specific variance.

A synthetic loading matrix should hence reflect these aspects. Hand typing the

entries of a matrix of dimension 100 × 15 is costly, therefore random numbers

from specific distributions and under certain restrictions are drawn here. While

there are multiple ways to achieve a certain structure of the loading matrix, two

other conditions have to be met in addition: For a start, a single loading must not

exceed one in absolute terms. Moreover, the squared loadings for a variable must

sum up to smaller than or equal to one. If one of the conditions fails, an observed

variable has a variance larger than one, which, as defined above, must not happen.

The following two-step procedure ensures that the necessary properties hold. In a

first step only the desired structure is set up, which is depicted by a preliminary

loading matrix. In a second step this structure is transformed to fulfill the imposed

restrictions.

Let the entries of the preliminary loading matrix L∗ be generated by drawing

random numbers from a ratio-distribution that has the potential to cover a large

spectrum of numbers

L∗∼
N(0,1)

(2 · U(0,1)− 1)
. (5.5)

Table 5.1 indicates the conceptual structure of the preliminary loading matrix

L∗. Drawing from the above distribution often yields values that exceed 1 by far,

therefore the row sum of squares also (almost) always exceeds 1. However, since

the final loading matrix retains the relative shares on loadings, only the ratio of a

single squared loading to the sum of squared loadings in a certain row is important

at this stage. To assess whether the desired loading matrix structure has been
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Table 5.1: Conceptual sketch of intermediate loading matrix L∗

f1 f2 . . . f15 Row sum of squares

x1 l∗1,1 l∗1,2 . . . l∗1,15
15∑
j=1

l∗21,j

x2 l∗2,1
...· · · ...· · · ...· · ·

15∑
j=1

l∗22,j

...
...· · · ...· · · ...· · · ...· · · ...

x100 l∗100,1 . . . . . . l∗100,15
15∑
j=1

l∗2100,j

attained, a row-wise consideration of the loadings is undertaken. It turns out that

single loadings are often relatively large compared to others in the same row. This

resembles the empirical observations that a single variable often loads highly on

one factor after rotation and that several variables load highly on the same factor.

The next step is to rescale the loadings so that their squared sum is smaller

than one; preceding this, however, the variable specific share of communality (or

uniqueness respectively) on total variance has to be defined. Determining this

share limits the absolute influence of the factors on an observed variable. The

communality share for each variable is independently drawn from a distribution

that is calibrated such that it roughly matches the empirically observed pattern

of communality. The beta-distribution is a suitable candidate for its support

lies between 0 and 1 and its shape is flexible. Let 0. 95 · (1 − Beta(2,9)) be the

underlying distribution from which the variable-specific share of communality ci

for variable xi is drawn. This distribution gives an average communality of about

0. 77 with a variance of 0. 011 and a median at about 0. 79.

The scaling equation which preserves the loading rations and transforms an unscaled

loading l∗i,j to the scaled loading li,j is given by

li,j ≡
l∗i,j√∑k
j=1 l

∗2
i,j

·
√
ci (5.6)

such that: (5.7)

ci =
15∑
j=1

l2i,j < 1. (5.8)

As a result, table 5.2 conceptually indicates the final loading matrix:

In a final step, the random noise vector ε has to be specified. Given the model

assumptions, the observed variables’ individual variances need to equal one. So far,

the sum of an observed variable’s squared loadings yields the variable’s individual
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Table 5.2: Conceptual sketch of final loading matrix L

f1 f2 . . . f15 Row sum of squares

x1 l1,1 l1,2 . . . l1,15
15∑
j=1

l21,j = c1

x2 l2,1
...· · · ...· · · ...· · ·

15∑
j=1

l22,j = c2

...
...· · · ...· · · ...· · · ...· · · ...

x100 l100,1 · · · · · · l100,15
15∑
j=1

l2100,j = c100

variance. This sum yields values on the open interval between 0 and 1. To obtain

a variance of one, the noise component must consequently fill in the remaining

variance for each variable. On variable level, this amounts to 1−ci and is generated

according to

Σε∼N(0, (1−
15∑
j=1

l2i,j) · Iq). (5.9)

The specific variances are hence normally distributed and independent of each

other which reflects the interpretation of variable-specific variance, for instance

induced by measurement error.

Regression model - Basic scenario The simulations are based on N = 1000 ob-

servations, whereof n1 = 800 serve as the training sample and the remaining

observations n2 = 200 as the test sample (deviations occur in the small sample

size scenario). The simulated data set consists of q = 100 observed variables.

Generation of x1 − xq: The regression model is based on similar calculations as

the latent variable model. Here, no specific data structure, as for instance clusters

of correlated variables, is assumed. To compare the results to the ones of the

latent variable model it is useful to have a similar data structure nevertheless. To

generate the true model data, the first step consists in generating 15+1 factors as

in the latent variable model. The next step, which is to calculate the dependent

variable, is skipped, however. Instead the observed variables x1 − x100 are created

by proceeding in the same manner as in the latent variable model. The variables

therefore result from the factors and the defined loading matrix.

Generation of y: In the third step, the observed variables and factor fs are used

to calculate the outcome. Here, another difference to the latent variable model

occurs. Instead of drawing the parameter coefficients from a standard normal

distribution, a mixture distribution N(0,1) × Beta(2,22) is used. This is done

because the differences in the coefficients would have been otherwise too small to
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pose a variable selection challenge. Lastly, normally distributed noise disturbs the

outcome.

Common manipulations in all models and scenarios

Prior to the replications, some of the observed variables are discretized by quantile

splits. Hereby, ten randomly chosen regressors each are recoded into dummy

(two-category), three-category, five-category and ten-category variables.

5.4 Scenarios

Since the two data-generating processes only differ in the manner the endogenous

variable is generated, the scenarios are the same for both simulations except for

slight changes the noisy regressors scenario.

Dispersed loadings

This variation alters the distribution of factor loadings from a ratio distribution with

fat tails toward a Beta(2,2)-distribution. The loadings become hereby more evenly

distributed over the factors. Its implication is that the variables load similarly

highly on more factors than before, yielding a data structure that aggravates

selecting good predictors.

Small sample size

One setscrew that does not manipulate the joint distribution of the variables is

the sample size. This scenario will examine the effects of reducing the sample size

significantly and thereby emphasize the pitfalls of having too many variables in

relation to observations. In this scenario the number of observations remains at

N = 1000, but the training sample size is reduced to n1 = 400, so that n2 = 600.

The remaining parameters are the same as in the basic scenario.

School factor

In the basic scenario the school factor is uncorrelated with the other factors.

This scenario defines the school factor to be a linear combination of some of the

other factors plus some normally distributed noise. Also, the weights for the

linear combination are drawn from this distribution. The school factor is still

unobserved in the simulation, but is now correlated to the regressors through the

other factors.

Noisy regressors

In this variation, 15 random (25 in the regression model specification) regressors
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are picked after they have been disturbed stochastically in a replication. These

regressors are replaced by a weighted sum of the disturbances of 6, randomly chosen

variables plus normally distributed noise. The weights are randomly obtained

in each replication by drawing from a Gamma(2,1)-distribution. The procedure

thereby generates artificial regressors which are marked by being essentially un-

correlated to the outcome but at the same time correlated to 6 of the other

regressors.

High uniqueness

This variation modifies the distribution of communality. ci is now drawn from a

Beta(4,10)-distribution which results in a lower average communality (0. 67). This

increases the share of a predictor’s specific variance. The immediate consequence is

a weaker link to the factors, which lowers their predictive ability in the latent vari-

able model DGP. In addition, correlations between the regressors are attentuated,

because the specific variances are uncorrelated across the regressors.

Table 5.3: Overview of scenarios

Name Communality distribution Loading distribution

Basic scenario ci∼0 95 · (1−Beta(2,9)) L∗∼ N(0,1)
(2·U(0,1)−1)

High Uniqueness ci∼Beta(4,10) L∗∼ N(0,1)
(2·U(0,1)−1)

Spread loadings ci∼0 95 · (1−Beta(2,9)) L∗∼Beta(2,2)

Name Distinctive features

Noisy regressors Partial replacement of regressors which are noisy

School factor Correlation between factors and school factor induced

Small sample size Sample size reduced by half

5.5 Replications and evaluation

The previous section described the generation of the data that serves to generate

specific data structures. In order to have variation in the replications, the observed

variables and the outcome are stochastically disturbed in each replication. This

can be interpreted as adding measurement error to the data. The disturbance

enters in the following way:

In the latent variable model, each standardized variable is disturbed by normally

distributed noise with zero mean and variance ranging randomly from 0.09 to

0.36. In the noisy regressors scenario, the difference of the undisturbed and

disturbed variable also serves as the basis for generating the noisy regressors.

Those differences are disturbed by normally distributed noise with mean zero and
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variance 0.0025.

Except for the noisy regressors scenario, the same disturbance pattern applies

to the regression model specification. In noisy regressors scenario the original

variables are disturbed by standard normally distributed noise, i.e. having a mean

of zero and a variance of one. The subsequent difference is disturbed by a normal

distribution with mean zero and a variance ranging randomly between 0.000001

and 0.000004.

Since the noise was drawn from a continuous distribution, the discrete variables

are subsequently recoded by means of quantile splits.

Finally, the standardized endogenous variable is also disturbed using standard

normally distributed noise.

Each scenario undergoes g = 100 replications. In each of them the predicted

residual sum of squares of the endogenous variable, the school achievement indicator,

divided by the number of observations is calculated - split by method and dataset

(in-sample, out-of-sample). These results serve as base to compute the overall

statistics for evaluation.

The evaluation of the simulation study is conducted as follows: As the goal is

to compare different methods, it is of interest to calculate differences in relative

performance. Due to different shares of noise in the data, the amount of explainable

variation differs from replication to replication, which makes the comparison of

absolute values misleading. Relative values, obtained by dividing the predicted

residual sum of squares of a method by the predicted residual sum of squares of

the method with the lowest prediction error in a replication, are hence calculated.

This is done for each replication, separately for in-sample and out-of-sample data.

Thereby, it relates all methods’ performances to the best performance. The best

method is consequently allowed to differ by scenario, sample and replication.

However, since OLS is the BLUE estimator and no considered method transforms

features to gain predictive power, its predicted residual sum of squares must

constitute the reference in all in-sample data sets.

The calculated relative deviations are the results. They are presented in two ways.

One is boxplots, which provide a quick overview of the ranking and performance

differences between the methods. To facilitate interpretation, the deviations in

the boxplots are expressed as percentage values. If, for instance, a method has a

1.31 higher MSE than the best method in a specific replication, the data point

is visualized as 31 %. The boxplots are sometimes cut off from above for some

methods. This happens when the performance differences for single replications

become too large. Trimming the boxplot helps to focus on the differences between

the methods that perform reasonably well at the low cost of masking severely poor

performances.
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The second way to present the results is by means of tables which provide detailed

numeric information about the mean, median, standard deviation and mean

absolute deviation of a method’s relative deviations.23 The table is more objective

than a boxplot in the sense that the latter’s scaling can influence the impression.

Moreover, the dispersion is not necessarily discernible in a boxplot.

The reason to also include the median and the mean absolute deviation is grounded

in the occurrence of outliers. Some methods produced poor models in some of the

replications while they worked out fine in the majority of others. Hence, there

are some cases in which their mean squared error skyrockets. In these cases, the

trimmed boxplots show a too optimistic picture by not displaying extreme values.

Since failed models can be identified relatively easily, it would also have been

possible to exclude the concerned replications. Doing so, however, could induce

bias through selection – likely in favor on this method. Another point connected

to outliers is that deviation values larger than 9, corresponding to a deviation of

more than 900 %, are short-coded by > 9.

5.6 Results

This section contains the results of the simulation study. For an overview, the

examined methods, including their model selection criteria, are presented in table

5.4.

Before turning to the results, one note concerns the manner of forming indices

in unsupervised methods. While in-sample data and out-of-sample data are

strictly separated in supervised methods, access to the independent variables

of the out-of-sample data set is granted to unsupervised index methods for the

calculation of indices. This can be justified by arguing that the explanatory part

of the out-of-sample data is known, since it is used for prediction. The statistical

advantage lies in a larger sample size for the creation of the indices. The technical

advantage is that the same factors/components appear in both samples without

extra calculations.

23To facilitate readability both the standard deviation and the mean absolute deviation are
multiplied by 100.



Chapter 5 Simulation 102

Table 5.4: Overview of methods and algorithms

Base Method Model Selection Abbreviation

OLS None OLS

Factor Regression Extraction by Principal Factors, estimation
by Bartlett-method, no further selection

FarPfBar

Factor Regression Extraction by Iterated Principal Factors,
estimation by Bartlett-method, no further
selection

FarIpfBar

Factor Regression Extraction by Principal Factors, estimation
by Bartlett-method, minimum eigenvalue 1

FarPfBarM1

Factor Regression Extraction by Iterated Principal Factors,
estimation by Bartlett-method, minimum
eigenvalue 1

FarIpfBarM1

Factor Analysis Lasso Extraction by Principal Factors, λ deter-
mined by Lasso’s minimum Cp-statistic

FarLasso

Principal Component
Regression

Components having minimum eigenvalue 1 PCRM1

Principal Component
Regression

OLS-regression – Components having p-
values below {0.15, 0.10, 0.05, 0.01}, 5-fold
CV

PCRT

Forward Stepwise
Regression

Regressors with p-value<0.10 FSTP

Backward Stepwise
Regression

Regressors with p-value<0.10 BSTP

Lasso 5-fold CV to determine λ LassoCV

Partial Least Squares 5-fold CV to determine k PLSCV

Principal Covariates
Regression

Sequential procedure with component cross-
validation to determine α and γ

PCovR

Adaptive Lasso 5-fold CV to determine both λ and ω using
the Lasso to determine initial weights.

AdaLasso

Factor Analysis Adap-
tive Lasso

5-fold CV to determine both λ and ω using
the Lasso to determine initial weights.

FarAdaLasso

Elastic Net Grid search (density 0.1) with 3-fold CV to
determine both λ and α

Elastic Net

5.6.1 Latent variable model

Basic scenario

For the data-generating process under the parameters of the basic scenario, the

results presented in figure 5.1 and table 5.5 emerge for the training data.

Confirming the theoretical expectations, OLS as the BLUE estimator has, on
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average, both the lowest mean squared error and variance. Such an in-sample

performance may be an indication of overfitting the data, though. Whether this

hypothesis is correct can be scrutinized out-of-sample.

With regard to outliers, only Partial Least Squares is concerned. The results table

discloses the existence of outliers, as the mean and the variance lie substantially

above the values of other methods. This observation also holds for the remaining

scenarios, where the deviations are often even bigger. When outlier-robust mea-

sures are considered instead, i.e. the median and mean absolute deviation, PLSCV

performs similarly to OLS and FarIpfBar. Ignoring the performance outliers, simi-

lar results of the three methods can be detected throughout the examined scenarios

in both specifications. For that reason, PLSCV does not receive special attention

in this simulation study. As PLSCV is the only method with occasional outlier

problems, the question of its cause arises – especially in light of an otherwise undis-

turbed performance in most of the replications. Scrutinizing the details exceeds

the scope of this work but two explanations are conceivable. One is that PLSCV

may be particularly sensitive to unfortunate cross-validation splits. Another may

lie in occasional computational difficulties of the cross-product. An unfortunate

consequence of bad in-sample performance is that out-of-sample predictions for

the dependent variable will also be poor in the concerned replications.

With regards to the other methods, the examination continues with the ones

related to Factor Regression. Those with unsupervised factor selection criteria

(FarPfBarM1, FarIpfBarM1) perform worse both in regard to error and variance

than those relying on Factor Analysis’s inherent dimensional reduction (FarPf-

Bar, FarIpfBar). In particular, using Iterated Principal Factors as the extraction

method leads to almost the same performance as OLS, indicating that hardly any

dimensional reduction took place. For the methods applying the Kaiser-criterion

(FarPfBarM1, FarIpfBarM1), it is remarkable that the performance differences

to OLS are not larger. After all, an eigenvalue of 1 is a data-independent choice

and hence a somewhat arbitrary threshold. The most likely explanation for the

performance at this stage is the particular DGP which creates a data structure

that contains a lot of informative variance on few factors. This selection criterion

is benefited by such a data structure.

The results of the FarLasso lie between the two aforementioned groups of Factor

Analysis methods. Since its set of regressors is the same as for FarPfBar, and

regularization leads to a higher mean squared error in-sample, FarLasso cannot

perform better than FarPfBar on the in-sample dataset. The same notion holds

for AdaFarLasso, which performs similarly, but slightly more variable compared

to the two Kaiser-criterion based factor regression methods, FarPfBarM1 and

FarIpfBarM1. Together with the two PCR-methods, in which selection by p-values
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Figure 5.1: Results basic scenario (LVM): In-sample.
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Table 5.5: Simulation results: Basic scenario in-sample
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Mean 1 1.06 1 1.11 1.11 1.09 1.11 1.12 1.07 1.06 1.03 4.58 1.09 1.08 1.1 1.08

Median 1 1.06 1 1.11 1.11 1.09 1.11 1.12 1.07 1.06 1.03 1 1.09 1.08 1.1 1.07

STD*100 0 1.22 0.17 1.57 1.59 1.95 1.55 1.61 1.09 0.88 0.41 >9 1.15 1.83 1.81 1

MAD*100 0 1.28 0.11 1.57 1.62 1.8 1.4 1.64 1.06 0.84 0.39 0.23 1.06 1.61 1.66 0.74

is less accurate than factor selection by eigenvalue size, the five methods have the

highest MSE-deviation relative to OLS (disregarding the outlier affected results

for PLSCV).

A better performance is delivered by methods grounded on stepwise variable se-

lection. They yield a relatively stable performance deviation and are practically

identical from each other in terms of MSE deviation. Backward stepwise selection

is, however, less variable in its performance. The observation of a mediocre perfor-

mance of those methods in-sample is stable as it recurs in the other scenarios of

this specification.

Amongst the remaining methods, LassoCV protrudes with an outstanding per-

formance in terms of MSE and variance, while the Elastic Net and Principal

Covariates Regression are on about the same level as FarLasso and AdaLasso and

thereby slightly more accurate than FarAdaLasso. Through its comparably low

volatility both in terms of variance and mean absolute deviation, the Elastic Net

additionally shows a stable performance.

The summary for the relative error in predicting the dependent variable out-of-
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sample, wrapped up in figure 5.2 and table 5.6, highlights reverse patterns to

the in-sample results: Methods performing well on training data show signs of

overfitting, whereas sparser models predict unknown data relatively well. The

observation of overfitting concerns especially OLS, FarIpfBar, PLSCV and the two

stepwise selection algorithms. These patterns recur in many scenarios.

Beside these general results, there are some noteworthy details about the other

procedures. These concern the methods based on Factor Analysis with Kaiser-

criterion selection and the Elastic Net and PCovR, which all perform well out-

of-sample. Moreover, FarLasso confirms its hypothesized sparsity property and

ranks shortly behind FarPfBarM1 and FarIPfBarM1. Those methods are only

outperformed by the Elastic Net and FarAdaLasso, whereby the latter also performs

best in terms of median, variance and mean absolute deviation. The results of

FarPfBar, LassoCV and AdaLasso, on the other hand, show a clear gap in explained

variance compared to the methods mentioned before. Together with the results

from the in-sample data at hand, this indicates overfitted models. Such results are

particularly unexpected for AdaLasso and LassoCV as their regularization feature

is supposed to reduce the risk of overfitted models.

Another notable result is that the unsupervised Factor Analysis based methods

(except for FarIpfBar which practically behaves like OLS) perform similarly to

methods based on Principal Component Analysis in terms of mean squared error. In

particular, factor selection by eigenvalue size is successful in prediction. Therefore,

comparing PCR with Factor Regression, the latter exhibits better interpretability

with a similar numerical performance in this scenario. This observation leaves

little reason to use PCR. PLSCV performs similarly to OLS when outlier-robust

measures are considered. It confirms the interpretation concerning overfitting that

was derived from the results of the training data set.

Table 5.6: Simulation results: Basic scenario out-of-sample
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Mean 1.16 1.08 1.16 1.04 1.04 1.02 1.03 1.05 1.12 1.14 1.06 4.9 1.03 1.08 1.01 1.01

Median 1.16 1.09 1.16 1.04 1.05 1.02 1.03 1.05 1.12 1.14 1.06 1.15 1.03 1.07 1 1.01

STD*100 4.49 2.77 4.48 1.73 1.76 1.62 1.66 2.29 3.36 3.79 2.32 >9 1.73 2.65 1.03 1.33

MAD*100 4.55 2.7 4.76 1.85 1.92 1.65 1.88 2.15 3.77 3.84 2.01 4.6 1.72 2.37 0.18 1.28

Since the results of the basic scenario are of major importance for the choice of

the final method, an interim conclusion is drawn at this stage. When the results

pf both in-sample and out-of-sample data are taken into consideration, five to six

considerable candidates are identified. As indicated by the result tables, PLSCV



Chapter 5 Simulation 106

Figure 5.2: Results basic scenario (LVM): Out-of-sample.
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yields good results in-sample when successful but the failures in some instances

constitute a severe drawback. To exclude such failures in practice, it would be

necessary to compare the PLSCV model’s performance with that of a robust method

such as OLS. When it works, the method is additionally prone to generate overfitted

models, which can be observed in figure 5.2. Neither stepwise methods nor the two

Lasso types, Lasso and AdaLasso, yield a convincing performance in this scenario.

From the perspective of predictive ability, AdaFarLasso, FarLasso, PCovR and the

Elastic Net, but also the two Kaiser-criterion based Factor/Component models

make it on the short-list.

However, it cannot be ensured that the synthetic data generated in this scenario

meets the real data in all its facets. For an overall assessment, it is therefore of

interest to consider how the methods compare in unwieldy data environments.

Bad performance there may further narrow down the candidate list of potential

methods.

Dispersed Loadings

The results for the dispersed loadings scenario are presented for in-sample data in

figure 5.3 and table 5.7.

Some patterns that could be observed in the basic scenario emerge once again but

differences between methods are significantly more distinct in this scenario. Factor

regression methods using the Kaiser-Criterion perform especially poorly. These

results occur because the specification of the DGP leads to many relevant factors

of which some are likely to have an eigenvalue smaller than 1. But these factors
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Figure 5.3: Results dispersed loadings (LVM): In-sample.
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are excluded despite their importance. The results demonstrate the caveats of a

data-independent rule on the number of factors. It does not take a hugely different

DGP to end up in this situation. A selection which is based on other criteria, for

instance the elbow in a scree plot, could yield better results in this case. A lower

MSE is achieved by PCA-based methods, by contrast; but the explanatory power

is still considerably worse than for the remaining methods.

