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Summary 
Hybridisation occurs when individuals of divergent populations or individuals of 

different species mate and produce viable hybrid offspring. Hybridisation is an 

important factor in the evolutionary history of several populations, because it brings 

together alleles that have not been exposed to selection. Thus hybrid adaptation to 

ancestral or new environmental conditions depends on the background and interaction 

of the parental genotypes. I am particularly interested in the performance of the first 

hybrid generation (F1 hybrids), especially when hybrids are viable and able to 

outperform one or both parents under different environmental conditions, a 

phenomenon known as heterosis. 

The aim of my thesis was to understand and identify mechanisms underlying 

heterosis. I used Saccharomyces yeasts as a model system due to their laboratory 

practicality, their ability to form viable hybrids and reliable fitness measurements. 

First, I competed a range of different F1 hybrids with their wild or domesticated 

parental populations; I identified prevalent heterosis for crosses between domesticated 

and wild populations of different yeast species but not for crosses between wild 

populations of the same yeast species. Thus the environment from where parental 

strains were isolated seems to affect heterosis, and F1 hybrids with a domesticated 

background display more extensive heterosis. Domesticated yeasts are characterized 

by being highly heterozygous, which can potentially mask recessive deleterious 

alleles in the genome. When yeasts strains are brought to the laboratory they undergo 

an extreme form of inbreeding that induces a haploid spore to grow vegetatively, and 

allows mate-type switching followed by mating within the same haploid colony. This 

inbreeding process creates a complete homozygous monosporic clone with recessive 

deleterious alleles exposed. By crossing two domesticated monosporic clones derived 

from divergent populations several recessive deleterious alleles might be 

complemented and the F1 hybrid would have an advantage in comparison to its 

monosporic parents. Using monosporic clones as parental strains in heterosis studies 

may inflate heterosis measurements due to parental disadvantage and not the F1 

hybrid advantage. Thus I compared asexual fitness or growth of heterozygous yeast 

isolates with homozygous monosporic clones for both domesticated and wild yeast 

populations; I found that the monosporic cloning might explain some, but not all, of 
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the heterosis seen, potentially accounting for the difference in heterosis between 

domesticated and wild yeast strains. Thus heterosis is not solely explained by 

complementation of recessive deleterious alleles, and other mechanisms might affect 

the F1 hybrid advantage. I focus on heterosis at the transcriptome level and analysed 

the transcription of a representative heterotic F1 hybrid relative to its parents in 

environments that favoured one or the other parent. Hybrid transcription was varied 

and resembled the fitter parent in specific environments. Thus at the transcriptome 

level, the F1 hybrid may repress potential deleterious alleles, making them recessive, 

and induce more advantageous alleles, making them dominant, by differentially 

transcribing its parental alleles. For the first time to our knowledge, multigenic 

heterosis at a transcriptome level was identified, which render the F1 hybrid better 

adapted than its parents to different environmental conditions.  

Heterosis studies in Saccharomyces yeasts, due to their simplicity, can evidence 

characteristics with an impact on heterosis while also tracing the evolutionary history 

of divergent populations. These types of studies have interesting applications 

agriculture sector where hybridisation has been used for centuries to make higher 

yield crops and bigger cattle to fulfil human consumption needs. 
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Zusammenfassung 
Hybridisierungen sind Kreuzungen zwischen Individuen verschiedener Populationen 

oder verschiedener Arten. Hybridisierung spielt eine wichtige Rolle bei der 

Rekonstruktion der evolutionären Geschichte von Populationen, doch auch die 

Hybriden selbst könnten ein Schlüssel für die Lösung und das Verständnis 

biologischer Konzepte sein. Hybriden sind das Produkt einer Kreuzung von bereits 

getrennten, parentalen Genotypen, und die Anpassungsfähigkeit von Hybriden wird 

maßgeblich vom genetischen Hintergrund der Elterngeneration bestimmt. Ich 

interessiere mich besonders für die Leistung der ersten Generation von Hybriden (F1 

Hybriden), insbesondere wenn die F1 Hybriden die Fähigkeit besitzen in 

unterschiedlichen Umgebungen besser zu wachsen, als ihre Eltern. Dieses Phänomen 

wird als Heterosis bezeichnet. 

 

Das Ziel meiner Arbeit ist es, den der Heterosis zugrundeliegenden Mechanismus zu 

identifizieren und zu verstehen. Ich habe Hefen als Modell-System gewählt, weil sie 

die Fähigkeit besitzen, Hybriden zwischen genetisch divergenten Populationen 

(intraspezifisch) oder zwischen genetisch divergenten Arten (interspezifisch) 

innerhalb der Gattung Saccharomyces zu bilden. Zusätzlich sind Hefen ein perfektes 

Modell-System, um asexuelle Fitness zu messen, da sie einfach in großer Anzahl und 

unter kontrollierbaren und wiederholbaren Bedingungen zu kultivieren sind. Bei 

unterschiedlichen Vergleichen von F1 Hybriden mit ihren Eltern konnte ich Heterosis, 
sowohl auf der genetischen, als auch der transkriptiven Ebene finden. 

 

Im ersten Kapitel dieser Arbeit habe ich das Wachstum von F1 Hybriden unter 

Konkurrenz im direkten Vergleich mit beiden Elternpopulationen gemessen. Die F1 

Hybriden wurden durch Kreuzungen von S. cerevisiae und S. paradoxus 

(interspezifische Hybriden) und durch Kreuzungen von S. paradoxus mit wilden 

Populationen (intraspezifische Hybriden) erzeugt. Ich fand, dass das Wachstum der 

F1 Hybriden relativ zum Durchschnitt der Eltern, einem Wert für die elterliche 

Heterosis, mit dem Wachstumsunterschied zwischen den Eltern und den F1 Hybriden, 

einem Wert für phänotypische Unterschiede, korreliert war. Dies deutet darauf hin, 

dass Allele mit einer geringen Fitness vom einen Elternteil, durch Allele mit einer 
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hohen Fitness vom anderen Elternteil ausgeglichen werden. Die interspezifischen F1 

Hybriden zeigten eine stärkere Heterosis, als intraspezifische F1 Hybriden, was 

darauf hindeutet, dass die genetische Divergenz in einem Zusammenhang mit der 

Gesamt-Heterosis stehen könnte. Um die elterliche genetische Divergenz unabhängig 

vom Genotypen zu manipulieren, habe ich außerdem das Wachstum unter 

Konkurrenz von einzelnen interspezifischen F1 Hybriden relativ zu beiden Eltern in 

zwölf unterschiedlichen Umgebungen gemessen. Hierbei habe ich nicht nur den zuvor 

erwähnten Zusammenhang zwischen der phänotypischen Divergenz der Eltern und 

der mittleren parentalen Heterosis, sondern auch eine schwache Beziehung zwischen 

der phänotypischen Divergenz und der „best-parent“ Heterosis. Dies deutet darauf 

hin, dass die Komplementierung von schadhaften Allelen nicht der einzige Grund für 

interspezifische Heterosis sein könnte. Ich vermute, dass die reziproke 

Komplementierung der weniger fitten Allele zwischen den Eltern einen fitteren 

Hybriden hervorbringt. 

 

Im zweiten Kapitel habe ich den interspezifischen F1 Hybriden genutzt und sein 

Transkriptionsprofil mit dem der jeweiligen Eltern in zwei unterschiedlichen 

Umgebungen verglichen. Die Bedingungen innerhalb dieser Umgebungen wurden so 

gewählt, dass der F1 Hybrid immer einen Vorteil gegenüber beiden Eltern haben 

würde und dass beide Eltern in je einer der beiden Umgebungen einen Vorteil im 

Vergleich mit der anderen Elternpopulation haben würden. Meine Ergebnisse zeigen, 

dass das Transkriptionsprofil der F1 Hybriden dem von S. paradoxus in der 

Umgebung ähnlicher waren, in der der parentale S. paradoxus einen Vorteil 

gegenüber S. cerevisiae hatte und dem Transkritionsprofil von S. cerevisiae in der 

Umgebung mehr ähnelte, in der der parentale S. cerevisiae einen Vorteil gegenüber S. 

paradoxus hatte. Des Weiteren fand ich, dass die Transkription des F1 Hybriden eine 

hohes Level an Dominanz der jeweils fitteren Elternpopulation in der jeweiligen 

Umgebung zeigte. Zudem war eine allelspezifische Expression bei den F1 Hybriden 

häufig zu beobachten. Demnach trat die cis-regulierte Transkription häufiger auf, als 

die trans-regulierte Transkription, und diese Eigenschaft ist konsistent mit der 

Komplementierung von weniger fitten Allelen des einen Elternteils durch Allele mit 

einer höheren Fitness vom anderen Elternteil. Interessanterweise kann der F1 Hybrid 

nicht nur seine Transkription so beeinflussen, dass das jeweils fittere der beiden 
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parentalen Allele in der jeweiligen Umgebung induziert wird, sondern hat auch die 

Fähigkeit seine Transkription auf einen Umweltreiz hin zu modifizieren. In meiner 

Arbeit habe ich Spuren von Heterosis in der Transkription von F1 Hybriden gefunden, 

was ich damit erkläre, dass der F1 Hybrid die Fähigkeit hat beide parentale Allele zu 

regulieren und bevorzugt das vorteilhaftere Allel an mehreren Loci zu transkribieren. 

 

Im dritten und letzten Kapitel habe ich natürliche Isolate von S. cerevisiae aus 

domestizierten und wilden Habitaten mit bekannter Heterozygosität genutzt. Hierbei 

habe ich eine positive Relation zwischen dem Anteil an rezessiven, schädlichen 

Allelen von domestizierten Isolaten etabliert. Ich habe die Sporenviabilität und die 

asexuelle Fitness von zwölf natürlichen Isolaten, sowie die relative Fitness ihrer 

abgeleiteten Formen gemessen. Von den natürlichen Isolaten habe ich autodiploide 

Formen durch die Selbstbefruchtung einer abgeleiteten Spore abgeleitet. 

Inzuchtformen habe ich durch die Kreuzung zweier autodiploiden Formen, von 

demselben natürlichen Isolat, abgeleitet. Ich habe einen starken negativen 

Zusammenhang zwischen der Heterozygosität der natürlichen Isolate und ihrer 

Fähigkeit Sporen zu bilden gefunden. Zudem konnte ich einen stark negativen 

Zusammenhang zwischen der Heterozygosität und der relativen Fitness der 

autodiploiden Formen feststellen. Dies deutete darauf hin, dass ich bei der 

Eliminierung der Heterozygosität durch Autodiploidation viele rezessive, schädliche 

Allele freigesetzt habe, die die relative Fitness der autodiploiden Formen im 

Vergleich zu ihren natürlichen Isolaten senken. Im nächsten Schritt, bei der 

Generierung der Inzuchtformen durch die Kreuzung der beiden autodiploiden 

Formen, wurde die Heterozygosität jedoch wiederhergestellt und die rezessiven, 

schadhaften Allele wurden wieder ergänzt. Da die Autodiploidation von parentalen 

Stämmen gängige Praxis in Heterosisstudien ist und domestizierte, natürliche Isolate 

dazu tendieren eine hohe Heterozygosität aufzuweisen, während wilde, natürliche 

Isolate zu einer niedrigere Heterozygosität tendieren, gibt es einen Effekt in der 

Gesamt-Fitness der parentalen Stämme. Daher könnten Heterosis Studien, in denen 

domestizierte Eltern-Stämme genutzt wurden, dazu neigen rezessive, schadhafte 

Allele freizulegen und so das Maß an Heterosis zu überhöhen. Meine Ergebnisse 

deuten darauf hin, dass wenn der F1 Hybrid mit seinem ursprünglichen, natürlichen 

Isolat verglichen würde und nicht mit seinem autodiploiden Vorfahren, das Maß an 
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Heterosis gesenkt würde oder sie sogar vollständig verschwände. 

 

Meine Arbeit beleuchtet Schlüsselaspekte der Heterosis. Sie unterstützt die Idee, dass 

Genotyp und Habitat der Elternpopulationen einen großen Einfluss auf die Heterosis 

des F1 Hybriden haben. Zusätzlich und nach unserem Wissen zum ersten Mal, habe 

ich multigene Heterosis auf dem Level des Transkriptoms nachgewiesen, die es dem 

F1 Hybriden ermöglicht besser als seine beiden  Elternpopulationen an verschiedene 

Umgebungen angepasst zu sein. Zum Abschluss der Arbeit analysiere ich die 

bestehende Literatur zum Thema Heterosis in Hefen und schlage eine einfache 

Erklärung für die divergenten Ergebnisse innerhalb eines Rahmenkonzepts vor – 

nämlich, dass die Eigenschaften der parentalen natürlichen Isolate einen 

entscheidenden Einfluss auf die Heterosis des F1 Hybriden  haben. 

 



Hybridisation & Heterosis                                                                            Introduction 

7	

Introduction 
1. Hybridisation & Heterosis 
 1.1. Hybridisation 
Hybridisation describes sexual crosses between individuals of divergent populations 

or between individuals of different species (Barton & Hewitt, 1985). The outcome of 

hybridisation is often seen as a dichotomy among biologists; on the one hand, classic 

zoologists see hybrids as infertile evolutionary dead-ends (Dobzhansky, 1940), while 

on the other hand, plant breeders believe that hybridisation has been a major 

contributor to speciation and adaptation of plant populations, because it promotes new 

combinations of previously separated alleles (Arnold & Hodges, 1995; Rieseberg et 

al., 1996). 

 

If we were to cross individuals from two mammalian species with no pre-zygotic 

barriers, like a horse and a donkey, even though they have a different number of 

chromosomes (horses carrying 64 chromosomes and donkeys 62 chromosomes) there 

would be no physical reproductive barriers between the two species, thus the first 

hybrid generation (F1 hybrid) would be a viable but infertile mule carrying 63 

chromosomes. Mules are infertile because of the impaired formation of their sexual 

gametes, due to prevention of crossing-over and disjunction events between 

homologous chromosomes. These problems in meiosis unable the chromosomes to 

separate properly and lead unviable aneuploid oocytes (Anderson, 1939), however 

there is still a remote (one in four million, 232) chance for a correct chromosomal 

segregation (if we assume no recombination) where the female mule produces a 

perfect horse or a perfect donkey oocyte (Rong et al., 1988). 

If we were to cross individuals from two plant species, like two divergent salvias, two 

distinct tomato plants, or two different strains of maize, the outcome would be similar 

to the mammalian species. The F1 hybrids may be viable but may not produce viable 

seeds, however, from a human consumption perspective, the plant F1 hybrids would 

have other attractive characteristics like big seedless fruits. Hybridisation between 

two plant populations can be beneficial due to the novel characteristics of the F1 

hybrids (Shull, 1908), moreover the ability of many plants to reproduce asexually can 
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allow the production of clones from the original sterile F1 hybrids (Arnold & Hodges, 

1995). 

These different distinct views on hybridisation have their roots on the infertility of the 

F1 hybrid by problems in meiosis. Infertility might render the F1 hybrid with zero 

fitness, if it depends solely on sexual reproduction, but if the F1 hybrid can also 

reproduce asexually, the negative impact of infertility on fitness might be diminished. 

From an animal breeder perspective this is an evolutionary dead-end since they are 

mainly obligately sexual while a plant breeder can ignore the sexual deficit due to the 

ability of plants to propagate asexually thus hybrids are often selected for their novel, 

and sometimes, improved traits. The question remains if it is a good idea for a species 

to be hybridised, the answer is- it depends; it depends on the F1 hybrid’s 

characteristics such as viability, asexual reproduction or growth, and other novel 

features. 

 

 1.2. Heterosis 
The evolutionary outcomes of hybridisation will depend on differences between the 

parental genotypes. Hybridisation can bring alleles together in combinations that have 

not previously been tested by natural selection thus the expectation is for intermediate 

or worse performance of the F1 hybrids in comparison to the parental average in the 

ancestral conditions (Barton, 2001). However, in some cases, the F1 hybrid shows 

performs better than one or both parents in the ancestral or in novel environmental 

conditions, a phenomenon known as heterosis or hybrid vigour (Shull, 1908). 

Heterosis relies on crossing two divergent parental populations leading to a superior 

fitness of the F1 hybrid or other desirable trait. Heterosis might be related to increased 

heterozygosity of the F1 hybrid which might buffer the effect of deleterious alleles or 

generate positive interactions between parental alleles, thus providing the F1 hybrid 

with a genetic background better equipped to deal with ancestral and new 

environmental conditions (Dobzhansky, 1950). 

 

Hybridization is not only important for speciation and adaptation of the parental 

populations but has also an intrinsic economic value since its discovery in the 

beginning of the 20th century (Shull, 1908). Heterosis is widely observed in our food 

chain from crop plants production to cattle breeding. Seeds from divergent and highly 
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inbred parents (F1 hybrid seeds) are still the most common type of seeds used in 

agriculture worldwide for crop plants such as maize, sugar beets, spinach, and 

sunflower crops (Edgerton, 2009). These crop seeds are characterized by giving rise 

to offspring with greater biomass and speed of development (Shull, 1908; East, 1936). 

From an economic standpoint, F1 hybrid seeds are also utilitarian because they 

produce homogeneous higher yield crops that are frequently infertile; an asset for 

business trades because it forces farmers to buy a new set of F1 hybrid seeds every 

season. Over the last century plant breeders have used classical techniques to improve 

heterosis by artificially selecting genetic and phenotypic divergent inbred parents and 

crossing them to create increasingly adapted F1 hybrids; F1 hybrids produced from 

low-yield inbred parents can have yield advantages up to 120% over their parents 

(Moll et al., 1965). Crop yield advantages are normally phenotypic traits such as 

faster growth, bigger fruit size, and higher seed number; these phenotypic traits are 

mainly related to plant growth, and not to cell size or other characteristics (Birchler et 

al., 2010). Thus plant breeders tend to care about phenotypic traits that affect crop 

yield, which is not necessarily related to fitness, in the sense that F1 hybrids may not 

be able to outcompete their parents without human intervention. However, it is 

possible for F1 hybrids, in particular for species that reproduce asexually, to exhibit a 

competitive advantage over their parent in the field. As such, heterosis can be 

measure as yield and growth in plants or it can also be measured as asexual growth or 

mitosis in microorganisms.  
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Figure 1: F1 hybrid displays higher fitness than both parents a phenomenon known as 

heterosis. Fitness here is depicted as size of the plants. F1 hybrid made from a cross between 

parent 1 and parent 2. Fitness of parent 1 (orange line) is lower than fitness of parent 2 

(purple line), which is lower than fitness of the F1 hybrid (black line). Heterosis can be 

defined as higher fitness in the F1 hybrid relative to both parents. 
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2. Genetic mechanisms for heterosis 
Heterosis refers to the F1 hybrid increased size, yield or vigor in relation to one or 

both parents (Shull, 1948), which researchers translated to asexual fitness in 

microorganisms. Heterosis can be analysed as a quantitative trait and thus explained 

by similar genetic mechanisms (East, 1936). Three principal genetic mechanisms 

have been proposed to explain heterosis: Dominance, Overdominance and Epistasis 

(Figure 1). These mechanisms may act independently of each other, but can also 

occur simultaneously in the F1 hybrid. However, their relative effects on heterosis 

remain unknown (for review see Lippman & Zamir, 2007; Birchler et al., 2010). 
 

2.1. Dominance 
The dominance mechanism of heterosis refers to simple or reciprocal 

complementation of superior dominant alleles over inferior recessive alleles at 

multiple loci which contribute to F1 hybrid superior fitness (Jones, 1917). Evidence 

of the dominance mechanism has been found in rice (Li et al., 2008; Shen et al., 

2014), maize (Feher et al., 2014) and yeast (Zörgö et al., 2012; Plech et al., 2014; 

Shapira et al., 2014).  

