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Zusammenfassung

Dezentralisierung ist ein wichtiges Konzept für viele moderne Netzwerke, wie
zum Beispiel das Internet, soziale Netzwerke, oder Netzwerke aus drahtlosen
Telefonen oder Sensoren. Ein systematisches Studium von Netzwerken, die von
einer Vielzahl an nicht-koorperativen oder schwach-kooperativen Spielern geformt
werden, ist ein lebhaftes Thema in der Diskreten Mathematik, Informatik und
den Wirtschaftswissenschaften. Im Jahr 2010 wurde ein neues Modell eingeführt,
das es erlaubt, Robustheitsaspekte zu untersuchen. In diesem Modell, bekannt
als Gegnermodell oder Zerstörermodell, wird eine zufällig ausgewählte Kante im
Netzwerk zerstört, nachdem das Netzwerk aufgebaut wurde. Die Spieler rechnen
mit diesem Eingriff und versuchen, das Netzwerk so zu bauen, dass es auch nach
der Zerstörung der einen Kante noch gute Verbindungseigenschaften hat. Wie
effizient ist dies in dezentraler Weise machbar?

Diese Dissertationsschrift bringt das Gegnermodell in zwei Richtungen vor-
an: Zum einen verwenden wir zum ersten Mal in diesem Modell das moderne
Equilibriumskonzept bekannt als Swap-Equilibrium, und zum anderen erweitern
wir das Modell auf die Zerstörung eines Knotens. Dieser Eingriff wird generell
schwerwiegender sein als wenn nur eine Kante zerstört wird. Wir charakterisie-
ren verschiedene Szenarien, von denen einige nachweislich effiziente Netzwerke
hervorbringen, während wir von anderen zeigen, dass die Netzwerke in einem
gewissen Maße ineffizient sein können.

Abgesehen vom Gegnermodell betrachten wir ein Modell, in welchem jeder
Spieler v versucht, die Anzahl anderer Spieler zu maximieren, die sich im Abstand
höchstens k von v befinden für einen festen Parameter k. Wenn das Netzwerk
zum Beispiel Freundschaften ausdrückt, dann würden im Falle k = 2 die Spieler
versuchen, die Anzahl ihrer Freunde plus die Anzahl der Freunde ihrer Freunde zu
maximieren, was in der Soziologie in interessantes Maß ist. Wir beweisen Struktur-
und Effizienzeigenschaften solcher Netzwerke.

Im letzten Kapitel ist das Netzwerk fest, und jeder Spieler kann eine von k
Farben wählen. Zum Beispiel könnte das Netzwerk die räumliche Anordnung der
Spieler beschreiben, und die Farben korrespondieren zu Radiofrequenzen. Dann
ist es das Ziel jedes Spielers, eine Frequenz für sich zu finden, die zu möglichst
wenig Interferenz führt. Wir zeigen, dass unter moderaten Annahmen an die Art,
wie Interferenz modelliert wird, die erzielten Färbungen erstaunlich effizient sind,
nämlich ihre Güte ist nur einen kleinen konstanten Faktor vom Optimum entfernt.
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Abstract

Decentralization is a key concept in modern networks, such as the Internet,
social networks, or wireless phone or sensor networks. The systematic
study of how networks are formed by a multitude of non-cooperative
or only mildly cooperative players, is a vivid topic in Discrete Mathe-
matics, Computer Science, and Economics. In 2010, a variant addressing
robustness aspects was introduced. In this model, known as adversary model
or destruction model, one link in the network is destroyed at random af-
ter the network has been formed. Players anticipate this disruption and
try to build a network that gives them good connectivity even after the
destruction. How efficiently can this be done in a decentralized setting?

This thesis advances our knowledge regarding the adversary model: we
bring in the modern equilibrium concept of swap equilibrium and we extend
to the destruction of one vertex. This disruption tends to be more severe
compared to the case that just one link is destroyed. We characterize several
settings, where for some, the formed networks are provably efficient, while
for others, we show they can be inefficient up to a certain degree.

Apart from the adversary model, we study a model where each player v
tries to maximize the number of players at distance at most k from v, for
a fixed parameter k. For example, when the network models friendship,
then for k = 2, players would try to maximize the number of friends plus
friends of their friends, which is an interesting metric in Sociology. We
prove results on the structure and efficiency of such networks.

In the final chapter, the network is fixed and each player chooses one
of k colors. For example, the network might describe the spatial relations
between the players and colors might correspond to radio frequencies, so
each player’s aim is to choose a frequency that causes as few interference
as possible with the frequencies of her neighbors. We show that under
mild assumptions on how interference between colors is modeled, the
resulting colorings are surprisingly efficient, namely their performance is
within a small constant factor of the optimum.
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Chapter 1

Introduction and Summary of
Results

Decentralization is a key concept in many modern networks, such as
the Internet, social networks, or wireless phone or sensor networks. The
systematic study of how networks are formed by a multitude of non-coop-
erative or only mildly cooperative players, is a vivid topic in Economics
(since around 1996, starting with [JW96]) and Discrete Mathematics and
Computer Science (since around 2003, starting with [FLM+03]). Most of the
studies concentrated on global, centrality-type metrics in order to evaluate
the situation of a single player and the performance of the network as a
whole. For example, a player might aim to reduce the sum of the distances
between her and all the other players [FLM+03] or the maximum distance
to any other player [DHM+07]. In 2010, a variant addressing robustness
aspects was introduced [Kli10a; Kli11] and further studied since [Kli16;
CLMM16; Kli15]. In this model, known as adversary model or destruction
model, one link in the network is destroyed at random after the network has
been formed. Players anticipate this disruption – although in general they
cannot tell with certainty which link will be destroyed – and try to build a
network that gives them good connectivity even after the destruction. The
main question is how efficiently this can be done when players behave
non-cooperatively or only show a small degree of cooperation.

In Chapter 3, this thesis advances our knowledge regarding the ad-
versary model in two directions. On the one hand, we bring in the mod-
ern equilibrium concept of swap equilibrium, which was introduced in
2010 [ADH+10]. On the other hand, we extend from the destruction of one
link to the destruction of one vertex, meaning that the destroyer choses
one vertex randomly according to a particular probability distribution and
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1. Introduction and Summary of Results

then removes all links incident to this vertex. Clearly, the disruption will
tend to be more severe compared to the case that just one link is destroyed.

In Chapter 4, we study a variant called local network formation. This
introduces another alternative to the traditional global, centrality-type
metrics. Namely, in local network formation, we allow players to evaluate
the network by considering it only within a certain radius of themselves.
For example, a player might aim for a position in the network that maxi-
mizes the sum of the degrees of her neighbors [NPR+13] or her clustering
coefficient [BK11]. In this thesis, we consider that each player v tries to
maximize the size of her k-neighborhood for a parameter k P N, that is, the
number of players at distance at most k from v. For example, when the
network models friendship, then for k = 2, players would try to maximize
the number of friends plus friends of their friends, which is an interesting
metric in sociology.

In Chapter 5, we switch perspective. Now the network is fixed and
each player has to choose one of k colors. For example, the network might
describe the spatial relations between the players and colors might corre-
spond to radio frequencies, so each player’s aim is to choose a frequency
that does not interfere with the frequencies of her neighbors, or causes
interference only up to a certain degree. Applications arise in wireless
phone or sensor networks.

Results of This Thesis

Destruction Model (Chapter 3)

This chapter is based on [KSS17a]. It considers the destruction model
under the swap equilibrium (SE) concept. A graph is called an SE if no
player can improve her cost by removing one of her incident edges and
creating a different new edge instead (or by just removing an incident
edge). Players anticipate the destruction of one edge or one vertex in the
graph. This destruction happens according to a probability measure on
the edges or vertices, respectively, which is known to the players. Each
player’s cost function is the expected number of other players whom she
will no longer be able to reach after the destruction took place. We speak of

2



edge destruction or vertex destruction in order to indicate whether an edge or
vertex will be destroyed. We consider the following probability measures:

• The uniform destroyer occurs in edge and vertex destruction. It chooses
an edge or vertex to destroy uniformly at random from the set of all
edges or vertices, respectively.

• The extreme destroyer also occurs in edge and vertex destruction. It
chooses the edge or vertex to destroy uniformly at random from the
set of max-sep edges or max-sep vertices, respectively, that is, where
the destruction of each causes a maximum number of vertex pairs to be
separated.

• The uniform bridge destroyer is only for edge destruction. It chooses an
edge to destroy uniformly at random from the set of bridges in the
graph.

• The degree proportional destroyer is only for vertex destruction. Here, the
probability for destruction of a vertex is proportional to its degree.

For all three variants of edge destruction (that is, uniform edge destruction,
extreme edge destruction, and uniform bridge destruction), we prove an upper
bound of O(n) on the social cost of any SE. The essential proof idea is
to show that SE are bridgeless or have a star-like structure. For vertex
destruction, the overall picture is more diverse:

• For uniform vertex destruction, we prove an O(n) bound on the social
cost of any SE. The proof works by showing that an SE is two-connected
or a tree.

• For degree-proportional vertex destruction, we give a lower bound, namely
we show that the star is an SE with social cost Ω(n2).

• For extreme vertex destruction, we prove a super-linear lower bound of
Ω(n3/2) on the social cost of SE by constructing a graph which contains
a clique of certain size at the center such that paths of a certain length
are attached. We also prove that if n ě 8, there is no tree SE with only
one max-sep vertex.

3



1. Introduction and Summary of Results

Local Network Formation (Chapter 4)

In this chapter, we study the k-neighborhood model, which belongs to
local network formation games, where each player’s utility function depends
on a certain graph-theoretic neighborhood around her. We consider three
equilibrium concepts for this model: pairwise stability, pairwise Nash equilib-
rium, and swap equilibrium, which was also studied in Chapter 3. A graph
is called pairwise stable (PS) if both of the following two conditions hold:

(i) Removing an edge does not improve utility for any of its endpoints.

(ii) Adding an edge does not improve utility for any of its endpoints,
or it impairs utility (i. e., strictly decrease utility) for at least one
endpoint.

Pairwise Nash equilibrium (PNE) is similar to pairwise stability, but in
condition (i), instead of considering the deletion of one edge, deletion of
several edges is assessed. Hence in particular, a pairwise Nash equilibrium
is also pairwise stable, but not vice versa in general. We prove for the k-
neighborhood model:

• Pairwise stability and pairwise Nash equilibrium are equivalent.

• For k = 2, the diameter of a pairwise stable graph is upper bounded
by 3.

• In pairwise stability, if α ď n
2 , then a tree with diameter at most k is an

optimum; if α ą n
2 , the empty graph is an optimum.

• For k = 2, an upper bound of 2´ o(1) on the price of anarchy when
restricting to trees. (The price of anarchy is the ratio of optimum social
utility to worst-case social utility, taken over a class of equilibrium
graphs – in this case the class of all pairwise stable trees.)

• An upper bound of k on the diameter of swap equilibrium trees.

• For k = 2, an upper bound of 4 on the diameter of general swap
equilibrium graphs and an example of a swap equilibrium graph with
diameter 4, proving the upper bound tight.
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Coloring (Chapter 5)

This chapter is based on [KSS17]. Let G = (V, E) be a fixed graph and
k P Ně2. The vertices in V correspond to players, and each player has to
choose one of k colors. A function c : V ÝÑ [k], specifying the choice of
each player, is called a k-coloring or coloring, where [k] = {1, . . . , k}. The
set of colors [k] is called the spectrum. Let f be a concave function defined
on [0, k]. The payoff or utility for player v P V is

Uv(c) := ∑
wPN(v)

f
(
|c(v)´ c(w)|

)
.

Thus, a player’s utility depends on the distances between her color and
the colors of her neighbors. A coloring is called stable if no player can
increase her payoff by changing her color. A coloring is called optimal if
it has maximum social utility, where the social utility is the sum over the
payoffs of all players. The price of anarchy is the social utility of an optimal
coloring devided by the social utility of a worst-case stable coloring.

We denote f˚ := maxiPD f (i) the maximum that f can attain on
the possible distances D := {0, . . . , k´ 1} between two colors, and
D˚( f ) := {i P D ; f (i) = f˚}. We prove several constant upper bounds
on the price of anarchy depending on the shape of the concave function f ,
cf. Theorem 5.9.9:

• An upper bound of 2 for non-decreasing f . This contains the natural
case of distance payoff, that is, Uv(c) = ∑wPN(v) |c(v)´ c(w)|.

• An upper bound of 2, for all concave functions f for which D˚( f )X
{0, . . . , b k

2c} ‰ H, that is, which attain their maximum in the left part of
the spectrum. This contains cyclic payoff, that is,

Uv(c) = ∑
wPN(v)

min {|c(v)´ c(w)|, k´ |c(v)´ c(w)|} .

We show that for this class of functions f , the upper bound of 2 is the
best possible.

• An upper bound of 3 for all concave functions f .

• An upper bound of 2.5 for k ě 16 and all concave functions f for
which D˚( f ) X {b k

2c+ 1, . . . , k´ 1} ‰ H, that is, which attain their

5



1. Introduction and Summary of Results

maximum in the right part of the spectrum. This resolves a conjecture
from [KSS17].
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Chapter 2

Preliminaries for Network
Formation Games

In this chapter we briefly introduce some important game-theoretical
definitions and notations that we require in Chapter 3 and Chapter 4 in
our study of network formation games. Network formation games, also called
network creation games, provide a framework for the game-theoretic analysis
of how networks, modeled as graphs, may form. In a network creation
game, n players attempt to create a network that should be efficient in a
certain sense. These games have been studied for more than two decades
by now, with the work of Jackson and Wolinsky in 1996 [JW96] marking a
starting point.

We mostly use standard graph theory notation. All our graphs G =
(V, E) are finite, simple and undirected, that is, V is a finite set and E Ď (V

2).
If G is any graph, not necessarily introduced in the form G = (V, E), then
its vertex set is denoted by V(G) and its edge set by E(G). When A is a
subgraph of G and P is a path in G, we denote the set of vertices in A and
the set of vertices that are visited by P by V(A) and V(P), respectively.

We denote the undirected link (a.k.a. link, undirected edge, edge) between
v and w by {v, w}. We write G + {v, w} for the graph with edge set
E(G)Y {{v, w}} and G + ∑iP[k] {vi, wi} for the graph with edge set

E(G)Y {{v1, w1}, . . . , {vk, wk}} .

By G´ {v, w} we denote the graph with edge set E(G)z{{v, w}} and by
G´∑iP[k] {vi, wi} the graph with edge set

E(G)z{{v1, w1}, . . . , {vk, wk}} .

This allows us to easily add or remove one or multiple links from our

7



2. Preliminaries for Network Formation Games

graphs. We denote by degG(v), or deg(v) if G is clear from context, the
degree of v in G, i. e., the number of edges incident in v in G.

Let n ě 3 and Vn = [n] = {1, . . . , n} be the set of players. We consider
these players as vertices of a graph and use the terms “player” and “vertex”
interchangeably. By Gn, we denoted the set of all undirected simple graphs
on Vn. For each player v, there is either a function Cv : Gn ÝÑ R where
Cv(G) is interpreted as the cost experienced by player v in G, or a function
Uv : Gn ÝÑ R where Uv(G) is interpreted as the utility or payoff 1 enjoyed
by player v in G. The social cost or social utility of G is SC(G) := ∑vPV Cv(G)
or SU(G) := ∑vPV Uv(G), respectively, which evaluates the graph from a
global perspective. Cost and utility can have different structure, depending
on the equilibrium concept.

Intuitively speaking, a graph is an equilibrium with respect to a par-
ticular cost or utility function if no player can improve her cost or utility
by choosing from a set of possible changes to the graph. Since whether a
graph is an equilibrium depends also on the cost or utility function, we
should strictly say that (G, C) or (G, U) is an equilibrium. However, for the
sake of a more concise notation, we will usually speak of a graph being
in equilibrium. It will always be clear from context which cost or utility
function is meant.

We consider three equilibrium concepts defined precisely in the fol-
lowing. All concepts have in common that there is, for each player v, a
function Dv : Gn ÝÑ Rě0, called disutility function, which is part of the
cost function Cv; or, in case of utility, an income function Iv : Gn ÝÑ Rě0,
which is part of the utility function Uv. Disutility expresses that part
of cost that is associated with using the graph for a task like rout-
ing, while income expresses a benefit derived from the graph. A clas-
sical disutility function for example is Dv(G) := ∑wPV distG(v, w), the
sum-distance model (see [FLM+03; CP05; AEE+06; DHM+07; MS10]) or
Dv(G) := maxwPV distG(v, w), the max-distance model (see [DHM+07]).
In Chapter 3, we will consider disutility functions associated with the
destruction model, which express the expected damage caused by the
destroyer. In Chapter 4, we will use an income function, namely the size

1The term “utility” is more common with network formation games and “payoff” is more
common with network coloring games. In economics, the two words are sometimes used
with different meanings, whereas for us, they are synonymous.

8



2.1. Pairwise Stability, Pairwise Nash Equilibrium, Price of Anarchy

of the k-neighborhood of the player.

2.1 Pairwise Stability, Pairwise Nash
Equilibrium, Price of Anarchy

We explain the equilibrium concept of pairwise stability (PS), which was
introduced by Jackson and Wolinsky [JW96] in 1996. It will be required
in Chapter 4. In addition to the number n of players and the disutility
or income function, we need the link cost parameter α ą 0. If a disutility
function is given, the cost of a player v is defined as

Cv(G) := degG(v) α + Dv(G) ,

or if an income function is given, the utility of a player is defined as

Uv(G) := Iv(G)´ degG(v) α .

The term deg(v) α is called building cost. So each player can be thought
of maintaining her incident links to the price of α each. Commonly, but
not always, disutility decreases (or income increases) when more links are
built, so players will balance their expenses for links against disutility (or
against income). We obtain expressions for social cost and social utility:

SC(G) = 2|E(G)|α + ∑
vPV

Dv(G) and SU(G) = ∑
vPV

Iv(G)´ 2|E(G)|α .

2.1.1 Definition. A graph G = (V, E) P Gn is called pairwise stable (PS) if
the following two conditions hold:

(i) For any {v, w} P E, we have

Cv(G) ď Cv(G´ {v, w}) .

(Which includes Cw(G) ď Cw(G´ {v, w}) due to symmetry.)

(ii) For any {v, w} R E,

if Cv(G) ą Cv(G + {v, w}) then Cw(G) ă Cw(G + {v, w}) .

9



2. Preliminaries for Network Formation Games

(Including Cw(G) ą Cw(G + {v, w}) ùñ Cv(G) ă Cv(G + {v, w}),
again due to symmetry.)

Or, in case of income and utility:

(i) For any {v, w} P E, we have

Uv(G) ě Uv(G´ {v, w}) .

(ii) For any {v, w} R E,

if Uv(G) ă Uv(G + {v, w}) then Uw(G) ą Uw(G + {v, w}) .