Among the methods with better performances, distinct patterns occur. OLS and

FarIpfBar share the top position and LassoCV brings about an only slightly worse

performance, both in terms of mean squared error and median. Following are

FarPfBar, the Elastic Net and the stepwise methods, compared to which FarLasso,

FarAdaLasso, AdaLasso and PCovR yield a less accurate model in-sample in this

scenario. Moreover, the Elastic Net produces once more stable results, while the

AdaLasso tends to fluctuate strongly.

Table 5.7: Simulation results: Dispersed loadings scenario in-sample
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Mean 1 1.08 1 1.44 1.45 1.11 1.28 1.17 1.07 1.07 1.02 1.04 1.1 1.1 1.12 1.05

Median 1 1.08 1 1.44 1.46 1.1 1.27 1.17 1.07 1.07 1.01 1 1.09 1.09 1.12 1.05

STD*100 0 1.52 0.29 3.73 3.4 2.26 3.48 2.62 1.07 0.98 0.71 >9 2.31 4.27 2.53 1.31

MAD*100 0 1.77 0.15 3.58 3.18 2 3.36 2.67 1.02 0.94 0.68 0.07 2.16 3.97 2.64 0.43

When it comes to out-of-sample performance (figure 5.4 and table 5.8), it turns

out that unlike in the basic scenario, Factor Analysis models based on the Kaiser-

criterion selection are often too sparse, so that even OLS accomplishes a better
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Figure 5.4: Results dispersed loadings scenario (LVM): Out-of-sample.
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performance. They leave the short-list of candidate methods for this reason. The

PCA based counterpart neither performs particularly well nor badly. Amongst

the best methods are again FarPfBar, PCovR, FarLasso, FarAdaLasso and the

Elastic Net. Out the latter set, PCovR exhibits the most stable performance.

LassoCV exhibits reasonable results in this sample, given the accurate fit in-sample

owing to which one could expect overfitting tendencies as in the basic scenario. In

consequence, this method dominates, for instance, the AdaLasso and the stepwise

methods.

Table 5.8: Simulation results: Dispersed loadings scenario out-of-sample
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Median 1.09 1.04 1.1 1.21 1.21 1.02 1.05 1.07 1.09 1.09 1.05 1.09 1.01 1.05 1.02 1.02

STD*100 3.89 2.82 4 5.02 4.89 2.01 4.27 4.12 4.42 4.75 3.07 >9 1.99 3.79 2.19 2.32

MAD*100 4.13 3.06 4.62 4.38 4.61 2.47 4.47 4.03 3.86 3.93 3.65 4.22 1.04 4.15 2.17 2.04

Small sample size

The in-sample results for the small sample size scenario are presented in figure

5.5 and table 5.9. Sensitivity to small sample sizes is an important factor in the

assessment of a method since some of the analyses in the empirical part of this

thesis are characterized by it.

Concerning the training data fit of the methods which deviate substantially from
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Figure 5.5: Results small sample scenario (LVM): In-sample.
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Table 5.9: Simulation results: Small sample scenario in-sample
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Mean 1 1.16 1 1.25 1.25 1.24 1.25 1.28 1.17 1.14 1.06 >9 1.2 1.19 1.27 1.19

Median 1 1.15 1 1.25 1.25 1.25 1.25 1.28 1.16 1.13 1.05 1.01 1.19 1.18 1.27 1.19

STD*100 0 3.21 0.39 4.2 4.2 5 4.29 4.35 3.08 2.16 1.05 >9 3.11 5.36 4.53 3.11

MAD*100 0 3.22 0.22 4.68 4.69 4.48 5.13 3.93 2.49 2.32 0.94 0.98 3.58 5.77 4.8 3.52

the OLS performance, LassoCV exhibits the best performance. It outperforms the

remaining methods in terms of fit and variance. Stepwise selection methods and

FarPfBar follow thereafter. Among the remaining methods, certain performance

differences exist, especially the FarAdaLasso and FarLasso are not able to explain

as much variance as the Elastic Net, for instance. None of the methods performs

outstandingly badly, however. Differences between methods based on Principal

Component Analysis and Factor Analysis are also small.

Table 5.10: Simulation results: Small sample scenario out-of-sample
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Mean 1.27 1.09 1.27 1 1.01 1.02 1 1.05 1.15 1.2 1.1 >9 1.01 1.07 1.03 1.03

Median 1.27 1.09 1.26 1 1 1.02 1 1.05 1.15 1.2 1.1 1.23 1.01 1.07 1.02 1.03

STD*100 6.41 3.24 6.36 0.56 0.59 1.51 0.64 3.02 5.33 5.98 3.59 >9 0.85 3.61 1.5 1.83

MAD*100 7.11 2.7 6.82 0.34 0.43 1.61 0.29 3.29 4.66 5.76 3.38 8.17 0.77 3.78 1.62 1.77
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Figure 5.6: Results small sample scenario (LVM): Out-of-sample.
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The results for the out-of-sample prediction are shown in figure 5.6 and table 5.10.

The general pattern of a negative correlation between in-sample and out-of-sample

performance is once more clearly observable. An exception is the Lasso, which

is most able to produce a reasonable fit in both samples. Moreover, the results

suggest that small sample sizes amplify the differences in predictive quality between

the methods. OLS, for instance, performs much worse than in the basic scenario,

where its mean percentage deviation was only about 16 % higher than the best

performance, while it is about 27 % higher here.

Focusing on the out-of-sample fit only, the Kaiser-criterion methods show a re-

markably good performance, irrespective of whether they are based on Factor

Analysis or Principal Component Analysis.

Table 5.11: Simulation results: School factor scenario in-sample
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Mean 1 1.08 1 1.12 1.12 1.11 1.13 1.14 1.07 1.06 1.01 >9 1.11 1.1 1.12 1.08

Median 1 1.07 1 1.12 1.12 1.1 1.13 1.14 1.07 1.06 1.01 1 1.11 1.1 1.12 1.08

STD*100 0 1.58 0.25 1.76 1.75 2.09 1.81 1.89 1.18 0.94 0.3 >9 1.77 3.09 2.26 1.41

MAD*100 0 1.34 0.11 1.79 1.75 1.91 1.85 2.17 1.37 0.74 0.32 0.07 1.72 3.23 2.05 1.22

From a performance point of view, these methods are followed by AdaFarLasso,

FarLasso, the Elastic Net and PCovR. As remarked in the analysis of the basic

scenario, the particular DGP may benefit Kaiser-criterion selection methods. It

can hence be derived that the idea works out with a smaller sample size as well.

From this point of view, the results could be interpreted as robustness of these



Chapter 5 Simulation 111

Figure 5.7: Results school factor scenario (LVM): In-sample.
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procedures against small sample sizes. This judgement does not take account

of the variance, though. It is considerably lower for methods that apply the

Kaiser Criterion for selection. Since a subset of the factors used by FarLasso and

FarAdaLasso also occurs in the methods that use the Kaiser-Criterion, the reason

for higher variability must be due to the factors unique to the two shrinkage type

methods. By definition, these are the factors which have rather low eigenvalues

and might, therefore, be prone to instability. This becomes especially apparent in

small samples. The reliability in terms of variance of PCoVR lies between methods

based on the Kaiser-criterion and FarLasso.

School factor

If the DGP of the basic scenario is modified by having the school factor correlated

with the latent factors, the results shown in figure 5.7 and table 5.11 emerge.

The performance in-sample shares the results of the basic scenario in many aspects.

This broadly concerns the relative performance of the methods, although the

variation is generally somewhat higher in this scenario.

Also the out-of-sample results (displayed in figure 5.8 and table 5.12) are almost the

same as in the basic scenario. The only qualitative difference is that well-performing

methods are even closer to each other in terms of fit.

Summing up the results for this scenario, it can be concluded that a factor which

is non-influential for the observed regressors but correlated to their determinants

does not induce any changes of practical relevance in the performance compared

to the case of an independent school factor.
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Figure 5.8: Results school factor scenario (LVM): Out-of-sample.
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Table 5.12: Simulation results: School factor scenario out-of-sample
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Mean 1.15 1.05 1.14 1.01 1.01 1.01 1.02 1.05 1.1 1.12 1.08 >9 1.02 1.06 1.01 1.02

Median 1.14 1.05 1.14 1.01 1.01 1.01 1.01 1.04 1.1 1.11 1.08 1.15 1.02 1.05 1.01 1.02

STD*100 4.85 2.5 4.78 0.95 0.95 1.2 1.15 2.49 4.66 4.96 3.66 >9 1.2 3.07 1.12 1.82

MAD*100 4.89 2.43 5.21 1.07 1.12 1.13 1.16 2.71 4.17 4.72 3.88 6.04 1.36 2.6 1.37 2.19

Noisy regressors

Table 5.13: Simulation results: Noise regressors in-sample
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Mean 1 1.08 1 1.19 1.19 1.1 1.13 1.16 1.07 1.06 1.02 1.09 1.09 1.1 1.12 1.08

Median 1 1.07 1 1.19 1.19 1.1 1.13 1.16 1.07 1.06 1.02 1 1.09 1.1 1.11 1.08

STD*100 0 1.81 0.24 3.1 3.32 2.12 2.4 2.16 1.22 1.08 0.49 >9 2.05 3.55 2.33 1.43

MAD*100 0 1.67 0.15 3.25 3.31 2.06 2.39 2.27 1.27 1.03 0.46 0.05 1.93 3.72 2.32 1.11

The in-sample results for the noisy regressors scenario are presented in figure 5.9

and table 5.13. This scenario is special in that it contains regressors which are

correlated to some of the other regressors but, at most, only mildly correlated to

the outcome. When compared to the results of the basic scenario, differences in

performance are somewhat more pronounced in this scenario. The relative ranking

of methods remains for the most part unchanged, the few exceptions are PCRM1
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Figure 5.9: Results noisy regressors scenario (LVM): In-sample.

●●

●●●●●●●●

●

●

●

●

●

●●

●

●
●●●
●
●●

●

●

●

●

●

●

●

●

●●

●

●●●

0

7

14

21

28

35

O
L

S

Fa
rP

fB
ar

Fa
rI

pf
B

ar

Fa
rP

fB
ar

M
1

Fa
rI

pf
B

ar
M

1

Fa
rL

as
so

P
C

R
M

1

P
C

R
T

F
ST

P

B
ST

P

L
as

so
C

V

P
L

SC
V

P
C

ov
R

A
da

L
as

so

Fa
rA

da
L

as
so

E
la

N
et

M
SE

 p
er

ce
nt

ag
e 

de
vi

at
io

n

and PCovR which show an improved performance. Again, the AdaLasso shows

a significant amount of variance in performance, while LassoCV, for instance, is

relatively stable in its performance gap to OLS.

The results for out-of-sample prediction are shown in figure 5.10 and table 5.14.

Also here, similarities to the basic scenario are apparent, but the methods’ results

show less differentiation. In particular the performances of OLS and FarIpfBar are

closer to the top methods. Further differences concern PCovR, which outperforms

the other methods in terms of fit and variance and the Elastic Net, which performs

worse than Factor Analysis Lasso type methods.

Also in this scenario, it is remarkable that LassoCV performs reasonably well

despite its good fit in-sample, since there seems to be a notable trade-off for the

other methods. Methods based on Factor Analysis and the Kaiser Criterion which

performed best in the basic scenario keep a solid performance concerning the mean

– their variance increases substantially, however. This suggests that in some of the

replications noisy regressors must disturb the creation of factors so strongly that

less important factors are driven to eigenvalues larger than 1.

Nevertheless, the results are similar to the basic scenario. There are two possible

reasons, which can both contribute to this observation: Either noisy regressors do

not confuse the methods, or the degree of disturbance was not sufficient to change

the results significantly.
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Figure 5.10: Results noisy regressors scenario (LVM): Out-of-sample.
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Table 5.14: Simulation results: Noise regressors out-of-sample
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Mean 1.1 1.04 1.1 1.04 1.04 1.03 1.03 1.06 1.09 1.1 1.06 1.16 1.02 1.08 1.04 1.05

Median 1.09 1.04 1.09 1.03 1.03 1.03 1.02 1.06 1.09 1.09 1.05 1.1 1.01 1.07 1.04 1.05

STD*100 4.8 2.72 4.79 3.07 3.16 2.21 2.4 4.02 4.84 4.85 3.23 >9 1.91 4.35 2.35 2.55

MAD*100 5.12 2.17 5.08 3.38 3.28 2.21 2.24 3.51 4.66 3.85 2.95 5.73 1.72 5.12 2.66 2.72

High Uniqueness

The results for the high uniqueness scenario are shown in figure 5.11 and table

5.15 for the training data set. The DGP leads to a decrease in the correlation of

the observed variables, they become more specific and less driven by factors. With

such a data structure at hand, one may be inclined to predict poor performances of

methods which are based on Factor Analysis. The argument being that factors are

based on common correlations which, in this scenario, are set low. On the other

hand, low correlations may suffice to lead to factors. A performance prediction for

this family of methods is thereby rendered difficult.

What can be observed in the results for in-sample data is that Factor Analysis

methods with the Kaiser-criterion perform worse than methods based on PCA. As

indicated by the large bars in the boxplot, there is also large variability. Decreasing

the degree of correlation between variables seems to reduce the probability that the

first k factors with eigenvalues larger than 1 cover the important factors. Principal

Component Analysis, on the other hand, appears to work much better here. The
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Figure 5.11: Results high uniqueness scenario (LVM): In-sample.
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reason for this lies in the variance on which the spectral decomposition in both

procedures is based. For Factor Analysis, in particular the Principal Factors

extraction method, the variables’ unique variances are removed prior to conducting

the spectral decomposition, so that only the common variance for each variable

remains. Owing to the decreased influences of factors, the communality is notably

lower in this scenario. However, the communality is what is distributed over the

factors as loadings. The consequence is that the loadings are much smaller than in

the basic scenario. Since the sum of squared loadings on a factor determines its

eigenvalue, fewer factors, ceteris paribus, exhibit an eigenvalue larger than 1. High

uniqueness does not hurt Factor Analysis methods in general, however: This is

demonstrated by the better performance of the other variants. Because they regard

factors with smaller eigenvalues, the informative variance is still accessible.

For the methods that deserve a closer look based on the insights of the previous

scenarios, the FarLasso and FarAdaLasso deliver slightly worse performances, while

the Elastic Net, LassoCV and FarPfBar deal well with the data.

The relatively good performance of the Elastic Net holds also out-of-sample, but

it is beaten by the two Factor Analysis Lasso methods and PCovR in terms of fit.

The results for the out-of-sample prediction are shown in figure 5.12 and table

5.16. The worst performance, even worse than OLS, is delivered by the stepwise

methods. They do not seem to be the right choice for model selection in scenarios

with clusters of lower correlations between variables.
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Table 5.15: Simulation results: High uniqueness in-sample
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Mean 1 1.08 1 1.21 1.22 1.11 1.12 1.15 1.07 1.07 1.01 >9 1.09 1.1 1.13 1.07

Median 1 1.08 1 1.21 1.21 1.11 1.12 1.15 1.07 1.07 1.01 1 1.09 1.09 1.13 1.07

STD*100 0 1.54 0.24 3.76 4.07 2.32 1.98 2.27 0.98 0.87 0.45 >9 1.59 3.31 2.31 0.7

MAD*100 0 1.36 0.16 3.49 3.78 2.01 1.92 2.06 0.91 0.94 0.5 0.38 1.56 3.92 2.23 0.5

Figure 5.12: Results high uniqueness scenario (LVM): Out-of-sample.
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5.6.2 Regression model

In the regression model simulation, the dependent variable is not determined by

the factors but by the observed variables.

Basic Scenario

The results for the in-sample data performance of the methods in the basic

scenario are shown in figure 5.13 and table 5.17. Comparing the results with

the correspondence in the latent variable model framework, differences between

the methods are more pronounced. Moreover, there is a general tendency of

worse performance by methods using factors for regression. With the exception

of FarIpfBar, which also performs like OLS in this specification, these models are

outperformed by each of the variable based methods. Differences amongst the

latter are generally rather small, although LassoCV performs somewhat better

than the rest. In accordance with the latent variable model, AdaLasso exhibits a
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Table 5.16: Simulation results: High uniqueness out-of-sample
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Mean 1.09 1.03 1.09 1.06 1.07 1.01 1.02 1.04 1.1 1.1 1.05 >9 1.01 1.07 1.02 1.04

Median 1.09 1.02 1.09 1.06 1.06 1.01 1.02 1.04 1.1 1.09 1.05 1.08 1.01 1.07 1.02 1.04

STD*100 3.56 1.96 3.6 4.28 4.6 1.31 1.63 2.46 3.62 3.5 2.63 >9 1.49 3.06 1.53 1.97

MAD*100 3.97 2.42 4.08 4.48 4.94 1.44 1.91 2.6 4 3.48 2.69 5.2 1.3 3.02 1.69 2.16

Figure 5.13: Results basic scenario (RM): In-sample.
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high variability in this specification. From this point of view, the performance is

worse than BSTP.

What also stands out in comparison to the results in the latent variable model

framework, is the relatively high variability of PCovR. In the prior simulations,

this method did not exhibit such a property. As can be observed in the following

scenarios, the method’s increased variability is a property for in-sample data in

this simulation model. Among the factor regression models, the performance is

worst when factor selection relies on the Kaiser-criterion. In particular, there is a

significant gap in performance between PCRM1 and PCRT which, in the latent

variable model specification, only appears in the in-sample results of the dispersed

loadings scenario. With respect to the remaining factor regression models, the

differences are small, merely FarPfBar performs somewhat better than the rest.

Figure 5.14 and table 5.18 summarize the results for the methods’ performances

on out-of-sample data in the basic scenario. They suggest a decrease of differences

in prediction in comparison to in-sample results. Some observations justify an

additional note, though. The Lasso and the Elastic Net perform best on these data,
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Table 5.17: Simulation results: Basic scenario in-sample
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Mean 1 1.14 1 1.26 1.26 1.15 1.27 1.18 1.07 1.06 1.03 >9 1.15 1.07 1.16 1.05

Median 1 1.13 1 1.26 1.26 1.15 1.27 1.18 1.07 1.06 1.03 1 1.15 1.06 1.16 1.05

STD*100 0 2.59 0.3 3.14 3.14 3.05 3.2 2.65 1.21 1 0.95 >9 5.45 3.53 3.22 1.17

MAD*100 0 2.75 0.17 3.3 3.24 3.08 3.17 2.68 1.11 0.91 0.92 0.09 6.3 3.32 3.33 0.48

Figure 5.14: Results basic scenario (RM): Out-of-sample.
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despite their good performance in-sample. It leads to the observation that they

outperform stepwise selection methods in both samples. The negative correlation

between in-sample and out-of-sample fit hence seems especially weak for those

methods. One reason for the particularly good performance of the Elastic Net

could be found in the data structure, which contains clusters of moderately and

strongly correlated variables.

Factor Regression models, even when they are based on the Kaiser criterion, are

surprisingly able to predict the outcome well. In fact, the two models using

regularization techniques perform only mildly worse than the Lasso or the Elastic

net.

Yet in sum, the model underlying this simulation design appears to grant advantages

to variable-shrinkage methods. Index-building methods do not perform much worse

on test data but they ceded parts of their success in contrast to the results from

the latent variable model simulations by showing a significantly worse performance

in-sample.
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Table 5.18: Simulation results: Basic scenario out-of-sample
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Mean 1.08 1.06 1.08 1.06 1.06 1.04 1.06 1.09 1.07 1.08 1.02 >9 1.05 1.04 1.03 1.01

Median 1.07 1.05 1.07 1.05 1.05 1.03 1.06 1.09 1.07 1.07 1.02 1.07 1.05 1.04 1.03 1

STD*100 4.09 3.69 4.02 3.59 3.6 3.19 3.76 4.3 4.23 4.38 2.2 >9 3.03 3.22 2.97 1.61

MAD*100 4.36 3.81 4.3 3.72 3.89 2.95 4.27 4.36 4.58 4.4 2.17 4.71 3.32 2.84 3.23 0.3

Figure 5.15: Results dispersed loadings (RM): In-sample.
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Dispersed loadings

Figure 5.15 and table 5.19 wrap up the in-sample results for the dispersed loadings

scenario. Compared to the basic scenario, there are hardly any qualitative changes,

apart from generally increased level variances and performance differences. This

stands in contrast to the changes which emerged in the latent variable model

framework and required additional inspection and interpretation.

Table 5.19: Simulation results: Dispersed loadings scenario in-sample
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Mean 1 1.16 1 1.33 1.34 1.18 1.31 1.19 1.07 1.06 1.04 4.81 1.1 1.09 1.19 1.07

Median 1 1.16 1 1.33 1.34 1.17 1.31 1.19 1.07 1.06 1.04 1 1.08 1.09 1.19 1.06

STD*100 0 3.09 0.43 4.06 4.1 3.32 3.96 2.82 1.43 0.88 0.81 >9 5.26 3.2 3.42 2.02

MAD*100 0 2.91 0.17 4.39 4.24 3.01 4.43 3.18 1.19 0.95 0.83 0.11 4.8 3.6 3.62 1.37
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Figure 5.16: Results dispersed loadings (RM): Out-of-sample.
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One observation that deserves attention is the performance of PCovR. In spite

of its high volatility, it performs much better than the remaining methods that

form indices. Among the methods that do not use derived inputs as regressors,

the method nevertheless ranks at the end in terms of the mean.

Table 5.20: Simulation results: Dispersed loadings scenario out-of-sample
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Mean 1.07 1.07 1.06 1.13 1.13 1.06 1.13 1.1 1.06 1.06 1.01 3.29 1.05 1.04 1.06 1.01

Median 1.06 1.06 1.06 1.13 1.13 1.06 1.12 1.08 1.06 1.06 1.01 1.06 1.05 1.03 1.06 1

STD*100 3.72 4.22 3.74 5.84 5.87 3.89 5.79 5.43 3.3 3.4 1.51 >9 3.95 3.2 3.85 1.7

MAD*100 3.53 4.31 3.77 6.09 6.19 4.07 5.83 4.6 3.37 3.98 1.5 4.38 3.54 2.94 4.29 0.47

The results out-of-sample (shown in figure 5.16 and table 5.20) confirm the ability

of the Lasso and, in particular, the Elastic Net to find a suitable model under this

specification. As in the basic scenario the performance differences have become

smaller, but it meets the eye that the Kaiser Criterion for variable selection tends

to generate inaccurate predictions. This inaccuracy is, however, not as extreme as

it was in the latent variable model for this scenario.

In sum, the DGP leads to stronger differences between the methods’ performances

in the latent variable specification than under the regression model specification.
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Figure 5.17: Results small sample scenario (RM): In-sample.
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Table 5.21: Simulation results: Small sample size scenario in-sample
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Mean 1 1.26 1.01 1.48 1.48 1.31 1.49 1.4 1.18 1.14 1.08 >9 1.32 1.23 1.34 1.19

Median 1 1.26 1 1.48 1.48 1.3 1.5 1.4 1.18 1.14 1.08 1.01 1.32 1.22 1.33 1.19

STD*100 0 5.12 0.63 6.82 6.84 6.71 6.89 6.71 3.66 1.95 1.67 >9 7.87 7.19 6.56 4.09

MAD*100 0 4.95 0.45 6.88 7.14 7.08 7.68 6.76 3.76 1.77 1.81 0.71 8.3 6.24 5.42 3.75

Small sample size

When the sample size is reduced substantially, the results shown in table 5.21

and figure 5.17 emerge. It can be observed that also in this scenario, the results

exhibit strong similarities to the basic scenario. Although the differences between

the methods are markedly more distinct and the variance on average higher, the

relative ranking is almost unchanged.

