
About the Structure and Sensitivity of Integer
Linear Programs and their Application in

Combinatorial Optimization

Dissertation

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

(Dr.-Ing.)
der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel

Dipl.-Inf. Kim-Manuel Klein

Kiel
2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250309932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Gutachter: Prof. Dr. Klaus Jansen, Christian-Albrechts-Universität zu Kiel
2. Gutachter: Prof. Dr. Martin Skutella, Technische Universität Berlin

3. Gutachter: Prof. Dr. Monaldo Mastrolilli, IDSIA Lugano

Datum der Disputation: 19. April 2017
Zum Druck genehmigt: 19. April 2017

Zusammenfassung
In dieser Dissertation werden Eigenschaften von ganzzahligen linearen Programmen (engl.
integer linear programs, kurz: ILPs) untersucht. Von Interesse sind dabei hauptsächlich
ILP-Formulierungen, welche sich aus dem Kontext von algorithmischen Problemstellungen
ergeben, wie beispielsweise dem Bin Packing-Problem und dem Scheduling-Problem auf
identischen Maschinen. Insbesondere für diese ILPs zeigen wir Strukturaussagen, sowie
Aussagen über die Sensitivität und können so offene algorithmische Fragestellungen im
Bereich von Approximation und parametrisierter Komplexität lösen.

Im Kontext von Sensitivitätsaussagen wird untersucht, inwiefern Lösung des ILPs
angepasst werden können, wenn sich die Parameter des ILPs leicht ändern. Ein klas-
sisches Resultat von Cook u.a. [Coo+86] gibt dabei für optimale Lösungen des ILPs
Abschätzungen an. In dieser Arbeit betrachten wir Abschätzungen für die Senstivität wenn
approximative Lösungen erlaubt sind, d.h. Lösungen deren Zielfunktionswert höchstens
um einen Faktor 1 + ε über dem optimalen Zielfunktionswert liegt. Im Wesentlichen zeigen
wir, dass sich bei approximative Lösungen die Abschätzungen von Cook u.a. verbessern
lassen. Diese Ergebnisse konnten wir auf das Online-Bin Packing-Problem anwenden,
wenn eine approximative Lösung mit Güte 1 + ε erreicht werden soll und in beschränktem
Maße Items umgepackt werden dürfen. Durch unsere neuen Sensitvitätsabschätzungen
konnten wir so existierende Ergebnisse verbessern, welche einen Algorithmus mit expo-
nentiellem Term in 1/ε beim Umpacken benötigen. Unser Algorithmus ist tatsächlich
der erste Algorithmus für ein NP-vollständiges Problem, der die exponentielle Migration
vermeiden kann, welcher aus der Anwendung des Theorems von Cook u.a. resultiert, und
lediglich polynomielle Migration benötigt. Desweiteren stellen wir einen Algorithmus für
das sogenannte vollständig dynamische Bin Packing-Problem vor. Im Gegensatz zum
klassischen Online Bin Packing-Problem können hierbei Lösch-Operationen auftreten, bei
denen Items aus der vorhanden Packung entfernt werden müssen.

Im Kontext von Strukturaussagen wird in dieser Dissertation die Existenz von Lösungen
einer Klasse von ILPs gezeigt (sofern überhaupt eine Lösung existiert), welche eine
bestimmte vereinfachte Struktur aufweisen. Diese Existenzaussagen sind sehr hilfreich
um eine Lösung des ILPs zu finden, da der Suchraum auf Lösungen dieser bestimmten
Struktur eingeschränkt werden kann. Wir konnten Strukturaussagen für ILPs entwickeln,
welche sich aus Formulierungen des Bin Packing-Problems ergeben bzw. natürliche
Verallgemeinerungen dieser Formulierung. Dadurch ist es uns zum einen gelungen ein
effizientes Approximationsschemata für das Scheduling-Problem auf identischen Maschinen
mit einer Laufzeit von 2Õ(1/ε) + poly(n) zu entwicklen. Damit konnten wir die Laufzeit
von bisherigen Algorithmen verbessern und die Lücke zur unteren Laufzeitschranke
von Chen u.a. [CJZ13] basierend auf der sogenannte Exponentialzeit-Hypothese bis
auf logarithmische Terme zu schließen. Desweiteren konnten wir eine Strukturaussage
entwickeln, welche unter anderem Anwendung im Bin Packung-Problem fand, wenn die
Anzahl der unterschiedlichen Itemgrößen d beschränkt ist. Wir konnten zeigen, dass
stets eine optimale Lösung existiert, welche fast ausschließlich (bis auf konstant viele)
die Ecken des zugrundeliegenden ganzzahligen Rucksack-Polytops VI verwendet. Mit
Hilfe dieser Strukturaussage konnten wir einen fpt-Algorithmus für das Bin Packing-
Problem entwickeln mit einer Laufzeit von |V |2denc(I), wobei V die Menge der Ecken des
ganzzahligen Rucksack-Polytops ist und enc(I) die Kodierungslänge der Eingabeinstanz.

3

Abstract
In this thesis we investigate properties of integer linear programs (ILPs) and their
algorithmic use. Our main focus are ILP-formulations that come from concrete algorthmic
problems like the bin packing problem or the scheduling problem on identical machines.
Especially for this kind of ILPs we study structural properties as well as properties for
their sensitivity. As a result, we are able to answer open algorithmical questions in the
area of approximation and parameterized complexity.

In the context of sensitivity we analyze how much an ILP solution has to be adjusted
when the parameters of the ILP change. There is a classical results by Cook et al.
[Coo+86] which gave bounds for that question when optimal solutions are considered.
However, in this thesis we investigate the sensitivity of ILPs when approximate solutions
are allowed, i.e. solutions that differ by a factor of at most (1 + ε) from the optimum value.
In this case of approximate solutions, we were able to show that the bounds derived from
the theorem by Cook et al. can be improved in some sense. And furthermore, we could
apply the obtained results to the online bin packing problem, when an approximation
guarantee with ratio 1 + ε has to be fulfilled and repacking of already assigned items
(limited by the so called migration factor) is allowed. Using our sensitivity results, we
were able to improve upon existing results, which had an exponential term in 1/ε in
the migration of items. In fact, our result was the first result for an NP-hard problem
that could avoid the exponential term implied by the use of Cook et al. and obtain only
polynomial migration. As a further result, we present an algorithm for the so called fully
dynamic bin packing. This model is a generalization of the classical online setting in
which there are also delete operations where items have to be departed from the packing.

In the context of structural results, we prove the existence (assuming the ILP is feasible)
of solutions of a certain class of ILPs with a certain simplified structure. For example,
we prove the existence of solutions that use a specific type of variables very often. The
knowledge about the existence of solutions with this simplified structure can be very
useful for solving the ILP as the search space for the set of possible solutions is reduced.
In this thesis we prove structure properties for ILPs that arise from formulations of bin
packing or scheduling problems and natural generalization of those formulations. Based
on the those structure properties, we develop an efficient approximation scheme for the
scheduling problem on identical machines with a running time of 2Õ(1/ε) + poly(n). With
this algorithm we can improve upon previous results and basically close the gap to the
lower bound in the running time, which is based on the exponential time hypothesis
(ETH). Furthermore, we develop a structure theorem, which is applied to the bin packing
problem when the number of different item sizes d is bounded. We basically prove that
there is always an optimal solution that uses (except for a constant number of components)
only the vertices of the underlying integral knapsack polytope. Applying this structure
result, yields an fpt algorithm for the bin packing problem with running time |V |2denc(I),
where V is the set of all edges of the integral knapsack polytope and enc(I) is the encoding
length of the instance.

4

Acknowledgments
First, I would like to thank my advisor Klaus Jansen for his patience with me, his support
and insights. Thanks also to my coauthor José Verschae who invited me to Chile where I
really had a great time doing research together with him. And I would like to thank my
coauthor and friend Sebastian Berndt for a good and fun collaboration.

I am greatful to all my colleagues at the university Stefan Kraft, Marten Maack, Ute
Iaquinto, Maren Kaluza, Kati and Felix Land, Parvaneh Karimi Massouleh, Marcin Pal,
Lars Prädel, Malin Rau, Christina Robenek, and Ilka Schnoor for all the motivating
discussions and the good times we had together.

Finally, of course I thank my wife Gina Klein, my family and all my friends here in
Kiel and in Stuttgart.

5

Contents
1 Introduction and Outline of the Thesis 9

1.1 Sensitivity and its Application to Online Bin Packing 10
1.1.1 A Robust AFPTAS for Bin Packing 10
1.1.2 Fully Dynamic Bin Packing . 11

1.2 Structural Results and their Application 11
1.2.1 Scheduling on Identical Machines 12
1.2.2 Bin Packing in fpt time . 12

2 A Robust AFPTAS for Online Bin Packing with Polynomial Migration 13
2.1 Introduction . 13

2.1.1 Our Results: . 14
2.2 Robustness of approximate LPs . 15

2.2.1 Algorithmic Use . 18
2.3 Integer Programming . 21
2.4 AFPTAS for robust bin packing . 28

2.4.1 LP-Formulation . 28
2.4.2 Rounding . 29
2.4.3 Online Bin Packing . 31
2.4.4 Running Time . 40

2.5 Conclusion . 41

3 Fully Dynamic Bin Packing Revisited 42
3.1 Introduction . 42

3.1.1 Previous Results on Online Variants of Bin Packing 43
3.1.2 Our Contributions . 45

3.2 Lower Bound . 46
3.3 Dynamic Rounding . 48

3.3.1 Rounding . 49
3.3.2 Rounding Operations . 51
3.3.3 Algorithm for Dynamic Bin Packing 56
3.3.4 Large items . 59

3.4 Handling Small Items . 65
3.4.1 Only Small Items . 65
3.4.2 Handling small items in the general setting 71
3.4.3 Handling the General Setting . 79

4 Closing the Gap for Makespan Scheduling via Sparsification Techniques 82
4.1 Introduction . 82

4.1.1 Literature Review . 83
4.1.2 Our Contributions . 83

4.2 Preliminaries . 85
4.3 Structural Results . 86

6

4.4 Applications to Scheduling on Parallel Machines 88
4.4.1 Extension to other objectives . 92

4.5 Minimum makespan scheduling on uniform machines 97
4.5.1 Solution for the instance (J ,B′1 ∪ B2 ∪ B3) 99

5 About the Structure of the Integer Cone and its Application to Bin Packing104
5.1 Introduction . 104

5.1.1 Our results: . 105
5.1.2 Related results . 106

5.2 Proof of the main theorem . 107
5.2.1 Algorithmic application . 112

5.3 Lower Bound . 113
5.3.1 Preliminaries . 114
5.3.2 Proof of the lower bound . 114
5.3.3 Relation between Dist and the IRUP 119

7

Publications
The results of this thesis have appeared in the following publications:

[BJK15] S. Berndt, K. Jansen, and K. Klein. “Fully Dynamic Bin Packing Revis-
ited”. In: 18th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX). 2015, pp. 135–151.

[JK] K. Jansen and K. Klein. “About the Structure of the Integer Cone and its
Application to Bin Packing”. In: Symposium on Discrete Algorithms, SODA
(to appear).

[JK13] K. Jansen and K. Klein. “A Robust AFPTAS for Online Bin Packing
with Polynomial Migration”. In: International Colloquium on Automata,
Languages, and Programming(ICALP). 2013, pp. 589–600.

[JKV16] K. Jansen, K. Klein, and J. Verschae. “Closing the Gap for Makespan
Scheduling via Sparsification Techniques”. In: 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016. 2016, 72:1–72:13.

8

1 Introduction and Outline of the
Thesis

In the following we give an introduction and an outline of the thesis. Still, each of
the following chapters is self sufficient and contains a separate introduction where the
respective results are motivated and related work is mentioned.

Consider an integer linear program (ILP) of the form

min{‖x‖1 | Ax ≥ b, x ∈ Z≥0},

for some matrix A ∈ Zm×d and some vector b ∈ Zd. Integer programming is a fundamental
tool in the design of algorithms. Plenty of problems can be formulated by an ILP in a
way that a solution of the formulated ILP gives a solution of the problem. Especially
in combinatorial optimization, the use of ILPs has become very common in the design
of algorithms. In this algorithmic context, several natural question appear regarding
properties of ILPs. The first question would certainly be on how efficient a solution of the
given ILP can be computed. For general ILPs, Kannan [Kan87] provides an algorithm
with a good worst case complexity compared to the best known lower bound. However,
when it comes to ILP formulations that arise from a concrete algorithmic problem, one
might question if a direct use of the algorithm by Kannan is really the most efficient way
to solve the given ILP. One approach that we follow in this thesis, is to study so called
structural properties of a class of ILP formulations. By proving that there is a solution of
the given ILP with a certain structure, we are able to show that this class of ILPs can be
computed more efficiently. Another property of ILPs that we consider in this thesis arises
in the context of online algorithms. In online algorithms, the problem instance changes
over time, as for example new information is available. And as the problem instance
changes over time, so does the corresponding ILP formulation of the problem. This brings
up the question of the sensitivity of an ILP, which states if the current solution of an
ILP can be adjusted (with as small changes as possible) to a modified ILP, with slightly
changed parameters.

Applying our results from integer programming, we study two of the most famous and
fundamental problems from combinatorial optimization. One problem is the so called bin
packing problem. In the bin packing problem a set of n items I is given, where each item
i ∈ I has a size s(i) ∈ (0, 1]. The objective of the problem is to find a packing of the items
into as few unit sized bins as possible. The other problem that we consider is the so called
scheduling problem on identical machines. In this problem a set of n jobs J and a set of
m identical machines M is given, where each job j ∈ J has processing time pj ∈ Z>0.
The load of a machine is the total processing time of jobs assigned to it and our objective
is to minimize the makespan, that is, the maximum machine load over all machines.

Problems in combinatorial optimization are often NP-hard and so are the bin packing
problem and the scheduling problem. This means that under the assumption that P 6= NP ,
there is no polynomial time algorithm to solve these problems to optimality. Therefore,
those problems are often considered in the context of approximation, where solutions

9

are allowed that are only close to the optimum solution. We say an algorithm (for a
minimization problem) has an absolute approximation guarantee of α, if for every input I
of the problem, the algorithm returns a solution with A(I) ≤ α ·OPT (I), where OPT (I) is
the value of the optimum solution and A(I) is the value of the solution that is returned by
the algorithm. We say that an algorithm has an asymptotic approximation guarantee of α
if α = lim supx→∞ sup{ A(I)

OPT(I) | OPT (I) = x}. This leads us to the notion of (asymptotic)
polynomial time approximation schemes ((A)PTAS). A problem admits a (A)PTAS if
for every ε ∈ (0, 1] there exists a polynomial time algorithm Aε such that Aε has an
(asymptotic) approximation guarantee of 1 + ε .

In Section 2–4, we study the scheduling problem and online bin packing with migration
in the context of approximation. Another approach to tackle NP-hard problems that
we use in chapter 5 is parameterized complexity. In parameterized complexity problems
are classified according to their difficulty with respect to certain parameters of the input
instance. Therefore, we say an algorithm is fixed parameter tractable (fpt) for a parameter
p if there exists an algorithm with running time f(p) · enc(I)O(1) for some computable
function f of p which is independent of I and enc(I).

1.1 Sensitivity and its Application to Online Bin Packing
Let ILP (1) be of the form min{‖x‖1 | Ax ≥ b, x ∈ Z≥0} with an optimal solution y and
let ILP (2) be an ILP with changed right hand side b′. The question of the sensitivity is
whether there exists a solution y′ of ILP (2) such that the distance ‖y′ − y‖∞ between the
old solution y and the new solution y′ is possibly small. This question was already studied
by Cook et al. in 1986. The theorem by Cook et al. [Coo+86] states that for the case that
ILP (2) is feasible, there exists a solution y′ with ‖y′ − y‖∞ ≤ n∆(‖b′ − b‖∞ + 2), where
∆ is the largest subdeterminant of the matrix A. Sanders et al. [SSS09] found out that
this classical theorem of Cook et al. can be applied in the setting of online algorithms.
They presented an online algorithm for the scheduling problem on identical machines
when reassigning already assigned jobs is allowed. To give a measure on how many items
are allowed to be reassigned, Sanders et al. [SSS09] defined the migration factor. It is
defined by the complete size of all moved jobs divided by the size of the arriving one. As
a result, Sanders et al. obtained a PTAS with a migration factor of 2O(1

ε
log2 1

ε
).

1.1.1 A Robust AFPTAS for Bin Packing
Chapter 2 of this thesis is based on [JK13]. In this respective chapter we show that an
exponential term in the migration can be avoided in case of the bin packing problem.
As the use of the theorem of Cook et al. [Coo+86] leads to an exponential term in the
migration, we develop new ILP techniques that are based on the relaxed linear program
and approximate solutions. In the following we state our central observation which
basically states that we can find a feasible LP solution x′′ with improved objective value
such that ‖x′′ − x′‖1 is rather small.

Theorem. Consider the linear program min{‖x′‖1 |Ax ≥ b, x ≥ 0} and an approximate
solution x′ with ‖x′‖1 ≤ (1 + δ)LIN for some δ > 0, where LIN is the optimum value of
the LP. For every positive α ≤ δLIN there exists a solution x′′ with objective value of at
most ‖x′′‖1 ≤ (1 + δ)LIN − α and distance ‖x′ − x′′‖1 ≤ 2α(1/δ + 1).

10

It is easy to see that this theorem is useful in the analysis of sensitivity as the solution
with the improved objective value can be modified to cover a bigger right hand side. In
chapter 2, we build upon this theorem to find similar observations for ILPs and give an
perspective on how these observations can be applied algorithmically. As a result, we
present an APTAS for the bin packing problem with a migration factor of O(1

ε4
), which

improves upon the algorithm by Epstein and Levin [EL09] who gave an APTAS for the
bin packing problem with a migration factor of 2O(1

ε2
log 1

ε
).

1.1.2 Fully Dynamic Bin Packing
In chapter 3, which is based on [BJK15], we show that we can generalize the results
in chapter 2 to an online bin packing model, where also depart operations are allowed,
such that items have to be removed from the current packing. This model is called fully
dynamic bin packing.

In this chapter we essentially present new dynamic rounding techniques such that the
ILP techniques of chapter 2 can be applied. Furthermore, we discuss the difficulty of
small items in the fully dynamic setting. As a result we develop an asymptotic PTAS for
the problem with a migration factor of O(1

ε4
log 1

ε4
) and therefore improve upon the result

by Ivković and Lloyd [IL98] who gave a 5/4 approximation (rather than 1 + ε) for the
problem using O(log n) so called shifting moves. Furthermore, we give a lower bound on
the migration that is needed for an APTAS.

1.2 Structural Results and their Application
A major open problem in the field of combinatorial optimization was if the bin packing
problem can be solved in polynomial time when the number of different item sizes is
constant. Very recently Goemans and Rothvoss [GR14] gave a positive answer to that
question. They presented a polynomial time algorithm for the problem which relies on
very novel ideas for structure analysis and how this structure can be exploited to obtain
polynomial time algorithms. Moreover, their techniques and algorithms do not only apply
for the bin packing problem. They can be applied to a wide range of combinatorial
problems like preemptive scheduling or scheduling on heterogeneous machines.

In chapter 4 and 5 of this thesis we build upon the techniques by Goemans and Rothvoss
and present new structural results for the following ILP, which is defined for a given
Polytope P ⊂ Rd:

min ‖x‖1 (1.1)∑
p∈P∩Zd

xpp = b

xp ∈ Z≥0

Note that in the case that P is the knapsack polytope (i.e. P = {x ∈ Rd | s1x1+. . .+sdxd ≤
1} for sizes s1, . . . sd ∈ (0, 1]) , this ILP solves the bin packing problem. We show that the
presented structure results can be applied to the scheduling problem on identical machines
(as well as some generalizations of that model) and the bin packing problem to obtain
new efficient algorithms.

11

1.2.1 Scheduling on Identical Machines
As a main result of chapter 4, which is based on [JKV16], we obtain the following structure
result for ILP 1.1, when P ⊂ Rd is the knapsack polytope. Let supp(x) be the number of
non-zero components of a given solution x of ILP (1.1).

Theorem. If there exists a solution of ILP (1.1), where P is the knapsack polytope and
T is the maximum entry of vectors in P ∩Zd ,then there exists also a solution x such that

1. if xc > 1 then c ∈ P contains ≤ log(T + 1) different item sizes,

2. |supp(x)| ≤ 4(d+ 1) log(4(d+ 1)T),

3. ∑c∈Qc xc ≤ 2(d+ 1) log(4(d+ 1)T), where Qc ⊂ P denotes the set of configurations
c with more than log(T + 1) different item sizes.

Using this theorem, we present a PTAS for the scheduling problem on identical machines
with a running time 2O((1/ε) log4(1/ε)) +O(n log n). This improves upon the previous best
known PTAS by Jansen [Jan10] and basically closes the gap to the lower bound by Chen
et al. [CJZ13] which states that there is no PTAS with a running time of 2(1/ε)1−δ +poly(n)
for every δ > 0 assuming the exponential time hypothesis [CJZ13].

1.2.2 Bin Packing in fpt time
Based on [JK], we revisit in chapter 5 the structure theorem by Goemans and Rothvoss
[GR14] and prove the following structure result:

Theorem. Let VI be the vertices of the intergral knapsack polytope. If there exists a
solution of ILP (1.1), then there exists also a solution λ ∈ ZP∩Zd≥0 such that

1. λp ≤ 22O(d) ∀p ∈ (P ∩ Zd) \ VI

2. |supp(λ) ∩ VI | ≤ d · 2d

3. |supp(λ) \ VI | ≤ 22d

As a consequence of this structure theorem we obtain an algorithm for the bin packing
problem with running time |V |2O(d) · enc(I)O(1), where V is the set of vertices of the integer
knapsack polytope and enc(I) is the encoding length of the bin packing instance. The
algorithm is fixed parameter tractable, parameterized by the number of vertices of the
integer knapsack polytope |V |. This shows that the bin packing problem can be solved
efficiently when the underlying integer knapsack polytope has an easy structure, i.e. has
a small number of vertices. This is for example the case when all item sizes divide 1
(i.e. 1/2, 1/3, 1/4, . . .). However, in any case, the total number of vertices is bounded by
O(log ∆)d [HL83]. Therefore our algorithm has a worst case running time of (log ∆)2O(d) ,
which is identical to the running time of the algorithm by Goemans and Rothvoß [GR14].
In chapter 5 we show furthermore that the presented bounds of the structure theorem are
asymptotically tight. We give a construction of bin packing instances using new structural
insights and classical number theoretical theorems which yield the desired lower bound.

12

2 A Robust AFPTAS for Online Bin
Packing with Polynomial Migration

2.1 Introduction
The idea behind robust algorithms is to find solutions of an optimization problem that
are not only good for a single instance, but also if the instance changes in certain ways.
Instances change for example due to uncertainty or when new data arrive. With changing
parameters and data, we have the effort to keep as much parts of the existing solution
as possible, since modifying a solution is often connected with costs or may even be
impossible in practice. Achieving robustness especially for linear programming (LP) and
integer linear programming (ILP) is thus a big concern and a very interesting research
area. Looking at worst case scenarios, how much do we have to modify a solution if the
LP/ILP is changing? There is a result of Cook et al. [Coo+86] giving an upper bound for
ILPs when changing the right hand side of the ILP. Many algorithms in the theory of
robustness are based on this theorem.

As a concrete application we consider the classical online bin packing problem, where
it is additionally allowed to reassign already packed items. In this setting, items of size
si ∈ (0, 1] arrive over time and our objective is to assign these items into as few unit sized
bins as possible. As soon as a new item arrives, it is allowed to replace a set of already
packed items with bounded total size.

In the case of offline bin packing it is known that unless P = NP there is no polynomial
time approximation algorithm for offline bin packing that produces a solution better than
3
2OPT , where OPT is the minimum number of bins needed. The most common way
to measure the approximation guarantee of an algorithm for the bin packing packing
problem is the asymptotic approximation ratio. The asymptotic approximation ratio for
an algorithm A is defined by lim supx→∞ sup{ A(I)

OPT(I) | OPT (I) = x}. This leads to the
notion of asymptotic polynomial time approximation schemes (APTAS). Given an instance
of size n and a fixed parameter ε ∈ (0, 1], an APTAS has a running time of poly(n) and
asymptotic approximation ratio 1+ ε. A typical running time for this class of algorithms is
O(nf(1

ε
)) for an arbitrary function f . An APTAS is called an asymptotic fully polynomial

time approximation scheme (AFPTAS) if its running time is polynomial in n and in 1
ε
.

The first APTAS for offline bin packing was developed by Fernandez de la Vega & Lueker
[FL81], and Karmakar & Karp improved this result by giving an AFPTAS [KK82] (see
survey on bin packing [CGJ97]).

Since the introduction by Ullman of the classical online bin packing problem [Ull71],
there has been plenty of research (see survey [CW96] or [Cof+13] for an extensive survey
on various models). The best known algorithm has an asymptotic competitive ratio of
1.5815 [HS16] compared to the optimum in the offline case, while the best known lower
bound is 1.54037 [BBG12]. Due to the relatively high lower bound of the classical online
bin packing problem, there has been effort to extend the model with the purpose to
obtain an improved competitive ratio. Gambosi et al. [GPT00] presented a model where

13

they allow repacking of items. They presented an algorithm which achieves ratio 1.33 by
using at most 7 shifting moves each time a new item arrives. A shifting move consists
of moving a large item or a bundle of small items from one bin to another. Ivkovic and
Lloyd [IL98] presented an algorithm for fully dynamic bin packing having ratio 1.25. In
this online model, items may arrive and also depart. Their algorithm requires O(log n)
shifting moves. We revisit the fully dynamic model in chapter 3 of this thesis. In another
work Ivkovic and Lloyd [IL97] gave an algorithm which achieves approximation ratio 1 + ε
by using amortized O(log n) shifting moves. On the other hand, Balogh et al. [Bal+08]
proved that a lower bound of 1.3871 on the competitive ratio holds if an algorithm moves
at most O(1) items. Note that this lower bound does not contradict to the mentioned
results, since a shifting move may contain Θ(n) very small items.

The model we follow is the notion of the migration factor. Introduced by Sanders et al.
[SSS09] it allows repacking of arbitrary items while the number of items that are being
repacked is limited. To give a measure on how many items are allowed to be repacked
Sanders et al. [SSS09] defined the migration factor. It is defined by the complete size of
all moved items divided by the size of the arriving one. An (A)PTAS is called robust if
its migration factor is of size f(1

ε
), where f is an arbitrary function that only depends

on 1
ε
. Since the promising introduction of robustness, several robust algorithms have

been developed. Sanders et al. [SSS09] found a robust PTAS for the online scheduling
problem on identical machines, where the goal is to minimize the makespan. The robust
PTAS has constant but exponential migration factor 2O(1

ε
log2 1

ε
). In case of bin packing

Epstein and Levin [EL09] developed a robust APTAS for the classical bin packing problem
with migration factor 2O(1

ε2
log 1

ε
) and running time double exponential in 1

ε
. In addition

they proved that there is no optimal online algorithm with a constant migration factor.
Furthermore, Epstein and Levin [EL13] showed that the robust APTAS for bin packing
can be generalized to packing d-dimensional cubes into a minimum number of unit cubes.
Recently Epstein and Levin [EL14] also designed a robust algorithm for preemptive
online scheduling of jobs on identical machines, where the corresponding offline problem
is polynomial solvable. They presented an algorithm with migration factor 1− 1

m
that

computes an optimal solution whenever a new item arrives. Skutella and Verschae [SV16]
studied the problem of maximizing the minimum load given n jobs and m machines. They
proved that there is no robust PTAS for this machine covering problem with constant
migration. On the positive side, they gave a robust PTAS for the machine covering
problem in the case that migrations can be reserved for a later timestep. The algorithm
has an amortized migration factor of 2O(1

ε
log2 1

ε
).

2.1.1 Our Results:
An online algorithm is called fully robust if its migration factor is bounded by p(1

ε
), where

p is a polynomial in 1
ε
. The purpose of this chapter is to give methods to develop fully

robust algorithms. In Section 2 we develop a theorem for a given linear program (LP)
min {‖x‖1 | Ax ≥ b, x ≥ 0}. Given an approximate solution x′ with value (1 + δ)LIN
(where LIN is the minimum objective value of the LP) and a parameter α ∈ (0, δLIN], we
prove the existence of an improved solution x′′ with value (1 + δ)LIN − α and distance
‖x′′ − x′‖1 ≤ α(2/δ + 2). Furthermore, we extend these techniques to obtain similar
results for integral solutions of the ILP. Therefore, we define a correspondence between
a given fractional solution x′ and an integral solution y′. Then we are able to show the
existence of an improved integral solution y′′ with ‖y′′ − y′‖1 = O(α+m

δ
) (where m is the

14

number of inequalities of the ILP). Since both results are constructive, we propose also
algorithms to compute such improved solutions. Previous robust online algorithms require
an optimum solution of the corresponding ILP and use a sensitivity theorem by Cook et
al. [Coo+86]. This results in an exponential migration factor in 1

ε
([EL09; EL13; SV10;

SSS09]). In contrast to this we consider approximate solutions of the corresponding LP
relaxations and are able to use the techniques above to improve the fractional and integral
solutions. Furthermore we also prove an approximate version of a sensitivity theorem for
LPs with modified right hand side b and b′. During the online algorithm the number of
non-zero variables increases from step to step and would result in a large additive term.
To avoid this, we present algorithms in Section 2.3 to control the number of non-zero
variables of the LP and ILP solutions. We can bound the number of non-zero variables
and the additive term by O(εLIN) +O(1

ε2
).

In Section 2.4, we use the developed ILP techniques to develop a fully robust AFPTAS
for the robust bin packing problem. There is a natural ILP formulation Eisemann [Eis57]
for the problem such that each item size corresponds to one constraint of the ILP. Hence,
to actually obtain an ILP formulation with bounded size and use the developed techniques
from Section 2.2 and Section 2.3, we need to use a dynamic rounding. In that, the sizes of
the items are rounded such that the total number of different item sizes is bounded over all
time steps of the online algorithm. Therefore, as soon as a new item arrives, the dynamic
rounding decides to which value the new item is rounded. Our presented dynamic rounding
is a modification of the rounding techniques by Epstein and Levin [EL09]. However, one
difficulty that we have to overcome is that we use approximate solutions of the LP with
corresponding integral solutions rather than only optimal solutions of the ILP. This leads
to a rather sophisticated analysis of the algorithm. Finally, by combining the dynamic
rounding and the algorithm to get improved solutions of the LP and ILP, we are able to
obtain a fully robust AFPTAS for the online bin packing problem. The algorithm has
a migration factor of O(1/ε4) (or O(1/ε3) if the size of the arriving item is Ω(1)) and
running time polynomial in 1

ε
and t, where t is the number of arrived items. This resolves

an open question of Epstein and Levin [EL09]. We believe that our techniques can be
used for other online problems to obtain algorithms with low migration factors.

2.2 Robustness of approximate LPs
We consider a matrix A ∈ Rm×n

≥0 , a vector b ∈ Rm
≥0 and a cost vector c ∈ Rn

≥0. The goal in
a linear program (LP) is to find a x ≥ 0 with Ax ≥ b such that the objective value cTx is
minimal. We say xOPT is an optimal solution if cTxOPT = min

{
cTx|Ax ≥ b, x ≥ 0

}
and

we define LIN = cTxOPT . In general we suppose that the objective function of a solution
is positive and hence LIN > 0. We say x′ is an approximate solution with approximation
ratio 1 + δ for some δ ∈ (0, 1] if cTx′ ≤ (1 + δ)LIN . We will present Lemma 2.1 with
a general objective value c, but for the remaining part of the chapter we will assume
that cT = (1, 1, . . . , 1) and therefore cTxOPT =

∥∥∥xOPT
∥∥∥

1
= LIN . The following theorem is

central. Given an approximate solution x′, we want to find a solution x′′ with improved
objective value. To achieve robustness we have to provide a small distance between x′

and x′′. In the case of cT = (1, 1, . . . , 1) we prove that there is an approximate solution x′′
with improved objective value ≤ (1 + δ)LIN − α within distance ‖x′ − x′′‖1 = O(α

δ
).

Lemma 2.1. Consider the LP min
{
cTx|Ax ≥ b, x ≥ 0

}
and an approximate solution

15

x′ with cTx′ = (1 + δ)LIN for some δ > 0. For every positive α ≤ δLIN there exists
a solution x′′ with objective value of at most cTx′′ ≤ (1 + δ)LIN − α and distance
‖x′ − x′′‖1 ≤ α(1/δ + 1)‖x

′‖1+‖xOPT‖1
cT x′

. If cT = (1, 1, . . . , 1) then ‖x′ − x′′‖1 ≤ 2α(1/δ + 1).

Proof. We prove feasibility of the following LP 1.

(1) Ax ≥ b (LP 1)
(2) x ≥ 0

(3) x ≥ x′ − α(1/δ + 1)
cTx′

x′

(4) x ≤ x′ + α(1/δ + 1)
cTx′

xOPT

(5) cTx ≤ (1 + δ)LIN − α

The assumption α ≤ δLIN implies cTx′ = (1+δ)LIN ≥ α(1/δ+1) and hence α(1/δ+1)
cT x′

≤ 1.
Suppose that LP 1 is feasible and has a solution x′′. Due to constraints 3 and 4 the
distance between x′′ and x′ can be bounded. We obtain

−α(1/δ + 1)
cTx′

x′i ≤ x′′i − x′i ≤
α(1/δ + 1)

cTx′
xOPT
i

and therefore ‖x′ − x′′‖1 ≤ α(1/δ + 1)(∑i
x′i
cT x′

+ ∑
i
xOPT
i

cT x′
) = α(1/δ + 1)‖x

′‖1+‖xOPT‖1
cT x′

.

If cT = (1, 1, . . . , 1) then ‖x′‖1
cT x′

= 1 and ‖x
OPT‖1
cT x′

= LIN
(1+δ)LIN = 1

(1+δ) < 1. Therefore

α(1/δ + 1)‖x
′‖1+‖xOPT‖1

cT x′
< 2α(1/δ + 1).

It remains to prove feasibility of LP 1. Therefore, we construct a solution x′′ by
x′′ = (1− α(1/δ+1)

cT x′
)x′ + α(1/δ+1)

cT x′
xOPT . We prove that each constraint of LP 1 is satisfied

for x′′. Note that constraints 1 and 2 are satisfied since x′′ is a convex combination of
solutions x′ and xOPT . Constraint 3 is fulfilled since x′′ = x′− α(1/δ+1)

cT x′
x′+ α(1/δ+1)

cT x′
xOPT ≥

x′ − α(1/δ+1)
cT x′

x′ and constraint 4 is fulfilled since x′′ = x′ − α(1/δ+1)
cT x′

x′ + α(1/δ+1)
cT x′

xOPT ≤
x′ + α(1/δ+1)

cT x′
xOPT . Feasibility of constraint 5 is fulfilled as the objective value of x′′ is

bounded by cTx′′ = cTx′ − α(1/δ+1)
cT x′

(cTx′ − cTxOPT) = cTx′ − α(1/δ + 1) + α(1/δ+1)
(1+δ)LIN LIN =

cTx′ − α(1/δ + 1) + α(1/δ) = cTx′ − α.

From here on and for the rest of the chapter we suppose that cT = (1, 1, . . . , 1).

In many cases, we do not know the exact approximation ratio ‖x′‖1 = (1 + δ′)LIN
but the approximation guarantee ‖x′‖1 ≤ (1 + δ)LIN for some δ ≥ δ′. Assuming
‖x′‖1 ≥ α(1/δ + 1) we can use feasibility of LP 1 to prove the existence of a solution x′′

with ‖x′′‖1 ≤ (1 + δ)LIN − α and ‖x′′ − x′‖1 ≤ 2α(1/δ + 1).

Theorem 2.2. Consider the LP min
{
cTx|Ax ≥ b, x ≥ 0

}
and an approximate solution

x′ with ‖x′‖ ≤ (1 + δ)LIN for some δ > 0. For every positive α ≤ δLIN there exists
a solution x′′ with objective value of at most ‖x′′‖ ≤ (1 + δ)LIN − α and distance
‖x′ − x′′‖1 ≤ 2α(1/δ + 1).

16

Proof. Suppose x′ has approximation ratio ‖x′‖1 = (1 + δ′)LIN for some 0 < δ′ ≤ δ. By
Lemma 2.1, the following LP is feasible for any α′ ≤ δ′LIN .

Ax ≥ b

x ≥ 0

x ≥ x′ − α′(1/δ′ + 1) x′

‖x′‖1

x ≤ x′ + α′(1/δ′ + 1)x
OPT

‖x′‖1∑
xi ≤ (1 + δ′)LIN − α′

Setting α′ = α (1/δ+1)
(1/δ′+1) for δ > 0 yields feasibility for the following LP assuming ‖x′‖1 =

(1 + δ′)LIN .

(1) Ax ≥ b (LP *)
(2) x ≥ 0

(3) x ≥ x′ − α(1/δ + 1) x′

‖x′‖1

(4) x ≤ x′ + α(1/δ + 1)x
OPT

‖x′‖1

(5)
∑

xi ≤ (1 + δ′)LIN − α′

Here, we use α′(1/δ′+ 1) = α 1/δ+1
1/δ′+1(1/δ′+ 1) = α(1/δ+ 1). The condition that α′ ≤ δ′LIN

is equivalent to the condition that ‖x′‖1 ≥ α(1/δ + 1) since ‖x′‖1 = (1 + δ′)LIN and
α(1/δ + 1) = α′(1/δ′ + 1).

The distance ‖x′′ − x′‖1 ≤ 2α(1/δ + 1) follows as above from constraints 3 and 4 of LP
*. We derive the aimed objective value ‖x′′‖1 from the last constraint of LP * as

‖x′′‖1 ≤ (1 + δ′)LIN − α 1/δ + 1
1/δ′ + 1 = (1 + δ)LIN − (δ − δ′)LIN − α(1/δ + 1) 1

1/δ′ + 1
(1+δ′)LIN≥α(1/δ+1)

≤ (1 + δ)LIN − α(1/δ + 1)δ − δ
′

1 + δ′
− α(1/δ + 1) δ′

1 + δ′

= (1 + δ)LIN − α(1/δ + 1) δ

1 + δ′
= (1 + δ)LIN − α 1 + δ

1 + δ′
δ′≤δ
≤ (1 + δ)LIN − α.

Of course, one major application of Theorem 2.1 is to improve the approximation. But
we can also apply Theorem 2.1 to obtain a variant of the theorem of Cook et al. [Coo+86]
for the sensitivity analysis of an LP. Consider the following problem: Let x′ be a solution of
min {‖x‖1 | Ax ≥ b′, x ≥ 0}. Find a solution x′′ for LIN 2 = min {‖x‖1 | Ax ≥ b′′, x ≥ 0}
with changed right hand side such that ‖x′′ − x′‖1 is small. A theorem of Cook et al.
[Coo+86] states that there exists a solution x′′ satisfying the LP and ‖x′′ − x′‖∞ ≤
n∆ ‖b′′ − b′‖∞, where ∆ is the largest subdeterminant of A. This result is not satisfying
if ∆ and n are too big, especially if they are exponential in m. By letting loose of optimal
solutions we obtain a corollary that is much more appropriate to derive fully robust
algorithms. In contrary to the theorem of Cook et al. [Coo+86] the amount of change in
the solution does not depend on the determinant nor on the dimensions of A but on the
approximation ratio of the solution.

17

Corollary 2.3. Consider the linear program LP 1 defined by min {‖x‖1 |Ax ≥ b′, x ≥ 0}
and the linear program LP 2 defined by min {‖x‖1 |Ax ≥ b′′, x ≥ 0} with changed right hand
side b′′. Let x′ be an approximate solution x′ of LP 1 with ‖x′‖1 ≤ (1+δ)LIN 1 (0 < δ ≤ 1),
where LIN 1,LIN 2 is the value of an optimum solution of LP 1 respectively LP 2. Assuming
‖x′‖1 ≥ (1/δ + 3)

∥∥∥ b′′−b′
v

∥∥∥
1
, there exists a solution x′′ of LP 2 with ‖x′′‖1 ≤ (1 + δ)LIN 2

such that the distance between x′′ and x′ satisfies ‖x′′ − x′‖1 ≤ (2
δ

+ 7)
∥∥∥ b′′−b′

v

∥∥∥
1

where
vi = maxj Aij and b′′−b′

v
is a vector having components b′′i −b

′
i

vi
.

Proof. Suppose there is only one index i where b′i 6= b′′i . Consider the 2 cases:
Case 1: b′i < b′′i . We increase x′j by b′′i −b

′
i

vi
, where j is the index with the maximum

entry in row i. This way we make sure that the so modified x′ covers the larger b′′i since
now (Ax′)i = b′′i . Since we simply increase x′ to cover the larger b′′ we may worsen the
approximation by an additive term of at most b′′i −b

′
i

vi
.

Case 2: b′i ≥ b′′i . In this case we do not modify component i of x′, but since a smaller
b′′i has to be covered the optimal value of a solution may decrease. The inequality
LIN 2 < LIN 1 − b′′i −b

′
i

vi
leads to a contradiction since we can increase an optimal solution

xLIN1 of LP 1 to cover the larger b′ like we did in case 1. Modifying xLIN1 this way
would lead to a smaller optimal solution. Therefore the optimal solution of LP 1 can not
decline by more than b′′i −b

′
i

vi
. Using x′ as an approximate solution for LP 2 yields therefore

‖x′‖1 ≤ (1 + δ)(LIN 2 + b′′i −b
′
i

vi
) = (1 + δ)LIN 2 + (1 + δ) b

′′
i −b

′
i

vi
.

Iterating over all components 1 ≤ i ≤ m and changing the solution according to the
cases would result in an approximate solution of at most (1 + δ)LIN 2 + (1 + δ)

∥∥∥ b′′−b′
v

∥∥∥
1
.

Using Theorem 2.2 with α = (1 + δ)
∥∥∥ b′′−b′

v

∥∥∥
1

guarantees the existence of a solution x̂ for
LP 2 having value (1 + δ)LIN 2 and ‖x̂− x′‖1 ≤ (2/δ + 2)α = (2/δ + 2)(1 + δ)

∥∥∥ b′′−b′
v

∥∥∥
1
≤

(2/δ + 6)
∥∥∥ b′′−b′

v

∥∥∥
1
.

Note that if A is an integral matrix without zero rows, each component vi is at least 1.

2.2.1 Algorithmic Use
Let x′ be an approximate solution of the LP min {‖x‖1 |Ax ≥ b, x ≥ 0} with ‖x′‖1 ≤
(1+δ)LIN . In Theorem 2.1, we showed the existence of a solution x′′ near x′ with improved
objective value. Given approximate solution x′, we are looking now for algorithmic ways
to compute the improved solution x′′.

The presented algorithms obtain the LP and its approximate LP solution x′ as well
as α and δ as input. Both algorithms, Algorithm 2.4 and 2.6, compute an approximate
solution x′′ of the LP with improved objective value ‖x′′‖ ≤ (1 + δ)LIN − α. Algorithm
2.4 requires to compute an optimal solution x̂ of an LP as a subroutine, while Algorithm
2.6 requires only to compute an approximate solution of an LP as a subroutine. The
algorithms and theorems in this section are used in the following section to obtain results
for integer programming which are then used for the robust bin packing problem.

According to the bounds of LP * we split x′ into a fixed part xfix and a variable part
xvar. The variable part is defined according to LP * by xvar = α(1/δ+1)

‖x′‖ x′ and the fixed
part by xfix = x′ − xvar. We denote with bvar = b−A(xfix) the part which is not covered
by the fixed part of the solution. The following algorithm computes an improved solution

18

for bvar and combines the improved solution with xfix. Assuming ‖x′‖1 ≥ α(1/δ + 1),
Theorem 2.2 states that the objective value improves with this algorithm by α.

Algorithm 2.4.

1. Set xvar := α(1/δ+1)
‖x′‖ x′, xfix := x′ − xvar and bvar := b− A(xfix).

2. Solve the LP x̂ = min {‖x‖1 | Ax ≥ bvar, x ≥ 0}.

3. Generate a new solution x′′ = xfix + x̂.

If x̂ is a basic feasible solution, compared to x′, our new solution x′′ has up to m
additional non-zero components. Using the algorithm multiple times yields solutions with
more and more non-zero components. This is a problem in the case of bin packing. We
address the problem on how to bound the number of non-zero components in the next
section.

Theorem 2.5. Given solution x′ with ‖x′‖1 ≤ (1 + δ)LIN and ‖x′‖1 ≥ α(1/δ + 1).
Algorithm 2.4 returns a feasible solution x′′ with ‖x′′‖1 ≤ (1 + δ)LIN − α and the distance
between x′ and x′′ is ‖x′′ − x′‖1 ≤ 2α(1/δ + 1). The number of non zero components of x′′
increases at most by m compared to x′.

Proof. Solution x′′ is feasible because A(x′′) = A(xfix + x̂) = A(xfix) + A(x̂) ≥ A(xfix) +
bvar = b. For the approximation guarantee of x′′, we can use Theorem 2.2 and the
feasibility of LP LP *. Therefore note that the fixed part xfix is defined by the constraint
(3) of LP * which states that x′′ ≥ x′ − α(1/δ + 1) x′

‖x′‖1
. In step (2) of the algorithm a

solution x̂ is computed, which covers the remaining part that is not covered by xfix. Since
x̂ is computed optimally, x′′ = xfix + x̂ is a feasible solution of LP LP * and therefore has
an objective value of ≤ (1 + δ)LIN − α.

By definition ‖xvar‖1 is bounded by α(1/δ + 1) and since ‖x̂‖1 is and optimal solution,
its is bounded by α(1/δ + 1) as well. Hence the distance between x′ and x′′ can be
bouned by ‖x′′ − x′‖1 =

∥∥∥(xfix + x̂)− (xfix + xvar)
∥∥∥

1
= ‖x̂− xvar‖1 ≤ ‖x̂‖1 + ‖xvar‖1 ≤

2α(1/δ + 1).

In Algorithm 2.4 we use an optimal LP solver as a subroutine. In many cases, like for
example bin packing, the corresponding LP relaxation is hard to solve and the running
time for computing an optimal solution is very high. For the following algorithm it is
sufficient to compute the LP approximately, which in general can be performed more
efficiently. We assume that ‖x′‖1 ≥ 2α(1/δ + 1) because the double amount has to be
reassigned to achieve the same improvement in the approximation as in Algorithm 2.4.

Algorithm 2.6.

1. Set xvar := 2α(1/δ+1)
‖x′‖ x′, xfix := x′ − xvar and bvar := b− A(xfix).

2. Solve x̂ = min {‖x‖1 | Ax ≥ bvar, x ≥ 0} approximately with ratio (1 + δ/2).

3. If
∥∥∥xfix + x̂

∥∥∥
1
< ‖x′‖1 set x′′ := xfix + x̂ else x′′ = x′.

Theorem 2.7. Let x′ be a solution with ‖x′‖1 ≤ (1+δ)LIN and ‖x′‖1 ≥ 2α(1/δ+1). Then
Algorithm 2.6 returns a feasible solution x′′ with approximation guarantee (1 + δ)LIN − α
and ‖x′′ − x′‖1 ≤ 4α(1/δ + 1).

19

Proof. The property that ‖x′′ − x′‖1 ≤ 4α(1/δ + 1) follows by the same proof argument
as in Theorem 2.5 and the fact that xvar has the double size 2α(1/δ+ 1) compared to xvar
defined in Algorithm 2.4. It remains to show that at the end of the algorithm x′′ achieves
the aimed approximation guarantee ‖x′′‖1 ≤ (1 + δ)LIN −α. Suppose ‖x′‖ = (1 + δ′)LIN
for some δ′ ≤ δ. Using the assumption 2α(1/δ + 1) ≤ ‖x′‖1 ≤ (1 + δ)LIN implies that
2α ≤ (1+δ)LIN

(1/δ+1) = δLIN . Consider the case that 2δ′ ≤ δ. In this case x′′ has the aimed
approximation since ‖x′′‖1 ≤ ‖x′‖1 = (1+δ′)LIN ≤ (1+δ)LIN−δ/2LIN ≤ (1+δ)LIN−α
using 2α ≤ δLIN . Thus in the following we assume δ ≤ 2δ′. Suppose we solve the LP
in step 2 optimally. In this case, Algorithm 2.6 is identical to Algorithm 2.4 using an
improvement of 2α. By feasibility of LP * we know there exists a solution x̄′′ with
‖x̄′′‖ ≤ (1 + δ′)LIN − 2α(1/δ+1

1/δ′+1). This implies that an optimal solution x̂OPT of the
LP min {‖x‖1 | Ax ≥ bvar, x ≥ 0} is of size

∥∥∥x̂OPT
∥∥∥

1
≤ ‖xvar‖1 − 2α 1/δ+1

1/δ′+1 = 2α(1/δ +
1) − 2α 1/δ+1

1/δ′+1 . Solving the LP approximately with ratio (1 + δ/2), the objective value
of x̂ has an additional term δ/2

∥∥∥x̂OPT
∥∥∥

1
. The value of ‖x̂‖1 is therefore bounded by

‖x̂‖1 ≤
∥∥∥x̂OPT

∥∥∥
1

+ δ/2
∥∥∥x̂OPT

∥∥∥
1
≤ ‖xvar‖1 − 2α 1/δ+1

1/δ′+1 + α(1 + δ)− α(1+δ
1/δ′+1). Finally this

results in the approximation for xfix + x̂ as follows.∥∥∥xfix + x̂
∥∥∥

1
= ‖x′‖1 − ‖x

var‖1 + ‖x̂‖1

=(1 + δ′)LIN − 2α(1/δ + 1
1/δ′ + 1) + α(1 + δ)− α(1 + δ

1/δ′ + 1)

=(1 + δ)LIN − (δ − δ′)LIN − 2α(1/δ + 1
1/δ′ + 1) + α(1 + δ)− α(1 + δ

1/δ′ + 1)

LIN≥2α/δ
≤ (1 + δ)LIN − 2α(δ − δ

′

δ
) + α(1 + δ)− 2α(1/δ + 1

1/δ′ + 1)− α(1 + δ

1/δ′ + 1)

=(1 + δ)LIN + α(−2δ + 2δ′ + δ + δ2

δ
)− 2α(1/δ + 1

1/δ′ + 1)− α(1 + δ

1/δ′ + 1)

=(1 + δ)LIN − α + α(2δ′ + δ2

δ
)− 2α(1/δ + 1

1/δ′ + 1)− α(1 + δ

1/δ′ + 1)

=(1 + δ)LIN − α + α(2 + 2δ′ + δ2/δ′ + δ2 − 2− 2δ − δ − δ2

δ(1/δ′ + 1))

=(1 + δ)LIN − α + α(2δ′ + δ2/δ′ − 3δ
δ(1/δ′ + 1))

=(1 + δ)LIN − α + α(
(δ − δ′)(−2 + δ

δ′
)

δ(1/δ′ + 1))

≤(1 + δ)LIN − α

The last inequality holds because α((δ−δ′)(−2+ δ
δ′)

δ(1/δ′+1)) ≤ 0 since δ − δ′ ≥ 0 and −2 + δ
δ′
≤ 0⇔

δ ≤ 2δ′. By the last step of the algorithm we know that ‖x′′‖1 ≤
∥∥∥xfix + x̂

∥∥∥
1

and thus
‖x′′‖1 ≤ (1 + δ)LIN − α.