The first condition says that it is impossible to remove a link and by doing
so to improve utility or cost for any of its endpoints. The second condition
says that each absent link must be justified by the fact that adding it does
not improve utility or cost for any of its endpoints, or adding it impairs
utility or cost (i. e., strictly decreases utility or strictly increases cost) for at
least one endpoint.

For the rest of this section, we will state everything only in terms of
utility (since we will only require this in Chapter 4), but for cost the notions
apply likewise.

2.1.2 Definition. A graph G = (V, E) P Gn is a pairwise Nash equilibrium
(PNE) if the following two conditions hold:

(i) For any {v, w1}, . . . , {v, wk} P E, we have

Uv(G) ě Uv(G´ {v, w1} . . .´ {v, wk}) .

(ii) For any {v, w} R E, we have

if Uv(G) ă Uv(G + {v, w}) then Uw(G) ą Uw(G + {v, w}) .

This is similar to PS, but players can also evaluate the effect of severing
any number of their incident links.

2.1.3 Remark. It is obvious that a pairwise Nash equilibrium graph is
pairwise stable. The converse holds if the cost is pseudo-convex in a
certain graph-theoretic sense, shown by Corbo and Parkes [CP05].

10



2.1. Pairwise Stability, Pairwise Nash Equilibrium, Price of Anarchy

To prove the converse we use a result due to Antoni Calvó-Armengol
and Rahmi İlkiliç [Cİ05].

2.1.4 Definition. Let v P V. The utility function Uv is called pseudo-convex2

in G if for all {w1, . . . , wk} Ď V we have

Uv(G´ {v, w1}´ . . .´ {v, wk})´Uv(G)

ď

k

∑
i=1

(Uv(G´ {v, wi})´Uv(G)) .

2.1.5 Lemma. Let G be a pairwise stable graph and the cost be convex in G.
Then G is a pairwise Nash equilibrium graph.

Proof. We need to show that deletion can not improve the utility of a player
v P V. Let {w1, . . . , wk} Ď V. By pairwise stability, for each i P [k], we have

Uv(G´ {v, wi})´Uv(G) ď 0 .

Since for any v P V, utility function Uv is pseudo-convex, it follows

Uv(G´ {v, w1}´ . . .´ {v, wk})´Uv(G)

ď

k

∑
i=1

(Uv(G´ {v, wi})´Uv(G))

ď 0.

Thus v has no incentive to remove all edges {v, w1}, . . . , {v, wk}.

A brief discussion of the motivation of PNE is in order. PNE provides
additional ways in which the stability of the graph can be challenged. In
PS, only single-link deviations matter, whereas in PNE, also the effect of
removing any number of incident links is considered. Likewise, we could
consider the creation of any number of links. A possible definition for such
a kind of equilibrium would be that for each player v and each set of new
links {v, w1}, . . . , {v, wk}, the addition of all these links would mean no
improvement for any of the players v, w1, . . . , wk or an impairment for at
least one of them. This is a more complicated extension than allowing

2 "Convex" is also common in the literature, but we use "pseudo-convex" here in order to
not cause confusion with convexity as in convex optimization, etc.
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the removal of multiple links, and most of the literature is restricted to
the latter. There is another reason why the extension to the removal of
multiple links can be considered more natural than the extention to adding
multiple links. Let each player v specify a function Sv : Vz{v} ÝÑ {0, 1}.
The function Sv is called the strategy of player v, and the family S = (Sv)vPV
of all such functions is called a strategy profile. Given a strategy profile S,
we define a set of edges E(S) := {{v, w} ; Sv(w) = 1^ Sw(v) = 1}. In
other words: players will be connected by an edge if and only if they have
named each other. If a player v specifies Sv(w) = 1, but player w specifies
Sw(v) = 0, that is, if v names w but w does not name v, then no edge
between v and w is created. In order to simplify matters, traditionally
there has been a restriction to essential strategy profiles, namely where
Sv(w) = 1 ðñ Sw(v) = 1 for all players v, w. We call a strategy profile S
a Nash equilibrium if no player can improve her cost or utility by changing
her strategy in S. Now it is easy to see that G = (V, E) is a PNE if and only
if G is PS and there is an essential Nash equilibrium S such that E = E(S).
This is also the reason for the name “pairwise Nash equilibrium”.

We return to our main topic, namely we are interested in how efficient
PS graphs or PNE graphs are compared to when a central authority would
enforce an optimal graph. The following notion, the price of anarchy, is a
measure for inefficiency of PS or PNE graphs in this sense. It is due to
Koutsoupias and Papadimitriou [KP99] and Papadimitriou [Pap01]. First,
we need a notion for optimality:

2.1.6 Definition. For fixed parameters n, α, utility function, and equilib-
rium concept (PS or PNE), an undirected graph G˚ P Gn is called optimal, if
for all G P Gn, we have SU(G˚) ě SU(G), that is, G˚ P arg maxGPGn

SU(G).
The optimum utility is denoted OPT, and assumed to be positive.

2.1.7 Definition. Let E Ď Gn be a set of equilibrium graphs, e. g., all
PS graphs or all PNE graphs on n players, or all such graphs with an
additional property, e. g., all PS graphs on n players that are trees. The
price of anarchy with respect to E is denoted PoA(E) and defined as the
ratio of optimum social utility to worst-case equilibrium social utility, i. e.,

PoA(E) := max
GPE

OPT

SU(G)
.
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Usually, we omit the E in the notation when it is clear from context. When
no further restriction is given, E is assumed to be the set of all equilibrium
graphs with respect to the equilibrium concept currently under study and
a fixed number of player, e. g., all PS graphs on n players.

2.2 Swap Equilibrium

The concept of swap equilibrium (SE) was introduced by Alon, Demaine,
Hawvaghayi and Leighton [ADH+10] in 2010. In this model, cost is equal
to disutility and utility is equal to income, in symbols Cv(G) = Dv(G)
and Uv(G) = Iv(G), respectively. Often, when considering SE, we will
only speak of “cost” or “utility” and not mention “disutility” or “income”.
There is no link cost α, which is considered one of the benefits of this
model. We will use SE in Chapter 3 and in Chapter 4. All notions in this
section will only be given for cost, but they can easily be translated to the
case of utility.

2.2.1 Definition. A swap for a graph G P Gn is a triple of players (u, v, w),
such that {u, v} P E and {u, w} R E.

Denote S(G) Ď V3
n the set of all swaps of G. Denote G + (u, v, w) the

graph that is obtained from G by removing {u, v} and inserting {u, w};
we say that player u swaps her edge {u, v} for the new edge {u, w}.

2.2.2 Definition. A graph G P Gn is called a swap equilibrium (SE) with
respect to cost C if the following two conditions hold:

(i) Cu(G) ď Cu(G + (u, v, w)) for all (u, v, w) P S(G),

(ii) Cu(G) ď Cu(G´ {u, v}) for all {u, v} P E.

That is, if no player can improve by swapping one of her incident
links for another (first condition) or by removing one of her incident links
(second condition).

Since we have no link cost, the price of anarchy as defined before does
not apply since it includes comparing graphs with different numbers of
edges, which does not make sense when we have no edge costs. Instead,
when working with SE, we derive statements that give upper bounds on

13
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the social cost of any SE or, for lower bounds, show existence of SE graphs
with high social cost.

For example, in [ADH+10], they considered the sum-distance model
and the max-distance model under SE. In the sum-distance model, they
obtained an upper bound of 2O(

√
ln n) and a lower bound of 3 on the

diameter of SE graphs and proved that the star is the only equilibrium
tree. For the max-distance model, they proved a lower bound of Ω(

√
n)

on the diameter of an SE and a tight bound of 3 for trees. Those bounds
on the diameter imply bounds on the social cost.

2.3 Asymptotic Notation

In order not having to introduce names for all occurring constants, we use
“O(. . .)” and “Ω(. . .)” notation. For the results proved in this thesis, we
use this notation in the following understanding: we write “x = O(y)”
if there exists a constant c ą 0 such that x ď cy. The constant may only
depend on other constants and is in particular independent of the non-
constant quantities that constitute x and y, e. g., parameters n and α. We
do not implicitly require that some quantities, e. g., n, have to be large.
Analogously, we write “x = Ω(y)” if there exists a constant c ą 0 such that
x ě cy. Note that “O(. . .)” indicates an upper bound, making no statement
about a lower bound; while “Ω(. . .)” indicates a lower bound, making no
statement about an upper bound. We write x = Θ(y) if x = O(y) and
x = Ω(y); the constants used in the “O(. . .)” and the “Ω(. . .)” statement
may be different, of course.

The “o(. . .)” notation is only used in one form, namely o(1) substituting
a quantity that tends to 0 when n tends to infinity, regardless whether other
parameters are fixed or not. Whenever we write “o(1)” in an expression, it
is meant as an upper bound, making no statement about a lower bound.
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Chapter 3

Swap Equilibria under Link and
Vertex Destruction

Now we look at a particular class of network formation games, which
consider robustness aspects of the graphs in the sense of the destruction or
adversary model [Kli10b]. Our equilibrium concept is swap equilibrium (SE)
as explained in Section 2.2. The destruction model is a network formation
game incorporating the robustness of a network under a more or less
targeted attack. In addition to bringing in the SE concept, we extend the
model from an attack on the edges to an attack on the vertices of the
network. We prove structural results and linear upper bounds or super-
linear lower bounds on the social cost of SE under different attack scenarios.
For the case that the vertex to be destroyed is chosen uniformly at random
from the set of max-sep vertices, that is, where each causes a maximum
number of separated player pairs, we show that there is no tree SE with
only one max-sep vertex. On the other hand, we show that for the uniform
measure, all SE are trees (unless two-connected). This chapter is based
on [KSS17a].

3.1 Previous and Related Work

Recently, robustness aspects have been addressed in the form of the de-
struction model (also known as the adversary model) [Kli16; Kli10a; Kli11;
Kli15]. In this model, players anticipate the destruction of exactly one edge
in the graph, and the cost function for each player v gives the expected
number of other players that v will no longer be able to reach after the
destruction. We recall that social cost is the sum of all players’ costs, which
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3. Swap Equilibria under Link and Vertex Destruction

is equal to the expected number of separated vertex pairs, that is the
expected number of all ordered pairs (v, w) such that there is no path
anymore between v and w after the destruction has taken place. The model
allows many variations, since the edge to be destroyed is determined ran-
domly according to a probability measure that may even depend on the
graph (this dependence is known to the players)1.

The destruction model was introduced by Kliemann in 2010 [Kli10a]
and subsequently studied in a series of publications [Kli16; Kli11; Kli15].
The focus was on the price of anarchy for Nash equilibrium (NE)2 and
pairwise stability (PS). We give a comparison between the NE and PS
results for the destruction model with the results on SE in this work
in Section 3.3. Earlier works on robustness in network formation in-
clude [JW96; CFS+04; BG00; SH03; HS05]. None of those earlier models
allows a structure-dependent destruction probability as in the destruction
model; for a detailed discussion, we refer to [Kli11, Section 4].

Computationally deciding whether a graph constitutes an NE is
hindered by an exponential search space and can indeed be NP-
hard [FLM+03]. This has raised concerns about the applicability of the
model since we should not expect players to solve an NP-hard problem.
Therefore, many variations have been introduced in order to make the
model more tractable. Usually, the idea is to limit the choices of the players,
for example to single-edge deviations [JW96; Len12].

The following three recent publications address robustness in a network
formation framework similar to ours:

Ź Meirom et al. [MMA15] consider a cost function that uses a linear
combination of the lengths of two short disjoint paths. The idea is
that the players build a graph where, for each shortest path, there is
a backup path of reasonable length.

1The name “adversary model” is the original one. However, “adversary” was found to be
more suited to describe an entity that aims at maximizing cost under equilibrium. This is not
necessarily the case in our model.

2Nash equilibrium is another equilibrium concept, different from pairwise Nash equi-
librium. We only give an informal description here, since it is not needed outside of the
discussion. For details, we refer to the literature, e. g., [Kli11]. When using NE, each edge
is owned by exactly one of its endpoints. Each player can remove any of the links that she
owns and build any number of additional links (which then will be owned by her).
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Ź Goyal et al. [GJK16] consider a model where each player, in addition
to building edges, can choose to immunize themselves in exchange
for a fee. Then, an adversary selects a connected component of non-
immunized vertices to destroy; an alternative description is that the
adversary picks a vertex, and then, the destruction spreads from there,
while immunized vertices act as firewalls. A player’s utility is the
expected size of his or her connected component after the destruction
has taken place, which is zero if the player herself is destroyed. This
utility is almost exactly the positive version of our cost: if Cv is the
expected number of cut-off vertices, then n´ Cv is the expected size of
v’s component after the attack (we differ in that if the player herself is
attacked, we say that she is cut off from n´ 1 vertices, so her component
size is one, not zero). However, the kind of destruction is very different
from ours. Although it can be formulated as an attack on a vertex,
the contagious properties of the attack move the focus to different
connectivity properties of the attacked vertex in comparison to our
model. For example, if a leaf (that is, a vertex of degree one) is attacked
in our model, the overall damage is relatively small: namely, we have
2(n´ 1) separated vertex pairs. In their model, however, if the neighbor
of the leaf is not immunized, the destruction will spread, and the overall
damage can be much higher. For earlier work on network formation
with contagious risk, see [BEK13].

Ź Chauhan et al. [CLMM16] extended the edge destruction model by
incorporating distances: the cost for player v is the expected sum of
distances to all other players after edge destruction.

In another line of research [DG13; HJ16; Hal16; BCT17], the robustness
of networks is studied in a two-player game. The first player is the de-
signer and can choose which edges to form in the network, while the
second player is the adversary or disruptor, who can destroy vertices or
edges in the network. Some of those models allow immunization of ver-
tices or edges. All of those models are very different from ours since
the network is formed by a central authority, the designer, and not in a
decentralized manner as in our model. Moreover, the adversaries in those
models work differently from ours: they typically act more deterministi-
cally and not randomized as our adversaries (or they randomize in simpler
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3. Swap Equilibria under Link and Vertex Destruction

ways than ours), but on the other hand, they are more powerful, since they
can destroy more than one edge or one vertex.

If, for our type of adversary, we had a network designer, then that
designer would simply build an optimal network. Optimal networks for
the case that we have link costs α and edge destruction have been identified
as cycle and star, independent of the adversary and only depending on
the range of α [Kli16; Kli11]. Therefore, the designer’s job would be
simple: look at α, and then, decide whether to build a cycle or a star.
If there are no link costs, as in the SE model, the notion of optimality
is not straightforward in the first place. However, given a fixed number
of edges k, we can define optimal graphs as those with minimal cost
among all graphs with k edges. If k ě n, then any graph with a cycle
traversing all of the vertices is optimal in this sense, for edge and for vertex
destruction independent of the actual destroyer. If k = n´ 1, then for any
edge destroyer, the star is optimal (optimality for vertex destruction is not
straightforward for k = n´ 1).

3.2 Contribution

We prove quantitative and structural results for two types of destroyers
under the stability concept of swap equilibrium (SE): the uniform destroyer
picks an edge or vertex uniformly at random, while the extreme destroyer
picks an edge or vertex uniformly at random from the set of edges or
vertices, respectively, where the destruction of each causes a maximum
number of vertex pairs to be separated. An edge or vertex that does the
latter is called a max-sep edge or max-sep vertex, respectively. In addition, we
consider some variations. For edge destruction, the most notable variation
is a destroyer that chooses an edge from the set of bridges uniformly
at random. For vertex destruction, we consider that the probability for
destruction of a vertex v is proportional to her degree deg(v), which we
call the degree-proportional destroyer.

We prove that for uniform and extreme edge destruction and uniform
bridge destruction, an SE is bridgeless or has a star-like structure. A
consequence of this is that in terms of social cost, those SE are very
efficient, namely the social cost of any of those SE is O(n). For uniform
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vertex destruction, we prove that if an SE is not two-connected, then it is a
tree. This again implies an O(n) bound on the social cost.

For the degree-proportional vertex destroyer, the situation is very
different. Social cost of an SE can be as high as Ω(n2), which is the highest
order possible in this model. This lower bound is attained on a simple
graph, namely a star.

For extreme vertex destruction, we also give a super-linear lower bound
on the social cost of SE, namely Ω(n3/2). The construction is still roughly
star-like, but more complicated: we need a clique of certain size at the
center unto which paths of a certain length are attached.

Finally, we prove a structural result for extreme vertex destruction: if
n ě 8, there is no tree SE with only one max-sep vertex. This means that
in a tree SE (with n ě 8), the extreme destroyer will always have at least
two vertices to choose from.

3.3 Discussion of Results and Comparison with
Previous Work

What kind of (decentralized) network formation is most effective against a
destroyer? This question cannot be fully answered yet. However, we can
make the following observations.

Consider first that we face the uniform edge destroyer. All three models,
namely Nash equilibrium (NE), pairwise stability (PS) and swap equilib-
rium (SE), provide relatively robust networks. For NE and PS, this has
been shown in previous work [Kli16; Kli11] by proving a price of anarchy
of O(1), meaning that the cost of an equilibrium network is at most a
constant factor away from that of an optimal network. For SE, we prove
here that the social cost of an equilibrium is upper-bounded by 2(n´ 1),
which means that the destroyer can cut off at most one vertex from the rest
of the graph (resulting in 2(n´ 1) separated vertex pairs). This equates to
relatively small damage. It is only beaten by a graph with a cycle that tra-
verses all vertices, which has zero social cost. Note that non-equilibrium
graphs can have super-linear social cost, e.g., the path has social cost
Ω(n2), following from the computation in [Kli11, Proposition 8.1].

In [CLMM16], the uniform edge destroyer is combined with a different
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cost function, which is the expected sum of distances to other players after
destruction (instead of considering the number of cut-off vertices). NE is
used as the equilibrium concept. A bound of O(1 + α/

√
n) is proven on

the price of anarchy, which is a good bound. Note in particular that it is
constant for α ď

√
n.

Now, consider that we face the extreme edge destroyer. One of the
most striking previous results is that for NE, the price of anarchy is
still O(1) [Kli11, Theorem 9.8]. For PS, the situation flips, and the worst
possible order is obtained for the price of anarchy [Kli16], if α = Ω(1).
The lower-bound example used in the proof exploits the two properties
of PS: we only consider single-edge deviations, and the agreement of
both endpoints is required to build an edge. For SE, we prove here that
the destroyer can cut off at most one vertex from the rest of the graph,
just like for the uniform destroyer. Therefore, although NE and SE differ
computationally (exponential versus quadratic search space), they both
provide relatively robust networks when faced with the extreme edge
destroyer.

