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Abstract

We call a given American option representable if there exists a European claim which
dominates the American payoff function at any time and such that the values of the
two options coincide within the continuation set associated to the American option.
This mathematical concept has interesting implications from a probabilistic, analytic,
financial and numerical point of view. We aim at analyzing the notion of representability
and linking it to embedded American payoffs in the sense of Jourdain and Martini
and cheapest dominating European options originating from the work of Christensen.
This process reveals a new duality structure between European and American valuation
problems which we deem as very promising for future research. Relying on methods from
convex optimization, we make a first step towards verifying representability of certain
American claims. Furthermore, we discuss some computational aspects related to semi-
infinite linear programming theory. This ultimately leads to an iterative procedure
which generates upper and lower bounds for American option prices as well as a spline
approximation to the early exercise boundary. The algorithm is benchmarked against
high-precision methods from the literature.





Zusammenfassung

Wir bezeichnen ein amerikanisches Derivat als darstellbar, falls eine europäische Option
existiert, welche innerhalb des Fortsetzungsgebietes preisgleich zu der amerikanischen
Option ist und deren assoziierte Wertfunktion den amerikanischen Payoff zu jeder Zeit
dominiert. Aus diesem Konzept lassen sich diverse Schlüsse ableiten, welche sowohl aus
einer wahrscheinlichkeitstheoretischen oder finanzmathematischen Perspektive, als auch
von einem analytischen oder numerischen Standpunkt aus betrachtet von Interesse sind.
Die vorliegende Dissertation zielt darauf ab, mittels Darstellbarkeit eine Brücke zwis-
chen eingebetteten amerikanischen Auszahlungen, im Sinne von Jourdain und Martini,
und den von Christensen diskutierten billigst dominierenden europäischen Optionen, zu
schlagen. Hierbei stoßen wir auf einen bisher unbekannten strukturellen Zusammenhang
zwischen amerikanischer und europäischer Optionsbewertung. Diesen erachten wir als
interessant und reichhaltig hinsichtlich zukünftiger Forschungsvorhaben. Für gewisse
amerikanische Auszahlungsprofile wagen wir, unter Zuhilfenahme von Methoden der
konvexen Optimierung, einen ersten Schritt in Richtung Lösung des Darstellbarkeit-
sproblems. Ergänzend diskutieren wir einige algorithmische Aspekte im Rahmen der
Theorie semi-infiniter linearer Programme. Abschließend präsentieren wir ein iteratives
Verfahren, welches sowohl obere und untere Schranken für amerikanische Optionspreise,
als auch eine Spline Approximation der Ausübungsgrenze generiert. Zur Leistungsbe-
messung ziehen wir Präzisionsmethoden aus der Fachliteratur zu Rate.
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1 Introduction

1.1 Pricing of American options
It might be fair to say that options belong to the most important financial instruments in
the world of modern finance. Basically speaking, an option is a contract which gives the
holder the right to trade a certain number of assets according to some clearly specified
terms. For example, European call and put options allow the holder to purchase or
sell an underlying asset for a fixed price at a certain date. In general, options are
complex securities with a versatile nature - some of them a great deal of risk, others
constitute rather conservative investments. By incorporating these contracts into their
portfolios, investors can flexibly shape the latter according to their individual needs. A
lot of research in mathematical finance and the related fields was driven by the central
question of how an economically reasonable price for such derivatives can be obtained.
In 1973 Fischer Black and Myron Scholes rigorously derived in their seminal article
[BS] explicit formulas for theoretical option prices in an idealized market model. More
precisely, they consider a continuous-time model consisting of a riskless bond and a non-
dividend paying risky stock. It is assumed that the bond price B and the asset price S
evolve according to the stochastic differential equation

dBt = rBtdt,
dSt = µStdt+ σStdWt

(1.1)

where µ, r ∈ R, σ ∈ R++ and W denotes a standard Brownian motion. Furthermore,
they assume that at any time it is possible to buy and sell any amount of stock or bond
without paying a transaction fee. Within this market setup, nowadays known as the
celebrated Black-Scholes model, the just mentioned authors derive closed formulas for
the prices and hedging positions associated to European put and call options.
In the same year Robert C. Merton published a follow-up article [ME] containing further
ground-breaking insight on option pricing and important extensions of the Black-Scholes
theory. In particular, he considers the valuation of American call and put options within
the framework of [BS]. Unlike European derivates, American type contracts can be
exercised by the holder at any time up to some prespecified expiration date. In [ME] it
is shown that American call options will never be exercised prior to expiration. Basic
arbitrage theory implies that the value of an American call must coincide with the option
price of its European counterpart.
Under mild assumptions, which are satisfied by the market (1.1), the well-known call-
put parity allows us to deduce the value of a European put option from the price of
a European call and vice versa. Unfortunately, even in the very basic Black-Scholes
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1 Introduction

setting, a relation of this kind does not exist for American style put and call options. In
[ME, Theorem 13] it is shown that, in contrast to call options, the price of an American
put exceeds the value of its European counterpart due to premature exercising. For
the perpetual American put, i.e. an American put option which never expires, Merton
realized that the valuation problem reduces to solving an ordinary differential equation,
and therefore an explicit representation of the option value can indeed be derived, cf.
[ME, Section 8]. Despite tremendous efforts, it was impossible to obtain such explicit
pricing formulas for American put options with finite maturities.

Leaving the Black-Scholes scenario does not necessarily improve the situation. Quite the
contrary, for other continuous-time market models, analytic solutions of American or
even European valuation problems are seldomly known. Consequently, the practitioner
is in need of fast and reliable numerical tools. A brief glance into the bibliography of
any standard textbook on numerical methods in financial mathematics, see for instance
[SD], provides the reader with a first impression on the fast and extensive development
of this research field. Summarizing the vast amount of literature within the scope of
this thesis would be a futile endeavor. Nevertheless, we want to sketch three rudimen-
tary numerical approaches towards American option pricing. The short survey below
mainly focuses on the finite-maturity American put in the Black-Scholes setting and
rather aims at providing some basic intuition while omitting any mathematical details.
In this regard we ask the reader to be lenient with us. We write g(s) := (K − s)+ for
the put payoff with strike K ∈ R++. In the market model (1.1) the fair price of an
American put on the risky asset is a function vam,g(ϑ, s) depending only on the option’s
maturity ϑ ∈ R+ and the spot price s ∈ R++ of the underlying, cf. [PS, Section 25]. If
not explicitly stated otherwise, we denote by T ∈ R++ some finite terminal time.

• Finite difference methods: Exploiting the Markovian nature of (1.1), it can be
shown that the value function vam,g associated to the American put satisfies the
linear complementary problem (LCP)

Dvam,g ≥ 0 a.e. in (0, T ]× R++,

vam,g ≥ g a.e. in (0, T ]× R++,

(vam,g − g)Dvam,g = 0 a.e. in (0, T ]× R++,

vam,g(0, s) = g(s)

(1.2)

where D := ∂ϑ− rs∂s− 1
2σ

2s2∂ss + r, see [LL, Theorem 5.3.4]. In order to approx-
imate the value function, we first choose a suitable finite grid (ϑi, sj) ∈ [0, T ]×R+
where i = 0, ...,M and j = 0, ..., N with ϑ0 = s0 = 0. Replacing all differential
expressions in (1.2) by appropriate difference quotients and introducing suitable
boundary conditions yields a sequence of discrete LCPs for the approximate values
of vam,g at the grid points, cf. [SD, Subsection 4.6.1]. In case of the American put,
the discrete LCPs appearing while iterating through the time layers can be solved
very efficiently by the Brennan-Schwartz method. For differently structured payoff
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1.1 Pricing of American options

profiles, the discrete LCPs are frequently solved by iterative indirect methods, for
instance the projected SOR algorithm, cf. [SD, Algorithm 4.11]. The Brennan-
Schwartz algorithm originates from the 1977 article [BRS] which presents one of
the earliest finite difference approximations to the American put value function.
Even though the formulation of the LCP presented in [BRS] was erroneous, the
proposed numerical method turned out to be justified. A thorough analysis of
the Brennan-Schwartz approach and a general discussion of variational inequali-
ties related to American option valuation can be found in [JLL]. Moreover, we
refer the reader to the survey article [TV] on finite difference techniques in com-
putational finance. As pointed out by [TV], the computational feasibility of such
methods is strongly affected by the number of grid points. As a rule of thumb,
the computational effort increases exponentially with the number of underlying
assets. Consequently, finite difference based algorithms are deemed to be useful in
low dimensional settings.

• Tree approximations: Tree methods rely on the construction of discrete Markov
chains which approximate the stochastic dynamics of the underlying assets. The
usage of tree models in finance originates from the work of Sharpe and the seminal
article [CRR] by Cox, Ross and Rubinstein which contains fundamental insights
on option pricing in binomial trees. The basic concept of binomial tree models is
very intuitive: Choose some finite time grid 0 = t0 < ... < tN = T and suppose
that the prices of a riskless bond B and some risky asset S move according to the
equations

Bn = B0 exp(rtn)

Sn = S0

n∏
l=1

(1 + Zl)

for any n ∈ {0, ..., N}. Here we denote by Z1, ..., ZN i.i.d. random variables sat-
isfying P(Z1 = u) = 1 − P(Z1 = d) = p with p ∈ (0, 1) and −1 < d < u. Hence,
the parameters u, d represent the possible one-period relative stock price changes
and r ∈ R++ corresponds to a constant interest rate. Models of the latter type
are well interpretable and mathematically simple. In particular, formulas for Eu-
ropean and American option prices can be easily obtained, see [LL, Chapter 1 and
2]. We refer the reader to [SH] for a comprehensive didactic approach towards
mathematical finance based on tree models. In [CRR] it is shown that we can
choose parameter sequences (rk, uk, dk, pk, Nk, (tki )i=0,...,Nk)k∈N such that the asso-
ciated sequence of binomial trees converges in distribution to the continuous-time
Black-Scholes model. Under certain regularity assumptions, European and Ameri-
can option prices stemming from the discrete-time tree approximations converge to
the corresponding prices in the limiting Black-Scholes market. We refer the reader
to [KU] for a rather general treatment of discrete-time approximations to Marko-
vian stochastic control problems. Short and easily comprehensible introductions
to tree-based methods, as well as further references, can be found in [LZ] and [SD,
Section 1.4]. A major drawback of tree approximations is that the computational
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1 Introduction

effort grows exponentially as the number of model variables increases. In practice,
tree based algorithms are therefore predominantly useful for models with one or
two underlying assets, cf. [LZ] and [BG].

• Monte Carlo methods: In addition to the finite difference approach put forward
by Schwartz et al. and the CRR tree approximations, Phelim Boyle presented a
third method for the numerical solution of option pricing problems in 1977. In
order to obtain European prices, he proposed to evaluate the related integrals by
Monte Carlo simulation. In addition, he recommended to apply certain variance
reduction techniques in order to achieve a greater precision and smaller confidence
intervals for a given sample size, cf. [BO]. For example: Calculating the price of
some European option in the Black-Scholes model is equivalent to the evaluation
of E[h(Z)] for some measurable function h and some normally distributed random
variable Z. Under mild integrability assumptions, the law of large numbers yields
that

ŜN := 1
N

N∑
n=1

h(Zn)→ E [h(Z)]

as N → ∞ where Z1, Z2, ... denote i.i.d. random variables which follow the same
distribution as Z. There exist several methods to increase the efficiency of Monte
Carlo estimates. For instance, in [BO] the usage of antithetic variables or control
variates is suggested. We refer the reader to [GL, Chapter 4] for a general overview
of variance reduction methods.

Unfortunately, Monte Carlo techniques for the pricing of American type options
turn out to be more complex as their European counterparts. As a cornerstone of
this topic we want to mention the random tree approach put forward by Broadie
and Glasserman. In their article [BG] they first consider the valuation of Bermudan
options in a Markovian setting, i.e. options which only allow for early exercise
at some finite set of time points. In the following they argue that American
option values may be extrapolated from the solutions of certain Bermudan type
pricing problems. The main ingredients of their Bermudan pricing algorithm can
be roughly summarized as follows:

– First, a tree is simulated whose nodes correspond to simulations of the model
state variables at the possible exercise times. By applying a dynamic pro-
gramming algorithm to this tree, an estimator ΘH for the Bermudan option
value V is obtained. In [BG] it is shown that the estimator ΘH is biased high,
i.e. E [ΘH] ≥ V . Moreover it is shown that ΘH converges to V as we increase
the number of branchings b at each node. Based on the same simulated tree,
an estimator ΘL is derived which is biased low and consistent in the sense
above.

– Averaging the high and low estimators generated from n independent simula-
tions of trees with the same branching complexity b yields estimators ΘH(n, b),
ΘL(n, b) and an asymptotic 1 − δ confidence interval for the value V of the
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1.1 Pricing of American options

type (
ΘL(n, b)− ψ1(δ, n, b),ΘH(n, b) + ψ2(δ, n, b)

)
where ψ1, ψ2 denote certain functions depending only on the parameters δ, n
and b. The analysis of [BG] shows that the bounds of the latter interval can
be arbitrarily tightened by increasing b and n.

The computational complexity of this method depends exponentially on the amount
of possible exercise times. Consequently, the approach turns out to be numerically
infeasible if this number is too large. We refer the reader to Section 8.3 of [GL]
for a thorough discussion of this topic and some additional remarks concerning
implementation and enhancements. Another method for Bermudan option pricing
was proposed by Longstaff and Schwartz, cf. [LS]. Their algorithm relies on ap-
proximating the conditional expectation occurring in the dynamic programming
equation associated to the valuation problem by a suitably chosen projection on
some finite dimensional space of random variables. A detailed discussion of the
Longstaff-Schwartz algorithm as well as a convergence analysis can be found in
[CLP].
As Boyle already pointed out, Monte Carlo techniques turn out to be useful in
many cases where finite difference methods or tree approximations fail, in partic-
ular in the presence of jumps or in high dimensional market models. In general,
these methods do not generate global approximations of the value function vam,g
associated to the pricing problem. Due to their high computational effort, they
are therefore considered as predominantly useful when only a few option values
are required. The textbook [GL] provides a very comprehensive survey of Monte
Carlo methods and their financial applications.

Aside the numerous algorithmic aspects, the mathematical essence of American option
pricing and the intimately connected problem of optimal stopping have been intensively
studied during the last decades. It turned out to be fruitful to adopt two different math-
ematical viewpoints simultaneously. On the one hand, the problem can be formulated
in the context of martingales, Snell envelopes and stopping times. On the other hand,
by relying on Markov process theory, one can adopt more local perspective which allows
to transcribe American valuation problems in terms of differential operators and free
boundary problems.
We refer the reader to the monograph [PS] for an excellent treatment of optimal stop-
ping theory and various applications. The exposition of G. Peskir and A. N. Shiryaev
clearly distinguishes between the two different approaches and rigorously demonstrates
the beneficial nature of their interplay. Moreover, the second chapter of the aforemen-
tioned textbook will serve us as the prime reference for all basic notions from stochastic
process theory.
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1 Introduction

1.2 Contribution of this work
The thesis at hand aims at providing a new perspective on American type options which
hopefully paves the way for new numerical methods. The central idea is to reduce the
valuation of American options to the simpler problem of computing prices of European
contingent claims whose payoffs do not depend on the paths of the underlying stochastic
process.

For ease of exposition we consider the risk-neutral Black-Scholes setting consisting of
a deterministic bond and some risk-bearing stock. The value of the bond B and the
logarithmic asset price X evolves according to the stochastic differential equation

dBt = rBtdt,

dXt =
(
r − σ2

2

)
dt+ σdWt,

(1.3)

where r ≥ 0, σ > 0, B0 := 1 and W = (Wt)t∈R+ denotes a standard Brownian motion.
The filtration generated by the process W is denoted by F := (Ft)t∈R+ . Following the
notational conventions from Markov process theory, we denote by (Px)x∈R the family
of measures such that Px(X0 = x) = 1 holds true for any x ∈ R. We write T for the
set of stopping times satisfying Px (0 ≤ τ <∞) = 1 for all x ∈ R. Moreover, for any
ϑ ∈ R+ the aggregate of all [0, ϑ]-valued stopping times is denoted by T[0,ϑ]. Suppose
that f : R → R+ is a measurable payoff function. The fair value of a European option
with payoff f(X), maturity ϑ ∈ R+ and initial logarithmic stock price x ∈ R is denoted
by veu,f (ϑ, x), i.e.

veu,f (ϑ, x) := Ex
[
e−rϑf(Xϑ)

]
. (1.4)

Similarly, for a continuous payoff function g : R → R+ satisfying the integrability
condition

Ex
[

sup
t∈[0,T ]

e−rtg(Xt)
]
<∞, (1.5)

for some time horizon T ∈ [0,∞], the fair value of an American claim with payoff
process Z = g(X), maturity ϑ ∈ [0, T ] and logarithmic spot price x ∈ R is denoted by
vam,g(ϑ, x), i.e.

vam,g(ϑ, x) := sup
τ∈T

Ex
[
e−r(τ∧ϑ)g(Xτ∧ϑ)

]
. (1.6)

We will call veu,f the European value function associated to f and vam,g the American
value function associated to g. Until the end of this section let us assume that T is
finite. If not explicitly stated otherwise, the value functions from (1.4) and (1.6) will
always be parametrized in maturity/log-price coordinates. Condition (1.5) warrants
that vam,g is finitely valued and lower semi-continuous on the set [0, T ]× R, cf. Section
5.3. Indeed, for any stopping time τ ∈ T we find by dominated convergence that the
mapping (ϑ, x) 7→ Ex

[
e−r(τ∧ϑ)g(Xτ∧ϑ)

]
is continuous on [0, T ] × R. Lemma 5.9 now
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1.2 Contribution of this work

directly implies the lower semi-continuity of the American value function. Following
[PS], we write

CT := {(ϑ, x) ∈ R+ × R | ϑ ≤ T and vam,g(ϑ, x) > g(x)} (1.7)

for the continuation region and

ST := Cc
T = {(ϑ, x) ∈ R+ × R | ϑ ≤ T and vam,g(ϑ, x) = g(x)} (1.8)

for the stopping region associated to the American claim. We explicitly remark that the
sets CT and ST will always be parametrized by maturity/log-price coordinates. In case
that the time horizon T is finite, one can apply the transformation ϑ 7→ T − ϑ in order
to switch to calender time.

Now, fix some terminal time T ∈ R++ and some log-price x0 ∈ R such that the point
(T, x0) is contained in CT . For this introductory section let us assume that CT is a
connected set. We say that a European payoff function f : R → R+ represents the
American payoff function g : R → R+ if the European value function associated to f
dominates the value of the American option everywhere and these two functions coincide
within the continuation region of the American claim, i.e. we have veu,f ≥ vam,g on the
set [0, T ]× R and vam,g(ϑ, x) = veu,f (ϑ, x) holds true for any (ϑ, x) ∈ CT . The following
guiding question for the thesis at hand arises:

Given an American payoff function g, is there a
European payoff function f representing g ?

If true, we call the payoff g representable and f the representing European claim. The
concept of representability has several interesting implications from a probabilistic, an-
alytic and financial point of view, for example:

• Global approximations of the American value function can be efficiently computed
by means of linear programming, cf. Chapter 3.

• A buy-and-hold position in the European option with time T payoff f(XT ) hedges
the American claim perfectly.

• Within the continuation region CT , the difference vam,g − veu,g corresponds to the
fair value of a European payoff with time T payoff h(XT ) := f(XT )− g(XT ), i.e.

vam,g(ϑ, x) = veu,g(ϑ, x) + veu,h(ϑ, x) (1.9)

for any (ϑ, x) ∈ CT . To put differently, the early exercise premium of the American
option can be interpreted as the price of a European claim with a specific payoff
profile.

7



1 Introduction

• The Snell envelope corresponding to the American option allows for a Markovian-
style decomposition, see Equation (1.16) below.

• Certain analytical properties of the European value function associated to the
representing payoff f transfer to the American value function vam,g, cf. Subsection
2.1.1 and Section 2.2.

• Some analytical properties of the early exercise curve can be obtained easily. In-
deed, the latter coincides with the boundary of the set

{(ϑ, x) ∈ (0, T ]× R | veu,f (ϑ, x) = g(x)}.

This allows to derive smoothness properties of the early exercise curve from the
analyticity of veu,f by means of the implicit function theorem, cf. Section 2.2.

• The solution of the free boundary problem associated to the American option can
be extended to a solution of the Black-Scholes partial differential equation beyond
the free boundary.

On top of verifying the representability of a given option, one may ask how to obtain the
representing European payoff, at least numerically. Moreover, are possibly all American
options representable? Or, if this is not the case, do representable options exist at all -
except for the obvious case where early exercise is suboptimal and hence g itself repre-
sents g?

The concept of representability is not studied here for the first time. It was considered
in two articles by Jourdain and Martini, which have not yet received the attention they
deserve. In [JM1] it is shown that many European payoffs represent some American
claim which can be obtained in a natural way. Indeed, given some European payoff
function f , they define an American payoff function amT (f) : R→ R+ as

amT (f)(x) := inf
ϑ∈[0,T ]

veu,f (ϑ, x), (1.10)

from now on called the embedded American option (EAO) associated to f . If the infimum
in (1.10) is attained in a connected curve, then f represents its embedded American op-
tion amT (f), cf. [JM1, Theorem 5]. Jourdain and Martini provide an explicit example
where this is the case. Additionally, they show that embedded American payoff func-
tions satisfy certain analyticity properties, cf. [JM1, Proposition 16]. From their results
we conclude that representable options exist but that not all American payoff functions
are representable. In their follow-up article [JM2] the aforementioned authors study the
American put option in detail. They show that it cannot be represented by any of a
seemingly general and reasonable candidate family of European contingent claims. This
may be considered as an indication that this particular option may not be representable
after all. Summing up, the main contribution of Jourdain and Martini is to provide a way
to obtain an American payoff function g that is represented by a given European claim f .
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1.2 Contribution of this work

Our question here is rather the converse: Given g, is there a representing European
claim f , and how can it be obtained? In order to tackle these problems, we make use of
a concept originating from [CR]. The key contribution of [CR] is the linear optimization
problem

minimize veu,f (T, x0)
subject to f : R→ R+ measurable and

veu,f (ϑ, x) ≥ g(x) for all (ϑ, x) ∈ [0, T ]× R.
(1.11)

We call a minimizer f of (1.11) cheapest dominating European option (CDEO) of g rela-
tive to (T, x0). The infinite dimensional linear problem (1.11) can be numerically solved
by semi-infinite programming methods, cf. [HK], [IW] and Chapter 3 below. It is easy
to see that the fair price of a CDEO f provides an upper bound to the value of the given
American claim g. However, in [CR] it remains open how large the gap between the two
actually is. While there is a priori no reason why the two should coincide, numerical
studies in [CR] indicate that for certain American payoffs the difference seems to be very
small. In the present thesis we use the CDEO associated to some American option as the
natural candidate for the generating European payoff. To put differently, constructing
the CDEO constitutes in some sense the inverse relation to the embedding operation,
cf. Proposition 2.10 and Theorem 2.52. Indeed, if g is representable at all, it must be
represented by its CDEO, as we will see below. This also answers the question how to
obtain a representing European payoff function numerically if it exists at all, cf. Section
3.1.

It is important to distinguish the minimization problem (1.11) and more generally the
present study from the well-known duality approaches put forward by [RG], [DK] and
[KH]. Consider again an American payoff function g : R→ R+ leading to the discounted
exercise process Ẑt := e−rtg(Xt) and some finite time horizon T ∈ R++. From [RG,
Theorem 1] we know that

vam,g(T, x0) = inf
{
Ex0

[
sup
t∈[0,T ]

(Ẑt −Mt)
] ∣∣∣∣∣ M martingale with M0 = 0

}
. (1.12)

Indeed, the inequality ≤ is obvious because

Ex0 [Ẑτ ] = Ex0 [Ẑτ −Mτ ] ≤ Ex0

[
sup
t∈[0,T ]

(Ẑt −Mt)
]

for any [0, T ]-valued stopping time τ and any martingale M with M0 = 0. For the
converse inequality consider the Doob-Meyer decomposition

V = V0 +MV − AV (1.13)

of the Snell envelope V of the discounted exercise process Ẑ, i.e.MV is a martingale and
AV an increasing process with AV0 = MV

0 = 0, cf. [PS, Theorem 3.1]. It is well-known
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1 Introduction

that V corresponds to the discounted fair price process associated to the American claim,
i.e. Vt = e−rtvam,g(T − t,Xt), cf. [LB, Theorem 4.1.1]. Since

Ẑt −MV
t ≤ Vt −MV

t = V0 − AVt ≤ V0 = vam,g(T, x0)

for any t ∈ [0, T ], we conclude that the inequality ≥ holds in (1.12) as well. Similarly,
observe that

vam,g(T, x0) = inf

Ex0 [Y ]

∣∣∣∣∣∣
Y ≥ 0 random variable with
Ẑt ≤ Ex0 [Y |Ft] ∀t ∈ [0, T ]

 . (1.14)

Again, the inequality ≤ is obvious because any martingale dominating Ẑ majorizes the
discounted American option price process V . The converse inequality ≥ follows from
choosing Y = V0 + MV

T , where V and MV are defined as above. The linear problem
(1.11) can be rephrased as

inf

Ex0

[
e−rTf(XT )

] ∣∣∣∣∣∣
f :R→R+ measurable with
Ẑt ≤ Ex0

[
e−rTf(XT )

∣∣∣Ft] ∀t ∈ [0, T ]

 , (1.15)

which seems almost identical to the right-hand side of (1.14). However, the dominating
European payoff Y in (1.14) may well be path dependent, which is not the case in (1.15).
And indeed, it is easy to see that the terminal value V0 +MV

T cannot typically be written
as a function of XT , e.g. in the case of an American put. Therefore, the identities (1.12)
and (1.14) do not help in deciding whether the value of the CDEO in the sense of (1.11)
coincides with the price of the American option at hand.
From a different perspective, one may note that the martingale in the Doob-Meyer
decomposition (1.13) is not the only one that leads to optimal choices in (1.12) and
(1.14). In fact, we could replace MV by M̃ in any decomposition of the form

V = V0 + M̃ − Ã (1.16)

with some martingale M̃ and some non-negative process Ã satisfying Ã0 = M̃0 = 0.
Contrary to the unique decomposition (1.13), we do not require Ã to be increasing. As
noted above, (1.15) coincides with the American option price (1.14) if we can choose M̃
such that V0 + M̃T = e−rTf(XT ) for some deterministic function f . In this case, the
decomposition (1.16) is Markovian-style in the sense that both M̃t and Ãt are functions
of t and Xt, i.e.

M̃t = e−rTEXt [f(XT−t)]− V0

Ãt = e−rTEXt [f(XT−t)]− e−rtvam,g(T − t,Xt)

at any time t. Hence, the issue of representability is linked to the existence of Markovian-
style decompositions (1.16) of the Snell envelope associated to the optimal stopping
problem.
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1.2 Contribution of this work

The present study serves different purposes. In Section 2.1 we establish the link between
embedded American options from [JM1], cheapest dominating European options from
[CR] and the notion of representability. Subsection 2.1.2 contains several examples of
representable American claims. In particular, we will provide an example of an embed-
ded American payoff g = amT (f) which is not represented by the generating European
claim f . Furthermore, by providing an example, we show that representability may
depend on the time horizon of the market, cf. Subsection 2.1.3. The main contribution
of the thesis is contained in Section 2.2. First, we establish the existence of CDEOs in
a distributional sense for sufficiently regular American payoff functions g. Secondly and
more importantly, we provide a sufficient criterion which warrants that a given Amer-
ican claim is representable. The assumptions of this verification theorem depend on
qualitative properties of the corresponding CDEO. Our numerical experiments indicate
that these indeed seem to be satisfied for the American put in the Black-Scholes market,
cf. Section 3.2. Somewhat independent of the question concerning the representabil-
ity of American options, Section 3.1 outlines how CDEOs can be obtained numerically.
Building on the well-established theory of semi-infinite programming, we approximate
the infinite dimensional optimization task (1.15) by finite dimensional linear programs
which can be solved with standard methods. Moreover, we provide supplementary con-
vergence and consistency results. Afterwards, the precision and computational effort
of the CDEO algorithm is benchmarked against high-precision methods found in the
literature, cf. Section 3.3. As complement to the CDEO upper bound of the American
option price, we will present a new algorithm which generates lower price bounds. The
key idea is to generate an approximation to the early exercise boundary based on the
dual optimizer associated to the CDEO, cf. Section 3.4.
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1 Introduction

1.3 Notation
Given some metric space S, we write B(S) for the Borel σ-algebra on S andM(S) for
the vector space of regular Borel measures with finite total variation. The total variation
of a measure µ will be denoted by ‖µ‖. For any x ∈ S we denote by δx the Dirac unit
mass concentrated at the point x. If R is another metric space, we write B(R, S) for
the vector space of B(R)-B(S)-measurable mappings from R to S. The vector spaces
of real-valued continuous functions, bounded continuous functions, continuous functions
vanishing at infinity and compactly supported continuous functions on S are denoted
by C(S), Cb(S), C0(S) and Cc(S), respectively. The latter three are Banach spaces with
respect to the norm ‖f‖∞ := supx∈S |f(x)| which generates the topology of uniform
convergence Tuc. Furthermore, we denote byM+(S), C+(S), C+

b (S), C+
0 (S) and C+

c (S)
the cones of non-negative elements in the corresponding spaces. In a similar fashion
we write R+ := [0,∞) and R++ := (0,∞). Given two Banach spaces X and Y , we
denote by Ck(X, Y ) the k-times continuously Fréchet differentiable mappings from X
to Y . For a normed vector space (V, ‖ · ‖) and any x ∈ V, r ∈ R++ we define the closed
balls BV (x, r) := {v ∈ V | ‖v − x‖ ≤ r}, BV := BV (0, 1) and BV (r) := BV (0, r). For
p ∈ [1,∞) and a σ-finite measure space (Ω,F , µ) we denote by Lp(Ω,F , µ) the Banach
space of p-integrable real-valued functions with respect to µ. The associated p-norm is
denoted by ‖h‖p,µ := (

∫
Ω |h|pdµ)1/p. The p-norm associated to the Lebesgue measure on

Rn is simply denoted by ‖ · ‖p. The Banach space of µ-essentially bounded functions is
denoted by L∞(Ω,F , µ). Sometimes the underlying space Ω and the sigma algebra F
will be omitted in this notation. For an arbitrary set A, we define the following indicator
functions:

1A(x) :=

1 if x ∈ A,
0 if x /∈ A.

IA(x) :=

0 if x ∈ A,
∞ if x /∈ A.

A normally distributed random variable with mean µ ∈ R and variance σ2 ∈ R++ is de-
noted by N (µ, σ2). We write N(µ, σ2, ·) for the probability density function of N (µ, σ2).
Moreover, we write ϕ := N(0, 1, ·) for the probability density function and Φ for the
cumulative distribution function of a standard normal random variable. Given some
Borel set B ⊂ Rd, we denote by UB a random variable which is uniformly distributed on
B. The law of any random variable X is denoted by L(X). The value functions of a Eu-
ropean and an American claim with payoff φ are denoted by veu,φ and vam,φ respectively,
see the definitions from Section 1.2. The closure and the interior of a set M in some
topological space are denoted by clM and intM . We write ∂M := clM \ intM for the
topological boundary of M . For any point x in some topological space, we denote by
U(x) the system of all open sets containing x. The Euclidean topology on Rn is denoted
by TRn . Furthermore, we agree upon the convention that inf ∅ = +∞ and sup ∅ = −∞.
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2 A new duality between European
and American options

2.1 Representable options
The objective of this section is to present some general facts about embedded, cheapest
dominating, and representable options. In particular, we aim at providing some basic
insight on the interplay of these mathematical notions.

2.1.1 Embedded American and cheapest dominating European
options

Once again we consider the univariate Black-Scholes market (1.3). For European payoffs
f and upper semi-continuous American payoffs g, we use the notation (1.4, 1.6) from
Section 1.2 for the associated value functions. Note that vam,g(ϑ, x) only deserves to be
called fair option price if the integrability condition (1.5) holds.

2.1 Definition: Let f : R→ R+ denote a measurable European payoff and g : R→ R+
an upper semi-continuous American payoff satisfying (1.5).

1. The embedded American option (EAO) up to time T ∈ [0,∞] associated to f is
defined as the payoff function amT (f) : R→ R+ given by

amT (f)(x) := inf {veu,f (ϑ, x) | ϑ ∈ [0, T ] and ϑ <∞} . (2.2)

2. We say that f superreplicates g up to T ∈ [0,∞] if the inequality veu,f (ϑ, x) ≥ g(x)
holds for any finite ϑ ∈ [0, T ] and any x ∈ R.

3. Given an initial logarithmic stock price X0 = x0 ∈ R and some finite time hori-
zon T ∈ R++, we call a European payoff function f ? cheapest dominating Eu-
ropean option (CDEO) of g relative to T, x0 if f ? superreplicates g up to T and
veu,f?(T, x0) ≤ veu,f (T, x0) holds for any other European payoff f superreplicating
g up to T .
Moreover, the set of all such CDEOs is denoted by euT,x0(g). We write euT,x0(g) =
f ? if there is a unique CDEO f ?, i.e. if euT,x0(g) = {f ?}. Here we identify func-
tions which only differ on a set of zero Lebesgue measure.

Unless explicitly stated otherwise, we will consider finite time horizons T ∈ R++. Let
us derive some direct consequences from the preceding definition.
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2 A new duality between European and American options

2.3 Proposition: Fix (T, x0) ∈ R++ × R and let f, f̃ : R → R+ denote measurable
European payoffs. Furthermore, suppose that g : R → R+ is an upper semi-continuous
American payoff function satisfying the integrability condition (1.5). Then:

1. The set euT,x0(g) is convex.

2. If f superreplicates g up to time T , we have

g(x) ≤ vam,g(ϑ, x) ≤ veu,f (ϑ, x) (2.4)

for any (ϑ, x) ∈ [0, T ] × R and consequently g ≤ amT (f) ≤ f . In particular, we
have g ≤ amT (h) for any European payoff h ∈ euT,x0(g).

3. The mapping T 7→ amT (f) is decreasing and f 7→ amT (f) is increasing with respect
to the natural ordering on RR

+.

4. If x 7→ veu,f (ϑ, x) constitutes for any ϑ ∈ [0, T ] an upper semi-continuous mapping,
the function x 7→ amT (f)(x) is upper semi-continuous as well.

5. For any λ, λ̃ ∈ R+ we have amT (λf + λ̃f̃) ≥ λ amT (f) + λ̃ amT (f̃).

6. For arbitrary x ∈ R we have

|amT (f)(x)− amT (f̃)(x)| ≤ sup
ϑ∈[0,T ]

|veu,f−f̃ (ϑ, x)|. (2.5)

Moreover, for any p ∈ (1,∞] the strong estimate

‖amT (f)− amT (f̃)‖p ≤ cp ‖f − f̃‖p (2.6)

holds true for some constant cp not depending on the functions f and f̃ . In par-
ticular, we have c∞ = 1.

Proof.

1. Choose f1, f2 ∈ euT,x0(g) and note that for any λ ∈ (0, 1) the convex combination
fλ := λf1 + (1− λ)f2 superreplicates g up to T . Moreover, we have veu,fλ(T, x0) =
λveu,f1(T, x0) + (1− λ)veu,f2(T, x0) = veu,f1(T, x0) which implies that the payoff fλ
is indeed contained in euT,x0(g).

2. Recall that for any ϑ ∈ (0, T ] the discounted European value process(
e−rtveu,f (ϑ− t,Xt)

)
t∈[0,ϑ]

is a martingale on the time segment [0, ϑ]. Indeed, applying the Markov property
yields e−rtveu,f (ϑ − t,Xt) = e−ϑrEXt [f(Xϑ−t)] = e−ϑrEx [f(Xϑ)|Ft] for any t ∈
[0, ϑ]. Owing to the superreplication property and the optional sampling theorem,
we find that

vam,g(ϑ, x) = sup
τ∈T[0,ϑ]

Ex
[
e−rτg(Xτ )

]
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2.1 Representable options

≤ sup
τ∈T[0,ϑ]

Ex
[
e−rτveu,f (ϑ− τ,Xτ )

]
= veu,f (ϑ, x)

holds true for any (ϑ, x) ∈ [0, T ] × R, which proves (2.4). Minimizing both sides
of the latter inequality with respect to ϑ ∈ [0, T ] yields g(x) ≤ amT (f)(x) ≤ f(x)
for any x ∈ R.