In some cases we may not want to get a guaranteed approximation, but a guarantee
that our solution x′ is getting smaller by some α. This works if the approximation ratio
of x′ is worse than 1 + δ. The following corollary states, that if we use Algorithm 2.6 on a
solution x′ with ‖x′‖1 = (1 + δ′)LIN for some δ′ ≥ δ the objective function of our new
solution x′′ decreases by at least α.

20

Corollary 2.8. Let ‖x′‖1 = (1 + δ′)LIN for some δ′ ≥ δ and ‖x′‖1 ≥ 2α(1/δ + 1). Then
Algorithm 2.6 returns a solution x′′ with ‖x′′‖1 ≤ ‖x′‖1 − α = (1 + δ′)LIN − α and
‖x′′ − x′‖1 ≤ 4α(1/δ + 1).

Proof. Suppose like in the proof of Theorem 4 that we solve the LP in step 2 optimally. In
this case, Algorithm 2.6 is identical to Algorithm 2.4 using improvement of 2α and therefore
by feasibility of LP * we know that it returns a solution x̄′′ with ‖x̄′′‖ ≤ (1 + δ′)LIN −
2α(1/δ+1

1/δ′+1). An optimal solution x̂OPT of the LP min {‖x‖1 | Ax ≥ bvar, x ≥ 0} is therefore
of size

∥∥∥x̂OPT
∥∥∥

1
≤ ‖xvar‖1−2α 1/δ+1

1/δ′+1 = 2α(1/δ+ 1)−2α 1/δ+1
1/δ′+1 . Since we actually solve the

LP approximately with ratio (1 + δ/2), solution x̂ has an additional term of δ/2
∥∥∥x̂OPT

∥∥∥
1

and the value is therefore bounded by ‖x̂‖1 ≤ ‖xvar‖1 − 2α 1/δ+1
1/δ′+1 + α(1 + δ)− α(1+δ

1/δ′+1)
according to the proof of Theorem 5. By construction of x′′ we get ‖x′′‖1 ≤

∥∥∥xfix + x̂
∥∥∥

1
=

(1+δ′)LIN−2α(1/δ+1
1/δ′+1)+α(1+δ)−α(1+δ

1/δ′+1). Since δ′ ≥ δ we know that−2α(1/δ+1
1/δ′+1) ≤ −2α

and that α(1 + δ)− α(1+δ
1/δ′+1) ≤ α. Hence ‖x′′‖1 ≤ (1 + δ′)LIN − α.

2.3 Integer Programming
In this section we discuss how the methods from the previous section can be applied to
integer programming. We consider pairs (x′, y′) of given fractional solution x′ and integer
solution y′ with y′i ≥ x′i for every index i. We say the integral solution y′ corresponds
to the fractional solution x′. The approximation guarantee of the integral solution y′

may involve some additive term C ∈ R+ i.e. ‖y′‖1 ≤ (1 + δ)LIN + C. Given a fractional
solution x′: By rounding each component x′i up, it is easy to get a feasible integer solution
y′ with an additional additive term ‖y′‖1 ≤ ‖x′‖1 +C, where C is the number of non-zero
components of x′.

Given a pair (x′, y′) with approximation guarantee ‖x′‖1 ≤ (1 + δ)LIN and ‖y′‖1 ≤
(1+δ)LIN +C for some C ∈ R+, our goal is to find a pair (x′′, y′′) with improved objective
value ‖y′′‖1 ≤ (1 + δ)LIN + C − α such that the distance between y′ and y′′ is bounded.
In this section we develop three algorithms to achieve this goal. Each algorithm obtains
x′, y′, α, δ and the LP as input. The first Algorithm 2.9 requires to reduce y′ by at most
α(1/δ + 2) while the additive term C is bounded by n. The second algorithm achieves
‖y′′ − y′‖ ≤ O(m+α

δ
) while the additive term is bounded by δLIN . Finally, we will give

Algorithm 2.13, which is a modification of Algorithm 2.11. Algorithm 2.13 will be used in
Section 2.4 for to obtain the robust AFPTAS for the bin packing problem. Each algorithm
builds upon the ideas from the previous one.

We will use methods from Section 2 to obtain an improved fractional solution x′′ from
x′. Note that the straight forward approach to simply round up each component x′′i leads
to a distance between y′′ and y′ that depends on the number of non-zero components and
hence is too high.

21

LP solution x′ LP solution x′′

ILP solution y′ ILP solution y′′

‖x′ − x′′‖1

= O(1
ε
)

‖y′ − y′′‖1

≤ ?

Like in the previous algorithms of Section 2, we assume that ‖x′‖1 ≥ α(1/δ + 1). We
require x′ to be a solution with approximation guarantee ‖x′‖1 ≤ (1 + δ)LIN and we
require y′ to be an integer solution with approximation guarantee ‖y′‖1 ≤ (1 + δ)LIN + n.
For every 1 ≤ i ≤ n we suppose that x′i ≤ y′i. For a vector z ∈ Rn

≥0, let V (z) be the set
of all integral vectors v = (v1, . . . , vn)T such that 0 ≤ vi ≤ zi. Given LP solution x′ and
integer solution y′ with the described properties, the algorithm performs in the following
way:

Algorithm 2.9.

1. If possible choose vector c ∈ V (y′ − x′) with ‖c‖1 = α and return y′′ = y′ − c and
x′′ = x′. Otherwise choose c ∈ V (y′ − x′) such that ‖c‖1 < α is maximized.
Set ȳ = y′ − c.

2. Set xvar := α(1/δ+1)
‖x′‖ x′, xfix := x′ − xvar and bvar := b− A(xfix).

3. Compute an optimal solution x̂ of the LP min {‖x‖1 | Ax ≥ bvar, x ≥ 0}.

4. Set x′′ = xfix + x̂ .

5. For each 1 ≤ i ≤ n set ŷi = max{dx′′i e, ȳi}.

6. If possible choose d ∈ V (ŷ − x′′) such that ‖d‖1 = α(1/δ + 1) otherwise choose
d ∈ V (ŷ − x′′) such that ‖d‖1 < α(1/δ + 1) is maximized.

7. Return y′′ = ŷ − d.

Explanation of the algorithm:
In step 1, the algorithm decreases components y′i with y′i− x′i ≥ 1. The fractional solution
x′′ is defined in steps 2-4, which are identical to Algorithm 2.4. In steps 6,7 the components
of ŷ are decreased in the same way as in step 1. The main idea of the algorithm lies in the
distinction of the cases between ‖d‖1 < α(1/δ + 1) and ‖d‖1 = α(1/δ + 1). In the case
that ‖d‖1 < α(1/δ + 1) the fractional solution x′′ is sufficiently close to y′′ to guarantee a
good approximation guarantee for y′′ and in the case that ‖d‖1 = α(1/δ + 1) the integral
solution y′′ has good approximation guarantee by comparing it to y′.

Theorem 2.10. Let x′ be a solution of the LP with ‖x′‖1 ≤ (1 + δ)LIN and ‖x′‖1 ≥
α(1/δ + 1). Let y′ be an integral solution of the LP with ‖y′‖1 ≤ (1 + δ)LIN + n where
y′i ≥ x′i for each i = 1, . . . , n. Then Algorithm 2.9 returns an integral solution y′′ with
‖y′′‖1 ≤ (1 + δ)LIN + n− α such that ∑y′′i <y

′
i
(y′i − y′′i) ≤ α(1/δ + 2).

Note that ∑y′′i <y
′
i
(y′i − y′′i) denotes the total sum where components of y′ need to be

reduced to obtain y′′. This term determines the migration factor in Section 2.4 for the
bin packing problem.

22

Proof. Feasibility: Feasibility for x′′ and approximation ‖x′′‖1 ≤ (1 + δ)LIN − α follows
from Theorem 3. Step 2,3 and 4 are identical to Algorithm 2.4. Feasibility for the integer
solution y′′ follows from the fact, that for every component i we have y′′i = ŷi − di ≥ x′′i
and hence Ay′′ ≥ Ax′′ ≥ b.
Size of reduction of y′: The only steps where components of y′ are changed are in
step 1, 5 and 6. In step 1 we change y′ to obtain ȳ, in step 5 we change ȳ to obtain
ŷ and in step 6 we change ŷ to obtain y′′. Summing up the change in each step leads
therefore to the maximum possible size of reduction of y′ compared to y′′. In step 1 there
are c ≤ α components of y′ which are being reduced. In step 5 no components of ȳ are
being reduced and in step 6 there are d ≤ α(1/δ + 1) components of ŷ which are being
reduced to obtain y′′. Hence there are at most α(1/δ + 2) components of y′ which are
being reduced to obtain y′′.
Approximation: It remains to prove that y′′ has approximation ratio (1+δ)LIN +n−α.
Case 1, ‖c‖1 = α: In this case, the algorithm returns in step 1 solution y′′ = ȳ with
‖y′′‖1 = ‖y′‖1 − α and the algorithm terminates. Case 2, ‖c‖1 < α: As c is chose
maximally, we have for every component i, that ȳi − x′i < 1 since c could be increased
otherwise. Furthermore, we know that ‖x′′‖1 ≤ (1 + δ)LIN −α as steps 2-4 are equivalent
to Algorithm 2.4.
Case 2.1, ‖c‖1 < α and ‖d‖1 < α(1/δ + 1): In this case y′′i − x′′i = ŷi − di − x′′i < 1
for i = 1, . . . , n, since ‖d‖1 is chosen maximally. Using ‖x′′‖1 ≤ (1 + δ)LIN − α and
y′′i < x′′i + 1 for i = 1, . . . , n we have ‖y′′‖1 ≤ (1 + δ)LIN + n− α.
Case 2.2, ‖c‖1 < α and ‖d‖1 = α(1/δ + 1): Let m̄ be the number of components with
x′′i > ȳi. Next we compare the vector ŷ with x′′. Using x′′ ≥ xfix and the definition of ŷ in
step 5 we obtain ‖ŷ − x′′‖1 = ∑

x′′i ≤ȳi(ȳi−x
′′
i)+∑x′′i >ȳi

(dx′′i e−x′′i) ≤
∑
x′′i ≤ȳi(ȳi−x

fix
i)+m̄.

The fact that ȳi − x′i < 1 for i = 1, . . . , n and ‖x′‖1 −
∥∥∥xfix∥∥∥

1
= ‖xvar‖1 ≤ α(1/δ + 1) and

the fact there are at most n− m̄ components with x′′i < ȳi yield that ∑x′′i ≤ȳi(ȳi − x
fix
i) =∑

x′′i ≤ȳi(ȳi − x′i + xvari) ≤ n − m̄ + ∑
x′′i ≤y

′
i
xvari ≤ n − m̄ + α(1/δ + 1). As a result we

can bound ‖ŷ − x′′‖1 ≤
∑
x′′i ≤ȳi(ȳi − x

fix
i) + m̄ ≤ n + α(1/δ + 1). Since y′′ = ŷ − d and

‖d‖1 = α(1/δ + 1), our integer solution y′′ has the aimed approximation guarantee of

‖y′′‖1 = ‖ŷ‖1 − ‖d‖1 ≤ ‖x
′′‖+ α(1/δ + 1) + n− ‖d‖1 = ‖x′′‖+ n ≤ (1 + δ)LIN + n− α.

The running time of the above algorithm depends on the number of non-zero components
and the time to compute an optimal solution of an LP. The algorithms computes an
integral solution y′′ with ‖y′′‖1 ≤ (1 + δ)LIN + n − α for given fractional and integral
solution. In many cases, like bin packing, the dimension n is very large and provides thus a
large additive term in the approximation. The following algorithm describes how this large
additive term can be avoided. On the other hand the difference between y′ and y′′ increases
to O(m+α

δ
). Let x′ be an approximate solution of the LP min {‖x‖1 | Ax ≥ b, x ≥ 0} with

‖x′‖1 ≤ (1 + δ)LIN and ‖x′‖1 ≥ α(1/δ+ 1). Furthermore let y′ be an approximate integer
solution of the LP with ‖y′‖1 ≤ (1 + 2δ)LIN and ‖y′‖1 ≥ (m+ 1)(1/δ+ 2) and y′i ≥ x′i for
i = 1, . . . , n. In addition we suppose that both x′ and y′ have exactly K ≤ δLIN non-zero
components. Our goal is now to compute a fractional solution x′′ and and integer solution
y′′ having improved approximation properties and still ≤ δLIN non-zero components.
Furthermore we denote with a1, . . . , aK the indices of the non-zero components y′aj such
that y′a1 ≤ . . . ≤ y′aK are sorted in non-decreasing order.

23

Algorithm 2.11.

1. Choose ` maximally such that the sum of smallest ` components y′a1 , . . . , y
′
a`

is∑
1≤i≤` y

′
ai
≤ (m+ 1)(1/δ + 2).

2. Set xvari =

x
′
i if i = aj for j ≤ `
α(1/δ+1)
‖x′‖ x′i else

and ȳi =

0 if i = aj for j ≤ `

y′i else
.

3. Set xfix = x′ − xvar, bvar = b− A(xfix) and compute an optimal solution x̂ of the
LP min {‖x‖1 | Ax ≥ bvar, x ≥ 0}.

4. Set x′′ = xfix + x̂.

5. For each 1 ≤ i ≤ n set ŷi = max{dx′′i e, ȳi}

6. If possible choose d ∈ V (ŷ − x′′) such that ‖d‖1 = α(1/δ + 1) otherwise choose
d ∈ V (ŷ − x′′) such that ‖d‖1 < α(1/δ + 1) is maximized.

7. Return y′′ = ŷ − d.

Explanation of the algorithm:
The main ingredient of this algorithm is to reassign the smallest components ya1 , . . . , ya`
in order to make sure that the total number of non-zero components of x′′ and y′′ does
not exceed δLIN . Those components are set to 0 in step 2 and then reassigned by the LP
in step 3. The remaining part of the algorithm is analogue to Algorithm 2.9.

Theorem 2.12. Let x′ be a solution of the LP with ‖x′‖1 ≤ (1 + δ)LIN and ‖x′‖1 ≥
α(1/δ + 1). Let y′ be an integral solution of the LP with ‖y′‖1 ≤ (1 + 2δ)LIN and
‖y′‖1 ≥ (m+ 1)(1/δ + 2). Solutions x′ and y′ have both exactly K non-zero components
and for each component we have x′i ≤ y′i. Then Algorithm 2.11 returns a fractional solution
x′′ with ‖x′′‖1 ≤ (1 + δ)LIN −α and an integral solution y′′ with ‖y′′‖1 ≤ (1 + 2δ)LIN −α.
Both x′′ and y′′ have the same number of non-zero components with x′′i ≤ y′′i and the
number of non-zero components is bounded by δLIN . The distance between y′′ and y′ is
bounded by ‖y′′ − y′‖1 = O(m+α

δ
).

Proof. Feasibility: Feasibility and approximation for the fractional solution x′′ follow
easily from correctness of Algorithm 2.4 and the fact that removing additional components
x′a1 , . . . , x

′
a`

and reassigning them optimally does not worsen the approximation. Each
integral component ŷi is by definition (step 5) greater or equal than x′′i . By choice of d
step 6 and 7 retain this property for y′′ and imply thus feasibility for y′′.

Distance between y′′ and y′: The only steps where components of y′ are changed
are step 2, 5 and 7. In step 2 we change y′ to obtain ȳ, in step 5 we change ȳ to
obtain ŷ and in step 7 we change ŷ to obtain y′′. Summing up the change in each step
leads therefore to the maximum possible distance between y′′ and y′. In step 2 of the
algorithm ` components of y′ are set to zero to obtain ȳ, which by the definition of `
results in a change of at most (m + 1)(1/δ + 2). We define L by L = ∑

1≤i≤` y
′
ai

with
0 ≤ L ≤ (m+ 1)(1/δ + 2). In step 5, the only components ȳi being changed are the ones
where x′′i is larger than ȳi. So the change in step 5 is bounded by ∑x′′i >ȳi

(dx′′i e − ȳi) =∑
x′′i >ȳi

(dxfixi + x̂ie − ȳi) ≤
∑
x′′i >ȳi

(dxfixi e − ȳi + dx̂ie) ≤
∑
x′′i >ȳi

dx̂ie by knowing that
dxfixi e − ȳi ≤ 0 since xfixi = ȳi = 0 if i = aj for a j ≤ ` or dxfixi e < dx′ie ≤ y′i.

24

Furthermore we can bound ∑
x′′i >ȳi

dx̂ie ≤ ‖x̂‖1 + m ≤ ‖xvar‖1 + m using that x̂ is an
optimal basic feasible solution. Now, ‖xvar‖1 can be bounded by L + α(1/δ + 1) (i.e.
we get L for the size of components x′a1 , . . . , x

′
aK

plus ∑i>`
α(1/δ+1)
‖x′‖1

x′ai ≤ α(1/δ + 1) for
the remaining ones). Therefore, we have ‖ŷ − ȳ‖1 ≤ L + α(1/δ + 1) + m. In step 7,
‖y′′ − ŷ‖1 = ‖d‖1 ≤ α(1/δ + 2) +m. In sum this makes a total change of at most

‖y′′ − y′‖1 ≤ (m+ 1)(1/δ + 2) + L+ α(1/δ + 1) +m+ α(1/δ + 2) +m

≤ 2(m+ 1)(1/δ + 2) + 2m+ α(2/δ + 3) = O(m+ α

δ
).

Number of components: The property that x′ and y′ have the same number of
non-zero components together with the property that y′i ≥ x′i implies that x′i > 0 whenever
y′i > 0. This property holds also for xfix and ȳ since a component ȳi is set to zero if and
only if xfixi = 0. Notice that y′′ = ŷ − d ≥ x′′. Suppose by contradiction that there is a
component i with x′′i = 0 and y′′i > 0, then ŷi = y′′i +di > 0 and by definition of ŷ we obtain
ȳi > 0. In this case we have xfixi > 0, which gives a contradiction to x′′i = 0 = xfixi + x̂i > 0.
Using the property that x′′ and y′′ have the same number of non-zero components, it is
sufficient to prove that the number of non-zero components of x′′ is limited by δLIN . Our
new solution x′′ is composed of xfix and x̂. Solution xfix has K − ` non-zero components,
since in step 2 we set ` components of xfix to zero. Being a basic feasible solution, x̂
has at most m non-zero components and hence x′′ has at most K + m − ` non-zero
components. If ` ≥ m, then x′′ has ≤ K ≤ δLIN non-zero components. So let ` < m:
The total number of non-zero components after step 4 is (K + m − `). We now prove
that this number is bounded by δLIN . Parameter ` is chosen to be maximal, therefore∑
i≤l+1 y

′
ai
≥ (m + 1)(1/δ + 2). Hence, the average size of components y′a1 , . . . , y

′
a`+1

is

greater than (m+1)(1/δ+2)
`+1

`+1≤m
≥ (m+1)(1/δ+2)

m
> 1/δ + 2. Since the components are sorted in

non-decreasing order, every component y′i with i ≥ ` + 1 has size > 1/δ + 2. Summing
over all non-zero components of y′ yields the following inequality:

‖y′‖1 =
K∑

i=`+2
y′ai + y′a`+1

+ L ≥ (K − `− 1)(1/δ + 2) + y′a`+1
+ L

≥ (K − `− 1)(1/δ + 2) + (m+ 1)(1/δ + 2) = (K − `+m)(1/δ + 2).

Using that ‖y′‖1 ≤ (1 + 2δ)LIN yields (1 + 2δ)LIN ≥ (K − `+m)(1/δ + 2). Dividing
both sides by (1/δ+2) gives (K−`+m) ≤ δLIN . This shows that the number of non-zero
components of x′′ and y′′ is at most δLIN .

Approximation: Case1: ‖d‖1 = α(1/δ + 2) +m
The following inequalities ‖ŷ‖1 ≤ ‖ȳ‖1 + L+ α(1/δ + 2) +m = ‖y′‖1 + α(1/δ + 1) +m
and ‖y′‖1 ≤ (1 + 2δ)LIN together yield the aimed approximation ‖y′′‖1 = ‖ŷ‖1 − ‖d‖1 =
‖ŷ‖1 − α(1/δ + 2)−m ≤ (1 + 2δ)LIN − α.
Case2: ‖d‖1 < α(1/δ + 2) +m
Since d is chosen maximally, y′′i − x′′i < 1 for every components i = 1, . . . , n. Since
‖x′′‖1 ≤ (1 + δ)LIN −α and y′′ has at most δLIN non-zero components ‖y′′‖1 is bounded
by (1 + δ)LIN − α + δLIN = (1 + 2δ)LIN − α.

Instead of using an optimal LP solution in Algorithm 2.9 and 2.11, we can solve the LP
approximately with a ratio of (1+δ/2). The following algorithm is basically a combination
of Algorithm 2.6 and Algorithm 2.11. We could also combine Algorithm 2.6 and Algorithm

25

2.9 to obtain similar results. We make the following assumption for the fractional solution
x′ and the corresponding integer solution y′: Let x′ be an approximate solution of the LP
min {‖x‖1 | Ax ≥ b, x ≥ 0} with ‖x′‖1 ≤ (1+δ)LIN and ‖x′‖1 ≥ 2α(1/δ+1). Let y′ be an
approximate integer solution of the LP with ‖y′‖1 ≤ LIN + 2C for some value C ≥ δLIN
and with ‖y′‖1 ≥ (m+2)(1/δ+2). Suppose that both x′ and y′ have only K ≤ C non-zero
components. For every component i we suppose that y′i ≥ x′i. Furthermore we are given
indices a1, . . . , aK , such that the non-zero components y′aj are sorted in non-decreasing
order i.e. y′a1 ≤ . . . ≤ y′aK .

Algorithm 2.13.

1. Set xvar := 2α(1/δ+1)
‖x′‖ x′, xfix := x′ − xvar and bvar = b− A(xfix).

2. Compute an approximate solution x̂ of the LP min {‖x‖1 | Ax ≥ bvar, x ≥ 0} with
ratio (1 + δ/2).

3. If
∥∥∥xfix + x̂

∥∥∥
1
≥ ‖x′‖1 then set x′′ = x′, ŷ = y′ and goto step 9

4. Choose the largest ` such that the sum of smallest components y′a1 , . . . , y
′
a`

is∑
1≤i≤` y

′
ai
≤ (m+ 2)(1/δ + 2).

5. For all i set x̄fixi =

0 if i = aj for j ≤ `

xfixi else
and ȳi =

0 if i = aj for j ≤ `

y′i else
.

6. Set x̄ = x̂+ x′` where x′` is a vector consisting of components xa1 , . . . , xa`. Reduce
the number of non-zero components to at most m+ 1.

7. x′′ = x̄fix + x̄.

8. For all non-zero components i set ŷi = max{dx′′i e, ȳi}

9. If possible choose d ∈ V (ŷ − x′′) such that ‖d‖1 = α(1/δ + 1) otherwise choose
d ∈ V (ŷ − x′′) such that ‖d‖1 < α(1/δ + 1) is maximized.

10. Return y′′ = ŷ − d.

Step 6 of the algorithm can be performed using a standard technique presented for
example in [BM98]. Arbitrary many components of x̄ can be reduced to m + 1 many
without making the approximation guarantee worse.

Explanation of the algorithm:
Since the algorithm solves the LP in step 2 approximately, some adjustments to Algorithm
2.11 had to be made. In step 3 of the algorithm it is tested if the solution xfix + x̂ actually
improves upon the old solution x′. The smallest components ya1 , . . . , ya` are defined in
step 4. They are reduced together with x̂ in step 6.

The following theorem and corollary is stated in a way such that it can be directly used
in the next section.

Theorem 2.14. Let x′ be a solution of the LP with ‖x′‖1 ≤ (1 + δ)LIN and ‖x′‖1 ≥
2α(1/δ + 1). Let y′ be an integral solution of the LP with ‖y′‖1 ≤ LIN + 2C for some
value C ≥ δLIN and with ‖y′‖1 ≥ (m + 2)(1/δ + 2). Solutions x′ and y′ have the same
number of non-zero components and for each component we have x′i ≤ y′i. The number
of non-zero components of x′ and y′ is K with K ≤ C. Then Algorithm 2.13 returns a

26

fractional solution x′′ with ‖x′′‖1 ≤ (1 + δ)LIN − α and an integral solution y′′ where one
of the two properties hold: ‖y′′‖1 = ‖y′‖1 − α or ‖y′′‖1 = ‖x′′‖1 + C. Both, x′′ and y′′

have at most C non-zero components and the distance between y′′ and y′ is bounded by
‖y′′ − y′‖1 = O(m+α

δ
).

Proof. Note that the first 3 steps are equivalent to Algorithm 2.6. In steps 4-6 the number
of non-zero components x′a1 , . . . , x

′
a`

are reduced. As we apply a method that does not
increase the objective value we obtain by Theorem 4 that ‖x′′‖1 ≤ (1 + δ)LIN − α. Steps
4-9 are similar to Algorithm 2.11. The main difference is that components x′a1 , . . . , x

′
a`

are
not assigned by the LP but are added to the LP solution afterwards in step 7.
Distance between y′′ and y′: As in Theorem 7, the steps where components of y′ are
changed are steps 5,8 and 10. By definition of ` the change of y′ in step 5 is bounded by
(m+ 2)(1/δ+ 2). As shown, the change in step 8 is bounded by ∑x′′i >ȳi

dxfixi + x̂ie − ȳi) ≤∑
x′′i >ȳi

dx̄ie ≤ ‖dx̄ie‖1 and ‖dx̄ie‖1 ≤ 2α(1/δ + 1) + L + 1, whereL = ∑
1≤i≤` y

′
ai

. The
change in step 10 is bounded by ‖d‖1 ≤ 2α(1/δ + 2) +m+ 1. Therefore the total change
between y′ and y′′ is bounded by O(m+α

δ
).

Number of components: According to Theorem 7, the number of nonzero components
of y′′ is equal to the number of non-zero components of x′′ which equals K − `+m+ 1
(the number of non-zero components of x̂ is bounded by m+ 1). We distinguish between
the two cases where ` ≥ m+ 1 and ` < m+ 1. In the case where ` ≥ m+ 1 the number
of components of x′′ is smaller than K and hence bounded by C. Consider the case where
` < m + 1. By definition of ` we know that L + y′`+1 ≥ (m + 2)(1/δ + 2). Using the
argument in the proof of Theorem 7, we obtain the following inequality:

‖y′‖1 =
k∑

i=`+2
y′i + y′`+1 + L = (K − `− 1)(1/δ + 2) + y′`+1 + L

≥ (K − `− 1)(1/δ + 2) + (m+ 2)(1/δ + 2) = (K − `+m+ 1)(1/δ + 2)

Using that ‖y′‖1 ≤ LIN + 2C yields LIN + 2C ≥ (K − ` + m + 1)(1/δ + 2). As
LIN+2C
(1/δ+2) = δLIN+2δC

(1+2δ)

C≥δLIN
≤ C+2δC

(1+2δ) = C we obtain that (K − `+m+ 1) ≤ LIN+2C
(1/δ+2) ≤ C.

Approximation: According to Theorem 7 we distinguish between the two cases where
‖d‖1 = 2α(1/δ + 2) +m+ 1 and ‖d‖1 < 2α(1/δ + 2) +m+ 1. In the second case where
‖d‖1 < 2α(1/δ + 2) +m+ 1 we know that ‖y′′‖1 is bounded by ‖x′′‖1 plus the number of
non-zero components of x′′ since d is chosen maximally. Hence ‖y′′‖1 ≤ ‖x′′‖1 +C. In the
case where ‖d‖1 = 2α(1/δ + 2) +m+ 1, we know ‖y′′‖1 ≤ ‖ŷ‖1 − 2α(1/δ + 2)−m− 1.
As ‖ŷ‖1 ≤ ‖ȳ‖1 + ‖dx̄e‖1 ≤ ‖y′‖1 + 2α(1/δ + 1) +m+ 1 we get ‖y′′‖1 ≤ ‖y′‖1 − α. Note
that we can also make the general claim for y′′ that ‖y′′‖1 ≤ LIN + 2C − α.

The following corollary is an analog to Corollary 2.8 which states what Algorithm 2.13
is doing if the approximation ratio of x′ is worse than (1 + δ). We will need this corollary
in the next section as we have no true control about the approximation ratio of x′. During
the bin packing algorithm new columns might appear in the LP, which might change the
optimal solution and therefore the approximation ratio of a solution x′.

Corollary 2.15. Let ‖x′‖1 = (1 + δ′)LIN for some δ′ ≥ δ and ‖x′‖1 ≥ 2α(1/δ + 1) and
let ‖y′‖1 ≤ LIN + 2C for some C ≥ δ′LIN and ‖y′‖1 ≥ (m + 2)(1/δ + 2). Solutions x′
and y′ have the same number of non-zero components and for each component we have
x′i ≤ y′i. The number of non-zero components of x′ and y′ is K with K ≤ C. Then
Algorithm 2.13 returns a fractional solution x′′ with ‖x′′‖1 ≤ ‖x′‖1 − α = (1 + δ′)LIN − α

27

and an integral solution y′′ where one of the two properties holds: ‖y′′‖1 = ‖y′‖1 − α or
‖y′′‖1 = ‖x′‖1 − α + C. Both x′′ and y′′ have at most C non-zero components and the
distance between y′′ and y′ is bounded by ‖y′′ − y′‖1 = O(m+α

δ
).

Proof. Note that steps 1-3 are basically identical to Algorithm 2.6. Hence Algorithm 2.13
returns by Corollary 6 a fractional solution x′′ with ‖x′′‖1 ≤ ‖x′‖1 − α. The distance
between the integral solutions y′ and y′′ are independent of the approximation ratio of
x′. Hence the distance between y′ and y′′ is according to Theorem 2.14 bounded by
O(m+α

δ
). The number of non-zero components of x′′ and y′′ is by the proof of Theorem

2.14 bounded by the number K ≤ C of non-zero components of y′ or by LIN+2C
1/δ+2 ≤ C. The

approximation guarantee for y′′, that ‖y′′‖1 ≤ ‖y′‖1−α follows if ‖d‖1 = 2α(1/δ+2)+m+1.
If ‖d‖1 < 2α(1/δ + 2) + m + 1 then ‖y′′‖1 ≤ ‖x′′‖1 + C ≤ ‖x′‖1 + C − α. We can also
make the general claim for y′′ that ‖y′′‖1 ≤ ‖y′‖1 − α.

2.4 AFPTAS for robust bin packing
The goal of this section is to give a fully robust AFPTAS for the bin packing problem using
the LP/ILP methods developed in the previous section. For that purpose, we show at
first the common way how one can formulate a rounded instance of bin packing as an ILP.
In Section 2.4.2, we present a rounding of the item sizes. Therefore, we define abstract
properties that need to be fulfilled by the rounding to obtain a good approximation
guarantee. In Section 2.4.3, we define operations that modify the rounding as new items
arrive over time. The presented dynamic rounding algorithm uses these operations to
obtain a feasible rounding that fulfills the proposed properties at every time step of the
algorithm. The crucial part is finally the analysis of the dynamic rounding in combination
with LP/ILP techniques. Since the ILP and its optimal value are in constant change due
to the dynamic rounding, it is difficult to give a bound for the approximation. We develop
techniques on how the approximation ratio can be analyzed and bounded.

The online bin packing problem is defined as follows: Let It = {i1, . . . it} be an instance
with t items at time step t ∈ N and let s : It → (0, 1] be a mapping that defines the
sizes of the items. Our objective is to find a function Bt : {i1, . . . , it} → N+, such that∑
i:Bt(i)=j s(i) ≤ 1 for all j and minimal maxi {Bt(i)} (i.e. Bt describes a packing of the

items into a minimum number of bins). We allow to move few items when creating a new
solution Bt+1 for instance It+1 = It ∪ {it+1}. Sanders et al. [SSS09] and also Epstein and
Levin [EL09] defined the migration factor to give a measure for the amount of repacking.
The migration factor is defined as the total size of all items that are moved between the
solutions divided by the size of the arriving item. Formally the migration factor of two
packings Bt and Bt+1 is defined by ∑j≤t:Bt(ij)6=Bt+1(ij) s(ij)/s(it+1).

2.4.1 LP-Formulation
Let I be an instance of bin packing with M different item sizes s1, . . . , sM . Suppose that
for each item ik ∈ I there is a size sj with s(ik) = sj. A configuration Ci is a multiset
of sizes {a(Ci, 1) : s1, a(Ci, 2) : s2, . . . a(Ci,m) : sM} with ∑

1≤j≤M a(Ci, j)sj ≤ 1, where
a(Ci, j) denotes how often size sj appears in configuration Ci. We denote by C the set of
all configurations. Let |C| = N . By dj we denote how many items of size sj have to be

28

covered by the LP. We consider the following LP relaxation of the bin packing problem:

min ‖x‖1∑
Ci∈C

xia(Ci, j) ≥ dj ∀1 ≤ j ≤M

xi ≥ 0 ∀1 ≤ i ≤ N

This LP-formulation was first described by Eisemann [Eis57]. The resulting ILP has n
variables which equals the number of configurations N and the number of inequalities
m is equal to the number of different item sizes M . Suppose that each size sj is larger
or equal than ε/2. Since the number of different item sizes is m, the number of feasible
packings for a bin is bounded by |C| = n ≤ (2

ε
+ 1)m. Obviously an optimal integral

solution of the LP gives a solution to the bin packing instance I. We denote by OPT (I)
the value of an optimal solution. An optimal fractional solution is a lower bound for the
optimal value. We denote the optimal fractional solution by LIN (I).

2.4.2 Rounding
We use a rounding technique based on the offline APTAS by Fernandez de La Vega
& Lueker [FL81]. As we plan to modify the rounding through the dynamic rounding
algorithm we give a more abstract approach on how we can round the items to obtain
an approximate packing. At first we divide the set of items into small ones and large
ones. An item i is called small if s(i) < ε/2, otherwise it is called large. Instance I is
partitioned accordingly into the large items IL and the small items IS. We treat small
items and large items differently. Small items can be packed using a greedy algorithm and
large items need to be rounded using a rounding function. We define a rounding function
as a function R : IL 7→ N which maps each large item i to a group j. By Rj we denote the
set of items being mapped to the same group j, i.e. Rj = {i ∈ IL | R(i) = j}. By λRj we
denote an item i with s(i) = max{s(ik) | ik ∈ Rj}. Given an instance I and a rounding
function R, we define the rounded instance IR by rounding the size of every large item
i ∈ Rj for j ≥ 1 up to the size s(λRj) of the largest item in its group. Items in R0 are
excluded from instance IR. We write sR(i) for the rounded size of item i in IR. We define
the following properties for a rounding function R.

(A) There is a constant c ∈ Q>0 such that max {R(i) | i ∈ IL} = c/ε2,

(B) |Ri| = |Rj| for all i, j ≥ 1,

(C) there is a constant d ∈ Q≥1 such that |R0| = d|R1|,

(D) s(i) ≤ s(j)⇔ R(i) ≥ R(j).

Any rounding function fulfilling property (A) has at most Θ(1/ε2) different item sizes
and hence instance IR can now be solved approximately using the LP relaxation. The
resulting LP relaxation has Θ(1/ε2) rows and can be solved approximately with accuracy
(1 + δ) using the max-min resource sharing algorithm [Gri+01] in polynomial time.
Based on the fractional solution we obtain an integral solution y of the LP with ‖y‖1 ≤
(1 + δ)LIN (IR) + C for some additive term C ≥ 0. We say a packing B corresponds to
a rounding R and solution y if items in R1, . . . , Rm are packed by B according to the
integral solution y of the LP. The LP is defined by instance IR. Items in R0 are each
packed in separate bins.

29

Lemma 2.16. Given instance I with items greater than ε/2 and a rounding function R
fulfilling properties (A) to (D), then OPT (IR) ≤ OPT (I) and |R0| ≤ 2d

c
εOPT (I). Let y

be an integral solution of the LP for instance IR with ‖y‖1 ≤ (1 + δ)LIN (I R) +C for some
value C ≥ 0, let B be a packing of I which corresponds to R and y and let ε′ = 2d

c
ε. Then

max
i
{B(i)} = ‖y‖1 + |R0| ≤ (1 + ε′ + δ)OPT (I) + C.

Proof. Let m = max {R(i) | i ∈ IL}. Let Ri be the set of items in rounding group i, which
corresponds to their rounded sizes and let Ri be the set of items in Ri, which corresponds
to their actual size. Instance IR contains every item from R1, . . . , Rm, while items from
R0 are excluded. By property (D) we know, that items in Ri are larger or equal than
items in Ri+1. By property (C) we find for every item in R1 a unique item in R0 with
larger or equal size, since the largest item in R1 to which all items are being rounded up
is smaller than any item in R0. Using property (B) for each item in Ri+1 we find a unique
larger item in Ri. Therefore we have for every item in the rounded instance IR an item
with larger size in instance I and hence

OPT (I R) ≤ OPT (I).

Since the packing B corresponds to a solution y, B gives a solution with maxi {B(i)} ≤
(1 + δ)LIN (IR) + C + |R0| bins and since LIN (IR) ≤ OPT (I R) ≤ OPT (I) we obtain
that maxi {B(i)} ≤ (1 + δ)OPT (I) + C + |R0|. Further, we can bound |R0|. Since every
item in I is of size at least ε/2 there is a lower bound for the optimum: OPT (I) ≥
ε/2∑0≤i≤m |Ri| ≥ ε/2∑0≤i≤m |R0|/d = ε(m+1)|R0|

2d ≥ c|R0|
2dε . Resolving this inequality,

we get |R0| ≤ 2εd
c

OPT (I) and hence |R0| ≤ ε′OPT (I). Since c and d are constant
we know |R0| ≤ ε′OPT (I) which implies together with the inequality maxi {B(i)} ≤
(1 + δ)OPT (I) + C + |R0| ≤ (1 + ε′ + δ)OPT (I) + C.

How can we handle the small items? Actually, small items do not make problems at all.
We can pack them via FirstFit [CGJ84] into the remaining space of the bins where large
items are packed. FirstFit is a greedy algorithm which simply places the current item
into the first bin having enough space. A new bin is opened if the item does not fit into
any used bin.

Lemma 2.17. [FL81] Let I be an instance with small and large items and given a packing
B of the large items with maxi {B(i)} ≤ K for some K ≥ 1. Packing the small items via
FirstFit on top of packing B gives a new packing of instance I which uses

max {K, (1 + ε)OPT (I) + 1}

bins.

Given instance I = {i1, . . . , it}, we define m by m = d1/ε2e if d1/ε2e is even and
otherwise m = d1/ε2e+ 1. By definition m is always even. For every instance I we find a
rounding function R with rounding groups R0, R1, . . . Rm which fulfills properties (A)-(D)
such that |R0| < 2|R1| and |R0| ≥ |R1|.

Algorithm 2.18.

1. Partition the large items according to the rounding function R in groups R0, . . . , Rm.

2. Round up the size of each large item i ∈ R1, . . . , Rm to s(λRi) to obtain instance IR.

30

3. Compute a fractional solution x of the LP defined by IR approximately with ratio
(1 + δ̄).

4. Round up each component of the fractional solution to obtain an integral solution y
for the LP for instance IR.

5. Pack items in R1, . . . , Rm according to the integral solution y.

6. Open a bin for each item i with R(i) = 0.

7. Pack the small items in IS via FirstFit.

A solution x of IR with ratio (1 + δ̄) having m + 1 non-zero components can be
computed using max-min resource sharing [Gri+01]. According to Lemma 2.16 and
Lemma 2.17, the algorithm described above produces a solution with approximation
≤ (1 + ε′ + δ̄)OPT +m+ 1 with ε′ ≤ 2d

c
ε ≤ 4ε.

2.4.3 Online Bin Packing
Let us consider the case where items arrive in an online fashion. As a new item arrives, the
current rounding has to be adapted to the new instance It∪{it+1}. We present operations
insert, create, and union that modify the rounding Rt. Based upon these operations we
present an algorithm that maintains a structure similar to the properties (A)–(D) of the
offline algorithm. Actually we prove that the obtained rounding can be embedded into
a rounding R̄t with properties (A)–(D). The used operations (insert, create and union)
worsen the approximation guarantee. We apply the results from the previous section to
maintain a constant approximation ratio that depends on ε. The presented rounding
technique is similar to the one used in [EL09]. In our algorithm we use approximate
solutions of ILPs in contrast to the APTAS of Epstein & Levin who solve the ILPs
optimally. Handling with approximate ILPs results in a different analysis of the algorithm
because many helpful properties of optimal solution are lost.

Note that in an online scenario of bin packing where large and small items arrive online,
small items do not need to be considered. We use the same techniques as in [EL09] to pack
small items. As a small item arrives we place it via FirstFit [CGJ84]. In this case FirstFit
increases the number of bins being used by at most 1 ([FL81]) and the migration factor is
zero as we repack no item. Whenever a new large item arrives several small items might
also need to be replaced. Every small item in a bin that is repacked by the algorithm, is
replaced via FirstFit. Packing small items with this strategy does not increase the number
of bins that need to be repacked as a large item arrives. Later on the migration factor
will solely be determined by the number of bins that are being repacked. More precisely,
we will prove that the number of bins, that need to be repacked is bounded by O(1/ε3).
Therefore we assume without loss of generality that every arriving item is large, i.e. has a
size ≥ ε/2 (see also [EL09]).

Maintaining properties (A)-(D) for the rounding is not easy online. Every time a new
large items arrives, an insertion operation is performed. In the insertion operations, the
arriving item is sorted into its corresponding group called Rj and then the largest item of
every following group is shifted to the next one (see Figure 1). This way, all items remain
sorted (property (D)) and every group except for R0 has the same cardinality as before.
However, simply applying the insertion operation is not enough. As more and more large
items arrive, R0 would grow arbitrarily large and therefore violate property (C). Hence

31

. . .

Rj+1 Rm

.

. . .
RjRj−1R1R0

λ1 λj−1 λj

it+1

Figure 2.1: Insert operation

we need to find a way to equally distribute items from R0 to the other groups. That is
what the other operations create and union are for. The insert operation is followed by a
create or a union operation, depending on the phase the algorithm is in. In the creation
phase, items are successively shifted out of R0 (see Figure 2). At the end of the creation
phase two new rounding groups R1 and R2 are created from R0. To make up for the
additionally created groups, we have the union phase. In the union phase, items of two
rounding groups Rj and Rj−2 are shifted to rounding groups Rj−1 and Rj−3 (see Figure
3). At the end of an union phase, the four rounding groups are merged into two rounding
groups with double cardinality and hence the total number of groups is reduced by 2.
Using this strategy we are able to maintain properties (A)-(D) when the iteration index is
a power of 2. However, in intermediate iterations we can only maintain these properties
approximately.

Let I = {i1, . . . , it} be the existing instance as defined above, let R be the corresponding
rounding function, let x be a fractional solution of the LP generated for the rounded
instance IR and let B be the current packing of items in I. We define two subgroups
of R0 denoted by R1.5 and R2.5 in the creation phase, which are also being modified by
the operations. Let I ′ = I ∪ {it+1} be the new instance. We use the following operations
that modify the current rounding R, the packing B and the fractional and integral LP
solution x and y. We denote with R′, B′, x′ and y′ the new rounding, packing and
fractional/integral LP solutions for instance I ′

Insertion Step

Find the largest j with s(λRj) ≥ s(it+1). Set R′(it+1) = j and B′(it+1) = B(λRj). For every
k = 1, . . . , j we define R′(λRk) = k − 1 and B′(λRk) = B(λRk−1). Set x′ = x and y′ = y.

Modified Insertion Step

During the creation phase, the algorithm uses the modified insertion operation. Find
the largest j (j = 1.5 and j = 2.5 included) with s(λRj) ≥ s(it+1). Set R′(it+1) = j and
B′(it+1) = B(λRj). For every k = 1, 4, 5, . . . , j we define R′(λRk) = k − 1 and B′(λRk) =
B(λRk−1). For every k = 1.5, 2, 2.5, 3 we define R′(λRk) = k − 0.5 and B′(λRk) = B(λRk−0.5).
Set x′ = x and y′ = y.

Creation Phase

The creation phase consists of k creation steps, where k = |R1|. At the end of each creation
phase we intend to have new rounding groups R1 and R2 created from the subgroups of

32

. . .
R3 Rm

.

R2R1R2.5R1.5
λ2.5λ1.5

R0

Figure 2.2: Create operation

. . .

Rj+1 Rm

.

RjRj−1Rj−2Rj−3
λj−2 λj

. . .

R0 Rj−4

Figure 2.3: Union operation

R0 named R1.5 and R2.5. At the beginning of the creation phase we always have |R0| = 2k
and R1.5 and R2.5 are empty. In the first step we change the rounding group for all items
i with R(i) = j ≥ 1 to R′(i) = j + 2. Furthermore we say the k largest items of R0 belong
to R1.5 and the k smallest items belong to R2.5. In each of the k creation steps we change
the rounding function for the largest items λR1.5 and λR2.5. Set R′(λR1.5) = 1 and R′(λR2.5) = 2.
Since items λR1.5 and λR2.5 are moved from R0 to R1 and R2 they have to be covered by
the LP. Therefore we increase the value of the LP solution by x′i = xi + 1, x′j = xj + 1
and y′i = yi + 1, y′j = yj + 1, where i, j are defined such that Ci = {1 : sR′(λR1.5)} and
Cj = {1 : sR′(λR2.5)}. For k 6= i, j set x′k = xk and y′k = yk.

Union Phase

The union phase consists of k union steps, where k = |R1|. At the end of each union
phase four roundings groups are merged into two rounding groups with double cardinality.
For the first union step we determine the largest index j with |Rj| < |Rj+1|. If there is no
such index then set j = m. In each step now set R′(λRj) = j − 1 and R′(λRj−2) = j − 3
and for the other items i we define R′(i) = R(i). Modify the packing for λRj and λRj−2 by
B′(λRj) = B(λRj−2) and place λRj−2 into a new bin. Modifying the packing this way implies
that we have to change one configuration of the fractional and integral LP solution x and
y and add one configuration for the additional bin. Let Ci be the configuration used by
B′(λj). Configuration Ci is replaced by a configuration Ĉi where an item of size sR′(λRj−2)
is exchanged by an item of size sR′(λRj). Furthermore we add another configuration C`
with an item of size sR′(λRj−2).

Note that each repacking that we perform in the operations is valid because we always
replace items by smaller ones.

The new packing B′ is created in a way that it corresponds to the new integer solution
y′. We have to prove that the solution y′ is feasible. Note also that in a creation operation
and in a union operation two additional non-zero components of size 1 might be created.

33

Lemma 2.19. Applying any operation above on a rounding R and ILP solution y with
corresponding packing B defines a new rounding R′ and a new integral solution y′. Solution
y′ is a feasible solution of the LP for instance IR′.

Proof. We have to analyze how the LP for instance IR′ changes in comparison to the LP
for instance IR.
Insertion Operation: The right hand side of the LP derived from R′ does not change
at all since the right hand side is determined by the cardinalities |R′1| = |R1|, . . . , |R′m| =
|Rm|. For some j ≥ 1 let Rj be the rounding group where the new item is inserted. By
construction of the insertion operation for each rounding group R` with ` = 1, . . . , j,
there is one item that is inserted into group R′` and one item that is shifted out. Let
ιR` be the second largest item of rounding group R`. Since the largest item λR` in group
R` is shifted to the next group, the size sR′(i) of item i in a group R` is defined by
sR′(i) = ιR` . Therefore each item in IR

′ is rounded to the previous smaller value since
s(ιR`) ≤ s(λR`). Hence configurations of the LP solution for IR can be transformed into
feasible configurations for IR′ i.e. ‖y′‖1 = ‖y‖1.
Creation Operation: Note that the rounding groups R`, for ` = 1, . . . ,m + 2 remain
identical; i.e. R′` = R`. The groups R′1 and R′2 get both a new item, but of smaller size.
Therefore the sizes sr(i) of all items i ∈ IR are not modified by a creation operation. We
have sR(i) = sR′(i) for items in groups R1, . . . , Rm+2. Therefore the matrix A = (a((i, j)))
remains the same. Only the right hand side b′ of the LP from instance IR′ is modified (i.e.
‖b′ − b‖1 = 2). As two new configurations are being added to x and y they cover exactly
the enhanced right hand side and are therefore a feasible solution of the LP from instance
IR
′ .

Union Operation: In the union operation we basically change only 4 rounding groups.
Suppose we merge rounding group Rj−3 with Rj−2 and rounding group Rj−1 with Rj.
While the size of |R′j−3| = |Rj−3|+ 1 and |R′j−1| = |Rj−1|+ 1 is incremented the size of
|R′j| = |Rj| − 1 and |R′j−2| = |Rj−2| − 1 is reduced. Similar to the creation operation,
this leads to a change in the right hand side of the LP. Two components of the right hand
side, which correspond to s(λR′j) and s(λR′j−2) are reduced by 1 and two other components,
which correspond to the s(λR′j−1) and s(λR′j−3) are increased by 1. Furthermore the sizes of
items in R′j and R′j−2 are equal or smaller than the sizes of items in Rj and Rj−2 since
sR′(i) = ιRj for all items i ∈ R′j and sR′(i) = ιRj−2 for all items i ∈ R′j−2. λRj and λRj−2 are
shifted to the next rounding groups. Consider a feasible configuration C of the LP for
instance IR. Then the modified configuration C̄ (with replaced item sizes) is also feasible
in the LP for instance IR′ . The new solutions x′ and y′ use the modified configurations
and cover the right hand side of the LP.