This mechanism relies on individuals from different populations carrying recessive 

deleterious alleles at different loci. These alleles occur by mutation and can be 

maintained in the population due to their recessive nature: they are hidden from 

selection in heterozygotes because they are complementated by the wild-type 

dominant allele. Breeding experiments use inbred parental lineages; in this case, 

inbreeding eliminates heterozygosity causing recessive alleles to become homozygous 

causing the phenotypic consequences. When recessive alleles are deleterious, parental 

lineages display reduced fitness, the ‘inbreeding depression’ can be so severe that 

inbred lineages my go extinct. Crossing two different inbred parents, introduces a 

gain in heterozygosity in the F1 hybrid and the recessive deleterious alleles of one 

parental genotype can be complemented by the more favourable dominant alleles of 

the other parent at multiple loci. The higher number of complemented deleterious 

alleles renders the F1 hybrid higher fitness in relation to one or both parents. This 

complementation can be simple when refers to one parent over the other parent at 

multiple loci or reciprocal on both parents complement each other at multiple loci. If 
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this mechanism was exclusively responsible for heterosis, genetic divergence between 

parents should have a positive effect on heterosis because two closely related parents 

are more prone to share similar recessive deleterious alleles (Moll et al., 1965).  

 

2.2. Overdominance 
The overdominance mechanism refers to positive allelic interactions that give an 

advantage to heterozygotes at one or more loci which contribute to the superior fitness 

of F1 hybrids (Shull, 1948). Evidence for the overdominance mechanism has been 

found in rice (Luo et al., 2001; Li et al., 2008) maize (Hollick & Chandler, 1998) and 

yeast (Shapira et al., 2014).  

This mechanism relies on the number of heterozygous over homozygous sites of the 

individuals, and assumes the heterozygous locus have an advantage over either 

homozygous locus. When inbred parents are selected their heterozygosity is removed 

through self-fertilization of other types of inbreeding. By crossing two different 

highly homozygous parents the resulting F1 hybrid has a gain in heterozygosity. The 

higher number of heterozygous locus renders the F1 hybrid higher fitness in relation 

to one or both parents (Shull, 1948). 

 

2.3. Epistasis 
The epistasis mechanism refers to the interactions between non-allelic genes at two or 

more loci, which contribute to the phenotype exceeding each individual gene, in this 

specific case the phenotype would be the F1 hybrid superior fitness (Powers, 1944). 

Evidences for the epistasis mechanism has been found in rice (Luo et al., 2001; Li et 

al., 2008; Shen et al., 2014) and yeast (Shapira et al., 2014).  

This mechanism relies on one locus expression having a positive effect on other loci, 

and few or even one interaction might have a great impact on heterosis. Under 

epistasis mechanism, heterosis over one or both parents is the result of positive 

interactions between alleles at different loci (Powers, 1944). Detection of epistasis can 

be difficult, one locus effect can be altered or masked by the effect of another locus, 

but if more than one locus are involved, detection of epistasis can become 

increasingly complicated. If the contribution of each parental allele with the overall 

contribution of both parental alleles in the F1 hybrid is outside the expected of 

additive, dominant or overdominant effects we assume an epistatic effect. 
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Figure 2: Genetic mechanisms for heterosis. Orange chromosomes refer to parent 1, purple 

chromosomes refer to parent 2, and black chromosomes refer to the F1 hybrid. Dominance 

mechanism refers to the complementation of the recessive deleterious alleles (a allele by A 

allele and b allele by B allele) between parents that renders the F1 hybrid higher fitness. 

Overdominance mechanism refers to allelic interactions in heterozygous locus (A allele with 

A* allele and C allele with C* allele) that renders the F1 hybrid higher fitness. Epistasis 

mechanism refers to the interaction between alleles of two or more locus (D/d locus will 

produce phenotype 1 in red, if locus is AA or Aa whereas if locus is aa will produce 

phenotype 2 in green independent of D/d locus) that renders the F1 hybrid higher fitness. 
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2.4. Direct observations of heterosis 
Direct observations of heterosis and other resulting events have supported the above 

genetic mechanisms for heterosis; inbred individuals display a decrease in growth, or 

inbreeding depression (Waser, 1993), genetic divergence of the parents has a positive 

relationship with heterosis (Moll et al., 1965), and inbred or domesticated parents 

have a greater positive effect of heterosis (Plech et al., 2014). However there are some 

observations that have been neglected and are not directly explained by any of the 

above genetic mechanisms: 

For example, artificially purging the deleterious alleles from parental inbreds does not 

impact the amount of heterosis of their F1 hybrid (Duvick, 1999). Duvick (1999) 

compared heterosis of crosses between improved inbred lines of several crop plants 

purged of recessive deleterious alleles, with crosses between inbred lines with 

accumulation of recessive deleterious alleles, and found no decrease on heterosis for 

the improved inbred lines. These results go against the dominance mechanism for 

heterosis because the accumulation of superior alleles in the inbred parent should lead 

to less recessive deleterious alleles being complemented in the F1 hybrid. Also, 

increasing hybrid ploidy has a positive effect on heterosis (East, 1936). East (1936) 

cross two allotetraploid hybrids (individual with four times more chromosomes than 

the haploid individual) with known positive heterosis, and identified increasingly 

higher levels of heterosis, higher than either of the allotetraploid parents. Thus 

polyploidy was positive correlated with the advantages in the F1 hybrid fitness or 

heterosis an event it is not explained by any of the above genetic mechanisms. And 

finally, aneuploid hybrids such as haploids carrying an extra pair of chromosomes 

show lower heterosis than similar diploids (Birchler et al., 2007). These results cannot 

be explained by either dominance or overdominance genetic mechanisms because 

hybrids would be expected to have an optimum fitness based on the parents, and this 

fitness should not increase just because there is an extra copy of the beneficial 

allele(s). 

There is a need for a new model possibly a molecular that explains heterosis for the 

above observations of heterosis and works for a variety of organisms (Birchler et al., 

2010).  
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3. Molecular mechanisms for heterosis 
A molecular model for heterosis needs to describe the increase fitness of the F1 

hybrid in comparison to its inbred parents (Shull, 1908) and has to encompass the 

above observations (Birchler et al., 2007). The successful model has to be species-

independent (Arnold & Hodges, 1995), cell-based (Birchler et al., 2010), and has to 

be evolutionary conserved (Goff, 2011). 

 

3.1. Multigenic molecular model for heterosis 
A molecular model has been proposed to describe multigenic heterosis; this model is 

based on the ability of individual hybrid cells to distinguish between parental alleles 

based on the relative stability of the encoded proteins, and take advantage of allele 

specific expression to conserve energy and promote growth (Goff, 2011). 

Goff (2011) molecular model relies on the follow mechanisms: First, the F1 hybrid 

transcribes and translates two different parental alleles into proteins with different 

stabilities. Second, the F1 hybrid receives a signal that identifies the favourable or 

superior allele over the inferior allele based on the protein stabilities. Third, the F1 

hybrid has to be able to distinguish between parental alleles. And finally, the F1 

hybrid preferential transcribes the superior parental allele over the inferior parental 

allele.  

Goff (2011) molecular model for multigenic heterosis requires the F1 hybrid to have 

the ability to differentially transcribe the parental alleles, or allelic specific 

expression. The F1 hybrid fitness advantage or heterosis is due to its ability of the F1 

hybrid to preferentially transcribe the superior alleles of both parents instead of the 

inferior alleles that are also present. The model is assumes transcription and 

translation of proteins is an energetically demanding process, therefore transcribing 

and translating only the superior alleles from both parents makes for more efficient 

energy use in the F1 hybrid and consequently promoting higher growth for the F1 

hybrid (Goff, 2011). 

 

 3.2. Transcription expectations for the molecular model 
Goff’s (2011) molecular model for multigenic heterosis can be tested by F1 hybrid 

transcriptome analysis According to this model, in the F1 hybrid the superior alleles 
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would be up-regulated and the inferior alleles down-regulated, creating the optimal 

combination of superior alleles being transcribed, which renders the F1 hybrid 

advantageous (Figure 2). 

New technological advances such as RNA-Seq can accurately measure the presence 

and quantity of mRNA for all genes of a biological sample at a given moment of time, 

also known as the transcription profile. Orthologous genes normally retain the same 

or similar functions between parental genomes but have slightly different genetic 

sequences (Jensen, 2001). When mapping the reads belonging to a given orthologous 

gene in the F1 hybrid, the reads from one parental allele would map to a specific 

parental genome, and the reads from the other parental allele would map to another 

parental genome (Wittkopp et al., 2004). The presence and quantity of reads that 

differentially map to alleles from each parental genome is a measure of differential 

allelic specific expression (Wittkopp et al., 2004). Thus, under Goff’s model, superior 

alleles would have more reads mapping to the orthologous genes than the inferior 

alleles if they were translated into more stable proteins. The evaluation of superior or 

inferior alleles depends on the environment the individuals are in; a parental allele 

could be favourable in one environment but deleterious in another environment 

(Gasch et al., 2000). The F1 hybrid has the possibility to have multiple transcription 

profiles adapted to different environments, more than its individual parents (Clowers 

et al., 2015). Thus allele specific expression might also depend on the environmental 

conditions experienced by the F1 hybrid. The best combinations of pattern and 

quantity of parental alleles transcribed and the ability to change this transcription 

upon environmental change gives the F1 hybrid an advantage over its parents (Goff, 

2011). 
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Figure 3: Molecular mechanism for heterosis. Parent 1 in orange, parent 2 in purple and F1 

hybrid in orange and purple. Solid lines represent superior alleles that translate into stable 

proteins and dashed lines represent inferior alleles that translate into unstable proteins. Allele 

A from parent 1 is superior to allele B from parent 2 and allele D from parent 2 is superior to 

allele C from parent 1. Graphs refer to the allele transcription. F1 hybrid preferentially 

transcribes superior allele A from parent 1 over inferior allele B from parent 2, and 

preferentially transcribes superior allele D from parent 2 over inferior allele C from parent 1. 
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Mechanisms for heterosis 

 
Type Mechanism Description 

Genetic 

Dominance 
Complementation of recessive deleterious 

alleles in F1 hybrid 

Overdominance 
Positive allelic interactions at heterozygous 

locus in the F1 hybrid 

Epistasis 
Positive non-allelic interactions between two 

or more loci in the F1 hybrid 

 

Molecular 

Multigenic heterosis 

(Goff, 2011) 

Preferentially transcription of superior 

parental alleles over deleterious parental 

alleles at one or more loci in the F1 hybrid 

 

Summary Table 1: Different mechanisms for heterosis or fitness advantage of the F1 

hybrid. 
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4. Saccharomyces yeasts 
4.1. Saccharomyces yeasts as a model system 

Saccharomyces yeasts are a group of eukaryotic single-celled microorganisms from 

the Ascomycota phylum. Saccharomyces yeasts have a close relationship with humans 

and for thousands of years have been used for baking and production of alcoholic 

beverages (McGovern et al., 2004). Their relative small genome led to 

Saccharomyces cerevisiae being the first fully-sequenced eukaryote genome (Whole 

Genome Sequence or WGS) (Goffeau et al., 1996). Since then, population genomics 

studies have provided robust and extensive data on Saccharomyces yeast species 

isolated from different habitats around the world (Liti et al., 2009).  

S. cerevisiae and six other yeast species belong to Saccharomyces yeasts complex, 

they show high levels of genetic divergence, but can however readily hybridise 

(Naumov et al., 2000). The ability of highly diverged species to hybridise makes 

Saccharomyces yeasts a very interesting group to study hybridisation and 

consequently heterosis. Also, Saccharomyces yeasts are easy to work under 

laboratory conditions; they are well characterized both genetically and 

phenotypically, their genome can be easily manipulated, and they have short 

generation times. These features allow for easy and accurate measures of fitness due 

to the ability to grow them in large populations under controlled and repeatable 

conditions (Scannell et al., 2011). 

 

 4.2. Saccharomyces yeasts reproduction  
Saccharomyces yeasts have facultative sexual reproduction; they can reproduce 

asexually by budding of a diploid or haploid cell (mitosis) or reproduce sexually when 

sporulation is induced of a diploid individual leading to the production of four haploid 

spores inside a tetrad (meiosis) (Figure 4, Herskowitz, 1988). Sexual cycles are 

normally induced when conditions are stressful, when conditions improve, the haploid 

spores might germinate and recover their diploid state by crossing with a spore from 

another ascus (outcrossing), crossing with a spore from the same ascus (inbreeding), 

or by germinating, inducing mate-type switching and crossing within the same 

haploid colony (self-fertilization or autodiplodization) (Herskowitz, 1988).  
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Figure 4: Asexual and sexual reproduction in Saccharomyces yeasts. Orange colour refers 

parent 1 and purple colour refers to parent 2. Parents 1 and 2 from divergent populations or 

different species. Asexual cycle in diploid (orange and purple (2n)), and haploid yeasts (light 

orange (n)) by vegetative growth resulting in the formation of a copy of the mother cell. 

Sexual cycle in diploid yeasts (2n) by sporulation and formation of a tetrad with four haploid 

spores (n). The haploid spores can Autodiplodized, Inbreed with a sister spore from the same 

tetrad or Outcross with a spore from another tetrad. 

 

4.3. Saccharomyces yeasts ecology 
Saccharomyces yeasts are used in human activities such as baking and in the making 

of alcoholic beverages. However they can also be found in other unlikely habitats and 

become a potential pathogen for humans. Saccharomyces yeasts like S. cerevisiae 

have been readily isolated from domesticated habitats for centuries but also from wild 

habitats such as tree exudates (Naumov et al., 1998), while wild S. paradoxus 

isolates, a exclusively wild Saccharomyces species was only identified in the last 

century from tree exudates in Russia (Batshinskaya, 1914), since then, wild yeasts 

have been isolated from around the world from hardwood bark, soil and leaf liter 

around mainly oak trees (Kowallik & Greig, 2016). Thus the most likely natural 
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habitat of wild Saccharomyces yeasts would be related to bark or leaf litter of trees, 

supporting this idea, an extensive genomic analysis revealed that most wild 

Saccharomyces isolates have not been affected by domestication (Fay & Benavides, 

2005). 

 

  4.3.1 Domesticated Saccharomyces yeasts 
Saccharomyces yeasts from domesticated habitats have a close relationship with 

human activities, such as wineries or breweries, or a close relationship with humans, 

such as pathogen yeasts infections of immune-compromised patients (Muller & 

McCusker, 2009). Human activity has lead to a possible admixture or outcrossing 

between domesticated yeast strains, which produce mosaic or mixed genetic 

backgrounds in domesticated strains (Yue et al., 2017). These habitats are considered 

simple and sugar-rich, and do not require maintenance of all cellular functions, they 

are ideal for the emergence and maintenance of recessive deleterious mutations, 

because they promote genetic drift of recessive alleles that are not under the selective 

pressure (Figure 5) (Zörgö et al., 2012). Under strong directional selection, specific 

phenotypes might be acquired to cope with high ethanol levels in breweries or 

wineries (Casey & Ingledew, 1986) or faster growth rate in clinics like pseudohyphal 

growth (Muller et al., 2011). Due to the recessive nature of these mutations and most 

yeast genes being haplosufficent (Delneri et al., 2008), they are able accumulate 

throughout the genome. These deleterious alleles would be difficult to purge from 

domesticated populations because of their reduced effective population size (Gu et al., 

2005) and the low rates of sexual reproduction with only one in every 50 000 

divisions being meiotic (Ruderfer et al., 2006). Evidence of admixture between 

domesticated yeasts (Schacherer et al., 2009), and outcrossing thought t be more 

common in domesticated environments (Magwene, 2014)might also account for the 

high levels of heterozygosity measured domesticated natural isolates (Magwene et al., 

2011).  

 

  4.3.2. Wild Saccharomyces yeasts 
Saccharomyces yeasts from wild habitats have been found around the globe mainly 

associated with oak tree bark and leaf litter (Kowallik & Greig, 2016). These habitats 

are considered more stressful, and possibly with more selective pressures like season 
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fluctuations on temperature, food resources and others (Goncalves et al., 2011; 

Kowallik & Greig, 2016). The Saccharomyces yeasts from wild habitats would easily 

purge any potential deleterious mutations; due to their strong selection pressures and 

higher rates of outcrossing. Outcrossing in wild isolates would lead to the formation 

of the haploid spores and haploidization would expose recessive deleterious alleles to 

selection, which would eliminate haploids with deleterious alleles even if they were 

recessive (Delneri et al., 2008). These deleterious alleles would be purge from wild 

populations due to their ‘higher’ rates of outcrossing (higher than domesticated 

isolates); population genomic studies of S. paradoxus indicated outcrossing to occur 

once every 1 000 generations for European populations or once every 3 000 

generations for east Asia populations (Tsai et al., 2008).The lack of recessive 

deleterious alleles and the higher rates of outcrossing might also account for the low 

heterozygosity measured in wild natural isolates (Magwene et al., 2011). 

 
Figure 5: Accumulation of recessive deleterious alleles. Ancestral population with 

heterozygous locus 1 with recessive allele a (light blue) and dominant allele A (blue), and 

locus 2 with dominant allele B (blue) and recessive allele b (light blue), ancestral with high 

performance allele A and B. Ancestral population diverges in to populations Parent 1 or 

Parent 2; Parent 1 with deleterious mutation in recessive allele a (red cross), Parent 2 with 

deleterious mutation in recessive allele b. Both Parent 1 and Parent 2 with high performance 

allele A and B and no effect of the deleterious allele. 

 

  4.3.3. Saccharomyces yeasts isolation 
A caveat of ecology studies of Saccharomyces is the way we isolate yeast from their 

natural habitats. Standard practice uses enrichment cultures where a physical isolate is 

placed in rich growth medium and incubated. Enrichment cultures select for strains 
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that grow fast and can outcompete other microbes present (Goddard & Greig, 2015), 

they do not provide any information about the quantity or quality (e.g. ploidy) of 

yeasts in a sample (Goddard et al., 2010). Therefore enrichment cultures might not 

represent Saccharomyces natural samples. If a sample is composed of haploid 

homothallic spores, enrichment culture will induce spores to autodiplodize, resulting 

in colonies consisting of completely homozygous diploids. Instead, if the sample is 

composed of vegetative mitotic diploids, enrichment cultures will only select for fast 

growing strains, maintaining the heterozygosity of the primary isolates (Magwene et 

al., 2011). The different numbers of heterozygous loci could therefore be skewed due 

to the ploidy of the of primary isolates (Goddard et al., 2010); if the domesticated 

isolates are mainly in the diploid form enrichment cultures would isolate high 

heterozygosity yeast strains while if wild isolates are in haploid form enrichment 

cultures would isolate low heterozygosity strains, as in Magwene et al. (2011). 

Nevertheless the primary isolates are repeatedly induced to sporulate and 

autodiplodize when they are brought into the laboratory so to form an highly 

homozygous and stable workable yeast strain which is easy to cross (Lindegren, 

1945) and sequence (Liti et al., 2009) 

 

4.4. Saccharomyces yeasts species 
Saccharomyces yeasts form a complex of seven closely related, genetically tractable 

yeast species with similar morphologies (Figure 6) (Vaughan & Martini, 1987). These 

yeast come from a variety of habitats around the world (for review see Boynton & 

Greig, 2014): S. cerevisiae has been isolated from around the world and is mostly 

associated with human fermentations, or as potential pathogen in medical clinics but 

also occurs in wild habitats such as bark, soil leaf litter and even in insects, which are 

thought to be dispersion vectors (Fay & Benavides, 2005; Stefanini et al., 2012). In 

contrast S. paradoxus, has been isolated in Europe, Asia and North America but is 

exclusively to wild habitats such as bark, soil and leaf litter (Kowallik & Greig, 

2016). Other Saccharomyces species like S. mikatae, S. kudriavzevii and S. arboricola 

have been isolated in East Asia and are found in bark, decaying leaves and soil in east 

Asia (Naumov et al., 2000; Wang & Bai, 2008). S. eubayanus is associated with 

beech trees in South America (Libkind et al., 2011) and similar trees in east Asia 

(Bing et al., 2014). And finally S. uvarum, found around the world associated mostly 
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with human fermentations such as wineries and breweries but also found in hardwood 

bark soil and insects (Almeida et al., 2014). 