3. This is obvious.

4. The point-wise infimum of an upper semi-continuous function collection constitutes
an upper semi-continuous mapping, cf. Lemma 5.9.

5. This is obvious.

6. For the proof of this assertion we note that

amT (f)(x)− amT (f̃)(x) = sup
ϑ̃∈[0,T ]

inf
ϑ∈[0,T ]

(
veu,f (ϑ, x)− veu,f̃ (ϑ̃, x)

)
≤ sup

ϑ̃∈[0,T ]
veu,f−f̃ (ϑ̃, x)

≤ sup
ϑ̃∈[0,T ]

|veu,f−f̃ (ϑ̃, x)|.

Interchanging the roles of f and f̃ yields the point-wise estimate (2.5). The latter
implies

‖amT (f)− amT (f̃)‖∞ ≤ sup
x∈R

sup
ϑ∈[0,T ]

veu,|f−f̃ |(ϑ, x) ≤ ‖f − f̃‖∞

which proves the strong estimate (2.6) for p = ∞. Now suppose that p ∈ (1,∞).
Young’s inequality shows that the linear operators

Qϑ : Lp → Lp ; h 7→ veu,h(ϑ, · )

define a strongly continuous contraction semi-group, cf. [LA, p. 224, Theorem 1.2].
Lemma 5.3 allows us to conclude that the semi-group (Qϑ)ϑ∈R+ is bounded analytic
of angle π

2 in the sense of [EN, Definition 4.5]. Alternatively, the analyticity of Qϑ

can be obtained from [EN, Corollary 4.9] by noting that the generator of erϑQϑ

coincides on C2 ∩ Lp with the square of the generator associated to a certain
strongly continuous group. In virtue of the point-wise estimate (2.5) we find that

‖amT (f)− amT (f̃)‖p ≤
∥∥∥∥∥ sup
ϑ∈[0,T ]

Qϑ|f − f̃ |
∥∥∥∥∥
p

.

If the semi-group Qϑ is self-adjoint on L2, i.e. r = σ2

2 , the classic maximal theorem
of E. M. Stein, cf. [ST, Chapter 3], implies that there exists some positive constant
cp which does not depend on the payoff functions f, f̃ such that∥∥∥∥∥ sup

ϑ∈[0,T ]
Qϑ|f − f̃ |

∥∥∥∥∥
p

≤ cp‖f − f̃‖p.
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2 A new duality between European and American options

In case that the operators Qϑ are not self-adjoint on L2, we can apply [MX, Corol-
lary 4.2] in order to obtain an analogous estimate.

Let us remark that the validity of the latter proposition does not depend on the specific
distributional properties of the Black-Scholes model. This is obvious for the Assertions
1 to 5, the weak estimate (2.5) and the strong estimate (2.6) for p = ∞. In case
that p ∈ (1,∞), the validity of (2.6) essentially depends on the analyticity and the Lp-
contractivity of the pricing semi-group Qϑ. Aside from the Lebesgue measure, the reader
may think of other measures µ ∈M+(R) such that [MX, Corollary 4.2] is applicable in
order to obtain estimates of the type (2.6) for different p-norms ‖h‖p,µ := (

∫
R |h|pdµ)1/p.

x

T

0

ϑ

(T0, x0)

C(T0,x0)

CT

π(C(T0,x0))

Cc
T

Figure 2.1: The sets CT , Cc
T , C(T0,x0) and π(C(T0,x0)).

Now we turn to the representability of an American claim as explained in Section 1.2. To
this end, we fix a terminal time T ∈ R++ and some continuous American payoff function
g : R → R+ satisfying g(x) ≤ C(1 + |x|k) for some constants C, k ∈ R++. Clearly,
the payoff g satisfies the integrability condition (1.5) and [LB, Theorem 4.1.1] warrants
that the associated value function vam,g is continuous. Moreover, we assume that the
associated continuation region CT , as defined in (1.7), is not empty and we denote by
ST := Cc

T = ([0, T ] × R) \ CT the corresponding stopping region. The set ST is closed
and for any maturity ϑ ∈ [0, T ] the stopping time

τϑ := inf {t ≥ 0 | vam,g(ϑ− t,Xt) = g(Xt)} ∧ ϑ (2.7)
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2.1 Representable options

is optimal for the stopping problem inherent in (1.6), cf. [PS, Corollary 2.9]. Given
any (T0, x0) ∈ CT we denote by C(T0,x0) the connected component of the set CT0 =
CT ∩ ([0, T0]× R) containing the point (T0, x0), see Figure 2.1.

2.8 Definition:

1. We say that a European payoff f (locally) represents g relative to some point
(T0, x0) ∈ CT if the function f superreplicates g up to time T0 and vam,g(ϑ, x) =
veu,f (ϑ, x) holds true for any (ϑ, x) ∈ C(T0,x0). In this case we write

f
(T0,x0)−→ g

and call g (locally) representable relative to (T0, x0).

2. If f (T0,x0)−→ g for every (T0, x0) ∈ CT , we say that f (globally) represents g up to
time T . In this case we write

f
T−→ g

and call g (globally) representable up to time T .

Let us emphasize that generally speaking, representability depends in a local manner
on the connected components of the continuation region. That is to say, in Example
2.25 we will construct an American payoff which is representable with respect to each
connected component of the associated continuation set, but which is not globally rep-
resentable by any European claim. Furthermore, in Subsection 2.1.3 we will see that the
representability of an American payoff may depend on the terminal time of the model.
More precisely, we will show that the EAO associated to the European put in the Black-
Scholes market is representable up to some maximal time horizon.
The following proposition collects some basic conclusions from the concept of repre-
sentability and establishes a link between EAOs and CDEOs. A generalization of the
second and third assertion for measure type European claims can be found in Lemma
3.2. For any set M ⊂ R+ × R let us denote by

π(M) := {x ∈ R | (ϑ, x) ∈M for some ϑ ∈ R+} (2.9)

the projection of M onto the second coordinate, see for example Figure 2.1. Henceforth,
functions which coincide up to a Lebesgue nullset will be implicitly identified whenever
necessary.

2.10 Proposition: Let g : R → R+ denote a continuous American payoff satisfying
g(x) ≤ C(1 + |x|k) for some constants C, k ∈ R++. Suppose there exists a European
payoff f : R→ R+ representing g relative to some (T0, x0) ∈ CT , then:

1. The American value function vam,g is analytic on the interior of the set C(T0,x0).

Moreover, for any (T̃ , x̃) ∈ C(T0,x0) we have f (T̃ ,x̃)−→ g.
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2 A new duality between European and American options

2. The representing function is unique up to a Lebesgue nullset, i.e. if f̃ (T0,x0)−→ g then
f̃ = f .

3. The representing function corresponds to the CDEO of g relative to T0, x0, i.e.

f = euT0,x0(g).

4. For any x ∈ cl π(C(T0,x0)) we have g(x) = amT0(f)(x) and hence

g(x) = amT0(euT0,x0(g))(x).

5. The set C(T0,x0) constitutes a connected component of the continuation region

C ′T0 := {(ϑ, x) ∈ [0, T0]× R | amT0(f)(x) < vam,amT0 (f)(ϑ, x)}

associated to the American payoff amT0(f). We have f (T0,x0)−→ amT0(f) and therefore

f = euT0,x0(amT0(f)).

6. Suppose that g̃ : R → R+ is a continuous American payoff function such that
g̃ ≤ g and g̃(x) = g(x) for any x ∈ cl π(C(T0,x0)). The set C(T0,x0) is a connected
component of the continuation region

C̃T0 := {(ϑ, x) ∈ [0, T0]× R | g̃(x) < vam,g̃(ϑ, x)}

associated to the American payoff g̃ and

f
(T0,x0)−→ g̃.

Proof.

1. We have veu,f (T0, x0) = vam,g(T0, x0) < ∞ and therefore Lemma 5.3 implies that
the mapping veu,f is analytic on an open C2-domain containing the set (0, T0)×R.
By assumption, the value functions veu,f and vam,g coincide on C(T0,x0). The other
assertion is obvious as C(T̃ ,x̃) is a subset of C(T0,x0).

2. Assume that f and f̃ represent g relative to T0, x0. Clearly, we have veu,f (ϑ, x) =
veu,f̃ (ϑ, x) = vam,g(ϑ, x) <∞ for any (ϑ, x) ∈ C(T0,x0). Lemma 5.3 implies that the
value functions veu,f and veu,f̃ are analytic on some C2-domain containing the set
(0, T0)×R. The set C(T0,x0) certainly contains an open ball B. First, we apply the
identity theorem to the ϑ variable which shows that the mappings veu,f and veu,f̃
coincide on the open stripe (0, T0)×π(B). Then we apply the identity theorem to
the x variable which yields veu,f (ϑ, x) = veu,f̃ (ϑ, x) <∞ for any (ϑ, x) ∈ (0, T0)×R.
Consequently, it is easy to see that the functions

u(y) := N
(
x0 + r̂ϑ0, σ

2ϑ0, y
)
f(y),
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ũ(y) := N
(
x0 + r̂ϑ0, σ

2ϑ0, y
)
f̃(y),

where ϑ0 := T0/2 and r̂ := r − σ2/2, are both contained in L1(R). Lemma 5.2
yields

veu,f (ϑ0/2, x/2) =
∫
R

N (x/2 + r̂ϑ0/2, σ2ϑ0/2, y)
N (x0 + r̂ϑ0, σ2ϑ0, y) u(y)dy

=
√

2 exp
(

(x0 − x/2 + r̂ϑ0/2)2

σ2ϑ0

)∫
R

exp
(
−(y − x+ x0)2

2σ2ϑ0

)
u(y)dy

for any x ∈ R and the latter equation remains valid after replacing f and u by
f̃ and ũ, respectively. The mappings veu,f and veu,f̃ coincide on (0, T0) × R and
consequently∫

R
N
(
x0, σ

2ϑ0, x− y
)
u(y)dy =

∫
R
N
(
x0, σ

2ϑ0, x− y
)
ũ(y)dy

holds true for any x ∈ R. We multiply both sides of the latter equation by
eizx, z ∈ R and integrate the x variable over the real line. After a few simplifications
we obtain ∫

R
eizyu(y)dy =

∫
R
eizyũ(y)dy

for any z ∈ R. The injectivity of the Fourier transform on L1(R) yields that u and
ũ and therefore f and f̃ coincide up to set of zero Lebesgue measure.

3. Clearly, the function f is contained in euT0,x0(g). It remains to be shown that the
latter set is a singleton. For this purpose choose a function h ∈ euT0,x0(g) and note
that veu,h(T0, x0) = veu,f (T0, x0) = vam,g(T0, x0) <∞. By virtue of Lemma 5.3 the
mappings veu,h and veu,f are analytic on a C2-domain containing the set (0, T0)×R.
Due to the second assertion it is sufficient to show veu,h(ϑ, x) = vam,g(ϑ, x) holds
true for any (ϑ, x) ∈ C(T0,x0). Let N denote the set containing all the points from
C(T0,x0) where the functions veu,h and vam,g do not coincide. Furthermore, denote
by τT0 the optimal stopping time from (2.7). For any t ≥ 0 we obtain

Ex0

[
(v̂eu,h − v̂am,g)

(
T0 − t ∧ τT0 , Xt∧τT0

)]
= v̂eu,h (T0, x0)− v̂am,g (T0, x0) = 0.

The first equality follows from the fact that the discounted European value process
as well as the optimally stopped Snell envelope associated to the discounted exer-
cise price process are martingales, cf. [PS, Theorem 2.4 and Remark 2.6]. From
Proposition 2.3 we know that v̂eu,h ≥ v̂am,g on [0, T0]× R and therefore

Px0

(
(T0 − t ∧ τT0 , Xt∧τT0

) ∈ N
)

= 0

holds true for any t ≥ 0. Consequently, the set N must have an empty interior
which implies that the mappings veu,h and vam,g coincide on C(T0,x0).
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2 A new duality between European and American options

4. Choose any x ∈ π(C(T0,x0)) and pick a ϑC ∈ (0, T0] such that (ϑC , x) ∈ C(T0,x0). Due
to compactness, we can pick the largest ϑS ∈ [0, ϑC) such that (ϑS, x) is contained
in the stopping set. In light of [LB, Theorem 4.1.1], we find that the mapping
vam,g is continuous and therefore

g(x) ≤ amT0(f)(x) ≤ lim inf
ϑ↘ϑS

veu,f (ϑ, x) = lim inf
ϑ↘ϑS

vam,g(ϑ, x) = vam,g(ϑS, x) = g(x).

This proves the assertion for x ∈ π(C(T0,x0)). Next, choose any xb ∈ ∂π(C(T0,x0))
and observe that there exists no ϑ ∈ [0, T0] such that (ϑ, xb) is contained in C(T0,x0).
Hence, we can find some ϑb ∈ (0, T0] such that (ϑb, xb) is located on the boundary
of the set C(T0,x0). Clearly, there exists an approximating sequence C(T0,x0) 3
(ϑn, xn)→ (ϑb, xb) as n→∞ and consequently

g(xb) = lim inf
n→∞

vam,g(ϑn, xn) = lim inf
n→∞

veu,f (ϑn, xn).

Applying Fatou’s lemma we obtain

lim inf
n→∞

veu,f (ϑn, xn) ≥ veu,f (ϑb, xb)

≥ amT0(f)(xb) ≥ g(xb)

and this finally yields g(xb) = amT0(f)(xb).

5. Clearly, the European payoff f superreplicates amT0(f) up to time T0. Owing to
Proposition 2.3, we have g(x) ≤ amT0(x) and

vam,g(ϑ, x) ≤ vam,amT0 (f)(ϑ, x) ≤ veu,f (x) (2.11)

for any (ϑ, x) ∈ [0, T0] × R. Moreover, equality in (2.11) must hold on the set
C(T0,x0), as the payoff f represents g relative to T0, x0. For any (ϑ, x) ∈ C(T0,x0) the
fourth assertion warrants that g(x) = amT0(f)(x) and therefore

amT0(f)(x) = g(x) < vam,g(ϑ, x) = vam,amT0 (f)(ϑ, x).

This shows that C(T0,x0) is a connected subset of C ′T0 . Now pick any boundary point
(ϑ, x) ∈ ∂C(T0,x0) with ϑ > 0. Obviously, we have g(x) = vam,g(ϑ, x) = veu,f (ϑ, x).
In light of (2.11), we obtain

vam,amT0 (f)(ϑ, x) ≤ veu,f (x) = g(x) ≤ amT0(f)(x)

which shows that (ϑ, x) is located in the stopping region associated to the American
payoff amT0(f). In conclusion, we verified that the set C(T0,x0) is indeed a connected
component of C ′T0 and that amT0(f) is represented by f relative to T0, x0.

6. Choose any (ϑ, x) ∈ C(T0,x0) and denote by τϑ the optimal stopping time from
(2.7). Due to the fact that Xτϑ ∈ cl π(C(T0,x0)), we conclude that

vam,g(ϑ, x) = Ex[e−rτϑg(Xτϑ)] = Ex[e−rτϑ g̃(Xτϑ)] ≤ vam,g̃(ϑ, x).
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The reverse inequality follows immediately from the assumption g̃ ≤ g and there-
fore

g̃(x) = g(x) < vam,g(ϑ, x) = veu,f (ϑ, x) = vam,g̃(ϑ, x)

holds true. This shows that C(T0,x0) is a connected subset of C̃T0 . Next, choose any
boundary point (ϑ, x) ∈ ∂C(T0,x0) and an approximating sequence (ϑn, xn)n∈N ⊂
C(T0,x0), i.e. (ϑn, xn)→ (ϑ, x) as n→∞. We have g(x) = g̃(x) and from above we
know that vam,g̃(ϑn, xn) = vamg(ϑn, xn) for any n ∈ N. This yields

vam,g̃(ϑ, x) ≤ lim inf
n→∞

vam,g̃(ϑn, xn) = lim inf
n→∞

vam,g(ϑn, xn) = g(x) = g̃(x)

and consequently (ϑ, x) is located within the stopping region associated to the
American payoff g̃. Summing up, we have shown that C(T0,x0) indeed constitutes
a connected component of the set C̃T0 and that g̃ is represented by f relative to
(T0, x0).

Let us remark that the latter proposition can be extended in many ways. For instance,
the reader easily verifies that the second assertion does not explicitly depend on the
continuity or integrability properties of the American claim. The key argument relies
on the fact that we can choose some open subset of the continuation region where the
European value function veu,f and veu,f̃ coincide. A more general formulation can be
found in Proposition 3.2.

Suppose that we have a finite time horizon T ∈ R++ and let f : R→ R+ denoted some
continuous European payoff. A key contribution of [JM1] is a sufficient criterion which
warrants that the embedded American option amT (f) is represented by its generating
payoff function f . The upcoming Proposition 2.16 generalizes [JM1, Theorem 3]. First,
we fix some notation and prove an auxiliary Lemma.

2.12 Lemma: Suppose that f : R → R+ is a continuous payoff satisfying veu,f (T +
δ, y) < ∞ for some y ∈ R and δ > 0. Moreover, let g : R → R+ denote an upper
semi-continuous American payoff which is superreplicated by f up to time T . Then:

1. The European value function veu,f is analytic on an open C2-domain containing
the set (0, T + δ) × C and the embedded American option amT (f) is upper semi-
continuous.

2. The set
M := {(ϑ, x) ∈ [0, T ]× R | g(x) = veu,f (ϑ, x)} (2.13)

is closed. For any x ∈ R the cut

Mx := {ϑ ∈ [0, T ] | g(x) = veu,f (ϑ, x)} (2.14)

is compact. In case that g = amT (f), the latter sets are not empty.
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2 A new duality between European and American options

3. For any ϑ ∈ [0, T ] the first entry time

τMϑ := inf{t ∈ R+ | (ϑ− t,Xt) ∈M} ∧ ϑ (2.15)

is a stopping time.

4. We have M = [0, T ]×R if and only if there exist some constants γ1, γ2 ∈ R+ such
that f(x) = g(x) = γ1e

x + γ2e
−2r/σ2x for any x ∈ R.

Proof.

1. The desired analyticity follows directly from Lemma 5.3. In particular, for any
ϑ ∈ [0, T ] we find that the mapping x 7→ veu,f (ϑ, x) is a continuous. Proposition
2.3 now implies that amT (f) is upper semi-continuous.

2. We note that the mapping veu,f extends continuously to the set [0, T + δ) × R.
Obviously, the mapping veu,f − g is non-negative and lower semi-continuous. This
implies that the set M = {(ϑ, x) ∈ [0, T ] × R | veu,f (ϑ, x) − g(x) ≤ 0} is closed.
The compactness of Mx is evident. In case that g = amT (f) holds true, we find
that for any x ∈ R the infimum in (2.2) is attained at some maturity ϑ ∈ [0, T ]
and therefore Mx and M are not empty.

3. This follows directly from the continuity of the trajectories of X and the closedness
of the set M .

4. First, suppose that f(x) = g(x) = γ1e
x+γ2e

−2r/σ2x for some constants γ1, γ2 ∈ R+.
An elementary calculation shows that the European payoff f solves the differential
equation Af = 0, where A := (r − σ2

2 )∂x + σ2

2 ∂xx − r. Ito’s formula implies that
veu,f (ϑ, x) = f(x) for any (ϑ, x) ∈ R+×R and thereforeM = [0, T ]×R holds true.
In order to prove the reverse implication, we assume thatM = [0, T ]×R. The latter
implies that g(x) = f(x) = veu,f (ϑ, x) holds true for any (ϑ, x) ∈ [0, T ]×R. Taking
the first assertion into account, we conclude that the European payoff f is analytic
on an open complex domain containing the real line. Applying Kolmogorov’s
backward equation yields Af = Aveu,f = ∂ϑveu,f = 0. From the theory of ordinary
differential equations we know that f can be represented as a linear combination
of the two fundamental solutions ex and e−2r/σ2x. The payoff f is assumed to
be non-negative and consequently there exist constants γ1, γ2 ∈ R+ such that
f(x) = γ1e

x + γ2e
−2r/σ2x for any x ∈ R.

Let us remark that the latter lemma can be readily generalized to include market models
which are driven by other continuous diffusion processes than the geometric Brownian
motion. The first assertion requires certain analyticity properties of the Markov transi-
tion kernel, see the proof of Lemma 5.3. The fourth assertion can be restated in terms
of the invariant functions associated to the pricing semi-group. For the subsequent
proposition, please recall our convention sup ∅ := −∞.

22



2.1 Representable options

2.16 Proposition: Assume that f : R→ R+ is a continuous European payoff satisfying
veu,f (T+δ, y) <∞ for some y ∈ R and δ > 0. Moreover, let g : R→ R+ denote an upper
semi-continuous American payoff which is superreplicated by f up to time T . Suppose
that the quantities M,Mx, τ

M
ϑ are defined as in Lemma 2.12 and that CT denotes the

continuation set associated to g as defined in (1.7). Then:

1. For any (ϑ, x) ∈ [0, T ]× R such that

HM(ϑ, x) := Px
(
(ϑ− τMϑ , XτM

ϑ
) ∈M

)
= 1 (2.17)

we have vam,g(ϑ, x) = veu,f (ϑ, x).

2. We have
{(ϑ, x) ∈ (0, T ]× R | supMx < ϑ and HM(ϑ, x) = 1}

CT

{(ϑ, x) ∈ (0, T ]× R | supMx < ϑ}.

⊂
⊂

In particular, the set M is contained in the stopping region associated to g.

Proof.

1. The European payoff f superreplicates g up to T and owing to Proposition 2.3 the
inequality vam,g ≤ veu,f holds true on [0, T ]×R. Now choose any (ϑ, x) ∈ [0, T ]×R
such that HM(ϑ, x) = 1. The log-price process X has continuous trajectories and
therefore Px

(
g(XτM

ϑ
) = veu,f (ϑ− τMϑ , XτM

ϑ
)
)

= 1. In Lemma 2.12 it was shown
that τMϑ is a finite stopping time. The discounted European value process is a
martingale and consequently we obtain

vam,g(ϑ, x) ≥ Ex
[
e−rτ

M
ϑ g(XτM

ϑ
)
]

= Ex
[
e−rτ

M
ϑ veu,f (ϑ− τMϑ , XτM

ϑ
)
]

= veu,f (ϑ, x)

(2.18)

by optional sampling. This proves the assertion.

2. In order to verify the first inclusion, choose any (ϑ, x) ∈ (0, T ] × R such that
supMx < ϑ and HM(ϑ, x) = 1. The definition of the set Mx implies that
g(x) < veu,f (ϑ, x). Moreover, by virtue of the first assertion we have veu,f (ϑ, x) =
vam,g(ϑ, x) which shows that (ϑ, x) is indeed contained in the continuation region
CT .
For the proof of the second inclusion, choose any (ϑ, x) ∈ CT , i.e. we have g(x) <
vam,g(ϑ, x) ≤ veu,f (ϑ, x). In case that the setMx is empty, we can directly conclude
that supMx = −∞ < ϑ holds true. If the compact set Mx is not empty, we
have supMx ∈ [0, T ]. Taking the monotonicity properties of the American value
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2 A new duality between European and American options

function into account, we obtain g(x) = vam,g(ϑ′, x) = veu,f (supMx, x) for any
ϑ′ ∈ [0, supMx]. This shows that ϑ > supMx must indeed hold true which proves
the assertion.

The quantity HM(ϑ, x) defined in (2.17) corresponds to the probability that the space-
time process started at time T −ϑ and spot x hits the zero set of the mapping veu,f − g.
We notice that the validity of Proposition 2.16 does not specifically depend on the
distributional properties of the geometric Brownian motion. The reader may adapt the
results if the stock price dynamics are modeled by a different, possibly multivariate,
continuous diffusion process.
Let us add some further remarks: Owing to the first assertion of Lemma 2.12, we
conclude that Proposition 2.16 is in particular applicable to the embedded American
option amT (f) associated to the European payoff f . Example 2.25 will show that the
second assertion of the latter proposition is meaningful, i.e. the three sets do not trivially
coincide. Furthermore, if there exists a continuous mapping _ϑ : R → [0, T ] such that
the graph of _ϑ is a subset of M , we can obtain [JM1, Theorem 5] as a special case
of Proposition 2.16, cf. Assertion 2 of Proposition 2.19. In Example 2.31 we will see
that the continuity assumption of the Jourdain-Martini theorem is indeed a bit too
restrictive and therefore Proposition 2.16 earns the right to exist. Besides, the latter
example sheds light on the fact that American claims with spatially discontinuous early
exercise boundaries need to be considered when searching for a general characterization
of all representable American options. We call a function b : R → [0, T ] early exercise
boundary or stopping boundary if CT = {(ϑ, x) ∈ [0, T ] × R | ϑ > b(x)}. The curve
b can possess certain continuity and smoothness properties, e.g. for the American put
it can be shown that the associated stopping boundary is continuous and increasing,
cf. [PS, Theorem 25.3]. In case that b is a discontinuous function we say that the early
exercise boundary is spatially discontinuous. Let us remark that there is no standardized
definition of the early exercise boundary in the literature. For instance, some authors
prefer a parametrization with respect to time, cf. [PS, Equation 25.2.8].

2.19 Proposition: Assume that f is a continuous European payoff such that veu,f (T +
δ, y) <∞ for some y ∈ R and δ > 0. Furthermore, let g : R→ R+ denote an American
payoff which is superreplicated by f up to time T . Suppose there exists a continuous
mapping _ϑ : R→ [0, T ] such that

g(x) = veu,f (_ϑ (x), x)

for any x ∈ R. Moreover, we write

C̃T := {(ϑ, x) ∈ (0, T ]× R | ϑ > _
ϑ (x)} .

Let π and Mx be defined as in (2.9) and (2.14), respectively. Then:

1. The American option g is continuous.

2. For any (ϑ, x) ∈ C̃T we have vam,g(ϑ, x) = veu,f (ϑ, x), cf. [JM1, Theorem 5].
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2.1 Representable options

3. The continuation set can be represented as follows:

CT = C̃T ∩ {(ϑ, x) ∈ (0, T ]× R | maxMx < T} (2.20)

Moreover, for any x ∈ π(CT ) we have _ϑ (x) = maxMx.

4. For any ϑ ∈ [0, T ] the stopping time

τ̃ϑ := inf {t ∈ R+ | ϑ− t ≤_
ϑ (Xt)} ∧ ϑ (2.21)

is optimal for the stopping problem inherent in (1.6).

5. The mapping R 3 x 7→ maxMx parametrizes the early exercise boundary associated
to the American payoff g, i.e. CT = {(ϑ, x) ∈ [0, T ]×R | ϑ > maxMx}. The curve
_
ϑ differs from the early exercise boundary only at spot prices where immediate
exercising the American option is optimal, i.e. _

ϑ (x) < maxMx implies Mx =
[0, T ]. Consequently, the European payoff f globally represents g up to time T .

6. On the set

G :=
{
x ∈ R | 0 < _

ϑ (x) < T and g is C2 on some neighborhood containing x
}

the American payoff g satisfies

(Ag)(x) ≤ 0. (2.22)

Here we denote by A := (r− σ2

2 )∂x+ σ2

2 ∂xx−r the infinitesimal generator associated
to the pricing semi-group Qϑ[h](x) := Ex[e−rϑh(Xϑ)] on C2.

Proof.

1. Lemma 2.12 warrants that the mapping veu,f is continuous on [0, T + δ)×R. The
curve _ϑ was assumed to be continuous and therefore the payoff g is continuous as
well.

2. Suppose that M and HM are defined as (2.13) and (2.17), respectively. Obviously,
the graph of the curve _ϑ is a subset of M . The mapping _ϑ was assumed to be
continuous and this shows that HM(ϑ, x) = 1 for any (ϑ, x) ∈ (0, T ]×R such that
_
ϑ (x) < ϑ. Proposition 2.16 now directly implies the assertion.

3. Suppose that _ϑ (x) < maxMx for some x ∈ R. The second assertion of the
proposition yields veu,f (ϑ, x) = vam,g(ϑ, x) for any maturity ϑ ∈ (_ϑ (x),maxMx].
The American value function is increasing in the first variable and consequently

vam,g(ϑ, x) ≤ vam,g(maxMx, x) = veu,f (maxMx, x) = g(x).

This shows that veu,f (ϑ, x) = g(x) for any ϑ ∈ [_ϑ (x),maxMx]. By virtue of
Lemma 2.12 and the identity theorem we obtain veu,f (ϑ, x) = g(x) for any ϑ ∈
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[0, T ] and hence maxMx = T . This finally shows that vam,g(ϑ, x) = g(x) for any
ϑ ∈ [_ϑ (x), T ] and therefore x 6∈ π(CT ).
In order to verify the first inclusion of Equation (2.20), choose any (ϑ, x) ∈ CT .
We note that maxMx < T holds true. Indeed, assuming the opposite yields
the contradiction vam,g(ϑ, x) ≤ vam,g(T, x) ≤ veu,f (T, x) = g(x). In the same
manner we can conclude that ϑ > _

ϑ (x). Indeed, assuming that ϑ ≤_
ϑ (x) implies

g(x) < vam,g(ϑ, x) ≤ vam,g(_ϑ (x), x) ≤ veu,f (_ϑ (x), x) = g(x) and this is clearly
not possible. In conclusion we have shown that CT ⊂ C̃T ∩ {(ϑ, x) ∈ (0, T ] ×
R | maxMx < T}.
To verify the reverse inclusion, choose any (ϑ, x) ∈ C̃T such that maxMx < T .
Due to the monotonicity of the American value function in the first variable, we
find that _ϑ (x) = maxMx. Indeed, assuming the opposite yields vam,g(ϑ′, x) ≤
vam,g(maxMx, x) ≤ veu,f (maxMx, x) = g(x) for any ϑ′ ∈ (_ϑ (x),maxMx). Owing
to Lemma 2.12 and the identity theorem, we then conclude that veu,f (ϑ′, x) =
g(x) holds true for any ϑ′ ∈ [0, T ] and therefore maxMx = T . This clearly
contradicts our assumption. Consequently, we find that ϑ > _

ϑ (x) = maxMx

holds true. In light of the second assertion and the definition of the set Mx,
we obtain vam,g(ϑ, x) = veu,f (ϑ, x) > g(x) and this shows that (ϑ, x) is indeed
contained in CT .

4. Literally the same calculation as in (2.18) yields the optimality of the stopping
time from (2.21).

5. Suppose that _ϑ (x) < maxMx for some x ∈ R. Owing to Assertion 3, we have
x 6∈ π(CT ) and a simple calculation yields Mx = [0, T ], for details see Lemma 2.24
below. From Proposition 2.16 we know thatMx is contained in the stopping region
associated to g. We conclude that the mappings _ϑ and x 7→ maxMx differ only
at spot prices where immediate exercising is optimal. Moreover, Equation (2.20)
shows that R 3 x 7→ maxMx indeed parametrizes the early exercise boundary
associated to g. From (2.20) it is obvious that CT ⊂ C̃T and taking the second
assertion into account, we find that the European payoff f globally represents g
up to time T in the sense of Definition 2.8.

6. Clearly, the mapping Ψ := veu,f − g is C2 on the set (0, T )×G and there we have

Ag = Aveu,f −AΨ

= ∂ϑveu,f −
(
r − σ2

2

)
∂xΨ−

σ2

2 ∂xxΨ− rΨ

= c∇Ψ− σ2

2 ∂xxΨ− rΨ

(2.23)

where c := (1, σ2

2 −r). Now choose any x ∈ G. By definition we have Ψ(_ϑ (x), x) =
0. Due to the fact that Ψ only assumes non-negative values, the first order condi-
tion (∇Ψ)(_ϑ (x), x) = 0 and the second order condition (∂xxΨ)(_ϑ (x), x) ≥ 0 hold
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true. From (2.23) we obtain

(Ag)(x) = −σ
2

2 (∂xxΨ)(_ϑ (x), x) ≤ 0

which concludes the proof.

Let us add a few comments concerning Proposition 2.19: Besides the stopping time τ̃ϑ
from (2.21) there may exist other stopping times which are optimal for the stopping
problem inherent in (1.6). For instance, the first entry time τϑ into the stopping set,
as defined in (2.7), is an optimal choice, cf. [PS, Theorem 2.7]. Equation (2.20) shows
that τ̃ϑ and τϑ do not necessarily coincide. Moreover, if the sets from (2.14) satisfy
|Mx| = 1 for any x ∈ R, it is not hard to show that the mapping R 3 x 7→ maxMx

is continuous, cf. [JM1, Remark 4]. Here it is crucial that the European payoff f is
assumed to be continuous. Indeed, in Example 2.25 we will consider a discontinuous
European payoff which generates a discontinuous curve of unique minimal points and
a discontinuous EAO g which is not represented by its generating European claim. In-
terestingly, the American option from the latter example is locally representable on any
connected component of the associated continuation set but not globally representable
by some European payoff.

The following lemma is a little side note to Proposition 2.19. It describes the set of
logarithmic spot prices where the mappings _ϑ and x 7→ maxMx differ.

2.24 Lemma: Suppose that we are in the setting of Proposition 2.19 and define

D := {x ∈ R | _ϑ (x) < maxMx}.

Then:

1. For any x ∈ D we have Mx = [0, T ]. To put differently, for any x ∈ R such that
the mapping [0, T ] 3 ϑ 7→ veu,f (ϑ, x) is not constant, we have _ϑ (x) = maxMx.

2. If there exists a continuous mapping _ρ : R → [0, T ] such that _ϑ 6= _ρ and
g(x) = veu,f (_ρ (x), x) for any x ∈ R, then the set D clusters at some point.

3. If the set D clusters at some point x0 ∈ R, then there exist constants γ1, γ2 ∈ R+
such that f(x) = g(x) = γ1e

x + γ2e
−2r/σ2x for any x ∈ R and we have M =

[0, T ]× R.

Proof.

1. Suppose that x ∈ D. The second assertion of Proposition 2.19 yields veu,f (ϑ, x) =
vam,g(ϑ, x) for any maturity ϑ ∈ (_ϑ (x),maxMx]. The American value function is
increasing in the first variable and consequently

vam,g(ϑ, x) ≤ vam,g(maxMx, x) = veu,f (maxMx, x) = g(x).
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This shows that veu,f (ϑ, x) = g(x) for any ϑ ∈ (_ϑ (x),maxMx]. From Lemma
2.12 we know that the mapping veu,f is analytic on some C2-domain containing
(0, T + δ)× R. By virtue of the identity theorem we obtain veu,f (ϑ, x) = g(x) for
any ϑ ∈ [0, T + δ) and this proves Mx = [0, T ].

2. Clearly, we can choose an open interval I ⊂ R such that _ϑ (x) < _ρ (x) for any
x ∈ I or_ϑ (x) > _ρ (x) for any x ∈ I. We only consider the first case as the second
follows by interchanging the notation. We have _ϑ (x) < _ρ (x) ≤ maxMx for any
x ∈ I and therefore I ⊂ D.

3. Assume that the set D clusters at some point x0. Choose a sequence (xn)n∈N
contained inD such that xn → x0 as n→∞. From the first assertion we know that
veu,f (ϑ, xn) = g(xn) and therefore (∂ϑveu,f )(ϑ, xn) = 0 holds true for any ϑ ∈ (0, T )
and n ∈ N. The identity theorem implies that ∂ϑveu,f = 0 on the set (0, T ) × R.
Hence, we obtain g(x) = f(x) = veu,f (T/2, x) for any x ∈ R. In other words, the
European payoff f is an entire function satisfying the ordinary differential equation
Af = 0 where A is defined as in Assertion 6 of Proposition 2.19. Consequently,
there exist constants γ1, γ2 ∈ R+ such that f(x) = γ1e

x+γ2e
−2r/σ2x for any x ∈ R.

Lemma 2.12 now directly implies that M = [0, T ]× R.

We want to add some concluding remarks. Many of the results contained in this section
can be generalized for larger classes of European payoff functions. Our main results
involve the embedding of American claims into measure type European payoffs, cf. The-
orem 2.52. Naturally, some ideas for possible extensions in this direction are implicitly
contained in the just mentioned theorem and in Section 2.4. For instance, a general-
ization of the second and third assertion from Proposition 2.10 can be found in Lemma
3.2. Due to the fact that many of the arguments above hardly rely on the Black-Scholes
model under consideration, the interested reader may also attempt to transfer the ob-
tained results to other market models. A careful analysis shows that many proofs can
easily be adapted to Markovian models with continuous sample paths where any two
states of the stock price process communicate.