The operations are used as described in Algorithm 2.20 below. We apply the algorithm
on a rounding function R0 and instance I0 = {i1, . . . iT}. We suppose that |R0

0| = |R1
0| =

. . . = |Rm
0 | = K for some K > 0 and hence T = K(m + 1). An improve(a, x, y, δ̄)

statement stands for a call of Algorithm 2.13 with improvement α = a, fractional solution
x and integral solution y. The variable part xvar is defined by xvar = 2α(1/δ̄+1)

‖x‖1
x. After an

improve call the packing is changed according to the new integral solution. Since during
a creation operation and a union operation two additional non-zero components of size
1 might appear, we change the parameter ` of Algorithm 2.13 slightly to `′. Parameter
`′ is defined maximally such that the sum of the smallest components y′1, . . . , y′` are∑

1≤i≤` y
′
ai
≤ (m + 2)(1/δ + 2) + 2. The two additional non-zero components belong to

components y1, . . . y`+2 and are therefore reduced in step 6 along with the others.

34

Figure 2.4: Using Algorithm 2.20 on a rounding with m = 6

phases |R0| |R1| |R2| |R3| |R4| |R5| |R6| |R7| |R8|
start K K K K K K K 0 0

insertion 2K K K K K K K 0 0
creation K K K K K K K K K
union 2K K K K K 2K 2K 0 0

creation K K K K K K K 2K 2K
union 2K K K 2K 2K 2K 2K 0 0

creation K K K K K 2K 2K 2K 2K
union 2K 2K 2K 2K 2K 2K 2K 0 0

Algorithm 2.20.

for i := 1 to K do
get new item;
improve(1, x, y, δ̄); insert;

for i := 1 to m/2 do
/* Creation Phase */
for j := 1 to K do

get new item;
improve(1, x, y, δ̄);
modified insert;
create;

/* Union Phase */
for j := 1 to K do

get new item;
improve(2, x, y, δ̄);
insert;
union;

In Figure 4 we present how the algorithm changes the rounding groups for m = 6.
The table presents the state of each rounding groups after each phase. One can see that
after the execution of Algorithm 2.20 each rounding group has exactly 2K items and the
number of rounding groups is the same as before. Since the number of groups has to
be constant (property (A)), this is exactly what we want. We prove the general case for
arbitrary m: Every rounding has exactly 2K items after the execution of Algorithm 2.20.

Lemma 2.21. Let R0 be the rounding function at the beginning of the algorithm. Suppose
that every rounding group R0

0, . . . , R
m
0 has exactly K items. Then after the execution of

the algorithm above, the computed rounding function RT after T = K(m+ 1) insertions
has m+ 1 rounding groups R0

T , . . . , R
m
T with |R`

T | = 2K for ` = 0, . . . ,m.

Proof. The algorithm starts with a rounding function that contains exactly T items. After
the first K insertion steps rounding function RK is of the form: |R0

K | = 2K, |R1
K | =

K, . . . , |Rm
K | = K since K items are shifted to R0 while the cardinalities of the other

rounding groups remain the same. During the next K arrivals, the algorithm is in the
creation phase. We perform a creation operation after each insertion. For each item shifted

35

to R0, two items are shifted to the new created groups R1 and R2. At the end of the first
creation phase, the rounding function R2K satisfies |R0

2K | = K, |R1
2K | = K, . . . , |Rm+2

2K | =
K. In the following union phase, the rounding groups Rm+2, Rm+1 and Rm, Rm−1 are
merged together. For each union operation, one item is shifted from Rm+2 to Rm+1

and another from Rm to Rm−1. Since there are K insert operations in the union phase,
rounding group |R0

3K | = 2K, |R1
3K | = K, . . . , |Rm−2

K | = K, |Rm−1
K | = 2K, |Rm

K | = 2K. After
the next creation and union phase, the number of rounding groups is also m + 1. On
the other hand we have two additional groups |Rm−3

5K | = |Rm−2
5K | = 2K. After j < m/2

creation and union phases the rounding function R2jK+K is by induction of the form
|R0

2jK+K | = 2K, |R1
2jK+K | = K, . . . , |Rm−2j

2jK+K | = K, |Rm−2j+1
2jK+K | = 2K, . . . , |Rm

2jK+K | = 2K.
This can be proved by induction on j. For j = m/2−1 we get |R0

2mK−K | = 2K, |R1
2mK−K | =

K, |R2
2mK−K | = K, |R3

2mK−K | = 2K, . . . |Rm
2mK−K | = 2K. Therefore, after one additional

creation and union phase, we obtain m+1 groups |R`
2mK+K | = 2K for ` = 0, . . . ,m+1.

The following algorithm is our final online AFPTAS for the classical bin packing problem.
Let St be the sum of all item sizes s(i1) + . . .+ s(it).

Algorithm 2.22.

• While St ≤ (m + 2)(1/δ̄ + 4) and (m + 1) does not divide t get the new item it+1
and use the offline Algorithm 2.18 with an LP of approximation ratio (1 + δ̄).

• Afterwards use Algorithm 2.20 repetitively to obtain a packing for each instance

By using the offline AFPTAS for small instances, we can make sure that Algorithm
2.20 is started with a suitable rounding function. Since Algorithm 2.20 always produces a
rounding function fulfilling properties (A) to (D) and m+ 1 divides the current number
of items t, every rounding group R0, . . . , Rm has the same number of item sizes as the
algorithm leaves the while-loop in the first step.

In the following we give a bound for the rounding functions Rt that we produce in every
step of the algorithm. It remains to prove that the approximation during the execution
of Algorithm 2.20 can be bounded. Therefore we define a relation between rounding
functions. Let R and R̄ be two rounding functions, with R̄ having m̄ rounding groups
for some m̄ ∈ O(1/ε2). We can embed R into R̄ in symbols R ≤ R̄, if |R0| ≤ |R̄0| and
for every item i ∈ I \ R̄0 we have sR(i) ≤ sR̄(i). A relation R ≤ R̄ always implies that
|R0|+ OPT (IR) ≤ |R̄0|+ OPT (IR̄).

Lemma 2.23. For each t ∈ N+, we can embed Rt into a function R̄t, which fulfills
properties (A) to (D). Rounding function R̄t has parameter c ≥ 1/4 for property (A) and
d ≤ 2 for property (C).

Proof. Since we basically shift largest items to the following rounding group we designed
operations insertion, creation and union in a way that property (D) is never being
violated by any Rj for j ≤ t. As shown in the proof of Lemma 2.19 the number of
rounding groups remains constant between m + 1 at the end of a union phase and
m + 3 during the creation and union phase. Suppose the algorithm above has started
with a number of items T < t ≤ 2T and rounding groups R0

T , . . . R
m
T ,which are being

modified by the algorithm. We define the rounding function R = R̄t in which Rt can
be embeded in the following way: Function R̄ has rounding groups R̄0, . . . , R̄b

t
2K c−1 with

|R̄1| = . . . = |R̄b t
2K c−1| = 2K and |R̄0| = 2K + (t mod 2K). Since every rounding group

36

of R̄ except R̄0 has the same number of items, the rounding function R̄ fulfills property
(B). Rounding function R̄ fulfills property (C) because 2K ≤ |R̄0| ≤ 4K and |R̄1| = 2K.
This implies constant d ≤ 2. We prove property (A) by giving an upper and a lower bound
for maxi

{
R̄(i)

}
that are both in Θ(1

ε2
). Recall that T/K = m+ 1. On the one hand we

get maxi
{
R̄(i)

}
= b t

2K c − 1 ≤ t
2K − 1 ≤ 2T

2K − 1 ≤ (m+ 1)− 1 = m ≤ d 1
ε2
e+ 1 ≤ 1

ε2
+ 2.

On the other hand maxi
{
R̄(i)

}
= b t

2K c − 1 ≥ b T2K c − 1 ≥ bm+1
2 c − 1 ≥ m

2 − 1 = 1
2ε2 − 1.

Since ε ≤ 1/2 weg get c ≥ 1/4. It remains to prove that we can embed Rt in R̄ i.e. Rt ≤ R̄.
Since R0 never exceeds 2K items and 2K ≤ 4K we get |R0

t | ≤ |R̄0|. According to the proof
of Lemma 2.19 and the construction of the creation operation, Rt is during the creation
phase of the following form: |R0

t | = 2K − a, |R1
t | = a, |R2

t | = a, |R3
t | = . . . = |Rj

t | =
K, |Rj+1

t | = . . . = |Rm+2
t | = 2K for some a ≤ K and j ≤ m+ 2. Rounding function R̄ has

in every rounding group R̄j for j ≥ 1 exactly 2K items. Since property (D) holds for both
rounding function Rt and R̄, the rounding groups Rj+1

t , . . . , Rm+2
t contain the same items

as the last m+ 2− j rounding groups of R̄. Items in these groups are therefore rounded
identically. For some m̄ let R̄m̄ be the rounding group which contains the same items
as Rj+1

t . Since rounding groups R3
t , . . . , R

j
t each contain exactly K items, the rounding

groups R̄1, . . . , R̄m̄−1 contain the items of exactly two rounding groups. Therefore the
items in R̄1, . . . , R̄m̄−1 are rounded to a smaller size compared to using R̄. Items that
belong to R1

t and R2
t are contained in R̄0 and by definition do not need to be considered.

Hence, any rounding function Rt which is in an creation phase can be embedded into an
R̄. By construction of the union operation and the proof of Lemma 2.19, Rt is during the
union phase of the form |R0

t | = K + a, |R1
t | = . . . = |Rj−4

t | = K, |Rj−3
t | = K + a, |Rj−2

t | =
K − a, |Rj−1

t | = K + a, |Rj
t | = K − a, |Rj+1

t | = . . . = |Rm+2
t | = 2K for some a ≤ K and

j ≤ m+ 2. As shown in the union phase, items in Rj+1
t , . . . , Rm+2

t are rounded equally in
R̄. As the sum of Rj−1

t and Rj
t is 2K and the sum of Rj−3

t and Rj−2
t is 2K the items of

Rj−1
t and Rj

t and the items in Rj−3
t and Rj−2

t belong in R̄ to the same rounding group and
are hence rounded equally or to a smaller size compared to using R̄. Items in R1

t , . . . , R
j−4
t

are each of size K and are rounded equally or to a smaller size than using R̄ since the
same argument as in the creation phase holds.

Define ε̄ by ε̄ = 1
16ε. As R̄t fulfills property (A) to (D), we obtain by Lemma 2.16 and

Rt ≤ R̄t the following two equations for every t:

1. OPT (IR̄t) ≤ OPT (It)

2. |R0
t | ≤ |R̄0

t | ≤ 2d
c
εOPT (It) ≤ ε̄OPT (It)

Note that since ε ≤ 1/2 we have ε̄ ≤ 1
32 . Recall that Rt ≤ R̄t implies that |R0

t | +
OPT (IRt) ≤ |R̄0

t |+ OPT (IR̄t) and that LIN (IRt) +m ≥ OPT (IRt) (rounding up a basic
feasible solution). Let us discuss how the methods from the previous section apply to the
presented online algorithm. The procedure improve is implemented by using Algorithm
2.13 in order to get an improved solution for instance IRt . Algorithm 2.13 is applied using δ̄
as the approximation parameter. In the following lemma we prove that applying Algorithm
2.13 to improve a solution for IRt impacts the overall approximation ∆ = ε̄+ δ̄ + ε̄δ̄ in
the same way. We define C = ∆OPT (It) +m.

Theorem 2.24. Given a rounding function Rt and an LP defined for IRt. Let x be a
fractional solution of the LP with ‖x‖1 + |R0

t | ≤ (1 + ∆)OPT (It) and ‖x‖1 ≥ 2α(1/δ̄ + 1)
and ‖x‖1 = (1 + δ′)LIN (IRt) for some δ′ > 0. Let y be an integral solution of the LP

37

with ‖y‖1 ≥ (m + 2)(1/δ̄ + 2) and corresponding packing Bt such that maxiBt(i) =
‖y‖1 + |R0

t | ≤ (1 + 2∆)OPT (It) + m. Suppose x and y have the same number ≤ C of
non-zero components and for all components i we have yi ≥ xi. Then using Algorithm
2.13 on x and y returns new solutions x′ with ‖x′‖1 + |R0

t | ≤ (1 + ∆)OPT (It)− α and
integral solution y′ with corresponding packing B′t such that

max
i
B′t(i) ≤ (1 + 2∆)OPT (It) +m− α.

Further, both solutions x′ and y′ have the same number ≤ C of non-zero components and
for each component we have x′i ≤ y′i.

Proof. As shown in the following, Algorithm 2.13 maintains the property that x and
y have the same number of non-zero components and that xi ≤ yi since we can use
Theorem 2.14 and Corollary 2.15. By condition we have maxiBt(i) = ‖y‖1 + |R0

t | ≤
(1 + 2∆)OPT (It) + m. Since OPT (It) ≤ OPT (IRt) + |R0

t | we obtain for the integral
solution y that ‖y‖1 ≤ 2∆OPT (It) +m+ OPT (IRt) ≤ 2∆OPT (It) +m+ LIN (IRt) +m.
Hence by definition of C we get ‖y‖1 ≤ LIN (IRt) + 2C. This is one requirement to use
Theorem 2.14 or Corollary 2.15. We look at the cases separately where on the one hand
δ′ ≤ δ̄ and on the other hand δ′ > δ̄.

Case 1, δ′ ≤ δ̄: At first we give an upper bound for LIN (I Rt): We get LIN (I Rt) ≤
OPT (IRt) ≤ OPT (IRt) + |R0

t | ≤ OPT (IR̄t) + |R̄t
0| ≤ (1 + ε̄)OPT (It) using that Rt ≤ R̄t.

This implies that δ̄LIN (I Rt) ≤ δ̄OPT (IRt) ≤ (δ̄ + δ̄ε̄)OPT (It) < C. Algorithm 2.13
returns by Theorem 2.14 a solution x′ with ‖x′‖1 ≤ (1 + δ̄)LIN (I Rt)− α and an integral
solution y′ with ‖y′‖1 ≤ ‖x′‖1 + C or ‖y′‖1 ≤ ‖y‖1 − α. For the term ‖x′‖1 + |R0

t | we get
‖x′‖1 + |R0

t | ≤ (1 + δ̄)OPT (IRt)− α+ |R0
t |. Using that Rt can be embedded in R̄t we get

|R0
t |+ OPT (IRt) ≤ |R̄t

0|+ OPT (IR̄t) ≤ OPT (It) + ε̄OPT (It). Therefore

‖x′‖1 + |R0
t | ≤ δ̄OPT (IRt)− α + OPT (It) + ε̄OPT (It)
≤ (δ̄ + δ̄ε̄)OPT (It)− α + (1 + ε̄)OPT (It) ≤ (1 + ∆)OPT (It)− α.

In the case where ‖y′‖1 ≤ ‖x′‖1 + C we can bound the number of bins of the new
packing B′ by maxiB′t(i) = ‖y′‖1 + |R0

t | ≤ ‖x′‖1 + |R0
t | + C ≤ (1 + ∆)OPT (It) −

α + C = (1 + 2∆)OPT (It) + m − α. In the case that ‖y′‖1 ≤ ‖y‖1 − α we obtain
maxiB′t(i) = ‖y′‖1 + |R0

t | ≤ ‖y‖1−α+ |R0
t | = maxiBt(i)−α ≤ (1+2∆)OPT (It)+m−α.

Case 2, δ′ > δ̄: By condition we have ‖x‖1 + |R0
t | ≤ (1 + ∆)OPT (It). Since OPT (It) ≤

OPT (IRt) + |R0
t | we obtain for the solution x that ‖x‖1 ≤ ∆OPT (It) + OPT (IRt) ≤

∆OPT (It) + LIN (IRt) +m. Hence by definition of C this implies ‖x‖1 ≤ LIN (IRt) + C
and therefore δ′LIN (IRt) < C, which fulfills the requirements of Corollary 2.15. Using
Algorithm 2.13 on solutions x with ‖x‖1 = (1+δ′)LIN (IRt) and y with ‖y‖1 ≤ LIN (IRt)+
2C we obtain by Corollary 2.15 a fractional solution x′ with ‖x′‖1 ≤ ‖x‖1−α and an integral
solution y′ with either ‖y′‖1 ≤ ‖y‖1 − α or ‖y′‖1 ≤ ‖x‖1 +C − α. So for the new packing
B′ we can guarantee, that maxiB′t(i) = ‖y′‖1 + |R0

t | ≤ ‖y‖1−α+ |R0
t | = maxiBt(i)−α ≤

(1 + 2∆)OPT (It) +m−α if ‖y′‖1 ≤ ‖y‖1−α. If ‖y′‖1 ≤ ‖x‖1 +C −α, we can guarantee
that maxiB′t(i) = ‖y′‖1 + |R0

t | ≤ ‖x‖1 + |R0
t | + C − α ≤ (1 + ∆)OPT (It) + C − α ≤

(1 + 2∆)OPT (It) +m− α. Furthermore we know by Corollary 2.15 that x′ and y′ have
at most C non-zero components.

Set δ̄ = ε̄. Then ∆ = 2ε̄+ ε̄2 = O(ε). We get the central theorem:

Theorem 2.25. Algorithm 2.22 is a fully robust AFPTAS for the bin packing problem.

38

Proof. While instances are small Algorithm 2.22 uses the offline AFPTAS (see Algorithm
2.18). Using Algorithm 2.18, we get a packing Bt for instance It that uses at most
maxiBt(i) ≤ (1 + ε′ + δ̄)OPT (It) + 1

ε2
+ 1 bins, where ε′ ≤ 4ε < ε̄. Since the instance

is small the migration factor is bounded although we might repack every single item.
Let τ be the first index where the algorithm leaves the while-loop. By condition we
are in the while loop while St ≤ (m + 2)(1/δ̄ + 4) and t does not divide m + 1. Hence
Sτ ≤ (m + 2)(1/δ̄ + 4) + m = O(1/ε3). The migration factor for instances It with
t ≤ τ is therefore bounded by 2

ε
St = O(1/ε4) since every arriving item has size at

least ε/2. The approximation guarantee for small instances is bounded by maxiBt(i) ≤
(1 + δ̄ + ε̄)OPT (It) +m+ 1. In the following we consider large instances It with t ≥ τ .

Full robustness: The migration factor for some consecutive packings Bt and Bt+1 is
bounded by the migration of the improve-call plus the migration of an insertion and an
union operation. The operations create requires no shifting of items at all. As proven in
the previous section, an improve-call changes at most O(m/δ̄) components of a solution
y. Since the arriving item is large with size ≥ ε/2, changing a complete configuration
requires migration of at most O(1/ε). Combined this results in a migration factor for
the improve-call O(m/∆2) = O(1/ε4) if we use Algorithm 2.13. By construction of the
insertion operation it shifts in worst case one item per rounding group. Having O(1/ε2)
rounding groups this gives a migration factor of at most O(1/ε3). Therefore the complete
migration is bounded by O(1/ε4).

Running time: The running time is dominated by the max-min resource sharing
(see Algorithm 2.13) and the number of non-zero components. The number of non-zero
components is bounded by ∆OPT (It) +m ≤ ∆t+ 1

ε2
+ 1 and is therefore polynomial in 1

ε

and t. As the running time for the max-min resource sharing is also polynomial in 1
ε

(see
[Gri+01]), the running time is clearly polynomial in t and 1

ε
.

Approximation: We prove by induction that four properties hold for any packing Bt

and corresponding LP solutions. Given fractional solutions x and integral solution y of
the LP defined by instance IRt . Properties (2)-(4) are necessary to apply Theorem 2.25
and property (1) provides the wished approximation ratio for the bin packing problem.

1. packing Bt uses at most (1 + 2∆)OPT (It) +m bins

2. ‖x‖1 + |R0
t | ≤ (1 + ∆)OPT (It)

3. for every configuration i we have xi ≤ yi

4. x and y have the same number of non-zero components and that number is bounded
by ∆OPT (It) +m

To apply Theorem 2.24 we furthermore need a guaranteed minimal size for ‖x‖1 and
‖y‖1. According to Theorem 2.24 integral solution y needs ‖y‖1 ≥ (m+ 2)(1/δ̄ + 2) and
‖x‖1 ≥ 4(1/δ̄ + 1) as we set at most α = 2. By condition of the while-loop we know that
any instance St ≥ (m + 2)(1/δ̄ + 6). Since OPT (It) ≤ ‖y‖1 + |R0

t | ≤ ‖y‖1 + ε̄OPT (It)
we get ‖y‖1 ≥ (1 − ε̄)OPT (It) = (1 − δ̄)OPT (It). By OPT (It) ≥ (m + 2)(1/δ̄ + 4) we
finally get that ‖y‖1 ≥ (1− δ̄)(m+ 2)(1/δ̄ + 6) ≥ (m+ 2)(1/δ̄ + 6)− (m+ 2)(1 + 6δ̄) ≥
(m+ 2)(1/δ̄ + 6)− 4(m+ 2) = (m+ 2)(1/δ̄ + 2). Since OPT (It) ≤ ‖x‖1 +m+ |R0

t | we
obtain by the same argument that ‖x‖1 ≥ (m+ 2)(1/δ̄ + 2)−m ≥ (m+ 2)(1/δ̄ + 1) and

since m = 1/ε
ε≤δ̄
≥ 1/δ̄ ≥ 2 we get that ‖x‖1 ≥ 4(1/δ̄ + 1).

In the case that t = τ we have by the offline algorithm that the number of non-zero
components = m+ 1 ≤ ∆OPT (It) +m since OPT (It) ≥ St > 1/∆. The number of used

39

bins is bounded by maxiBt(i) < (1 + δ̄ + ε̄)OPT (It) + m + 1 < (1 + 2∆)OPT (It) + m
(note ε′ < ε̄) and property (2) is fulfilled for the same reason. Furthermore in the offline
algorithm every component xi is rounded up to obtain the integral component yi. Therefore
all properties (1)-(4) are fulfilled for t ≤ τ and the induction basis holds. Now let Bt

be a packing for t > τ for instance It with solutions x and y of the LP defined by IRt .
Suppose by induction that property (1)-(4) hold. We have to prove that these properties
also hold for Bt+1 and the corresponding solutions of the LP defined by IRt+1 . Packing
Bt+1 is created by using an improve call for x and y followed by an insertion operation
and optional, an union or a creation operation.
improve: Let x′ be the resulting fractional solution of Algorithm 2.13, let y′ be the
resulting integral solution of Algorithm 2.13 and let B′t be the corresponding packing.
Properties (1)-(4) are fulfilled for x, y and Bt by induction hypothesis. Hence we can
use Theorem 2.24. By Theorem 2.24 properties (1)-(4) are then still fulfilled for x′,
y′ and B′t and moreover we get ‖x′‖1 + |R0

t | ≤ (1 + ∆)OPT (It) − α and maxiB′t(i) ≤
(1 + 2∆)OPT (It) +m− α for α = 2 or α = 2.
operations: First we take a look at how the operations modify ‖x′‖1, ‖y′‖1 and |R0

t |. By
construction of the insertion operation, the LP solutions x′ and y′ are not modified while
|R0

t | increases by 1. By construction of the creation operation ‖x′‖1 and ‖y′‖1 are increased
by 2 and |R0

t | decreases by 2. By construction of the union operation, ‖x′‖1 and ‖y′‖1 are
increased by 1 and |R0

t | remains constant. Property (1): Let x′′ be the fractional solution
and y′′ be the integral solution after using operations on x′ and y′. Packing Bt+1 equals
maxiBt+1 = ‖y′′‖1 + |R0

t+1|. According to the operations an insertion operation yields
maxiBt+1 = ‖y′‖1 + |R0

t |+ 1 = maxiB′t + 1. An insertion operation followed by an union
operation yields maxiBt+1 = ‖y′‖1 + 1 + |R0

t |+ 1 = maxiB′t+ 2 and an insertion operation
followed by a creation operation yields maxiBt+1 = ‖y′‖1 + 2 + |R0

t | − 1 = maxiB′t + 1.
Algorithm 2.20 is designed that in the union phase maxiB′t ≤ (1+2∆)OPT (It)+m−2 since
there is an improve call with α = 2 and otherwise maxiB′t ≤ (1 + 2∆)OPT (It) +m− 1
since there is an improve call with α = 1. Therefore we have in any case that Bt+1
uses at most (1 + 2∆)OPT (It) + m ≤ (1 + 2∆)OPT (It+1) + m bins. The proof that
property (2) holds is symmetric since ‖x′‖1 increases in the same way as ‖y′‖1 and
‖x′‖1 + |R0

t | ≤ (1 + ∆)OPT (It) − α for α = 1 or α = 2. For property (3) note that in
the operations a configuration xi of the fractional solution is increased by 1 if and only if
a configuration yi is increased by 1. Therefore the property that for all configurations
x′′i ≤ y′′i retains from x′ and y′. By Theorem 2.24 the number of non-zero components
of x′ and y′ is bounded by ∆OPT (It) +m ≤ ∆OPT (It+1) +m. By construction of the
creation operation and union operation x′′ and y′′ might have two additional non-zero
components. But since these are being reduced by Algorithm 2.13 (note that we increased
the number of components being reduced in step 6 by 2), the LP solutions x′′ and y′′ have
at most ∆OPT (It+1) +m non-zero components which proves property (4).

2.4.4 Running Time
Storing items that are in the same rounding group in a heap structure, we can perform each
operation (insertion, creation and union) in time O(1

ε2
log(ε2t)). Furthermore Algorithm

2.13 needs to look through all non-zero components. The number of non-zero components is
bounded by O(εOPT) = O(εt). Main part of the complexity lies in finding an approximate
LP solution. Let M(n) be the time to solve a system of n linear equations. The running
time of max-min resource sharing is then in our case O(M(1

ε2
) 1
ε4

+ 1
ε7

) (see [Jan06]).

40

Therefore the running time of the Algorithm is O(M(1
ε2

) 1
ε4

+ εt+ 1
ε2

log(ε2t)).

2.5 Conclusion
Based on approximate solutions, we developed an analog to a theorem of Cook et al.
[Coo+86]. Our improvement helps to develop online algorithms with a migration factor
that is bounded by a polynomial in 1/ε, while algorithms based on Cook’s theorem usually
have exponential migration factors. We therefore applied our techniques to the famous
online bin packing problem. This led to the creation of the first fully robust AFPTAS for
an NP-hard online optimization problem. The migration factor of our algorithm is of size
O(1

ε4
), which is a notable reduction compared to previous robust algorithms. When a new

item arrives at time t the algorithm needs running time of O(M(1
ε2

) 1
ε4

+ εt+ 1
ε2

log(ε2t)),
where M(n) is the time to solve a system of n linear equations. Any improvement to the
max-min resource sharing algorithm based on the special structure of bin packing would
immediately speed up our online algorithm. We believe that there is room to reduce the
running time and the migration factor. Note for example that we give only a very rough
bound for the migration factor as the algorithm repacks O(1

ε3
) bins. Repacking these bins

in a more carefully way might lead to a smaller migration factor. We mention in closing
that the LP/ILP-techniques presented are very general and hence can possibly be used to
obtain fully robust algorithms for several other online optimization problems as well.

41

3 Fully Dynamic Bin Packing Revisited

3.1 Introduction
As in chapter 2 of this thesis we consider the classical bin packing problem where we are
given a set I of items with a size function s : I → (0, 1] and need to pack them into as
few unit sized bins as possible. In practice, the complete instance is often not known in
advance, which has lead to the definition of a variety of online versions of the bin packing
problem. First, in the classical online bin packing [Ull71], items arrive over time and have
to be packed on arrival. Second, in dynamic bin packing [CGJ83], items may also depart
over time. This dynamic bin packing model is often used for instance in
• the placement and movement of virtual machines onto different servers for cloud

computing [BB10; BKB07; SKZ08; VAN08; Jun+08; Jun+09],
• the development of guaranteed quality of service channels over certain multi-

frequency time division multiple access systems [Par+00],
• the placement of processes, which require different resources, onto physical host

machines [Sto13; SZ13],
• the resource allocation in a cloud network where the cost depends upon different

parameters [DKL14; LTC14].
Third and fourth, as in chapter 2, we may allow already packed items to be slightly
rearranged, leading to online bin packing with repacking (known as relaxed online bin
packing) [GPT00] and dynamic bin packing with repacking (known as fully dynamic bin
packing) [IL98]. See Figure 3.1 for a short overview on the different models.

Name Deletion Repacking
Online Bin Packing 7 7

Relaxed Online Bin Packing 7 3

Dynamic Bin Packing 3 7

Fully Dynamic Bin Packing 3 3

Figure 3.1: Overview of online models

The amount of repacking can be measured in different ways. We can either count the
total number of moved items at each timestep or the sum of the sizes of the moved items
at each timestep. If one wants to count the number of moved items, one typically counts a
group of tiny items as a single move. A shifting move [GPT00] thus involves either a single
large item or a bundle of small items in the same bin of total size s with 1/10 ≤ s ≤ 1/5.
Such a bundle may consists of up to Ω(n) (very small) items. If an algorithm measures
the repacking by shifting moves, a new tiny item may lead to a large amount of repacking.
In order to guarantee that a tiny item i with size s(i) only leads to a small amount of
repacking, one may allow to repack items whose size adds up to at most β · s(i). The
term β is called the migration factor [SSS09]. Note that shifting moves and migration
factor are incomparable in the sense that a small migration factor does not imply a small
number of shifting moves and vice versa.

42

In order to measure the quality of an online algorithm, we compare the costs incurred
by an online algorithm with the costs incurred by an optimal offline algorithm. An online
algorithm receives as input a sequence of items I = (i1, i2, i3, . . .) and decides at each
timestep t, where to place the item it without knowing future items it+1, it+2, We
denote by I(t) = (i1, i2, . . . , it) the instance containing the first t items of the instance I
and by opt(I(t)) the minimal number of bins needed to pack all items in I(t). Note that
the packings corresponding to opt(I(t)) and opt(I(t+1)) may differ significantly, as those
packings do not need to be consistent. For an online algorithm A, we denote by A(I(t))
the number of bins generated by the algorithm on the input sequence I(t). Note that A
must make its decision online, while opt(I(t)) is the optimal value of the offline instance.
The quality of an algorithm for the online bin packing problem is typically measured by its
asymptotic competitive ratio. An online algorithm A is called an asymptotic α-competitive
algorithm, if there is a function f ∈ o(opt) such that A(I(t)) ≤ αopt(I(t)) + f(I(t)) for
all instances I and all t ≤ |I|. The minimum α such that A is an asymptotic α-competitive
algorithm is called the asymptotic competitive ratio of A, denoted by ron

∞(A), i. e., the
ratio is defined as ron

∞(A) = min{α | A is an asymptotic α-competitive algorithm}. The
online algorithm A thus has a double disadvantage: It does not know future items and
we compare its quality to the optimal offline algorithm which may produce arbitrary
different packings at time t and time t+ 1. In order to remedy this situation, one may also
compare the solution generated by A to a non-repacking optimal offline algorithm. This
non-repacking optimal offline algorithm knows the complete instance, but is not allowed
to repack.

In this work, we present new results in fully dynamic bin packing where we measure the
quality of an algorithm against a repacking optimal offline algorithm and achieve a asymp-
totic competitive ratio of 1 + ε. The amount of repacking is bounded by O(1/ε4 log(1/ε)).
While we measure the amount of repacking in terms of the migration factor, we also prove
that our algorithm uses at most O(1/ε4 log(1/ε)) shifting moves. Our algorithm runs in
time polynomial in the instance size and in 1/ε.

3.1.1 Previous Results on Online Variants of Bin Packing
Online Bin Packing

The classical version of online bin packing problem was introduced by Ullman [Ull71].
In this classical model items arrive over time and have to be packed at their arrival,
while one is not allowed to repack already packed items. Ullman gave the very first online
algorithm FirstFit for the problem and proved that it its absolute competitive ratio is
at most 2. The next algorithm NextFit was given by Johnson [Joh74], who proved that
its absolute competitive is also at most 2. The analysis of the FirstFit algorithm was
refined by Johnson, Demers, Ullman, Garey and Graham [Joh+74a], who proved that
its asymptotic competitive ratio is at most 17/10. A revised version of FirstFit, called
Revised FirstFit was shown to have asymptotic competitive ratio of at most 5/3 by
Yao [Yao80]. A series of developments of so called harmonic algorithms for this problem
was started by Lee and Lee [LL85] where algorithms for the online bin packing problem
where the competitive ratio was improved step by step. The best known competitive
ratio was achieved by Heydrich and van Stee who gave an extension to this the harmonic
framework and presented an algorithm with a competitive ratio of 1.5815 for the online
bin packing problem. The lower bound on the absolute approximation ratio of 3/2 also
holds for the asymptotic competitive ratio as shown by Yao [Yao80]. This lower bound

43

was first improved independently by Brown [Bro79] and Liang [Lia80] to 1.53635 and
subsequently to 1.54014 by van Vliet [Vli92] and finally to 1.54037 by Balogh, Békési and
Galambos [BBG12]. For an extensive survey on online bin packing and various extension
of the model we refer to [Cof+13].

Relaxed Online Bin Packing Model

In contrast to the classical online bin packing problem, Gambosi, Postiglione and Talamo
[GPT00] considered the online case where one is allowed to repack items. They called
this model the relaxed online bin packing model and proved that the lower bound on the
competitive ratio in the classical online bin packing model can be beaten. They presented
an algorithm that uses 3 shifting moves and has an asymptotic competitive ratio of at
most 3/2, and an algorithm that uses at most 7 shifting moves and has an asymptotic
competitive ratio of 4/3. In another work, Ivković and Lloyd [IL97] gave an algorithm
that uses O(log n) amortized shifting moves and achieves an asymptotic competitive ratio
of 1 + ε. In this amortized setting, shifting moves can be saved up for later use and the
algorithm may repack the whole instance sometimes. Epstein and Levin [EL09] used the
measure of the migration factor to give an algorithm that has an asymptotic competitive
ratio of 1 + ε and a migration factor of 2O((1/ε) log2(1/ε)). We improved upon this result in
chapter 2 of this thesis. As shown, our algorithm uses only a polynonomial migration
factor of O(1/ε4) to achieve an asymptotic competitive ratio of 1 + ε.

Concerning lower bounds on the migration factor, Epstein and Levin [EL09] showed
that no optimal solution can be maintained while having a constant migration factor
(independent of 1/ε). Furthermore, Balogh, Békési, Galambos and Reinelt [Bal+08] proved
that a lower bound on the asymptotic competitive ratio of 1.3877 holds, if the amount
of repacking is measured by the number of items and one is only allowed to repack a
constant number of items.

Dynamic Bin Packing

An extension to the classical online bin packing model was given by Coffman, Garey and
Johnson [CGJ83], called the dynamic bin packing model. In addition to the insertion
of items, items also depart over time. No repacking is allowed in this model. It is
easily seen that no algorithm can achieve a constant asymptotic competitive ratio in
this setting. In order to measure the performance of an online algorithm A in this case,
they compared the maximum number of bins used by A with the maximum number of
bins used by an optimal offline algorithm, i. e., an algorithm A in this dynamic model
is called an asymptotic α-competitive algorithm, if there is a function f ∈ o(max-opt),
where max-opt(I) = maxt opt(I(t)) such that maxtA(I(t)) ≤ α ·maxt opt(I(t)) + f(I)
for all instances I. The minimum of all such α is called the asymptotic competitive ratio
of A. Coffman, Garey and Johnson modified the FirstFit algorithm and proved that its
asymptotic competitive ratio is at most 2.897. Furthermore, they showed a lower bound
of 2.5 on the asymptotic competitive ratio when the performance of the algorithm is
compared to a repacking optimal offline algorith, i. e., maxt opt(I(t)).

In the case that the performance of the algorithm is compared to an optimal non-
repacking offline algorithm, Coffman, Garey and Johnson showed a lower bound of 2.388.
This lower bound on the non-repacking optimum was later improved by Chan, Lam and
Wong [CLW08] to 2.428 and even further in a later work by Chan, Wong and Yung
[CWY09] to 2.5.

44

Fully Dynamic Bin Packing

We consider the dynamic bin packing when repacking of already packed items is allowed.
This model was first investigated by Ivković and Lloyd [IL98] and is called fully dynamic bin
packing. In this model, items arrive and depart in an online fashion and limited repacking
is allowed. The quality of an algorithm is measured by the asymptotic competitive ratio as
defined in the classical online model (no maximum is taken as in the dynamic bin packing
model). Ivković and Lloyd developed an algorithm that uses amortized O(log n) many
shifting moves (see definition above) to achieve an asymptotic competitive ratio of 5/4.

Related Results on the Migration Factor

Since the introduction of the migration factor, several problems were considered in
this model and different robust algorithms for these problems have been developed.
Following the terminology of Sanders, Sivadasan and Skutella [SSS09] we sometimes use
the term (online) approximation ratio instead of competitive ratio. Hence, we also use the
term asymptotic polynomial time approximation scheme (APTAS) and asymptotic fully
polynomial time approximation scheme (AFPTAS) in the context of online algorithms. If
the migration factor of an algorithm A only depends upon the approximation ratio ε and
not on the size of the instance, we say that A is an robust algorithm.

In the case of online bin packing, Epstein and Levin [EL09] developed the first robust
APTAS for the problem using a migration factor of 2O((1/ε2) log(1/ε)). They also proved that
there is no online algorithm for this problem that has a constant migration factor and that
maintains an optimal solution. The APTAS by Epstein and Levin was later improved by
by our work that we presented in chapter 2. Recall that we developed a robust AFPTAS
for the problem with migration factor O(1/ε4). It was shown by Epstein and Levin [EL13]
that their APTAS for bin packing can be generalized to packing d-dimensional cubes into
unit cubes. Sanders, Sivadasan and Skutella [SSS09] developed a robust polynomial time
approximation scheme (PTAS) for the scheduling problem on identical machines with a
migration factor of 2O((1/ε) log2(1/ε)).

Skutella and Verschae [SV16] studied the problem of maximizing the minimum load
given n jobs and m identical machines. They also considered a fully dynamic setting,
where jobs may depart. They showed that there is no robust PTAS for this machine
covering problem with constant migration. The main reason for the nonexistence is due to
very small jobs. However, by using an amortized migration factor, they were able to obtain
a PTAS for the problem with amortized migration of 2O((1/ε) log2(1/ε)). Their techniques
could also be applied to the scheduling problem considered by Sanders, Sivadasan and
Skutella [SSS09].

3.1.2 Our Contributions
Main Result

In this work, we investigate the fully dynamic bin packing model. We measure the amount
of repacking by the migration factor ; but our algorithm uses a bounded number of shifting
moves as well. Since the work of Ivković and Lloyd from 1998 [IL98], no progress was made
on the fully dynamic bin packing problem concerning the asymptotic competitive ratio
of 5/4. It was also unclear whether the number of shifting moves (respectively migration
factor) must depend on the number of packed items n. In this chapter we give positive

45

answers for both of these concerns. We develop an algorithm that provides at each time
step t an approximation guarantee of (1 + ε) opt(I(t)) +O(1/ε log(1/ε)). The algorithm
uses a migration factor of O(1/ε4 · log(1/ε)) by repacking at most O(1/ε3 · log(1/ε)) bins.
Hence, the generated solution can be arbitrarily close to the optimum solution, and for
every fixed ε the provided migration factor is constant (it does not depend on the number
of packed items). The running time is polynomial in n and 1/ε. In case that no deletions
are used, the algorithm has a migration factor of O(1/ε3 · log(1/ε)), which further improves
the migration factor of O(1/ε4) that we presented in chapter 2 of this thesis. Since the
number of repacked bins is bounded, so is the number of shifting moves as it requires at
most O(1/ε) shifting moves to repack a single bin. Furthermore, we prove that there is no
asymptotic approximation scheme for the online bin packing problem with a migration
factor of o(1/ε) even in the case that no items depart (and even if P = NP).

Technical Contributions

We use the following techniques to achieve our results:
• In order to obtain a lower bound on the migration factor in Section 3.2, we construct

a series of instances that provably need a migration factor of Ω(1/ε) in order to have
an asymptotic approximation ratio of 1 + ε.
• In Section 3.3, we show how to handle large items in a fully dynamic setting.

The fully dynamic setting involves more difficulties in the rounding procedure, in
contrast to the setting where large items may not depart, treated in chapter 2. A
simple adaption of the dynamic techniques developed in chapter 2 does not work (see
introduction of Section 3.3). We modify the offline rounding technique by Karmarkar
and Karp [KK82] such that a feasible rounding structure can be maintained when
items are inserted or removed. This way, we can make use of the LP-techniques
developed in chapter 2.
• In Section 3.4, we explain how to deal with small items in a dynamic setting. In

contrast to the setting where departure of items is not allowed, the fully dynamic
setting provides major challenges in the treatment of small items. An approach is
thus developed where small items of similar size are packed near each other. We
describe how this structure can be maintained as new items arrive or depart. Note
that the algorithm of Ivković and Lloyd [IL98] relies on the ability to manipulate
up to Ω(n) very small items in constant time. See also their updated work for a
thorough discussion of this issue [IL09].
• In order to unify the different approaches for small and large items, in Section 3.4.2,

we develop an advanced structure for the packing. We give novel techniques and
ideas to manage this mixed setting of small and large items. The advanced structure
makes use of a potential function, which bounds the number of bins that need to be
reserved for incoming items.

3.2 Lower Bound
We start by showing that there is no robust (asymptotic) approximation scheme for bin
packing with migration factor of o(1/ε), even if P = NP . This improves the lower bound
given by Epstein and Levin [EL09], which states that no algorithm for bin packing, that
maintains an optimal solution can have a constant migration factor. Previously it was

46

not clear whether there exists a robust approximation algorithm for bin packing with
sublinear migration factor or even a constant migration factor.

Theorem 3.1. For a fixed migration factor γ > 0, there is no robust approximation
algorithm for bin packing with asymptotic approximation ratio better than 1 + 1

6dγe+5 .

Proof. Let A be an approximation algorithm with migration factor γ > 0 and c = dγe.
We will now construct an instance such that the asymptotic approximation ratio of A
with migration factor c is at least 1 + 1

6c+5 . The instance contains only two types of items:
An A-item has size a = 3/2

3c+2 and an B-item has size b = 1/2− a/3. For a M ∈ N, let

IM = [(b, Insert), (b, Insert), . . . , (b, Insert)︸ ︷︷ ︸
2M

, (a, Insert), (a, Insert), . . . , (a, Insert)︸ ︷︷ ︸
2M(c+1)

]

be the instance consisting of 2M insertions of B-items, followed by 2M(c+ 1) insertions
of A-items. Denote by r(t) the approximation ratio of the algorithm at time t ∈ N. The
approximation ratio of the algorithm is thus r = maxt{r(t)}.

The insertion of the B-items produces a packing with β1 bins containing a single B-item
and β2 bins containing two B-items. These are the only possible packings and hence
β1 + 2β2 = 2M . The optimal solution is reached if β1 = 0, β2 = M . We thus have an
approximation ratio of

r(2M) =: r1 = β1 + β2

M
= 2M − β2

M
,

which is strictly monotonically decreasing in β2.
The A-items, which are inserted afterwards, may either be put into bins which only

contain A-items or into bins which contain only one B-item. The choice of a, b implies
2 · b+ a > 1 which shows that no A-item can be put into a bin containing two B-items.
Denote by α the number of bins containing only A-items. The existing B-items may not
be moved as the choice of a, b implies b > c · a > γ · a. At most 1/2+a/3

a
= c + 1 items of

type A may be put into the bins containing only one B-item. Note that this also implies
that a bin which contains one B-item and c+ 1 items of type A is filled completely. The
optimal packing thus consists of 2M of those bins and the approximation ratio of the
solution is given by

r(2M(c+ 2)) =: r2 = β1 + β2 + α

2M = 2M − 2β2 + β2 + α

2M = 2M − β2 + α

2M .

There are at most β1 · (c + 1) items of type A which can be put into bins containing
only one B-item. The remaining (2M − β1)(c+ 1) items of type A therefore need to be
put into bins containing only A-items. We can thus conclude α ≥ (2M − β1)(c+ 1)a =
(2M − 2M + 2β2)(c + 1)a = 2β2(c + 1)a. As noted above, 1/2+a/3

a
= c + 1 and thus

(c+ 1)a = 1/2 + a/3. Hence the approximation ratio is at least

r2 = β1 + β2 + α

2M ≥ 2M − β2 + 2β2(1/2 + a/3)
2M =

2M + β2(−1 + 1 + 2a/3)
2M = 2M + β2 · 2a/3

2M ,

which is strictly monotonically increasing in β2.

47

As r ≥ max{r1, r2}, a lower bound on the approximation ratio is thus given if r1 = r2

by 2M−β
M

= 2M+β·2a/3
2M for a certain β. Solving this equation leads to β = M

a/3+1 . The lower
bound is thus given as

r ≥ 2M − β
M

= 2− 1
a/3 + 1 = 1 + 1

6c+ 5

by the choice of a. Note that this lower bound is independent from M . Hence, r is also a
lower bound on the asymptotic approximation ratio of any algorithm as the instance size
grows with M .

We obtain the following corollary:

Corollary 3.2. There is no robust/dynamic (asymptotic) approximation scheme for bin
packing with a migration factor γ ≤ 1/6(1/ε− 11) = Θ(1/ε).

3.3 Dynamic Rounding
The goal of this section is to give a robust AFPTAS for the case that only large items
arrive and depart. In the first subsection we present a general rounding structure. In
the second subsection we give operations on how the rounding can be modified such that
the general structure is preserved. We give the final algorithm in Section 3.3.3, which is
performed, when large items arrive or depart. Finally, the correctness is proved by using
the linear program (LP)/integer linear program (ILP) techniques that we developed in
chapter 2.

In chapter 2 of this thesis we developed a dynamic rounding technique based on an
offline rounding technique from Fernandez de la Vega and Lueker [FL81]. However, a
simple adaption of these techniques does not work in the dynamic case where items may
also depart. In the case of the offline rounding by Fernandez de la Vega and Lueker, items
are sorted and then collected in groups of the same cardinality. As a new item arrives
in an online fashion, this structure can be maintained by inserting the new item to its
corresponding group. By shifting the largest item of each group to the left, the cardinality
of each group (except for the first one) can be maintained. However, shifting items to
the right whenever an item departs leads to difficulties in the LP/ILP techniques. As
the rounding for a group may increase, patterns of the existing LP/ILP solution might
become infeasible. We overcome these difficulties by developing a new dynamic rounding
structure and operations based on the offline rounding technique by Karmarkar and Karp
[KK82]. We felt that the dynamic rounding technique based on Karmarkar and Karp is
easier to analyze since the structure can essentially be maintained by shifting items.

A bin packing instance consists of a set of items I = {i1, i2, . . . , in} with size function
s : I → [0, 1]∩Q. A feasible solution is a partition B1, . . . , Bk of I such that ∑i∈Bj s(i) ≤ 1
for j = 1, . . . , k. We call a partition B1, . . . , Bk a packing and a single set Bj is called a
bin. The goal is to find a solution with a minimal number of bins. If the item i is packed
into the bin Bj , we write B(i) = j. The smallest value of k ∈ N such that a packing with
k bins exists is denoted by opt(I, s) or if the size function is clear by opt(I). A trivial
lower bound is given by the value size(I, s) = ∑

i∈I s(i).

48

3.3.1 Rounding
To obtain an LP formulation of fixed (independent of |I|) dimension, we use a rounding
technique based on the offline AFPTAS by Karmarkar and Karp [KK82]. In order
to use the technique for our dynamic setting, we give a more general rounding. This
generalized rounding has a certain structure that is maintained throughout the algorithm
and guarantees an approximate solution for the original instance. First, we divide the set
of items into small ones and large ones. An item i is called small if s(i) < ε/14, otherwise
it is called large. Instance I is partitioned accordingly into a set of large items IL and a
set of small items IS. We treat small items and large items differently. Small items can
be packed using an algorithm presented in Section 3.4.1 while large items will be assigned
using an ILP. In this section we discuss how to handle large items.

First, we characterize the set of large items more precisely by their sizes. We say
that two large items i, i′ are in the same size category if there is a ` ∈ N such that
s(i) ∈ (2−(`+1), 2−`] and s(i′) ∈ (2−(`+1), 2−`]. Denote the set of all size categories by W .
As every large item has size at least ε/14, the number of size categories is bounded by
log(1/ε) + 5. Next, items of the same size category are characterized by their block, which
is either A or B and their position r ∈ N in this block. Therefore, we partition the set
of large items into a set of groups G ⊆ W × {A,B} × N. A group g ∈ G consists of a
triple (`,X, r) with size category ` ∈ W , block X ∈ {A,B} and position r ∈ N. The
rounding function is defined as a function R : IL 7→ G that maps each large item i ∈ IL to
a group g ∈ G. By g[R] we denote the set of items being mapped to the group g, i. e.,
g[R] = {i ∈ IL | R(i) = g}.

Let q(`,X) be the maximal r ∈ N such that |(`,X, r)[R]| > 0. If (`,X1, r1) and
(`,X2, r2) are two different groups, we say that (`,X1, r1) is left of (`,X2, r1), if X1 = A
and X2 = B or X1 = X2 and r1 < r2. We say that (`,X1, r1) is right of (`,X2, r2) if it is
not left of it.

(`, A, 0) . . . (`, A, q(`, A)) (`, B, 0) . . . (`, B, q(`, B)) s ∈ [2−(`+1), 2−`)

Figure 3.2: Grouping in (`, A, ·) and (`, B, ·)

Given an instance (I, s) and a rounding function R, we define the rounded size function
sR by rounding the size of every large item i ∈ g[R] up to the size of the largest item in
its group, hence sR(i) = max {s(i′) | R(i′) = R(i)}. We denote by opt(I, sR) the value of
an optimal solution of the rounded instance (I, sR).

Depending on a parameter k, we define the following properties for a rounding function R.
(a) For each i ∈ (`,X, r)[R] we have 2−(`+1) < s(i) ≤ 2−`.
(b) For each i ∈ (`,X, r)[R] and each i′ ∈ (`,X, r′)[R] and r < r′, we have s(i) ≥ s(i′).
(c) For each ` ∈ W and 1 ≤ r ≤ q(`, A) we have |(`, A, r)[R]| = 2`k and |(`, A, 0)[R]| ≤

2`k.
(d) For each ` ∈ W and each 0 ≤ r ≤ q(`, B)− 1 we have |(`, B, r)[R]| = 2`(k − 1) and

furthermore |(`, B, q(`, B))[R]| ≤ 2`(k − 1).
Property (a) guarantees that the items are categorized correctly according to their sizes.
Property (b) guarantees that items of the same size category are sorted by their size and
properties (c) and (d) define the number of items in each group.

49

Lemma 3.3. For k =
⌊

size(IL)·ε
2(blog(1/ε)c+5)

⌋
the number of non-empty groups in G is bounded

from above by O(1/ε log(1/ε)) assuming that size(IL) > 8/ε · (dlog(1/ε)e+ 5).

