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Abstract

Profiling refers to the process of collecting important and useful information or

patterns about someone or something. Due to the continuous growth of the

web, profiling methods play an important role in different applications such as

information retrieval and recommender systems.

In this thesis, we first demonstrate how knowledge graphs enhance profiling

methods. Knowledge graphs are central databases for entities such as persons and

locations and relations between them. In the last decade, a lot of knowledge graphs

have been developed with the objective of encouraging information reuse and

information discovery. Thus, we assume that knowledge graphs can assist profiling

methods. To this end, we develop a novel profiling method using knowledge graphs

called Hierarchical Concept Frequency-Inverse Document Frequency (HCF-IDF),

which combines the strength of traditional term weighting method and semantics

in a knowledge graph. HCF-IDF represents documents as a set of entities in

a knowledge graph and their weights. We apply HCF-IDF to two applications.

The first application is a recommender system that suggests relevant researchers

based on a user’s microblog postings. The second application is a recommender

system of scientific publications based on microblog postings. In both applications,

we could show our novel profiling method can effectively capture user interests

and a topic of a document. As key result, the method can make competitive

recommendations to users based on only the title data of scientific publications.

Our novel method reveals entities that are not directly mentioned but relevant

using the hierarchical structure of knowledge graphs. Therefore, it can cope with

the sparsity of the title data.

While the knowledge graphs can assist profiling methods, we also present how

profiling methods can improve the knowledge graphs. Since knowledge graphs are

often maintained and changed manually, it is important to profile the dynamics

of knowledge graphs in order to keep their integrity. To this end, we show two

methods that enhance the integrity of knowledge graphs. The first method is

a crawling strategy that keeps local copies of knowledge graphs up-to-date. A
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lot of applications store knowledge graphs as local copies to speed up the data

access. However, as knowledge graphs on the web change over time, the local

copies need to be updated to reflect these changes. We profile the dynamics of

knowledge graphs using a linear regression model. The linear regression model

reveals that the dynamics of knowledge graphs correlate with their content. To

this end, we develop a novel crawling strategy based on the linear regression

model. The experiment shows that it performs better than the state of the art.

As second method, we have developed a time-aware change verification method

for knowledge graphs. While users make changes on a knowledge graph, not all

changes are correct due to mistakes or vandalisms. Change verification classifies

each incoming change into a correct or incorrect one, in order to reduce workload

of administrators who manually check the validity of a change. We profile how

topological features such as node degree influence on the dynamics of a knowledge

graph. The profiling result reveals that a knowledge graph follows the preferential

attachment and densification law that are observed in social networks. The

experiment demonstrates that the novel method using the topological features

can improve automatic change verification. Therefore, profiling the dynamics

contribute to the integrity of knowledge graphs.
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Chapter 1

Introduction

This introductory chapter provides an overview of this thesis. Section 1.1 first

presents a general background and motivation behind this thesis. Section 1.2

provides four application scenarios that motivate profiling documents and knowl-

edge graphs. Subsequently, Section 1.3 summarizes the contributions made in this

thesis. Thereafter, Section 1.4 lists the previous publications that have built this

thesis. Finally, Section 1.5 presents the structure of the thesis.

1.1 Motivation

Profiling refers to the process of collecting important and useful information or

patterns about someone or something [EV03]. In the last decades, the world wide

web (web or WWW, in short) has become the largest information space. Users

are suffering from an information overload problem, whereby they have difficulty

understanding an issue and making decision due to the huge amount of available

information. Thus, profiling users is becoming increasingly important. One of the

challenges of profiling users is capturing user interests without requiring users’

explicit input or making users spend time on a long initial training period. In

the current web, users not only consume but also produce information [Tof81;

KH10]. In particular, they actively publish and exchange their thoughts and

ideas on social media platforms such as Twitter and Facebook. Therefore, social

media items such as microblog postings are naturally a promising source for user

profiles [CNN+10]. However, information that users produce is typically short. It

makes difficult for traditional profiling methods to construct user profiles based

on social media items.

In the last decade, the Semantic Web [BHL01] (also referred to as Web of Data)

has evolved [SBP14]. The Semantic Web is an extension of the world wide web,
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in which information is structured and well-defined. Whereas the traditional web

is expected to be consumed not by machines but by humans, the Semantic Web

enables machines to understand and automatically process information [BHL01].

In particular, a huge amount of information has been published in the form of

Linked Data [HB11] on the Semantic Web. An important principle of Linked

Data is its use of Uniform Resource Identifiers (URIs) to refer to entities such

as persons or organizations and the Resource Description Framework (RDF),

a standardized data format, to express those entities. Then, relations between

entities are described by links and expressed as an RDF triple (triple, in short),

which is composed of subject, predicate, and object. Thus, Linked Data forms a

knowledge graph where nodes and edges can be interpreted as entities and relations,

respectively. In practice, many knowledge graphs have been developed and widely

used, such as DBpedia [ABK+07] and Wikidata [VK14]. Since these knowledge

graphs have been generated with the objective of encouraging information reuse

and information discovery, we assume that they can assist in profiling methods by

enriching user profiles with background knowledge. Therefore, we explore how

knowledge graphs support profiling process and understanding users. Our goal is

to develop a novel profiling method that leverages knowledge graphs.

Although knowledge graphs can assist in profiling methods, they are con-

tinuously maintained and updated by humans. Therefore, several works have

attempted to keep the integrity of knowledge graphs using crowdsourcing [AZS+13]

and statistical method [PB14]. In contrast, we assume that it is possible to con-

tribute to the integrity of knowledge graphs by profiling their data dynamics. In

this thesis, the data dynamics refer to a pattern or process of changes in data. In

particular, we investigate the influence of content as well as topological features,

such as node degree of entities on the data dynamics. Based on the profiling

results, we develop two novel methods that improve the integrity of knowledge

graphs. The experiments showcase that both content features and topological

features contribute.

1.2 Application Scenarios

This section introduces four application scenarios that highlight challenges and

motivate the research conducted for this thesis. Sections 1.2.1 and 1.2.2 motivate

user profiling to understand a user’s interests. Subsequently, Sections 1.2.3

and 1.2.4 demonstrate the necessity of profiling the data dynamics of knowledge

graphs to maintain their integrity.
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1.2.1 Finding Researchers

Alice is an undergraduate student in medicine. She has a microblog account

and publishes microblog postings on a daily basis. Her microblog postings are

not only about her private interests, e .g., history, but also about her studies.

She recently started thinking about her career as a researcher. Therefore, she

signed up for an academic social network platform where many researchers connect

and communicate with each other. On this platform, she only knew professors

at her university, so she followed them. Then, the platform suggested that she

should follow several researchers. However, these researchers were only followers

or followees of her professors. She later connected her microblog account to the

platform, and has started to receive different recommendations of researchers to

follow. For example, since she frequently posts about Roman history, which is

one of her private interests, the platform has suggested researchers in the field of

Roman history. In addition, she has noticed that all of her microblog postings are

displayed on her page of the academic social network platform. Since almost half

of her microblog postings are irrelevant to her professional interests, she would

like to filter them from her page. Figure 1.1 (a) illustrates Alice’s problem. To

alleviate this situation, we propose a system that detects her professional interests

and suggests interesting researchers based on them. In addition, this system is

able to distinguish microblog postings about professional interests from those

about private interests. Thus, Alice can find relevant researchers in her field on

the platform as depicted in Figure 1.1 (b). It is implemented as an application

and evaluated in Chapter 4.

1.2.2 Finding Scientific Publications

Ben is a master’s student in economics. He is highly active on social media

platforms: he publishes microblog postings not only about private interests

(e .g., cooking, travel) but also about professional interests (e .g., economic news,

interesting topics that he has learned about in class). He is currently looking

for scientific publications to identify a possible research topic for his master’s

thesis. He could not find interesting scientific publications on a portal of the

digital library. He then connected his microblog account to the portal, and it

suggested several scientific publications that might interest him. However, only a

few publications among them are interesting. For instance, the recommendation

list contains publications relevant to “sports,” which is a private interest, and

“Miami,” where he recently traveled. Figure 1.2 (a) depicts Ben’s problem. Since the
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(a) Since the platform has identified Alice’s private interests as her professional interests, it delivers
several wrong recommendations to her.

(b) A domain-specific knowledge graph helps to detect only Alice’s professional interests, thus the
platform can deliver right recommendations to her.

Figure 1.1: Scenario of finding researchers on an academic social network platform.
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platform uses all of his tweets to extract his professional interests, only one of three

recommendations is interesting for him. Thus, we have developed a recommender

system that identifies his professional interests and suggests scientific publications

based on them. The recommender system delivers right recommendations to him

as shown in Figure 1.2 (b). Chapter 5 describes the recommender system and its

evaluation.

1.2.3 Keeping Local Copies of Knowledge Graphs Up-to-

Date

Charles develops and maintains a mobile application that uses data from knowledge

graphs. These data are available as RDF documents on the web. He recently

received a request from Emma, a mobile application user. Emma asked him to

enable the mobile application to work even when it has no network connection

because she uses the application when the connection is unstable, e .g., while

running. Therefore, Charles has decided to store the RDF documents as local

copies in the mobile application. However, the RDF documents on the web

continuously change, so that the local copies may no longer reflect their latest

state. Thus, the local copies may deliver incorrect information to the users.

Charles therefore needs to implement a function that updates the local copies of

the RDF documents for the mobile application. Ideally, the application would

visit and download all RDF documents continuously and update their local copies.

However, due to the limitations of network bandwidth and computation cost,

the application cannot do this. Therefore, Charles requires an efficient crawling

strategy to download the RDF documents and update their local copies to make the

data as fresh as possible. This scenario is summarized in Figure 1.3. In Chapter 7,

we present a novel crawling strategy that efficiently visits RDF documents and

updates their local copies, thereby resolving Charles’s problem.

1.2.4 Editing Knowledge Graphs

Dorothy is an administrator of a knowledge graph that is maintained collaboratively

by editors and administrators. Editors change the information on the knowledge

graph as facts in the real world change. A change is represented as an addition or

deletion of a triple. Thereafter, an administrator such as Dorothy checks whether

a change made by an editor is correct or incorrect. If a change is correct, it

is accepted and integrated into the knowledge graph. Otherwise, it is rejected.

These manual change verifications by administrators maintain the integrity of
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(a) The portal uses not only Ben’s professional interests but also his private interests to make
recommendations. Therefore, the recommendation list contains scientific publications that are not
interesting for him.

(b) The portal detects only Ben’s professional interests using a domain-specific knowledge graph.
Thus, all recommendations are interesting for him.

Figure 1.2: Scenario of finding scientific publications in a portal of a digital library.
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Figure 1.3: Scenario of making the local copies of knowledge graphs up-to-date.
The data of knowledge graphs are available as RDF documents on the web and
updated there, while the local copies become stale. Thus, a crawling strategy is
required that updates the local copies while respecting the limitation of network
bandwidth.
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Figure 1.4: Scenario of editing knowledge graphs. Administrators have to manually
check whether an incoming change is correct or incorrect. As the number of
incoming changes increases continuously, the administrators are overloaded by
their work.

the data on the knowledge graph. While Dorothy and other administrators work

industriously, however, the number of changes made by editors is increasing

rapidly. Therefore, it is necessary to either hire more administrators or use a

tool that facilitates the manual change verification process. The management

team of the knowledge graph has indicated that it is impossible to increase the

number of administrators due to cost. Therefore, Dorothy requires a tool to assist

her. Figure 1.4 represents this scenario. To mitigate the overload experienced

by Dorothy and other administrators, Chapter 8 proposes a novel method that

automatically verifies whether an incoming change to a knowledge graph is correct

or incorrect.

1.3 Contributions

The contributions of this thesis are summarized in the following:

• We demonstrate how knowledge graphs can support profiling documents

and users. Specifically, we develop a novel profiling method, called Hi-

erarchical Concept Frequency-Inverse Document Frequency (HCF-IDF),

which is an extension of Concept Frequency-Inverse Document Frequency

(CF-IDF) [GIF+11] and Term Frequency-Inverse Document Frequency (TF-
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IDF) [SB88; SM86; SWY75]. The method represents a document and a

user as a set of entities and their weights. Since HCF-IDF leverages the

hierarchical structure of a knowledge graph, it can reveal entities that are

not directly mentioned but relevant.

• We demonstrate two applications for which the profiling methods using

knowledge graphs such as HCF-IDF work well. The applications are recom-

mender systems that suggest relevant researchers and scientific publications

based on a user’s microblog postings. In both applications, we observe that

the profiling methods using knowledge graphs make better recommenda-

tions. In addition, we find that these profiling methods work well especially

for short documents, such as microblog postings and titles of scientific

publications.

• We profile and understand the data dynamics on knowledge graphs. First,

we investigate how the content of triples influence their life span (i .e., how

long a triple is alive). We use a linear regression model to predict triples’

life spans using the content of triples. The resulting model provides insights

into which triples are stable and which are ephemeral. Second, we study

the influence of topological features such as node degree of entities on

the data dynamics of knowledge graphs. The investigation reveals that

a knowledge graph follows the densification law [LKF05] and preferential

attachment [New01], as observed in other graphs [LKF05]. It indicates that

it is possible to predict future changes of knowledge graphs.

• We develop a novel crawling strategy for RDF documents based on our

linear regression model. The existing crawling strategies [DGS15] are based

on how frequently an RDF document has been modified in the past. In

contrast, the novel crawling strategy predicts the data dynamics of RDF

documents by considering their content. The experiment has two different

settings and uses two datasets. The results demonstrate that the novel

crawling strategy outperforms the state of the art.

• We present a novel method of change verification for a knowledge graph.

Change verification classifies each incoming change for a knowledge graph

into a correct or incorrect change. The experiment demonstrates that topo-

logical features such as node degree of entities contribute to the improvement

of the classification performance.
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1.5 Outline

In the subsequent chapter, we review works related to this thesis. Chapter 3

delivers a formalization of profiling documents and users, and introduces different

profiling methods using knowledge graphs. Subsequently, Chapters 4 and 5

present applications that leverage the profiling methods introduced in Chapter 3.

Specifically, Chapter 4 evaluates the profiling methods in the task of recommending

researchers based on a user’s microblog postings, while Chapter 5 presents an

online experiment on recommending scientific publications with 123 subjects. Since

knowledge graphs are maintained manually, it is important to understand their

data dynamics to keep their integrity. In this vein, Chapter 6 introduces different

profiling methods to capture these data dynamics, and also reports profiling results.

Chapters 7 and 8 demonstrate applications that make use of these data dynamics.

Specifically, Chapter 7 describes a novel crawling strategy that updates the local

copies of RDF documents efficiently, and Chapter 8 demonstrates a novel method

of change verification for a knowledge graph. Finally, Chapter 9 reflects on the

work presented in this thesis and proposes directions for future studies.
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Chapter 2

Related Work

This chapter reviews the literature related to this thesis. These works build and

support the foundation of this thesis. Section 2.1 introduces different methods

for profiling documents and users. It describes traditional term-based profiling

methods as well as methods supported by a knowledge graph. Subsequently,

Section 2.2 discusses various profiling methods to capture data dynamics and

reviews existing works on the data dynamics of knowledge graphs.

2.1 Profiling Users

This section reviews different methods of profiling documents and users. Figure 2.1

describes how we distinguish between documents and users. Documents such as

news articles are profiled independently, while a user’s set of social media items is

used to produce one user profile. For user profiling, each social media item in a

user’s social media stream is profiled individually. Then, the profiles of the social

media items are integrated into one profile. Please note that this thesis focuses

on only textual content. Hence, we do not cover profiling methods for media

data (e .g., images), although a document and social media item may contain

them. In Section 2.1.1, we first review methods that represent profiles as a set of

terms. Subsequently, we introduce methods that exploit a knowledge graph in

Section 2.1.2.

2.1.1 Term-Based Profiling Methods

In this section, we first detail traditional term-based profiling methods. Subse-

quently, we describe topic modeling, which is also used as a profiling method.
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Figure 2.1: Documents and users’ social media streams with their items.

Term-based profiling methods Term-based profiling methods analyze and

profile a document by using the vector space model (VSM) [SWY75]. The VSM

represents a document by a vector whose dimensions equal the number of unique

terms in the document corpus. Each vector dimension corresponds to a separate

term and defines the term weight, i .e., the degree of association between the

document and the term. In this section, we focus on how to compute term weights.

The best-known profiling method is Term Frequency-Inverse Document Fre-

quency (TF-IDF) [SB88; SM86; SWY75]. TF-IDF was originally introduced

for information retrieval, where a document is represented as a vector of term

weights. TF counts the frequency with which a term appears in a document. It is

based on the assumption that multiple appearances of a term in a document are

more relevant than single appearances. IDF then takes the assumption that rare

terms are more important than frequent terms. Although TF-IDF [SWY75] was

first introduced more than 40 years ago, it is still a robust baseline. Following

TF-IDF, Okapi BM25 (BM25) [RWJ+94; RW94] was built as a probabilistic

model that is sensitive to term frequency and document length [JWR00]. In

addition, Rousseau and Vazirgiannis [RV13] introduced the graph-of-word model,

a novel document representation, and Term Weight-Inverse Document Frequency

(TW-IDF), a term weighting method. The graph-of-word model captures the

relationships between terms using an unweighted directed graph of terms. Based

on this graph, TW-IDF then computes a term weight. Their experiment on

standard TREC datasets showed the superiority of TW-IDF compared to BM25.
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In another study, Shirakawa et al. [SHN15] proposed N-gram IDF, which handles

key terms of any length. N-gram IDF is based on their finding that the IDF of

a term is equal to the distance between the term and the empty string in the

space of information distance. Their experiment on keyword extraction and search

query segmentation revealed that N-gram IDF is competitive with the state of

the art methods designed for keyword extraction and search query segmentation,

respectively.

TF-IDF and the other aforementioned profiling methods are used to profile

users. In this line, Xu et al. [XBF+08] tackled the problem of personalized

information retrieval. They used TF-IDF as well as BM25 to construct user

profiles and document profiles. Moreover, Chen et al. [CNN+10] developed a

recommender system for URLs (i .e., web pages) that uses TF-IDF to compute user

profiles based on their microblog postings or those of their followees. The system

then suggests URLs that might interest the user. Their experiment demonstrated

that recommendations based on the user’s microblog postings were better than

recommendations based on microblog postings of his followees. In a similar vein,

Phelan et al. [PMB+11] developed a recommender system for news articles in

which they come from either a user’s RSS space or the entire RSS space. A user

profile is constructed based on either the user’s microblog postings or microblog

postings produced by her followees. Using TF-IDF, the recommender system make

profiles of both news articles and users. The results of the experiment revealed that

a user’s RSS space was a better source of candidate items. In terms of the source

of user profiles, microblog postings by a user’s followees were slightly better than

the user’s own postings, although the difference was not significant. Similar to

Chen et al. [CNN+10], Goossen et al. [GIF+11] developed a recommender system

for news articles and used TF-IDF as their baseline. The recommender system

computes user profiles based on news articles that a user has read. Moreover,

Ribeiro et al. [RSG+15] aimed to profile a user’s professional interests based on

titles, abstracts, or/and keywords of his own scientific publications. As profiling

methods, they compared term frequency, TF-IDF, and coverage [VKG11]. Their

experiment with 1,288 subjects showed that term frequency and TF-IDF were

significantly better than coverage.

Topic modeling Although the term-based VSMs discussed above perform well

for different applications, including information retrieval and recommender systems,

they cannot capture the hidden structure within terms in a document corpus, and

have the problems of synonymy (e .g., automobile and car) and polysemy (e .g.,
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bank referring to a financial institution and bank meaning the land alongside a body

of water). To address these problems, Deerwester et al. [DDF+90] developed Latent

Semantic Indexing (LSI). LSI uses singular value decomposition (SVD) to project

a term-based vector representation of a document into a lower dimensional space.

Compared to the term-based VSMs, LSI can achieve significant compression of a

large document corpus. In addition, Deerwester et al. [DDF+90] observed that LSI

could capture linguistic notions such as synonymy and polysemy. In practice, Berry

et al. [BDO95] reported that the LSI improved information retrieval by addressing

the problems of polysemy and synonymy. Later, Hofmann [Hof99] proposed

probabilistic LSI (pLSI) as an alternative to LSI that covers its unsatisfactory

statistical foundation. pLSI is based on the likelihood principle and defines a

proper generative model of a document corpus. Specifically, it models each term in

a document as a sample from a mixture model that can be seen as a “topic.” Thus,

each term is generated from a single topic, and different terms in a document are

generated from different topics. However, the pLSI provides no generative model

at the level of documents. Moreover, the number of parameters in the model grows

linearly with the size of the corpus, which leads to overfitting. To improve this,

Blei et al. [BNJ03] developed Latent Dirichlet Allocation (LDA), which provides a

complete generative model for documents. The generative model specifies a simple

probabilistic procedure whereby documents can be produced given a set of topics.

LDA generates documents by picking a distribution over topics from a Dirichlet

distribution. The terms in the document are then generated by picking a topic from

this distribution, and in turn picking a term from that topic. According to Chang

et al. [CBG+09], topics generated by LDA are better interpreted by humans than

those by the pLSI. Although LDA was originally developed for mining documents,

it has also been used to detect instructive structures in images [SRZ+08; BWP11]

and genetic information [PSD00].

The above topic modeling methods have been used to profile documents

and users. For example, Wang and Blei [WB11] created user profiles based on

scientific publications that they read using LDA. They represented user profiles

as probability distributions over topics. The user profiles were used with a

recommender system for scientific publications that suggests scientific publications

whose topic distribution is similar to a user profile. However, topic modeling

methods such as LDA do not work well for short documents, such as microblog

postings, since they rely on the co-occurrences of terms. In fact, an experiment by

Hong and Davison [HD10] revealed that a topic model where microblog postings

by the same user were aggregated as one document resulted in significantly
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better performance in two classification tasks than a topic model where each

microblog posting was considered to be one document. Moreover, Pennacchiotti

and Gurumurthy [PG11] used LDA to develop a recommender system that suggests

friends who have similar interests based on a user’s microblog postings. Similar

to Hong and Davison [HD10], they aggregated microblog postings published

by the same user into one document. They found that the recommendation

performance of LDA outperformed TF-IDF as well as network-based methods

(i .e., friends-of-friends).

Several works [RHN+09; ZJW+11; YKS+14; TMH16] have proposed variants

of LDA for short documents. Ramage et al. [RHN+09] proposed Labeled LDA,

motivated by the fact that a significant number of documents on the web are

tagged by publishers or readers on social media platforms and social bookmarking

sites, such as Delicious and Twitter hashtags. Many documents have multiple

tags, but they do not have equal importance. Thus, it is necessary to associate

each term in a document with the most appropriate tags and vice versa. To this

end, the Labeled LDA constrains LDA by defining a one-to-one correspondence

between latent topics generated by LDA and the tags. It is able to directly

learn term-tag correspondences. Ramage et al. [RHN+09] showed that the

Labeled LDA works well for personalized feed re-ranking and recommending

new friends. Zhao et al. [ZJW+11] introduced a novel Twitter-LDA for microblog

postings. It is designed based on the assumption that a single tweet contains

only one topic. Furthermore, Yang et al. [YKS+14] presented a spectrum of topic

modeling methods based on LDA to classify tweets in real time into a topic in a

hierarchy. These methods include non-topical tweet detection, automatic labeled

data acquisition, evaluation with human computation, diagnostic and corrective

learning, and, most importantly, high-precision topic inference. However, although

these variants of LDA work well for different tasks, they require external knowledge,

the use of which may lead to bias in trained topic models.

2.1.2 Profiling Methods Using Knowledge Graphs

This section introduces different profiling methods that use a knowledge graph.

We first introduce widely used knowledge graphs. Then, we review profiling

methods that consider knowledge graphs as flat lists of entities. Beyond these

profiling methods, we describe different profiling methods that exploit a hierarchical

structure of a knowledge graph, and finally introduce profiling methods that can

use any graph structure.
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Knowledge graph In the last decade, many different knowledge graphs have

been developed on the web and used by many applications. The best-known

knowledge graph is DBpedia1 [ABK+07]. The DBpedia project was initiated

by the Free University of Berlin and the University of Leipzig, in collaboration

with OpenLink Software, in 2007. DBpedia collects structured information from

infoboxes, categorization, and geo-coordinates in Wikipedia articles. In addition,

it also stores a large amount of external links to other datasets such as UMBEL,

GeoNames, CIA World Factbook, and DBLP. Therefore, DBpedia is considered

as a hub of knowledge graphs. As another example, Freebase2 [BEP+08] was a

cross-domain knowledge graph maintained by Google. It was created from inputs

by editors as well as existing RDF and microformat datasets. To facilitate editors,

Freebase provided an interface where editors made changes. However, Google

decided to discontinue Freebase in 2015. The data from Freebase have been

transferred to Wikidata3 using the Primary Sources Tool4 [TVS+16]. YAGO5 is

another well-known knowledge graph. It has been developed at the Max Planck

Institute since 2007. It automatically extracts information about entities from

Wikipedia articles, WordNet [Fel98] (e .g., synsets, hyponymy), and GeoNames.

Furthermore, Wikidata [VK14] is a project of Wikimedia Deutschland that was

launched in 2012. Wikidata stores not only information about entities, but also the

corresponding sources. Thus, users can check the validity of information. Labels,

aliases, and descriptions of entities are provided in almost 400 languages. Wikidata

is collaboratively created by editors. In addition, the schema is maintained and

extended based on agreements among editors. In recent years, this knowledge

graph has grown rapidly due to the migration of Freebase [TVS+16]. It provides

RDF exports [EGK+14].

Besides these cross-domain knowledge graphs, many different domain-specific

knowledge graphs have also been developed. These are typically maintained by

domain experts. Therefore, they are of high quality. For example, MeSH (Medical

Subject Headings)6 is a domain-specific knowledge graph in the field of medicine. It

is maintained by National Library of Medicine (NLM) and used by PubMed article

1http://wiki.dbpedia.org/, last accessed on 08/30/2017
2https://developers.google.com/freebase/, last accessed on 08/30/2017
3https://www.wikidata.org, last accessed on 08/30/2017
4https://www.wikidata.org/wiki/Wikidata:Primary_sources_tool, last accessed on

08/30/2017
5http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/, last accessed on 08/30/2017
6https://www.nlm.nih.gov/mesh/, last accessed on 08/30/2017
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database. It provides RDF exports7 and SPARQL query interface8. AGROVOC9

is a knowledge graph covering food, nutrition, agriculture, and environment. It is

maintained by Food and Agriculture Organization (FAO) of United Nations. It

is used by researchers and librarians for indexing and organizing documents and

web pages relevant to agriculture. Other domain-specific knowledge graphs are

noted in a list10 maintained by the W3C.

All of these cross-domain and domain-specific knowledge graphs have been

developed to encourage information share and reuse and facilitate information

discovery. Therefore, they have been used to profile documents and users [OBP12;

SP14a; NXC+16]. Below, we introduce different profiling methods that use a

knowledge graph.

Profiling methods using a list of domain-specific entities We introduce

profiling methods using a list of domain-specific entities. These profiling methods

leverage entities and their labels stored in a knowledge graph, but ignore relations

among them. Abel et al. [AHK11] attempted to extract a user’s professional

interests from social media platforms, including LinkedIn, Delicious, and Twitter.

They compared the tag-based approach (for Delicious), bag-of-words approach

(for LinkedIn and Twitter), and semantic entity-based approach (for Twitter) in

the scenario of recommending scientific publications. They observed that Twitter

seemed to cover more professional interests than other social media platforms, but

also to include more noise. Regarding different profiling methods, the semantic

entity-based profiles based on Twitter outperformed the others. In another

study, Orlandi et al. [OBP12] built user profiles based on different social media

platforms. In particular, they used Twitter and Facebook as profiling sources.

They represented user profiles as sets of entities on DBpedia and their frequencies.

Moreover, Goossen et al. [GIF+11] proposed Concept Frequency-Inverse Document

Frequency (CF-IDF) as an extension of TF-IDF [SB88; SM86; SWY75]. CF-IDF

replaces frequencies of terms with those of entities. They conducted an experiment

investigating news article recommendations with 19 subjects, and found that

CF-IDF outperformed TF-IDF.

Profiling methods using hierarchical knowledge graphs Although the

profiling methods using a list of domain-specific entities have demonstrated their

7ftp://ftp.nlm.nih.gov/online/mesh/rdf/, last accessed on 08/30/2017
8https://id.nlm.nih.gov/mesh/query, last accessed on 08/30/2017
9http://aims.fao.org/standards/agrovoc/linked-open-data, last accessed on

08/30/2017
10http://www.w3.org/2001/sw/wiki/SKOS/Datasets, last accessed on 08/30/2017
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effectiveness, they face challenges with short documents, such as microblog post-

ings, because these documents usually contain only a few entities. To overcome

this challenge, several profiling methods utilize the structure of a knowledge graph.

Specifically, these profiling methods reveal entities that are not mentioned in a

document but are relevant to it.

With the use of the hierarchical structure of a knowledge graph, Middleton

et al. [MDS01] constructed user profiles based on users’ browsing history and

explicit feedback. Their method represented user profiles as a set of entities

and their weights, and computes the latter by using a propagation function that

provides 50% of weights to their broader entities. Their profiling method is the

same as Basic Spreading Activation. Basic Spreading Activation is one variant of

spreading activation, which is a propagation function referred to by Kapanipathi

et al. [KJV+14]. Although Middleton et al. [MDS01] did not justify their choice

of the value of 50%, their experiment demonstrated that their profiling method

outperformed a profiling method using a list of domain-specific entities. They

concluded that users preferred to have user profiles including general entities that

were not directly mentioned. Kapanipathi et al. [KJV+14] further developed

some profiling methods that leverage the hierarchical structure of a knowledge

graph using spreading activation [CL75]. In their work, they employed their own

cross-domain hierarchical knowledge graph, which is generated based on Wikipedia.

User profiles are generated based on users’ microblog postings. The experiment

demonstrated that spreading activation enabled the creation of meaningful user

profiles based on microblog postings. Moreover, Rybak et al. [RBN14] created

users’ professional profiles using the ACM Computing Classification System (ACM

CCS) as a knowledge graph. Similar to Middleton et al. [MDS01] and Kapanipathi

et al. [KJV+14], they used a propagation function that provided weights of broader

entities. In their work, broader entities received 100% of the weights of their

narrower entities.