Figure 6: Saccharomyces species phylogenetic relationships and frequent isolated hybrids. 

Most recent cladogram for Saccharomyces yeasts on the left, and hybridization event on the 

right as lines. Dashed lines represent introgressions from more than two species into the 

hybrid. Synonyms are given in parentheses below species names (Figure reproduced without 

modification from Boynton & Greig, 2014 licensed under CC BY 4.0).  

 

All the Saccharomyces yeasts have the ability to hybridise (Figure 6), whether 

artificially in the laboratory or ‘naturally occurring’ in wineries and breweries. So 

why do we consider them separate Saccharomyces species? Earlier taxonomy of 

Saccharomyces yeasts was based on carbon and nitrogen assimilation tests or homo-

heterothallism of the yeast populations, however researchers soon realized that this 

type of classification was not suitable (Naumov, 1996). Based on the modern concept 

of biological species: 

 

‘species are groups of actually or potentially interbreeding natural populations which 

are reproductively isolated from other such groups’ isolated.’- (Mayr, 1942) 

 

So even though Saccharomyces yeasts species can hybridise, their offspring have very 

low fertility which creates an intrinsic post-zygotic barrier between Saccharomyces 

species (Naumov, 1996).  
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4.5. Saccharomyces yeasts hybridisation  
There is evidence of naturally occurring hybrids between yeast species, especially 

between domesticated populations of yeasts used for the production of alcoholic 

beverages (Figure 6) (de Barros Lopes et al., 2002; González et al., 2006; Lopandic et 

al., 2007). The detection of naturally occurring hybridisation events in domesticated 

habitats, such as wine and beer fermentations, indicates that the hybrids might have 

been selected due to their beneficial and convenient characteristics. For hybrid species 

to occur, two different yeast species must cross and create an inter-specific F1 hybrid 

that is viable and can eventually produce viable spores. Normally inter-specific F1 

hybrids created under laboratory conditions are viable and can grow asexually but are 

also infertile with only 1% viable spores (Greig, 2009). 

 

  4.5.1. Hybridisation in domesticated habitats 
New genomic tools enabled the identification of several hybridisation events between 

Saccharomyces species, and all of them have been traced back to domesticated 

habitats such as wineries and breweries (Boynton & Greig, 2014). New techniques, 

like Whole Genome Sequencing (WGS) were used to detect hybrids between S. 

cerevisiae, S. kudriavzevii, S. eubayanus, and S. uvarum (de Barros Lopes et al., 

2002; González et al., 2006; Lopandic et al., 2007). Lager beer yeast S. pastorianus is 

one of the best case studies of hybridization, however the circumstances of this 

hybridisation event are relatively unknown. S. pastorianus, a cross between S. 

cerevisiae and S. eubayanus, was first used in Bavaria to brew lager beer around the 

sixteen-century. But S. eubayanus was only recently described and isolated from 

southern beech trees in South America (Libkind et al., 2011) or similar trees in east 

Asia (Bing et al., 2014). So there are two possible explanations, either S. eubayanus 

from South American population was brought to Europe by transatlantic traders and 

then crossed with S. cerevisiae (Libkind et al., 2011), or S. eubayanus from east Asia 

populations was brought to Europe by traders using the Silk Road (Bing et al., 2014). 

Next-Generation Sequencing (NGS) data has favoured the Silk Road hypothesis by 

having S. eubayanus isolated from east Asia with sequence similarities of 99.8% to S. 

pastorianus over 99.4% of S. eubayanus isolated from south America; this depicts the 

power of the new tools we have to identify hybridisation events (Bing et al., 2014). 
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  4.5.2. Hybridisation in wild habitats 
No hybridisation events between Saccharomyces species have been detected in wild 

habitats or between exclusively wild Saccharomyces species such as S. paradoxus. 

Even though S. cerevisiae and S. paradoxus, S. kudriavzevii can be sympatric, hybrids 

between these species have not been found in wild habitats (Sampaio & Goncalves, 

2008). This is surprising, because S. cerevisiae and S. paradoxus have little to no 

phenotypic differences and easily hybridise under laboratory conditions (Greig, 

2009). However S. cerevisiae and S. paradoxus are 13% genetically diverged, 

according to Single Nucleotide Polymorphism (SNP) data (Liti et al., 2009). 

Hybridisation between S. cerevisiae and S. paradoxus would require (1) the parental 

yeast species to co-occur, which they do but are not necessarily sharing the same 

ecological niche (Sampaio & Goncalves, 2008), (2) to reproduce sexually, which can 

be a rare event (Ruderfer et al., 2006; Tsai et al., 2008), and (3) their F1 hybrid 

should be viable and eventually also fertile, which might be difficult but not 

impossible because 99% of the spores produced by the F1 hybrid are unviable (Greig, 

2009). 
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Saccharomyces yeasts 
 

Characteristic Domesticated isolates Wild isolates 

Habitat Wineries, Breweries and Clinics Bark, Soil and Leaf litter 

Selection Strong directional Strong 

Sex rate 1: 50 000 1: 1 000 – 1: 3 000 

Heterozygosity High Low 

Genome 
Accumulation of many recessive 

deleterious alleles 

No accumulation of few 

recessive deleterious alleles 

 
Summary Table 2: Comparison between domesticated and wild isolates of 

Saccharomyces yeasts.
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5. Heterosis studies in Saccharomyces yeasts 
Heterosis in Saccharomyces yeasts was first reported by Lindegren (1953) when the 

F1 hybrid had an advantage in maltose fermentation due to complementation of one 

dominant enzyme over a less advantageous enzyme. Nowadays we report heterosis in 

a more general view as the higher asexual growth or fitness advantage of the F1 

hybrid in comparison to one or both parents (Zörgö et al., 2012). The fitness 

advantage can be a measure of competitive growth, when there is a direct competition 

between the F1 hybrid and one of its parents, or a measure of maximum growth rate 

in isolation, when the asexual growth of the F1 hybrid and its parents are measured 

independently (Zörgö et al., 2012; Plech et al., 2014; Shapira et al., 2014). The F1 

hybrid fitness can be compared to the mid-parent (an estimation of the parent’s 

average fitness- MP), to the best-parent (or the parent with the highest fitness- BP), or 

to the worst-parent (or the parent with the lowest fitness- WP). Heterosis will be a 

measure of the difference between the F1 hybrid and the mid-parent or best-parent 

fitnesses. Heterosis can be positive if it is above mid-parent or best-parent measures 

or negative when it is below the mid-parent or worst-parent measures (Figure 7). 

Most of the studies on heterosis in yeast have focused on intra-specific F1 hybrids 

using crosses of S. cerevisiae populations (Zörgö et al., 2012; Plech et al., 2014; 

Shapira et al., 2014). Only one study (Blein-Nicolas et al., 2015), and now the studies 

of my thesis, have tried to detect heterosis in yeast inter-specific F1 hybrids. 

 

 5.1. Heterosis in intra-specific S. cerevisiae F1 hybrids 
Zörgö et al. (2012) crossed nine homozygous S. cerevisiae strains and compared the 

fitness of the F1 hybrids to that of the autodiplodized parents in 56 different 

environments. This study found positive mid-parent heterosis (MPH) to be common 

and a fraction of the F1 hybrids had positive best-parent heterosis (BPH). Heterosis 

was not correlated with genetic divergence of parental populations. These results were 

in agreement with dominance mechanism for heterosis where complementation of 

recessive deleterious alleles of one parent are complemented by the high performance 

alleles of the other parent, and this relation is reciprocal leading to a higher fitness of 

the F1 hybrid over its parents (Zörgö et al., 2012).  
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Figure 7: Measures of heterosis by comparing F1 hybrid to parental fitnesses. Parent 1 in red, 

Parent 2 in yellow, F1 hybrid in orange and light orange. Best-Parent (BP), Mid-parent (MP) 

and Worst-parent (WP) fitness in dashed lines. F1 hybrid with positive heterosis in orange, 

and F1 hybrid with negative heterosis in light orange. Advantage or disadvantage in relation 

to BP, MP or WP described as arrows. By order: parent 1, parent 2, positive MPH; positive 

BPH; negative MPH; negative WPH. 

 

 5.2. Heterosis in domesticated intra-specific F1 hybrids 
To test the effect of domestication on heterosis Plech et al. (2014) measured the 

fitness of intra-specific F1 hybrids made from crosses between domesticated 

populations or crosses between wild populations of S. cerevisiae. They crossed 22 

homozygous parents that have been previously autodiplodized and measured the 

fitness of the F1 hybrids in eleven different environments. This study showed crosses 

between domesticated populations were characterized by mid-parent heterosis while 

crosses between wild populations exhibit no heterosis. Heterosis was correlated with 

the genetic divergence of domesticated parental populations. As in the previous study, 

heterosis was mainly due to dominance. These results also suggested that the 

autodiplodized forms (parents) of domesticated natural isolates had lower fitness than 
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the wild natural isolates. Heterosis was exclusive to domesticated crosses and this 

might be attributed to the accumulation of recessive deleterious alleles in 

domesticated habitats (Plech et al., 2014).  

 

 5.3. Heterosis in wild intra-specific F1 hybrids 
Shapira et al. (2014) tested the fitness of intra-specific F1 hybrids between S. 

cerevisiae wild populations. They crossed sixteen homozygous parents and measured 

the individual fitness of the resulting F1 hybrids in five different environments. This 

study showed mid- but not best-parent heterosis for the F1 hybrids of wild S. 

cerevisiae populations. As in previous studies they identified as a genetic mechanism 

behind heterosis, moreover they invoked overdominance and epistasis mechanisms to 

explain instances where dominance could not solely explain the heterosis identified 

(Shapira et al., 2014). 

 

 5.4. Heterosis in inter-specific F1 hybrids 
Inter-specific crosses between different species of Saccharomyces yeasts have not 

been widely described in the literature. Thus direct measures of heterosis have not 

been reported as in the previous cited studies, which is remarkable because different 

yeast species can readily hybridise and have viable offspring. In addition several 

hybridisation events have been observed between domesticated yeast species (de 

Barros Lopes et al., 2002; González et al., 2006; Lopandic et al., 2007).  

Blein-Nicolas et al. (2015) used inter-specific F1 hybrids between S. cerevisiae and S. 

uvarum, a previously reported hybridisation for wine and cider fermentations (Figure 

6). They measured heterosis by comparing the protein inheritance of the inter-specific 

F1 hybrid with intra-specific F1 hybrids between S. cerevisiae and S. uvarum 

populations in two different temperatures. The inter-specific F1 hybrids showed 

several genes with positive mid-parent heterosis for protein abundance data collected 

by mass-spectometry, and a smaller set of genes with best-parent heterosis, while 

intra-specific F1 hybrids showed a balance between positive and negative heterosis. 

Blein-Nicolas et al. (2015). These results were not explained by any of the genetic 

mechanism previously put forward but advanced that heterosis for proteins occurred 

(Blein-Nicolas et al., 2015). 
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 5.5. Summary of heterosis studies 
Heterosis was first described in Saccharomyces yeasts over half a century ago 

(Lindegren, 1953), the current heterosis studies focus on the the genetic mechanisms 

behind the growth advantages of the F1 hybrids by crossing domesticated or wild 

parental strains of divergent population of the same species (Zörgö et al., 2012; Plech 

et al., 2014; Shapira et al., 2014), or focus on the protein inheritance of F1 hybrids 

from different yeast species (Blein-Nicolas et al., 2015). However questions around 

heterosis in Saccharomyces yeasts remain unanswered; I would like to test if heterosis 

is present in Saccharomyces F1 hybrids made by crossing different Saccharomyces 

species or from crossing two divergent populations of a wild Saccharomyces yeast in 

different environments, I would also like to examin how heterosis manifests at the 

transcriptome level in different environments, and finally I would like to test if the 

heterosis is persistent due to the parental background of Saccharomyces yeasts or if it 

is highly dependent on the laboratory manipulation of the parental strains. I hope this 

thesis will elucidate some of these questions and provide a new perspective of 

heterosis in Saccharomyces yeast. 
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Heterosis in Saccharomyces yeasts 
 

F1 hybrids Authors Heterosis Mechanism 

 
Zörgö 

(2012) 

Mid and Best-parent heterosis for S. 

cerevisiae cross 
Dominance 

Intra-specific  
Plech 

(2014) 

Mid-parent heterosis for S. 

cerevisiae domesticated cross 
Dominance 

 
Shapira 

(2014) 

Mid-parent heterosis for S. 

cerevisiae wild cross 

Dominance, 

Overdominance 

and Epistasis 

Inter-specific  

Blein-

Nicolas 

(2015) 

Mid and Best-parent heterosis for 

protein abundance in inter-specific 

S. cerevisiae and S. uvarum cross  

? 

 

Summary Table 3: Description and comparison between heterosis studies of intra-

specific F1 hybrids and inter-specific F1 hybrids.  
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Thesis Outline & Authors Contributions 
My thesis explores heterosis and the mechanisms contributing to heterosis in a set of 

yeast F1 hybrids by comparing hybrid’s asexual fitness with those of its parents. I 

used Saccharomyces yeasts because of several attractive features like their the ability 

to readily produce viable F1 hybrids from crosses between diverged yeast species, and 

their straightforward measures of asexual fitness. Due to the lack of empirical data, I 

wanted to find evidence of positive heterosis for yeast F1 hybrids originated from a 

variety of different crosses. Then I wanted to determine if there were any specific 

patterns of heterosis at a transcriptome level. And finally, I review of my work and 

other similar heterosis studies, and tested the importance of the ecological background 

of F1 hybrids on heterosis. 

 

This thesis is organized in three independent but related chapters, described below. I 

was responsible for conducting the experiments, data analysis and writing of all three 

chapters, therefore I am the first author of all three chapters of my thesis. My PhD 

supervisor Dr. Duncan Greig was the mind behind the theory and supervised both 

experimental and analytic work; therefore Dr. Duncan Greig is the last author of all 

the three chapters of this thesis. Dr. Rike Stelkens and Dr. David Rogers had a 

significant intellectual input in the analytic work of Chapter I and Chapter II 

respectively; therefore they are mention as authors in both chapters. 

 

In Chapter I, I measured heterosis in a set of F1 hybrids by direct competitions 

between F1 hybrid and one of its parents in pairwise comparisons. Inter-specific F1 

hybrids were made by crossing S. cerevisiae and S. paradoxus, and intra-specific F1 

hybrids by crossing S. paradoxus wild populations. I found the competitive growth of 

the F1 hybrids relative to the average of its parents, a measure of mid-parent 

heterosis, was correlated with the difference in parental growth relative to their F1 

hybrid, a measure of phenotypic divergence. Inter-specific F1 hybrids showed 

stronger heterosis than intra-specific hybrids. In order to manipulate parental 

phenotypic divergence independently of genotype, I also measured the competitive 

growth of a single inter-specific F1 hybrid relative to both its parents in twelve 

different environments. I not only identified a strong relationship between parental 
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phenotypic divergence and mid-parent heterosis as before, but also, a weak 

relationship between phenotypic divergence and best-parent heterosis. These results 

suggested reciprocal complementation of deleterious alleles to be one of the main 

mechanisms behind heterosis. My work proposes that wild isolates of Saccharomyces 

yeasts have a lower load of recessive deleterious alleles than domesticated isolates, 

which explains the absence of heterosis for crosses between wild isolates (intra-

specific F1 hybrids) and the presence of heterosis for crosses between wild and 

domesticated isolates (inter-specific F1 hybrids). 

 

In Chapter II, I used a previously tested inter-specific F1 hybrid that showed high 

levels of best-parent heterosis, and compare its transcription profile with the 

transcription profile of its parents in two different environments. The environments 

chosen gave the F1 hybrid an advantage in relation to both parents and each 

environment favoured one or the other parent. F1 hybrid transcription profile was 

more similar to fitter parent for the specific environment the hybrid was in, moreover 

allelic specific expression was prevelant in the F1 hybrid, which unrevals the 

importance of cis-regulated transcription. These results were consistent with 

complementation of low fitness alleles of one parent by high fitness alleles of the 

other parent, as a mechanism for heterosis at the transcriptome level. Interestingly, the 

F1 hybrid not only regulated its transcription by inducing fitter parental alleles for a 

specific environment, but also had the ability to modify its transcription upon 

environmental change. My work proposes that the ability to regulate both parental 

alleles and preferentially transcribe the more advantageous parental alleles for 

multiple loci rendered the F1 hybrid an intrinsic advantage that might explain the 

occurrence of heterosis. 

 

In Chapter III, I used S. cerevisiae primary isolates from domesticated and wild 

habitats with known heterozygosity and measured their spore viability and asexual 

fitness in comparison to corresponding derived forms. High heterozygosity was 

characteristic of domesticated primary isolates and low heterozygosity of wild 

primary isolates. From the primary isolates I formed monosporic clones by self-

fertilization or autodiplodization of one derived haploid spore, and I also made inbred 

forms by crossing two monosporic clones from the same primary isolate. I identified a 



Thesis Outline & Authors Contributions 

35	

strong negative relationship between heterozygosity of the primary isolates and spore 

viability, and a negative relationship between heterozygosity of the primary isolates 

and the growth of their monosporic clones. For inbred forms fitness was similar to 

their respective primary isolates for both high and low heterozygosity. The results 

supported the claim that highly heterozygous domesticated strains of S. cerevisiae 

carry multiple recessive deleterious alleles, which upon haploidization or 

autodiplodization become exposed and might render their haploid and the monosporic 

clones unviable or less well adapted. However by crossing monosporic clones fitness 

was restored in the inbred forms by complementation of the recessive deleterious 

alleles. My work reveals that most studies that identified heterosis used domesticated 

monosporic clones as parents of the F1 hybrid, as in our study crosses among 

divergent monosporic clones increase fitness by complementation of dominant high-

fitness alleles, giving the illusion of heterosis.  

 

In the next pages, I went through a detail description of the three projects in three 

separated chapters. The chapters are divided into Introduction, Material and Methods, 

Results, Discussion and Supplementary Material, and the corresponded figures are 

inserted throughout the chapters. In the end of the chapters I prepared an overall 

Conclusion & Perspectives advanced by my PhD work. And finally, I provided a 

Glossary & List of Abbreviations with the goal of facilitating reading and also a 

overall Figures & Tables index. 
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Abstract

The performance of hybrids relative to their parents is an important factor
in speciation research. We measured the growth of 46 Saccharomyces yeast
F1 interspecific and intraspecific hybrids, relative to the growth of each of
their parents, in pairwise competition assays. We found that the growth of a
hybrid relative to the average of its parents, a measure of mid-parent
heterosis, correlated with the difference in parental growth relative to their
hybrid, a measure of phenotypic divergence, which is consistent with simple
complementation of low fitness alleles in one parent by high fitness alleles
in the other. Interspecific hybrids showed stronger heterosis than intraspeci-
fic hybrids. To manipulate parental phenotypic divergence independently of
genotype, we also measured the competitive growth of a single interspecific
hybrid relative to its parents in 12 different environments. In these assays,
we not only identified a strong relationship between parental phenotypic
divergence and mid-parent heterosis as before, but, more tentatively, a weak
relationship between phenotypic divergence and best-parent heterosis, sug-
gesting that complementation of deleterious mutations was not the sole
cause of interspecific heterosis. Our results show that mating between differ-
ent species can be beneficial, and demonstrate that competition assays
between parents and offspring are a useful way to study the evolutionary
consequences of hybridization.