When it comes to the results of the prediction of out-of-sample data(displayed in

figure 5.18 and table 5.22), the performance differences are also more pronounced.

Methods prone to overfitting, but also PCRT, are not able to keep the gap as

small as in the basic scenario.

Despite their poor predictive power in-sample (compared to the Lasso and Elastic

Net), methods such as the FarLasso, PCovR and the FarAdaLasso achieve a

reasonable accuracy out-of-sample, and rank only slightly behind the variable

shrinkage techniques. Their variance is, however, significantly larger.
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Figure 5.18: Results small sample scenario (RM): Out-of-sample.
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Table 5.22: Simulation results: Small sample size scenario out-of-sample
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Mean 1.18 1.09 1.18 1.07 1.07 1.05 1.08 1.13 1.08 1.13 1.03 >9 1.05 1.03 1.06 1.01

Median 1.18 1.09 1.18 1.06 1.07 1.05 1.07 1.13 1.08 1.13 1.02 1.16 1.05 1.02 1.05 1

STD*100 6.44 3.86 6.14 3.06 3.08 3.01 3.09 5.46 4.16 4.3 2.15 >9 3.07 2.4 3.02 1.24

MAD*100 6.72 3.32 6.64 3.4 3.32 3.17 3.44 5.77 4.51 4.26 2.26 6.42 3.52 2.32 3.42 0

School factor

The results emerging under the school factor scenario are almost identical to the

ones under the basic scenario. Their presentation is hence omitted.

Noisy regressors

Figure 5.19 and table 5.23 show the results for the noisy regressors scenario. In

terms of training data, they qualitatively display similar patterns as observed in

the basic scenario. Noticeable differences to the basic scneario concern PCovR,

whose performance is less variable in this scenario and more similar to the one

of AdaLasso. A second interesting observation is found for FarIpfBar: While

the method usually performs like OLS, the results indicate deviations from this

behavior in some of the replications, leading to an unusually high variance. Also

the Elastic Net is substantially more variant under this scenario, whereas the Lasso

shows a robust performance.
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Figure 5.19: Results noisy regressors scenario (RM): In-sample.
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Table 5.23: Simulation results: Noisy regressors scenario in-sample
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Mean 1 1.11 1.01 1.24 1.23 1.12 1.19 1.18 1.08 1.06 1.03 1.13 1.1 1.11 1.14 1.07

Median 1 1.1 1 1.24 1.23 1.12 1.19 1.18 1.07 1.06 1.03 1 1.1 1.11 1.14 1.08

STD*100 0 2.31 1.54 4.01 3.9 2.72 3.3 2.56 1.4 1.02 0.63 >9 2.34 3.66 2.58 2.31

MAD*100 0 2.19 0.45 3.71 3.89 2.83 3.35 2.54 1.42 0.95 0.64 0.02 1.95 4.09 2.26 1.85

The results out-of-sample are displayed in figure 5.20 and table 5.24. The good

predictive capability of shrinkage methods, especially the Lasso and Elastic Net,

becomes markedly evident once more. The two methods perform best in all

four performance measures. However, the performance improvement is small in

comparison to the other methods. One exception is PCR with component selection

by t-values, which exhibits a large variance and a relatively large performance gap.

Since the median and the absolute deviation measures are more favorable, it seems

as if this method is affected by bad models in single replications.

Table 5.24: Simulation results: Noisy regressors scenario out-of-sample
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Mean 1.07 1.05 1.08 1.06 1.05 1.04 1.07 1.1 1.05 1.07 1.02 1.15 1.04 1.03 1.05 1.02

Median 1.06 1.04 1.07 1.05 1.04 1.04 1.07 1.09 1.05 1.06 1.02 1.07 1.03 1.03 1.04 1.02

STD*100 4.33 3.43 4.69 4.15 4.09 3.15 3.86 5.54 3.38 3.58 2.17 >9 3.07 2.64 3.08 2.14

MAD*100 3.62 3.34 3.6 4.18 3.61 2.87 4.19 4.5 3.96 3.63 2.05 3.77 2.73 2.7 2.7 1.86
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Figure 5.20: Results noisy regressors scenario (RM): Out-of-sample.
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

0

6

12

18

24

30

O
L

S

Fa
rP

fB
ar

Fa
rI

pf
B

ar

Fa
rP

fB
ar

M
1

Fa
rI

pf
B

ar
M

1

Fa
rL

as
so

P
C

R
M

1

P
C

R
T

F
ST

P

B
ST

P

L
as

so
C

V

P
L

SC
V

P
C

ov
R

A
da

L
as

so

Fa
rA

da
L

as
so

 

E
la

N
et

M
SE

 p
er

ce
nt

ag
e 

de
vi

at
io

n

High uniqueness

Table 5.25: Simulation results: High uniqueness scenario in-sample
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Mean 1 1.23 1 1.78 1.77 1.24 1.36 1.19 1.07 1.06 1.05 >9 1.06 1.07 1.25 1.05

Median 1 1.22 1 1.77 1.76 1.23 1.36 1.18 1.07 1.06 1.05 1 1.06 1.06 1.24 1.04

STD*100 0 4.38 0.44 6.83 6.77 4.66 5.61 3.04 1.17 1.07 0.89 >9 2.31 2.73 4.65 1.27

MAD*100 0 3.97 0.3 6.08 6.3 4.36 5.9 2.69 1.13 1.02 0.92 0.02 2.43 2.54 4.39 0.45

The results in the high uniqueness scenario are depicted for training data in figure

5.21 and table 5.25. Clearly, differences in performance are more pronounced

than in the basic scenario. Particularly far off are the two Factor Regression

methods which base the selection of factors on the Kaiser-Criterion. They even

perform worse than the outlier-affected results of PLS. Arguments for the observed

problems in such a data structure were given in the latent variable model section

of this scenario and apply equally well here.

The results of the remaining methods are, on the contrary, less affected by low

correlations between the variables since their results are similar to the ones observed

in the basic scenario. One exception is PCovR which is among the best methods

in this scenario and, from the viewpoint of the mean squared error, almost on the

same level as the Elastic Net or the Lasso.

The results out-of-sample (shown in figure 5.22 and table 5.26) emphasize the
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Figure 5.21: Results high uniqueness scenario (RM): In-sample.
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Figure 5.22: Results high uniqueness scenario (RM): Out-of-sample.
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problems that can occur when using Factor Regression methods. Except for PCovR

and FarIpfBar they even perform worse out-of-sample than OLS. One derivation

is that a high share of uniqueness appears to affect Principal Factors as a factor

extraction method. However, the PCR methods are also affected and unable to

perform better than OLS on average. Of the three variable shrinkage methods,

the Lasso performs best both in terms of mean squared error and variance. Also

the Adaptive Lasso has a low error, but, similar to the other cohorts, the variation

in performance is more volatile.
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Table 5.26: Simulation results: High uniqueness scenario out-of-sample
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Mean 1.05 1.15 1.05 1.47 1.47 1.15 1.21 1.14 1.04 1.04 1.01 >9 1.05 1.02 1.16 1.02

Median 1.04 1.14 1.05 1.46 1.45 1.15 1.21 1.14 1.04 1.04 1.01 1.05 1.04 1.01 1.15 1.01

STD*100 3.57 6.86 3.57 >9 >9 6.93 >9 6.7 2.91 2.75 1.26 >9 3.35 2.38 7.04 1.88

MAD*100 3.96 6.25 4.18 >9 >9 6.38 >9 7.6 3.06 2.56 0.86 5.25 3.46 2.21 6.2 1.42

5.7 Conclusion

This section sums up the main insights of the simulation study, in which the

candidate methods and their model selection features are compared to each other

in different scenarios concerning their explanatory/predictive capabilities.

A central result is the performance dependence on the underlying specification.

Index building models generally fare better under the latent variable model than

under regression model specification. Although there are (scenario-)dependent

exceptions and the performance is not substantially worse compared to regression

methods, this result indicates that the assumption about the DGP can be crucial.

Results from the latent variable model:

OLS as the baseline approach shows the expected behavior of the best fit in-sample

and tendencies of overfitting in out-of-sample data. The latter disadvantage is

exacerbated in small training samples. Exceptions occur in the dispersed load-

ings scenario and the high uniqueness scenario, in which other methods, due to

underfitting, perform worse out-of-sample. FarIpfBar always performs similar to

OLS, implying that hardly any dimensional reduction takes place when Iterated

Principal Factors is used as factor extraction method. Also, the model generated

by PLS is close to OLS, when the outliers of this method are ignored, i.e. when

the median and the mean absolute deviation instead of the mean and variance are

considered. Generally, none of the three methods seem suitable for the pursued

goal in this thesis.

FarPfBar shows a different behavior and can be best compared with FarLasso, or

FarAdaLasso respectively, as these methods only differ in the additional shrinkage

step. In consequence, FarLasso and FarAdaLasso yield a slightly worse in-sample

fit but trump FarPfBar out-of-sample instead. Thus, they can be attributed a

higher generalizing ability. In general, their performance is sufficiently good and

stable across different scenarios, so the two procedures constitute a reasonable

compromise between fit and interpretation. Their differences in performance are



Chapter 5 Simulation 127

usually small. This stands in contrast to the relationship between Lasso and

AdaLasso when applied to the original variables: The latter method usually deliv-

ers less reliable predictions, while the Lasso is among the top performing methods

most of the time. Similarly good results are obtained by PCovR.

Index building methods that select factors based on the Kaiser-criterion perform

well if the data structure is one in which the factors or components with the largest

eigenvalues are the most relevant ones. When loadings are dispersed and many

factors become important, these methods fail. In such cases, selection methods

based on the p-value in regression yield a better performance. Moreover, when the

index creation is based on Factor Analysis, low correlation between the variables

is harmful, as the poor performance in the high uniqueness scenario indicates.

Concerning the stepwise approaches, there are hardly any differences between

backward or forward methods. Typically, backward stepwise selection has better

fit in-sample, while forward stepwise selection performs better out-of-sample. Both

methods perform mediocrely out-of-sample.

Among the regression methods based on Principal Component Analysis, it can be

observed that one often fares better using the Kaiser-criterion to select components

instead of t-/p-values. This holds for both training and test data. The dispersed

loadings scenario is the exception where this observation does not apply.

Within the set of regularization methods, the Elastic net shows a robustly good

performance. The Adaptive Lasso does not perform much worse, sometimes even

better, but its variance is notably higher. The Lasso tends to perform better

in-sample but steps behind the Elastic Net when it comes to prediction. In general,

however, both methods deliver a robust and reliable performance.

Results from the regression model:

General performance tendencies in the latent variable model are confirmed in

the regression model simulations. However, shrinkage methods, in particular the

Lasso and the Elastic Net, are constantly best-performing in this simulation. With

regards to out-of-sample performance the two methods share the top position, in

spite of the fact that their performance in-sample is quite good. It appears as if

the right degree of shrinkage is applied in these methods. Their performance is

robust even to small sample conditions.

The general observation that methods based on variables instead of indices fare

better in this simulation becomes clear when the out-of-sample performance of

forward stepwise selection is compared to the one of FarLasso or FarAdaLasso.

While the latter two dominate in the latent variable model specification, forward

stepwise selection gives a better fit in a number of scenarios under the regression

model. The second index-building method that delivered good results in the latent
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variable model, PCovR, can also not maintain the degree of supremacy as it suffers

from a highly unstable performance. The high uniqueness scenario constitutes the

only exception.

In sum, the results from the regression model do not exhibit significant changes

across the scenarios. The latent variable model specification shows more distinctly

where the potential weak points of the used methods lie.

The decision for a method based solely on performance would arrive at the Elastic

Net or the Lasso. Both methods yield stable and good results across specifications

and scenarios. The drawback is the aggravated interpretability of single variables in

the context of latent variables, which is why index-building methods, in particular

those based on Factor Regression, have a head start. Balancing the benefits of

a good model performance against interpretability is hence the key task in the

decision. The set of index-building methods is quickly narrowed down, as only two

methods within Factor Regression achieve reasonable results – the FarLasso and the

FarAdaLasso. PCovR performs well in the latent variable model specification, too,

but its high variance in the regression model simulations leads to its removal from

the short-list. Moreover, its constructs are expected to be more difficult to interpret

than the factors in FAR-methods. While FarLasso and the FarAdaLasso do not

perform as well in the regression model as they do in the latent variable model,

the latter model carries more importance for this work owing to its theoretical

foundation. Based on the simulation results and the aspects of interpretability,

both methods could be chosen since they combine reasonable predictive capability

with interpretable factors.

Yet, the decision is made in favor of the FarAdaLasso as it tends to engender models

that retain many factors with small coefficients lowering a model’s interpretability.

This behavior is believed to emerge as a byproduct of applying the same shrinkage

factor onto all factors. Since Factor Analysis is unsupervised, the factors exhibit

significant differences in their relevance for the outcome. However, the degree of

shrinkage is usually small because the Cp-statistic depends on the fit of the model.

This does not contradict the results of the simulation study, though. Despite being

included in the model, factors with small coefficients only have a small influence.

This observation is in line with the findings in the simulation, since the mean

squared error as the evaluation criterion does not punish the absolute number

of factors/variables in the model. One can, therefore, perhaps speak of visual

parsimony that the Lasso cannot deliver on such data. Provided one were willing

to ignore factors with small coefficients, similar results to the FarAdaLasso could

be attained. Using the FarAdaLasso, however, yields more compact models with

about the same degree of precision.
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Chapter 6

Empirical analysis

This section presents the results of the empirical analysis. Starting with general

information about the utilized data set and its structure, the steps to arrive at the

dependent variables are presented in detail. This part is followed by an overview

of the explanatory variables. The remainder of the chapter presents the results of

the empirical analysis and gives a conclusion.

6.1 Data

The analysis is based on data from the German Socio Economic Panel Study

(SOEP, v30) which is a representative panel survey of German households (Wagner

et al., 2007). Fundamental information about children and their individual school

success are gathered from the Youth Questionnaires of the years 2000-2013. These

are completed once by children from SOEP households when they are about 17

and ready to enter the SOEP themselves. The (retrospective) questionnaires ask

among others for information about the school career, particularly the school

type attended/attending and the last grades obtained. In addition, the data set

comprises unique identifiers that enable the researcher to link a child to its (social)

mother and/or its (social) father, provided that they are known and surveyed in

the SOEP. Given this information, parental data from the standard questionnaires

can be linked to the outcome.

In order to measure cognitive skills, data on test scores can be obtained from the

”COGDJ” data set. This is an addendum to the Youth Questionnaire and based

on a questionnaire containing a modified I-S-T 2000-test (Schupp and Hermann,

2009, p.2). First introduced in 2006, it contains test scores of the adolescents that

also answered the youth questionnaire from 2004 onward. Hence, the individual

test scores can be linked to the youth questionnaire data set and thereby to the
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parental data as well. Details on the procedures and tests underlying the COGDJ

data set are described in Schupp and Hermann (2009).

While the school leaving degree is measured one-time by definition, also the

cognitive skills test is conducted only once for an adolescent. Moreover, also the

grades are solely surveyed for a single, the most recent, point in time. Any here

proposed measure will hence be based on a cross section data set and thereby not

allow the consideration of fixed effects.

The matched data contain roughly 200-300 observations per year in the case of

school achievement indicators, the overall number of cases for test scores is lower

on grounds of the later survey start. Further, there is also a higher non-response

rate which reduces the number of observations on a yearly basis such that there

remain about 150-250 observations per year.

6.1.1 Specifications

There are some caveats with the treatment of the explanatory parental data,

because the outcome is measured only once. One relates to the question of how to

link parental data to the child’s outcome: Because the SOEP is an annual survey,

parental data are typically available for multiple years before the child’s school

outcome is measured. It is not immediately clear how to prioritize the single bits of

information from different years. Another point concerns the meaning of parental

characteristics in the context of this framework: They are regarded as expressions

of certain facets of family background or milieus. But as society changes, these

facets and also their relations to the parental characteristics may change, too.

Over a time span of 13 years, such developments cannot be excluded and may lead

to misleading results. These two points are addressed in the following, starting

with the first one.

In contrast to the survey about the school achievement or the test scores, parents

receive a survey to answer every year. Despite this fact, not all characteristics are

surveyed yearly since questionnaires change. There are some variables which are

surveyed periodically but not necessarily annually, for instance every two years,

and there are other variables which are irregularly surveyed. Table 6.1 shows an

example of such a data structure. In this illustration, the census of Variable 1 is of

annual nature, Variable 2 is periodically surveyed, but not annually, and Variable

3 is irregularly surveyed.

If a survey item was asked more than once, like Variable 1 and 2, there are data

available for the same characteristics in different years. Hence, this information has
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Table 6.1: Visual example for data structure

Year t t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9

Outcome X

Variable 1 X X X X X X X X X

Variable 2 X X X X

Variable 3 X

X: Occurs in survey for the particular year

to be subordinated or condensed in some way in order to relate to the outcome’s

single data point. How this is done optimally depends on the variable. Personality

traits, for example, are considered stable and any year of measurement could be

used, whereas income varies more strongly such that an average value could be

deployed.

If a variable is collected irregularly, like Variable 3, a different issue emerges: Since

the outcome’s time of measurement varies depending on a child’s birth year, it is

not possible to set up a correspondence between the time of measurement of the

parental variable and the age of all children in the sample. What would happen if

such a correspondence were not required? The implication for a given parental

characteristic could be that it is measured at the child’s age of 7 for some children

but at the age of 15 for others. The information would all be treated the same,

although its meaning might depend on the child’s age. Hence, it is sensible to

demand that the timing of measurement should correspond to a certain age of a

child or be in bounds of a certain age range at least.

An approach to solve this problem will be suggested after a second data issue has

been highlighted. Up to now, the status is that one yields either no correspondence

for irregularly surveyed variables or numerous missing values – unless they are

removed from the set of explanatory variables. A related point concerns the

meaning of character traits over time. As society changes, time spent on activities

and attitudes are likely to change in social milieus. Characteristics that are an

expression of an important facet in early survey years, might not be linked to this

facet in later years. Moreover, also the facets themselves may change as society

develops. Pooling the data over 13 years would assume constancy of these relations

over time.

In an attempt to solve the data-related and theoretical issues, the data set is

split into several ”cohorts” which are analyzed separately. A cohort has a special

meaning here, for it encompasses several adjacent birth years to ensure having

a sufficient number of observations. These cohorts are created according to the

demarcation scheme displayed in table 6.2.
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Table 6.2: Cohort scheme

Survey Year Cohort Comprised Ages

Dependent Variable Grades Test scores Grades Test scores

2000 1 16, 17, 18

2001 1 17, 18, 19

2002 1 17, 18, 19

2003 2 16, 17, 18

2004 2 16, 17

2005 2 16, 17, 18

2006 3 1 17 17, 18, 19

2007 3 1 17 17

2008 3 1 17 17

2009 3 2 17, 18 17

2010 4 2 17 17

2011 4 2 17 17

2012 4 2 17 17

2013 4 2 17 17

The selected time span of at most four years reduces the risk of evoking problems

related to changing meanings of characteristics. Moreover, irregularly surveyed

parental characteristics can now be linked to certain cohorts because the ad-

dressed time discrepancy has been reduced. In consequence, however, the sets

of regarded variables differ across the cohorts which limits the comparability of

cohort analyses.

What remains to be discussed is at which child’s age the measurement of parental

characteristics takes place. The literature emphasizes the importance of the first

years of a child, comp. e.g. (Cunha and Heckman, 2007, p. 33), but there is

a significant trade-off with the number of observations. On grounds of panel

mortality, the sample size decreases the further one goes back in the past. In

addition, the gathering of many interesting parental characteristics has only started

recently. On the other side of this range, the Youth Questionnaire is filled in when

the child is 17. This age, however, cannot be the reference age for every child since

some have already graduated from school at the age of 15 or 16. Using parental

characteristics that have been measured after the outcome measurement should be

abstained from for potential endogeneity reasons.

Based on these considerations, there remain two options. Either the parental

variables refer to the time of outcome measurement, i.e. when the child is 15, 16 or

17, or they refer to a specific age for all children in which case they would have to be

measured before the child turns 15. There are two arguments in favor of the latter



Chapter 6 Empirical analysis 133

option: One is that many school-related outcomes have been settled by the age

of 15, some pupils have already graduated or will graduate in the upcoming year.

Big leaps in both school type or grades rarely occur. Secondly, the parameters of

the suggested latent variable model are unlikely to change substantially within

a few years which offsets the potential advantage of the first option. Therefore,

the measurement of parental characteristics usually takes place when their child’s

age is in the window of 12 and 15 years. In some cases, where the traits can be

taken nearly constant, this window is opened somewhat further. In sum, variables

gathered at this age range are to explain the variation for outcomes measured at

the age of 15, 16 and 17 respectively.

The last point in this paragraph on data handling concerns the treatment of

different family backgrounds. A thorough approach to the topic would require

to exploit all available parent information. However, using data of both parents

from children with separated, divorced or unknown parents is problematic. This

problem and an attempt to deal with it is described in Boll and Hoffmann (2015)

for a similar data structure. Their approach is adapted here in a reduced form

and with a slight modification.

The fundamental idea is to analyze two kinds of samples: One in which partner

data are neglected, even if they were available, and another one that takes partner

information into account but thereby excludes all lone parents. A partner can

both be a married partner or a life partner. The first sample hence contains all

available parent-child pairs, while the second is a subset of the first and contains

all parent-partner-child triples. The procedure to implement this in the SOEP

data set is as follows:

The first step is to separately link the child’s data to the parental data once via

the mother’s id (Identification number) and once via the father’s id. This gives

two different samples. The parent whose id was used to establish the link between

the data is called ”reference parent”. For instance, when the child’s data are linked

via the mother’s id, the sample is called ”Sample with mother as reference parent”.

There is one additional requirement to be included the estimation sample which is

called ”Survey Restriction”: The reference parent was surveyed in the SOEP latest

from the child’s age 12 onwards. This number stems from the above discussion

on the time of data measurement. At the expense of not considering potential

partner data, the resulting two samples can include children with lone parents.

In a second step, all children are regarded whose reference parents are in stable

partnerships while the child is between 12 and 15 years old. The partner does

not have to be the other biological parent but this is most often the case. The

mentioned Survey Restriction is also imposed on the partner in these samples.