Profiling methods using knowledge graphs There are also profiling meth-

ods that can be applied with any structure of a knowledge graph. Lu et al. [LLZ12]

proposed a recommender system that suggests relevant microblog postings based

on a user’s own microblog postings. Their method represents user profiles as set of

weighted Wikipedia entities that correspond to Wikipedia articles. It expands user

profiles via random walk on the Wikipedia entity graph, which is created by utiliz-

ing the interlinks between Wikipedia articles. Their experiment demonstrated that

their profiling method was effective to recommend relevant microblog postings to
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users. In another study, Schuhmacher and Ponzetto [SP14b] presented a profiling

method using knowledge graphs that takes into account strengths of relations

between entities. Each relation in a knowledge graph is weighted with different

information theoretic measures. They evaluated their profiling method using DB-

pedia in the tasks of entity ranking and computation of similarity scores between

documents. The result of the experiment revealed that their profiling method

outperformed baselines and showed competitive performance against methods

designed for these specific tasks. Furthermore, Ni et al. [NXC+16] proposed a

profiling method that represents a document as a graph, where nodes are entities

on a knowledge graph. Entities are weighted using a closeness centrality measure

that reflects their relevance to the document. The authors further presented a

novel measure to compute similarity scores between two documents. This measure

first represents entities as continuous vectors by neural networks. These continuous

vectors are then used to accumulate pairwise similarity between pairs of entities

while considering their assigned weights. An experiment evaluated their profiling

method on a standard benchmark for computation of similarity scores between

documents. The method outperformed the state-of-the-art methods, such as that

of Schuhmacher and Ponzetto [SP14b].

Although these profiling methods demonstrated good performance for different

tasks including profiling users and computing similarity between documents, we

do not use them, since they are computationally expensive or require training

process.

2.1.3 Profiling Methods that Consider Data Dynamics

Since user interests may change over time, it is not trivial to consider the temporal

aspect of information when profiling users. In this section, we first note the

forgetting curve that describes human memory retention. Subsequently, we

introduce the works that investigate the influence of older data on profiling.

Finally, we review several profiling methods that take into account data dynamics.

The forgetting curve in psychology A large body of work in psychology

and cognitive science has investigated how human memory evolves over time. At

the end of 19th century, Ebbinghaus [Ebb85; Ebb13] studied the memorization of

nonsense syllables, such as ‘sdh” and “pdy,” by repeatedly testing himself after

different time periods and recording and plotting the results of these tests. The

plots demonstrated that his memory retention declined as time passed; this is

known as Ebbinghaus’s forgetting curve. Researchers have debated the form of
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the forgetting curve for over a century. For instance, Wixted and Ebbesen [WE91]

showed that forgetting curves produced by a variety of procedures are often well

explained by the power function. However, Anderson and Tweney [AT97] argued

that Wixted and Ebbesen’s result [WE91] may be an artifact of arithmetically

averaging subjects’ forgetting curves. They argued that forgetting curves could

be better explained by the exponential function. Wixted and Ebbesen [WE97]

subsequently rebutted Anderson and Tweney’s argument [AT97], stating that their

conclusion did not change even if they used geometric averaging, as Anderson and

Tweney suggested. In addition, their analysis of individual subjects’ forgetting

curves revealed that the power function described these curves better than the

exponential function. In another study, Averell and Heathcote [AH11] collected

and analyzed data from a longitudinal experiment measuring cued recall and

stem completion from 1 minute to 28 days after study. The data contained

more observations per interval per subject than in previous works. The authors

concluded that the exponential function provided a better fit to individual subjects’

forgetting curves than the power function and the Pareto function did. In this

thesis, we use the exponential function to represent the data dynamics of user

interests rather than the power function, since it models forgetting curves better,

according to the most recent work [AH11].

Influence of older data In the field of computer science, several studies

have investigated the influence of older data on user profiles. De Pessemier et

al. [DDD+10] divided data into ten sets by chronological order and investigated

which set was the best source of a collaborative filtering. They used two datasets:

provider-generated content and user-generated content. The results demonstrated

that the recommendation performance of the collaborative filtering improved by

extending the provider-generated content with additional older data. On the other

hand, the opposite effect was observed for user-generated content. This indicates

that involving older user-generated data has a negative influence. Zheng and

Ip [ZI13] also evaluated the influence of data generated over different periods of

time on the recommendation performance of a collaborative filtering. Their results

revealed that while more recent data had a larger impact, the usefulness of older

data could not be ignored as long as they were in sufficient amounts. On the other

hand, the addition of insufficient amounts of old data had a negative influence.

Thus, the older data has both a positive and a negative influence on user profiles.

Since the influence depends on the context, it is necessary to carefully consider

and examine the use of older data.
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Profiling methods considering data dynamics The works [DDD+10; ZI13]

have demonstrated that user interests are dynamic. Motivated by these results,

several profiling methods [OBP12; SWL+13; MDS01] take data dynamics into

consideration. These studies integrate a temporal decay function into their profiling

methods. A temporal decay function enables profiling methods to assign term

weights and entity weights, considering how recent the information is. Orlandi et

al. [OBP12] used the exponential function with different parameters to construct

user profiles based on both Twitter and Facebook. Sugiyama and Kan [SK10] also

employed the exponential function to build user profiles based on users’ scientific

publications. Moreover, also using the exponential function, De Francisci Morales

et al. [DGL12] developed a recommender system for news articles based on a user’s

and his neighbors’ social media items. On the other hand, Shen et al. [SWL+13]

used the sliding window function, which takes only a fixed number of the latest

microblog postings into consideration. Finally, Middleton et al. [MDS01] employed

inverse time weighting, where original weights are divided by the number of days.

However, these temporal decay functions have not been experimentally compared

yet.

2.2 Profiling the Data Dynamics of Knowledge

Graphs

This section first describes different profiling methods to capture and understand

data dynamics. Thereafter, it introduces existing works that analyze data dynamics

of knowledge graphs.

2.2.1 Profiling Data Dynamics

There are various profiling methods to capture and understand data dynamics.

In this section, we introduce different profiling methods with respect to three

target data types: time-series, graphs, and documents. These data types are

summarized in Figure 2.2. We first discuss works whose target is time-series.

Time-series, as described in Figure 2.2 (a), refers to data represented as a sequence

of numerical values indexed in chronological order. Second, we review works that

profile snapshots of a graph, as shown in Figure 2.2 (b). Third, we examine works

that analyze snapshots of a document, as depicted in Figure 2.2 (c).
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(a) Time-series

(b) Graphs

(c) Documents

Figure 2.2: Target data types for profiling data dynamics.
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Time-series Time-series clustering identifies representative patterns of data

dynamics in an unsupervised way. Specifically, it partitions different time-series

into a given number of groups based on distance. So far, many different methods

of time-series clustering have been developed. According to the results of an

extensive experiment of time-series clustering by Wang et al. [WMD+13], the

choice of clustering algorithm is less important than the choice of distance measure.

Therefore, many researchers have developed distance measures for time-series.

The most straightforward distance measure is the Euclidean distance [FRM94].

However, Berndt and Clifford [BC94] also introduced Dynamic Time Warping

(DTW), which is used in the speech recognition community, to the data mining

community. The DTW allows a time-series to be “stretched” or “compressed” to

provide a better match with another time-series. Moreover, several lower-bounding

methods have been developed to further accelerate the computation of distance

using DTW [Keo02]. Rakthanmanon et al. [RCM+12] introduced four novel ideas

to achieve this, and revealed that DTW can exactly search a time-series more

quickly than the Euclidean distance can. Furthermore, Batista et al. [BKT+14]

presented a complexity-invariant distance measure and showed that it generally

produces significant improvements in clustering and classification.

Paparrizos and Gravano proposed k-Shape [PG15], which employs a normalized

version of the cross-correlation measure as a distance measure to consider the

shapes of time-series. Based on properties of their distance measure, the authors

further introduced a novel method to compute cluster centroids. To demonstrate

the robustness of the k-Shape, they tested their novel clustering method against

partitional, hierarchical, and spectral clustering methods. The results indicated

that k-Shape outperformed them all. In another study, Yang and Leskovec [YL11]

developed K-Spectral Centroid (K-SC) for the analysis of temporal patterns of

social media items. The K-SC is motivated by the fact that the popularity of

social media items typically has a steep rise and fall over time [CS08]. Accordingly,

it employs a novel distance measure, which is suited to time-series with a steep

rise and fall. Their analysis revealed six temporal patterns of attention of online

content in microblog postings, blogs, and news articles.

For more details on profiling time-series, we refer to the survey by Esling and

Agon [EA12].

Graphs The analysis of the data dynamics of graphs is relevant to many different

domains, including social networks and biological networks, e .g., protein-protein

interactions [AS14]. Leskovec et al. [LKF05] investigated how several real graphs
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evolve over time, and found that graphs have common data dynamics, such as

shrinking diameters and densification. This indicates that graphs are totally

different from randomly evolving graphs. In addition, Leskovec et al. [LBK+08]

investigated from which nodes and to which nodes a new edge appeared. They

observed that new edges were more likely to connect to neighbor nodes, such as a

friend of his friend. For more details on analyzing data dynamic of graphs, we

refer to the survey by Aggarwal and Subbian [AS14].

Link prediction is also a popular task for graphs, especially for social networks.

Sarkar et al. [SCJ12] proposed a nonparametric link prediction method using

snapshots of a graph over time. Beyond link prediction, Farajtabar [FWR+15]

proposed a temporal point process model called COEVOLVE; it simultaneously

models information diffusion on graphs and link generation, since information

diffusion and link generations influence each other.

Documents Several studies have attempted to predict document changes. This

prediction is especially helpful in the context of crawling strategies that download

the documents from the web and update their local copies, for instance for

indexing and archival. Different features have been used to predict document

changes. Cho and Garcia-Molina [CG00; CG03] revealed that probability of

changes in documents can be modeled as Poisson process. However, Grimes and

O’Brien [GO08] rejected this finding. Santos et al. [SZA+13; SCA+15] used

Genetic Programming to generate score functions that produced accurate rankings

of documents regarding their probabilities of change. The experiment showed that

the number of times that a document was updated in past visits and how much

time had passed since the last visit had a large influence on the probabilities. The

above works converted snapshots of a document into a time-series by calculating

how much it was modified between two successive snapshots and profiled different

time-series. Therefore, the studies ignored the contents of documents. In contrast,

the following works profile the data dynamics of documents using their contents.

Tan and Mitra [TM10] developed a clustering-based incremental crawling strategy

that exploits the content of web pages. Thus, it does not need to gather a long

history of the web pages before it starts crawling. Their strategy first clusters

web pages based on features that correlate to their change frequencies. At each

point in time, it crawls a few web pages in each cluster. The web pages in the

cluster are then all downloaded and updated only if the crawled web pages of that

cluster have many changes. In terms of the features for clustering, the strategy

uses static features such as content (e .g., terms in documents, the number of
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images), URL (e .g., name of the top-level domain), and linkage features (e .g.,

the number of incoming links). In addition, it exploits dynamic features that

calculate how much each content feature and linkage feature have changed in the

two latest successive snapshots. Tan and Mitra’s experiment revealed that the

combined features (i .e., both content features and dynamic features) were best

for the crawling strategies. Finally, Radinsky and Bennett [RB13] reported that

content of documents or neighbor documents significantly improved the prediction

of probability of changes.

2.2.2 Data Dynamics of Knowledge Graphs

Since knowledge graphs are maintained by humans, they are subject to changes.

Therefore, several works have investigated the data dynamics of knowledge graphs.

In this section, we introduce works that capture the data dynamics of knowledge

graphs. Thereafter, we describe several works that aim at maintaining the integrity

of knowledge graphs.

Please note that this thesis sees the Linked Open Data (LOD) cloud as a

collection of knowledge graphs, and an RDF document as a web document that

provides data of a knowledge graph.

Profiling the data dynamics of knowledge graphs Umbrich et al. [UKL10]

investigated the data dynamics in the LOD cloud, focusing on entities. They

defined and represented entities as a set of triples that share a common subject URI.

To group entities with similar data dynamics, they applied k-means clustering.

Their manual inspection revealed that entities from the same pay-level-domains

(PLDs) were often found in the same clusters. However, they only considered

whether there was a change or not, and not the amount of change of the entities,

i .e., the number of triples that changed in entities. In addition, Umbrich et

al. [UHH+10] investigated the data dynamics of the LOD cloud, focusing on

entities and RDF documents. As a dataset, they collected weekly snapshots of

the neighbors of the Tim Berners-Lee FOAF file11 for 24 weeks. They observed

that half of the RDF documents that changed had a change frequency of more

than 3 months. In contrast, half of the entities had a change frequency of less

than a week. In addition, the authors could not verify that the change frequency

of the RDF documents and entities followed a Poisson process, as was observed

in web documents [CG03]. In another study, Popitsch and Haslhofer [PH11]

provided statistics about changes of entities between two successive DBpedia

11https://www.w3.org/People/Berners-Lee/card.rdf, last accessed on 08/30/2017
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snapshots with respect to four OWL classes (i .e., person, organization, place,

and work). Their results suggested that DBpedia grew continuously. In terms of

OWL classes, entities belonging to the person class were active, as many entities

were removed and created. However, the focus of their work was not to analyze

the data dynamics of entities, but to develop an effective entity change detection

framework to avoid broken links. Therefore, they did not conduct a fine-grained

analysis.

In 2012, Käfer et al. [KUH+12] launched the Dynamic Linked Data Observatory

(DyLDO). The DyLDO collected weekly snapshots of 86,696 RDF documents on

the LOD cloud for four years, until it recently stopped providing updates. The

snapshots contain both well-known data sources, such as DBpedia and Freebase,

and lesser-known ones. Since the DyLDO made the snapshots publicly available,

it encouraged many researchers to study the data dynamics on the LOD cloud.

Käfer et al. [KAU+13] conducted an analysis based on 29 weekly snapshots of the

DyLDO. They found that 5.0% of RDF documents had gone offline, and 62.2%

of them had no change. In addition, they conducted an analysis focusing on

triples. The result indicated that the additions of triples were much more frequent

than deletions. Furthermore, the authors observed that object literals were the

most dynamic elements of triples. In contrast, predicates (i.e., properties) and

RDF types defined by the predicate rdf:type were static. They identified that

the most dynamic predicates were often about trivial time stamps. In another

study, Gottron and Gottron [GG14] developed different index models for RDF

documents, and evaluated the accuracy of these models over time with regard

to finding relevant RDF documents. They used a DyLDO dataset of 80 weeks

in their experiment, which revealed an increasing divergence of the index due

to the data dynamics of the RDF documents. However, index models based

on schema information seemed to be relatively stable. Moreover, Dividino et

al. [DKG14] measured how often the last-modified field in the HTTP header

of RDF documents was available and how often it was correctly used. Using the

DyLDO dataset, their analysis revealed that on average only 15% of the RDF

documents provided some value for the last-modified field, and in turn only 52%

provided accurate value. Therefore, it is not practical to study the data dynamics

on the LOD cloud using the last-modified field. Instead, to represent the data

dynamics of RDF documents, Dividino et al. [DGS+14] proposed a monotone,

nonnegative function that returns a single numerical value. Using this function,

Dividino et al. [DGS15] developed a novel crawling strategy to keep local copies of

RDF documents up-to-date while respecting limited bandwidth. The experiment
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revealed that crawling strategies based on the novel function performed best when

compared to those based on the RDF documents’ age, PageRank, or size. This

result suggests that the novel function can correctly represent the data dynamics

of RDF documents and enable the prediction of their future changes.

Keeping the integrity of knowledge graphs It is difficult to keep the infor-

mation in knowledge graphs up-to-date, since the real world continuously changes

over time. Therefore, knowledge graphs need to be updated. In practice, many

editors make changes on knowledge graphs such as Wikidata [VK14]. Changes

are represented as additions or deletions of triples. While the majority of changes

are correct, knowledge graphs also receive incorrect changes due to vandalism,

carelessness, and misunderstanding by editors. Thus, the change verification for

knowledge graphs is demanding to keep the integrity of knowledge graphs. Change

verification automatically judges incoming changes as correct or incorrect one.

So far, only a few studies have investigated methods of change verification.

Tan et al. [TAI+14] proposed a method using three categories of features to

automatically classify changes made for Freebase into correct or incorrect ones.

The features are categorized into triple feature, editor history, and editor expertise.

In terms of triple feature, the method uses only the predicate, but it demonstrates

the highest effectiveness. Editor history includes numbers of correct and incorrect

changes made by the editor in the past, as well as the age of his account. Editor

expertise refers to how well editors make changes in each domain, such as sports

and science. Tan et al.’s experiment demonstrated that the classifier using all

features performed best, and that the triple feature is the most effective feature. In

terms of classification algorithms, logistic regression outperforms Gradboost [DS09]

as well as Perceptron [FS99] in their experiment. Later, Heindorf et al. [HPS+16]

proposed a set of 47 features to verify changes made to Wikidata. Their features

can be categorized into two groups: content features and context features. Content

features include textual features, triple features, and comment features, whereas

context features contain editor features (e .g., an editor’s experience, country),

entity features (e .g., their popularity), and revision features. In their experiment,

classifiers based on all features showed the highest performance. The authors

observed that content features and context features contributed to improving

precision and recall, respectively. Classification algorithms using the random

forest [Bre01] in combination with multiple-instance learning obtained the best

performance. While these features performed well, however, some of them can be

applied only to Wikidata, such as comment features.
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Apart from change verification, different methods of knowledge graph refine-

ment have been studied [Pau16]. The goal of knowledge graph refinement is to add

missing triples (i .e., completion) or identify erroneous ones (i .e., error detection)

in a static knowledge graph [Pau16]. Thus, refinement methods are relevant for

change verification. Nickel et al. [NTK12] used matrix factorization to predict

entity types in YAGO. Socher et al. [SCM+13] predicted the existence of a relation

between two entities by training a tensor neural network based on chains of other

relations. Dong et al. [DGH+14] employed the path ranking algorithm [LMC11]

and the neural network model [SCM+13] to judge whether an extracted new triple

should be added to a knowledge graph. Regarding error detection in knowledge

graphs, reasoning determines whether a given set of triples is free of contradictions

or not [LLB+09]. However, this requires a rich ontology. In this vein, Guéret et

al. [GGS+12] used topological features such as degree, clustering coefficient, and

centrality to define metrics for detecting wrong triples in knowledge graphs. They

compared the true distributions of those metrics to the ones that were ideally

expected, e .g., a power law distribution for the degree of entities. Then, they

marked links that deviated from the ideal distributions as suspicious. However,

the above methods are difficult to apply to verify incoming changes online.

2.3 Summary

In this section, we summarize the literature that we introduced so far. In terms of

profiling users, we first introduced term-based profiling methods as well as several

profiling methods using knowledge graphs. The term-based profiling methods

have statistical strength, but do not work for short documents. On the other

hand, the profiling methods using knowledge graphs can cover this drawback by

using semantics of knowledge graphs. In the subsequent chapter, we present a

novel profiling method that combines the statistical strength of CF-IDF and the

semantics originating from a knowledge graph. We also reviewed works of profiling

methods for data dynamics. We categorized these methods by target data types:

methods for time-series, those for snapshots of a graph, and those for snapshots

of a document. Then, we have shown works that analyzed the data dynamics of

knowledge graphs. In general, these works focused on the amount of changes in

RDF documents between two successive snapshots or during an entire observation

period. Thus, they do not look into the changes over a larger period of time and

what influences on the data dynamics of knowledge graphs. In Chapter 6, we
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investigate how the content and structure (i .e., topology) of knowledge graphs

influence on the data dynamics of knowledge graphs.
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Chapter 3

Foundational Definitions

Profiling methods play an important role in different tasks such as information

retrieval [TDH05; Das98; YLH+03; MDL+00; Mob07] and recommender sys-

tems [KJN08; FEB+02; KB06]. In particular, user profiling is indispensable

to overcome the information overload problem. Since many users publish their

interests and thoughts on social media platforms such as Twitter and Facebook,

these published social media items are a promising source for profiling users.

However, these items are typically short. Therefore, it is highly difficult to profile

users using traditional term-based profiling methods such as TF-IDF and topic

modeling without external knowledge [HD10].

In this chapter, we first introduce foundational definitions for profiling docu-

ments and users in Section 3.1. Thereafter, Section 3.2 describes different profiling

methods using knowledge graphs. In the last decade, many different knowledge

graphs such as DBpedia [ABK+07] and Wikidata [VK14] have been developed

with the objective of encouraging information reuse and discovery. Therefore, we

assume that knowledge graphs can assist in profiling methods. Profiling methods

using knowledge graphs represent a document as set of entities and their weights.

In Section 3.3, we provide several temporal decay functions used by profiling

methods to take the data dynamics of user interests into account. The data

dynamics is important for profiling users, because user interests change over time.

Temporal decay functions model the data dynamics of user interests by assigning

a larger weight to newer social media items, as older social media items become

stale and may not reflect users’ current interests.
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3.1 Foundational Definitions for Profiling Doc-

uments and Users

We first introduce the formalization of profiling documents. The formalization

is applicable to both term-based profiling methods and profiling methods using

knowledge graphs.

Definition 3.1 (Document Profile). Formally, a document profile is a vector of

term weights (or entity weights). Let d be a document and A = {a1, a2, . . . , a|A|} be

a set of unique terms in a document collection (or a set of entities in a knowledge

graph). A profiling function Φ produces a profile for a given document d as:

Φ : d→ {w(a1, d), w(a2, d), . . . , w(a|A|, d)},

where w(a, d) is a weight of the term (or the entity) a for the document d.

We subsequently define how to profile a user based on his social media items

such as microblog postings. Below, we introduce how to profile a user.

Definition 3.2 (User Profile). Let Ju = {j1, j2, . . . , j|Ju|} be a set of social media

items produced by a user u. A profiling function Φ produces a user profile for a

given set of social media items Ju as:

Φ : Ju → {w(a1, Ju), w(a2, Ju), . . . , w(a|A|, Ju)},

where w(a, Ju) is a weight of the term (or the entity) a for a set of social media

items Ju. w(a, Ju) is computed as:

w(a, Ju) =
∑
j∈Ju

w(a, j).

In terms of the source of user profiles, Chen et al. [CNN+10] developed a

recommender system that suggests URLs based on a user’s own microblog postings

or those of her followees. The experiment revealed that user profiles based on the

user’s own microblog postings made better recommendations than those based on

those of the followees. Therefore, we build up user profiles based on social media

items produced by the users themselves.

For profiling documents and users, the weighting function w is essential. This

function is defined below.
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Definition 3.3 (Weighting Function). w(a, d) and w(a, j) are a weight of the

term (or the entity) a for a document d and for a social media item j, respectively.

They are computed as:

w(a, d) = ν(a, d) · µ(t(d)).

w(a, j) = ν(a, j) · µ(t(j)).

ν is a term (or entity) relevance function. ν(a, d) and ν(a, j) represent the degree

of association of the term (or entity) a with the document d and the social media

item j, respectively. µ is a temporal decay function. µ(t) returns the weight with

regard to a given time t. t(d) and t(j) refer to the time stamp of the document d

and the social media item j, respectively.

In Section 3.2, we introduce different term-based profiling methods and profiling

methods using knowledge graphs. We especially focus on the term (or entity)

relevance function ν. Section 3.3 then presents different temporal decay functions

µ, to take data dynamics into account.

3.2 Profiling Methods with Knowledge Graphs

We first introduce traditional term-based profiling methods used in this thesis

in Section 3.2.1. Then, Section 3.2.2 provides different profiling methods using

knowledge graphs. We focus on the term (or entity) relevance function ν in this

section.

3.2.1 Term-based Profiling Methods

We start from the formalization of term-based profiling methods. We refer to

V = {v1, v2, . . . , v|V |} as the dictionary, which is a set of unique terms in a

document collection. A set of unique terms V is computed by applying natural

language processing, such as tokenization, stop word removal, and lemmatization.

The formalizations of profiling documents and users using term-based profiling

methods are described as replacing a with v and A with V in Definitions 3.1

and 3.2, respectively. In addition, the weighting function for term-based profiling

methods is also given by replacing a with v in Definition 3.3.

Below, we introduce the best-known term-based profiling methods, focusing on

the term relevance function ν. Please note that ν(v, j) is computed in the same

way as ν(v, d), because both documents and social media items consist of terms.
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Term Frequency-Inverse Document Frequency (TF-IDF) TF-IDF [SB-

88; SM86; SWY75] is the best-known profiling method that was originally

introduced for information retrieval. It is still a robust baseline in information

retrieval and text mining, although it was first developed more than 40

years ago [SWY75]. TF counts the frequency with which a term appears

in a document. This is based on the assumption that multiple appearances

of a term in a document are more relevant than single appearances. On

the other hand, IDF is based on the assumption that rare terms are more

relevant than frequent terms. In other words, terms that occur frequently in

one document but rarely in the rest of the document corpus are more likely

to be relevant to that document. TF-IDF computes a term weight as:

νtfidf (v, d) =
freq(v, d)∑

vi∈V freq(vi, d)
· log

|D|
|d ∈ D : v ∈ d|

. (3.1)

freq(v, d) returns the frequency of a term v in a document d. Thus,∑
vi∈V freq(vi, d) denotes the total number of terms in a document d, which

is equal to the length of a document d. |D| denotes the number of documents

in a document corpus. |d ∈ D : v ∈ d| counts the number of documents that

contain a term v in the document corpus D.

Okapi BM25 (BM25) BM25 [RWJ+94; RW94] is the state of the art for nearly

20 years. It computes a term weight as:

νbm25(v, d) =
freq(v, d) · (α + 1)

freq(v, d) + α · (1− β + β ·
∑
vi∈V

freq(vi,d)

avgdl
)
· idfbm25(v, d).

(3.2)

avgdl denotes the average length (i .e., the average total number of terms)

of documents in the document corpus. Both α and β are parameters. α is a

positive tuning parameter that calibrates the scaling of the term frequency.

If α = 0, the model is interpreted as a binary model (i .e., whether a term

appears in a document). A large value of α corresponds to using raw term

frequency. β is another parameter, and is β ∈ [0, 1]. It determines the

scaling by document length. β = 1 corresponds to fully scaling the term

weight by the document length, whereas β = 0 indicates no normalization

by the document length. For these parameters, Manning et al. [MRS08]

suggested that α ∈ [1.2, 2.0] and β = 0.75 are the best general settings.
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idfbm25(v, d) is defined as:

idfbm25(v, d) = log
|D| − |d ∈ D : v ∈ d|+ 0.5

|d ∈ D : v ∈ d|+ 0.5
. (3.3)

Please note that if a term occurs in over half of the documents in the

document corpus, then idfbm25(v, d) provides a negative value, which is

presumably undesirable. However, assuming the use of stop word removal,

this usually does not happen [MRS08].

TF-IDF and BM25 have been robust baselines for decades. Especially TF-IDF

has been widely used, since it requires no parameter.

3.2.2 Profiling Methods Using Knowledge Graphs

In this section, we first define a knowledge graph. Subsequently, we describe

how to detect entities from documents. Finally, we introduce different profiling

methods using knowledge graphs.

Definition 3.4 (Knowledge Graph, Triple, Entity). According to the standard

RDF-based knowledge graph, a triple 〈s, p, o〉 consists of subject s, predicate p, and

object o. Let R and L be the respective sets of all URIs and literals. A URI r ∈ R
refers to an entity or a predicate (i .e, property in RDF). A literal l ∈ L provides

a value such as a label and a number. In a triple 〈s, p, o〉, a subject s ∈ R is a

URI, a predicate p ∈ R is a URI, and an object o ∈ R ∪ L is a URI or a literal.

Naturally, a knowledge graph can be seen as a directed graph:

G = (R ∪ L,R×R× (R ∪ L)).

A node is a URI or a literal that is used as subject or object. The set of edges E

is considered as triples:

E = R×R× (R ∪ L).

A URI r is an entity if it satisfies the condition ∃〈r, ·, ·〉 ∈ E ∨ 〈·, ·, r〉 ∈ E. Let Q

be a set of all entities that satisfy the above condition, which are the subset of all

URIs, thus Q ⊂ R.

Although a subject and object can be a blank node1, we ignore it in this thesis

as the use of blank nodes is discouraged for Linked Data [BHB09].

1https://www.w3.org/TR/n-triples/#BNodes, last accessed on 08/30/2017
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Figure 3.1 shows a small example of a knowledge graph. Please note

that dbr, dbp-owl, and rdfs are namespace prefixes that are originally http:

//dbpedia.org/resource/, http://dbpedia.org/ontology/, and http://www.

w3.org/1999/02/22-rdf-syntax-ns#. These namespace prefixes are defined

in a knowledge graph. In the example, there are four URIs (i .e., dbr:Kiel,

dbr:Ulf_Kaempfer, dbp-owl:mayor, rdfs:label) and one literal (i .e., Kiel).

Among the four URIs, we consider dbr:Kiel and dbr:Ulf_Kaempfer as entities,

since they are used as a subject or object. The example delivers two facts (i .e.,

triples): first, that the mayor of Kiel is Ulf Kaempfer, and second, that the label

of the entity Kiel is “Kiel.”

Figure 3.1: An example of a knowledge graph.

Next, we describe how to detect entities from documents. We assume

that labels of entities are available in a knowledge graph. These labels

are given by a triple such as <http://dbpedia.org/resource/Apple><http:

//www.w3.org/2000/01/rdf-schema\#label>"Apfel"@de.. In this triple, the

subject URI <http://dbpedia.org/resource/Apple> indicates the entity “ap-

ple.” The predicate URI <http://www.w3.org/2000/01/rdf-schema\#label>

is a property that defines a label. Please note there are other properties that

define a label. For example, Linked Open Vocabularies (LOV) [VAP+17],

a catalog of reusable vocabularies, shows different terms2 to define labels.

In addition, we may use the properties that provide synonyms of entities,

such as http://dbpedia.org/ontology/synonym, and abbreviations of entities

such as http://dbpedia.org/ontology/abbreviation. In terms of the object

"Apfel"@de, "Apfel" is a label and @de indicates a language of the label (in this

case, German). Using the labels, we extract entities by a naive string matching

method. To reduce the number of false positives, the method usually takes labels

that consist of at least several characters. In addition, we assume that entities

do not share labels. As alternatives to the naive string matching method, pro-

filing methods may use more sophisticated entity extraction methods [GGL+16;

FDK16; TCL+16; PMA+16]. In addition, several tools for entity extraction have

2http://lov.okfn.org/dataset/lov/terms?q=label, last accessed on 08/30/2017
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been deployed such as DBpediaSpotLight [MJG+11], Alchemy3, and OpenCalais4.