2.1.2 Examples
This subsection serves different purposes: On the one hand, we want to emphasize that
representability is a property which is not only satisfied by some “exotic” American
payoffs. In particular, we will verify that the American butterfly in the Bachelier model
is representable. On the other hand, we will present some limit cases which hopefully
provide the reader with some further insight into the mathematical notions from the
preceding sections. For instance, Example 2.25 shows that there exist American options
which are locally but not globally representable in the sense of Definition 2.8. Besides,
we will see that an embedded American option which is not represented by its generat-
ing European payoff still might be representable. Moreover, Example 2.31 indicates that
American options with discontinuous early exercise boundaries still might be globally
representable. Consequently, one might say that the continuity assumption imposed by
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[JM1, Theorem 5] on the curve of minimal points _ϑ is a bit too restrictive. In par-
ticular, we may infer that the generalization formulated in Proposition 2.16 is indeed
meaningful. These thoughts should be kept in mind when attempting the venture of
characterizing all representable American claims.

We reuse the notational conventions from Subsection 2.1.1. In particular, given a Euro-
pean payoff f : R → R+, the associated value function veu,f is defined as in (1.4). The
associated embedded American option up to some time T ∈ [0,∞] is denoted by amT (f),
see (2.2). Furthermore, we write ϕ := N(0, 1, ·) for the probability density function and
Φ for the cumulative distribution function of a standard normal random variable.

2.25 Example: Consider the Black-Scholes market (1.3) with B0 = 1, r = 1, σ =
√

2,
i.e.

dBt = Btdt,
dXt =

√
2dWt,

and fix some time horizon T ∈ R++. The European value function associated to the
payoff f := 11[0,1] is given by

veu,f (ϑ, x) = e−ϑ
(

Φ
(

1− x√
2ϑ

)
− Φ

(
− x√

2ϑ

))
.

An elementary calculation yields

lim
ϑ↘0

veu,f (ϑ, x) =


1
2 if x ∈ {0, 1},
f(x) otherwise.

(2.26)

Moreover, for any (ϑ, x) ∈ R++ × R we have

∂ϑveu,f (ϑ, x) = −e−ϑ(2ϑ)− 3
2

(
ϕ

(
1− x√

2ϑ

)
(1− x) + ϕ

(
x√
2ϑ

)
x

)
− veu,f (ϑ, x).

The latter equation implies that ∂ϑveu,f (ϑ, x) < 0 for any (ϑ, x) ∈ R++ × [0, 1]. Taking
(2.26) into account, we conclude that the embedded American option is given by

g(x) := amT (f)(x) = veu,f (T, x) 11[0,1](x).

The function g attains its global maximum at x∗ := 1
2 and satisfies g(x∗+x) = g(x∗−x)

as well as g(x) < 2g(0) for any x ∈ R. Figure 2.2 depicts the graph of the embedded
American option for different time horizons. Clearly, for any x ∈ R the infimum in (2.2)
is attained at the unique point

_
ϑ (x) = T 11[0,1](x).

This shows that neither the embedded American option nor the associated curve _ϑ of
unique minima need to be continuous if the underlying European payoff was discontin-
uous at first. The reader may compare this result to the statements of Proposition 2.19
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2 A new duality between European and American options

Figure 2.2: The EAO from Example 2.25 for different terminal times T .

and [JM1, Remark 4]. Let CT denote the continuation set associated to g as defined in
(1.7). Proposition 2.16 yields that

CT ⊂ {(ϑ, x) ∈ (0, T ]× R | x 6∈ [0, 1]} . (2.27)

Clearly, for any (ϑ, x) ∈ (0, T ]×R such that x 6∈ [0, 1] we have HM(ϑ, x) < 1 where HM

is defined as in (2.17). Hence, Proposition 2.16 does not provide any further information
concerning the set CT or the representability of the American payoff g. For any ϑ ∈ (0, T ]
and x 6∈ [0, 1] we have g(x) = 0 < vam,g(ϑ, x) and therefore (ϑ, x) ∈ CT . This shows that
the reverse inclusion in (2.27) holds true, i.e.

CT = {(ϑ, x) ∈ (0, T ]× R | x 6∈ [0, 1]} .

Next, we will show the embedded American payoff g is not represented by its generating
European claim f . To this end choose any (ϑ, x) ∈ CT and denote by τϑ the stopping
time from (2.7) which is optimal for the stopping problem inherent in (1.6), cf. [PS,
Theorem 2.7]. From above we know that ∂ϑveu,f < 0 holds on the set R++ × [0, 1] and
consequently we obtain

vam,g(ϑ, x) = Ex
[
g(Xτϑ)e−rτϑ

]
= Ex

[
11[0,1](Xτϑ)veu,f (T,Xτϑ)e−rτϑ

]
< Ex

[
veu,f (ϑ− τϑ, Xτϑ)e−rτϑ

]
= veu,f (ϑ, x).
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x

T

0

ϑ

C l
T Cr

T

0 1

ST

Figure 2.3: The sets CT = C l
T ∪ Cr

T and ST associated to g.

The last equality follows from the optional sampling theorem applied to the discounted
European value process. We conclude that vam,g(ϑ, x) < veu,f (ϑ, x) for any (ϑ, x) ∈ CT
and therefore the payoff g is indeed not represented by f .
Nonetheless, there exist unique European payoff functions which locally represent g on
the connected components C l

T := [T, 0)× (−∞, 0) and Cr
T := [T, 0)× (1,∞) of the con-

tinuation set CT , see Figure 2.3. First, we will verify that h(x) := 2g(0) cosh(x) 11R+(x)
represents g on the left connected component C l

T . The European value function associ-
ated to h is given by

veu,h(ϑ, x) = 2g(0)e−ϑH(ϑ, x)
where H(ϑ, x) := Ex[cosh(Xϑ)11R+(Xϑ)]. For any x < 0 we have veu,h(0, x) = 0 and
owing to the symmetry of the hyperbolic cosine function, we obtain

veu,h(ϑ, 0) = 2g(0)e−ϑE0[cosh(Xϑ)11R+(Xϑ)] = g(0)e−ϑE[cosh(N0,2ϑ)] = g(0)

for any ϑ ∈ (0, T ]. Moreover, applying partial integration twice yields

H(ϑ, x) =
∫ ∞

0
cosh(y)N(x, 2ϑ, y)dy

=
∫ ∞

0
cosh(y)∂xxN(x, 2ϑ, y)dy − ∂xN(0, 2ϑ, x)

= ∂xxH(ϑ, x) + x

2ϑN(0, 2ϑ, x).

Taking the boundary conditions H(ϑ, 0) = 1
2e
ϑ and H(0, x) = 0 for x < 0 into account,

we apply Lemma 5.5 in order to derive the explicit representation

H(ϑ, x) = e−x

4

(
e2x − 1 + eϑ

(
erf

(
x− 2ϑ
2
√
ϑ

)
+ e2xerf

(
x+ 2ϑ
2
√
ϑ

)
+ 2

))
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2 A new duality between European and American options

Figure 2.4: The European value function veu,h and the payoff g for T = 1
10 .

where erf(z) := 2Φ(
√

2z) − 1 denotes the Gauss error function. Figure 2.4 depicts the
graph of veu,h for T = 1

10 . Please, note that the x-axis and ϑ-axis are reversed in order
to improve the visualization. Let us verify that h superreplicates the American payoff g
up to time T . Clearly, we have h(x) ≥ 2g(0) 11[0,1](x) ≥ g(x) for any x ∈ R. Thus, it is
sufficient to show that veu,h ≥ g on the set [0, T ]× (0, 1]. An easy calculation yields

∂ϑveu,h(ϑ, x) = − g(0)
2
√
πϑ

3
2
e−ϑ−x

(
e
x(4ϑ−x)

4ϑ x+ ϑ
3
2
√
π(e2x − 1)

)
< 0

for any (ϑ, x) ∈ [0, T ]× (0,∞). Hence, we only need to show that the quantity d(x) :=
veu,h(T, x)− g(x) is non-negative for any x ∈ (0, 1]. The mapping h− f is increasing on
(0,∞) and vanishes on (−∞, 0]. Due to the distributional properties of the Gaussian
law, we find that the inequality

d(x) = veu,h−f (T, x) = e−TE[(h− f)(Nx,2T )] ≥ e−TE[(h− f)(N0,2T )] = d(0) = 0

holds true for any x ∈ (0, 1]. Consequently, the European payoff h indeed superreplicates
g up to time T and owing to Proposition 2.3 we have vam,g ≤ veu,h on [0, T ] × R. It
was already shown that the functions veu,h and g coincide on the stopping boundary
associated to C l

T , i.e. veu,h(0, x) = g(x) = 0 for any x < 0 and veu,h(ϑ, 0) = g(0) for any
ϑ ∈ [0, T ]. Consequently, for any (ϑ, x) ∈ Cl we obtain

vam,g(ϑ, x) = Ex
[
g(Xτϑ)e−rτϑ

]
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= Ex
[
veu,h(ϑ− τϑ, Xτϑ)e−rτϑ

]
= veu,h(ϑ, x)

by optional sampling, where τϑ denotes the optimal stopping time from (2.7). This
finally shows that the American payoff g is represented by h on the left connected com-
ponent C l

T . Taking the symmetry of the problem into account, the reader readily verifies
that h̃(x) := 2g(1)11(−∞,1](x) cosh(x− 1) represents the embedded American option g on
the right connected component Cr

T of the continuation set. Proposition 3.2 shows that
h and h̃ are uniquely determined.1

Summing up, for any time horizon T ∈ R++ the embedded American option amT (f)
as well as the associated curve of unique minima are discontinuous and amT (f) is not
represented by its generating payoff f . Nevertheless, on each connected component of
the associated continuation region the American payoff amT (f) is locally represented
by another, uniquely determined European claim. In particular, this example demon-
strates that American payoffs which are representable with respect to any point of the
corresponding continuation set do not need to be globally representable in the sense of
Definition 2.8. Moreover, we observe that the EAO is piecewise analytic on R \ {0, 1}.

2.28 Example: We consider the Black-Scholes market

dBt = rBtdt,

dXt =
(
r − σ2

2

)
dt+ σdWt,

from (1.3) with B0 = 1, r ≥ 0, σ > 0 and some time horizon T ∈ (0,∞]. Choose
b1 ∈ (− 2r

σ2 , 1), b2 6∈ (− 2r
σ2 , 1) and define p(z) := σ2

2 z
2 +

(
r − σ2

2

)
z− r. The value function

associated to the European payoff

f(x) := p(b2)eb1x − p(b1)eb2x

is given by
veu,f (ϑ, x) = p(b2)eb1x+p(b1)ϑ − p(b1)eb2x+p(b2)ϑ.

We have p(b1) < 0 < p(b2) and the reader easily verifies that for any x ∈ R the mapping
ϑ 7→ veu,f (ϑ, x) is convex. Moreover, for any x ∈ R the infimum in the defining equation
(2.2) of the embedded American option is attained at the unique point

_
ϑ (x) = min

{
T,
x

α
11R+ ((b1 − b2)x)

}
1If the reader does not feel comfortable with the lookahead to Proposition 3.2, the uniqueness may
be obtained by recognizing that the argument proving Assertion 2 from Proposition 2.10 does not
essentially depend on the continuity of the American claim.
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2 A new duality between European and American options

Figure 2.5: The functions f (red), amT (f) (blue), _ϑ (black) from Example 2.28 for
the parameters r = 0, σ =

√
2, T = 4, b1 = 1

2 and b2 = 3
4 .

where α := p(b2)−p(b1)
b1−b2

. In case that b1 > b2, the embedded American option is therefore
given by

amT (f)(x) =


f(x) if x ≤ 0,
(p(b2)− p(b1)) exp

(
b1p(b2)−b2p(b1)
p(b2)−p(b1) x

)
if 0 < x < Tα,

veu,f (T, x) otherwise,

and for b1 < b2 we have

amT (f)(x) =


f(x) if x ≥ 0,
(p(b2)− p(b1)) exp

(
b1p(b2)−b2p(b1)
p(b2)−p(b1) x

)
if 0 > x > Tα,

veu,f (T, x) otherwise.

Proposition 2.19 warrants that amT (f) is globally represented by f and that

CT = {(ϑ, x) ∈ [0, T ]× R | ϑ > _
ϑ (x)} .

In particular, we obtain that the early exercise boundary is parametrized by the curve
_
ϑ . Clearly, the embedded American option is piecewise analytic on the set R \ {0, Tα}.
The reader may compare this observation to [JM1, Proposition 17].
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An elementary calculation shows that the function amT (f) is continuously differentiable
at x = 0 and x = Tα. Moreover, the interested reader may verify that the second order
derivative of amT (f) does not exist at the latter points. To put differently, we have first
order but not second order smooth fit. Figure 2.5 depicts the graphs of the functions
f, amT (f) and _ϑ for the parameters r = 0, σ =

√
2, T = 4, b1 = 1

2 and b2 = 3
4 .

Another interesting example of an embedded American payoff in the Black-Scholes set-
ting can be found in [JM1, Section 3.1]. Next, we will examine two examples where the
underlying stochastic process is a standard Brownian motion.

2.29 Example: As above, let us denote by W a standard Brownian motion with
Px(W0 = x) = 1 for any x ∈ R. We consider the Bachelier market

Bt = 1,
dXt = dWt

(2.30)

with some time horizon T ∈ [1
6 ,∞]. The value function associated to the European

payoff

f(x) =
(
x2 − 1

2

)2

is given by

veu,f (ϑ, x) = 3ϑ2 +
(
6x2 − 1

)
ϑ+

(
x2 − 1

2

)2
.

For a fixed x ∈ R we find that ϑ 7→ veu,f (ϑ, x) is a convex mapping. Moreover, it is
easily seen that for any x ∈ R the infimum in (2.2) is attained at the uniquely determined
maturity

_
ϑ (x) =

(1
6 − x

2
)

11(
− 1√

6
, 1√

6

)(x).

Proposition 2.19 warrants that the embedded American option

amT (f)(x) =


1
6 − 2x4 if − 1√

6 < x < 1√
6 ,

f(x) otherwise,

is globally represented by the payoff f and that the curve_ϑ parametrizes the associated
early exercise boundary. Figure 2.6 depicts the mappings f, amT (f) and _

ϑ . Let us
remark that amT (f) is piecewise analytic on R \ {−1/

√
6, 1/
√

6} and that we have first
order smooth fit at x = −1/

√
6 and x = 1/

√
6. Furthermore, the second order derivative

of the embedded American option does not exist at the latter points.

2.31 Example: We consider the market (2.30) with some terminal time T ∈ (0,∞]
and the European payoff

f(x) = 21{x≤−1} + (1− x)1{−1<x<1}.
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2 A new duality between European and American options

Figure 2.6: The functions f (red), amT (f) (blue) and _ϑ (black) from Example 2.29.

The associated European value function is given by

veu,f (ϑ, x) =
√
ϑ√
2π

(
e−

(x−1)2
2ϑ − e−

(x+1)2
2ϑ

)
+ erf

(
x− 1√

2ϑ

)
x− 1

2 − erf
(
x+ 1√

2ϑ

)
x+ 1

2 + 1

and therefore
∂ϑveu,f (ϑ, x) = 1

2
√

2πϑ

(
e−

(x−1)2
2ϑ − e−

(x+1)2
2ϑ

)
.

The latter equation shows that the mapping ϑ 7→ veu,f (ϑ, x) is strictly decreasing for
x < 0, strictly increasing for x > 0 and constant for x = 0. In other words, for x = 0
the infimum in the defining equation (2.2) of the embedded American option is attained
at every ϑ ∈ [0, T ]. Hence, the embedded American option is given by

amT (f)(x) =


veu,f (T, x) if x < 0,
1− x if 0 ≤ x ≤ 1,
0 otherwise.

Figure 2.7 depicts the graphs of the functions f, am∞(f) and amT (f) for different time
horizons T ∈ {10k | k = −1, ..., 4}. Let HM be defined as in (2.17). Obviously, we have
HM(ϑ, x) = 1 for any (ϑ, x) ∈ (0, T ] × R++ such that ϑ < ∞. The second assertion of
Proposition 2.16 implies that the continuation and stopping set associated to the payoff
amT (f) are given by

CT = {(ϑ, x) ∈ (0, T ]× R | x > 0 and ϑ <∞} ,
ST = {(ϑ, x) ∈ (0, T ]× R | x ≤ 0 and ϑ <∞} .

(2.32)
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Figure 2.7: The functions f (red), amT (f) (blue), am∞(f) (green) from Example 2.31.

Owing to the first assertion of the latter proposition, we find that amT (f) is globally
represented by f in the sense of Definition 2.8. Moreover, by virtue of Proposition 2.10,
Assertion 6 we conclude that CT is a connected component of the continuation region
associated to the American butterfly payoff

g(x) := (1 + x)11[−1,0)(x) + (1− x)11[0,1](x)

and that the latter is represented by f on CT . In contrast to the Examples 2.28 and
2.29 we do not have smooth fit. Indeed, the reader easily verifies that

∂xveu,f (T, x) = 1
2erf

(
x− 1√

2T

)
− 1

2erf
(
x+ 1√

2T

)

holds true for any x ∈ R. Consequently, we obtain

∂−x amT (f)(0) = −erf
(

1√
2T

)
> −1 = ∂+

x amT (f)(0)

which shows that there is no smooth fit at the point x = 0. Here we denote by ∂−x and
∂+
x the left and right derivative, respectively.

Another interesting example of an embedded American option will be studied in Sub-
section 2.1.3 below. There we will discuss some results related to the EAO generated
by the European put. This particular example teaches us that the representability of an
American payoff may depend on the time horizon of the market.
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2 A new duality between European and American options

2.1.3 The American option embedded into the European put
Differing from the previous notational conventions, we will use non-logarithmic stock
prices s ∈ R++ until the end of this section. Whenever necessary, we ask the reader to
adapt the notations veu,f , vam,g, CT , amT (f) from Section 1.2 and Subsection 2.1.1. As
above, the probability density function and the cumulative distribution function of a
standard normal random variable are denoted by ϕ := N(0, 1, ·) and Φ, respectively.

Let us consider a European put option f(s) := (K − s)+ with strike K ∈ R++ in a
risk-neutral Black-Scholes market with interest rate r ∈ R++ and volatility σ ∈ R++.
Owing to the Black-Scholes formula, the associated European value function is given by

P (ϑ, s) := veu,f (ϑ, s) = e−rϑKΦ(−d2(ϑ, s))− sΦ(−d1(ϑ, s)) (2.33)

with
d1(ϑ, s) := log(s/K) + (r + σ2/2)ϑ

σ
√
ϑ

d2(ϑ, s) := log(s/K) + (r − σ2/2)ϑ
σ
√
ϑ

where s denotes the spot price of the underlying and ϑ ∈ R+ the maturity of the option.
We will prove that for any sufficiently small terminal time T , there exists a continuous
curve _ϑ : R++ → [0, T ] such that amT (f)(s) = P (_ϑ (s), s) holds true for any s ∈ R++.
Proposition 2.19 then warrants that the American payoff amT (f) is globally represented
by f up to time T . We define P (k,l) := ∂kϑ∂

l
sP and recall the following well-known facts:

P (1,0) = sσ

2
√
ϑ
ϕ(d1)− rKe−rϑΦ(−d2)

P (0,1) = −Φ(−d1)

P (1,1) = (r + σ2/2)ϑ− log (s/K)
2ϑ3/2σ

ϕ(d1)

Consequently, for any (ϑ, s) ∈ R+ × R++ we have

P (1,1)(ϑ, s) > 0 (2.34)

if and only if s < K exp ((r + σ2/2)ϑ). Furthermore, the reader easily verifies that for
any T > 0 the following three properties are satisfied:

lim inf
s↘0

sup
ϑ∈[0,T ]

P (1,0)(ϑ, s) < 0 (2.35)

lim
ϑ↘0

P (1,0)(ϑ,K) =∞ (2.36)

∀s ∈ (0, K) : lim
ϑ↘0

P (1,0)(ϑ, s) = −rK (2.37)

Owing to (2.36), we can choose some constant γ > 0 such that P (1,0)(ϑ,K) > 0 holds true
for any ϑ ∈ (0, γ). In the following, let T always denote some terminal time satisfying
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0 < T < γ. Property (2.35) warrants that lim infs↘0 P
(1,0)(T, s) < 0. Due to (2.34) and

the intermediate value theorem, there exists a uniquely determined constantKT ∈ (0, K)
such that P (1,0)(T,KT ) = 0, P (1,0)(T, s) < 0 for s ∈ (0, KT ) and P (1,0)(T, s) > 0 for
s ∈ (KT , K]. Taking (2.37) into account, we conclude that

m(s) := min
ϑ∈[0,T ]

P (ϑ, s) < P (0, s) ∧ P (T, s)

holds true for any s ∈ (KT , K). To put differently, for any s ∈ (KT , K) the non-empty
compact set

Ms := {ϑ ∈ [0, T ] | P (ϑ, s) = m(s)}
is contained in the open interval (0, T ). We write

_
ϑ (s) := maxMs

for the largest value of the setMs. Clearly, for any s ∈ (KT , K) we have P (1,0)(_ϑ (s), s) =
0. By eventually decreasing the bound γ, we can always achieve that P (2,0)(_ϑ (s), s) > 0
holds true for any s ∈ (KT , K). The latter can be verified by analyzing the asymptotic
behavior of the derivative P (2,0) as ϑ→ 0. The calculation is elementary but somewhat
lengthy and therefore will be omitted. Theorem 5.7 yields that the mapping s 7→_

ϑ (s)
is analytic on some open complex domain containing the interval (KT , K). Moreover,
owing to Equation (2.34), we have

(∂s_ϑ )(s) = −P
(1,1)(_ϑ (s), s)

P (2,0)(_ϑ (s), s) < 0 (2.38)

for any s ∈ (KT , K) and this clearly implies that the limits lims↘KT
_
ϑ (s) and lims↗K

_
ϑ (s)

exist. A simple calculation shows that _ϑ (K) := 0 continuously extends the curve into
the point s = K. Indeed, assuming v1 := lims↗K

_
ϑ (s) > 0 yields _ϑ (s) ∈ (v1, T ] for any

s ∈ (KT , K). The mapping P (1,0) is continuous on R2
++ and consequently we obtain the

contradiction 0 < P (1,0)(v1, K) = lims↗K P
(1,0)(ϑ(s), s) = 0. Furthermore, by eventually

further decreasing γ, we can achieve that _ϑ (KT ) := T extends the curve continuously
into s = KT .
Obviously, for any s ≥ K the mapping [0, T ] 3 ϑ 7→ P (ϑ, s) attains its unique minimum
at ϑ = 0. Given any s ∈ [KT , K), we will now prove that minimum of the mapping
[0, T ] 3 ϑ 7→ P (ϑ, s) is uniquely attained at _ϑ (s). Assuming that the latter is false, i.e.
|Ms| ≥ 2, we can find some maturity ρ ∈ (0,_ϑ (s)) such that P (ρ, s) = P (_ϑ (s), s) =
m(s). Necessarily, we have P (1,0)(ρ, s) = 0 and taking (2.38) into account, we conclude
that s < _

ϑ −1(ρ). Property (2.34) now yields the contradiction 0 = P (1,0)(ρ, s) <
P (1,0) (ρ,_ϑ −1(ρ)) = 0 and therefore |Ms| = 1 must indeed hold true.
A similar argument shows that for any s ∈ (0, KT ) the minimum of the mapping [0, T ] 3
ϑ 7→ P (ϑ, s) is uniquely attained at ϑ = T . Indeed, owing to (2.37), no minimum can
be located at ϑ = 0. Now assume that for some s ∈ (0, KT ) a minimum is located at
some maturity ρ ∈ (0, T ). Clearly, the first order condition P (1,0)(ρ, s) = 0 is satisfied
and we have s < _

ϑ −1(ρ). By virtue of (2.34) we conclude that 0 = P (1,0)(ρ, s) <
P (1,0) (ρ,_ϑ −1(ρ)) = 0, which is clearly not possible. Let us summarize our results.

39



2 A new duality between European and American options

2.39 Lemma: For any choice of model parameters σ, r,K > 0 there exists a constant
γ > 0 such that for any time horizon T ∈ (0, γ) the following holds true:

1. For any s > 0 there exists a uniquely determined maturity _ϑ (s) ∈ [0, T ] such that
P (_ϑ (s), s) = minϑ∈[0,T ] P (ϑ, s).

2. The curve R++ 3 s 7→ _
ϑ (s) and the embedded American option amT (f) are

continuous mappings.

3. There exists a uniquely determined constant KT ∈ (0, K) such that the curve _ϑ is
strictly decreasing on the interval (KT , K). Moreover, we have _ϑ (s) = T for any
s ∈ (0, KT ] and _ϑ (s) = 0 for any s ≥ K.

4. The functions _ϑ and amT (f) are analytic on some open complex domain contain-
ing the set R \ {KT , K}.

5. The set
{(ϑ, s) ∈ (0, T ]× (KT ,∞) | ϑ > _

ϑ (s)}
corresponds to the continuation region CT associated to the American payoff amT (f)
and we have f T−→ amT (f).

For illustrative purposes, let us consider the model parameters r = 0.06, σ = 0.4 and
K = 100. We choose the time horizon T = 1 and remark that the latter satisfies the
condition T < γ from Lemma 2.39. Figure 2.8 depicts a numerical approximation to the
curve _ϑ . Numerically solving the non-linear equation P (1,0)(T, s) = 0 for the variable
s yields KT ≈ 69.296. The values of the embedded American option amT (f) on the
interval [KT , K] are displayed in Figure 2.9.

The discussion from above provides us with a further insight: The representability of
an American claim may depend on the time horizon of the model. In order to prove
this assertion, suppose that σ, r,K > 0 and choose a terminal time T0 satisfying the
condition T0 ∈ (0, γ) from Lemma 2.39. The latter lemma implies that the American
payoff g := amT0(f) is globally represented by the European put f up to time T0 and
that there exists a continuous curve _ϑ : (KT0 ,∞)→ [0, T0] and such that

CT0 = {(ϑ, s) ∈ (0, T0]× (KT0 ,∞) | ϑ > _
ϑ (s)} .

With regard to the Black-Scholes formula (2.33), it is apparent that limT→∞ veu,f (T, s) =
0 for any s > 0. Consequently, we can pick a time horizon T ∈ (T0,∞) such that
veu,f (T, α) < g(α) where α := (KT0 + K)/2. Assertion 3 of Lemma 2.39 warrants that
(T0, α) is contained in CT0 . Moreover, the monotonicity of the American value function
vam,g in the variable ϑ yields

CT0 ⊂ {(ϑ, s) ∈ (0, T ]× (KT0 ,∞) | ϑ > _
ϑ (s)} ⊂ CT . (2.40)

Now suppose that there exists some European payoff f̃ which represents g relative to
(T, α). Equation (2.40) shows that the points (T0, α) and (T, α) are located within
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the same connected component of CT . By virtue of Proposition 2.10 we conclude that
the mappings f and f̃ coincide up to a Lebesgue nullset and therefore vam,g(T, α) =
veu,f̃ (T, α) = veu,f (T, α) < g(α). This is clearly a contradiction which proves that the
American payoff g is indeed only representable up to some maximal time horizon.

Figure 2.8: The curve _ϑ for the parameter set r = 0.06, σ = 0.4, T = 1, K = 100.

Figure 2.9: The put payoff (red) and the EAO amT (f) (blue) for the parameter set
r = 0.06, σ = 0.4, T = 1, K = 100.
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2 A new duality between European and American options

2.2 Existence and a verification theorem
In this section we will establish the existence of cheapest dominating European op-
tions, at least in a distributional sense. Furthermore, we provide a verification theorem
which warrants that an American payoff is generated and represented by its cheapest
dominating European option. In order to keep things simple, we confine our theory to
the Black-Scholes scenario (1.3) and consider a certain class of conveniently structured
American payoffs which contains the American put. Clearly, the results below can be
generalized in many aspects. Possible extensions are discussed below. Nonetheless, we
deem to verify rigorously the representability of the Black-Scholes American put as the
more important pending task.

Recall that our basic model consists of a deterministic bond B and a stock with log-price
process X which evolve according to the stochastic differential equation

dBt = rBt dt,
dXt = r̂dt+ σ dWt

(2.41)

where r ∈ R+, σ,B0 ∈ R++, r̂ := r − σ2

2 and Px(X0 = x) = 1 for any x ∈ R. More-
over, assume a finite time horizon T ∈ R++. We focus exclusively on American payoff
functions g : R→ R+ of the type

g(x) = 1(−∞,K](x) φ(x) (2.42)

where K ∈ R and φ denotes some function which is strictly positive on (−∞, K) and
analytic on a complex domain containing the set (−∞, K) with φ(K) = 0 . Furthermore,
we require that the growth condition

lim
x→−∞

e
2r
σ2 xg(x) = 0 (2.43)

is satisfied. For example, the payoff g(x) =
(
eK − ex

)
+
associated to the American put

satisfies the latter requirements. We suppose that the necessary concavity condition

c(x) := g′′(x)− 2r
σ2 (g(x)− g′(x))− g′(x) ≤ 0, x ∈ (−∞, K) (2.44)

from Equation (2.22) in Proposition 2.19 is satisfied. Note that c(x) = − 2r
σ2 e

K ≤ 0 holds
true for the American put with strike price eK . The structural requirement of (2.42)
directly implies that the set [0, T ] × (K,∞) is contained in the continuation region
associated to the American payoff g. Our first goal is to show that for any x0 > K
the cheapest dominating European option of g relative to T, x0 exists in a suitably
generalized sense. If f : R→ R+ denotes a European payoff function, we have

veu,f (ϑ, x) = e−rϑ
∫ ∞
−∞

N(x+ r̂ϑ, σ2ϑ, y)f(y)dy. (2.45)
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2.2 Existence and a verification theorem

Here N(µ, σ2, · ) denotes the probability density function of the Gaussian variableN (µ, σ2).
Put differently, we have

veu,f (ϑ, x) = e−rϑ
∫ ∞
−∞

N (x+ r̂ϑ, σ2ϑ, y)
N (x0 + r̂T, σ2T, y)dµ(y) (2.46)

for the measure µ ∈ M+(R) with density f relative to the law of N (x0 + r̂T, σ2T ). In
the European valuation problem, the payoff function f is only needed for defining the
pricing function veu,f . In view of (2.46), we can and do therefore extend the notion of a
payoff “function” to include all measures µ ∈M+(R). In line with (2.46), we define the
pricing operator veu,µ : R+ × R→ [0,∞] by

veu,µ(ϑ, x) := e−rϑ
∫ ∞
−∞

N (x+ r̂ϑ, σ2ϑ, y)
N (x0 + r̂T, σ2T, y)dµ(y), (ϑ, x) ∈ R++ × R (2.47)

and
veu,µ(0, x) := lim inf

(ϑ,y)→(0,x)
(ϑ,y)∈R++×R

veu,µ(ϑ, x), x ∈ R. (2.48)

In terms of our generalized domain, the linear problem (1.15) now reads as

minimize veu,µ(T, x0)
subject to µ ∈M+(R),

veu,µ(ϑ, x) ≥ g(x) for any (ϑ, x) ∈ [0, T ]× R.
(2.49)

In line with Definition 2.1, a minimizer µ∗ is called cheapest dominating European op-
tion (CDEO) of g relative to T, x0. Exploiting the structural assumption (2.42), we
will show that any measure µ which is admissible in (2.49) can be transformed into
another admissible measure s(µ) which is concentrated on the set (−∞, K] such that
veu,µ(T, x0) = veu,s(µ)(T, x0). Hence, we can equivalently consider the linear program

minimize veu,µ(T, x0)
subject to µ ∈M+(−∞, K],

veu,µ(ϑ, x) ≥ g(x) for any (ϑ, x) ∈ [0, T ]× (−∞, K)
(2.50)

in order to establish the existence of a cheapest dominating European option.

2.51 Theorem: The optimal value of program (2.49) is obtained by some µ∗ ∈M+(−∞, K].
In particular, a CDEO of g relative to T, x0 exists in the present generalized sense.

A proof of this theorem can be found in Section 2.3. The previous result concerned the
existence of the CDEO of g. We now turn to the question whether the latter generates
the American claim g under consideration.
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2.52 Theorem: Let µ∗ denote an optimal measure from Theorem 2.51. Suppose that
for some constant δ > 0 the following assumptions are satisfied:

1. There exists some x1 ∈ R such that veu,µ∗(T + 2δ, x1) <∞.

2. For any ϑ ∈ (0, T +δ) the function x 7→ veu,µ∗(ϑ, x)−g(x) assumes its unique min-
imum within the interval (−∞, K] at some point _x (ϑ) ∈ (−∞, K). Furthermore,
we have lim infϑ→0

_x (ϑ) = K =: _x (0).

3. The well-defined quantity

H(ϑ, x) := 2
σ2∂ϑveu,µ∗(ϑ, x) + 2r

σ2 (veu,µ∗(ϑ, x)− g(x))− c(x) (2.53)

is strictly positive on the set {(ϑ,_x (ϑ)) | ϑ ∈ (0, T ]}.

4. We have lim infϑ→0 veu,µ∗(ϑ,K) <∞.

Define
C̃(T,x0) := {(ϑ, x) ∈ (0, T ]× R | _x (ϑ) < x} (2.54)

and let C(T,x0) denote the connected component of the continuation set associated to g
which contains the optimization point (T, x0), cf. Subsection 2.1.1. Then:

(a) The function ϑ→_x (ϑ) is analytic on a complex domain containing (0, T ].

(b) We have veu,µ∗(ϑ,_x (ϑ)) = g(_x (ϑ)) for any ϑ ∈ [0, T ].

(c) The CDEO µ∗ is the unique measure that represents g on the set C̃(T,x0) in the
sense that vam,g(ϑ, x) ≤ veu,µ∗(ϑ, x) for any (ϑ, x) ∈ [0, T ] × R and equality holds
on C̃(T,x0).

(d) The payoff g coincides on cl π(C̃(T,x0)) = [minϑ∈(0,T ]
_x (ϑ),∞) with the embedded

American option of µ∗ up to T in the sense that

g(x) = inf
ϑ∈[0,T ]

veu,µ∗(ϑ, x) =: amT (µ∗)(x) for x ∈ π(C̃(T,x0)).

(e) The mapping ϑ 7→_x (ϑ) is strictly increasing and we have

C̃(T,x0) = C(T,x0).

Consequently, the curve _x parametrizes the early exercise boundary associated to
C(T,x0) and the stopping time

τϑ := inf{t ∈ [0, ϑ] | Xt ≤_x (ϑ− t)} ∧ ϑ (2.55)

is optimal, i.e. vam,g(ϑ, x) = Ex[e−rτϑg(Xτϑ)] holds for any (ϑ, x) ∈ [0, T ]× R.
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2.2 Existence and a verification theorem

Remark: On closer inspection the proof of the theorem shows that the analyticity of g is
actually only required on a complex domain containing the interval [minϑ∈(0,T ]

_x (ϑ), K).

A proof of this theorem will be provided in Section 2.4. Moreover, we ask the interested
reader to compare the latter theorem to the assertions of Proposition 2.10 and Proposi-
tion 2.19.

Loosely speaking, the assumptions from above serve the following purposes: Assump-
tion 1 warrants that the generalized European value function veu,µ∗ is analytic on a C2-
domain containing the set (0, T + 2δ)× R. The second assumption allows us to deduce
that the mapping [0, T ] 3 ϑ 7→_x (ϑ) is continuous. Taking Assumption 3 into account,
we can conclude that the curve _x is analytic on an open complex domain containing
the interval (0, T ]. Assumption 4 ensures that the optional sampling theorem can be
applied in order to prove that vam,g(ϑ, x) ≥ veu,µ∗(ϑ, x) holds true for any (ϑ, x) ∈ C̃(T,x0).