Doing all that, four samples emerge in total. Table 6.3 visualizes the previous
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discussion. It shows all possible combinations of reference parents (row 1) and

partner context (row 2). As an example, consider the setting in which the mother

is the reference parent and partner data are disregarded. This sample consists of

children whose mothers either have no partner (1) or have a partner who is not

the child’s father (2) or live with the child’s father (3). When partner data are

regarded, only the latter two (2+3) options remain. As the classic family forms the

majority of families, there is a considerable overlap between the two samples with

partner data. In general, the added value of reference-parent separated analyses is

low, in particular on the father’s side for which the number of cases is lower. The

analysis in this thesis therefore focuses on the case in which the mother is defined

as the reference parent and omit the father’s samples.

Table 6.3: Overview of sample specifications

Mother Father

No Partner (1) Partner (2) Father (3) Mother (4) Partner (5) No Partner (6)

Sample without partner data, reference parent mother: (1+2+3)

Sample without partner data, reference parent father: (4+5+6)

Sample with partner data, reference parent mother: (2+3)

Sample with partner data, reference parent father: (4+5)

6.1.2 Dependent variables

Referring to the discussion in the introduction on measuring human capital, it

was noted that the choice between a school-related measure and one based on

cognitive skills depends on four factors: What one’s expectations are about the

way human capital works, the context and aim of the analysis, the heterogeneity

in the sample and data availability. Data availability has already been addressed

in favor of a school-related measure because there are more observations available.

The degree of heterogeneity is more difficult to judge. Since the analysis deals with

pupils at German schools only, potential quality differences will not be as large as

with international data. Nevertheless, school quality might still be heterogeneous

enough (Anger et al., 2015) to justify using cognitive skills as an alternative measure

of success. With regard to the effect channel of human capital, there are also

some reasons for not ignoring them, provided that one does not believe Spence’s

signaling theory Spence (1973) to be the answer to everything. Cognitive skills

can, for instance, be important in application processes which include intelligence

tests. In sum, there are arguments for both measures such that a decision for one

measure would restrict the analysis unnecessarily. A comparison between the two
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measures could, by contrast, even yield some insights. Under the premise that test

scores more strongly reflect innate ability, parental variables are expected to have a

higher influence on the school-related measure. In line with the goals of this thesis,

the focus should lie on measures of crystallized intelligence since they are supposed

to be determined by environmental factors rather than by nature. Yet, owing

to the larger number of cases and the single country analysis, the school-related

measures are considered more important, while cognitive skills are deemed as a

robustness check.

The endogenous variable for the school related measure is based on information

about the latest grades in the child’s main subjects, i.e. German, Mathematics

and the first foreign language (mostly English). The adolescent states these when

he or she turns 17, but some individuals left school at the age of 15 or 16. Hence,

the age of grade measurement will differ by the graduation type. All grades are,

however, measured while the individuals are attending a secondary school. Grades

are typically integer values measured on a scale from 1 to 6, where 1 denotes the

best and 6 the worst grade. Sometimes the grades come on a different integer scale

ranging from the best grade 15 to the worst 0, which corresponds to the 1 to 6

scale, but with finer distinctions and in reversed order. Accordingly, the scales can

be united by appropriate scaling (that is half point steps on a 1 to 6 scale).

Grades are still not readily comparable. This is because there are three different

secondary school types in Germany which differ not only in their duration but

also in their grade requirements. The highest standards are found in the upper

track secondary school (Gymnasium, short: UTSS), the lowest in the lower track

secondary school (Hauptschule, short: LTSS). In between the two is the middle

track secondary school (Realschule, short: MTSS). To obtain a measure that can

be compared across school types, differences due to valuation standards have to be

taken account of. However, there is no universal transformation scheme to achieve

this and only approximations exist. Leaving out finer distinctions in grades, the

following table depicts the transformation scheme employed to obtain a comparable

measure, denoted as ”Unified scale”.

Table 6.4: Transformation scheme for grades

Grade

School type: UTSS 1 2 3 4 5 6

MTSS 1 2 3 4 5 6

LTSS 1 2 3 4 5 6

Unified scale: 1 2 3 4 5 6 7 8 9

This transformation scheme is derived from the Hamburg Stadtteilschule grade

transformation scheme (according to Hamburger Senat, 2011) and is read as
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follows: If a pupil achieved the best grade, that is a 1, in a subject at a LTSS, the

corresponding grade at a UTSS in that subject would be defined as a 4. If the

same pupil achieved a 5, the corresponding grade is worse than the worst grade on

the UTSS, which is the reason for extending the scale up to the value of 9.

Having rescaled the grades, the next step is to invert the unified scale, such that

favorable values are numerically larger. As the requirements to achieve a certain

grade differ not only by school type but also across schools and classes, the grades

should be standardized on classroom level. Through data limitations, however, a

sufficient number of cases is first available on federal state level. Standardization

on this level can still be justified by the fact that education policy differs between

federal states which may result in different requirements. Observed differences in

mean grade values strengthen this notion. Standardization at federal state level is

done for each subject separately and data from all available survey years are used.

The average of the three standardized grades defines the final measure for school

achievement.

There are some assumptions to this generation process. A basic one, underlying the

calculations, is that grades are metrically scaled implying equally large distances

between the grades. However, grades are on an ordinal scale so treating them as

metric is only an approximation. Yet, such a treatment is not uncommon when

thinking of the calculation of mean grades. Moreover, this is probably only a minor

imprecision in comparison to the subjective character of grades in general.

One might further argue that any transformation scheme, although required to

compare grades between school types, is somewhat arbitrary. If one does not want

to use such a scheme, only the type of graduation or the years of schooling remain

as measures of school achievement. In contrast to grades, however, they have two

weighty disadvantages: Substantial heterogeneity within a type of school cannot be

taken account of. Furthermore, the measures exclude the possibility for the best

pupils on a lower school type to be better than the worst ones on the next better

school type. Graduation-based measures simply compress any variation to three

categories. Signaling theory and the argument on formal institutional requirements

speak in favor of the type of graduation. However, the grade point average measure

contains the type of graduation implicitly as a level shifter. On account of these

arguments, the grade-based measure is maintained and the transformation scheme’s

robustness is examined. One way to analyze the impact of assuming such a scheme

is to use a different one and evaluate how strongly this affects the results. A

robustness check is based on the following transformation scheme, where the

difference between LTSS and MTSS has decreased by one grade:

The second robustness check is based on the test scores. The cognitive tests
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Table 6.5: Alternative transformation scheme for grades

Grade

School type: UTSS 1 2 3 4 5 6

MTSS 1 2 3 4 5 6

LTSS 1 2 3 4 5 6

Unified scale: 1 2 3 4 5 6 7 8

encompass three categories with twenty tasks each. These categories are analogy

tasks which are language related, insertion of correct arithmetic operators and

finding figures which logically continue the displayed order. According to Dahmann

(2015, p. 13) the first two tests record crystallized intelligence because they refer

to learned competences. The third test, on the other hand, gives an indication

of fluid intelligence. A sum index called ”deductive thinking” is created as the

number of right answers in the first two categories.

All three dependent variables exhibit characteristics of a bell-shaped curve, as can

be observed in the following diagram:

Figure 6.1: Distributions of endogenous variables
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6.1.3 Explanatory variables

This subsection is dedicated to a description of the explanatory variables. If not

stated otherwise, they refer to a parent of a child. With many characteristics

available, the description proceeds in correspondence to the grouping of parental

characteristics in chapter 2. But not all variables should be used for each cohort

analysis. For reasons like irregular questionnaires or a high non-response rate,

missing values arise which decrease the available number of cases for an analysis.

Therefore, there is often a trade-off between information gains from additional
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samples and the information that an additional variable carries. In order to have a

sensible balance, the available number of cases was thus checked (cohort-wise) prior

to the analyses. If the inclusion of a variable led to a decline in observations of

roughly more than 3-5 %, the variable was disregarded. This decision was made on

the basis of two indicators. One was the count of available observations. However,

missing values rarely occur truly randomly, instead the ”missingness” has patterns

across variables. Thus, a second check was done for each variable conditionally on

the inclusion of the other variables.

A detailed tabular overview on all variables along with the information for which

cohort a variable is used is provided in the appendix (Table 8.1 - Table 8.9).

Personality Traits

Starting with personality traits, the first challenge is to capture them, because

these traits are latent. They can hence only be approached indirectly, e.g. through

observed behavior or from answers to adequate questionnaires. For the two con-

cepts discussed in the theory section, the Big-5 factors and the locus of control, the

SOEP provides statements (items) in the questionnaires to which the respondent

can agree (or disagree) on Likert scales. Since one item is usually not considered

as a reliable enough indicator of a personality trait, several items per trait are

required to be answered. In the case of the Big-5 indicators, for instance, there are

fifteen statements in the SOEP, three for each trait. These fifteen items are already

a significant reduction from the originally suggested 240 items. The concept of

locus of control is covered by nine to ten questions relating to different facets of

control orientation.

How this information is handled has to be discussed at this point. Generally, there

are two options: The first is to preprocess this information in a way that obtains

the ”correct” number of personality dimensions and use these dimensions as input

variables. For example, reducing the fifteen statements to five dimensions would

be the way to go for the Big-5 indicators. The second option is to pass on any

preprocessing and use the statements directly as explanatory variables.

The advantage of the latter option is that it allows for individual links to the set of

other characteristics. That means each item can have an idiosyncratic relationship

to the other input variables as well as the outcome. The less correlated the items

are the stronger their idiosyncrasy would be in which case any preprocessing would

run a risk of discarding possibly interesting information. On the other hand, a

single statement is usually not conclusive enough about a personality trait. It will

therefore be very difficult to grasp its meaning as an input variable, even more so

if the statements belonging to a specific trait exhibit different associations to the
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outcome. The first way, i.e. preprocessing, is for these reasons considered more

closely related to the theoretical foundation of this work and therefore chosen. The

validity of the interpretation in the empirical analyses depends, however, on the

manner the preprocessing is conducted.

To obtain surrogate variables for the Big-5 traits based on the fifteen available

items, two procedures have been suggested in the literature. Wichert and Pohlmeier

(2010, p. 9ff.) suggest an equally weighted average of the statements belonging to

a trait. Dehne and Schupp (2007) use Factor Analysis to determine the weights.

The idea of using Factor Analysis instead of simple averages stems from the notion

that personality dimensions are latent and can only be noisily measured. Cate-

gorical scaling of the indicators exacerbates the noise. According to Piatek and

Pinger (2010, 20ff.), using Factor Analysis models can reduce measurement error

in comparison to simple indexing with equal weights. In the analyses by Dehne

and Schupp, items designed to belong to a certain factor (trait) receive the highest

weight in the respective linear combination. Each Big-5 trait emerges as a separate

factor and the individual’s propensity to a factor is calculated as the weighted

linear combination of all items.

Piatek and Pinger (2010) proceed similarly as Dehne and Schupp for items con-

cerning the locus of control. In attempt to obtain a measure for the locus of

control, Caliendo et al. (2015) also use Factor Analysis to determine which items

are correlated, and compute average values based on that.

In this work variants of the factor-analysis weighted approach described by Dehne

and Schupp are applied. Given the description in their paper, it was, however, not

possible to reproduce the results using Stata 11.2. There might be some confusion

about the terminology, but presumably there are also some inaccuracies. It is not

obvious whether the authors applied a PCA or a Factor Analysis with Principal

Component Factors as extraction method. Moreover, the coefficients for the linear

combinations that are noted in the appendix did not lead to uncorrelated Big-5

dimensions in the data at hand. Uncorrelated dimensions by a linear combination

can only be obtained from an unrotated PCA solution, but the stated solution

is Varimax-rotated. Having tested several alternatives, the following procedure

seemed to come closest to the results by Dehne and Schupp: Firstly, a Factor

Analysis with Principal Component Factors is applied, then factors with a minimum

eigenvalue of 1 are selected. Subsequently, the loading matrix undergoes a Varimax-

rotation and the Big-5 traits are predicted using the regression scoring method.

This approach is separately conducted on the overall sample, for each available

survey year (2005, 2009, 2013). As the factor loadings are highly similar in each

year of analysis, so are the resulting constructs. Their meaning corresponds to

the postulated characteristics, i.e. high values on the openness variable indicate



Chapter 6 Empirical analysis 140

an individual who is open to new experiences, those with high values on the

neuroticism construct tend to be emotionally unstable.

The same approach was initially applied on the items for the locus of control.

Although being a unidimensional concept, two factors emerged: One indicating a

high external locus of control, the second a high internal locus of control. Piatek

and Pinger (2010) also observed this and decided to use only the first factor. In

this work, the solution to this problem is to extract the factors by the Principal

Factors method instead of the Principal Component Factors method. This yields

a single dimension in all survey years. The resulting construct correlates positively

with variables indicating a high internal locus of control and is hence interpreted

as that. Also for this measure, the procedure is applied for each survey year

separately on the complete SOEP sample.

Attitudes

Attitudes comprise various topics. There are time preferences, risk preferences,

attitudes towards reciprocity and trust to other people as well as importance

indicators. Both the first three self-reports and subjective degree of importance

are inquired on Likert scales.24 Importance indicators, i.e. whether an individual

considers a certain aspect important for satisfaction, are derived from the work

by Kluckhohn and Strodtbeck (1961) and can be divided into attitudes towards

materialism, family life and altruism. Several sub items are contained in each

category, for example the category materialism contains the importance of being

able to afford things, income and work. Since these variables have clear interpreta-

tions, no preprocessing is performed here. Attitudes also cover interests here, for

instance the interest in politics, and memberships, such as in a labor union, an

environmental organization or a professional/occupational association.

Four indicators which capture dimensions of subjective well-being related to help-

lessness, future confidence, and isolation, are also included. Here, too, a Likert

scale with four items is used.

A topic that is related to education is the attitude towards further education.

It can range from disinterest to interest, but does not necessarily imply (non-)

participation. Nevertheless, this information may help to identify aspirations and

valuing of education.

24Time preferences: How would you describe yourself: Are you generally an impatient person, or
someone who always shows great patience?
Risk preferences: How do you see yourself: Are you generally a person who is fully prepared to
take risks, or do you try to avoid taking risks?
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Time use indicators

The SOEP is also rich in time use indicators. Details on the single variables

used and their summary statistics can be found in the variable description in the

appendix. One point concerns the measurement of them. Most of the indicators

are inquired on Likert scales as frequencies of occurrence, ranging from 1 (never)

to 4 (weekly) or 5 (daily). They are rescaled by applying the scheme of Büchel and

Duncan (1998) who transform the statements in order to represent the number

of times per year.25 For some activities precise statements of the hours per day

spent in them are provided. This concerns the variables housework, child care,

leisure/hobbies and crafts/repairs/gardening. About 0.6 % of the individuals of

the sample stated to spend more than 20 hours on such activities. Such values

seem implausible as an average and cast doubt on the validity of those individual’s

statements, which is the reason they are removed from the sample.

As with the attitude towards further education, there are also time use indicators

on this topic. One can differentiate (non-)participation by reason or goal and

context. The context can be occupationally motivated which can differ between

retraining or rehabilitation in order to keep a job or qualify for a new one, and

advanced training, aimed at promotion. In a private context, further education is

broadly defined and can therefore cover numerous topics.

Demographics

Characteristics in this group cover remaining aspects of the family background. In

addition to general information such as parental age and education, operationalized

as years of education, the data set contains information about work related variables,

such as work hours and labor income. The actual number of weekly working hours

measures the degree of labor market activity. In comparison to the employment

status, they avoid creating too crude categories26 and in comparison to contract

hours includes self-employed parents. With regard to income, five measures are

included here: On household basis, post-government household income, income

from assets, income from private and public transfers. On individual basis, labor

income is used. Two versions of income variables are created in this dissertation:

One as an average over the child’s age of 13 to 15, the other as an average over

the age of 10 to 12. Not always are both timeframes used – in some samples the

second variation leads to high loss in observations and is therefore excluded.

25That is: Daily=365, Weekly=52, Monthly=12, Less than monthly=4, Never=0

26For example, 18 and 34 weekly working hours would fall in the same category although they
are qualitatively different.
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Occupational prestige, measured by the Wegener scale27, is not included because

the variable is only gathered for employed individuals. While labor income and

work hours can be set to zero in the case non-employment, a value of zero does

not make sense for occupational prestige. Including it as a regular input variable

would implicitly restrict the analyzed sample to children with employed parents.

Information about the family background in general is also included, e.g. the

number of children of a parent. Due to cultural differences, family backgrounds

are likely to differ across geographical areas, hence the analysis includes high-level

indicator variables for living in the north, west, east and south of Germany.

6.2 Results

The complete list of variables used for each cohort analysis split by category can

be found in the appendix.

The following algorithm calculates the results: Using Factor Analysis in which

Principal Factors as extraction method is applied, the complete set of factors is

obtained. To facilitate the interpretation of the factors, a Promax oblique rotation

with 1.0 ≤ g ≤ 1.5 follows, where g is chosen to yield a good interpretability of the

loading matrix. A value for g higher than 1.5 turned out to lead to factors that

are difficult to interpret as they rely on a single or very few variables only. After

the rotation, the factor scores based on the rotated factor model are estimated by

the Bartlett method. The resulting scores are standardized and used as regressors.

Their parameters are estimated by applying the Adaptive Lasso. Owing to the

standardization, the estimated parameters coincide with the factors’ economic

significance.

To evaluate the performance of the overall model, the coefficient of determination,

R2, is attached to the tables. In order to compare the approach with a model that

is based on parental education and income measures only, the Adaptive Lasso is

applied on the set of those variables. The corresponding coefficient of determination,

R2
EduInc, is also denoted and the percentage change to R2 calculated. The reason

for using the same statistical approach is that shrinkage induces estimation bias,

also on the factors left in the model, which reduces the coefficient of determination

in-sample. Using a standard linear regression model without regularization as

baseline would, therefore, render a comparison unfair.

27Occupations are ranked with regard to their social prestige on this scale and can be interpreted
as metric owing to open scales. Unlike the SIOPS scale, for instance, the Wegener scale is
adjusted for Germany (Boll, 2011, p. 71)
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With regards to the presentation of the results, some simplifications are undertaken.

To avoid a numeric inundation, neither the (rotated) loading matrices nor the

coefficient matrices connected to estimation of factor scores are displayed. However,

to find out about the exact contribution of a variable to a factor and, hence, its

association with the outcome, this information is required. This issue is deepened

on the basis of inspecting one factor more closely in the analysis of cohort 1. In this

context, the main reason for interpreting a factor based on the variables driving it

strongest is given. This information can be found in the loading matrix. Since a

typical loading matrix for a cohort fills several pages with numbers, its content

is practically reduced to the following information: When g > 1, i.e. an oblique

rotation is conducted, only variables with a loading > 0.15 are deemed relevant

for a factor. For g = 1, this absolute lower bound is set to 0.2. For the purpose

of readability, the following thresholds indicate the strength of a loading: + for

loadings bigger than +0.5, ◦ for loadings between +0.5 and +0.15 (+0.2), -◦ for

loadings in the range of −0.15 (−0.2) and −0.5 and lastly − for loadings more

negative than −0.5. The factors are numbered by their eigenvalue size from largest

to smallest, which highlights the importance of considering factors independent of

their eigenvalue size. Moreover, it facilitates the identification of factors with low

eigenvalues that sometimes tend to yield unstable results.

6.2.1 Dependent variable: School achievement

This section presents the results for the standardized averaged grade over the

subjects Math, German and the first foreign language.

Analysis of the first cohort without partner data:

Starting with the analysis of the first cohort, whose results are presented in table

6.6, a note concerns the low number of observations. Even though the choice of

variables was made carefully, this cohort is concerned by the entry of many new

households around the year 2000. Children of those households cannot be included

in this analysis because there is not sufficient retrospective information on the

parents available. A general approach to remedy the drawbacks of a low number of

cases would be to impute values. With the statistical method of choice, however,

the implementation of multiple imputation is problematic, which is for two reasons:

First, the results that Factor Analysis produces change with every imputation. If

the changes are severe enough, it becomes impossible to compare the factors and,

thus, also the predicted factor scores. The second reason is that the decomposition

of variance into actual variance and variance induced by imputation has not yet

been developed in the framework of estimation by the Adaptive Lasso.
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Table 6.6: Cohort 1 - Without partner data:

Variable Coefficient Description

Factor 33 .1832 ◦: Years of living with both parents. -◦: Importance of
having political influence, no interest in further education at
all.

Factor 21 .1726 +: Education. ◦: Membership in environmental association.

Factor 13 .1471 +: Frequency of cultural activities. ◦: Interest in politics,
participation in further education, importance of having
political influence, education.

Factor 1 .1137 +: Income (Household labor, Post government). ◦: Asset
income, education, individual labor income, frequency of
cultural activities, age, exercise.

Factor 6 -.0743 +: Importance of income and flat. ◦: Importance of own
mobility, health, freedom, job. -◦: Education

Factor 22 .0208 ◦: Honorary post, religious activities.

Factor 32 -.0206 ◦: Membership in labor union, membership in environmental
association.

Factor 8 .0007 +: Living in city.

Intercept - .1000

N=318 R2 =.2 Change: 67 % (R2
EduInc =.12).

On the upside, by considering the number of factors, it becomes apparent that the

chosen strategy to reduce dimensionality worked out for this data set. Another

positive aspect is that the results of this cohort show similarities to the other

cohorts. Thus, it appears that the consequences of a small number of observations

are not too severe.

The factor with the largest coefficient size in absolute terms, Factor 33, relates,

among others, to the years of living in a classic family, i.e. together with both

parents, during childhood. The more years, the more positive the outcome. This

factor appears in similar forms in other samples, too, but typically has a smaller

coefficient. The large coefficient for this cohort might be due to the propensity

to instability of factors with small eigenvalues. The low number of cases for this

analysis may exacerbate the issue.

Another important factor is Factor 21, which is principally driven by formal

education and less by holding a membership in an environmental association.

Since this factor behaves more normal, it serves as an example on whose basis

a technical interpretation of the parameter values is conducted. As the model is

linear, the interpretation of an increase in the dependent variable of .1726 units,

when the factor score increases by one unit, holds. Setting this into perspective,

the dependent variable ranges from about -3.5 to 2, while the factor scores (for this

particular factor) lie between -4 and 3.6. Given this information, the estimated
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coefficient may appear small even though it is one of the largest in the model. One

has to bear in mind, however, that the coefficient has been dragged towards zero

during the model selection process.

When the relation between a factor and the outcome is inspected, the coefficient

provides information about the association strength. To analyze the meaning of a

unit increase in the factor score, however, the relation between the factor and the

set of original variables becomes relevant. In this thesis, only the variables with the

largest loadings are used for interpretation. However, as each factor depends on

all variables in the original set, many possible circumstances could lead to a unit

change. To validate the interpretation, it is necessary to quantify the impact of an

isolated change in any predictor on the score. The exact calculation is involved

since it requires going backwards through the previous computational steps, which

are the standardization of factors, and the estimation of both factor scores and

loading matrix. Doing so suggests that only the variables with the largest loadings

on a factor are able to move the score substantially.