Introduction

When individuals from different species or from geneti-
cally distinct populations mate, they may produce
hybrid offspring (Barton & Hewitt, 1985).
Hybridization can bring alleles together in combina-

tions that have never before been exposed to natural
selection, often with unpredictable results. Genetic
incompatibilities between independently diverged alle-
les at different loci might reduce hybrid fertility or via-
bility, restricting gene flow between diverging
populations (Orr & Turelli, 2001) through Bateson–
Dobzhansky–Muller (hereafter BDM) incompatibilities.
But interactions among novel combinations of alleles
from different populations or species can also increase
aspects of hybrid fitness (Shull, 1948). There is

evidence from a variety of taxa including plants (Riese-
berg et al., 2003), fish (Nolte & Sheets, 2005), insects
(Schwarz et al., 2005) and yeast (Stelkens et al., 2014)
that hybrids can colonize new environments which are
inaccessible to their parents. Thus, hybridization can
increase or decrease fitness, and both promote or pre-
vent speciation (Barton & Hewitt, 1985).
It is difficult to determine experimentally the factors

that can enable hybrids to outcompete their parents.
Various traits contribute to the single trait called fitness,
including traits that affect viability (e.g. vigour, sur-
vival, growth rate) and those that affect sexual repro-
duction (e.g. mating success, fertility, fecundity).
Hybridization can simultaneously improve some fitness-
determining traits, such as vigour, while diminishing
others, such as fertility. Different generations of hybrids
may also be affected differently; for example, ‘hybrid
breakdown’ describes a reduction in fitness affecting
later, but not earlier, generations of hybrids, due to
homozygous recessive allelic incompatibilities
(Edmands, 2002; Stelkens et al., 2015). And because

Correspondence: Joana P. Bernardes, Max Planck Institute for Evolutionary

Biology, August-Thienemann Straße 2, 24306 Pl€on, Germany.

Tel.: +49 4522 763 234; fax: +49 4522 763 260;

e-mail: bernardes@evolbio.mpg.de

538
ª 2 0 1 6 T H E A U T HO R S . J . E V O L . B I O L . 3 0 ( 2 0 1 7 ) 5 3 8 – 5 4 8

J O U RN A L O F E V O L U T I O N AR Y B I O L OG Y P U B L I S H E D B Y J O HN W I L E Y & S ONS L T D ON B E H A L F O F E U RO P E A N SOC I E T Y F O R E V O L U T I O N A R Y B I O L OG Y

T H I S I S A N O P E N A CC E S S A R T I C L E U N D E R T H E T E RM S O F T H E C R E A T I V E COMMONS A T T R I B U T I O N L I C E N S E , W H I C H P E RM I T S U S E , D I S T R I B U T I O N A ND

R E P R ODUC T I O N I N A N Y M ED I U M , P R O V I D E D T H E O R I G I N A L WOR K I S P RO P E R L Y C I T E D .

doi: 10.1111/jeb.13023



Chapter I	

38	

 

hybridization can greatly increase phenotypic variance,
it is possible for some hybrid individuals to be much fit-
ter than their parents, even when most are much less
fit or even inviable. Hybrid effects on fitness may also
depend on the local environment; for example, BDM
incompatibilities often depend on environmental condi-
tions (Nosil, 2012). Thus, to evaluate the evolutionary
potential of a hybrid, it is helpful to sample hybrid fit-
nesses in multiple environments (Lexer et al., 2003;
Rieseberg et al., 2003; Stelkens et al., 2014).
Many of these complexities can be avoided using a

simple experimental model system. The facultatively
sexual yeasts of the Saccharomyces sensu stricto species
complex are ideal for experimental studies of hybridiza-
tion. They are well characterized genetically and phe-
notypically, they have short generation times, and they
are easy to cultivate in large populations under con-
trolled and repeatable conditions (Scannell et al., 2011).
All members of the sensu stricto complex can mate with
each other, forming diploid F1 hybrids (Naumov,
1996). Diploids do not have sexes or mating types, but
they can undergo meiosis to produce haploid gametes
of two mating types, ‘a’ and ‘alpha’, which can fuse to
restore diploidy and complete the sexual cycle. Because
both haploids and diploids can undergo mitosis, individ-
uals can be isolated and propagated as clones, allowing
the effects of hybridization to be studied at all life stages
and across many generations. Different genotypes can
be genetically marked so that they and their offspring
can be distinguished, allowing competitive growth
assays in a common environment. These advantages
allow different methods that are not possible in tradi-
tional plant or animal model systems, and although the
results from yeast may not be directly applicable to
obligate outcrossing species, they are likely to be rele-
vant to a large number of other sexual microbial
eukaryotes.
The most striking and best studied characteristic of

diploid F1 hybrids between different Saccharomyces sensu
stricto species is their greatly reduced sexual fertility:
<1% of the gametes they produce are viable (Hunter
et al., 1996). BDM incompatibilities contributing to this
interspecific F1 hybrid gamete inviability have not been
found (Kao et al., 2010). Instead, antirecombination has
been shown to be the major cause of yeast F1 hybrid
sterility (Hunter et al., 1996). When chromosomes from
different parents are sufficiently diverged, they cannot
crossover during meiosis and so fail to segregate accu-
rately. The genomes of Saccharomyces cerevisiae and Sac-
charomyces paradoxus differ at about 14% of nucleotides,
which impairs chromosome crossing-over and meiotic
segregation so much that most gametes produced by F1
hybrids lack essential chromosomes and are inviable.
Despite the low number of gametes that survive F1
hybrid meiosis, those that do, and that are capable of
mating, can form F2 hybrids. Some of these F2 hybrids
are both viable and sexually fertile, capable of

producing viable gametes themselves, yet reproduc-
tively isolated from their parents by their new chromo-
some compositions, thus demonstrating a potential
mechanism of hybrid speciation (Greig et al., 2002).
Although much work has concentrated on the

reduced sexual fertility of interspecies Saccharomyces F1
hybrids, there has been relatively little work on the
competitive ability of the F1 hybrids themselves. This is
surprising, because the first challenge a new F1 yeast
hybrid faces is not its sexual fertility, but its viability
and ability to compete under asexual growth. Inter-
species F1 hybrid vigour has not been systematically
quantified by competitive asexual growth assays against
parent species, as far as we know. As most yeast repro-
duction is by asexual diploid mitosis, the competitive
growth of F1 hybrids is likely to determine the success
of further generations when hybrids compete for the
same resource as their parents: in principle, high F1
asexual competitiveness could completely compensate
for their low sexual fertility, or conversely, low F1
asexual competitiveness might greatly strengthen the
barrier already established between species. Thus, the
ability of F1 hybrids to compete against their parents is
evolutionarily important. Furthermore, F1 hybrids are
ideal for studying the net contribution of all genetic
effects of hybridization at all loci: a single diploid geno-
type captures the entire range of genetic differences
between its two parents. This contrasts to F2 hybrids in
which parental differences between loci and within loci
are reduced by recombination and segregation respec-
tively, as a result of the preceding sexual cycle. F2
hybrids derived from the same two parent species can
vary genetically, containing any combination or propor-
tion of parental alleles, and therefore being more or less
affected by hybridization. This presents a sampling
problem for researchers studying speciation, particularly
with interspecific yeast crosses, where many F2 hybrid
individuals have zero viability. For these practical and
evolutionary reasons, we set out to measure the factors
that affect the competitive ability of F1 hybrids relative
to their parents.
When genetically diverged parents mate, their F1

hybrid offspring inherit a complete set of alleles from
both parents and might therefore be expected to be
phenotypically intermediate. However, parental pheno-
types often interact nonadditively, producing hybrid
trait values that are different from the average of the
parental trait values, and which can even fall outside
the range of parental values. For many crosses, these
nonadditive genetic interactions may reduce viability
enough that the F1 hybrids are rendered completely
inviable, preventing traits from being quantified. But
fitness-determining traits can also be enhanced by the
high heterozygosity of hybrids relative to their parents:
this is known as hybrid vigour or heterosis (Shull,
1948). In this article, we will use the term positive
heterosis (or sometimes just heterosis) to refer to an
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increase in fitness of a F1 hybrid due to heterozygosity
and the term negative heterosis when F1 hybrid fitness
is diminished due to heterozygosity.
It should be possible to predict the strength and sign

of heterosis in F1 hybrids from the characteristics of
their parents, so many experimental studies have mea-
sured the effect of evolutionary divergence between
parents on F1 hybrid traits (for review see Edmands,
2002). One would expect that there should be an opti-
mum level of divergence, between the occurrences of
inbreeding depression and outbreeding depression, at
which positive heterosis for fitness is maximized, so
natural selection should act on mating systems to
achieve this intermediate level of outcrossing (Waser,
1993). However, although some researchers do find
such a humped-shaped relationship between parental
evolutionary divergence and hybrid traits (Moll et al.,
1965), others find only positive relationships (Xiao
et al., 1996; Gonz!ales et al., 2007), negative relation-
ships (McClelland & Naish, 2007; Pekkala et al., 2012)
or no relationship at all (Hung et al., 2012). One prob-
lem with such experiments is determining which traits
to measure. Yeast has an advantage over other study
systems in that experimental strains can be made
homozygous and propagated as pure clones, so parents
and hybrids can be grown simultaneously in a common
environment to determine their direct competitive abil-
ity in standardized and repeatable – albeit artificial and
highly simplified – conditions. This method is com-
monly used in experimental evolution studies with
asexual microbes to determine relative fitness (Lenski,
1991). Relative fitness is the evolutionary important
measure: this is what natural selection acts to improve
and in competition in batch cultures allows several fit-
ness-associated traits – such as faster maximal growth
rate, shorter lag phase, higher carrying capacity or bet-
ter survival in stationary phase (Vasi et al., 1994) – to
be incorporated in a single evolutionary-relevant mea-
surement, albeit one that excludes sexual parts of the
life cycle. Studying heterosis in yeast can also help
address another practical problem, in that the best mea-
sure of evolutionary distance between parents is not
obvious: geographic distance, difference in local envi-
ronments, general phenotypic divergence in multiple
traits and general genetic divergence in DNA sequences
or markers have all been used (for review see Edmands,
2002). The ability of yeast to grow clonally allows the
same genotypes to be tested and retested in different
ways, potentially allowing one measure of parental
divergence to be manipulated independently of
another. For example, genetic distance can be fixed and
phenotypic distance varied by retesting the same geno-
types in different environments in which their pheno-
typic differences vary.
Here, we used F1 hybrids between wild S. paradoxus

parents differing by up to 4% in nucleotide divergence
and between S. paradoxus and S. cerevisiae parents

differing by up to 14%. These crosses represent much
greater genetic divergence than the intraspecific S. cere-
visiae hybrids used in previous yeast studies on hetero-
sis, which were <1% divergent according to SNP data
(Z€org€o et al., 2012; Plech et al., 2014; Shapira et al.,
2014). Rather than measuring growth rates in isola-
tion, we determined the growth of these hybrids rela-
tive to their parents in direct competition. We
determined the relationship between heterosis and
both genetic divergence (genome sequence divergence)
and phenotypic divergence (the difference in competi-
tive growth) of the parents. Then, to determine the
relationship between heterosis and phenotypic diver-
gence independently from genetic divergence, we
retested the competitive growth of a single interspecific
hybrid relative to its parents under different environ-
mental conditions, to manipulate parental phenotypic
divergence.

Materials and methods

Strains and hybrid crosses

We used 32 homozygous strains of S. paradoxus and
S. cerevisiae from the National Collection of Yeast Cul-
tures (NCYC, http://www.ncyc.co.uk/) to produce 46
F1 hybrids: 28 intraspecific hybrids between S. para-
doxus and S. paradoxus and 18 interspecific hybrids
between S. paradoxus and S. cerevisiae (Stelkens et al.,
2014). Strains and crosses were selected to maximize
the ranges of genetic and phenotypic divergence within
a manageable set of hybrids (Stelkens et al., 2014).
Strains are available on request (see Table S1). Parental
strains came from around the world. Most of the
S. paradoxus strains were collected from oak trees, but
S. cerevisiae strains came from diverse habitats with high
ecological diversity such as soil, trees, diseased human
tissue, faeces, insects, fruit, beer and wine (Liti et al.,
2009; see Table S1). F1 hybrid strains were made by
mixing equal volumes of the haploid parental strains of
opposite mating types, mating overnight on YEPD agar
(1% yeast extract, 2% peptone, 2% glucose, 2% agar),
streaking onto new YEPD plates and replica-plating the
resulting single colonies onto KAC agar (1% potassium
acetate, 0.1% yeast extract, 0.05% glucose, 2% agar) to
induce sporulation. After 48 h incubation, we identified
the colonies that had sporulated (and were therefore
founded by mated diploids) using a microscope and
selecting the corresponding colony from YEPD plate.
These pure diploid F1 hybrids were stored frozen at
!80 °C 20% glycerol stock for later use. The parental
haploid strains used to make F1 hybrids strains were
genetically marked with one of the two dominant
homozygous alleles conferring resistance to the antibi-
otics G418 and hygromycin: the resulting F1 hybrid
was resistant to both antibiotics (ho::HYGMX/ho::
HYGMX, ura3::KANMX/ura3::KANMX), whereas the
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parental diploid strains were homozygous for the wild-
type alleles (HO/HO, URA3/URA3) and thus sensitive to
the antibiotics. Gene transformation was carried out by
following methods in Gietz & Woods (2002).

Measuring heterosis using competitive growth
assays

We measured the competitive growth of every diploid
hybrid relative to both of its diploid parents using repli-
cated assays in 5 mL liquid YEPD (1% yeast extract,
2% peptone, 2% glucose) shaken cultures at 30 °C.
Each assay tested a hybrid strain against one of its par-
ents. The hybrid and both its parental strains were
grown in isolation for 24 h before mixing the hybrid
with each parent separately in equal volumes. A 50 lL
sample of the mixture was used to inoculate 5 mL of
fresh sterile medium, and the initial (t0) cell number of
the hybrid and parental strains was estimated by taking
a 100 lL sample, serially diluting it and plating it to
solid YEPD agar before incubating it for 2 days to yield
~200 colonies. The proportion of hybrid colonies was
determined by replica-plating to YEPD agar, supple-
mented with 400 mg of the antibiotic G418 in every
litre of medium (0.04% final concentration of G418).
Multiplying by the dilution factor allowed the initial
number of the hybrid and parent cells in the culture to
be determined. Meanwhile, the freshly inoculated med-
ium was incubated for 1 day before a second 100 lL
sample was removed, and the final (t1) number of each
cell type was determined by serial dilution and replica-
plating as before. The competitive growth of the hybrid
relative to its parent was determined by the ratio of
their Malthusian growth parameters (Lenski, 1991).
Each assay was replicated independently three times
using the same strains but different primary cultures,
and then, the mean of these three competitive growth
measurements was taken and log-transformed. Every
hybrid was tested against both of its parents, producing
two log-transformed hybrid competitive growth values,
one relative to each parent. The higher value is a mea-
sure of the performance of a hybrid relative to its less
competitive parent, whereas the lower values represent
its performance against the more competitive parent,
which we therefore use as our measure of best-parent
heterosis. Thus, the average of the two hybrid competi-
tive growth values is our measure of mid-parent
heterosis. Heterosis values below zero mean the parent
(s) outperform the hybrid, whereas heterosis values
higher than zero mean the hybrid outperforms its par-
ent(s). The absolute difference between the two values
represents the difference between the competitive
growths of the two parents relative to their hybrid and
is therefore a measure of phenotypic divergence for
competitive growth against a common competitor (the
hybrid). Genetic divergence between the parents in
each cross was calculated using SNP data (personal

communication with Gianni Liti), by dividing the num-
ber of bases that differed between species by the total
number of aligned bases.
To quantify any systematic effect on competitive

growth due to the genetic markers used to distinguish
hybrids (ho::HYGMX/ho::HYGMX, ura3::KANMX/ura3::
KANMX) from their parents (HO/HO, URA3/URA3), we
competed each parental diploid against a marked (ho::
HYGMX/ho::HYGMX, ura3::KANMX/ura3::KANMX) ver-
sion of the same parental strain, under the same condi-
tions used for the competitive growth assays between
parents and offspring described above.

Effect of environment on heterosis

To determine the effect of phenotypic divergence inde-
pendently from the genetic divergence of the parent
strains, we measured heterosis in a single interspecific
hybrid under different environmental conditions. To
facilitate future investigation into the molecular mecha-
nisms of heterosis, we chose two genetically tractable
laboratory strains as parents: s288c (S. cerevisiae) and
N17 (S. paradoxus). We again used genetic markers to
identify competing strains in our growth assays. The
parents were marked with dominant drug resistance
cassettes conferring resistance to G418 and to hygromy-
cin as a heterozygote in the same locus, ura3 (i.e. ura3::
KANMX/ura3::HYGMX). The hybrid was simply homozy-
gous for a ura3 deletion (thus ura3/ura3) and sensitive
to the two drugs. Gene transformation was carried out
by following methods in Gietz & Woods (2002). Mid-
parent heterosis and best-parent heterosis were mea-
sured as before using competitive growth assays repli-
cated three times, except that instead of conducting the
assays in YEPD medium at 30 °C, we used 12 different
media. Assays were all conducted in shaken liquid min-
imum medium with added uracil (MIN+URA: 0.67%
yeast nitrogen base without amino acids, 2% glucose,
0.003% uracil) with the following supplements: caf-
feine (10%, 30 °C), zinc sulphate (10%, 30 °C), citric
acid (10%, 30 °C), acetylsalicylic acid or aspirin (10%,
30 °C), sodium chloride (10%, 30 °C), peroxide (10%,
30 °C), nipagin (10%, 30 °C), ethanol (1%, 30 °C),
lithium acetate (1%, 30 °C), dimethyl sulphoxide or
DMSO (1%, 30 °C) as well as at 15 and 30 °C with no
supplement.
To test for any systematic effect on growth of the

genetic markers used to identify competing strains, we
ran control assays in which each drug-resistant diploid
(ura3::KANMX/ura3::HYGMX) s288c and N17 parent was
competed against an isogenic drug-sensitive diploid
containing only a homozygous ura3 deletion (ura3/
ura3) diploids. Assays were conducted as described
above in the different supplemented media (not includ-
ing temperature this time) and replicated three times
independently, using the same strains but different pri-
mary cultures.
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Statistical analysis

All statistical analyses were performed in R (R version
3.0.2, packages: ‘lawstat’ version 2.4.1, ‘lme4’ version
1.17 and ‘nlme’ version 3.1-120). Individual statistical
tests are listed in the Results. All hybrid relative com-
petitive growth measures were log-transformed to pro-
duce measures of positive or negative heterosis for
competitive growth. We tested the intraspecies and
interspecies competitive growth for normality (Shapiro–
Wilk test: mid-parent heterosis: W = 0.953, P = 0.063,
Best-parent heterosis: W = 0.984, P = 0.781) and
homogeneity of variances (Levene’s test: mid-parent
heterosis: F1,44 = 0.041, P = 0.840, best-parent hetero-
sis: F1,44 = 0.001, P = 0.971) to ensure the correct use
of parametric tests.

Results

Colony counts from all competitive growth assays are
provided as Tables S1 and S2. Note that although
some authors use the word heterosis only to refer to
cases of hybrid outperforming parents, our measure of
heterosis can be negative (see Methods), which thus
describes parent outcompeting their hybrids.