What are the strengths and weaknesses of this result? The assumptions imposed by
Theorem 2.52 are in some way related to certain qualitative properties of the cheapest
dominating European option. On the negative side, this means that it does not warrant
representability yet unless we are able to rigorously derive these properties for the CDEO
associated to the specific claim under consideration. This, however, is complicated by
the fact that the CDEO is typically not known explicitly. And yet, numerically the
CDEO is obtained quite easily as it is explained in Chapter 3. While the numerical
approximations as such cannot tell whether the CDEO represents the American claim
or just provides a relatively close upper bound, they should give a good and relatively
reliable indication whether the qualitative properties needed for Theorem 2.52 hold true.
As an illustration, we study the prime example of the American put in Section 3.2.
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2.3 Existence - proof of Theorem 2.51
Let g denote an American payoff function satisfying all the requirements from Section
2.2. First, we verify that in search of a solution of Program (2.49) it is only necessary
to consider measures µ ∈M+(−∞, K]. To this end we define by

M+(R) 3 µ 7→ s(µ) := ν1 + ν2

dν1 := 11(−∞,K] dµ
dν2 := µ((K,∞)) dδK

the mapping which relocates any mass that is contained in (K,∞) to the point K. Here
we denote by δK the Dirac measure concentrated at K. The reader easily verifies that s
maps onto the coneM+(−∞, K] and preserves the total variation of any non-negative
measure, i.e. ‖s(µ)‖ = ‖µ‖. Now suppose that µ ∈ M+(R) is admissible in program
(2.49). Clearly, we have veu,µ(T, x0) = e−rT‖µ‖ = e−rT‖s(µ)‖ = veu,s(µ)(T, x0). Due to
the second assertion of Lemma 5.2, we can pick for any (ϑ, x) ∈ (0, T )× (−∞, K) some
constant c(ϑ, x) > 0 such that

N (x+ r̂ϑ, σ2ϑ, y)
N (x0 + r̂T, σ2T, y) = c(ϑ, x) exp

(
−(y − A(ϑ, x))2

2B(ϑ)

)

where A(ϑ, x) := x0 + (x − x0)T/(T − ϑ) and B(ϑ) := σ2Tϑ/(T − ϑ). Recalling that
x < K < x0, we obtain A(ϑ, x) := x0 + (x− x0)T/(T − ϑ) < K and therefore

veu,s(µ)(ϑ, x) = veu,ν1(ϑ, x) + µ((K,∞)) veu,δK (ϑ, x)

= veu,ν1(ϑ, x) + e−rϑ
∫

(K,∞)
c(ϑ, x) exp

(
−(K − A(ϑ, x))2

2B(ϑ)

)
dµ(y)

≥ veu,ν1(ϑ, x) + e−rϑ
∫

(K,∞)
c(ϑ, x) exp

(
−(y − A(ϑ, x))2

2B(ϑ)

)
dµ(y)

= veu,ν1(ϑ, x) + veu,µ−ν1(ϑ, x)
= veu,µ(ϑ, x) ≥ g(x)

holds true for any (ϑ, x) ∈ (0, T ) × (−∞, K). Along the same lines we can apply the
third assertion of Lemma 5.2 in order to obtain

veu,s(µ)(T, x) = veu,ν1(T, x) + µ((K,∞)) veu,δK (T, x)
≥ veu,ν1(T, x) + veu,µ−ν1(T, x)
= veu,µ(T, x) ≥ g(x)

for any x < K. Summing up, the calculations from above imply that the inequality
veu,s(µ) ≥ g is satisfied on the set (0, T ]× (−∞, K). The payoff g is assumed to vanish on
[K,∞) and therefore the measure s(µ) is admissible in Program (2.49). In conclusion, if
the optimal value in (2.49) is obtained, we can find an optimizer which is concentrated
on the set (−∞, K]. Hence, the linear programs (2.49) and (2.50) are indeed equivalent.
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2.3.1 Transformation
Now we transform our model (2.41) to a market with constant bond price process,
following the approach explained in [LU]. To this end, let

B̃t = 1,
dX̃t = r̃dt+ σdWt

(2.56)

with r̃ := −r − σ2/2 < 0 and
g̃(x) := e(2r/σ2)xg(x) (2.57)

where W denotes a standard Brownian motion and X̃0 = x holds almost surely under
the measure Px. The growth condition (2.43) warrants that g̃ is a continuous function
vanishing at infinity. Invoking a measure change with density process(

e−(2r/σ2)(Xt−X0)e−rt
)
t≥0

,

it is easy to see that

Ex
[
e−rτg(Xτ )

]
= e−(2r/σ2)x Ex

[
e(2r/σ2)X̃τ g(X̃τ )

]
= e−(2r/σ2)x Ex

[
g̃(X̃τ )

]
holds true for any stopping time τ . Likewise, we have Ex[e−rϑf(Xϑ)] = e−(2r/σ2)x Ex[f̃(X̃ϑ)]
for any European payoff function f : R → R+ and any ϑ ∈ R+ where f̃(x) :=
e(2r/σ2)xf(x). Some simple algebraic manipulations show that

veu,µ(ϑ, x) = e−rϑ
∫ K

−∞

N (x+ r̂ϑ, σ2ϑ, y)
N (x0 + r̂T, σ2T, y)dµ(y) (2.58)

= e(−2r/σ2)x
∫ K

−∞

N (x+ r̃ϑ, σ2ϑ, y)
N (x0 + r̃T, σ2T, y)e

(2r/σ2)x0−rTdµ(y).

Consequently, the linear program (2.50) is, up to renormalizing the target functional,
equivalent to

minimize ‖µ‖
subject to µ ∈M+(−∞, K],

ṽeu,µ(ϑ, x) ≥ g̃(x) for any (ϑ, x) ∈ [0, T ]× (−∞, K)
(2.59)

where

ṽeu,µ(ϑ, x) :=
∫ K

−∞

N (x+ r̃ϑ, σ2ϑ, y)
N (x0 + r̃T, σ2T, y)dµ(y), (ϑ, x) ∈ R++ × R,

ṽeu,µ(0, x) := lim inf
(ϑ,y)→(0,x)

(ϑ,y)∈R++×R

ṽeu,µ(ϑ, x), x ∈ R.

Here we denote by ‖µ‖ the total variation norm of the measure µ. Clearly, we have
ṽeu,µ(T, x0) = ‖µ‖ < ∞ for any µ ∈ M+(R). Until the end of Section 2.3 we will
continue to work in this transformed setting.
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2.3.2 Duality
We define the set Ω := (0, T )× (−∞, K] and the linear operators

T :M(−∞, K]→ C(Ω) Tµ(t, x) :=
∫ K

−∞
κ(t, x, y) dµ(y),

T′ :M(Ω)→ B((−∞, K],R) T′λ(y) :=
∫

Ω
κ(t, x, y) dλ(t, x)

with the integral kernel

κ(t, x, y) := N (x+ r̃(T − t), σ2(T − t), y)
N (x0 + r̃T, σ2T, y)

=
√

T

T − t
exp

(
−(y − A(x, t))2

2B(t)

)
exp

(
(x− x0 − r̃t)2

2σ2t

)

= T

t

N(A(x, t), B(t), y)
N(x0 + r̃t, σ2t, x)

(2.60)

where A(t, x) := x0 + (x−x0)T/t and B(t) := σ2T (T − t)/t, cf. Lemma 5.2. Taking the
specific structure of the integral kernel κ into account, we can show that for any measure
µ ∈M(−∞, K] the mapping Ω 3 (t, x) 7→ Tµ(t, x) is analytic on the open C2-domain

G :=
{
ϑ ∈ C

∣∣∣∣ √(Reϑ− T/2)2 + (Imϑ)2 < T/2
}
× C.

This is a special case of Step 1 from Section 2.4 below and therefore we postpone a proof
until then. In particular, we find that range of the operator T is indeed contained in
C(Ω). Clearly, the definition of T naturally extends toM(R).

2.61 Lemma: If Tµ = 0 on some open subset of Ω then µ = 0. In particular, we find
that the operator T is injective.

Proof. Let µ ∈ M(R) be a measure such that Tµ vanishes on some open subset of Ω.
Denote by µ = µ+ − µ− the Hahn-Jordan decomposition of µ. By analyticity and the
identity theorem we can conclude that Tµ = 0 holds true on (0, T )×R. Due to the fact
that A(x+ x0/2, T/2) = 2x and B(T/2) = σ2T , we obtain from Equation (2.60) that

N
(
x0 + r̃T

2 , σ2T

2 , x
)

Tµ±
(
T

2 , x+ x0

2

)
= 2

∫ ∞
−∞

N
(
2x, σ2T, y

)
dµ±(y).

From above we know that Tµ+ = Tµ− and consequently∫ ∞
−∞

N
(
y, σ2T, x

)
dµ+(y) =

∫ ∞
−∞

N
(
y, σ2T, x

)
dµ−(y)

holds true for any x ∈ R. Multiplying both sides of the latter equation with eizx and
integrating the x-coordinate over the real line yields∫ ∞

−∞
exp

(
iyz − σ2T

2 z2
)

dµ+(y) =
∫ ∞
−∞

exp
(

iyz − σ2T

2 z2
)

dµ−(y)
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for all z ∈ R. By the injectivity of the Fourier transform onM+(R) we conclude that
the orthogonal measures µ− and µ+ coincide. This is only possible if µ = µ± = 0 which
shows that T is indeed injective.

After these preliminary remarks we now return to our optimization problem. The convex
program (2.59) from above can be rephrased in functional analytic terms as

minimize ‖µ‖
subject to Tµ− g̃ ∈ C+(Ω),

µ ∈M+(−∞, K].
(P0)

The requirement that the European value function dominates the payoff is expressed by
the conic constraint. Please, note that we silently switched to forward time t in favor of
notational convenience. To this primal minimization problem we associate the Lagrange
dual

maximize 〈g̃, λ〉
subject to T′λ(y) ≤ 1 ∀y ∈ (−∞, K],

λ ∈M+(Ω)
(D0)

where
〈g̃, λ〉 :=

∫
Ω
g̃(x) dλ(t, x).

Let us remark that this dual problem allows for a probabilistic or physical interpretation.
To this end, suppose that particles move in space-time Ω ⊂ R+ × R, where the first
coordinate of (t, x) stands for time and the second for the location at this time. In the
space coordinate x the particles are assumed to follow a Brownian motion with drift r̃
and diffusion coefficient σ. Let us inject particles of total mass λ(Ω) into Ω, distributed
according to λ, i.e. mass λ(A) is assigned to any set A ∈ B(Ω). Where in R are the
particles to be found at the end time T? Since they follow Brownian motion, they are
distributed according to the Lebesgue density

y 7→
∫

Ω
N
(
x+ r̃(T − t), σ2(T − t), y

)
dλ(t, x).

On the other hand, the constraint∫
Ω
κ(t, x, y) dλ(t, x) ≤ 1

can be rephrased as∫
Ω
N
(
x+ r̃(T − t), σ2(T − t), y

)
dλ(t, x) ≤ N

(
x0 + r̃T, σ2T, y

)
. (2.62)

The right-hand side is the probability density function at time T of a Brownian motion
started in x0 at time 0. Put differently, the constraint (2.62) means that we consider
only laws λ on space-time Ω such that the resulting final distribution on R is dominated
by the Gaussian law stemming from a Brownian motion started in x0 at time 0.
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Regarding the primal problem P0 and its formal dual D0, we may wonder whether
weak or even strong duality holds, optimizers exist and, if this is the case, whether
the optimizers are linked by some complementary slackness condition. The following
first main result shows that this is indeed the case, at least if the CDEO payoff strictly
dominates the American payoff function g̃ at all x < K.

2.63 Theorem:

1. The optimal value of P0 is obtained by some µ0 ∈ M+(−∞, K] and coincides
with the optimal value of D0. The measure µ0 puts mass on every open subset of
(−∞, K). In particular, the CDEO of g̃ exists in the present generalized sense.

2. If ṽeu,µ0(0, x) > g̃(x) holds true for all x ∈ (−∞, K), the optimal value of D0 is
obtained by some measure λ0 ∈M+(Ω). In this case the following complementary
slackness conditions are satisfied:

Tµ0(ϑ, x) = g̃(x) λ0-a.e. on Ω, (2.64)
T′λ0(x) = 1 µ0-a.e. on (−∞, K]. (2.65)

In light of the discussion from Subsection 2.3.1, the latter theorem can be easily restated
in terms of the untransformed quantities veu,µ and g associated to the program (2.50).
We immediately obtain Theorem 2.51 from the first assertion of Theorem 2.63.

2.3.3 Proof of Theorem 2.63
Let Ω and T be defined as above. For any ε ∈ (0, T ) we define the set

Ωε := [ε, T − ε]× [−1/ε,K]

and the following linear operator:

T∗ :M(Ωε)→ C0(−∞, K] T∗λ(y) :=
∫

Ωε
κ(t, x, y) dλ(t, x)

The range of the operator T∗ is contained in C0(−∞, K] due to Lebesgue’s dominated
convergence theorem, formula (2.60) and the compactness of the set Ωε. On the Carte-
sian products C(Ωε)×M(Ωε) and C0(−∞, K]×M(−∞, K] we consider the algebraic
pairing

〈f, ν〉 7→
∫
fdν. (2.66)

The reader verifies that the latter mapping is finitely valued, bilinear and point separat-
ing. We equip C(Ωε),M(Ωε) andM(−∞, K] with the weak topologies σ(C,M), σ(M, C)
and σ(M, C0) induced by (2.66). The function space C0(−∞, K] is endowed with the
topology of uniform convergence Tuc. This procedure turns all four spaces into locally
convex Hausdorff spaces. For a very brief introduction to locally convex spaces we re-
fer the reader to Section 5.3. Moreover, each space of measures is the continuous dual
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of the associated function space and vice versa, cf. Lemma 5.15 and [RD2, Theorem
6.19]. Fubini’s theorem shows that for all measures µ ∈M(−∞, K] and λ ∈M(Ωε) the
relation

〈Tµ, λ〉 = 〈µ,T∗λ〉 (2.67)
holds true. By virtue of Lemma 5.17 we find that the operator T is σ(M, C0)-σ(C,M)
continuous and that T∗ is σ(M, C)-σ(C0,M) continuous. Figure 2.10 below summarizes
the setting.

〈
M(−∞, K]
σ(M, C0) ,

C0(−∞, K]
Tuc

〉

〈
C(Ωε)
σ(C,M) ,

M(Ωε)
σ(M, C)

〉T T∗

Figure 2.10: The paired spaces occurring in the proof of Theorem 2.63.

We want to find a measure µ0 ∈ M+(−∞, K] which solves the linear program P0 from
Subsection 2.3.2. Our strategy is to approximate the latter optimization problem by the
following sequence of linear programs with milder constraints

minimize ‖µ‖
subject to Tµ− g̃ ∈ C+(Ωε),

µ ∈M+(−∞, K].
(Pε)

The solution of P0 will be obtained by compactness from the family of Pε-extremal
elements. For each ε ∈ (0, T2 ), the Lagrange dual problem associated to Pε is given by

maximize 〈g̃, λ〉
subject to 1−T∗λ ∈ C+(−∞, K],

λ ∈M+(Ωε).
(Dε)

The optimal values of Pε and Dε are denoted by pε and dε, respectively. By construction
we find that weak duality 0 ≤ dε ≤ pε holds. Indeed, in virtue of the adjointness
relation (2.67) we obtain

0 ≤ 〈g̃, λ〉 ≤ 〈Tµ, λ〉 = 〈µ,T∗λ〉 ≤ 〈µ, 1〉 = ‖µ‖ (2.68)

for any primal admissible µ ∈M+(−∞, K] and any dual admissible λ ∈M+(Ωε). Next,
we verify primal and dual attainment. The non-negative measure with Lebesgue
density

dµ̃
dy := 2‖g̃‖∞ N

(
x0 + r̃T, σ2T, y

)
1(−∞,K)(y)
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is Pε-admissible because for any (t, x) ∈ Ωε we have

Tµ̃(t, x) = 2‖g̃‖∞
∫ K

−∞
N
(
x+ r̃(T − t), σ2(T − t), y

)
dy

= 2‖g̃‖∞ P
(
N (0, 1) ≤ K − x

σ
√
T − t

− r̃
√
T − t
σ

)
≥ 2‖g̃‖∞ P (N (0, 1) ≤ 0) = ‖g̃‖∞.

(2.69)

Obviously, the total mass of the measure µ̃ is bounded by the constant 2‖g̃‖∞. Therefore
solving the minimization problem Pε is equivalent to minimizing the total variation norm
over the σ(M, C0)-compact set

Cε
p := T−1

(
g̃ + C+(Ωε)

)
∩ M+(−∞, K] ∩ BM(R)(2‖g̃‖∞). (2.70)

The σ(M, C0)-compactness of Cε
p is easily established: First we note that the set g̃ +

C+(Ωε) is homeomorphic to the σ(C,M)-closed cone

C+(Ωε) = ∩λ∈M+(Ωε){f ∈ C(Ωε) | 〈f, λ〉 ≥ 0}

and the continuity properties of the operator T warrant the σ(M, C0)-closedness of the
preimage T−1 ( g̃ + C+(Ωε) ). Secondly, we observe that the cone

M+(−∞, K] = ∩f∈C+
0 (−∞,K]{µ ∈M(−∞, K] | 〈f, µ〉 ≥ 0}

is σ(M, C0)-closed as well and that BM(R)(2‖g̃‖∞) is a σ(M, C0)-compact set due to
Theorem 5.18. The target functional µ 7→ ‖µ‖ is lower semi-continuous with respect to
the topology σ(M, C0) and therefore its minimal value pε is attained by some measure
µε ∈ Cε

p , cf. Lemma 5.9.
Next, we prove the attainment of the Dε-optimal value. For every measure λ ∈ M(Ωε)
and y ∈ (−∞, K] we define Uλ(y) := N (x0 + r̃T, σ2T, y) T∗λ(y). Obviously U is a
σ(M, C)-σ(C0,M)-continuous, linear operator fromM(Ωε) into the space C0(−∞, K].
The inequality constraint of the program Dε is equivalent to

Uλ(y) ≤ N
(
x0 + r̃T, σ2T, y

)
for all y ∈ (−∞, K]. Integrating this inequality over the interval (−∞, K] yields:∫

Ωε

∫ K

−∞
N
(
x+ r̃(T − t), σ2(T − t), y

)
dy dλ(t, x) ≤

∫ K

−∞
N
(
x0 + r̃T, σ2T, y

)
dy ≤ 1

A calculation similar to (2.69) yields∫ K

−∞
N
(
x+ r̃(T − t), σ2(T − t), y

)
dy ≥ P (N (0, 1) ≤ 0) = 1

2
for any (t, x) ∈ Ωε and consequently any Dε-admissible measure λ must satisfy ‖λ‖ ≤
2. Solving the maximization problem Dε is therefore equivalent to maximizing the
σ(M, C)-continuous mapping λ 7→ 〈g̃, λ〉 over the set

Cε
d := U−1

(
N
(
x0 + r̃T, σ2T, ·

)
− C+

0 (−∞, K]
)
∩ M+(Ωε) ∩ BM(Ωε)(2).
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The reader can easily modify the arguments succeeding Equation (2.70) from above
in order to verify that Cε

d is a σ(M, C)-compact subset of M(Ωε). Hence, the target
functional of the Lagrange dualDε attains its maximal value dε at some measure λε ∈ Cε

d.

In order to prove strong duality dε = pε, we utilize different well-established tech-
niques from convex optimization. Due to the fact that the structure of our problem is
standard, we decided to keep the amount of technical prerequisites to a minimum. That
is to say, we prefer elementary calculations over heavy machinery from optimization the-
ory. We refer the reader to [RO] for a nicely written introduction to conjugate duality
and optimization on paired spaces. A short summary of the most important notions is
provided in Section 5.4. The Lagrange function K :M(−∞, K] ×M(Ωε) → [−∞,∞]
associated to the Pε-Dε-duality is defined by

K(µ, λ) := ‖µ‖+ 〈g̃, λ〉 − 〈Tµ, λ〉+ IM+(−∞,K](µ)− IM+(Ωε)(λ) (2.71)

where

IM(x) :=

0 if x ∈M,

∞ if x /∈M

for any set M . For later reference we provide the following explicit calculations:

sup
λ∈M(Ωε)

inf
µ∈M(−∞,K]

K(µ, λ) = sup
λ∈M+(Ωε)

inf
µ∈M+(−∞,K]

{‖µ‖+ 〈g̃ −Tµ, λ〉} (2.72)

= sup
λ∈M+(Ωε)

{
〈g̃, λ〉+ inf

µ∈M+(−∞,K]
〈1−T∗λ, µ〉

}
= sup

λ∈M+(Ωε)
T∗λ≤1

〈g̃, λ〉 = dε

inf
µ∈M(−∞,K]

sup
λ∈M(Ωε)

K(µ, λ) = inf
µ∈M+(−∞,K]

sup
λ∈M+(Ωε)

{‖µ‖+ 〈g̃ −Tµ, λ〉} (2.73)

= inf
µ∈M+(−∞,K]

{
‖µ‖+ sup

λ∈M+(Ωε)
〈g̃ −Tµ, λ〉

}
= inf

µ∈M+(−∞,K]
Tµ≥g̃

‖µ‖ = pε

The reader easily verifies that for any λ ∈ M(Ωε) the mapping M(−∞, K] 3 µ 7→
Kλ(µ) := K(µ, λ) is closed in the sense of Section 5.4 and convex.

2.74 Lemma: The dual value function v : C0(−∞, K] 7→ (−∞,∞] defined by

v(f) := inf
λ∈M(Ωε)

K∗λ(f)

is convex and we have v(0) = −dε ≥ v∗∗(0) = −pε. Here we denote by K∗λ the conjugate
of the mapping Kλ, see Equation (5.22).
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Proof. By virtue of Lemma 5.25 and Equation (2.72) we find that

v∗∗(0) ≤ v(0) = inf
λ∈M(Ωε)

K∗λ(0) = − sup
λ∈M(Ωε)

inf
µ∈M(−∞,K]

K(µ, λ) = −dε.

The conjugate v∗ :M(−∞, K] 7→ [−∞,∞] of the function v is given by

v∗(µ) = sup
f∈C0(−∞,K]

{〈f, µ〉 − v(f)}

= sup
λ∈M(Ωε)

sup
f∈C0(−∞,K]

{〈f, µ〉 −K∗λ(f)}

= sup
λ∈M(Ωε)

K∗∗λ (µ)

= sup
λ∈M(Ωε)

K(µ, λ).

The last equality follows from Theorem 5.29 because the mapping Kλ is closed and
convex. Hence, the biconjugate of the dual value function is given by

v∗∗(f) = sup
µ∈M(−∞,K]

{〈f, µ〉 − v∗(µ)}

= sup
µ∈M(−∞,K]

inf
λ∈M(Ωε)

{〈f, µ〉 −K(µ, λ)} (2.75)

and owing to Equation (2.73), we obtain v∗∗(0) = −pε. Next, we show that the mapping
v never assumes the value −∞. Suppose there exists some f ∈ C0(−∞, K] such that
v(f) = −∞. From Lemma 5.25 we know that v∗∗ ≤ v and hence v∗∗(f) = −∞ must
hold true. Equation (2.75) now implies that

sup
λ∈M(Ωε)

K(µ, λ) =∞

for any measure µ ∈ M(−∞, K] and therefore pε =∞. This is impossible because the
set of Pε-admissible measures has already been shown to be non-empty.
In order to verify that v is convex, suppose that α ∈ (0, 1) and f1, f2 ∈ C0(−∞, K].
From Equation (2.71) it is apparent that the Lagrange function K is concave in the
second component and this yields

v(αf1 + (1− α)f2) = inf
λ∈M(Ωε)

sup
µ∈M(−∞,K]

{〈αf1 + (1− α)f2, µ〉 −K(µ, λ)}

≤ sup
µ∈M(−∞,K]

{〈αf1 + (1− α)f2, µ〉 −K(µ, αλ1 + (1− α)λ2)}

≤ α sup
µ∈M(−∞,K]

{〈f1, µ〉 −K(µ, λ1)}

+ (1− α) sup
µ∈M(−∞,K]

{〈f2, µ〉 −K(µ, λ2)}

(2.76)
for any choice of λ0, λ1 ∈ M(Ωε). Minimizing with respect to λ0, λ1 proves that v is
indeed a convex function.
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Hence, strong duality holds if we can show that v∗∗(0) = v(0) is true. By virtue of
Lemma 2.74 and Theorem 5.29 we obtain v∗∗(0) = cl(co(v))(0) = lsc(v)(0). Using the
representation of the lower semi-continuous hull from Lemma 5.25 yields

v∗∗(0) = sup
O∈U(0)

inf
f∈O\{0}

v(f)

where U(0) denotes the set containing all Tuc-open neighborhoods of 0. To put differently,
in order to verify strong duality, it is sufficient to show that the mapping v is continuous
at the origin with respect to the topology of uniform convergence. We will use the
following adaptation of [AL, Theorem 5.42] to locally convex spaces.

2.77 Lemma: Let V be a locally convex space, f : V → (−∞,∞] a convex function
and x0 ∈ V . If there exists an open neighborhood O of x0 such that supx∈O f(x) < ∞,
then f is continuous at x0.

The set O := {‖f‖∞ < 1} is certainly a Tuc-open neighborhood of 0 and for any f ∈ O
we have

v(f) = inf
λ∈M+(Ωε)

sup
µ∈M+(−∞,K]

{〈f, µ〉 − ‖µ‖ − 〈g̃, λ〉+ 〈Tµ, λ〉}

≤ sup
µ∈M+(−∞,K]

{‖µ‖‖f‖∞ − ‖µ‖} = 0.

Lemma 2.77 warrants that the mapping v is indeed continuous at 0 and therefore

pε = −v∗∗(0) = −v(0) = dε.

Next, we verify that the optimizers λε and µε satisfy the complementary slackness
property. Taking the strong duality into account, we obtain

0 ≤ 〈Tµε − g̃, λε〉 = 〈Tµε, λε〉 − pε = 〈µε,T∗λε〉 − dε = 〈µε,T∗λε − 1, 〉 ≤ 0. (2.78)

In other words, the equation Tµε = g̃ holds λε-a.e. on Ωε and T∗λε = 1 holds µε-a.e. on
(−∞, K]. Moreover, the structure of the dual problem Dε implies that we can always
choose a Dε-optimal element which assigns no mass to the zeros of the function g̃, i.e.
λε({(t, x) ∈ Ωε | g̃(x) = 0}) = 0. From now on we will only consider dual maximizers
with this property. Let us summarize the findings from above:

2.79 Lemma: For each ε ∈ (0, T2 ) the linear programs Pε, Dε have solutions µε, λε and
their optimal values pε, dε coincide. The total mass of both optimizers is bounded by a
constant ρ ∈ R++ which is independent of ε. Moreover, no mass of the measure λε is
located on the zero set of the function g̃. The equation Tµε = g̃ holds λε-a.e. on Ωε and
T∗λε = 1 holds µε-a.e. on (−∞, K].

We turn our attention to Program P0 and the associated dual D0 from Subsection 2.3.2.
Theorem 2.63 will be proved in two steps. First, we will show that the primal optimizers
(µε)ε>0 cluster at some P0-optimal measure µε and that the family (λε)ε>0 contains a
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D0-admissible accumulation point λ0. In the second step we will show that, under a
certain additional requirement, the measure λ0 is D0-optimal. The other assertions of
Theorem 2.63 will be verified along the way.

Step 1: Let p0 and d0 denote the optimal values of P0 and D0. The weak duality
0 ≤ d0 ≤ p0 follows literally from the same calculation as in (2.68). Recall that for
any ε > 0 the mass of the optimizers µε ∈ M+(−∞, K] and λε ∈ M+(Ω) is bounded
by some constant ρ > 0 independent of ε. General theory tells us that the vague
topology is metrizable on the total variation unit balls in both spaces and Theorem 5.18
warrants that the latter constitute vaguely compact sets. Hence, we can find a sequence
εn ↘ 0 and measures µ0 ∈ M+(−∞, K], λ0 ∈ M+(Ω) with ‖µ0‖ ∨ ‖λ0‖ ≤ ρ such that
µεn converges vaguely to µ0 and λεn converges vaguely to λ0. For any (t, x) ∈ Ω the
mapping y 7→ κ(t, x, y) is continuous on (−∞, K] and vanishes at infinity, see Equation
(2.60). By vague convergence we conclude that

Tµ0(t, x) =
∫ K

−∞
κ(t, x, y) dµ0(y) = lim

n→∞

∫ K

−∞
κ(t, x, y) dµεn(y) ≥ g̃(x)

holds true for any (t, x) ∈ Ω. This ensures that µ0 is indeed P0-admissible. Next, we
verify that the measure λ0 is D0-admissible. Obviously, for any δ ∈ (0, T/4) we have
∅ 6= Ω2δ ⊂ Ωδ ⊂ Ω. By virtue of Urysohn’s lemma, cf. [LA, p.40, Theorem 4.2], there
exists a continuous function φδ : Ω → [0, 1] such that φδ(t, x) = 1 for all (t, x) ∈ Ω2δ
and φδ(t, x) = 0 for all (t, x) ∈ cl(Ω \ Ωδ). For any y ∈ (−∞, K] the continuous
mapping Ω 3 (x, t) 7→ κ(t, x, y)φδ(t, x) vanishes at infinity and by vague convergence of
the sequence λεn → λ0 we obtain∫

Ω
κ(t, x, y)dλ0(t, x) = lim

δ↘0

∫
Ω
κ(t, x, y)1Ω2δ(t, x) dλ0(t, x)

≤ lim
δ↘0

∫
Ω
κ(t, x, y)φδ(t, x) dλ0(t, x)

= lim
δ↘0

lim
n→∞

∫
Ω
κ(t, x, y)φδ(t, x) dλεn(t, x)

≤ lim sup
δ↘0

lim sup
n→∞

∫
Ω
κ(t, x, y) dλεn(t, x) ≤ 1.

In other words, the measure λ0 is dual admissible. Next, let us establish the strong du-
ality p0 = d0 by putting together several of the previous results. The vague convergence
of the measures µεn to µ0 implies that ‖µ0‖ ≤ lim infn→∞ ‖µεn‖ is true. Recalling that
strong duality holds in the Pε-Dε-setting now yields

d0 ≤ p0 ≤ ‖µ0‖ ≤ lim inf
n→∞

‖µεn‖ = lim inf
n→∞

pεn = lim inf
n→∞

dεn ≤ d0. (2.80)

The last inequality follows from the fact that all Dε-admissible elements are certainly
D0-admissible. Along the way we proved that the P0-optimal value is attained by the
measure µ0. Additionally, we observe that any P0-admissible element assigns mass to
every open subset of (−∞, K). Indeed, assuming that the latter is false allows us to pick
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some P0-admissible measure µ and a bounded, open interval I := (c−ν, c+ν) ⊂ (−∞, K)
such that µ(I) = 0. Obviously, we have 0 < δ := infx∈I g̃(x) and this yields

δ < g̃(c) ≤ Tµ(t, c) =
∫ K

−∞
1{|y−c|≥ν} κ(t, c, y) dµ(y) (2.81)

for all t ∈ (0, T ). In consideration of (2.60), we find that the right-hand side of Equation
(2.81) converges to 0 as t↗ T . This contradiction proves the claim.

Step 2: We will show that the D0-optimal value is attained by λ0 if some additional
requirement is met. We already know that the measure λ0 is D0-admissible and that
the sequence λεn converges to λ0 with respect to the vague topology on M(Ω). Due
to the lack of compactness, we cannot directly conclude that λεn converges weakly to
λ0. Please, observe that the functional M(Ω) 3 λ 7→ 〈g̃, λ〉 is weakly but not vaguely
continuous.

First, we prove that the sequence λεn converges weakly inM(clΩ) where clΩ = [0, T ]×
(−∞, K]. It is sufficient to show that the family {λεn | n ∈ N} is tight. For each ε > 0
we define by Kε := [0, T ] × [−1/ε,K] a compact subset of clΩ. For every n ∈ N the
mass of λεn is concentrated on Ωεn ⊂ Kεn . Let us assume that the family of measures is
not tight. Hence, there exists a constant δ > 0 such that for any n ∈ N we can choose
some integer M(n) ≥ n such that

λεM(n)(Ω \Kεn) > δ.

Now pick a sufficiently small constant C ∈ (−∞, K) such that∫ C

−∞
N
(
x0 + r̃T, σ2T, y

)
dy ≤ δ

2 .

Due to the fact that all measures λεn are D0-admissible, we have∫
Ω
N
(
x+ r̃(T − t), σ2(T − t), y

)
dλεM(n)(t, x) ≤ N

(
x0 + r̃T, σ2T, y

)
for any y ∈ (−∞, K]. Integrating the latter inequality over the set (−∞, C) yields∫

Ω

∫ C

−∞
N
(
x+ r̃(T − t), σ2(T − t), y

)
dy dλεM(n)(t, x) ≤ δ

2 .

Due to the positivity of measure and integrand, we conclude that

δ

2 ≥
∫

Ω\Kεn

∫ C

−∞
N
(
x+ r̃(T − t), σ2(T − t), y

)
dy dλεM(n)(t, x)

≥ λεM(n) (Ω \Kεn) inf
(t,x)∈Ω\Kεn

∫ C

−∞
N
(
x+ r̃(T − t), σ2(T − t), y

)
dy

≥ δ inf
x<−1/εn

inf
t∈[0,T ]

∫ C

−∞
N
(
x+ r̃t, σ2t, y

)
dy
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holds true for all n ∈ N. Taking the limit n→∞ yields

δ

2 ≥ δ lim
n→∞

inf
x<−1/εn

inf
t∈[0,T ]

∫ C

−∞
N
(
x+ r̃t, σ2t, y

)
dy = δ

as εn → 0. This is impossible and consequently the family {λεn | n ∈ N} must be tight.
Hence, the sequence λεn converges weakly inM(clΩ) to some measure λ0 with λ0|Ω = λ0.
It is sufficient to show that λ0 assigns no mass to the borders M1 := {0}× (−∞, K) and
M2 := {T}× (−∞, K) in order to assure that the measure λ0 is D0-optimal. Indeed, in
this case we find that∫

Ω
g̃(x) dλ0(t, x) =

∫
cl Ω

g̃(x) dλ0(t, x) = lim
n→∞

∫
Ω
g̃(x) dλεn(t, x) = lim

n→∞
dεn = d0

is true. The second equality follows from the weak convergence of the sequence λεn in
the spaceM(clΩ) and the boundedness of the continuous function g̃. The last equality
has already been established in Equation (2.80).

First, assume that λ0 assigns mass to the set M1. In this case we can choose a real
number α < K such that λ0 ({0} × [α,K)) > 0. Due to weak convergence in the space
M ([0, T/2]× [α,K]), we find that∫

{0}×[α,K)
κ(t, x, y) dλ0(t, x) ≤

∫
[0,T/2]×[α,K]

κ(t, x, y) dλ0(t, x)

= lim
n→∞

∫
[0,T/2]×[α,K]

κ(t, x, y) dλεn(t, x) ≤ 1

holds true for any y ∈ (−∞, K]. Fatou’s lemma and Lemma 5.2 now yield the following
contradiction

1 ≥ lim inf
y→−∞

∫
{0}×[α,K)

N (x+ r̃T, σ2T, y)
N (x0 + r̃T, σ2T, y) dλ0(t, x)

≥
∫
{0}×[α,K)

lim inf
y→−∞

exp
(
y
x− x0

σ2T

)
exp

(
x2

0 − x2 + 2r̃T (x0 − x)
2σ2T

)
dλ0(t, x) =∞

as K < x0 by choice. Our assumption was wrong and therefore λ0(M1) = 0. Next, we
turn our attention to the set M2. For any (t, x) ∈ [0, T ]× R we define by

V (t, x) := lim inf
(t′,x′)→(t,x)

(t′,x′)∈(0,T )×R

Tµ0(t′, x′) (2.82)

the lower semi-continuous extension of the function Tµ0 to the set [0, T ] × R. We will
show that imposing the additional assumption

V (T, x) > g̃(x) ∀x ∈ (−∞, K) (2.83)

warrants that the measure λ0 assigns no mass to the set M2. Indeed, by virtue of
Lemma 5.9 we find that V attains its minimal value on any compact subset of [0, T ]×R.
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Moreover, assumption (2.83) ensures that the minimal value of the function V − g̃ is
strictly positive on any set of the type {T} × [a, b] ⊂ M2 where a < b < K. By lower
semi-continuity we can choose some n0 ∈ N and δ > 0 such that

V (t, x)− g̃(x) ≥ δ (2.84)

for any (t, x) ∈ [T − 1/n0, T ] × [a, b]. Now assume that the measure λ0 assigns mass
to M2. We can choose some strip {T} × (a, b) ⊂ M2 and a constant ρ > 0 such that
λ0(Qm) ≥ 2ρ holds for any m ∈ N where Qm := (T − 1/m, T ]× (a, b). The measures λεn
converge weakly inM(clΩ) to λ0 and owing to [KL, Theorem 13.16], we can pass to a
subsequence (again denoted by εn) such that λεn(intQn) ≥ ρ for all n ∈ N. The strong
duality in the Dε-Pε-setting allows us to conclude that

〈Tµ0 − g̃, λεn〉 = 〈µ0,T∗λεn〉 − pεn
= 〈µ0,T∗λεn − 1〉+ ‖µ0‖ − ‖µεn‖
≤ ‖µ0‖ − ‖µεn‖.