In this concrete example, one additional year of education raises the (standardized)

factor score by .29 points. With this information, its implicit association with the

outcome can be computed: It amounts to an increase of about .05 units. The

second largest loading is found for the indicator of holding a membership in an

environmental association. Holding one in comparison to not holding one leads

to a .79 points higher factor score that corresponds to a .13 higher value in the

dependent variable. On the other hand, a variable with an absolute loading below

the considered threshold, such as the binary coded measure for ”disinterest in

further education” with a loading of -.11, leads to a decrease in the factor score of

about .25. This corresponds to a comparably small impact of -.04 on the outcome.

One could relate all predictors to the outcome conditional on a factor by continuing

in this fashion. While this example shows on the one hand that every original

variable influences a factor, it also shows that the magnitude depends on the

loading size. For some applications, the total impact may be of interest. It is

obtained when the sum of the predictor’s influences over all retained factors is

computed. Such an explicit interpretation is not conducted in this thesis, however.

Owing to the premise of the underlying latent variable model, observed variables

are expressions of factors, so that their direct relation to the outcome is taken to

be uninformative for the purpose.

Factor 13 is associated with the frequency of undertaking cultural activities such

as concerts, theaters, lectures and also with political interest, formal education and

participation in further education. Cultural activities also appear in other samples

when it comes to relevant facets which are not primarily driven by formal education

or income. Factor 1 is also relevant and loads highly on household (labor) income.
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There is a frequent appearance of this factor in analyses disregarding partner data.

Although a potentially existing partner is not explicitly regarded in this analysis,

this factor depicts the existence of (an employed) one. The reason for this is that

the broad majority of partners in this sample is typically employed. A higher value

in the two household income types can hence also reflect the presence of a partner

in the household. In sum, the factor’s large, positive coefficient emerges from a

mixture of higher disposable income and a stable parental relationship.

The association for Factor 6 is slightly negative. It is driven by several importance

indicators, among which the items considering income and housing important for

satisfaction are most important. Since it is hard to argue why such an attitude

could be harmful, the factor’s negative link with education is likely to cause it.

In sum, the results for this cohort do not indicate important facets of family

background that are simultaneously unrelated to formal education, income or family

structure. Factor 13 comes closest to this by emphasizing societal participation,

indicated by frequent cultural activities and interest in politics. Partly, these

results may be ascribed to the small set of time use and attitude characteristics

on which the analysis bases. While this cohort analysis includes variables of

geographical location and city size, they turn out to be independent of relevant

facets of family background. This independence is a stable observation across the

remaining analyses. In this analysis, also the measurement variable for the internal

locus of control is unrelated to any relevant factor.

The number of cases is already low for the analysis without partner data, so an

analysis with partner data, which would lead to a further reduction, is omitted for

this cohort.

Analysis of the second cohort without partner data:

For the analysis of the second cohort, more variables and observations are accessible.

The results for the analysis without partner data are presented in table 6.7.

Factor 2 bundles correlating variation between labor and post-government income,

asset income, education and participation in further education as well as the child

living as few as possible years with a lone mother. Among the factors in the model,

this factor has the strongest association with the outcome. As in the first cohort,

an implicit driving force of this factor is the existence of an employed partner or

husband. A weaker influence on this factor is the mother’s propensity to acquire

education, which is reflected in the participation in further education but also in

the level of formal education.

Factor 14 is the factor with the second largest coefficient. It relates positively to

education-related variables (negatively to disinterest in further education) and

to variables relating to societal participation, such as interest in politics and
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memberships. Moreover, the factor is linked to an open character in the Big-5

sense. This factor hence depicts a well-educated mother who is interested and

engaged in society and open to learn something new. Another factor that hints at

the positive association of further education is Factor 5. Although it also lacks

independence of formal education, the factor principally describes educational

alienation depicted by the disinterest in further education. In addition, it points

at structural disadvantages of children whose parents immigrated.

A factor that is virtually independent of demographic characteristics is Factor 3

that loads highly on the five trust variables in the data set. This association hints

at a positive relation between mothers who hold an optimistic view of other people

and their child’s school success. This relation may be interpreted in the framework

of social capital theory. People who trust other people more/easier could have

more acquaintances which impact positively on social capital. Higher social capital

can be linked to a positive development of the child by the arguments given in the

theory section.

Contradictory statements can be observed for the variable measuring a household’s

income from private transfers. A negative link to the child’s school achievement

is implied by Factor 13, which also relates to a child growing up with separated

parents. The high loading on private transfers on this factor makes most sense,

when it is interpreted as child alimony payments. On the other hand, Factor 25 is

chiefly driven by private transfers, but is linked positively the outcome. There are

two possible approaches to an explanation of these results: One is to relate Factor

13 rather to the family structure than to the amount of income, and Factor 25 to

the income source alone which yields, ceteris paribus, positive effects. A second

one is to interpret the association of private transfers as non-linear. While there

is a baseline negative association that hints at a dearth of financial means, its

marginal negativity is decreasing. Stated differently, an additional Euro of private

transfers does not hurt as much as the Euro before.

Negative associations emerge through Factor 31 and Factor 9. The first mentioned

relates positively to the time spent on manual activities like garden work, housework

and repairs. From a perspective of a limited time budget, this could describe a

parent who frequently engages in such activities has little time and maybe also

little interest in education. In this case, the parent might not be not a role model

who encourages investments in education. Factor 9 is associated with mothers of

many children who specialized on housework and child-rearing instead of earning

income. Thus, this factor is essentially the opposite of Factor 1, which displays

a working mother with few children. Owing to a smaller coefficient Factor 1 is

judged less important, though. There may be several reasons for the negative

relation of Factor 9. One may refer to the division of time and monetary resources
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Table 6.7: Cohort 2 - Without partner data:

Variable Coefficient Description

Factor 2 .2330 +: Post-government income, household labor income. ◦:
Household asset income, education, labor income, general
participation in further education. -◦: Years of living with
mother alone.

Factor 14 .1700 ◦: General participation in further education, formal edu-
cation, frequency of cultural activities, interest in politics,
openness, membership in environmental association. -◦: Dis-
interest in further education.

Factor 5 -.1564 +: Migration background of father and mother. ◦: No interest
in further education at all. -◦: Education.

Factor 3 .1131 +: All five trust variables.

Factor 31 -.1054 ◦: Time spent on garden work and repairs.

Factor 9 .1024 −: Household income from public transfers, number of chil-
dren. -◦: Hours spent on child care/housework. +◦: Work
hours.

Factor 29 -.0641 ◦: Years of living together with other relatives.

Factor 22 .0541 ◦: Frequency of cultural activities, cinema visits.

Factor 25 .0418 ◦: Household income from private transfers.

Factor 13 -.0380 +: Years of living with the mother and her partner. ◦:
Household income from private transfers. -◦: Years of living
with both parents.

Factor 1 .0374 +: Labor income, hours of work. ◦: Education, household
labor income, membership in professional association. -◦:
Number of children, hours spent on child care/housework.

Factor 21 .0296 +: Years of living with the father alone.

Factor 10 .0262 −: Living in a middle-sized town.

Factor 28 -.0190 ◦: Extraversion.

Intercept -.0610

N=966 R2 =.14 Change: 75 % (R2
EduInc =.08).

when there are many children in the household. Although public transfers increase

with each additional child, the share of disposable income for each child typically

decreases. From the perspective of parental time on dedicated child care, a lower

share is inevitable. Another explanation attributes the observed relation to being

a consequence of self-selection. Mothers with worse chances on the job market

are more likely to specialize in child-rearing. Worse chances on the job market

might be due to insufficient education which in turn is negatively correlated with

the considered outcome. However, this factor does not load particularly highly on

education in any direction, making the first explanation more likely.

The last factor that carries importance for the pursued theory in this thesis is

Factor 22. It measures the frequency of both parents going to high cultural events

and pop culture ones such as cinema, pop concerts, disco and sports events. The



Chapter 6 Empirical analysis 149

coefficient size is comparably small, yet it confirms the tendency of Factor 14 that

societal participation, expressed by cultural activities, is related to the child’s

school achievement.

Variables of residence do not matter for any relevant factor, the same holds for some

leisure time use characteristics like exercising or socializing. A general drawback

of the model for this cohort is that it is unable to explain as much of the variation

in the dependent variable as the models for the other cohorts. Apart from chance

or unsuitable predictors, this could be attributed to stronger coefficient shrinkage.

On the other hand, the percentage gain in the explained variance compared to the

baseline model is still high.

Analysis of the second cohort with partner data:

Some of the previous results also emerge when partner data are regarded. A

difference in this analysis is the increased number of factors deemed as relevant.

Some of which, however, hardly contribute to explaining the outcome since their

coefficients are small. From the viewpoint of model sparsity, such a result indicates

a bad performance of the statistical procedure. The table of results is shown in

table 6.8.

Factor 1, the one with the highest importance, describes the expected relationship

between primary disparities and the outcome. It is a conglomerate of the (working)

partner’s income and both parents’ education. The importance of income is

strengthened by Factor 36, which indicates marginally increasing improvements in

the outcome induced by the partner’s labor income, and despite a small coefficient

also Factor 4. As in the previous analysis, there is a factor that relates to a parental

migration background and to low education. It is negatively linked to the outcome,

while Factor 7, related to trust variables, repeatedly exhibits a positive correlation.

It is striking that the trust variables solely refer to maternal trust; a similar factor,

relating to the partner’s trust variables, does not maintain a non-zero coefficient.

Factor 11 is of interest for this study since it relates solely to the propensity to

undertake further education. When further education is done of one’s own accord,

this can be interpreted as having aspirations and ambitions. The observation

holds for both parents and this factor loads neither highly on formal education nor

on income. Another factor, which is mostly independent of primary disparities,

is Factor 12. It measures the frequency of both parents’ church attendances

or other religious events. Although it is hard to argue that these attendances

affect the child directly, the activity can be viewed as a surrogate for a religious

family environment. In this case, there may be beneficial, rather traditional,

ethics or norms that correlate with having a belief. In other cohort analyses, this

factor is also connected to the frequency of exerting honorary posts, which can be
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Table 6.8: Cohort 2 - With partner data:

Variable Coefficient Description

Factor 1 .2092 +: Partner’s and household labor income, post-government
income. ◦: Education (both parents) and partner’s hours
work.

Factor 3 .1680 −: Migration background of father and mother. -◦: No
interest in further education at all. ◦: Education.

Factor 36 .1374 ◦: Partner’s income squared.

Factor 20 .1349 +: Partner’s interest in politics. ◦: Interest in politics, educa-
tion (both parents), partner’s time spent in local (political)
initiatives .

Factor 7 .1083 +: All five trust variables.

Factor 34 .0984 ◦: Frequency of cultural activities (both parents).

Factor 12 .0913 +: Frequency of religious activities.

Factor 11 .0776 +: General further education (both parents). -◦: No interest
in further education at all (both parents).

Factor 49 .0748 ◦: Education.

Factor 30 -.0710 ◦: Time spent on garden work (both parents), partner’s time
spent on repairing cars.

Factor 9 -.0648 +: Household income from public transfers, number of chil-
dren. -◦: Work hours.

Factor 27 -.0626 +: Death of father, years of living with other relatives.

Factor 4 .0460 +: Household asset income. ◦: Post-government income.

Factor 38 -.0449 +: Partner’s frequency of exerting honorary posts. ◦: Fre-
quency of exerting honorary posts.

Factor 57 -.0381 ◦: Approval of ”Caution When Dealing With Strangers”
(both parents).

Factor 37 .0293 ◦: Membership in a professional association (both parents).

Factor 8 .0163 +: Living in eastern Germany.

Factor 51 -.0155 No loading large enough.

Factor 53 -.0067 ◦: Sociability, extraversion.

Factor 22 .0042 +: Frequency of cinema visits (both parents). ◦: Frequency
of cultural activities.

Intercept -.0200

N=696 R2 =.18 Change: 63 % (R2
EduInc =.11).

interpreted in the environment of the religious community.

Factor 20 can be summarized as a facet of family background showing interest and

engagement in political issues, in particular that of the partner’s. This facet can be

interpreted as a surrogate for parents who have ambitions to shape the environment

according to their ideas. This ambitious attitude can also hold for the child’s

development and school success. Moreover, the facet could indicate knowledge of

developments in society, such that the importance of human capital for success in

life is well-known. Both points could result in an increased parental engagement
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in the child’s school matters, explaining the strong positive link. Factor 34 is

another factor virtually unrelated to formal education. It depicts active societal

participation and the possession of cultural capital by a high frequency of cultural

activities. As in the cohort analysis without partner data, a factor (Factor 30)

relating to manual activities in the household is identified. It has a negative link

to the outcome.

One general observation that traverses through these analyses is that factors related

to interests and activities most often load on both the mother’s and the father’s

variable. This observation likely reflects the consequences of assortative mating,

according to which similar characters are more likely to find together.

Summing up the results of this cohort, heterogeneity in family environments

which is not sufficiently captured by education and income is indicated. Markedly,

factors relating to maternal trust, participation in further education, but also

religiousness and cultural activities exhibit notable links. While factors related

to formal education and income continue to be most important, refinements are

discernible.

Analysis of the third cohort without partner data:

The results for the third cohort show some recurring patterns. However, by virtue

of a larger variable set, known factors change and additional factors emerge.

New to this cohort is that variables referring to the child’s age 10 to 12 are included.

This does not induce substantial changes as they typically constitute factors with

their equivalents for the age span 13-15. Thus, if there is no reason for doing

otherwise, the age indication for these variables is omitted.

Starting with the analysis that excludes partner data, the results shown in table

6.9 emerge. It is observable that the first factor carries the major importance.

Maternal formal education and household income drive this factor. As in the

previous analyses for samples without partner data, the latter variable hints at

the existence of an occupied partner in the household. Factor 32, related solely to

education, completes the influence of the benchmark variables. However, additional

primary disparities are prominent in this analysis. The large coefficient of Factor

25, solely driven by maternal age, suggests a positive relation of age to the child’s

school achievement. This relation can point towards the positive connection

between higher education and the age of giving birth on the one hand, but could

also depict routine and experience in raising children.

Factor 3 depicts a family background with many children and a high income of

public transfers. As in previous analyses, this facet has a strong negative link to

a child’s school achievement. A facet in which frequent attendance of cultural

events, including cinema (pop concerts, disco, sports events) visits are the norm is
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Table 6.9: Cohort 3 - Without partner data:

Variable Coefficient Description

Factor 1 .2117 +: Household labor income, post-government income (both
time periods). ◦: Education, household asset income (both
time periods).

Factor 36 .1440 ◦: Mindful diet, frequency of exercise, non-smoking.

Factor 35 -.1228 ◦: Years of living with father alone, years of living with other
relatives.

Factor 25 .1210 ◦: Mother’s age.

Factor 3 -.1134 +: Number of children, income from public transfers in both
time periods.

Factor 32 .1130 ◦: Education.

Factor 26 .1125 ◦: Frequency of cultural activities, cinema visits.

Factor 38 -.1057 ◦: Extraversion.

Factor 47 .0931 ◦: Household and post-government income when the child
was between 10 and 12 years old. -◦: Household and post-
government income when the child was between 13 and 15
years old.

Factor 8 .0825 +: Importance: Being politically engaged, interest in politics.
◦: Mindful diet.

Factor 31 .0743 ◦: Importance: To possess own house, time spent on garden
work and repairs.

Factor 18 -.0713 +: Years of living with mother and partner. -◦: Years of
living with both parents.

Factor 34 -.0693 ◦: Risk attitude, openness.

Factor 44 -.0685 -◦: Income squared.

Factor 23 .0666 +: Importance of a happy marriage and having kids. ◦:
Importance of being there for others.

Factor 41 -.0543 ◦: Neuroticism.

Factor 13 .0528 +: Living in the new part of town.

Factor 10 -.0525 +: Migration background of father and mother.

Factor 19 .0406 +: Household income from private transfers.

Factor 6 -.0185 +: Years of living with mother alone. −: Years of living with
both parents. ◦: Death of father. -◦: Importance of a happy
marriage.

Factor 16 .0129 +: Living in a city.

Intercept .0270

N=667 R2 =.22 Change: 22 % (R2
EduInc =.18).
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expressed by Factor 26. Factor 10, describing a parental migration background,

appears less relevant for this sample as a comparably smaller coefficient than in the

samples before is observed. A reason for this observation could be that the factor

does not depend as strongly on education as before. As a consequence, the strong

negative association in the samples before could be driven by lower education

rather than structural disadvantages related to the parental migration background.

Different cohort compositions, however, render a comparison speculative. Factor

19 loads solely on private transfers and is positively associated with the outcome

like it is in the second cohort. A contradiction to the results for the second cohort

is found for Factor 31, which has a moderately large positive coefficient. Although

unrelated to the importance indicator of possessing a house, the factor of spending

time on manual work on the house in the analysis of the second cohort has a

negative association.

Remaining factors with enhanced importance include Factor 36, which loads highly

on characteristics related to a health-oriented lifestyle as indicated by frequent

exercising and a considered diet. There being a large coefficient for this factor, it

carries some relevance and should be looked at closer. While literature emphasizes

the positive correlation of exercising and the internal locus of control (Cobb-Clark

et al., 2014), this factor does not connect the two. A health-conscious lifestyle may

still be connected to the desire of preserving physical capabilities and avoiding

diseases. As noted, the frequency of exercising has not influenced any relevant

factor in the older cohort analyses. The relevance gained in this cohort analysis

may be explained by societal changes in time use and attitudes.

A strong negative association can be found for a factor related to extraversion. The

negative association is unexpected since this Big-5 dimension could be associated

with sociability and thereby social capital. Another surprising observation is the

negative relation of Factor 34, which loads highly on the mother’s attitude towards

risk and her openness to new experiences. The last relevant factor that is not

linked to income or education is Factor 23 depicting a mother who values and

cares for a stable family life as expressed by deeming a happy marriage, having

kids and being there for others important. This factor shows a positive correlation

to the dependent variable. These results indicate that the outcome is positively

linked to maternal attitudes that are family-centered and traditional.

Owing to the increase in available variables, the ability to compare the results with

those of the older cohorts is limited. One observation, however, is that the amount

of explained variance is comparably high for this cohort. With few exceptions,

however, the results for factors that are based on variables which are also available

for previous cohorts are similar. For example, factors related to political interest
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and to cultural activity maintain their important role. Parental age and time

spent on manual work on the house, by contrast, do not play such a prominent

role or a different one in the older cohorts. New is a factor that depicts a healthy

or health-oriented lifestyle. Although this parameter has no substantial link to

education or income, it shows a positive connection to the outcome. A factor

related to further education, in particular occupational, has a parameter estimate

of zero and does, hence, not play any role for this cohort.

Analysis of the third cohort with partner data:

Table 6.10 presents the results of the analysis of the same cohort when partner data

are included. A notably sparser model emerges here and some factors appearing in

the older cohorts are either not retrieved by Factor Analysis or deemed unimportant

by Adaptive Lasso. Among the recurring ones are Factor 1, 4 and 22. Also Factor

9, related to parental age, and Factor 45, the caring factor, are known from

previous analyses. Factor 5 and 12 are notable, because they have a relatively high

importance and are not linked to education or income. Factor 5, which depicts

the degree of the partner’s involvement in housework and child care activities,

is negatively associated and Factor 12, interpreted as the social participation

factor, loads additionally on the partner’s exercising frequency as well as the

attendance of pop-culture events (cinema, pop concert, disco, sports event) and is

positively related to the outcome. Factor 23 features a facet of family background

in which none of the parents smokes and that is related to an introverted mother.

The non-smoking aspect could point at a health-conscious lifestyle. The factor

representing the frequency of attending religious events, indicating a religious

family background, has decreased importance for this cohort compared to cohort

2.

Analysis of the fourth cohort without partner data:

As the first cohort, also the analysis of the fourth one is limited by a low number

of cases. Nevertheless, the results resemble the ones of the older cohorts in that

similar factors are deemed as relevant. Changes occur with regard to income-

related factors. While the results of this cohort are shaped by numerous factors

relating to income, the otherwise present factor loading on a high amount of public

transfers and many children is not selected for this model.

Factor 2 and Factor 47 are recurring factors related mainly to demographic

influences such as income, education and family type. Also, Factor 4 and Factor

19 appeared negatively in previous cohort analyses. The negative association for

Factor 4 is, however, less severe than in the previous analyses. Factor 3, which

typically loads solely on maternal trust, covers more aspects in this model for it

additionally refers positively to the internal locus of control and future optimism
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Table 6.10: Cohort 3 - With partner data:

Variable Coefficient Description

Factor 22 .2086 +: Education (both parents).

Factor 1 .1984 +: Various income variables related to the partner’s labor
income (both time periods). ◦: Partner’s hours of work (both
time periods), education (both parents), partner’s interest
in politics.

Factor 9 .1250 +: Parental age.

Factor 5 -.1011 +: Partner’s hours of housework and child care. −: Partner’s
hours of work.

Factor 12 .0807 +: Frequency of cultural activities (both parents). ◦: Cinema
visits, partner’s exercising frequency.

Factor 4 -.0651 +: Number of children, income from public transfers in both
time periods

Factor 23 .0518 +: Non-smoking (both parents). -◦: Extraversion.

Factor 55 .0475 ◦: Cinema visits (both parents), partner’s time spent on
honorary posts.

Factor 45 .0339 +: Importance of being there for others (both parents). ◦:
Partner’s agreeableness.

Factor 3 .0264 +: Household asset income.

Factor 62 .0030 +: Death of father.

Factor 14 .0024 +: Frequency of religious activities (both parents). ◦: Part-
ner’s time spent on honorary posts.

Intercept .0690

N=532 R2 =.21 Change: 23 % (R2
EduInc =.17).

indicators. Its independence of income and education is preserved, though. Factors

displaying a politically interested background (Factor 24) and frequent cultural

activities (Factor 30) maintain their prominent role, which is indicated by a large

coefficient. However, both factors are also related to maternal education in this

cohort.

Analysis of the fourth cohort with partner data:

The results of the fourth cohort considering partner data are displayed in table

6.12. The observation of many factors with small coefficients indicates that the

AdaLasso’s factor selection has not eventuated in producing a sparse model here.

One of the causes may be the large number of available regressors for this cohort.

Since the SOEP started to gather more interesting variables over the years, a

variety of different aspects can be accessed in this analysis. Connected to the

increase in the number of factors is the rise in explained variance which jumps

from 16 % in the analysis without partner data to 25 % in this sample.

Starting the analysis with the most important factors, Factor 1 and 33 depict

the correlation patterns between the standard demographic indicators education
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Table 6.11: Cohort 4 - Without partner data:

Variable Coefficient Description

Factor 2 .2781 +: Household labor income, post-government income. ◦:
Education, frequency of eating out, age, household asset
income. -◦: Number of years of living with the mother alone.

Factor 47 .1358 +: Education.