Rizzo and Troncy [RT11] conducted an extensive evaluation of these tools.

The formalizations of profiling documents and users with a knowledge graph

are described by replacing a with r and A with Q in Definitions 3.1 and 3.2,

respectively. In addition, the weighting function of profiling methods using

knowledge graphs is also given by replacing a with r in Definition 3.3.

Profiling method using a list of domain-specific entities We first intro-

duce profiling methods using a list of entities. Specifically, we focus on the entity

relevance function ν.

Frequency (Freq) The frequency (i .e., number of appearances) of an entity is

provided as a weight.

νfreq(r, d) = freq(r, d). (3.4)

freq(r, d) returns the number of appearances of an entity r in a document

d. This profiling method was used by Abel et al. [AHK11] to extract users’

professional interests.

Concept Frequency-Inverse Document Frequency (CF-IDF) CF-

IDF [GIF+11] is an extension of the traditional TF-IDF [SB88; SM86;

SWY75] that counts entities instead of terms. CF-IDF gives a weight as

follows:

νcfidf (r, d) =
freq(r, d)∑

ri∈Q freq(ri, d)
· log

|D|
|d ∈ D : r ∈ d|

. (3.5)

∑
ri∈Q freq(ri, d) represents the total number of entities in a document d

(i .e., the length of a document d). |D| denotes the number of documents in

a document corpus. |d ∈ D : r ∈ d| indicates the number of documents that

contain an entity r in the document corpus D.

BM25C BM25C [NGS15] is a novel profiling method that is an extension of

BM25 [RWB99]. Like CF-IDF, it counts entities instead of terms and uses

them in BM25.

νbm25c(r, d) =
freq(r, d) · (α + 1)

freq(r, d) + α · (1− β + β ·
∑
ri∈Q

freq(ri,d)

avgdl
)
· bm25cidf(r, d),

(3.6)

3https://www.ibm.com/watson/developercloud/alchemy-language.html, last accessed
on 08/30/2017

4http://www.opencalais.com/, last accessed on 08/30/2017
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where avgdl denotes the average length (i .e., the average number of entities)

of documents in the document corpus. Both α and β are parameters.

bm25cidf(r,D) is defined as:

bm25cidf(r, d) = log
|D| − |d ∈ D : r ∈ d|+ 0.5

|d ∈ D : r ∈ d|+ 0.5
. (3.7)

Profiling method using hierarchical knowledge graphs The above profil-

ing methods exploit the labels encoded in a knowledge graph. However, they do

not leverage its structure. Below, we introduce profiling methods that do take into

account the structure. Specifically, this thesis utilizes the hierarchical structure of

a knowledge graph, because there are a lot of hierarchical knowledge graphs in

different domains. For example, taxonomies and thesauri used in libraries and

classification systems [YKS+14] have the hierarchical structure. These graphs

are usually defined following the Simple Knowledge Organization System (SKOS)

specifications5. The SKOS is a W3C recommendation designed to represent the-

sauri, taxonomies, or any other type of structured controlled vocabulary. Following

the SKOS specifications, many different hierarchical knowledge graphs have been

published in different domains. The list of freely available hierarchical knowledge

graphs6 is maintained by the W3C. In addition, these knowledge graphs are often

crafted manually by domain experts, and are thus of high quality.

The SKOS includes two basic categories of semantic relations7: hierarchical

and associative. Hierarchical relations include broader and narrower relations

indicating that one is in some way more general (i .e., broader) than the other

(i .e., narrower). An associative relation between two entities indicates that they

are related. In this thesis, we exploit only hierarchical relations.

Below, we define a hierarchical knowledge graph.

Definition 3.5 (Hierarchical Knowledge Graph). A knowledge graph is a hierar-

chical knowledge graph if the following criteria are satisfied:

1. It is a directed acyclic graph (DAG).

2. Entities r ∈ Q are connected by a relation, either broader or narrower.

A hierarchical knowledge graph can be seen as a DAG, which is a

graph that contains no cycle. The definition allows poly-hierarchical re-

5https://www.w3.org/2004/02/skos/, last accessed on 08/30/2017
6http://www.w3.org/2001/sw/wiki/SKOS/Datasets, last accessed on 08/30/2017
7https://www.w3.org/TR/skos-reference/#semantic-relations, last accessed on

30/08/2017
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Figure 3.2: An example of a hierarchical knowledge graph.

lations. In other words, an entity may have more than one broader en-

tity. In the SKOS specifications, broader and narrower relations are de-

fined by the properties http://www.w3.org/2004/02/skos/core\#broader

and http://www.w3.org/2004/02/skos/core\#narrower, respectively. For

example, the statement that “apple” is narrower than “fruit” is repre-

sented as <http://dbpedia.org/resource/Fruit><http://www.w3.org/2004/

02/skos/core\#narrower><http://dbpedia.org/resource/Apple>.. In addi-

tion, the SKOS specifications define labels by the properties http://www.w3.

org/2004/02/skos/core\#prefLabel and http://www.w3.org/2004/02/skos/

core\#altLabel. prefLabel provides a preferred label (i .e., main label) for an

entity. An entity has at most one prefLabel. altLabel provides labels other

than the preferred label. Figure 3.2 shows an example of a hierarchical knowledge

graph. In the example, the broader entity of the entity “web mining” is the entity

“world wide web,” while the narrower entities of the entity “web mining” are the

entities “site wrapping” and “web log analysis.”

Based on the definition of a hierarchical knowledge graph, we describe different

profiling methods that exploit the hierarchical structure. These profiling methods

have the advantage that they can extract entities that are not mentioned directly

but are nevertheless relevant to a document. Specifically, they boost the weights of

broader entities. Using the example in Figure 3.2, the entities “web searching” and

“world wide web” are activated and obtain non-zero weights, even if a document

contains only the entity “social recommendation.” Thus, it is expected that these

profiling methods are useful especially for short documents such as social media

items. They can extract sufficient amount of entities from short documents by

boosting the weights of relevant entities. Below, we describe profiling methods

using the hierarchical structure of knowledge graphs.

39



Basic Spreading Activation (Basic) The basic spreading activation [KJV+14]

uses the spreading activation [CL75], which is a propagation function.

νbasic(r, d) = freq(r, d) + λ ·
∑

ri∈LO(r)

νbasic(ri, d). (3.8)

LO(r) returns a set of entities located in a lower order of the entity r

in the hierarchical knowledge graph G. Using the example in Figure 3.2,

LO(“world wide web”) returns the entities “web searching” and “web min-

ing”. λ is a decay parameter. Kapanipathi et al. [KJV+14] used this method

in their study to extract user interests from microblog postings.

Bell Spreading Activation (Bell) Kapanipathi et al. [KJV+14] observed that

the distribution of entities across the different levels of a hierarchical knowl-

edge graph follows a bell curve. Based on this observation, they developed

the bell spreading activation as defined in Equation 3.9.

νbell(r, d) = freq(r, d) +
1

|LO(r)|
·

∑
ri∈LO(r)

νbell(ri, d). (3.9)

Bell Logarithmic Spreading Activation (BellLog) Kapanipathi et

al. [KJV+14] introduced the logarithmic scale for the bell spreading activa-

tion to reduce the impact of the raw count of the number of entities.

νbelllog(r, d) = freq(r, d) +
1

log10|LO(r)|
·

∑
ri∈LO(r)

νbelllog(ri, d). (3.10)

Below, we provide novel entity weighting functions that we have developed.

These functions make use of both the statistical strength of CF-IDF and the

semantics from the structure of a knowledge graph.

Hierarchical Concept Frequency-Inverse Document Frequency

(HCF-IDF) HCF-IDF [NGS15] is a novel profiling method that is

an extension of CF-IDF and leverages the hierarchical structure of a

knowledge graph. Thus, HCF-IDF benefits from both the statistical

strength of CF-IDF and the semantics from a knowledge graph. HCF-IDF

computes an entity weight as follows:

νhcfidf (r, d) = νbelllog(r, d) · log
|D|

|d ∈ D : r ∈ d|
. (3.11)
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|d ∈ D : r ∈ d| denotes the number of documents containing an entity r after

applying BellLog. As spreading activation, HCF-IDF exploits BellLog, since

according to Kapanipathi et al. [KJV+14], BellLog performs best (except

for the method PriorityInterest, which is not applicable here).

BM25HC BM25HC [NGS15] is a novel profiling method that is an extension of

BM25C. It uses the hierarchical structure of a knowledge graph.

νbm25hc(r, d) =
νbelllog(r, d) · (α + 1)

νbelllog(r, d) + α · (1− β + β ·
∑
ri∈Q

freq(ri,d)

avgdl
)
· bm25cidf(r, d).

(3.12)

avgdl denotes the average length (i .e., the average number of entities) of

documents in a document corpus after applying BellLog. bm25cidf(r, d)

is shown in Equation 3.7. Again, |d ∈ D : r ∈ d| denotes the number of

documents containing an entity r after applying BellLog in BM25HC.

3.3 Temporal Decay Functions for Profiling

Methods

Documents and social media items have different time stamps. Since older

information is intuitively less important, we should take into account these time

stamps. In most cases, interests that have only been expressed by a user in the

past are less relevant than interests that have been expressed recently. Therefore,

we can state that user interests decay with the time [Orl14]. This decay can be

modeled by a temporal decay function µ, which takes a point in time t (i .e., time

stamp) as an argument. µ is used to compute a weight of the term (or the entity)

as described in Definition 3.3. So far, different temporal decay functions have

been used by profiling methods. Below, we introduce the best-known ones that

are used in this thesis.

No Temporal Decay The no temporal decay function does not take into account

data dynamics. Thus, it gives an equal weight to all items (i .e., documents,

social media items).

µnd(t) = 1. (3.13)

Sliding Window There are two kinds of sliding window functions. The first is (a)

the function whose window size is defined by the number of items [KJN08],

and the other is (b) the function whose window size is set by the period of
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time [SC98]. The function (a) is employed to identify relatively short-term

profiles (e .g., user interests based on web browsing histories) [KJN08]. In

contrast, the function (b) is used to identify long-term profiles [SC98]. In

this thesis, we aim to profile users and analyze the data that is long-term.

Thus, we take the function (b). The sliding window function is defined as:

µsw(t) =

 1 for tcurrent − t < twindow

0 for tcurrent − t ≥ twindow
. (3.14)

tcurrent denotes the current point in time. twindow is a window size that refers

to a period of time (e .g., one month). Thus, the sliding window function

only considers items that have been produced within the period of twindow.

Exponential Different psychologists have observed that the forgetting

curve [Ebb85; Ebb13] follows the exponential function [AH11; AT97]. Mo-

tivated by these observations, many profiling methods have employed this

function [DL05; SK10; OBP12; DGL12]. The function is defined as:

µexp(t) = e−(tcurrent−t)/τ , (3.15)

where τ is a parameter that controls the speed of forgetting.
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Chapter 4

Application I: Recommender

System for Researchers

The first application is a recommender system for researchers. With the rapid

growth of academic communities, different academic social network platforms

have been developed such as ResearchGate1. Since many researchers are available

at the platform, it is difficult for users to find out interesting researchers. This

challenge restricts communications among researchers in a traditional way, wherein

collaboration is done with only individuals they already know [XGH+12].

The goal of our recommender system is to mitigate this information overload

problem by suggesting researchers who might interest users. In the last decade,

researchers have also been highly active on social network platforms such as

Twitter [LPB+10]. Thus, social media items published by a user are a promising

source for building up a user profile, which can be used for recommender systems.

However, it is difficult to detect users’ professional interests due to their implicit

nature. To address this problem, we employ profiling methods using knowledge

graphs introduced in Section 3.2, as these profiling methods are assumed to

be able to extract implicit user interests. Our recommender system suggests

relevant researchers based on a user’s social media items. While user profiles

are constructed based on their own social media items, our recommender system

profiles researchers (i .e., candidate items) based on their own scientific publications.

Researchers who score higher similarity with a user are recommended to him.

In our experiment, we examine the recommender system using three factors.

The first is Profiling Method. In this factor, we compare two term-based pro-

filing methods and eight profiling methods using knowledge graphs described

in Section 3.2. The second is Usage of Older Scientific Publications, which in-

1https://www.researchgate.net, last accessed on 08/30/2017
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vestigates how older scientific publications used for researcher profiles influence

the recommendation performance. Finally, the third factor is Content Richness,

where we examine the influence of the content richness on the recommendation

performance. Specifically, we compare researcher profiles based on only titles of

scientific publications and those based on both titles and abstracts. In addition,

we analyze the correlation of the recommendation performance with the number

of social media items for user profiles and the number of scientific publications for

researcher profiles. The experiment employs Twitter as the social media platform

due to its popularity in the scientific community [LPB+10]. We conduct the

experiment in two domains: computer science and medicine.

In Section 4.1, we formalize the problem tackled in this chapter. Subsequently,

Section 4.2 introduces the three experimental factors and their details, and

Section 4.3 describes the details of the experiment. Thereafter, the results of the

experiment are reported in Section 4.4 and discussed in Section 4.5.

4.1 Problem Statement

We tackle with a problem of recommending researchers based on user’s social

media items. The problem consists of three parts:

Profiling a user A user u generates social media items Ju. A user profile is

represented by Φ(Ju) as defined in Definition 3.2.

Profiling researchers Let D be a set of researchers who are candidate items

of the recommender system. Each researcher d ∈ D is represented as a

collection of her scientific publications. We treat the collection of scientific

publications authored by a researcher as one single scientific publication

document d. A researcher profile is provided by Φ(d) as defined in Defini-

tion 3.1.

Ranking researchers to a user Researchers are ranked based on similarity

scores between a user profile Φ(Ju) and a researcher profile Φ(d). A function

that outputs similarity scores between them is defined as σ : Φ(Ju),Φ(d)→
[0, 1]. Researchers whose similarity scores are higher are preferentially

recommended to the user.
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4.2 Design of the Experimental Factors

The recommender system is composed of three experimental factors: Profiling

Method, Usage of Older Scientific Publications, and Content Richness. We detail

the factor Profiling Method in Section 4.2.1, Usage of Older Scientific Publications

in Section 4.2.2, and Content Richness in Section 4.2.3. Subsequently, we describe

the similarity function σ used in our experiments in Section 4.2.4.

4.2.1 Profiling Methods

In total, we experiment with two term-based profiling methods and eight profiling

methods using knowledge graphs, which are introduced in Section 3.2. We use

both term and entity relevance function ν. Please note that this chapter does not

investigate the temporal decay function µ. Thus, we apply the no temporal decay

function as defined in Equation 3.13 to all user profiles and researcher profiles.

We employ the following two term-based profiling methods.

• TF-IDF (c .f., Equation 3.1)

• BM25 (c .f., Equation 3.2)

We further compare eight profiling methods using knowledge graphs. As entity

extraction, we employ the naive string matching approach in all profiling methods.

To reduce the number of false positives, we only take labels composed of at least

four characters. We employ a domain-specific hierarchical knowledge graph, which

can avoid noise such as what Abel et al. [AHK11] observed in user profiles. This

is especially beneficial for social media items, since they frequently contain private

interests that are irrelevant to professional ones. The eight profiling methods

using knowledge graphs are listed below.

• Freq (c .f., Equation 3.1)

• Basic (c .f., Equation 3.8)

• Bell (c .f., Equation 3.9)

• BellLog (c .f., Equation 3.10)

• CF-IDF (c .f., Equation 3.5)

• HCF-IDF (c .f., Equation 3.11)

• BM25C (c .f., Equation 3.6)

• BM25HC (c .f., Equation 3.12)
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4.2.2 Usage of Older Scientific Publications

Scientific publications are released in different years. To investigate the influence

of older scientific publications on researcher profiles, in our experiment we create

researcher profiles with respect to three sets of scientific publications that are

split by time. How the scientific publications are split depends on datasets.

In addition, we examine how the recommendation performance varies as older

scientific publications are incrementally added to researcher profiles.

4.2.3 Content Richness

Researchers’ profiles are constructed based on their own scientific publications.

However, the available contents of scientific publications differ. Therefore, we

compare the recommendation performance when profiles are constructed based

on only titles, and on both titles and abstracts.

Title The researcher profiles are created based on only titles of their own scientific

publications.

All (Title + Abstract) The researcher profiles are constructed based on both

titles and abstracts of their own scientific publications.

In addition, users and researchers have different numbers of social media items

and their own scientific publications, respectively. In the experiment, we also

analyze how these different numbers influence recommendation performance.

4.2.4 Similarity Function

We calculate the similarity scores between a user profile Φ(Ju) and each of the

researcher profiles Φ(d). All profiles are represented as a term weight vector or an

entity weight vector. As similarity function σ, we use the cosine similarity, which

has been widely used.

σcos(Φ(Ju),Φ(d)) =
Φ(Ju) · Φ(d)

‖Φ(Ju)‖ · ‖Φ(d)‖
. (4.1)

4.3 Experiment

In the experiment, a recommender system suggests researchers based on a user’s

social media items. Researchers (i .e., candidate items for the recommender system)

are profiled based on their own scientific publications. We choose Twitter as a
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social media platform due to its popularity in the scientific community [LPB+10].

Throughout the experiment, we investigate (i) effectiveness of different profiling

methods; (ii) influence of older scientific publications (i .e., do older scientific

publications enhance recommendation performance?); (iii) influence of the number

of social media items (i .e., tweets) and scientific publications; and (iv) influence of

abstracts (i .e., do abstracts of scientific publications improve the recommendation

performance?).

We first describe the procedure of the experiment in Section 4.3.1. Subsequently,

Section 4.3.2 details the two datasets used in the experiment. Section 4.3.3

introduces a metric used for evaluation.

4.3.1 Procedure

We first identify users who have both a Twitter account and a record of scientific

publications. Subsequently, we compute social media profiles (i .e., user profiles)

and publication profiles (i .e., researcher profiles) for all users. Thereafter, we

calculate similarity scores between a user profile and each of the researcher profiles,

as described in Section 4.2.4. Researchers are ranked by similarity scores. Please

note that a set of researchers also contains the user himself. As ground truth, we

consider the user himself (i .e., his own researcher profile) as interesting (i .e., right

recommendation). In a practical recommender system, it is not usual for users

to find himself as a recommendation. However, we take this approach due to a

lack of ground truth and the difficulty of obtaining it [ZL15]. We assume that

researchers ranked near the user have similar interests.

4.3.2 Datasets

In the experiment, two datasets are used, which are from computer science and

medicine, respectively. Twitter is chosen as a social media platform because of its

predominance among different social media platforms and its strong use among

researchers to disseminate their scientific thoughts [LPB+10]. We introduce the

two datasets below.

Computer Science We use 88 Twitter accounts in the field of computer science.

To identify these accounts, we follow the data collection methodology of

Grosse-Bölting et al. [GNS15a]. Specifically, we first retrieve tweets that

mention one of the 26 A*-rated2 computer science conference hashtags via

2CORE ranking from 2014, see http://103.1.187.206/core/, last accessed on 08/30/2017
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Twitter API. A*-rated conferences are chosen because of their importance.

We use only the hashtags that are officially employed on the conference

web pages or official conference Twitter accounts. Subsequently, we filter

the obtained Twitter accounts and keep only Twitter accounts that also

have a publication record in DBLP3. Although conference hashtags are not

necessarily unique, we assume that accounts that have publication records of

DBLP use the hashtags to indicate computer science conferences. Through

this procedure, we identify 88 Twitter accounts with corresponding DBLP

records. Then, we retrieve their tweets using Twitter API. We can obtain

3, 200 tweets at most for each account due to the limitations of the Twitter

API. Please note that we use only tweets in English. A user has published

697.58 tweets on average (SD: 443.17) in English.

To obtain each user’s scientific publications, we use the extended DBLP

dataset4. From the dataset, we obtain titles and abstracts of scientific

publications authored by one of the 88 users. In total, we obtain 1, 059

publications, where 325 have abstracts. On average a user has 12.03 pub-

lications (SD: 13.45). On average 3.69 (SD: 5.12) of them have abstracts.

However, the scientific publications of 29 of the 88 users have no abstract.

The average published year is 2006.74 (SD: 4.94). The latest publication

dates from 2013, and the oldest one from 1983.

As a domain-specific hierarchical knowledge graph, the ACM Computer

Classification System (ACM CCS)5 is employed. The ACM CCS contains

2, 299 entities in the field of computer science as well as their relations, and

9, 086 labels. On average, an entity has 4.95 labels (SD: 3.59). According to

Kapanipathi et al. [KJV+14], the number of entities over the different levels

in a hierarchical knowledge graph follows a normal distribution for applying

Bell and BellLog. We verified this by visual inspection of the ACM CCS.

Medicine In addition to the domain of computer science, we also conduct the

experiment in the domain of medicine. We use 64 Twitter accounts who

have a publication record. These Twitter users are identified by searching

the top five journals6 on Twitter. Specifically, we query each of the five

journal hashtags using the Twitter API and extract Twitter users who use

at least one of those hashtags. Subsequently, we filter the obtained users

3http://dblp.uni-trier.de/, last accessed on 08/30/2017
4AMiner Citation Network Dataset, http://arnetminer.org/lab-datasets/citation/

DBLP_citation_Sep_2013.rar, last accessed on 08/30/2017
5http://www.acm.org/about/class/class/2012, last accessed on 08/30/2017
6http://impactfactor.weebly.com/medicine.html, last accessed on 06/02/2015
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and keep only the users who also have a record in the PubMed database7,

resulting in our 64 Twitter accounts. On average, a user has published

1508.13 tweets (SD: 1282.62) in English.

To obtain the publications of the 64 users, we access the PubMed database.

We obtain publications via API called E-utility functions8. On average a

user has 50.34 publications (SD: 65.95). On average 43.27 (SD: 60.23) of

them have abstracts. However, 4 of the 64 users have no abstract. The

average year of publication is 2010.40 (SD: 3.64). The latest publication

dates from 2015, and the oldest from 1976.

As a hierarchical domain-specific knowledge graph, we use the Medical

Subject Headings (MeSH)910. The MeSH contains 27, 300 entities in the field

of medicine as well as their relations, and 224, 368 labels. Thus, on average,

an entity has 8.22 labels (SD: 9.19). A visual inspection confirmed that the

number of entities over the different levels follows a normal distribution.

4.3.3 Metric

As metric, we use the Mean Reciprocal Rank (MRR) as follows:

MRR =
1

|U |
∑
u∈U

1

rank(du)
, (4.2)

where rank(du) denotes the rank at which researcher profile du corresponding a

user u appears in the list of all researcher profiles sorted by similarity scores.

4.4 Results

In this section, we report the results of the experiment. We start with the influence

of the different profiling methods. Subsequently, Section 4.4.2 reports the influence

of the older scientific publications. Finally, Section 4.4.3 shows the impact of the

numbers of social media items and scientific publications, as well as the influence

of using abstracts for profiling researchers.

7https://www.ncbi.nlm.nih.gov/pubmed, last accessed on 08/30/2017
8http://www.ncbi.nlm.nih.gov/books/NBK25500/, last accessed on 08/30/2017
92015 MeSH “Descriptor Records” retrieved 05/16/2015, http://www.nlm.nih.gov/mesh/

filelist.html
10We convert the original .xml file into the .nt file using the convertor HIVE https://code.

google.com/p/hive-mrc/, last accessed on 08/30/2017
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Table 4.1: MRR of profiling methods (SD in parentheses). The best overall results
are marked in bold font.

Computer Science Medicine
Title All Title All

TF-IDF .31 (.35) .33 (.37) .38 (.42) .38 (.42)
BM25 .33 (.38) .32 (.40) .33 (.39) .33 (.39)
Freq .18 (.28) .21 (.29) .25 (.36) .26 (.36)
Basic .15 (.28) .17 (.30) .25 (.36) .28 (.38)
Bell .18 (.30) .21 (.32) .23 (.34) .25 (.36)

BellLog .18 (.28) .21 (.29) .25 (.36) .26 (.36)

CF-IDF .22 (.30) .24 (.32) .38 (.41) .38 (.41)
HCF-IDF .22 (.31) .22 (.31) .37 (.41) .38 (.42)
BM25C .26 (.35) .25 (.34) .43 (.44) .38 (.42)

BM25HC .24 (.33) .25 (.35) .41 (.42) .40 (.43)

4.4.1 Influence of Profiling Methods

Table 4.1 illustrates the recommendation performance of each profiling method.

While BM25 and TF-IDF perform best in the computer science dataset, BM25C

and BM25HC outperform the other profiling methods in the medicine dataset.

In terms of the difference between the two academic domains, the medicine

dataset consistently shows better recommendation performance. The medicine

dataset contains fewer users (i .e., 64 users) than the computer science dataset

(i .e., 88 users). Thus, the minimum value of reciprocal rank (i .e., 1/64) in the

medicine dataset is higher than the one in the computer science dataset (i .e.,

1/88). Therefore, the medicine dataset naturally achieves higher MRR than the

computer science dataset does.

We investigate if there are significant differences between the profiling methods.

No significance is revealed in the medicine dataset. On the other hand, for the

computer science dataset, BM25 and TF-IDF are significantly different compared

to Freq, Basic, Bell, and BellLog (“titles”: t(87) is in [3.92, 3.34], p < .05, ε = .36,

“all”: t(87) is in [4.21, 3.32], p < .05, ε = .35). Thus, there is no significant

difference between term-based profiling methods and profiling methods using

knowledge graphs that involve statistical methods.

4.4.2 Influence of Usage of Older Scientific Publications

Scientific publications in both datasets originate from various years. We assume

that researcher profiles based on newer scientific publications are more similar to

50



Table 4.2: MRR of the three periods of scientific publications for the computer
science dataset.

Computer Science
1983-2005 2006-2009 2010-2013

TF-IDF .47 (.39) .57 (.39) .76 (.35)
BM25 .43 (.38) .49 (.42) .71 (.41)
Freq .33 (.32) .46 (.40) .43 (.38)
Basic .34 (.35) .40 (.39) .32 (.29)
Bell .34 (.32) .47 (.42) .37 (.37)

BellLog .33 (.32) .46 (.40) .42 (.38)
CF-IDF .36 (.34) .43 (.31) .38 (.33)

HCF-IDF .37 (.33) .48 (.33) .38 (.33)
BM25C .48 (.39) .36 (.30) .39 (.36)

BM25HC .40 (.36) .41 (.32) .44 (.39)

corresponding user profiles based on social media items. To verify this assumption,

we compare the recommendation performance using three scientific publication

sets in each of the two datasets. Tables 4.2 and 4.3 show the resulting MRR with

respect to each period for the computer science dataset and the medicine dataset,

respectively. We observe that profiles based on newer scientific publications

demonstrate better MRR.

In addition, we examine how the older scientific publications influence recom-

mendation performance. Specifically, we start to measure MRR with researcher

profiles based on scientific publications in the most recent year and incrementally

add scientific publications that are published in the older years. We observe how

MRR changes as we add older scientific publications for researcher profiles. Fig-

ures 4.1 and 4.2 illustrate the results of the experiments for the computer science

dataset and the medicine dataset, respectively. For the profiling methods using

knowledge graphs, we observe that the recommendation performs best when using

all scientific publications dating from after around 2004 in the computer science

dataset. However, BM25HC demonstrates the best recommendation performance

with all scientific publications published after 2000. For TF-IDF and BM25, the

recommendation performs best when considering all scientific publications pub-

lished after around 2010. When using scientific publications published before 2010,

the recommendation performance gets worse, especially for BM25. In contrast, for

the medicine dataset, the recommendation performance does not vary much when

older scientific publications are added to compute researcher profiles. However,
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Table 4.3: MRR of the three periods of scientific publications for the medicine
dataset.

Medicine
1976-2008 2009-2012 2013-2015

TF-IDF .44 (.41) .52 (.46) .56 (.45)
BM25 .47 (.44) .49 (.43) .52 (.45)
Freq .30 (.39) .36 (.40) .41 (.44)
Basic .31 (.39) .39 (.43) .35 (.42)
Bell .28 (.36) .35 (.39) .40 (.43)

BellLog .30 (.39) .36 (.40) .41 (.44)
CF-IDF .41 (.43) .48 (.45) .51 (.45)

HCF-IDF .41 (.43) .47 (.44) .50 (.45)
BM25C .39 (.41) .45 (.42) .54 (.45)

BM25HC .42 (.41) .46 (.42) .54 (.45)

for TF-IDF and BM25, the recommendation performance is low when using only

scientific publications from the most recent year.

4.4.3 Influence of Content Richness

As shown in Table 4.1, we observe that abstracts have a positive influence on

the profiling methods Freq, Basic, Bell, and BellLog. On the other hand, for the

profiling methods TF-IDF, BM25, CF-IDF, HCF-IDF, BM25C, and BM25HC

that involve statistical methods, abstracts have almost no influence, or a negative

influence.

Furthermore, we investigate whether the number of tweets (i .e., social media

items) and scientific publications have an influence on the recommendation per-

formance. We compute the correlations between MRR and the number of tweets

and scientific publications using the Kendall rank coefficient. Tables 4.4 and 4.5

present the results. While we observe a moderate correlation between MRR and

the number of scientific publications as shown in Table 4.5, Table 4.4 indicates

that there is almost no correlation between MRR and the number of tweets.

4.5 Discussion

In terms of the profiling methods, the statistical methods TF-IDF, BM25, BM25C,

and BM25HC demonstrate overall better recommendation performance, as shown

in Table 4.1. Table 4.1 demonstrates that while TF-IDF and BM25 perform best

in the computer science dataset, BM25C and BM25HC outperform the others
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Figure 4.1: Influence of the older scientific publications on recommending re-
searchers in the computer science dataset. All scientific publications published
after a year shown in the x-axis are used for researcher profiles. The y-axis
represents the MRR.

Figure 4.2: Influence of the older scientific publications on recommending re-
searchers in the medicine dataset. All scientific publications published after a
year shown in the x-axis are used for researcher profiles. The y-axis represents
the MRR.
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Table 4.4: Kendall rank coefficient between MRR and the number of tweets. The
p-values in parentheses are marked in bold font if ≤ .05.