Moreover, Equation (2.84) implies that

〈Tµ0 − g̃, λεn〉 ≥
∫

intQn
V (t, x)− g̃(x) dλεn(t, x)

≥ δ λεn(intQn)
≥ δ ρ > 0

holds true for any integer n ≥ n0. And yet, we already know from Equation (2.80)
that ‖µ0‖ − ‖µεn‖ → 0 as n→∞. This yields a contradiction which finally shows that
λ0(M2) = 0. Last but not least, we observe that literally the same calculation as in
(2.78) yields the complementary slackness property for µ0 and λ0 in the case of primal
and dual attainment. This means that the equation∫ K

−∞
κ(t, x, y) dµ0(y) = g̃(x) (2.85)

holds λ0-a.e. on Ω and ∫
Ω
κ(t, x, y) dλ0(t, x) = 1 (2.86)

holds µ0-a.e. on (−∞, K]. Let us summarize our results from above.

2.87 Theorem:

1. For any ε ∈ (0, T2 ) the linear programs Pε and Dε have solutions µε and λε. The
optimal values pε and dε of the latter programs coincide. The total mass of the
optimizers is bounded by some constant ρ ∈ R++ which does not depend on ε.
Moreover, the measure λε assigns no mass to the zero set of the function g̃. The
equation Tµε = g̃ holds λε-a.e. on Ωε and T∗λε = 1 holds µε-a.e. on (−∞, K].
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2. There exists a sequence εn ↘ 0 such that µεn converges vaguely inM(−∞, K] to
some P0-admissible measure µ0 and λεn converges vaguely in M(Ω) to some D0-
admissible measure λ0. The optimal value of P0 is obtained by µ0 and coincides
with the optimal value of D0. The measure µ0 assigns mass to every open subset
of (−∞, K) and ‖µ0‖ ∨ ‖λ0‖ ≤ ρ.

3. Let V be defined as in Equation (2.82). If V (T, x) > g̃(x) for any x ∈ (−∞, K), the
optimal value of the program D0 is obtained by λ0. In this case the complementary
slackness equations (2.85) and (2.86) hold.

Theorem 2.63 is nothing but a slight reformulation of the latter result.

2.4 Verification - proof of Theorem 2.52
We use the notation from the preceding sections. In particular, see Subsection 2.3.2 for
the definition of the operator T and the formulation of the optimization problem P0.
Let µ∗ be a cheapest dominating European option in the sense of Theorem 2.51. In light
of Equation (2.58), we have

veu,µ∗(ϑ, x) = e−rϑ
∫ K

−∞

N (x+ r̂ϑ, σ2ϑ, y)
N (x0 + r̂T, σ2T, y)dµ∗(y) (2.88)

= e−
2r
σ2 x

∫ K

−∞

N (x+ r̃ϑ, σ2ϑ, y)
N (x0 + r̃T, σ2T, y)e

(2r/σ2)x0−rTdµ∗(y)

= e−
2r
σ2 x Tµ0(T − ϑ, x)

for any (ϑ, x) ∈ (0, T ) × R. Here we denote by µ0 = e(2r/σ2)x0−rTµ∗ the corresponding
P0-optimal measure from Theorem 2.63.

Step 1: Analyticity of the European value function
First, we show that the first assumption of Theorem 2.52 ensures the analyticity of the
function veu,µ∗ on the open C2-domain

E :=
{
ϑ ∈ C

∣∣∣∣ √(Reϑ− (T + 2δ)/2)2 + (Imϑ)2 < (T + 2δ)/2
}
× C.

Clearly, it is enough to verify that the function

erϑveu,µ∗(ϑ, x) =
∫ ∞
−∞

N (x+ r̂ϑ, σ2ϑ, y)
N (x1 + r̂(T + 2δ), σ2(T + 2δ), y)dµ∗∗(y) (2.89)

is analytic on E where

dµ∗∗
dµ∗ (y) := N (x1 + r̂(T + 2δ), σ2(T + 2δ), y)

N (x0 + r̂T, σ2T, y) .
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In light of Assumption 1, we have ‖µ∗∗‖ = veu,µ∗(T+2δ, x1)er(T+2δ) <∞. Due to Hartogs’
theorem, it is enough to show that the function from Equation (2.89) is partially analytic,
cf. [KR, Paragraph 2.4]. Lemma 5.2 implies that∣∣∣∣∣ N(x+ r̂ϑ, σ2ϑ, y)
N(x1 + r̂(T + 2δ), σ2(T + 2δ), y)

∣∣∣∣∣ = |h1(ϑ, x)|
∣∣∣∣∣exp

(
− (y − A)2

2B

)∣∣∣∣∣
= |h2(ϑ, x)| exp

(
− ReB

2|B|2
(
y − ReA− ImA ImB

ReB

)2)

for any (ϑ, x) ∈ E and y ∈ R. Here we denote by h1, h2 certain functions which are
continuous on E. The quantities A and B are defined as in Lemma 5.2. For any
(ϑ, x) ∈ E we have

ReB(ϑ) = Re σ
2ϑ(T + 2δ)

(T + 2δ − ϑ) = σ2(T + 2δ)
|T + 2δ − ϑ|2

(
(T + 2δ)Reϑ− |ϑ|2

)
> 0

and therefore the integrand occurring in (2.89) satisfies the inequality

sup
y∈R

∣∣∣∣∣ N(x+ r̂ϑ, σ2ϑ, y)
N(x1 + r̂(T + 2δ), σ2(T + 2δ), y)

∣∣∣∣∣ ≤ |h2(ϑ, x)| .

The quantity on the right-hand side is certainly bounded on every compact set contained
in E. Hence, we can use a standard argument which involves the theorems of Morera
and Fubini in order to prove partial analyticity. For a detailed exposition of the tech-
nique, we refer the reader to the proof of Lemma 5.3. In virtue of Hartogs’ theorem we
conclude that the mapping veu,µ∗ is indeed analytic on E.

Step 2: Proof of Assertion (a)
We want to show that the curve ϑ 7→ _x (ϑ) is analytic on an open complex domain
containing the interval (0, T ]. For this purpose we will use a version of the implicit
function theorem from multivariate complex analysis which can be found in Section 5.2.
By virtue of Step 1 and the assumptions imposed on the American payoff g, we observe
that the function

Ψ(ϑ, x) := veu,µ∗(ϑ, x)− g(x) (2.90)

is analytic on the open C2-domain D′ ×D where

D′ :=
{
ϑ ∈ C

∣∣∣∣ √(Reϑ− (T + 2δ)/2)2 + (Imϑ)2 < (T + 2δ)/2
}

and D denotes the domain of analyticity of g. Clearly, the set D′ is simply connected and
(0, T + 2δ)× (−∞, K) is a subset of D′ ×D . The continuity of Ψ in combination with
the uniqueness of the minima warrants that the curve _x is continuous on the interval
(0, T + δ/2). Indeed, assume that ϑ0 ∈ (0, T + δ/2) is a point of discontinuity. Then
we can choose a sequence ϑn → ϑ0 and some x∞ ≤ K, ε > 0 such that _x (ϑn) → x∞
as n → ∞ and |x∞ −_x (ϑ0)| > ε. Clearly, there exists a constant γ > 0 such that
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Ψ(ϑ0,
_x (ϑ0))+γ < Ψ(ϑ0, x∞). Consequently, we can choose two disjoint ballsBr(ϑ0, x∞)

and Br(ϑ0,
_x (ϑ0)) of radius r ∈ (0, ε/2) such that

Ψ(ϑ, x) + γ

2 < Ψ(ϑ̃, x̃)

holds true for any (ϑ, x) ∈ Br(ϑ0,
_x (ϑ0)) and (ϑ̃, x̃) ∈ Br(ϑ0, x∞). This yields a con-

tradiction as (ϑn,_x (ϑn)) is contained in Br(ϑ0, x∞) for any sufficiently large integer n.
Hence, the curve _x must be continuous.
Moreover, for any ϑ ∈ (0, T + δ) we have ∂xΨ(ϑ,_x (ϑ)) = 0 and ∂xxΨ(ϑ,_x (ϑ)) ≥ 0 due
to the necessary first and second order optimality conditions. Applying Kolmogorov’s
backward equation, we obtain

∂xxΨ = ∂xxveu,µ∗ − g′′

= 2
σ2∂ϑveu,µ∗ +

(
1− 2r

σ2

)
∂xveu,µ∗ + 2r

σ2veu,µ∗ − g′′

= 2
σ2∂ϑveu,µ∗ +

(
1− 2r

σ2

)
∂xΨ + 2r

σ2 (veu,µ∗ − g)− c

= H +
(

1− 2r
σ2

)
∂xΨ

(2.91)

on (0, T + 2δ)×R where the quantities c and H are defined as in (2.44) and (2.53), re-
spectively. Assumption 3 of the theorem warrants that H and therefore ∂xxΨ is strictly
positive on the set Γ := {(ϑ,_x (ϑ)) | ϑ ∈ (0, T ]} and therefore Theorem 5.7 is applicable
to the function ∂xΨ at any point of Γ. We obtain that for any (ϑ̃, x̃) ∈ Γ there exist
open neighborhoods ϑ̃ ∈ Uϑ̃, x̃ ∈ Ux̃ and an analytic curve χϑ̃ : Uϑ̃ → Ux̃ such that
χϑ̃(ϑ) = _x (ϑ) holds true for any ϑ ∈ Uϑ̃ ∩ (0, T ]. The identity theorem implies that
curves χϑ̃1

, χϑ̃2
with intersecting neighborhoods Uϑ̃1

, Uϑ̃2
coincide on Uϑ̃1

∪ Uϑ̃2
. From

above we already know that the mapping ϑ 7→ _x (ϑ) is continuous and consequently
there exists an analytic function χ such that χ|Uϑ̃ = χϑ̃ for any neighborhood Uϑ̃. In
particular, we have χ(ϑ) = _x (ϑ) for every ϑ ∈ (0, T ]. This proves that _x is indeed
analytic on some complex domain containing the interval (0, T ].

Step 3: Proof of Assertion (b)
Now we will verify that veu,µ∗(ϑ,_x (ϑ)) = g(_x (ϑ)) holds true for all ϑ ∈ [0, T ]. Due to the
fact that the measure µ∗ assigns no mass to the set (K,∞), we find that veu,µ∗(0, x) = 0
for any x > K. Lower semi-continuity even implies that veu,µ∗(0, K) = 0 and therefore
veu,µ∗(0,_x (0)) = veu,µ∗(0, K) = 0 = g(K) = g(_x (0)). In light of Equation (2.88), we
have

e
2r
σ2 x (veu,µ∗(T − t, x)− g(x)) = Tµ0(t, x)− g̃(x)

for any (t, x) ∈ [0, T ) × R where g̃ is defined as in (2.57). Assumption 2 implies that
veu,µ∗(0, x)− g(x) > 0 for every x < K and consequently Theorem 2.87 warrants strong
duality, primal and dual attainment as well as complementary slackness. By virtue of
the complementary slackness equation (2.85), we find that the dual maximizer λ0 assigns
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no mass to the complement of the set {(t,_x (T − t)) | 0 < t < T}. We claim that there
exists a sequence ϑn ↗ T with ϑn ∈ (0, T ) such that

veu,µ∗(ϑn,_x (ϑn)) = g(_x (ϑn)) (2.92)

for any n ∈ N. Assume the latter statement is false. Then we can pick some ε ∈ (0, T )
such that veu,µ∗(ϑ,_x (ϑ)) > g(_x (ϑ)) for all ϑ ∈ (T − ε, T ). Equation (2.85) tells us
that the measure λ0 is concentrated on the set Γε := {(t, x(T − t)) | ε < t < T}. From
Theorem 2.87 we already know that the primal minimizer µ0 assigns mass to every open
subset of (−∞, K). In light of Equation (2.86), we can find a sequence yn ↘ −∞ with
maxn∈N yn < minϑ∈[0,T ]

_x (ϑ) + r̃(T − ε) =: ω0 such that

N
(
x0 + r̃T, σ2T, yn

)
=
∫

Γε
N
(
x+ r̃(T − t), σ2(T − t), yn

)
dλ0(t, x)

holds true for all n ∈ N. Due to the fact that r̃ < 0, we have

N
(
x0 + r̃T, σ2T, yn

)
≤
∫

Γε
N
(
ω0, σ

2(T − t), yn
)

dλ0(t, x)

≤ N
(
ω0, σ

2(T − ε), yn
)
λ0 (Γε)

for any n ∈ N. This yields the contradiction

1 ≤ λ0 (Γ) lim
n→∞

N (ω0, σ
2(T − ε), yn)

N (x0 + r̃T, σ2T, yn) = 0

and consequently a sequence with the desired property (2.92) must exist. In light of
Step 1 and Step 2 from above, we find that the mapping ϑ 7→ veu,µ∗(ϑ,_x (ϑ))− g(_x (ϑ))
is analytic on some open complex domain containing the interval (0, T ]. Equation (2.92)
and the identity theorem finally yield that veu,µ∗(ϑ,_x (ϑ)) = g(_x (ϑ)) for any ϑ ∈ (0, T ].

Step 4: Proof of Assertion (c)
Now we will verify that µ∗ is the unique measure representing our American payoff on
the set C̃(T,x0) as defined in (2.54). Moreover, we will show that C̃(T,x0) constitutes a
connected subset of the continuation region’s connected component C(T,x0), cf. Subsec-
tion 2.1.1. Not surprisingly, for any T0 ∈ [0, T ] the process V T0

t := e−rtveu,µ∗(T0 − t,Xt)
is a martingale on the time segment [0, T0). Indeed, for 0 ≤ u < t+ u < T0 the Markov
property of the process X yields

Ex
[
V T0
t+u

∣∣∣Fu] = e−r(t+u)EXu [veu,µ∗(T0 − t− u,Xt)]

= e−rT0
∫ K

−∞

EXu [N (Xt + r̂(T0 − t− u), σ2(T0 − t− u), y)]
N (x0 + r̂T, σ2T, y) dµ∗(y)

= e−rT0
∫ K

−∞

N (Xu + r̂(T0 − u), σ2(T0 − u), y)
N (x0 + r̂T, σ2T, y) dµ∗(y)

= e−ruveu,µ∗(T0 − u,Xu) = V T0
u .

(2.93)
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The third equality follows from the convolution property of the normal distribution. The
martingale condition cannot be assured at the end time of the market. Nevertheless,
Fatou’s lemma yields the super-martingale property. Indeed, for any u ∈ [0, T0] we have

Ex
[
V T0
T0

∣∣∣Fu] = Ex
[
e−rT0 lim inf

t↗T0
veu,µ∗(T0 − t,Xt)

∣∣∣∣Fu]
≤ lim inf

t↗T0
Ex
[
e−rtveu,µ∗(T0 − t,Xt)

∣∣∣Fu] = V T0
u .

Due to superreplication, we have e−rtg(Xt) ≤ V T
t for any t ∈ [0, T ] and consequently

the optional sampling theorem yields

Ex
[
e−rτg(Xτ )

∣∣∣Ft] ≤ Ex
[
V T
τ

∣∣∣Ft] ≤ Vt

for any [t, T ]-valued stopping time τ . Maximizing the left-hand side over all such stop-
ping times shows that vam,g(ϑ, x) ≤ veu,µ∗(ϑ, x) for any (ϑ, x) ∈ [0, T ]× R.

Next, we will prove that the value functions vam,g and veu,µ∗ coincide on the set C̃(T,x0).
For this purpose let τϑ be defined as in (2.55). Assumption 4 warrants that the measure
µ∗ has no point mass at K, i.e. µ∗({K}) = 0. Indeed, assuming µ∗({K}) > 0 would
imply that

lim inf
ϑ→0

veu,µ∗(ϑ,K) ≥ γ lim inf
ϑ→0

e−rϑN
(
r̂ϑ, σ2ϑ, 0

)
=∞

where γ denotes some positive constant. Furthermore, owing the geometric properties
of the curve _x , we have

Ex
[
N
(
Xτϑ + r̂(ϑ− τϑ), σ2(ϑ− τϑ), y

)
11{τϑ=ϑ}

]
≤ Ex

[
δ{y}(Xϑ) 11{Xϑ≥K}

]
= 0

for any y < K. Hence, for any (ϑ, x) ∈ C̃(T,x0) we obtain by monotone convergence

vam,g(ϑ, x) ≥ Ex
[
e−rτϑg(Xτϑ) 11{τϑ<ϑ}

]
= Ex

[
e−rτϑveu,µ∗(ϑ− τϑ, Xτϑ) 11{τϑ<ϑ}

]
= lim

x′↗K
Ex
[
e−rϑ

∫ x′

−∞

N (Xτϑ + r̂(ϑ− τϑ), σ2(ϑ− τϑ), y)
N (x0 + r̂T, σ2T, y) dµ∗(y) 11{τϑ<ϑ}

]

= lim
x′↗K

e−rϑ
∫ x′

−∞

Ex [N (Xτϑ + r̂(ϑ− τϑ), σ2(ϑ− τϑ), y)]
N (x0 + r̂T, σ2T, y) dµ∗(y)

= veu,µ∗(ϑ, x).

Summing up, we have shown that vam,g(ϑ, x) = veu,µ∗(ϑ, x) > g(x) holds true for any
(ϑ, x) ∈ C̃(T,x0). Besides, the latter directly implies that C̃(T,x0) is a connected subset of
C(T,x0).

Finally, we prove that the representing measure µ∗ is unique. Assume that we can find
another measure ν such that veu,µ∗(ϑ, x) = vam,g(ϑ, x) = veu,ν(ϑ, x) holds true for any
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(ϑ, x) ∈ C̃(T,x0). From above we know that the value functions veu,µ∗ , veu,ν are analytic
on a C2-domain containing the set (0, T ) × R. Clearly, the set C̃(T,x0) contains some
open ball. By applying the identity theorem in each variable, we can conclude that the
mappings veu,µ∗ and veu,ν(ϑ, x) coincide on the set (0, T ) × R. Equation (2.88) implies
that Tµ∗ = Tν must hold on (0, T ) × R. In Lemma 2.61 it has been shown that the
operator T is injective on the Borel measures and therefore µ∗ = ν.

Step 5: Proof of Assertion (d)
For x ≥ K we obviously have veu,µ∗(0, x) = g(x) = 0. Furthermore, for any x ∈
[minϑ∈(0,T ]

_x (ϑ), K) we can pick a maturity ϑ(x) ∈ (0, T ] such that (ϑ(x), x) is located
on the curve, i.e. _x (ϑ(x)) = x. Due to superreplication and Assertion (b), we find that
g(x) ≤ infϑ∈[0,T ] veu,µ∗(ϑ, x) ≤ veu,µ∗(ϑ(x), x) = g(x) holds true.

Step 6: Proof of Assertion (e)
Assume that the curve _x is decreasing at some point. Owing to Assertion (a), we
can choose some 0 < ϑ0 < ϑ1 < ϑ2 < T and some x0 < K such that _x (ϑ0) =
_x (ϑ2) = x0 and _x (ϑ1) < x0. From the proof of Assertion (c), we know that C̃(T,x0)
is a connected subset of C(T,x0). In particular, we find that (ϑ1, x0) is located within
the continuation set. By virtue of the Assertion (b), we can therefore conclude that
g(x0) = vam,g(ϑ0, x0) < vam,g(ϑ1, x0) ≤ vam,g(ϑ2, x0) = g(x0). This is impossible and
hence the mapping ϑ 7→_x (ϑ) must be non-decreasing.
Now assume that there exists some 0 < ϑ0 < ϑ1 ≤ T such that _x is constant on
the interval (ϑ0, ϑ1). As the curve _x is analytic, the identity theorem implies that _x
is constant on (0, T ]. In light of the second assumption, we find that K > _x (ϑ) =
lim infϑ′→0

_x (ϑ′) = K holds true for any ϑ ∈ (0, T ] which is clearly not possible. There-
fore ϑ 7→_x (ϑ) must indeed be increasing. The remaining statements now follow easily
from combining all the previous assertions.

2.4.1 A comment on the analyticity of the exercise curve

The first and the second assumption of Theorem 2.52 ensure that the curve ϑ 7→_x (ϑ)
is continuous, cf. Step 2 of Section 2.4. As demonstrated above, the analyticity of _x
can be obtained by applying the implicit function theorem to the mapping ∂xΨ where
Ψ is defined as in (2.90). Equation (2.91) shows that ∂xxΨ(ϑ,_x (ϑ)) = H(ϑ,_x (ϑ))
holds true for any ϑ ∈ (0, T ]. Owing to the third assumption of Theorem 2.52, we have
H(ϑ,_x (ϑ)) > 0 for any ϑ ∈ (0, T ] and therefore Theorem 5.7 is indeed applicable.

In this subsection we want to provide a bit of intuition under which circumstances a
violation of Assumption 3 is possible. Suppose that the first and second assumption of
Theorem 2.52 are satisfied. Moreover, let us assume that c′′(x) ≥ 0 for all x < K where
c denotes the function from (2.44). Let us remark that for the American put payoff we
have c(x) = − 2r

σ2 e
K and therefore c′(x) = c′′(x) = 0. We switch to forward time and
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write with a slight abuse of notation
Ψ(t, x) := veu,µ∗(T − t, x)− g(x).

Assume there exists some t0 ∈ [0, T ) such that
(∂xxΨ)(t0, x0) = H(T − t0, x0) = 0

where x0 := _x (T − t0). To put differently, at the point (t0, x0) Theorem 5.7 is not
straightforwardly applicable in order to warrant the analyticity of the curve _x on an
open complex domain containing t0. Owing to Lemma 5.1, we can pick for each t ∈
[0, T ) a constant εt > 0 such that (∂xxΨ)(t, x) ≥ 0 holds true for any x ∈ R with
|_x (T − t)− x | ≤ εt. Let us assume that this property is locally satisfied in a uniform
manner, in the sense that there exists some t1 ∈ (t0, T ) and some ε > 0 such that
(∂xxΨ)(t, x) ≥ 0 for all (t, x) ∈ Λ where

Λ := {(t,_x (T − t) + δ) | t ∈ [t0, t1] and |δ| ≤ ε}.
Assumption 2 warrants that _x (T − t) < K for any t ∈ [t0, t1]. Hence, by choosing ε
sufficiently small, we can always achieve that the set Λ is contained in [t0, t1]×(−∞, K).
Furthermore, Kolmogorov’s backward equation yields

(∂t +A)∂xxΨ = −∂xxAg = −σ
2

2 c
′′ ≤ 0

on [0, T )× (−∞, K) where A :=
(
r − σ2

2

)
∂x + σ2

2 ∂xx− r. Let τ denote the first exit time
of the space-time process started at (t0, x0) from the set Λ . For any t′ ∈ (t0, t1) we write
τt′ := t′ ∧ τ and conclude by applying Dynkin’s formula that

0 ≤ E(t0,x0)
[
e−rτt′∂xxΨ(τt′ , Xτt′

)
]

= e−rt0∂xxΨ(t0, x0) + E(t0,x0)

[∫ τt′

0
e−rs((∂t +A)∂xxΨ)(s,Xs) ds

]
= −σ

2

2 E(t0,x0)

[∫ τt′

0
e−rsc′′(Xs) ds

]
≤ 0

(2.94)

holds true, cf. [RW, page 254]. Due to the fact that the quantity ∂xxΨ is non-negative
on the set Λ, we have that (∂xxΨ)(τt′ , Xτt′

) ≥ 0. As t′ ∈ (t0, t1) was chosen arbitrarily,
Equation (2.94) implies that ∂xxΨ = 0 on the interior of the set Λ. The analyticity of the
function ∂xxΨ in both components now yields that ∂xxΨ vanishes on (0, T )× (−∞, K).
Applying the fundamental theorem of calculus, we obtain

(∂xΨ)(t, x) = (∂xΨ)(t,_x (T − t)) = 0
for any (t, x) ∈ (0, T )× (−∞, K). This clearly contradicts the uniqueness of the minima
imposed by Assumption 2.

Consequently, when attempting the construction of an example in our setting where
(∂xxΨ)(t0, x0) = H(T − t0, x0) = 0 holds true for some t0 ∈ [0, T ), one must exclude the
existence of the set Λ. Moreover, we note that the specific geometric properties of Λ are
mostly insignificant. The reader may think of differently shaped sets where the latter
arguments work.
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3 Computational methods and
numerical results

3.1 Approximate CDEOs
Suppose that (T, x0) ∈ R++ × R and let g : R → R+ denote some American payoff
function. The computation of the cheapest dominating European option of g relative
to T, x0 in the sense of Section 2.2 requires us to solve the following general capacity
problem

minimize veu,µ(T, x0)
subject to µ ∈M+(R),

veu,µ(ϑ, x) ≥ g(x) for any (ϑ, x) ∈ (0, T )× R
(GCAP)

where veu,µ is defined as in (2.47). In the Sections 2.1 and 2.2 we discussed that CDEOs
provide us with natural candidates for representing European payoffs. As a quick re-
minder, let us recall some central assertions from Proposition 2.3 and Proposition 2.10
in a slightly generalized setting.

3.1 Lemma: Let g : R → R+ denote a lower semi-continuous American payoff satis-
fying (1.5). For any GCAP-admissible measure µ and any (ϑ, x) ∈ (0, T ) × R we have
vam,g(ϑ, x) ≤ veu,µ(ϑ, x).

Proof. Choose (ϑ, x) ∈ (0, T ) × R and let τ denote some [0, ϑ]-valued stopping time.
The mapping g is assumed to be lower semi-continuous and consequently we have
g(Xτ ) ≤ lim infϑ′↗ϑ g(Xτ∧ϑ′) ≤ lim infϑ′↗ϑ veu,µ(ϑ − τ ∧ ϑ′, Xτ∧ϑ′). Fatou’s lemma and
the martingale property established in (2.93) imply

Ex
[
e−rτg(Xτ )

]
≤ lim inf

ϑ′↗ϑ
Ex
[
e−r(τ∧ϑ

′)veu,µ(ϑ− τ ∧ ϑ′, Xτ∧ϑ′)
]

= veu,µ(ϑ, x).

Maximizing the left-hand side over all [0, ϑ]-valued stopping proves the assertion.

3.2 Lemma: Let g : R → R+ be a lower semi-continuous American payoff satisfying
(1.5). Suppose that (T, x0) ∈ [0, T ]× R is located within the continuation set associated
to g and that C(T,x0), as defined in Subsection 2.1.1, is relatively open in [0, T ] × R.
Furthermore, assume there exists a measure µ∗ ∈M+(R) such that µ∗ represents g with
respect to (T, x0), i.e. vam,g(ϑ, x) ≤ veu,µ∗(ϑ, x) for any (ϑ, x) ∈ (0, T ) × R and equality
holds on C(T,x0). Then:

67



3 Computational methods and numerical results

1. The representing measure µ∗ is unique.

2. The measure µ∗ is the unique solution of Program GCAP.

Proof.

1. Assume there exists another measure µ̃ which represents g with respect to (T, x0).
Clearly, the mappings veu,µ∗ and veu,µ̃ coincide on some non-empty open set O ⊂
C(T,x0). Lemma 2.61 implies that µ∗ = µ̃.

2. We have e−rT‖µ∗‖ = veu,µ∗(T, x0) = vam,g(T, x0) and therefore µ∗ is GCAP-
optimal. Hence, any other GCAP-optimal measure ν∗ must satisfy veu,ν∗(T, x0) =
vam,g(T, x0). In light of Step 1 from Section 2.4, we find that the mappings veu,µ∗

and veu,ν∗ are analytic on an open C2-domain containing the set (0, T ) × R. We
can choose some radius 0 < δ < T

2 such that

Dδ := {(ϑ, x) ∈ (0, T )× R | ‖(ϑ, x)− (T, x0)‖2 ≤ δ}

is a subset of C(T,x0). Let τδ denote the first exit time of the space-time process
started at time 0 and initial log-price x0 from the set Dδ. Due to the fact that µ∗
represents g with respect to (T, x0), we find that veu,ν∗(T − τδ, Xτδ) ≥ vam,g(T −
τδ, Xτδ) = veu,µ∗(T − τδ, Xτδ) holds true Px0-almost surely. The stopping time τδ is
(0, δ]-valued and taking (2.93) into account, we obtain by optional sampling

Ex0 [(v̂eu,ν∗ − v̂eu,µ∗) (T − τδ, Xτδ)] = v̂eu,ν∗(T, x0)− v̂am,g(T, x0) = 0 (3.3)

where v̂eu,µ(T − t, x) := e−rtveu,µ(T − t, x) denotes the discounted European value
at time t and log-price x. As a matter of fact, Equation (3.3) holds true for any
δ′ ∈ (0, δ) which implies that the mappings v̂eu,ν∗ and v̂eu,µ∗ coincide on the set Dδ.
Owing to Lemma 2.61 and (2.88), we can finally conclude that µ∗ = ν∗.

In case that the payoff g satisfies the regularity conditions from Section 2.2, Theorem
2.51 warrants that the optimal value in GCAP is obtained by some admissible measure.
Let us remark that [LW, Theorem 2.1] is not straightforwardly applicable in order to
verify the existence of an optimizer. This is mainly due to the lacking compactness of
the underlying spaces and the possibly singular behavior of the mapping veu,µ at the
time boundaries. Within the scope of this thesis, we will not further discuss any aspects
related to the existence of optimizers in the rather general optimization task GCAP.
Instead we focus on certain semi-infinite linear programs which serve as numerically
feasible surrogates for GCAP.

We sketch a simple way how to obtain approximate solutions of GCAP numerically. To
this end we adopt the following well-known discretization approach, cf. [CR], [HK] and
[LW]. The coneM+(R) appearing in GCAP is replaced by some suitable finite dimen-
sional subcone. This yields an approximation to GCAP in the form of a linear program
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Pn with a finite number of variables and an infinite number of constraints. Optimization
tasks of this type fall within the scope of semi-infinite programming theory. First, we
want to prove the following existence and consistency result. In order to simplify the
line of argument, it is convenient to include a certain measure which is related to an
invariant function of the Black-Scholes pricing semi-group into the discretization.

3.4 Proposition: Define f1(y) := e−
2r
σ2 y+ey and dµ1(y) := N (x0 + r̂T, σ2T, y) f1(y)dy.

Suppose that µ2, µ3, ... ∈ M(R) and write Un := {∑n
k=1 akµk | a ∈ Rn}. Moreover, we

denote by U∞ the closure of the set ∪n∈N Un with respect to the vague topology. Suppose
that g : R→ R+ is a continuous American payoff satisfying ‖ g

f1
‖∞ <∞. Then:

1. For any n ∈ N ∪ {∞} the optimal value pn in the linear program

minimize veu,µ(T, x0)
subject to µ ∈ Un ∩M+(R),

veu,µ(ϑ, x) ≥ g(x) for any (ϑ, x) ∈ (0, T )× R
(Pn)

is attained by some admissible measure µ∗n satisfying pn = e−rT‖µ∗n‖ ≤ f1(x0)‖ g
f1
‖∞.

For any m ≤ n the measure µ∗m is Pn-admissible and we have pm ≥ pn.

2. A subsequence of optimizers µ∗nk converges vaguely to some P∞-admissible measure
ν∞. Moreover, the optimal values satisfy the inequality

p∞ ≤ veu,ν∞(T, x0) ≤ inf
n∈N

pn = lim
n→∞

pn.

3. In addition, suppose that there exists some sequence ξn ∈ Un ∩ M+(R) which
converges weakly to a P∞-optimal measure µ∗∞ as n→∞. If

lim
n→∞

sup
(ϑ,x)∈(0,T )×R

|veu,µ∗∞−ξn(ϑ, x)|
f1(x) = 0

holds true, we can conclude that the measure ν∞ from Assertion 2 is P∞-optimal
and that the subsequence µ∗nk converges weakly to ν∞. In particular, we have

p∞ = veu,ν∞(T, x0) = inf
n∈N

pn = lim
n→∞

pn.

Remark: Replacing Un by Ũn := {∑n
k=1 akµk | a ∈ Rn

+} does not effect the validity of the
latter proposition.

Proof.

1. For any n ∈ N ∪ {∞} we consider instead of Pn the equivalent program

minimize e−rT‖µ‖
subject to µ ∈ Un ∩M+(R),∫ ∞

−∞
κ̃(ϑ, x, y)dµ(y) ≥ g̃(x) for any (ϑ, x) ∈ Λ

(P′n)
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where Λ := (0, T )× R, g̃ := g
f1
∈ Cb(R) and

κ̃(ϑ, x, y) := e−rϑ
N (x+ r̂ϑ, σ2ϑ, y)

f1(x)N (x0 + r̂T, σ2T, y) .

The set of all P′n-admissible measures is denoted by ZP′n . Choose n ∈ N ∪ {∞}
arbitrarily. In order to show that the optimal value in Program P′n is attained,
define the measure µa := ‖g̃‖∞ µ1 ∈ Un ∩M+(R). Due to the fact that f1 is an
invariant function of the Black-Scholes pricing semi-group, we obtain∫ ∞

−∞
κ̃(ϑ, x, y)dµa(y) = ‖g̃‖∞

e−rϑEx[f1(Xϑ)]
f1(x) = ‖g̃‖∞ ≥ g̃(x)

for any (ϑ, x) ∈ Λ. This shows that µa is P′n-admissible which indicates that any
potential minimizer µ∗ ∈ ZP′n must satisfy the inequality

‖µ∗‖ ≤ ‖µa‖ = erT‖g̃‖∞f1(x0) =: ρ.

In other words, the measure µ∗ must be contained in the vaguely compact ball
BM(ρ) = {µ ∈ M(R) | ‖µ‖ ≤ ρ}. In Program P′n it is therefore sufficient to
minimize over set

ZP′n ∩BM(ρ) =
⋂

(ϑ,x)∈Λ
H(ϑ, x) ∩ Un ∩ M+(R) ∩ BM(ρ)

where H(ϑ, x) := {µ ∈ M(R) |
∫∞
−∞ κ̃(ϑ, x, y)dµ(y) ≥ g̃(x)}. For any (ϑ, x) ∈ Λ

the mapping R 3 y 7→ κ̃(ϑ, x, y) vanishes at infinity and therefore the associated
half-space H(ϑ, x) is vaguely closed. Due to the fact that the cone Un ∩M+(R)
is vaguely closed as well, we can conclude that ZP′n ∩BM(ρ) is a vaguely compact
subset ofM(R). Theorem 5.18 implies that the target functional µ 7→ e−rT‖µ‖ is
lower semi-continuous with respect to the vague topology. Therefore, the optimal
value pn in Program P′n is attained by some measure µ∗n ∈ ZP′n∩BM(ρ), cf. Lemma
5.9.

2. From Assertion 1 we know that ‖µ∗n‖ ≤ ρ for any n ∈ N. General theory tells us
that the vague topology is metrizable on the total variation unit ball and Theorem
5.18 warrants that the latter set is vaguely compact. Hence, there exists a subse-
quence µ∗nk which converges vaguely to some measure ν∞ ∈ BM(ρ)∩M+(R). For
any (ϑ, x) ∈ Λ the mapping R 3 y 7→ κ̃(ϑ, x, y) vanishes at infinity which shows
that ∫ ∞

−∞
κ̃(ϑ, x, y)dν∞(y) = lim

k→∞

∫ ∞
−∞

κ̃(ϑ, x, y)dµ∗nk(y) ≥ g̃(x).

In other words, the measure ν∞ is admissible in Program P∞ and therefore p∞ ≤
veu,ν∞(T, x0). By vague convergence we find that ‖ν∞‖ ≤ lim infk→∞ ‖µ∗nk‖, cf.
[KL, Lemma 13.15]. Due to the monotonicity of the Pn-optimal values, we can
finally conclude that p∞ ≤ veu,ν∞(T, x0) ≤ infn∈N pn = limn→∞ pn holds true, as
claimed.
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3. For any n ∈ N we define the non-negative measure ηn := ξn + εnµ1 where

εn := sup
(ϑ,x)∈(0,T )×R

|veu,µ∗∞−ξn(ϑ, x)|
f1(x) .