For vertex destruction, NE and PS have not been studied previously,
so we cannot make a comparison with those. The results that we prove
here for SE resemble those for edge destruction and PS: relatively robust
networks for the uniform destroyer and less robust ones for the extreme
destroyer (linear social cost versus super-linear social cost). It should be
emphasized that the degree-proportional destroyer, which arguably takes
a simpler approach than the extreme destroyer, can have SE even with
quadratic cost, which is the worst possible order. An explanation is that
this destroyer combines the unpredictability of the uniform destroyer, on
the one hand, with the focus on destruction expressed by the extreme
destroyer, on the other hand (higher-degree vertices tend to cause more
damage when destroyed). Indeed, the proof for the quadratic lower bound
relies crucially on the way in which this destroyer randomizes.

A comparison between edge destruction and vertex destruction can be
done only for SE currently. Removing an edge can leave us with at most
two connected components. Removing a vertex v can leave us with deg(v)
connected components (not counting v itself; cf. the exact definition in
Section 3.4). This suggests that the model is theoretically harder to handle
and that the destroyer can do more damage in terms of separated vertex

20



3.4. Model and Notation

pairs. However, for the uniform destroyer, the fundamental proof ideas
turn out to be roughly similar (namely opening a cycle to capture more
vertices and bounding the diameter of a tree SE), although technically
much more involved for vertex destruction.

For the extreme destroyer, edge and vertex destruction are clearly more
divergent from each other than for the uniform destroyer. This is reflected
by our results: for edge destruction, we have a linear bound on the social
cost of SE, while for vertex destruction, we have a super-linear lower
bound and no upper bound at this time. The lower-bound example clearly
does not work for extreme edge destruction, as explained in Remark
3.8.2. can have profound effects on the destroyer’s probability measure.
That is, if a leaf a swaps its one edge {a, b} for an edge {a, c}, then the
number of components when c is destroyed increases. This can lead to
c becoming the only max-sep vertex in the new graph. This signifies a
drastic change, provided that before the swap, there were many max-sep
vertices in different parts of the graph. It should be noted that we have no
lemma saying that max-sep vertices are distributed in a certain pattern in
the graph, whereas for edge destruction, it is known that they form a star-
like structure [Kli11, Proposition 9.1].

3.4 Model and Notation

Edge destruction

Let G P Gn be connected. For v, w P Vn, denote RG(v, w) the set of all v-w
paths in G.

3.4.1 Definition. The relevance of e P E(G) for v P Vn is:

relG(e, v) := |{w P Vn ; @P P RG(v, w) : e P E(P)}| .

That is, the number of those vertices where for each of them holds: in
order to reach it from v, we necessarily have to traverse edge e. When e is
removed from the graph, then there will be exactly relG(e, v) vertices that
v will no longer be able to reach; we also say that those vertices are cut off
from v or that v is cut off from them.
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3.4.2 Definition. An edge destroyer D is a map that associates with each
G P Gn a probability measure DG on E(G), that is DG(e) P [0, 1] for each e,
and ∑ePE(G) DG(e) = 1.

Given D, we define the cost for player v in G as:

Cv(G) := ∑
ePE

relG(e, v)DG(e) ,

that is, the expected number of vertices from which v will be cut off after
one edge is removed randomly according to the measure DG. If G is
disconnected, cost is defined to be 8.

3.4.3 Definition. The separation sep(e) of an edge e P E(G) is the number
of ordered player pairs (v, w) such that the removal of e will destroy all
v-w paths in G.

If e is a non-bridge, then clearly sep(e) = 0. Otherwise, G´ e has exactly
two components, say K1, K2 Ď Vn, and we call ν(v) := min {|K1|, |K2|} the
minimal-component size of e. Then, sep(e) = 2ν(e)(n´ ν(e)). The social cost
is:

SC(G) = ∑
vPV(G)

Cv(G) = ∑
vPV(G)

∑
ePE

relG(e, v)DG(e)

= ∑
ePE

∑
vPV(G)

relG(e, v)DG(e) = ∑
ePE(G)

sep(e)DG(e)

Vertex destruction

For the vertex destruction model, the destroyer D associates each G P Gn
with a probability measure on the vertices of G, that is DG(v) P [0, 1] for
each v P Vn, and ∑vPVn DG(v) = 1. We define the destruction of a vertex
not as its removal from the graph, but as the removal of all of its incident
edges. This is reflected by the following definition of relevance and cost.

3.4.4 Definition. The relevance of u P Vn for v P Vn is:

relG(u, v) := |{w P Vn ; @P P RG(v, w) : u P V(P)}| .

Note that since v is in every v-w path, we have relG(v, v) = n ´ 1,
which is exactly the number of vertices that will be cut off from v if all
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edges incident with v are removed. Given a vertex destroyer D, we define
the cost for player v in G as:

Cv(G) := ∑
uPV

relG(u, v)DG(u) .

Again, a disconnected graph induces infinite cost for each player.

3.4.5 Definition. The separation sep(u) of a vertex u P Vn is the number of
ordered player pairs (v, w) such that the removal of u will destroy all v-w
paths in G.

If removal of u creates k components (not counting u itself) of sizes
β1, . . . , βk, we have:

sep(u) = n´ 1 +
k

∑
i=1

βi(n´ βi)

= n´ 1 + n
k

∑
i=1

βi ´
k

∑
i=1

β2
i

= n´ 1 + n(n´ 1)´
k

∑
i=1

β2
i

= n2 ´ 1´
k

∑
i=1

β2
i . (3.4.6)

It is again easy to see that

SC(G) = ∑
uPVn

sep(u)DG(u).

When the graph G is clear from context, we omit the G arguments. When
a graph G1 is defined, we write C1, rel1, SC1, etc., instead of C(G1), rel(G1),
SC(G1), etc., respectively. The same goes for G2.

3.4.7 Definition. For any connected graph G = (V, E), we call I Ď V
an island if it is inclusion-maximal under the condition that the induced
subgraph G[I] is bridge-free (it does not matter whether we mean bridges
of G or bridges of G[I]).

3.4.8 Definition. The bridge tree G̃ of G is obtained by collapsing each
island I of G to a single vertex Ĩ and inserting an edge between Ĩ and J̃ if
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i) A graph G.

v3v6

v1 v2

v4v5

w3
w2

w1

wv

ii) The corresponding bridge tree G̃

Figure 3.1. Players v and w consisting of vertices v1, v2, ..., v6 and w1, w2, w3 respec-
tively.

and only if an edge runs in G between a vertex of I and a vertex of J. See
Figure 3.1 for an example of the bridge tree.

Obviously, I J ÞÑ Ĩ J̃ is a bijection between the set of bridges of G and
the set of bridges of G̃, and we will often identify those two sets. We refer
to [Kli11] for a more formal treatment of the bridge tree.

We will also use the better-known block-cut-vertex tree; see, e.g., the
book by Diestel [Die05] for a definition.

3.5 Uniform Edge and Uniform Bridge Destruc-
tion

Denote B(G) Ď E(G) the set of all of the bridges of G P Gn and:

SB(G) := {(a, b, c) P S(G) ; {a, b} P B(G)^ G + (a, b, c) is connected}

the set of bridge swaps (the case that G + (a, b, c) is disconnected is not
interesting since such a swap can never bring an improvement). Clearly,
{a, c} P B(G + (a, b, c)) for each (a, b, c) P SB(G).

An edge destroyer D is called the uniform edge destroyer if DG(e) =
1

|E(G)| for each e P E(G) and each G P Gn. It is called the uniform bridge

destroyer if DG(e) = 1
|B(G)| for each e P B(G) and DG(e) = 0 for each

e P E(G)zB(G), for each G P Gn (if B(G) = H, the graph is two-edge-
connected, and we can take any probability measure for DG since the cost
for each player is zero in any case).
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In order to point out what are some of the essential properties of those
destroyers, we look at more general destroyers first. Consider the following
condition on a destroyer:

@G P Gn @s = (a, b, c) P SB(G) :(
sepG({a, b}) = sepG+s({a, c}) ùñ DG({a, b}) = DG+s({a, c})

)
^

(
@e P E(G)X E(G + s) : sepG(e) = sepG+s(e)

ùñ DG(e) = DG+s(e)
)

(3.5.1)

This means that if after a bridge swap an edge maintains its separation,
then it also maintains its probability. This clearly includes the uniform
edge destroyer and the uniform bridge destroyer. The next proposition
shows that (3.5.1) is equivalent to the following simpler condition:

@G P Gn @s = (a, b, c) P SB(G) :

DG({a, b}) = DG+s({a, c})
^ @e P E(G)X E(G + s) : DG(e) = DG+s(e)

(3.5.2)

This means that each edge carries its fixed probability that, in the case of a
bridge, sticks to it even when it is swapped for another edge.

3.5.3 Proposition. (3.5.1) and (3.5.2) are equivalent.

Proof. It is clear that (3.5.2) implies (3.5.1). Therefore, let D be a de-
stroyer with property (3.5.1). Let G P Gn and s = (a, b, c) P SB(G). Since
νG({a, b}) = νG+s({a, c}), we have sepG({a, b}) = sepG+s({a, c}); hence,
DG({a, b}) = DG+s({a, c}). Now, consider the special case first that (a, b, c)
is a path in the bridge tree. Then, the only separation that changes due
to s is that of {b, c}. Since separations of all other edges are maintained,
they also maintain their probabilities. Since all of the probabilities add
up to one, the edge {b, c} also maintains its probability. In the general
case, we have a path (v0 = b, v1, . . . , vk = c). Conducting the sequence of
swaps (a, v0, v1), (a, v1, v2), . . . , (a, vk´1, vk) gives the graph G + s, and in
each step, the edges maintain their probability.

The following proof uses the basic idea from [ADH+10, Theorem 1].

25
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3.5.4 Lemma. Let D be a destroyer with property (3.5.2). Then, the bridge tree
of an SE with respect to D has a diameter at most two.

Proof. Let G be an SE, and for contradiction, assume that (a, b, c, d) is a path
in its bridge tree. Denote na, nb, nc, nd the number of vertices in the subtrees
rooted at a, b, c and d, respectively; hence, n = na + nb + nc + nd. Consider
the swap s = (a, b, c). By (3.5.2), we have DG({a, b}) = DG+s({a, c}),
and all of the other edges maintain their probabilities, as well. We have
relG({a, b}, a) = relG+s({a, c}, a), and for all of the other edges, from the
view of a, the only relevance that changes is that of {b, c}, namely from
nc + nd to nb. Since G is an SE, this means nc + nd ď nb. Likewise, we
consider the swap (d, c, b) and obtain na + nb ď nc. Together, this implies
na ď 0, which is impossible.

3.5.5 Theorem. Let G be an SE for the uniform edge destroyer. Then, G is
bridgeless or a star; hence, SC(G) ď 2(n´ 1) = O(n).

Proof. If G is bridgeless, then SC(G) = 0. Therefore, assume that G con-
tains a bridge. We want to show that G is a tree, so for contradiction,
assume that G is not a tree. Let I be an island containing a cycle, and let
{b, c} be a bridge with b P I (and c P I1 for some island I1). Then, there is
a cycle C in I that traverses b. Choose a so that {a, b} P E(C). Then, the
swap (a, b, c) puts the bridge {b, c} on a cycle and makes it part of the
island, so its relevance for a drops from a positive value to zero. No new
bridges are introduced, and the relevance of all other edges remains the
same for player a. Hence, this is an improving swap, a contradiction to SE.
The situation is depicted in Figure 3.2.

Since we know that G is a tree, G coincides with its bridge tree. By
Lemma 3.5.4, diam(G) ď 2. Since n ě 3, we conclude that G is a star. It
follows that SC(G) = 2(n´ 1).
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I

a

I1
b c

C

Figure 3.2. Proof of Theorem 3.5.5.

3.5.6 Theorem. Let G be an SE for the uniform bridge destroyer. Then, G is
bridgeless or G̃ is a star, where each of the outer islands has exactly one vertex 3.
Hence, SC(G) ď 2(n´ 1) = O(n).

Proof. If G is bridgeless, then SC(G) = 0. Therefore, assume that G con-
tains a bridge. By Lemma 3.5.4, G̃ is a star. Let I be an island that is not
the center of the star (i.e., it is an outer island) and that contains more than
one vertex. Then, I contains a cycle. By a swap as in the proof of Theorem
3.5.5, the one bridge e between the center of the star and I can be put on
a cycle. For the players in I, this is a strict improvement since for them, e
had the strictly highest relevance of all bridges in G. The statement on the
social cost follows since only one vertex can be separated from the rest of
the graph by the removal of a bridge.

3.6 Extreme Edge Destruction

For G P Gn, denote sepmax(G) := maxePE(G) sep(e) and:

Emax(G) := {e P E(G) ; sep(e) = sepmax(G)} .

We call the edges in Emax(G) the max-sep edges. Recall sep(e) = 2ν(e)(n´
ν(e)) and note that x ÞÑ x(n´ x) is strictly increasing on [0, n/2]; hence,
ν(e) = ν(e1) for all e, e1 P Emax(G). Moreover, if ν(e) = ν(e1) for some
e P Emax(G) and e1 P E(G), then e1 P Emax(G). In other words: exactly all
of the edges with maximum ν(e) are max-sep.

3If the star has only one edge and thus there are exactly two islands, this statement means
that one of the two islands has exactly one vertex.
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3. Swap Equilibria under Link and Vertex Destruction

An edge destroyer D is called the extreme edge destroyer if DG(e) =
1

|Emax(G)| for each e P Emax(G) and DG(e) = 0 for each e P E(G)zEmax(G).

3.6.1 Theorem. Let G be an SE under the extreme edge destroyer. Then, G is
bridgeless or G̃ is a star, where each of the outer islands has exactly one vertex.
Hence, SC(G) ď 2(n´ 1) = O(n).

Proof. The expression for the social cost follows from the structural state-
ment. Assume for contradiction that G contains bridges and is not of the
stated form.

K0
ek

a

b

KkK1

K2

v

e2

e1

Figure 3.3. Proof of Theorem 3.6.1, Case 1.

Case 1: Emax = {e1, . . . , ek} with k ě 2. This situation is depicted in
Figure 3.3. By ([Kli11] Proposition 9.1), the max-sep edges form a star in
the bridge tree. For each i P [k], denote Ki Ď Vn the (unique) minimal
component of G ´ ei, and denote K0 the island at the center of the star
formed by Emax. Then, Vn = ⊍k

i=0 Ki and |Ki| = |Kj| for all i, j P [k]. By
assumption, |Ki| ě 2 for each i.

Case 1.1: There is a leaf a P K1. Denote b the neighbor of a, and let
v P K0. Define G1 := G + (a, b, v). When moving from G to G1, all of the
edges e2, . . . , ek, and the edges in G[K2], . . . , G[Kk] have their separation
maintained. Edges in G[K1] have their separation maintained or reduced
since their minimal-component size reduces. The edge e1 has its separation
reduced since its minimal-component size reduces. The new edge {a, v}
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3.7. Uniform and Degree-Proportional Vertex Destruction

cannot become max-sep since ν({a, v}) = 1 while ν(e2) ě 2. It follows that
E1max = {e2, . . . , ek}. We have rel1(ei, a) = rel(ei, a) ă rel(e1, a) for all i ě 2.
Hence, C1a ă Ca, a contradiction to SE.

Case 1.2: There is a cycle C in K1. Let {a, b} P E(C) and v P K0. By
essentially the same arguments as in Case 1.1, we show that player a
improves by the swap (a, b, v).

Case 2: Emax = {e1}. This case is more difficult since after reducing
the separation of e1, we have no other max-sep edges that could act as a
reference. Denote K1 a component of G´ e1 with minimum size (if both
components of G´ e1 have the same size, then pick one arbitrarily), and
denote K0 the island containing the endpoint of e1 that is not in K1.

Case 2.1: There is a leaf a P K1. Denote b the neighbor of a, and let v P K0.
Define G1 := G + (a, b, v). We have ν1(e1) = ν(e1)´ 1, so sep1(e1) has the
next lower possible value below sep(e1). Hence, E1max = {e1, e2, . . . , ek}
for zero or more additional edges e2, . . . , ek. Since they all have the same
minimum-component size, they cannot be in G[K1]; hence, they form a
star with K0 as the center (this is the only way that they can form a star
in the bridge tree). If {a, v} R E1max, then C1a = ν(e1)´ 1 ă n´ ν(e1) = Ca;
hence, the swap is an improvement. If {a, v} P E1max, then ν(e1)´ 1 =
ν1({a, v}) = 1; so |K1| = 2 and n ě 4. Moreover, k ě 2. It follows that
C1a = 1

k (n´1+(k´1)(ν(e1)´1)) = n´2
k + 1. On the other hand, Ca = n´2.

If n ě 5 or k ě 3, this implies an improvement. The remaining case of
n = 4 and k = 2 is impossible, since for such n, the graph G1 is a star, and
thus, k = 3.

Case 2.2: There is a cycle C in K1. We consider a swap like the one in
Case 1.2. It is not difficult to see that rel1(e, a) ă rel(e1, a) for each e P E1max;
hence, the swap is an improvement.

3.7 Uniform and Degree-Proportional Vertex
Destruction

For any connected graph G = (V, E), denote B(G) the set of its blocks
(maximal biconnected subgraphs) and A(G) Ď V the set of its cut-vertices
(also known as articulation points). Denote Ĝ the block-cut-vertex tree of G,
that is V(Ĝ) = B(G)ŸA(G), and each edge in Ĝ runs between a block
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3. Swap Equilibria under Link and Vertex Destruction

i) A graph G.

v3v6

v1 v2

v4v5

w3
w2

w1

ii) The corresponding
block-cut-vertex tree Ĝ

v wxz

y

u

Figure 3.4. Players v and w consisting vertices v1, v2, ..., v6 and w1, w2, w3 respec-
tively. Vertices u, y, z and x in Ĝ corresponds to cutvertices v6, v1, v3 and w3, re-
spectively

and a cut-vertex, namely {B, v} P E(Ĝ) if B P B(G) and v P BX A(G). See
Figure 3.4 for an example of the block-cut-vertex tree.

We have |B| ě 2 for each B P B(G). If |B| ě 3, then G[B] is two-
connected; we also say that B is two-connected in G. Recall also that in
a two-connected graph, for each vertex v, we can find a cycle that visits
v. The following remark is proven by standard arguments, which are
included here for completeness.

3.7.1 Remark. Let G = (V, E) be any two-connected graph.

(i) Let x, y, v P V be three distinct vertices. Then, there exist paths
P = (v, . . . , x) and Q = (v, . . . , y) with V(P)XV(Q) = {v}.

(ii) Let W Ă V with |W| ě 2 and v P VzW. Then, there are x, y P
W with x ‰ y and paths P = (v, . . . , x) and Q = (v, . . . , y) with
V(P)XV(Q) = {v} and V(P)XW = {x} and V(Q)XW = {y}.

Proof. (i) Add a new vertex z to the graph, and connect it with x and
with y. The resulting graph is again two-connected. Using the global
version of Menger’s theorem (see, e.g., ([Die05] Theorem 3.3.6)), we find
two independent (that is, internally vertex-disjoint) v-z paths. Taking
subpaths yields the result.