Proof. Using the definition of k and the assumption, we show 2 size(IL)
k−1 ≤ 8/ε(blog(1/ε)c+ 5).

We have
2 size(IL)
k − 1 = 2 size(IL)⌊

size(IL)·ε
2(blog(1/ε)c+5)

⌋
− 1
≤ 2 size(IL)

size(IL)·ε
2(blog(1/ε)c+5) − 2

=

2 size(IL)
size(IL)·ε−4(blog(1/ε)c+5)

2(blog(1/ε)c+5)

= 2 size(IL) · 2(blog(1/ε)c+ 5)
size(IL) · ε− 4(blog(1/ε)c+ 5)

As size(IL) > 8/ε · (dlog(1/ε)e+ 5), we have ε/2 size(IL) > 4(blog(1/ε)c+ 5). We can thus
bound:

2 size(IL) · 2(blog(1/ε)c+ 5)
size(IL) · ε− 4(blog(1/ε)c+ 5) ≤

2 size(IL) · 2(blog(1/ε)c+ 5)
size(IL) · ε− ε/2 size(IL) =

2 size(IL) · 2(blog(1/ε)c+ 5)
size(IL) · ε/2

= 4(blog(1/ε)c+ 5)
ε/2

= 8(blog(1/ε)c+ 5)
ε

Note that property (c) and property (d) imply |I(`)| ≥ (q(`, A) + q(`, B)− 2)2`(k − 1) .
Hence property (a) implies that size(I(`), s) ≥ |I(`)|2−(`+1) ≥ (q(`, A) + q(`, B)− 2)(k −
1)/2 and therefore q(`, A) + q(`, B) ≤ 2 size(I(`))/(k − 1) + 2. We can now bound the
total number of used groups by

∑
`∈W

q(`, A) + q(`, B) ≤
∑
`∈W

(
2 size(I(`))

k − 1 + 2
)

= 2|W |+ 2
k − 1

∑
`∈W

size(I(`)) = 2|W |+ 2
k − 1 size(IL)

≤ 2|W |+ 8
ε
(blog(1/ε)c+ 5) ≤

2 · (log(1/ε) + 5) + 8
ε
(log(1/ε) + 5) =

(8/ε + 2)(log(1/ε) + 5) ∈ O(1/ε log(1/ε))

The total number of used groups is therefore bounded by O(1/ε log(1/ε)).

The following lemma shows that the rounding function does in fact yield a (1 + ε)-
approximation.

Lemma 3.4. Given an instance (I, s) with items greater than ε/14 and a rounding
function R fulfilling properties (a) to (d), then opt(I, sR) ≤ (1 + ε)OPT (I, s).

Proof. As (I, s) only contains large items, IL = I. Define for every ` the instances
J` = ⋃q(`,A)

r=2 (`, A, r)[R] ∪ ⋃q(`,B)
r=0 (`, B, r)[R], J = ⋃

`∈W J` and K = ⋃
`∈W (`, A, 0)[R] ∪

(`, A, 1)[R]. We will now prove, that the error generated by this rounding is bounded
by ε. As each solution to J ∪ K yields a solution to J and a solution to K, we get
opt(J ∪K, sR) ≤ opt(J, sR) + opt(K, sR). For i ∈ (`, A, 0)[R] ∪ (`, A, 1)[R], we have
s(i) ≤ max {s(i′) | i′ ∈ (`, A, 0)[R]} ≤ 2−` because of property (a). We can therefore pack

50

at least 2` items from (`, A, 0)[R] ∪ (`, A, 1)[R] into a single bin. Hence, we get with
property (c):

opt((`, A, 0)[R] ∪ (`, A, 1)[R]), sR)
≤ (|(`, A, 0)[R]|+ |(`, A, 1)[R]|) · 2−`

= 2k

We can therefore bound opt(K, sR) as follows:

opt(K, sR) ≤
∑
`∈W

opt((`, A, 0)[R] ∪ (`, A, 1)[R]), sR)

≤
∑
`∈W

2k

≤ 2(blog(1/ε)c+ 5)k

= 2b size(I)ε
2(blog(1/ε)c+ 5)c · (blog(1/ε)c+ 5)

≤ 2 size(I)ε
2(blog(1/ε)c+ 5) · (blog(1/ε)c+ 5)

= ε size(I)
≤ εopt(I, s)

Using property (b) for each item in ((`,X, r + 1)[R]), sR) we find a unique larger item
in (`,X, r)[R]. Therefore we have for every item in the rounded instance (J, sR) an item
with larger size in instance (I, s) and hence

opt(J, sR) ≤ opt(I, s).

The optimal value of the rounded solution can be bounded by

opt(I, sR) ≤ opt(J, sR) + opt(K, sR) ≤ (1 + ε) opt(I, s).

We therefore have a rounding function, which generates only O(1/ε log(1/ε)) different
item sizes and the generated error is bounded by ε.

3.3.2 Rounding Operations
Let us consider the case where large items arrive and depart in an online fashion. Formally
this is described by a sequence of pairs (i1, A1), . . . , (in, An) where Ai ∈ {Insert,Delete}.
At each time t ∈ {1, . . . , n} we need to pack the item it into the corresponding packing
of i1, . . . , it−1 if Ai = Insert or remove the item it from the corresponding packing of
i1, . . . , it−1 if Ai = Delete. We will denote the instance i1, . . . , it at time t by I(t) and
the corresponding packing by Bt. We will also round our items and denote the rounding
function at time t by Rt. The large items of I(t) are denoted by IL(t). At time t we are
allowed to repack several items with a total size of β · s(it) but we intend to keep the
migration factor β as small as possible. The term repack(t) = ∑

i,Bt−1(i)6=Bt(i) s(i) denotes
the sum of the items which are moved at time t, the migration factor β of an algorithm is

51

then defined as maxt {repack(t)/s(it)}. As the value of size will also change over the time,
we define the value κ(t) as

κ(t) = size(IL(t)) · ε
2(blog(1/ε)c+ 5) .

As shown in Lemma 3.3, we will make use of the value k(t) := bκ(t)c.
We present operations that modify the current rounding Rt and packing Bt with its

corresponding LP/ILP solutions to give a solution for the new instance I(t + 1). At
every time t the rounding Rt maintains properties (a) to (d). Therefore the rounding
provides an asymptotic approximation ratio of 1 + ε (Lemma 3.4) while maintaining only
O(1/ε log(1/ε)) many groups (Lemma 3.3). We will now present a way how to adapt this
rounding to a dynamic setting, where items arrive or depart online.

Our rounding Rt is manipulated by different operations, called the insert, delete, shiftA
and shiftB operation. Some ideas behind the operations are inspired by Epstein and Levin
[EL09]. The insert operation is performed whenever a large item arrives and the delete
operation is performed whenever a large item departs. The shiftA/shiftB operations are
used to modify the number of groups that are contained in the A and B block. As we
often need to filter the largest items of a group g belonging to a rounding R, we denote
this item by λ(g,R).

• shift: A shift operation takes two groups (`,X1, r1) and (`,X2, r2), where (`,X1, r1)
is left of (`,X2, r2), and a rounding function R and produces a new rounding function
R′ and packing B′ by shifting the largest item from (`,X2, r2) to (`,X2, r2 − 1) and
so on until (`,X1, r1) is reached.

– For all groups g left of (`,X1, r1) or right of (`,X2, r2) set g[R′] = g[R].
– As we move an item out of (`,X2, r2), set

(`,X2, r2)[R′] = (`,X2, r2)[R] \ λ((`,X2, r2), R).

– As we move an item into (`,X1, r1), set

(`,X1, r1)[R′] = (`,X1, r1)[R] ∪ λ(right(`,X1, r1), R).

Whenever a shift-operation on (`,X1, r1) and (`,X2, r2) is performed, the LP solution
x and the corresponding ILP solution y is updated to x′ and y′. Let Ci be a config-
uration containing λ((`,X2, r2), R) with xi ≥ 1. Let Cj = Ci \ s(λ((`,X2, r2), R))
be the configuration without λ((`,X2, r2), R). Set x′j = xj + 1, y′j = yj + 1 and
x′i = xi − 1, y′i = yi − 1. In order to add the new item in (`,X1, r1), set x′h = xh + 1
and y′h = yh + 1 for the index h with Ch = {1 : s(λ((`,X1, r1), R))}. The remaining
configurations do not change.

. . . (`,X1, r1) . . . (`, A, q(`, A)) (`, B, 0) . . . (`,X2, r2) . . .

Figure 3.3: shift with parameters (`,X1, r1) and (`,X2, r2)

• Insert: To insert item it, find the corresponding group (`,X, r) with

52

– s(it) ∈ (2−(`+1), 2−`],
– min {s(i) | i ∈ (`,X, r − 1)} > s(it) and
– s(λ((`,X, r + 1), R)) ≤ s(it).

We will then insert it into (`,X, r) and get the rounding R′ by shifting the largest
element of (`,X, r) to (`,X, r−1) and the largest item of (`,X, r−1) to (`,X, r−2)
and so on until (`, A, 0) is reached. Formally, set R∗(it) = (`,X, r) and R∗(ij) = R(ij)
for j 6= t. The rounding function R′ is then obtained by applying the shift operation
on R∗ i.e. the new rounding is R′ = shift((`, A, 0), (`,X, r), R∗).
In order to pack the new item, let i be the index with Ci = {1 : s(λ((`,X, r), R′))},
as it is rounded to the largest size in (`,X, r)[R] after the shift. Place item it into a
new bin by setting B′(it) = maxj B(ij) + 1 and x′i = xi + 1 and y′i = yi + 1.
If |(`, A, 0)[R′]| = 2` · k + 1, we have to create a new rounding group (`, A,−1).
Additionally we shift the largest item in (`, A, 0)[R′] to the new group (`, A,−1)[R′].
The final rounding R′′ is then obtained by setting (`, A, r)[R′′] = (`, A, r − 1)[R′] i.e.
incrementing the number of each rounding group by 1. Note that the largest item in
(`, A, 0)[R′] is already packed into a bin of its own due to the shift operation. Hence,
no change in the packing or the LP/ILP solution is needed. The insert operation
thus yields a new packing B′ (or B′′) which uses two more bins than the packing B.

(`, A, 0) . . . (`,X, r) . . . (`,X, q(`,X))

i

Figure 3.4: Insert i into (`,X, ·)

• Delete: To delete item it from the group (`,X, r) with R(it) = (`,X, r), we remove
it from this group and move the largest item from (`,X, r+ 1) into (`,X, r) and the
largest item from (`,X, r+2) into (`,X, r+1) and so on until (`, B, q(`, B)). Formally
the rounding R′ is described by the expression shift((`,X, r), (`, B, q(`, B)), R∗)
where

g[R∗] =

(`,X, r)[R] \ {it} g = (`,X, r)
g[R] else

.

As a single shift operation is used, the delete operation yields a new packing B′

which uses one more bin than the packing B.
For the LP/ ILP solution let Ci be a configuration containing λ((`, B, q(`, B)), R)
with xi ≥ 1. Let Cj = Ci s(λ((`, B, q(`, B)), R)) be the configuration without the
item λ((`, B, q(`, B)), R). Set x′j = xj + 1, y′j = yj + 1 and x′i = xi − 1, y′i = yi − 1.
Set B′(ij) = B(ij) for all j 6= t in order to remove the item it from the packing.

To control the number of groups in A and B we introduce operations shiftA and shiftB
that increase or decrease the number of groups in A respectively B. An operation shiftA
increases the number of groups in A by 1 and decreases the number of groups in B by 1.
Operation shiftB is does the inverse of shiftA.

53

(`,X, 0) . . . (`,X, r) . . . (`, B, q(`, B))

i

Figure 3.5: Delete i from (`,X, ·)

• shiftA: In order to move a group from B to A we will perform exactly 2` times the
operation shift((`, B, 0), (`, B, q(`, B)), R) to receive the rounding R∗. Instead of
opening a new bin for each of those 2` items in every shift operation, we rather open
one bin containing all items. Since every item in the corresponding size category
has size ≤ 2−`, the items fit into a single bin. The group (`, B, 0) has now the same
size as the groups in (`, A, ·). We transfer (`, B, 0) to block A. Hence we define
for the final rounding R′ that (`, A, r)[R′] = (`, A, r)[R∗] for r = 0, . . . , q(`, A) and
(`, A, q(`, A) + 1)[R′] = (`, B, 0)[R∗] as well as (`, B, r)[R′] = (`, B, r + 1)[R∗] for
r = 0, . . . , q(`, B)− 1. The resulting packing B′ hence uses one more bin than the
packing B.

(`, B, 0) . . . (`, B, r) . . . (`, B, q(`, B))

2` 2` 2` 2`

Figure 3.6: shiftA

• shiftB: In order to move a group from A to B we will perform exactly 2` times the
operation shift((`, A, 0), (`, A, q(`, A)), R) to receive the rounding R∗. As before in
shiftA, we open a single bin containing all of the 2` items. The group (`, A, q(`, A))
has now the same size as the groups in (`, B, ·). We transfer (`, A, q(`, A)) to
block B. Similar to shiftA we define for the final rounding R′ that (`, A, r)[R′] =
(`, A, r)[R∗] for r = 0, . . . , q(`, A)− 1 and (`, B, 0)[R′] = (`, A, q(`, A))[R∗] as well as
(`, B, r + 1)[R′] = (`, B, r)[R∗]. The resulting packing B′ hence uses one more bin
than the packing B.

Lemma 3.5. Let R be a rounding function fulfilling properties (a) to (d). Applying one
of the operations insert, delete, shiftA or shiftB on R results in a rounding function R′

fulfilling properties (a) to (d).

Proof. Property (a) is always fulfilled as no item is moved between different size categories
and the insert operation inserts an item into its appropriate size category.

As the order of items never changes and the insert operation inserts an item into the
appropriate place, property (b) also holds.

For properties (c) and (d) we first note that the operation shift(g, g′, R) increases the
number of items in g by 1 and decreases the number of items in g′ by 1. The insert
operation consists of adding a new item to a group g followed by a shift((`, A, 0), g, R)
operation. Hence the number of items in every group except for (`, A, 0) (which is increased
by 1) remains the same. The delete operation consists of removing an item from a group
g followed by a shift(g, (`, B, q(`, B)), R) operation. Therefore the number of items in
all groups except for (`, B, q(`, B)) (which is decreased by 1) remains the same. As the

54

number of items in (`, A, 0) and (`, B, q(`, B)) are treated seperately and may be smaller
than 2` · k respectively 2` · (k − 1), the properties (c) and (d) are always fulfilled for the
insert and the delete operation. Concerning the shiftA operation we increase the number
of items in a group (`, B, 0) by 2`. Therefore it now contains 2`(k − 1) + 2` = 2` · k items,
which equals the number of items in groups of block A. As this group is now moved
to block A, the properties (c) and (d) are fulfilled. Symmetrically the shiftB operation
decreases the number of items in a group (`, A, q(`, A)) by 2`. Therefore the number of
items in the group is now 2` · k − 2` = 2` · (k − 1), which equals the number of items in
the groups of block B. As this group is now moved to block B, the properties (c) and (d)
are fulfilled.

According to Lemma 3.3 the rounded instance (I, sR) has O(1/ε log(1/ε)) different item
sizes (given a suitable k). Using the LP formulation of Eisemann [Eis57], the resulting
LP called LP (I, sR) has m = O(1/ε log(1/ε)) constraints. We say a packing B corresponds
to a rounding R and an integral solution y of the ILP if all items in (I, sR) are packed by
B according to y.

Lemma 3.6. Applying any of the operations insert, delete, shiftA or shiftB on a rounding
function R and ILP solution y with corresponding packing B defines a new rounding
function R′ and a new integral solution y′. Solution y′ is a feasible solution of LP (I, sR′).

Proof. We have to analyze how the LP for instance (I, sR′) changes in comparison to the
LP for instance (I, sR).
Shift Operation: A single shift(g1, g2, R) operation moves one item from each group g
between g1 and g2 into g and one item out of g. As no item is moved out of g1 and no item
is moved into g2, the number of items in g1 is increased by 1 and the number of items in
g2 is decreased by 1. The right hand side of the LP (I, sR) is defined by the cardinalities
|g[R]| of the rounding groups g in R. As only the cardinalities of g1 and g2 change by ±1
the right hand side changes accordingly to ±1 in the corresponding components of y. The
moved item from g2 is removed from the configuration and a new configuration containing
the new item of g1 is added. The LP and ILP solutions x and y are being modified such
that λ(g2, R) is removed from its configuration and a new configuration is added such
that the enhanced right hand side of g1 is covered. Since the largest item λ(g,R) of every
group g between g1 and g2 is shifted to its left group, the size sR′(i) of item i ∈ g[R] is
defined by sR′(i) = s(ι(g,R)), where ι(g,R) is the second largest item of g[R]. Therefore
each item in (I, sR′) is rounded to a smaller or equal value as s(ι(g,R)) ≤ s(λ(g,R)). All
configurations of (I, sR) can thus be transformed into feasible configurations of (I, sR′).
Insert Operation: The insert operation consists of inserting the new item into its corre-
sponding group g followed by a shift operation. Inserting the new item into g increases
the right hand side of the LP by 1. To cover the increased right hand side, we add a new
configuration {1 : sR′(i)} containing only the new item. In order to reflect the change in
the LP solution, the new item is added into an additional bin. The remaining changes are
due to the shift operation already treated above.
Delete Operation: The delete operation consists of removing an item i from its corre-
sponding group g followed by a shift operation. Removing the new item from g decreases
the right hand side of the LP by 1. The current LP and ILP solutions x and y do not
need to be changed to cover the new right hand side. The remaining changes are due to
the shift operation already treated above.
shiftA/shiftB Operation: As the shiftA and shiftB operations consist only of repeated

55

use of the shift operation, the correspondence between the packing and the LP/ILP
solution follow simply by induction.

3.3.3 Algorithm for Dynamic Bin Packing
We will use the operations from the previous section to obtain a dynamic algorithm for
bin packing with respect to large items. The operations insert and delete are designed
to process the input depending of whether an item is to be inserted or removed. Keep
in mind that the parameter k = bκc =

⌊
size(IL)·ε

2(blog(1/ε)c+5)

⌋
changes over time as size(IL) may

increase or decrease. In order to fulfill the properties (c) and (d), we need to adapt the
number of items per group whenever k changes. The shiftA and shiftB operations are thus
designed to manage the dynamic number of items in the groups as k changes. Note that
a group in the A-block with parameter k has by definition the same number of items as a
group in the B-block with parameter k − 1 assuming they are in the same size category.
If k increases, the former A block is treated as the new B block in order to fulfill the
properties (c) and (d) while a new empty A block is introduced. To be able to rename
the blocks, the B block needs to be empty. Accordingly the A block needs to be empty if
k decreases in order to treat the old B block as new A block. Hence we need to make
sure that there are no groups in the B-block if k increases and vice versa, that there are
no groups in the A-block if k decreases.

We denote the number of all groups in the A-blocks at time t by A(t) and the number
of groups in B-blocks at time t by B(t). To make sure that the B-block (respectively the
A-block) is empty when k increases (decreases) the ratio A(t)

A(t)+B(t) needs to correlate to
the fractional digits of κ(t) at time t denoted by ∆(t). Hence we partition the interval
[0, 1) into exactly A(t) + B(t) smaller intervals Ji =

[
i

A(t)+B(t) ,
i+1

A(t)+B(t)

)
. We will make

sure that ∆(t) ∈ Ji iff A(t)
A(t)+B(t) ∈ Ji. Note that the term A(t)

A(t)+B(t) is 0 if the A-block is
empty and the term is 1 if the B-block is empty. This way, we can make sure that as soon
as k(t) increases, the number of B-blocks is close to 0 and as soon as k(t) decreases, the
number of A-blocks is close to 0. Therefore, the A,B-block can be renamed whenever k(t)
changes. The algorithm uses shiftA and shiftB operations to adjust the number of groups
in the A- and B-block. Recall that a shiftA operation reduces the number of groups in
the B-block by 1 and increases the number of groups in the A-block by 1 (shiftB works
vice versa). Let d be the number of shiftA/shiftB operations that need to be performed
to adjust A(t)

A(t)+B(t) .
In the following algorithm we make use of an algorithm 2.13 called improve, which

we developed in chapter 2 to reduce the number of used bins. Using improve(x) on
a packing B with approximation guarantee maxiB(i) ≤ (1 + ε̄) opt +C for some ε̄ =
O(ε) and some additive term C yields a new packing B′ with approximation guarantee
maxiB(i) ≤ (1 + ε̄) opt +C − x. We use the operations in combination with the improve
algorithm to obtain a fixed approximation guarantee.

56

k(t− 1) k(t− 1) + 1 k(t− 1) + 2

J0 J1 . . . Jj . . .

A(t− 1)

98%

B(t− 1)

2%

∆(t− 1)

(a) Before Insert

k(t)− 1
‖

k(t− 1)

k(t)
‖

k(t− 1) + 1

k(t) + 1
‖

k(t− 1) + 2

J0

Jj
‖
J1

.

A(t)

1%

B(t)

99%

∆(t)

(b) After Insert

Figure 3.7: Comparison of the situation before and after an Insert Operation

Algorithm 3.7 (AFPTAS for large items).

Algorithm: Insertion
if SIZE(I(t)) < (m+ 2)(1/δ + 2) or SIZE(I(t)) < 8(1/δ + 1) then

use offline Bin Packing
else

improve(2); insert(i);
// Shifting to the correct interval
Let Ji be the interval containing ∆(t);
Let Jj be the interval containing A(t)

A(t)+B(t) ;
Set d = i− j;
if k(t) > k(t− 1) then // Modulo A(t) +B(t) when k increases

d = d + (A(t) +B(t));
// Shifting d groups from B to A
for p := 0 to |d| − 1 do

if i+p = A(t) + B(t) then
Rename(A,B);

improve(1); shiftA;

57

Algorithm: Deletion
if SIZE(I(t)) < (m+ 2)(1/δ + 2) or SIZE(I(t)) < 8(1/δ + 1) then

use offline Bin Packing
else

// Departing item i
improve(4); delete(i);
ReduceComponents;
//
// Shifting to the correct interval
Let Ji be the interval containing ∆(t);
Let Jj be the interval containing A(t)

A(t)+B(t) ;
Set d = i− j;
if k(t) < k(t− 1) then // Modulo A(t) +B(t) when k decreases

d = d - (A(t)+B(t));
// Shifting d groups from A to B
for p := 0 to |d| − 1 do

if i-p = 0 then
Rename(A,B);

improve(3); shiftB;

Note that as exactly d groups are shifted from A to B (or B to A) we have by definition
that ∆(t) ∈

[
A(t)

A(t)+B(t) ,
A(t)+1

A(t)+B(t)

)
at the end of the algorithm. Note that d can be bounded

by 11.

Lemma 3.8. At most 11 groups are shifted from A to B (or B to A) in Algorithm 3.7.

Proof. Since the value | size(I(t− 1))− size(I(t))| changes at most by 1 we can bound
D = |κ(t − 1) − κ(t)| by ε

2(blog(1/ε)c+5) ≤
ε

log(1/ε)+5 to obtain the change in the fractional
part. By Lemma 3.3 the number of intervals (=the number of groups) is bounded by
(8
ε

+ 2)(log(1/ε) + 5). Using ∆(t− 1) ∈ [A(t−1)
A(t−1)+B(t−1) ,

A(t−1)+1
A(t−1)+B(t−1)) and the fact that the

number of groups A(t− 1) +B(t− 1) increases or decreases at most by 1, we can give a
bound for the parameter d in both cases by

d ≤ D

interval length + 1 = D ·#intervals+ 1 ≤(
(ε

log(1/ε) + 5) · (8
ε

+ 2) · (log(1/ε) + 5)
)

+ 1 =

8 + 2ε+ 1 < 11

Hence, the number of shiftA/shiftB operations is bounded by 11.

Lemma 3.9. Every rounding function Rt produced by Algorithm 3.7 fulfills properties (a)
to (d) with parameter k(t) =

⌊
size(IL)·ε

2(blog(1/ε)c+5)

⌋
.

Proof. Since Algorithm 3.7 uses only the operations insert, delete, shiftA and shiftB, the
properties (a) to (d) are always fulfilled by Lemma 3.5 and the LP/ILP solutions x, y
correspond to the rounding function by Lemma 3.6.

Furthermore, the algorithm is designed such that whenever k increases the B-block is
empty and the A-block is renamed to be the new B-block. Whenever k decreases the
A-block is empty and the B-block is renamed to be the new A-block. Therefore the
number of items in the groups is dynamically adapted to match with the parameter k.

58

3.3.4 Large items
In this section we prove that Algorithm 3.7 is a dynamic robust AFPTAS for the bin
packing problem if all items have size at least ε/14. The treatment of small items is
described in Section 3.4 and the general case is described in Section 3.4.2.

We will prove that the migration between packings Bt and Bt+1 is bounded by
O(1/ε3 log(1/ε)) and that we can guarantee an asymptotic approximation ratio such that
maxBt(i) ≤ (1 + 2∆) opt(I(t), s) + poly(1/∆) for a parameter ∆ = O(ε) and for every
t ∈ N. Recall that the Algorithm improve was developed in chapter 2 of this thesis to
improve the objective value of an LP with integral solution y and corresponding fractional
solution x. In the following we restate the algorithm improve 2.13 and the respective
theorem 2.14 and corollary 2.15 of chapter 2 with slightly changed notation.

For a vector z ∈ Rn let V (z) be the set of all integral vectors v = (v1, . . . vn)T such
that 0 ≤ vi ≤ zi. Let x be an approximate solution of the LP min {‖x‖1 | Ax ≥ b, x ≥ 0}
with m inequalities and let ‖x‖1 ≤ (1 + δ) lin and ‖x‖1 ≥ 2α(1/δ+ 1), where lin denotes
the fractional optimum of the LP and α ∈ N is part of the input of the algorithm (see
Chapter 2). Let y be an approximate integer solution of the LP with ‖y‖1 ≤ lin +2C
for some value C ≥ δ lin and with ‖y‖1 ≥ (m + 2)(1/δ + 2). Suppose that both x and
y have only ≤ C non-zero components. For every component i we suppose that yi ≥ xi.
Furthermore we are given indices a1, . . . , aK , such that the non-zero components yaj are
sorted in non-decreasing order, i. e., ya1 ≤ . . . ≤ yaK .

Algorithm 3.10 (improve).

1. Set xvar := 2α(1/δ+1)
‖x‖ x, xfix := x− xvar and bvar = b− A(xfix)

2. Compute an approximate solution x̂ of the LP min {‖x‖1 | Ax ≥ bvar, x ≥ 0} with
ratio (1 + δ/2)

3. If
∥∥∥xfix + x̂

∥∥∥
1
≥ ‖x‖1 then set x′ = x, ŷ = y and goto step 9

4. Choose the largest ` such that the sum of the smallest components y1, . . . , y` is
bounded by ∑1≤i≤` yai ≤ (m+ 2)(1/δ + 2)

5. For all i set x̄fixi =

0 if i = aj, j ≤ `

xfixi else
and ȳi =

0 if i = aj, j ≤ `

yi else

6. Set x̄ = x̂+x` where x` is a vector consisting of the components xa1 , . . . , xa`. Reduce
the number of non-zero components to at most m+ 1.

7. x′ = x̄fix + x̄

8. For all non-zero components i set ŷi = max{dx′ie, ȳi}

9. If possible choose d ∈ V (ŷ − x′) such that ‖d‖1 = α(1/δ + 1) otherwise choose
d ∈ V (ŷ − x′) such that ‖d‖1 < α(1/δ + 1) is maximal.

10. Return y′ = ŷ − d

In the following we prove that the algorithm improve applied to the bin packing ILP
actually generates a new improved packing B′ from the packing B with corresponding LP
and ILP solutions x′ and y′. We therefore use Theorem 3.11 and Corollary 3.12 that were
proven in chapter 2.

59

Theorem 3.11. Let x be a solution of the LP with ‖x‖1 ≤ (1 + δ) lin and furthermore
‖x‖1 ≥ 2α(1/δ + 1). Let y be an integral solution of the LP with ‖y‖1 ≤ lin +2C for
some value C ≥ δ lin and with ‖y‖1 ≥ (m + 2)(1/δ + 2). Solutions x and y have the
same number of non-zero components and for each component we have xi ≤ yi. The
Algorithm improve(α) then returns a fractional solution x′ with ‖x′‖1 ≤ (1 + δ) lin−α
and an integral solution y′ where one of the two properties hold: ‖y′‖1 = ‖y‖1 − α or
‖y′‖1 = ‖x′‖1 + C. Both, x′ and y′ have at most C non-zero components and the distance
between y′ and y is bounded by ‖y′ − y‖1 = O(m+α

δ
).

Corollary 3.12. Let ‖x‖1 = (1 + δ′) lin for some δ′ ≥ δ and ‖x‖1 ≥ 2α(1/δ + 1) and
let ‖y‖1 ≤ lin +2C for some C ≥ δ′ lin and ‖y‖1 ≥ (m + 2)(1/δ + 2). Solutions x
and y have the same number of non-zero components and for each component we have
xi ≤ yi. Then Algorithm improve(α) returns a fractional solution x′ with ‖x′‖1 ≤
‖x‖1 − α = (1 + δ′) lin−α and integral solution y′ where one of the two properties hold:
‖y′‖1 = ‖y‖1 − α or ‖y′‖1 = ‖x‖1 − α + C. Both, x′ and y′ have at most C non-zero
components and the distance between y′ and y is bounded by ‖y′ − y‖1 = O(m+α

δ
).

Let ∆ = ε+ δ + εδ and C = ∆ opt(I, s) +m.

Theorem 3.13. Given a rounding function R and an LP defined for (I, sR), let x be
a fractional solution of the LP with ‖x‖1 ≤ (1 + ∆) opt(I, s), ‖x‖1 ≥ 2α(1/δ + 1) and
‖x‖1 = (1 + δ′) lin(I, sR) for some δ′ > 0. Let y be an integral solution of the LP with
‖y‖1 ≥ (m + 2)(1/δ + 2) and corresponding packing B such that maxiB(i) = ‖y‖1 ≤
(1+2∆) opt(I, s)+m. Suppose x and y have the same number ≤ C of non-zero components
and for all components i we have yi ≥ xi. Then Algorithm improve(α) on x and y returns
a new fractional solution x′ with ‖x′‖1 ≤ (1 + ∆) opt(I, s)− α and also a new integral
solution y′ with corresponding packing B′ such that

max
i
B′(i) = ‖y′‖1 ≤ (1 + 2∆) opt(I, s) +m− α.

Further, both solutions x′ and y′ have the same number ≤ C of non-zero components and
for each component we have x′i ≤ y′i. The number of changed bins from the packing B to
the packing B′ is bounded by O(m

δ
).

Proof. To use Theorem 3.11 and Corollary 3.12 we have to prove that certain con-
ditions follow from the requisites of Theorem 3.13. We have maxiB(i) = ‖y‖1 ≤
(1+2∆) opt(I, s)+m by condition. Since opt(I, s) ≤ opt(I, sR) we obtain for the integral
solution y that ‖y‖1 ≤ 2∆ opt(I, s)+m+opt(I, sR) ≤ 2∆ opt(I, s)+m+lin(I, sR)+m.
Hence by definition of C we get ‖y‖1 ≤ lin(I, sR) + 2C. This is one requirement to use
Theorem 3.11 or Corollary 3.12. We distinguish the cases where δ′ ≤ δ and δ′ > δ and
look at them separately.

Case 1: δ′ ≤ δ. For the parameter C we give a lower bound by the inequality C >
∆ opt(I, s) = (δ+ ε+ δε) opt(I, s). Lemma 3.4 shows that opt(I, sR) ≤ (1 + ε) opt(I, s)
and therefore yields

δ + ε+ δε

1 + ε
opt(I, sR) = (1 + δ)(1 + ε)− 1

1 + ε
opt(I, sR)

= (1 + δ) opt(I, sR)− 1
1 + ε

opt(I, sR)

≥ δ opt(I, sR) ≥ δLIN(I, sR)

60

and hence C > δ lin(I, sR). We can therefore use Theorem 3.11.
Algorithm improve returns by Theorem 3.11 a x′ with ‖x′‖1 ≤ (1 + δ) lin(I, sR) −

α ≤ (1 + δ) opt(I, sR) − α and an integral solution y′ with ‖y′‖1 ≤ ‖x′‖1 + C or
‖y′‖1 ≤ ‖y‖1 − α. Using that opt(I, sR) ≤ (1 + ε) opt(I, s) we can conclude ‖x′‖1 ≤
(1 + δ)(1 + ε) opt(I, s)− α = (1 + ∆) opt(I, s)− α. In the case where ‖y′‖1 ≤ ‖x′‖1 +C
we can bound the number of bins of the new packing B′ by maxiB′(i) = ‖y′‖1 ≤
‖x′‖1 + C ≤ (1 + 2∆) opt(I, s) + m − α. In the case that ‖y′‖1 ≤ ‖y‖1 − α we obtain
maxiB′(i) = ‖y′‖1 ≤ ‖y‖1 − α ≤ (1 + 2∆) opt(I, s) +m− α. Furthermore we know by
Theorem 3.11 that x′ and y′ have at most C non-zero components.

Case 2: δ′ > δ. First we prove that C is bounded from below. Since ‖x‖1 = (1 +
δ′) lin(I, sR) ≤ (1+∆) opt(I, s) = opt(I, s)+∆ opt(I, s) ≤ opt(I, sR)+∆ opt(I, s) ≤
lin(I, sR) +m+ ∆ opt(I, s) = lin(I, sR) + C we obtain that C ≥ δ′ lin(I, sR), which is
a requirement to use Corollary 3.12. By using Algorithm improve on solutions x with
‖x‖1 = (1+δ′) lin(I, sR) and y with ‖y‖1 ≤ lin(I, sR)+2C we obtain by Corollary 3.12 a
fractional solution x′ with ‖x′‖1 ≤ ‖x‖1−α ≤ (1+∆) opt(I, s)−α and an integral solution
y′ with either ‖y′‖1 ≤ ‖y‖1−α or ‖y′‖1 ≤ ‖x‖1 +C−α. So for the new packing B′ we can
guarantee that maxiB′(i) = ‖y′‖1 ≤ ‖y‖1−α = maxiB(i)−α ≤ (1+2∆) opt(I, s)+m−α
if ‖y′‖1 ≤ ‖y‖1 − α. In the case that ‖y′‖1 ≤ ‖x‖1 + C − α, we can guarantee that
maxiB′(i) = ‖y′‖1 ≤ ‖x‖1+C−α ≤ (1+∆) opt(I, s)+C−α ≤ (1+2∆) opt(I, s)+m−α.
Furthermore we know by Corollary 3.11 that x′ and y′ have at most C non-zero components.

Theorem 3.11 as well as Corollary 3.12 state that the distance ‖y′ − y‖1 is bounded
by O(m/δ). Since y corresponds directly to the packing B and the new integral solution
y′ corresponds to the new packing B′, we know that only O(m/δ) bins of B need to be
changed to obtain packing B′.

In order to prove correctness of Algorithm 3.7, we will make use of the auxiliary
Algorithm 3.14 (ReduceComponents). Due to a delete-operation, the value of the
optimal solution opt(I, s) might decrease. Since the number of non-zero components has
to be bounded by C = ∆ opt(I, s) +m, the number of non-zero components might have
to be adjusted down. The following algorithm describes how a fractional solution x′ and
an integral solution y′ with reduced number of non-zero components can be computed such
that ‖y − y′‖1 is bounded. The idea behind the algorithm is also used in the Improve
algorithm. The smallest m + 2 components are reduced to m + 1 components using a
standard technique presented for example in [BM98]. Arbitrary many components of x′
can thus be reduced to m+ 1 components without making the approximation guarantee
worse.

Algorithm 3.14 (ReduceComponents).

1. Choose the smallest non-zero components ya1 , . . . , yam+2.

2. If ∑1≤i≤m+2 yai ≥ (1/∆ + 2)(m+ 2) then return x = x′ and y = y′

3. Reduce the components xa1 , . . . , xam+2 to m + 1 components x̂b1 , . . . , x̂bm+1 with∑m+2
j=1 xaj = ∑m+1

j=1 x̂bj .

4. For all i set x′i =

x̂i + xi if i = bj for some j ≤ m

0 if i = aj for some j ≤ m+ 1
xi else

61

and ŷi =

dx̂i + x′ie if i = bj for some j ≤ m

0 if i = aj for some j ≤ m+ 1
yi else

5. If possible choose d ∈ V (ŷ−x′) such that ‖d‖1 = m+1 otherwise choose d ∈ V (ŷ−x′)
such that ‖d‖1 < m+ 1 is maximal.

6. Return y′ = ŷ − d

The following theorem shows that the algorithm above yields a new fractional solution
x′ and a new integral solution y′ with a reduced number of non-zero components.

Theorem 3.15. Let x be a fractional solution of the LP with ‖x‖1 ≤ (1 + ∆) opt(I, s).
Let y be an integral solution of the LP with ‖y‖1 ≤ (1 + 2∆) opt(I, s) + m. Suppose x
and y have the same number ≤ C + 1 of non-zero components and for all components
i we have yi ≥ xi. Using the Algorithm ReduceComponents on x and y returns a
new fractional solution x′ with ‖x′‖1 ≤ (1 + ∆) opt(I, s) and a new integral solution
y′ with ‖y′‖1 ≤ (1 + 2∆) opt(I, s) + m. Further, both solutions x′ and y′ have the
same number of non-zero components and for each component we have x′i ≤ y′i. The
number of non-zero components can now be bounded by ≤ C. Furthermore, we have that
‖y − y′‖1 ≤ 2 · (1/∆ + 3)(m+ 2).

Proof. Case 1: ∑1≤i≤m+2 yai ≥ (1/∆ + 2)(m+ 2). We will show that in this case, x and y
already have ≤ C non-zero components. In this case the algorithm returns x′ = x and
y′ = y. Since ∑1≤i≤m+2 yai ≥ (1/∆ + 2)(m + 2) the components ya1 , . . . , yam+2 have an
average size of at least (1/∆ + 2) and since ya1 , . . . , yam+2 are the smallest components,
all components of y have average size at least (1/∆ + 2). The size ‖y‖1 is bounded by
(1 + 2∆) opt(I, s) +m. Hence the number of non-zero components can be bounded by
(1+2∆) opt(I,s)+m

1/∆+2 ≤ ∆ opt(I, s) + ∆m ≤ C.
Case 2: ∑1≤i≤m+1 yai < (1/∆ + 2)(m + 2). We have to prove different properties for

the new fractional solution x′ and the new integral solution y′.
Number of non-zero components: The only change in the number of non-zero

components is in step 3 of the algorithm, where the number of non-zero components is
reduced by 1. As x, y have at most C + 1 non-zero components, x′, y′ have at most C
non-zero components. In step 4 of the algorithm, ŷ is defined such that ŷi ≥ x′i. In step 5
of the algorithm d is chosen such that ŷi − d ≥ x′i. Hence we obtain that y′i = ŷi − d ≥ x′i.

Distance between y and y′: The only steps where components of y changes are in step
4 and 5. The distance between y and ŷ is bounded by the sum of the components that are set
to 0, i. e., ∑m+2

j=1 yaj and the sum of the increase of the increased components ∑m+1
j=1 dx̂bje ≤∑m+1

j=1 x̂bj +m+ 1 = ∑m+2
j=1 xaj +m+ 1. As ∑m+2

j=1 xaj ≤
∑m+2
j=1 yaj < (1/∆ + 2)(m+ 2), we

obtain that the distance between y and ŷ is bounded by 2 · (1/∆ + 2)(m + 2) + m + 1.
Using that ‖d‖1 ≤ m + 1, the distance between y and y′ is bounded by ‖y′ − y‖1 <
2 · (1/∆ + 3)(m+ 2).

Approximation guarantee: The fractional solution x is modified by condition of
step 3 such that the sum of the components does not change. Hence ‖x′‖1 = ‖x‖1 ≤
(1 + ∆) opt(I, s).
Case 2a: ‖d‖1 < m+1. Since d is chosen maximally we have for every non-zero component
that y′i − x′i < 1. Since there are at most C = ∆ opt(I, s) +m non-zero components we
obtain that ‖y′‖1 ≤ ‖x′‖1 + C ≤ (1 + 2∆) opt(I, s) + m. Case 2b: ‖d‖1 = m + 1. By

62

definition of ŷ we have ‖ŷ‖1 ≤ ‖y‖1+∑m+1
j=1 dx̂bj+xbje−

∑m+2
j=1 xaj ≤ ‖y‖1+m+1. We obtain

for y′ that ‖y′‖1 = ‖ŷ‖1−‖d‖1 ≤ ‖y‖1+m+1−(m+1) = ‖y‖1 ≤ (1+2∆) opt(I, s)+m.

Theorem 3.16. Algorithm 3.7 is an AFPTAS with migration factor at most O(1
ε3
·log(1/ε))

for the fully dynamic bin packing problem with respect to large items.

Proof. Set δ = ε. Then ∆ = 2ε + ε2 = O(ε). We assume in the following that ∆ ≤ 1
(which holds for ε ≤

√
2− 1).

We prove by induction that four properties hold for any packing Bt and the corresponding
LP solutions. Let x be a fractional solution of the LP defined by the instance (It, sRt)
and y be an integral solution of this LP. The properties (2) to (4) are necessary to
apply Theorem 3.13 and property (1) provides the wished approximation ratio for the bin
packing problem.

(1) maxiBt(i) = ‖y‖1 ≤ (1 + 2∆) opt(I(t), s) +m (the number of bins is bounded)

(2) ‖x‖1 ≤ (1 + ∆) opt(I(t), s)

(3) for every configuration i we have xi ≤ yi

(4) x and y have the same number of non-zero components and that number is bounded
by ∆ opt(I(t), s) +m

To apply Theorem 3.13 we furthermore need a guaranteed minimal size for ‖x‖1 and
‖y‖1. According to Theorem 3.13 the integral solution y needs ‖y‖1 ≥ (m + 2)(1/δ + 2)
and ‖x‖1 ≥ 8(1/δ + 1) as we set α ≤ 4. By condition of the while-loop the call of
improve is made iff SIZE(It, s) ≥ 8(1/δ + 1) and SIZE(It, s) ≥ (m+ 2)(1/δ + 2). Since
‖y‖1 ≥ ‖x‖1 ≥ SIZE(It, s) the requirements for the minimum size are fulfilled. As long
as the instance is smaller than 8(1/δ + 1) or (m+ 2)(1/δ + 2) an offline algorithm for bin
packing is used. Note that we can use the offline algorithm 2.18 to fulfill properties (1) to
(4) as shown in chapter 2.

Now let Bt be a packing with SIZE(It, s) ≥ 8(1/δ+1) and SIZE(It, s) ≥ (m+2)(1/δ+2)
for instance It with solutions x and y of the LP defined by (I(t), sRt). Suppose by induction
that the properties (1) to (4) hold for the instance It. We have to prove that these properties
also hold for the instance I(t+ 1) and the corresponding solutions x′′ and y′′. The packing
Bt+1 is created by the repeated use of an call of improve for x and y followed by an
operation (insert, delete, shiftA or shiftB). We will prove that the properties (1) to (4)
hold after a call of improve followed by an operation.
improve: Let x′ be the resulting fractional solution of Theorem 3.13, let y′ be the
resulting integral solution of Theorem 3.13 and let B′t be the corresponding packing.
Properties (1) to (4) are fulfilled for x, y and Bt by induction hypothesis. Hence all
conditions are fulfilled to use Theorem 3.13. By Theorem 3.13 the properties (1) to (4)
are still fulfilled for x′, y′ and B′t and moreover we get ‖x′‖1 ≤ (1 + ∆) opt(I(t), s)− α
and ‖y′‖1 = maxiB′t(i) ≤ (1 + 2∆) opt(I(t), s) +m− α for chosen parameter α. Let x′′
and y′′ be the fractional and integral solution after an operation is applied to x′ and y′.
We have to prove that the properties (1) to (4) are also fulfilled for x′′ and y′′.
operations: First we take a look at how the operations modify ‖x′‖1 and ‖y′‖1 =
maxiB′t(i). By construction of the insertion operation, ‖x′‖1 and ‖y′‖ are increased at
most by 2. By construction of the delete operation, ‖x′‖1 and ‖y′‖1 are increased by
1. By construction of the shiftA and shiftB operation, ‖x′‖1 and ‖y′‖1 are increased
by 1. An improve(2) call followed by an insertion operation therefore yields ‖y′′‖ =

63

‖y′‖1 + 2 = (1 + 2∆) opt(I(t), s) + m − 2 + 2 = (1 + 2∆) opt(I(t + 1), s) + m since
opt(I(t), s) ≤ opt(I(t+ 1), s). An improve(4) call followed by a delete operation yields
‖y′′‖ = ‖y′‖1+1 = (1+2∆) opt(I(t), s)+m−3 ≤ (1+2∆) opt(I(t+1), s)+(1+2∆)+m−
3 ≤ (1+2∆) opt(I(t+1), s) since opt(I(t), s) ≤ opt(I(t+1), s)+1 (an item is removed)
and ∆ ≤ 1. In the same way we obtain that ‖y′′‖1 ≤ ‖y′‖1+1 ≤ (1+2∆) opt(I(t+1), s)+m
for an improve(1)/improve(3) call followed by a shiftA/shiftB operation. This concludes
the proof that property (1) is fulfilled for I(t+ 1). The proof that property (2) holds is
analog since ‖x′‖1 increases in the same way as ‖y′‖1 and ‖x′‖1 ≤ (1 + ∆) opt(I(t), s)−α.
For property (3) note that in the operations a configuration xi of the fractional solution is
increased by 1 if and only if a configuration yi is increased by 1. Therefore the property
that for all configurations x′′i ≤ y′′i retains from x′ and y′. By Theorem 3.13 the number of
non-zero components of x′ and y′ is bounded by ∆ opt(I(t), s)+m ≤ ∆ opt(I(t+1), s)+m
in case of an insert operation. If an item is removed, the number of non-zero components
of x′ and y′ is bounded by ∆ opt(I(t), s) +m ≤ ∆ opt(I(t+ 1), s) +m+ 1 = C + 1. By
Theorem 3.15 the algorithm ReduceComponents guarantees that there are at most
C = ∆ opt(I(t+ 1), s) +m non-zero components. By construction of the shift-operation,
x′′ and y′′ might have two additional non-zero components. But since these are being
reduced by Algorithm 3.7 (note that we increased the number of components being reduced
in step 6 by 2 to- see chapter 2 for details), the LP solutions x′′ and y′′ have at most
∆ opt(I(t+ 1), s) +m non-zero components which proves property (4). Algorithm 3.7
therefore has an asymptotic approximation ratio of 1 + ε.

We still need to examine the migration factor of Algorithm 3.7. In the case that the
offline algorithm is used, the size of the instance is smaller than 8(1/δ + 1) = O(1/ε)
or smaller than (m + 2)(1/δ + 2) = O(1

ε2
log(1/ε)). Hence the migration factor in that

case is bounded by O(1
ε3

log(1/ε)). If the instance is bigger the call of improve repacks
at most O(m/ε) bins by Theorem 3.13. Since every large arriving item has size > ε/14

and m = O(1
ε

log(1/ε)) we obtain a migration factor of O(1
ε3

log(1/ε)) for the Algorithm
improve. Since the migration factor of each operation is also bounded by O(1

ε2
log(1/ε)),

we obtain an overall migration factor of O(1
ε3

log(1/ε)).
The main complexity of Algorithm 3.7 lies in the use of Algorithm improve. As

described in chapter 2 the running time of improve is bounded by O(M(1/ε log(1/ε)) ·
1/ε3 log(1/ε)), where M(n) is the time needed to solve a system of n linear equations.
By using heap structures to store the items, each operation can be performed in time
O(1/ε log(1/ε) · log(ε2 · n(t))) at time t, where n(t) denotes the number of items in the
instance at time t. As the number of non-zero components is bounded by O(ε · n(t)),
the total running time of the algorithm is bounded by O(M(1/ε log(1/ε)) · 1/ε3 log(1/ε) +
1/ε log(1/ε) log(ε2 ·n(t))+ εn(t)). The best known running time for the dynamic bin packing
problem without removals was O(M(1/ε2) · 1/ε4 + εn(t) + 1

ε2
log(ε2n(t))) as presented in

chapter 2. As this is polynomial in n(t) and in 1/ε we can conclude that Algorithm 3.7 is
an AFPTAS.

If no deletions are present, we can use a simple FirstFit algorithm (as described by in
chapter 2) to pack the small items into the bins. This does not change the migration factor
or the running time of the algorithm and we obtain a robust AFPTAS with O(1

ε3
· log(1/ε))

migration for the case that no items is removed. This improves upon the best known
migration factor of O(1

ε4
) that we presented in chapter 2 and which was published in

[JK13].

64

3.4 Handling Small Items
In this section we present methods for dealing with arbitrary small items in a dynamic
online setting. First, we present a robust AFPTAS with migration factor of O(1/ε) for
the case that only small items arrive and depart. In Section 3.4.3 we generalize these
techniques to a setting where small items arrive into a packing where large items are
already packed and can not be rearranged. Finally we state the AFPTAS for the general
fully dynamic bin packing problem. In a robust setting without departing items, small
items can easily be treated by packing them greedily via the classical FirstFit algorithm
of Johnson et al. [Joh+74b] (see Epstein and Levin [EL09] or chapter 2 of this thesis).
However, in a setting where items may also depart, small items need to be treated much
more carefully. We show that the FirstFit algorithm does not work in this dynamic
setting.

Lemma 3.17. Using the FirstFit algorithm to pack small items may lead to an arbitrarily
bad approximation.

Proof. Suppose, that there is an algorithm A with migration factor c which uses FirstFit
on items with size < ε/14. We will now construct an instance where A yields an arbitrary
bad approximation ratio. Let b = ε/14− δ and a = ε/14c− ((δ+cδ)/c) for a small δ such that
(1−b)/a is integral. Note that ac < b by definition. Furthermore, let M ∈ N be an arbitrary
integer and consider the instance

IM = [A,A, . . . , A︸ ︷︷ ︸
M

, B,B, . . . , B︸ ︷︷ ︸
M

]

with

A = (b, Insert), (a, Insert), (a, Insert), . . . , (a, Insert)︸ ︷︷ ︸
(1−b)/a

B = (a,Delete), (a,Delete), . . . , (a,Delete)︸ ︷︷ ︸
(1−b)/a

.