Heterosis and genetic divergence in different
crosses

Genetic divergence ranged from 0.06% to 14%
(Table S1), but because of the global population struc-
ture of S. paradoxus, divergence clustered into four cate-
gories (Fig. 1): hybrids between S. paradoxus parents
from within the same continent (i.e. within Europe,
Asia or America, resulting in <1% sequence diver-
gence) with similar competitive growth than the paren-
tal average (group mean = !0.001%), hybrids between
S. paradoxus parents from adjacent continents (i.e.
between Europe and Asia, resulting in 1–2% sequence
divergence) with similar competitive growth to the par-
ental average (group mean = 0.012%), hybrids
between S. paradoxus parents from continents isolated
by oceans (i.e. crosses between America and Europe
and between America and Asia, resulting in 3–4%
sequence divergence) also with similar competitive
growth to the parental average (group mean =
!0.001%) and finally interspecific hybrids between
S. paradoxus and S. cerevisiae (13–14% sequence diver-
gence) with higher competitive growth than the parental
average (group mean = 4.3%).
Overall, there was a significant increase in mid-par-

ent heterosis for relative competitive growth with
increasing genetic divergence (F44 = 2127, P < 0.001,
Fig. 1), but the relationship was driven entirely by the
interspecific hybrids, which as a group showed strong
and significant positive mid-parent heterosis with
hybrids on average growing 4.3% better than the

average parent (one-sample t-test: t18 = 7.142,
P < 0.001). The intraspecific hybrids grew on average
0.2% better than their parents, but not significantly
(one-sample t-test: t26 = 0.628, P = 0.536). Interspecific
hybrids had significantly higher mid-parent heterosis
for competitive growth than intraspecific hybrids (two-
sample t-test: t44 = 4.547, P < 0.001). There was no sig-
nificant relationship between genetic divergence and
heterosis within intraspecific hybrids as a group
(F1,25 = 0.108, P = 0.746), nor within interspecific
hybrids as a group (F1,17 = 2.883, P = 0.108).
Best-parent heterosis for competitive growth also

increased significantly with genetic distance
(F1,44 = 10.49, P = 0.002), but, as for mid-parent
heterosis, the relation was driven by the higher best-
parent heterosis of the interspecific hybrid group com-
pared to the intraspecific group (Fig. S1). Interspecific
hybrids had significantly higher best-parent heterosis
for competitive growth than intraspecific hybrids (two-
sample t-test: t44 = 3.307, P = 0.002), but there was no
significant relationship between genetic divergence and
best-parent heterosis within either of the two sub-
groups (Fig. S1: intraspecific hybrids: F1,26 = 0.003,
P = 0.954; interspecific hybrids: F1,18 = 0.397,
P = 0.535). Interspecific hybrids grew on average 0.5%
better than their best parent but not significantly (one-
sample t-test: t18 = 0.812, P = 0.427). Intraspecific
hybrids grew on average 2% worse than their best par-
ents, a significant difference (one-sample t-test: t26 = 4,
P < 0.001).

Fig. 1 Mid-parent heterosis in intraspecific and interspecific

hybrids. Horizontal lines indicate the average mid-parent heterosis

for intraspecific (mean = 0.004) and interspecific hybrids

(mean = 0.045). Points with error bars indicate the means and

standard deviations, respectively, of the replicates measures of

mid-parent heterosis (see Methods). Diamonds indicate

intraspecific hybrids, which are crosses between Saccharomyces

paradoxus strains, and circles indicate interspecific hybrids, which

are crosses between Saccharomyces cerevisiae and S. paradoxus.
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Heterosis and phenotypic divergence in different
crosses

Mid-parent heterosis significantly increased with phe-
notypic divergence of the parents (i.e. the absolute dif-
ference between the competitive growth of the two
parents relative to their hybrid F1,44 = 25.73, P < 0.001
– Fig. 2). Unlike the general relationship between
genetic divergence and heterosis discussed above, this
relationship did not appear to be driven by any outly-
ing group of strains; however, we note that phenotypic
divergence was positively correlated with genetic diver-
gence (Fig. S2: F1,44 = 8.535, P = 0.006). There was no
significant relationship between best-parent heterosis
and phenotypic divergence (F1,44 = 0.235, P = 0.630).

Effect of genetic marker in different crosses

The genetic markers (ho::HYGMX/ho::HYGMX, ura3::
KANMX/ura3::KANMX) used to identify hybrids from
their competing parent strains had a significant cost on
competitive growth when tested in the 32 parent
genetic backgrounds (one-sample t-test: t30 = 2.065,
P = 0.047). On average, unmarked parents grew 2.07%
(SD = !0.026%) better than the marked versions of
the same strains. In the competitions between hybrids
and their parents, the hybrids were marked, so the cost
of the marker might cause a systematic underestimation
of the strength of positive heterosis. To account for this,
we adjusted all log-transformed hybrid relative compet-
itive growth rate values by adding the average log-
transformed growth advantage of unmarked parents
relative to unmarked parents (Fig. S3, Table S3). This
adjustment made some of our results more significant.
As before the adjustment, the interspecific hybrid had
significant mid-parent heterosis (one-sample t-test:

t18 = 10.08, P < 0.001), but their best-parent heterosis
was now also significant after the adjustment (one-
sample t-test: t18 = 4.246, P < 0.001). As before,
intraspecific hybrids show no best-parent heterosis
(one-sample t-test: t26 = 0.135, P = 0.894), but they
now show significant mid-parent heterosis (one-sample
t-test: t26 = 3.574, P = 0.001). As before, mid-parent
heterosis significantly increased with phenotypic diver-
gence across the entire set of crosses (F1,44 = 25.73,
P < 0.001), and best-parent heterosis remained unre-
lated to phenotypic divergence (F1,44 = 0.235,
P = 0.630). As before, interspecific hybrids had signifi-
cantly higher heterosis for competitive growth than
intraspecific hybrids, both for mid-parent heterosis
(two-sample t-test: t44 = 4.681, P < 0.001) and for best-
parent heterosis (two-sample t-test: t44 = 3.307,
P = 0.002). Thus, although some differences became
significant that were previous not significant, the
adjustment did not change the pattern of the effect or
our interpretation. We therefore present and discuss
the more conservative, unadjusted heterosis values in
the main body of the manuscript, but provide the
adjusted values as Table S3.

Heterosis in different environments

To investigate the effect of phenotypic divergence inde-
pendently of genetic divergence, we tested the competi-
tive growth of an interspecific hybrid relative to its
parents in different environments. The interspecific
hybrid (s288c x N17) we tested grew on average 13%
better than the average of its parents across 12 different
environments (Fig. 3, Tables S2 and S4), and it grew
significantly better than at least one of its parent in all
environments (one-sample t-test corrected for multiple
comparisons using the Holm–Sidak method: see
Table S4 for statistics). In ten of the twelve environ-
ments (all except for aspirin and zinc sulphate), the
competitive growth of the interspecific hybrid was
higher against the S. paradoxus parent than against
S. cerevisiae parent. Phenotypic distance correlated with
both mid-parent heterosis (F1,10 = 150.4, P < 0.001,
Fig. 4a) and best-parent heterosis (F1,10 = 5.684,
P = 0.038, Fig. 4b) across all environments.

Effect of genetic marker in different environments

The marker (ura3::KANMX/ura3::HYGMX) used to iden-
tify the parent strains in the experiment in different
environments increased competitive growth by an aver-
age of 1.21% relative to the marker carried by the
hybrids (ura3/ura3), when both markers were tested in
the parental genetic back grounds in all environments
(Table S3). Thus, the benefit of the parental marker
might cause an underestimation of heterosis. To adjust
for this, we added the log-transformed measured
growth advantage of the parental marker, for each

Fig. 2 The relationship between mid-parent heterosis for

competitive growth and phenotypic divergence. Solid line indicates

a significant positive correlation (r44 = 0.607, P < 0.001). Points

and error bars as for Fig. 1.
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parent in each environment except low temperature, to
the log-transformed competitive growth of the hybrids
relative to each parent in each environment except low
temperature (Table S3). The adjustment generally
increased our estimates of heterosis, but did not change
our interpretation of the results. As before, the inter-
specific hybrid grew significantly better than at least
one of its parents for all the environments tested (one-
sample t-test corrected for multiple comparisons using
the Holm–Sidak method: see Table S4 for statistics,
Fig. S4). Adjusting for the measured marker effect did
not affect the relationship between phenotypic distance
and mid-parent heterosis, which stayed significantly
positive (F1,9 = 75.50, P < 0.001), but it made the cor-
relation between phenotypic distance and best-parent
heterosis not significant (F1,9<0.001, P = 0.976).
Because the unadjusted results provide a more conser-
vative measure of heterosis, we present and discuss the
unadjusted results here, but we provide the adjusted
results as supporting data (Table S3).

Discussion

Here, we find that hybrids between S. cerevisiae and the
wild species S. paradoxus can grow on average 4.3%
better than their parents in direct competition. In con-
trast, crosses between genetically diverged S. paradoxus
strains had much less strong heterosis. We show that
the strength of heterosis is best predicted by the differ-
ence in the competitive growth rates of parents relative
to their common hybrid, both when different strains
are tested in the same environment, and when the
same strains are tested in different environments.
Recent studies of intraspecific S. cerevisiae x S. cere-

visiae crosses have attributed positive heterosis to com-
plementation of deleterious alleles that have
accumulated in this species as the result of its domesti-
cation by humans (Z€org€o et al., 2012; Plech et al.,
2014). Cellular functions that are maintained in the

wild may be lost in simplified winery or brewery habi-
tats. Two features of yeast domestication might exacer-
bate this process: drift due to reduced effective
population size and disruptive selection in different
environments allowing fixation of loss-of-function
mutations in different metabolic pathways. Z€org€o et al.
(2012) crossed nine genetically diverged S. cerevisiae
strains in all pairwise combinations and grew the F1
hybrids asexually under various environmental condi-
tions. Mid-parent heterosis was prevalent and was cor-
related with poor parental growth, consistent with the
simple complementation of loss-of-function mutations
that reduce growth in the experimental environment.
A follow-up study with larger sample of parental strains
confirmed that heterosis was indeed much more likely
when parents originated from domesticated, rather than
natural environments (Plech et al., 2014).
Could the presence of deleterious mutations in

S. cerevisiae due to domestication explain the general
heterosis we observe when it is crossed to wild S. para-
doxus strains that lack such mutations? In our experi-
ments, S. paradoxus x S. paradoxus crosses have much
lower heterosis than our S. cerevisiae x S. paradoxus
crosses (Fig. 1), consistent with the wild species having
fewer deleterious mutations (or less deleterious muta-
tions). We also found that the larger the difference in
parental competitive growth, the stronger the mid-par-
ent heterosis was, both in the full set of crosses tested
in a single environment (Fig. 2) and in a single
S. cerevisiae x S. paradoxus cross tested in multiple envi-
ronments (Fig. 4a). Simple complementation of reces-
sive deleterious mutations in one parent, such as a
domesticated S. cerevisiae strain, by functional alleles in
another, such as a wild S. paradoxus strain, would be
expected to give exactly this pattern of autocorrelation.
To visualize this, imagine that S. cerevisiae strains carry-
ing recessive deleterious mutations with different effect
sizes (and therefore with different low fitnesses) are
crossed to S. paradoxus strains lacking such deleterious

Fig. 3 Heterosis for competitive growth

of a single interspecific cross in twelve

different environments. Triangles show

average heterosis relative to the

Saccharomyces cerevisiae parent; squares

show average heterosis relative to

Saccharomyces paradoxus parent. Open

shapes indicate heterosis not significant

after correction for multiple testing

(Table S4; see Results). Error bars

indicate standard deviation of the mean

of the replicate measurements.
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mutations (and therefore of approximately equal, high
fitness). Under this simple complementation model, all
recessive defects will be complemented so all hybrids
will have approximately equal high fitness, but those
hybrids showing the strongest mid-parent heterosis will
be those whose parents have the largest fitness differ-
ence and thus the lowest mid-parent fitness. Z€org€o et al.
(2012) found such a relationship between the differ-
ence in growth between S. cerevisiae parents and the
mid-parent heterosis of their resulting intraspecific
hybrids and also interpreted it as simple complementa-
tion of domestication defects in one parent by wild-type
alleles in another.

However, several aspects of our data make this model
of simple complementation of defective S. cerevisiae alle-
les by functional S. paradoxus alleles questionable. Plech
et al. (2014) found that intraspecific heterosis was more
prevalent when S. cerevisiae parents had been isolated
from human-made habitats rather than wild habitats.
But we did not find significant higher heterosis in the
13 interspecific crosses made with S. cerevisiae strains
from human habitats, than in the six interspecific
crosses made with S. cerevisiae isolated from natural
habitats (crosses with S. cerevisiae strains from human
habitats grew only 1.2% better, two-sample t-test:
t17 = 0.935, P = 0.363), but we note that this test has
little power, especially given that the domestication his-
tory of a strain cannot reliably be inferred from the
habitat it was isolated from. A clearer prediction of the
simple complementation model is that if interspecific
heterosis was due to growth defects in S. cerevisiae, then
S. cerevisiae parents should grow less well than S. para-
doxus parents in competition with their shared hybrids.
But in general, the opposite was true: for 13 out of 19
hybrids (not a significant majority, one-way two-tailed
chi-squared test: v21 = 1.746, P = 0.186) and for 10 out
of 12 environments (a significant majority, one-way
two-tailed chi-square test: v21 = 3, P = 0.042), the
S. cerevisiae parent actually grew better than the S. para-
doxus parent, relative to their common hybrid. Finally,
and perhaps, most importantly, simple complementa-
tion of defective S. cerevisiae alleles by functional
S. paradoxus alleles is expected to produce only mid-par-
ent heterosis, in which the hybrid grows at best as well
as the functional S. paradoxus parent, not best-parent
heterosis in which it grows better. Best-parent heterosis
can occur when two parents carrying defects at differ-
ent loci are crossed (Z€org€o et al., 2012; Plech et al.,
2014). For example when a strain with loss-of-function
mutation in one of the genes in the galactose utilization
pathway was crossed to a strain with a loss-of-function
mutation in another gene of the same pathway, func-
tion was restored because the defects were recessive
and the intraspecies cross grew better on galactose than
either of its parents (Z€org€o et al., 2012). However, we
see evidence for best-parent heterosis in our inter-
species hybrids, both in multiple crosses after the mar-
ker effect is corrected for (Fig. S3 and Table S3) and in
the single hybrid we studied, which could outcompete
both parents in many different environments (Fig. 3).
Although recessive deleterious mutations might be
fixed in S. cerevisiae strains because of relaxed selection
due to domestication, we would not expect such muta-
tions in S. paradoxus, which is undomesticated, so we
would not expect best-parent heterosis, nor would we
expect it to correlate with phenotypic divergence
(Fig. 4b). Thus, our results suggest that mechanisms in
addition to complementation of recessive deleterious
alleles, such as overdominance, might also contribute
to best-parent heterosis of interspecies yeast hybrids,

Fig. 4 The relationship between parental phenotypic divergence

and heterosis of a single interspecific hybrid in twelve different

environments. (a) Mid-parent heterosis. Circles with error bars

indicate means and standard deviations, respectively, of the

replicate measures of mid-parent heterosis (see Methods). Solid

line indicates a significant positive correlation (r10 = 0.968,

P < 0.001). (b) Best-parent heterosis. Points with error bars

indicate means and standard deviations, respectively, of the

replicates measures of best-parent heterosis (see Methods).

Triangles indicate that the best parent was Saccharomyces cerevisiae

parent, and squares indicate that the best parent was Saccharomyces

paradoxus. Solid line indicates a significant positive correlation

(r10 = 0.566, P = 0.038).
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although we note that our sample size is too small to
be conclusive.
A mechanism that can explain the presence of fixed

recessive deleterious mutations in both species also pre-
sents a caveat that applies to all yeast heterosis studies
to date, as far as we know. The parental diploids we
used were monosporic isolates, which were originally
derived from single haploids that were allowed to
divide mitotically, switch mating type, and mate with
their identical haploid clone mates to produce perfectly
homozygous diploids (Liti et al., 2009). This is a stan-
dard practice to produce pure genetic backgrounds that
can be sequenced and studied without the complica-
tions of segregating genetic variation (Liti et al., 2009).
However, there is evidence that natural strains can be
highly heterozygous (Magwene et al., 2011), so deriving
monosporic isolates would homozygose any recessive
deleterious mutations that were previously masked
reducing the monosporic strains’ fitness relative to their
heterozygous parents. Crosses among different mono-
sporic strains would then restore fitness by complemen-
tation, giving the illusion of heterosis, even though the
resulting F1 hybrids would not necessarily be any fitter
than their heterozygous grandparents. It is not easy to
eliminate this potential artefact, because most strains
available in collections have been treated in this way.
Further, natural strains of Saccharomyces are usually iso-
lated by enrichment culture, in which an environmen-
tal sample (typically a piece of oak bark) is placed into
rich liquid growth medium and incubated, before cells
from the resulting mixed culture are isolated and their
species identified. If oak bark samples usually contain
Saccharomyces haploid spores rather than vegetative
diploid cells, then the rapid germination and growth
conditions provided by enrichment culture might pro-
mote mating type switching and homozygosis of reces-
sive deleterious mutations, rather than mating with
other spores to produce heterozygotes, as might occur
under natural conditions. A challenge for yeast biolo-
gists studying evolution is therefore to identify a natu-
ral source of vegetatively growing Saccharomyces from
which samples could be taken directly, which without
enrichment culturing.
The positive relationship between parental pheno-

typic divergence and the strength of heterosis, as well
as the general heterosis we find in interspecies hybrids,
suggests that mating between species might be advanta-
geous. However, any benefit of interspecies hybrids
have under mitosis would have to outweigh the cost
they suffer under meiosis: 99% of the gametes pro-
duced by F1 hybrids are inviable (Hunter et al., 1996),
so only if mitotic divisions greatly outnumber meiotic
divisions could their increased vigour compensate for
their decreased fertility. This might be possible: an
estimated based on population genetic suggests that
1000 mitotic divisions occur for every meiosis in wild
oak-associated S. paradoxus (Tsai et al., 2008), and a F1

hybrid cell with a growth advantage of 4.3% over a cell
of its parent species would need only 175 mitotic gen-
erations before its population was over 100 times larger
(i.e. large enough to compensate for the ~99% spores
that die from F1 hybrid meiosis). Indeed, yeast hybrids
are well known, especially in wine and beer industry,
environments, where, perhaps, meiosis is not required.
Best known is S. pastorianus the hybrid used to produce
low temperature fermented larger beer, which benefits
from a combination of the ethanol resistance of its
S. cerevisiae parent and the cold tolerance of its
S. eubayanus parent (Vaughan & Martini, 1987; Libkind
et al., 2011), but many other hybrids of S. cerevisiae,
S. kudriavzevii, S. uvarum and S. eubayanus have been
found in wine and cider too (Lopandic et al., 2007;
Sipiczki, 2008). Genomic methods are now identifying
an increasing number of hybrids between S. cerevisiae
and S. paradoxus outside fermentation environments
and examples of introgression of S. cerevisiae genes into
majority wild S. paradoxus genomes (Liti et al., 2006)
and vice versa (Muller & McCusker, 2009), indicating
that many sexual cycles occurred since hybridization
and suggesting that be benefits of yeast hybridization
can indeed sometimes outweigh their fertility costs.
There is increasing awareness in the role that

hybridization has played in the evolution of a wide
range of species (see the special issue of Journal of Evo-
lutionary Biology, 26(2) 2013; Seehausen, 2004; Mallet,
2007; Schumer et al., 2014), not least on our own
(Sankararaman et al., 2014). The importance of that
role depends very much on the ability of the hybrid to
compete against nonhybrids, and yeast offers a useful
way to assess the factors contributing to the relative fit-
ness of hybrids.
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5. Supplementary material 
Table S1: Description of the parental strains by species, habitat, and genetic and phenotypic 

divergence. Competitive growth of F1 hybrids: mid-parent heterosis (MPH) and best-parent 

heterosis (BPH) log-transformed. 
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Table S2: Description of the environments, raw data for the competition between inter-

specific F1 hybrid and its parents in different environments. Mid-parent (MPH) and best-

parent heterosis (BPH) values were log-transformed from the competitions, and phenotypic 

divergence was calculated through the difference between competitions.  
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Figure S1: Best-parent heterosis of intra-specific and inter-specific F1 hybrids. Horizontal 

lines indicate the average best-parent heterosis for intra-specific (mean=-0.02) and inter-

specific hybrids (mean=0.005). Points with error bars indicate the means and standard 

deviations, respectively, of the replicates measures of best-parent heterosis (see Methods 

Chapter I). Diamonds indicate intra-specific hybrids, which are crosses between S. paradoxus 

populations and circles indicate inter-specific hybrids, which are crosses between S. 

cerevisiae and S. paradoxus. 
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Figure S2: Relationship between genetic divergence and phenotypic divergence. Line 

indicates a significant positive correlation (F1,44=8.535, P=0.006). Points and error bars 

indicate means and standard deviations of replicate measures of phenotypic divergence. 
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Figure S3: Mid-parent and best-parent heterosis of intra-specific and inter-specific hybrids 

adjusted for marker effect. Mid-parent heterosis: horizontal lines indicate the average best-

parent heterosis for intra-specific (mean=0.002) and inter-specific hybrids (mean=0.051). 