(ii) Let x1, y1 P W, x1 ‰ y1 be any two distinct vertices in W. By (i), we
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find P1 = (v, . . . , x1) and Q1 = (v, . . . , y1) with:

V(P1)XV(Q1) = {v} . (3.7.2)

Let x be the first vertex on P1 that is also in W. Define P := (v, . . . , x) as
a subpath of P1. Likewise, let y be the first vertex on Q1 that is also in W,
and define Q := (v, . . . , y) as a subpath of Q1. By (3.7.2), we get x ‰ y, and
the other properties follow from the choice of x and y.

3.7.3 Definition. Let G = (V, E) be any graph and (B1, b1, . . . , Bk, bk, Bk+1),
k ě 1, be a path in its block-cut-vertex tree Ĝ. Assume |B1| ě 3, and let
C = (b1, a, . . . , b1) be a cycle in B1. Let c P Bk+1z{bk}. Then, we call
the swap (a, b1, c) a cycle extension with respect to (B1, Bk+1); note that
B2, . . . , Bk and b1, . . . , bk are uniquely determined by the pair (B1, Bk+1)
since Ĝ is a tree.

The name “cycle extension” is chosen since the cycle C is extended into
a larger cycle, thereby merging the blocks that are traversed by the new
cycle. The merging property is proven in the next proposition.

3.7.4 Proposition. With notation as in Definition 3.7.3, denote G1 := G +
(a, b1, c). Then, in G1, all of the blocks B1, . . . , Bk+1 are merged into one block,
and the remaining blocks are maintained; in particular, no new cut-vertices emerge
in G1, and the separation values of maintained cut-vertices do not increase.

Proof. The only non-obvious part is that B1 := B1 Y . . .Y Bk+1 is two-con-
nected in G1, which we will prove now. Denote C = (b1, a, a1, . . . , at, b1) for
some t. There is a cycle of the form C1 = (b1, . . . , bk, . . . , c, a, a1, . . . , at, u1)
that starts in B1, runs through B2, . . . , Bk+1 and finally re-enters B1.

Let i P [k + 1] with |Bi| ě 3 and v P BizV(C1). Claim: in G1, there
are paths P = (v, . . . , x) and Q = (v, . . . , y) with x, y P V(C1) and
x ‰ y, such that V(P) X V(Q) = {v} and V(P) X V(C1) = {x} and
V(Q)XV(C1) = {y}.

Proof of claim: Denote W := V(C1) X Bi, then |W| ě 2. By Remark
3.7.1(ii) applied with W as defined here, the claim is clear for i ě 2, since
such Bi is two-connected in G1 (and in G). Hence, we consider i = 1. The
difficulty is that B1 may not be two-connected in G1, since we removed
the edge a1u1. However, none of the paths P or Q guaranteed to exist by
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v6

v7

v1 v2 v3

v4

v5

Figure 3.5. An example graph G

Remark 3.7.1(ii) in G can use a1u1 since then, that path would have more
than one vertex in common with W. This concludes the proof of the claim.

Now, let v, w P B1 with v ‰ w. We show that in G1, there are two
independent v-w paths.

Ź If v, w P Bi for some i ď k, then either Bi is two-connected and the
statement is clear, or |Bi| = 2 in which case v, w P V(C1), and the
independent paths are given through C1.

Ź Let v P Bi and w P Bj for i ‰ j. If v or w is located on C1, then nothing
has to be done for that vertex; otherwise, we connect it with C1 via
the paths guaranteed by the claim. It is easy to see that this gives two
independent v-w paths.

Ź Let v, w P B1. In G, we find two independent v-w paths P and Q in B1.
At most, one of them, say P, uses {a, b1}. Instead of using that edge, we
can, starting at b1, run along C1 until we reach a. That b1-a path runs
outside of B1 (except for a and b1) and, thus, will not interfere with P
or Q.

A vertex destroyer D is called the uniform vertex destroyer if DG(u) = 1
n

for each u P Vn and each G P Gn. In Figure 3.5, the cost of players in
uniform vertex destruction model is

Cv1(G) =
1
n
( ∑

iP[7]
rel(vi, v1)) =

1
7
(6 + 6 + 5 + 1 + 3 + 1 + 1) =

23
7

Cv2(G) =
1
n
( ∑

iP[7]
rel(vi, v2)) =

1
7
(1 + 6 + 5 + 1 + 3 + 1 + 1) =

18
7

Cv3(G) =
15
7

, Cv4(G) =
20
7

, Cv5(G) =
16
7

,
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Cv6(G) = Cv7(G) =
20
7

.

3.7.5 Theorem. An SE for the uniform vertex destroyer is two-connected (that
is, it has only one block) or it does not contain any cycle and, thus, is a tree.

Proof. Let an SE graph G P Gn be given, and assume it contains more than
one block. We only need to prove that no block has a cycle, or, equivalently,
that each block consists of only two vertices. Suppose for contradiction
that B1 is a block with |B1| ě 3, and let B2 be another block. Let (a, b, c)
be a cycle extension with respect to (B1, B2) and G1 := G + (a, b, c). By
Proposition 3.7.4, it follows that rel1(b, a) ă rel(b, a), since in G1, removal
of b cannot cut a off the one or more vertices in B2z{b1} anymore (recall
that a block always contains at least two vertices). All other relevance for a
is maintained or also reduced. Therefore, we have an improvement in the
cost of player a, contradicting the stability of G.

3.7.6 Corollary. Let G P Gn be an SE for the uniform vertex destroyer. Then,
G is either two-connected or a star; hence, SC(G) = 2(n ´ 1) = O(n) or
SC(G) = 3n´ 5 + 2

n = O(n).

Proof. Let G be non-two-connected. Then, by Theorem 3.7.5, G is a tree.
By applying the same argument as in the proof of Lemma 3.5.4, we obtain
that the diameter of G is at most two, i.e., G is a star. The social cost of star
is easily computed to be 1

n

(
(n´ 1)(3n´ 4) + 2(n´ 1)

)
= 3n´ 5 + 2

n .

A destroyer D is called the degree-proportional vertex destroyer if DG(u) =
degG(u)

2m for each u P Vn and each G P Gn.
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1
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(a) Cost for an outer player is 4 ¨ 1
10 + 5 ¨ 1

2

+5 ¨ 1
10 = 9

10 +
5
2 = 17

5 .

1
10

1
5

1
10

1
10

2
5

1
10v

(b) Cost for player v is 3 ¨ 1
10 + 4 ¨ 2

5 + 5 ¨ 1
5

+5 ¨ 1
10 = 4+8+5

5 = 17
5 .

Figure 3.6. Example for Proposition 3.7.7. Numbers give probabilities for the
vertices to be picked for destruction. By computing cost, we see that an outer
player cannot benefit from a swap.

3.7.7 Proposition. The star is an SE for the degree-proportional vertex destroyer,
and its social cost is 1

2 (n
2 + n)´ 1 = Ω(n2).

Proof. Let S P Gn be a star. First, we prove that S is an SE. Clearly, by just
removing an edge (without creating a new one), no player can improve.
It is also obvious that the only possibility for swapping is from one leaf
to another leaf. Let a, c P V be leaves and b the center of the star. Denote
S1 := S + (a, b, c). Although player a, by the swap (a, b, c), decreases the
number of cut-off vertices in the case that the center b is destroyed, this
does not improve her cost. This is because at the same time, the degree
of c is increased, and destruction of c in G1 will cut off a from all other
vertices. The following calculations show that a indeed does not improve
her cost by the swap. We have:

Ca(S) =
1

2(n´ 1) ∑
wPV

rel(w, a) ¨ deg(w)

=
1

2(n´ 1)

(
(n´ 1) + (n´ 2) + (n´ 1)(n´ 1)

)
=

1
2

(
n + 1´

1
n´ 1

)
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After swapping:

Ca(S1) =
1

2(n´ 1)

(
3(n´ 1) + (n´ 2)2 + (n´ 3)

)
=

1
2

(
n + 1´

1
n´ 1

)
Hence, Ca(a) = Ca(S1). Therefore, the star is an SE (an example for n = 6
is given in Figure 3.6). Its social cost is:

SC(S) =
1

2(n´ 1) ∑
vPV

∑
wPV

rel(w, v) ¨ deg(w)

= (n´ 1)
(1

2

(
n + 1´

1
n´ 1

))
+

1
2(n´ 1)

¨ (n´ 1) n

=
1
2

(
(n2 ´ 1)´ 1

)
+

n
2
= 1

2 (n
2 + n)´ 1

3.7.8 Corollary. The social cost of SE for the degree-proportional vertex destroyer
can be as high as Ω(n2), which is the worst possible order in the destruction
model.

3.8 Extreme Vertex Destruction

This model is defined similarly to the extreme edge destruction model.
Denote Vmax the set of max-sep vertices and nmax := |Vmax|. The ex-
treme vertex destroyer picks the vertex to destroy uniformly at ran-
dom from Vmax. In Figure 3.5, only player v3 has maximum separation,
sepmax = sep(v3) = 34. Then, nmax = 1 and the cost for players in the
extreme vertex destruction model is

Cv1(G) = rel(v3, v1) = 5, Cv2(G) = rel(v3, v2) = 5,

Cv3(G) = rel(v3, v3) = 6, Cv4(G) = rel(v3, v4) = 6,

Cv5(G) = Cv6(G) = Cv7(G) = 4.

We start with a first step toward understanding the worst-case order of
social cost of an SE in this model, by giving an SE example with super-
linear social cost, namely Ω(n3/2). The construction is shown in Figure 3.7.
It is unknown at this time whether there is a matching upper bound. Before
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reading the proof of the following theorem, the reader is encouraged to
take a look at Remark 3.8.3 in order to obtain an idea why we have to limit
the length of the paths attached to the clique.

Figure 3.7. Construction from Theorem 3.8.1 for t = 4.

3.8.1 Theorem. Let t ě 4 and 0 ď k ď 4t´ 5 = Θ(t). Let G = (V, E) be
the graph consisting of a clique C on t vertices, and to each vertex of C, there is
a path of length k attached (so, n := |V| = t(k + 1)). Then, G is an SE with
SC(G) = Ω(n3/2).

Proof. For each player v at distance 0 ď i ď k from C, we have:

sep(v) = 2
(
(n´ 1) + (k´ i) (n´ 1´ (k´ i))

)
Since k´ i ď (n´ 1)/2 and since the function x ÞÑ x(n´ 1´ x) is strictly
increasing on [0, (n´ 1)/2], separation is strictly largest when i = 0, that
is when v P C. It follows Vmax = C and:

SC(G) = 2((n´ 1) + k(n´ 1´ k))

= 2
(

t(k + 1)´ 1 + k(t(k + 1)´ 1´ k)
)
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= 2(tk + t´ 1 + k2t + kt´ k´ k2)

ě 2
(
(2t´ 1)k + k2(t´ 1)

)
ě 2k2(t´ 1)

ě k2t

If we choose k maximal, that is k = 4t´ 5, we get:

SC(G) ě k2t = (4t´ 5)2t

= (16t2 ´ 40t + 25)t

ě (6t2 + t(10t´ 40))t

ě 6t3

Now, for this k, we have n = t(k + 1) = t(4t´ 4) ď 4t2; hence, n3/2 ď 8t3.
It follows SC(G) ě 6

8 n3/2 = 3
4 n3/2 = Ω(n3/2) (in short: we have SC(G) =

Ω(tk2); if we choose k maximal, then k = Θ(t); hence, SC(G) = Ω(t3) =
Ω(n3/2)).

We prove the SE property. Just removing an edge (without building a
new one) is clearly not an option for the players on the paths. For a player
of the clique C, nothing changes when removing an edge, since because of
t ě 4, the set C remains two-connected.

For u P C, denote Vu the k vertices on the path attached to u (note that
u R Vu). In the following, whenever we consider a swap, by G1, we refer to
the graph we obtain from G by applying the swap.

We start with the different swaps available to a player a P C. We have
rel(u, a) = k + 1 for each u P Vmaxz{a}; hence:

Ca =
(n´ 1) + (t´ 1)(k + 1)

t
.

(i) Consider a swap (a, b, c) with b P CXN(a) and c P Vu for u P Cz{a},
that is player a swaps an edge from the clique to some path, but
not the one connected to a itself. Since t ě 4, the set C remains two-
connected. Separation of u and of some vertices in Vu is reduced. All
other separations are maintained. It follows:

Ca ´ C1a =
(n´ 1) + (t´ 1)(k + 1)

t
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´
(n´ 1) + (t´ 2)(k + 1)

t´ 1

=
k´ n + 2
t(t´ 1)

ă 0

Hence, the swap is no improvement for player a.

(ii) Consider a swap (a, b, c) with b P C X N(a) and c P Va, that is
player a swaps an edge from the clique to its own path. Again, since
t ě 4, the set C remains two-connected. The separation values on
some vertices in Va decrease, but that does not change the set of
max-sep vertices, nor their relevance for a. Hence, player a’s cost is
maintained.

(iii) Consider a swap (a, b, c) with b P Va; then, in order to keep the graph
connected, we have c P Vaz{b}. That is, player a swaps the first edge
on its path to some vertex on that path. We only have to exclude that
c becomes max-sep; if we achieve that, then, we know that a’s cost is
maintained. Let 2 ď l ď k´ 1 be the distance between a and c. Then,
by (3.4.6):

sep1(c) ă sepmax

ðñ n2 ´ 1´ (l ´ 1)2 ´ (k´ l)2 ´ (n´ k)2

ă n2 ´ 1´ k2 ´ (n´ 1´ k)2

ðñ k2 + (n´ 1´ k)2 ă (l ´ 1)2 + (k´ l)2 + (n´ k)2

ðñ (n´ 1´ k)2 ă ´2l(k + 1´ l) + 1 + (n´ k)2

ðñ ´2(n´ k) ă ´2l(k + 1´ l)

ðñ n´ k ą l(k + 1´ l)

ðù n´ k ą
(k + 1)2

4

ðñ t(k + 1) ą
(k + 1)2

4
+ k

ðñ t ą
k + 1

4
+ 1´

1
k + 1

ðù 4t´ 5 ě k

The latter is true by the restriction on k in the statement of the
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3.8. Extreme Vertex Destruction

theorem. In this computation, we used again that the function x ÞÑ
x(k + 1´ x) is increasing on [0, (k + 1)/2].

We continue with the swaps available to a player a P Vu for some u P C.

(iv) Consider a swap (a, b, c) with dist(u, a) ă dist(u, b). Then, c P Vu
with dist(u, b) ă dist(u, c); since otherwise, the graph would become
disconnected. From a computation like in (iii), it follows that this
swap cannot make c max-sep. Hence, the cost of player a does not
change.

(v) Consider a swap (a, b, c) with dist(u, a) ą dist(u, b). If c P Vu, then
again, a’s cost will not change. If c P C, then c will become the only
max-sep vertex in the new graph, clearly increasing a’s cost.

Now, let c P Vw for some w ‰ u, that is some vertices migrate
from u’s path to w’s path. Separation of w and separation of the
vertices v P Vw with dist(w, v) ď dist(w, c) will increase. All other
separations are reduced or maintained, so we have V1max Ď VwY {w}.
In the best case, k vertices migrate to w’s path; only w becomes max-
sep, and rel1(w, a) = n´ 2k. In this case:

Ca ´ C1a =
(t´ 1)(k + 1) + (n´ k)

t
´ (n´ 2k)

=
(t´ 1)(k + 1) + (t(k + 1)´ k)´ t(t(k + 1)´ 2k)

t

=
(k + 1)(2t´ t2 ´ 1) + (2t´ 1)k

t
ď (k + 1)(2´ t) + 2k

ď ´2(k + 1) + 2k

ă 0

Hence, the swap is no improvement for player a.

3.8.2 Remark. For k ě 2, the graph in Theorem 3.8.1 is no SE for extreme
edge destruction.

Proof. The max-sep edges are the edges on the paths that have one end-
point in the clique. This will not change when a leaf swaps to the clique;
hence, this leaf will experience an improvement.
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3. Swap Equilibria under Link and Vertex Destruction

3.8.3 Remark. The graph in Theorem 3.8.1 is no SE if k ě 4t´ 4 = 4(t´ 1),
that is if k is larger than the upper bound in the theorem.

Proof. Let a P C and b be her neighbor in Va. Let c P Vaz{b} be at distance
l from a, to be specified later. Denote G1 := G + (a, b, c). If c becomes
max-sep in G1, then player a’s cost will decrease, since rel1(c, a) = k,
whereas the relevance of a max-sep vertex in G for a is k + 1 or n´ 1. By
the computation in Theorem 3.8.1(iii), we see that c becomes max-sep if
n´ k ď l(k + 1´ l). We have:

n´ k ď l(k + 1´ l) ðñ t ď
l(k + 1´ l)

k + 1
+ 1´

1
k + 1

ðù t ď
l(k + 1´ l)

k + 1
+

4
5

For odd k ě 4(t´ 1) and l := k+1
2 , we have:

t ď
l(k + 1´ l)

k + 1
+

4
5
ðñ t ď

(k + 1)2/4
k + 1

+
4
5

ðñ t ď
k + 1

4
+

4
5

ðù t ď
4t´ 3

4
+

4
5

ðñ 0 ď
´3
4

+
4
5

ðñ 0 ď
1
20

For even k ě 4(t´ 1) and l := k
2 , we have:

t ď
l(k + 1´ l)

k + 1
+

4
5
ðñ t ď

k2

4 + k
2

k + 1
+

4
5

ðñ t ď
k2 + k

4(k + 1)
+

k
4(k + 1)

+
4
5

ðù t ď
k
4
+

1
4

4
5
+

4
5

ðñ t ď
k
4
+ 1

ðù t ď t´ 1 + 1
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3.8. Extreme Vertex Destruction

In the remainder of this work, we provide more insight into the struc-
ture of tree SE graphs for the extreme vertex destroyer. The next theorem
says that in a tree with only one max-sep vertex (and n ě 8), there is
always an improving swap, so it cannot be an SE. The main concepts are
that having a single max-sep vertex makes the destroyer very predictable
and that swapping to a leaf, that leaf (which will have degree two in the
new graph) can become max-sep only under specific conditions.

v

w

KkK2

K1

v

K1 K2

w

uu

K3 Kk K3

Figure 3.8. Proof of Theorem 3.8.4, Case 1.

u

y

x x

u

yK1 K1

Figure 3.9. Proof of Theorem 3.8.4, Case 2.

3.8.4 Theorem. There is no SE tree with nmax = 1, provided that n ě 8.

Proof. Let T = (V, E) be an SE tree with nmax = 1 and u P Vmax. It
is clear that u is a cut-vertex, otherwise G is two-connected, and thus,
nmax = n. Denote K1, . . . , Kk, with k ě 2, the components of T´ u ordered
by non-decreasing sizes |K1| ď |K2| ď . . . ď |Kk|. For convenience, denote
ni := |Ki| for each i.