Computer Science Medicine
title all title all

TF-IDF -.01 (.91) -.03 (.65) .01 (.94) .03 (.72)
BM25 .01 (.85) .01 (.92) -.01 (.95) .00 (.97)
Freq .07 (.36) .00 (.99) -.01 (.89) .00 (.98)
Basic .11 (.13) .03 (.70) -.05 (.59) .00 (.96)
Bell .10 (.20) .00 (.96) -.05 (.62) -.02 (.82)

BellLog .10 (.20) .00 (.99) -.02 (.79) -.01 (.92)

CF-IDF .09 (.42) .02 (.91) .07 (.97) .05 (.87)
HCF-IDF .10 (.35) .03 (.82) .04 (.87) .02 (.69)
BM25C .12 (.28) .06 (.84) .06 (.98) .03 (.49)

BM25HC .16 (.22) .08 (.91) .00 (.62) .01 (.35)

Table 4.5: Kendall rank coefficient between MRR and the number of scientific
publications. The p-values in parentheses are marked in bold font if ≤ .05.

Computer Science Medicine
title all title all

TF-IDF .33 (.00) .37 (.00) .37 (.00) .45 (.00)
BM25 .36 (.00) .44 (.00) .47 (.00) .53 (.00)
Freq .31 (.00) .36 (.00) .49 (.00) .48 (.00)
Basic .27 (.00) .37 (.00) .53 (.00) .54 (.00)
Bell .29 (.00) .37 (.00) .51 (.00) .50 (.00)

BellLog .33 (.00) .38 (.00) .49 (.00) .48 (.00)

CF-IDF .24 (.00) .31 (.00) .41 (.00) .44 (.00)
HCF-IDF .28 (.00) .36 (.00) .43 (.00) .45 (.00)
BM25C .20 (.00) .24 (.00) .43 (.00) .48 (.00)

BM25HC .23 (.00) .28 (.00) .45 (.00) .50 (.00)
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in the medicine dataset. A possible reason is the richness of the domain-specific

knowledge graph. While the ACM CCS for the computer science dataset contains

only 2, 299 entities with 9, 068 labels, the MeSH for the medicine dataset has

27, 300 entities with 224, 386 labels. Thus, the MeSH covers many more entities

and labels, which enable to extract sufficient entities to generate user profiles.

In terms of the use of older scientific publications, Figure 4.1 shows a negative

influence on the recommendation performance in the computer science dataset.

Thus, we should take into account temporal aspects for researcher profiles. On

the other hand, Figure 4.2 indicates less influence of the older publications in the

medicine dataset. A possible reason is that researchers working in the field of

medicine might be less likely to change their professional interests than researchers

in the field of computer science. In addition, the terminology in medicine is

much more stable and less agile than in computer science, where new “buzzwords”

emerge every six months.

Regarding the influence of the number of scientific publications, we observe a

moderate correlation. The correlations between the recommendation performance

and the number of tweets are weaker than those between the recommendation

performance and the number of scientific publications. A possible reason is that

users disseminate not only tweets that are relevant to their professional interests,

but also those that are unrelated to them, e .g., private travels. In contrast, titles

and abstracts of scientific publications contain only professional interests. Thus,

we observe a weaker correlation between recommendation performance and the

number of tweets compared to the number of scientific publications. Finally, the

result shows that abstracts slightly improve the recommendation performance.
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Chapter 5

Application II: Recommender

System of Scientific Publications

The second application is the recommender system for scientific publications. It

suggests interesting publications to users based on a user’s social media items.

Recommending based on social media items has two advantages. First, users

receive recommendations based on their current and ongoing professional in-

terests. Second, it mitigates the cold-start problem observed in collaborative

filtering [JZF+10]. The cold-start problem refers to the initial situation in which

a recommender system does not yet know anything about a user. In addition, it

can work for young researchers such as doctoral students who do not yet have a

publication record.

In this chapter, we conduct an online experiment to evaluate the influence

of three factors on a recommender system based on a user’s social media items.

The first factor is Profiling Method. For this factor, we compare CF-IDF, HCF-

IDF, which are defined in Section 3.2, and LDA [BNJ03]. The second factor

is Temporal Decay Function. We compare the sliding window function and the

exponential function, which are introduced in Section 3.3. Finally, the third

factor is Publication Content, for which we investigate the influence of the richness

of content used for profiling candidate items (i .e., scientific publications). We

compare the profiles based on both full texts and titles with those based on titles

only. In total, we compare twelve recommendation strategies by making use of

different combinations of the three experimental factors. We choose Twitter as

social media platform due to its popularity in the scientific community [LPB+10].

We use the corpus of the scientific publications in the field of economics as

candidate items. We have recruited 123 subjects who have worked in economics

and have posted about their professional interests on Twitter.
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The experiment demonstrates that the recommendation strategy that employs

CF-IDF and the sliding window function based on both titles and full texts

achieves the overall best recommendation performance. Although it shows the

highest performance, however, it has the drawback that it requires the full texts

of scientific publications. It is remarkable that the recommendation strategies

with HCF-IDF can achieve comparable recommendation performance using only

titles. In fact, a statistical analysis finds no significant difference between the best

performing strategy and recommendation strategies with HCF-IDF. Therefore,

we conclude that HCF-IDF can mitigate the sparseness and shortness of titles.

This is a promising insight since full texts of scientific publications are frequently

unavailable, e .g., due to legal reasons.

We first formalizes the problem in Section 5.1. Subsequently, Section 5.2

describes the three experimental factors. Section 5.3 explains the experiment

procedure and setup. Section 5.4 reports the results. Finally, Section 5.5 discusses

the results.

5.1 Problem Statement

We tackle the problem of recommending scientific publications based on a user’s

social media items. The problem can be decomposed into three parts:

Profiling a user A user u generates social media items Ju. A user profile is

provided by Φ(Ju) as Definition 3.2.

Profiling scientific publications We have scientific publications d ∈ D as

candidate items. A publication profile is provided by Φ(d) as Definition 3.1.

Ranking scientific publications for a user Scientific publications are ranked

based on similarity scores between the user profile Φ(Ju) and the publication

profile Φ(d). A function that outputs these similarity scores is defined as

σ : Φ(Ju),Φ(d) → [0, 1]. The recommender system computes similarity

scores between a user profile Φ(Ju) and each of the publication profiles

Φ(d). Publications whose similarity scores are ranked in the top-k are

recommended.

5.2 Design of the Experimental Factors

We investigate three experimental factors in the experiment: Profiling Method,

Temporal Decay Function, and Publication Content. Table 5.1 illustrates the
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Table 5.1: The three experimental factors and their choices for the experiment
span a total of 3× 2× 2 = 12 recommendation strategies.

Factor Possible Design Choices

Profiling Method CF-IDF HCF-IDF LDA
Temporal Decay Function Sliding Window Exponential
Publication Content Title All (title + full-text)

design space of the experiment, where each cell is a possible design choice we can

make. We detail the factor Profiling Method in Section 5.2.1, Temporal Decay

Function in Section 5.2.2, and Publication Content in Section 5.2.3. Subsequently,

we describe similarity functions σ in Section 5.2.4.

5.2.1 Profiling Methods

We investigate three profiling methods to construct user profiles and publication

profiles. The experiment focuses on the profiling methods using knowledge graphs,

which are introduced in Section 3.2.2. In particular, we assume the use of a

domain-specific hierarchical knowledge graph.

CF-IDF CF-IDF as defined in Equation 3.5 counts frequencies of an entity instead

of frequencies of a term. For computing CF-IDF for social media items

j ∈ Ju, we replace d and D in Equation 3.5 with j and Jrdm, respectively.

Jrdm is a set of random social media items and allows us to better distinguish

relevant entities in the set of the user’s social media items Ju, as Chen et

al. [CNN+10] and Lu et al. [LLZ12] did with TF-IDF. For instance, assuming

that there are two social media items from a user u and both include an

entity referring to “currency competition,” this entity should have a high

weight in the user profile. However, IDF and CF-IDF would be 0 because

the entity is so common in the user’s social media items.

The random social media items are sampled from public postings. In the

experiment, we obtain them from the public Twitter stream using the Twitter

API. We first conduct a simple pre-experiment to empirically determine

the optimal amount of random social media items to use for user profiles

in the context of recommending scientific publications. Given the results

of this pre-experiment, we set the size of random social media items to

|Jrdm| = 5 · |Ju|. In the pre-experiment, we apply different sizes of random

social media items Jrdm, starting from 0 to 1000. For 26 Twitter accounts,

we compute the IDF for user profiles over Ju ∪ Jrdm with different sizes of
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random social media items Jrdm. Then, we compare it using cosine similarity

with the user profile computed only over Ju. The 26 Twitter accounts are

taken from a list of famous economists1 who frequently tweet. We ensure

that the set of random social media items Jrdm is disjoint from the user’s

social media items, i. e.. Jrdm ∩ Ju = ∅. In this pre-experiment, we examine

the changes of the cosine similarity while adding more random social media

items. We observe that the changes in the IDF become stable after about

5 · |Ju|. The changes indicate the influence of the IDF on user profiles. Please

note that this result may depend on the domain of economics. Thus, a

different size of random social media items may be chosen for other domains.

For publication profiles, CF-IDF is computed as Equation 3.5.

HCF-IDF The advantage of HCF-IDF, which is defined in Equation 3.11, is that

it combines the statistical strength of CF-IDF with semantics provided by

the hierarchical knowledge graph. HCF-IDF for a social media item j is com-

puted by replacing d and D in Equation 3.11 with j and Jrdm, respectively.

Similar to CF-IDF, random social media items Jrdm are employed.

For publication profiles, HCF-IDF is computed as Equation 3.11.

LDA As the third profiling method, we use LDA [BNJ03], an unsupervised topic

modeling method. LDA identifies latent topics in a document corpus, where

each document is represented as a probability distribution over topics, and

in turn each topic is represented as a probability distribution over terms.

We treat the set of social media items Ju published by a user u as one single

social media document in this profiling method, because it is known that

topic models that treat a user’s microblog postings as one combined social

media document outperform topic models computed over single postings for

recommendation tasks [HD10]. We first create a topic model for the entire

publication corpus D. Subsequently, we run LDA with the given topic model

of the publication corpus D to infer a probability distribution over topics

for a user’s social media document Ju. The details of the hyper parameters

and tools are described in Section 5.3.3. We treat each topic generated by

LDA as an entity r. The relevance of a topic r in user profiles is defined by:

νlda(r, Ju) = p(r | Ju). (5.1)

1http://www.huffingtonpost.com/2012/11/13/economists-twitter_n_2122781.html,
last accessed on 08/31/2017
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The relevance in publication profiles is computed as:

νlda(r, d) = p(r | d). (5.2)

In Equations 5.1 and 5.2, p(r | Ju) and p(r | d) denote the probability of the

entity (i .e., topic) r in the social media items Ju and scientific publication

d, respectively.

5.2.2 Temporal Decay Functions

In our experiment, we compare two temporal decay functions: the sliding window

function and the exponential function, which are introduced in Section 3.3. In

the past, both temporal decay functions have been used in recommender sys-

tems [SWL+13; OBP12; SK10]. However, so far they have not been empirically

compared. The final weights of entities w(r, j) and w(r, d) are computed by

combining a functions ν in the previous section with a temporal decay function µ,

as defined in Definition 3.3.

Please note that when employing LDA, the two temporal decay functions can

be applied only on scientific publications, because a set of social media items is

treated as one single social media document. For social media items, we apply

the no temporal decay function which is defined as Equation 3.13.

We describe the two temporal decay functions below.

Sliding Window The sliding window function is defined as Equation 3.14. For

user profiles, we set the window size based on the work of Orlandi et

al. [OBP12], who found that the half-life time of a social media item is

250 days. Hence, we set twindowsocial = 250 days. For publication profiles,

the sliding window function filters out scientific publications older than

twindow. We choose the window size according to the work of Sangam and

Mogali [SM13]. They observed a half-life time of 9.04 years for scientific

publications in social science. In the experiment, we use the publication

corpus in economics that has a large overlap with social science. Therefore,

we set twindowpub = 9.04 years and filter out scientific publications published

more than 9.04 years ago.

Exponential The exponential function is defined as Equation 3.15. For user

profiles, we set τ = 360 days, since Orlandi et al. [OBP12] observed that

the recommendation performance based on user profiles with τ = 360 days

was better than the one with τ = 120 days. For publication profiles, we set
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τ = 13.05 years because Sangam and Mogali [SM13] found that the mean

life of scientific publications in social science is 13.05 years.

5.2.3 Publication Content

This factor is used to examine whether it is possible to make reasonable recom-

mendations based on only titles of scientific publications. To this end, we compare

two sources for publication profiles.

Title The publication profiles are made based on only titles of scientific publica-

tions.

All (Title + Full-text) The publication profiles are constructed based on both

titles and full texts of scientific publications.

5.2.4 Similarity Functions

We calculate the similarity score between a user profile Φ(Ju, G) and each publica-

tion profile Φ(d,G). These profiles are represented as vectors, where each element

corresponds to an entity weight.

Temporal Cosine Similarity The profiling methods CF-IDF and HCF-IDF

employ the temporal cosine similarity as:

σtcossim(Φ(Ju),Φ(d)) = µ(t(d)) · Φ(Ju) · Φ(d)

‖Φ(Ju)‖ · ‖Φ(d)‖
. (5.3)

This extends the cosine similarity by a temporal decay function µ(t(d)),

which results in higher similarity scores for newer scientific publications. t(d)

returns the publication year of a scientific publication d.

Regarding HCF-IDF, we also consider the hierarchical cosine similarity by

Ganesan et al. [GGW03], which takes into account the hierarchical structure

of a knowledge graph when computing similarity scores. However, the pre-

experiment reveals that it does not work well for HCF-IDF in terms of the

recommendation performance. One of the possible reasons is that broader

entities are boosted too much through both the profiling method and the

calculation of the similarity score. Therefore, we use the temporal cosine

similarity for HCF-IDF.

Dot Product LDA employs the dot product, which is defined as:

σdp(Φ(Ju),Φ(d)) = Φ(Ju) · Φ(d). (5.4)
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Since LDA represents documents as a probability distribution over topics,

the Kullback-Leibler divergence (KL divergence) is considered as a more

reasonable similarity function in general. However, Hazen [Haz10] reported

that the dot product outperformed both the cosine similarity and the KL

divergence when representing documents as a probability distribution over

topics using LDA. For this reason, the dot product is chosen.

5.3 Experiment

We conduct an online experiment with 123 subjects to identify the best recom-

mendation strategy regarding the factors described in Section 5.2. We choose

Twitter as social media platform since it has been widely used in scientific commu-

nities [LPB+10]. We design the experimental setup and procedure following the

work of Chen et al. [CNN+10], where each subject receives top-5 recommendations

for each of the twelve recommendation strategies formed from the three experimen-

tal factors. The recommendation performance of each strategy is measured using

rankscore [BHK98] following Bostandjiev et al. [BOH12]. We describe the details

of the experiment procedure in Section 5.3.1 and the subjects in Section 5.3.2.

Subsequently, Section 5.3.3 describes the dataset and the knowledge graph used

in the experiment. Finally, Section 5.3.4 introduces the evaluation metric.

5.3.1 Procedure

Subjects are invited to a web application where the twelve recommendation strate-

gies are implemented. On this application, the subjects first input their public

Twitter handle and e-mail address. Then, their tweets are retrieved by the Twitter

API. The extracted tweets are used to construct user profiles with each of the three

profiling methods and two temporal decay functions. Based on the user profiles,

personalized top-k recommendations of scientific publications are generated using

each strategy. We set the number of recommendations per strategy to k = 5,

following Chen et al. [CNN+10]. After computing the recommendations, the sub-

jects receive an e-mail invitation to assess the recommendations. Since we employ

a repeated-measure design, the subjects go through all twelve recommendation

strategies as it was conducted by Chen et al. [CNN+10]. Thus, each subject

obtains 12 · 5 = 60 recommendations in total throughout the experiment.

Prior to starting the experiment, subjects are informed about the task of the

experiment, i .e., rating the recommended publications based on their research

interests, and confirm their consent. On each of the subsequent pages, the subjects
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Figure 5.1: Screenshot of the evaluation page. It shows a list of top-5 recommen-
dations in randomized order for the first of twelve recommendation strategies,
which are also randomly ordered. For each recommendation, the subjects see its
bibliographic record. In addition, they can see the original PDF files by clicking
on the bibliographic record. The subjects rate each recommended publication as
“interesting” or “not interesting” based on their professional interests.

see a list of five recommendations produced by one of the twelve recommendation

strategies. An example screenshot of the evaluation page is shown in Figure 5.1.

For each recommended publication, the subjects see its bibliographic information,

i .e., authors, title, and year of publication. In addition, the subjects can look into

the original PDF files by clicking on a link attached to the bibliographic record.

To avoid bias, the subjects go through the twelve recommendation strategies

in random order. In addition, the five recommendations on each recommendation

list are shown in random order to avoid the well-known ranking bias, i .e., subjects

typically assume that top-ranked items are essentially more relevant [BOH12;

CNN+10]. However, the true ranks of the recommendations as well as the positions

where they appeared on the evaluation page are stored in the database for later

analysis. Prior to starting the experiment, we explicitly inform the subjects that

we have randomized the order of the twelve recommendation strategies and the

scientific publications in the recommendation lists.

The subjects evaluate each recommendation as “interesting” or “not interesting”

by clicking on radio buttons next to the publication records, as in Chen et

al.’s [CNN+10] experiment. Please note that the subjects have to evaluate

all recommended publications. Thus, they cannot skip the evaluation for any

recommended publications.

At the end of the experiment, we collect the subjects’ demographic information

including gender, age, highest academic degree, major, years of profession, and
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current employment status (academia or industry). Finally, subjects can make

free comments regarding the experiment.

5.3.2 Subjects

We recruit 123 subjects through mailing lists, tweets, and word-of-mouth on

the Internet. Initially, 160 subjects registered their Twitter handle and e-mail

address for the experiment. Among them, 134 subjects started the experiment

after receiving the e-mail invitation. Of these 134 subjects, only eleven dropped

out in the course of assessing the recommendations.

Thus, we obtain evaluations for all of the recommendation strategies from 123

subjects. Among them, 27 subjects are female. The average age of the subjects is

32.83 years (SD: 7.34). Regarding the highest academic degree, 21 subjects have

a bachelor’s degree, 58 a master’s, 32 a PhD, and 12 are lecturers or professors.

While 83 subjects work in academia, 40 work in industry. The subjects’ tweets

are retrieved via Twitter API, which allows us to retrieve a maximum of 3, 200

tweets per subject. Only tweets in English are collected, since the scientific

publications are also in English. The subjects have published on average 1, 096.82

English tweets (SD: 1, 048.46). The maximum and minimum numbers of tweets

are 3, 192 and 2, respectively. Twitter users who have not produced any tweets

in the last 250 days cannot register and participate in the experiment, since we

use twindowsocial = 250 days for the temporal decay function sliding window (see

Section 5.2.2). Five Twitter users could not participate in the experiment for this

reason.

The subjects spend on average 517.54 seconds (SD: 376.72) to complete the

evaluation of the 12 · 5 = 60 recommendations. This does not include the time

spent to register for the experiment, read the instructions, and fill out the final

questionnaire.

As an incentive, each subject receives information about his other most similar

economists among 26 famous economists2. In addition, the subjects are shown

the top-5 dominant entities in his tweets after the experiment. Furthermore, the

subjects could opt-in to a raffle for one of two Amazon vouchers worth 50 e.

2http://www.huffingtonpost.com/2012/11/13/economists-twitter_n_2122781.html,
last accessed on 08/31/2017
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5.3.3 Dataset and Preprocessing

As candidate items, we use a large corpus of scientific publications in economics.

We employ a high-quality thesaurus as a knowledge graph for profiling methods. In

addition, in this section we explain how to process tweets and scientific publications,

and we describe an implementation of LDA.

Corpus of scientific publication We collaborate with the providers of Econ-

Biz3, a portal for scientific publications in economics. EconBiz is managed by

ZBW, the German National Library of Economics. From this portal, we obtain 1

million URLs of open access publications and extract full texts as well as meta-

data (i .e., authors, title, year of publication) from 413, 098 scientific publications.

Finally, we determine the language used in each publication using a language

detection library for Java4. The details of the language detection library5 are

documented online. We determine that 279, 381 of 413, 098 scientific publications

are in English. Therefore, we use these 279, 381 scientific publications in the

experiment.

Knowledge graph We use the STW (Standard Thesaurus for Economics)6 as

a domain-specific hierarchical knowledge graph for profiling methods. The STW is

a thesaurus specialized for economics and manually maintained by domain experts

of the ZBW. Thus, it is of high quality. The knowledge graph is poly-hierarchically

organized with six levels. It contains 6, 335 entities and 11, 679 labels. The

hierarchically organized entities are connected with each other via 14, 875 relations

(i .e., broader or narrower). To extract as many labels as possible, we enrich the

original STW with DBpedia redirects7. From DBpedia redirects, we can retrieve

the synonymous labels for an entity. STW contains 2, 692 entities that have both

a DBpedia mapping and one or more DBpedia redirects. For example, for the

entity “Telecommunications industry” in STW, we obtain the DBpedia redirects

“Telecommunications operator” and “Telephone companies,” and use them as

synonymous labels referring to the entity “Telecommunications industry.” Finally,

the extended STW contains 6, 335 entities and 37, 733 labels. This extended STW

is used for the profiling methods CF-IDF and HCF-IDF. For CF-IDF, we ignore

the relations between entities.

3http://www.econbiz.de/, last accessed on 08/31/2017
4https://github.com/shuyo/language-detection, last accessed on 08/31/2017
5http://www.slideshare.net/shuyo/language-detection-library-for-java, last ac-

cessed on 08/31/2017
6http://zbw.eu/stw/version/8.12/about.en.html, last accessed on 08/31/2017
7http://oldwiki.dbpedia.org/Downloads39\#redirects, last accessed on 08/31/2017
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Processing tweets and scientific publications Here, we describe how we

process tweets and scientific publications and how we extract entities from them.

We first lemmatize both the tweets and the scientific publications using Stanford

Core NLP8 and remove stop words. Some tweets contain hashtags indicating

topics (e .g., #election) and user mentions (e .g., @UNICEF). We remove only the

symbols # and @ from these tweets, because Feng and Wang [FW14] observed

that the combination of tweets’ textual content with the hashtags and user

mentions resulted in the highest performance for tag recommendation. Thereafter,

we extract entities from the tweets and the scientific publications by matching

them with the labels from the extended STW. This process extracts only the

users’ professional interests and helps to avoid noise (i .e., topics not relevant to

professional interests in economics), since we employ a domain-specific knowledge

graph. A subject has published on average 1, 096.82 tweets (SD: 1, 048.46). On

average, 1, 214.93 entities (SD: 1, 181.43) are contained in a subject’s tweets, and

1.07 entities (SD: 0.31) are contained per tweet. We also calculate the ratio of the

number of tweets containing at least one entity and the total number of tweets

for each subject. This indicates the percentage of tweets that have contributed to

creating the user profile. On average, 62.24% of the tweets (SD: 13.55) contain

at least one entity from the knowledge graph in economics. These tweets are

assumed to be relevant to users’ professional interests.

LDA To generate the topic model, we first run LDA over the corpus of scientific

publications. Following Blei and Lafferty [BL06], we lemmatize the scientific

publications using Stanford NLP Core. Subsequently, we remove stop words and

terms that appear in fewer than 25 different scientific publications. We optimize

the number of topics K regarding the maximum mean log likelihood as suggested

by Griffiths and Steyvers [GS04]. We experiment with K = 20, 50, 100, 200, 500,

1000, and 5000, and obtain the highest log likelihood when K = 100. Therefore,

we set K = 100 in the experiment. The topic models are computed over 500

iterations. Regarding the hyper parameters for LDA, we set α = 0.5 and β = 0.1,

as suggested by Griffiths and Steyvers [GS04]. To infer a topic distribution over

a user’s tweets, we run LDA again using the topic model of the corpus of the

scientific publication. The topic distribution is computed over 200 iterations.

Prior to the inference process, we prepare a user’s tweets as a single social media

document, as described in Section 5.2.1. As an implementation of LDA, we

use JGibbLDA9. JGibbLDA uses Gibbs sampling based on the work of Griffiths

8http://nlp.stanford.edu/software/corenlp.shtml, last accessed on 08/31/2017
9http://jgibblda.sourceforge.net/, last accessed on 08/31/2017
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and Steyvers [GS04]. Gibbs sampling is a Markov chain Monte Carlo (MCMC)

algorithm for obtaining a sequence of observations which are approximated from

a specified multivariate probability distribution. It is used for Bayesian inference

instead of a deterministic algorithm such as the expectation maximization (EM)

algorithm and makes the learning process of LDA much faster.

5.3.4 Metric

To assess the recommendation performance, we compute the rankscore. The

rankscore [BHK98] has been used by Bostandjiev et al. [BOH12]. It posits that

each successive recommended item in a recommendation list is less likely to be

viewed by users with the exponential function, as defined in Equation 5.5.

rankscore′ =
∑
d∈hits

1

2
rank(d)−1

θ−1

, (5.5)

where θ denotes a viewing halflife parameter controlling the speed of the exponen-

tial function. As suggested by Breese et al. [BHK98], we set θ = 5. hits refers to

the set of scientific publications evaluated as “interesting” and rank(d) denotes

the rank of a recommended item d in a recommendation list. Please note that

rank(d) is the actual rank stored in the database. It is different from the position

where a publication d appears in the recommendation list (see Section 5.3.1).

Then, the normalized rankscore is computed as:

rankscore =
rankscore′

rankscoremax
, (5.6)

where the maximum rankscore rankscoremax is computed as:

rankscoremax =
k∑
i=1

1

2
i−1
θ−1

. (5.7)

Here, k is the number of recommended items. We set k = 5.

In addition to the rankscore, precision, Mean Reciprocal Rank (MRR), Mean

Average Precision (MAP), and normalized Discounted Cumulative Gain (nDCG)

are also computed. Overall, all of these results are similar to the rankscore. Thus,

we omit them for the reason of brevity. The interested reader may refer to the

details in Appendix A.
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5.4 Results

This section reports the results of the experiment and conducts the statistical

analyses. The anonymized experimental data is available online10. We set a

significance level of α = .05 for all statistical analyses (please do not confuse this

with the hyper parameter α for LDA in Section 5.3.3). We first report the best

performing strategy among the twelve investigated ones. Subsequently, we analyze

the influence of the three experimental factors in Section 5.4.2. Section 5.4.3 then

analyzes the influence of the demographic factors, and Section 5.4.4 reports the

influence of the amount of content for user profiles. Thereafter, Section 5.4.5

investigates click rates on the PDF files and Section 5.4.6 reports feedback received

from subjects in the experiment. Finally, Section 5.4.7 provides the computation

time of the recommendation strategies

5.4.1 Best Performing Strategy

Table 5.2 summarizes the mean average of the rankscore of the twelve recom-

mendation strategies sorted in descending order. Overall, the best performing

strategy is the strategy CF-IDF × Sliding Window × All. We apply a one-way

repeated-measure ANOVA to identify whether there are significant differences

between the strategies. Before applying the ANOVA, however, we first need to

verify whether the variances of the rankscore of the strategies are equal. This

is done by using Mauchly’s test, which reveals a violation of sphericity in the

recommendation strategies (χ2(65) = 435.90, p = .00). This may lead to posi-

tively biased F-statistics, and increases the risk of false positives. To reduce this

risk, we apply a Greenhouse-Geisser correction of ε = .61 and run a one-way

repeated-measure ANOVA. It reveals a significant difference in the recommen-

dation strategies (F (6.60, 805.33) = 21.98, p = .00). To assess the pairwise

differences between the strategies, a post-hoc analysis is conducted. We employ

Shaffer’s modified sequentially rejective Bonferroni procedure (Shaffer’s MSRB

procedure) [Sha86], which takes into account the number of different experiment

conditions, i. e., the number of recommendation strategies. The result of the

post-hoc analysis for the rankscore is presented in Table 5.3. The vertical and

horizontal dimensions of Table 5.3 show the eleven-by-eleven comparison of the

twelve recommendation strategies. There are various significant differences be-

tween the strategies (p < .05, marked in bold font). For example, one can observe

a significant difference between the strategies CF-IDF × Sliding Window × Title

10http://dx.doi.org/10.7802/1224, last accessed on 08/31/2017
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Table 5.2: Rankscore of the recommendation strategies in decreasing order. M
and SD denote mean and standard deviation, respectively.

Recommendation Strategy Rankscore
Profiling
Method

Temporal Decay
Function

Publication
Content

M (SD)

1. CF-IDF Sliding Window All .59 (.33)
2. HCF-IDF Sliding Window All .56 (.34)
3. HCF-IDF Sliding Window Title .55 (.33)
4. HCF-IDF Exponential Title .52 (.30)
5. CF-IDF Exponential All .51 (.32)
6. HCF-IDF Exponential All .49 (.30)
7. CF-IDF Exponential Title .41 (.29)
8. CF-IDF Sliding Window Title .39 (.27)
9. LDA Exponential Title .35 (.31)
10. LDA Sliding Window Title .33 (.31)
11. LDA Exponential All .32 (.30)
12. LDA Sliding Window All .27 (.33)

and HCF-IDF × Sliding Window × All (t(122) = 4.77, p = .00). However, there

is no significant difference between the recommendation strategies CF-IDF ×
Exponential × Title and LDA × Sliding Window × Title (t(122) = 2.43, n.s.,

p = .41).

5.4.2 Influence of the Three Experimental Factors

We analyze the results with respect to each experimental factor. We first apply

Mendoza’s test [Men80] to check for violations of sphericity against the factors.