Factor 30 .1026 +: Frequency of cultural activities. ◦: Frequency of excur-
sions, education, frequency of religious activities.

Factor 24 .1013 +: Importance of political engagement, interest in politics.
◦: Education, parental age.

Factor 3 .0902 +: All five trust variables. ◦: Internal locus of control, future
optimism.

Factor 17 .0777 +: Living in a city

Factor 43 .0741 ◦: Household income between the child’s age 10 to 12.

Factor 19 .0692 −: Migration background of father and mother. ◦: Educa-
tion.

Factor 5 .0396 +: Household asset income. ◦: Post-government income.

Factor 1 .0125 + Income, income squared, hours of work. ◦: Education,
interest in politics, membership in professional association.
-◦: Hours of childcare, hours of housework.

Factor 6 .0054 +: Years of living with both parents. ◦: Importance of
owning a house, non-smoking. -◦: Years of living with the
mother alone/mother with partner.

Factor 4 -.0033 +: Number of children, income from public transfers.

Factor 31 .0009 +: Non-smoking. -◦: Extraversion.

Intercept .2470

N=470 R2 =.16 Change: 0 % (R2
EduInc =.16).

and income and the outcome. The results reveal that Factor 11, indicating a

religious family background, once more plays an important role. In comparison to

the analysis without partner data in which it was merged in the activity factor,

the facet of a religious background appears on a separate factor in this analysis.

Also, Factor 4 reappears in a similar version as in the results for older cohorts. A

negative relation between a positive risk attitude of the mother and the outcome

is observed by considering the results for Factor 59. This observation corroborates

the results for cohort 3. The role of a high degree of future optimism on this factor

is more challenging to interpret, as it is contradictory to the positive association

observed in the analysis without partner data. With regards to a parental migration

background, the strong negative links in older cohorts cannot be confirmed in this

analysis. Although the coefficient is negative, it is comparably tiny.

The facet of a politically interested family background maintains its robust positive

association. It is found on two factors in this cohort analysis, Factor 12 and Factor

17. Considering both together, the economic relevance of this dimension is once
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Table 6.12: Cohort 4 - With partner data:

Variable Coefficient Description

Factor 1 .2208 +: Household labor income, post-government income. ◦:
Education (both parents).

Factor 33 .1970 +: Education (both parents).

Factor 11 .1269 +: Frequency of religious activities (both parents).

Factor 4 -.0901 +: Income from public transfers. ◦: Number of children.

Factor 59 -.0774 +: Risk attitude. ◦: Future optimism.

Factor 30 .0767 +: Frequency of cultural activities (both parents).

Factor 17 .0729 +: Interest in politics. ◦: Partner’s interest in politics,
importance of political engagement.

Factor 12 .0638 +: Importance of political engagement (partner only). ◦:
Importance of political engagement, partner’s engagement
in local initiatives, partner’s interest in politics.

Factor 32 .0576 +: Importance of possessing an own house (both parents).

Factor 26 -.0548 +: Frequency of neighborly help (both parents). ◦: Frequency
of meeting friends, relatives or neighbors.

Factor 16 -.0538 +: Partner’s joy of work, coping with the circumstances,
non-solitude.

Factor 15 .0433 +: Partner’s openness, partner’s curiosity.

Factor 62 -.0393 +: Partner’s conscientiousness.

Factor 27 .0319 +: Household income from private transfers.

Factor 29 .0293 +: Non-smoking (both parents).

Factor 46 .0285 ◦: Neuroticism (both parents), partner’s openness.

Factor 63 -.0271 +: Partner’s frequency of exerting honorary posts.

Factor 3 .0222 +: Trust variables.

Factor 10 -.0159 +: Migration background of father and mother.

Factor 24 .0132 +: Living in small town.

Factor 18 .0086 +: Partner puts importance on happy marriage, having kids
and being there for others.

Factor 5 .0074 +: Household asset income.

Factor 68 .0060 ◦: Post-government income when the child was between 10
and 12 years old.

Factor 70 .0044 ◦: Partner has a considered diet.

Factor 51 .0010 +: Membership in professional association. ◦: Future opti-
mism.

Intercept .3070

N=382 R2 =.25 Change: 47 % (R2
EduInc =.17).
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more attested. An interesting observation for this cohort is that neither education

nor income influences the two factors substantially.

One note concerns Factor 3, related to maternal trust variables, which shows

a substantially smaller coefficient than in the older cohorts. A similar decrease

can be observed for Factor 29, which is interpreted as holding a health-conscious

attitude. Special to the factor in this cohort is the restriction to non-smoking; the

variable referring to minding the diet does, despite its availability, not influence

this factor.

A factor in this analysis, which is not present in older cohorts, is Factor 26. It

describes a facet in which neighborly help and sociability are cared about. It is

negatively associated to the school achievement of the child. Such a factor can be

interpreted as having access to social capital, which lets the negative association

seem surprising. An attempt to interpret this is to differentiate the type of social

capital, which for this case can be viewed as limited to the close neighborhood,

relatives and friends. However, instead of people who are close to the family

anyway, it may rather be acquaintances located outside the daily life who transfer

educational stimuli. While this explanation excludes a positive association, it does

not take account of the negative association. One way to explain the negativity is

to assume that such activities have little educational value and a high frequency

of them leaves little time for more valuable activities.

An association, which is hard to explain, can be observed for Factor 16. It relates

the partner’s positive attitudes towards job and general circumstances negatively

to the school achievement. The partner’s urge for knowledge and new experiences,

depicted by Factor 15, on the other hand, exhibits a comparably small, but positive

association. One explanation refers to intergenerational transmission: The partner

may transmit this attitude to the child and trigger curiosity, which could lead to

an improved school achievement.

Before turning to the results of the robustness checks, it is worthwhile to examine

the properties of the method on this data set in more detail by analyzing the

relation between the actual and predicted dependent variable.

Diagnostics

This insertion deals with regression diagnostics. In spite of different models, the

diagnostics are highly similar for each cohort so they are merged for this particular

inspection. It is also sufficient to consider the samples without partner data, for

the changes induced by considering partner data are not discernible. Moreover,

the analyses are based on in-sample results, tacitly assuming that the results of

the simulation study in regard to a low risk of overfitting apply.
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Figure 6.2: Predicted vs. Actual
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Figure 6.3: Residual vs. Predicted
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In a first step, the match between the predicted dependent variable and the actual

values is examined. Figure 6.2 displays the plot for which the cohort results

have been merged. In addition to cloud of points, two lines are displayed: The

dotted one can be considered the optimal line on which all points would be located

if the model was perfectly accurate. The dashed line is the OLS-fitted line for

a regression of the predicted on the actual values. The difference in slope and

intercept between the two lines yields a quick impression of the performance. Since

the underlying models were subject to regularization, the slope of the dashed line

is likely smaller than it would be under OLS estimation.

By analyzing the plot, it is also visible that the model is unable to explain ”extreme”

values, but instead leads to a condensed point cloud around the center where most

of the observations are located. The scaling of the axes has been chosen equally

large, but while the actual values range over the complete interval, the predicted

ones lie between 1 and -2, missing both the upper and lower end of the school

achievement variable.

In this context, one can also consider the distribution of the residuals (defined

as the actual value minus the predicted value) over the predicted values. This

relation is plotted in figure 6.3, again including the line of best fit. Since it is

difficult to display a point cloud, the graphical impression of increasingly negative

residuals for larger predicted values is deceiving. Moreover, neither non-linearity

nor heteroscedastic tendencies can be discerned in this relation.
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6.2.2 Robustness check I: School achievement, alternative

scheme

This section presents the results for the school achievement indicator using the

alternative transformation scheme. To keep this section concise, the results of the

robustness checks for Cohort 3 are shown as a representative example.

Analysis of the third cohort without partner data:

Under the modified transformation scheme for grades, the results in table 6.13

emerge. Changing the calculation of the dependent variable brings about only

Table 6.13: Robustness check: Cohort 3 - Without partner data:

Variable Coefficient Description

Factor 1 .2080 As before.

Factor 36 .1239 As before.

Factor 3 -.1209 As before.

Factor 32 .1193 As before.

Factor 26 .1186 As before.

Factor 25 .1023 As before.

Factor 35 -.0965 As before.

Factor 38 -.0925 As before.

Factor 8 .0889 As before.

Factor 47 .0854 As before.

Factor 34 -.0804 As before.

Factor 31 .0765 As before.

Factor 18 -.0749 As before.

Factor 41 -.0679 As before.

Factor 44 -.0642 As before.

Factor 23 .0583 As before.

Factor 10 -.0539 As before.

Factor 13 .0532 As before.

Factor 29 -.0226 +: Internal locus of control. ◦: Conscientiousness, agreeable-
ness.

Factor 19 .0018 As before.

Intercept .0000

N=667 R2 =.21 Change: 20 % (R2
EduInc =.17).

slight changes. In comparison to the results for the original school achievement

measure, Factor 6 and 16 are no longer deemed relevant enough. Instead Factor

29 appears, which describes a high internal locus of control, conscientiousness

and agreeableness. Although small, the negative coefficient is unexpected because

univariate regressions show a robust positive association between the maternal

internal locus of control and the child’s school achievement. The matter is different
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for the two Big-5 Factors that also have a bearing on this factor. They typically

have a weak negative relation which might drive the factor stronger than the

internal locus of control.

The remaining results are close to the ones for the normal transformation scheme.

If changes occur, they mostly concern the coefficient size, but the same tendencies

predominate.

Analysis of the third cohort with partner data:

Using the alternatively generated endogenous variable in the analysis with partner

data, the results presented in table 6.14 emerge. Compared to the model of the

normal endogenous variable, there are five new factors in this model, whereof only

two are of deeper interest, however. One is principally driven by the locus of

control, which now loads on both parents’ variables, but no longer large enough on

conscientiousness and agreeableness as before. The other factor of interest relates

to parental openness. Both factors are weakly negatively linked to the outcome.

Except for Factor 41, the coefficients of the additional factors are comparably small

and therefore less important. Since the statistical method is somewhat unstable

regarding the choice of factors with small coefficients, this observation can be

attributed to chance.

Table 6.14: Robustness check: Cohort 3 - With partner data:

Variable Coefficient Description

Factor 22 .2533 As before.

Factor 1 .2226 As before.

Factor 9 .1335 As before.

Factor 4 -.1039 As before.

Factor 12 .1028 As before.

Factor 5 -.0794 As before.

Factor 45 .0596 As before.

Factor 41 -.0559 +: Openness (both parents).

Factor 23 .0542 As before.

Factor 14 .0481 As before.

Factor 55 .0481 As before.

Factor 16 .0270 +: Living in eastern Germany.

Factor 15 -.0224 +: Internal locus of control (both parents).

Factor 3 .0218 As before.

Factor 62 .0121 As before.

Factor 53 -.0119 +: Labor income squared.

Factor 39 .0042 +: Living in northern Germany.

Intercept .0330

N=532 R2 =.24 Change: 23 % (R2
EduInc =.18).
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When the relative importance of the central factors is changed, on the other

hand, the coefficient sizes and changes of the retained factors are of interest.

This is, for example the case for Factor 4 and 5, which swap positions. Factor

4, loading on the number of children and the amount of public transfers, has a

more negative coefficient, while the one of Factor 5, loading on the partner’s time

spent on housework, decreases in absolute size. When the dependent variable

under the standard transformation scheme is interpreted as punishing lower school

achievements stronger, this result indicates that the time use of a partner could be

a better indicator to describe the lower end of the dependent variable’s distribution.

Further noticeable is the increase in the model’s coefficient of determination, which

is .24 compared to .21. While this can be partly attributed to the five additional

factors in the model, another reason may be the 0.5 units higher coefficient of

Factor 22. Both arguments, as well as the extra factors in the model, point in the

direction of a generally smaller shrinkage.

6.2.3 Robustness check II: Test scores

The results for the models explaining test scores are presented completely, which

yields four different models in total. In general, using test scores as the dependent

variable tends to engender smaller models. That means, fewer family background

factors are deemed as relevant in terms of a non-zero coefficient. The set of selected

factors bears, nevertheless, similarities to the most important factors for the school

achievement.

Analysis of the first cohort without partner data:

The results for the first cohort, where partner data is excluded, are shown in table

6.15. A first look on the selected factors reveals a similar choice as in the analysis

of school achievement measures. Given that this analysis excludes partner data,

a notable difference is that the two most important factors do not contain the

factor which relates to household income and thereby hint at the existence of

an employed partner. This factor’s relative importance is lower for this analysis.

Factor 5, collecting social interest, engagement, activity and closeness to education

plays a more important role here. This factor is based on many characteristics

which also hold a beneficial association to the grade average. A negative sign is

found for the factor relating to a parental migration background.

Further important associations originate from education-related factors, among

which formal education, but also interest and participation in further education

are found. Factor 1, in particular, appears similarly in the analysis of the second

cohort’s school achievement where the factor is interpreted as undertaking further
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education of one’s own accord and therefore linked to the appreciation of education

and aspirations. Factor 22, on the other hand, displays a facet in which further

education was not done out of an intrinsic motivation but rather to meet the needs

of the job. Its association is strongly negative.

When it comes to other time use factors, Factor 16 is also reappearing. This

factor indicates a religious family background; for this cohort, it is also connected

to exerting honorary posts. Taken together the factor could be interpreted as

community work in a religious environment. It could display various (societal)

ambitions but, owing to the community component, also be linked to increased

social capital. The facet of interest and participation in politics remains an

important dimension of family background also in this cohort. Cultural activities

show also positive links, as indicated by Factor 5 and Factor 19. The latter can

be interpreted as social activity factor for it bundles indicators of activity and

sociability.

A further interesting result is that two factors related to personality traits exhibit

a relevant association in this analysis: Factor 32, loading mainly on maternal

agreeableness, and Factor 20, mainly driven by a high internal locus of control and

a low degree of neuroticism – both relate positively to the outcome.

Table 6.15: Robustness check: Cohort 1 Test Scores - Without partner data

Variable Coefficient Description

Factor 5 .1825 ◦: Interest in politics, frequency of undertaking cultural
activities/taking part in local initiatives/exerting honorary
posts, education, participation in further education.

Factor 4 -.1801 +: Migration background of father and mother.

Factor 2 .1474 +: Household labor income, post-government income.

Factor 16 .1086 ◦: Frequency of religious activities/exerting honorary posts.

Factor 32 .0983 ◦: Agreeableness.

Factor 6 .0958 +: Years of living with both parents.

Factor 1 .0861 +: Further education for promotion. −: No interest in further
education. ◦: General further education.

Factor 22 -.0829 ◦: Further education in order to remain in the job.

Factor 13 -.0803 +: Living in a rural area. −: Living in a small town.

Factor 17 .0705 +: Parental age. -◦: Hours of child care.

Factor 8 -.0652 +: Income from public transfers, number of children.

Factor 20 .0525 +: Internal locus of control. -◦: Neuroticism.

Factor 19 .0466 ◦: Frequency of exercising/undertaking cultural activi-
ties/visiting the cinema, sociability.

Factor 30 -.0097 ◦: Sociability, extraversion.

Intercept -.0200

N=845 R2 =.21 Change: 50 % (R2
EduInc =.14).

Comparing the results to the ones for measures of school achievement, the model
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is able to explain about the same level of variance. Moreover, many factors that

have a relevant link to the school achievement also play a pronounced role here.

For some, however, the relative importance differs.

Analysis of the first cohort with partner data:

Table 6.16 shows the results for same cohort when partner data are regarded. In

comparison to the model calibrated on the sample without partner data, fewer

dimensions drive these results. The main factors relate to a parental migration

background, their income and education, and finally their interest and motivation in

further education. Moreover, the factor describing participation in (high) cultural

activities, in this cohort independent of education, exhibits a positive relation to

the outcome once again.

While Factor 14, interpreted as appreciating education, also features a similar

positive association as in the other cohorts, the facet indicating political interest

and engagement plays a smaller role in the present model. A religious family

background, which in the previous cohort is also connected to community work,

does not play a role in this analysis. Slightly negative results can be found for

Factor 16, which describes a partner who takes care of tasks at home but shows

little activity on the labor market. The model is not able to improve the baseline

model substantially. On the other hand, the coefficient of determination is relatively

high.

Table 6.16: Robustness check: Cohort 1 Test Scores - With partner data

Variable Coefficient Description

Factor 7 -.1748 +: Migration background of father and mother.

Factor 5 .1622 +: Education (both parents). ◦: General further education.

Factor 1 .1313 +: Various income variables related to the partner’s labor
income. ◦: Father’s hours of work, education (both parents).

Factor 14 .0891 +: Interest in further education.

Factor 8 .0885 +: Frequency of taking part in cultural activities (both
parents).

Factor 4 .0882 +: Partner takes part in further education for job promotion.
−: Partner has no interest in further education.

Factor 16 -.0272 +: Partner’s hours of housework. −: Partner’s hours of work.
◦: Partner’s hours of child care.

Factor 20 .0217 ◦: Interest in politics (both parents), partner’s frequency of
exerting honorary posts and taking part in local initiatives.

Intercept .0000

N=682 R2 =.20 Change: 11 % (R2
EduInc =.18).

Analysis of the second cohort without partner data:

Table 6.17 lists the results for the second cohort excluding partner data.
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Table 6.17: Robustness check: Cohort 2 Test Scores - Without partner data

Variable Coefficient Description

Factor 2 .3268 +: Post-government income, household labor income. ◦:
Interest in politics, household asset income, education, age,
frequency of exercise, importance of political engagement.

Factor 39 .1646 ◦: Post-government income while the child was between 10
and 12 years old.

Factor 24 .1544 +: Interest in politics, importance of political engagement.
◦: Education, age.

Factor 18 -.1178 +: Migration background of father and mother. -◦: Educa-
tion.

Factor 29 .1146 ◦: Parents are non-smokers. -◦: Extraversion.

Factor 1 .0787 +: Labor income. ◦: Hours of work, education, frequency
of cultural activities, household labor income. -◦: Hours of
housework/childcare.

Factor 47 .0527 No loading large enough.

Factor 16 .0463 +: Living in a city.

Factor 3 -.0457 +: Income from public transfers, number of children. ◦:
Hours of housework.

Factor 27 -.0387 +: Internal locus of control. ◦: Future optimism, approval of
”I have confidence in the future”. -◦: Neuroticism.

Factor 5 .0328 +: Years of living with both parents. ◦: Importance of happy
marriage.

Intercept .0490

N=558 R2 =.15 Change: 15 % (R2
EduInc =.13).

In this analysis Factor 2 stands out since it encompasses several characteristics

which have exhibited beneficial associations in other cohorts. Primarily loading on

a high income, which implicitly points to an employed partner in the household,

this result does not confirm the tendency of the first cohort’s results. Instead,

these results are more in line with the ones of the analyses of school achievement

indicators. Variables driving Factor 2 also appear in other factors, though. Factor

24, for example, depicts a household with higher educated and older parents who

are politically interested and engaged. The stronger pecuniary influences in this

cohort analysis are also described by Factor 39 which loads on an income variable,

and Factor 1, which depicts a higher educated, working mother who frequently

participates in cultural events.

Factor 29 is a factor, which describes introverted, and by non-smoking, possibly

health-conscious parents. While the health aspect also appears in other analyses,

the observed coefficient is larger for this analysis than usually. Another striking

change in the coefficient size occurs for Factor 3, as its negative association is clearly

smaller than in the other analyses. It is the recurring factor relating to income

from public transfers and a high number of children in the household, sometimes
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also including hours of housework and child care. A second contradiction to the

results of the first cohort is observed for Factor 27, which loads mainly on the

internal locus of control, but exhibits a weakly negative relation to the outcome.

This stands in contrast to the positive association observed for Factor 20 in the

analysis of the older cohort.

Analysis of the second cohort with partner data:

The results for this analysis are presented in table 6.18. They are special in that

the selected model is comparably small. Furthermore, it performs worse than

the baseline model from the perspective of explained variance. This indicates a

case of underfitting and therefore makes a case against the Adaptive Lasso as a

factor selection method, which otherwise performed satisfactorily. The relatively

small sample in this analysis may be one reason for the observed problems. On

the other hand, such a result could not be observed in other cohorts with similar

or even smaller sample sizes. An unfortunate CV split can also be excluded, as

similar results emerged for different (random) draws. When it comes to the factors

selected, the ones that are most relevant in the other cohorts are chosen. In

addition, the facet of non-smoking, which is interpreted as health-consciousness,

exhibits increased relevance here. It is also the only dimension that refers to habits.

The remaining factors are largely related to demographic aspects.

Table 6.18: Robustness check: Cohort 2 Test Scores - With partner data

Variable Coefficient Description

Factor 1 .1285 +: Partner’s labor income, household labor income. ◦: Edu-
cation (both parents).

Factor 12 -.0977 +: Parental migration background.

Factor 38 .0830 +: Both parents are non-smokers.

Factor 39 .0538 ◦: Parental education.

Factor 5 -.0525 +: Number of kids, income from public transfers.

Intercept .0760

N=424 R2 =.09 Change: -40 % (R2
EduInc =.15).

6.3 Conclusion

The empirical approach presented in the previous section revolves around the

discovery of family background dimensions and their associations to the child’s

school achievement and its cognitive skills. Fundamental to this investigation are

family characteristics which describe the parental environment. Thus, the pool

of characteristics does not contain individual determinants, such as the gender
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of the child – its manifestation is independent of family background. Following

the theoretical considerations about latent dimensions of the family background,

Factor Analysis intended to disclose them is applied. The main drawback of such

an unsupervised procedure is its independence of the outcome. In order to separate

the important from the less important factors, it is necessary to evaluate each

factor’s association with the outcome. In this thesis, this is achieved by applying

a regularization technique to the extracted factors: Using the Adaptive Lasso with

7-fold Cross-Validation selects factors by pulling the coefficients of the unimportant

factors towards zero.

Comparing the theoretical expectations with the results of the empirical analysis,

one note concerns factors with small eigenvalues. They often rely on only few

variables, which means that the interpretation of these factors is based on one or two

variables. The premise to yield facets of family background whose interpretation

could be derived from several variables is partly undermined for this reason.

Although such distinctness is within the bounds of possibility, there may also be

other reasons leading to this observation. Oblique rotations which taper the factors

to only their most correlated variables could be one. However, similar situations

also occur for factors with small eigenvalues when the factors are Varimax rotated.

With regard to using the Adaptive Lasso as a factor selection technique, the overall

performance is satisfying, even though two drawbacks occurred in this analysis.

Firstly, changes of the random seed on which Cross-Validation depends indicate

somewhat unstable results concerning the selection of factors with small coefficients.

However, since coefficient size is directly related to the importance of a factor, this

instability pertains merely to the less interesting factors. Secondly, the method

failed in one instance where it produced a too sparse model.

Despite these issues, the results provide some relevant insights. While they

suggest that factors related to demographic indicators, like parental education and

household labor income, have the highest relevance, there are other dimensions

which contribute to a description of family background. Table 6.19 provides a

compact overview of the core insights.