Let v P K1 and {u, v} P E and w P K2 with deg(w) = 1. We consider
T1 := T + (v, u, w), that is we detach K1 from u and re-attach it to a leaf
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3. Swap Equilibria under Link and Vertex Destruction

of K2. The situation is depicted in Figure 3.8.
Then, rel1(w, v) = rel(u, v) and rel1(w, v) ą rel1(w1, v) for all w1 ‰ w,

and so, we have an improvement for v whenever V1max contains at least one
vertex distinct from w. The latter is the case if sep1(w) ď sep1(u). Using
(3.4.6), we compute:

sep1(w) ď sep1(u) ðñ n2 ´ 1´ n2
1 ´ (n´ n1 ´ 1)2

ď n2 ´ 1´ (n1 + n2)
2 ´

k

∑
i=3

n2
i

ðñ n2
1 + (n´ n1 ´ 1)2 ě (n1 + n2)

2 +
k

∑
i=3

n2
i

ðñ (n´ n1 ´ 1)2 ě 2n1n2 +
k

∑
i=2

n2
i

ðñ

(
k

∑
i=2

ni

)2

ě 2n1n2 +
k

∑
i=2

n2
i

ðñ ∑
2ďiăjďk

ninj ě n1n2 (3.8.5)

Now, Condition (3.8.5) is true if k ě 3, since n1 ď n3.
Hence, we may assume that k = 2. Let x be the only vertex in N(u)XK2.

If deg(x) ě 3, then:

sep(x) ě n2 ´ 1´ 1´ (n2 ´ 2)2 ´ (n1 + 1)2

= n2 ´ 1´ 1´ n2
2 + 4n2 ´ 4´ n2

1 ´ 2n1 ´ 1

= sep(u)´ 1 + 4n2 ´ 4´ 2n1 ´ 1

= sep(u) + 2(2n2 ´ n1)´ 6

ě sep(u) + 2n2 ´ 6 ą sep(u).

The last step is true since n2 ě (n´ 1)/2 ą 3. We conclude that deg(x) ď 2.
Since n ě 8, there is y P N(x)z{u} with deg(y) ě 2. We consider T1 :=
T + (u, x, y), as shown in Figure 3.9. We have:

sep1(u) ă sep1(y) ðù n2
1 + n2

2 ą 1 + (n2 ´ 2)2 + (n1 + 1)2

ðñ 0 ą 1´ 4n2 + 4 + 2n1 + 1
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3.9. Open Problems

ðñ 0 ą 2(n1 ´ 2n2) + 6

ðñ 0 ą n1 ´ 2n2 + 3 ðù n2 ą 3

Since the last statement is true, we know that V1max = {y}; hence, C1u =
n2 ă n´ 1 = Cu.

3.9 Open Problems

We have extensive experimental evidence and indications on the theory
side that our structural result for the extreme vertex destroyer (that there
is no SE tree with only one max-sep vertex for n ě 8) can be extended in
two ways. We conjecture for n = Ω(1):

(i) There is no SE graph under extreme vertex destruction with only one
max-sep vertex (this extends our result for trees to general graphs).

(ii) There is no SE graph under extreme vertex destruction that is a tree
(this extends our non-existence result for trees with one max-sep vertex
to trees in general).

Recall that we proved that unless the graph is two-connected, an SE cannot
contain cycles for the uniform vertex destroyer. On the other hand, for the
extreme vertex destroyer, our Conjecture (ii) would imply that an SE is
only possible if we have at least one cycle. It would then be interesting to
find a family (Dε)εP[0,1] of vertex destroyers, such that D0 is the uniform
destroyer and D1 is the extreme destroyer, and the others are something
suitable in between. When moving ε from zero to one, the probability
measure should concentrate more and more on the max-sep vertices. It
would be interesting to find out at which values of ε the situation switches
from no non-two-connected SE having a cycle to each SE having a cycle.
Our Conjecture (ii) would imply that it must switch an odd number of
times.
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3. Swap Equilibria under Link and Vertex Destruction

Other interesting directions include:

Ź Closing the gap between our lower Ω(n3/2) bound and the trivial O(n2)
upper bound for social cost of extreme vertex destruction.

Ź Extension to edge ownerships and the asymmetric swap equilibrium.

Ź Study of the model from [CLMM16] under swap equilibrium or asym-
metric swap equilibrium.

Ź Study of vertex destruction under Nash equilibrium or pairwise stability
as the equilibrium concept.
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Chapter 4

Local Network Formation

Let G = (V, E) be an undirected graph with n vertices. For a vertex v P V,
we denote N(v) := {w P V ; {v, w} P E} the set of neighbors of v in G,
where deg(v) = |N(v)|.

4.0.1 Definition. For any v P V and k P N, the k-neighborhood of ver-
tex v, which we denote Nk(v), is the set of other players that v can reach
through a path of length at most k, in other words Nk(v) := {w P V ; 1 ď
dist(w, v) ď k} and N(v) = N1(v).

In this chapter, we study a type of network formation games called
local network formation games, where the income Iv(G) only depends on
a certain graph-theoretic neighborhood around v. An example is taking
the clustering coefficient as income, which was considered by Brautbar and
Kearns [BK11], so their income is defined

Iv(G) =
|{{u, w} P E(G) ; u, w P N(v)}|

(degG(v)
2 )

.

The degree-sum was considered by Nikoletseas et al. in 2013 [NPR+13] with
income

Iv(G) = ∑
wPNk(v)

degG(w).

Both income functions given above only depend on the local structure
around the respective player and are hence referred to as defining local
network formation games.

Let k P N. We define another local network formation game, which
is called neighborhood-size or k-neighborhood model, and is such that the
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4. Local Network Formation

income function of player v is defined

Iv(G) := |Nk(v)|.

Then player v’s utility for pairwise stability with link cost α is

Uv(G) := |Nk(v)| ´ deg(v)α.

The social utility for graph G, also given for pairwise stability, is

SU(G) = ∑
vPV

|Nk(v)| ´ 2|E|α.

We consider two equilibrium concepts for the k-neighborhood model,
namely pairwise stability and swap equilibrium (only in Section 4.3).
We prove that due to pseudo-convexity of the income function, pairwise
stability and pairwise Nash equilibrium are equivalent.

We say that player v can see player w if w P Nk(v), or, equivalently, if
v P Nk(w). For a graph G and an edge {v, w} denote Bi

v,w(G) the players
which are at distance exactly i from v, for i P {2, ..., k}, but do not see v in
G´ {v, w}. With Lj(G, v) we denote the set of players at exactly distance
j from v, this is also called the layer j, since it is the jth BFS layer when
doing a BFS starting from v.

4.0.2 Lemma. The utility function Uv in the k-neighborhood model is pseudo-
convex.

Proof. Fix v P V and let w1, ..., wk1 P N(v). We do induction on k1. The case
k1 = 1 is trivial, so let k1 ą 1 and G1 := G´ {v, w1}´ ...´ {v, wk1´1}. We
assume

Uv(G1)´Uv(G) ď
k1´1

∑
i=1

(Uv(G´ {v, wi})´Uv(G)).

We show that for any j P {2, ..., k}, Bj
v,wk1

(G1) Ě Bj
v,wk1

(G). Let j be such

that u P Bj
v,wk1

(G), that is, u P Lj(G, v) and v cannot see u in G´ {v, wk1}.
Then u P Nj´1(wk1). Since the w1, . . . , wk1 are all distinct, the edge {v, wk1}
is still present in G1, so u P Lj(G1, v). Clearly, since v cannot see u in
G ´ {v, wk1}, she can also not see u in G1 ´ {v, wk1}. This proves u P

Bj
v,wk1

(G1).
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4.1. Diameter of PS Graph

It follows that the loss in layer j for v when switching from G1 to
G1´ {v, wk1} is at least as strong as when switching from G to G´ {v, wk1}.
The same holds for layer 1: if v loses sight of wk1 when switching from G to
G´ {v, wk1}, she also loses sight when switching from G1 to G1 ´ {v, wk1}.
It follows

Uv(G1 ´ {v, wk1})´Uv(G1) ď Uv(G´ {v, wk1})´Uv(G).

By induction, we have:

Uv(G´ {v, w1}´ ...´ {v, wk1})´Uv(G)

= Uv(G1 ´ {v, wk1})´Uv(G)

= Uv(G1 ´ {v, wk1})´Uv(G) + Uv(G1)´Uv(G1)

ď Uv(G´ {v, wk1})´Uv(G) + Uv(G1)´Uv(G)

ď Uv(G´ {v, wk1})´Uv(G) +
k1´1

∑
i=1

(Uv(G´ {v, wi})´Uv(G))

=
k1

∑
i=1

(Uv(G´ {v, wi})´Uv(G)).

From Lemma 4.0.2 and Lemma 2.1.5, we conclude that in the k-neigh-
borhood model, PNE and PS coincide.

4.1 Diameter of PS Graph

In this section, we obtain an upper bound on the diameter of pairwise
stable graphs in the 2-neighborhood model, and we show that for any k
in the k´neighborhood model, the diameter of a PS tree is at most k + 1.
Moreover, we see that a tree can only be pairwise stable if α ď 1.

4.1.1 Proposition. Let G = (V, E) be a PS graph in the 2´neighborhood model
(that is, k = 2). Then α ď deg(v) for each non-isolated vertex v P V.

Proof. Let v P V, and w P N(v). After removing {w, v}, the loss in utility
for w is at most deg(v). Then by PS, we have α ď deg(v).

4.1.2 Lemma. A PS graph in the 2´neighborhood model has its diameter upper
bounded by 3.
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4. Local Network Formation

Proof. We assume that there is a PS graph of diameter at least 4. Thus there
are two vertices a0, a4 with dist(a0, a4) = 4. By adding the edge {a0, a4},
the gain in income for a0 is deg(a4) + 1 and for a4 it is deg(a0) + 1. This is
because if a0 could see any of the neighbors of a4 in G, the distance would
be less than 4; and the same argument holds for a4 and the neighbors of a0.
Hence, since {a0, a4} is not there, we have due to PS that α ě deg(a0) + 1
or α ą deg(a4) + 1. By Proposition 4.1.1, each of these two inequalities is
impossible, so we obtain a contradiction.

4.1.3 Lemma. A PS tree in the k´neighborhood model has diameter at most
k + 1. A tree with diameter at most k can be PS only if α ď 1, and a tree with
diameter k + 1 can be PS only if α = 1.

Proof. Let there be a PS tree with diameter at least k + 2. We already know
from Proposition 4.1.1 that a tree can only be PS if α ď 1, since each tree
contains a leaf. Let there be two vertices a0, ak+2 with dist(a0, ak+2) = k+ 2.
After creating the edge {a0, ak+2}, the gain for a0 and for ak+2 is at least 2,
which is a contradiction to α ď 1. So the diameter of PS trees is at most
k + 1.

We already know that a tree can only be PS if α ď 1, due to the existence
of a leaf. If the diameter is k + 1, then two players at distance k + 1 of each
other would both gain at least 1 in income if they put an edge between
them. Thus α = 1 due to PS.

We conclude this section with two remarks that further restrict the
class of PS graphs.

4.1.4 Remark. If a PS graph in the k-neighbourhood model is disconnected
or a connected graph with diameter at least k + 1, then α ě 1.

Proof. Let a PS graph G = (V, E) be given. We assume that C and C1

are two components. We build an edge from player v P V(C) to player
w P V(C1). By adding the edge {v, w}, player v gains at least one player
(player w) and the player w also gains at least one player (player v). Hence,
by pairwise stability we have α ě 1. We have the same argument for the
connected graph with diameter k + 1, but by choosing two players with
distance k + 1 and creating a link between them.
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4.1.5 Remark. In any PS graph, any player must lose sight of at least one
player after removing any of its incident edges, since otherwise due to PS
we get α ď 0, a contradiction.

4.2 Optima, Equilibria and Price of Anarchy

We recall that the price of anarchy is the ratio of optimum social utility to
worst-case equilibrium social utility.

In order to bound the price of anarchy, we would like to find the
optimum. It is clear that among all connected graphs a tree with diameter
at most k has optimum income and optimum number of edges. It is left
to investigate in which cases it is better to omit some edges and get a
disconnected graph.

Omitting edges will decrease building cost but will also decrease the
income of each player, so the question is: When do the savings in building
cost justify this decrease in income? Denote T a tree with diameter at
most k. We compare T with a forest where each of its components has
diameter at most k, e. g., where each component is a star. (Having diameter
more than k in any component would strictly decrease social utility.)

Let n ě 3 and G1 = (V1, E1) be a disconnected graph with 2 ď k1 ď n
components, such that each component is a tree with maximum diameter
k. Denote ni the number of vertices in component i P [k1], thus |V1| =
∑k1

i=1 ni = n. We have

SU(G1) =
k1

∑
i=1

ni(ni ´ 1)´ |E1|α =
k1

∑
i=1

ni(ni ´ 1)´ α
k1

∑
i=1

(ni ´ 1)

=
k1

∑
i=1

n2
i ´

k1

∑
i=1

ni ´ α(
k1

∑
i=1

ni ´
k1

∑
i=1

1)

=
k1

∑
i=1

n2
i ´ n´ α(n´ k1)

= (
k1

∑
i=1

ni)
2 ´ 2 ∑

iăj
ninj ´ n´ α(n´ k1)
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= n(n´ 1)´ 2 ∑
iăj

ninj ´ αn + αk1.

We need to show which characterization for (ni)
k1
i=1 can make ∑iăj ninj

minimal.

4.2.1 Proposition. Let k1 P N and n1, n2, ..., nk1 P Ně1. Assume there are
s, t P [k1] such that 1 ă ns ď nt. Define n1s := ns ´ 1 and n1t := nt + 1. For all
i P [k1]z{s, t} define n1i := ni. Then ∑iăj n1in

1
j ă ∑iăj ninj.

Proof. We have ∑iăj n1in
1
j =

1
2 ((∑

k1
i=1 n1i)

2 ´∑k1
i=1 n1i

2) and

k1

∑
i=1

n1i = n1s + n1t + ∑
iP[k1]z{s,t}

n1i

= ns ´ 1 + nt + 1 + ∑
iP[k1]z{s,t}

ni

=
k1

∑
i=1

ni.

Then (∑k1
i=1 n1i)

2 = (∑k1
i=1 ni)

2. It follows

k1

∑
i=1

n1i
2
= ∑

iP[k1]z{s,t}
n1i

2
+ n1s

2
+ n1t

2

= ∑
iP[k1]z{s,t}

n1i
2
+ (ns ´ 1)2 + (nt + 1)2

=
k1

∑
i=1

n1i
2
+ (´2ns + 1) + (2nt + 1)

=
k1

∑
i=1

n1i
2
+ 2(nt ´ ns + 1)

ě

k1

∑
i=1

n1i
2
+ 2.
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By replacing, it follows

∑
iăj

n1in
1
j =

1
2
((

k1

∑
i=1

n1i)
2 ´

k1

∑
i=1

n1i
2
)

ď
1
2
((

k1

∑
i=1

ni)
2 ´ (

k1

∑
i=1

ni
2 + 2))

=
1
2
((

k1

∑
i=1

ni)
2 ´

k1

∑
i=1

ni
2)´ 2))

= ∑
iăj

ninj ´ 1

ă ∑
iăj

ninj.

Proposition 4.2.1 shows that the minimum of ∑iăj ninj is attained if
we have a characterization for components such that for 2 ď k1 ď n there
exists t0 such that nt0 = n´ (k1 ´ 1) and nt = 1 for all t ‰ t0. In terms of
graphs, this means k1 ´ 1 isolated vertices and one component being a tree
with maximum diameter k on n´ (k1 ´ 1) vertices. Denote this graph by
k1 ´ kdiam.

4.2.2 Proposition.

(i) If α ď n
2 , T is an optimum; it has social utility (n´ 1)(n´ 2α).

(ii) If α ą n
2 , the empty graph is an optimum; it has social utility zero.

Proof. Let α ď n
2 . For any 2 ď k1 ď n we prove that SU(T ) ě

SU(k1 ´ kdiam). With obtained characterization from Proposition 4.2.1 for
k1 ´ kdiam, we have

SU(T ) = n(n´ 1)´ 2|E|α = n(n´ 1)´ 2α(n´ 1)

= (n´ 1)(n´ 2α).

SU(k1 ´ kdiam) = (n´ (k1 ´ 1))(n´ (k1 ´ 1)´ 1)´ 2|E|α

= (n´ k1 + 1)(n´ k1)´ 2(n´ k1)α

= n2 ´ k1n´ k1n + k12 + n´ k1 ´ 2αn + 2k1α

= n2 ´ 2k1n + k12 + n´ k1 ´ 2αn + 2k1α.
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SU(T )´ SU(k1 ´ kdiam) = n2 ´ n´ 2αn + 2α´ (n2 ´ 2k1n + k12

+ n´ k1 ´ 2αn + 2k1α)

= n2 ´ n´ 2αn + 2α´ n2 + 2k1n´ k12 ´ n

+ k1 + 2αn´ 2k1α

= ´2n + 2α + 2kn´ k12 + k1 ´ 2k1α

= ´2n + 2k1n´ k12 + k1 ´ 2(k1 ´ 1)α

= (2n´ k1)(k1 ´ 1)´ 2(k1 ´ 1)α

= (k1 ´ 1)(2n´ k1 ´ 2α).

Since α ď n
2 and k1 ď n, we can get easily that 2n´ k1 ´ 2α ě 0. Therefore

SU(T ) ě SU(k1 ´ kdiam).
Now, let α ą n

2 . We need to prove that the empty graph, i. e., k1 ´ kdiam
with k1 = n, has maximum social utility. We only need to prove that
for any 2 ď k1 ď n´ 1, we have SU(n´ kdiam) ą SU(k1 ´ kdiam). Since
SU(n´ kdiam) = 0, it is enough to show that SU(k1 ´ kdiam) ă 0 for
2 ď k1 ď n´ 1. We have

SU(k1 ´ kdiam) = n2 ´ 2k1n + k12 + n´ k1 ´ 2αn + 2k1α

= n2 ´ 2k1n + k12 + n´ k1 ´ 2α(n´ k1)

= (n´ k1)(n´ k1 + 1)´ 2α(n´ k1)

= (n´ k1)(n´ k1 + 1´ 2α).

Since k1 ď n´ 1, we have n´ k1 ě 1. Because of k1 ě 2, we have k1´1
2 ě 0.

Moreover, we have α ą n
2 , then α + k1´1

2 ě α ą n
2 , therefore α + k1´1

2 ą n
2 ,

it follows n´ k1 + 1´ 2α ă 0. Since SU(T ) ă 0 for α ą n
2 , the empty graph

is the optimum with social utility of zero.

4.2.3 Definition. The eccentricity of a vertex v in a connected graph G is
the maximum graph distance between v and any other vertex w of G. Let
A be a subgraph of G; for any i P [k], we denote Ni(A, v) = Ni(v)XV(A).

4.2.4 Proposition. When restricting to trees in the 2´neighborhood model, the
price of anarchy is upper bounded by 2´ 2

n .