Best-parent heterosis: horizontal lines indicate the average best-parent heterosis for intra-

specific (mean=0.000) and inter-specific hybrids (mean=0.02). Points with error bars indicate 

the means and standard deviations, respectively, of the replicates measures of mid-parent and 

best-parent heterosis adjusted for marker effect (see Chapter I Methods). Diamonds indicate 

intra-specific hybrids, which are crosses between S. paradoxus populations and circles 

indicate inter-specific hybrids, which are crosses between S. cerevisiae and S. paradoxus. 
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Figure S4: Heterosis for competitive growth of a single inter-specific cross in twelve 

different environments, adjusted for marker effect. Triangles show average heterosis relative 

to the S. cerevisiae parent, squares show average heterosis relative to S. paradoxus parent. 

Open shapes indicate heterosis not significant after correction for multiple testing. Error bars 

indicate standard deviation of the mean of the replicate measurements.  

 
  



Chapter II	

54	

Chapter II 
 

Hybrid transcription is similar to the fitter 

parent for a specific environment. 
Bernardes, J. P.1, Rogers, D.1 & Greig, D.1,2 

 
1. Max Planck Institute for Evolutionary Biology, Experimental Evolution Group, 

Plön, Germany 

2. The Galton Laboratory, Department of Genetics, Evolution, and Environment, 

University College London, London, UK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter II	

55	

1. Introduction 
When two closely related species hybridise, the hybrid might display transcription 

features that are different from those of its parents: this deregulated transcription can 

take the form of over- or under-transcription of genes in comparison with one or both 

parental species (Gibson et al., 2004), and has been described in a variety of taxa 

including Drosophila (Ranz et al., 2004), yeast (Tirosh et al., 2006), and sea urchin 

(Nielsen et al., 2000). The causes of the hybrid deregulated transcription have been 

linked to divergence of regulatory pathways that control transcription in the parental 

species (for review see Wittkopp and Kalay (2012)), such as variations in affinity 

between transcription factors and their binding sites (Johnson & Porter, 2000), or 

variations in transcription initiation due to promoter elements like TATA boxes 

(Tirosh et al., 2006). If we were to cross two closely related species, the first hybrid 

generation (F1 hybrid) would share half of its genome with each parental species, and 

the two parental alleles would be exposed to the same trans-regulatory environment, 

while cis-regulatory effects would control only the parental alleles they were linked to 

(Wittkopp et al., 2004). Thus any difference in the F1 hybrid transcription between 

alleles of a specific gene is due to cis-regulation, known as allele specific expression, 

while a difference in F1 hybrid transcription of both parental alleles in comparison to 

its parents is due to trans-regulation. There can also be cases when both cis- and 

trans-regulation affect transcription, then we consider gene transcription to be cis-

trans regulated or cis-trans antagonistic, when cis- and trans-regulations have 

opposite directionalities (Figure S1). 

 

The F1 hybrid gene transcription can be inherited from its parents’ in a conserved 

manner or it can vary from one or both parental species; (1) when the F1 hybrid gene 

transcription is similar to the average of both parental species we classify it as 

additive; (2) when the F1 hybrid gene transcription is similar to one of the parents but 

not the other we classify it as dominant; (3) when the F1 hybrid gene transcription is 

an extreme form of dominant and goes beyond a parental species we classify it as 

overdominant, also known as misexpression (Figure S2). 

 

When genetically diverged parents mate, their F1 hybrid can, in some cases, display a 

fitness advantage in relation to both parental species or the average of them, a 
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phenomenon known as heterosis or hybrid vigour (Shull, 1908). What causes the F1 

hybrid higher fitness in comparison to its parents has been a question many have tried 

to answer; hybrids are characterized by being highly heterozygous, this could lead to 

a fitness increase due to simple or reciprocal complementation of low-fitness parental 

alleles by high-fitness parental alleles, or the heterozygous loci might also have an 

intrinsic advantage.  

 

F1 hybrid transcription depends on the regulation of parental alleles and how adapted 

they are to the environment. Goff (2011) molecular model for multigenic heterosis, 

assumes the F1 hybrid cells are able to distinguish between parental alleles and 

preferentially transcribed the fitter allele for each heterozygous pair of parental alleles 

(Goff, 2011). This model would encompass a mechanism where the fitter parental 

allele for a particular environment is preferentially transcribed over the less fit 

parental allele, based on the stability of the resulting proteins, and also, a mechanism 

where both parental alleles for a particular environment are up-regulated, based on the 

stability of the resulting proteins (Goff, 2011). We can test the model by comparing 

the F1 hybrid transcription with its parental transcription. We expect the F1 hybrid to 

be enriched for allele specific expression (cis-regulated transcription- Figure S1) of 

the favourable alleles of both parents so the F1 hybrid transcription resembles or is 

dominated by the fittest parent alleles for a particular environment. Also, we expect 

the F1 hybrid transcription to have the plasticity to be modified upon environmental 

change, because the relative fitness alleles would vary according to the environment 

the individuals are in. 

 

One way to infer differences in transcription between F1 hybrids and their parents, 

and consequently F1 hybrid parental alleles, is to use environments that have an 

impact on their fitnesses. In our previous project we explored the effect of different 

environments in the competitive growth of a inter-specific F1 hybrid when in direct 

competition against its parental species; we crossed a Saccharomyces cerevisiae strain 

with a S. paradoxus strain and we tested the resulting F1 hybrid in direct competition 

with its parents in different environments (Chapter I and Bernardes et al., 2016). In 

some environments S. cerevisiae grew better than S. paradoxus, in others vice versa, 

but the F1 hybrid grew better than both its parents in all cases (i.e. there was best-
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parent heterosis). Using the differences in fitness between the F1 hybrid and the 

parental species in a specific environment could help unveil the importance of a 

specific transcription response of the F1 hybrid. When yeast is exposed to different 

environments, its transcription profile is specific to the environment the yeast is in 

and has adapted to (Gasch et al., 2000). Upon change of environmental conditions, 

yeast cells adjust their transcription to the new conditions, this response can be 

specific to the environment, by acting on genes from pathways which are involved in 

dealing with the new conditions (Alexandre et al., 2001), or the response can be 

general, affecting several genes regardless of the type of environmental change, know 

as environmental stress response (ESR) (Gasch et al., 2000). A specific yeast species 

can have great variations in its transcription profile between different environments; 

S. cerevisiae displays both specific and general transcription responses and has 

evidence considerable transcription variations under several different environments 

such as heat shock, osmotic shock and depletion of essential compounds (Gasch et al., 

2000). Different Saccharomyces yeasts also have specific transcription under the 

same environment stress depending on the lifestyle of the individual species (Brion et 

al., 2016). Environmental stress responses in fermentative yeasts like S. cerevisiae 

show greater variations when compared to transitional lifestyle yeast Lachancea 

kluyveri (Brion et al., 2016) than to the more divergent but fermentative fission yeast 

Schizosaccharomyces pombe (Gasch, 2007). Inter-specific F1 hybrids have the 

potential to use the common features they have with their parental species, and induce 

a transcription profile that is similar to the fitter parent for a particular environment. 

Thus the F1 hybrid would be better adapted to deal with a variety of different 

environments, more than its individual parents on they own. 

 

Most studies that have analysed the transcription profiles of F1 hybrids aimed to 

unveil how gene transcription is regulated either by cis-regulation, trans-regulation or 

both (Tirosh et al., 2009; Emerson et al., 2010; Schaefke et al., 2013; Artieri & 

Fraser, 2014; McManus et al., 2014; Wang et al., 2015). Surprisingly there seems to 

be several contradictions between different studies. This could be due to variations in 

methodology, such as, environments used, the type of F1 hybrid (intra-specific vs. 

inter-specific), or variations in techniques- earlier studies used microarrays while 

contemporary studies use Next-Generation Sequencing tools such as RNA-seq. For 
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example, previous studies on a hybrid cross between S. paradoxus and S. cerevisiae 

species, showed either similar levels of cis- and trans-regulation (Artieri & Fraser, 

2014), or much higher levels of trans-regulation over cis-regulated transcription 

(McManus et al., 2014), while a hybrid cross between S. cerevisiae populations also 

showed trans-regulation was more common than cis-regulation (Emerson et al., 2010; 

Schaefke et al., 2013). The McManus et al. (2014) study on an inter-specific F1 

hybrid (S. cerevisiae crossed with S. paradoxus) revealed low levels of misexpression 

and high level of S. paradoxus dominated inheritance for the F1 hybrid transcription, 

while Wang et al. (2015) using an inter-specific F1 hybrid between S. cerevisiae and 

S. bayanus showed low levels of additive inheritance and most of the variation in the 

F1 hybrids transcription to be S. cerevisiae dominated. Nonetheless, there were some 

coherent results between studies; the responses to different environments indicated 

trans-regulated F1 hybrid transcription, while the divergence between parental 

species indicated cis-regulated F1 hybrid transcription (Tirosh et al., 2009; Wang et 

al., 2015). Also, different studies found that genes containing a TATA box element(s) 

in their promoter region were more likely to be differentially transcribed between the 

F1 hybrid and its parental species (Tirosh et al., 2006; Schaefke et al., 2013; Wang et 

al., 2015), and evidenced trans but not cis-regulated genes to be enriched for TATA 

box elements (Tirosh et al., 2009), or both cis and trans-regulated genes to be 

enriched for TATA box elements (Wang et al., 2015). The TATA box is a conserved 

element that bounds to a TATA-biding protein and affects the initiation of gene 

transcription. Only 20% of the yeast genes contain TATA box in their promoter 

region and those genes have been associated with stress-related response (Tirosh et 

al., 2006). Environmental-stress response related genes (ESR) have evidence a 

significant differential transcription in a variety of environmental conditions for the 

same yeast strain (Gasch et al., 2000), and this response seems to be common for a 

variety of yeast species (Gasch, 2007). These genes can also have a significant effect 

in the F1 hybrid transcription because they constitute around 16% of yeast genes. 

Whilst a lot of work on F1 hybrids has focused on regulation in transcription in the 

parental strain, there has been little work on the F1 hybrid transcription itself. 

 

We set out to compare an inter-specific F1 hybrid transcription to its parents under 

different environmental conditions. For that, we grew two yeast species, S. cerevisiae, 
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S. paradoxus, and its F1 hybrid in two environments in which a different species was 

superior but in which the F1 hybrid was better than both (Figure 1). We hypothesized 

that the best-parent heterosis shown by the F1 hybrid was the result of it preferentially 

transcribing the superior allele at each heterozygous locus (dominance mechanism). 

According to Goff (2011) model for multigenic heterosis in F1 hybrid, the higher 

fitness allele is preferentially expressed over the lower-fitness alleles at multiple 

heterozygous loci. This model explains the advantage of the F1 hybrid over its parents 

by (1) using allelic specific expression to preferentially transcribe higher and (2) 

promoting environmental dependent transcription so to transcribe the better equipped 

parental alleles for a specific environment. We therefore aimed to test if high levels of 

allele specific expression (cis-regulated transcription) in the F1 hybrid could indicate 

why the hybrid is better fit than both parents for the environments used, and, if so, if 

the F1 hybrid transcription profile resembles the fitter parent for a specific 

environment and has the plasticity to change its transcription profile upon 

environmental change. 

 

Figure 1: Best-parent heterosis 

for an inter-specific F1 hybrid 

in aspirin and lithium acetate 

environments. Fitness of S. 

cerevisiae parent (S. cer in 

orange), S. paradoxus parent (S. 

par in purple), and their F1 

hybrid (black). Error bars 

indicate standard deviation of 

the mean of three replicate 

measurements. Parental species 

with a fitness advantage in the 

specific environment in bold. 
 

In our study, we not only identified the F1 hybrid transcription profile to be 

significantly correlated to the fitter parent for a specific environment, but also to be 

enriched for genes whose transcription was dominated by the fittest parent. In 

addition, our analysis revealed cis-regulated transcription was more pervasive than 

trans-regulated transcription, thus indicating the importance of allelic specific 
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expression in the F1 hybrid under these particular environments. Our results also 

suggested that the F1 hybrid had the ability to display different transcription profiles 

under different environments. Overall these results suggest that the F1 hybrid 

plasticity in transcription might yield its advantage over the parents in different 

environments, and are in agreement with Goff (2011) model for multigenic heterosis 

that is based on the ability of hybrid cells to distinguish between fitter parental alleles. 

 

 

2. Materials and Methods 
Yeast strains 
We used one S. cerevisiae strain (s288c- Cer), one S. paradoxus strain (N17- Par) and 

their inter-specific F1 hybrid (s288c x N17- Hyb or Fcer and Fpar). We chose these 

strains due to their genetically tractability and well-annotated genome (Bergström et 

al., 2014). All the strains were ura auxotrophs. i.e. homozygous for a ura3 deletion, 

therefore if there is a fitness effect of this marker, it would be similar for all the 

strains. 

 

Transcriptome extraction 
We grew the yeast strains in minimum media plus uracil (MIN+URA: 0.67% yeast 

nitrogen base without amino acids, 2%glucose, 0.003% uracil) for 24h with the 

addition of aspirin (10%) or lithium acetate (1%). We chose these two environments 

because of the significant levels of heterosis displayed by the F1 hybrid in 

competition with the S. paradoxus parent in lithium acetate, and with the S. cerevisiae 

parent in aspirin (Chapter I and Bernardes et al., 2016). We grew the two parental 

strains and the F1 hybrid separately in aspirin and in lithium acetate in three 

independent replicates. We extracted the transcriptome of every sample with Master 

Pure™ Yeast purification Kit from Epicenter®. We sequenced the transcriptome 

using Illumina HiSeq technology (1x75bp) with rRNA removal. In total 18 samples 

were sequenced. 
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Sequence alignment 
We mapped the high quality reads identified by FastQC (Andrews, 2010), to a mock 

hybrid genome with hisat2 software (Kim et al., 2015), on average 4.3 million reads 

were mapped per sample. The mock genome was made by concatenating S. cerevisiae 

(s288c) and S. paradoxus (CBS432) genomes as in McManus et al. (2014), the 

genomes used were based on Bergström et al. (2014) reference genomes. We 

identified high accuracy in the mapped reads (Table 1), with S. cerevisiae sample 

reads mapping >99.9% to the s288c genome, and S. paradoxus sample reads mapping 

>99.8% to the CBS432 genome, in addition the hybrid sample reads mapped slightly 

better to CBS432 genome (51% in aspirin and 50.5% in lithium acetate) than to the 

s288c genome in both environments (48.9% in aspirin and 49.5% in lithium acetate). 

 

Statistical analysis- correlation and MDS 
Our gene list was comprised of 5357 orthologous genes, based on common genes 

between S. cerevisisae (s288c) and S. paradoxus (CBS432). We used HTSeq (Anders 

et al., 2015) to count the reads per gene, and DESeq2 (Love et al., 2014) to normalize 

the read counts of every sample by estimation of size factors and estimation of 

dispersion, which normalized the depth and dispersion parameters of every sample so 

to make the samples comparable. We used the normalized read counts to verify the 

correlations between our strain-environment combinations, and to create a Multi-

Dimensional Scaling (MDS) analysis based on Euclidean distances. We used 

Spearman correlation method because it better preserves the relative rank 

relationships between samples, and is less influenced by skewness and outliers (Reeb 

et al., 2015). We compared the correlations of the strain-environment combinations 

with a one-tail correlation test. We compared strain-environment combinations 

transcription by estimating the log fold change of every orthologous gene and the 

corresponding P-value adjusted for multiple comparisons. For the F1 hybrid samples 

we used two types of data: we either sum the reads that mapped to S. cerevisiae 

genome and S. paradoxus genome for every gene as a overall hybrid transcription 

(Hyb), or we separated the hybrid reads into two groups; reads that map to the S. 

cerevisiae genome (Fcer) and reads that map to the S. paradoxus genome (Fpar), as 

an estimation of allelic specific expression; when the number of reads mapped to the 

S. cerevisiae parent (Fcer) was different from the number of reads mapped to the S. 
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paradoxus parent (Fpar), or vice-versa, we classified these genes as having 

differential allelic specific expression in the F1 hybrid, meaning one parental allele 

was differentially transcribed from the other parental allele in the F1 hybrid. 

 
Table 1: RNA-seq reads for samples mapped to S. cerevisiae and S. paradoxus genomes. 

Total reads of every sample that mapped to S. cerevisiae (s288c) and S. paradoxus (CBS432) 

genomes. Samples were comprised of S. cerevisiae (Cer), S. paradoxus (Par) and their hybrid 

(Hyb) in two different environments, aspirin and lithium acetate. The numbers in samples 

indicate the three replicates. 

 

TATA box and ESR 
We used the list of environmental stress response genes (ESR), and a list of genes that 

contain a TATA box element in their promoter region. We obtained a list of ESR 

genes based on Gasch et al. (2000), comprised of 813 genes previously identified for 

S. cerevisiae in different environments, and a list of genes containing a TATA box 

elements in their promoter region for various yeast species from Basehoar et al. 

(2004) and selected for the 1004 genes in common between S. cerevisiae and S. 

paradoxus. We used these lists to detect any enrichment of these particular elements. 

 

F1 Hybrid transcription analysis 
We compared the changes in gene transcription between S. cerevisiae parent (Cer) 

and the F1 hybrid (Hyb) with changes in gene transcription between S. paradoxus 

39	

Environment	Samples	 Total reads	 Mapped to s288c	 Mapped to CBS432	 Mapped to s288c 
(%)	

Mapped to 
CBS432 (%)	

Aspirin	

Cer_1	 3 330 022	 3 328 527	 1 495	 99.96	 0.05	

Cer_2	 4 984 190	 4 981 355	 2 835	 99.94	 0.06	

Cer_3	 4 444 183	 4 441 873	 2 210	 99.95	 0.05	

Par_1	 3 012 208	 5 009	 3 007 199	 0.17	 99.83	

Par_2	 4 349 332	 7 001	 4 342 331	 0.16	 99.84	

Par_3	 4 544 130	 7 608	 4 536 522	 0.17	 99.83	

Hyb_1	 4 081 434	 1 999 179	 2 082 255	 48.98	 51.02	

Hyb_2	 4 290 424	 2 098 242	 2 192 182	 48.90	 51.09	

Hyb_3	 4 450 982	 2 187 693	 2 263 289	 49.15	 50.85	

Lithium 
acetate	

Cer_1	 2 915 001	 2 913 340	 1 661	 99.94	 0.06	

Cer_2	 3 387 356	 3 385 587	 1 769	 99.95	 0.05	

Cer_3	 2 521 850	 2 520 481	 1 369	 99.95	 0.05	

Par_1	 4 422 380	 6 544	 4 415 836 	 0.15	 99.85	

Par_2	 6 093 155	 9 656 	 6 083 499	 0.16	 99.84	

Par_3	 5 697 444	 5 743	 5 691 701	 0.10	 99.9	

Hyb_1	 4 945 944	 2 450 013	 2 495 931	 49.54	 50.46	

Hyb_2	 5 273 607	 2 607 322	 2 666 285	 49.44	 50.56	

Hyb_3	 4 703 861	 2 329 583	 2 374 278	 49.52	 50.47	
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parent (Par) and the F1 hybrid (Hyb) in aspirin and lithium acetate environments. We 

analysed the log fold change values of the transcribed genes between Cer-Hyb and 

Par-Hyb comparisons in both environments; log fold changes within [-1.25; 1.25] 

indicated conserved transcription (based on McManus et al., 2014)), while changes 

outside the conserved transcription limits were classified as additive, overdominant, 

and dominant transcription. F1 hybrid transcription was additive when it was an 

intermediate value between the parental transcriptions (Cer>Hyb>Par or 

Cer<Hyb<Par), F1 hybrid transcription was S. paradoxus overdominant (or S. 

cerevisiae underdominant) when is higher or lower than both Par and Cer 

(Hyb>Par>Cer and Cer>Par>Hyb), F1 hybrid transcription was S. cerevisiae 

overdominant (or S. paradoxus underdominant) when is higher than both Cer and Par 

(Hyb>Cer>Par and Par>Cer>Hyb), F1 hybrid transcription was S. cerevisiae 

dominant when the F1 hybrid transcription was similar Cer but not to Par (Hyb=Cer ≠ 

Par), and F1 hybrid transcription was S. paradoxus dominant when the F1 hybrid 

transcription was similar to Par and but not to Cer (Hyb=Par ≠ Cer). 