Since they play a weighty role in many cohort analyses, three factors stand out.

Those apply often equally well to either the mother, her partner or both, as the

data do not support a clear distinction at this point.

One family background dimension relates to frequent cultural activities that may

be considered high culture, e.g. concerts, theaters and lectures. In some samples,

the factor is also connected to cultural activities which could be considered pop

culture, such as visits to cinemas, discos and sports events. Typically, the factor’s
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Table 6.19: Overview of associations

Outcome: Grade average Test Scores

Cohort: 1wo 2wo 2w 3wo 3w 4wo 4w 1wo 1w 2wo 2w

Factor/Variables:

Household income from labor + + + + + + + + + + +

Receipt of public transfers, number
of children

o − − − − o − − o − −

Parental education + + + + + + + + + + +

Parental migration background o − − − o − o − − − −
Years of living in classic family + + + + o + o + o + o

Parental age + o o + + + + + o + o

Political interest and derived char-
acteristics

+ + + + + + + + + + o

Frequent (high) culture activities + + + + + + + + + + o

Religiousness of family o o + o o + + + o o o

Frequent exercising activity + o o + + o o + o + o

Time spent on garden work and
repairs

o − − + o o o o o o o

Time spent on housework and
childcare

na − o o − o o o − − o

Variables related to voluntary fur-
ther education

+ + + o o na na + + na na

Maternal trust in other people na + + na na + o na na o o

Positive risk attitude and openness na na na − o o − na na o o

Health-conscious lifestyle na na na + + o + na na + +

Importance of income and job − na na o o o o o o o o

Importance of a happy marriage
and having kids

na na na + o o o o o o o

Extraversion and sociability na o o − − o o o o o o

Internal locus of control na na na o o + o + o − o

Neuroticism na o o − o o + − o + o

Agreeableness na o o o + o o + o o o

Notes: Factors do not always completely correspond across different cohorts, hence the
reference is sometimes to the most prominent superordinate variable(s). Also, differences
between maternal and paternal variables are omitted, if not especially noticeable. ”wo”
stands for analyses without, ”w” for with partner data. +/− indicates a positive/negative
association of a factor in a cohort analysis, o displays no or a negligibly small association,
while na fills a cell, when the manifest variables needed for the factor are not included
in a cohort analysis. To be concise, association strength is not noted at this stage and
factors with small coefficients are left out.
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importance is stronger the more it is connected to the first type of cultural activity.

It carries high relevance in almost all cohort analyses, and is interpreted as active

participation in society, more specifically, cultural life. From a sociological point

of view, this might express the possession of cultural capital. Although one can

argue that participation in cultural life is costly and therefore linked to income,

Factor Analyses often separates the two. The implication is that parents with

lower income also conduct such activities. On the other hand, the imprecise

definition of cultural activity hampers an accurate interpretation. Also, linking

this facet to a child’s school success depends on the assumption of the cultural

events’ manifestation. If suitable, one could argue for a knowledge gain for the

child that results from this activity, but this interpretation additionally assumes

that the child takes part in these activities. Interpreting a culturally active family

environment as yielding a general cultural stimulus, however, does not require

making such assumptions.

Another important dimension is related to the interest and involvement in politics.

Depending on the sample, a particular interest in politics, considering political

influence important or, in some cases, active participation in local (political) initia-

tives characterizes this facet. It can be interpreted as active societal participation

with the objective of enforcing certain political and societal ideas. In this sense,

it can be linked to aspirations as well as the desire to influence and control the

surrounding circumstances. On the contrary, there seems to be no connection

to the internal locus of control, even though it would match well with this in-

terpretation. While there are some exceptions, this facet is often also related to

parental education. And although the influence of education on such a factor is

often smaller than for politics variables, the factor cannot be considered completely

independent of it. There are several possibilities to link this facet to a child’s

school success: The high degree of aspirations, expectations and involvement that

parents show for society may reflect an ambitious attitude, which they also hold for

the child’s development and school achievement. Moreover, by exhibiting political

interest, information about societal developments is possessed. This knowledge

might improve decisions concerning the child’s education. In addition, one could

hypothesize that such parents also hold an above-average degree of information

about school-related issues, for instance, by involvement in classroom matters such

as parent-teacher meetings. This could benefit the child directly. Yet another

way to interpret the results is to refer to the intergenerational transmission of

interests. One can hypothesize that the child, like its parents, is interested in

politics and aware of societal developments which could have a positive influence

on the outcome. Connected to this point, political interest may be expressed in

ways that influence the school outcome, for instance through political discussions
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within the family.

Interest in further education, particularly the contrast between general disinterest in

further education and participation in it, forms the content of the third important

facet. Further education directed at occupational goals, such as continuance

or promotion, does not exhibit a positive link, though. This is documented

in the analysis of cohort 3 in which the corresponding factor is irrelevant. An

interpretation, consistent with the observed results, is to consider the factor

related to (general) further education as a proxy variable for the attitude towards

education. If this attitude reflected a general view on educational achievements, it

could influence the parental appreciation of a child’s efforts and achievements in

school. Also, it might affect the degree of encouragement of school matters. On

the other hand, further education with occupational goals is not stringently caused

by one’s own initiative and may on this account not describe a positive attitude

towards education clearly enough. From the perspective of the intergenerational

transmission of attitudes, a further approach to explain the results can be derived.

If a parent holds a positive view towards education, the child could take it up,

leading to more efforts in school. Similarly, an actively learning parent could be

an education-enhancing role model. The partner’s thirst for knowledge and new

experiences, which plays a role in the results for cohort 4, may be connected to

this facet. Described by openness and curiosity, this factor may benefit the child’s

educational achievement if the characteristics are intergenerationally transmitted.

However, the finding is partly ambiguous since the Big-5 factor openness is not

always positively related to the outcome as the results for cohort 3 indicate. A

comparison between these results is limited, however, since the variable, which

indicates a curious person, is not available for cohort 3.

Another facet showing robust positive associations to the outcome is when the

mother states having a high degree of trust to other people. In some cases, this

facet is also driven by the attitude of future optimism and a high degree of an

internal locus of control. In this analysis, the dimension is linked to social capital,

which is easier to generate when one trusts people. This component could be

complemented by trust in the future, a general optimism possibly ignited by the

belief in one’s own abilities. The potential benefits of social capital are described

in the theory section. An explanation for the positive link of future optimism and

trust in one’s own abilities is given if one follows the theory of intergenerational

transmission. Such characteristics may increase the child’s resilience towards

failures.

Negative factors in the results are often linked to family homes in which the

parents separated at an early child’s age. The lack of a mother’s partner and their
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respective income is associated with a significantly worse outcome for the child.

Income by private transfers, which consists mostly of alimony payments, also shows

a negative but convex relation to the outcome. Since this structural disadvantage

is unlikely offset by high values on beneficial softer indicators, it is particularly

important to be addressed by policy makers. A second negative dimension is

described by a family environment with many children and a high receipt of public

transfers. The associated coefficient is not always large in absolute terms, but

the link is stable. This association is explained by interpreting public transfers as

unemployment benefits, in which case either effects of parental unemployment or

a latent variable influencing both the probability of unemployment and the child’s

school success causes this relation. Interpreting the transfers as mainly consisting

of child benefits, the argument of less resources per child can be brought forward.

Parental age, which has its own factor in some analyses, is positively connected

to the outcome in a few cases. This could reflect experience in raising a child or,

when connected to income variables, hint at a richer endowment or, when on a

factor with education, emphasize the positive correlation between education and

the age of giving birth.

If a child experiences a facet of family background in which parents frequently

help their neighbors and meet with friends and relatives, a worse school outcome

is observed in some of the samples. Two explanations are conceivable for this

observation: Despite the presumed positive effects of social capital, it is conceivable

that this kind of social capital is not valuable enough, as it is restricted to the

close social environment. In addition, if the time spent on such activities has no

positive impact, it reduces the disposable time for other activities that could have

a beneficial impact.

Further negative links arise in some samples for time spent on housework and

childcare, but not on work. In some cases, this factor emerges only for the partner.

An interpretation of this relation is that parents who work transmit a specific set

of values to their child.

For other facets, the results are more variable. A religious family background,

identified by frequently attending religious events, is interpreted as a family

background holding traditional norms and ethics. It plays a relevant positive role

in many cohorts, but there are exceptions, such as the first and the third cohort.

Similarly, a factor interpreted as pursuing a health-conscious lifestyle, marked

by making conscious dietary choices and not smoking, has sample-dependent

associations. In most cases, however, a positive link between this facet and the
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outcome can be detected. Such results are also observed for facets explicitly

relating to exercising frequency.

Parental personality traits play an ambiguous role in the results, as no trait shows

a clear direction of association and the relevance fluctuates, too. This result is

good news, since it gives an indication that the considered outcomes do not rely

on presumably immutable parental traits.

Concerning the robustness checks, the results change little under a modified version

of the standardized grade average. Although additional factors are retained, these

are mainly ones with small coefficients. Their inclusion can hence also be caused by

the statistical method which is somewhat unstable in the selection of less relevant

factors. Other changes regard the relative ranking of the factors and their coefficient

size. Neither aspect can be viewed as systematic, however. Concerning test scores,

the models tend to be substantially sparser than the models for measures of school

achievement. In spite of fewer retained factors, the share of explained variance is

at about the same level with the exception of one cohort analysis. This observation

is interpreted as fewer family factors playing a role for this outcome. One reason

may be a higher objectivity of test scores, as they are less dependent on subjective

assessments. For example, geographical indicators, which occasionally appear in

the models for the school outcomes, play no role in this measure. In conclusion,

the most important factors for school achievement are also the most important

ones for test scores, while the less important ones play no role for the latter.
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Chapter 7

Summary and conclusions

The starting point of this dissertation was to explore the associations of a child’s

family background with its educational achievement. This investigation is moti-

vated by evidence that a substantial share of the variation in school success can

be traced back to the family home. Since the term ’family home’ could encompass

many aspects, substantiating it has been of interest. In empirical studies, family

background is often reduced to demographic indicators such as parental income

and education, because they correlate substantially with the child’s school achieve-

ment. As discussed in the introduction, however, it is questionable whether these

indicators suffice to capture all important aspects of family background. Instead,

one can argue that the parental mindset, particularly towards education, plays an

important role. A mindset can find expression in various dimensions, for example

certain attitudes and time allocation but also customs such as involvement in the

child’s school matters. Some of its expressions may have a decisive influence on a

child’s school achievement. Since there are reasons why to believe that this parental

mindset could develop independently of the named demographic characteristics,

this dissertation aimed to find such facets and examine them.

As it is unclear which dimensions of the parental mindset are of interest and how

this could be operationalized, one approach is to consider the social environment,

the milieu, of the family. Milieu theories state that there are groups in society

which are characterized by similar life circumstances and attitudes. The observa-

tion that people who live in similar circumstances influence each other through

social interaction and attempt to demarcate their group from other groups serves

as a link to the mindset, since it could cover dimensions which are relevant for the

educational achievement of the child, for instance ambitions and aspirations.

While the concept of milieus is appealing in theory, practical milieu concepts entail

drawbacks for the purpose of this dissertation. The main reason is their inherent

function of providing a model for the social structure of a society. Of interest in this

context are, however, family environment characteristics which are connected to
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the child’s school achievement. There is no guarantee this information is included

in existing milieu concepts. In fact, milieu concepts often use income as a classifier,

which would contradict the premise of this investigation. In addition to other, less

severe drawbacks, this motivates an extension of the milieu approach.

Its starting point was to interpret the milieu idea in a latent variable model. In

this framework, the milieus act as the (predefined) latent variables, which influence

the set of observed variables. These observed variables include all characteristics in

which similar attitudes and life circumstances as well as the child’s school success

are reflected. In this dissertation, this model is generalized by detaching the latent

variables from being fixed milieu indicators. Instead of a qualitative definition, the

notion of similarities in social environments is exploited by deriving their content

from data, i.e. through patterns in the set of observed variables. The latent

variables are, for that reason, no longer called milieus, but are instead referred to

as facets or dimensions of family background.

In order to derive their content, the set of observed variables must contain sufficient

information. The data set at hand offers a large choice of different parental charac-

teristics, but they are restricted to those that a child may, in some way, be exposed

to. The selected variables are grouped into four categories: parental personality

traits, parental attitudes, parental time use indicators and family demographic

characteristics. While the number of personality traits and demographic character-

istics is limited, data on attitudes and time uses can be plentiful, especially when

gathered separately for both parents.

For these reasons, the empirical approach is based on a large number of vari-

ables, between which clusters of moderate to high correlations exist. Using these

characteristics unfiltered in a regression is prone to lead to a model which is

overly optimistic and too difficult to interpret on grounds of high dimensionality,

expressed by a multitude of variables. In this context, the value of sparse models

concerning interpretability, prediction and generalization ability is highlighted. In

reaction to the data structure, several refined methods are suggested and described

in detail. Their approach to dimensional reduction classifies these methods. Those

forming indices, which are linear combinations of the original variables, is one

group; the second one is regularization methods, which embark from the full linear

model and drag estimated coefficients towards zero to reduce variance. Methods

forming indices are additionally separated into supervised types, i.e. regarding

the dependent variable in the construction of indices, and unsupervised types, i.e.

creating indices independent of the outcome.

Based on theoretical considerations, predictions of the performance are given.

While the evaluation of some methods can be backed up with findings from the

literature, other proposed methods, especially those related to Factor Analysis,
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have rarely attracted attention in the literature. Considering Factor Regression

methods in this dissertation is justified, however, by its particular purpose: The

latent variable model notion corresponds best to its underlying model. This is

also the reason why a method combining Factor Regression with regularization

techniques is proposed. In the decision for the applied method, the aspects of

yielding an interpretable model and the performance in terms of fit have to be

regarded. While the first property can be theoretically addressed, a simulation

study is necessary to be able to assess the accuracy of models in different data

environments.

The simulation study evaluates the proposed methods and their model selection

criteria within two model DGPs, a latent variable model and a regression model.

Their model parameters vary over six scenarios, which allow an examination of per-

formance differences in varying data structures. While the results in the regression

model are often stable, the scenario can be influential for the results in the latent

variable model specification. There are, however, generally valid observations.

Certain methods are prone to overfitting in about the same degree as OLS, which

serves as a reference point in this simulation. This concerns Partial Least Squares

and Factor Regression, when Iterated Principal Factors is used as an extraction and

sole dimension reduction method. These methods perform exceptionally well on

training data but tend to overfit the data, which is apparent when predictions on

hold-out data are evaluated. Partial Least Squares occasionally suffers, in addition,

from bad estimates which drive the mean squared error substantially upwards.

The results of the simulation also point out the dangers of using heuristic criteria

for factor selection, such as the Kaiser criterion, which selects all factors with a

large enough eigenvalue. Such methods fail in the scenario where variable selection

is aggravated by dispersed loadings of the underlying factor model. While this

risk is unavoidable for heuristic methods in such a scenario, the bad performance

in the low correlation scenario is connected to the inherent variance deduction in

Factor Analysis. Principal Component Regression is not concerned in this case.

Moreover, the simulation evaluates the performance of popular stepwise selection

methods. It is mediocre in the latent variable model specification, and only slightly

better in the regression model. While one can argue that stepwise selection meth-

ods are particularly affected by multicollinear data structures, the approach also

does not work out well when applied to PCR, where the components are pairwise

orthogonal. In most cases, this algorithm performs worse than eigenvalue-based

component selection. Considering the complete set of results in the latent variable

model specification, the top performing methods are the Lasso, the Elastic Net,

Principal Covariates Regression and two types of Factor Regression with regu-

larization (Lasso, Adaptive Lasso). They yield relatively stable results with low
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error across the different scenarios. They also perform well in the basic scenario,

which is, owing to its data structure, the most important one for the decision.

The Adaptive Lasso typically performs worse than both the Lasso and the Elastic

Net, while the remaining methods either do not perform particularly well or have

troubles with certain data structures.

In the Regression Model specification, shrinkage methods perform much better

than methods which create indices. The Lasso and the Elastic Net score highest

across the scenarios. Among index models, Factor Regression types with shrinkage

perform best, but also their performance ranks behind variable shrinkage methods

and sometimes even stepwise selection methods. The results for Principal Covari-

ates Regression are substantially worse than in the latent variable model, since

the quality of out-of-sample predictions varies strongly.

Based on the results of the simulation study and the theoretical considerations,

Factor Regression methods using Lasso or AdaLasso regularization for factor

selection are considered suitable. They have the superior interpretability of ro-

tated factors, while the disadvantages of the unsupervised part are addressed by

regularization. Although they sometimes perform worse than the Elastic Net, in

particular, in the regression model specification, they constitute a good compro-

mise. The performance differences between the two methods in the simulation

study are small, but there is a practical difference: Factor selection by Lasso often

yields larger models in terms of retained factors than selecting factors by Adaptive

Lasso. These additional factors often have small coefficients. As the results of

the simulation study indicate, one could work with either model since factors

with small coefficients do not play a substantial role in explaining the outcome.

However, the results of the Adaptive Lasso are more parsimonious when it comes

to looking at and interpreting the results. For the analysis of empirical data, the

SOEP data set has been chosen because it provides various rich data for this topic.

For reasons of data availability and to allow for possible changes over time, the

data are split into cohorts according to certain birth year ranges. The analyses are

divided into those that disregard partner data, even if available, and those that

regard partner data. While the first type maximizes the number of observations,

the second contains more information. Due to this twofold analysis, the child data

are only matched to maternal data – the added value of matching them also to

the paternal data is low.

The main measure of educational success is defined by a grade average of the

three most important subjects. Owing to different school types, this requires the

definition of a transformation scheme. Such a scheme can be found in German

Education Acts. Since it is to a certain degree arbitrary, the results under this

scheme are compared to the ones using a modified scheme. The differences are,
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however, of minor relevance.

In general, measuring human capital by school achievement is not undisputed,

however. The main critique is that this measure disregards the quality of schooling.

While differences in quality gain importance for cross-country comparisons, smaller

qualitative differences can also be found within Germany. To examine the robust-

ness of the results of the school achievement indicators, cognitive skills as measured

by test scores are analyzed. The corresponding results are robust in the sense that

the same factors appear and play the main role for the dependent variable based

on grades. In general, however, the models for this outcome tend to be smaller in

terms of retained factors, while the degree of explained variance is similar apart

from one cohort. Owing to different sets of variables and varying sample sizes, the

results between cohorts are not completely comparable. The bigger picture shows,

however, that the existence of a working partner or husband and the respective

income has a stable and often highly relevant, positive association. In most cases, a

differentiation between the income types household asset income, household labor

income and post-government income is not necessary as these variables usually all

contribute to the same factor.

Concerning facets of family background which are not mainly driven by education

and income, the results suggest that frequent parental visits to cultural events,

high culture ones in particular, are robustly positively linked to the outcome.

By interpreting this facet as societal participation in terms of going out and

receiving cultural knowledge, it can be linked to a family background that provides

cultural stimuli for the child. Another relevant dimension of family background

relates to political interest; either expressed by declaring interest for it, considering

political influence important, or by taking part in political initiatives. The facet’s

robust positive relation to the outcome is explained by interpreting the factor as a

high parental motivation to influence the surrounding environment, i.e. having

aspirations and ambitions. A similar attitude can also be adopted when it comes

to involvement in the child’s school matters. Moreover, high political interest

points to knowledge of societal developments, which can include the importance

of education for later success in life. Although this aspect shares a factor with

education in many cases, a close relationship is not observable. These results, hence,

indicate additional heterogeneity in levels of education which interest in politics

takes account of. A third important dimension describes a family background open

to further education. It is interpreted as indicating appreciation of education and

the recognition of its value. Moreover, occupationally related further education

may indicate ambitions and, for certain sub groups, also point toward the belief or

even realization of social mobility. Apart from the mindset, role model arguments

support the positive link, too. When parents engage in learning, the child may
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take up this behavior. The positive relation of a facet described by the partner’s

high curiosity and openness to new experiences can be interpreted in this context

as well. On the contrary, showing disinterest in further education may be related

to educational alienation and be associated with taking no measures to improve a

child’s school achievement. Other facets that repeatedly play a role include a facet

of religiousness, measured by frequent visits to religious events. It is interpreted as

describing a family background with specific, rather traditional, norms and ethics.

The importance of this facet varies by cohort analysis, but it is most often positively

related. Occasionally, positive links of a dimension relating to a health-conscious

lifestyle, indicated by a mindful diet and non-smoking, can be found. However,

this factor does not always emerge which diminishes its importance. Indicators of

maternal trust show a strong positive association with the school achievement, in

particular in the older cohorts, but not with test scores. The factor is interpreted

as the mother having a higher level of social capital, which can be linked to social

interconnectedness and benefit the child in several ways. As it only concerns school

achievement, one can hypothesize that social capital is more important for this

measure. This becomes comprehensible when social capital increases, for instance

knowledge about teachers and their grading, such that educational decisions for

the child can be optimized.

The remaining results concern facets linked to demographic indicators, such as

a family environment with many children and a high receipt of public transfers.

Stable negative associations are observed for this factor, which are explained by

interpreting the factor to depict unemployment or less time and pecuniary resources

left per child. Occasionally connected to this factor are hours spent on child care

and housework, in contrast to work. Sometimes this is an extra factor and its

negative association is explained by the role model argument according to which

work transmits values which are useful outside the home.

Parental age, in spite of not being prominent in each of the analyses, shows positive

links. A parental migration background, by contrast, is often negatively associated.

Since formal education is often negatively correlated to this factor, this can depict

structural disadvantages.

Wrapping up the main insights, the selected method has indicated a potential

to yield sparse models with interpretable factors. Remaining issues stem from

two aspects: Firstly, factors with small eigenvalues load only on few variables.

Since variables are treated as noisy approximations to the underlying factors, an

interpretation is rendered difficult in such cases. The severity varies with the

cohort analysis. Secondly, an overly sparse model, which performs worse than the

baseline model, emerged in one case. From a model valuation point of a view, this

would be considered underfitting introduced by a too strong shrinkage factor.
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Policy recommendations based on the results can only be indicative, as the analysis

finds associations, but is not capable of identifying causal relationships. When

relating the theoretical considerations to the results, it can be observed that person-

ality traits do not play a major role in the models. Although conscientiousness and

extraversion are sometimes negatively related to the outcome, family background

facets related to other attributes show a higher and more stable relevance. This

is advantageous, for personality traits are considered the least malleable of the

considered characteristics. Since the facet of frequent cultural activities has been

found positively related, a policy recommendation would be to foster cultural

events, so they become better known and more attractive. The assumption of this

recommendation is that there is a direct transmission channel, e.g. knowledge

gain or increased societal participation, which affects the child in a positive way.