Clearly, the measure µ∗∞ is P∞-admissible which yields that

veu,ηn(ϑ, x)− g(x) ≥ veu,ηn(ϑ, x)− veu,µ∗∞(ϑ, x)

= f1(x)
(
εn −

veu,µ∗∞−ξn(ϑ, x)
f1(x)

)
≥ 0

(3.5)

holds true for any (ϑ, x) ∈ Λ. Consequently, the measure ηn is admissible in
Program Pn and owing to the second assertion we obtain

p∞ ≤ veu,ν∞(T, x0) ≤ pn ≤ veu,ηn(T, x0) = veu,ξn(T, x0) + εnf1(x0).

As the sequence ξn was assumed to converge weakly to the measure µ∗∞, we find
that limn→∞ veu,ξn(T, x0) = veu,µ∗∞(T, x0) = p∞ and this finally shows that

p∞ = veu,ν∞(T, x0) = lim
n→∞

pn = lim
n→∞

veu,ηn(T, x0) = lim
n→∞

veu,ξn(T, x0).

In particular, we obtain limn→∞ ‖µ∗n‖ = ‖ν∞‖. In Assertion 2 it was shown that
some subsequence of the optimizers, say µ∗nk , converges vaguely to ν∞. As R is lo-
cally compact and Polish with respect to the Euclidean topology, the Portmanteau
theorem warrants that µ∗nk converges weakly to the measure ν∞, cf. [KL, Theorem
13.16].

Within the scope of optimal stopping theory, one of the fundamental technical assump-
tions about the American payoff of interest is the integrability condition (1.5). Conve-
niently, the growth condition ‖ g

f1
‖∞ <∞ from Proposition 3.4 warrants that (1.5) holds

true.

3.6 Lemma: Let f1 : R → R+ denote a non-negative invariant function of the Black-
Scholes pricing semi-group, e.g. f1(x) := e−

2r
σ2 x + ex. Any continuous American payoff

g : R→ R+ satisfying ‖ g
f1
‖∞ <∞ satisfies the integrability condition (1.5) as well.

Proof. Clearly, there exists some constant C > 0 such that g ≤ Cf1. We assumed
that veu,f1 = f1 holds true on R+×R. Applying Kolmogorov’s backward equation yields
Af1 = 0 whereA := (r− σ2

2 )∂x+ σ2

2 ∂xx−r denotes the generator of the pricing semi-group
on the twice differentiable functions. By virtue of Ito’s formula, we obtain

e−rtg(Xt) ≤ Ce−rtf1(Xt) ≤ Cf1(X0) + Cσ

∣∣∣∣∫ t

0
e−rsf ′1(Xs)dWs

∣∣∣∣ .
The process Vt :=

∣∣∣∫ t0 e−rsf ′1(Xs)dWs

∣∣∣ is a non-negative sub-martingale with continuous
paths. Applying Doob’s L2-inequality shows that(

Ex sup
t∈[0,T ]

Vt

)2

≤ Ex

( sup
t∈[0,T ]

Vt

)2
 ≤ 4Ex

[
V 2
T

]
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for any x ∈ R. In light of the Ito-isometry, we find that

Ex
[
V 2
T

]
=
∫ T

0
e−2rs Ex

[
(f ′1(Xs))2] ds =: β2(x) <∞.

Let us remark that the quantity Ex
[
(f ′1(Xs))2

]
can be written as a linear combination

of characteristic functions associated to Xs. Hence, the constant β(x) can be explicitly
calculated. In conclusion, we have shown that

Ex
[

sup
t∈[0,T ]

e−rtg(Xt)
]
≤ Cf1(x) + 2Cσβ(x) <∞

holds true for any x ∈ R. Hence, the American payoff g satisfies condition (1.5).

In case that the American payoff is represented by some measure, we obtain the following
simple uniqueness result.

3.7 Lemma: Write f1(y) := e−
2r
σ2 y + ey and dµ1(y) := N (x0 + r̂T, σ2T, y) f1(y)dy.

Suppose that µ2, µ3, ... ∈M(R) and let Un be defined as in Proposition 3.4. Let g : R→
R+ denote a continuous American payoff satisfying ‖ g

f1
‖∞ < ∞ which is represented

relative to (T, x0) by some measure µ∗ ∈M+(R). Assume there exists some N ∈ N∪{∞}
such that µ∗ ∈ UN . Then:

1. For any n ∈ {N, ..,∞} the measure µ∗ is the unique solution of Program Pn.

2. If the assumptions of Assertion 3 from Proposition 3.4 are satisfied, there exists a
subsequence of Pnk-optimal measures µ∗nk which converges weakly to µ∗. In partic-
ular, we have veu,µ∗(ϑ, x) = limk→∞ veu,µ∗nk

(ϑ, x) for any (ϑ, x) ∈ (0, T )× R.

Proof.

1. Lemma 3.6 warrants that the payoff g satisfies (1.5). For n ∈ {N, ..,∞} let µ∗n
denote a solution of Pn. Clearly, we have veu,µ∗(T, x0) = veu,µ∗n(T, x0) and therefore
µ∗n solves GCAP. From Lemma 3.2 we know that µ∗ is the unique solution of
Program GCAP and this implies the validity of the assertion.

2. If N < ∞, the assertion at hand is trivially satisfied as we have µ∗n = µ∗ for any
n ≥ N . In case that N = ∞, we know from Proposition 3.4 that a subsequence
µ∗nk converges weakly to some P∞-optimal measure ν∞. Owing to Assertion 1, the
measures ν∞ and µ∗ coincide. The other claim follows from the fact that for any
(ϑ, x) ∈ (0, T )× R the integral kernel occurring in (2.47) vanishes at infinity.

In our numerical experiments it was convenient to consider non-negative, absolutely
continuous discretizations in Proposition 3.4. To be more specific, we chose measures
µ1, ..., µn ∈ M+(R) which are absolutely continuous with respect to the Gaussian law
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N (x0 + r̂T, σ2T ), that is to say dµk(y) := fk(y)N (x0 + r̂T, σ2T, y) dy for some non-
negative function fk. In this case, Program Pn with Ũn from Proposition 3.4 can be
equivalently rewritten as

minimize V (T, x0)>a
subject to a ∈ Rn

+,

V (ϑ, x)>a ≥ g(x) for any (ϑ, x) ∈ [0, T ]× R
(Pc

n)

where V (ϑ, x) := (veu,f1(ϑ, x), ..., veu,fn(ϑ, x)) ∈ Rn and veu,fk is defined as in (2.45). The
Lagrange dual problem associated to Pc

n is given by

maximize 〈g, λ〉
subject to λ ∈M+([0, T ]× R),

〈V, λ〉 ≤ V (T, x0).
(Dc

n)

Here we denote by 〈 ·, λ〉 :=
∫
[0,T ]×R · dλ the Rn-valued integral with respect to the

measure λ. Imposing some additional regularity assumptions warrants that the dual
optimal value is always attained and that we have strong duality.

3.8 Lemma: Define f1(x) := e−
2r
σ2 x + ex and suppose that f2, f3, ... : R → R+ are

continuous functions such that f1, f2, ... are linearly independent, veu,fk(T + ε, x0) < ∞
for some ε > 0 and

lim
y→∞

sup
ϑ∈[0,T ]
|x|>y

veu,fk(ϑ, x)
f1(x) = 0 (3.9)

for any k ∈ {2, 3, ...}. Moreover, let g : R → R+ denote a continuous American payoff
satisfying the growth condition

lim
|x|→∞

g(x)
f1(x) = 0 (3.10)

and choose n ∈ N arbitrarily. Then:

1. The Pc
n-optimal value pn is attained by some admissible vector a∗,n and the optimal

value dn in Dc
n is attained by some admissible measure λ∗n.

The associated Pn-optimal measure µ∗n = ∑n
k=1 a

∗,n
k µk satisfies ‖µ∗n‖ ≤ erTf1(x0)‖ g

f1
‖∞

and we have ‖λ∗n‖ ≤ f(x0).

2. We have
g(x0) ≤ dn = pn ≤ f1(x0) sup

x∈R

g(x)
f1(x)

and the complementary slackness equations

V (ϑ, x)>a∗,n = g(x) λ∗n-a.e. on [0, T ]× R, (3.11)
〈V, λ∗n〉k = V (T, x0)k if a∗,nk > 0

hold true.
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3. A subsequence of dual optimizers (λ∗nk)k∈N converges vaguely to some measure λ∗∞
which is Dc

n-admissible for any n ∈ N. Moreover, we have

lim
n→∞

pn = lim
n→∞

dn = 〈g, λ∗∞〉.

4. The Dc
n-optimizer λ∗n is discrete and concentrated on not more than n + 1 points

of the set [0, T ]× R.

Proof. We write Λ := [0, T ]×R. Instead of Pc
n, we can consider the equivalent program

minimize V (T, x0)>a
subject to a ∈ Rn

+,

Ṽ >a ≥ g̃ on Λ
(Pc

n
′)

and its Lagrange dual
maximize 〈g̃, λ〉
subject to λ ∈M+(Λ),

〈Ṽ , λ〉 ≤ V (T, x0)
(Dc

n
′)

where Ṽ := V
f1

and g̃ := g
f1
. Due to the growth condition (3.10), we find that g̃ lives

in C0(Λ) and therefore λ 7→ 〈g̃, λ〉 constitutes a vaguely continuous linear functional on
the spaceM(Λ).

1. Clearly, the mapping Rn 3 a 7→ ∑n
k=1 akµk constitutes an isomorphism between

Rn and the span of {µ1, ..., µn}. By virtue of Proposition 3.4, we obtain that the
optimal value pn in Pc

n
′ is attained by some admissible vector a∗,n ∈ Rn

+ satisfying
‖∑n

k=1 a
∗,n
k µk‖ = erTpn ≤ erTf1(x0)‖g̃‖∞.

Next, we show that the optimal value in Program Dc
n
′ is attained. Clearly, the

point mass f1(x0)δ(T,x0) is contained in the Dc
n
′-admissible set ZDc

n
′ and we have

dn ≥ 〈g̃, f1(x0)δ(T,x0)〉 = g(x0). Due to the fact that f1 is an invariant function of
the Black-Scholes pricing semi-group, we have Ṽ 1 = 1 which implies that

ZDc
n
′ =

n⋂
k=2

Hk ∩ BM(Λ)(f1(x0)) ∩ M+(Λ) (3.12)

where Hk := {λ ∈ M(Λ) | 〈Ṽk, λ〉 ≤ veu,fk(T, x0)} and BM(Λ)(f1(x0)) denotes the
closed total variation ball of radius f1(x0). From Theorem 5.18 we know that the
latter set is compact with respect to the vague topology on M(Λ). Moreover,
the growth condition (3.9) warrants that Ṽ 2, ..., Ṽ n ∈ C0(Λ) and consequently the
half-spaces H2, ..., Hn are vaguely closed. The same holds true for the coneM+(Λ)
and therefore we can finally conclude that ZDc

n
′ is a vaguely compact subset of

the space M(Λ). As argued above, the target functional λ 7→ 〈g̃, λ〉 is vaguely
continuous and this implies that the Dc

n
′-optimal value dn ≥ g(x0) is attained by

some admissible measure λ∗n satisfying ‖λ∗n‖ ≤ f1(x0).
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2. The strong duality pn = dn will be established in a similar fashion as in the proof of
Theorem 2.63. Most of the arguments below strongly resemble their counterparts
from Subsection 2.3.3. Thus, we dare to skip a few simple calculations in order to
shorten the exposition below. For the optimization task at hand, we consider the
Lagrange function

K : Rn ×M(Λ)× Rn → [−∞,∞]

which is defined by

K(a, λ, ξ) := V (T, x0)>a+ 〈g̃, λ〉 − 〈Ṽ , λ〉>a− ξ>a− IM+(Λ)×Rn+(λ, ξ). (3.13)

Individually analyzing the summands in the latter equation yields that the map-
ping K is linear in the variable a and concave in the variable (λ, ξ). It is easy to see
that for any fixed (λ, ξ) ∈ M(Λ) × Rn the linear mapping K(λ,ξ)(a) := K(a, λ, ξ)
is closed, c.f. Section 5.4. Analogously to Lemma 2.74, the dual value function
v : Rn → [−∞,∞] is defined by

v(b) := inf
(λ,ξ)∈M(Λ)×Rn

K∗(λ,ξ)(b) = inf
(λ,ξ)∈M(Λ)×Rn

sup
a∈Rn

{
a>b−K(a, λ, ξ)

}
.

Calculations similar to (2.72) and (2.73) show that −pn = v∗∗(0) ≤ v(0) = −dn
holds true. By virtue of Theorem 5.29, we have v∗∗ = cl(co(v)). In order to
establish the desired equality v∗∗(0) = v(0), we follow the line of argumentation
from the proof of Theorem 2.63. From there we know that it is sufficient to verify
that v is a convex mapping which is lower semi-continuous at the origin.
The convexity of v follows from nearly the same calculation as in (2.76). The
continuity at 0 will be established by means of Lemma 2.77. To this end we need
to show that the mapping v never assumes the value −∞ and that v is bounded
from above on some open set containing the origin. Assume that there exists some
b̃ ∈ Rn such that v(b̃) = −∞. Clearly, for any a ∈ Rn we have

v(b̃) ≥ a>b̃− sup
(λ,ξ)∈M(Λ)×Rn

K(a, λ, ξ)

and therefore sup(λ,ξ)∈M(Λ)×Rn K(a, λ, ξ) =∞. Minimizing over all a ∈ Rn yields

pn = −v∗∗(0) = inf
a∈Rn

sup
(λ,ξ)∈M(Λ)×Rn

K(a, λ, ξ) =∞

which clearly contradicts the first assertion of the lemma at hand. We conclude
that v indeed only assumes values in (−∞,∞]. Moreover, for any b ∈ Rn such
that ‖b‖∞ < 1

2 mink∈{1,...,n} V (T, x0) =: γ we have

v(b) ≤ sup
a∈Rn

{
a>b−K(a, 0, 0)

}
= sup

a∈Rn
(b− V (T, x0))> a = 0.

75



3 Computational methods and numerical results

To put differently, we have supb∈B∞(γ) v(b) ≤ 0 and therefore Lemma 2.77 is
applicable. The latter warrants that the mapping v is indeed continuous at 0
with respect to any norm topology on Rn. Finally, we obtain −pn = v∗∗(0) =
cl(co(v))(0) = lsc(v)(0) = v(0) = −dn. The complementary slackness equations
can now be derived by the standard argument

0 ≤ 〈Ṽ >a∗,n − g̃, λ∗n〉 = 〈Ṽ , λ∗n〉>a∗,n − V (T, x0)>a∗,n ≤ 0.

3. From Assertion 1 we know that any dual optimizer satisfies ‖λ∗n‖ ≤ f1(x0). In
regard of Theorem 5.18 and the metrizability of the vague topology on the to-
tal variation ball BM(f1(x0)), we can extract a subsequence λ∗nk which converges
vaguely to some measure λ∗∞ ∈ BM(f1(x0)) ∩ M+(Λ). The function g̃ lives in
C0(Λ) and consequently we obtain limk→∞ dnk = 〈g̃, λ∗∞〉. From above we know
that the sequence of optimal values pn = dn is decreasing and bounded from be-
low. This shows that limn→∞ pn = limn→∞ dn = 〈g̃, λ∗∞〉 holds true, as claimed.
Assumption (3.9) warrants that Ṽl ∈ C0(Λ) for any l ∈ {2, 3, ...} and therefore

〈Ṽl, λ∗∞〉 = lim
k→∞
〈Ṽl, λ∗nk〉 ≤ V (T, x0).

Clearly, we have 〈Ṽ1, λ
∗
∞〉 = ‖λ∗∞‖ ≤ f1(x0) = V (T, x0)1 which finally implies that

λ∗∞ is indeed Dc
n
′-admissible.

4. This assertion may be obtained as a consequence of some profound results from op-
timization theory. Nevertheless, a short argument is provided for didactic purposes.
The reader is kindly asked to pardon this mathematical detour.
We will show that it is always possible to choose a dual optimizer which is sup-
ported on n + 1 points of the set Λ. Due to the growth conditions (3.9,3.10) and
the invariance of the payoff f1 with respect to the pricing semi-group, the mapping
φ := (g̃, Ṽ ) : Λ → Rn+1 extends continuously to the Alexandorff compactification
Λ∞ of the set Λ, cf. [AL, Theorem 2.72]. Consequently, there exist compact sets
D ⊂ R, E ⊂ Rn−1 such that

φ(Λ∞) = D × {1} × E.

Obviously, the vector 1
‖λ∗n‖
〈φ, λ∗n〉 is contained in the closure of the convex hull

of the set φ(Λ∞). Basic calculus yields that co(φ(Λ∞)) is a compact subset of
Rn+1. By virtue of Caratheodory’s theorem, cf. [RO2, Theorem 17.1], there exist
(ϑi, xi)i=1,...,n+1 ⊂ Λ and α ∈ Rn+1

+ such that

〈φ, λ∗n〉 = ‖λ∗n‖
n+1∑
i=1

αiφ(ϑi, xi) = 〈φ, ν〉 (3.14)

where ν := ‖λ∗n‖
∑n+1
i=1 αiδ(ϑi,xi). Clearly, the latter equation implicitly warrants

that ∑n+1
i=1 αi = 1. Please, give a brief thought to the fact that we indeed only
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require at most n+ 1 summands in the convex combination from (3.14) and that
(ϑi, xi)i=1,...,n+1 can be chosen from the set Λ, i.e. the measure ν assigns no mass
to ∞. Equation (3.14) can be equivalently restated as

〈g̃, ν〉 = 〈g̃, λ∗n〉
〈Ṽ , ν〉 = 〈Ṽ , λ∗n〉

and therefore the measure ν is Dc
n
′-optimal.

From Proposition 3.4 it is apparent that the existence of a Pc
n-optimal vector a∗,n does not

depend on Assumption (3.9). The latter was crucial in order to establish the existence
of a dual optimizer. Combining Proposition 3.4 and Lemma 3.8 we obtain the following
consistency result. Again, we write 〈 ·, λ〉 :=

∫
[0,T ]×R · dλ for any λ ∈M+([0, T ]× R).

3.15 Lemma: Let f1(x) := e−
2r
σ2 x+ex and suppose that f2, f3, ... : R→ R+ are continu-

ous functions such that f1, f2, ... are linearly independent. Assume that veu,fk(T+ε, x0) <
∞ for some ε > 0 and that f2, f3, ... satisfy the growth condition (3.9). Further-
more, let g : R → R+ denote a continuous American payoff which satisfies (3.10).
Clearly, for any n ∈ N the linear program Pc

n is equivalent to Pn with dµk(y) :=
N (x0 + r̂T, σ2T, y) fk(y)dy and Ũn := {∑n

k=1 akµk | a ∈ Rn
+}. Suppose that there exist a

sequence ξn ∈ Ũn which suffices the assumptions from the third assertion of Proposition
3.4. Then:

1. For any n ∈ N the optimal value pn in Program Pn is attained by some measure
µ∗n = ∑n

k=1 a
∗,nµk and the optimal value dn in Dc

n is attained by some admissible
measure λ∗n. We have strong duality pn = dn and the complementary slackness
equations (3.11) hold true.

2. There exists a subsequence nk such that µ∗nk converges weakly to some P∞-optimal
measure ν∞ and λ∗nk converges vaguely to some measure λ∗∞ which is Dc

n-admissible
for any n ∈ N.

3. The optimal values satisfy

p∞ = lim
n→∞

pn = lim
n→∞

dn = 〈g, λ∗∞〉

and the limiting complementary slackness property

veu,ν∞ = g λ∗∞-a.e. on (0, T )× R (3.16)

holds true.
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Proof.

1. This follows directly from the first and second assertion of Lemma 3.8.

2. The third assertion of Proposition 3.4 warrants that there exists some subsequence
µ∗nl which converges weakly to some P∞-optimal measure ν∞ with optimal value
p∞ = limn→∞ pn. By further thinning out the sequence nl, we can obtain a sub-
sequence nk such that the dual optimizers λ∗nk converge vaguely to some measure
λ∗∞ which is Dc

n-admissible for any n ∈ N. The argument is literally the same as in
the proof of Lemma 3.8, Assertion 3. Furthermore, we have limn→∞ dn = 〈g, λ∗∞〉.

3. From above we already know that p∞ = limn→∞ pn = limn→∞ dn = 〈g, λ∗∞〉. Let
us verify Equation (3.16). The admissibility of the measures µ∗nk and ν∞ in the
respective primal programs warrant that the quantities veu,µ∗nk

− g and veu,ν∞ − g
are non-negative on the set (0, T )× R. The subsequence µ∗nk converges weakly to
ν∞ and therefore we can apply Fatou’s lemma in order to obtain

0 ≤
∫

(0,T )×R
veu,ν∞ − g dλ∗∞ ≤ lim inf

k→∞

∫
(0,T )×R

veu,µ∗nk
− g dλ∗∞.

Due to the fact that the measure λ∗∞ is Dc
n-admissible for any n ∈ N, we find that∫

(0,T )×R
veu,µ∗nk

− g dλ∗∞ ≤
∫

[0,T ]×R
veu,µ∗nk

− g dλ∗∞

=
nk∑
l=1

a∗,nkl 〈veu,fl , λ
∗
∞〉 − 〈g, λ∗∞〉

≤
nk∑
l=1

a∗,nkl veu,fl(T, x0)− 〈g, λ∗∞〉

holds true. Clearly, the vector a∗,nk is optimal in Program Pc
n which yields that∑nk

l=1 a
∗,nk
l veu,fl(T, x0) = pnk . Finally, we obtain∫

(0,T )×R
veu,ν∞ − g dλ∗∞ = lim inf

k→∞
pnk − 〈g, λ∗∞〉 = 0

which shows that (3.16) is indeed valid.

For any vector a ∈ Rn
+ which is admissible in Pc

n define f [a] := ∑n
k=1 akfk. The latter

payoff is superreplicating in the sense of Definition 2.1 and in virtue of Proposition 2.3,
we have

vam,g(ϑ, x) ≤
n∑
k=1

ak veu,fk(ϑ, x) = veu,f [a](ϑ, x) (3.17)

for any (ϑ, x) ∈ [0, T ]×R. In other words, the value function associated to the European
payoff f [a] always provides us with a global bound for the American value function
associated to g. In our numerical experiments we applied the cutting plane procedure
described in [LW] and [IW] in order to approximate an optimizer of program Pc

n. Let us
outline a basic version of the algorithm:
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3.18 Algorithm:

Step 1: Choose some finite set Γ1 ⊂ [0, T ] × R of initial constraints, fix some
maximal number of iterations mmax ∈ N and put m := 1.

Step 2: Calculate the solution a(m) ∈ Rn
+ of the following finite dimensional linear

program:

minimize V (T, x0)>a (PΓm)
subject to a ∈ Rn

+,

V (ϑ, x)>a ≥ g(x) for any (ϑ, x) ∈ Γm

Step 3: Calculate the point (ϑ(m), x(m)) ∈ [0, T ] × R where the superreplication
constraint is most severely violated, i.e.

(ϑ(m), x(m)) := argmin
(ϑ,x)∈[0,T ]×R

{
V (ϑ, x)>a(m) − g(x)

}
.

Step 4: Put Γm+1 := Γm ∪ {(ϑ(m), x(m))}.
Step 5: If the maximum number of iterations is reached, i.e. m = mmax, or some

other prespecified break criterion is satisfied, output

ã := a(m)

as approximate solution of Pc
n and terminate the algorithm. Otherwise,

increase the iteration counter m := m+ 1 and return to the second step.

Here we use the notation V (ϑ, x) := (veu,f1(ϑ, x), ..., veu,fn(ϑ, x)) ∈ Rn from above. Given
the weight vector ã, we obtain the approximate CDEO f̃ := f [ã] = ∑n

k=1 a
(m)
k fk. From

[LW, Theorem 5.1] we know that a subsequence of the PΓm-optimal elements a(m) con-
verges to a solution of program Pc

n as m→∞. Irrespective of representability issues, the
practitioner might therefore consider veu,f̃ = veu,f [a(m)] as a global upper bound for the
American value function vam,g within the limits of numerical accuracy if m is sufficiently
large, see also Section 3.3 on this behalf.
In our numerical experiments it turned out to be convenient to generate the set Γ1
from Step 1 of Algorithm 3.18 randomly by drawing independent samples from some
probability law on [0, T ] × R. Moreover, in [IW, Algorithm 2.2] a slight modification
of the cutting plane procedure is suggested in order to enhance the performance of the
algorithm. The key idea is to drop in each iteration the inactive constraints from the set
Γm which possibly reduces the overall computation time as the dimension of the linear
program PΓm+1 might decrease. We observed that sometimes it is even more efficient to
allow for a short burn-in period before dropping the inactive constraints. In other words,
Algorithm 3.18 may be modified as follows: Let mburn-in ∈ N0 denote some prespecified
number of burn-in iterations. Replace Step 4 of Algorithm 3.18 by
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Step 4’: Let λm ∈ RΓm
+ denote a solution of the Lagrange dual associated to the

linear program PΓm , i.e. λm is an extremal element of the maximization
problem

maximize
∑

(ϑ,x)∈Γm
g(x)λ(ϑ, x) (DΓm)

subject to λ ∈ RΓm
+ ,∑

(ϑ,x)∈Γm
V (ϑ, x)λ(ϑ, x) ≤ V (T, x0).

If the number of burn-in iterations is exceeded, i.e. m > mburn-in, put

Γm+1 := {(ϑ, x) ∈ Γm | λm(ϑ, x) > 0} ∪ {(ϑ(m), x(m))}.

Otherwise, put Γm+1 := Γm ∪ {(ϑ(m), x(m))}.

As discussed above, numerically solving the general capacity problem GCAP involves
two crucial steps: First, a suitable discretization of GCAP needs to be chosen in order to
approximate the latter optimization task by a sequence of semi-infinite linear programs.
If the CDEO corresponds to a weakly approximable solution of Program P∞ in the sense
of Assertion 3 from Proposition 3.4, we can select a subsequence of primal optimizers
which converges weakly to a measure-type CDEO ν∞. To put differently, increasing the
number of basis elements which are taken into account by the semi-infinite program,
ultimately leads to better approximations of ν∞.
Secondly, we execute the iterative cutting plane procedure, as outlined in Algorithm
3.18, in order to solve the semi-infinite approximation to GCAP within the limits of
numerical accuracy. The practical implementation of this procedure leaves plenty of
room for problem specific adjustments. For example, the performance of Algorithm
3.18 may be increased by choosing a discretization which makes use of the geometric
structure of the American payoff or reflects some prior information about the potential
CDEO. Below, we will present a detailed analysis of the American put within the scope
of the Black-Scholes market which ultimately leads to a fast and precise pricing method,
cf. Sections 3.2 and 3.3.
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3.2 A qualitative study: Representability of American
put options

In [JM2] it was conjectured that the American put is not representable by any European
claim. In this paragraph we want to provide some numerical results which raise the hope
that the American put g(x) = (eK − ex)+ is representable in the Black-Scholes market
(1.3) after all.

Theorem 2.51 warrants that the CDEO associated to the put exists as a measure which
is concentrated on the interval (−∞, K]. For the study contained in this section, we
consider a discretization of GCAP which does not rely on any further prior informa-
tion concerning the geometric structure of the CDEO. To be more specific, the density
functions f2, ..., fn occurring in Program Pc

n were randomly generated in the following
manner: We fix some small constant ε > 0 and put x1 = −∞ and xn := K − ε. After-
wards we randomly generate x2 < ... < xn−1 by independently drawing n − 2 numbers
from the probability distribution ν with Lebesgue density

dν
dx = ex−K+ε11(−∞,K−ε)(x). (3.19)

We define f1(x) := e−
2r
σ2 x + ex and for any k ∈ {2, ..., n} we choose fk to be the bump

function as depicted in Figure 3.1, i.e.

fk(x) :=



1
ε
(x− xk−1 + ε) if x ∈ (xk−1 − ε, xk−1),

1 if x ∈ [xk−1, xk],
1
ε
(xk + ε− x) if x ∈ (xk, xk + ε),

0 otherwise.

(3.20)

Here we follow the convention that (−∞,−∞) := ∅. Lemma 3.8 warrants that the
optimal values in Pc

n and Dc
n are attained and that strong duality as well as the comple-

mentary slackness equations from (3.11) hold true.

Algorithm 3.18 is applied in order to generate an approximate CDEO f̃ . Our compu-
tations are performed with Matlab R2014a on a standard home computer with an Intel
Core i3-3240 CPU. The linear program PΓm is solved using the Matlab routine linprog.
For the non-linear minimization task from Step 3 we use the solver fmincon from the
Matlab optimization toolbox. The implementation of Algorithm 3.18 is very simple and
requires only a few lines of source code.

Let us consider the market (1.3) with the parameters T = 0.5, r = 0.06, σ = 0.4 and
the put payoff g(x) = (eK − ex)+ with log-strike price K = log(100). In favor of a
clearly arranged visualization, we choose a non-logarithmic price coordinate s = ex for
the presentation of our numerical data. The reader may adequately reformulate the the-
orems of Section 2.2 for non-logarithmic stock prices. Figure 3.2 depicts the graph of the
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xkxk−1 − ε xk−1 xk + ε

fk1

Figure 3.1: The bump function fk as defined in (3.20).

European value function associated to the approximate CDEO f̃ obtained by Algorithm
3.18 using the optimization point (T, x0) = (0.5, log(100) + 0.1). The s-axis represents
the non-logarithmic stock price of the underlying and the ϑ-axis indicates the maturity
of the option. The transparent surface in Figure 3.2 corresponds to the American put
payoff.

Now we present some numerical results which show that from a qualitative point of view
the requirements of Theorem 2.52 seem to be satisfied within the limits of numerical
accuracy. Taking Figure 3.2 into account, we see that there is no explosion at the
ϑ = T border and that lim infϑ→0 veu,f̃ (ϑ, eK) = 0. To put differently, our data indicates
that the first and fourth assumption of the aforementioned theorem are satisfied. The
white curve ϑ 7→_s (ϑ) depicted in the Figure 3.3 corresponds to the unique minima of
the mappings (0, eK ] 3 s 7→ veu,f̃ (ϑ, log(s)) − g(log(s)). Qualitatively, the requirement
lim infϑ→0

_s (ϑ) = 100 = eK from Assumption 2 indeed seems to hold true. Moreover,
Figure 3.4 depicts the mapping (0, T ] 3 ϑ 7→ H(ϑ, log_s (ϑ)) where H is defined as in
(2.53). We see that H(ϑ, log_s (ϑ)) ≈ 75 = 2r

σ2 e
K > 0 for any ϑ ∈ (0, T ] and therefore

the third requirement of Theorem 2.52 seems to be satisfied as well. From an engineer’s
perspective, these findings might be considered as an indication that - notwithstanding
the studies of [JM2] - the American put is representable within the scope of the Black-
Scholes model.
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Figure 3.2: The price surface of the approximate CDEO associated to the Am. put.

Figure 3.3: The curve _s associated to the approximate CDEO of the Am. put.
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Figure 3.4: The mapping H(·, log_s (·)) associated to the approximate CDEO of the
American put.

Figure 3.5: Comparison between the CDEO minima curve_s and a FDI approximation
to the early exercise boundary associated to the American put.
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Let us remark that the numerical data obtained from our simulation indeed complies
with the theoretical implications of the put being representable. For example, for any
x ∈ clπ(C̃(T,x0)) ≈ (log(66.5),∞) we have that g(x) = infϑ∈[0,T ] veu,f̃ (ϑ, x) holds true
within the working accuracy of Algorithm 3.18. Compare this observation to Assertion
(d) of Theorem 2.52. Moreover, we generated an approximation to the early exercise
boundary using a Crank-Nicolson finite difference scheme on a very fine grid, see Figure
3.5. As anticipated by Assertion (e) of Theorem 2.52, the latter approximation matched
the curve _s obtained by the CDEO method within the working accuracy of the al-
gorithm. For further comparisons between the CDEO approach and different pricing
methods from the literature, we refer the reader to Section 3.3.

Summing up, for the American put in the Black-Scholes market all qualitative require-
ments of Theorem 2.52 are satisfied from a numerical viewpoint. Furthermore, we remark
that a detailed analysis of the European price surface obtained in our numerical exper-
iment indicates that the approximate CDEO is not contained in the class of European
payoffs which was proposed by [JM2]. In opposition to [JM2], we therefore have hope
that the American put is representable by a European claim after all. Moreover, Figure
3.2 indicates that within the scope of the Black-Scholes model the potential CDEO as-
sociated to the American put might be well approximated by a decreasing, continuous,
convex mapping which vanishes on the interval (eK ,∞). This prior information can
be used beneficially in order to increase the performance of the pricing procedure, cf.
Section 3.3 below.
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3.3 Speed and precision of CDEO price approximations
Again, we consider the Black-Scholes market (1.3) and some American payoff function
g : R→ R+. We follow the convention from above that x and s = ex denote logarithmic
and non-logarithmic stock prices, respectively.

Independent of the question whether g is representable, the method outlined in Section
3.1 can be used to compute upper bounds of the American option price. More pre-
cisely, Algorithm 3.18 can be applied in order to generate an approximate solution ã
of Program Pc

n. The associated European payoff f̃ := ∑n
k=1 ãkfk superreplicates g up

to time T within the limits of numerical accuracy. Hence, within this range of preci-
sion, the associated European value function veu,f̃ constitutes a global upper bound of
the American value function associated to g on the set [0, T ] × R, see Equation (3.17).
Moreover, in case that g is representable relative to (T, x0) by some measure µ∗, Lemma
3.2 warrants that the latter coincides with the cheapest dominating European option.
Furthermore, if the discretization under consideration is sufficiently rich to approximate
µ∗ in the sense of Assertion 2 from Lemma 3.7, the latter indicates that veu,f̃ may in-
deed constitute a reasonable approximation to vam,g on the connected component C(T,x0).

In this section we will apply the CDEO method to American put options in the Black-
Scholes setting for different model configurations. The performance and accuracy of
the pricing procedure will be assessed by comparing the latter with classic approaches
and high performance methods from the literature. All computations were performed
with Matlab R2014a on a standard home computer using one core of an Intel Core i3-
3240 processor. In particular, no parallel processing techniques were used in order to
increase the computation speed. The linear program PΓm was solved using the Matlab
routine linprog with the simplex algorithm. The non-linear minimization task from
Step 3 of Algorithm 3.18 was solved using fmincon with the sqp algorithm from the
Matlab optimization toolbox. Both solvers were configured to work with an objective
function tolerance of 10−8. Moreover, the sqp algorithm was configured to work with
a constraint and step tolerance of 10−8. Our numerical experiments demonstrate that
the price approximations of the CDEO method easily achieve accuracies in the order of
the computational precision of the subroutines fmincon and linprog (= 10−8). Con-
sequently, we require high precision reference values in order to assess the performance
of the CDEO algorithm. Aside from the price approximations of [ALO], we could not
find other sufficiently accurate numerical results in the literature. For this reason, the
classical binomial tree method and a finite difference scheme were implemented in order
to generate more benchmark values.

Based on a preceding qualitative analysis of the potential CDEO associated to the Amer-
ican put for different parameter sets, we choose in Algorithm 3.18 a discretization which
is advantageous for representing functions of the type x 7→ c(ex) where c : R+ → R+
denotes a decreasing, convex mapping with c(s) = 0 for any s > eK . On this behalf, the
reader may want to re-examine the price surface depicted in Figure 3.2 and recall the
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short remark from the end of Section 3.2. By virtue of [NP, Theorem 1.6.3], there exists
a uniquely determined measure µ concentrated on [0, eK ] such that

c(ex) =
∫

[0,eK ]
(y − ex)+dµ(y)

holds true for any x ∈ R. The latter representation formula motivates choosing fk(x) :=
(ak − ex)+ in Program Pc

n where 0 < a1 < ... < an−1 < an := eK are generated by inde-
pendently drawing n− 1 numbers from the uniform distribution on (0, eK). Thanks to
the Black-Scholes formula, any European price veu,fk(ϑ, x) appearing in Algorithm 3.18
can be easily computed. In any of the test cases below, this tailor-made discretization
which reflects the properties of the potential CDEO indeed outperforms the all-purpose
discretization consisting of bump functions from Section 3.2.