After the insertion of all items, there are M bins containing an item of size b and 1−b/a
items of size a (see Figure 3.8a). As ac < b, the deletion of the items of size a can not
move the items of size b. The remaining M bins thus only contain a single item of size b
(see Figure 3.8b), while dM · be bins would be sufficient to pack all of the remaining items.
The approximation ratio is thus at least M/M ·b = 1/b ≈ 1

ε
and thus grows as ε shrinks. In

order to avoid this problem, we design an algorithm which groups items of similar size
together. Using such a mechanism would therefore put the second item of size b into
the first bin by shifting out an appropriate number of items of size a and so on. Our
algorithms achieves this grouping of small items by enumerating the bins and maintaining
the property, that larger small items are always left of smaller small items.

3.4.1 Only Small Items
We consider a setting where only small items exist, i. e., items with a size less than ε/14.
First, we divide the set of small items into different size intervals Sj where Sj =

[
ε

2j+1 ,
ε

2j
)

for j ≥ 1. Let b1, . . . , bm be the used bins of our packing. We say a size category Sj is

65

b

a

(a) A single bin after the insertion

b

(b) A single bin after the deletion

Figure 3.8: Construction in the proof of Lemma 3.17

bigger than a size category Sk if j < k, i. e., the item sizes contained in Sj are larger
(note that a size category Sj with large index j is called small). We say a bin bi is filled
completely if it has less than ε

2j remaining space, where Sj is the biggest size category
appearing in bi. Furthermore we label bins bi as normal or as buffer bins and partition
all bins b1, . . . , bm into queues Q1, . . . , Qd for |Q| ≤ m. A queue is a subsequence of bins
bi, bi+1 . . . , bi+c where bins bi, . . . , bi+c−1 are normal bins and bin bi+c is a buffer bin. We
denote the i-th queue by Qi and the number of bins in Qi by |Qi|. The buffer bin of queue
Qi is denoted by bbi.

We will maintain a special form for the packing of small items such that the following
properties are always fulfilled. For the sake of simplicity, we assume that 1/ε is integral.

(1) For every item i ∈ bd with size s(i) ∈ Sj for some j, d ∈ N, there is no item i′ ∈ bd′
with size s(i′) ∈ Sj′ such that d′ > d and j′ > j. This means: Items are ordered
from left to right by their size intervals.

(2) Every normal bin is filled completely.
(3) The length of each queue is at least 1/ε and at most 2/ε except for the last queue Qd.

Note that property (1) implies that all items in the same size interval Sj are packed
into bins bx, bx+1, . . . , bx+c for constants x and c. Items in the next smaller size category
Sj+1 are then packed into bins bx+c, bx+c+1, . . . and so on. We denote by bS(`) the last bin
in which an item of size interval S` appears. We denote by S>` the set of smaller size
categories S`′ with `′ > `. Note that items in size category S>` are smaller than items in
size category S`.

b1

. . .

b|Q1|−1 bb1Q1 b|Q1|+1

. . .

b|Q2|−1 bb2Q2

. . .

b|Qd−1|+1

. . .

b|Qd|−1 bbdQd

Figure 3.9: Distribution of bins with small items into queues

The following lemma guarantees that a packing that fulfills properties (1) to (3) is close
to the optimum solution.

Lemma 3.18. If properties (1) to (3) hold, then at most (1 +O(ε)) opt(I, s) + 2 bins
are used in the packing for every ε ≤ 1/3.

Proof. Let C be the number of used bins in our packing. By property (2) we know
that all normal bins have less than ε/14 free space. Property (3) implies that there are
at most ε · C + 1 buffer bins and hence possibly empty. The number of normal bins
is thus at least (1 − ε) · C − 1. Therefore we can bound the total size of all items by

66

≥ (1− ε/14) · ((1− ε) · C − 1). As opt(I, s) ≥ SIZE(I, s) ≥ (1− ε/14) · ((1− ε) · C − 1)
and 1

(1−ε/14)(1−ε) ≤ 1 + 2ε for ε ≤ 1/3 we get C ≤ (1 + 2ε) opt(I, s) + 2.

We will now describe the operations that are applied whenever a small item has to be
inserted or removed from the packing. The operations are designed such that properties
(1) to (3) are never violated and hence a good approximation ratio can be guaranteed
by Lemma 3.18 at every step of the algorithm. The operations are applied recursively
such that some items from each size interval are shifted from left to right (insert) or right
to left (delete). The recursion halts if the first buffer bin is reached. Therefore, the free
space in the buffer bins will change over time. Since the recursion always halts at the
buffer bin, the algorithm is applied on a single queue Qk.

The following Insert/Delete operation is defined for a whole set J = {i1, . . . , in} of
items. If an item i of size interval S` has to be inserted or deleted, the algorithm is called
with Insert({i}, bS(`), Qk) respectively Delete({i}, bx, Qk), where bx is the bin containing
item i and Qk is the queue containing bin bS(`) or bx. Recall that Sj =

[
ε

2j+1 ,
ε

2j
)

is a fixed
interval for every j ≥ 1 and S≤j = ⋃j

i=1 Si and S>j = ⋃
i>j Si.

Algorithm 3.19 (Insert or Delete for only small items).
• Insert(J, bx, Qk):

– Insert the set of small items J = {i1, . . . , in} with size s(ij) ∈ S≤` into bin bx.
(By Lemma 3.21 the total size of J is bounded by O(1/ε) times the size of the
item which triggered the first Insert operation.)

– Remove just as many items J ′ = {i′1, . . . , i′m} of the smaller size interval S>`
appearing in bin bx (starting by the smallest) such that the items i1, . . . , in fit
into the bin bx. If there are not enough items of smaller size categories to insert
all items from I, insert the remaining items from I into bin bx+1.

– Let J ′`′ ⊆ J ′ be the items in the respective size interval S`′ with `′ > `. Put
the items J ′`′ recursively into bin bS(`′) (i. e., call Insert(J ′`′ , bS(`′), Qk) for each
`′ > `). If the buffer bin bbk is left of bS(`′) call Insert(J ′`′ , bbk, Qk) instead.

• Delete(J, bx, Qk):
– Remove the set of items J = {i1, . . . , in} with size s(ij) ∈ S≤` from bin bx (By

Lemma 3.21 the total size of J is bounded by O(1/ε) times the size of the item
which triggered the first Delete operation.)

– Insert as many small items J ′ = {i′1, . . . , i′m} from bS(`′), where S`′ is the
smallest size interval appearing in bx such that bx is filled completely. If there
are not enough items from the size category S`′, choose items from size category
S≥`′+1 in bin bx+1.

– Let J ′`′ ⊆ J ′ be the items in the respective size interval S`′ with `′ > `. Remove
items J ′`′ from bin bS(`′) recursively (i. e., call Delete(J ′`′ , bS(`′), Qk) for each
`′ > `). If the buffer bin bbk is left of bS(`′), call Delete(J ′`′ , bbk, Qk) instead.

Using the above operations maintains the property of normal bins to be filled completely.
However, the size of items in buffer bins changes. In the following we describe how to
handle buffer bins that are being emptied or filled completely.

Algorithm 3.20 (Handle filled or emptied buffer bins).
• Case 1: The buffer bin of Qi is filled completely by an insert operation.

– Label the filled bin as a normal bin and add a new empty buffer bin to the end
of Qi.

67

– If |Qi| > 2/ε, split Qi into two new queues Q′i, Q′′i with |Q′′i | = |Q′i| + 1. The
buffer bin of Q′′i is the newly added buffer bin. Add an empty bin labeled as the
buffer bin to Q′i such that |Q′i| = |Q′′i |.

• Case 2: The buffer bin of Qi is being emptied due to a delete operation.
– Remove the now empty bin.
– If |Qi| ≥ |Qi+1| and |Qi| > 1/ε, choose the last bin of Qi and label it as new

buffer bin of Qi.
– If |Qi+1| > |Qi| and |Qi+1| > 1/ε, choose the first bin of Qi+1 and move the bin

to Qi and label it as buffer bin.
– If |Qi+1| = |Qi| = 1/ε, merge the two queues Qi and Qi+1. As Qi+1 already

contains a buffer bin, there is no need to label another bin as buffer bin for the
merged queue.

Creating and deleting buffer bins this way guarantees that property (3) is never violated
since queues never exceed the length of 2/ε and never fall below 1/ε.

S0

S1

S2

bx

i
S2

bx+1

S2

S3

bx+2

. . .

Sj

Sj+1

bbk

(a) Insert({i},bx,Qk) with s(i) ∈ S1

S0

S1

S2

bx

i
S2

bx+1

S2

S3

bx+2

. . .

Sj

Sj+1

bbk

(b) Delete({i},bx,Qk) with s(i) ∈ S1

Figure 3.10: Example calls of Insert and Delete.

Figure 3.10a shows an example call of Insert({i},bx,Qk). Item i with s(i) ∈ S1 is put
into the corresponding bin bx into the size interval S1. As bx now contains too many
items, some items from the smallest size interval S2 (marked by the dashed lines) are put
into the last bin bx+2 containing items from S2. Those items in turn push items from the
smallest size interval S3 into the last bin containing items of this size and so on. This
process terminates if either no items need to be shifted to the next bin or the buffer bin
bbk is reached.

It remains to prove that the migration of the operations is bounded and that the
properties are invariant under those operations.

Lemma 3.21.

(i) Let I be an instance that fulfills properties (1) to (3). Applying operations in-
sert/delete on I yields an instance I ′ that also fulfills properties (1) to (3).

(ii) The migration factor of a single insert/delete operation is bounded by O(1/ε) for all
ε ≤ 2/7.

Proof. Proof for (i): Suppose the insert/delete operation is applied to a packing which
fulfills properties (1) to (3). By construction of the insert operation, items from a size
category S` in bin bx are shifted to a bin by. The bin by is either bS(`) or the a buffer
bin left of bS(`). By definition by contains items of size category S`. Therefore property
(1) is not violated. Symmetrically, by construction of the delete operation, items from
a size category S` in bin bS(`) are shifted to a bin bx. By definition bx contains items of
size category S` and property (1) is therefore not violated. For property (2): Let bx be

68

a normal bin, where items i1, . . . , in of size category S≤` are inserted. We have to prove
that the free space in bx remains smaller than ε/2j, where Sj is the smallest size category
appearing in bin bx. By construction of the insert operation, just as many items of size
categories S>` are shifted out of bin bx such that i1, . . . , in fit into bx. Hence the remaining
free space is less than ε

2` and bin bx is filled completely. The same argumentation holds
for the delete operation. Property (3) is always fulfilled by definition of Algorithm 3.20.

Proof for (ii): According to the insert operation, in every recursion step of the algorithm,
it tries to insert a set of items into a bin bx′ , starting with an Insert({i}, bx′ , Qk) operation.
Let insert(S≤`+y, bx) (x ≥ x′) be the size of all items in size categories Sj with j ≤ `+ y
that the algorithm tries to insert into bx as a result of an Insert({i}, bx′ , Qk) call. Let
pack(bx) be the size of items that are actually packed into bin bx. We have to distinguish
between two cases. In the case that insert(S≤`+y, bx) = pack(bx) there are enough items
of smaller size categories S>`+y that can be shifted out, such that items I fit into bin bx.
In the case that insert(S≤`+y, bx) > pack(bx) there are not enough items of smaller size
category that can be shifted out and the remaining size of insert(S≤`+y, bx)−pack(bx) has
to be shifted to the following bin bx+1. Under the assumption that each insert(S≤`, bx) ≤ 1
for all x and ` (which is shown in the following) all items fit into bx+1. Note that no items
from bins left of bx can be shifted into bx+1 since bx = bS(`+y) is the last bin where items
of size category S≤`+y appear. Hence all items shifted out from bins left of bx are of size
categories S≤`+y (property (1)) and they are inserted into bins left of bx+1. We prove by
induction that for each insert(S≤`+y, bx) the total size of moved items is at most

insert(S≤`+y, bx) ≤ s(i) + 3
y∑
j=1

ε

2`+j

The claim holds obviously for insert(S≤`, bx′) since bx′ = bS(`) is the bin where only item
i is inserted.

bx

S1

S2

Insert [S1, S2]

bx+1

S2

S3

(a) Case 1

bx̂

S1

S2

Insert [S1]

. . .

bx+1

S2

S3

(b) Case 2a
bx̂

S1

S2

Insert [S1, S2] S2

bx̂+1

. . .

bx+1

S2

S3

(c) Case 2b

Figure 3.11: All cases to consider in Lemma 3.21

Case 1: insert(S≤`+y, bx) > pack(bx)
In this case, the size of all items that have to be inserted into bx+1 can be bounded by the
size of items that did not fit into bin bx plus the size of items that were removed from bin
bx. We can bound insert(S≤`+ȳ, bx+1) where ȳ > y is the largest index S`+ȳ appearing in
bin bx by

insert(S≤`+y, bx) + ε

2`+y ≤ s(i) + 3
y∑
j=1

ε

2`+j + 2 ε

2`+y+1 < s(i) + 3
y+1∑
j=1

ε

2`+j

Case 2: insert(S≤`+y, bx) = pack(bx)
Suppose that the algorithm tries to insert a set of items I of size categories S≤`+ȳ into
the bin bx+1 = bS(`+ȳ). The items I can only be shifted from previous bins where items

69

of size category S≤`+ȳ appear. There are only two possibilities remaining. Either all
items I are shifted from a single bin bx̂ (x̂ ≤ x) or from two consecutive bins bx̂, bx̂+1 with
insert(S≤`+y, bx̂) > pack(bx̂).

Note that bx+1 can only receive items from more than one bin if there are two bins
bx̂, bx̂+1 with insert(S≤`+y, bx̂) > pack(bx̂) such that bx+1 = bS(`+ȳ) and all items shifted
out of bx̂, bx̂+1 and into bx+1 are of size category S`+ȳ. Hence bins left of bx̂ or right of bx̂+1
can not shift items into bx+1.

Case 2a: All items I are shifted from a single bin bx̂ with x̂ ≤ x (note that x̂ < x
is possible since pack(bx) = insert(S≤`+y, bx) can be zero). The total size of items
that are shifted out of bx̂ can be bounded by insert(S≤`+y, bx̂) + ε

2`+y . By induction
hypothesis insert(S≤`+y, bx̂) is bounded by s(i) + 3∑y

j=1
ε

2`+j . Since all items that are
inserted into bx+1 come from bx̂, the value insert(S≤`+ȳ, bx+1) (ȳ > y) can be bounded
by insert(S≤`+y, bx̂) + ε

2`+y ≤ s(i) + 3∑y
j=1

ε
2`+j + ε

2`+y < s(i) + 3∑ȳ
j=1

ε
2`+j where S`+ȳ is

the smallest size category inserted into bx+1. Note that the items I belong to only one
size category S`+ȳ if x̂ < x since all items that are in size intervals S<`+ȳ are inserted into
bin bx̂+1.

Case 2b: Items I are shifted from bins bx̂ and bx̂+1 (x̂+1 ≤ x) with insert(S≤`+y, bx̂) >
pack(bx̂). In this case, all items I belong to the size category S`+ȳ since bx̂ is left of
bx. Hence all items which are inserted into bx̂+1 are from I, i. e., insert(S≤`+y, bx̂) =
pack(bx̂) + pack(bx̂+1) as all items in I belong to the same size category S`+ȳ. We can
bound insert(S`+ȳ, bx+1) by the size of items that are shifted out of bx̂ plus the size of
items that are shifted out of bx̂+1. We obtain

insert(S≤`+ȳ, bx+1) ≤ pack(bx̂) + ε

2`+y + pack(bx̂+1) + ε

2`+ȳ
= insert(S≤`+y, bx̂)) + ε

2`+y + ε

2`+ȳ

≤ s(i) + 3
y∑
j=1

ε

2`+j + ε

2`+y + ε

2`+ȳ

≤ s(i) + 3
y∑
j=1

ε

2`+j + 3 ε

2`+ȳ ≤ s(i) + 3
ȳ∑
j=1

ε

2`+j

This yields that insert(S≤`+y, bx) is bounded by s(i) + 3∑ȳ
j=1

ε
2`+j for all bins bx in

Qk. Now, we can bound the migration factor for every bin bx of Qk for any y ∈ N by
pack(bx) + ε

2`+y ≤ insert(S≤`+y, bx) + ε
2`+y . Using the above claim, we get:

insert(S≤`+y, bx) + ε

2`+y ≤ s(i) + 3
y∑
j=1

ε

2`+j + 2 ε

2`+y+1

< s(i) + 3
∞∑
j=1

ε

2`+j = s(i) + 3 ε2`
∞∑
j=1

1
2j = s(i) + 3 · ε2` ≤ 7s(i)

Since there are at most 2/ε bins per queue, we can bound the total migration of the
operation Insert({i}, bS(`), Qk) by 7 · 2/ε ∈ O(1/ε). Note also that s(i) ≤ ε/14 for every i
implies that insert(S≤`, bx) is bounded by ε/2 for all x and ` .

Suppose that items i1, . . . , in of size interval S`+y have to be removed from bin bx. In
order to fill the emerging free space, items from the same size category are moved out of
bS(`) into the free space. As the bin bx may already have additional free space, we need to
move at most a size of size(i1, . . . , in) + ε/2`+y. Using a symmetric proof as above yields a
migration factor of O(1

ε
).

70

3.4.2 Handling small items in the general setting
In the scenario that there are mixed item types (small and large items), we need to be
more careful in the creation and the deletion of buffer bins. To maintain the approximation
guarantee, we have to make sure that as long as there are bins containing only small items,
the remaining free space of all bins can be bounded. Packing small items into empty
bins and leaving bins with large items untouched does not lead to a good approximation
guarantee as the free space of the bins containing only large items is not used. In this
section we consider the case where a sequence of small items is inserted or deleted. We
assume that the packing of large items does not change. Therefore the number of bins
containing large items equals a fixed constant Λ(B). In the previous section, the bins
b1, . . . , bm(B) all had a capacity of 1. In order to handle a mixed setting, we will treat
a bin bi containing large items as having capacity of c(bi) = 1 − S, where S is the
total size of the large items in bi. The bins containing small items are enumerated by
b1, . . . , bL(B), bL(B)+1, . . . , bm(B) for some L(B) ≤ m(B) where c(b1), . . . , c(bL(B)) < 1 and
c(bL(B)+1) = . . . = c(bm(B)) = 1. Additionally we have a separate set of bins, called the
heap bins, which contain only large items. This set of bins is enumerated by h1, . . . hh(B).
Note that L(B) + h(B) = Λ(B). In general we may consider only bins bi and hi with
capacity c(bi) ≥ ε/14 and c(hi) ≥ ε/14 since bins with less capacity are already packed well
enough for our approximation guarantee as shown by Lemma 3.21. Therefore, full bins
are not considered in the following.

h1 h2

. . .

hh

Only large items

heap bins

b1

. . .

bb1Q1

. . .

b

. . .

bb` = bLQ`

Large and small items

bL+1

. . .

bb`+1Q`+1

. . .

b

. . .

bbd = bmQd

Only small items

Figure 3.12: Distribution of bins

As before, we partition the bins b1, . . . , bL(B), bL(B)+1, . . . , bm(B) into several differ-
ent queues Q1, . . . , Q`(B), Q`(B)+1, . . . , Qd(B) such that b1, . . . bL(B) = Q1, . . . Q`(B) and
bL(B)+1, . . . bm(B) = Q`(B)+1, . . . , Qd(B). If the corresponding packing B is clear from the
context, we will simply write h, L, `, d,m,Λ instead of h(B), L(B), `(B), d(B),m(B),Λ(B).
We denote the last bin of queue Qi by bbi which is a buffer bin. The buffer bin bb` is
special and will be treated differently in the insert and delete operation. Note that the
bins containing large items b1, . . . , bL(B) are enumerated first. This guarantees that the
free space in the bins containing large items is used before new empty bins are opened
to pack the small items. However, enumerating bins containing large items first, leads
to a problem if according to Algorithm 3.20 when a buffer bin is being filled and a new
bin has to be inserted right to the filled bin. Instead of inserting a new empty bin, we
insert a heap bin at this position. Since the heap bin contains only large items, we do
not violate the order of the small items (see Figure 3.12). As the inserted heap bin has
remaining free space (is not filled completely) for small items, it can be used as a buffer
bin. In order to get an idea of how many heap bins we have to reserve for Algorithm
3.20 where new bins are inserted or deleted, we define a potential function. As a buffer
bin is being filled or emptied completely the Algorithm 3.20 is executed and inserts or
deletes buffer bins. The potential function Φ(B) thus bounds the number of buffer bins in

71

Q1, . . . , Q`(B) that are about to get filled or emptied. The potential Φ(B) is defined by

Φ(B) =
`−1∑
i=1

ri + dεΛe − `

where the fill ratio ri is defined by ri = s(bbi)
c(bbi) and s(bbi) is the total size of all small items

in bbi . Note that the potential only depends on the queues Q1, . . . , Q`(B) and the bins
which contain small and large items. The term ri intends to measure the number of buffer
bins that become full. According to Case 1 of the previous section a new buffer bin is
opened when bbi is filled i. e., ri ≈ 1. Hence the sum ∑`−1

i=1 ri bounds the number of buffer
bins getting filled. The term εΛ in the potential measures the number of bins that need
to be inserted due to the length of a queue exceeding 2/ε, as we need to split the queue Qi

into two queues of length 1/ε according to Case 1. Each of those queues needs a buffer bin,
hence we need to insert a new buffer bin out of the heap bins. Therefore the potential
Φ(B) bounds the number of bins which will be inserted as new buffer bins according to
Case 1.

Just like in the previous section we propose the following properties to bound the
approximation ratio and the migration factor. The first three properties remain the same
as in Section 3.4.1 and the last property gives the desired connection between the potential
function and the heap bins.

(1) For every item i ∈ bd with size s(i) ∈ Sj for some j, d ∈ N, there is no item i′ ∈ bd′
with size s(i′) ∈ sj′ such that d′ > d and j′ > j. This means: Items are ordered
from left to right by their size intervals.

(2) Every normal bin of b1, . . . , bm is filled completely

(3) The length of each queue is at least 1/ε and at most 2/ε except for Q` and Qd. The
length of Q` and Qd is only limited by 1 ≤ |Q`|, |Qd| ≤ 1/ε. Furthermore, |Q`+1| = 1
and 1 ≤ |Q`+2| ≤ 2/ε.

(4) The number of heap bins H1, . . . , Hh is exactly h = bΦ(B)c

Since bins containing large items are enumerated first, property (1) implies in this setting
that bins with large items are filled before bins that contain no large items. Note also
that property (3) implies that Φ(B) ≥ 0 for arbitrary packings B since εΛ ≥ ` − 1 + ε
and thus dεΛe ≥ `. The following lemma proves that a packing which fulfills properties
(1) to (4) provides a solution that is close to the optimum.

Lemma 3.22. Let M = m+h be the number of used bins and ε ≤ 1/4. If properties (1) to
(4) hold, then at most max{Λ, (1 +O(ε)) opt(I, s) +O(1)} bins are used in the packing.

Proof. Case 1: There is no bin containing only small items, i. e., L = m. Hence all items
are packed into M = L+ h = Λ bins.

Case 2: There are bins containing only small items, i. e., L < m. Property (3) implies
that the number of queues d is bounded by d ≤ εm + 4. Hence the number of buffer
bins is bounded by εm+ 4 and the number of heap bins Φ(B) (property (4)) is bounded
by Φ(B) = ∑`−1

i=1 ri + dεΛe − ` ≤ ` − 1 + εΛ + 1 − ` = εΛ as ri ≤ 1. Since Λ < M ,
we can bound Φ(B) by Φ(B) < εM . The number of normal bins is thus at least
M − (εm + 5) − (εM − 1) ≥ M − 2εM − 4 = (1 − 2ε)M − 4. By property (2) every
normal bin has less than ε/14 free space and the total size S of all items is thus at least

72

S ≥ (1−ε/14)(1−2ε)M−4. Since opt(I, s) ≥ S, we have opt(I, s) ≥ (1−ε/14(1−2ε)M−4.
A simple calculation shows that 1

(1−ε/14)(1−2ε) ≤ (1 + 5ε) for ε ≤ 1/4. Therefore we can
bound the number of used bins by (1 + 5ε) opt(I, s) + 4.

According to property (4) we have to guarantee, that if the rounded potential bΦ(B)c
changes, the number of heap bins has to be adjusted accordingly. The potential bΦ(B)c
might increases by 1 due to an insert operation. Therefore the number of heap bins has to
be incremented. If the potential bΦ(B)c decreases due to a delete operation, the number
of heap bins has to be decremented. In order to maintain property (4) we have to make
sure, that the number of heap bins can be adjusted whenever bΦ(B)c changes. Therefore
we define the fractional part {Φ(B)} = Φ(B)− bΦ(B)c of Φ(B) and put it in relation to
the fill ratio r` of bb` (the last bin containing large items) through the following equation:

|(1− r`)− {Φ(B)}| ≤ s

c(bb`)
(Heap Equation)

where s is the biggest size of a small item appearing in bb`. The Heap Equation ensures
that the potential Φ(B) is correlated to 1− r`. The values may only differ by the small
term s

c(bb`)
. Note that the Heap Equation can always be fulfilled by shifting items from

bb` to queue Q`+1 or vice versa.
Assuming the Heap Equation holds and the potential bΦ(B)c increases by 1, we can

guarantee that buffer bin bb` is nearly empty. Hence the remaining items can be shifted to
Q`+1 and bb` can be moved to the heap bins. The bin left of bb` becomes the new buffer
bin of Q`. Vice versa, if bΦ(B)c decreases, we know by the Heap Equation that bb` is
nearly full, hence we can label bb` as a normal bin and open a new buffer bin from the
heap at the end of queue Q`. Our goal is to ensure that the Heap Equation is fulfilled
at every step of the algorithm along with properties (1) to (4). Therefore we enhance
the delete and insert operations from the previous section. Whenever a small item i is
inserted or removed, we will perform the operations described in Algorithm 3.19 (which
can be applied to bins of different capacities) in the previous section. This will maintain
properties (1) to (3). If items are inserted or deleted from queue Q` (the last queue
containing large and small items) the recursion does not halt at bb`. Instead the recursion
goes further and halts at bb`+1. So, when items are inserted into bin bb` according to
Algorithm 3.19 the bin bb` is treated as a normal bin. Items are shifted from bb` to queue
Q`+1 until the Heap Equation is fulfilled. This way we can make sure that the Heap
Equation maintains fulfilled whenever an item is inserted or removed from Q`.

Algorithm 3.23 (Insert or Delete small items for the mixed setting).
Insert(i, bx, Qj):
• Use Algorithm 3.19 to insert item i into Qj with j < `.
• Let i1, . . . , im be the items that are inserted at the last step of Algorithm 3.19 into
bbj.
• For k = 1, . . . ,m do

1. Insert item ik into bin bbj.
2. If bbj is completely filled use Algorithm 3.20.
3. If the potential bΦ(B)c increases use Algorithm 3.24 (see below) to adjust the

number of heap bins (property (4)).
4. Decrease the fill ratio r` of bb` by shifting the smallest items in bb` to Q`+1

until (1− r`) ≤ {Φ(B)} to fulfill the Heap Equation.
Delete(i, bx, Qj):

73

• Use Algorithm 3.19 to remove item i from bin bx in queue Qj with j < `.
• Let i1, . . . , im be the items that are removed at the last step of Algorithm 3.19 from
bbj.
• For k = 1, . . . ,m do

1. If bbj is empty use Algorithm 3.20.
2. Remove item ik from bin bbj.
3. If the potential bΦ(B)c decreases use Algorithm 3.24.
4. Increase the fill ratio r` of bb` by shifting the smallest items in bb` to Q`+1 until

(1− r`) ≥ {Φ(B)} to fulfill the Heap Equation.

For the correctness of step 4 (the adjustment to r`) note the following: In case of the
insert operation, the potential Φ(B) increases and we have Φ(B) ≥ 1− r`. As items are
being shifted from bb` to Q`+1, the first time that (1− r`) ≤ {Φ(B)} is fulfilled, the Heap
Equation is also fulfilled. Since the fill ratio of bb` changes at most by s

c(bb`)
as an item

(which has size at most s) is shifted to Q`+1 we know that |(1 − r`) − {Φ(B)}| ≤ s
c(bb`)

.
Correctness of step 4 in the delete operation follows symmetrically.

The potential Φ(B) changes if items are inserted or deleted into queues Q1, . . . , Q`−1.
Due to these insert or delete operations it might happen that the potential bΦ(B)c
increases or that a buffer bin is being filled or emptied. The following operation is applied
as soon as an item is inserted or deleted into a buffer bin and the potential bΦ(B)c
increases or decreases.

Algorithm 3.24 (Change in the potential).
• Case 1: The potential bΦ(B)c increases by 1.

– According to the Heap Equation the remaining size of small items in bb` can be
bounded. Shift all small items from bb` to Q`+1.

– If |Q`| > 1 then label the now empty buffer bin bb` as a heap bin and the last
bin in Q` is labeled as a buffer bin.

– If Q` only consists of the buffer bin (i. e., |Q`| = 1) shift items from bb`−1 to
Q`+1 until the heap equation is fulfilled. If bb`−1 becomes empty remove bb`−1
and bb`. The bin left to bb`−1 becomes the new buffer bin of Q`−1. The queue
Q` is deleted and Q`−1 becomes the new last queue containing large items.

• Case 2: The potential bΦ(B)c decreases by 1.
– According to the Heap Equation the remaining free space in bb` can be bounded.

Shift items from bb`+1 to bb` such that the buffer bin bb` is filled completely.
– Add the new buffer bin from the heap to Q`.
– If |Q`| = 1/ε label an additional heap bin as a buffer bin to create a new queue
Q`+1 with |Q`+1| = 1.

Like in the last section we also have to describe how to handle buffer bins that are being
emptied or filled completely. We apply the same algorithm when a buffer bin is being
emptied or filled but have to distinguish now between buffer bins of Q1, . . . , Q` and buffer
bins of Q`+1, . . . , Qd. Since the buffer bins in Q`+1, . . . , Qd all have capacity 1, we will use
the same technique as in the last section. If a buffer bin in Q1, . . . , Q` is emptied or filled
we will also use similar technique. But instead of inserting a new empty bin as a new
buffer bin, we take an existing bin out of the heap. And if a buffer bin from Q1, . . . Q` is
being emptied (it still contains large items), it is put into the heap. This way we make
sure that there are always sufficiently many bins containing large items which are filled
completely.

74

Lemma 3.25. Let B be an packing which fulfills the properties (1) to (4) and the Heap
Equation. Applying Algorithm 3.24 or Algorithm 3.20 on B during an insert/delete
operation yields an packing B′ which also fulfills properties (1) to (4). The migration to
fulfill the Heap Equation is bounded by O(1/ε).

Proof. Analysis of Algorithm 3.24
Properties (1) and (2) are never violated by the algorithm because the items are only
moved by shift operations. Property (3) is never violated because no queue (except for
Q`) exceeds 2/ε or falls below 1/ε by construction. Algorithm 3.24 is called during an insert
or delete operation. The Algorithm is executed as items are shifted into or out of buffer
bbj such that bΦ(B)c changes.

In the following we prove property (4) for the packing B′ assuming that bΦ(B)c = h(B)
holds by induction. Furthermore we give a bound for the migration to fulfill the heap
equation:

• Case 1: The potential bΦ(B)c increases during an insert operation, i. e., it holds
bΦ(B′)c = bΦ(B)c+1. Let item i∗ be the first item that is shifted into a bin bbj such
that bΦ(B) + r∗c = bΦ(B′)c, where r∗ is the fill ratio being added to bbj by item i∗.
In this situation, the fractional part changes from {Φ(B)} ≈ 1 to {Φ(B′)} ≈ 0.

– In the case that |Q`| > 1, the buffer bin bb` is being emptied and moved to the
heap bins. The bin left of bb` becomes the new buffer bin bb′` of Q`. Hence the
number of heap bins increases and we have h(B′) = h(B) + 1 = bΦ(B)c+ 1 =
bΦ(B′)c, which implies property (4).
To give a bound on the total size of items needed to be shifted out of (or into)
bin bb` to fulfill the heap equation, we bound the term |(1− r′`)− {Φ(B′)}| by
some term C ≤ O(s(i)/ε), where r′` is the fill ratio of bb′` and s(i) is the size of the
arriving or departing item. If the term |(1− r′`)− {Φ(B′)}| can be bounded by
C, the fill ratio of bb′` has to be adjusted to fulfill the heap equation according
to the insert and delete operation. This can be done be shifting a total size of
at most C items out of (or into) bb′`.
The bin bb′` is completely filled by property (3) and therefore has a fill ratio
of r′` ≥

c(bb`)−s
c(bb`)

≥ 1 − 2 s
ε
, where s ≤ ε

2k is the largest size of a small item
appearing in bb` and Sk is the largest size category appearing in bb′`. Let k′
be the largest size category appearing in bin bbj. As the bin bb′` is right of bbj
we know k ≤ k′ (property (1)) and hence s ≤ 2s(i∗). We get r′` ≥ 1 − 4 s(i

∗)
ε

.
Using that {Φ(B′)} ≤ r∗ ≤ 2s(i∗)/ε, we can bound |(1 − r′`) − {Φ(B′)}| by
4 s(i

∗)
ε

+2s(i∗)/ε = O(s(i∗)/ε). Hence the Heap Equation can be fulfilled by shifting
items of total size O(s(i∗)/ε) at the end of the insert operation.

– If |Q`| = 1 a set of items in the buffer bin bb`−1 is shifted to Q`+1 to fulfill
the Heap Equation. Since items are being removed from bb`−1 the potential
decreases. If r`−1 > {Φ(B′)}, there are enough items which can be shifted out
of bb`−1 such that we obtain a new potential Φ(B′′) < Φ(B′)−{Φ(B′)}. Hence
bΦ(B′′)c = bΦ(B)c and the Heap Equation is fulfilled.
Note that the size of items that are shifted out of bb`−1 is bounded by r∗ + s =
O(s(i∗)/ε), where s is the biggest size of an item appearing in bb`−1.
If r`−1 ≤ {Φ(B′)} all items are shifted out of bb`−1. As the number of queues
decreases, we obtain the new potential Φ(B′′) = Φ(B′)− r`−1 + 1 = bΦ(B′)c+

75

{Φ(B′)} − r`−1 + 1 ≥ bΦ(B′)c+ 1. Hence bΦ(B′′)c = bΦ(B)c+ 2. The buffer
bins bb`−1 and bb` are moved to the heap and thus h(B′′) = h(B) + 2 =
bΦ(B)c+ 2 = bΦ(B′′)c (property (4)).
Note that if r`−1 ≤ {Φ(B′)}, item i∗ is not inserted into bin bb`−1 as r`−1 ≥ r∗ >
{Φ(B′)}. Therefore the bin bbj is left of bb`−1 and we can bound the fill ratio
of the bin left of bb`−1 called r′′` by 1− 2 s(i

∗)
ε

. Using {Φ(B′′)} ≤ r∗ = O(s(i∗)/ε)
the heap equation can be fulfilled by shifting items of total size O(s(i)/ε) at the
end of the insert operation.

• Case 2: The potential bΦ(B)c decreases during a delete operation, i. e., it holds
bΦ(B′)c = bΦ(B)c − 1 = bΦ(B)− r∗c, where r∗ is the fill ratio being removed from
a buffer bin bbj due to the first shift of an item i∗ that decreases the potential.
According to Algorithm 3.24, buffer bin bb` is being filled completely and a new
buffer bin for Q` is inserted from the heap. Hence the number of heap bins decreases
and we have bΦ(B′)c = h(B)− 1 = h(B′).
As bΦ(B)c− 1 = Φ(B)−{Φ(B)}− 1 = bΦ(B)− r∗c, it holds that {Φ(B)} ≤ r∗ and
by the heap equation the fill ratio of bb` is r` ≥ r∗ + s, where s is the largest size of
a small item in bb`. As above, r∗ and s can be bounded by O(s(i

∗)
ε

). Hence the total
size that is shifted from Q`+1 into bin bb` can be bounded by O(s(i

∗)
ε

).
Furthermore {Φ(B′)} ≥ 1− r∗ (as Φ(B′) = Φ(B)− r∗) and r′` = 0, therefore we can
bound |(1− r′`)−{Φ(B′)}| by r∗ ≤ O(s(i∗)/ε) and the Heap Equation can be fulfilled
by shifting a total size of at most O(s(i∗)/ε) items.
In the case that |Q`| = 1/ε a new queue Q`+1 is created which consists of a single
buffer bin (inserted from the heap), which does not contain small items, i. e.,
h(B′′) = h(B′) − 1 = h(B) − 2, where B′′ is the packing after the insertion
of item i∗. Let Φ(B′′) be the potential after the queue Q`+1 is created. Then
Φ(B′′) = ∑`(B′′)−1

i=1 ri + εΛ− `(B′′) = ∑`(B′)−2
i=1 ri + εΛ− `(B′)− 1 = Φ(B′)− 1, as the

buffer bin bb` is now counted in the potential, but does not contain any small items
and thus r′′` = 0. Hence Φ(B′′) = Φ(B′)− 1 = h(B′)− 1 = h(B′′).

Analysis of Algorithm 3.20
Algorithm 3.20 is executed as an item i∗ is moved into a buffer bin bbj such that bbj is
completely filled or Algorithm 3.20 is executed if the buffer bin bbj is emptied by moving
the last item i∗ out of the bin. As in the analysis of Algorithm 3.24, properties (1) and (2)
are never violated by the algorithm because the items are only moved by shift operations.
Property (3) is never violated because no queue (except for Q`) exceeds 2/ε or falls below
1/ε by construction.

It remains to prove property (4) and a bound for the migration to fulfill the heap
equation:

• Case 1: An item i∗ is moved into the buffer bin bbj such that bbj is filled completely
for some j < `. According to Algorithm 3.20 a bin is taken out of the heap and
labeled as the new buffer bin bb′j with fill ratio r′j = 0 of queue Qj, i. e., the number
of heap bins decreases by 1. Let Φ(B) be the potential before Algorithm 3.20 is
executed and let Φ(B′) be the potential after Algorithm 3.20 is executed. The
potential changes as follows:

Φ(B)− Φ(B′) = (rj − r′j)− (`(B)− `(B′))

76

Since r′j = 0 the new potential is Φ(B′) = Φ(B) − rj ≈ Φ(B) − 1 (assuming
`(B) = `(B′), as the splitting of queue is handled later on).

– If bΦ(B′)c = bΦ(B)c − 1 property (4) is fulfilled since the number of heap
bins decreases by h(B′) = h(B)− 1 = bΦ(B)c − 1 = bΦ(B′)c. As rj ≥ c(bbj)−s

c(bbj) ,
where s is the biggest size category appearing in bbj and s ≤ 2s(i∗), we obtain
for the fractional part of the potential that {Φ(B)} − {Φ(B′)} ≤ 2 s

ε
≤ 4 s(i

∗)
ε

.
Hence the Heap Equation can be fulfilled by shifting items of total size O(s(i∗)/ε)
at the end of the insert operation as in the above proof.

– In the case that bΦ(B′)c = bΦ(B)c = bΦ(B)− rjc we know that the fractional
part changes by {Φ(B′)} = {Φ(B)} − rj. Since the bin bbj is filled completely
we know that rj ≥ c(bbj)−s

c(bbj) ≈ 1 and hence {Φ(B)} ≥ rj ≈ 1 and {Φ(B′)} ≤
1− rj ≈ 0. According to the Heap Equation, items have to be shifted out of
r` such that the fill ratio r` changes from r` ≤ 1 − rj to r` ≈ 1. Therefore
we know that as items are shifted out of bb` to fulfill the Heap Equation, the
buffer bin bb` is being emptied and moved to the heap (see Algorithm 3.24).
We obtain for the number of heap bins that h(B′) = h(B) + 1− 1 = h(B) and
hence h(B′) = bΦ(B′)c (property (4)).
As {Φ(B)} ≥ rj ≥ 1−4 s(i

∗)
ε

, the Heap Equation implies that r` ≤ 4 s(i
∗)
ε

+ s
c(bb`)

=
O(s(i∗)/ε). The buffer bin bb` is thus emptied by moving a size of O(s(i∗)/ε) items
out of the bin. Let bb′` be the new buffer bin of Q` that was left of bb`. The
Heap Equation can be fulfilled by shifting at most O(s(i)/ε) out of bb′` since
{Φ(B′)} is bounded by 1− rj = O(s(i∗)/ε).

– In the case that |Qj| > 2/ε the queue is split into two queues and an additional
heap bin is inserted, i. e., h(B′′) = h(B′) − 1. As the potential changes
by Φ(B′′) = Φ(B′) + (`(B′) − `(B′′)) = Φ(B′) − 1 we obtain again that
h(B′′) = bΦ(B′′)c.

• Case 2: Algorithm 3.20 is executed if bin bbj is emptied due to the removal of
an item i∗ as a result of a Delete(i, bx, Qj) call. According to Algorithm 3.20, the
emptied bin is moved to the heap, i. e., the number of heap bins increases by 1.
Depending on the length of Qj and Qj+1, the bin right of bbj or the bin left of bbj
is chosen as the new buffer bin bb′j. The potential changes by Φ(B′) = Φ(B) + r′j,
where r′j is the fill ratio of bb′j as in case 1.

– If bΦ(B′)c = bΦ(B)c+ 1 property (4) is fulfilled since the number of heap bins
increases by h(B′) = h(B) + 1.
As bin bb′j is completely filled, the fill ratio is bounded by r′j ≥ 1− 2 s

ε
, where

s is the largest size appearing in bb′j. Since the bin bx has to be left of bbj we
know that s ≤ 2s(i). We obtain for the fractional part of the potential that
{Φ(B)} ≥ {Φ(B′)} − 2 s

ε
≤ 4 s(i)

ε
. Hence the Heap Equation can be fulfilled by

shifting items of total size O(s(i)/ε) at the end of the remove operation.
– In the case that bΦ(B′)c = bΦ(B)c = bΦ(B) + r′jc we know that the fractional

part changes similar to case 1 by {Φ(B′)} = {Φ(B)}+ r′j. Since the bin bbj is
filled completely we know that rj ≥ c(bbj)−s

c(bbj) ≈ 1 and hence {Φ(B′)} ≥ rj ≈ 1
and {Φ(B)} ≤ 1− rj ≈ 0. According to the Heap Equation items have to be
shifted to bb` such that the fill ratio r` changes from r` ≈ 0 to r` ≈ 1. Therefore

77

we know that as items are shifted into bb` to fulfill the Heap Equation, bb`
is filled completely and a bin from the heap is labeled as the new buffer bin
of Q` (see Algorithm 3.24). We obtain for the number of heap bins that
h(B′) = h(B)− 1 + 1 = h(B) and hence h(B′) = Φ(B′) (property (4)). The
Heap Equation can be fulfilled similarly to case 1 by shifting items of total size
O(s(i)/ε).

Using the above lemma for, we can finally prove the following central theorem, which
states that the migration of an insert/delete operation is bounded and that properties (1)
to (4) are maintained.

Theorem 3.26.

(i) Let B be a packing which fulfills properties (1) to (4) and the Heap Equation.
Applying operations insert(i, bx, Qj) or delete(i, bx, Qj) on a packing B yields an
instance B′ which also fulfills properties (1) to (4) and the Heap Equation.

(ii) The migration factor of an insert/delete operation is bounded by O(1/ε).

Proof. Suppose a small item i with size s(i) is inserted or deleted from queue Qj. The
insert and delete operation basically consists of application of Algorithm 3.19 and iterated
use of steps (1) to (3) where Algorithms 3.20 and 3.24 are used and items in bb` are moved
to Q`+1 and vice versa. Let B be the packing before the insert/delete operation and let
B′ be the packing after the operation.

Proof for (i): Now suppose by induction that property (1) to (4) and the Heap Equation
is fulfilled for packing B. We prove that property (4) and the Heap Equation maintain
fulfilled after applying an insert or delete operation on B resulting in the new packing
B′. Properties (1) to (3) hold by conclusion of Lemma 3.21 and Lemma 3.25. Since
the potential and the number of heap bins only change as a result of Algorithm 3.20
or Algorithm 3.24, property (4) maintains fulfilled also. By definition of step 4 in the
insert operation, items are shifted from bb` to Q`+1 until the Heap Equation is fulfilled.
By definition of step 4 of the delete operation, the size of small items in bb` is adjusted
such that the Heap Equation is fulfilled. Hence the Heap Equation is always fulfilled after
application of Insert(i, bx, Qj) or Delete(i, bx, Qj).

Proof for (ii): According to Lemma 3.21 the migration factor of the usual insert
operation is bounded by O(1/ε). By Lemma 3.25 the migration in Algorithm 3.20 and
Algorithm 3.24 is also bounded by O(1/ε). It remains to bound the migration for step 4 in
the insert/delete operation. Therefore we have to analyze the total size of items to be
shifted out or into bb` in order to fulfill the Heap Equation.

Since the size of all items i1, . . . , ik that are inserted into bbj is bounded by 7s(i) (see
Lemma 3.21) and the capacity of bbj is at least ε/14 the potential Φ(B) changes by at
most O(s(i)/ε). By Lemma 3.25 the size of items that needs to be shifted out or into bb` as
a result of Algorithm 3.20 or 3.24 is also bounded by O(s(i)/ε). Therefore the size of all
items that need to be shifted out or into bb` in step (4) of the insert/delete operation is
bounded by O(s(i)/ε).

Shifting a size of O(s(i)/ε) to Q`+1 or vice versa leads to a migration factor of O(1/ε2)
(Lemma 3.21). Fortunately we can modify the structure of queues Q`+1 and Q`+2 such
that we obtain a smaller migration factor. Assuming that Q`+1 consists of a single buffer

78

bin, i. e., |Q`+1| = 1 items can directly be shifted from bb` to bb`+1 and therefore we
obtain a migration factor of O(1/ε). A structure with |Q`+1| = 1 and 1 ≤ |Q`+2| ≤ 2/ε (see
property (3)) can be maintained by changing Algorithm 3.20 in the following way:

• If bb`+1 is filled completely, move the filled bin to Q`+2.
– If |Q`+2| > 2/ε, split Q`+2 into two queues.

• If bb`+1 is being emptied, remove the bin and label the first bin of Q`+2 as bb`+1.
– If |Q`+2| = 0, remove Q`+2.

3.4.3 Handling the General Setting
In the previous section we described how to handle small items in a mixed setting. It
remains to describe how large items are handled in this mixed setting. Algorithm 3.7
describes how to handle large items only. However, in a mixed setting, where there
are also small items, we have to make sure that properties (1) to (4) and the Heap
Equation maintain fulfilled as a large item is inserted or deleted. Algorithm 3.7 changes
the configuration of at most O(1/ε2 · log 1/ε) bins (Theorem 3.16). Therefore, the size of
large items in a bin b (= 1− c(b)) changes, as Algorithm 3.7 may increase or decrease the
capacity of a bin. Changing the capacity of a bin may violate properties (2) to (4) and the
Heap Equation. We describe an algorithm to change the packing of small items such that
all properties and the Heap Equation are fulfilled again after Algorithm 3.7 was applied.

The following algorithm describes how the length of a queue Qj is adjusted if the length
|Qj| falls below 1/ε:

Algorithm 3.27 (Adjust the queue length).

• Remove all small item IS from bbj and add bbj to the heap.

• Merge Qj with Qj+1. The merged queue is called Qj.

• If |Qj| > 2/ε split queue Qj by adding a heap bin in the middle.

• Insert items IS using Algorithm 3.23.

The following algorithm describes how the number of heap bins can be adjusted.

Algorithm 3.28 (Adjust number of heap bins).

• Decreasing the number of heap bins by 1.
– Shift small items from Q`+1 to bb` until bb` is filled completely
– Label a heap bin as the new buffer bin of Q`

• Increasing the number of heap bins by 1.
– Shift all small items from bb` to Q`+1

– Label bb` as a heap bin
– Label the bin left of bb` as new buffer bin of Q`

79

Note that the Heap Equation can be fulfilled in the same way, by shifting items from
bb` to Q`+1 or vice versa.

Using these algorithms, we obtain our final algorithm for the fully dynamic binpacking
problem.

Algorithm 3.29 (AFPTAS for the mixed setting).

• If i is large do
1. Use Algorithm 3.7.
2. Remove all small items IS of bins b with changed capacity.
3. Adjust queue length.
4. Adjust the number of heap bins.
5. Adjust the Heap Equation.
6. Insert all items IS using Algorithm 3.23.

• If i is small use Algorithm 3.23

Combining all the results from the current and the previous section, we finally prove
the central result that there is fully dynamic AFPTAS for the binpacking problem with
polynomial migration.

Theorem 3.30. Algorithm 3.29 is a fully dynamic AFPTAS for the binpacking problem,
that achieves a migration factor of at most O(1/ε4 · log 1/ε) by repacking items from at most
O(1/ε3 · log 1/ε) bins.

Proof. Approximation guarantee: By definition of the algorithm, it generates at every
timestep t a packing Bt of instance I(t) such that properties (1) to (4) are fulfilled.
According to Lemma 3.22, at most max{Λ, (1 +O(ε)) opt(I(t), s) +O(1)} bins are used
where Λ is the number of bins containing large items. Since we use Algorithm 3.7 to pack the
large items, Theorem 3.16 implies that Λ ≤ (1+O(ε)) opt(I(t), s)+O(1/ε log 1/ε). Hence the
number of used bins can be bounded in any case by (1 +O(ε)) opt(I(t), s) +O(1/ε log 1/ε).

Migration Factor: Note that the Algorithm uses Algorithm 3.23 or Algorithm 3.7 to
insert and delete small or large items. The migration factor for Algorithm 3.23 is bounded
by O(1/ε) due to Theorem 3.26 while the migration factor for Algorithm 3.7 is bounded
by O(1/ε3 · log 1/ε) due to Theorem 3.16.

It remains to bound the migration that is needed to adjust the heap bins, the length of
a queue falling below 1/ε and the Heap Equation in case a large item arrives and Algorithm
3.7 is applied.

Suppose the number of heap bins has to be adjusted by 1. In this case Algorithm 3.28
shifts items from Q`+1 to bb` or vice versa until bb` is either filled or emptied. Hence, the
size of moved items is bounded by 1. Since the size of the arriving or departing item is
≥ ε/14 the migration factor is bounded by O(1/ε). In the same way, a migration of at most
O(1/ε) is used to fulfill the Heap Equation which implies that the migration in step 5 is
bounded by O(1/ε).