Proof. From Lemma 4.1.3 we know the diameter of a PS tree is at most 3.
If the diameter of each PS tree is 2, then obviously PoA = 1. Then for
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finding a pairwise stable tree with a worst-case social utility, it is sufficient
to consider a tree with diameter of 3, and by Lemma 4.1.3, α = 1.

Let T be a tree of diameter 3. Then there are two players a, b P V and
{a, b} P E. Denote Ta, Tb the subtrees rooted at a and b, respectively, and
na := |V(Ta)z{a}| and nb := |V(Tb)z{b}|. Hence, na + nb = n´ 2. Each
player in Taz{a} has sight of na ´ 1 players as well as players a and b, and
each player in Tbz{b} has sight of nb ´ 1 players as well as players a and b.
Due to eccentricity of 2 of players a and b, we have Ua(T) = Ub(T) = n´ 1.

Then, the social utility of T is

SU(T) = Ua(T) + Ub(T) + UvPV(Ta)z{a}(T) + UvPV(Tb)z{b}(T)

= 2(n´ 1) + na(na + 1) + nb(nb + 1)´ 2α(n´ 1)

= 2(n´ 1) + na
2 + na + nb

2 + nb ´ 2α(n´ 1)

= 2(n´ 1) + n´ 2 + na
2 + nb

2 ´ 2α(n´ a)

= 3n´ 4 + (na + nb)
2 ´ 2n1n2 ´ 2α(n´ 1)

= n2 ´ n´ 2nanb ´ 2α(n´ 1).

It is clear that SU(T) is minimum where na = b n
2 ´ 1c and nb = d n

2 ´ 1e
i. e., where those two quantities are as equal as possible. We consider two
cases, even and odd n.

Let n be even. Then, na = nb = n
2 ´ 1. Therefore, we have

OPT

SU(T)
=

n(n´ 1)´ 2(n´ 1)α
∑vPV |N2(v)| ´ 2|E|α

=
n(n´ 1)´ 2(n´ 1)α

n2 ´ n´ 2nanb ´ 2α(n´ 1)

=
α=1

(n´ 1)(n´ 2)
n2 ´ n´ 2( n

2 ´ 1)2 ´ 2(n´ 1)

=
(n´ 1)(n´ 2)

n( n
2 ´ 1)

= 2´
2
n

.

Let n be odd. Without loss of generality, we assume na = n
2 ´

1
2 and
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nb = n
2 ´

3
2 . Hence, we have

OPT

SU(T)
=

n(n´ 1)´ 2(n´ 1)α
∑vPV |N2(v)| ´ 2|E|α

=
(n´ 1)(n´ 2)

n2 ´ n´ 2nanb ´ 2α(n´ 1)

=
α=1

(n´ 1)(n´ 2)
n2 ´ n´ 2( n

2 ´
1
2 )(

n
2 ´

3
2 )´ 2(n´ 1)

=
2(n´ 2)

n´ 1

= 2´
2

n´ 1

ă 2´
2
n

.

4.3 Swap Equilibrium

We analyze swap equilibrium trees for the k-neighborhood model and
obtain an upper bound of k on the diameter of them and upper bound of
4 on the diameter for general SE graphs in the 2´neighborhood model.
We also show an example of a swap equilibrium graph with diameter of 4
for 2-neighborhood.

4.3.1 Theorem. If a swap equilibrium graph is a tree in the k´neighbourhood
model, then it has diameter at most k.

Proof. Assume the equilibrium tree T = (V, E) has diameter at least k + 1
and we consider a path (v1, v2, ..., vk+1, vk+2) and Tv1 , Tv2 , ..., Tvk+1 , Tvk+2 as
their subtrees rooted at v1, v2, ..., vk+1, vk+2, respectively.

The utility for player v1 is

Uv1(T) = Nk(Tv1 , v1) + Nk´1(Tv2 , v1) + Nk´2(Tv3 , v1) + ... + N1(Tvk , v1).

Consider the swap (v1, v2, vk+1). Then, we have

U1v1
(T) = 1 + Nk(Tv1 , v1) + Nk´2(Tvk+2 , v1) + Nk´1(Tvk+1 , v1)

+ Nk´2(Tvk , v1) + ... + N1(Tv3 , v1).
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By stability U1v1
(T) ď Uv1(T), then we have

1 + Nk´2(Tvk+2 , v1) + Nk´1(Tvk+1 , v1) + Nk´2(Tvk , v1) + ... + N1(Tv3 , v1)

ď Nk´1(Tv2 , v1) + Nk´2(Tv3 , v1) + ... + N1(Tvk , v1). (4.3.2)

Moreover, the utility for player vk+1 is

Uvk+2(T) = Nk(Tvk+2 , vk+2) + Nk´1(Tvk+1 , vk+2) + Nk´2(Tvk , vk+2)

+ ... + N1(Tv3 , vk+2).

Consider the swap (vk+2, vk+1, v2). Then, we have

U1vk+2
(T) = 1 + Nk(Tvk+2 , vk+2) + Nk´1(Tv2 , vk+2) + Nk´2(Tv1 , vk+2)

+ Nk´2(Tv3 , vk+2) + ... + N1(Tvk , vk+2)

By stability U1vk+2
(T) ď Uvk+2(T), then we have

1 +Nk´1(Tv2 , vk+2) + Nk´2(Tv1 , vk+2) + Nk´2(Tv3 , vk+2) + ... (4.3.3)

+ N1(Tvk , vk+2) ď Nk´1(Tvk+1 , vk+2) + Nk´2(Tvk , vk+2) + ... + N1(Tv3 , vk+2).

From equations (4.3.2) and (4.3.3), we obtain

2 + Nk´2(Tvk+2 , vk+2) + Nk´2(Tv1 , vk+2) ď 0 ,

a contradiction.

4.3.4 Proposition. Let a swap equilibrium graph G = (V, E) in the
2´neighborhood model be given and a, c P V with dist(a, c) ě 4. Then for
all b P N(a) we have deg(b) ą deg(c).

Proof. Let b P N(a). We analyze what happens if we consider the swap
(a, b, c). When removing the edge {a, b}, the loss in utility for a is at most
deg(b), since b contributes at most itself plus deg(b)´ 1 of its neighbors
to N2(a). On the other hand, when subsequently adding {a, c}, the gain
in utility is exactly deg(c) + 1, since none of c’s neighbors is in N2(a) due
to the distance between a and c. Due to the SE condition, it follows that
deg(c) + 1 ď deg(b).

4.3.5 Theorem. An SE graph in the 2´neighborhood model has its diameter
upper-bounded by 4.
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u

Figure 4.1. A 4´diameter swap equilibrium graph in the 2´neighborhood model.

Proof. For contradiction, assume there exists a shortest path (v0, v1, ..., vk1)
with k1 ě 5. Denote a := v1 and b := vk1 . Then dist(a, b) = k1 ´ 1 ě
5 ´ 1 = 4 and v0 P N(a), so by Proposition 4.3.4 we have deg(v0) ą
deg(b) = deg(vk1). The same argument with a := vk1´1 and b := v0 yields
deg(vk1) ą deg(v0), a contradiction.

4.3.6 Theorem. In the 2´neighborhood model, there is a swap equilibrium graph
with diameter 4.

Proof. Figure 4.1 is an illustration for a swap equilibrium graph with a
diameter of 4, which also can be drawn like Figure 4.2. We prove the swap
equilibrium properties. It is clear that removing an incident edge for any
player cannot improve the utility of them. We consider all possible edge
swaps around each player:

(i) Players c, g, i and j have eccentricity of 2, hence they have maximum
utility and no incentive to swap.

(ii) Player a; due to symmetry, we may restrict to one of the edges
{a, h} or {a, b}. We look at edge {a, h}. The swaps (a, h, j), (a, h, g),
(a, h, f ), (a, h, d) and (a, h, e) do not change the utility of player a.
The swaps (a, h, i) and (a, h, c) reduce the utility by 1. Thus no swap
can improve the utility of player a.
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Figure 4.2. Different drawing of the graph from Figure 4.1.

(iii) Player b; we have three possibilities of swap for b:

(a) Swapping the incident edge {b, a}. The swaps (b, a, d), (b, a, e),
(b, a, f ), (b, a, g) and (b, a, j) reduce the utility of b by 1. The
swap (b, a, h) does not change the utility of vertex b.

(b) Swapping the incident edge {b, i}. The swap (b, i, f ) does not
change the utility. The swaps (b, i, j), (b, i, d) and (b, i, e) reduce
the utility of b by 1. The swaps (b, i, g) and (b, i, h) decrease the
utility by 2.

(c) Swapping the incident edge {b, c}. The swap (b, c, d) does not
change the utility of vertex b. The swaps (b, c, e), (b, c, g) and
(b, c, f ) reduce the utility of b by 1. The swaps (b, c, j) and
(b, c, g) decrease the utility by 2.

(iv) Player e; by considering Figure 4.2, we have an argument similar to
item (ii).

(v) By considering Figure 4.2, we have an argument similar to item (iii)
for players d, f and h.
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Chapter 5

Network Coloring Games with
Concave Payoff

Unlike in the previous chapters, now the network is fixed (in the form of
an undirected graph). Players still correspond to vertices. But instead of
building or removing links, each player can choose a color from a given
set of possible colors. Utility, or payoff, as we will call it here, depends
on the colors chosen by the player and her neighbors. This chapter is in
part based on [KSS17]. Notably, however, here we give the resolution for a
conjecture posed in [KSS17]; see Section 5.4 for a summary of our results.

5.1 Model, Notation, Basic Notions

Let G = (V, E) be an undirected, simple graph without any isolated
vertices (n := |V| and m := |E|) and k P Ně2. A function c : V ÝÑ [k] is
called a k-coloring or coloring, where [k] = {1, . . . , k}. Vertices of the graph
represent players, and each player is to choose exactly one color from the
set [k]. We sometimes call this set [k] the spectrum. Clearly, a k-coloring is
used to collect the choices of all the players.1 Given a coloring c, define
the payoff or utility for player v as

Uv(c) := ∑
wPN(v)

f
(
|c(v)´ c(w)|

)
, (5.1.1)

where f is a non-negative, real-valued function defined on [0, k] (choosing
this domain instead of {0, . . . , k´ 1} is technically easier). Given such f ,

1The term “graph coloring game” in the literature also names a class of maker-breaker
style games, which we are not referring to here.
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we denote f˚ := maxiPD f (i) the maximum value that f attains on the
possible distances D := {0, . . . , k´ 1} between two colors, and

D˚( f ) := {i P D ; f (i) = f˚}.

We call f (|c(v)´ c(w)|) the contribution of edge {v, w}. So f˚ is an
upper bound on the contribution of any edge, and it is attained if the
two players v and w manage to put a distance between each other which
is in the set D˚( f ). We assume f˚ ą 0, since otherwise the situation is
uninteresting. If f is concave, this implies

f (i) ą 0 @i P D+ := {1, . . . , k´ 1} , (5.1.2)

that is, f is positive for all the positive distances.
Let c be a k-coloring. For a player v P V and a color t P [k] we write the

coloring where v changes to color t as c[v Ð t], so

c[v Ð t](w) =

t if w = v
c(w) otherwise

for w P V.

A coloring c is called stable if

Uv(c[v Ð t]) ď Uv(c) @t P [k] @v P V . (5.1.3)

This is our equilibrium concept. The social utility of c is SU(c) :=
∑vPV Uv(c). We denote the optimum social utility as SUOPT := maxc SU(c),
where c runs over all k-colorings; optimum colorings exist since there are
only finitely many colorings. The price of anarchy is:

PoA(G, f , k) := max
c is stable k-coloring

SUOPT

SU(c)

The idea is the same as with network formation games: the price of
anarchy measures the worst-case performance-loss due to non-cooperative
behavior.

It is easy to see that stable colorings always exist, by a potential function
argument. This has been observed before in the broader class of polymatrix
common-payoff games [CD11],2 and we repeat that simple argument here

2In [CD11], the term “coordination” is used instead of “common-payoff”.
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for completeness. Note that we can write social utility as follows:

SU(c) = 2 ∑
{u,w}PE

f
(
|c(u)´ c(w)|

)
(5.1.4)

If a player v makes an improvement step resulting in coloring c1 (i. e., there
is t P [k] such that c1 = c[v Ð t] and Uv(c) ă Uv(c1)) then

∑
{v,w}PE

f
(
|c(v)´ c(w)|

)
ă ∑

{v,w}PE
f
(
|c1(v)´ c1(w)|

)
,

that is, the part of the sum in (5.1.4) with edges incident in v strictly
increases. All other terms in the sum are maintained. Hence SU(c) ă
SU(c1). So in particular any optimal coloring is stable. Since existence
of optimal colorings is guaranteed, we also have stable colorings. Note
however that there can be sub-optimal stable colorings, which motivates
the study of the price of anarchy.

5.2 Previous and Related Work

Graph coloring has been a theme in Combinatorics and Combinatorial
Optimization for many decades. A coloring c for a graph G = (V, E) is
called proper or legal if c(v) ‰ c(w) for all {v, w} P E, and given v P V we
call a neighbor w P N(v) properly colored if c(v) ‰ c(w). Determining the
minimal k such that a given graph admits a proper k-coloring, i. e., the
chromatic number χ(G), is NP-hard [Kar72]. One of the classical highlights
is Brooks’ theorem [Bro41; Lov75], stating that for each graph G which
is neither a complete graph nor a cycle of odd length, a proper ∆-color-
ing can be constructed by a combinatorial algorithm in polynomial time,
where ∆ is the maximum vertex degree in G. Another important algo-
rithmic technique for finding proper colorings with provable worst-case
performance is semi-definite programming with randomized hyperplane
rounding [KMS98]. In addition, for more than three decades, distributed
algorithms for proper colorings have been studied, see [BE13] for a re-
cent survey. In the distributed model, each vertex is a processor and can
communicate with its neighbors, where communication is done in rounds.
For example, in one round, each vertex could communicate its color to
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all of its neighbors. In 2006, a study with human subjects was conducted
by Kearns et al. [KSM06], where each subject controlled the color of one
vertex, to be selected from a set of χ(G) colors, and each subject could see
the colors of her neighbors. The goal was to construct a proper coloring.
The study used graphs with n = 38 vertices and focused on certain classes
of graphs, like cycles, small world graphs, and random graphs from the
preferential attachment model. It is reported how the time required to
reach a proper coloring is influenced by the structure of the graph.

A game-theoretic view on proper colorings was given in 2008 by
Panagopoulou and Spirakis [PS08]. In their model, payoff for a player
v is 0 whenever there exists a non-properly colored neighbor of v, other-
wise payoff is the total number of players with color c(v) in the graph.
The idea is to incentivize players to create a proper coloring with few dif-
ferent colors. Indeed, two of the main results in [PS08] are that equilibria
can be constructed by improvement steps in polynomial time, and that
they are proper colorings using a total number of different colors that
is upper-bounded by several known upper bounds on χ(G). So [PS08]
yields a constructive proof for all of those bounds. For the same model,
improved bounds and an extension to coalitions were later given by Es-
coffier et al. [EL10]; and Chatzigiannakis et al. [CKP+10] gave algorithmic
improvements including experimental studies. Also in 2008, Chaudhuri
et al. [CCJ08] considered the simpler payoff function that is 1 for player v
if all of v’s neighbors are properly colored and 0 otherwise. They showed
that if the total number of available colors is ∆ + 1 and if players do im-
provement steps in a randomized manner, then an equilibrium (which also
is a proper coloring) is reached in O(log(n)) steps with high probability.

A generalization of proper colorings are distance-constrained labelings,
which are connected to the frequency assignment problem, where colors
correspond to frequencies [Jan02]. Given integers p1, . . . , pl , a coloring
c is called an L(p1, . . . , pl)-labeling if for all i P [l] and all v, w P V we
have |c(v)´ c(w)| ě pi whenever distG(v, w) = i, where distG(v, w) is the
graph-theoretical distance between v and w, i. e., the length of a shortest
v-w path in G. The notion of L(1)-labeling coincides with that of proper
coloring. The case of L(p, q)-labelings, that is, where l = 2, has received
special attention, in particular in connection with frequency assignment,
see, e. g., [Yeh06; Cal11; HIO+14]. As a variation of this, not the distance
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|c(v)´ c(w)| between colors is considered, but instead it is required that

min
{
|c(v)´ c(w)|, k´ |c(v)´ c(w)|

}
ě pi ,

whenever distG(v, w) = i, as considered in [HLS98]. Another variation are
T-colorings [Hal80; Rob91]: given a set of integers T, a T-coloring is one
where |c(v)´ c(w)| R T whenever {v, w} P E. This problem also arises in
frequency assignment where T is the set of forbidden spectral distances
between neighboring senders, which are known to cause interference.

In our model, we allow colorings being evaluated by the payoff function
and not only ask whether they have a certain property (e. g., being proper,
a T-coloring, etc.) or not. For example, using

f : [0, k] ÝÑ Rě0, x ÞÑ

0 if x = 0
1 otherwise

(5.2.1)

as the function f , payoff for each player v is the number of her properly
colored neighbors. We call this basic payoff. Note that this is a concave
function. With this payoff, the game is also known as a max-k-cut game
(in the unweighted version), since we partition the vertices in k clusters
and payoff for v is the total number of cut edges incident to v, i. e., edges
incident to v and running between clusters. These games were studied by
Hoefer [Hoe07] in 2007, and a tight bound of k

k´1 on the price of anarchy
was proved, where tightness is already attained on bipartite graphs. The
upper bound works by a mean-value argument: for each coloring and for
each player v, there is a color t that occurs on at most deg(v)

k neighbors
of v. In a stable coloring, v chooses this t, or even better if possible,
hence obtaining a payoff of at least k´1

k deg(v). Since optimum social
utility is upper-bounded by 2m, the theorem follows from this (using the
handshaking lemma for the sum of degrees). In Section 5.11.1 we provide
indication that already for f (x) = x, a straightforward generalization of
this technique cannot yield a constant upper bound.

A weighted version of max-k-cut games is obtained by assigning a
weight to each edge and defining payoff for v as the sum of the weights of
the incident cut edges. This version under the aspect of coalitions among
players was studied by Gourvès and Monnot [GM09] in 2009.
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In 2013, Kun, Powers, and Reyzin [KPR13] considered complexity
issues for basic payoff, i. e., payoff as per (5.2.1), combined with variations
of the game. It is clear that since social utility for basic payoff can only
change in integer steps and can never be more than 2m, we will reach a
stable coloring after at most O(m) improvement steps (m is the number
of edges in the graph). On the other hand, Kun et al. show that for basic
payoff, it is NP-hard to decide whether a graph admits a strictly stable
coloring, where the latter notion is defined by replacing ď for ă in (5.1.3).
They also show that for basic payoff, it is NP-hard to decide whether a
directed graph has a stable coloring, where for directed graphs, payoff is
defined by having the sum in (5.1.1) only range over the out-neighbors
of v.