By contrast, if an unobserved third variable is reflected in this facet and drives

the child’s school success, such a policy will come to nothing. A similar argument

can be brought forward for measures enhancing political participation or further

education. Here, the intrinsic motivation of shaping the surroundings according

to one’s ideas may play the major role for both political interest and the school

success of the child. Although it may generally be desirable to increase political

interest, it is not guaranteed that this is of benefit to the child’s educational

achievement. If appropriate measures, however, manage to change the mindset in

this respect, an effect might be observable. Using the role model argument, this

could, for instance, hold for fostering further education.

All in all, these facets have shown relevant associations, but the most important

ones remain related to family demographics – in particular the presence of both

parents where the mother’s partner has an income. This factor is linked to the

biggest improvements in most of the considered outcome measures.

For the researcher aiming to describe the mindset of a family background more

accurately, this work gives clear references. Useful indicators include the propensity

to deliberately undertake further education, a measurement of curiosity, partici-

pation in cultural activities and political interest or engagement. Maternal trust,

combined with future optimism, could serve as an indicator of social capital. An

insightful extension of this work could arise with the advent of more precise data.

Obtaining more detailed information about the type of cultural event or the kind

of local political initiative, for instance, may lead to more informative structures in

the factors. Moreover, it could be insightful to analyze the key family background

dimensions for educational achievement measured at different points in time. With

this information, one could examine whether the relevant dimensions differ between

early and late school achievement and thereby address the limitation of this study

concerning the time of measurement.
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Chapter 8

Appendix

Variable description and summary statistics

This section provides an overview of the used variables. It starts with a short

description of the variables whose descriptive statistics are shown in the tables

below and whose abbreviated names may carry ambiguity.

Grade Average, Grade Average alternative, Test Scores are the three endogenous

variables.

Income types are individual labor income (Labor Income), household labor income

(HH Labor Income), household asset income (HH Asset Income), household post-

government income (HH PostGov Income), household income from private and

public (HH PrivTrans Income, HH PubTrans Income) transfers. Income variables

are measured on yearly basis in thousand Euros. To include possible marginal

changes in association with increasing income, individual labor income appears also

as a squared term (sq) and is measured in million Euros. An A after a variable’s

name denotes the average value of this variable at the time when the child was

between 13 and 15 years old; a B denotes the average value of a variable at the

time when the child was between 10 and 12 years of age.

Hours work denotes the number of factual working hours per week. Parental

Age is measured when the child is 15 years old. Education is measured as the

years of obtained education. Children total counts the children that the reference

parent has. Living1 – Living8 are variables which count the number of years a

child lived in a specific family situation. Living1 counts the years of the situation

in which the child lived together with both parents, Living2 is living with the

mother alone, Living3 is living with the mother and her partner, Living4 is living

with the father alone, Living5 is living with the father and his partner, Living6 is

living with other relatives, Living7 is living with foster parents, Living8 is living

in a children’s home.
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Eastern Germany, Northern Germany, Western Germany and Southern Germany

indicate the geographical location in Germany of the child’s household. S.o.t.

(size of town) variables categorize the location where the child’s household resides

according to the number of inhabitants. Its values can be rural, small town,

medium-large town and city. Resid. area variables indicate the residential area

of the child’s household. It can take the values old town, new town, mixed area,

commercial area or industrial area.

Childcare and Housework denote the average number of daily hours spent on these

activities. Also here A and B refer to the time span.

Anomie 1 – Anomie 4 refer to the extent of (dis-)approval of the following state-

ments in numerical order: approval of ”I have confidence in the future”, disapproval

of ”I often feel lonely”, disapproval of ”My work is no fun” disapproval of ”Every-

thing is so complicated”.

Trust 1 – Trust 5 refer to the (dis-)approval of the following statements in nu-

merical order: approval of ”On the whole one can trust people”, disapproval of

”Nowadays one cannot trust anyone”, disapproval of ”Show caution when dealing

with strangers”, approval of ”Most People Are Fair”, disapproval of ”Most People

act in own interest”.

Reciprocity 1 – Reciprocity 5 refer to the (dis-)approval of the following statements

in numerical order: approval of ”I return favors”, disapproval of ”I get revenge for

severe injustices”, disapproval of ”I cause similar problems to those who cause me

problems”, approval of ”I help those who help me”, disapproval of ”I insult those

who insult me”.

Interest in Politics denotes the interest in politics in general, where larger values

measure higher interest.

Time use activity is measured on Likert scales with regard to the frequency of

attending religious events (Church visits), taking part in cultural activities (Cul-

tural activities) such as concerts, theaters, lectures, investing time into honorary

activities in clubs, organizations or social service (Honorary Post), visits to cinema,

pop concerts, dances, discos and sports events (Cinema visits), exercising (Exercis-

ing), helping out friends, relatives, or neighbors (Neighborly help), participation

in citizen initiatives, parties, community politics (Local Initiatives), socializing

(Sociability), going to art exhibitions (Art exhibitions), watching TV (Watching

TV ), eating out (Eating out), going on excursions (Excursions), repairing cars (Re-

pairing cars) and family and neighbor visits (Visiting family, Visiting neighbors).

Weekly hours used for repairs on and around the house and garden work is captured

by Repairs and hobbies by Hobbies.

Memberships such as in a professional association (Prof. assoc.), in a labor union

(Labor union) or in an environmental association (Envir. assoc.) are regarded.
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The degree of having a considered personal diet is denoted by Minding diet and

non-smoking is indicated by Non-smoking.

In order to keep variable descriptions concise, importance indicators, showing

the individuals’ view of importance regarding the following subjects, are also

numerically labeled: Importance 1 ”To be able to afford things”, Importance

2 ”To be there for others”, Importance 3 ”To develop oneself”, Importance 4

”Success in the job”, Importance 5 ”To have an own house”, Importance 6 ”Having

a happy marriage”, Importance 7 ”Having kids”, Importance 8 ”Political/Social

participation”, Importance 9 ”Traveling”, Importance 10 ”Environmental protec-

tion”, Importance 11 ”Religion”, Importance 12 ”Work”, Importance 13 ”Family”,

Importance 14 ”Friends”, Importance 15 ”Income”, Importance 16 ”Housing”,

Importance 17 ”Health”, Importance 18 ”Having political influence”, Importance

19 ”Leisure time”, Importance 20 ”Own mobility”, Importance 21 ”Residential

Area”.

Further education variables include Never interested in FE, indicating that an

individual has never taken part in further education since joining the SOEP, FE

for maintaining job, indicating that further education was done to stay in the

current job, FE for promotion indicating job promotion reasons for undertaking

further education, No interest in FE showing no interest in further education in a

particular survey year and finally General FE which measures whether a parent

undertook any kind of further education.

The following tables show the descriptive statistics for the whole sample with the

mother as reference parent. C1 to C4 denote cohort 1 to 4 for the dependent

variables based on the standardized grades. TC1 and TC2 denote cohort 1 and

2 for the dependent variable based on test scores. An X in a column denotes

whether a variable has been used for a particular cohort analysis. When a variable

related to the child or household appears solely in samples without partner data it

is marked .X.

Table 8.1: Summary Statistics: Endogenous variables

Statistic N Mean St. Dev. Min Max C1 C2 C3 C4 TC1 TC2

Grade Average 3,921 0.02 0.9 −3.4 2.0 X X X X

Grade Average alternative 3,921 0.02 0.9 −3.3 2.3 X

Test Scores 2,030 31.7 9.3 3 55 X X
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Table 8.2: Summary Statistics Ia: Individual demographic characteristics

Statistic N Mean St. Dev. Min Max C1 C2 C3 C4 TC1 TC2

Reference parent

Labor Income A 3,869 16.1 17.9 0.0 182.3 X X X X X X

Labor Income Asq 3,869 0.6 1.4 0.0 33.2 X X X X X X

Labor Income B 2,892 14.0 16.8 0.0 165.4 X X X

Labor Income Bsq 2,892 0.5 1.4 0.0 27.4 X X X

Education 4,325 12.1 2.6 7.0 18.0 X X X X X X

Parental age 4,345 42.6 5.1 30 64 X X X X X X

Partner

Labor Income A 3,278 49.7 39.9 0.0 592.5 X X X X

Labor Income Asq 3,278 4.1 11.7 0.0 351.1 X X X X

Labor Income B 2,535 47.0 32.6 0.0 419.1 X

Labor Income Bsq 2,535 3.3 6.8 0.0 175.7 X

Education 3,830 12.4 2.8 7.0 18.0 X X X X X

Parental age 3,828 45.2 6.3 23 81 X X X X X

Table 8.3: Summary Statistics Ib: Household demographic characteristics

Statistic N Mean St. Dev. Min Max C1 C2 C3 C4 TC1 TC2

HH Labor Income A 3,869 62.2 44.9 0.0 592.5 X X X X X X

HH Labor Income B 2,892 57.7 37.2 0.0 419.1 X X X

HH Asset Income A 3,869 4.5 13.4 0.0 615.2 X X X X X X

HH Asset Income B 2,892 3.6 7.5 0.0 138.8 X X X

HH PostGov Income A 3,869 51.6 28.9 7.3 545.8 X X X X X X

HH PostGov Income B 2,892 48.2 23.4 6.4 261.9 X X X

HH PrivTrans Income A 3,869 0.4 1.8 0.0 38.3 X X X X X X

HH PrivTrans Income B 2,892 0.3 1.5 0.0 22.0 X X X

HH PubTrans Income A 3,869 7.1 5.4 0.0 51.0 X X X X X X

HH PubTrans Income B 2,892 6.8 5.3 0.0 43.1 X X X

Father migrated 4,295 0.1 0.3 0 1 X X X X X X

Mother migrated 4,326 0.1 0.3 0 1 X X X X X X

Father died 4,357 0.02 0.2 0 1 X X X X X X

Children total 4,299 2.5 1.2 0 12 X X X X X X

Living1 4,347 12.7 4.6 0 15 X X X X X X

Living2 4,168 1.3 3.4 0 15 X X X X X X

Living3 4,159 0.8 2.6 0 15 X X X X X X

Living4 4,129 0.1 0.7 0 15 X X X X X X

Living5 4,131 0.04 0.5 0 13 X X X X X .X

Living6 4,132 0.03 0.5 0 15 X X X X X X

Living7 4,128 0.03 0.6 0 15 X X X X X

Living8 4,355 0.01 0.3 0 11 X X X X
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Table 8.4: Summary Statistics Ic: Household geographical characteristics

Statistic N Mean St. Dev. Min Max C1 C2 C3 C4 TC1 TC2

Eastern Germany 4,357 0.24 0.4 0 1 X X X X X X

Northern Germany 4,357 0.14 0.3 0 1 X X X X X X

Western Germany 4,357 0.33 0.5 0 1 X X X X X X

Southern Germany 4,357 0.38 0.4 0 1 X X X X X X

S.o.t.: City 4,328 0.2 0.4 0 1 X X X X X X

S.o.t.: Mid 4,328 0.2 0.4 0 1 X X X X X X

S.o.t.: Small 4,328 0.3 0.4 0 1 X X X X X X

S.o.t.: Rural 4,328 0.3 0.5 0 1 X X X X X X

Resid. area old 3,166 0.32 0.5 0 1 X

Resid. area new 3,166 0.44 0.5 0 1 X

Resid. area mix 3,166 0.21 0.4 0 1 X

Resid. area com. 3,166 0.00 0.1 0 1 X

Resid. area ind. 3,166 0.01 0.1 0 1 X

Table 8.5: Summary Statistics II: Personality traits

Statistic N Mean St. Dev. Min Max C1 C2 C3 C4 TC1 TC2

Reference parent

Openness 3,835 49.6 9.5 15.4 76.0 X X X X X

Conscientiousness 3,835 51.1 9.0 −2.2 68.2 X X X X X

Extraversion 3,835 51.8 9.9 16.3 76.0 X X X X X

Neuroticism 3,835 51.8 9.9 25.4 78.7 X X X X X

Agreeableness 3,835 52.2 9.1 18.4 75.3 X X X X X

Locus of control 2,859 50.0 11.6 8.4 76.7 X X X X X

Partner

Openness 3,204 49.0 9.7 15.5 83.6 X X X X X

Conscientiousness 3,204 51.6 9.3 −12.0 71.6 X X X X X

Extraversion 3,204 49.3 9.8 14.0 74.6 X X X X X

Neuroticism 3,204 48.2 9.5 20.2 78.4 X X X X X

Agreeableness 3,204 47.0 10.5 8.3 73.0 X X X X X

Locus of control 2,526 51.5 11.9 2.9 79.4 X X X X
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Table 8.6: Summary Statistics IIIa: Time use characteristics of reference
parent

Statistic N Mean St. Dev. Min Max C1 C2 C3 C4 TC1 TC2

Reference parent

Hours work A 3,841 19.4 15.8 0.0 75.0 X X X X X X

Hours work B 2,874 17.3 15.4 0.0 72.3 X X X

Childcare A 3,564 3.5 3.7 0.0 24.0 X X X X X

Childcare B 2,875 4.9 4.1 0.0 24.0 X X X

Housework A 3,559 3.0 1.6 0.0 12.0 X X X X X

Housework B 2,865 3.2 1.6 0.0 10.3 X X X

Interest in Politics 3,895 2.1 0.7 1 4 X X X X X X

Church visits 3,898 9.4 19.2 0.0 365.0 X X X X X X

Cultural activities 3,901 4.1 5.6 0 52 X X X X X X

Honorary post 3,896 7.7 21.2 0.0 365.0 X X X X X X

Cinema visits 3,897 5.5 8.0 0 52 X X X X X X

Exercising 3,951 25.0 48.2 0.0 365.0 X X X X X X

Neighborly help 3,572 11.4 14.1 0 52 X X X X

Local initiatives 3,405 0.9 7.7 0 365 X X X X X

Repairs 3,894 0.7 0.8 0 10 X X X X X X

Hobbies 3,895 1.6 1.4 0 11 X X X X X X

Sociability 3,509 24.8 20.9 0 52 X X X X

Art exhibitions 2,389 16.5 57.5 0 365 X

Watching TV 2,389 306.0 126.2 0 365 X

Eating out 2,389 12.6 23.2 0 365 X

Excursions 2,383 6.5 7.7 0 52 X

Minding diet 1,817 2.7 0.7 1 4 X X X

Non-smoking 2,186 0.6 0.5 0 1 X X X

Prof. assoc. 3,236 0.1 0.2 0 1 X X X X

Labor union 3,251 0.1 0.3 0 1 X X X X

Envir. assoc. 3,235 0.04 0.2 0 1 X X X X

Repairing cars 2,401 4.8 14.9 0 365 X

Visiting neighbors 2,384 35.8 59.0 0 365 X

Visiting family 2,371 53.0 93.1 0 365 X

FE for maintaining job 2,002 0.2 0.4 0 1 X X

FE for promotion 2,002 0.6 0.5 0 1 X X

General FE 3,548 0.4 0.5 0 1 X X X
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Table 8.7: Summary Statistics IIIb: Time use characteristics of partner

Statistic N Mean St. Dev. Min Max C1 C2 C3 C4 TC1 TC2

Partner

Hours work A 3,259 39.7 15.5 0.0 80.0 X X X X

Hours work B 2,525 40.3 14.1 0.0 80.0 X

Childcare A 3,042 1.1 1.5 0.0 24.0 X X

Childcare B 2,534 1.5 1.6 0.0 24.0 X

Housework A 3,039 0.6 0.7 0.0 6.0 X X

Housework B 2,534 0.5 0.7 0.0 6.0 X

Interest in Politics 3,422 2.5 0.8 1 4 X X X X X

Church visits 3,396 8.1 17.4 0 365 X X X X X

Cultural activities 3,397 3.8 5.6 0 52 X X X X X

Honorary post 3,395 10.8 30.0 0.0 365.0 X X X X X

Cinema visits 3,396 6.0 9.7 0 52 X X X X X

Exercising 3,389 22.2 44.9 0.0 365.0 X X X X X

Neighborly help 3,024 11.6 13.7 0 52 X X X

Local initiatives 2,965 1.6 9.4 0 365 X X X X X

Repairs 3,398 1.0 1.0 0 10 X X X X X

Hobbies 3,422 1.6 1.6 0 14 X X X X X

Sociability 2,222 22.1 20.2 0 52 X

Art exhibitions 1,645 9.8 41.4 0 365 X

Watching TV 1,644 304.8 127.3 0 365 X

Eating out 1,647 18.9 46.8 0 365 X

Excursions 1,641 7.1 15.0 0 365 X

Minding diet 1,545 2.3 0.7 1 4 X X X

Non-smoking 1,970 0.6 0.5 0 1 X X X

Prof. assoc. 2,737 0.1 0.4 0 1 X X

Labor union 2,769 0.2 0.4 0 1 X X

Envir. assoc. 2,733 0.1 0.2 0 1 X X

Repairing cars 2,147 20.8 42.0 0 365 X

Visiting neighbors 2,012 28.3 43.8 0 365

Visiting family 2,005 36.8 66.7 0 365

FE for maintaining job 1,740 0.2 0.4 0 1

FE for promotion 1,740 0.7 0.4 0 1

General FE 3,090 0.5 0.5 0 1 X
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Table 8.8: Summary Statistics IVa: Attitudes of reference parent

Statistic N Mean St. Dev. Min Max C1 C2 C3 C4 TC1 TC2

Reference parent

Anomie 1 1,552 2.6 0.7 1 4 X X

Anomie 2 1,552 1.8 0.9 1 4 X X

Anomie 3 1,519 1.7 0.8 1 4 X X

Anomie 4 1,550 1.7 0.8 1 4 X X

Trust 1 2,350 2.7 0.6 1 4 X X X

Trust 2 2,351 2.6 0.7 1 4 X X X

Trust 3 2,348 1.7 0.7 1 4 X X X

Trust 4 2,319 1.5 0.5 1 2 X X X

Trust 5 2,322 1.3 0.5 1 2 X X X

Reciprocity 1 1,399 6.5 0.8 1 7 X X

Reciprocity 2 1,398 5.1 1.7 1 7 X X

Reciprocity 3 1,396 5.5 1.5 1 7 X X

Reciprocity 4 1,397 5.9 1.2 1 7 X X

Risk attitude 1,809 4.2 2.2 0 10 X X X

Curiosity 785 5.3 1.3 1 7 X

Future optimism 1,438 2.8 0.7 1 4 X X X

Importance 1 2,056 2.9 0.6 1 4 X X X X

Importance 2 2,059 3.3 0.5 1 4 X X X X

Importance 3 2,059 2.8 0.7 1 4 X X X X

Importance 4 2,458 2.8 0.7 1 4 X X X X X

Importance 5 2,059 2.8 0.9 1 4 X X X X

Importance 6 2,056 3.7 0.6 1 4 X X X X

Importance 7 2,053 3.7 0.5 1 4 X X X X

Importance 8 2,056 2.0 0.7 1 4 X X X X

Importance 9 1,665 2.3 0.8 1 4 X X

Importance 10 598 3.2 0.6 1 4

Importance 11 595 2.2 0.9 1 4

Importance 12 591 3.2 0.7 1 4

Importance 13 599 3.9 0.3 2 4 X

Importance 14 599 3.2 0.6 2 4 X

Importance 15 599 3.5 0.5 2 4 X

Importance 16 597 3.5 0.5 2 4 X

Importance 17 597 3.8 0.4 1 4 X

Importance 18 597 2.1 0.7 1 4 X

Importance 19 597 3.1 0.6 1 4 X

Importance 20 598 3.2 0.7 1 4 X

Importance 21 598 3.1 0.5 1 4 X

Never interested in FE 3,916 0.2 0.4 0 1 X X X X

No Interest in FE 1,975 0.3 0.5 0 1 X
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Table 8.9: Summary Statistics IVb: Attitudes of partner

Statistic N Mean St. Dev. Min Max C1 C2 C3 C4 TC1 TC2

Partner

Anomie 1 697 2.6 0.7 1 4

Anomie 2 696 1.6 0.8 1 4

Anomie 3 697 1.8 0.8 1 4

Anomie 4 696 1.7 0.8 1 4

Trust 1 1,944 2.6 0.7 1 4 X X

Trust 2 1,949 2.6 0.8 1 4 X X

Trust 3 1,944 1.8 0.7 1 4 X X

Trust 4 1,932 1.5 0.5 1 2 X X

Trust 5 1,928 1.3 0.5 1 2 X X

Reciprocity 1 1,226 6.4 0.8 2 7 X

Reciprocity 2 1,224 4.7 1.7 1 7 X

Reciprocity 3 1,223 5.0 1.6 1 7 X

Reciprocity 4 1,225 5.8 1.1 1 7 X

Risk attitude 1,529 5.1 2.2 0 10 X X

Curiosity 636 5.4 1.3 1 7 X

Future optimism 1,225 2.8 0.8 1 4 X

Importance 1 1,739 3.0 0.6 1 4 X X X

Importance 2 1,739 3.1 0.6 1 4 X X X

Importance 3 1,737 2.8 0.7 1 4 X X X

Importance 4 2,094 3.1 0.6 1 4 X X X

Importance 5 1,735 3.0 0.9 1 4 X X X

Importance 6 1,741 3.7 0.5 1 4 X X X

Importance 7 1,732 3.6 0.6 1 4 X X X

Importance 8 1,735 2.1 0.7 1 4 X X X

Importance 9 1,402 2.3 0.8 1 4 X

Importance 10 524 3.1 0.6 1 4

Importance 11 522 2.1 0.9 1 4

Importance 12 523 3.5 0.6 1 4

Importance 13 524 3.9 0.4 2 4

Importance 14 524 3.1 0.6 1 4

Importance 15 524 3.5 0.6 2 4

Importance 16 523 3.4 0.5 2 4

Importance 17 523 3.8 0.4 3 4

Importance 18 524 2.2 0.7 1 4

Importance 19 523 3.1 0.6 1 4

Importance 20 523 3.2 0.6 1 4

Importance 21 524 3.0 0.6 1 4

Never interested in FE 3,085 0.1 0.3 0 1 X

No Interest in FE 1,726 0.2 0.4 0 1
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Table 8.10: Overview of used user-written packages

Package Name (Method) Version Author

lars

(Lasso) 1.05 Mander (2014)

PCovR

(Principal Covariates Regression) 2.6 Vervloet et al. (2015)

pls

(Partial Least Squares) 2.0 Mevik and Wehrens (2007)

parcor

(Adaptive Lasso) 0.2-6 Kraemer, N., Schaefer, J. (2014)

glmnet

(Elastic Net) 2.0-5 Friedman et al. (2010),

caret

(Cross-Validation) 6.0-70 Kuhn (2008)

The calculations in this thesis were mainly executed with Stata 11.2, Stata 13.1,

R 3.0.2, R 3.1.1 and Microsoft Excel 2010. Table 8.10 lists the (user-written)

packages that were accessed. Some illustrations were using Python (x,y) and the

library scikit-learn (Pedregosa et al., 2011).
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Ich erkläre hiermit an Eides Statt, dass ich meine Doktorarbeit ”Exploring family

life circumstances and their relationship to a child’s school achievement – an

econometric analysis in large data contexts” selbständig und ohne fremde Hilfe
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