Mendoza’s test is an extension of Mauchly’s test to adapt it to multi-way repeated-

measure ANOVA. It shows violations of sphericity with the global (χ2(65) = 435.90,

p = .00) and the factors Profiling Method (χ2(2) = 12.21, p = .00), Profiling

Method × Temporal Decay Function (χ2(2) = 20.02, p = .00), and Profiling

Method × Publication Content (χ2(2) = 8.61, p = .01). Thereafter, we run a

three-way repeated-measure ANOVA with a Greenhouse-Geisser correction of

ε = .60 for the global and ε = .91 for the factor Profiling Method, ε = .87 for

the factor Profiling Method × Temporal Decay Function, and ε = .93 for the

factor Profiling Method × Publication Content. Table 5.4 shows the results of the

ANOVA with F-ratio, effect size η2, and p-value. The effect size is interpreted

as small when η2 > .02, medium when η2 > .13, and large when η2 > .26. The

analysis reveals significant differences in all three experimental factors and their

contributions, except for the factor Temporal Decay Function. For all factors with
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Table 5.4: Three-way repeated-measure ANOVA with Greenhouse-Geisser correc-
tion with F-ratio, effect size η2, and p-value.

Factor F η2 p

Profiling Method 58.40 .48 .00
Temporal Decay Function 1.17 .01 .28
Publication Content 5.18 .04 .02
Profiling Method × Temporal Decay Function 4.63 .04 .01
Profiling Method × Publication Content 17.09 .14 .00
Temporal Decay Function × Publication Content 4.69 .04 .03
Profiling Method × Temporal Decay Function ×
Publication Content

3.35 .03 .04

Table 5.5: Rankscores, post-hoc analysis for the factor Profiling Method using
Shaffer’s MSRB procedure, and effect size.

a) Rankscores
Choice M SD

HCF-IDF .53 .32
CF-IDF .48 .31

LDA .32 .31
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .00 .00
HCF-IDF .00
c) Effect size using Cohen’s d

HCF-IDF LDA

CF-IDF .17 .50
HCF-IDF .67

significance, we again apply a post-hoc analysis using Shaffer’s MSRB procedure

with respect to each factor.

The Factor Profiling Method Tables 5.5(a), (b), and (c) show the rankscores,

the post-hoc analysis for the factor Profiling Method, and the effect size, respec-

tively. Table 5.5(a) presents the means and standard deviations of the three

profiling methods. Table 5.5(b) shows p-values of each pair. Since Table 5.4 shows

that this factor has the largest effect size, we further compute the effect size using

Cohen’s d for each pair, as shown in Table 5.5(c). The post-hoc analysis reveals

significant differences between all pairs of HCF-IDF, CF-IDF, and LDA. Although

the recommendation strategy CF-IDF × Sliding Window × All performs best as

shown in Table 5.2, the best Profiling Method is HCF-IDF, as it performs better

under all other factors better than CF-IDF and LDA regarding the other factors.
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Table 5.6: Rankscores and post-hoc analysis for the factor Publication Content
using Shaffer’s MSRB procedure.

a) Rankscores
Choice M SD

All .46 .21
Title .43 .20

b) Post-hoc analysis p-values
Title

All .02

Table 5.7: ANOVA for Profiling Method × Temporal Decay Function interaction.

Factor F η2 p

Profiling Method at Sliding Window 52.71 .43 .00
Profiling Method at Exponential 26.89 .22 .00
Temporal Decay Function at CF-IDF 3.69 .03 .06
Temporal Decay Function at HCF-IDF 2.33 .02 .12
Temporal Decay Function at LDA 5.26 .04 .02

The Factor Publication Content Table 5.6 shows the post-hoc analysis for

the factor Publication Content. The result shows that the recommender systems

perform better when using both titles and full texts (F (1, 122) = 5.18, p = .02).

The Factor Profiling Method × Temporal Decay Function Table 5.7

shows the results of the ANOVA regarding the factor Profiling Method when a

choice of the factor Temporal Decay Function is fixed and vice versa. Mendoza’s

test reveals a violation of sphericity in the factor Profiling Method when Sliding

Window is used (χ2(2) = 9.26, p = .01) and when Exponential is used (χ2(2) =

11.16, p = .00). Therefore, we run a one-way repeated-measure ANOVA with

a Greenhouse-Geisser correction of ε = .93 for the first row in Table 5.7, and

ε = .92 for the second row. We also observe significant differences when a choice

of the factor Temporal Decay Function is fixed and when LDA is employed. The

post-hoc analyses are shown in Tables 5.8, 5.9, and 5.10, respectively. In Tables 5.8

and 5.9, a choice of the factor Temporal Decay Function is fixed. The results

demonstrate that HCF-IDF performs best, followed by CF-IDF and LDA. Thus,

the recommendation performance of HCF-IDF is not influenced by the choice of

a temporal decay function. Table 5.10 shows the post-hoc analysis of the factor

Temporal Decay Function when LDA is employed. It indicates that in this case

Exponential performs better than Sliding Window.
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Table 5.8: Rankscores and post-hoc analysis for the factor Profiling Method at
Sliding Window using Shaffer’s MSRB procedure.

a) Rankscores
Choice M SD

HCF-IDF .55 .33
CF-IDF .49 .32

LDA .30 .32
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .01 .00
HCF-IDF .00

Table 5.9: Rankscores and post-hoc analysis for the factor Profiling Method at
Exponential using Shaffer’s MSRB procedure.

a) Rankscores
Choice M SD

HCF-IDF .51 .30
CF-IDF .46 .31

LDA .34 .31
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .02 .00
HCF-IDF .00

Table 5.10: Rankscores and post-hoc analysis for the factor Temporal Decay
Function at LDA using Shaffer’s MSRB procedure.

a) Rankscores
Choice M SD

Exponential .34 .31
Sliding Window .30 .32
b) Post-hoc analysis p-value

Exponential

Sliding Window .02
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Table 5.11: ANOVA for Profiling Method × Publication Content interaction.

Factor F η2 p

Profiling Method at Title 26.15 .21 .00
Profiling Method at All 55.28 .45 .00
Publication Content at CF-IDF 32.95 .27 .00
Publication Content at HCF-IDF 0.43 .00 .51
Publication Content at LDA 2.06 .02 .15

Table 5.12: Rankscores and post-hoc analysis for the factor Profiling Method at
Title using Shaffer’s MSRB procedure.

a) Rankscores
Choice M SD

HCF-IDF .54 .31
CF-IDF .40 .28

LDA .34 .31
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .00 .04
HCF-IDF .00

The Factor Profiling Method × Publication Content Table 5.11 shows

the results of the ANOVA regarding the factor Profiling Method when a choice of

the factor Publication Content is fixed and vice versa. We observe a significant

difference when a choice is fixed and CF-IDF is employed. Mendoza’s test indicates

a violation of sphericity in the factor Profiling Method when All (i .e., titles and

full texts) is used (χ2(2) = 25.24, p = .00). Therefore, we run a one-way repeated-

measure ANOVA with a Greenhouse-Geisser correction of ε = .84 for the second

row in Table 5.11. Table 5.12 presents the post-hoc analysis when Title is selected

for the factor Profiling Method. We see that HCF-IDF outperforms others with

significant differences. On the other hand, Table 5.13 shows the post-hoc analysis

when All is chosen for the factor Profiling Method. There is no significant difference

between CF-IDF and HCF-IDF. Table 5.14 shows the post-hoc analysis of the

factor Publication Content when CF-IDF is employed. The table indicates that

the recommendation strategies with CF-IDF and All significantly outperform

those with CF-IDF and Title. Therefore, CF-IDF cannot work when only titles are

available. In contrast, the factor Publication Content does not influence HCF-IDF

and LDA.
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Table 5.13: Rankscores and post-hoc analysis for the factor Profiling Method at
All using Shaffer’s MSRB procedure.

a) Rankscores
Choice M SD

CF-IDF .55 .33
HCF-IDF .53 .32

LDA .30 .32
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .20 .00
HCF-IDF .00

Table 5.14: Rankscores and post-hoc analysis for the factor Publication Content
at CF-IDF using Shaffer’s MSRB procedure.

a) Rankscores
Choice M SD

All .55 .33
Title .40 .28

b) Post-hoc analysis p-value
All

Title .00

The Factor Temporal Decay Function × Publication Content Ta-

ble 5.15 shows the results of the ANOVA regarding the factor Temporal Decay

Function when a choice of the factor Publication Content is fixed and vice versa.

According to Table 5.15, there is a significance of the factor Publication Content,

when Sliding Window is used. The rankscores and post-hoc analysis are shown

in Table 5.16; it indicates that All significantly enhances the recommendation

performance when Sliding Window is used.

Table 5.15: ANOVA for Temporal Decay Function × Publication Content interac-
tion.

Factor F η2 p

Temporal Decay Function at Title 0.04 .00 .85
Temporal Decay Function at All 3.16 .03 .08
Publication Content at Sliding Window 9.44 .08 .00
Publication Content at Exponential 0.56 .00 .46
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Table 5.16: Rankscores and post-hoc analysis for the factor Publication Content
at Sliding Window using Shaffer’s MSRB procedure.

a) Rankscores
Choice M SD

All .48 .36
Title .42 .32

b) Post-hoc analysis p-value
All

Title .00

5.4.3 Influence of Demographic Factors

Mendoza’s test is used to examine violation of sphericities with regard to de-

mographic factors including gender, age, highest academic degree, major, years

of profession, and current employment type (academia/industry). Subsequently,

we conduct a mixed ANOVA with one between-subject factor (i .e., one of the

demographic factors) and one within-subject factor (i .e., recommendation strat-

egy), adjusted by Greenhouse-Geisser correction with respect to each demographic

factor. The analysis reveals that the demographic factors Gender and Highest

Academic Degree have a significant influence on the recommendation performance.

Below, the details of these two factors are described. The details of the other

factors whose results are non-significant can be found in Appendix A.

Gender Mendoza’s test reveals a violation of sphericity in the factor recom-

mendation strategy (χ2(131) = 489.39, p = .00) when comparing male (n = 96)

and female (n = 27) subjects. Table 5.17 shows the result of an ANOVA with a

Greenhouse-Geisser correction of ε = .60 for the factor recommendation strategy.

In Table 5.17, we see a significant difference between subjects grouped by their

genders. Table 5.18 shows the post-hoc analysis. We observe that female subjects

are more likely to evaluate recommended publications as interesting than male

subjects are. However, the factor Gender does not make any difference in terms

of how each of the twelve recommendation strategies performs compared to the

other strategies. In fact, there is no significant difference in the factor Gender ×
Strategy in Table 5.17.

Highest Academic Degree Referring to the demographic factor Highest Aca-

demic Degree, we have subjects whose highest academic degree is a Bachelor

(n = 21), Master (n = 58), and PhD (n = 32), as well as subjects who are

lecturers or professors (n = 12). Mendoza’s test finds a violation of sphericity in
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Table 5.17: Mixed ANOVA with a between-subject factor Gender and a within-
subject factor Strategy with Greenhouse-Geisser correction with F-ratio, effect
size η2, and p-value.

Factor F η2 p

Gender 9.69 .08 .00
Strategy 16.58 .14 .00
Gender × Strategy 1.11 .01 .36

Table 5.18: Rankscores and post-hoc analysis for the factor Gender using Shaffer’s
MSRB procedure.

a) Rankscores
M (SD)

male .42 (.32)
female .54 (.35)

b) Post-hoc analysis p-values
female

male .00

the factor recommendation strategy when comparing the distributions among the

factors (χ2(263) = 653.03, p = .00). Table 5.19 shows the result of an ANOVA

with a Greenhouse-Geisser correction of ε = .60 for the factor recommendation

strategy. The analysis reveals a significant difference among subjects grouped

by their highest academic degrees. Table 5.20 shows the post-hoc analysis. We

observe that subjects whose highest academic degree is a Bachelor are more likely

to evaluate recommended publications as interesting than those who are lecturers

or professors.

There are significant differences with regard to the demographic factors Gender

and Highest Academic Degree. However, both factors are independent of the

recommendation strategies. This indicates that the demographic factors have no

influence on which recommendation strategy performs better.

Table 5.19: Mixed ANOVA with a between-subject factor Highest Academic
Degree, and a within-subject factor, Strategy with Greenhouse-Geisser correction,
with F-ratio, effect size η2, and p-value.

Factor F η2 p

Highest Academic Degree 3.38 .09 .02
Strategy 16.02 .13 .00
Highest Academic Degree × Strategy 0.77 .02 .75
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Table 5.20: Rankscores and post-hoc analysis for the factor Highest Academic
Degree using Shaffer’s MSRB procedure.

a) Rankscores
Degree M (SD)

Bachelor .53 (.30)
Master .43 (.33)
PhD .44 (.33)

lecturer/professor .32 (.28)

b) Post-hoc analysis p-values
Master PhD lecturer/professor

Bachelor .20 .21 .01
Master .72 .21
PhD .09

5.4.4 Influence of the Amount of Content Available for

User Profiles

To investigate the influence of the amount of content available for user profiles,

we compute Kendall rank correlation coefficients between the rankscore of each

recommendation strategy and the amount of content. As an indicator of the

amount of content, we use four measures: the number of tweets, the number of

entities, the number of entities per tweet, and the percentage of tweets containing

at least one entity. A correlation may show a dependency that could influence

the recommendation performance. The results are summarized in Table 5.21. We

observe only a few correlations with significant differences. Regarding the number

of tweets, a subject has published on average 1, 096.82 (SD: 1, 048.46), as stated in

Section 5.3.3. We observe both slight positive and negative correlations with the

recommendation strategies using LDA and Exponential. In terms of the number

of entities, a subject’s tweets contain on average 1, 214.93 entities (SD: 1, 181.43).

There is a slight negative correlation with the recommendation strategy LDA ×
Exponential × All. Referring to the number of entities per tweet, a subject’s tweet

contains on average 1.07 entities (SD: 0.31). We observe no significant correlation

in this regard. Regarding the tweets that contribute to computing user profiles

with CF-IDF and HCF-IDF, on average 62.24% of the tweets (SD: 13.55) contain

at least one entity. However, there is again no significant correlation. Since we

observe no correlation between the amount of content available for user profiles

and the novel recommendation strategies (i .e., recommendation strategies using

HCF-IDF), we conclude that HCF-IDF is robust against the amount of content.
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In fact, the recommender system works for a subject who has published only two

tweets.

5.4.5 Click Rate on the PDF Files

In the experiment, subjects can click on the titles of the recommended publications

to open the corresponding PDF files. On average, subjects click on 4.85 titles (SD:

9.20) of the 60 recommended publications. Thus, the average click rate is 8.08%

(SD: 15.33). Table 5.22 shows the click rate per strategy. We run a three-way

repeated-measure ANOVA on the rankscores. The results show that the click

rates are significantly lower for the recommendation strategies involving LDA

compared to CF-IDF and HCF-IDF.

While Table 5.22 shows average click rates of each recommendation strategy,

Table 5.23 presents the average precision of clicked PDF files. This precision

can be interpreted as the probability that a subject evaluates a recommended

publication as “interesting.” In Table 5.23, we observe that the values of the

strategies using HCF-IDF are high even if recommendations are computed based

on only titles.

5.4.6 Questionnaire Feedback

At the end of the experiment, the subjects are asked to rate “how easy it was to

decide whether a recommended publication is interesting.” We use a five-point

Likert scale, where values between 1 and 5 indicate very difficult to very easy,

respectively. The result is fairly high with an average of 3.68 (SD: 0.88). Regarding

the question of “whether the subjects noticed a difference between the twelve

strategies,” the result is similarly high, with an average of 3.46 (SD: 1.20). In the

free comment section, one subject notes that the recommender system failed to

pick up his primary field despite his having tweeted about that domain. Apart

from this, we receive many positive comments (e .g., interesting, useful). Among

them, one subject provides a comment that she would like to use the recommender

system in practice.

5.4.7 Computation Time

Table 5.24 reports the mean average computation time required to compute

recommendations for each strategy. Please note that we report the mean average

computation time of 160 subjects despite the total of 123 subjects, since 160

subjects registered for the experiment. We compute recommendations for every
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Table 5.22: Average click rates on the PDF files. M and SD denote mean
and standard deviation, respectively. Recommendation strategies are sorted by
rankscore as in Table 5.2.

Recommendation Strategy Click Rate (%)
Profiling
Method

Temporal Decay
Function

Publication
Content

M (SD)

1. CF-IDF Sliding Window All 10.73 (24.73)
2. HCF-IDF Sliding Window All 10.08 (23.94)
3. HCF-IDF Sliding Window Title 9.11 (22.21)
4. HCF-IDF Exponential Title 7.64 (17.28)
5. CF-IDF Exponential All 9.11 (23.22)
6. HCF-IDF Exponential All 8.29 (20.31)
7. CF-IDF Exponential Title 8.94 (20.03)
8. CF-IDF Sliding Window Title 9.59 (22.81)
9. LDA Exponential Title 4.23 (13.12)
10. LDA Sliding Window Title 4.72 (15.38)
11. LDA Exponential All 9.27 (21.47)
12. LDA Sliding Window All 5.37 (16.41)

Table 5.23: Precision of clicked PDF files. Recommendation strategies are sorted
by rankscores as shown in Table 5.2.

Recommendation Strategy
Precision

Profiling
Method

Temporal Decay
Function

Publication
Content

1. CF-IDF Sliding Window All 0.71
2. HCF-IDF Sliding Window All 0.65
3. HCF-IDF Sliding Window Title 0.55
4. HCF-IDF Exponential Title 0.68
5. CF-IDF Exponential All 0.71
6. HCF-IDF Exponential All 0.61
7. CF-IDF Exponential Title 0.47
8. CF-IDF Sliding Window Title 0.49
9. LDA Exponential Title 0.42
10. LDA Sliding Window Title 0.38
11. LDA Exponential All 0.44
12. LDA Sliding Window All 0.49
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Table 5.24: Computation time in seconds required by the strategies to calculate
recommendations per subject. M and SD denote mean and standard deviation,
respectively. Recommendation strategies are sorted by rankscore, as in Table 5.2.

Recommendation Strategy
Computation
time (sec.)

Profiling
Method

Temporal Decay
Function

Publication
Content

M (SD)

1 CF-IDF Sliding Window All 11.35 (5.36)
2 HCF-IDF Sliding Window All 17.59 (6.68)
3 HCF-IDF Sliding Window Title 17.52 (6.68)
4 HCF-IDF Exponential Title 25.18 (8.14)
5 CF-IDF Exponential All 14.16 (5.56)
6 HCF-IDF Exponential All 26.05 (8.31)
7 CF-IDF Exponential Title 5.15 (4.25)
8 CF-IDF Sliding Window Title 5.05 (4.23)
9 LDA Exponential Title 7.50 (5.28)
10 LDA Sliding Window Title 7.37 (5.28)
11 LDA Exponential All 361.97 (25.17)
12 LDA Sliding Window All 361.71 (25.18)

subject, although some did not start the evaluations. In Table 5.24, standard

deviations are high, since computation times highly depends on the number of

tweets generated by users. Referring to HCF-IDF, the computation time of

the recommendation strategies with All are much longer than those with Title,

compared to CF-IDF and LDA. LDA takes a long time, especially when the

full texts of scientific publications are used. Please note that we implement the

recommendation strategies used in the experiment by ourselves, and they are not

optimized.

5.5 Discussion

Summary of main insights The recommendation strategies with HCF-IDF

perform almost equally well compared to the best performing strategy of CF-IDF

× Sliding Window × All. There is no significant difference between them, as

described in Table 5.3. The strong advantage of HCF-IDF is that it already

reaches its peak recommendation performance when only using the titles of the

scientific publications. In fact, the post-hoc analysis of the factor Profiling Method

× Publication Content shows that there is no significant difference between the

recommendation strategies with Title and those with All when HCF-IDF is

employed. This indicates that the recommendation performance of HCF-IDF is
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similar when using both titles and full texts and when using only titles. The

reason for this is that spreading activation over the hierarchical knowledge graph

used in HCF-IDF successfully reveals entities that are not explicitly mentioned

in titles, but highly relevant to them. Since it is not easy to obtain full texts of

scientific publications in reality, for instance due to legal reasons, we believe that

this is a highly interesting and promising result. In contrast, CF-IDF works well

only when the full texts of the scientific publications are available. In fact, when

CF-IDF is employed, the recommendation strategies with All perform significantly

better than those using Title. This is because it is difficult to extract enough

entities from the titles to construct reasonable publication profiles. Regarding

LDA, its recommendation performance is overall low, even if the full texts are

available. A possible reason for this is that LDA cannot construct accurate user

profiles because social media items are short. Without accurate user profiles,

it is impossible to make good recommendations. In fact, a slight correlation

between the rankscores of LDA and the number of tweets is observed as reported

in Table 5.21. This indicates that subjects who have published more tweets receive

better recommendations. Please note that the rankscores are almost the same as

precision and nDCG (see Appendix A). Although rankscores are slightly different

when using MRR compared to MAP, the order of performance of the twelve

recommendation strategies is almost identical. Thus, the findings revealed in the

experiment are not influenced by the evaluation metrics.

Generalizability We conduct the experiment in the field of economics in a

broader sense. The corpus of scientific publications covers the wider field of

economics, including social science, political science, and information science. In

addition, 31 subjects out of 123 subjects work in domains other than economics,

e .g., political science and computer science. To identify whether the recommenda-

tion performance is significantly different for subjects from economics and those

not in economics, we conduct an ANOVA. The result of the ANOVA shows that

majors do not have a significant difference. Thus, we assume that our methods can

be transferred to other domains. Furthermore, many domain-specific hierarchical

knowledge graphs are freely available in other domains. For instance, MeSH is

available for medicine, and ACM CCS for computer science. An overview of

freely available hierarchical knowledge graphs11 is given by W3C. They are of high

quality, as they are manually crafted by domain experts. These knowledge graphs

are of a similar structure to the STW used in the present experiment. Therefore,

11http://www.w3.org/2001/sw/wiki/SKOS/Datasets, last accessed on 08/31/2017
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HCF-IDF can easily be applied to other fields. Regarding social media platforms,

we employ Twitter in the experiment. However, the recommender system can

also work with other social media platforms, such as Facebook and LinkedIn.

In addition, we observe that the recommendation strategies with HCF-IDF are

robust against the number of tweets. In fact, the mean average rankscore of the

strategies with HCF-IDF for the subjects whose number of tweets is ranked in the

bottom 25% is .55 (SD: .30). It is almost the same as the mean average rankscore

for all the subjects, which is .53 (SD: .32).

Threats to validity The results of the experiment are potentially influenced

by the amount of time that each subject spent completing the evaluations. The

subjects spent on average 517.54 seconds (SD: 376.72) to evaluate the 60 rec-

ommendations. However, there is no correlation between the rankscore and the

amount of time spent completing the experiment. In addition, we randomize the

order of the recommendation strategies with respect to each subject, to remove

any influence of that order. Another potential threat is that the results may

be influenced by how subjects are recruited. One of the subjects notes this in

the qualitative feedback. However, we believe that this threat is small. First,

there are enough subjects with respect to each demographic factor, as shown in

Section 5.3.2. In addition, the same subject mentioned above also states that the

method how we acquire our subjects in fact generates a representative sample, as

of course economists are the target users of the recommender system. One might

be concerned about whether social media items contain substantial information

from which to extract users’ professional interests. However, the analysis shows

that 63% of tweets contain at least one entity of the knowledge graph. Therefore,

we assume that it is possible to extract users’ professional interests from social

media items.
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Chapter 6

Profiling Data Dynamics on

Knowledge Graphs

In Chapters 4 and 5, we demonstrated that profiling methods using knowledge

graphs assist in understanding users and generating reasonable recommendations.

The knowledge graphs used by the profiling methods are manually maintained and

thus of high quality. While the knowledge graphs used in Chapters 4 and 5 rarely

change, knowledge graphs such as DBpedia and Wikidata do a lot. Therefore,

it is also important to profile the data dynamics of knowledge graphs in order

to maintain the integrity of the knowledge graphs. Then, we can use knowledge

graphs such as DBpedia and Wikidata for the profiling methods using knowledge

graphs. The data dynamics refer to a pattern or process of changes in data, as

introduced in Chapter 1. Please note that knowledge graphs following the SKOS

specifications used in Chapters 4 and 5 change very little. However, it is crucial to

understand the data dynamics of knowledge graphs and maintain their integrity,

when using more dynamic knowledge graphs for the profiling methods. Therefore,

we profile the data dynamics of knowledge graphs by investigate how the content

and structure (i .e., topology) of knowledge graphs influence on the data dynamics

of knowledge graphs.

In Section 6.1, we investigate the influence of contents of triples on the data

dynamics of triples. Specifically, we apply the linear regression model to predict

triples’ life spans (i .e., how long a triple is alive) based on its content. Then, in

Section 6.2, we explore how topological features of entities, such as node degree,

influence on the data dynamics of a knowledge graph. The results contribute to

two different applications, which are shown in Chapters 7 and 8.
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6.1 Profiling Data Dynamics of Triples Using

their Content

As stated in Definition 3.4, knowledge graphs are composed of a set of triples.

However, only a few studies have investigated the data dynamics of knowledge

graphs focusing on triples. For example, Käfer et al. [KAU+13] quantified changes

with respect to a set of triples, set of links, and schema signature. They found

that most dynamic predicates were about trivial time stamps. In the work of

Martin et al. [MUA10], they showed that SPARQL query caching allows to execute

queries more efficiently. In addition, Zhang et al. [ZST+15] cached triples that

are consumed frequently by SPARQL queries. Thus, it is expected that the

profiling result of triple data dynamics can further improve these caching methods.

In this vein, this section predicts the data dynamics of triples. Specifically, we

predict triples’ life spans using a linear regression model. By doing so, we aim to

identify which triples are stable and which are ephemeral. The linear regression

model applies different features of triples coming from their content: subject

pay-level-domain (PLD), predicate, and object form and object PLD. Dividino et

al. [DGS15] and Umbrich et al. [UHH+10] attempted to predict data dynamics

based on how frequently RDF documents had been changed in the past. In

contrast, we profile and predict data dynamics based on the single triples in the

RDF documents. The profiling results with two datasets reveal that subject PLD

and predicate have a large influence on determining triples’ life spans.

In Section 6.1.1, we first introduce the triple features used for the linear

regression model. Section 6.1.2 details the regression model that predicts triples’

life spans. Subsequently, Section 6.1.3 presents two datasets used to train the

model, and Section 6.1.4 describes the resulting model as well as its prediction

power.

6.1.1 Triple Features

We examine three features: “subject PLD”, “predicate”, and “object form and

PLD”. We see these features as contents of triples. We choose these features

because Radinsky and Benett [RB13] and Tan and Mitra [TM10] demonstrated

that it was possible to predict future changes to web documents by examining their

content. Therefore, we assume that it is possible to predict the data dynamics of

triples (i .e., triples’ life span) by analyzing their “subject PLD”, “predicate”, and

“object form and PLD”, which can be considered as contents of triples.
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Subject PLD Subjects are defined by a URI. From this subject URI, we use

the PLD as a feature. For instance, if a subject URI is http://dbpedia.

org/resource/Facebook, the subject PLD is http://dbpedia.org. This

feature is motivated by the work of Umbrich et al. [UKL10] that observed

entities coming from the same PLD showed similar data dynamics. The

PLD of a URI is extracted using Guava1. If Guava identifies no PLD, “other

subject PLDs” is assigned.

Predicate Triples that have a common predicate may demonstrate a similar

life span. For instance, a triple whose predicate is http://dbpedia.org/

ontology/areaLand is assumed to be static, because an area of places

such as countries do not change frequently. In contrast, a triple whose

predicate is http://dbpedia.org/ontology/populationTotal likely dis-

appears and a new triple whose predicate is http://dbpedia.org/

ontology/populationTotal appears as population statistics are up-

dated. Thus, a triple with the predicate http://dbpedia.org/ontology/

populationTotal can be assumed to be more ephemeral.

Object form and PLD Objects are either a URI or a literal. If an object is

defined by a literal, the triple is assigned the feature “literal.” Otherwise, it

is assigned the PLD of the object URI, as we do for the subject PLD.

6.1.2 Prediction of Triple Life Span

We train a linear regression model to predict life spans of triples using the above

triple features. We use frequencies of triples over snapshots as life spans of triples.

The linear regression model is defined as:

LR = z0b0 + z1b1 + z2b2 + · · ·+ zdbd. (6.1)

In Equation 6.1, zi denotes a coefficient (i .e., weight) of a feature. z0 equals the

intercept of the model. bi is a feature value, and d stands for the number of features

in the model. Although b0 is not in the original equation, we introduce it as a

constant b0 = 1 to ease the notation. In short, Equation 6.1 is represented as LR =

zTb. z and b denote coefficients and feature values, which are d+ 1 dimensional

vectors. Subsequently, we describe a feature value bi and a feature value vector

b. Since all the triple features are nominal data, we convert the triples into

feature value vectors using one-hot encoding. In the example shown in Table 6.1,

1https://github.com/google/guava/wiki/Release19, last accessed on 08/31/2017
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there are two unique subject PLDs, three unique predicates, and two object

forms (i .e., one is a literal and the other is a PLD db). This results in an eight-

dimensional vector, where the zeroth element is a constant b0 = 1, and the first

and second elements show db and uni (subject PLDs), followed by db:location,

db:works, and db:population (predicates), and “literal” and db (object form and

PLDs). For instance, a triple 〈db:Anne Smith, db:location, db:Green Village〉
is converted into {1, 1, 0, 1, 0, 0, 0, 1}. The frequency of this triple is 3, since it is

available in all three snapshots in Table 6.1. Again, this frequency is used as a

life span of the triple.

The coefficients z are learned by the Limited-memory BFGS (Broy-

den–Fletcher–Goldfarb–Shanno) method [LN89] using the training data. The

Limited memory BFGS method is an algorithm for solving unconstrained nonlinear

optimization problems. Compared to the stochastic gradient descent method,

the Limited-memory BFGS method can reach to the optimal solution with fewer

iterations. To avoid overfitting, we use L2 regularization that penalizes models

with extreme parameter values. Thus, the optimization function is:

min
z

N∑
i=1

(zTbi − yi)2 + λ · ||z||22, (6.2)

where N denotes the number of triples in the training data, bi stands for a feature

value vector of i-th triple in the training data, and yi is the frequency of the i-th

triple. In summary, the first term shows the residual squared sum (RSS) that

is employed as a loss function; the second term is the regularization term that

avoids extreme parameter values and mitigates overfitting.

6.1.3 Datasets

To train the model and evaluate its prediction power, we use two datasets. Table 6.2

summarizes their descriptive statistics. The datasets are split into training data

and test data. We randomly pick 90% of unique triples as training data and the

rest as test data in each dataset.