 

Allelic specific transcription analysis 
We compared the changes in gene transcription between S. cerevisiae parent (Cer) 

and S. paradoxus parent (Par), and between allelic specific expression in the F1 

hybrid (Fcer compared to Fpar), for aspirin and lithium acetate environments. We 

applied a model with DESeq2 based on (Lovell et al., 2016), which takes in account 

the genotype (Cer or Par) and the generation (parent or F1 hybrid) to assess genes that 

were cis-regulated, and trans-regulated:  

log2qij= β0+ βAAi + βFFi + βAFAi*Fi 

For a sample i and gene j, Ai =1 if sample has a Cer genotype and Ai =0 has a Par 

genotype and, Fi =1 if sample is from a parent (Cer or Par) and Fi =0 if sample is from 

the F1 hybrid (Fcer or Fpar). We used a Likelihood-ratio test (LRT) to compare our 

model with and without interaction, and took into account estimation of size factor 

and estimation of dispersion. Cis-regulated genes were selected by determine βA or 

the difference between genotype within the F1 hybrid (Fcer vs. Fpar, P<0.05), and 

trans-regulated genes were selected by determine the interaction βAF or the difference 

between genotype between generations ((Fcer vs. Fpar)/(Cer vs. Par), P<0.05). Genes 

with both cis and trans-regulation characteristics were identified, and distinguished 
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into two categories: cis-trans regulated (cis-trans (+)) when the F1 hybrid difference 

(log fold change) between alleles was higher or lower than the parental difference, or 

vice-versa, and cis-trans antagonistic (cis-trans (-)) when the F1 hybrid difference 

between alleles was inverse to the parental difference. In addition, we plotted the log 

fold change of comparison between parental transcriptions (Cer-Par) against the log 

fold change of allelic specific expression of the parental alleles in the F1 hybrid (Fcer-

Fpar). We expected a regression with slope 0 if there was only trans-regulation, and a 

regression with slope 1 if there was only cis-regulation of the F1 hybrid parental 

alleles. 

 

Gene regulation by environment and genotype 
We calculated how many genes were differentially transcribed between environments 

within species (compared Cer, Par and F between environments), and how many 

genes were differentially transcribed between parents and F1 hybrid in the same 

environment (Cer-F and Par-F within environments). Moreover we applied a model 

with DESeq2 based on (Lovell et al., 2016), which takes in account the genotype (Cer 

or Par and Fcer or Fpar) and the environment (aspirin or lithium acetate), to assess 

genes whose differentially transcription was due to environment or to genotype, or to 

the interaction between environment and genotype: 

log2qij= β0+ βAAi + βEEi + βAEAi*Ei 

For a sample i and gene j, Ai =1 if sample has a Cer genotype and Ai =0 has a Par 

genotype and, Ei =1 if sample is from aspirin and Ei =0 if sample is from lithium 

acetate. We used a Likelihood-ratio test (LRT) to compare our model with and 

without interaction, and took into account the estimation of size factor and estimation 

of dispersion. Changes in gene transcription due to the genotype (Cer/Fcer vs. 

Par/Fpar) were selected by determine βA, and changes in gene transcription due to 

environment (aspirin vs. lithium acetate) were calculated by determine βE, finally the 

interaction between genotype and environment was identified by the coefficient βAE or 

the difference between genotype between environments (aspirin[Cer vs. Par]/lithium 

acetate[Cer vs. Par], P<0.05). 
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3. Results 
The read counts for the orthologous genes of the same strain-environment 

combinations were organized in three independent replicates, and the strain-

environment combinations were identified as their transcription profiles or the pattern 

and quantity of genes transcribed. The results were divided into two groups; first we 

analysed the transcription profiles of S. cerevisiae parent (Cer), S. paradoxus parent 

(Par) and their F1 hybrid (Hyb), and second we analysed the transcription profiles of 

Cer parent, Par parent and their F1 hybrid allelic specific expression when mapped to 

S. cerevisiae genome (Fcer) and to S. paradoxus genome (Fpar). Finally we compared 

both groups to combine transcription classification and transcription regulation. 

 

F1 hybrid comparisons with parental strains 

Correlations 
We normalized the raw read counts for the parents and the F1 hybrid by taking in 

account the estimation of size factors and estimation of dispersion for negative 

binomial distributed data. We used the normalized data to perform a correlation test 

using the Spearman method. All comparisons between replicates of the same strain-

environment group were highly correlated (ro>0.95- Figure 2). Correlations between 

parents (Cer-Par) in the different environments evidenced the lowest correlation 

between the strain-environment combinations. The F1 hybrid was more correlated 

between aspirin and lithium acetate (average=0.871) than the Cer (average=0.851) 

and Par (average=0.844). Further analysis revealed the F1 hybrid was equally 

correlated to Par and Cer parents in aspirin (z=34.13, P>0.710), and to be equally 

correlated to Cer and Par parents in lithium acetate (z=14.76, P>0.119). 

 

MDS 
We compared the similarities between the normalized transcription profiles of the 

parents and the F1 hybrid in both environments with the use of Multi-Dimensional 

Scaling (MDS). Samples were separated into six groups of strain-environment 

combinations (Figure 3); transcription profiles of samples grown in aspirin showed 

fewer similarities than in lithium acetate. In aspirin, Hyb transcription profile showed 

more similarities to with Par parent than to Cer parent, and clustered between the two 
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parents. In lithium acetate, parents showed great similarities, thus clustering together, 

while Hyb showed fewer similarities with both Cer and Par parents. The Hyb show 

higher similarities between aspirin and lithium acetate than both its parents. 

 
Figure 2: Correlation plot between replicate parental and F1 hybrid samples. Cer (S. 

cerevisiae), F1 hybrid (Hyb), and Par (S. paradoxus) in aspirin and lithium acetate 

environments. Blue represented higher correlations and red lower correlations. Parental 

species with a fitness advantage in the specific environment with a bold legend. 

 

F1 Hybrid transcription analysis 
We calculated the differential transcription of all orthologous genes in pairwise 

comparisons between Cer parent and F1 hybrid (Cer-Hyb), and between Par parent 

and the F1 hybrid (Par-Hyb) for both environments. We analysed log fold change 

values for all orthologous genes between the two comparisons in both environments 

(Figure S1). We selected for genes that were differentially transcribed for one or both 

comparisons (P-value<0.05, adjusted for multiple comparisons) and analysed their log 

fold change values in the respective environments (Figure 4). 

Correlation plot

Par3

Par2

Par1

Hyb3

Hyb2

Hyb1

Cer3

Cer2

Cer1

Par3

Par2

Par1

Hyb3

Hyb2

Hyb1

Cer3

Cer2

Cer1

C
er
1

C
er
2

C
er
3

H
yb
1

H
yb
2

H
yb
3

P
ar
1

P
ar
2

P
ar
3

C
er
1

C
er
2

C
er
3

H
yb
1

H
yb
2

H
yb
3

P
ar
1

P
ar
2

P
ar
3

0.74 0.73 0.72 0.82 0.82 0.82 0.85 0.85 0.86 0.78 0.78 0.78 0.84 0.84 0.85 0.95 0.95 1

0.68 0.67 0.65 0.78 0.78 0.77 0.83 0.83 0.82 0.76 0.75 0.74 0.84 0.87 0.84 0.96 1

0.71 0.7 0.69 0.81 0.8 0.8 0.85 0.85 0.84 0.79 0.78 0.78 0.88 0.87 0.87 1

0.86 0.86 0.85 0.92 0.92 0.91 0.91 0.9 0.9 0.89 0.9 0.85 0.98 0.97 1

0.82 0.82 0.8 0.88 0.88 0.86 0.88 0.87 0.86 0.88 0.88 0.83 0.99 1

0.84 0.83 0.82 0.9 0.89 0.88 0.89 0.88 0.87 0.89 0.89 0.84 1

0.84 0.84 0.82 0.82 0.83 0.82 0.75 0.76 0.77 0.98 0.97 1

0.87 0.87 0.85 0.87 0.87 0.86 0.8 0.8 0.8 0.99 1

0.86 0.86 0.84 0.86 0.86 0.85 0.79 0.79 0.8 1

0.83 0.82 0.82 0.95 0.94 0.95 0.99 0.99 1

0.82 0.81 0.81 0.94 0.94 0.95 0.99 1

0.82 0.81 0.81 0.95 0.93 0.94 1

0.94 0.94 0.95 0.99 0.99 1

0.95 0.95 0.94 0.99 1

0.95 0.94 0.94 1

0.99 0.99 1

0.99 1

1

0.64

0.676

0.712

0.748

0.784

0.82

0.856

0.892

0.928

0.964

1

A
sp

iri
n 

Li
th

iu
m

 a
ce

ta
te

 

Aspirin Lithium acetate 

Cer1	

Cer2	

Cer3	

Hyb1	

Hyb2	

Hyb3	

Par1	

Par2	

Par3	

C
er
1	

C
er
2	

C
er
3	

H
yb
1	

H
yb
2	

H
yb
3	

Pa
r1
	

Pa
r2
	

Pa
r3
	

C
er
1	

C
er
2	

C
er
3	

H
yb
1	

H
yb
2	

H
yb
3	

Pa
r1
	

Pa
r2
	

Pa
r3
	

Cer1	

Cer2	

Cer3	

Hyb1	

Hyb2	

Hyb3	

Par1	

Par2	

Par3	



Chapter II	

67	

 
Figure 3: MDS analysis of parental and F1 hybrid transcription profiles. Cer (S. cerevisiae), 

Par (S. paradoxus), and their F1 hybrid (Hyb) in in aspirin and lithium acetate environments. 

Cer in orange, Par in purple, and Hyb in black. Aspirin environment (Asp) and lithium acetate 

(LiAc). Parental species with a fitness advantage in the specific environment within a thicker 

circle and with bold labels. 

 

In aspirin, 3964 genes were differentially transcribed in one or both comparisons; 

3034 genes were differentially transcribed between Cer-Hyb, 2587 genes were 

differentially transcribed between Par-Hyb, and 1657 genes in common between the 

two comparisons. We identified 223 genes that were uniquely differentially 

transcribed between Par-Hyb, while 360 genes, significantly more, were uniquely 

differentially transcribed between Cer-Hyb (z=4.038, df=1, P<0.001). The uniquely 

differentially transcribed genes between Cer-Hyb were enriched for mitochondrial 

translation and single organism process (GO terms- http://www.geneontology.org/). 

In lithium acetate, 3995 were differentially transcribed in one or both comparisons; 

2991 genes were differentially transcribed between Cer-Hyb, while 2324 genes were 

differentially transcribed between Par-Hyb, and 1320 genes in common between both 

comparisons. We detected 428 genes that were uniquely differentially transcribed 
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between Cer-Hyb, while 261 genes, a significant lower number, were uniquely 

differentially transcribed between Par-Hyb (z=4.531, P<0.001). The genes that were 

uniquely differentially transcribed between Par-Hyb were enriched for catalytic 

activity. Further analysis indicated that 549 genes were differentially transcribed 

between Cer-Hyb and between Par-Hyb in both environments. These genes were 

enriched for processes such as carboxylic acid metabolic, oxidation-reduction and 

nitrogen compound. Moreover, from the 549 genes 32 were genes with a TATA box 

element in their promoter significantly less than expected by random (χ2=6.75, 

P=0.009), while 105 genes were in common with the ESR gene list significantly more 

than expected by random (χ2=3.838, P=0.050). 

 

In aspirin, the majority of the differentially transcribed F1 hybrid genes (3361 genes 

or 84.8%) had a log fold change within the limits of parental transcription ([-1.25; 

1.5]) and was classified has conserved. The remaining genes transcription was 

classified as: additive for 47 genes when Hyb was an intermediate of both parents 

(7.8%), S. paradoxus overdominant for 17 genes (2.8%), S. cerevisiae overdominant 

for 6 genes (1%), S. paradoxus dominant for 390 genes when Hyb was similar to S. 

paradoxus but not to S. cerevisiae (64.7%) and only 143 genes were S. cerevisiae 

dominant when Hyb was similar to S. cerevisiae but not to S. paradoxus (23.7%) 

(Figure 4A). In lithium acetate, most of the differentially transcribed hybrid genes 

(3141 genes or 78.6%) had a log fold change within the limits of parental 

transcription ([-1.25; 1.5]) and were classified has conserved. The remaining genes 

transcription was classified as: additive for 47 genes (5.5 %), S. paradoxus 

overdominant for 27 genes (3.2%), S. cerevisiae overdominant for 39 genes (4.6%), S. 

cerevisiae dominated for 412 genes (48.2%), and only 326 genes were S. paradoxus 

dominated (38.2%) (Figure 4B). 
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Figure 4: Changes in F1 hybrid transcription in comparison with Cer and Par parents in 

aspirin and lithium acetate environments. Axis refers to log fold change values for Cer-Hyb 

comparison against log fold change for Par-Hyb comparison. A and B graphs refer to 

percentage of non-conserved genes that were differentially transcribed in aspirin and lithium 

acetate. Points, Classification (%), and Bars refer to F1 hybrid transcription as conserved 

(grey), Additive (blue), S. paradoxus overdominant (Spar overdominant-crissom), S. 

cerevisiae overdominant (Scer overdominant-pink), S. cerevisiae dominant (Scer dominant- 

orange), and S. paradoxus dominant (Spar dominant- purple). Parental species with a fitness 

advantage in the specific environment with a bold legend. 
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(ro>0.95- Figure 5). Correlations between parents in different environments 

evidenced the lowest correlation between strain-environment combinations, while the 

F1 hybrid allelic specific expression showed better correlations to their respective 

parents in the two environments. We compared the parents with the F1 hybrid allele 

specific expression in aspirin and identified a significant higher correlation between 

Par-Fpar than between Cer-Fcer (z=5.31, P<0.001), while in lithium acetate there was 

a higher correlation between Cer-Fcer in comparison to Par-Fpar but was not 

significant (z=2.54, P<0.001). 

 

 
Figure 5: Correlation plot between replicate parental and F1 hybrid allelic specific samples. 

Cer (S. cerevisiae), F1 hybrid (Fcer and Fpar), and Par (S. paradoxus) in aspirin and lithium 

acetate environments. Blue represents highly correlations and red low correlations. Parental 

species with a fitness advantage in the specific environment with a bold legend. 
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MDS 
We used the normalized transcription profiles to compare the similarities between 

parents and the F1 hybrid’s allelic specific expression in both environments by the 

means of a MDS. The samples were separated into eight groups of strain-environment 

combinations (Figure 6); the transcription profiles of the parents grown in aspirin 

showed fewer similarities than the parents grown in lithium acetate. In aspirin, the 

transcription profile of the F1 hybrid allelic specific expression Fpar showed greater 

similarities to the Par parent than Fcer showed to the Cer parent. In lithium acetate the 

opposite happened; the transcription profile of the F1 hybrid allelic specific 

expression Fcer showed greater similarities to both Cer and Par parents than Fpar to 

the Par parent. 

 
Figure 6: MDS analysis of parental and F1 hybrid allelelic specific transcription profiles. Cer 

(S. cerevisiae), Par (S. paradoxus), and their F1 hybrid (Fcer and Fpar) in aspirin and lithium 

acetate environments. Cer in orange, Par in purple, Fcer in light grey, and Fpar in dark grey. 

Aspirin environment (Asp) and lithium acetate (LiAc). Parental species with a fitness 

advantage in the specific environment within a thicker circle and with bold labels. 
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Allelic specific expression analysis 
We calculated the differential transcription of all orthologous genes in pairwise 

comparisons between parents (Cer-Par) and between allelic specific expressions of 

the F1 hybrid (Fcer-Fpar). We analysed log fold change values for every orthologous 

gene between the two comparisons. In aspirin, there were 3886 genes differentially 

transcribed; 2867 genes between parents (Cer-Par), 3179 genes between parental 

alleles in the F1 hybrid (Fcer-Fpar), and 2160 genes in common between both 

comparison. In lithium acetate, there were 4607 genes differentially transcribed; 3741 

genes between parents, 3968 between parental alleles in the F1 hybrid, and 3102 

genes in common between both comparisons. 

We used a model to calculate the coefficients for all orthologous genes that reflect 

cis-regulation and trans-regulation of transcription. For cis-regulation we selected for 

genes with differential transcription between parental alleles in the F1 hybrid (Fcer-

Fpar) in aspirin and lithium acetate, while for trans-regulation we determined genes 

with differential transcription between genotypes (Cer-Par or Fcer-Fpar) and between 

generations (parent-F1 hybrid) (Figure 7). Genes that showed evidence of both cis- 

and trans-regulated transcription were classified into cis-trans regulated or 

antagonistic. We identified in aspirin, 1795 cis-regulated genes (33.5%), 767 trans-

regulated genes (14.3%), and 1416 genes with both cis- and trans-regulation 

characteristics; 903 genes were cis-trans regulated (cis-trans (+) 17%) and 508 genes 

were cis-trans antagonistic (cis-trans (-) 9.5%). We identified in lithium acetate, 1848 

cis-regulated genes (34.5%), 776 trans-regulated genes (14.5%), and 938 genes with 

both cis- and trans-regulation characteristics; 527 genes were cis-trans (cis-trans (+) 

9.8%) and 411 genes were cis-trans antagonistic (cis-trans (-) 7.7%). Further analysis 

identified a significant enrichment for TATA box elements in the promoter region for 

trans-regulated genes in lithium acetate (χ2=4.762, P=0.029) but not in aspirin. 

We compared the log fold change of the parents against the log fold change of the 

allelic specific expression in the F1hybrid for both environments (Figure 7). There 

was a close positive relationship between parental differences and F1 hybrid allelic 

specific differences. The difference in gene transcription between parents (Cer-Par) 

tended to be higher than the difference between allelic specific expressions of F1 

hybrid alleles (Fcer-Fpar) in both environments; aspirin with a slope of 0.566 

(F1,5356=5066, P<0.001) and lithium acetate with a slope of 0.500 for lithium acetate 
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(F1,5356=3480, P<0.001). Thus cis- and trans-regulated transcriptions were present. We 

compared for each orthologous genes its classification (additive, overdominant, or 

dominant) with its regulation of transcription and all classes in both environments 

evidenced a higher number of cis-regulated genes than trans-regulated genes.  

 
Figure 7: Changes in parental transcription and allelic specific expression of the F1 hybrid in 

aspirin and lithium acetate environments. Axis refers to log fold change values for Cer-Par 

comparison against log fold change for Fcer-Fpar comparison. A and B graphs refer to 

percentage of genes that were cis-regulated genes (yellow), trans-regulated genes (blue), cis-

trans (+) regulated genes (green) and cis-trans (-) regulated genes (orange). 
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the allelic specific expression of the F1 hybrid (Fcer and Fpar). We analysed log fold 

change values for every gene between environments. For Cer parent there were 3171 

genes differentially transcribed between environments, 2722 for Par parent, 3001 

genes for the F1 hybrid, 2744 genes for the Fcer allele, and 2767 genes for Fpar allele. 
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Cer, Par and F, from those a significant number of 230 genes were in common with 

the ESR gene list (χ2=4.452, P=0.035). We used a model to calculate the coefficients 

for all orthologous genes that indicated if changes in transcription were due to 

genotype, to environment or to the interaction between genotype and environment. 

Our results showed 1165 genes (22%) with only a genotype effect, 1112 genes (21%) 

were affected by only environment, and a similar number of 1070 genes (21%) were 

affected by the interaction between genotype and environment. The other 36% of 

genes did not have a specific effect in transcription. Further analysis revealed that 

genes that had changes in transcription due to genotype were enriched for cis-

regulation in transcription (51%), while genes that had changes in transcription due to 

environment were enriched for trans-regulation (17%). The genes with changes in 

transcription due to the interaction between genotype and environment were enriched 

for cis-regulated genes as well (36%) (Figure 8). 