Test 1: We consider the Black-Scholes market (1.3) with the parameters r = 0.06 and
σ = 0.4 and assume that the risky asset does not pay any dividends. The CDEO method,
binomial trees and a finite difference scheme are applied in order to approximate the value
of an American put option with strike 100 at spot price s = 100 and maturity ϑ = 0.5.
Following the description from above, we randomly generate n := 1500 basis functions
of the type fk(x) := (ak − ex)+. The set Γ1 from Step 1 of Algorithm 3.18 is created by
drawing 225 independent samples from the distribution L(U[0,0.5])⊗L(logU[50,100]). Re-
call that U[a,b] denotes a random variable which is uniformly distributed on the interval
[a, b]. Moreover, we choose a to terminate the procedure after mmax := 100 iterations. In
order to keep the linear sub-problems PΓm small, we start to drop the inactive constraints
after one burn-in iteration, i.e. we choose mburn-in := 1 in Step 4’ of Algorithm 3.18.
Table 3.1 shows how the approximation to the American option price, i.e. the optimal
value of the linear sub-problem PΓm , evolves as the number of iterations m increases.
The column total time indicates the total amount of time (measured in seconds) that
has passed since the algorithm was started.

Table 3.2 contains the American option prices which were obtained from differently sized
binomial tree approximations. We refer the reader to [CRR] and [SD, Section 1.4] for a
detailed exposition of this classic approach towards American option pricing. The col-
umn time steps indicates how many time steps were used in the discrete binomial tree
approximation to the Black-Scholes model. The column Am. value contains value of
the American put in the corresponding binomial tree model which serves as approxima-
tion to the true option price. Moreover, the column diff indicates the absolute difference
between the values contained in the column Am. value and them = 100 CDEO price ap-
proximation (= 9.9451361327103609). The time (measured in seconds) that was needed
to perform the binomial tree algorithm with a specific number of time steps is indicated
in the rightmost column of the table.
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iteration m Am. value total time (s)
1 9.9408517316167142 1.91
2 9.9421725315439708 2.03
3 9.9429005244135009 2.16
4 9.9441737005523354 2.27
5 9.9446608846442341 2.41
10 9.9447909897334164 2.98
15 9.9450419755448927 3.59
20 9.9450918945713589 4.32
25 9.9451195188610768 5.03
30 9.9451326596020539 5.67
35 9.9451329908739599 6.33
40 9.9451331298143426 7.07
45 9.9451332558993855 7.73
50 9.9451345475142148 8.38
55 9.9451349276089367 9.07
60 9.9451357041082247 9.76
65 9.9451357150669732 10.45
70 9.9451358487366477 11.22
75 9.9451360155812747 12.03
80 9.9451360335244097 12.81
85 9.9451360717728186 13.50
90 9.9451361425532507 14.27
95 9.9451360704801139 14.98
100 9.9451361327103609 15.72

Table 3.1: CDEO method: Am. put, strike 100, spot s = 100, maturity ϑ = 0.5.
BS parameters: r = 0.06, σ = 0.4, no dividends.

time steps Am. value diff time (s)
5000 9.944912910948 2.23e-04 0.22
10000 9.945024842240 1.11e-04 0.87
15000 9.945062144882 7.40e-05 2.10
20000 9.945080667687 5.55e-05 3.88
25000 9.945091868237 4.43e-05 6.17
30000 9.945099297771 3.68e-05 8.97
35000 9.945104621245 3.15e-05 12.30
40000 9.945108596040 2.75e-05 16.26
45000 9.945111672723 2.45e-05 20.78
50000 9.945114148085 2.20e-05 26.45
250000 9.945131919148 4.21e-06 1282.28
500000 9.945134147094 1.99e-06 5899.42
750000 9.945134878000 1.25e-06 13782.69
1000000 9.945135254429 8.78e-07 24804.74

Table 3.2: Binomial tree method: Am. put, strike 100, spot s = 100, maturity ϑ = 0.5.
BS parameters: r = 0.06, σ = 0.4, no dividends.
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3.3 Speed and precision of CDEO price approximations

Table 3.3 contains price approximations which were obtained by applying a simple finite
difference method. The linear complementary problem (1.2) associated to the valuation
of the American put was discretized using the Crank-Nicolson scheme, cf. [SD, Subsec-
tion 4.6.1]. The resulting finite dimensional linear complementary problems were solved
by the Brennan-Schwartz algorithm in each time step, cf. [TV]. In order to reduce the
memory consumption of the finite difference approach, we only stored the price vector
associated to the current iteration. The column Am. value displays the approximate
American put price generated by the finite difference method for differently sized grids.
Here we denote by N andM = 25N the number of grid points in the spatial and tempo-
ral dimension, respectively. As above, the column diff contains the absolute difference
between the values of the column Am. value and the m = 100 CDEO price approxima-
tion. Moreover, the column time indicates how many seconds were needed in order to
execute the finite difference method on the corresponding grid.

gridsize M N Am. value diff time (s)
6.2500e+06 12500 500 9.9445174532114962 6.19e-04 0.50
2.5000e+07 25000 1000 9.9451998227344180 6.37e-05 1.42
1.0000e+08 50000 2000 9.9451474879326742 1.14e-05 4.58
2.2500e+08 75000 3000 9.9451392454009326 3.11e-06 9.61
4.0000e+08 100000 4000 9.9451368331704000 7.00e-07 16.25
6.2500e+08 125000 5000 9.9451359283724994 2.04e-07 25.76
9.0000e+08 150000 6000 9.9451355515935322 5.81e-07 35.48
1.2250e+09 175000 7000 9.9451353928201858 7.40e-07 47.33
1.6000e+09 200000 8000 9.9451353324134786 8.00e-07 60.81
2.0250e+09 25000 9000 9.9451353219062959 8.11e-07 77.26
2.5000e+09 250000 10000 9.9451353352243199 7.97e-07 94.23
3.0250e+09 275000 11000 9.9451353625823185 7.70e-07 113.66
3.6000e+09 300000 12000 9.9451353946756598 7.38e-07 134.92
6.4000e+09 400000 16000 9.9451355310030074 6.02e-07 233.98
1.2100e+10 550000 22000 9.9451356935361730 4.39e-07 451.56
1.9600e+10 700000 28000 9.9451358085134220 3.24e-07 757.28
2.8900e+10 850000 34000 9.9451358898906204 2.43e-07 1124.13
4.0000e+10 1000000 40000 9.9451359551683645 1.78e-07 1554.80
5.2900e+10 1150000 46000 9.9451359961004719 1.37e-07 2079.19
6.7600e+10 1300000 52000 9.9451360333156096 9.94e-08 2627.33
8.4100e+10 1450000 58000 9.9451360741420523 5.86e-08 3277.86
1.0240e+11 1600000 64000 9.9451360960087598 3.67e-08 3984.91
1.2250e+11 1750000 70000 9.9451361160198779 1.67e-08 4760.19

Table 3.3: FDI method: Am. put, strike 100, spot s = 100, maturity ϑ = 0.5.
BS parameters: r = 0.06, σ = 0.4, no dividends.
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3 Computational methods and numerical results

Test 2: We compare the CDEO pricing scheme to the high-precision approach put for-
ward by [ALO]. The authors of the latter article consider a Black-Scholes market where
the risky asset pays dividends at a continuous rate of q, i.e. we have an exponential
type riskless bond Bt = exp(rt) and the price of the risky asset evolves according to the
stochastic differential equation dSt = (r − q)Stdt+ σStdWt.

2.a: First, we consider the market parameters r = q = 0.05, σ = 0.25. The task is
to calculate the American premium of an American put option with strike 100 at spot
price s = 100 and maturity ϑ = 1. For this purpose, we initialize Algorithm 3.18 with
n := 1800 randomly generated basis functions of the type fk(x) := (ak − ex)+. The set
Γ1 is created by independently drawing 400 samples from the distribution L(U[0,1]) ⊗
L(logU[50,100]). Again, we decide to drop the inactive constraints after one burn-in
iteration in order to reduce the size of the linear sub-problems PΓm . Table 3.4 shows
how the CDEO approximation to the American option value and the American premium
evolves as the number of iterations m increases. The column total time indicates the
total amount of seconds that has passed since the algorithm was started. We compare
the CDEO approximation to the American premium against the (l,m, n) = (65, 8, 32)
value from [ALO, Table 2] which is claimed to be accurate to about 12 digits. The
absolute difference between the values contained in the column Am. premium and the
aforementioned reference premium is displayed in the column diff. After 75 iterations
the order of this discrepancy matches the preset computational accuracy of the solvers
linprog and fmincon.

iteration m Am. value Am. premium diff total time (s)
1 9.558525193173 0.096032597006 1.09e-02 1.10
5 9.564762795109 0.102270198941 4.68e-03 1.81
10 9.564781106704 0.102288510537 4.66e-03 2.89
15 9.566509074981 0.104016478814 2.94e-03 3.82
20 9.569151771488 0.106659175320 2.94e-04 4.63
25 9.569404749893 0.106912153726 4.05e-05 5.54
30 9.569424462819 0.106931866652 2.08e-05 6.50
35 9.569431698379 0.106939102212 1.36e-05 7.61
40 9.569439598899 0.106947002732 5.70e-06 8.92
45 9.569441847972 0.106949251805 3.45e-06 10.12
50 9.569442418479 0.106949822311 2.88e-06 11.27
55 9.569443486061 0.106950889894 1.81e-06 12.74
60 9.569444311557 0.106951715390 9.87e-07 13.95
65 9.569445012038 0.106952415871 2.87e-07 15.35
70 9.569445182508 0.106952586340 1.16e-07 16.67
75 9.569445225551 0.106952629384 7.34e-08 17.99
80 9.569445256661 0.106952660494 4.23e-08 19.49

Table 3.4: CDEO method compared with [ALO, Table 2]: Am. put, strike 100, spot
s = 100, maturity ϑ = 1. BS parameters: r = q = 0.05, σ = 0.25.
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2.b: Next, we consider the Black-Scholes market with r = q = 0.04 and σ = 0.2.
In [ALO, Subsection 6.1.2] different high precision algorithms from the literature are
applied in order to calculate the value of an American put option with strike 100 and
maturity ϑ = 3 at the spot prices s ∈ {80, 100, 120}. We compute price approximations
with the CDEO method and compare these to the most accurate approximation from
[ALO, Table 3], i.e. the values contained in the column True price. To this end, we
initialize Algorithm 3.18 with n := 1200 randomly generated basis functions of the type
fk(x) := (ak−ex)+. The set Γ1 is generated by independently drawing 400 samples from
the distribution L(U[0,3])⊗ L(logU[50,100]). For the calculation of the CDEO we use the
optimization point (T, x0) = (3, log(100)). The approximations to the American option
value at the other two spot prices are obtained by simply evaluating the European value
function associated to the CDEO. The columns s = 80, s = 100 and s = 120 contain
the approximate option values generated by the CDEO method at the respective spot
prices. The columns diff80, diff100 and diff120 display the absolute difference between
the CDEO approximation and the corresponding value from the column True price of
[ALO, Table 3] for the different spot prices. Due to the fact that the values in [ALO,
Table 3] are indicated with only five digits after the decimal point, we cannot compare
the quality of the competing approximation methods beyond this precision. As above,
the column total time indicates the total amount of seconds that has passed since the
algorithm was started.

iteration s = 80 diff80 s = 100 diff100 s = 120 diff120 total time (s)
1 23.22730 0.00104 12.59989 0.00532 6.47783 0.00459 0.94
2 23.22644 0.00190 12.59994 0.00527 6.47778 0.00465 1.04
3 23.22809 0.00025 12.60152 0.00369 6.47981 0.00262 1.20
4 23.22883 0.00049 12.60348 0.00173 6.48139 0.00103 1.34
5 23.25013 0.02179 12.60425 0.00096 6.48195 0.00047 1.47
6 23.22657 0.00177 12.60468 0.00053 6.48210 0.00033 1.58
7 23.22777 0.00057 12.60492 0.00029 6.48217 0.00025 1.71
8 23.22795 0.00039 12.60492 0.00029 6.48217 0.00026 1.88
9 23.22792 0.00042 12.60493 0.00028 6.48218 0.00025 2.03
10 23.22822 0.00012 12.60493 0.00028 6.48217 0.00025 2.13
15 23.22830 0.00004 12.60514 0.00007 6.48236 0.00006 2.94
20 23.22827 0.00007 12.60516 0.00005 6.48239 0.00004 3.71
25 23.22833 0.00001 12.60518 0.00003 6.48240 0.00003 4.57
30 23.22834 0.00000 12.60521 0.00000 6.48242 0.00001 5.41
35 23.22834 0.00000 12.60521 0.00000 6.48242 0.00000 6.25

Table 3.5: CDEO method compared with [ALO, Table 3]: Am. put, strike 100, spot
s ∈ {80, 100, 120}, maturity ϑ = 3. BS parameters: r = q = 0.04, σ = 0.2.

In light of the numerical results from above, it is fair to say that the CDEO approach
can compete with binomial tree and finite difference methods in view of accuracy and
computational effort. Moreover, within the working accuracy of the optimization sub-
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routines inherent in Algorithm 3.18, our price approximations are comparable to the
high precision values from [ALO]. Similar to the binomial tree procedure, the Matlab
implementation of Algorithm 3.18 is straightforward and requires only a few lines of
source code. Conceptually and also from an implementation point of view, the algo-
rithm put forward by [ALO] is more complicated than the CDEO approach. The same
holds true for finite difference methods. Implementing an efficient and robust FDI-based
pricing algorithm requires more prudence and ingenuity. For example, the choice of the
discretization scheme, the construction of the grid and the boundary conditions at its
borders can strongly influence the quality of the approximation - in particular if the
derivative of the American payoff exhibits discontinuities. Moreover, in the case of the
American put we were able to solve the finite dimensional linear complementary prob-
lems using the extremely fast Brennan Schwartz-Algorithm. The applicability of this
direct method heavily depends on the structure of the American payoff, cf. [JLL]. In
general, more complex and resource consuming algorithms are necessary in order to solve
the LCPs arising as we iterate through the time layers, cf. [SD, Subsection 4.6.2].

As discussed above, the CDEO method generates a European payoff f̃ which allows us
to easily calculate upper bounds for the American option value at any spot price and any
maturity within the time horizon. Algorithm 3.18 compactly stores the CDEO payoff in a
vector of some prespecified size, e.g. 1500 double values (= 12 kB) in Test 1. Our findings
from Section 3.2 may be considered as indication that the American put is represented
by its CDEO. Moreover, we observe that the European value function associated to
f̃ indeed provides good approximations to the value of the American put within the
associated continuation set. In addition, an estimate of the early exercise curve can
be conveniently obtained from the mapping veu,f̃ , cf. Theorem 2.52 and Section 3.4
below. In this sense Algorithm 3.18 can be considered as a global approximation method,
whereas the classical binomial tree method and the approach from [ALO] generate single
option prices. Clearly, finite difference schemes can be used to compute American option
prices at any point of some grid in the price-time plane. Other option values may then
be obtained by interpolation. Nevertheless, storing large grids is memory consuming.
For example, a medium sized grid containing 10000 × 10000 = 108 double precision
gridpoints already requires 800 MB of memory. In order to enhance the accuracy of
the price approximations, it is necessary to increase the resolution of the grid. In the
setting of Test 1 we required to use a grid of the size 5.29× 1010 in order that the finite
difference method produces an option value that coincides to 7 significant digits with the
CDEO approximation, see Table 3.3. Storing the complete grid containing 5.29 × 1010

double precision values requires 423.2 GB of memory.
In the setting of Test 2.a the finite difference method does not perform better. Table 1
from [ALO] indicates that a grid of the size 250000× 250000 = 6.25× 1010 is necessary
such that the finite difference approximation to the American premium coincides up to
7 significant digits with the CDEO (m = 80) value from Table 3.4. Storing a complete
double precision grid of this size requires about 500 GB, whereas storing the correspond-
ing approximate CDEO requires 14.4 kB of memory. The authors of [ALO] state that
the numerical results from [ALO, Table 1] were obtained using “a production-quality
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Crank-Nicolson finite difference method”. Consequently, it might be worthwhile to con-
sider the CDEO approach as a useful supplement to the algorithm toolbox for American
option pricing.

3.4 Lower bounds and estimation of the early exercise
curve

Consider the univariate Black-Scholes market (1.3) and assume until the end of this sec-
tion that the Brownian motionW is supported on a right-continuous, complete filtration.
Furthermore, suppose that g : R → R+ is a continuous American payoff satisfying the
growth condition (3.10). We reuse the notation (1.4, 1.6) from Section 1.2 for European
and American value functions. In Section 3.1 we discussed how approximations to a
cheapest dominating European payoff can be obtained by solving a semi-infinite linear
program of the type Pc

n numerically. Proposition 2.3 warrants that the European value
function associated to any solution of Pc

n always constitutes a global upper bound of the
mapping vam,g.

In case that g is representable on C(T,x0) by some measure µ∗, the latter coincides with
the generalized CDEO of g with respect to T, x0, cf. Lemma 3.2. Moreover, Lemma
3.7 indicates that solving the optimization task Pc

n may indeed yield a reasonable ap-
proximation to µ∗ if the discretization was chosen adequately and the number of basis
elements n is sufficiently large. In particular, the corresponding European value func-
tion should provide tight upper bounds for the American value function vam,g on the
set C(T,x0). Above, we applied the CDEO procedure to the American put in the Black-
Scholes market for illustrative and benchmarking purposes. We observed that the price
surface associated to approximate CDEO exhibits all the qualitative features which are
required by Theorem 2.52 in order to warrant representability, cf. Section 3.2. Affirma-
tively, within the working accuracy of the algorithm, the option prices stemming from
the CDEO method complied with high-precision approximations from the literature, cf.
Table 3.4.

This subsection aims at presenting a duality method which provides us with lower bounds
for the American value function - no matter whether or not the American payoff is rep-
resentable. The central idea of the approach is to construct approximations to the
relevant sections of the early exercise boundary which take the position information en-
coded within the DΓm-optimal elements from Algorithm 3.18 into account. Irrespective
of representability issues, the practitioner may combine the CDEO procedure with the
algorithm from this section in order to compute upper and lower bounds for American
option prices in a handy manner. Clearly, the discussion below can be generalized in
many ways. From our point of view, this would require a more cumbersome notation
which might obscure the basic mathematical principles. We invite the interested reader
to refine the discussion below according to her requirements.
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The method is based on the following simple observation: Suppose that f is a European
payoff that superreplicates g up to some terminal time T ∈ R++. For any Borel set
M ∈ B([0, T ]× R) and any ϑ ∈ R+ we define the first entry time

τMϑ := inf{t ∈ R+ | (ϑ− t,Xt) ∈M} ∧ ϑ.

Owing to the fact that the filtration of the Brownian motion is assumed to be right-
continuous and complete, the Début theorem warrants that τMϑ is a stopping time, cf.
[KB, Theorem 7.7]. In line with (2.17), we denote by

HM(ϑ, x) := Px
(
(ϑ− τMϑ , XτM

ϑ
) ∈M

)
(3.21)

the probability that the space-time process started at time T − ϑ and log-price x hits
the set M . In case that HM(ϑ, x) = 1 holds true, we obtain

vam,g(ϑ, x) ≥ Ex
[
e−rτ

M
ϑ g(XτM

ϑ
)
]

≥ Ex
[
e−rτ

M
ϑ veu,f (ϑ− τMϑ , XτM

ϑ
)
]
− sup

(ϑ′,x′)∈M

{
veu,f (ϑ′, x′)− g(x′)

}
= veu,f (ϑ, x)− sup

(ϑ′,x′)∈M

{
veu,f (ϑ′, x′)− g(x′)

}
.

(3.22)

The last equality follows by applying the optional sampling theorem to the discounted
European value process. Let us remark that the conditions imposed on the payoff g can
be relaxed without affecting the validity of the latter arguments. More specifically, it
suffices to assume that g is an upper semi-continuous function satisfying the integrability
condition (1.5). Maximizing the right-hand side of inequality (3.22) over all Borel sets
M ∈ B([0, T ]× R) satisfying HM(ϑ, x) = 1, directly yields the following proposition.

3.23 Proposition: Let g : R→ R+ denote an upper semi-continuous American payoff
meeting the integrability condition (1.5). Furthermore, suppose that f : R → R+ is a
European claim which superreplicates g up to time T ∈ R++. For any (ϑ, x) ∈ [0, T ]×R
we have

0 ≤ veu,f (ϑ, x)− vam,g(ϑ, x) ≤ inf
M∈B([0,T ]×R)
HM (ϑ,x)=1

sup
(ϑ′,x′)∈M

{
veu,f (ϑ′, x′)− g(x′)

}
. (3.24)

The reader easily verifies that in case of representability the latter result blends in with
our findings from Subsection 2.1.1. In particular, suppose that the set M is defined as
in Equation (2.13). For any (ϑ, x) ∈ [0, T ]×R with HM(ϑ, x) = 1, we obtain from (3.24)
that

0 ≤ veu,f (ϑ, x)− vam,g(ϑ, x) ≤ sup
(ϑ′,x′)∈M

{
veu,f (ϑ′, x′)− g(x′)

}
= 0

holds true. This statement corresponds to the first assertion of Proposition 2.16. More-
over, the reader may gain more insight on the interplay between (3.24) and the notion of
local representability by applying Proposition 3.23 within the setting of Example 2.25.
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More importantly, no matter whether or not the American payoff g is representable,
Equation (3.24) provides the practitioner with a tool to obtain upper and lower bounds
for the associated value function vam,g. The concrete implementation of (3.24) involves
three central subtasks:

1. Computing a superreplicating European option f .

2. Generating some set M which satisfies HM(ϑ, x) = 1 for any maturity/log-price
pair (ϑ, x) of interest.

3. Determine sup(ϑ′,x′)∈M{veu,f (ϑ′, x′)− g(x′)} numerically.

As we desire our procedure to be compatible with the concept of representability, the
canonic choice for the superreplicating payoff from Subtask 1 is the cheapest dominat-
ing European option with respect to some suitably chosen optimization point. Under
certain regularity conditions, see Proposition 3.4 and Lemma 3.15, the latter can be
approximated by numerically solving a semi-infinite linear program as outlined above.
Let us elaborate on some details of a possible approach: Suppose that we desire to
approximate the American option price at some point (T, x0) ∈ R++×R which is located
within in the continuation region associated to g. Choose a set f1, f2, ... of European
payoff functions satisfying the requirements from Lemma 3.15. The latter warrants that
the optimal value in Program Pc

n is attained by some vector a∗,n ∈ Rn
+ and that there is

no duality gap. Moreover, the dual optimal value is attained by some discrete measure
λ∗n concentrated on (ϑni , xni )i=1,...,n+1 ⊂ [0, T ] × R. In order to shorten the notation, we
write

f ∗,n := ∑n
k=1a

∗,n
k fk

and
Ψn := veu,f∗,n − g.

Clearly, the European payoff f ∗,n superreplicates g up to time T which yields that
veu,f∗,n ≥ vam,g ≥ g and therefore Ψn ≥ 0 holds true on [0, T ] × R, cf. Proposition 2.3.
In light of Equation (3.24), we desire to construct a Borel set M ∈ B([0, T ] × R) such
that the discrepancy

∆n(M) := sup
(ϑ′,x′)∈M

Ψn(ϑ′, x′)

is small and such that HM(T, x0) = 1. Given any M ∈ B([0, T ]× R), we denote by

dn(M) := sup
(ϑ′,x′)∈M

inf
(ϑ,x)∈[0,T ]×R

Ψn(ϑ,x)=0

‖(ϑ, x)− (ϑ′, x′)‖2 (3.25)

the asymmetric Hausdorff distance from M to the zero set of Ψn. The mass of the
dual optimizer provides us with some information concerning the zeros of the mapping
Ψn. Indeed, owing to the first complementary slackness condition from (3.11), we have
Ψn(ϑni , xni ) = 0 for any i ∈ {1, .., n + 1} such that λ∗n(ϑni , xni ) > 0. In particular, we can
conclude that the set {Ψn = 0} is not empty and therefore dn(M) is finite. Now, assume
that Ψn admits a modulus of continuity ωn on [0, T ] × R or at least on some suitably
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chosen subset S containingM . In other words, there exists a continuous, non-decreasing
function ωn : R+ → R+ such that ωn(0) = 0 and

|Ψn(ϑ′, x′)−Ψn(ϑ, x)| ≤ ωn(‖(ϑ′, x′)− (ϑ, x)‖2)

holds true for all (ϑ′, x′), (ϑ, x) ∈ S. From (3.25) it is apparent that for any ε > 0 and
any (ϑ′, x′) ∈M there exists some (ϑϑ′ , xx′) ∈ [0, T ]×R satisfying Ψn(ϑϑ′ , xx′) = 0 such
that ‖(ϑ′, x′)− (ϑϑ′ , xx′)‖2 ≤ dn(M) + ε. Due to the fact that ωn is non-decreasing, we
obtain

∆n(M) = sup
(ϑ′,x′)∈M

|Ψn(ϑ′, x′)−Ψn(ϑϑ′ , xx′)| ≤ ωn(dn(M) + ε).

Taking the limit ε ↘ 0 yields ∆n(M) ≤ ωn(dn(M)). In light of (3.24), we can finally
conclude that

sup
(ϑ,x)∈[0,T ]×R
HM (ϑ,x)=1

|veu,f∗,n(ϑ, x)− vam,g(ϑ, x)| ≤ ∆n(M) ≤ ωn(dn(M)). (3.26)

The latter equation reflects the idea that the quality of the European approximation to
the American option price at (ϑ, x) ∈ [0, T ]×R depends in some sense continuously on
the approximability of the null set of the mapping Ψn by Borel sets M which are almost
surely hit by the space-time process started at (T − ϑ, x), i.e. HM(ϑ, x) = 1. From
Proposition 2.16 we know that {Ψn = 0} is a subset of the stopping region associated
to g. In applications we might encounter the following situation: On the grounds of
some preceding considerations, we suspect that the American payoff g is represented
with respect to T, x0 by some measure µ∗. We choose a discretization which we deem
reasonable to approximate the representing measure in the sense of Lemma 3.7. If true,
the latter warrants that a subsequence of optimizers associated to the finite dimensional
subproblems converges weakly to µ∗. The finite dimensional surrogates can be numeri-
cally solved by applying Algorithm 3.18. By further thinning out the subsequence, we
can achieve that the associated dual optimizers converge vaguely to some measure λ∗∞
satisfying the slackness condition (3.16), cf. Lemma 3.15. Equation (3.16) warrants
that the support of λ∗∞ is located within the stopping set associated to g. Besides, if
for any x ∈ R the mapping (0, T ) 3 ϑ 7→ veu,µ∗(ϑ, x) assumes its minimal value at some
uniquely determined maturity, we can conclude that the support of the measure λ∗∞ is
located on the early exercise curve associated to g. Our numerical findings from Section
3.2 indicated that this situation indeed seems to occur for the American put.

Consequently, we propose the following heuristic: Use the position information of the
dual mass in order to construct an approximation to the early exercise boundary asso-
ciated to g. In other words, use the dual optimizer obtained by Algorithm 3.18 in order
to find a candidate set M which yields a valuable error bound in Proposition 3.23.
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For illustrative purposes, let us discuss a possible implementation of this heuristic for
the American put in the Black-Scholes market (1.3). Please, note that we will use non-
logarithmic prices until the end of this section. First, consider the setting of Test 1 from
Section 3.3, i.e. the model parameters are given by r = 0.06, σ = 0.4, T = 0.5, there
are no dividend payments and we have a put option with strike K = 100. The basis
functions, the set of initial constraints and also the other parameters for Algorithm 3.18
are chosen as described in Test 1, cf. page 87. Let f̃ denote a solution of Pc

n generated by
Algorithm 3.18. We fit a smoothing spline γ to the support of the DΓm-optimal measure
λm from the last (mmax = 100) iteration of Algorithm 3.18. For an introduction to
smoothing spline techniques we refer the reader to [WB]. The support of λm, the spline
γ and an approximation to the early exercise boundary obtained by a finite difference
method on a fine grid are displayed in Figure 3.6. In line with (3.21), we denote by
Hb(γ)(ϑ, s) the probability that the space-time process started at time T − ϑ and price
s hits the set

b(γ) := {(ϑ′, s′) ∈ [0, T ]× R++ | s′ = γ(ϑ′) or ϑ′ = 0, s′ ≥ γ(0)} .

The latter serves as approximation to the early exercise boundary of the put.

Figure 3.6: Smoothing spline and FDI approximation to the early exercise boundary
of the American put, setting of Test 1 from Section 3.3.
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3 Computational methods and numerical results

Clearly, for any (ϑ, s) ∈ (0, T ] × R++ such that s > γ(ϑ) we have Hb(γ)(ϑ, s) = 1 and
therefore Proposition 3.23 yields

0 ≤ veu,f̃ (ϑ, s)− vam,g(ϑ, s) ≤ sup
ϑ′∈(0,T ]

{
veu,f̃ (ϑ′, γ(ϑ′))− g(γ(ϑ′))

}
=: ∆(γ). (3.27)

We compare the upper and lower bounds for vam,g(0.5, 100) from (3.27) with a price ap-
proximation obtained by a Crank-Nicolson finite difference scheme which required about
the same amount of computation time, cf. Table 3.6.

∆(γ) = 0.000029694563

vam,g(0.5, 100)
CDEO upper bound 9.945136132710
CDEO lower bound 9.945106438147
FDI approximation 9.945135392820

Table 3.6: CDEO upper and lower bounds for vam,g(0.5, 100), setting of Test 1 from
Section 3.3.

Analogously, we apply the procedure from above within the setting of Test 2.a from
Section 3.3, i.e. we consider an American put with strike 100 maturing at T = 1 in the
Black-Scholes market with r = 0.05, σ = 0.25 and a continuous dividend rate of q = 0.05.
Here, we choose to terminate Algorithm 3.18 after mmax = 100 iterations. The other
input parameters, in particular the basis functions and the initial set of constraints, are
chosen as described in Test 2.a, cf. page 90. The smoothing spline approximation to
the early exercise boundary is based on the DΓm-optimal measure from the last iteration
of the algorithm, cf. Figure 3.7. The upper and lower bounds obtained by the CDEO
method are compared against the high-precision value (l,m, n) = (65, 8, 32) from [ALO,
Table 2]. In addition, a finite difference price approximation which required about the
same amount of computation time is listed in Table 3.7. The column diff indicates the
deviation from the [ALO] reference premium.

∆(γ) = 0.000055146019

Am. premium diff
[ALO, Table 2] 0.106952702747 0
CDEO upper bound 0.106952689003 1.37e-08
CDEO lower bound 0.106897542984 5.52e-05
FDI approximation 0.106945552058 7.15e-06

Table 3.7: CDEO upper and lower bounds for the American premium, setting of Test
2.a from Section 3.3.
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3.4 Lower bounds and estimation of the early exercise curve

Figure 3.7: Smoothing spline and FDI approximation to the early exercise boundary
of the American put, setting of Test 2.a from Section 3.3.

Finally, we assess the quality of the lower bounds obtained by the CDEO method within
the setting of Test 2.b from Section 3.3, i.e. we consider a Black-Scholes market with
r = q = 0.04, σ = 0.2 and an American put option with strike K = 100 and maturity
T = 3. Algorithm 3.18 is terminated after mmax = 100 iterations. Any other input
parameter is chosen according to the description from Test 2.b, cf. page 91. For the
computation of the CDEO we use the optimization point (T, x0) = (3, log(100)). Figure
3.8 compares a finite difference approximation to the exercise curve with a smoothing
spline approximation which is based on the dual optimizer from the last iteration. Table
3.8 contains the CDEO upper and lower bounds at the different spot prices as well as
the corresponding values from the column True price of [ALO, Table 3]. Due to the
fact that the latter are indicated with only five digits after the decimal point, we cannot
compare the quality of the competing approximations beyond this precision. Within
this numerical accuracy the CDEO upper and lower bounds coincide with the reference
values from [ALO, Table 3].

In conclusion, we find that in all three test cases the CDEO method provides us with
tight bounds for the American option value and a numerically convenient spline ap-
proximation to the early exercise boundary. Moreover, the basis vector associated to
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3 Computational methods and numerical results

the approximate CDEO and the spline coefficients can be compactly stored using only
a few kilobytes of memory. As argued in Section 3.3, the parsimonious nature of the
CDEO method is in particular useful when global price approximations are desired. Let
us remark that the European value function associated to the CDEO as well as the
smoothing spline γ can be evaluated with very little computational effort.

∆(γ) = 0.000002089720

vam,g(3, 80) vam,g(3, 100) vam,g(3, 120)
[ALO, Table 3] 23.22834 12.60521 6.48242
CDEO upper bound 23.22834 12.60521 6.48242
CDEO lower bound 23.22834 12.60521 6.48242

Table 3.8: CDEO upper and lower bounds for vam,g(3, s), s ∈ {80, 100, 120}, setting of
Test 2.b from Section 3.3.

Figure 3.8: Smoothing spline and FDI approximation to the early exercise boundary
of the American put, setting of Test 2.b from Section 3.3.
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4 Conclusion
The thesis at hand aims at analyzing and linking together the mathematical notion of
representability, embedded American payoffs and cheapest dominating European op-
tions. For the ease of exposition, we choose the univariate Black-Scholes market. It
is argued that CDEOs are in some sense inversely related to the embedding operation.
This process reveals a new duality structure between European and American valuation
problems which we deem as very fruitful for future research. As a by-product, we derive
some non-trivial statements concerning free boundary problems and a Markovian-style
super martingale decomposition. Furthermore, we demonstrate that it is reasonable
to understand representability as a local property of the connected components asso-
ciated to the continuation region of the American claim at hand. By studying the
American option embedded into the European put within the Black-Scholes market, we
conclude that American options may be representable up to some maximal time hori-
zon. In addition, we provide several other explicit examples of representable American
claims and study their analyticity and smoothness properties. Relying on methods from
infinite-dimensional optimization, we make a first step towards verifying representabil-
ity of certain American claims. The results of Section 3.2 suggest in particular that
representability holds for the prime example of an American put in the Black-Scholes
model, contrary to the indications following from the analysis in [JM2]. This gives new
hope that the original endeavor of Jourdain and Martini may ultimately lead to a posi-
tive answer and that their concept of embedded American options has a broader scope
than expected. Moreover, we discuss some computational aspects related to the CDEO
algorithm which generates upper bounds for American option prices, regardless of any
representability issues. Based on the Lagrange dual associated to the CDEO optimiza-
tion task, we propose a new method which allows us to construct spline approximations
to the early exercise curve and generate lower bounds for American option prices. For
the American put in the Black-Scholes market, these upper and lower bounds are bench-
marked against high-precision methods from the literature.

As an ambitious goal for future research it remains to fully characterize representability
of American options in the Black-Scholes model and more general markets driven by
univariate or multivariate continuous diffusion processes. In particular, a rigorous proof
for the American put is still wanting. Let us remark that this thesis is formulated in
classical terms from mathematical finance. Clearly, the notions from above are easily
translated into the language of Markov process theory. Besides, throughout the thesis
the interested reader can find several remarks concerning possible extensions.
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5 Supplementary material
This chapter compiles a small collection of mathematical tools. In particular, we give
a very brief summary of some basic notions from functional analysis and convex opti-
mization.

5.1 Lemmata
The following lemmata are rather elementary. Short proofs are provided in order to
make the thesis at hand more self-contained.

5.1 Lemma: Let I ⊂ R denote an open interval containing the origin and suppose
that f : I → [0,+∞) is a non-negative function with f(0) = 0. If f can be continued
analytically to some open set containing the origin, then there exists an ε > 0 such that
f ′′(x) ≥ 0 for any x ∈ (−ε, ε).

Proof. Assume that the assertion of the lemma is false, i.e. for any ε > 0 exists some
point x ∈ (−ε, ε) such that f ′′(x) < 0. Due to the fact that f assumes its minimal value
at 0, we have f ′(0) = 0 and f ′′(0) ≥ 0. Consequently, the following three cases can be
directly excluded:

1. ∃ε > 0 such that f ′′(x) < 0 for all x ∈ (−ε, ε) \ {0}.

2. ∃ε > 0 such that f ′′(x) < 0 for all x ∈ (−ε, 0) and f ′′(x) ≥ 0 for all x ∈ (0, ε).