DyLDO As the first dataset, we use the Dynamic Linked Data Observatory

(DyLDO) dataset2 [KUH+12]. It has been created to monitor a fixed set of

RDF documents on a weekly basis. The dataset is composed of 173 weekly

snapshots from 11/27/2012 to 03/27/2016 and covers various well-known

data sources as well as less commonly known ones [KUH+12]. The original

2http://swse.deri.org/dyldo/, last accessed on 08/31/2017
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Table 6.1: An example of snapshots over time.

Xt1: a snapshot at time t1
db:Anne\_Smith db:location db:Green\_Village

db:Anne\_Smith db:works db:Green\_University

db:Green\_Village db:population 224123

Xt2: a snapshot at time t2
db:Anne\_Smith db:location db:Green\_Village

db:Anne\_Smith db:works db:Green\_University

uni:John\_Brown db:location db:Green\_Village

uni:John\_Brown db:works db:Green\_Institute

db:Green\_Village db:population 223768

Xt3: a snapshot at time t3
db:Anne\_Smith db:location db:Green\_Village

db:Anne\_Smith db:works db:Green\_University

uni:John\_Brown db:location db:Green\_Village

uni:John\_Brown db:works db:Green\_University

db:Green\_Village db:population 223540

dataset consists of N-quads 〈s, p, o, c〉, which correspond to subject, predicate,

object, and context. Context is equal to the URI of the RDF document that

contains the triple 〈s, p, o〉. We first remove quads that contain blank nodes

from the original dataset, because blank nodes may have different identifiers

in different snapshots. Thereafter, we identify RDF documents that have

been accessed at every snapshot by analyzing the access logs of the crawler.

Then, all unique triples that are contained at one of the identified RDF

documents are extracted. In total, the snapshots contain 3, 271, 944 unique

triples. For each unique triple, we count its frequency, i .e., in how many

snapshots it appears. The frequency of a triple is interpreted as its life span.

The maximum and minimum frequency are 173 and 1, respectively. On

average, each triple is alive in 99.29 snapshots (SD: 77.44) over the entire

period. Figure 6.1(a) shows the distribution of triple frequencies. Triples are

separated into ephemeral and stable ones. In this thesis, ephemeral triples

indicate triples that are deleted shortly after they are created. Thus, they

have short life spans. On the other hand, stable triples refer to triples with

longer life spans. In terms of triple features, we extract 1, 706 subject PLDs

and 3, 295 predicates from all unique triples. In 1, 573, 797 (48.10%) triples,

the object is defined by a literal. There are 3, 059 object PLDs in triples

whose object is a URI. Since we observe many subject PLDs, predicates, and

object form and PLDs that are used by only a few triples, we integrate them

into one feature each – “other subject PLDs,” “other predicates,” and “other
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object PLDs” – to reduce the dimension of feature value vectors. Specifically,

we merge subject PLDs, predicates, and object PLDs that are used by 10

or less unique triples into these features. The triple features used by more

than 10 triples cover over 99% of unique triples, because the frequencies of

subject PLDs, predicates, and object form and PLDs follow the power-law

distribution. This power-law distribution is also shown by Tummarello et

al. [TDO07]. In result, the number of dimensions of the linear regression

model is d = 2, 613 (i .e., the joint of 705 subject PLDs, 1, 335 predicates,

and 573 object forms and PLDs).

Wikidata As second dataset, we use Wikidata [VK14], which is one of the largest

cross-domain knowledge graphs. We obtain the snapshots from the Wikidata

RDF exports3, where the data are converted into N-triples [EGK+14]. We

use 25 snapshots of Wikidata from 04/20/2014 to 08/01/2016. Thus, the

snapshots have been captured almost monthly. In total, the dataset contains

73, 583, 940 unique triples. The maximum and minimum frequencies of

the triples are 25 and 1, respectively. On average, each triple is alive in

16.51 snapshots (SD: 9.14). Figure 6.1(b) shows the distribution of triple

frequencies. Regarding the triple features, there is only one unique subject

PLD. Thus, the feature of the subject PLD is ignored in the Wikidata

dataset. On the other hand, we find 2, 204 predicates. In terms of the

objects, 19, 291, 060 (26.22%) triples are defined by a literal. There are

239, 405 object PLDs in triples whose objects are defined by a URI. Again,

we merge subject PLDs, predicates, and object PLDs that are used by 10

or less unique triples. Similar to the DyLDO dataset, the triple features

used by more than 10 triples cover over 99% of unique triples, because the

frequencies of predicates and object form and PLDs follow the power-law

distribution. All in all, the number of dimensions of the linear regression

model is d = 2, 719 (i .e., 1, 739 predicates and 980 object forms).

For the linear regression model, we use the implementation provided by

GraphLab Create4. In addition, we optimize the parameter λ = 316.23 by 10-fold

cross-validation.

3wikidata-simple-statements.nt.gz from each directory on https://tools.wmflabs.

org/wikidata-exports/rdf/exports/, last accessed on 11/23/2017
4https://turi.com/learn/userguide/supervised-learning/linear-regression.

html, last accessed on 08/31/2017
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Table 6.2: Descriptive statistics of the datasets. The table provides the number
of snapshots, the number of unique triples in the entire dataset, and the average
frequency of triples. Standard deviation is given in parentheses.

# snapshots # unique triples average frequency of triples
DyLDO 173 3,271,944 99.29 (77.44)

Wikidata 25 73,583,940 16.51 (9.14)

(a) DyLDO dataset (b) Wikidata dataset

Figure 6.1: Distribution of frequencies of all unique triples in the two datasets.

6.1.4 Results

This section first provides the resulting linear regression model. Subsequently, we

evaluate the prediction performance of the trained model using the test data.

Resulting model The linear regression provides weights (i .e., coefficients)

for each triple feature. We start with the resulting model of the DyLDO

dataset. In terms of subject PLDs, ranselrazer.nl, fotolog.net, and blip.fm

have the largest weights. On the other hand, today.com and nbcnews.com,

which provide news information, have the smallest weights. Referring to pred-

icates, http://edgarwrap.ontologycentral.com/vocab/edgar\#issued has

the largest weight, while http://www.w3.org/ns/auth/rsa\#public\_exponent

has the smallest one. The latter is used to note an exponent to encrypt a message.

Since such exponents are frequently updated, triples with this predicate are alive

only for a short period of time. Regarding object form and PLDs, rdfabout.com

and palantir.net have the largest weights.

Next, we report the resulting model of the Wikidata dataset. Since this

dataset only has one subject URI (i .e., wikidata.org), subject PLDs are skipped.

In terms of predicates, http://www.wikidata.org/entity/P65c has the largest

weight. It defines a site of astronomical discovery, which is hardly ever changed. In
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contrast, https://www.wikidata.org/wiki/Property:P586c and https://www.

wikidata.org/wiki/Property:P591c have the smallest weight. These predicates

define identifiers of objects, such as plants and enzymes.

Prediction power Using the resulting linear regression model, triples’ life spans

(i .e., frequencies) are predicted using the test data. As evaluation measures, we

employ rooted mean squared error (RMSE) and mean absolute error (MAE).

RMSE =

√√√√ 1

M

M∑
i=1

(yi − ŷi)2. (6.3)

MAE =
1

M

M∑
i=1

|yi − ŷi|. (6.4)

In Equations 6.3 and 6.4, M denotes the number of data points in the test data.

yi is the frequency of the i-th triple (i .e., ground truth) and ŷi is the predicted

frequency of the i-th triple given by the trained linear regression model. In both

measures, lower values indicate better prediction performance. RMSE indicates

how well the predicted values fit the linear regression model, and MAE shows how

close the predicted values are to the resulting values.

To demonstrate the effectiveness of the linear regression model, we compare

the results produced by the mean average of life spans as a baseline. This baseline

provides the mean average in the training data to all triples in the test data as a

prediction. In addition, we also train the linear regression model using only subject

PLDs, predicates, and object form and PLDs, respectively. Thus, we demonstrate

which triple feature is most powerful, as well as how well the linear regression

model works when all three triple features are used. As shown in Table 6.3, the

resulting model outperforms the baseline. The MAE of the model with all triple

features is 15.47 in the DyLDO dataset and 3.24 in the Wikidata dataset. This

indicates that the model predicts triples’ life spans with an error rate of about 10%.

Therefore, it is possible to predict the life spans of triples simply by looking at their

content, as shown by Radinsky and Bennett [RB13] and Tan and Mitra [TM10].

In addition, the linear regression model with all features outperforms the ones

that are solely computed on the features of subject PLD, predicate, and object

form and PLD. Thus, all triple features have a positive influence on the prediction

of the triples’ life spans. Among the three features, subject PLD and predicate

have a larger prediction power in the DyLDO dataset. Although the RMSE and

MAE of predicates are slightly better than those of subject PLD, we can conclude
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Table 6.3: Performance of the prediction of triples’ life span. LRM refers to the
linear regression model.

Prediction Model
DyLDO Wikidata

RMSE MAE RMSE MAE

Mean average 77.36 73.54 8.95 7.77
LRM: subject PLD 44.87 27.55 NA NA
LRM: predicate 42.72 26.39 5.72 3.82
LRM: object form and PLD 65.22 53.63 7.98 6.72
LRM: all triple features 30.77 15.47 5.16 3.24

that subject PLD has more power. The reason is as follows: There are fewer

features in subject PLD than in predicate, but their prediction performance is

competitive. It indicates prediction performance of one subject PLD feature is

larger than that of one predicate feature, thus subject PLD is more useful. In the

Wikidata dataset, predicate has a larger prediction power than object form and

PLD. Moreover, we also investigate topological features such as node degrees of

subject URI and object URI, which were used to predict ontology changes in the

work of Pesquita and Couto [PC12]. However, the prediction performance using

these features is comparable to the baseline. Therefore, we omit the results in

this thesis.

6.2 Influence of Topological Features of Entities

on Data Dynamics

This section analyzes the data dynamics of knowledge graphs with a focus on the

topological features of entities. Such features have not been investigated before.

In a knowledge graph, entities and relations can be seen as nodes and edges,

respectively. We examine how node degrees and node ages influence addition and

deletion of edges on knowledge graphs.

Section 6.2.1 introduces a knowledge graph used for this analysis. Section 6.2.2

investigates whether the knowledge graph follows the densification law, which has

been observed in different graphs [LKF05]. If the graph follows these patterns, it

might be possible to predict new edges of the knowledge graph as social networks

do [SCJ12; DTW+12]. Subsequently, we investigate from which kinds of nodes

edges are added or deleted in Section 6.2.3, how the destination of added or

deleted edges is selected in Section 6.2.4, and how the relation (i .e., predicate) of

added or deleted edges is chosen in Section 6.2.5.
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6.2.1 Dataset

For this investigation, we use 25 snapshots of the Wikidata dataset, which is

introduced in Section 6.1.3. We determine changes between two successive points

in time by computing the difference between two snapshots. A change is described

as an addition or deletion of a triple. We use the notation (〈s, p, o〉,m, t) to

represent a change. 〈s, p, o〉 is a triple and m is a flag that indicates whether a

triple is added (m = 1) or deleted (m = −1). t is the point in time at which the

change is made. The set of added and deleted triples produced at a point in time

t are extracted from Et \ Et−1 and Et−1 \ Et, respectively. Please note that Et

denotes a set of all triples in a snapshot of a knowledge graph at point in time t.

Most of these changes are correct. However, there are incorrect ones because

they are made by humans and humans sometimes make mistakes [TAI+14]. To

investigate the differences of data dynamics between correct and incorrect changes,

we classify changes into correct or incorrect ones. We label a change as incorrect

if it is reverted in around four weeks [HPS+15; TAI+14]; otherwise, it is labeled

as correct. For example, (〈s, p, o〉, 1, t) is incorrect if (〈s, p, o〉,−1, t+ 3 weeks) is

observed. This heuristic was used by Tan et al. [TAI+14] as well as Heindorf et

al. [HPS+15]. Although we have 24 successive points in time, we can only label

changes made in 23 successive points in time, since we cannot see whether a change

is reverted if it was made in the latest successive points in time. In each of the

23 successive points in time, on average 5, 357, 786.61 triples are added, of which

333, 331.09 are incorrect. In terms of deleted triples, on average 1, 997, 224.91

triples are deleted, of which 177, 010.87 are incorrect. Thus, on average 6.21% of

added triples and 8.86% of deleted triples are incorrect.

6.2.2 Global Patterns

First, we investigate how the numbers of nodes and edges of the knowledge graph

change over time. Figure 6.2 shows the numbers of nodes (i .e., entities and literals)

and edges (i .e., triples) over time. We see that both the numbers of nodes as well

as edges increase over time.

Then, we investigate whether the knowledge graph follows the densification

power law [LKF05], which has been observed in different graphs such as social

networks and citation networks. If the graph follows the densification power law,

it has the relation |Et| ∝ |Qt ∪ Lt|α, where α is an exponent that is α ∈ [1, 2].

Please note that Qt and Lt denote a set of all entities at a point in time t and

a set of all literals at a point in time t, respectively. Figure 6.3 (a) represents
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Figure 6.2: The number of nodes (i .e., entities and literals) and edges (i .e., triples)
over time.

the relation between the number of nodes |Qt ∪ Lt| and the number of edges |Et|.
Please note that both axes are in logarithmic scale. The plots fit well into a line,

but do not follow the densification power law, since the exponent is α = 0.97.

The reason for this is that a literal can only inherently hold one in-degree (i .e.,

one edge). Thus, the graph becomes increasingly sparse as the number of literals

increases.

Please note we treat every literal as one node despite two other options:

(a) treating lexically identical literals as one node and (b) treating literals that

are lexically identical and used by a same predicate as one node. The latter

case is motivated by the idea that literals have different semantics depending on

the contexts in which they are used. Thus, our results could be biased towards

this decision. However, most literals have actually only one incoming edge in

both cases. We have investigated this by computing the between the number of

nodes in our setting with the number of nodes in the cases (a) and (b) as follows:
the number of nodes in the case (a)
thenumberofnodesinthisthesis

= 0.85 and the number of nodes in the case (b)
thenumberofnodesinthisthesis

= 0.96. Since

the difference with the two cases is low, the influence by how we treat literals is

small.

We further investigate the densification power law by excluding the influence

of the literal nodes. To this end, we examine the relation |〈s, p, o〉 ∈ Et : o ∈
Qt| ∝ |Qt| as shown in Figure 6.3 (b). |〈s, p, o〉 ∈ Et : o ∈ Qt| denotes the number

of edges whose objects are a URI at a point in time t. In this case, the exponent

is α = 1.56, thus following the densification power law. Therefore, we conclude
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(a) The number of edges |Et| versus the num-
ber of nodes |Qt ∪ Lt|

(b) The number of edges whose objects are
a URI |〈s, p, o〉 ∈ Et : o ∈ Qt| versus the
number of URI nodes |Qt|

Figure 6.3: The number of edges versus the number of nodes. Both axes are in
logarithmic scale.

that the connection among entities (i .e., a URI node) on the knowledge graph

becomes increasingly dense over time, thus following other graphs [LKF05].

6.2.3 Edge Initiation

In this section, we investigate by which kinds of nodes edges are added and deleted.

In particular, we examine this from the topological features node degree, node

age, and the last point in time at which a node was edited.

Node degree We first explore the influence of a node degree on edge addition

and edge deletion. Do rich nodes (i .e., nodes with a high degree) bring more

triples to knowledge graphs? For the assessment, we compute the in-degree as

well as the out-degree of subject nodes of added and deleted edges. To this end,

following the definition from Leskovec et al. [LBK+08], we compute the average

number of edges added or deleted by a node of a degree d as:

ed(d,m) =
∑
t∈T

|{(〈s, p, o〉,m, t) : degt−1(s) = d}|
|{x : degt−1(x) = d}|

, (6.5)

where m is the flag indicating addition or deletion; x is an arbitrary node on the

knowledge graph; and deg(x) stands for the degree (either in-degree or out-degree)

of a node x. Thus, the numerator indicates the number of added or deleted

edges between t− 1 and t, whose degree of a subject is d. ed(d,m) is normalized

by the number of nodes of degree d that exist just before this step. Figure 6.4

illustrates both in-degree and out-degree of subject nodes of added and deleted

edges with respect to correct and incorrect changes. Please note that both axes
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are in logarithmic scale. In Figures 6.4 (a) and (e), we observe that the number

of correct added and deleted edges starts increasing after the in-degree reaches

1000. Similarly, Figures 6.4 (b) and (f) show that the number of incorrect added

and deleted edges starts increasing after the in-degree reaches 100. Regarding the

out-degree of subject nodes, Figures 6.4 (c), (d), (g) and (g) indicate that subject

nodes with larger out-degree more likely generate both correct and incorrect

changes.

Node age We examine the influence of node age on edge addition and edge

deletion. To this end, we compute ed(a,m), the average number of edges added

or deleted by nodes of age a, as follows:

ed(a,m) =
∑
t∈T

|{(〈s, p, o〉,m, t) : t− tc(s) = a}|
|{x : t− tc(x) = a}|

. (6.6)

The numerator counts the number of added or deleted edges where the age of the

subject is a. tc(s) returns a point in time at which a subject node was generated.

The number is normalized by the number of nodes whose age is a. Please note

that, to avoid truncation effects, we remove the nodes that appear in the first

snapshot of this analysis. We can see only that these nodes were generated between

10/30/2012 (i .e., the launch of Wikidata) and 04/20/2014 (the first snapshot

of Wikidata). Thus, their actual ages may vary too much. Figure 6.5 plots the

average number of added and deleted edges by a subject node whose age equals

a. Please note that the age is represented on the x-axis by the number of points

in time in Figure 6.5. Since the period between two successive points in time is

approximately 36.05 days, nodes whose a = 3 are 108.14 days old. As observed

in the study of Leskovec et al. [LBK+08] as well, there is a small spike at a = 0

in Figure 6.5 (a). The spike corresponds to nodes that generate edges at the

initial stage but never add further edges to the knowledge graph. In addition,

we observe that the average number of added edges slightly decreases as subject

nodes become older. In terms of deleted edges, Figure 6.5 (b) shows that the

number of deleted edges decreases as subject nodes get old. This indicates that

the older subject nodes are likely to be abandoned (i .e., to no longer be edited).

Finally, we do not observe a large difference between the curves of correct and

incorrect changes.

Node last edit In addition to node ages, we also investigate the influence of

the period of time since the node was last edited. Do nodes that were edited
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(a) In-degree of correct added changes (b) In-degree of incorrect added changes

(c) Out-degree of correct added changes (d) Out-degree of incorrect added
changes

(e) In-degree of correct deleted changes (f) In-degree of incorrect deleted changes

(g) Out-degree of correct deleted changes (h) Out-degree of incorrect deleted
changes

Figure 6.4: The average degree of subject nodes of added and deleted edges. The
x-axis shows the average degree of nodes, and the y-axis indicates the number of
added or deleted edges. Both axes are in logarithmic scale.
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(a) Added edges (b) Deleted edges

Figure 6.5: The average number of added and deleted edges with a subject node
of age a. The y-axis is in logarithmic scale.

(a) Added edges (b) Deleted edges

Figure 6.6: The average number of added and deleted edges with a subject node
that was last edited b points in time ago. The y-axis is in logarithmic scale.

recently add or delete more edges? We compute ed(b,m), the average number of

edges added or deleted in the period b, as defined in Equation 6.7:

ed(b,m) =
∑
t∈T

|{(〈s, p, o〉,m, t) : t− tl(s) = b}|
|{x : t− tl(x) = b}|

, (6.7)

where tl(s) refers to the point in time at which a node s was last edited. The

numerator counts the number of edges that are added or deleted by a node that

was last edited b points in time ago. Then, it is normalized by the number of

nodes that were last edited b points in time ago. Figure 6.6 illustrates the results.

Similar to the node age, the numbers of added and deleted edges are decreasing

over time. In addition, the numbers of correct and incorrect changes are decreasing

as well. These results indicate that nodes will not be edited if they are abandoned

for a longer time.
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6.2.4 Edge Destination Selection

In this section, we examine how the edge destination (i .e., object) of added and

deleted edges is selected. Again, we use topological features such as node degree,

node age, and node last edit.

Node degree We investigate the influence of node degree on edge destination

selection in the knowledge graph. The preferential attachment model [BA99] is

known and observed in different graphs [LBK+08]. In the preferential attachment

model, the likelihood of receiving new edges increases with the node degree. Do

knowledge graphs also follow this model? To examine this, we compute ed(d,m),

the average number of added and deleted edges with respect to different object

degrees, as follows:

ed(d,m) =
∑
t∈T

|{(〈s, p, o〉,m, t) : dt−1(o) = d}|
|{x : dt−1(x) = d}|

. (6.8)

The numerator is the number of added or deleted edges between t− 1 and t whose

degree of an object is d. It is normalized by the number of nodes of degree d

that exist just before this step. Figure 6.7 presents the results. Please note that

both axes are in logarithmic scale. As shown by Leskovec et al. [LBK+08], if

a graph evolves randomly such as the Erdős-Rényi random model, the line will

be flat because the destination node (i .e., object) is chosen independently of its

degree. In contrast, in Figures 6.7 (a) and (b), we observe that the knowledge

graph follows the preferential attachment model in terms of both correct and

incorrect changes. In addition, we also observe that the knowledge graph follows

this model in the deleted changes as shown in Figures 6.7 (e) and (f). In the

in-degree of both added and deleted changes, the incorrect changes fit the relation

ed(d,m) ∝ dα better, since the distribution of the number of added or deleted

edges with high degrees is narrow. Regarding out-degree, we observe that the

number of added and deleted edges follows the relation ed(d,m) ∝ dα until the

out-degree reaches 100 as shown in Figures 6.7 (c) and (g). When the out-degree

is over 100, the number of added and deleted edges decreases. In contrast, we do

not see this trend for incorrect changes as shown in Figures 6.7 (d) and (h).

Node age We examine the influence of age of object nodes on addition and

deletion of edges in the knowledge graph. Do older nodes receive more edges,

since they are more experienced and known? We compute the average number of
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(a) In-degree of correct added changes (b) In-degree of incorrect added changes

(c) Out-degree of correct added changes (d) Out-degree of incorrect added
changes

(e) In-degree of correct deleted changes (f) In-degree of incorrect deleted changes

(g) Out-degree of correct deleted changes (h) Out-degree of incorrect deleted
changes

Figure 6.7: The average degree of object nodes of added and deleted edges. The
x-axis shows the average degree of nodes and the y-axis indicates the number of
added or deleted edges. Both axes are in logarithmic scale.
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(a) Added edges (b) Deleted edges

Figure 6.8: The average number of added and deleted edges with an object node
of age a. The y-axis is in logarithmic scale.

edges added or deleted by nodes of age a as follows:

ed(a,m) =
∑
t∈T

|{(〈s, p, o〉,m, t) : t− tc(o) = a}|
|{x : t− tc(x) = a}|

. (6.9)

Again, we remove the nodes that appear in the first snapshot from the analysis, as

we do in Section 6.2.3. Figure 6.8 plots the average number of added and deleted

edges whose objects are a node of age a. Similar to Figure 6.5, new nodes receive

more edges. Regarding the correctness of changes, over 94% of added changes are

correct at each age except when a = 0, when only 69.03% are correct. Thus, newer

nodes more frequently receive incorrect changes. In addition, the probability of

incorrect changes is also relatively high at a = 0 for the deleted edges.

Node last edit Again, we examine the influence of the period since the object

node was edited. We compute the average number of added and deleted edges

with an object node that was edited b points in time ago, as follows:

ed(b,m) =
∑
t∈T

|{(〈s, p, o〉,m, t) : t− tl(o) = b}|
|{x : t− tl(x) = b}|

. (6.10)

Figure 6.9 illustrates the result. We again observe that both added and deleted

edges decrease. This indicates that the nodes will not be used as destination if

they are abandoned for a longer time.

6.2.5 Relation Selection

Compared to simple graphs, edges of knowledge graphs indicate different relations

(i .e., isMarriedTo). Therefore, in this section, we analyze the influence of different

relations on the data dynamics of the knowledge graph.
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(a) Added edges (b) Deleted edges

Figure 6.9: The average number of added and deleted edges with an object node
that was last edited b points in time ago. The y-axis is in logarithmic scale.

(a) Added edges (b) Deleted edges

Figure 6.10: The average number of added and deleted edges with a relation of
age a. The y-axis is in logarithmic scale.

Relation age As we did in Sections 6.2.3 and 6.2.4, we examine the influence

of a relation (i .e., predicate) age. We compute ed(a,m), the average number of

added and deleted edges with a relation of age a, as:

ed(a,m) =
∑
t∈T

|{(〈s, p, o〉,m, t) : t− tc(p) = a}|
|{x : t− tc(x) = a}|

. (6.11)

The numerator counts the number of added or deleted edges with a relation whose

age is a, normalized by the number of relations with that age. We remove the

relations that appear in the first snapshot to avoid truncation effects. Figure 6.10

illustrates the results. We observe several peaks in both added and deleted edges.

In Figure 6.10 (a), we observe that added edges decrease as relations get older.

On the other hand, the deleted edges do not decrease as shown in Figure 6.10 (b).

Relation last edit Furthermore, we examine the influence of the period since

a relation was last used. We compute the average number of added and deleted
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(a) Added edges (b) Deleted edges

Figure 6.11: The average number of added and deleted edges with a relation that
is last used b points in time ago. The y-axis is in logarithmic scale.

edges with a relation that was last used b points in time ago as follows:

ed(b,m) =
∑
t∈T

|{(〈s, p, o〉,m, t) : t− tl(p) = b}|
|{〈s, p, o〉 : t− tl(p) = b}|

. (6.12)

The numerator indicates the number of added or deleted edges whose predicate

(i .e., relation) was last used b points in time ago. The denominator denotes the

number of triples, whose predicate was last used b points in time ago. Figure 6.11

plots the average number of added and deleted edges with respect to a relation

that was used b points in time ago. We again observe that both added and deleted

edges decrease. In addition, Figure 6.11 indicates that incorrect changes likely

utilize a relation that was recently used.
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Chapter 7

Application III: Crawling

Strategy

Many applications that use data from knowledge graphs have been developed and

used. The data from knowledge graphs are available as RDF documents on the

web. Applications that use these data often pre-fetch RDF documents and store

them as local copies, or build an index of them to accelerate access and search.

However, Chapter 6 and recent investigations [KAU+13; DSG+13; DGS+14]

showed that data from knowledge graphs are dynamic and subject to changes.

Thus, the local copies or indices do not always reflect the current state of the data

and need to be updated. In fact, Gottron and Gottron [GG14] observed that the

accuracy of indices built over RDF documents dropped by 50% after as few as 10

weekss (except schema-level ones). Hence, it is necessary for the applications to

cope with constant data updates to guarantee the quality of service. Ideally, the

local copies would be kept up-to-date by continuous visits to all RDF documents.

However, in the real world, LOD applications have to consider limitations of

computational resources such as bandwidth and computation time. Due to these

limitations, we have to build an efficient crawling strategy to update local copies

of RDF documents.

Therefore, we propose a novel crawling strategy for RDF documents based on

triples’ life spans, which are predicted based on the linear regression model shown

in Section 6.1. We assume that predicting the data dynamics of RDF documents

on the level of the atomic units (i .e., triples) provides more fine-grained insights

and enables a better prediction of the data dynamics.

We first present the problem statement in Section 7.1. Subsequently, the novel

crawling strategy is presented in Section 7.2. Section 7.3 details the experiment
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of the crawling strategy and Section 7.4 reports the results of the experiment.

Finally, we discuss the results in Section 7.5.

7.1 Problem Statement

We develop a crawling strategy to keep local copies of RDF documents up-to-date.

c refers to a context, i .e., a URI of an RDF document, and C = {c1, c2, . . . , cm}
is a set of target RDF documents that are stored as local copies and need to be

updated. The crawling strategy computes a preference score ps(c, t) of each RDF

document c ∈ C at each point in time t. It preferentially crawls RDF documents

whose preference scores ps(c, t) are higher and updates their local copies. Crawling

is stopped when the bandwidth reaches its limit κ. The limit κ is a maximum

number of triples which is calculated as the sum of triples obtained from the

visited RDF documents. Then, the preference scores are updated and crawling

is restarted at the subsequent point in time. RDF documents contains triples

〈s, p, o〉, where s, p, and o correspond to the subject, predicate, and object. The

data of the RDF document c at a point in time t is referred by Xc,t (i .e., the

set of triples in the RDF document c at a point in time t). Furthermore, |Xc,t|
indicates the number of triples in the RDF document c at a point in time t. We

define the overall data including all target RDF documents as Xt =
⋃
c∈C

Xc,t and

the series of data as X = {Xt1 , Xt2 , . . . , Xtn}. In contrast, X ′ refers to the data

of the local copies.

7.2 Crawling Strategy Based on Triple Life

Span

We describe a novel crawling strategy based on the linear regression model shown

in Section 6.1. The model predicts triples’ life spans. The crawling strategy

provides a preference score to an RDF document as follows:

pslr(c, t) = (
1

|Xc,t|
∑

〈s,p,o〉∈Xc,t

LR(〈s, p, o〉))−1 (7.1)

The function LR(〈s, p, o〉) returns a triple’s life span predicted by the linear

regression model for a given triple 〈s, p, o〉. We compute the mean average of triples’

life spans by averaging over LR(〈s, p, o〉) for all triples in the RDF document.

Finally, a preference score is defined by the reciprocal of the mean average. We
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take the reciprocal for the following reason. As stated in the problem statement

in Section 7.1, crawling strategies visit RDF documents starting from those with

larger preference scores. However, the RDF documents with smaller triples’ life

spans should be visited preferentially, since they contain more ephemeral and

dynamic triples. Therefore, we take the reciprocal as output to reverse the order

of the RDF documents.

7.3 Experiment

We conduct an experiment to evaluate the performance of the novel crawling

strategy. We first introduce the baseline of the crawling strategy in Section 7.3.1.

Subsequently, Section 7.3.2 describes the two datasets used in the experiment.

Thereafter, Section 7.3.3 presents the setups of the experiment. Finally, we

introduce two metrics that are used to evaluate crawling strategies in Section 7.3.4.

7.3.1 Baseline

Dividino et al. [DGS15] developed a novel crawling strategy based on LOD source

dynamics and reported that it performed best compared to other strategies. In their

work, LOD source refers to a set of RDF documents from a same PLD [DGS15].