If |Qj| falls below 1/ε, the two queues Qj and Qj+1 are merged by emptying bbj. The
removed items are inserted by Algorithm 3.23. As their total size is bounded by 1 and
the algorithm has a migration factor of O(1/ε), the size of the moved items is bounded by
O(1/ε). The migration to merge two queues can thus be bounded by O(1/ε2).

80

Note that the proof of Theorem 3.16 implies that at most γ = O(1/ε2 log 1/ε) bins are
changed by Algorithm 3.7. The total size of the items IS which are removed in step 2
is thus bounded by γ. Similarly, the length of at most γ queues can fall below 1/ε. The
migration of step 3 is thus bounded by γ · 1/ε2. As at most γ buffer bins are changed, the
change of the potential (and thus the number of heap bins) is also bounded by γ and the
migration in step 4 can be bounded by γ · 1/ε. The migration in step 6 is bounded by
s(IS) · 1/ε ≤ γ · 1/ε as Algorithm 3.23 has migration factor 1/ε. The total migration of the
adjustments is thus bounded by γ · 1/ε2 = O(1/ε4 log 1/ε).

Running Time: The handling of small items can be performed in linear time while the
handling of large items requires O(M(1/ε log(1/ε)) · 1/ε3 log(1/ε) + 1/ε log(1/ε) log(ε2 · n(t)) +
εn(t)), where M(n) is the time needed to solve a system of n linear equations (see Theorem
3.16). The total running time of the algorithm is thus O(M(1/ε log(1/ε)) · 1/ε3 log(1/ε) +
1/ε log(1/ε) log(ε2 · n(t)) + n(t)).

81

4 Closing the Gap for Makespan
Scheduling via Sparsification
Techniques

4.1 Introduction
Minimum makespan scheduling is one of the foundational problems in the literature on
approximation algorithms [Gra66; Gra69]. In the identical machine setting the problem
asks for an assignment of a set of n jobs J to a set of m identical machines M. Each
job j ∈ J is characterized by a non-negative processing time pj ∈ Z>0. The load of
a machine is the total processing time of jobs assigned to it, and our objective is to
minimize the makespan, that is, the maximum machine load. This problem is usually
denoted P ||Cmax. It is well known to admit a polynomial time approximation scheme
(PTAS) [HS87], and there has been many subsequent works improving the running time
or deriving PTAS’s for more general settings. The fastest PTAS for P ||Cmax has a
running time of 2O(1/ε2) log3(1/ε)) + O(n log n) for (1 + ε)-approximate solutions [Jan10].
Very recently, Chen et al. [CJZ13] showed that, assuming the exponential time hypothesis
(ETH), there is no PTAS that yields (1 + ε)-approximate solutions for ε > 0 with running
time 2(1/ε)1−δ + poly(n) for any δ > 0 [CJZ13].

Given a guess T ∈ N on the optimal makespan, which can be found with binary
search, the problem reduces to deciding the existence of a packing of the jobs to m
machines (or bins) of capacity T . If we aim for a (1 + ε)-approximate solution, for
some ε > 0, we can assume that all processing times are integral and T is a constant
number, namely T ∈ O(1/ε2). This can be achieved with well known rounding and scaling
techniques [Alo+97; Alo+98; Hoc97] which will be specified later. Let π1 < π2 < . . . < πd
be the job sizes appearing in the instance after rounding, and let bk denote the number of
jobs of size πk. The mentioned rounding procedure implies that the number of different job
sizes is d = O((1/ε) log(1/ε)). Hence, for large n we obtain a highly symmetric problem
where several jobs will have the same processing time. Consider the knapsack polytope
P = {c ∈ Rd

≥0 : π · c ≤ T}. A packing on one machine can be expressed as a vector
c ∈ Q = Zd ∩ P , where ck denotes the number of jobs of size πk assigned to the machine.
Elements in Q = Zd ∩ P are called configurations. Considering a variable xc ∈ Z≥0 that
decides the multiplicity of configuration c in the solution, our problem reduces to solving
the following linear integer program (ILP):

[conf-IP]
∑
c∈Q

c · xc = b, (4.1)
∑
c∈Q

xc = m, (4.2)

xc ∈ Z≥0 for all c ∈ Q. (4.3)

82

In this article we derive new insights on this ILP that help us to design faster algorithms
for P ||Cmax and other more general problems. These including makespan scheduling
on related machines Q||Cmax, and a more general class of objective functions on par-
allel machines. We show that all these problems admit a PTAS with running time
2O((1/ε) log4(1/ε)) + poly(n). Hence, our algorithm is best possible up to polylogarithmic
factors in the exponent assuming ETH [CJZ13].

4.1.1 Literature Review
There is an old chain of approximation algorithms for P ||Cmax, starting from the sem-
inal work by Graham [Gra66; Gra69]. The first PTAS was given by Hochbaum and
Shmoys [HS87] and had a running time of (n/ε)O((1/ε)2) = nO((1/ε)2 log(1/ε)). This was
improved to nO((1/ε) log2(1/ε)) by Leung [Leu89]. Subsequent articles improve further the
running time. In particular Hochbaum and Shmoys (see [Hoc97]) and Alon et al. [Alo+97;
Alo+98] obtain an efficient PTAS1 (EPTAS) with running time 2(1/ε)poly(1/ε) +O(n log n).
Alon et al. [Alo+97; Alo+98] consider general techniques that work for several objective
functions, including all Lp-norm of the loads and maximizing the minimum machine load.

The fastest PTAS known up to date for P ||Cmax achieves a running time of 2O((1/ε)2 log3(1/ε))+
O(n log n) [Jan10]. More generally, this work gives an EPTAS for the case of related
(uniform) machines, where each machine i ∈ M has a speed si and assigning to i job
j implies a processing time of pj/si. For this more general case the running time is
2O((1/ε)2 log3(1/ε)) + poly(n). For the simpler case of P ||Cmax, the ILP can be solved di-
rectly since the number of variables is a constant. This can be done with Lentras’
algorithm [Len83], or even with Kannan’s algorithm [Kan87] that gives an improved
running time. This technique yields a running time that is doubly exponential in 1/ε.
This was, in essence, the approach by Alon et al. [Alo+97; Alo+98] and Hochbaum
and Shmoys [Hoc97]. To lower the dependency on 1/ε, Jansen [Jan10] uses a result by
Eisenbrand and Shmonin [ES06] that implies the existence of a solution x with support
of size at most O(d log(dT)) = O((1/ε) log2(1/ε)). First guessing the support and then
solving the ILP with O((1/ε) log2(1/ε)) integer variables and using Kannan’s algorithm
yields the desired running time of 2O((1/ε)2 log3(1/ε)) +O(n log n).

The configuration ILP has recently been studied in the context of the (1-dimensional)
cutting stock problem. In this case, the dimension d is constant, T = 1, and π is a rational
vector. Moreover, π and b are part of the input. Goemans and Rothvoß [GR14] obtain
an optimal solution in time log(∆)2O(d) , where ∆ is the largest number appearing in the
denominator of πk or the multiplicities bk. This is achieved by first showing that there
exists a pre-computable set Q̃ ⊆ Q with polynomial many elements, such that there exists
a solution x that gives all but constant (depending only on d) amount of weight to Q̃. We
remark that applying this result to a rounded instance of P ||Cmax yields a running time
that is doubly exponential on 1/ε.

4.1.2 Our Contributions
Our main contribution is a new insight on the structure of the solutions of [conf-IP]. These
properties are specially tailored to problems in which T is bounded by a constant, which

1That is, a PTAS whose running time is f(1/ε)poly(|I|) where |I| is the encoding size of the input and
f is some function.

83

in the case of P ||Cmax can be guaranteed by rounding and scaling. The same holds for
Q||Cmax with a more complex rounding and case analysis.

We first classify configurations by their support. We say that a configuration is simple
if its support is of size at most log(T + 1), otherwise it is complex. Our main structural
result2 states that there exists a solution x in which all but O(d log(dT)) weight is given to
simple configurations, the support is bounded by O(d log(dT)) (as implied by Eisenbrand
and Shmonin [ES06]) and no complex configuration has weight larger than 1.

Theorem 4.1 (Thin solutions). Assume that [conf-IP] is feasible. Then there exists a
feasible solution x to [conf-IP] such that:

1. if xc > 1 then the configuration c is simple,

2. the support of x satisfies | supp(x)| ≤ 4(d+ 1) log(4(d+ 1)T), and

3. ∑c∈Qc xc ≤ 2(d+1) log(4(d+1)T), where Qc denotes the set of complex configurations.

We call a solution satisfying the properties of the theorem thin. The theorem can be
shown by iteratively applying a sparsification lemma that shows that if a solution gives a
weight of two or more to a complex configuration, then we can replace this partial solution
by two configurations with smaller support. The sparsification lemma is shown by a
simple application of the pigeonhole principle. The theorem can be shown by mixing this
technique with the theorem of Eisenbrand and Shmonin [ES06] and a potential function
argument.

As an application to our main structural theorem, we derive a PTAS for P ||Cmax
by first guessing the jobs assigned to complex configurations. An optimal solution for
this subinstance can be derived by a dynamic program. For the remaining instance
we know the existence of a solution using only simple configurations. Then we can
guess the support of such solution and solve the corresponding [conf-IP] restricted to
the guessed variables. The main use of having simple configurations is that we can
guess the support of the solution much faster, as the number of simple configuration is
(asymptotically) smaller than the total number of configurations. The complete procedure
takes time 2O((1/ε) log4(1/ε)) +O(n log n). Moreover, using the rounding and case analysis of
Jansen [Jan10], we derive an mixed integer linear program that can be suitably decomposed
in order to apply our structural result iteratively. This yields a PTAS with a running
time of 2O((1/ε) log4(1/ε)) + poly(n) for Q||Cmax.

Similarly, we can extend our results to derive PTAS’s for a larger family of objective
functions as considered by Alon et al. [Alo+97; Alo+98]. Let `i denote the load of machine
i, that is, the total processing time of jobs assigned to machine i for a given solution. Our
techniques then gives a PTAS with the same running time for the problem of minimizing
the Lp-norms of the loads (for fixed p), and maximizing mini∈M `i, among others. To
solve this problem, we can round the instance and state an IP analogous to [conf-IP]
but considering an objective function. However, the objective function prevents us to
use the main theorem as it is stated. To get over this issue, we study several ILPs. In
each ILP we consider xc to be a variable only if c has a given load, and fix the rest to be

2We remark the resemblance of this structure to the result by Goemans and Rothvoß [GR14]. Indeed,
similar to their result, we can precompute a subset of configurations such that all but a constant
amount of weight of the solution is given to such set. In their case the set is of cardinality polynomial
on the input and is constructed by covering the integral solutions of the knapsack polytope by
parallelepipeds. In our case, all but O(d log dT) weight is given to simple configurations.

84

some optimal solution. Applying to each such ILP Theorem 4.1, plus some extra ideas,
yields an analogous structural theorem. Afterwards, an algorithm similar to the one for
makespan minimization yields the desired PTAS.

From an structural point of view, our sparsification lemma has other consequences
on the structure of the knapsack polytope and the LP-relaxation of the [conf-IP]. More
precisely, we can show that any vertex of the convex hull of Q must be simple. This, for
example, helps us to upper bound the number of vertices by 2O(log2(T)+log2(d)). Moreover,
we can show that the configuration-LP, obtained by replacing the integrality restriction in
[conf-IP] by x ≥ 0, if it is feasible then admits a solution whose support consist purely of
simple configurations. Due to space limitations we leave many details and proofs to the
appendix.

4.2 Preliminaries
We will use the following notation throughout the chapter. By default log(·) = log2(·),
unless stated otherwise. Given two sets A, I, we will denote by AI the set of all vectors
indexed by I with entries in A, that is, AI = {(ai)i∈I : ai ∈ A for all i ∈ I}. Moreover,
for A ⊆ R, we denote the support of a vector a ∈ AI as supp(a) = {i ∈ I : ai 6= 0}.

We consider an arbitrary knapsack polytope P = {c ∈ Rd
≥0 : π · c ≤ T} where π ∈ Zd>0

is a non-negative integral (row) vector and T is a positive integer. We assume without
loss of generality that each coordinate πk of π is upper bounded by T (otherwise ck = 0
for all c ∈ Zd ∩ P). We focus on the set of integral vectors in P which we denote by
Q = Zd ∩ P. We call an element c ∈ Q a configuration. Given b ∈ Rd, consider the
problem of decomposing b as a conic integral combination of m configurations. That is,
our aim is to find a feasible solution to [conf-IP], defined above.

A crucial property of the [conf-IP] is that there is always a solution with a support of
small cardinality. This follows from a Caratheodory-type bound obtained by Eisenbrand
and Shmonin [ES06]. Since we will need the argument later, we state the result applied
to our case and revise its (very elegant) proof. We split the proof in two lemmas.

For a given subset A ⊆ Q, let us denote by xA the indicator vector of A, that is xAc = 1
if c ∈ A, and 0 otherwise. Let us also denote by M the (d+ 1)× |Q| matrix that defines
the system of equalities (4.1) and (4.2).

Lemma 4.2 (Eisenbrand and Shmonin [ES06]). Let x ∈ ZQ≥0 be a vector such that
| supp(x)| > 2(d + 1) log(4(d + 1)T). Then there exist two disjoint sets A,B with ∅ 6=
A,B ⊆ supp(x) such that MxA = MxB.

Proof. Let s := | supp(x)|. Each coordinate of M is smaller than T . Hence, for any
A ⊆ supp(x), each coordinate of MxA is no larger than |A| · T ≤ sT . Thus, MxA belongs
to {0, . . . , sT}d+1, and hence there are at most (sT + 1)d+1 = 2(d+1) log(sT+1) different
possibilities for vector MxA, over all possible subsets A ⊆ supp(x). On the other hand,
there are 2s many different subsets of supp(x).

We claim that s > (d+ 1) log(sT + 1). Indeed, since s > 2(d+ 1) log(4(d+ 1)T) then
T < 2

s
2(d+1)/(4(d+ 1)). Hence,

85

(d+ 1) log(sT + 1) < (d+ 1) log
 s2

s
2(d+1)

4(d+ 1) + 1

≤ (d+ 1) log
(

2
s

2(d+1)

(
s

4(d+ 1) + 1
))

= (d+ 1)
(

s

2(d+ 1) + log
(

s

4(d+ 1) + 1
))

≤ s

2 + s

4 ln(2) < s,

where the penultimate inequality follows since log(x) ≤ (x− 1)/ ln(2) for all x ≥ 1.
We obtain that 2s > 2(d+1) log(sT+1). Hence, by the pigeonhole principle there are two

distinct subsets A′, B′ ⊆ supp(x) such that MxA
′ = MxB

′ . We can now define A = A′\B′
and B = B′ \A′ and obtain MxA = MxB. It remains to show that A,B 6= ∅. Notice that
if A = ∅ then A′ ⊆ B′, and the last equality of MxA

′ = MxB
′ implies that |A′| = |B′|.

This is a contradiction since then A′ = B′. We conclude that A 6= ∅. The proof that
B 6= ∅ is analogous.

Lemma 4.3 (Eisenbrand and Shmonin [ES06]). If [conf-IP] is feasible, then there exists
a feasible solution x such that | supp(x)| ≤ 2(d+ 1) log(4(d+ 1)T).

Proof. Let x be a solution to [conf-IP] that minimizes | supp(x)| = s. Assume by
contradiction that s > 2(d + 1) log(4(d + 1)T). We show that we can find another
solution x′ to [conf-IP] with | supp(x′)| < | supp(x)|, contradicting the minimality of
| supp(x)|. By Lemma 4.2, there exist two disjoint subsets A,B ∈ supp(x) such that
MxA = MxB. Moreover, let λ = min{xc : c ∈ A}. Vector x′ := x − λxA + λxB

is also a solution to [conf-IP] and has a strictly smaller support since a configuration
c∗ ∈ arg min{xc : c ∈ A} satisfies x′c∗ = 0.

4.3 Structural Results
Recall that we call a configuration c simple if | supp(c)| ≤ log(T+1) and complex otherwise.
An important observation to show Theorem 4.1 is that if c is a complex configuration,
then 2c can be written as the sum of two configurations of smaller support. This is shown
by the following Sparsification Lemma.

Lemma 4.4 (Sparsification Lemma). Let c ∈ Q be a complex configuration. Then there
exist two configurations c1, c2 ∈ Q such that

1. π · c1 = π · c2 = π · c,

2. 2c = c1 + c2,

3. supp(c1) (supp(c) and supp(c2) (supp(c).

Proof. Consider for each subset S ⊆ supp(c), a configuration cS ∈ Q such that cSi = ci if
i ∈ S and cS = 0 otherwise. As the number of subsets of supp(c) is 2| supp(c)|, and cR 6= cS

if and only if R 6= S, the collection of vectors V := {cS : S ⊆ supp(c)} has cardinality
|V | = 2| supp(c)|.

86

On the other hand, for any vector cS ∈ V it holds that π · cS ≤ π · c ≤ T . Hence,
π · cS ∈ {0, 1 . . . , T} can take only T + 1 different values. Using that c is a complex
configuration and hence 2| supp(c)| > 2log(T+1) = T + 1, the pigeonhole principle ensures
that there are two different non-empty configurations cS, cR ⊆ V with π · cS = π · cR. By
removing the intersection, we can assume w.l.o.g. that S and R have no intersection. We
define c1 = c− cS + cR and c2 = c− cR + cS, which satisfy the properties of the lemma as

π · c1 = π · c− π · cS + π · cR = π · c and
2c = c− cS + cR + c− cR + cS = c1 + c2.

Since supp(c1) ⊆ supp(c) \ S and supp(c2) ⊆ supp(c) \R, property 3 is satisfied.

With Lemma 4.4 we are ready to show Theorem 4.1. For the proof it is tempting to
apply the lemma iteratively, replacing any complex configuration that is used twice by
two configurations with smaller support. This can be repeated until there is no complex
configuration taken multiple times. Then we can apply the technique of Lemma 4.3 to
the obtained solution to bound the cardinality of the support. However, the last step
might break the structure obtained if the solution implied by Lemma 4.3 uses a complex
configuration more than once. In order to avoid this issue we consider a potential function.
We show that a vector minimizing the chosen potential uses each complex configuration
at most once, and that the number of complex configurations in the support is bounded.
Finally, we apply the techniques from Lemma 4.3 restricted to variables corresponding to
simple configurations.

Proof of Theorem 4.1. Consider the following potential function of a solution x ∈ ZQ≥0 of
[conf-IP],

Φ(x) =
∑

complex config. c
xc| supp(c)|.

Let x be a solution of [conf-IP] with minimum potential Φ(x), which is well defined since
the set of feasible solutions has finite cardinality. We show two properties of x.
P1: xc ≤ 1 for each complex configuration c ∈ Q.

Assume otherwise. Consider the two configurations c1 and c2 implied by the previous
lemma. We define a new solution x′e = xe for e 6∈ {c, c1, c2}, x′c1 = xc1 + 1, x′c2 = xc2 + 1
and x′c = xc − 2. Since | supp(c1)| < | supp(c)| and | supp(c2)| < | supp(c)|, we obtain that
Φ(x′) < Φ(x) which contradicts the minimality of Φ(x).
P2: The number of complex configurations in supp(x) is at most 2(d+ 1) log(4(d+ 1)T).

Let x̃ be the vector defined as x̃c = xc if c ∈ Q is complex, and x̃ = 0 if c ∈ Q is
simple. Then Lemma 4.2 implies that there are exist two disjoint subsets A,B ⊆ supp(x̃)
of complex configurations such that MxA = MxB. Thus, the solution x′ = x− xA + xB

and the solution x′′ = x− xB + xA are feasible for [config-IP]. By linearity, the potential
function on the new solutions are Φ(x′) = Φ(x)− Φ(xA) + Φ(xB) or respectively Φ(x′′) =
Φ(x)− Φ(xB) + Φ(xA). If Φ(xA) > Φ(xB) or Φ(xB) > Φ(xA) then we have constructed a
new solution with smaller potential, contradicting our assumption on the minimality of
Φ(x). We conclude that Φ(xB) = Φ(xA) and thus Φ(x) = Φ(x′). By construction of x′,
we obtain that x′c > xc ≥ 1 for any complex configuration c ∈ B. Having multiplicity ≥ 2
for a complex configuration c, we can proceed as in Case 1 to find a new solution with
decreased potential, which yields a contradiction.

87

Given these two properties, to conclude the theorem it suffices to upper bound the
number of simple configurations by 2(d + 1) log(4(d + 1)T). Suppose this property is
violated, then we find two sets A,B ⊆ supp(x) of simple configurations (see Lemma 4.2)
with MxA = MxB and proceed as in Lemma 4.3. Since Lemma 4.3 is only applied to
simple configurations, properties P1 and P2 continue to hold and the theorem follows.

Our techniques, in particular our Sparsification Lemma, imply two corollaries on the
structure of the knapsack polytope and the LP-relaxation implied by the [conf-IP].

Corollary 4.5. Every vertex of conv.hull(Q) is a simple configuration. Moreover, the
total number of simple configurations in Q is upper bounded by 2O(log2(T)+log2(d)) and thus
the same expression upper bounds the number of vertices of conv.hull(Q).

Proof. Consider a complex configuration c ∈ Q. By Lemma 4.4 we know that there exist
c1, c2 ∈ Q with c1, c2 6= c such that 2c = c1 + c2. Hence, c is not a vertex of Q as it can be
written as a convex combination c = c1/2 + c2/2.

To bound the number of simple configurations fix a set D ⊆ {1, . . . , d}. Notice that the
number of configurations c with supp(c) = D is at most T |D|. For simple configurations
it suffices to take D with cardinality at most log(T + 1). Since the number of subsets
D ⊆ {1, . . . , d} with cardinality i is

(
d
i

)
, we obtain that the number of simple configurations

is at most
blog(T+1)c∑

i=0

(
d

i

)
× (T + 1)log(T+1) ≤ (log(T + 1) + 1)dlog(T+1) × (T + 1)log(T+1)

= 2log(log(T+1)+1)+log(d) log(T+1) × 2log(T+1) log(T+1) = 2O(log2(d)+log2(T)).

The following corollary follows as each complex configuration can be represented by a
convex combination of simple configurations.

Corollary 4.6. Let [conf-LP] be the LP relaxation of [conf-IP], obtained by changing
each constraint xc ∈ Z≥0 to xc ≥ 0 for all c ∈ Q. If the LP is feasible then there exists a
solution x such that each configuration c ∈ supp(x) is simple.

Proof. Consider a solution x of [conf-LP]. Assume that there exists c ∈ Q such that c is
complex and xc > 0. Then by the previous corollary, configuration c can be written as
c = ∑

q∈Q λqq, where ∑q∈Q λq = 1, λq ≥ 0 for all q ∈ Q, and λq = 0 if q ∈ Q is complex.
Consider a new solution x′ defined as

x′q =

0 if q = c,

xq + λq · xc if q 6= c.

This new solution is also feasible for [conf-LP]. As x′c = 0, the number of complex
configurations in the support of the solution is reduced by 1. This procedure can be
repeated until we have a solution x̂ whose support contains only simple configurations.

4.4 Applications to Scheduling on Parallel Machines
In what follows we show how to exploit the structural insights of the previous section to
derive faster algorithms for parallel machines scheduling problems. We start by considering
P ||Cmax, where we seek to assign a set of jobs J with processing times pj ∈ Z>0 to a set

88

M of m machines. For a given assignment a : J 7→M, we define the load of a machine i
as ∑j:a(j)=i pj and the makespan as the maximum load of jobs over all machines, which is
the minimum time needed to complete the execution of all jobs on the processors. The
goal is to find an assignment J 7→M that minimizes the makespan.

We first follow well known rounding techniques [Alo+97; Alo+98; HS87; Hoc97].
Consider an error tolerance 0 < ε < 1/3 such that 1/ε2 is an integer. To get an estimation
of the optimal makespan, we follow the standard dual approximation approach. First,
we can use, e.g., the 2-approximation algorithm by Graham [Gra66] to get an initial
guess of the optimal makespan. Using binary search, we can then estimate the optimal
makespan within a factor of (1 + ε) in O(log(1/ε)) iterations. Therefore, it remains to
give an algorithm that decides for a given makespan T , if there exists an assignment with
makespan (1 +O(ε))T or reports that there exists no assignment with makespan ≤ T .

For a given makespan T we define the set of big jobs Jbig = {j ∈ J : pj ≥ εT} and
the set of small jobs Jsmall = J \ Jbig. The following lemma shows that small jobs can
be replaced from the instance by adding big jobs, each of size εT , as placeholders. Let
S be the sum of processing times of jobs in Jsmall and let S∗ denote the next value of
S rounded up to the next multiple of εT , that is, S∗ = εT · dS/(εT)e. We define a new
instance containing only big jobs by J ∗ = Jbig ∪ Jnew, where Jnew contains S∗/(εT) ∈ N
jobs of size εT .

Lemma 4.7. Given a feasible assignment a : J 7→ M of jobs with makespan T . Then
there exists a feasible assignment aB : J ∗ 7→ M of makespan T ∗ ≤ (1 + ε)T . Similarly,
an assignment of jobs in J ∗ of makespan T ∗ can be transformed to an assignment of J
of makespan at most (1 + ε)T ∗.

Proof. We modify the assignment a of jobs in J by replacing the set of small jobs on each
machine by jobs in Jnew. Let Si be the total processing time of small jobs assigned to
machine i. Then the small jobs are replaced by (at most) S∗i /(εT) jobs in Jnew, where S∗i
denotes the value of Si rounded up to the next multiple of εT . As ∑ S∗i

εT
≥ b∑ Si

εT
c = S∗

εT
,

the new solution processes all jobs in Jnew and the load on each machine increases hence
by at most εT . Having an assignment for the big jobs J ∗, we can easily obtain a schedule
for jobs J , by adding the small items greedily into the space of the placeholder jobs
Jnew.

By scaling the processing times of jobs in J ∗, we can assume that the makespan T
has value 1/ε2. Also notice that we can assume that pj ≤ T for all j, otherwise we
cannot pack all jobs within makespan T . This implies that each job j ∈ J ∗ has a
processing time of 1/ε ≤ pj ≤ 1/ε2. In the following we give a transformation of big
jobs in J ∗ by rounding their processing times. We first round the jobs to the next
power of 1 + ε as p′j = (1 + ε)dlog(1+ε) pje, and thus all rounded processing times belong to
Π′ = {(1 + ε)k : 1/ε ≤ (1 + ε)k ≤ (1 + ε)/ε2 and k ∈ N}. We further round processing
times p′j to the next integer p̄j = dp′je and define a new set Π = {dpe : p ∈ Π′}. Notice
that Π only contains integers and |Π| ≤ |Π′| ∈ O((1/ε) log(1/ε)).

Lemma 4.8. If there is a feasible schedule of jobs J ∗ with processing times pj onto m
machines with makespan T ∗ ≤ (1 + ε)T , then there is also a feasible schedule of jobs
J ∗ with rounded processing p̄j with a makespan of at most (1 + 5ε)T . Furthermore, the
number of different processing times is at most |Π| ∈ O((1/ε) log(1/ε)).

Proof. Consider a feasible schedule of jobs in J ∗ with processing times pj onto m machines
with makespan T ∗. Let Ji1 , . . . , Jir be the set of jobs processed on machine i i.e. a(Jik) = i

89

for k = 1, . . . , r. Then ∑r
j=1 p

′
j ≤

∑r
j=1(1+ε)pj ≤ (1+ε)T ∗. Hence, the same assignment a

with processing times p′j yields a makespan of at most (1+ε)T ∗ ≤ (1+ε)2T = 1/ε2+2/ε+1.
Since p′j ≥ pj ≥ 1/ε, on every machine are at most 1/ε + 2 jobs. Hence, rounding the
processing times p′j of each job to the next integer increase the load on each machine by
at most 1/ε+ 2. Recalling that ε < 1/3, we obtain a feasible schedule with makespan at
most (1 + ε)T ∗ + 1/ε+ 2 ≤ 1/ε2 + 3/ε+ 3 < T + 5εT .

In what follows we give an algorithm that decides in polynomial time the existence
of a solution for instance J ∗ with processing times p̄j and makespan T̄ = b(1 + 5ε)T c.
We call numbers in Π by π1, . . . , πd and define the vector π = (π1, π2, . . . , πd) ∈ Nd of
rounded processing times. We consider configurations to be vectors in Q = P ∩ Zd, where
P = {c ∈ Rd

≥0 : π · c ≤ T̄} is a knapsack polytope (see Section 4.3). As before, we say
that a configuration is simple if | supp(c)| ≤ log(T̄ + 1), and complex otherwise. For a
given assignment of jobs to machines, we say that a machine follows a configuration c if
ck is the number of jobs of size πk assigned to the machine. We denote by Qc ⊆ Q the set
of complex configurations and by Qs ⊆ Q the set of simple configurations.

Let bk be the number of jobs of size πk in the instance J ∗ (with processing times p̄).
Consider an ILP with integer variables xc for each c ∈ Q, which denote the number of
machines that follow configuration c. With these parameters the problem of scheduling
all jobs in a solution of makespan T̄ is equivalent to finding a solution to [conf-IP]. To
solve the ILP we use, among other techniques, Kannan’s algorithm [Kan87] which is an
improvement on the algorithm by Lenstra [Len83]. The algorithm has a running time of
2O(N logN)s where N is the number of variables and s is number of bits used to encode the
input of the ILP in binary.

By Theorem 4.1, if [conf-IP] is feasible then there exists a thin solution. In particular
if one configuration c is used by more than one machine then c is simple, and the
total number of used configurations is 4(d + 1) log(4(d + 1)T̄) ∈ O((1/ε) log2(1/ε)).
Additionally, the number of machines following a complex configurations is at most
2(d+ 1) log(4(d+ 1)T̄) ∈ O((1/ε) log2(1/ε)). We consider the following strategy to decide
the existence of a schedule of makespan T̄ .

Algorithm 4.9.

1. For each processing time πk, guess the number bck ≤ bk of jobs covered by complex
configurations.

2. Find a minimum number of machines mc to schedule jobs bc with makespan T̄ .

3. Guess the support of simple configurations Q̄s ⊆ Qs used by a thin solution, with
|Q̄s| ≤ 4(d+ 1) log(4(d+ 1)T̄) ∈ O((1/ε) log2(1/ε)).

4. Solve the ILP restricted to configurations in Q̄s:∑
c∈Q̄s

c · xc = b− bc,

∑
c∈Q̄s

xc = m−mc,

xc ∈ Z≥0 for all c ∈ Q̄s.

90

One of the key observations to prove the running time of the algorithm is that the
number of simple configurations |Qs| is bounded by a quasi polynomial term:

|Qs| ≤ 2O(log2(1/ε)).

This follows easily by Corollary 4.5, using that |T̄ | ∈ O(1/ε2) and d = |Π| ∈ O((1/ε) log(1/ε)).

Lemma 4.10. Algorithm 4.9 can be implemented with a running time of 2O((1/ε) log4(1/ε)) log(n).

Proof. In step 1, the algorithm guesses which jobs are processed on machines following
a complex configurations. Since each configuration contains at most O(1/ε) jobs, there
are at most O(mc/ε) = O((1/ε2) log2(1/ε)) jobs assigned to such machines. For each size
πk ∈ Π, we guess the number bck of jobs of size πk assigned to such machines. Hence, we can
enumerate all possibilities for jobs assigned to complex machines in time 2O((1/ε) log2(1/ε)).
After guessing the jobs, we can assign them to a minimum number of machines in step 2
(with makespan T̄) with a simple dynamic program that stores vectors (`, z1, . . . , zd) with
zk ≤ bck being the number of jobs of size πk used in the first ` ≤ mc processors [JR11]. The
size of the dynamic programming table is O(mc∏d

k=1(bck+1)). For any vector (`, z1, . . . , zd),
determining whether it corresponds to a feasible solution can be done by checking all
vectors of the type (`− 1, z′1, . . . , z′d) for z′k ≤ zk. Thus, the running time of the dynamic
program is O(mc[∏d

k=1(bck + 1)]2). Since bck ∈ O((1/ε2) log2(1/ε)) for each k, recalling that
mc ∈ O((1/ε) log2(1/ε)), and that d = |Π| ∈ O((1/ε) log(1/ε)), we obtain that step 2 can
be implemented with 2O((1/ε) log2(1/ε)) running time.

In step 3, our algorithm guesses the support of a thin solution x. Recall that if
x is thin then | supp(x)| ≤ 4(d + 1) log(4(d + 1)T̄) = O((1/ε) log2(1/ε)). Let D =
4(d+ 1) log(4(d+ 1)T̄). Then this guess can be done in time

D∑
i=0

(
|Qs|
i

)
≤ (D + 1)|Qs|D ≤ 2O((1/ε) log4(1/ε)).

We remark that for this step is that thin solutions are particularly useful. Indeed, guessing
the support on the original ILP takes time 2O((1/ε)2 log3(1/ε)).

In step 4, the number of variables of the restricted ILP is 4(d + 1) log(4(d + 1)T̄) =
O((1/ε) log2(1/ε)). Moreover, the size of the input is bounded byO((1/ε2) log3(1/ε) log(n)).
Running Kannan’s algorithm [Kan87] to solve the ILP takes time 2O((1/ε) log3(1/ε)) log(n).
Hence, the total running time of our algorithm can be bounded by 2O((1/ε) log4(1/ε)) log(n).

Putting all pieces together, we conclude with the following theorem.

Theorem 4.11. The minimum makespan problem on parallel machines P ||Cmax admits
an EPTAS with running time 2O((1/ε) log4(1/ε)) +O(n log n).

Proof. Consider a scheduling instance with job set J , processing times pj for j ∈ J
and machine set M. The greedy algorithm by Graham to obtain a 2-approximation
can be implemented in O(n log n). After guessing the makespan T , the processing times
are sorted and rounded as described in Lemma 4.8. The rounding step can easily be
implemented in O(n) time. Applying Algorithm 4.9 after the rounding needs, according
to Theorem 4.10, a running time of 2O((1/ε) log4(1/ε)) log(n) time. Since there are at most
O(log(1/ε)) many guessing rounds for the makespan, we obtain a total running time of
O(n log n+ log(1/ε) · n) + 2O((1/ε) log4(1/ε)) log(n).

91

If n ≤ 2 1
ε

log4(1
ε

) then the running time is upper bounded by 2O(1
ε

log4(1
ε

)), otherwise, the
running time is at most O(n log n). In any case, the running time can be bounded by
2O(1

ε
log4(1

ε
)) +O(n log n).

4.4.1 Extension to other objectives
We now consider a more general family of objective functions defined by Alon et al. [Alo+97;
Alo+98]. For a fixed function f : R≥0 → R≥0, we consider the following two objective
functions:

(I) min∑i∈M f(`i) (II) min maxi∈M f(`i),

where `i denotes the load of machine i. Analogously, we study maximization versions of
the problems

(I’) max∑i∈M f(`i) (II’) max mini∈M f(`i),

For the minimization versions of the problem we assume that f is convex, while for (I’)
and (II’) we assume it is concave. Moreover, we will need that the function satisfies the
following sensitivity condition.

Condition 4.12. For all ε > 0 there exists δ = δ(ε) > 0 such that for all x, y ∈ R≥0,

(1− δ)y ≤ x ≤ (1 + δ)y ⇒ (1− ε)f(y) ≤ f(x) ≤ (1 + ε)f(y).

Alon et al. showed that each problem in that family admits a PTAS with running
time h(ε) +O(n log n), where h(ε) is a constant term that depends only on ε. Moreover,
if δ(ε) in the condition further satisfies that 1/(δ(ε)) ∈ O(1/ε), the running time is
2(1/ε)poly(1/ε) + O(n log n). In what follows we show how to improve this dependency.
Since 1/(δ(ε)) ∈ O(1/ε), we know that, for small enough ε, there exists a constant γ
(independent of ε and δ) such that 1/δ ≤ γ/ε. Moreover, we can assume w.l.o.g. that
δ ≤ ε, and thus δ ≤ ε ≤ γδ.

It is worth noticing that many interesting functions belong to this family. In particular
(II) with f(x) = x corresponds to the minimum makespan problem, (I) with f(x) = xp, for
constant p, corresponds to a problem that is equivalent to minimizing the Lp-norm of the
vector of loads. Similarly, (II’) with f(x) = x corresponds to maximizing the minimum
machine load. Notice that for all those objectives we have that 1/δ = O(1/ε).

The techniques of Alon et al. [Alo+98] are based on a rounding method and then solving
an ILP. We based our results in the same rounding techniques. Consider an arbitrary
instance of a scheduling problem on identical machines with objective function (I), (II), (I’)
or (II’). Their first observation is that, if L = ∑

j pj/m is the average machine load, then a
job with pj ≥ L is scheduled alone on a machine in an optimal solution [Alo+98]. Hence,
we can remove such job and a machine from the instance. In what follows, we assume
without loss of generality, that pj < L for all j. For the sake of brevity, we summarize the
rounding techniques of Alon et al. in the following theorem.

Theorem 4.13 (Alon et al. [Alo+98]). Consider an instance for the scheduling problem
with job set J , identical machines M, and processing times pj for j ∈ J such that pj < L
for all j. There exists a linear time algorithm that creates a new instance I ′ with job set
J ′, machine set M, and processing times p′j. Moreover, there is an integer λ ≥ 1/δ with
λ ∈ O(1/δ) such that the new instance satisfies the following:

92

1. Each job j in I ′ has processing time L/λ ≤ p′j ≤ L, and p′j is a integer multiple of
L/λ2.

2. If L′ = ∑
j p
′
j/m then L ≤ L′ ≤ (1 + 2/λ)L.

3. Let Opt and Opt′ be the optimal value of instances I and I ′, respectively. Then
(1− ε)Opt ≤ Opt′ ≤ (1 + ε)Opt.

4. There exists a linear time algorithm that transforms a feasible solution for instance
I ′ with objective value V to a feasible solution for I with objective value V ′ such
that (1− ε)V ≤ V ′ ≤ (1 + ε)V .

Given this result, it suffices to find a (1 + ε)-approximate solution for instance I ′. To
do so, we further round the processing times as in the previous section by defining p̄j as the
value (1 + δ)dlog1+δ p

′
je rounded up to the next multiple of L/λ2 for all j ∈ J ′. Notice that

p̄j ≤ (1+δ)dlog1+δ p
′
je+L/λ2 ≤ (1+δ)p′j +L/λ2 ≤ (1+δ)p′j +p′j/λ ≤ (1+2δ)p′j ≤ (1+δ)2p′j .

Hence, for any assignment that gives a load `i on machine i for p′j, the same assignment
has a load ¯̀

i with `i ≤ ¯̀
i ≤ (1 + δ)2`i. By Condition 4.12 we conclude that the new

optimal value Opt satisfies that (1−O(ε))Opt ≤ Opt ≤ (1 +O(ε))Opt.
Let Π = {π1, . . . , πd} be the distinct values that the processing times p̄j can take. Notice

that d = |Π| = O((1/δ) log(1/δ)). We consider the knapsack polytope with capacity
T̄ := 4L, that is P = {c ∈ Rd

≥0 : π · c ≤ T̄}. Notice that π and T̄ are integer multiples of
L/λ2, and thus P = {c ∈ Rd

≥0 : π/(L/λ2) · c ≤ T̄ /(L/λ2)}. The following lemma, that is
a simple adaptation of an observation by Alon et al. [Alo+98], shows that there exists an
optimal solution for the rounded instance that uses only configurations in P .

Lemma 4.14. For ε > 0 small enough, the rounded instance with processing times p̄j
admits an optimal solution with makespan at most 4L.

Proof. Among all optimal solutions to the problem, consider one that minimizes ∑i `
2
i ,

where `i is the load on machine i. Assume that there exists a machine i such that `i > 4L.
Notice that∑

j

p̄j/m ≤ (1 + δ)2∑
j

p′j/m = (1 + δ)2L′
Theorem 4.13
≤ (1 + δ)2(1 + 2/λ)L ≤ (1 + δ)4L.

Since δ ≤ ε, for ε small enough (ε ≤ 1/10 suffices) we have that (1 + δ)4 ≤ 2 and thus∑
j p̄j/m ≤ 2L. Also, recall that p̄j ≤ (1 + δ)2p′j ≤ (1 + δ)2L ≤ 2L for any j, where the

second to last inequality follows from Theorem 4.13. Since `min = mini `i ≤
∑
j p̄j/m ≤ 2L,

then `i − `min > 4L− 2L = 2L. Then, for any job j, we have that pj < `i − `min. Let j∗
be any job assigned to machine i. Hence, in particular we have that pj∗ < `i − `min.

Recall that for problems (I) and (II) function f is convex. Hence, it holds that
f(x + ∆) + f(y − ∆) ≤ f(x) + f(y) for all 0 ≤ x ≤ y with 0 ≤ ∆ ≤ y − x [Alo+98].
Moreover, the inequality becomes strict if f is strictly convex. Setting x = `min, y = `i and
∆ = pj∗ , the inequality implies that moving job j∗ to machine i∗ ∈ arg mini `i decreases
strictly ∑i `

2
i . Moreover, the objective function (I) does not increase when performing

this move, which yields a contradiction for this objective. Similarly, for problem (II) the
objective does not increase since max{f(ξ) : ξ ∈ [x, y]} is always attained at x or y for f
convex. This yields a contradiction for (II).

Analogously, for problems (I’) and (II’) function f is concave and thus f(x + ∆) +
f(y −∆) ≥ f(x) + f(y) holds for all 0 ≤ x ≤ y with 0 ≤ ∆ ≤ y − x [Alo+98]. Hence,

93

moving job j∗ to machine i∗ decreases ∑i `
2
i but does not increase the objective (I’). Since

f concave implies that min{f(ξ) : ξ ∈ [x, y]} is always attained at x or y, we also obtain
a contradiction for (II’). The lemma follows.

Let L = ∑
j pj/m be the average machine load (of the original instance). After our

rounding we obtain an instance I ′ with job set J ′ and processing times p̄j for j ∈ J ′.
Moreover, the p̄j are multiples of L/λ2, where λ ≥ 1/δ is an integer such that λ = O(1/δ),
and also p̄j ≥ L/λ. It holds that there exists an optimal solution of the rounded
instance with makespan at most 4L, see Lemma 4.14 (in particular p̄j ≤ 4L for all j).
Let Π = {π1, . . . , πd} be the distinct values that the processing times p̄j can take. Our
rounding guarantees that d = |Π| = O((1/δ) log(1/δ)). We consider the knapsack polytope
with capacity T̄ := 4L, that is P = {c ∈ Rd

≥0 : π · c ≤ T̄}. Notice that π and T̄ are integer
multiples of L/λ2, and that P can also be written as {c ∈ Rd

≥0 : π/(L/λ2) · c ≤ T̄ /(L/λ2)}.
As before, we say that a configuration is simple if | supp(c)| ≤ log(T̄ + 1), and complex

otherwise. We denote by Qc ⊆ Q the set of complex configurations and by Qs ⊆ Q the
set of simple configurations. In what follows we focus on objective function (I).

We set an ILP for the problem as before. Notice that each configuration c incurs a cost
of fc := f(π · c). Moreover, we round and scale the values fc by defining f̄c = dfc/(εfmin)e,
where fmin = minc∈Q fc. It is not hard to see that solving a problem with those coefficients
yields a (1 + ε)-approximate solution to the optimal solution of I ′ with processing times
p̄j. Let also bk be the number of jobs j of processing time p̄j = πk in J ′. Consider the
ILP obtained by adding to [conf-IP] the objective function min∑c∈Q f̄c · xc. We call this
ILP [cost-conf-IP]. With our previous discussion, it suffices to solve this ILP optimally.
To solve this problem, we first notice that the largest coefficient in the objective can be
bounded as follows.

Lemma 4.15. If f satisfies Condition 4.12 then the largest value maxc∈Q f̄c is upper
bounded by 1/δO(1).

Proof. We first bound (maxc∈Q fc)/(εfmin). Notice that Condition 4.12 implies that f is
continuous on R≥0, and thus it admits a minimum and maximum in the interval [L/λ, 4L].
Let xmin ∈ arg min{f(x) : x ∈ [L/λ, 4L]} and xmax ∈ arg max{f(x) : x ∈ [L/λ, 4L]}.

Consider first the case in which xmin ≤ xmax (this is not always true since f might not
be monotone). We now use Condition 4.12 iteratively. Let yk := (1 + δ)kxmin. Since
yk ≤ yk−1(1 + δ), Condition 4.12 implies that f(yk) ≤ (1 + ε)f(yk−1). Iterating this
idea we obtain that f(yk) ≤ (1 + ε)kf(y0). Taking k = dlog1+δ(xmax/xmin)e implies that
xmax ≤ yk ≤ xmax(1 + δ) and thus, by Condition 4.12, it holds that f(yk) ≥ (1−ε)f(xmax).
Recall that δ ≤ ε ≤ γδ. We obtain that

94

f(xmax) ≤ f(yk)
1− ε ≤

(1 + ε)k
1− ε f(xmin)

≤ (1 + ε)log1+δ(xmax/xmin)+1

1− ε f(xmin)

≤ (1 + ε)log1+δ(4λ)+1

1− ε f(xmin)

= 1 + ε

1− ε(4λ)log1+δ(1+ε)f(xmin)

≤ 1 + ε

1− ε(4λ)log1+δ(1+γδ)f(xmin)

= (1/δ)O(1)f(xmin),

where the last expression follows since log1+δ(1+γδ) = ln(1+γδ)/ ln(1+δ) ≤ γδ/ ln(1+
δ) = O(γ) = O(1) (for δ small enough), and since λ = O(1/δ). We conclude that

max
c∈Q

f̄c ≤ (f(xmax))/(εf(xmin)) + 1 ≤ (1/ε)(1/δ)O(1) + 1 = (1/δ)O(1).

For the case in which xmax ≤ xmin we define the sequence yk := (1− δ)kxmin. The rest of
the proof is analogous and the details are left to the reader.

As we now must consider the objective function, we cannot simply apply Theorem 4.1
to [cost-conf-ILP]. However, we can prove a slightly weaker version by decomposing the
ILP in several smaller ones and applying the theorem to each of them.

Theorem 4.16. If [cost-conf-IP] is feasible, then there exists an optimal solution x
satisfying:

1. ∑c∈Qc xc ∈ O((1/δ3) log2(1/δ)), and

2. | supp(x) ∩Qs| ∈ O((1/δ) log2(1/δ)).

Proof. Notice that the load of each configuration π · c is a multiple of L/λ2, and thus
π · c ∈ {L/λ, L/λ + L/(λ2), . . . , 4L} . We classify the configurations according to their
loads, Q` := {c ∈ Q : π · c = L/λ + ` · L/(λ2)}, for ` ∈ {0, . . . , 4λ2 − λ}. Let x∗ be an
optimal solution of [cost-conf-IP]. Then we can considered an ILP for each load value `:

[conf-IP]`
∑
c∈Q`

c · xc =
∑
c∈Q`

c · x∗c , (4.4)
∑
c∈Q`

xc =
∑
c∈Q`

x∗c , (4.5)

xc ∈ Z≥0 for all c ∈ Q`. (4.6)

Scaling π by multiplying it by λ2/L we obtain an integral vector (since π is an integer
multiple of L/(λ2)), we can apply Theorem 4.1 to each ILP [conf-IP]`, which yields that
there exists a thin solution x`. In particular the number of complex configurations in x` is∑
c∈Qc∩Q` x

`
c ∈ O((1/δ) log2(1/δ)). Since f̄c depends only on the load of c, concatenating

these solutions yields a solution x′ := (x`)` that is optimal for [cost-conf-IP], such that

95

∑
c∈Qc x

′
c ∈ O((λ2) · (1/δ) log2(1/δ)) = O((1/δ3) log2(1/δ)). It remains to bound the

number of simple configurations in the support. To this end, we consider the ILP
restricted to simple configurations as follows:

[cost-conf-IP]s min
∑
c∈Qs

f̄c · xc∑
c∈Qs

c · xc = b−
∑
c∈Qc

c · x′c, (4.7)
∑
c∈Qs

xc = m−
∑
c∈Qc

x′c, (4.8)

xc ∈ Z≥0 for all c ∈ Qs. (4.9)

We apply the result of Eisenbrand and Shmonin [ES06] to this ILP. In its more
general form, this result ensures the existence of a solution x′′ with support of size
O(N(log(N) + ∆)), where N is the number of restrictions and ∆ is the encoding size of
the largest coefficient appearing in the cost vector and restriction matrix. In our case
N = d + 1 = O((1/δ) log(1/δ)), and ∆ = O(log(max{1/δ,maxc∈Q f̄c)}) = O(log(1/δ))
(Lemma 4.15). Thus O(N(log(N) + ∆)) = O((1/δ) log2(1/δ)). The theorem follows by
concatenating (x′′c)c∈Qs with (x′c)c∈Qc .

Finally, we use the structure given by the theorem to solve this ILP optimally.

Algorithm 4.17.

1. For each processing time πk, guess the number bck ≤ bk of jobs covered by complex
configurations.

2. Guess the number mc of machines that schedule jobs bc.

3. Compute an optimal solution for instance with number of jobs bc on mc machines
with a dynamic program.

4. Guess the support of simple configurations Q̄s ⊆ Qs used by the solution implied by
Theorem 4.1, with |Q̄s| ∈ O((1/δ) log2(1/δ)).

5. Solve the ILP restricted to configurations in Q̄s:

min
∑
c∈Qs

f̄c · xc∑
c∈Q̄s

c · xc = b− bc,

∑
c∈Q̄s

xc = m−mc,

xc ∈ Z≥0 for all c ∈ Q̄s.

Lemma 4.18. Algorithm 4.17 can be implemented with a running time of 2O((1/δ) log4(1/δ)) log(n).