3. ∃ε > 0 such that f ′′(x) ≥ 0 for all x ∈ (−ε, 0) and f ′′(x) < 0 for all x ∈ (0, ε).

Hence, there remain only two possibilities:

4. ∀ε > 0 exist y+, y− ∈ (−ε, 0) such that f ′′(y+) ≥ 0 and f ′′(y−) < 0.

5. ∀ε > 0 exist y+, y− ∈ (0, ε) such that f ′′(y+) ≥ 0 and f ′′(y−) < 0.

In case that the fourth statement holds true, we can find sequences y+
n , y

−
n ↗ 0 as

n → ∞ with max{y+
n−1, y

−
n−1} < min{y+

n , y
−
n } and f ′′(y−n ) < 0 ≤ f ′′(y+

n ). The mean
value theorem implies that there exists a sequence zn ↗ 0 such that f ′′′(zn) = 0. Due
to the fact that the function f and its derivatives are analytic on some open ball B
containing the origin we, find that f ′′′(z) = 0 for all z ∈ B. Hence f ′′ is constant on
some interval containing the origin which clearly contradicts your assumption. Along
the same lines the reader can verify that the fifth statement yields a contradiction as
well. This finally proves the lemma at hand.
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5.2 Lemma: Let y 7→ N(µ, σ2, y) denote the probability density function of a normal
distribution with mean µ and variance σ2. Then:

1. For any y ∈ R, µ, σ2 ∈ C with Reσ2 > 0 have

|N(µ, σ2, y)| =
exp

(
− Reσ2

2|σ2|2
(
y − Reµ− Imµ Imσ2

Reσ2

)2
+ (Imµ)2

2 Reσ2

)
√

2π|σ2|
.

2. For any µ, µ̃ ∈ C and σ, σ̃ ∈ C \ {0} with σ 6= σ̃ we have

N(µ, σ2, y)
N(µ̃, σ̃2, y) = σ̃

σ
exp

(
−(y − A)2

2B

)
exp

(
− (µ− µ̃)2

2(σ2 − σ̃2)

)

where the quantities A and B are defined as follows:

A := µ̃σ2 − µσ̃2

σ2 − σ̃2 B := σ̃2σ2

σ̃2 − σ2

3. For any µ, µ̃ ∈ C and σ ∈ C \ {0} we have

N(µ, σ2, y)
N(µ̃, σ2, y) = exp

(
y
µ− µ̃
σ2

)
exp

(
µ̃2 − µ2

2σ2

)
.

Proof.

1. For any y ∈ R and µ, σ2 ∈ C such that Re σ2 > 0 we obtain∣∣∣∣∣exp
(
−(y − µ)2

2σ2

)∣∣∣∣∣
= exp

(
−Re (y − µ)2

2σ2

)

= exp
(
−Reσ2 Re((y − µ)2) + Imσ2 Im((y − µ)2)

2|σ2|2

)

= exp
(
−(y − Reµ)2 Reσ2 − 2(y − Reµ) Imσ2 Imµ− Reσ2(Imµ)2

2|σ2|2

)
.

Completing the square in the variable y yields∣∣∣∣∣exp
(
−(y − µ)2

2σ2

)∣∣∣∣∣
= exp

−Reσ2

2|σ2|2

(
y − Reµ− Imµ Imσ2

Reσ2

)2

+ (Imµ)2

2|σ2|2

(
Reσ2 + (Imσ2)2

Reσ2

)
= exp

−Reσ2

2|σ2|2

(
y − Reµ− Imµ Imσ2

Reσ2

)2

+ (Imµ)2

2Reσ2


and this proves the assertion.
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2. Simple algebraic manipulations show that

exp
(

1
2

(
y − µ̃
σ̃

)2
− 1

2

(
y − µ
σ

)2
)

= exp
(
y2σ

2 − σ̃2

2σ̃2σ2 − y
µ̃σ2 − µσ̃2

σ̃2σ2 + µ̃2σ2 − µ2σ̃2

2σ̃2σ2

)

= exp
(
−(y −A)2

2B + A2

2B + µ̃2σ2 − µ2σ̃2

2σ̃2σ2

)

= exp
(
−(y −A)2

2B

)
exp

(
− (µ̃− µ)2

2(σ2 − σ̃2)

)
.

3. This is obvious.

The following lemma concerns generalized European value functions within the scope of
the Black-Scholes market (2.41).

5.3 Lemma: For r̂ ∈ R, σ > 0 and some measure µ ∈M+(R), we define the generalized
European value function

V (ϑ, x) :=
∫ ∞
−∞

N
(
x+ r̂ϑ, σ2ϑ, y

)
dµ(y).

Suppose there exists some (T, x0) ∈ R++×R such that V (T, x0) <∞. Then, the mapping
V is analytic on the open C2-domain

E :=
{
ϑ ∈ C

∣∣∣∣ √(Reϑ− T/2)2 + (Imϑ)2 < T/2
}
× C.

Proof. Due to the assumption V (T, x0) <∞, we find that

dν(y) := N
(
x0 + r̂T, σ2T, y

)
dµ(y)

is a finite measure. Applying Lemma 5.2 yields

V (ϑ, x) =
∫ ∞
−∞

N (x+ r̂ϑ, σ2ϑ, y)
N (x0 + r̂T, σ2T, y)dν(y)

=
√
T

ϑ
exp

(
(x0 − x+ r̂(T − ϑ))2

2σ2(T − ϑ)

)∫ ∞
−∞

exp
(
−(y − A(ϑ, x))2

2B(ϑ, x)

)
dν(y)

where A := A(ϑ, x) := xT−x0ϑ
T−ϑ and B := B(ϑ, x) := σ2 ϑT

T−ϑ . Consequently, we only need
to show that the function

F (ϑ, x) :=
∫ ∞
−∞

exp
(
−(y − A(ϑ, x))2

2B(ϑ, x)

)
dν(y)

is analytic on E. Owing to Hartogs’ theorem, see [KR, Paragraph 2.4], it is enough to
verify that F is partially analytic on E. Lemma 5.2 yields∣∣∣∣∣exp

(
−(y − A)2

2B

)∣∣∣∣∣ = |h(ϑ, x)| exp
−ReB

2|B|2

(
y − ReA− ImA ImB

ReB

)2
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for all (ϑ, x) ∈ E and y ∈ R where h denotes a certain mapping which is continuous on
E. Moreover, for any (ϑ, x) ∈ E we have

ReB = σ2T
Reϑ(T − Reϑ)− (Imϑ)2

|T − ϑ|2
> 0

and therefore
sup
y∈R

∣∣∣∣∣exp
(
−(y − A)2

2B

)∣∣∣∣∣ ≤ |h(ϑ, x)| (5.4)

is certainly bounded on every compact subset of E. For any closed contour γ contained
in π1(E) := {ϑ ∈ C | (Reϑ− T/2)2 + (Imϑ)2 < T 2/4} and any x ∈ C, we find that∮

γ
F (ϑ, x)dϑ =

∫ ∞
−∞

∮
γ

exp
(
−(y − A(ϑ, x))2

2B(ϑ, x)

)
dϑdν(y) = 0.

In virtue of Morera’s theorem, we conclude that the function ϑ 7→ F (ϑ, x) is analytic on
π1(E). The interchange of the integration order is justified by (5.4) and the compactness
of the contour γ. In the same manner one can establish the analyticity of the mapping
C 3 x 7→ F (ϑ, x) for any fixed ϑ ∈ π1(E). Summing up, we have shown that F is
partially analytic on E and Hartogs’ theorem now implies the assertion of the Lemma.

5.5 Lemma: For c ∈ R and σ > 0 all solutions of the second order differential equation

f(x)− f ′′(x) = c xN(0, σ2, x)

are of the form

fk1,k2(x) := k1e
x + k2e

−x + cσ2

4 e
σ2
2 +xerf

(
x+ σ2
√

2σ2

)
+ cσ2

4 e
σ2
2 −xerf

(
x− σ2
√

2σ2

)

where k1, k2 ∈ R and erf(z) := 2√
π

∫ z
0 e

y2dy. Moreover, we have fk1,k2(0) = k1 + k2.

Proof. We observe that for h(x) := c xN(0, σ2, x) the differential equation from above is
equivalent to the first order inhomogeneous system(

f
g

)′
=
(

0 1
1 0

)(
f
g

)
+
(

0
h

)
.

The assertion directly follows from the well-known uniqueness and existence theorems
for first order ODEs, see for instance [WA, page 162].

5.2 Analytic dependence of zeros
The following factorization theorem from multivariate complex analysis gives a suffi-
cient condition for the analytic dependence of zeros. It is a direct consequence of the
Weierstrass preparation theorem. More details can be found in [CH, Chapter 1] .
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5.6 Theorem: For n ≥ 2 let f be a analytic function on a domain G = D′ ×D ⊂ Cn

where D′ ⊂ Cn−1 is simply connected. Assume that the function f has for each z′ ∈ D′
exactly m distinct zeros in the set D. Then there exist analytic functions α1, ..., αm :
D′ → D, natural numbers k1, ..., km and an analytic function Φ : G → C that does not
vanish on G such that

f(z′, z) =
m∏
l=1

(z − αl(z′))kl Φ(z′, z)

holds true for any (z′, z) ∈ G.

The following version of the analytic implicit function theorem is well suited for our
purposes. It can be obtained as a corollary of Theorem 5.6 by applying well-known
ideas from the proof of Rouché’s theorem, cf. [CO, page 125].

5.7 Theorem: For n ≥ 2 let f be an analytic function on a domain G = D′×D ⊂ Cn

where D′ ⊂ Cn−1 is simply connected. Assume that f(z′0, z0) = 0 and (∂zf)(z′0, z0) 6= 0
holds for some point (z′0, z0) ∈ G. Then we can find open neighborhoods U(z′0) ⊂ D′ and
V (z0) ⊂ D of z′0 and z0 as well as an analytic function g : U(z′0)→ V (z0) such that

f(z′, z) = 0⇔ z = g(z′)

holds for all z′ ∈ U(z′0) and z ∈ V (z0).

Proof. Due to the assumption (∂zf)(z′0, z0) 6= 0, we can choose some ε1 > 0 such that
the ball Bε1(z0) is contained in D and f(z′0, z) 6= 0 holds for any z ∈ Bε1(z0) \ {z0}.
Moreover, we can pick constants c, ε2 > 0 such that Bε2(z′0) is contained in D′ and
|f(z′, z)| > c holds for all z′ ∈ Bε2(z′0) and any z ∈ C satisfying |z − z0| = ε1. By choice
of ε1 and the argument principle, we find that

1
2πi

∮
|z−z0|=ε1

(∂zf)(z′0, z)
f(z′0, z)

dz = 1.

The triangle inequality for line integrals now yields

sup
|z′−z′0|<ε2/n

∣∣∣∣∣1− 1
2πi

∮
|z−z0|=ε1

(∂zf)(z′, z)
f(z′, z) dz

∣∣∣∣∣
= 1

2π sup
|z′−z′0|<ε2/n

∣∣∣∣∣
∮
|z−z0|=ε1

(∂zf)(z′0, z)f(z′, z)− (∂zf)(z′, z)f(z′0, z)
f(z′0, z)f(z′, z) dz

∣∣∣∣∣
≤ α sup

|z′−z′0|<ε2/n
|z−z0|=ε1

|(∂zf)(z′0, z)f(z′, z)− (∂zf)(z′, z)f(z′0, z)|

for any n ∈ N. Here we denote by α some positive constant independent of n. Owing to
the continuity of f and its derivatives, we conclude that the right-hand side of the latter
inequality converges to 0 as n tends to infinity. Furthermore, the integral expression
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1
2πi
∮
|z−z0|=ε1

(∂zf)(z′,z)
f(z′,z) dz is integer valued and consequently we can find some n0 ∈ N

such that
1

2πi

∮
|z−z0|=ε1

(∂zf)(z′, z)
f(z′, z) dz = 1

holds true for any z′ ∈ Bε2/n0(z′0). To put differently, for any z′ ∈ Bε2/n0(z′0) the mapping
z 7→ f(z′, z) has exactly one zero within the set Bε1(z0). By virtue of Theorem 5.6, there
exists an analytic function g : Bε2/n0(z′0)→ Bε1(z0) such that f(z′, g(z′)) = 0.

5.3 Basic notions from functional analysis
Let X denote some topological space. An extended real-valued function f : X →
[−∞,∞] is called lower semi-continuous if for any a ∈ R the level set {x ∈ X |f(x) ≤ a}
is closed. Moreover, we say that f is upper semi-continuous if −f is a lower semi-
continuous function. It is easy to see that f is a lower semi-continuous function if and
only if

f(x) ≤ sup
O∈U(x)

inf
y∈O

f(y) (5.8)

holds true for any x ∈ X. Here we denote by U(x) the collection of all open sets
containing the point x. The latter statement can be rendered more precisely if X is a
metric space. In this case we find that f is lower semi-continuous if and only if

f(x) ≤ lim inf
n→∞

f(xn)

for all x ∈ X and all sequences (xn)n∈N ⊂ X converging to x. The following properties
are easily derived from the definition of lower semi-continuity.

5.9 Lemma: Suppose that f, g and (fi)i∈I are lower semi-continuous functions where
I denotes some non-empty index set. Then:

1. The functions f + g, f ∧ g and f ∨ g are lower semi-continuous.

2. The mapping x 7→ supi∈I fi(x) is lower semi-continuous.

3. If f is bounded from below on some compact set K, then f attains its minimum
on K.

4. The function f is lower semi-continuous if and only if its epigraph

epi(f) := {(x, s) ∈ X × R | f(x) ≤ s}

is closed with respect to the product topology on X × R.

Suppose that K = R or K = C and let V be a vector space over K. Moreover, for an
arbitrary index set I let P := (pi)i∈I ⊂ RV

+ denote some family of semi-norms on V .
That is to say, for any index i ∈ I and all x, y ∈ V, λ ∈ K, we have pi(λx) = |λ|pi(x) and
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pi(x + y) ≤ pi(x) + pi(y). The initial topology on V induced by the semi-norms (pi)i∈I
is given by

TP :=
{
O ⊂ V

∣∣∣ ∀x0 ∈ O ∃F ⊂ I finite ∃ ε ∈ (0,∞)F : BF
ε (x0) ⊂ O

}
(5.10)

where BF
ε (x0) := ∩i∈F {x ∈ V | pi(x− x0) < εi}. The latter topology is the coars-

est topology on the vector space V such that for all i ∈ I, x0 ∈ X the mappings
x 7→ pi(x − x0) are continuous. We call TP the locally convex topology on V generated
by the semi-norm family P and (V, TP ) a locally convex (topological vector) space. It is
easy to verify that (V, TP ) is indeed a topological vector space in the classical sense, i.e.
vector addition and scalar multiplication constitute continuous operations.

There exists an equivalent approach towards locally convex spaces which is rather ge-
ometrically motivated, cf. [RD, Chapter 1]. An introduction via semi-norms similar
to (5.10) can be found in [CO2, Chapter 4]. Let us remark that the definition of TP
from above does not ensure that locally convex topologies are always Hausdorff. Neither
do locally convex topologies always need to be metrizable. Nevertheless, the following
characterizations are well-known.

5.11 Lemma: Let V and P be defined as above.

1. The topology TP is Hausdorff if and only if the family of semi-norms is point
separating, i.e. for all x ∈ V exists an index i ∈ I such that pi(x) 6= 0.

2. The topology TP is metrizable if and only if TP is generated by a point separating,
countable family (p̃n)n∈N of semi-norms. In this case the compatible metric is given
by

d(x, y) :=
∞∑
n=0

2−n p̃n(x− y)
1 + p̃n(x− y) .

For details about metrizable and normable locally convex spaces see Section 2 of [CO2,
Chapter 4]. The following facts concerning continuity and convergence in locally convex
spaces are essentially a reformulation of Proposition 7.7 and Proposition 7.8 from [TR].

5.12 Lemma: Suppose that V and W are K-vector spaces endowed with the locally
convex topologies generated by some semi-norm families P := (pi)i∈I ⊂ RV

+ and Q :=
(qj)j∈J ⊂ RW

+ . Then:

1. A net xα ⊂ V converges to x ∈ V with respect to TP if and only if for any index
i ∈ I the net pi(xα−x) converges to 0 with respect to the Euclidean topology on R.

2. Let T : V → W be a linear mapping. The following statements are equivalent:
a) T is continuous.
b) T is continuous at 0.
c) For any net xα ⊂ V such that pi(xα)→ 0 for all i ∈ I, we have qj(Txα)→ 0

for all j ∈ J .
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d) For any index j ∈ J exists a finite set F ⊂ I and some constant c ≥ 0 such
that qj(Tx) ≤ c maxi∈F pi(x) holds true for any x ∈ V .

The lemma above relies upon the notion of net convergence. A brief revision of the
required theory concerning nets in topological spaces can be found in the second para-
graph of [CO2, Appendix A]. As a corollary of Lemma 5.12 we obtain that a linear
functional x∗ : V → K is TP -continuous if and only if there exists a finite set F ⊂ I and
a constant c ≥ 0 such that |x∗(x)| ≤ c maxi∈F pi(x) for all x ∈ V . The vector space of
all TP -continuous linear functionals on V is called (continuous) dual space and denoted
by (V, TP )∗. If there is no possibility of misinterpretation, we occasionally refrain from
explicitly indicating the topology and simply write V ∗. Locally convex spaces are in
some sense a natural extension of normed spaces. Indeed, for any normed vector space
(V, ‖ · ‖) and P := {‖ · ‖}, it is easy to see that TP coincides with the norm topology on
V . Locally convex topologies are stable with respect to certain topological operations.

5.13 Lemma:

1. Suppose that (Vj, TPj)j∈J is a family of locally convex space over K where J denotes
some index set. The Cartesian product ×j∈J Vj is a locally convex space with
respect to the product topology ⊗j∈J TPj . More precisely, we have⊗

j∈J
TPj = TQ

for the family of semi-norms Q := ⋃
j∈J{ p ◦ πj | p ∈ Pj} where πi :×j∈J Vj → Vi

denotes the canonical projection onto Vi.

2. Any linear subspace U of some locally convex space (V, TP ) constitutes a locally
convex space with respect to the subspace topology TP ∩U . More precisely, we have

TP ∩ U = TP |U

for the family of semi-norms P |U := { p : U → R+ | p ∈ P}.

Locally convex topologies possess all required geometric properties such that Hahn-
Banach type theorems hold true. We summarize some results from Section 3 of [CO2,
Chapter 4] and [TR, Chapter 18].

5.14 Lemma: Let (V, TP ) denote some locally convex space over K.

1. Let U be a linear subspace of V and suppose that u∗ ∈ (U, TP |U )∗. There exists a
continuous, linear functional x∗ ∈ (V, TP )∗ such that x∗|U = u∗.

2. Suppose that C1, C2 ⊂ V are disjoint, convex sets and C1 is open. Then there exists
a continuous, linear functional x∗ ∈ (V, TP )∗ such that Rex∗(x1) < Rex∗(x2) for
all x1 ∈ C1 and x2 ∈ C2.

3. Suppose that C ⊂ V is a closed, convex set and that x 6∈ C. We can find some
x∗ ∈ (V, TP )∗ and ε > 0 such that Rex∗(x) + ε ≤ Rex∗(x1) for all x1 ∈ C.
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4. If the topology TP is Hausdorff, then for any choice of x, y ∈ V, x 6= y there exists
some x∗ ∈ (V, TP )∗ such that x∗(x) 6= x∗(y).

Suppose that 〈V,W 〉 is an algebraic pairing over the field K, i.e. V and W are K-
vector spaces and 〈·, ·〉 : V × W → K is a bilinear mapping. It is easy to see that
P := {x 7→ |〈x, y〉| | y ∈ W} defines a family of semi-norms on V . The locally convex
topology on V generated by P is called the weak topology on V induced by W and
denoted by σ(V,W ). This concept is commutative in the sense that V induces in the
same manner a topology on the vector space W , i.e. the weak topology σ(W,V ). The
following Lemma is folklore.

5.15 Lemma: Let 〈V,W 〉 be an algebraic pairing over K, then:

1. If W separates the points of the vector space V , i.e. for any x ∈ V \ {0} there
exists some y ∈ W such that 〈x, y〉 6= 0, then the topology σ(V,W ) is Hausdorff.

2. A linear functional x∗ : V → K is σ(V,W )-continuous if and only if there exists a
vector y ∈ W such that x∗(x) = 〈x, y〉. Consequently, we have

(V, σ(V,W ))∗ = W.

3. A net xα ⊂ V converges to x ∈ V with respect to σ(V,W ) if and only if 〈xα, y〉 →
〈x, y〉 for any y ∈ W .

The roles of the spaces V and W can be interchanged in all the statements above.

Clearly, any locally convex space (V, TP ) is paired with its continuous dual V ∗ via the bi-
linear mapping 〈x, x∗〉 := x∗(x) where x ∈ V and x∗ ∈ V ∗. The points of the dual space
V ∗ are always separated by V and consequently Lemma 5.15 warrants that σ(V ∗, V ) is
Hausdorff. Besides, if (V, TP ) is a Hausdorff space, we can conclude by Lemma 5.14 that
the points of V are separated by V ∗ and therefore σ(V, V ∗) is Hausdorff as well.

Two topologies which play a distinguished role in probability theory are generated by
algebraic pairings. LetM(Rn) be the vector space of regular Borel measures on Rn with
finite total variation. Moreover, denoted by C0(Rn) and Cb(Rn) the continuous functions
vanishing at infinity and the bounded continuous functions on Rn, respectively. It is easy
to see that

〈f, µ〉 7→
∫
Rn
fdµ

defines a point separating, bilinear mapping on the Cartesian products C0 ×M and
Cb ×M. Lemma 5.15 therefore warrants both topologies are Hausdorff. The locally
convex topologies σ(M, Cb) and σ(M, C0) correspond to the measure theoretic weak
and vague topology onM(Rn). Let us remark that the weak topology is metrizable on
the set of probability measures P(Rn), cf. [KL, Remark 13.14]. Furthermore, the vague
topology is metrizable on the total variation unit ball BM(Rn). Indeed, choose a sequence
f1, f2, ... which is dense in C0(Rn) and define d(µ, ν) := ∑

n∈N 2−n|〈fn, µ − ν〉| for any
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µ, ν ∈ BM(Rn). The latter metric generates the subspace topology on BM(Rn) induced by
σ(M, C0). In virtue of Lemma 5.15, we have that (C0(Rn), σ(C0,M))′ =M(Rn). From
the Riesz representation theorem we know that the topology of uniform convergence is
compatible with this duality. To be more specific, the continuous dual of the Banach
space (C0(Rn), ‖ · ‖∞) is isometrically isomorph to the regular Borel measures M(Rn)
equipped with the total variation norm, cf. [RD2, Theorem 6.19]. Clearly, the topology
σ(C0,M) is coarser than the topology of uniform convergence.

The concept of dual operators generalizes in a natural way to paired spaces. Suppose that
〈V1,W1〉1 and 〈V2,W2〉2 are algebraic pairings and let T : V1 → V2 denote some σ(V1,W1)-
σ(V2,W2)-continuous, linear mapping. By virtue of Lemma 5.15 and the Hahn-Banach
type results from Lemma 5.14, it is easy to show that there exists a uniquely determined,
σ(W2, V2)-σ(W1, V1)-continuous, linear operator T ∗ : W2 → W1 such that

〈Tx, y〉2 = 〈x, T ∗y〉1 (5.16)

holds true for arbitrary x ∈ V1 and y ∈ W2. We call T ∗ the dual or adjoint operator
associated to T . Interestingly, we have the following Hellinger-Toeplitz type converse
result.

5.17 Lemma: Let 〈V1,W1〉1 and 〈V2,W2〉2 be algebraic pairings. Suppose that T : V1 →
V2 and T ∗ : W2 → W1 are linear mappings satisfying Equation (5.16) for all x ∈ V1
and y ∈ W2. Then T is σ(V1,W1)-σ(V2,W2)-continuous and T ∗ is σ(W2, V2)-σ(W1, V1)-
continuous.

Proof. Let xα be a net that converges to x ∈ V1 with respect to σ(V1,W1). The third
assertion of Lemma 5.15 and Equation (5.16) imply that lim〈Txα, y〉 = lim〈xα, T ∗y〉 =
〈x, T ∗y〉 = 〈Tx, y〉 holds for any y ∈ W2. Again by Lemma 5.15 we conclude that the
net Txα converges to Tx in the σ(V2,W2) topology. This proves the desired continuity
of the mapping T . The continuity of the operator T ∗ can be easily established along the
same lines.

An important feature of weak topologies is that they are in a certain way rich of compact
sets. The following theorem might be considered as one of the fundamental results from
functional analysis.

5.18 Theorem (Alaoglu-Bourbaki): Suppose that V is a Hausdorff locally convex space
and let U ⊂ V be a neighborhood of 0. The polar set

U◦ := {x∗ ∈ V ∗ | Rex∗(x) ≤ 1 ∀x ∈ U}

is σ(V ∗, V )-compact.

A proof of the latter theorem can be found in [MV, Theorem 23.5]. In the case that
(V, ‖ · ‖) is a Banach space, the original version of Alaoglu’s theorem is easily recovered
from Theorem 5.18. Indeed, choosing U = BV := {x ∈ V | ‖x‖ ≤ 1} yields that the
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dual unit ball U◦ = BV ∗ := {x∗ ∈ V ∗ | ‖x∗‖∗ ≤ 1} is weak*-compact, i.e. compact
with respect to the topology σ(V ∗, V ). Here we denote by ‖x∗‖∗ := sup‖x‖=1 x

∗(x) the
dual norm on the space V ∗. As an example we apply Theorem 5.18 to the pairing
〈C0(Rn),M(Rn)〉 from above and obtain that the total variation unit ball BM(Rn) is
vaguely compact.

5.4 Convex conjugation and the Fenchel-Moreau
theorem

This section aims at presenting some basic principles from convex duality theory in a
nutshell. We rely on the analytic notions introduced in Section 5.3. An extended real-
valued function f : V → [−∞,∞] defined on some real vector space V is called convex if
its epigraph epi(f) = {(x, s) ∈ V ×R | f(x) ≤ s} is a convex subset of V ×R. In the case
that f only assumes values in R, the latter definition is equivalent to the classical notion
of convexity, i.e. f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all λ ∈ [0, 1] and x, y ∈ V .
Convex functions possess a stability property that we have already encountered in the
context of lower semi-continuous functions, cf. Lemma 5.9.

5.19 Lemma: Suppose that (fi)i∈I is a family of extended real-valued, convex functions
on V . The point-wise supremum x 7→ supi∈I fi(x) defines a convex mapping.

Now suppose that (V, TP ) is a locally convex space over R and denote by 〈x, x∗〉 := x∗(x)
the canonical pairing on V ×V ∗. For any x∗ ∈ V ∗ and r ∈ R, we call the affine mapping
φ(x) := r + 〈x, x∗〉 a supporting functional of some set M ⊂ V if supx∈M φ(x) = 0. In
other words, the set M is contained in the closed half-space Hφ := {x ∈ V | φ(x) ≤ 0}
and there is no margin between M and the supporting hyperplane {x ∈ V | φ(x) = 0}.
In virtue of the Hahn-Banach separation theorem, we can uniquely encode any non-
empty, closed, convex set C ⊂ V in terms of its supporting functionals. Indeed, the third
assertion of Lemma 5.14 yields that a point x0 ∈ V is contained in the complement of
C if and only if there exists a continuous, linear functional x∗ ∈ V ∗ such that 〈x0, x

∗〉 >
〈x, x∗〉 holds true for all x ∈ C. Clearly, for any x∗ ∈ V ∗ with supx∈C〈x, x∗〉 < ∞ the
mapping

x 7→ 〈x, x∗〉 − sup
x′∈C
〈x′, x∗〉

constitutes a supporting functional of the set C. We conclude that x0 ∈ V is contained
in Cc if and only if there exists a supporting functional φ of C such that φ(x0) > 0 and
therefore we have

Cc =
⋃

φ supp. func.
Hc
φ =

⋃
x∗∈V ∗

{x ∈ V | 〈x, x∗〉 > sup
x′∈C
〈x′, x∗〉 }.

Taking the complement yields that the set C can be recovered by intersecting the closed
half-spaces Hφ associated to the supporting functionals of C, i.e.

C =
⋂

φ supp. func.
Hφ =

⋂
x∗∈V ∗

{x ∈ V | 〈x, x∗〉 ≤ sup
x′∈C
〈x′, x∗〉 }. (5.20)
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The mapping I∗C : V ∗ → (−∞,∞] defined by

I∗C(x∗) := sup
x∈C
〈x, x∗〉 = sup

x∈V
{〈x, x∗〉 − IC(x)} (5.21)

has the following simple geometric interpretation: For any slope x∗ ∈ V ∗ with I∗C(x∗) <
∞ and any intercept r ∈ R consider the affine mapping x 7→ 〈x, x∗〉 + r. The unique
intercept such that the latter mapping constitutes a supporting functional of the set
C is given by r := −I∗C(x∗). In this sense, all information concerning the support-
ing functionals of C is encoded within the mapping I∗C . In virtue of Equation (5.20),
it is not surprising that two closed, convex sets C1, C2 ⊂ V coincide if and only if
I∗C1(x∗) = I∗C2(x∗) for all x∗ ∈ V ∗.

The observation that any closed, convex set C is uniquely determined by the associated
conjugate indicator I∗C from (5.21) can be considered as a cornerstone of the convex du-
ality theory originating from the work of Adrien-Marie Legendre, Hermann Minkowski
and Werner Fenchel. From Lemma 5.12 we know that a function f : V 7→ (−∞,∞] is
lower semi-continuous if and only if its epigraph epi(f) = {(x, s) ∈ V ×R | f(x) ≤ s} is
closed with respect to the product topology on V ×R. Recall that V ×R endowed with
the product topology TP ⊗TR constitutes a locally convex space, see Lemma 5.13. More-
over, the reader easily verifies that f is a convex function if and only if epi(f) is a convex
subset of V ×R. Now suppose that f : V 7→ (−∞,∞] is a lower semi-continuous, convex
function. The discussion from above suggests that the epigraph of f , and therefore the
function f itself, is uniquely characterized by the associated supporting functionals. The
Fenchel-Moreau biconjugate theorem below renders this statement more precisely.

In order to formulate the biconjugate theorem, we require some fundamental notions
from convex duality theory. For a detailed exposition we refer the reader to [RO, Section
3]. Suppose that (V, TP ) is a locally convex space over R and denote by f : V → [−∞,∞]
some extended real-valued mapping. The conjugate f ∗ : V ∗ → [−∞,∞] of the function
f is defined by

f ∗(x∗) := sup
x∈V
{〈x, x∗〉 − f(x)} (5.22)

and the operation f 7→ f ∗ is called the Fenchel transform. The symmetry inherent in
the algebraic pairing 〈V, V ∗〉 allows us to iterate the conjugation process. A function of
particular interest is the biconjugate f ∗∗ : V → [−∞,∞] associated to f given by

f ∗∗(x) := (f ∗)∗(x) = sup
x∗∈V ∗

{〈x, x∗〉 − f ∗(x∗)}.

Moreover, the mappings lsc(f), co(f) : V → [−∞,∞] defined by

lsc(f)(x) := sup{h(x) | h lower semi-continuous and h ≤ f }, (5.23)
co(f)(x) := sup{h(x) | h convex and h ≤ f } (5.24)
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are called the lower semi-continuous envelope and the convex envelope of the function
f , respectively. Following [RO, Section 3], we define by

cl(f) :=

lsc(f) if lsc(f)(x) > −∞ for all x ∈ V,
−∞ otherwise

the closure of the function f . Moreover, we say that f is a closed function if f = cl(f).
Let us collect some simple properties of the latter objects.

5.25 Lemma:

1. For any x ∈ V and x∗ ∈ V ∗, we have 〈x, x∗〉 ≤ f(x) + f ∗(x∗) and f ∗∗(x) ≤ f(x).

2. The conjugate and biconjugate of f are convex and lower semi-continuous.

3. The lower semi-continuous envelope of f is the largest lower semi-continuous mino-
rant of f . In other words, the function lsc(f) is lower semi-continuous, lsc(f) ≤ f
and h ≤ lsc(f) for any other lower semi-continuous function h satisfying h ≤ f .
For any x ∈ V , we have

lsc(f)(x) = sup
O∈U(x)

inf
y∈O

f(y) (5.26)

where U(x) denotes the collection of all open sets containing x. Moreover, the
epigraph of lsc(f) coincides with the closure of epi(f) with respect to the product
topology TP ⊗ TR on V × R, i.e.

epi(lsc(f)) = cl(epi(f)). (5.27)

4. The convex envelope of f is the largest convex minorant of f . In other words, the
function co(f) is convex, co(f) ≤ f and h ≤ co(f) for any other convex function
h satisfying h ≤ f . Moreover, the epigraph of co(f) coincides with the convex hull
of the set epi(f), i.e.

epi(co(f)) = co(epi(f)). (5.28)

Proof.

1. We observe that the inequality f ∗(x∗) ≥ 〈x, x∗〉 − f(x) holds by definition of the
conjugate. Moreover, we have f ∗∗(x) = supx∗∈V ∗ infy∈V {〈x− y, x∗〉+ f(y)} ≤ f(x)
for any x ∈ V .

2. This assertion follows directly from Lemma 5.9 and Lemma 5.19 by noting that the
affine mappings occurring in the definition of f ∗ and f ∗∗ are convex and continuous.

3. The lower semi-continuity of the function lsc(f) as defined in (5.23) follows di-
rectly from the second assertion of Lemma 5.9. Moreover, Equation (5.23) directly
implies that h ≤ lsc(f) ≤ f holds true for any lower semi-continuous function h
such that h ≤ f . In other words, the function lsc(f) corresponds indeed to the

115



largest lower semi-continuous minorant of f . In order to verify the representation
formula (5.26), we observe that g(x) := supO∈U(x) infy∈O f(y) constitutes a lower
semi-continuous minorant of f . For any other lower semi-continuous function h
with h ≤ f , we obtain from (5.8) that

h(x) ≤ sup
O∈U(x)

inf
y∈O

h(y) ≤ sup
O∈U(x)

inf
y∈O

f(y) = g(x).

This yields that g is the largest lower semi-continuous minorant of f and there-
fore g = lsc(f) holds true. It remains to verify Equation (5.27). The inclusion
cl epi(f) ⊂ epi(lsc(f)) is obvious, since the epigraph of lsc(f) is a closed super-
set of epi(f), cf. Lemma 5.9. In order to prove the reverse inclusion, choose
any (x, s) ∈ epi(lsc(f)). Equation (5.26) implies that for any O ∈ U(x) and any
ε > 0 exists some y ∈ O such that f(y) ≤ s + ε. To put it another way, for any
TP ⊗ TR-open neighborhood O × (s − ε, s + ε) ∈ U(x, s) there exists some point
(y, s̃) ∈ O× (s−ε, s+ε) such that (y, s̃) ∈ epi(f). This yields that the point (x, s)
is contained in the closure of the set epi(f).

4. This assertion is certainly true for any function f which assumes the value −∞ at
some point. Indeed, in this case we have co(f) = −∞ and therefore epi(co(f)) =
co(epi(f)) = V × R. Now suppose that f : V → (−∞,∞]. In virtue of Equation
(5.24) and Lemma 5.19, it is apparent that co(f) corresponds to the largest convex
minorant of f and that epi(co(f)) is a convex superset of epi(f). In order to obtain
(5.28), the reader only needs to observe that

co(f)(x) = inf{s ∈ (−∞,∞] | (x, s) ∈ co(epi(f)) }

holds true for any x ∈ V .

The following theorem is an adaption of [RO, Theorem 5]. Variations of the latter have
become known as the Fenchel-Moreau theorem or the biconjugate theorem.

5.29 Theorem (Fenchel-Moreau): Suppose that f : V → [−∞,∞] is an extended real-
valued mapping, then:

1. The conjugate f ∗ constitutes a closed, convex function on the dual space V ∗ and
we have f ∗∗ = cl(co(f)).

2. The Fenchel transform induces a one-to-one correspondence between the closed,
convex functions on V and the closed, convex functions on V ∗.

The latter theorem generalizes in some sense our discussion from the beginning of this
section. Indeed, assume that f and g are closed, convex functions such that f ∗ = g∗.
Owing to Theorem 5.29, we have f = cl(co(f)) = f ∗∗ = g∗∗ = cl(co(g)) = g.
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