In contrast, we conduct crawling with respect to RDF documents. We do this

because we believe that crawling with respect to RDF documents is more common.

Dividino et al. [DGS15] compared their crawling strategy to those based on LOD

sources’ age, PageRank [BP98; PBM+99], size, amount of change between the

last two observations, and change rate between the last two observations. Since

the authors reported that their crawling strategy based on LOD source dynamics

outperformed the others, we employ it as a baseline in our experiment. The

crawling strategy assigns preference scores considering history in terms of how

many triples in each RDF document have been updated in the past. The preference

score is computed using the equation below:

psdynamics(c, ti) =

ti∑
i=t1

δ(Xc,tlu(c,lu(c,i)−1)
, Xc,tlu(c,i))

tlu(c,i) − tlu(c,lu(c,i)−1)
. (7.2)

lu(c, i) is a function that returns the latest point in time at which the given RDF

document c was crawled at point in time i. Thus, lu(c, i) ≤ i. This function

can be used recursively. For example, the update prior to the last update is

represented as tlu(c,lu(c,i)−1). δ is a function that returns the degree of difference
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Table 7.1: Descriptive statistics of the datasets. The table provides the number of
snapshots, the number of RDF documents, and the average number of triples per
snapshot. Standard deviation is given in parentheses.

# snapshots # RDF documents
average # triples per
snapshot

DyLDO 173 11,917 1,877,875.82 (76,203.44)
Wikidata 25 9,753,532 48,609,241.20 (7,500,579.23)

between two RDF documents (two LOD sources in their original work). We use δ

based on the Jaccard distance defined as:

δ(Xc,t1 , Xc,t2) = 1− |Xc,t1 ∩Xc,t2|
|Xc,t1 ∪Xc,t2|

. (7.3)

We use it, since Dividino et al. [DGS15] reported δ based on the Jaccard distance

performs slightly better than δ based on the Dice coefficient.

7.3.2 Datasets

The experiment uses the two datasets that are introduced in Section 6.1.3. Table 7.1

provides the descriptive statistics of these datasets.

DyLDO As the first dataset, we use the DyLDO dataset, which is introduced in

Section 6.1.3. From the original dataset, we first remove quads that contain

blank nodes, because these nodes may have different identifiers in different

snapshots in this dataset. Thereafter, we identify RDF documents that have

been crawled in every snapshot by analyzing the access logs. The identified

RDF documents are the target of the crawling strategies. As result, the

dataset contains a total of 11, 917 RDF documents.

Wikidata As the second dataset, we use Wikidata dataset, which is introduced in

Section 6.1.3. The original dataset consists of only triples. Thus, we consider

triples that share a common subject URI as one RDF document. Then,

we first extract triples whose subject URI appears in all the snapshots. As

result, we find 9, 753, 532 subject URIs that are treated as RDF documents.

7.3.3 Setups

Following Dividino et al. [DGS15], the experiment compares the crawling strategies

in two setups: single-step and iterative progression. Furthermore, we simulate
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different bandwidth constraints along with Dividino et al. [DGS15]. The two

individual experiments are described below.

Single-step We evaluate the performance of the crawling strategies for a single

update of a local copy. We start from a perfect copy at a point in time ti

and compare the quality of the local copy at a point in time ti+1 achieved

by different crawling strategies.

Iterative progression We evaluate how the quality of the local copies change

over a longer period of time when considering iterative updates. Starting

from a perfect copy at a point in time ti, we aim to measure how well

different crawling strategies perform in terms of maintaining an accurate

local copy at subsequent points in time ti+1, ti+2 . . . ti+n. We evaluate local

copies at up to n = 20 subsequent points in time (approximately 5 months)

for the DyLDO dataset, and n = 4 points in time (approximately 4 months)

for the Wikidata dataset.

In both crawling strategies and both setups, we compute preference scores

based on available history information. The history is composed of the last 50

snapshots for the DyLDO dataset, and 8 snapshots for the Wikidata dataset.

Therefore, we experiment starting from t = 2013-11-24 for the DyLDO dataset

and t = 2015-05-11 for the Wikidata dataset. In the single-step setup, we slide

the starting point ti by one point in time. For the iterative progression setup,

we slide the starting point ti by the step of 10 points in time for the DyLDO

dataset and by the step of 2 points in time for the Wikidata dataset. Referring to

the baseline, we compute the preference scores at a point in time ti, examining

the last 50 snapshots for the DyLDO dataset and 8 snapshots for the Wikidata

dataset. Again, the initial history information is the same in both setups. The

preference scores of the RDF documents are continuously updated in the iterative

progression setup. Thus, the size of the history information increases along with

the iterations in the iterative progression setup. In terms of the linear regression

model, we train the model over the first 50 snapshots for the DyLDO dataset,

and first 8 snapshots for the Wikidata dataset. In contrast to the baseline, we

use the same linear regression models at all points in time and do not update it.

We do this to demonstrate its generalizability over time. To construct the linear

regression model, we first extract all unique triples in the first 50 snapshots and

8 snapshots of the respective datasets. Then, we count the frequency of subject

PLDs and predicates, and object PLDs. Thereafter, we take into account only
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the features that are used by more than 10 unique triples, and integrate all of the

others.

Referring to bandwidth constraint, we increase the relative bandwidth stepwise

from 0% to 5% in intervals of 1%, from 5% to 20% in intervals of 5%, and from

20% to 100% in intervals of 20% of all available triples in each snapshot. Therefore,

bandwidth at each point in time ti is calculated as κ = (relative bandwidth)·|Xti+1
|.

We compute κ using the number of triples in the snapshot at the next point in

time |Xti+1
|. In fact, |Xti+1

| is not known at ti, but we use it to ensure precision

and recall at 1.0. If we calculate κ based on the size of the snapshot at ti and

|Xti+1
| > |Xti |, the precision and recall might not reach 1.0 when the relative

bandwidth is 100% since the strategy cannot visit and crawl all RDF documents.

We believe that the influence of this network resource computation is low, since

the size of snapshots does not vary greatly over time.

7.3.4 Metrics

We evaluate the resulting local copies using precision and recall, which are defined

in Equations 7.4 and 7.5, respectively.

precision(X ′t, Xt) =
|X ′t ∩Xt|
|X ′t|

(7.4)

recall(X ′t, Xt) =
|X ′t ∩Xt|
|Xt|

(7.5)

In both equations, X ′t denotes the resulting local copy of the RDF documents at

a point in time t. Xt is the data of all target RDF documents on the web, i .e., a

perfect up-to-date local copy at a point in time t, which is considered as ground

truth.

7.4 Results

We report the results of the experiment with respect to the two setups.

Single-step Figure 7.1 shows the precision and recall of the local copies produced

by the single-step setup when varying the relative bandwidth. Overall, the novel

strategy outperforms the baseline in terms of both precision and recall. Regarding

precision, when the relative bandwidth is small (< 5%), the difference between

the two strategies is small. However, the difference becomes larger as the relative

bandwidth increases. Finally, the difference between the crawling strategies
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(a) Precision of the DyLDO dataset (b) Recall of the DyLDO dataset

(c) Precision of the Wikidata dataset (d) Recall of the Wikidata dataset

Figure 7.1: Single-step setup: Precision (left) and recall (right) of the local copies.

disappears with 100% bandwidth, and both strategies achieve a precision of 1.00.

Regarding recall, on the other hand, the difference between the two crawling

strategies is smaller. However, the novel crawling strategy still performs slightly

better.

Iterative progression Figure 7.2 shows the results of the iterative progression

setup when the relative bandwidth is 20%. The novel crawling strategy always

outperforms the other in terms of both precision and recall. In particular, the

novel crawling strategy is much better in terms of precision. At the beginning

of the iteration, the difference between the two crawling strategies is small and

increases. After a few iterations, however, the amount of the difference becomes

stable.
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(a) Precision of the DyLDO dataset (b) Recall of the DyLDO dataset

(c) Precision of the Wikidata dataset (d) Recall of the Wikidata dataset

Figure 7.2: Precision (left) and recall (right) of the resulting local copies in the
iterative progression setup with a middle bandwidth (20%).
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7.5 Discussion

In both setups, we observe that the novel crawling strategy outperforms the

baseline. In particular, we note that the novel crawling strategy performes

better in the iterative progression setup. The novel crawling strategy has the

advantage that once a linear regression model is trained, it does not need any past

snapshots to compute preference scores. In contrast, Dividino et al.’s LOD source

dynamics [DGS15] requires to update the preference scores using past snapshots

after each iteration. In other words, the strategy always needs the latest of the

past states of RDF documents to compute how much the RDF documents have

been modified. We conjecture that since our novel crawling strategy looks into

which triples are included in an RDF document and content of each triple, it

captures the dynamics of the RDF documents better. Moreover, we conclude that

the linear regression model does generalize since the performance of our strategy

does not worsen as it slides over the points in time. However, the model should

be updated when many new RDF documents are added or after a long time has

passed. Please note that we use a linear regression model due to its simplicity

for the crawling strategy. The model is able to capture for how many weeks or

months a triple has been alive. In terms of other regression models, we also have

tried logistic regression, but it leads to almost the same results. In addition, we

experiment with random forest regression [Bre01], boosted tree regression [Fri02],

and decision tree regression. The results of the linear regression model are despite

its simplicity better than those of the other models.
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Chapter 8

Application IV: Change

Verification for Knowledge

Graphs

To keep the information in knowledge graphs up-to-date, many editors contribute

to making changes on knowledge graphs such as Wikidata [VK14]. While the ma-

jority of changes are correct, knowledge graphs also receive incorrect changes due

to vandalism, carelessness, and misunderstanding by editors. Therefore, adminis-

trators manually verify these changes [TVS+16]. Thus, the change verification

for knowledge graphs is demanding in general. In fact, Tanon et al. [TVS+16]

argued that a significant increase in the amount of changes needs to go along with

either an increase in the number of administrators or with the provision of tools

to improve the present administrators’ efficiency. In addition, since even automat-

ically created knowledge graphs such as DBpedia [ABK+07] and YAGO [SKW07]

rely on Wikipedia infoboxes made by editors, it is not trivial for them to assess

changes.

In this chapter, we develop classifiers for changes to a knowledge graph using

the topological features discussed in Section 6.2. Our classifiers compute the

scores of changes using those features. A high score indicates that the change is

likely to be incorrect and should be rejected. As a dataset, we use the snapshots

of Wikidata over two years. The experiment demonstrates that novel topological

features are useful to automatically judge whether an incoming change is correct

or incorrect. These features are especially useful to classify changes whose objects

are a URI. Since in previous studies change verification performed worse for these

changes than for the changes that contained literals [HPS+16], our novel features

help to complement the existing methods of change verification.
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Section 8.1 formalizes the problem of change verification for a knowledge graph.

Subsequently, we introduce a method of change verification using novel topological

features in Section 8.2. Section 8.3 details the experiment, and Section 8.4 reports

the results. Finally, we discuss the results and the efficiency of novel topological

features in Section 8.5.

8.1 Problem Statement

A change is represented by a tuple, which is composed of a triple 〈s, p, o〉, a flag

m, and a time stamp t. We compute a score for a change es(〈s, p, o〉,m, t) on a

knowledge graph G and classify it as correct or incorrect. A higher score indicates

that a change is likely incorrect. A triple 〈s, p, o〉 consists of subject s, predicate p,

and object o. We consider the sets of all URIs R and literals L. In a triple 〈s, p, o〉,
a subject s ∈ R is a URI, a predicate p ∈ R a URI, and an object o ∈ R ∪ L a

URI or a literal. Then, a knowledge graph can be seen as a directed graph, where

each node is a subject or object. The set of edges in the graph are considered as

triples, which are described as E = R×R× (R ∪ L). A flag m indicates whether

a triple is added (m = 1) or deleted (m = −1). A time stamp t refers to a point

in time at which a change is made.

8.2 Change Verifiers

Based on the investigation in Section 6.2, this section develops classifiers that verify

whether an incoming change is correct or incorrect. Section 8.2.1 summarizes

the features employed by the classifiers. Thereafter, Section 8.2.2 describes the

classification algorithms.

8.2.1 Features

Table 8.1 summarizes the features used for the classifiers. The first and second

columns show the groups and its features, respectively. The topological features

are based on Section 6.2. URI out-degree and literal out-degree refer to the

number of edges that are connected to a URI node and literal, respectively. In

addition, we also employ “predicate” as feature, as done by Tan et al. [TAI+14]

and Heindorf et al. [HPS+16]. We convert predicates into features using one-hot

encoding. While all 16 features can be used for changes whose objects are a

URI, the features from the group “object” cannot be employed for changes whose

objects are a literal. Thus, only 10 features are used for these changes.
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Table 8.1: Features used by the classifiers for automatic change verification.

Group Feature

subject

in-degree
out-degree
URI out-degree
literal out-degree
age
last edit

predicate
age
last edit
predicate

object

in-degree
out-degree
URI out-degree
literal out-degree
age
last edit

others flag m

8.2.2 Classification Algorithms

Tan et al. [TAI+14] observed that logistic regression outperformed Grad-

Boost [DS09] and perceptron [FS99]. Moreover, in their pilot experiments, Heindorf

et al. [HPS+16] found that random forest [Bre01] outperformed logistic regression

as well as naive Bayes. Therefore, we employ random forest as well as logistic

regression in our experiment. We use implementations provided by Turi1.

Logistic regression To avoid overfitting, we use L2 regularization with λ = 0.01

for all the datasets. We optimize λ by 10-fold cross-validation on the training

data.

Random forest We optimize the maximal tree depth as 8 by 10-fold cross-

validation on the training data.

8.3 Experiment

We conduct an experiment to investigate the performance of novel topological

features for change verification. Section 8.3.1 describes the dataset used in the

experiment. Subsequently, Section 8.3.2 introduces the metrics.

1https://turi.com/products/create/docs/graphlab.toolkits.classifier.html, last
accessed on 08/31/2017
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Table 8.2: The dataset for training and test. The fourth column provides the
number of changes and the fifth shows the rate of positive samples (i .e., incorrect
changes) in each dataset.

Dataset From To # changes Rate

URI dataset
training 04/20/2014 01/04/2016 90,234,704 7.63%
test 01/04/2016 06/21/2016 22,649,334 5.41%
literal dataset
training 04/20/2014 01/04/2016 47,532,819 8.01%
test 01/04/2016 06/21/2016 8,790,632 4.67%

8.3.1 Dataset

The experiment uses the Wikidata dataset described in Section 6.2.1. We split

the dataset into changes whose objects are a URI and changes whose objects are

a literal. We refer to the changes whose objects are a URI as the URI dataset,

and to those whose objects are a literal as the literal dataset. We use the split

because the different features can be applied to the two datasets. In line with

Heindorf et al. [HPS+16], we further divide the two datasets for training and test

by time. Table 8.2 provides a description of the datasets. In both datasets, 80%

of changes are used for training, and 20% for test.

8.3.2 Metrics

To assess how well the classifiers detect incorrect changes, we follow Heindorf

et al. [HPS+16] and use two metrics: the area under the curve of the receiver

operating characteristic (ROC), and the area under the precision-recall curve

(PR). While ROC is used to evaluate classification performance in general, PR

provides a different view of imbalanced datasets [DG06]. Please note that we treat

incorrect changes as positive and correct ones as negative, in line with Heindorf et

al. [HPS+16]. Thus, precision and recall are defined as the fraction of predicted

incorrect changes that are truly incorrect, and the fraction of all truly incorrect

changes that are identified, respectively.

8.4 Results

Table 8.3 provides the results of the classification with respect to the datasets.

In addition, Figure 8.1 shows the corresponding PR curves. In Table 8.3 and

Figure 8.1, the classifiers perform well for the URI dataset, but not for the literal
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Table 8.3: Classification result of the change verification using the test data.
Metrics are the area under the curve of the ROC and the PR.

(a) URI dataset
ROC PR

logistic regression 0.8350 0.3248
random forest 0.9183 0.4728

(b) literal dataset
ROC PR

logistic regression 0.6543 0.0116
random forest 0.4688 0.0043

Figure 8.1: PR curves of the classifiers.

dataset. Since the state of the art [HPS+16] does not work well for assessing

changes whose objects are a URI, we believe that the novel topological features

complement previous works. In terms of the classifiers, while the random forest

performs better for the URI dataset, the logistic regression performs better for the

literal dataset. A possible reason for the poor performance for the literal dataset

is that literals are inherently not counted as nodes in graphs. Thus, they do not

follow patterns of the data dynamics such as the preferential attachment discussed

in Section 6.2.

To further assess the influence of each feature, we conduct a feature ablation

analysis by removing from the classifier one feature at a time as Tan et al. [TAI+14]

did. As classification algorithm, we use the random forest for the URI dataset,

and the logistic regression for the literal dataset. The third and fourth columns of

Table 8.4 show ROC when each feature is not employed. A smaller value indicates

that the feature has a larger positive influence. In both datasets, the predicate
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Table 8.4: Result of feature ablation analysis. The third and fourth columns show
computed ROC when the feature is not used for the classifiers.

Group Feature URI literal

subject

in-degree 0.7883 0.6193
out-degree 0.7915 0.6589
URI out-degree 0.7884 0.6642
literal out-degree 0.7946 0.6580
age 0.7769 0.6310
last edit 0.9074 0.6393

predicate
age 0.6138 0.4500
last edit 0.7409 0.6163
predicate 0.7601 0.6233

object

in-degree 0.7879 -
out-degree 0.8929 -
URI out-degree 0.8955 -
literal out-degree 0.8880 -
age 0.8240 -
last edit 0.7713 -

others flag m 0.7853 0.6510

age has the largest influence, while the features relevant to out-degree have the

smallest influence.

8.5 Discussion

To the best of our knowledge, the state of the art in change verification is the work

by Heindorf et al. [HPS+16]. They used the WDVC dataset [HPS+15] based on

Wikidata for their evaluation, and reported 0.981 of ROC and 0.171 of PR in the

Wikidata item body (i .e., a part of a Wikidata article corresponding to triples).

We cannot use the WDVC dataset, since the overlap period between the WDVC

dataset [HPS+15] and the used snapshots is short. Although a direct comparison

with our study is impossible, ROC of our novel change classifier is worse than

theirs, while PR of our classifier is better. The difference between the two metrics

is that while ROC takes into account true negatives, PR does not. Thus, the novel

change classifier judges correct changes as incorrect ones, but detects incorrect

changes well. In addition, since we do not use editors’ information, the novel

change classifier can be applied to new editors as well. In summary, the novel

topological features can improve the state of the art.

Regarding the heuristic that labels changes as correct or incorrect (i .e., a

change is labeled as incorrect if it is reverted in four weeks), we manually inspect
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400 randomly sampled changes in the test data of the URI dataset. The heuristic

labels 23 of them as incorrect. From the sampled changes, we find only 1 false

positive (falsely labeled as incorrect) and 18 false negatives. Since the rate of

false positives is small, we believe that the experiment properly evaluates the

performance of detecting incorrect changes.
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Chapter 9

Conclusion

In this thesis, we confirmed that knowledge graphs can assist in profiling methods,

and that profiling methods can capture the data dynamics of knowledge graphs

and contribute to their integrity. In Section 9.1, we first reflect on and summarize

the insights gained in this thesis. Then, we discuss open issues and possible future

areas of study in Section 9.2.

9.1 Insights Gained

In the experiment regarding recommending relevant researchers presented in

Chapter 4, the profiling methods using knowledge graphs did not work well for

the computer science dataset. We conjectured that the reason for this was the

quality of the knowledge graph (i .e., the ACM CCS). The ACM CCS contains

much fewer entities than the MeSH does. In addition, we used the ACM CCS

published in 2012, although the experiment was conducted in 2015. In contrast,

the MeSH is updated every week. This time difference might also be a reason for

our results. Therefore, it is necessary to check the quality of the knowledge graph

before applying it to a profiling method. To this end, Färber et al. [FEM+16]

provided different measures to assess the quality of knowledge graphs.

While we investigated profiling the data dynamics of knowledge graphs, we

noticed that it was important to sample and preserve a representative knowledge

graph. In 2012, Käfer et al. [KUH+12] launched the DyLDO for this reason,

and started to collect weekly snapshots of knowledge graphs. The seed list of

the DyLDO contains both representative data sources and randomly chosen ones.

However, although new knowledge graphs (i .e., data sources) continuously become

available and other knowledge graphs go offline, the seed list used by the DyLDO

has not been updated or extended since the beginning of 2012. In fact, the size
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of the weekly snapshots of the DyLDO dataset has decreased by over 50% since

it was launched. This produces a bias, because as more time passes, more data

sources in the seed list permanently disappear. The Billion Triples Challenge

(BTC) datasets provided by the Karlsruhe Institute of Technology provide larger

snapshots of knowledge graphs, but their crawling frequency is low (i .e., one

snapshot per year). In addition, their seed list is changed with every snapshot,

making proper comparisons impossible. Therefore, countermeasures are needed to

ensure representativity of the snapshots over time for future researches.

9.2 Future Directions

This thesis showed that knowledge graphs are dynamic over time. However, the

existing profiling methods using knowledge graphs exploit a static knowledge

graph that is captured at a certain point in time. Since documents and social

media items have different time stamps, we should use the knowledge graph that

corresponds to a given time stamp. For example, a knowledge graph from 2013

should be used to analyze document published in 2013. In addition, in this thesis

we assumed that microblog postings mainly describe what is happening and what

a user is interested in at a time when a microblog posting is published. However,

according to Jatowt et al. [JAK+15], many microblog postings contain temporal

expressions that refer to the past or the future. Since these microblog postings

reflect user’s expectations or memories, we need to examine temporal expressions

in the future.

In terms of temporal information in knowledge graphs, we assumed that triples

contained in a current knowledge graph are correct and reflect the current state

of the world. However, this assumption is not always applicable. For example, we

obtain two results, dbr:Cleveland_Cavaliers and dbr:Miami_Heat, by querying

the team of dbr:LeBron_James in the DBpedia SPARQL Endpoint. The fact

that dbr:LeBron_James plays for the dbr:Cleveland_Cavaliers is valid for the

period between 2003 and 2010, and then again since 2014. On the other hand,

his playing for the dbr:Miami_Heat is valid between 2010 and 2014. Therefore,

the degree of the association between LeBron James and each of two teams varies

depending on time. Therefore, it is necessary to annotate temporal information

(i .e., time frame in which a triple is valid) to triples that are valid only for a certain

period of time. To tackle this problem, YAGO2 [HSB+13] extends a traditional

knowledge graph with temporal information as well as spatial information. In

addition, Wikidata [VK14] allows temporal information to be stored for each
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triple. However, a large number of triples in those knowledge graphs are still

missing temporal information. Although Talukdar et al. [TWM12] and Jiang et

al. [JLG+16] proposed methods to automatically detect triples with temporal

information, these methods require manual inputs about constraints regarding

that information (e .g., there is only one U.S. president at each point in time).

Thus, fully automatic and scalable methods are demanding.

Furthermore, different knowledge graphs have started to annotate certainty

(i .e., probability) to each triple. For example, Probase [WLW+12] and Google

Knowledge Vault [DGH+14] extract triples from documents and store them with

certainty. In addition, Wikidata [VK14] allows conflicting triples to coexist, since

many facts in the real world are disputed or simply uncertain. Therefore, in the

future, the profiling methods using knowledge graphs need to take into account

the uncertainty of each triple when they reveal relevant entities.
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“Introducing Wikidata to the linked data web”. In: International

Semantic Web Conference (ISWC). Springer. 2014, pp. 50–65.

[EV03] M. Eirinaki and M. Vazirgiannis. “Web mining for web personaliza-

tion”. In: ACM Transactions on Internet Technology (TOIT) 3.1

(2003), pp. 1–27.

[FDK16] M. Francis-Landau, G. Durrett, and D. Klein. “Capturing semantic

similarity for entity linking with convolutional neural networks”. In:

Annual Conference of the North American Chapter of the Association

for Computational Linguistics (NAACL). ACL, 2016, pp. 1256–1261.

[FEB+02] A. M. Ferman, J. H. Errico, P. van Beek, and M I. Sezan. “Content-

based filtering and personalization using structured metadata”. In:

Joint Conference on Digital Libraries (JCDL). ACM. 2002, p. 393.

[Fel98] C. Fellbaum. WordNet. Wiley Online Library, 1998.

[FEM+16] M. Färber, B. Ell, C. Menne, A. Rettinger, and F. Bartscherer.

“Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and

YAGO”. In: Semantic Web Preprint.Preprint (2016), pp. 1–53.

[Fri02] J. H. Friedman. “Stochastic gradient boosting”. In: Computational

Statistics & Data Analysis 38.4 (2002), pp. 367–378.

[FRM94] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. “Fast subse-

quence matching in time-series databases”. In: International Con-

ference on Management of Data (SIGMOD). ACM, 1994, pp. 419–

429.

[FS99] Y. Freund and R. E. Schapire. “Large margin classification using the

perceptron algorithm”. In: Machine Learning 37.3 (1999), pp. 277–

296.

[FW14] W. Feng and J. Wang. “We can learn your #hashtags: Connecting

tweets to explicit topics”. In: International Conference on Data

Engineering (ICDE). IEEE. 2014, pp. 856–867.

128



[FWR+15] M. Farajtabar, Y. Wang, M. G. Rodriguez, S. Li, H. Zha, and L. Song.

“COEVOLVE: A joint point process model for information diffusion

and network co-evolution”. In: Conference on Neural Information

Processing Systems (NIPS). Curran Associates, Inc. 2015, pp. 1954–

1962.

[GG14] T. Gottron and C. Gottron. “Perplexity of index models over evolv-

ing linked data”. In: Extended Semantic Web Conference (ESWC).

Springer. 2014, pp. 161–175.

[GGL+16] O.-E. Ganea, M. Ganea, A. Lucchi, C. Eickhoff, and T. Hofmann.

“Probabilistic bag-of-hyperlinks model for entity linking”. In: Inter-

national Conference on World Wide Web (WWW). IW3C2. 2016,

pp. 927–938.
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Appendix A

Detailed Results of the

Recommender System for

Scientific Publications

This chapter describes the detailed results of the recommendation performance

provided in Section 5.4.

A.1 Mean Average Precision

Section 5.4 shows the detailed analysis of the results using only rankscore. In

contrast, this section provides the detailed analysis using Mean Average Precision

(MAP). Average Precision (AP) is calculated as below:

AP =
1

|hits|
∑
d∈hits

Precision@rank(d), (A.1)

where hits and rank(d) stand for the set of relevant publications and the rank of

the publication d, respectively. |hits| is the number of relevant publications in the

recommendation list. Precision@rank(d) denotes the precision at cut off rank(d)

in the recommendation list. Mean Average Precision (MAP) is the mean average

of the Average Precision of all subjects. This section first compares the twelve

different recommendation strategies. Subsequently, we investigate the influence of

the different experimental factors.
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Table A.1: Mean Average Precision (MAP) of the strategies in decreasing order.
M and SD denote mean and standard deviation, respectively.

Strategy MAP
Profiling
Method

Decay
Function

Con-
tent

M (SD)

1. CF-IDF Sliding Window All .71 (.32)
2. HCF-IDF Exponential All .65 (.33)
3. HCF-IDF Exponential Title .65 (.32)
4. CF-IDF Exponential All .65 (.35)
5. HCF-IDF Sliding Window Title .65 (.34)
6. HCF-IDF Sliding Window All .65 (.34)
7. CF-IDF Exponential Title .58 (.35)
8. CF-IDF Sliding Window Title .55 (.34)
9. LDA Exponential All .47 (.39)
10. LDA Exponential Title .44 (.34)
11. LDA Sliding Window Title .43 (.35)
12. LDA Sliding Window All .40 (.42)

A.1.1 Best Performing Strategy

Table A.1 shows the Mean Average Precisions (MAP) of the twelve strategies. The

order of the strategies is almost same with rankscores shown in Table 5.2. In order

to investigate significant differences among strategies, we first apply Mauchly’s

test and found a violation of sphericity in the strategies (χ2(65) = 353.51, p = .00).

Subsequently, we run a one-way repeated-measure ANOVA with a Greenhouse-

Geisser correction of ε = .65. It reveals a significant difference of the strategies

(F (7.17, 875.15) = 15.59, p = .00). To assess the statistical significance of pair-

wise differences between the twelve strategies, a post-hoc analysis is performed

using Shaffer’s MSRB procedure [Sha86]. The result of the post-hoc analysis

is presented in Table A.2. The vertical and horizontal dimensions of the table

show the eleven-by-eleven comparison of the twelve strategies. As one can see, we

observe various significant differences between strategies (marked in bold font).

A.1.2 Influence of the Three Experimental Factors

Subsequently, we analyze the results with respect to each factor with MAP. First,

we apply Mendoza’s test [Men80] which shows violations of sphericity against the

factors Profiling Method × Temporal Decay Function (χ2(2) = 10.30, p = .01),

and Profiling Method × Publication Content (χ2(2) = 13.18, p = .00). Thus, we

run three-way repeated-measure ANOVA with a Greenhouse-Geisser correction of

ε = .92 for the factor Profiling Method × Temporal Decay Function and ε = .91 for
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Table A.3: Three-way repeated-measure ANOVA with Greenhouse-Geisser correc-
tion with F-ratio, η2, and p-value for MAP.

Factor F η2 p

Profiling Method 51.79 .42 .00
Temporal Decay Function 0.33 .00 .57
Publication Content 5.16 .04 .02
Profiling Method × Temporal Decay Function 1.66 .01 .20
Profiling Method × Publication Content 4.76 .02 .01
Temporal Decay Function × Publication Content 0.02 .00 .90
Profiling Method × Temporal Decay Function ×
Publication Content

3.19 .03 .04

the factor Profiling Method × Publication Content. Table A.3 shows the results of

applying an ANOVA. η2 indicates the effect size of each factor. For all the factors

that make a significant difference, we conduct a post-hoc analysis using Shaffer’s

MSRB Procedure.

Subsequently, the post-hoc analyses with respect to factors with a significant

difference are conducted.

The Factor Profiling Method Tables A.4(a), (b), and (c) show the MAPs

with respect to each profiling method, the post-hoc analysis for the factor Profiling

Method, and the effect size, respectively. Table A.4(a) presents the means and

standard deviations of the three profiling methods. Table A.4(b) shows p-values

of each pair. Since Table A.3 shows that the factor Profiling Method has the

largest effect size, we further compute the effect size using Cohen’s d for each

pair shown in Table A.4(c). The result shows that CF-IDF and HCF-IDF are

superior to LDA. In contrast, there is no significant difference between CF-IDF

and HCF-IDF, although MAP of HCF-IDF is slightly higher than CF-IDF.