In 2014, Apt et al. [ARS+14] used the function

f : [0, k] ÝÑ Rě0, x ÞÑ

1 if x = 0
0 otherwise

, (5.2.2)

which counts the neighbors of the same color, together with the extension
that each player has a set of colors to choose from (whereas we in our
model always allow all colors for all players). They study this game under
different aspects, including coalitions, price of anarchy, and complexity.
As for the price of anarchy without coalitions, it is easy to see that it
can be unbounded. The lower-bound construction depends on the fact
that we can forbid certain colors for certain players: for example, for each
player v let there be a distinct “private” color sv, and in addition there
is a “common” color t. Player v can choose her color from the set {sv, t}.
The social optimum, namely 2m, is obtained when each player chooses t,
whereas a worst-case stable coloring, with social utility 0, is obtained when
each player v chooses sv. Without the ability to restrict players to certain
colors, i. e., if we use our framework for the function f in (5.2.2), a tight
bound on the price of anarchy of k is easy to see (Section 5.11.2).

The graph coloring games studied in our work belong to the class of
polymatrix games [Yan68; CD11]. In such a game, we have a graph G =
(V, E), for each player a set of strategies, and for each edge {v, w} P E a
two-player matrix game Γ{v,w}. Each player v chooses one strategy and has
to play this same strategy in all the games {Γ{v,w}}wPN(v)

corresponding
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to incident edges. Payoff for v is the sum of the payoffs over all those
two-player games. A special case is that of polymatrix common-payoff games,
which means that each Γ{v,w} is a common-payoff game, i. e., it always
yields the same payoff for v as for w.3 Thus our graph coloring games
belong to this class, since each edge {v, w} contributes the same value
f (|c(v)´ c(w)|) to the payoffs of v and of w. Recently, in 2015, Rahn and
Schäfer [RS15] studied polymatrix common-payoff games with coalitions.
They consider (α, l)-equilibria, that are α-approximate equilibria under
coalitions of size l. For the corresponding price of anarchy, they give
a lower bound of 2α(n ´ 1)/(l ´ 1) + 1 ´ 2α and an upper bound of
2α(n´ 1)/(l ´ 1). Note that in our work, we have l = 1 since we do not
consider coalitions, and for this case their bounds are 8. This follows
already from the example given in [ARS+14], which is based on restricting
certain players to certain colors (the “private” and “public” colors) and is
explained in the previous paragraph.

5.3 Our Direction and More Related Work

In 2013, Kun et al. [KPR13] named as open problems the study of the price
of anarchy for payoff as per (5.1.1) and induced by f being the identity, i. e.,
the contribution of edge {v, w} is the distance |c(v)´ c(w)|. We call this dis-
tance payoff. A variation, which Kun et al. also refer to, is the notion studied
by van den Heuvel et al. [HLS98] in the context of frequency assignment,
namely the contribution of {v, w} is min {|c(v)´ c(w)|, k´ |c(v)´ c(w)|},
which in our notation means f (x) = min {x, k´ x}. We call this cyclic
payoff. It rewards players for keeping a “medium” distance from others.
This has an additional interpretation in connection with an example often
given in the context of proper colorings, namely where colors correspond
to skills and people inside of an organization try to develop skills that are
complementary to nearby colleagues (see, e. g., [KSM06; CCJ08]). Cyclic
payoff refines that idea: subjects are incentivized to develop different but
still related (that is, not too far away) skills. Distance and cyclic payoff both

3Such are called “coordination games” sometimes, but the use of this term is not consistent
in the literature. We stick to the terminology from [LS08, Sec. 1.3.2], which is “common-
payoff game”.
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result from concave functions f , so they are both special cases of the payoff
functions studied in our work.

Spectrum sharing and frequency (or channel) assignment problems,
that is, when a multitude of participants compete for using the same or
similar frequencies, has received much attention lately, see, e. g., [PZZ06;
FK07; HHL+10; DA12]. Many works in that field use some form of graph
coloring (colors corresponding to frequencies) in a distributed or game-
theoretic setting. It is common in the frequency assignment literature
to consider not only feasible versus infeasible colorings but instead to
quantify the “degree of interference”. To this end, the spectral distance
|c(v)´ c(w)| between players v and w is often used as a measure or as
a substantial ingredient to a measure. In addition to the references we
give above for distance-constrained labeling and for T-coloring, this is
documented for example in [Gam86, Sec. 2], [ASH02, Sec. 2.1], [SP02,
Sec. II.B], [AHK+07, Sec. 3], and [BEG+10, Sec. 11.6]. So our game can
be used to model the case where each participant of a wireless network,
e. g., a mobile telephone network or wireless sensor network, chooses her
frequency non-cooperatively and with respect to a measure of interference
expressed by a concave function applied to spectral distances (where
higher values of that function mean less interference).

A first game-theoretic study of distance and cyclic payoff in our frame-
work was conducted by Schink [Sch14] in 2014. He observed that a stable
k-coloring for distance payoff can be constructed from a stable 2-coloring
for basic payoff by replacing color 2 with k. A similar approach works
for cyclic payoff if k is even, replacing color 2 with k

2 + 1. Since a stable
coloring for basic payoff can be constructed in O(m) improvement steps,
this gives a runtime guarantee independent of k. Since social utility can
reach up to Ω(mk) for distance and cyclic payoff, such a k-independent
guarantee is not easily possible by a direct argument using improvement
steps. Interestingly, for cyclic payoff and odd k, we have no k-independent
runtime guarantee for the construction of stable colorings at this time.
For price of anarchy, Schink proved an upper bound of ∆(G), the maxi-
mum vertex degree in G, for cyclic payoff. Apart from that, we are not
aware of any previous bounds on the price of anarchy for graph color-
ing games with concave payoff, not even conjectures. The work by Rahn
and Schäfer [RS15], for general polymatrix common-payoff games, can
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be considered orthogonal to ours since they do not consider the effects
of restricting the two-player games Γ{v,w} to certain classes, whereas we
restrict to such games arising from applying a concave function to the
color distance |c(v)´ c(w)|, resulting in small constant bounds on the
price of anarchy. Moreover, [RS15] allows restricting players to certain sets
of colors (making finite bounds on the price of anarchy impossible without
coalitions), whereas in our model, each player has the same set of colors
to choose from.

5.4 Our Contribution and Techniques

We prove constant upper bounds on the price of anarchy for several classes
of concave functions f . We prove a bound of 2 for all concave functions
f which assume f˚ at a distance on or below b k

2c, that is, for which
D˚( f )X {0, . . . , b k

2c} ‰ H. This includes cyclic payoff. We show that for
this class of functions, this bound is the best possible, since for cyclic
payoff with even k, the price of anarchy is exactly 2. For non-decreasing
concave functions, we also show an upper bound of 2. This includes
distance payoff. Again, we show that for this class of functions, this bound
is the best possible. The remaining concave functions are those which have
D˚( f )X {b k

2c+ 1, . . . , k´ 2} ‰ H. For those, an upper bound of 3 on the
price of anarchy was proved in [KSS17], and it was conjectured – based
on computer experiments – that a bound of 2.5 should be possible. We
resolve this conjecture here for k ě 16.

It may be surprising at first that the situation is not symmetric: func-
tions with their maximum left of the middle of the spectrum behave
differently from functions with their maximum right of the middle. But
in fact this is to be expected since for example, a player can always force
all the distances to her neighbors to be on or below b k

2c by choosing her
own color as b k

2c+ 1, but it is not always possible to force all distances
beyond 1. So there is an asymmetry between short and long distances.

All our proofs work by local arguments. That is, if we are to prove an
upper bound of λ ě 1 on the price of anarchy, we show the following: for
each player v, given the colors (c(w))wPN(v) of her neighbors, there is a
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color t P [k] such that

∑
wPN(v)

f
(
|c(w)´ t|

)
ě

deg(v) ¨ f˚

λ
.

Clearly, in a stable coloring, each player chooses such a color t, or better.
Hence SU(c) ě 2m f˚

λ for a stable c. Since SUOPT ď 2m f˚, the bound λ
follows.

In the next section, we provide a framework for the type of local
arguments described in the above paragraph. To this end, we introduce
the local parameter λ( f , k) of a function f and show PoA(G, f , k) ď λ( f , k).
In Section 5.6, we show how to obtain an upper bound of 4 on the local
parameter, and thus on the price of anarchy, for any concave function
f by a simple technique. In Section 5.7, a more elaborate technique is
introduced. It says that if we can find a representation of a number λ ě 1
as a sum λ1 + . . . + λk = λ with ∑k

s=1 λs ¨ f (|s´ p|) ě f˚ for all p P [k],
then we have λ( f , k) ď λ, and thus a bound of λ on the price of anarchy.
Using this splitting technique, we prove our main results in Section 5.7 and
Section 5.9. For example, the upper bound of 2 for cyclic payoff can be
proven using the splitting defined by λ1 := 1 and λb k

2 c+1 := 1 and λs := 0

for all remaining indices s P [k]z{1, b k
2c+ 1}.

Appropriate splittings up to a certain granularity for moderate values
of k and given function f can be found by computer, doing a simple
enumeration. We fix δ = (δ1, . . . , δr) such that λ = ∑r

i=1 δi, for example
δ = (1, 1, 1

4 , 1
4 ) for λ = 2.5. For each v = (v1, . . . , vr) P [k]

r define a splitting
λ(v) by λs(v) := ∑ iP[r]

vi=s
δi for each s P [k]. Then we let the computer

enumerate all v P [k]r and output those corresponding splittings λ(v) that
satisfy the necessary conditions. Although this is for a concrete k and not
general, it can give valuable hints on how to do a general proof. We used
this to obtain essential ideas for many of our proofs.
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5.5. The Local Parameter

5.5 The Local Parameter

For a function f : [0, k] ÝÑ Rě0 we define the local parameter of f as

λ( f , k) := max
νPN

max
c1,...,cνP[k]

ν f˚

maxtP[k] ∑ν
i=1 f (|ci ´ t|) . (5.5.1)

By (5.1.2), the denominator is never zero. Clearly, the denominator is never
greater than ν f˚, so λ( f , k) ě 1. The intuition is that we capture the best
way a player can react to a given set of colors c1, . . . , cν (which will be the
colors of her neighbors when applying this to the graph coloring game)
relative to the maximum conceivable payoff ν f˚.

5.5.2 Remark. We have PoA(G, f , k) ď λ( f , k).

Proof. Let c be stable and v P V. By definition of the local parameter, we
have

λ( f , k) ě
deg(v) ¨ f˚

maxtP[k] ∑wPN(v) f (|c(w)´ t|)

hence,
max
tP[k]

∑
wPN(v)

f (|c(w)´ t|) ě deg(v) ¨ f˚

λ( f , k)
.

That is, there is a color t which v can choose to obtain payoff at least
that much. Since c is stable, player v chooses such a color, or better, so
Uv(c) ě

deg(v)¨ f˚

λ( f ,k) . Choosing c as a worst-case stable coloring, and using
the trivial upper bound SUOPT ď 2m f˚ and the handshaking lemma, we
obtain:

PoA(G, f , k) =
SUOPT

SU(c)
ď

2m f˚

∑vPV Uv(c)
ď

2m f˚
f˚

λ( f ,k) ∑vPV deg(v)
= λ( f , k)
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The local parameter has the following simple properties:

5.5.3 Remark.

• The local parameter is invariant against scaling, that is, λ( f , k) =
λ(γ f , k) for all γ P Rą0.

• The local parameter is monotone in the following way. Let f , g : [0, k] ÝÑ
Rě0 such that f (i) ě g(i) for all i P D, and f˚ = g˚. Then λ( f , k) ď
λ(g, k).

Proof. Follows directly from the definition in (5.5.1).

5.6 A First Upper Bound

As a start, we provide a lose bound of 4 on the local parameter by a simple
argument. This bound is later improved, depending on where f assumes
its maximum.

5.6.1 Theorem. Let f be concave. Then λ( f , k) ď 4.

Proof. Let ν P N and c1, . . . , cν P [k] and define the function φ(t) :=
∑ν

i=1 f (|ci ´ t|). We are done if we can prove that there is t P [k] with

φ(t) ě ν f˚
4 . Let k˚ P D˚( f ), i. e., k˚ P {0, . . . , k´ 1} with f (k˚) = f˚.

By concavity, f assumes a value of at least f˚
2 between k˚ and the half-

way point to 0 as well as to the half-way point to k, i. e., for all x P H :=
[ k˚

2 , k˚+ k´k˚
2 ] = [ k˚

2 , k+k˚
2 ] we have f (x) ě f˚

2 . One of the following two
cases is given: ci ď b k

2c for at least ν
2 distinct i P [ν], or ci ě b k

2c+ 1 for at
least ν

2 distinct i P [ν].
Assume the first case. We choose t := d k+k˚

2 e ď d 2k
2 e = k. Let i P [ν]

be an index with ci ď b k
2c (of which we have at least ν

2 ones in this case).
Then |ci ´ t| = t´ ci ď t´ 1 =

⌈ k+k˚
2
⌉
´ 1 ď k+k˚

2 ,

and t´ ci ě
⌈ k+k˚

2
⌉
´ b k

2 c ě
k+k˚

2 ´ k
2 = k˚

2 .

Hence |ci ´ t| P H, which means that f (|ci ´ t|) ě f˚
2 . Since we have at

least ν
2 of those indices, it follows φ(t) ě ν

2
f˚
2 = ν f˚

4 .
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The other case can be treated likewise; define t := d k´k˚
2 e. Let i P [ν]

be an index with ci ě b k
2c+ 1. Then

|ci ´ t| = ci ´ t ď k´
⌈ k´k˚

2
⌉
ď k´ k´k˚

2 = k+k˚
2 ,

and

ci ´ t ě b k
2 c+ 1´

⌈ k´k˚
2
⌉
ě k

2 ´
1
2 + 1´

( k´k˚
2 + 1

2
)
= k˚

2 .

So also in the case, |ci ´ t| P H.

5.7 The Splitting Technique

We give a simple but powerful technique to prove upper bounds on
the local parameter of a given function. Given a number λ P Rě1, we
call a family of numbers λ1, . . . , λk P Rě0 a splitting of λ, provided that
λ = ∑k

s=1 λs.

5.7.1 Lemma. Let λ ě 1 and λ1, . . . , λk P Rě0 be a splitting of λ. Let f :
[0, k] ÝÑ Rě0. Assume that the following condition is given:

@p P [k] :
k

∑
s=1

λs ¨ f (|s´ p|) ě f˚ (*)

Then λ( f , k) ď λ.

Proof. Let ν P N and c1, . . . , cν P [k]. We prove that

λ ¨max
tP[k]

ν

∑
i=1

f (|ci ´ t|) ě ν f˚ .

For each p P [k] denote νp := |{i P [ν] ; ci = p}|, that is, how many times
the number p occurs in the family c1, . . . , cν. We have:

λ ¨max
tP[k]

ν

∑
i=1

f (|ci ´ t|)

=
k

∑
s=1

λs ¨max
tP[k]

ν

∑
i=1

f (|ci ´ t|) def. of splitting
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ě

k

∑
s=1

λs ¨
ν

∑
i=1

f (|ci ´ s|) maximum

=
k

∑
s=1

λs ¨
k

∑
p=1

νp ¨ f (|p´ s|) subsume same values

=
k

∑
p=1

νp ¨
k

∑
s=1

λs ¨ f (|p´ s|) exchange summation

ě

k

∑
p=1

νp f˚ by (*)

= ν f˚

We demonstrate the use of the splitting technique by a couple of simple
proofs.

5.7.2 Proposition. Let a P Rą0 and b P Rě0 and f (x) = ax + b. Then
λ( f , k) ď ρ(a, b, k) := 2 a(k´1)+b

a(k´1)+2b ď 2.

Proof. All we have to do is check (*) for this function f and an appropriate
splitting of λ = ρ(a, b, k). We have f˚ = a (k´ 1) + b. Define λ1 := λk :=
ρ(a,b,k)

2 = f˚

a (k´1)+2b and λs := 0 for all other s, that is, all s P [k]z{1, k}. We
have to check

@p P [k] :
f˚

a (k´ 1) + 2b
¨

(
f (p´ 1) + f (k´ p)

)
ě f˚ ,

that is,
@p P [k] : f (p´ 1) + f (k´ p) ě a (k´ 1) + 2b .

The latter is clearly true due to the definition of f .

5.7.3 Corollary. Let f be concave, non-constant, and non-decreasing. Then
λ( f , k) ď ρ(a, b, k) ď 2, where a := f (k´1)´ f (0)

k´1 and b := f (0). (Since f is non-
constant, a ą 0. The constant case is trivial and needs no attention.)

Proof. Define the function g : [0, k] ÝÑ Rě0, x ÞÑ ax + b. By concavity of
f , we have g(x) ď f (x) for all x P [0, k´ 1]. By monotonicity of f , we have
f˚ = g˚. The corollary follows from Remark 5.5.3.
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We also treat the case of a decreasing affine and then a non-increasing
concave function. Here it makes sense to allow f to assume negative values
in (k´ 1, k].

5.7.4 Proposition. Let a P Rą0 and b P Rě0 and f (x) = b´ ax, such that
f (k´ 1) ě 0. Then λ( f , k) ď ρ1(a, b, k) := 2b

2b´a(k´1) , which is 2 for the case of
f (k´ 1) = 0.

Proof. We have f˚ = b. Define λ1 := λk := ρ1(a,b,k)
2 = f˚

2b´a(k´1) and λs := 0
for all other s. Now (*) follows from a simple calculation as in the proof of
Proposition 5.7.2.

5.7.5 Corollary. Let f be concave, non-constant, and non-increasing. Then
λ( f , k) ď ρ1(a, b, k) ď 2, where a := f (0)´ f (k´1)

k´1 and b := f (0).

Proof. Like Corollary 5.7.3.

5.7.6 Proposition. Let f (x) = min {x, k´ x}, that is, cyclic payoff. Then the
price of anarchy is upper-bounded by 2.

Proof. All we have to do is check (*) for this function f and an appropriate
splitting of λ = 2. For i P N denote ki := b k

2c + i. Then f˚ = k0 and
f (x) = x if x ď k0 and f (x) = k´ x if x ě k1. Define λ1 := 1 and λk1

:= 1
and λs := 0 for all other s. Condition (*) reduces to:

@p P [k] : f (p´ 1) + f (|k1 ´ p|) ě k0 (5.7.7)

To show (5.7.7), let p P [k]. If 1 ď p ď k1, then p´ 1 ď k0 and k1 ´ p ď k0,
so we have:

f (p´ 1) + f (|k1 ´ p|) = f (p´ 1) + f (k1 ´ p) = p´ 1 + k1 ´ p = k0

If k2 ď p ď k, then p´ 1 ě k2 ´ 1 = k1 and p´ k1 ď k´ k1 = d k
2e´ 1 ď k0,

so we have:

f (p´ 1) + f (|k1 ´ p|) = f (p´ 1) + f (p´ k1)

= k´ (p´ 1) + p´ k1 = k´ k0 ě k0

This concludes the proof.
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5.8 Lower Bounds

5.8.1 Proposition. The bound of ρ(a, b, k) implied by Proposition 5.7.2 on the
price of anarchy for affine functions f is the best possible, and the worst case is
assumed already on bipartite graphs.