Proof. In step 1, the algorithm guesses which jobs are processed on machines following a
complex configurations. Since each configuration contains at most O(1/δ) jobs, there are
at most O((1/δ4) log2(1/δ)) jobs assigned to such machines. For each size πk ∈ Π, we guess

96

the number bck of jobs of size πk assigned to such machines. Hence, we can enumerate all
possibilities for jobs assigned to complex machines in time 2O((1/δ) log2(1/ε)). Similarly, we
can guess the number of machines in step 2 since mc ∈ O((1/δ3) log2(1/δ)). For step 3 we
use a simple dynamic program that goes over the machines storing a table T (`, z1, . . . , zd)
that contains the minimum cost achieved over the first ` ≤ mc machines with zk ≤ bck
jobs of size πk. The number of entries the table is O(mc∏d

k=1(bck + 1)). Computing
T (`, z1, . . . , zd) can be done by checking all entries of the type T (` − 1, z′1, . . . , z′d) for
z′k ≤ zk. Thus, the running time of the dynamic programm is O(mc[∏d

k=1(bck + 1)]2). Since
bck ∈ O((1/δ4) log2(1/δ)) for each k, recalling that mc ∈ O((1/δ3) log2(1/δ)), and that
d = |Π| ∈ O((1/δ) log(1/δ)), we obtain that step 3 can be implemented with 2O((1/δ) log2(1/δ))

running time.
In step 4, our algorithm guesses the support of the solution implied by Theorem 4.16. Let

D be the bound implied by the third property of this theorem, so that | supp(x)∩Qs| ≤ D
and D ∈ O((1/δ) log2(1/δ)). Also, |Qs| ≤ 2O(log2(1/δ)) Then the guessing in step 4 needs
to consider the following number of possibilities:

D∑
i=0

(
|Qs|
i

)
≤ (D + 1)|Qs|D ≤ 2O((1/δ) log4(1/δ)).

In step 5, the number of variables of the restricted ILP is |Q̄s| = O((1/δ) log2(1/δ)).
Moreover, using Lemma 4.15 the size of the input is bounded by O((1/δ2) log3(1/δ) log(n)).
Running Kannan’s algorithm [Kan87] to solve the ILP takes time 2O((1/δ) log3(1/δ)) log(n).
Hence, the total running time of our algorithm can be bounded by 2O((1/δ) log4(1/δ)) log(n).

As in [Alo+98], the algorithm above can be easily adapted for objectives (II), (I’) and
(III’) by suitably adapting the ILP. We leave the details to the reader. This suffices to
conclude Theorem 4.19

Theorem 4.19. Consider the scheduling problem on parallel machines with objective
functions (I), (II) for f convex (respectively (I’) and (II’) for f concave). If f satisfies
Condition 4.12 for 1/δ = O(1/ε), then the problem admits an EPTAS with running time
2O((1/ε) log4(1/ε)) +O(n log n).

4.5 Minimum makespan scheduling on uniform machines
In this section we generalize our result for P ||Cmax to uniform machines. Consider a set of
jobs J with processing times pj and a set of m non-identical machines M where machine
i ∈M runs at speed si. If job j is executed on machine i the machine needs pj/si time
units to complete the job. The problem is to find an assignment a : J → M for the
jobs to the machines that minimizes the makespan; maxi

∑
j:a(j)=i pj/si. The problem

is denoted by Q||Cmax. We suppose that s1 ≥ s2 ≥ . . . ≥ sm. Jansen [Jan10] found an
efficient polynomial time approximation scheme (EPTAS) for this scheduling problem
which has a running time of 2O(1/ε2 log3(1/ε)) + poly(n). Here we show how to improve the
running time and prove the main result of this section.

Theorem 4.20. There is an EPTAS (a family of algorithms {Aε : ε > 0}) which, given
an instance I of Q||Cmax with n jobs and m machines and a positive number ε > 0,
produces a schedule of makespan Aε(I) ≤ (1 + ε)Opt(I). The running time of Aε is
2O(1/ε log4(1/ε)) + poly(n).

97

We follow the approach by Jansen [Jan10], transforming the scheduling problem into
a bin packing problem with different bin capacities, round the processing times and bin
capacities, divide the bins into at most three groups and generate four different scenarios
depending on the input instance.

First, we compute a 2-approximate solution using the algorithm by Gonzales et al.
[GIS77] of length B(I) ≤ 2 Opt(I). Suppose that ε < 1; otherwise we can take the
2-approximate solution and are done. Then we choose a value δ ∈ (0, ε) such that 1/δ is
integral (the exact value is specified later) and use a binary search within the interval
[B(I)/2, B(I)] (that contains Opt(I)). We use a standard dual approximation method
that for each value T either computes an approximate schedule of length T (1 + aδ) (where
a is constant) or shows that there is no schedule of length T . Since (δ/2)B(I) ≤ δOpt(I),
we can find within O(log(1/δ)) iterations a value T ≤ Opt(I)(1 + δ) with a corresponding
schedule of length at most T (1 + aδ) ≤ Opt(I)(1 + ε), using δ ≤ ε/(a + 2) and ε ≤ 1.
Next, the scheduling problem is transformed into a bin packing problem with m bins and
capacities ci = T · si, the processing times pj are rounded to the next value p̄j of the form
δ(1 + δ)kj with kj ∈ Z and the bin capacities are rounded to the next power of (1 + δ).
We call B the set of bins with rounded capacities.

Lemma 4.21 (Jansen [Jan10]). If there is a feasible packing of n jobs with processing
times pj into m bins with capacities ci, then there is also a packing of n jobs with rounded
processing times p̄j = δ(1 + δ)kj ≤ (1 + δ)pj into m bins with rounded bin capacities
c′i = (1 + δ)`i ≤ ci(1 + δ)2 with `i ∈ Z.

If the number m of bins is smaller than K ∈ O(1/δ log(1/δ)), then we can use an
approximation scheme by Jansen and Mastrolilli [JM10] to compute an (1+ε)-approximate
solution to schedule n jobs on m unrelated machines (an even more general problem)
within time O(n)+2O(m log(m/ε)) = O(n)+2O(1/δ log2(1/δ)) = O(n)+2O(1/ε log2(1/ε)); using that
δ ∈ O(ε). Suppose from now on that K > O(1/δ log(1/δ)). Then, we divide the bins into
at most three different bin groups. The first group B1 consists of the K = O(1/δ log(1/δ))
largest bins. For some γ ∈ Θ(ε2), the next group B2 consists either of all the remaining
bins {bK+1, . . . , bm} if c′m > γc′K (and we have only two bin groups) or B2 contains the
next G largest bins {bK+1, . . . , bK+G} where G is the smallest index such that capacity
c′K+G+1 ≤ γc′K . In the second case, B3 = {bK+G+1, . . . , bm}. Let cmax(B) and cmin(B) be
the largest and smallest bin capacity in B. If cmax(B)/cmin(B) ≤ C for some value C and
B contains only rounded capacities (1 + δ)x with x ∈ Z, then the number of different
capacities in B is at most O(1/δ log(C)).

Lemma 4.22 (Jansen [Jan10]). If there is a solution for the original instance (J ,M)
of our scheduling problem with makespan T and corresponding bin sizes, then there is a
feasible packing for instance (J ,B′1 ∪ B2 ∪ B3) or instance (J ,B′1 ∪ B2) with rounded bin
capacities c̄i ≤ ci(1+δ)3 and rounded processing times p̄j ≤ (1+δ)pj. Here B′1 is the subset
of B1 with bins of capacity larger than δ/(K − 1)cmax(B1) and B2 has a constant number
O(1/δ log(1/δ)) of different bin capacities. In addition we have one of the following four
scenarios:

(1) Two bin groups B′1 and B2 with a gap cmin(B′1)/cmax(B2) ≥ 1/δ.

(2) Two bin groups B1 and B2 with a constant number O(1/δ log(1/δ)) of different bin
capacities in B′1 ∪ B2.

98

(3) Three bin groups B′1,B2,B3 with a gap cmin(B′1)/cmax(B2) ≥ 1/δ and cmin(B1)/cmax(B3) ≥
1/γ.

(4) Three bin groups B′1,B2,B3 with a constant number O(1/δ log(1/δ)) of different bin
capacities in B′1 ∪ B2 and a gap cmin(B1)/cmax(B3) ≥ 1/γ.

Notice that scenario 4 can be seen as a special case of scenario 3 by using Bnew2 = B1∪B2,
Bnew1 = ∅, and Bnew3 = B3. The same modification works to show that scenario 2 is a
special case of scenario 1. Finally, scenario 1 can be interpreted a special case of scenario
3, using B3 = ∅. Therefore, it is sufficient to improve the running time for scenario 3.

Scenario 3 will be solved using a mix of dynamic programming and mixed integer linear
programming (MILP) techniques. In this approach we use only the larger bins in B′1 of
B1 to execute jobs, but in the rounding step for scenario 3 afterwards we may also use
the smaller bins in B1. Notice that a packing into a bin bi with capacity c̄i ≤ ci(1 + δ)3

corresponds to a schedule on machine i with total processing time at most c̄i/si ≤ T (1+δ)3.
For T ≤ Opt(I)(1 + δ) this gives us a schedule of length at most Opt(I)(1 + δ)4. If
there a feasible schedule with makespan T , then the total processing time of the instance
is ∑j∈J pj ≤

∑m
i=1 c̄i. If this inequality does not hold, then we discard the choice with

makespan T . Otherwise, we can eliminate the set Jtiny of tiny jobs with processing time
≤ δc̄m and pack them greedily at the end of the algorithm into the enlarged bins of size
c̄i(1 + δ). Hence, in what follows we assume that Jtiny is empty.

4.5.1 Solution for the instance (J ,B′1 ∪ B2 ∪ B3)
In this subsection we consider scenarios 3 above with three bin groups. First, we preassign
all huge jobs with processing time > δc̄K′ into the first K ′ machines. Since c̄K+1 =
cmax(B2) ≤ δcmin(B′1) = δc̄K′ , the huge jobs fit only on the first K ′ bins. The number
of huge jobs can be bounded by O(Kcmax(B1)/(δcK′)) = O(1/δ4 log2(1/δ)). If there
are more huge jobs in the instance, then there is no packing into B′1 ∪ B2 and we
are done. Furthermore, the number of machines K ′ ∈ O(1/δ log(1/δ)) is constant.
Again, we can use the approximation scheme by Jansen and Mastrolilli that computes
an (1 + δ)-approximate schedule for N jobs on M machines which runs in O(N) +
2O(M log(M/δ)). For M ∈ O(1/δ log(1/δ)) and N ∈ O(1/δ4 log2(1/δ)) this gives a running
time O(1/δ4 log2(1/δ)) + 2O(1/δ log2(1/δ)) = 2O(1/δ log2(1/δ)) to obtain a feasible packing with
bin sizes c̄i(1 + δ) or schedule of length ≤ T (1 + δ)4, if one exists. If there is no feasible
packing for the huge jobs, then there is no schedule with makespan T and we have to
increase T in the binary search. In the other case we set up a MILP.

After the assignment of the huge jobs, we have a free area S0 in B1 for the remaining
jobs with processing time p̄j ≤ δc̄K′ . The different bin capacities in B2 and B3 are denoted
by c̄(1) > . . . > c̄(L) and c̄(L+ 1) > . . . > c̄(L+N), respectively. Let m` be the number
of bins of size c̄(`) for ` = 1, . . . , L + N . The m` machines of the same speed form a
block B` of bins with the same capacity c̄(`). In addition, we have n1, . . . , nP jobs of size
δ(1 + δ)kj and suppose that the first P ′ ≤ P job sizes are larger than c̄K+1 = c̄(1).

In the MILP we use C(`)
1 , . . . , C

(`)
h`

as configurations or multisets with numbers δ(1+δ)kj ∈
[δc̄(`), c̄(`)] (these are large processing times corresponding to block B`), where the total
sum size(C(`)

i) = ∑
j a(kj, C(`)

i)δ(1 + δ)kj is bounded by c̄(`). Here a(kj, C(`)
i) is the

number of occurrences of number δ(1 + δ)kj in configuration C
(`)
i . In the MILP below,

we use integral and fractional variables x(`)
i to indicate number of machines that are

99

scheduled according to configuration C
(`)
i . In addition, we use fractional variables yj,`

to indicate the number of jobs of size δ(1 + δ)kj placed as small ones in block B`; i.e.
δ(1 + δ)kj < δc̄(`). For each job size δ(1 + δ)kj ≤ c̄(1), let aj be the smallest index in
{1, . . . , L + N} such that δ(1 + δ)kj ≥ δc̄(aj). If there is no such index, we have a tiny
processing time δ(1 + δ)kj < δc̄(L + N). Notice that the first P ′ job sizes are within
(c̄(1), δcK′]. These jobs do not fit into B2 ∪ B3. Therefore, for these job sizes we use only
one variable yj,0 = nj and set aj = 0.

∑
i x

(`)
i ≤ m` for ` = 1, . . . , L+N,∑

`,i a(kj, C(`)
i)x(`)

i +∑aj−1
`=0 yj,` = nj for j = P ′ + 1, . . . , P,∑

i size(C
(`)
i)x(`)

i +∑
j:`<aj yj,`δ(1 + δ)kj ≤ m`c̄(`) for ` = 1, . . . , L+N,∑P

j=1 yj,0δ(1 + δ)kj ≤ S0,

x
(`)
i integral ≥ 0 for ` = 1, . . . , L and i = 1, . . . , h`,
x

(`)
i ≥ 0 for ` = L+ 1, . . . , L+N and i = 1, . . . , h`
yj,0 = nj for j = 1, . . . , P ′,
yj,` integral ≥ 0 for j = P ′ + 1, . . . , P and ` = 0, . . . , aj − 1.

In the MILP above, we use integral variables for configurations in the blocks of group
B2 and fractional variables for the configurations in blocks of B3. Each feasible packing
for the jobs into the bins corresponds to a feasible solution of the MILP. The total
number of variables is O(n2) + O(n)2O(1/δ log(1/δ)), the number of integral variables is
at most 2O(1/δ log(1/δ)), and the number of constraints (not counting the non-negativity
constraints) is at most O(n). The previous approach to solve the scheduling problem and
the underlying MILP had a running time of 2O(1/δ2 log3(1/δ)) + poly(n). In order to use an
approach similar to the scheduling on identical machines, each large size δ(1 + δ)kj ∈ C(`)

i

is rounded up to the next multiple of δ2c̄(`). This enlarges the size of each configuration
C

(`)
i from size(C(`)

i) to at most size(C(`)
i) + δc̄(`) and the corresponding bin size from c̄(`)

to (1 + δ)c̄(`).
Let C̄(`)

1 , . . . , C̄
(`)
h̄`

be the configurations of size at most (1 + δ)c̄(`) with the rounded-up
numbers q(kj, `)δ2c̄(`) with q(kj, `) ∈ Z+ and multiplicities a(kj, C̄(`)

i). This rounding
implies also that the rounded size size(C̄(`)

i) of a configuration is a multiple of δ2c̄(`). Each
new rounded configuration C̄(`)

i (with rounded-up numbers q(kj, `)δ2c̄(`) and multiplicities
a(kj, C̄(`)

i)) corresponds to an integral point inside the knapsack polytope P` = {C =
(a(kj, C)) : q · C ≤ 1/δ2 + 1/δ} such that ∑j q(kj, `)a(kj, C̄(`)

i)δ2c̄(`) = size(C̄(`)
i) ≤

(1 + δ)c̄(`) or, equivalently, ∑j q(kj, `)a(kj, C̄(`)
i) ≤ 1/δ2 + 1/δ ≤ 2/δ2. We consider now a

modified MILP with configurations C̄(`)
i and coefficients a(kj, C̄(`)

i). Note that the total
area of all configurations in B` can be bounded by ∑i size(C̄

(`)
i)x(`)

i ≤
∑
i size(C

(`)
i)x(`)

i +
δc̄(`)∑i x

(`)
i . This, together with the small jobs gives ∑i size(C̄

(`)
i)x(`)

i +∑j δ(1+δ)kjyj,` ≤∑
i size(C

(`)
i)x(`)

i +δm`c̄(`)+∑j δ(1+δ)kjyj,` ≤ m`c̄(`)(1+δ); i.e. the total area is increased
by at most a multiplicative factor of (1 + δ). Since the total area of all jobs within one
block is increased by this rounding, we use the following new constraints in the modified
MILP: ∑

i

size(C̄(`)
i)x(`)

i +
∑
j

yj,`δ(1 + δ)kj ≤ m`c̄(`)(1 + δ) for ` = 1, . . . , L.

100

Next, we divide the coefficients in the L area constraints above by δ2c̄(`). Then the
coefficients of the x(`)

i variables are now size(C̄(`)
i)/(δ2c̄(`)) = ai,`δ

2c̄(`)/(δ2c̄(`)) = ai,` ∈
{1/δ, . . . , 1/δ2 + 1/δ}. Using the assumption that 1/δ is integral, all coefficients of the
variables are integral and bounded by 2/δ2. Notice that increasing the capacities of all
bins and dividing all coefficients as above, implies also a feasible solution of the modified
MILP. Let us study a feasible solution of the modified MILP. To reduce the number of
integral configuration variables in the MILP, we consider the following ILP that uses only
the integral x(`)

i variables within bin group B2:

∑
i

x
(`)
i = m̄` for ` = 1, . . . , L, (4.10)

∑
`,i

a(kj, C̄(`)
i)x(`)

i = n̄j for j ∈ P (B2), (4.11)

∑
i

size(C̄(`)
i)

δ2c̄(`) x
(`)
i = Area(`, large) for ` = 1, . . . , L, (4.12)

x
(`)
i integral ≥ 0 for i = 1, . . . , h̄`, ` = 1, . . . , L. (4.13)

where the values m̄`, n̄j, and Area(`, large) are given by a feasible solution of the
modified MILP. Here P (B2) is the set of all indices of large job sizes corresponding to
blocks B` ∈ B2; i.e. P (B2) = {j : δ(1 + δ)kj ∈ (δc̄(L), c̄(1)]}. The cardinality of P (B2)
and the value L can be bounded by O(1/δ log(1/δ)). All the coefficients above of the
variables are bounded by O(1/δ2).

The support of a configuration C̄
(`)
i is the number of values a(kj, C̄(`)

i) > 0; i.e.
supp(C̄(`)

i) = |{j : a(kj, C̄(`)
i) > 0}|. In our case supp(C̄(`)

i)) ≤ O(1/δ log(1/δ)). A
configuration C̄(`)

i is called simple, if | supp(C̄(`)
i)| ≤ log(1/δ2 + 1/δ+ 1) Otherwise, we call

a configuration C̄(`)
i complex. Using the result by Eisenbrand and Shmonin, we can find a

feasible solution of the ILP above (if there is a feasible solution of the modified MILP)
with at most O(1/δ log2(1/δ)) many variables x(`)

i > 0; i.e. | supp(x)| ≤ O(1/δ log2(1/δ))
where x = (x(`)

i). We can generalize our result in Theorem 4.1 to our ILP above.

Lemma 4.23. Assume that the ILP defined by (4.10)-(4.13) is feasible and let S denote
the set of all simple configurations. Then there exists a feasible solution x′ such that:

(1) If x′(`)i > 1 then the configuration C̄
(`)
i is simple.

(2) The support of x′ satisfies | supp(x′) ∩ S| ∈ O(1/δ log2(1/δ)).

(3) The support of x′ satisfies | supp(x′) \ S| ∈ O(1/δ2 log3(1/δ)).

Proof. As stated above, the set of configurations C̄(`)
1 , . . . , C̄

(`)
h̄`

equals the set of integral
points Q` inside the knapsack polytope P` = {C = (q(kj, C)) : q · C ≤ 1/δ2 + 1/δ} Let
x̄ = (x̄(`))L`=1 be a solution to (4.10)-(4.13) where x̄(`) corresponds to the variables defining
the solution for block B`. We consider a family of ILPs defined for each ` = 1, . . . , L.

[conf-IP]`
∑
c∈Q`

c · xc =
∑
c∈Q`

c · x̄(`)
c ,∑

c∈Q`
xc = m̄`,

xc ∈ Z≥0 for all c ∈ Q`.

101

Using Theorem 4.1 for each [conf-IP]`, we obtain new solution x̂(`), where each complex
configuration is used at most once and supp(x̂(`)) ∈ O(1/δ log2(1/δ)). Then we define a
new solution x̂ of ILP (4.10)-(4.13) defined as (x̂(`))`. In x̂ every complex configuration is
used at most once and | supp(x̂)| ≤ L · 2(d̄+ 1) log(4(d̄+ 1)T̄) ∈ O(1/δ2 log3(1/δ)), where
d̄ ≤ |P (B2)| ∈ O(1/δ log 1/δ) and T̄ ∈ O(1/δ2). Note that Equation (4.12) of the above
ILP holds for the new solution x̂ as the set of jobs covered inside a block does not change
and hence

∑
i

size(C̄(`)
i)

δ2c̄(`) x̂
(`)
i = Area(`, large) =

∑
i

size(C̄(`)
i)

δ2c̄(`) x̄
(`)
i .

Finally, consider the ILP (4.10)-(4.13) and fix each variable x`i , for C̄(`)
i a complex

configuration, to the value x̂`i (and thus the resulting ILP has variables only for simple
configurations). Now we can apply the result of Eisenbrand and Shmonin [ES06] to this
ILP. This ensures that any ILP of the form {z ∈ Z≥0 : Az = h} admits a solution with
support of size O(N(log(N) + ∆)), where N is the number of rows of A and ∆ is the
largest encoding size of an entry of A. Recalling that size(C̄(`)

i)
δ2c̄(`) ∈ O(1/δ2), we can apply this

result to our case, which yields a solution whose support contains at most O(1/δ log2(1/δ))
simple configurations. Hence, we obtain a solution satisfying all properties of the statement
of the theorem.

Algorithm 4.24.

1. For each job size, guess the number of jobs vj ≤ n̄j covered by complex configurations.

2. For each bin size, guess the number of machines wj ≤ m̄j used to schedule the set
of jobs covered by complex configurations.

3. For each block ` in B2, guess the support of simple configurations Q̄(`)
s ⊆ Q(`)

s used
by a thin solution, with ∑L

`=1 |Q̄(`)
s | ≤ 4(d+ 1) log(4(d+ 1)T̄) ∈ O((1/ε) log2(1/ε)).

4. Solve the reduced modified MILP, where the integral variables x`i are restricted to
simple configurations.

Lemma 4.25. Algorithm 4.24 can be implemented with a running time of 2O((1/ε) log4(1/ε))poly(n).

Proof. As in the case of identical machines, our algorithm guesses in step 1 the complex
configurations and the corresponding jobs. Since the number M of complex configurations
within B2 ist at most O(1/δ2 log3(1/δ)) and there are at most O(1/δ) many large job per
configuration, the total number N of jobs within the complex configurations is at most
O(1/δ3 log3(1/δ)).

To obtain a schedule for the guessed jobs, notice that the number of large job sizes
|P (B2)| ≤ O(1/δ log(1/δ)). We guess now a vector v = (vj) with possible job sizes
that are covered by the complex configurations. The total number of these vectors is
(N+1)|P (B2)| ≤ (1/δ3 log3(1/δ))O(1/δ log(1/δ)) = 2O(1/δ log2(1/δ)). In addition, we guess a vector
w = (w`) with the numbers w` of complex configurations in the block groups B`. The
number of choices here is at most (M + 1)L ≤ (1/δ2 log3(1/δ))O(1/δ log(1/δ)) = 2O(1/δ log2(1/δ)).
For each guess v, w we run a dynamic program to test whether the number of job sizes,
stored in v, fit on the corresponding machines in the blocks B`, given by vector w. To do
this, we run over the machines and store after ` machines, for ` = 1, . . . ,M , the set of all

102

feasible vectors with job sizes that can be packed into the first ` machines. This dynamic
program runs in time M2O(1/δ log2(1/δ)) = 2O(1/δ log2(1/δ)). For each feasible choice of v, w we
compute the reduced MILP by m̂` = m` − w` and n̂j = nj − vj and guess the support of
a feasible solution x in the MILP; i.e. the simple configurations in B2 with value x(`)

i > 0.
The total number of simple configurations Q(`)

s in one bin block can be bounded, using
observation 7, by 2O(log2(1/δ)). Therefore, the total number of simple configurations in B2
is ∑L

`=1 |Q(`)
s | ≤ L · 2O(log2(1/δ)) = 2O(log2(1/δ)). This implies that the number of choices for

the support of x is at most(∑
` |Q(`)

s |
O(1/δ log2(1/δ))

)
=
(

2O(log2(1/δ))

O(1/δ log2(1/δ))

)
= 2O(1/δ log4(1/δ)).

For each choice we solve a reduced MILP with d = O(1/δ log2(1/δ)) integral vari-
ables (step 4). The total size s of the MILP can be bounded by s ≤ poly(n, 1/δ) +
n log(n)2O(1/δ log(1/δ)). Using the algorithm by Kannan with runnning time dO(d)poly(s)
for an MILP with d variables and size s, we obtain a running time to solve one MILP
in time 2O(1/δ log3(1/δ))poly(n); using poly(s) ≤ poly(n)2O(1/δ log(1/δ)). Running over all
vectors v, w and all guesses for the simple configurations, we obtain a running time of
2O(1/δ log4(1/δ)) + poly(n).

The rounding of the fractional variables in the MILP solutions and the packing of the
items accordingly works as in [Jan10] and can be done in time 2O(1/δ log(1/δ))poly(n). There-
fore, the overall running time of the entire algorithm can be bounded by 2O(1/δ log4(1/δ)) +
poly(n) = 2O(1/ε log4(1/ε)) + poly(n); using that δ ∈ O(ε).

In order to calculate the length of the computed schedule and to specify δ, we use the
following result:

Lemma 4.26. [Jan10] If there is a feasible solution of an MILP instance with bin
capacities c̄(`) for blocks B` ∈ B2 ∪ B3 and capacities c̄i for the K largest bins in B1,
then the entire job set J can be packed into bins with capacities c̄(`)(1 + 2δ)2 for blocks
B` ∈ B2 ∪ B3 and enlarged capacities c̄i(1 + 3δ)2 for the first K bins.

Note that the result above is constructive, too. This means that there is also an
algorithm that computes a corresponding packing [Jan10]. Using c̄i ≤ ci(1 + δ)3 and
T ≤ (1 + δ)OPT and the lemma above, we can bound the schedule length. If there is a
schedule with length at most T and with corresponding bin sizes ci = Tsi, then the lemma
above implies a packing into bins of size ci(1 + 3δ)3(1 + 3δ)2 and a corresponding schedule
length ≤ T (1 + δ)3(1 + 3δ)2 ≤ OPT (1 + δ)4(1 + 3δ)2 ≤ OPT (1 + 16δ) ≤ OPT (1 + ε)
for δ ≤ ε/16 and ε ≤ 1. Using δ = 1

d16/εe , we obtain δ ≤ ε/16, δ ≥ ε/17, and that
1/δ = d16/εe is integral. This concludes the proof for Theorem 4.20.

103

5 About the Structure of the Integer
Cone and its Application to Bin
Packing

5.1 Introduction
Given the polytope P = {x ∈ Rd | Ax ≤ c} for some matrix A ∈ Zm×d and a vector
c ∈ Zd. We consider the integer cone

int.cone(P ∩ Zd) = {
∑

p∈P∩Zd
λpp | λ ∈ ZP∩Zd≥0 }

of integral points inside the polytope P. Let PI = Conv(P ∩ Zd) be the convex hull
of all integer points inside P, where for given set X ⊂ Rd, the convex hull of X is
defined by Conv(X) = {∑p∈X xpp | x ∈ [0, 1]X , ‖x‖1 = 1}. Let VI be the vertices of the
integer polytope PI i.e. PI = Conv(VI). In case of the (fractional) cone Cone(P ∩ Zd) =
{∑p∈P∩Zd λpp | λ ∈ RP∩Zd≥0 }, we know by Caratheodory’s Theorem (see e.g. [Sch86]) that
each γ ∈ PI can be written as a convex combination of at most d + 1 points in VI and
hence Cone(P ∩ Zd) = Cone(VI).

In this chapter we investigate the structure of the integer cone int.cone(P ∩ Zd) versus
int.cone(VI). Therefore, we define the vertex distance of a point b ∈ int.cone(P ∩ Zd)
which describes how many extra points from (P ∩ Zd) \ VI are needed to represent b. The
vertex distance is defined by

Dist(b) = min{‖γ‖1 | γ ∈ ZP∩Zd≥0 , λ ∈ ZVI≥0 such that b =
∑
v∈VI

λvv +
∑
p∈PI

γpp}

In this chapter we show that for every point b ∈ int.cone(P ∩ Zd), the vertex distance
Dist(b) is bounded by 22O(d) . Hence, every b can be written by b = ∑

v∈VI λvv+∑p∈P∩Zd γpp

for some λ ∈ ZVI≥0 and some γ ∈ ZP∩Zd≥0 , where ‖γ‖1 ≤ 22O(d) .
A related result concerning the structure of the integer cone was given by Eisenbrand

and Shmonin [ES06]. They proved that every b ∈ int.cone(P ∩ Zd) can be written by a
vector λ ∈ ZP∩Zd≥0 with b = ∑

p∈P∩Zd λpp such that λ has a bounded support (=number of
non-zero components). Therefore, for a given set M and given vector λ ∈ RM

≥0, let supp(λ)
be the set of non-zero components of λ, i.e. supp(λ) = {s ∈M | xs 6= 0}.

Theorem 5.1 (Eisenbrand, Shmonin [ES06]). Given polytope P ⊂ Rd. For any integral
point b ∈ int.cone(P ∩ Zd), there exists an integral vector λ ∈ ZP∩Zd≥0 such that b =∑
p∈P∩Zd λpp and |supp(λ)| ≤ 2d.

Let (s, b) be an instance of the bin packing problem with item sizes s1, . . . , sd ∈ (0, 1]
and multiplicities b ∈ Zd≥0 of the respective item sizes. The objective of the bin packing
problem is to pack all items b into as few unit sized bins as possible. When we choose

104

P to be the knapsack polytope, i.e. P = {x ∈ Zd≥0 | sTx ≤ 1}, then a vector λ ∈ ZPI≥0
of int.cone(P ∩ Zd) yields a packing for the bin packing problem. A long standing open
question was, if the bin packing problem can be solved in polynomial time when the
number of different item sizes d is constant. This problem was recently solved by Goemans
and Rothvoß [GR14] using similar structural properties of the integer cone. They proved
the existence of a distinguished set X ⊂ P of bounded size such that for every vector
b ∈ int.cone(P ∩ Zd) there exists an integral vector λ ∈ ZP∩Zd≥0 where most of the weight
lies in X. More precisely, they proved the following structure theorem:

Theorem 5.2 (Goemans, Rothvoß [GR14]). Let P = {x ∈ Rd
≥0 | Ax ≤ c} be a polytope

with A ∈ Zm×d, c ∈ Zd such that all coefficients are bounded by ∆ in absolute value. Then
there exists a set X ⊆ P ∩ Zd such that for any point b ∈ int.cone(P ∩ Zd), there exists
an integral vector λ ∈ ZP∩Zd≥0 such that b = ∑

p∈P∩Zd λpp and

1. λp ≤ 1 ∀p ∈ (P ∩ Zd) \X

2. |supp(λ) ∩X| ≤ 22d

3. |supp(λ) \X| ≤ 22d

The set X is constructed in [GR14] by covering P by a set of integral parallelepipedes.
The set X consists of the vertices of the integral parallelepiped and can be computed in a
preprocessing step. Note that by the construction of Goemans and Rothvoß, we have that
X ⊂ VI as the set of vertices of some inner centrally symmetric polytopes is computed.

5.1.1 Our results:
At first, we study the special case when P is given by the convex hull of integral points
B0, B1, . . . , Bd ∈ Zd i.e. P is the simplex S = Conv(B0, B1, . . . , Bd). This is for example
the case in the knapsack polytope when all items sizes are of the form si = 1/ai for
some ai ∈ Z≥1. In this case, all vertices of the knapsack polytope are of the form
B0 = (0, . . . , 0)T and Bi = (0, . . . , 0, ai, 0, . . . , 0)T for 1 ≤ i ≤ d and therefore integral. We
prove the following theorem:

Theorem 5.3. Let S be the simplex defined by S = Conv(B0, B1, . . . , Bd) for Bi ∈ Zd
and let B be the set of vertices B = {B0, B1, . . . , Bd}. For any vector b ∈ int.cone(S∩Zd),
there exists an integral vector λ ∈ ZS∩Zd≥0 with b = ∑

s∈S∩Zd λss and

1. λs ≤ 22O(d) ∀s ∈ (S ∩ Zd) \B

2. |supp(λ) \B)| ≤ 2d

This theorem shows that in the case that the integer polytope PI is a simplex, the
vertex distance Dist(b) can be bounded by a term 22O(d) for any b ∈ int.cone(P ∩ Zd). In
Section 5.3, we complement this result by giving a matching lower bound for Dist(b). We
prove that the double exponential bound for Dist(b) is tight, even in the special case of bin
packing, where the simplex S is a specific knapsack polytope. The lower bound is based
on the sylvester sequence Si which is inductively defined by S1 = 2 and Si = (∏i

j=1 Si) + 1
[GKP94].

105

Theorem 5.4. There exists a bin packing instance with sizes 1
a1
, . . . , 1

ad
for ai ∈ Z≥1

and multiplicities b ∈ Zd≥0 corresponding to a point b ∈ int.cone(P ∩ Zd), where P is the
knapsack polytope such that

Dist(b) ≥ Sd − 2 = 22Ω(d)

Furthermore, in the end of Section 4, we discuss the difficulty of finding instances with
large vertex distance and we show a connection to the modified roundup property (see
[ST97]).

As a direct consequence of our main Theorem 5.3, we obtain a structure theorem that
is similar to the one given by Goemans and Rothoß[GR14] but uses a different set X ⊂ P
of distinguished points. Instead of the set of vertices of integral parallelepipedes, our
theorem uses the set of vertices VI of the integer polytope.

Theorem 5.5. Let P = {x ∈ Rd
≥0 | Ax ≤ c} be a polytope with A ∈ Zm×d, c ∈ Zd≥0 and let

VI ⊆ P ∩Zd be the set of vertices of the integer polytope PI with Conv(VI)∩Zd = P ∩Zd.
Then for any vector b ∈ int.cone(P ∩ Zd), there exists an integral vector λ ∈ ZP∩Zd≥0 such
that b = ∑

p∈P∩Zd λpp and

1. λp ≤ 22O(d) ∀p ∈ (P ∩ Zd) \ VI

2. |supp(λ) ∩ VI | ≤ d · 2d

3. |supp(λ) \ VI | ≤ 22d

This theorem finally shows that for arbitrary polytopes P and any b ∈ int.cone(P ∩Zd),
the vertex distance Dist(b) is bounded by 22O(d) and hence independent of the number of
inequalities m and the largest entry ∆ in the description of P .

Recall that a parameterized problem with parameter p and input I is called fixed
parameter tractable (fpt) if there exists an algorithm with running time O(f(p)·enc(I)O(1))
for some computable function f of p which is independent of I and enc(I) is the encoding
length of instance I. We refer to the book of Downey and Fellows [DF99] for more
details on parameterized complexity. As a consequence of our structure theorem, we
present in Section 2 an algorithm for the bin packing problem with a running time of
|VI |2

O(d) · log(∆)O(1), where ∆ is the maximum over all multiplicities b and denominators
in s. Since |VI | ≥ d+ 1 this is an fpt-algorithm parameterized by the number of vertices
of the integer knapsack polytope VI .

Theorem 5.6. The bin packing problem can be solved in fpt-time parameterized by the
number of vertices VI of the integer knapsack polytope.

This theorem shows that the bin packing problem can be solved efficiently when the
underlying knapsack polytope has an easy structure i.e. has not too many vertices.
However, since the total number of vertices is bounded by O(log ∆)d [HL83] the algorithm
has a worst case running time of (log ∆)2O(d) , which is identical to the running time of the
algorithm by Goemans and Rothvoß [GR14].

5.1.2 Related results
The bin packing problem is one of the most fundamental combinatorial problems in com-
puter science. It has been very well studied in the literature, mostly in the context of approx-
imation. A major contribution was given by Karmarkar and Karp [KK82]. They presented

106

B1

B2

B0 = 0

γ

2γ

3γ

Π

Figure 5.1: Partitioning Cone(B)

a polynomial time approximation algorithm with a guarantee of OPT +O(log2(OPT)).
Very recently, this famous result by Karmarkar and Karp was improved by Rothvoß [Rot13]
who presented an algorithm with guarantee OPT +O(logOPT log log(OPT)) and later by
Rothvoßand Hoberg [HR15] who improved the guarantee further to OPT +O(log(OPT)).
Concerning the bin packing problem when the number of different item sizes d is constant,
Jansen and Solis-Oba [JS11] presented an approximation algorithm with a guarantee
of OPT + 1. Their algorithm has a running time of 22O(d) · enc(I)O(1) and therefore is
fpt in the number of different item sizes d. Finally, as mentioned above, Goemans and
Rothvoß [GR14] presented their polynomial time algorithm for the bin packing problem
with running time (log ∆)2O(d) .

In a very recent work, Onn [Onn15] discussed the problem of finding a vector λ ∈ ZP∩Zd≥0
with b = ∑

p∈P∩Zd λpp for given b ∈ int.cone(P ∩ Zd). He presented an algorithm for the
case that the polytope P = {x ∈ Rd | Ax ≤ c} has a specific shape. In the case that the
matrix A is totally unimodular he gave a polynomial time algorithm even in the case that
the dimension d is variable.

5.2 Proof of the main theorem
Given simplex S = Conv(B0, B1, . . . , Bd) for Bi ∈ Zd≥0 and a vector b ∈ int.cone(S ∩ Zd).
We consider integral points in cone(B) generated by the vertices B = {B0, B1, . . . , Bd} =
VI of the simplex S. For convenience, we denote by B also the matrix with columns
B0, B1, . . . , Bd. As our main subject of investigation, we consider the parallelepiped

Π = {x0B0 + x1B1 + . . .+ xdBd | xi ∈ [0, 1]}.

By definition of S = {x0B0 +x1B1 + . . .+xdBd | xi ∈ [0, 1],∑i xi = 1} we have that S ⊂ Π.
Furthermore, one can easily see that cone(B) can be partitioned into parallelepipedes Π
(see figure 5.1 with B0 = 0), as each point b = x0B0 +x1B1 + . . .+xdBd ∈ cone(B)∩Zd for
some x ∈ Rd

≥0 can be written as the sum of an integral part Bxint = bx0cB0 + . . .+bxdcBd

and a fractional part [Bx] = {x0}B0 + . . .+ {xd}Bd ∈ Π (we denote the fractional part of
some v ∈ R by {v} = v − bvc and for some vector x ∈ Rd we denote by {x} the vector
({x0}, . . . , {xd})T). Furthermore, let [b] = [Bx].

For the proof of the main theorem, we consider a λ ∈ ZP∩Zd≥0 with b = ∑
s∈S λss

and suppose that λ does not fulfill property (1) of Theorem 5.3. Then there exists a

107

γ ∈ (P ∩ Zd) \ VI with big weight i.e. λγ ≥ 22Ω(d) . The key idea of the proof is that
we consider the set of multiplicities γ, 2γ, 3γ, . . . of the vector γ. Our goal is to find a
possibly small multiplicity K > 1 such that Kγ is equivalent to a point δ in the convex
hull S. Hence, weight on γ can be shifted to the vertices B0, . . . , Bd of S. Then Kγ can
be written as the sum of vertices ∑ΛiBi plus some δ ∈ S ∩ Zd (see Lemma 5.8 for a
detailed proof). In figure 5.1 we have that 3γ is equivalent to a point in the simplex (as
remarked by the grey areas) and hence in that case 3γ = B1 +B2 for some δ ∈ S. Before
we are ready to prove the existence of a small multiplicity K, we give some definitions
and observations.

Instead of multiplicities of γ ∈ S ∩Zd, we consider multiplicities of a vector x ∈ [0, 1)d+1

in the unit cube with γ = x0B0 + x1B1 + . . .+ xdBd = Bx.

Definition 5.7. Consider multiplicities x, 2x, 3x, . . . of a vector x ∈ [0, 1)d+1 with ∑xi =
1. We say components i jumps at K if dKxie > d(K − 1)xie. We define

Level(Kx) =
d∑
i=0
{Kxi}.

The following lemma shows that we obtain the desired decomposition ofKγ if Level(Kx) =
1.

Lemma 5.8. Let γ ∈ S∩Zd be the vector with γ = Bx for x ∈ [0, 1)d+1. If Level(Kx) = 1,
then there exists a Λ ∈ Zd+1

≥0 and a δ ∈ S ∩ Zd such that

Kγ = δ +
d∑
i=0

ΛiBi.

Proof. As above, we split every component i of Kx ∈ Rd+1
≥0 into an integral part Kxinti =

bKxic and a fractional part {Kxi}. Then Kx = Kxint+{Kx} and we set δ = B({Kx}) =
[B(Kx)].
Observation 5.9. δ ∈ Zd

Since Kγ = KBx ∈ Zd and KBxint ∈ Zd we obtain that δ = B({Kx}) = B(Kx) −
B(Kxint) is integral and therefore δ ∈ Zd.
Observation 5.10. δ ∈ S:

Since Level(Kx) = 1 we obtain that ∑d
i=0{Kxi} = 1 and δ = B({Kx}) = ({Kx0})B0 +

. . . + ({Kxd})Bd, we can state δ as a convex combination of B0, B1, . . . Bd. Therefore
δ ∈ S.

Finally, we can decompose Kγ into

Kγ = KBx = B({Kxd}) +B(Kxint) = B(Kxint) + δ = δ +
d∑
i=0

ΛiBi

for some Λ ∈ Zd+1
≥0 .

The following lemma gives a correlation between the level of some point Kx and the
number of jumps.

Lemma 5.11. Let J be the number of jumps at K, then

Level(Kx) = Level((K − 1)x) + 1− J.

108

Proof. For every component i of Kx which jumps, we obtain that {Kxi} = {(K − 1)xi +
xi} = {(K − 1)xi}+ xi − 1. Hence

Level(Kx) =
d∑
i=0
{Kxi}

=
∑

i jumps at K
({(K − 1)xi}+ xi − 1) +

∑
i does not jump at K

({(K − 1)xi}+ xi)

=
d∑
i=0
{(K − 1)xi}+

d∑
i=0

xi − J = Level((K − 1)x) + 1− J.

Theorem 5.12. Given x ∈ [0, 1)d+1 with Level(x) = ∑d
i=0 xi = 1. Then there is a

K ∈ N>1 with K ≤ 22O(d) such that Level(Kx) = ∑d
i=0{Kxi} = 1.

Proof. We suppose that 1
2 > x0 ≥ x1 ≥ . . . ≥ xd. In the case that x0 ≥ 1

2 we obtain that
Level(2x) ≤ 1 and are done. Let d̄ ≤ d be the smallest index such that

d∑
i=d̄+1

xi <
1

X(d̄)
xd̄,

where X(d̄) = ∏d̄
i=0 pi and pi = d 1

xi
e. Intuitively, d̄ is chosen such that there is a major

jump from xd̄ to xd̄+1, i.e. xd̄ >> xd̄+1. Note that the above equation is always fulfilled
for d̄ = d and since 1

X(d̄)xd̄ < xd̄ < 1/2 we have that d̄ ≥ 1. First, we prove the following
lemma to give bounds for X(d̄) and xd̄

Lemma 5.13. Assuming for every 0 ≤ j ≤ d̄ that ∑d
i=j+1 xi ≥ 1

X(j)xj, then the following
parameters can be bounded by

• X(d̄) ≤ 22O(d) and

• component xd̄ ≥ 1
22Ω(d) .

Proof. For j = 0 we know that x0 ≥ 1
d+1 as x0 is the largest component. This implies also

that X(0) ≤ d+ 1. We suppose by induction that for every j ≤ d̄,

xj ≥ (2j22j · d22j)−1

and

X(j) ≤ (2j22j+1 · d22j+1).

Since j ≤ d̄ we obtain that ∑d
i=j+1 xi ≥ 1

X(j)xj and since the coefficients are sorted in
non-increasing order we get dxj+1 ≥ 1

X(j)xj. Using the induction hypothesis this gives

xj+1 ≥ (2j22j+1
d22j+1)−1 · (2j22j

d22j)−1 · d−1

≥ (2j22j+1+j22j · d22j+22j+1+1)−1

> (22·j22j+1 · d2·22j+1)−1

= (2j22(j+1) · d22(j+1))−1

109

Product X(j + 1) can be bounded as follows:

X(j + 1) = d 1
xj+1
eX(j) ≤ (1

xj+1
+ 1)X(j)

≤ (2(j+1)22(j+1)
d22(j+1) + 1) · 2j22j+1

d22j+1

< 2(j+1)22(j+1)+1d22(j+1) · 2j22j+1
d22j+1

= 2(j+1)22(j+1)+1+j22j+1 · d22(j+1)+22j+1

< 22·(j+1)22(j+1) · d2·22(j+1)

= 2(j+1)22(j+1)+1 · d22(j+1)+1

As a result we obtain that X(d̄) ≤ (2d̄22d̄+1 · d22d̄+1) = 22O(d) and xd̄ ≥ (2d̄22d̄ · d22d̄)−1 =
1

22Ω(d) .

Let X = X(d̄), for each component 0 ≤ i ≤ d, we define the distance Di(K) of a
multiplicity K by Di(K) = j, where j ≥ 0 is the smallest integer such that component
i jumps at K + j. Note that Di(K) is bounded by pi as pixi ≥ 1. We say Kx ≡ K ′x if
for every 0 ≤ i ≤ d̄ the distance Di(K) = Di(K ′). Consider elements x, 2x, . . . , (X + 1)x.
Since the number of equivalence classes is bounded by X = ∏d̄

i=1 pi, there exist two elements
Kx, (K + Z)x with K,Z ∈ Z≥1 and K, (K + Z) ≤ X + 1 such that Kx ≡ (K + Z)x. We
will see that the equivalence of two multiplicities implies the existence of a multiplicity
M > 1 with Level(Mx) = 1.

First, we argue about the level of multiplicity Z − 1. Note that since ∑d
i=0 xi = 1

we have that Level(Kx) = ∑d
i=0{Kxi} for every multiplicity K ∈ Z≥1. The case that

Level((Z − 1)x) ≥ d̄+ 2 is not possible since

Level((Z − 1)x) =
d∑
i=0
{(Z − 1)xi} ≤ d̄+ 1 + (Z − 1)

d∑
i=d̄+1

xi ≤ d̄+ 1 + (X − 1)
d∑

i=d̄+1
xi

≤ d̄+ 1 + X − 1
X

xd̄ < d̄+ 2.

Case (1). Suppose Level((Z − 1)x) = d̄+ 1 (for Z ≥ 2).
Case (1a). Suppose {(Z − 1)xi} ≥ 1− xi for all i = 0, 1, . . . , d̄.

In this case every component 0 ≤ i ≤ d̄ jumps at Z. By Lemma 5.11, we can bound
the level of Zx by Level(Zx) ≤ Level((Z − 1)x) + 1− (d̄+ 1) = 1.
Case (1b). There is an 0 ≤ i ≤ d̄ such that {(Z − 1)xi} < 1− xi.

In this case ∑d̄
i=0{(Z − 1)xi} ≤ d̄+ 1− xi ≤ d̄+ 1− xd̄ and we obtain

Level((Z − 1)x) =
d∑
i=0
{(Z − 1)xi} < d̄+ 1− xd̄ +

d∑
i=d̄+1

(Z − 1)xi ≤ d̄+ 1− xd̄ + 1
X
xd̄

< d̄+ 1

which contradicts the assumption of Case 1.
Case (2). Suppose Level((Z − 1)x) ≤ d̄.

110

Since K ≡ K + Z we know that every component i jumps at K +Di and K + Z +Di,
hence for every 0 ≤ i ≤ d̄ we obtain {(K + Di)xi} < xi and {(K + Z + Di)xi} < xi.
Let {(K + Di)xi} = α1 and {(K + Z + Di)xi} = α2 for some α1, α2 < xi. Then
{Zxi} = {α2 − α1} and hence {Zxi} = α2 − α1 if α1 ≤ α2 and {Zxi} = 1 + α2 − α1
if α1 > α2. Since α1, α2 < xi we have {Zxi} < xi or {Zxi} ≥ 1 − xi. Hence every
component 0 ≤ i ≤ d̄ jumps at Zxi or at (Z + 1)xi. We obtain by Lemma 5.11 that
Level((Z + 1)x) ≤ Level((Z − 1)x) + 2− (d̄+ 1) ≤ d̄+ 2− (d̄+ 1) = 1.

Proof of the main Theorem 5.3

Consider the vector b ∈ int.cone(S ∩ Zd). Let λ ∈ ZS∩Zd be the integral vector with
b = ∑

s∈S∩Zd λss.
Assume there is a component γ ∈ (S ∩ Zd) \B with high multiplicity i.e. λγ = 22Ω(d) .

Since γ ∈ S, there is a x ∈ Rd+1
≥0 with ∑d

i=0 xi = 1 and γ = x0B0 + x1B1 + . . . xdBd.
By Theorem 5.12 there exists a multiplicity K = 22O(d)

> 1 such that Level(Kx) = 1.
According to Lemma 5.8, there exists a δ ∈ S ∩ Zd≥0 such that Kγ = δ +∑d

i=0 ΛiBi for
some Λ ∈ Zd+1

≥0 . Then we can construct a λ′ ∈ Zd+1
≥0 with b = ∑

s∈S∩Zd λ
′
pp, which has

more weight in B as K > 1:

λ′ =

λγ −K
λδ + 1
λBi + Λi ∀Bi ∈ B
λs ∀s ∈ (S ∩ Zd) \ (B ∪ {γ, δ})

Since K > 1, the resulting vector λ′ has a decreased vertex distance as the sum∑
p∈(P∩Zd)\VI λp is reduced at least by 1. Using Theorem 5.1 applied to components

i ∈ (S ∩ Zd) \B, we can construct a λ(1) with |supp(λ′′ \B)| ≤ 2d. In the case that there
is another component γ ∈ (S ∩ Zd) \B with multiplicity λ′′γ = 22Ω(d) we can iterate this
process. In the other case, solution λ′′ fulfills the proposed properties.

Proof of the structure Theorem 5.5

Proof. Given polytope P = {x ∈ Rd | Ax ≤ c} for some matrix A ∈ Zm×d and a vector
c ∈ Zd and let PI be the integer polytope with vertices VI . The structure theorem follows
easily by decomposing the polytope P into simplices S of the form S = Conv(B0, B1, . . . Bd)
for Bi ∈ Vi.

By Caratheodory’s Theorem, there exist for each γ ∈ P vertices B0, B1, . . . , Bd ∈ VI
and a x ∈ Rd+1

≥0 with ∑d
i=0 xi = 1 such that γ = x0B0 + . . .+ xdBd. Consider the vector

b ∈ int.cone(P ∩ Zd). Let λ ∈ ZP∩Zd be the integral vector with b = ∑
p∈P∩Zd λpp. By

Theorem 5.1, we can assume that supp(λ) ≤ 2d and hence there are at most 2d simplices
S(k) = Conv(B1

0 , B
(k)
1 , . . . B

(k)
d) for k = 1, . . . , 2d which contain a point γ ∈ P with λγ > 0.