The Factor Publication Content Table A.5 shows the post-hoc analysis

for the factor Publication Content. It indicates that the recommender system

works better when All (i .e., full texts and titles) is taken into consideration for

computing recommendations.

The Factor Profiling Method × Publication Content Table A.6 shows

the results of ANOVA regarding the factor Profiling Method when a choice of the

factor Publication Content is fixed and vice versa. We observe there are significant

differences when a choice of the factor Publication Content is fixed and when

CF-IDF is employed. Mendoza’s test found a violation of sphericity in the factor
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Table A.4: MAPs, Post-hoc analysis for the factor Profiling Method using Shaffer’s
MSRB procedure, and effect size.

a) MAPs
Choice M SD

HCF-IDF .65 .33
CF-IDF .62 .35

LDA .43 .38
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .15 .00
HCF-IDF .00
c) Effect size using Cohen’s d

HCF-IDF LDA

CF-IDF .09 .52
HCF-IDF .62

Table A.5: MAPs and Post-hoc analysis for the factor Publication Content using
Shaffer’s MSRB procedure.

a) MAPs
Choice M SD

All .59 .38
Title .55 .35

b) Post-hoc analysis p-values
Title

All .02

145



Table A.6: ANOVA for Profiling Method × Publication Content interaction

Factor F η2 p

Profiling Method at Title 23.99 .20 .00
Profiling Method at All 36.35 .30 .00
Publication Content at CF-IDF 14.69 .12 .00
Publication Content at HCF-IDF 0.00 .00 .95
Publication Content at LDA 0.01 .00 .93

Table A.7: MAPs and Post-hoc analysis for the factor Profiling Method at Title
using Shaffer’s MSRB procedure.

a) MAPs
Choice M SD

HCF-IDF .65 .33
CF-IDF .56 .35

LDA .43 .35
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .01 .00
HCF-IDF .00

Profiling Method when All is taken (χ2(2) = 31.35, p = .00). Thus, we run a

one-way repeated-measure ANOVA with Greenhouse-Geisser correction of ε = .81

for the second row in Table A.6. Subsequently, we conduct the post-hoc analyses

for each factor with a significant difference. Table A.7 presents the post-hoc

analysis when Title is employed. We see that HCF-IDF outperforms the others

with significant differences. Table A.8 shows the post-hoc analysis when All is

chosen for the factor Publication Content. Different from the result shown in

Table A.7, CF-IDF performs slightly better than HCF-IDF, although there is no

significant difference between them. Both CF-IDF and HCF-IDF demonstrate

better recommendation performance than LDA. Table A.9 shows the post-hoc

analysis of the factor Publication Content when CF-IDF is employed. It indicates

that the strategies with CF-IDF and All significantly outperforms those with

CF-IDF and Title.
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Table A.8: MAPs and Post-hoc analysis for the factor Profiling Method at All
using Shaffer’s MSRB procedure.

a) MAPs
Choice M SD

CF-IDF .68 .34
HCF-IDF .65 .34

LDA .44 .41
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .21 .00
HCF-IDF .00

Table A.9: MAPs and Post-hoc analysis for the factor Publication Content at
CF-IDF using Shaffer’s MSRB procedure.

a) MAPs
Choice M SD

All .68 .34
Title .56 .35

b) Post-hoc analysis p-values
All

Title .00

A.2 Precision

This section evaluates the recommendation performance using Precision, especially

Precision@5 (P@5). Precision is computed as:

Precision@k =
1

k

k∑
i=1

rel(i), (A.2)

where rel(k) returns 1 if the publication ranked at i is interesting and 0 if not

interesting. This section sets k = 5, since five publications are recommended by

each strategy in the experiment. Using Precision@5, we first compare the twelve

different strategies. Subsequently, we investigate the influence of the different

experimental factors.

A.2.1 Best Performing Strategy

Table A.10 shows Precision@5 of each strategy. For the statistical analyses, we

first apply Mauchly’s test and found a violation of sphericity in the strategies

(χ2(65) = 421.32, p = .00). Subsequently, we run a one-way repeated-measure
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Table A.10: Precision@5 (P@5) of the strategies in decreasing order. M and SD
denote mean and standard deviation, respectively.

Strategy P@5
Profiling
Method

Decay
Function

Con-
tent

M (SD)

1. CF-IDF Sliding Window All .59 (.33)
2. HCF-IDF Sliding Window All .56 (.33)
3. HCF-IDF Sliding Window Title .55 (.33)
4. HCF-IDF Exponential Title .52 (.30)
5. CF-IDF Exponential All .50 (.32)
6. HCF-IDF Exponential All .48 (.30)
7. CF-IDF Exponential Title .40 (.29)
8. CF-IDF Sliding Window Title .39 (.27)
9. LDA Exponential Title .37 (.31)
10. LDA Sliding Window Title .34 (.31)
11. LDA Exponential All .31 (.30)
12. LDA Sliding Window All .27 (.33)

ANOVA with a Greenhouse-Geisser correction of ε = .60. It reveals a significant

difference of the strategies (F (6.62, 808.00) = 21.85, p = .00). To assess the

statistical significance of pair-wise differences between the twelve strategies, a

post-hoc analysis is performed using Shaffer’s MSRB procedure [Sha86]. The

result of the post-hoc analysis is presented in Table A.11. The vertical and

horizontal dimensions of the table show the eleven-by-eleven comparison of the

twelve strategies. As one can see, we observe various significant differences between

strategies (marked in bold font).

A.2.2 Influence of the Three Experimental Factors

Subsequently, we analyze the results with respect to each factor with Precision@5.

First, we apply Mendoza’s test [Men80] which showed violations of sphericity

against the factors Profiling Method (χ2(2) = 13.92, p = .00), Profiling Method

× Temporal Decay Function (χ2(2) = 19.64, p = .00), and Profiling Method ×
Publication Content (χ2(2) = 7.23, p = .03). Thus, we run three-way repeated-

measure ANOVA with a Greenhouse-Geisser correction of ε = .90 for the factor

Profiling Method, ε = .87 for the factor Profiling Method × Temporal Decay

Function, and ε = .95 for the factor Profiling Method × Publication Content.

Table A.12 shows the result of an ANOVA with F-ratio, η2 and p-value. η2

indicates the effect size of each factor. For all factors that make a significant

difference, we conduct a post-hoc analysis using Shaffer’s MSRB Procedure.
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Table A.12: Three-way repeated-measure ANOVA with Greenhouse-Geisser cor-
rection with F-ratio, η2 and p-value for Precision@5.

Factor F η2 p

Profiling Method 54.24 .42 .00
Temporal Decay Function 1.75 .00 .19
Publication Content 3.23 .04 .08
Profiling Method × Temporal Decay Function 6.32 .01 .00
Profiling Method × Publication Content 20.53 .02 .00
Temporal Decay Function × Publication Content 7.13 .00 .01
Profiling Method × Temporal Decay Function ×
Publication Content

2.61 .03 .07

Table A.13: Precision@5, Post-hoc analysis for the factor Profiling Method using
Shaffer’s MSRB procedure, and effect size.

a) Precision@5
Choice M SD

HCF-IDF .53 .31
CF-IDF .47 .31

LDA .32 .31
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .00 .00
HCF-IDF .00
c) Effect size using Cohen’s d

HCF-IDF LDA

CF-IDF .09 .52
HCF-IDF .62

The Factor Profiling Method Tables A.13(a), (b), and (c) show the Pre-

cision@5, the post-hoc analysis for the factor Profiling Method, and the effect

size, respectively. Table A.13(a) presents the means and standard deviations of

the three profiling methods. Table A.13(b) shows p-values of each pair. Since

Table A.12 shows that this factor has the largest effect size, we further compute

the effect size using Cohen’s d for each pair shown in Table A.13(c). There are

significant differences between all pairs of the three profiling methods and among

the three profiling methods HCF-IDF performs best.

The Factor Profiling Method × Temporal Decay Function Table A.14

shows the results of ANOVA regarding the Profiling Method when a choice of the

Temporal Decay Function is fixed and vice versa. There are significant differences

when the choice of the factor Temporal Decay Function is fixed. In both temporal
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Table A.14: ANOVA for Profiling Method × Temporal Decay Function interaction

Factor F η2 p

Profiling Method at Sliding Window 52.98 .20 .00
Profiling Method at Exponential 22.52 .30 .00
Temporal Decay Function at CF-IDF 5.44 .12 .02
Temporal Decay Function at HCF-IDF 3.25 .00 .07
Temporal Decay Function at LDA 6.75 .00 .01

Table A.15: ANOVA for Profiling Method × Publication Content interaction

Factor F η2 p

Profiling Method at Title 23.37 .20 .00
Profiling Method at All 56.54 .30 .00
Publication Content at CF-IDF 33.39 .12 .00
Publication Content at HCF-IDF 0.44 .00 .51
Publication Content at LDA 4.68 .00 .03

decay functions, all pairs of the three profiling methods show significant differences.

Specifically, HCF-IDF performs best, followed by CF-IDF and LDA. When CF-

IDF is employed, Sliding Window makes significantly better recommendations

than Exponential (F (1, 122) = 5.44, p = .02). In contrast, when LDA is employed,

Exponential performs significantly better than Sliding Window (F (1, 122) = 6.75,

p = .01). The factor Temporal Decay Function does not make difference on the

recommendation performance when HCF-IDF is employed.

The Factor Profiling Method × Publication Content Table A.15 shows

the results of ANOVA regarding the factor Profiling Method when a choice of the

Publication Content is fixed and vice versa. When the choice of the Publication

Content is Title, HCF-IDF performs best and significantly better than both

CF-IDF and LDA. There is no significant difference between CF-IDF and LDA.

When the choice of the Publication Content is All, HCF-IDF performs best. But,

there is no significant difference between CF-IDF and HCF-IDF and both profiling

methods are significantly superior to LDA. When CF-IDF is employed, All is the

better choice than Title. In contrast, Title performs better than All, when LDA

is employed.

The Factor Temporal Decay Function × Publication Content Ta-

ble A.16 shows the results of ANOVA regarding the factor Temporal Decay

Function when a choice of the factor Publication Content is fixed and vice versa.

When All is chosen for the factor Publication Content, Sliding Window is the better
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Table A.16: ANOVA for Temporal Decay Function × Publication Content interac-
tion

Factor F η2 p

Temporal Decay Function at Title 0.08 .20 .78
Temporal Decay Function at All 4.99 .30 .03
Publication Content at Sliding Window 8.74 .12 .00
Publication Content at Exponential 0.00 .00 .97

temporal decay function. When Sliding Window is employed in the strategies, the

strategies with All is significantly better than those with Title.

A.3 Mean Reciprocal Rank

In this section, we evaluate the recommendation performance by computing Mean

Reciprocal Rank (MRR). Reciprocal Rank is defined as:

RR =
1

rankfirst
, (A.3)

where rankfirst indicates the rank position of the first publication which is eval-

uated as interesting. Mean Reciprocal Rank (MRR) is the mean average of the

Reciprocal Rank of all subjects. If there is no relevant publication in the recom-

mendation list, RR outputs 0. Using MRR, we first compare the twelve different

strategies. Subsequently, we investigate the influence of the different experimental

factors.

A.3.1 Best Performing Strategy

Table A.17 shows the MRR of each strategies. The order of the strategies are

different from rankscores shown in Table 5.2. For the statistical analyses, we

first applied Mauchly’s test and found a violation of sphericity in the strategies

(χ2(65) = 308.70, p = .00). Subsequently, we ran a one-way repeated-measure

ANOVA with a Greenhouse-Geisser correction of ε = .67. It revealed a significant

difference of the strategies’ MRRs (F (0.18, 2.53) = 14.40, p = .00). To assess the

statistical significance of pair-wise differences between the twelve strategies, a

post-hoc analysis was performed using Shaffer’s MSRB procedure [Sha86]. The

result of the post-hoc analysis is presented in Table A.18. The vertical and

horizontal dimensions of the table show the eleven-by-eleven comparison of the
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Table A.17: Mean Reciprocal Rank (MRR) of the strategies in decreasing order.
M and SD denote mean and standard deviation, respectively.

Strategy MRR
Profiling
Method

Decay
Function

Con-
tent

M (SD)

1 CF-IDF Sliding Window All .73 (.35)
2 CF-IDF Exponential All .69 (.39)
3 HCF-IDF Exponential All .68 (.37)
4 HCF-IDF Exponential Title .68 (.37)
5 HCF-IDF Sliding Window Title .67 (.38)
6 HCF-IDF Sliding Window All .67 (.37)
7 CF-IDF Exponential Title .61 (.39)
8 CF-IDF Sliding Window Title .59 (.39)
9 LDA Exponential All .50 (.43)
10 LDA Exponential Title .43 (.37)
11 LDA Sliding Window Title .42 (.38)
12 LDA Sliding Window All .41 (.44)

twelve strategies. As one can see, we observe various significant differences between

strategies (marked in bold font).

A.3.2 Influence of the Three Experimental Factors

Subsequently, we analyze the results with respect to each factor with MRR. First,

we apply Mendoza’s test [Men80], which shows violations of sphericity against

the factors Profiling Method × Temporal Decay Function (χ2(2) = 8.16, p = .02),

and Profiling Method × Publication Content (χ2(2) = 8.85, p = .01). Thus, we

run three-way repeated-measure ANOVA with a Greenhouse-Geisser correction of

ε = .94 for Profiling Method × Temporal Decay Function, and ε = .93 for Profiling

Method × Publication Content. Table A.19 shows the results of an ANOVA with

F-ratio, η2 and p-value. The analysis revealed significant differences only in the

two factors Profiling Method and Publication Content.

The Factor Profiling Method Tables A.20(a), (b), and (c) show the MRRs,

the post-hoc analysis for the factor Profiling Method, and the effect size, respec-

tively. Table A.20(a) presents the means and standard deviations of the three

profiling methods. Table A.20(b) shows p-values of each pair. Since Table A.19

shows that this factor has the largest effect size, we further compute the effect

size using Cohen’s d for each pair shown in Table A.20(c). The result indicates
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Table A.19: Three-way repeated-measure ANOVA with Greenhouse-Geisser cor-
rection with F-ratio, η2 and p-value for MRR.

Factor F η2 p

Profiling Method 50.65 .42 .00
Temporal Decay Function 0.56 .00 .45
Publication Content 5.10 .04 .03
Profiling Method × Temporal Decay Function 1.28 .01 .28
Profiling Method × Publication Content 2.83 .02 .06
Temporal Decay Function × Publication Content 0.13 .00 .72
Profiling Method × Temporal Decay Function ×
Publication Content

2.33 .02 .10

Table A.20: MRRs, Post-hoc analysis for the factor Profiling Method using
Shaffer’s MSRB procedure, and effect size.

a) MRRs
Choice M SD

HCF-IDF .68 .38
CF-IDF .66 .37

LDA .44 .41
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .34 .00
HCF-IDF .00
c) Effect size using Cohen’s d

HCF-IDF LDA

CF-IDF .05 .56
HCF-IDF .61

that both CF-IDF and HCF-IDF outperform LDA. On the other hand, CF-IDF

and HCF-IDF are competitive each other.

The Factor Publication Content Table A.21 shows the post-hoc analysis

for the factor Publication Content. It indicates that generally the recommender

system works better when full texts are available.

A.4 Normalized Discounted Cumulative Gain

In this section, we evaluate the recommendation performance by Normalized

Discounted Cumulative Gain (nDCG). Discounted Cumulative Gain (DCG) is
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Table A.21: MRRs and Post-hoc analysis for the factor Publication Content using
Shaffer’s MSRB procedure.

a) MRRs
Choice M SD

All .61 .41
Title .57 .39

b) Post-hoc analysis p-values
All

Title .03

calculated as:

DCG =
k∑
i=1

2rel(i) − 1

log2 i
, (A.4)

where rel(k) returns 1 if the publication ranked at i is interesting and 0 if not

interesting. Similar to rankscore, the items ranked at higher positions have a

larger influence on output score. First, we compare the twelve different strategies

using this metric. Subsequently, we investigate the influence of the different

experimental factors.

A.4.1 Best Performing Strategy

Table A.22 shows the Normalized Discounted Cumulative Gain (nDCG) of the

twelve strategies. The order of the strategies is identical with rankscores shown

in Table 5.2. For the statistical analyses, we first apply Mauchly’s test and

found a violation of sphericity in the strategies (χ2(65) = 424.00, p = .00).

Subsequently, we run a one-way repeated-measure ANOVA with a Greenhouse-

Geisser correction of ε = .61. It reveals a significant difference of the strategies’

nDCG (F (6.69, 816.37) = 21.16, p = .00). To assess pair-wise differences between

the twelve strategies, a post-hoc analysis is performed using Shaffer’s MSRB

procedure [Sha86]. The result of the post-hoc analysis is presented in Table A.23.

The vertical and horizontal dimensions of the table show the eleven-by-eleven

comparison of the twelve strategies. As one can see, we observe various significant

differences between strategies (marked in bold font).

A.4.2 Influence of the Three Experimental factors

Subsequently, we investigate the influence of the different experimental factors.

First, we apply Mendoza’s test [Men80] which shows violations of sphericity

against the factors Profiling Method (χ2(2) = 11.29, p = .00), Profiling Method
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Table A.22: nDCGs of the strategies in decreasing order. M and SD denote mean
and standard deviation, respectively.

Strategy nDCG
Profiling
Method

Decay
Function

Publication
Content

M (SD)

1. CF-IDF Sliding Window All .59 (.33)
2. HCF-IDF Sliding Window All .56 (.34)
3. HCF-IDF Sliding Window Title .55 (.33)
4. HCF-IDF Exponential Title .52 (.30)
5. CF-IDF Exponential All .52 (.32)
6. HCF-IDF Exponential All .50 (.30)
7. CF-IDF Exponential Title .41 (.30)
8. CF-IDF Sliding Window Title .40 (.27)
9. LDA Exponential Title .34 (.31)
10. LDA Sliding Window Title .32 (.31)
11. LDA Exponential All .32 (.31)
12. LDA Sliding Window All .28 (.33)

× Temporal Decay Function (χ2(2) = 18.90, p = .00), and Profiling Method ×
Publication Content (χ2(2) = 8.61, p = .01). Thus, we run three-way repeated-

measure ANOVA with a Greenhouse-Geisser correction of ε = .92 for the factor

Profiling Method, ε = .87 for the factor Profiling Method × Temporal Decay

Function, and ε = .94 for the factor Profiling Method × Publication Content.

Table A.24 shows the results of the ANOVA. η2 indicates the effect size of each

factor. For all the factors that make significant difference, we conduct a post-hoc

analysis using Shaffer’s MSRB Procedure.

The Factor Profiling Method Tables A.25(a), (b), and (c) show the nDCGs,

the post-hoc analysis for the factor Profiling Method, and the effect size, respec-

tively. Table A.25(a) presents the means and standard deviations of the three

profiling methods. Table A.25(b) shows p-values of each pair. Since Table A.24

shows that the factor Profiling Method has the largest effect size, we further

compute the effect size using Cohen’s d for each pair shown in Table A.25(c). The

result shows that HCF-IDF is the best profiling method, followed by CF-IDF and

LDA.

The Factor Publication Content Table A.26 shows the post-hoc analysis

for the factor Publication Content. It indicates that the recommender system

works better when All (i .e., full texts and titles) is taken into consideration.
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Table A.24: Three-way repeated-measure ANOVA with Greenhouse-Geisser cor-
rection with F-ratio, η2, and p-value for nDCG.

Factor F η2 p

Profiling Method 58.42 .48 .00
Temporal Decay Function 0.80 .01 .37
Publication Content 6.33 .05 .01
Profiling Method × Temporal Decay Function 3.81 .03 .03
Profiling Method × Publication Content 14.54 .12 .00
Temporal Decay Function × Publication Content 3.57 .03 .06
Profiling Method × Temporal Decay Function ×
Publication Content

3.09 .03 .05

Table A.25: nDCGs, Post-hoc analysis for the factor Profiling Method using
Shaffer’s MSRB procedure, and effect size.

a) nDCGs
Choice M SD

HCF-IDF .53 .32
CF-IDF .48 .32

LDA .32 .32
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .00 .00
HCF-IDF .00
c) Effect size using Cohen’s d

HCF-IDF LDA

CF-IDF .16 .50
HCF-IDF .65

Table A.26: nDCGs and Post-hoc analysis for the factor Publication Content
using Shaffer’s MSRB procedure.

a) nDCGs
Choice M SD

All .46 .34
Title .42 .31

b) Post-hoc analysis p-values
Title

All .01
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Table A.27: ANOVA for Profiling Method × Temporal Decay Function interaction

Factor F η2 p

Profiling Method at Sliding Window 50.59 .41 .00
Profiling Method at Exponential 27.92 .23 .00
Temporal Decay Function at CF-IDF 2.79 .02 .10
Temporal Decay Function at HCF-IDF 1.78 .01 .18
Temporal Decay Function at LDA 4.90 .04 .03

Table A.28: nDCGs and Post-hoc analysis for the factor Profiling Method at
Sliding Window using Shaffer’s MSRB procedure.

a) nDCGs
Choice M SD

HCF-IDF .55 .33
CF-IDF .50 .32

LDA .30 .32
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .02 .00
HCF-IDF .00

The Factor Profiling Method × Temporal Decay Function Table A.27

shows the results of ANOVA regarding the factor Profiling Method when a choice

of the factor Temporal Decay Function is fixed and vice versa. Mendoza’s test

finds a violation of sphericity in the factor Profiling Method when Sliding Window

is used (χ2(2) = 7.55, p = .02) and Exponential is used (χ2(2) = 10.74, p = .00).

Thus, we run a one-way repeated-measure ANOVA with Greenhouse-Geisser

correction of η = .94 for the first row and η = .92 for the second row in Table A.27.

We also observe significant differences in the factor Temporal Decay Function

when LDA is employed. The post-hoc analyses of them are shown in Tables A.28,

A.29, and A.30, respectively. In Table A.28 and Table A.29, a choice of the factor

Temporal Decay Function is fixed. Table A.30 shows the post-hoc analysis of the

factor Temporal Decay Function when LDA is employed. It indicates Exponential

performs better than Sliding Window when using LDA.

The Factor Profiling Method × Publication Content Table A.31 shows

the results of ANOVA regarding the factor Profiling Method when a choice of

the factor Publication Content is fixed and vice versa. We observe there are

significant differences when a choice of the factor Publication Content is fixed

and CF-IDF is employed. Mendoza’s test found a violation of sphericity in the
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Table A.29: nDCGs and Post-hoc analysis for the factor Profiling Method at
Exponential using Shaffer’s MSRB procedure.

a) nDCGs
Choice M SD

HCF-IDF .51 .30
CF-IDF .46 .31

LDA .34 .31
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .03 .00
HCF-IDF .00

Table A.30: nDCGs and Post-hoc analysis for the factor Temporal Decay Function
at LDA using Shaffer’s MSRB procedure.

a) nDCGs
Choice M SD

Exponential .34 .31
Sliding Window .30 .32
b) Post-hoc analysis p-value

Exponential

Sliding Window .03

factor Profiling Method when All is taken (χ2(2) = 24.64, p = .00). Thus, we

run a one-way repeated-measure ANOVA with Greenhouse-Geisser correction

of η = .84 for the second row in Table A.31. Table A.32 presents the post-hoc

analysis when Title is employed. We see that HCF-IDF outperforms others with

significant differences. Table A.33 shows the post-hoc analysis when All is chosen

for the factor Publication Content. While there is no significant difference between

CF-IDF and HCF-IDF in Table A.33, HCF-IDF outperforms CF-IDF when only

titles of publications are available according to Table A.32. Table A.34 shows the

post-hoc analysis of the factor Publication Content when CF-IDF is employed. It

indicates that the strategies with CF-IDF and All significantly outperforms those

with CF-IDF and Title.

The Factor Temporal Decay Function × Publication Content Ta-

ble A.35 shows the results of ANOVA regarding the factor Temporal Decay

Function when a choice of the factor Publication Content is fixed and vice versa.

According to Table A.35, there is a significant difference among the factor Publica-

tion Content, when Sliding Window is used. The nDCGs and post-hoc analysis of
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Table A.31: ANOVA for Profiling Method × Publication Content interaction

Factor F η2 p

Profiling Method at Title 26.61 .22 .00
Profiling Method at All 52.51 .43 .00
Publication Content at CF-IDF 30.81 .25 .00
Publication Content at HCF-IDF 0.31 .00 .58
Publication Content at LDA 0.94 .01 .33

Table A.32: nDCGs and Post-hoc analysis for the factor Profiling Method at Title
using Shaffer’s MSRB procedure.

a) nDCGs
Choice M SD

HCF-IDF .53 .32
CF-IDF .41 .29

LDA .33 .31
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .00 .01
HCF-IDF .00

Table A.33: nDCG and Post-hoc analysis for the factor Profiling Method at All
using Shaffer’s MSRB procedure.

a) nDCGs
Choice M SD

CF-IDF .56 .33
HCF-IDF .53 .34

LDA .30 .32
b) Post-hoc analysis p-values

HCF-IDF LDA

CF-IDF .18 .00
HCF-IDF .00

Table A.34: nDCGs and Post-hoc analysis for the factor Publication Content at
CF-IDF using Shaffer’s MSRB procedure.

a) MAPs
Choice M SD

All .56 .33
Title .41 .29

b) Post-hoc analysis p-values
All

Title .00
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Table A.35: ANOVA for Temporal Decay Function × Publication Content interac-
tion

Factor F η2 p

Temporal Decay Function at Title 0.06 .00 .81
Temporal Decay Function at All 2.28 .02 .13
Publication Content at Sliding Window 9.96 .08 .00
Publication Content at Exponential 1.19 .01 .28

Table A.36: nDCGs and Post-hoc analysis for the factor Publication Content at
Sliding Window using Shaffer’s MSRB procedure.

a) nDCGs
Choice M SD

All .48 .36
Title .42 .32

b) Post-hoc analysis p-value
All

Title .00

it are shown in Tables A.36(a) and (b). It indicates that All significantly enhances

the performance of the recommender system when Sliding Window is used.

A.5 Demographic Factor

While Section 5.4.3 describes the demographic factors that have an influence

on the recommendation performance, this section details the other demographic

factors (i .e., age, major, years of profession, and employment type). For each of

these demographic factor, we first apply Mendoza’s test. Subsequently, we conduct

a mixed ANOVA test with one between subject factor (i. e., demographic factor)

and one within subject factor (i. e., strategy), adjusted by Green-house-Geisser’s

epsilon. In addition, we provide the post-hoc analyses. However, we omit the

post-hoc analysis of the factor strategy for the sake of brevity, because it is not

different from the result of the one-way repeated-measure ANOVA shown in

Table 5.3.

Age On average, subjects are 32.90 years old (SD: 7.36). We divide subjects into

three groups for an ANOVA (group 1: subjects who are > 29 years old (n = 42),

group 2: <= 29 and > 38 years old (n = 49), group 3: <= 38 years old (n = 32)).

We set those thresholds to make three groups have the almost same number of

subjects. Mendoza’s test found a violation of sphericity in the recommendation

163



Table A.37: Mixed ANOVA with a between subject factor Age and a within
subject factor Strategy Greenhouse-Geisser correction with F-ratio, effect size η2,
and p-value.

Factor F η2 p

Age 2.06 .03 .13
Strategy 14.82 .12 .00
Age × Strategy 0.69 .01 .77

Table A.38: Mixed ANOVA with a between subject factor Major and a within
subject factor Strategy Greenhouse-Geisser correction with F-ratio, effect size η2,
and p-value.

Factor F η2 p

Major 0.01 .00 .94
Strategy 16.41 .14 .00
Major × Strategy 1.73 .01 .10

strategies (χ2(197) = 504.35, p = .00). Table A.37 shows the result of an ANOVA

with a Greenhouse-Geisser correction of ε = .60. It indicates that the age of

subjects has no influence on the performance of the different recommendation

strategies.

Major In the experiment, subjects provide information about their majors. We

manually classify subjects into the two groups: subjects whose major is economics

(n = 92) and others (n = 31). Mendoza’s test finds a violation of sphericity in

the recommendation strategies for these two groups (χ2(131) = 466.90, p = .00).

Table A.38 shows the result of an ANOVA with a Greenhouse-Geisser correction of

ε = .60. It indicates that the major of subjects has no influence on the performance

of the different recommendation strategies.

Years of Profession On average, subjects work in their fields for 7.85 years

(SD: 6.85). We divide subjects into three groups for an ANOVA (group 1: subjects

who work for > 5 years (n = 44), group 2: <= 5 and > 10 years (n = 34), group

3: <= 10 years (n = 44)). We set those thresholds to make three groups have the

almost same number of subjects. Mendoza’s test reveals a violation of sphericity

in the recommendation strategies (χ2(197) = 541.67, p = .00). Table A.39 shows

the result of an ANOVA with a Greenhouse-Geisser correction of ε = .60. It

indicates that how long subjects have worked in their fields has no influence on

the performance of the different recommendation strategies.
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Table A.39: Mixed ANOVA with a between subject factor Years of Profession
and a within subject factor Strategy Greenhouse-Geisser correction with F-ratio,
effect size η2, and p-value.

Factor F η2 p

Years of Profession 0.13 .00 .88
Strategy 21.70 .18 .00
Years of Profession × Strategy 0.80 .01 .66

Table A.40: Mixed ANOVA with a between subject factor Employment Type and
a within subject factor Strategy Greenhouse-Geisser correction with F-ratio, effect
size η2, and p-value.

Factor F η2 p

Employment Type 0.35 .00 .55
Strategy 18.05 .15 .00
Employment Type × Strategy 0.97 .01 .45

Employment Type We have subjects who work in academia (n = 83) and

industry (n = 40). Mendoza’s test finds a violation of sphericity in the recommen-

dation strategies (χ2(131) = 472.14, p = .00). Table A.40 shows the result of an

ANOVA with a Greenhouse-Geisser correction of ε = .60. It indicates that the

employment type of subjects has no influence on the performance of the different

recommendation strategies.
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