Proof. We give an instance of the graph coloring game with function
f (x) = ax + b that has price of anarchy ρ(a, b, k). Consider the complete
bipartite graph K2,2 and denote {u1, u2} the vertices of one partition and
{w1, w2} those of the other (so edges are all {ui, wj} with i, j P {1, 2}).
Define coloring c by:

c(u1) := 1 c(u2) := k c(w1) := b k+1
2 c c(w2) := d k+1

2 e

It is easy to see that c is stable: players w1 and w2 have payoff a (k´ 1) + 2b
each, no matter which color they choose. Players u1 and u2 also have
payoff a (k´ 1) + 2b each, but only for colors 1 and k; for all other colors
they get less. An optimal coloring is obtained by c(ui) := 1 and c(wi) := k
for i P {1, 2}, with each edge giving contribution a (k´ 1) + b. We have,
using the number m = 4 of edges,

SUOPT

SU(c)
=

2 ¨ 4 ¨ (a (k´ 1) + b)
4 ¨ (a (k´ 1) + 2b)

= ρ(a, b, k) .

5.8.2 Proposition. The bound of ρ1(a, b, k) implied by Proposition 5.7.4 on the
price of anarchy for affine decreasing functions f is the best possible, and the worst
case is assumed already on bipartite graphs.

Proof. We use the same graph as in the proof of Proposition 5.8.1. However,
we define coloring c by:

c(u1) := 1 c(u2) := k c(w1) := 1 c(w2) := k

It is easy to see that this is stable with SU(c) = 4 (2b´ a(k´ 1)). Since the
optimum is 8b, when all players choose the same color, a price of anarchy
of 2b

2b´a(k´1) = ρ1(a, b, k) follows.

5.8.3 Proposition. The bound of 2 implied by Proposition 5.7.6 on the price of
anarchy for cyclic payoff is the best possible for even k, and the worst case is
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assumed already on a cycle of even length. For odd k, we have a lower bound of
3
2 (1´

1
k ).

Proof. Again for each i P N0 denote ki := b k
2c + i. First let k be even.

Consider a cycle of length 4n for some n P Ně1 and color like so:

1, 1, k1, k1, 1, 1, k1, k1, . . .

Then half of the edges have contribution 0, namely between players of the
same color, and the other half has contribution k0 each, so the welfare is
nk0. We prove that this coloring is stable. Let v be a player with c(v) = 1.
Her payoff is k0. If she changes to a color 2 ď t ď k1, her new payoff will
be (t´ 1) + (k1 ´ t) = k1 ´ 1 = k0, so no improvement. If she changes
to a color k1 + 1 ď t ď k, her new payoff will be (t´ k1) + k´ (t´ 1) =
k´ k1 + 1 = k0´ 1+ 1 = k0, so also no improvement. The case c(v) = k1 is
treated likewise. An optimal coloring uses 1 and k1 alternately and yields
welfare 2nk0. This proves the claim.4

For odd k, we take a cycle of length 6n for some n P Ně1 and color like
so: 1, k1, k2, 1, k1, k2, . . .. The pattern 1, k1, k2 can be repeated an integral
number of times since the number of vertices is a multiple of 3. This yields
welfare 2n (k0 + 1 + k0) = 4nk0 + 2n, so in comparison with the optimum
(still attained by using 1 and k1 alternately, since number of vertices is
even) we have

6nk0

4nk0 + 2n
=

3
2

(
1´

1
2k0 + 1

)
=

3
2

(
1´

1
k

)
.

We prove that this coloring is stable. Let v be a player with c(v) = 1. Her
payoff is 2k0. If she changes to color t with 2 ď t ď k1, her new payoff
will be (k1 ´ t) + (k2 ´ t) = 2k0 + 3´ 2t ď 2k0 ´ 1, so no improvement. If
she changes to color t with k2 ď t ď k = 2k0 + 1, her new payoff will be
(t´ k1) + (t´ k2) = 2t´ 2k0 ´ 3 ď 2(2k0 + 1)´ 2k0 ´ 3 = 2k0 ´ 1, so also
no improvement.

Now let c(v) = k1. Her payoff is k0 + 1 = k1. If she changes to color
t with 2 ď t ď k1 ´ 1 = k0, her new payoff will be (t´ 1) + (k2 ´ t) =

4The above construction is not stable for odd k, since then for example a player with color
k1 could change to k2: this would not change the contribution of the edge to the 1-colored
neighbor (it remains k0) but would increase distance from 0 to 1 regarding the k1-colored
neighbor, hence increasing payoff by 1.
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k2 ´ 1 = k1, so it is no improvement. If she changes color to 1, then her
new payoff will be k´ (k2 ´ 1) = k´ k1 = k´ k0 ´ 1 = k1 ´ 1 = k0, so no
improvement; note that k´ k0 = k1. If she changes to color t with k1 + 1 ď
t ď k, her new payoff will be k´ (t´ 1) + (t´ k2) = k + 1´ k0´ 2 = k1´ 1,
so also no improvement. The case c(v) = k2 can be treated likewise and is
omitted here.

5.9 General Concave f

We define a family of “prototype” concave functions. For each ` P N with
1 ď ` ă k´ 1 define:

f` : [0, k] ÝÑ Rě0, x ÞÑ

 x
` if x ď `
k´x
k´` if x ě `

(5.9.1)

So this function rises in a linear fashion from 0 until it reaches value 1 in `,
and then it drops in a linear fashion until it reaches value 0 in k. Clearly,
f˚` = 1. For even k and ` = k

2 , this function is that for cyclic payoff. The
following remark shows how to transfer bounds on the local parameter
on members of this familiy to general concave functions. Note that the
cases 0 P D˚( f ) and k´ 1 P D˚( f ) describe monotone functions f and
have been covered in Section 5.7 already (monotone on [0, k´ 1], which is
sufficient).

5.9.2 Remark. Let f : [0, k] ÝÑ Rě0 be concave. Then λ( f , k) ď λ( f`, k) for
all ` P D˚( f )z{0, k´ 1}.

Proof. Let ` P D˚( f )z{0, k´ 1}. Define g := f
f˚ , then g˚ = 1 and g(`) =

1 = f`(`), so g˚ = f˚` . By concavity,5 f`(x) ď g(x) for all x P [0, k].
Applying Remark 5.5.3 two times yields: λ( f , k) = λ( f

f˚ , k) = λ(g, k) ď
λ( f`, k).

5Due to the particular shape of f`, in order for this concavity argument to work, it is
important that f is concave on [0, k] and not only on [0, k ´ 1].
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5.9.3 Remark. Let k P Ně2 and f : [0, k] ÝÑ Rě0 be any function. Assume
we have α P Rą0 and s, t P [k] such that:

@p P [k] : f (|s´ p|) + f (|t´ p|) ě α f˚ (5.9.4)

Then λ( f , k) ď 2
α .

Proof. Then this is an application of the splitting technique with λs = λt =
1
α and λr = 0 for all r P [k]z{s, t}.

5.9.1 Maximum on the Left

5.9.5 Theorem. For 1 ď ` ă d k
2e we have λ( f`, k) ď 2.

Proof. For each i P N0 denote ki := b k
2c + i and also k1 := d k

2e. Define
s := k1 and t := k1 ´ `. Let p P [k]. By Remark 5.9.3 (note that f˚` = 1)
applied with α = 1, it remains to show:

φ(p) := f`(|k1 ´ p|) + f`(|k1 ´ `´ p|) ě 1

The following observations help to make the necessary case distinction:

|k1 ´ p| ď ` ðñ k1 ´ ` ď p ď k1 + `

|k1 ´ `´ p| ď ` ðñ k1 ´ 2` ď p ď k1

Case 1 ď p ă k1 ´ 2`:

φ(p) =
k´ (k1 ´ p) + k´ (k1 ´ `´ p)

k´ `
=

2(k´ k1 + p) + `

k´ `

ě
2(k0 + 1) + `

k´ `
ě

k + `

k´ `
ą 1

Case k1 ´ 2` ď p ă k1 ´ `:

φ(p) =
k´ (k1 ´ p)

k´ `
+

k1 ´ `´ p
`

ě
k´ (k1 ´ p) + k1 ´ `´ p

k´ `
= 1

Case k1 ´ ` ď p ď k1:

φ(p) =
k1 ´ p + p´ k1 + `

`
= 1
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Case k1 ă p ď k1 + `:

φ(p) =
p´ k1

`
+

k´ (p´ k1 + `)

k´ `
ě

p´ k1 + k´ (p´ k1 + `)

k´ `
= 1

Case k1 + ` ă p ď k:

φ(p) =
k´ (p´ k1) + k´ (p´ k1 + `)

k´ `
=

2(k + k1 ´ p)´ `

k´ `

ě
2k1 ´ `

k´ `
ě

k´ `

k´ `
= 1

5.9.2 Maximum on the Right

Now we will treat the case of d k
2e ď ` ă k ´ 1. For this case, we will

ultimately give an upper bound in the form of a function of k. That
function yields values at most 3 for all relevant k and values at most 2.5
for k ě 16.

5.9.6 Theorem. Let k P Ně2 and ` P N with d k
2e ď ` ă k´ 1. Then:

λ( f`, k) ď 2 ¨
(k´ `) `+ `2

(k´ `) (k´ `´ 1) + `2 = 2 ¨
k`

2`2 ´ ` (2k´ 1) + k (k´ 1)

Proof. We can verify by a routine calculation that the two expressions on
the right-hand side are the same. Aiming for an application of Remark 5.9.3,
define:

α :=
(k´ `) (k´ `´ 1) + `2

(k´ `) `+ `2 =
2`2 ´ ` (2k´ 1) + k (k´ 1)

k`

Define s := b(1´ α) `+ 1c ě (1´ α) `. Since k
2 ď `, we have k´ `´ 1 ă `,

hence α ă 1, hence s ě 1. Finally, define t := `+ 1. For this t, we know
f`(|t´ p|) = f`(|`+ 1´ p|) = |`+1´p|

` for each p. What we need to show
thus reduces to:

@p P [k] : f`(|s´ p|) + |(`+1)´p|
` ě α

Let p P [k]. We distinguish four cases. Note that by definition, (`+ 1)´ s ě
α`.
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5.9. General Concave f

Case 1 ď p ă s: Since s ď `+ 1, we have s´ p ď `. Hence we are in the
first case of the definition of f`:

f`(|s´ p|) + |(`+1)´p|
` = s´p+(`+1)´p

`

păs
ą

s+(`+1)´2s
` = (`+1)´s

` ě α

Case s ď p ď `+ 1: Again, we are in the first case of the definition of f`,
since p´ s ď `. Hence:

f`(|s´ p|) + |(`+1)´p|
` = p´s+(`+1)´p

` = (`+1)´s
` ě α

Case: `+ 1 ă p ď `+ s: We are still in the first case of the definition of f`.
Hence:

f`(|s´ p|)+ |(`+1)´p|
` = p´s+p´(`+1)

`

`+1ăp
ě

2(`+2)´s´(`+1)
` = `+3´s

` ą α

Case: `+ s ă p ď k: This is the only case where we are in the second case
of the definition of f`, since p´ s ě `. Hence:

f`(|s´ p|) + |(`+1)´p|
` = k´(p´s)

k´` + p´(`+1)
` ě α

ðñ p (k´ 2`)´ k + ` (s + `+ 1) ě α (k´ `) `

ðù k (k´ 2`)´ k + ` (s + `+ 1) ě α (k´ `) ` by k´ 2` ď 0

ðù k (k´ 2`)´ k + ` ((1´ α) `+ `+ 1) ě α (k´ `) ` by s ě (1´ α) `

ðñ k (k´ 2`)´ k + ` (`+ `+ 1) ě α ((k´ `) `+ `2)

ðñ k (k´ 2`)´ k + 2`2 + ` ě αk`

ðñ k (k´ 1) + ` (2k´ 1) + 2`2 + ` ě αk`

The last condition is true by definition of α.

5.9.7 Corollary. Let k P Ně2 and ` P N with d k
2e ď ` ă k´ 1. Then

λ( f`, k) ď
k√

2k(k´ 1)´ k + 0.5
=: ψ0(k) ,

where ψ0(k)Ñ 1√
2´1

« 2.414 for k Ñ8.
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5. Network Coloring Games with Concave Payoff

Proof. The asymptotics follow easily since

ψ0(k) =
1

√
2
√

1´ 1
k ´ 1 + 1

2k

.

Define, for fixed k,

ψ(`) := 2 ¨
k`

2`2 ´ ` (2k´ 1) + k (k´ 1)
,

which is the bound from the previous theorem. Treating ` as a real variable,
we have:

ψ1(`) = 2 ¨
k (2`2 ´ ` (2k´ 1) + k (k´ 1))´ k` (4`´ (2k´ 1))

(2`2 ´ ` (2k´ 1) + k (k´ 1))2 ą 0

ðñ k(k´ 1)´ 2`2 ą 0

ðñ ` ă

√
k(k´1)

2 =: `0

Hence ψ attains its maximum in `0. Writing

ψ(`) = 2 ¨
k

2`´ (2k´ 1) + k (k´1)
`

,

a routine calculation shows ψ(`0) = ψ0(k).

5.9.8 Corollary. Let k P Ně2 and ` P N with d k
2e ď ` ă k ´ 1. Then

λ( f`, k) ď 3 and λ( f`, k) ď 2.5 for k ě 16.

Proof. Due to d k
2e ď ` ă k´ 1, we have k ě 4. Using the function ψ0 from

the previous corollary, we compute ψ0(4) ă 2.86 and ψ0(16) ă 2.5. Since
ψ0 is non-increasing, the claim follows.

We summarize the upper-bound results in the following theorem:

5.9.9 Theorem. Let f : [0, k] ÝÑ Rě0 be a concave function.

(i) If D˚( f )X {0, . . . , b k
2c} ‰ H, then the price of anarchy is upper-bounded

by 2.

(ii) If D˚( f )X {b k
2c+ 1, . . . , k´ 1} ‰ H, then the price of anarchy is upper-

bounded by 3. If additionally, k ě 16, then it is upper-bounded by 2.5.
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5.10. Open Problems

Proof. If 0 P D˚( f ), we may assume that f is non-increasing; an upper
bound of 2 follows from Corollary 5.7.5. If k´ 1 P D˚( f ), we may assume
that f is non-decreasing; an upper bound of 2 follows from Corollary 5.7.3.
For the remaining cases, we are allowed to use Remark 5.9.2.

(i) Let ` P D˚( f )X {1, . . . , b k
2c} ‰ H. For 1 ď ` ă d k

2e, an upper bound
of 2 follows from Theorem 5.9.5. For odd k, we have b k

2c ă d k
2e, so all

cases are covered. For even k, the only remaining case is ` = b k
2c = d k

2e,
which corresponds to cyclic payoff, and an upper bound of 2 follows from
Proposition 5.7.6.

(ii) Let ` P D˚( f ) X {b k
2c+ 1, . . . , k´ 2} ‰ H. For d k

2e ď ` ă k ´ 1,
the claim follows from Corollary 5.9.8. This covers all cases since d k

2e ď
b k

2c+ 1.

5.10 Open Problems

Ź Computer experiments suggest that for functions assuming their maxi-
mum left of the middle of the spectrum, better bounds than 2 on the
local parameter should possible, depending on the exact location of
the maximum. However, the evidential basis for this is thin at this
time, since enumerative computer experiments are hindered by the
exponential search space (cf. the definition in (5.5.1)).

Ź Apart from the splitting technique, are there further theoretical methods
to compute or to approximate the local parameter? Are there faster
practical methods for this task than simple enumeration?

Ź For which functions f and which ranges for parameter k can we find
graphs G such that PoA(G, f , k) = λ( f , k)? In this work in Section 5.8,
we construct such graphs for f (x) = min {x, k´ x} and even k (cyclic
payoff) and for f of the form f (x) = ax + b.

Ź Computational issues for finding stable colorings should be addressed,
in particular the construction of stable colorings for cyclic payoff and
odd k in a number of steps being independent of k.
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5. Network Coloring Games with Concave Payoff

5.11 Appendix

5.11.1 Upper Bound by Mean-Value Argument

We prove a rough bound on the price of anarchy for distance payoff
(that is, f (x) = x) using a straightforward generalization of a mean-value
argument from the proof of [KPR13, Prop. 2]. We believe that not much
better bounds than this can be obtained without extending the technique.

Proposition. The price of anarchy for distance payoff is upper-bounded by 2k.

Proof. Let c be a stable k-coloring for G and fix a player v. Denote

` := max
tP[k]

|{w P N(v) ; c(w) = t}| (5.11.1)

the cardinality of the largest color class in v’s neighborhood. Then clearly
` ě ddeg(v)

k e. Let t be a color where the maximum in (5.11.1) is attained,
so there are ` neighbors of v with color t. At least one of the two numbers,
t + b k

2c or t ´ b k
2c is in [k]. By choosing an appropriate one of them, v

puts distance b k
2c between herself and those ` neighbors, so each of them

will contribute b k
2c to v’s payoff. In a stable coloring, such as c, player v

chooses such color or better, hence

SU(c) ě ∑
vPV

deg(v)
k b k

2 c =
2m
k b k

2 c ě
2m
k

k´1
2 .

Here, m is the number of edges in G. Using the trivial upper bound
SUOPT ď 2m (k´ 1), we obtain:

SUOPT

SU(c)
ď

2m (k´ 1) ¨ 2k
2m (k´ 1)

= 2k

5.11.2 Counting Neighbors with Same Color

Proposition. Define f as counting the neighbors with same color, that is,

f : [0, k] ÝÑ Rě0, x ÞÑ

1 if x = 0
0 otherwise

.
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5.11. Appendix

Then the price of anarchy with respect to f is upper-bounded by k, and this bound
is tight.

Proof. The upper bound follows from a mean-value argument like in
the proof of the proposition in Section 5.11.1: for each player v, there
is one color with which at least ddeg(v)

k e of her neighbors are colored,
so choosing this color will yield at least that much payoff for v. Hence
SU(c) ě ∑vPV

deg(v)
k = 2m

k for each stable coloring c. Using the trivial
upper bound SUOPT ď 2m yields the claim.

For the lower bound, consider the complete bipartite graph Kk,k. Clearly,
SUOPT = 2k2, which is attained if all players choose the same color, for
example color 1. Enumerate vertices in one partition {v1, . . . , vk} and in
the other {w1, . . . , wk} and define c(vi) := c(wi) := i for each i P [k]. Then
c is stable since whatever color a player chooses, her payoff is always 1.
We have SU(c) = 2k, and the price of anarchy is at least 2k2

2k = k.
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