Finally, we can apply our main Theorem 5.3 to every simplex S(k) for k = 1, . . . , 2d to
obtain a vector λ′ ∈ ZP∩Zd≥0 which fulfills the above properties.

111

5.2.1 Algorithmic application
Computing VI in fpt-time

Given Polytope P = {x ∈ Rd | Ax ≤ c} for some matrix A ∈ Zm×d and a vector c ∈ Zd
such that all coefficients of A and c are bounded by ∆. Cook et al. [Coo+92] proved that
the number of vertices VI of the integer polytope PI is bounded by md ·O((log ∆))d. In
the following we give a brief description on how the set of vertices VI can be computed in
time |VI | · dO(d) · (m log(∆))O(1) and therefore in fpt-time parameterized by the number of
vertices |VI |. For a detailed description of the algorithm we refer to the thesis of Hartmann
[Har89].

Given at timestep t a set of vertices Vt ⊂ VI and the set of facets F (t) = {F1, . . . , F`} of
conv(Vt) corresponding to half-spaces Hi = {x | nix ≤ ci} for normal vectors n1, . . . , n` ∈
Rd and constants c1, . . . , cd ∈ Z with conv(V) = ∩`i=1Hi. Consider for every 1 ≤ i ≤ ` the
polytope P ∩H−i for a halfspace H−i = {x | x ∈ P , nix ≥ ci}. Compute with Lenstra’s
algorithm [LJ83] a solution x∗ ∈ P ∩ Zd of the ILP max{nix | x ∈ (P ∩ Zd), nix ≥ ci}.
In the case that nix∗ > ci, solution x∗ does not belong to Conv(Vt). Assuming that x∗
is a vertex of the integer polytope of P ∩H−i , solution x∗ is also a vertex of the integer
polytope PI . We can add x∗ to the set of existing vertices Vt ⊂ VI , construct the increased
set of facets F (t+1) of Conv(Vt ∪ {x∗}) and iterate the procedure. In the case that there
is no solution x∗ with nix

∗ > ci for any 1 ≤ i ≤ `, we have that PI = Conv(Vt) and are
done.

Bin Packing in fpt-time

In the following we describe the algorithmic use of the presented structure theorem 5.5.
Therefore, we follow the approach by Goemans and Rothvoß [GR14].

Theorem 5.14. Given polytopes P ,Q ⊂ Rd, one can find a y ∈ int.cone(P ∩ Zd) ∩ Q
and a vector λ ∈ ZP∩Zd≥0 such that b = ∑

pP∩Zd λpp in time |VI |2
O(d)

enc(P)O(1)enc(Q)O(1),
where enc(P), enc(Q) is the encoding length of the polytope P ,Q or decide that no such y
exists.

Proof. Let P = {x ∈ Rd | Ax ≤ c} and Q = {x ∈ Rd | Ãx ≤ c̃} be the given polytopes for
a matrix A ∈ Zm×d and a matrix Ã ∈ Zm̃×d̃. First, we compute the set of vertices of PI
in time |VI |2

O(d)
enc(P)O(1)enc(Q)O(1) as described above. Suppose that there is a vector

b ∈ int.cone(P ∩Zd)∩Q, then by Theorem 5.5, we know there is a vector λ ∈ ZP∩Zd≥0 with
b = ∑

p∈P∩Zd λss such that

1. λp ≤ 22O(d)∀p ∈ (P ∩ Zd) \ VI ,

2. |supp(λ) ∩ VI | ≤ d · 2d,

3. |supp(λ) \ VI | ≤ 22d.

At the expense of a factor
(
|VI |
d2d
)

= |VI |2
O(d) we can guess the support Vλ ⊆ VI of λ restricted

to components λp with p ∈ VI i.e. Vλ = supp(λ) ∩ VI . For each p ∈ Vλ we use variables
λ̄p ∈ Z≥0 to determine the multiplicities of λp. Furthermore, we guess the number of
different points p 6∈ Vi used in λ i.e. k = |supp(λ) \ VI | ≤ 22d. We use variables x(j)

i for
j = 1, . . . , k to determine the points p 6∈ VI and their multiplicity λp. Note that in the
following ILP, we encode the multiplicity of a λp with p 6∈ VI binary, therefore the number

112

of variables x(j)
i can be bounded by 22d · log(22O(d)) = 2O(d). And finally we use a vector

y ∈ Zd to denote the target vector in polytope Q.

Ax
(j)
i ≤ b ∀i = 1, . . . , k and ∀j = 1, . . . , k

∑
p∈Vλ

λ̄pp+
k∑
j=1

2O(d)∑
i=1

2jx(j)
i = y

Ãy ≤ b̃

xi ∈ Zd i = 1, . . . , k
λ̄p ∈ Z≥0 ∀p ∈ Vλ

y ∈ Zd

Using the algorithm of Lenstra or Kannan ([LJ83],[Kan87]) to solve the above ILP which
has k2O(d)+d+d2d = 2O(d) variables and mk+d+m̃+d|Vλ| = m2O(d)+m̃ constraints, takes
time (2O(d))2O(d) · (m2O(d) + m̃)O(1) log(∆̄)O(1) = 22O(d)

enc(P)O(1)enc(Q)O(1), where ∆̄ =
max{22O(d)

, d!∆d, ∆̃}. We obtain for the total running time: |VI |2
O(d)

enc(P)O(1)enc(Q)O(1)

We can apply this theorem to the bin packing problem by choosing P = {
(
x
1

)
∈ Rd+1

≥0 |

sTx ≤ 1} and Q = {b} × [0, a] to decide if items b can be packed into at most a bins.
Using binary search, on the number of used bins, we can solve the bin packing problem in
time |VI |2

O(d) · log(∆)O(1), where ∆ is the largest multiplicity of item sizes or the largest
denominator appearing in an itemsize s1, . . . , sd. Since |VI | ≥ d+ 1 this running time is
fpt-time, parametrized by the number of vertices |VI | and therefore we obtain Theorem
5.6.

5.3 Lower Bound
In this section we give a construction of a bin packing instance (s, b) with vertex distance
Dist(b) = 22Ω(d) . We consider the case that all item sizes s1, . . . , sd are of the form si = 1

ai
for some ai ∈ Z≥1. In this case, all edges of the knapsack polytope P = {x ∈ R≥0 |
s1x1 + . . .+ sdxd ≤ 1} are of the form Bi = (0, . . . , 0, ai, 0, . . . , 0)T and therefore integral.
We obtain that PI = P = Conv(0, B1, . . . , Bd).

Our approach for the proof of the lower bound is as follows: We prove the existence of a
parallelepipped Π = {x1B1+. . .+xdBd | xi ∈ [0, 1]} with a special element g ∈ (P∩Zd)\VI
such that the unique optimal packing of the bin packing instance K · g (for a possibly
large multiplicity K ∈ Z≥0) is to use K times the configuration g. In this case, weight
can not be shifted to the vertices B1, . . . , Bd and hence the instance Kg implies a vertex
distance of Dist(Kg) = K. We show that the special element g can be determined by a
set of modulo congruences. Therefore, we are able to use basic number theory to construct
a bin packing instance with double exponential vertex distance.

First, we take a close look at the parallelepipped Π and Cone(B). We say that two
points b, b′ ∈ Cone(B) are equivalent if [b] = [b′]. Each point b ∈ Cone(B) is equivalent
to a point in the parallelepiped Π.

Lemma 5.15. Using operation + defined by p+ p′ = [p+ p′] for some p, p′ ∈ Π∩Zd then
G(Π) = (Π ∩ Zd,+) is an abelian group with |G(Π)| = |det(B)| many elements.

113

The proof that G(Π) is a group can be easily seen, since G(Π) is the quotient group of
Zd and the lattice ZB1⊕ . . .⊕ZBd. For the fact that |G(Π)| = det(B) we refer to [Bar07].
In the considered case that Bi = (0, . . . , 0, ai, 0, . . . , 0)T , the group G(Π) is isomorphic
to (Z/a1Z)× . . .× (Z/adZ). Recall that the set P ∩ Zd ⊂ Π ∩ Zd represents all integral
points of the knapsack polytope and each δ ∈ P ∩Zd therefore represents a way of packing
a bin with items from sizes s1, . . . , sd. We call δ ∈ P ∩ Zd a configuration.

In the following subsection 5.3.3, we also give an easy observation on how the vertex
distance is connected to the integrality gap of the bin packing problem.

5.3.1 Preliminaries
In this section we state some basic number theoretic theorems that we will use in the
following. For details and proofs, we refer to the books of Stark [Sta70] and Graham,
Knuth and Patashnik [GKP94].

Theorem 5.16 ([Sta70]). Let a1, . . . ad ∈ Z with gcd(a1, . . . , ad) = 1, then there exist
v1, . . . , vd ∈ Z such that

a1v1 + . . . advd = 1.

Theorem 5.17 (Chinese remainder theorem [Sta70]). Suppose a1, . . . , ad ∈ Z are pairwise
coprime. Then, for any given sequence of integers i1, . . . , id, there exists an integer x
solving the following system of simultaneous congruences.

x ≡ ij mod aj for 1 ≤ j ≤ d.

Furthermore, x is unique mod ∏d
i=1 ai.

Theorem 5.18 ([Sta70]). Given congruence x mod a. If x and a are coprime, there
exists an inverse element x−1 ∈ Z/aZ such that xx−1 ≡ 1 mod a.

Sylvester’s sequence is defined by,

S1 = 2

Sj = 1 +
j−1∏
i=1

Si

and has following properties (see [GKP94])

Sn ≈ 1.2642n

j−1∑
i=1

1
Si

= 1− 1
Sj − 1

5.3.2 Proof of the lower bound
We start by defining the size of an element π ∈ Π by

Size(π) =
d∑
i=1

siπi.

114

In our case, the sizes si are given by si = 1
ai

and vectors Bi = (0, . . . , 0, ai, 0, . . . , 0)T for
some ai ∈ Z≥1. Hence, the size of a Bi equals to 1 and for each x ∈ [0, 1)d with Bx = π,
we have that ∑d

i=1 xi = Size(π). Since the matrix B is a diagonal matrix with entries ai,
the determinant equals det(B) = ∏d

i=1 ai. We define for 1 ≤ i ≤ d that

Ri = det(B)
ai

=
∏
j 6=i

aj.

In the following lemma we show that the fractional value of the size {Size(Π)} is unique
for every element π ∈ G(Π).

Lemma 5.19. Given parallelepiped Π = {x1B1 + . . . + xdBd | xi ∈ [0, 1)d} with Bi =
(0, . . . , 0, ai, 0, . . . , 0)T . If a1, . . . , ad are pairwise coprime, then for every 0 ≤ a < det(B),
there exists a unique vector π ∈ Π ∩ Zd and a vector x ∈ [0, 1)d with Bx = π, such that

Size(π) =
d∑
i=1

xi = z + a/det(B),

for some z ∈ Z≥0.

Proof. Since a1 . . . , ad are pairwise coprime, we have that gcd(Ri, Ri+1) = ∏
j 6=i,i+1 aj

and hence gcd(R1, . . . , Rd) = 1. By Theorem 5.16, there exist v1, . . . , vd ∈ Z such that
v1R1 + . . . + vdRd = 1. For v′i = viRi mod det(B) the sum ∑d

i=1 v
′
i ≡ 1 mod det(B).

Consider the vector x = (v′1
det(B) , . . . ,

v′d
det(B))

T , then ∑d
i=1 xi = ∑d

i=1
v′i

det(B) = 1
det(B) + z for

some z ∈ Z≥0. The vector Bx = v′1
det(B)B1 + . . . + v′d

det(B)Bd is integral since for every
1 ≤ i ≤ d the congruence v′iai ≡ viRiai ≡ videt(B) ≡ 0 mod det(B) holds and hence
each item sizes aixi = πi = v′i

det(B)ai ∈ Z≥0.
Consider multiplicities x, 2x, 3x, As above we can rewrite each element Kx ∈ Rd

≥0 by
Kx = Kxint + {Kx} with {Kx} = ({Kx1}, . . . , {Kxd})T and {Kxi} < 1, which implies
that B({Kx}) ∈ Π. Since B(Kx) is integral and B(Kxint) is integral, the vector B({Kx})
is integral as well. Furthermore, the sum of all component {Kx} sums up to ∑d

i=1{Kxi} =
K
∑d
i=1 xi−

∑d
i=1bKxic = K

det(B) + z, for some z ∈ Z≥0. Hence for each multiplicity Kx in
0x, x, 2x, . . . , (det(B)− 1)x there is a vector B({Kx}) ∈ Π with ∑d

i=1{Kxi} = z + K
det(B)

and since Π contains exactly det(B) many elements (see Lemma 5.15), each element of
G(Π) corresponds to a unique element of 0x, x, 2x, . . . , (det(B)− 1)x.

Consider the specific element g ∈ Π ∩ Zd with fractional vector x ∈ [0, 1)d such that
Bx = g and Size(g) = det(B)−1

det(B) + z. We call g the full generator of the group G(Π).

Corollary 5.20. For every element π ∈ G(Π) there exists a multiplicity K such that
Kg = π, i.e. the full generator g generates the group Π and hence G(Π) =< g > is a
cyclic group. Element Kg ∈ Π has a size of z + det(B)−K

det(B) for some z ∈ Z≥0.

Proof. In the proof of the lemma above, we showed that the element Bx with ∑d
i=1 xi =

z+ 1
det(B) generates G(Π) as each multiplicity Kx of x yields an element B({Kx}) ∈ G(Π)

of size z + K
det(B) . We consider the full generator g with g = Bx′ for some x′ with∑d

i=1 x
′
i = z+ det(B)−1

det(B) for some z ∈ Z≥0. By the same argument as before, the multiplicities
Kx′ yield elements π′ = B({Kx′}) ∈ G(Π) with Size(π′) = z + det(B)−K

det(B) for some
z ∈ Z≥0.

115

As above, we consider multiplicities Kg of a vector g ∈ Π and some K > 0. We say
that Kg ∈ cone(B) is unique if g ∈ P and 2g, . . . , Kg 6∈ P i.e. g is a configuration and
2g, . . . , Kg are not. In the following lemma we prove that if Kg is unique and g is a full
generator, then using K-times configuration g is the unique optimal packing for instance
Kg.

Lemma 5.21. Let g be the full generator of G(Π). If Kg ∈ cone(B) is unique, then there
is no λ ∈ Z(P∩Zd)

≥0 with λg 6= K such that ∑p∈P∩Zd λpp = Kg and |λ| = K.

Proof. Consider bin packing instance Kg ∈ cone(B) and a packing of the instance into
bins 1, . . . , K. Since g contains items of size det(B)−1

det(B) , items in instance Kg have a total
size of K det(B)−1

det(B) and therefore, the bins 1, . . . , K have total free space of K
det(B) . Each bin

configuration c1, . . . , cK of bins 1, . . . , K belongs to P and hence to Π(G). By Cororllary
5.20 for each ci there exists a multiplicity Ki ∈ Z≥1 such that Kig = ci. Assuming
that ci 6= g and hence Ki > 1 we know that Ki > K as by definition of the uniqueness
of Kg, elements 2g, . . . , Kg are no configurations. However, a bin with configuration
Kig = ci ∈ P with Ki > K has free space K′

det(B) >
K

det(B) and hence more free space than
the total sum of free space in bins 1, . . . , K. Therefore, a configuration 6= g can not appear
in an optimal packing of the instance Kg. The unique way of packing instance Kg into
K bins is to use K times configuration g.

Consider the full generator g = x1B1 + . . .+ xdBd ∈ P with xi ≥ 0, we say g has the
long-run property if (1− ε) 1

Si
≤ xi <

1
Si

for 1 ≤ i ≤ d− 1 and some ε < (1
Sd−1)2, where Si

is the i-th sylvester number. The following inequality gives a lower bound for ‖x‖1:

d−1∑
i=1

xi ≥ (1− ε)
d−1∑
i=1

1
Si

= (1− ε)(1− 1
Sd − 1) = 1− ε− 1− ε

Sd − 1

> 1− 1
(Sd − 1)2 −

1
Sd − 1 = 1− 1

(Sd − 1)2 + 1
(Sd − 1)(Sd − 2) −

1
Sd − 2

> 1− 1
Sd − 2

If g is a configuration and hence ‖x‖1 ≤ 1, we can bound xd from above by

xd ≤ 1−
d−1∑
i=1

xi <
1

Sd − 2

Recall that the following statements are equivalent:

• {Kg} ∈ G(Π) is a configuration i.e. Kg ∈ P

• Level(Kx) = 1

Lemma 5.22. If g is a configuration and g has the long run property, then (Sd − 2)g is
unique for d ≥ 3.

Proof. Let x ∈ [0, 1]d+1 such that x00 + x1B1 + . . . + xdBd = g with ∑d
i=0 xi = 1. We

consider the level Level(Kx) of multiplicities of x. Recall that Level(Kx) = 1 if and only
if {Kg} ∈ Π is a configuration. Hence, it remains to prove that that Level(Kx) > 1 for
every 1 < K ≤ Sd − 2.

116

By Lemma 5.11 we know that level Level(Kx) = Level((K − 1)x)− JK + 1, where JK
is the number of jumps at K. This implies by induction that Level(Kx) = K − J , where
J is the total sum of all jumps in 2x, . . . ,Kx. Using that ∑d−1

i=1 xi > 1− 1
Sd−2 , we obtain

that x0, xd <
1

Sd−2 and hence Kx0, Kxd < 1 for K ≤ Sd − 2. This means that component
0 and component d do not jump in 2x, . . . , (Sd − 2)x.
Observation 5.23. For every 1 ≤ i ≤ d− 1, component i jumps at 1 + Si, 1 + 2Si, 1 +
3Si, . . . , 1 + bSd−2

Si
cSi.

Since (1 − ε) 1
Si
≤ xi <

1
Si

for 1 ≤ i < d we know on the one hand that MSixi < M

and on the other hand (1 +MSi)xi ≥ (1− ε)(1
Si

+M) > M as ε(1
Si

+M) ≤ ε(1+(Sd−2)
Si

) <
Sd−1

(Sd−1)2
1
Si
< 1

Si
for i ≤ d− 1 and M ≤ Sd−2

Si
. Hence component i jumps at 1 + Si from 0 to

1 and at 1 + 2Si from 1 to 2 and so on. The total number of jumps JK(i) in component i
can therefore be bounded by 1 + JK(i)Si ≤ K and hence JK(i) ≤ bK−1

Si
c.

The total number of jumps J up to K ≤ Sd − 2 in components 0, . . . , d sums up to

J =
d∑
i=0
bK − 1

Si
c =

d−1∑
i=1
bK − 1

Si
c ≤ b(K − 1)

d−1∑
i=1

1
Si
c

Since ∑d−1
i=1

1
Si

= 1− 1
Sd−1 we obtain for K ≤ Sd − 2

J ≤ b(K − 1)
d−1∑
i=1

1
Si
c = b(K − 1)(1− 1

Sd − 1)c ≤ K − 2

which implies that Level(Kx) = K − J ≥ K − (K − 2) = 2 and therefore {Kg} 6∈ P for
K = 2, . . . , Sd − 2.

Lemma 5.24. An element g ∈ G(Π) is a full generator if and only if for all 1 ≤ i ≤ d

gi ≡ −R−1
i mod ai.

Proof. Consider the full generator g of a group G(Π). By definition of the full generator,
we obtain that there exists a z ∈ Z≥0 such that

Size(g) =
d∑
i=1

sigi =
d∑
i=1

gi
ai

= z + det(B)− 1
det(B)

and hence

det(B)− 1 + z · det(B) = det(B)
d∑
i=1

gi
ai

=
d∑
i=1

Rigi

By definition of the modulo operation this equation is equivalent to
d∑
i=1

Rigi ≡ det(B)− 1 mod (det(B)). (5.1)

As det(B) − 1 ≡ −1 mod ai for each 1 ≤ i ≤ d, we obtain by the Chinese remainder
Theorem 5.17 (assuming that all ai’s are coprime), that congruence (5.1) is equivalent to
the following system of congruences:

d∑
i=1

Rigi ≡ −1 mod ai for 1 ≤ i ≤ d

117

As Ri ≡ 0 mod aj for any i 6= j, we obtain that ∑d
i=1 Rigi ≡ Rjgj mod aj and hence

gi ≡ −R−1
i mod ai.

Sylvester’s sequence Si grows double exponentially by approximately Si ≈ 1.2642i and
therefore Si = 22Ω(i) . It remains to prove the existence of sizes s1, . . . , sd with group G(Π)
such that the full generator of G(Π) has the long-run property. The following theorem
concludes the proof of a double exponential lower bound.

Theorem 5.4. There exists a bin packing instance with sizes 1
a1
, . . . , 1

ad
for ai ∈ Z≥1

and multiplicities b ∈ Zd≥0 corresponding to a point b ∈ int.cone(P ∩ Zd), where P is the
knapsack polytope such that

Dist(b) ≥ Sd − 2 = 22Ω(d)

Proof. Given parallelepiped Π = {x1B1 + . . . + xdBd | xi ∈ [0, 1)} with configurations
Bi = (0, . . . , 0, ai, 0, . . . , 0)T . Assume there are sizes si such that group G(Π) with full

generator g ∈ P has the long-run property. Then K times configuration
(

1
g

)
is by

Lemma 5.21 the unique representation of the vector b =
(
K
Kg

)
∈ int.cone(P ′ ∩Zd) where

P ′ = Conv(B′0, . . . , B′d) with B′0 = (1, 0, . . . , 0)T and B′i =
(

1
Bi

)
. According to Lemma

5.22 this implies a vertex distance of Dist(b) = Sd − 2 = 22Ω(d) . Therefore, it remains to
prove the existence of sizes s1, . . . , sd with group G(Π) such that the full generator g of
G(Π) has the long-run property. In the following we give an inductive construction of the
sizes si = 1

ai
:

First, choose a1 arbitrarily such that there is an m1 with (1− ε) 1
S1
≤ m1

a1
< 1

S1
. This is

possible for every a1 >
S1
ε

that is not a multiple of S1 = 2. In this case m1 can be chosen
by m1 = b a1

S1
c and we obtain ba1/S1c

a1
< 1

S1
and ba1/S1c

a1
≥ (a1/S1)−1

a1
≥ 1

S1
− 1

a1S1
≥ (1− ε)S1.

Additionally, we assume w.l.o.g. that m1 and a1 are coprime.
For 1 ≤ i < d choose ai+1 such that there exists an mi+1 with (1− ε) 1

Si+1
≤ mi+1

ai+1
< 1

Si+1
.

The existence of the mi+1 can be shown for any ai+1 >
Si+1
ε

that is not a multiple of
Si+1 by the same argument as above for m1. Additionally we choose ai+1 such that the
following conditions hold:

ai+1 ≡ (
i−1∏
j=1

aj)−1 · (−mi)−1 mod ai (5.2)

ai+1 ≡ 1 mod aj for j = 1, . . . , i− 1 (5.3)

Remark the following points, where we use the fact that gcd(a, b) = gcd(a mod b, b) for
numbers a, b ∈ Z.

• The inverse element of ∏i−1
j=1 aj and −mi in Z/aiZ exists since a1, . . . aj are coprime

to ai and mi is coprime to ai (see Theorem 5.18),

118

• since a1, . . . ai are coprime, by the chinese remainder theorem 5.17, there exists a
unique element ai+1 mod (∏i

j=1 aj) satisfying the above inequalities,

• condition (5.2) implies that ai+1 is coprime to ai as mi is coprime to ai and ∏i−1
j=1 aj

is coprime to ai (coprimeness carries over to the inverse),

• condition (5.3) implies that ai+1 is coprime to a1, . . . , ai−1.

Claim (1). The full generator g of the constructed group G(Π) has the long-run property.
To prove that g = x1B1 + . . .+xdBd has the long-run property, we show for all 1 ≤ i < d

that 1
Si

(1− ε) ≤ gi
ai
< 1

Si
. By Lemma 5.24

gi ≡ −R−1
i mod ai

By construction of the ai we obtain for g1, . . . , gd−1 the following congruences mod aj:

gi ≡ −

i−1∏
j=1

aj ·
d∏

j=i+1
aj

−1
(5.2)
≡ −

i−1∏
j=1

aj · ai+1

−1
(5.3)
≡ −

(
i−1∏
j=1

aj) · (
i−1∏
j=1

aj)−1 · (−mi)−1

−1

≡ mi mod ai

Since for every δ ∈ Π we have that δi < ai, we know gi = mi. By definition of mi we
obtain (1− ε) 1

Si
≤ xi = mi

ai
< 1

Si
, which proves Claim 1.

Claim (2). The full generator g is a configuration.

Suppose Level(x) > 1, then we know by Lemma 5.19 that ∑d
i=1 xi = z + det(B)−1

det(B) for
some z ∈ Z≥1.

d∑
i=1

xi <
d−1∑
i=1

1
Si

+ xd = (1− 1
Sd − 1) + xd < (1− 1

Sd − 1) + 1

Since xi = gi
ai
< 1

Si
for 1 ≤ i < d, we know that ai ≥ Si + 1 and hence det(B) > ∏d−1

i=1 ai >∏d−1
i=1 (Si + 1) > Sd − 1 which implies:

d∑
i=1

xi < (1− 1
det(B)) + 1 = 1 + det(B)− 1

det(B)

This is a contradiction to Level(x) > 1.

5.3.3 Relation between Dist and the IRUP
In this section we study briefly the connection between the vertex distance and the
modified integer roundup property (MIRUP) which is defined in the following. Let
P = {x ∈ Rd

≥0 | sTx ≤ 1} be the knapsack polytope for given sizes s1, . . . sd ∈ (0, 1]. For
given multiplicities a1, . . . , ad, a packing of the items into a minimum number of bins is
given by a solution of the following ILP:

min{‖λ‖1 |
∑

p∈P∩Zd
λpp = b, λ ∈ Zd≥0}. (5.4)

119

The relaxed linear program (LP) is defined by

min{‖λ‖1 |
∑

p∈P∩Zd
λpp = b, λ ∈ Rd

≥0}. (5.5)

Let λ∗ be an optimal solution of the ILP (5.4) and let λf be an optimal solution of the
relaxed linear program (5.5), then the integrality gap of an instance (s, b) is defined by:

‖λ‖1 −
∥∥∥λf∥∥∥

1

A well known conjecture by Scheithauer and Terno [ST97] concerning the integrality gap
for bin packing instance is that for any instance I, we have that ‖λ∗‖1 ≤ d

∥∥∥λf∥∥∥
1
e + 1

which is the so called modified integer roundup property (MIRUP). The integer roundup
property (IRUP) is fulfilled if ‖λ∗‖1 ≤ d

∥∥∥λf∥∥∥
1
e. In general, bin packing instances where die

IRUP is not fulfilled appear rarely. In the literature those kind of instances are studied and
constructions of instances are given where die IRUP does not hold (see [ST97], [Cap+14]).
In the following we show that a bin packing instance with a large vertex distance Dist(b)
implies the existence of many subinstances where the IRUP does not hold. Specifically,
we show the following theorem:

Theorem 5.25. Given a bin packing instance (s, b) corresponding to a vector b ∈
int.cone(P ∩ Zd) with vertex distance Dist(b) and let λ ∈ ZP∩Zd be a solution with∑
p∈P∩Zd λpp = b and vertex distance ∑p∈(P∩Zd)\VI λp = Dist(b). For every γ ∈ (P∩Zd)\VI

with λγ = d+ Z for some Z ∈ Z≥0, there exist at least Z instances where the IRUP does
not hold.

Proof. Given an instance b ∈ int.cone(P ∩ Zd) with Dist(b). Then there exists an
integral optimal solution λ ∈ ZP∩Zd with ∑p∈P∩Zd λpp = b and ∑p∈(P∩Zd)\VI λp = Dist(b).
We consider for a γ ∈ (P ∩ Zd) \ VI with λγ = d + Z for some Z ∈ Z≥1 the instances
(d+1)γ, . . . , (d+Z)γ. Let b′ ∈ int.cone(P∩Zd) be the vector corresponding to a multiplicity
(d+Z ′)γ for a Z ′ ≤ Z. Note that by definition of b′, we have that Dist(b′) = d+Z ′, as γ
is chosen from (P ∩ Zd) \ VI and the existence of a solution λ′′ for b′ with smaller vertex
distance would imply a small vertex distance for b. Since b′ ∈ Cone(P ∩Zd), there exist a
basic feasible solution λf ∈ Rd

≥0 corresponding to vectors B1, . . . , Bd ∈ P ∩ Zd of LP (5.5)
with b′ = λf1B1 + . . .+ λfdBd and

∥∥∥λf∥∥∥
1
≤ d+ Z ′. Using Caratheodory’s theorem, we can

assume w.l.o.g. that B1, . . . , Bd are vertices.
Claim: The vector [b′] = {λf1}B1 + . . .+ {λfd}Bd does not fulfill the integer roundup

property.
Suppose the roundup property for [b′] is fulfilled, then there exists a packing of instance
[b′] into d

∥∥∥{λf}∥∥∥
1
e bins. Using the decomposition of b′ = Bλf

int + [b′] into an integral
part Bλf int = bλf1cB1 + . . . + bλfdcBd and the fractional part [b′], we obtain a packing
for b′ into d

∥∥∥λf∥∥∥
1
e ≤ d + Z ′ bins (which implies optimality). The constructed packing

has vertex distance of ≤ d
∥∥∥{λf}∥∥∥

1
e. Since d

∥∥∥{λf}∥∥∥
1
e ≤ d < d + Z ′ = Dist(b′), this is a

contradiction to the minimality of the vertex distance for b′.
Claim: Let vectors b(1), b(2) ∈ int.cone(P ∩Zd) be given which correspond to multiplic-

ities K1γ and K2γ of vector γ ∈ (P ∩ Zd) \ VI with K1 < K2. Then [b(1)] 6= [b(2)].
By a similar argument as in the previous claim, we can argue in this case. Since b(1), b(2) ∈
Cone(P ∩Zd), there exist basic feasible solutions λ(1), λ(2) ∈ Rd

≥0 corresponding to vectors

120

B1, . . . , Bd ∈ VI of LP (5.5) with b(i) = λ
(i)
1 B1 + . . . + λ

(i)
d Bd for i = 1, 2 and λ(1) ≤ λ(2)

as K1γ ≤ K2γ. Suppose that [b(1)] = [b(2)], then we obtain for the difference (K2 −K1)γ
corresponding to b(2) − b(1) = Bλ(2)int + [b(2)] − Bλ(1)int − [b(1)] = Bλ(2)int − Bλ(1)int.
Therefore, the difference b(2) − b(1) can be written by the (positive) sum of vertices
B1, . . . , Bd. This implies a packing for b(2) by b(2) = b(1) + (b(2)− b(1)) with vertex distance
Dist(b(1)) < Dist(b(2)) which contradicts the minimality of vertex distance b(2).

As a conclusion of the above claims, we obtain for each multiplicity (d+1)γ, . . . , (d+Z)γ
of γ the instances [(d+ 1)γ], . . . , [(d+ Z)γ] ∈ G(Π), where die IRUP does not hold.

Note that an instance with large vertex distance (e.g. double exponential in d) implies
the existence of solutions with large (double exponential) multiplicities λγ as the number
of non-zero components can be bounded by the theorem of Eisenbrand and Shmonin
[ES06] applied to points in (P ∩ Zd) \ VI .

Together with the construction of the previous subsection where we created a bin
packing instance b with a unique solution λ ∈ int.cone(P ∩ Zd) with λγ = 22Ω(d) for some
γ ∈ P ∩Zd, we obtain that b has double exponentially many subinstances where the IRUP
is not fulfilled.

121

Bibliography
[Alo+97] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. “Approximation Schemes for

Scheduling”. In: Proceedings of the 8th Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA ’97. 1997, pp. 493–500.

[Alo+98] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. “Approximation schemes
for scheduling on parallel machines”. In: Journal of Scheduling 1 (1998),
pp. 55–66.

[Bal+08] J. Balogh, J. Békési, G. Galambos, and G. Reinelt. “Lower Bound for the
Online Bin Packing Problem with Restricted Repacking”. In: SIAM Journal
on Computing 38.1 (2008), pp. 398–410.

[Bar07] A. Barvinok. “Lattice points, polyhedra, and complexity”. In: Geometric
Combinatorics, IAS/Park City Mathematics Series 13 (2007), pp. 19–62.

[BB10] A. Beloglazov and R. Buyya. “Energy Efficient Allocation of Virtual Machines
in Cloud Data Centers”. In: 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, CCGrid 2010. 2010, pp. 577–578.

[BBG12] J. Balogh, J. Békési, and G. Galambos. “New lower bounds for certain classes
of bin packing algorithms”. In: Theoretical Computer Science 440-441 (2012),
pp. 1–13.

[BJK15] S. Berndt, K. Jansen, and K. Klein. “Fully Dynamic Bin Packing Revis-
ited”. In: 18th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX). 2015, pp. 135–151.

[BKB07] N. Bobroff, A. Kochut, and K.A. Beaty. “Dynamic Placement of Virtual
Machines for Managing SLA Violations”. In: Integrated Network Management,
IM 2007. 10th IFIP/IEEE International Symposium on Integrated Network
Management. 2007, pp. 119–128.

[BM98] P.A. Beling and N. Megiddo. “Using Fast Matrix Multiplication to Find Basic
Solutions”. In: Theoretical
Computer Science 205.1–2 (1998), pp. 307–316.

[Bro79] D.J. Brown. A Lower Bound for On-Line One-Dimensional Bin Packing
Algorithms. Tech. rep. R-864. Coordinated Sci Lab Univ of Illinois Urbana,
1979.

[Cap+14] A. Caprara, M. Dell’Amico, José C. Dı́az-Dı́az, M. Iori, and R. Rizzi. “Friendly
bin packing instances without Integer Round-up Property”. In: Mathematical
Programming 150.1 (2014), pp. 5–17.

[CGJ83] E.G. Coffman, M.R. Garey, and D.S. Johnson. “Dynamic Bin Packing”. In:
SIAM Journal on Computing 12.2 (1983), pp. 227–258.

[CGJ84] E.G. Coffman, M.R. Garey, and D.S. Johnson. “Approximation Algorithms
for Bin-Packing: An updated Survey”. In: Algorithm design for computer
system design (1984), pp. 49–106.

122

[CGJ97] E.G. Coffman, M.R. Garey, and D.S. Johnson. “Approximation Algo-
rithms for Bin Packing: A Survey”. In: Approximation algorithms for
NP-hard problems. Ed. by D. Hochbaum. PWS Publishing Co., 1997, pp. 46–
93.

[CJZ13] L. Chen, K. Jansen, and G. Zhang. “On the optimality of approximation
schemes for the classical scheduling problem”. In: Proceedings of the 25th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013). Society
for Industrial and Applied Mathematics, 2013, pp. 657–668.

[CLW08] J.W. Chan, T. Lam, and P.W.H. Wong. “Dynamic Bin Packing of Unit
Fractions Items”. In: Theoretical Computer Science 409.3 (2008), pp. 521–
529.

[Cof+13] E. G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo. “Bin
Packing Approximation Algorithms: Survey and Classification”. In: Handbook
of Combinatorial Optimization. Ed. by M. P. Pardalos, D. Du, and L. R.
Graham. Springer New York, 2013, pp. 455–531. isbn: 978-1-4419-7997-1.

[Coo+86] W. Cook, A.M.H. Gerards, A. Schrijver, and E. Tardos. “Sensitivity theorems
in integer linear programming”. In: Mathematical Programming 34.3 (1986),
pp. 251–264.

[Coo+92] W. Cook, M. Hartmann, R. Kannan, and C. McDiarmid. “On integer points
in polyhedra”. English. In: Combinatorica 12.1 (1992), pp. 27–37. doi:
10.1007/BF01191202.

[CW96] J. Csirik and G.J. Woeginger. “On-line Packing and Covering Problems”. In:
Online Algorithms. Vol. 1442. LNCS. 1996, pp. 147–177.

[CWY09] J.W. Chan, P.W.H. Wong, and F.C.C. Yung. “On Dynamic Bin Packing: An
Improved Lower Bound and Resource Augmentation Analysis”. In: Algorith-
mica 53.2 (2009), pp. 172–206.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs
in Computer Science. Springer, 1999. isbn: 978-1-4612-6798-0.

[DKL14] K. Daudjee, S. Kamali, and A. López-Ortiz. “On the Online Fault-tolerant
Server Consolidation Problem”. In: 26th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’14. 2014, pp. 12–21.

[Eis57] K. Eisemann. “The Trim Problem”. In: Management Science 3.3 (1957),
pp. 279–284.

[EL09] L. Epstein and A. Levin. “A robust APTAS for the Classical Bin Packing
Problem”. In: Mathematical Programming 119.1 (2009), pp. 33–49.

[EL13] L. Epstein and A. Levin. “Robust Approximation Schemes for Cube Packing”.
In: SIAM Journal on Optimization 23.2 (2013), pp. 1310–1343.

[EL14] L. Epstein and A. Levin. “Robust Algorithms for Preemptive Scheduling”.
In: Algorithmica 69.1 (2014), pp. 26–57.

[ES06] F. Eisenbrand and G. Shmonin. “Carathéodory bounds for integer cones”.
In: Operations Research Letters 34 (2006), pp. 564–568.

[FL81] W. Fernandez de la Vega and G.S. Lueker. “Bin Packing can be solved within
1 + ε in Linear Time”. In: Combinatorica 1.4 (1981), pp. 349–355.

123

http://dx.doi.org/10.1007/BF01191202

[GIS77] T. F. Gonzalez, O. H. Ibarra, and S. Sahni. “Bounds for LPT Schedules on
Uniform Processors”. In: SIAM Journal on Computing 6.1 (1977), pp. 155–
166.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics: A Foundation for Computer Science. 2nd. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1994. isbn: 0201558025.

[GPT00] G. Gambosi, A. Postiglione, and M. Talamo. “Algorithms for the Relaxed On-
line Bin-Packing Model”. In:
SIAM Journal on Computing 30.5 (2000), pp. 1532–1551.

[GR14] M. X. Goemans and T. Rothvoß. “Polynomiality for bin packing with a
constant number of item types”. In: Proceedings of the 25th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA ’14). 2014, pp. 830–839.

[Gra66] R. L. Graham. “Bounds for certain multiprocessing anomalies”. In: Bell
System Technical Journal 45 (1966), pp. 1563–1581.

[Gra69] R. L. Graham. “Bounds on multiprocessing timing anomalies”. In: SIAM
Journal on Applied Mathematics 17 (1969), pp. 416–429.

[Gri+01] M.D. Grigoriadis, L.G. Khachiyan, L. Porkolab, and J. Villavicencio. “Ap-
proximate Max-Min Resource Sharing for Structured Concave Optimization”.
In: SIAM Journal on Optimization 11 (2001), p. 1081.

[Har89] M. Hartmann. “Cutting planes and the complexity of the integer hull, Report
No. 819”. PhD thesis. Cornell University, 1989.

[HL83] A.C. Hayes and D.G. Larman. “The vertices of the knapsack polytope”. In:
Discrete Applied Mathematics 6.2 (1983), pp. 135–138.

[Hoc97] D. Hochbaum, ed. Approximation algorithms for NP-hard problems. PWS
Publishing Company, 1997.

[HR15] R. Hoberg and T. Rothvoss. “A Logarithmic Additive Integrality Gap for
Bin Packing”. In: CoRR abs/1503.08796 (2015).

[HS16] S. Heydrich and R. van Stee. “Beating the Harmonic Lower Bound for Online
Bin Packing”. In: 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy. 2016, 41:1–
41:14.

[HS87] D. S. Hochbaum and D. B. Shmoys. “Using dual approximation algorithms
for scheduling problems: theoretical and practical results”. In: Journal of the
ACM 34 (1987), pp. 144–162.

[IL09] Z. Ivković and E.L. Lloyd. “Fully Dynamic Bin Packing”. In: Fundamental
Problems in Computing. Springer, 2009, pp. 407–434.

[IL97] Z. Ivković and E.L. Lloyd. “Partially Dynamic Bin Packing can be solved
within 1+ε in (amortized) Polylogarithmic Time”. In: Information Processing
Letter 63.1 (1997), pp. 45–50.

[IL98] Z. Ivković and E.L. Lloyd. “Fully Dynamic Algorithms for Bin Packing: Being
(Mostly) Myopic Helps”. In: SIAM
Journal on Computing 28.2 (1998), pp. 574–611.

124

[Jan06] K. Jansen. “Approximation Algorithms for Min-Max and Max-Min Resource
Sharing Problems, and Applications”. In: Efficient Approximation and Online
Algorithms. Vol. 3484. LNCS. Springer, 2006, pp. 156–202.

[Jan10] K. Jansen. “An EPTAS for Scheduling Jobs on Uniform Processors: Using an
MILP Relaxation with a Constant Number of Integral Variables”. In: SIAM
Journal on Discrete Mathematics 24 (2010), pp. 457–485.

[JK] K. Jansen and K. Klein. “About the Structure of the Integer Cone and its
Application to Bin Packing”. In: Symposium on Discrete Algorithms, SODA
(to appear).

[JK13] K. Jansen and K. Klein. “A Robust AFPTAS for Online Bin Packing
with Polynomial Migration”. In: International Colloquium on Automata,
Languages, and Programming(ICALP). 2013, pp. 589–600.

[JKV16] K. Jansen, K. Klein, and J. Verschae. “Closing the Gap for Makespan
Scheduling via Sparsification Techniques”. In: 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016. 2016, 72:1–72:13.

[JM10] K. Jansen and M. Mastrolilli. “Scheduling unrelated parallel machines: linear
programming strikes back”. In: University of Kiel, Technical Report 1004
(2010).

[Joh+74a] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, and R.L. Graham.
“Worst-case Performance Bounds for Simple One-dimensional Packing Algo-
rithms”. In: SIAM Journal on Computing 3.4 (1974), pp. 299–325.

[Joh+74b] D.S. Johnson, A.J. Demers, J.D. Ullman, M.R. Garey, and R.L. Graham.
“Worst-Case Performance Bounds for Simple One-Dimensional Packing Algo-
rithms”. In: SIAM
Journal on Computing 3.4 (1974), pp. 299–325.

[Joh74] D.S. Johnson. “Fast Algorithms for Bin Packing”. In:
Journal of Computer and System Sciences 8.3 (1974), pp. 272–314.

[JR11] K. Jansen and C. Robenek. “Scheduling Jobs on Identical and Uniform
Processors Revisited”. In: Approximation and Online Algorithms. Ed. by
R. Solis-Oba and G. Persiano. Lecture Notes in Computer Science 7164. 2011,
pp. 109–122.

[JS11] K. Jansen and R. Solis-Oba. “A Polynomial Time OPT + 1 Algorithm for
the Cutting Stock Problem with a Constant Number of Object Lengths”. In:
Mathematics of Operations Research 36.4 (2011), pp. 743–753.

[Jun+08] G. Jung, K.R. Joshi, M.A. Hiltunen, R.D. Schlichting, and C. Pu. “Generat-
ing Adaptation Policies for Multi-tier Applications in Consolidated Server
Environments”. In: 2008 International Conference on Autonomic Computing,
ICAC 2008, June 2-6, 2008, Chicago, Illinois, USA. 2008, pp. 23–32.

[Jun+09] G. Jung, K.R. Joshi, M.A. Hiltunen, R.D. Schlichting, and C. Pu. “A
Cost-sensitive Adaptation Engine for Server Consolidation of Multitier Ap-
plications”. In: Middleware 2009, ACM/IFIP/USENIX, 10th International
Middleware Conference, Proceedings. 2009, pp. 163–183.

[Kan87] R. Kannan. “Minkowski’s Convex Body Theorem and Integer Programming”.
In: Mathematics of Operations Research 12 (1987), pp. 415–440.

125

[KK82] N. Karmarkar and R.M. Karp. “An Efficient Approximation Scheme for the
One-Dimensional Bin-Packing Problem”. In: 23rd Annual Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Society, 1982,
pp. 312–320.

[Len83] H. W. Lenstra. “Integer Programming with a Fixed Number of Variables”.
In: Mathematics of Operations Research 8 (1983), pp. 538–548.

[Leu89] J. Y-T. Leung. “Bin packing with restricted piece sizes”. In: Information
Processing Letters 31 (1989), pp. 145–149.

[Lia80] F.M. Liang. “A Lower Bound for On-line Bin Packing”. In: Information
processing letters 10.2 (1980), pp. 76–79.

[LJ83] H. W. Lenstra and Jr. “Integer programming with a fixed number of variables”.
In: Mathematics of Operations Research 8.4 (1983), pp. 538–548.

[LL85] C.C. Lee and D. Lee. “A Simple On-line Bin-Packing Algorithm”. In: Journal
of the ACM (JACM) 32.3 (1985), pp. 562–572.

[LTC14] Y. Li, X. Tang, and W. Cai. “On Dynamic Bin Packing for Resource Allocation
in the Cloud”. In: 26th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’14. 2014, pp. 2–11.

[Onn15] S. Onn. “Unimodular Integer Caratheodory is Fixed Parameter Tractable”.
In: CoRR abs/1511.03403 (2015).

[Par+00] J.M. Park, Uday R. Savagaonkar, E.K.P. Chong, H.J. Siegel, and S.D. Jones.
“Efficient Resource Allocation for QoS Channels in MF-TDMA Satellite Sys-
tems”. In: MILCOM 2000. 21st Century Military Communications Conference
Proceedings. Vol. 2. IEEE. 2000, pp. 645–649.

[Rot13] T. Rothvoss. “Approximating Bin Packing within O(log OPT * Log Log
OPT) Bins”. In: 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science (2013), pp. 20–29.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
Inc., 1986. isbn: 0-471-90854-1.

[SKZ08] S. Srikantaiah, A. Kansal, and F. Zhao. “Energy Aware Consolidation for
Cloud Computing”. In: Proceedings of the 2008 Conference on Power Aware
Computing and Systems. HotPower’08. San Diego, California, 2008, pp. 10–10.

[SSS09] P. Sanders, N. Sivadasan, and M. Skutella. “Online Scheduling with Bounded
Migration”. In: Mathematics of Operations Research 34.2 (2009), pp. 481–498.

[ST97] G. Scheithauer and J. Terno. “Theoretical investigations on the modified
integer round-up property for the one-dimensional cutting stock problem”.
In: Operations Research Letters 20.2 (1997), pp. 93–100.

[Sta70] H.M. Stark. An introduction to number theory. Markham mathematics series.
Markham Pub. Co., 1970.

[Sto13] A.L. Stolyar. “An Infinite Server System with General Packing Constraints”.
In: Operations Research 61.5 (2013), pp. 1200–1217.

[SV10] M. Skutella and J. Verschae. “A Robust PTAS for Machine Covering and
Packing”. In: European Symposium on Algorithms(ESA). Vol. 6346. LNCS.
2010, pp. 36–47.

126

[SV16] Martin Skutella and José Verschae. “Robust Polynomial-Time Approximation
Schemes for Parallel Machine Scheduling with Job Arrivals and Departures”.
In: Mathematics of Operations Research 41.3 (2016), pp. 991–1021.

[SZ13] A.L. Stolyar and Y. Zhong. “A Large-scale Service System with Packing Con-
straints: Minimizing the Number of Occupied Servers”. In: Proceedings of the
ACM SIGMETRICS/international conference on
Measurement and modeling of computer systems. ACM. 2013, pp. 41–52.

[Ull71] J.D. Ullman. The Performance of a Memory Allocation Algorithm. Technical
report. Princeton University, 1971.

[VAN08] A. Verma, P. Ahuja, and A. Neogi. “pMapper: Power and Migration Cost
Aware Application Placement in Virtualized Systems”. In: Middleware 2008,
ACM/IFIP/USENIX 9th International Middleware Conference, Proceedings.
2008, pp. 243–264.

[Vli92] A. Vliet. “An Improved Lower Bound for On-Line Bin Packing Algorithms”.
In: Information Processing Letters 43.5 (1992), pp. 277–284.

[Yao80] A.C. Yao. “New Algorithms for Bin Packing”. In: Journal of the ACM
(JACM) 27.2 (1980), pp. 207–227.

127

Erklärung
Diese Abhandlung ist nach Inhalt und Form meine eigene Arbeit. Ausnahmen sind die
Beratung und Zusammenarbeit mit meinem Betreuer Prof. Dr. Klaus Jansen. Außerdem
basieren chapter 3 und chapter 4 dieser Dissertation auf Publikationen [BJK15] bzw.
[JKV16], welche in Zusammenarbeit mit meinem Betreuer und mit Sebastian Berndt bzw.
Jose Verschae entstanden sind.

Diese Dissertation wurde weder ganz noch in Teilen an anderer Stelle im Rahmen eines
Prüfungsverfahrens vorgelegt. Die Veröffentlichungen und Einreichungen zur Veröffentlichung,
auf denen die Dissertation basiert, sind auf Seite 5 dieser Dissertation aufgelistet.

Diese Arbeit ist unter Einhaltung der Regeln guter wissenschaftlicher Praxis der
Deutschen Forschungsgemeinschaft entstanden.

Ort, Datum Unterschrift

128

	Introduction and Outline of the Thesis
	Sensitivity and its Application to Online Bin Packing
	A Robust AFPTAS for Bin Packing
	Fully Dynamic Bin Packing

	Structural Results and their Application
	Scheduling on Identical Machines
	Bin Packing in fpt time

	A Robust AFPTAS for Online Bin Packing with Polynomial Migration
	Introduction
	Our Results:

	Robustness of approximate LPs
	Algorithmic Use

	Integer Programming
	AFPTAS for robust bin packing
	LP-Formulation
	Rounding
	Online Bin Packing
	Running Time

	Conclusion

	Fully Dynamic Bin Packing Revisited
	Introduction
	Previous Results on Online Variants of Bin Packing
	Our Contributions

	Lower Bound
	Dynamic Rounding
	Rounding
	Rounding Operations
	Algorithm for Dynamic Bin Packing
	Large items

	Handling Small Items
	Only Small Items
	Handling small items in the general setting
	Handling the General Setting

	Closing the Gap for Makespan Scheduling via Sparsification Techniques
	Introduction
	Literature Review
	Our Contributions

	Preliminaries
	Structural Results
	Applications to Scheduling on Parallel Machines
	Extension to other objectives

	Minimum makespan scheduling on uniform machines
	Solution for the instance (J,B'1 B2 B3)

	About the Structure of the Integer Cone and its Application to Bin Packing
	Introduction
	Our results:
	Related results

	Proof of the main theorem
	Algorithmic application

	Lower Bound
	Preliminaries
	Proof of the lower bound
	Relation between Dist and the IRUP