 

 

4. Discussion 
Here we found how the transcription of two yeast species, S. cerevisiae (Cer) and S. 

paradoxus (Par), relates to the transcription of their F1 hybrid. We analysed the 

transcription profile of the F1 hybrid and its parents in two different environments, 

aspirin and lithium acetate. The environments used in this study were chosen because 

previous work that had identified an advantage of S. paradoxus over S. cerevisiae in 

aspirin, and an advantage of S. cerevisiae over S. paradoxus in lithium acetate, while 

their F1 hybrid outcompeted both parents in both environments (Chapter I and 

Bernardes et al., 2016). We were intrigued by the F1 hybrid’s ability to outcompete 

both parents, a phenomenon know as heterosis (Shull, 1908) , and if variations in the 

F1 hybrid’s transcription could explain its fitness advantage. We wanted to show that 

instead of a deregulation in transcription, there could be induction and a directionality 

of the variations in the F1 hybrid transcription so it resembles the fitter parent for a 

specific environment (Goff, 2011). 
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Figure 8: Classification 

of gene regulation by 

genotype and/or 

environment. Gene 

regulation identified as 

cis-regulation (yellow), 

trans-regulation (blue), 

cis-trans regulation 

(green) and cis-trans 

antagonistic (orange) by 

changes in gene 

transcription due to 

genotype (blue), 

environment (green), 

genotype-environment 

interaction (blue-green),  
and non-specific (grey). 

 

We identified a high similarity between the F1 hybrid and the fitter parent for a 

specific environment when we analysed the F1hybrid transcription as a whole. The 

MDS analysis (Figure 3) indicated that the F1 hybrid was capable of coordinating its 

transcription to resemble the fitter S. paradoxus parent in aspirin environment. In 

addition, the majority of differentially transcribed genes of the F1 hybrid with a non-

conserved inheritance (Figure 4) were S. paradoxus dominant in aspirin (64.7% over 

23.7% for S. cerevisiae dominant) and S. cerevisiae dominant in lithium acetate 

(48.2% over 38.2% for S. paradoxus dominant) (Figure 4). A recent study by 

McManus et al. (2014), also classified the transcription of a similar inter-specific 

yeast F1 hybrid and identified most of the non-conserved F1 hybrid genes to be S. 

paradoxus dominated over S. cerevisiae, unfortunately this study did not produce any 

fitness assays for the environments used, so the reason for the abundance of S. 

paradoxus dominant transcription of F1 hybrid remains unknown. It is difficult to 

distinguish if the F1 hybrid transcription resembles S. paradoxus transcription 

because it was advantageous or if it was due to stochasticity, although randomness 

seems unlikely because the F1 hybrid S. paradoxus dominated transcription was two 

thirds higher than the S. cerevisiae dominated transcription (McManus et al., 2014). 
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Also, a similar study used a inter-specific F1 hybrid between S. cerevisiae and S. 

bayanus (Wang et al., 2015) which showed greater levels of S. cerevisiae dominated 

transcription over S. bayanus, again the question remains if this was due to pure 

chance or if it was dependent on the environment the researchers grew the yeast in? 

Our study might answer this question; because the environments were carefully 

chosen, we knew a priori that S. paradoxus would perform better in aspirin and S. 

cerevisiae in lithium acetate. When the F1 transcription was dominated by S. 

paradoxus-like transcription in aspirin and then shifts to be dominated by S. 

cerevisiae-like transcription in lithium acetate indicated a coordination transcription 

by F1 hybrid. This might render the F1 hybrid the fitness advantage we had 

previously detected when in direct competition with its parents (Chapter I and 

Bernardes et al., 2016). Thus the prevalence of the dominant transcription of the fitter 

parent for a specific environment indicates a directionality of F1 hybrid transcription, 

and the plasticity to modify its transcription environmental change (Gasch et al., 

2000).  

 

S. cerevisiae and S. paradoxus are closely related yeast species that can hybridise, 

even though their populations can genetically diverged up to 14%, according to SNP 

data. The genetic divergence between parents of the F1 hybrid gives us the ability to 

distinguish in hybrids between reads that mapped to S. cerevisiae from reads that 

mapped to S. paradoxus. The distinction between parental alleles in the F1 hybrid 

enables the detection of allelic specific expression (Figure S1); if the parental alleles 

are differentially transcribed we identify them as being cis-regulated, while 

differences in the transcription of both parental alleles in comparison to the parents is 

due to trans-regulation. We wanted to test if the ability of the F1 hybrid to resemble 

the fitter parent previously detected was based on the capacity of allelic specific 

expression?  

 

We identified a high similarity between the F1 hybrid allelic specific expression and 

the fitter parent for a specific environment. Both correlation plot and MDS analysis 

(Figure 5 and Figure 6) indicated that the F1 hybrid transcription of S. paradoxus 

alleles was more similar to the S. paradoxus parent than the transcription of S. 

cerevisiae alleles to the S. cerevisiae parent in aspirin, the environment that favours S. 
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paradoxus (z=5.31, P<0.001). While the inverse occurred in lithium acetate, the 

environment that favours S. cerevisiae, where F1 hybrid transcription of S. cerevisiae 

alleles was more similar to the S. cerevisiae parent than the transcription of S. 

paradoxus alleles to the S. paradoxus parent (z=2.54, P<0.001).  

 

The F1 hybrid distinguishs between parental alleles and preferentially transcribes the 

fitter parental allele for a given locus using allelic specific expression. Not only the 

ability to coordinate the allelic specific expression to resemble the fitter parent 

occurres, but the F1 hybrid also has the plasticity to modify its transcription upon 

environmental change. Both these occurrences are in agreement with Goff (2011) 

model for multigenic heterosis; where the F1 hybrid itself can induce transcription of 

the most advantageous parental alleles for a specific environment. Even though this 

model is based in the stability of the resulting proteins and we did not collect this type 

of data, the transcription response that the model refers to was undeniable. However 

this model relies on the ability of an individual cell to produce a transcriptional 

response upon changes in protein stability, and such mechanism has never been 

detected. We can also think of a different model, where different cells acquire 

divergent transcription profiles and, depending on the environment, one transcription 

profile will be favoured over the others. The cell(s) with the fitter transcription 

profile, i. e. the transcription profile that resembles the fitter parent for a specific 

environment acquires a fitness advantage that spreads the advantageous transcription 

profile throughout the cell population. In our study we cannot detect if different cells 

display different transcription profiles because our data only summarizes the average 

transcription profile of a cell population, however the response to this model would be 

similar to what we detected. Neither models for molecular heterosis can be tested with 

this study but further experiments, using techniques such as single cell sequence could 

provide the advances needed to test the basis for heterosis at a molecular level. 

Nevertheless, as far as we know, this was the first time heterosis at the transcriptome 

level was directly tested and described in literature.  

 

In addition, we also identified cis-regulation to be more pervasive than trans-

regulation under both environments (Figure 7), the striking higher levels of cis-

regulation in the F1 hybrid are also supported Goff (2011) model for multigenic 
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heterosis at molecular level. These results were not in agreement with previous 

studies, which identified trans-regulation to be a more common regulation of 

transcription between intra-specific F1 hybrids and their parents (Emerson et al., 

2010; Schaefke et al., 2013). These contradicting results could be due to a decrease in 

power of identifying allelic specific expression in intra-specific F1 hybrids. Our 

results also differ from Artieri and Fraser (2014) where they found similar levels of 

cis- and trans-regulation using an inter-specific F1 hybrid between S. paradoxus and 

S. cerevisiae. Once more, different methodologies might be the reason behind such 

contradicting results; Artieri and Fraser (2014) compare the F1 hybrid to haploid S. 

cerevisiae parent and diploid S. paradoxus parent, so the increased variation of trans-

regulation might be completely biases because of the different states of ploidy of the 

parents. This would also explain the enrichment for mating and fertilization genes 

they identified, because the haploid S. cerevisiae parent would be transcribing mate-

specific genes but not diploid specific genes like the diploid S. paradoxus parent 

would. Thus the literature seems to disagree in which type of regulation is the major 

force affecting the divergence between parental transcriptions, the differences could 

be due to the variety of environments or the type of F1 hybrids we and other studies 

used, so we will abstain to speculate or give definitive proof on this subject. 

Nevertheless our data supports the claim that cis-regulated transcription is more 

pervasive for species divergence and trans-regulated transcription has a bigger effect 

in response to environment (Figure 8) as in Tirosh et al. (2009). 

 

We detected low levels of misexpression in the F1 hybrid, identified as S. paradoxus 

and S. cerevisiae overdominant transcription (Figure 4 and Figure S3); overall there 

were 0.45% genes misexpressed in aspirin, and 1.2% in lithium acetate, much lower 

than previously detected by McManus et al. (2014) where 7% of genes were 

misexpressed, and more similar but still lower than Tirosh et al. (2009) where 1-6% 

of the genes were misexpressed. This evidences how different methodologies might 

affect the results of different studies; the three studies used an inter-specific F1 hybrid 

between S. paradoxus and S. cerevisiae, however Tirosh et al. (2009) used 

microarrays to measure variations between the F1 hybrid and its parents, while 

McManus et al. (2014) used RNA-seq but different statistical methods from the ones 

used in this study. 
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Interestingly differentially transcribed genes between environment for S. cerevisiae, 

S. paradoxus and their F1 hybrid, revealed enrichment for Environmental-Stress 

Response genes (ESR) (χ2=4.452, P=0.035). Also the differentially transcribed genes 

between parents and the F1 hybrid in common between aspirin and lithium acetate 

environments showed enrichment for ESR genes (χ2=3.838, P=0.050). These genes 

are commonly differentially transcribed when yeast copes with environmental change 

(Gasch et al., 2000), and up- or down-regulation of these genes seems to be common 

for a variety of yeast species (Gasch, 2007). Both aspirin and lithium acetate 

environments were affected by ESR general response, indicating these environments 

were stressful enough to induce a general response to stress in both parents and the F1 

hybrid. Our results supported and added to the claim that ESR genes are crucial in 

transcription response upon environmental change. On the contrary, the presence of 

TATA box elements did not affect differentially transcribed genes between the 

parents and the F1 hybrid for either environments, and we could only account for an 

enrichment of differentially transcribed trans-regulated genes in lithium acetate 

(χ2=4.762, P=0.029). TATA box presence was previous related with divergence of 

evolutionary lineages such as two different yeast species, and the genes with this 

element are normally common in the promoters of stress-related genes (Tirosh et al., 

2006). However our results did not indicate any effect of the TATA box elements in 

the F1 hybrid differentially transcribed or stress-related genes thus its presence was 

not a generalized factor as in Tirosh et al. (2009) and Wang et al. (2015). 

 

When we analysed the unique differentially transcribed genes between S. cerevisiae 

and F1 hybrid in aspirin environment, there was an enriched for mitochondrial 

translation and single organism process, meaning the genes responsible for the 

translation of proteins by the mitochondrion were up or down-related in the F1 hybrid 

in comparison to S. cerevisiae. Interestingly, the first metabolite of aspirin (salicylate) 

is known to be an uncoupler and an inhibitor of mitochondrial electron transportation 

(Norman et al., 2004). It seems to be favourable for F1 hybrid to have mitochondrial 

translation genes similar to S. paradoxus, which might be better equipped to deal with 

high levels of aspirin and give the F1 hybrid and the S. paradoxus an intrinsic fitness 

advantage in this environment. Why would S. paradoxus be more suited to withstand 

the effects of aspirin? This might be due to its ecology; S. paradoxus has been 
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isolated from oak bark around the world (Liti et al., 2009) and bark of white willows 

contains salicin, a chemical similar to salicylate, so it might be possible S. paradoxus 

populations to have been in contact with similar compounds, and therefor be better 

adapted to deal with aspirin than the domesticated S. cerevisiae. 

 

Our study shed light on the regulation of transcription of an inter-specific F1 hybrid 

made from crossing two closely related species. We proposed that the transcription 

regulation of F1 hybrid does not only reflect variation due to parental divergence but 

is also dependent on the environment the F1 hybrid is in. The environment influenced 

the F1 hybrid transcription of parental alleles in a way that resembled the fitter parent 

for a specific environment, and the F1 hybrid had the plasticity to modify its 

transcription upon environmental change. Finally high levels of heterosis previously 

described for the F1 hybrid (Chapter I and Bernardes et al., 2016) might result from a 

molecular mechanism for heterosis described by Goff (2011) where parental alleles 

were differentially transcribed in order to resemble the transcription parent for a 

specific environment. This phenomenon might be one of main contributors for 

variations in fitness between divergent parental population and their hybrid offspring.  
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5. Supplementary Material 
Figure S1: Changes in gene transcription according to gene regulation of parents and their F1 

hybrid. Changes in gene transcription between S. cerevisiae parent (Cer-orange), S. 

paradoxus parent (Par-purple) and allelic specific expression of the F1 hybrid mapped to S. 

cerevisiae (Fcer-light grey) and mapped to S. paradoxus (Fpar- dark grey). Gene transcription 

is cis-regulated when parental alleles in the hybrid are differentially transcribed. Gene 

transcription is trans-regulated when the parental alleles in the hybrid are not differentially 

transcribed. Gene transcription is cis-trans (+) regulated when the parental alleles in the 

hybrid are differentially transcribed and are not differential transcribed between parents or 

when the parental alleles in the hybrid are not differentially transcribed and are differential 

transcribed between parents. Gene transcription is cis-trans (-) regulated or antagonistic when 

the parental alleles in the hybrid are differentially transcribed and are differential transcribed 

between parents on the opposite direction. 
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Figure S2: Changes in gene transcription according to the F1 hybrid transcription in 

comparison with both parents. Changes in gene transcription between S. cerevisiae parent 

(Cer-orange), S. paradoxus parent (Par-purple) and the F1 hybrid (Hyb-black). F1 hybrid 

transcription is conserved when its similar to both parents (Hyb=Par=Cer), F1 hybrid 

transcription is additive when it is an intermediate between the parental transcriptions 

(Cer>Hyb>Par or Cer<Hyb<Par), F1 hybrid transcription is S. paradoxus overdominant (Spar 

overdominant or Scer underdominant) when is higher than both Par and Cer or lower than 

both Cer and Par (Hyb>Par>Cer and Cer>Par>Hyb), F1 hybrid transcription S. cerevisiae 

overdominant (Scer overdomiant or Spar underdominant) when is higher than both Cer and 

Par or lower than both Par and Cer (Hyb>Cer>Par and Par>Cer>Hyb), F1 hybrid 

transcription is S. cerevisiae dominant (Scer dominant) when is similar Cer but not to Par 

(Hyb=Cer ≠ Par), F1 hybrid transcription is S. paradoxus dominant (Spar dominant) when is 

similar to Par and but not to Cer (Hyb=Par ≠ Cer). 

 
  

Cer Par Hyb

Tr
an

sc
rip

tio
n

Conserved

Cer Par Hyb Cer Par Hyb

Tr
an

sc
rip

tio
n

Additive

Cer Par Hyb Cer Par Hyb

Tr
an

sc
rip

tio
n

Spar Overdominant
Scer Underdominant

Cer Par Hyb Cer Par Hyb

Tr
an

sc
rip

tio
n

Scer dominant

Cer Par Hyb Cer Par Hyb

Tr
an

sc
rip

tio
n

Scer Overdominant
Spar Underdominant

Cer Par Hyb Cer Par Hyb

Tr
an

sc
rip

tio
n

Spar dominant



Chapter II	

83	

Figure S3: Changes in F1 hybrid transcription (Hyb) in comparison to S. cerevisiae (Cer) and 

S. paradoxus (Par) parents in aspirin and lithium acetate environments. Axis refers to log fold 

change values for Cer-Hyb comparison against log fold change for Par-Hyb comparison. 

Points refer to F1 hybrid transcription as Conserved (grey), Additive (blue), S. cerevisiae 

overdominant (Scer overdominant or Spar underdominant- crissom), S. paradoxus 

overdominant (Spar overdominant or Scer underdominant- pink), S. cerevisiae dominant 

(Scer dominant- orange), and S. paradoxus dominant (Spar dominant- purple). At center 

percentages for Conserved, Additive, S. paradoxus overdominant (Spar overdominant), S. 

cerevisiae overdominant (Scer overdominant), S. paradoxus dominant (Spar dominant), and 

S. cerevisiae dominant (Scer dominant). Percentages of inheritance of F1 hybrid gene 

transcription in the center. Parental species with a fitness advantage in the specific 

environment in bold. 
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1. Introduction 
When two divergent populations have the ability and the opportunity to mate and do 

so, their first hybrid generation (F1 hybrid) inherits a complete set of alleles from both 

parents, thus the characteristics of parental genomes and their interaction will 

influence the overall hybrid fitness. When the F1 hybrid displays enhanced viability 

or fitness in comparison to one or both parents, we refer to this phenomenon as 

heterosis or hybrid vigour (Shull, 1948). Saccharomyces yeasts have recently become 

an important model system for investigating the genetic basic of heterosis. The 

facultative sexual reproduction of Saccharomyces yeast offers two important features 

for the study of heterosis. First, their promiscuous sexual stage allows crosses 

between highly genetically diverged strains or even different species (Naumov, 1996). 

Second, haploid vegetative growth and autodiploidization allows the propagation of 

perfectly homozygous strains and repeated crosses can be made using genotypically 

identical isolates. 

 

We have previously shown that the F1 hybrid of inter-specific crosses between S. 

cerevisiae and S. paradoxus strains generally exhibit more heterosis than do intra-

specific crosses within S. paradoxus species suggesting that higher genetic divergence 

between parents might increase the likelihood of heterosis (Bernardes et al., 2016). 

However, while heterosis is rarely detected in F1 hybrids of intra-specific crosses 

between S. paradoxus strains, intra-specific crosses between S. cerevisiae strains 

often result in heterosis in the F1 hybrids (Zörgö et al., 2012), a surprising result 

given the much greater genetic divergence between S. paradoxus populations relative 

to S. cerevisiae populations (Liti et al., 2009). Further studies have found that 

heterosis is much more prevalent in F1 hybrids from crosses involving domesticated 

S. cerevisiae strains than it is in those involving wild primary isolates (Plech et al., 

2014). Thus, it appears that domesticated S. cerevisiae strains are unusual, and 

crossing them to wild strains of either S. cerevisiae or S. paradoxus tends to produce 

offspring with higher fitness than the domesticated parents. 

 

One important factor that can be a caveat in heterosis studies is the way we 

manipulate primary isolates in the laboratory. When preparing a yeast strain coming 

from a domesticated of a wild habitat for laboratory work, it is invariably made 
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homozygous by monosporic cloning. Monosporic cloning or autodiplodization 

encompasses inducing sporulation of the primary isolate and allow the haploid spores 

to grow vegetatively, mate-type switch followed by mating within the same haploid 

colony to produce homozygous diploids. Any recessive deleterious alleles that were 

heterozygous in the primary isolate will be exposed by this artificial step, suppressing 

fitness of the derived monosporic clones. When the monosporic clones from different 

primary isolates are crossed together to form an F1 hybrid their fitness will be 

restored, giving the impression of heterosis if we compare to the parental monosporic 

clone, when the fair comparison should be with the primary heterozygous isolate.  

 

One clear difference between domesticated and wild primary isolates is the much 

higher level of heterozygosity observed in domesticated primary isolates. Magwene et 

al. (2011) surveyed S. cerevisiae primary isolates from domesticated and wild habitats 

and measured their heterozygosity; they identified that domesticated isolates from 

clinics and vineyards had high heterozygosity while wild isolates from woodlands had 

much lower heterozygosity. Since wild primary isolates are largely homozygous, any 

recessive deleterious alleles will be exposed to selection and purged from the 

population. Because yeast primarily grows as vegetative diploids, sexual cycles are 

rare specially in the continuous culture conditions of domesticated habitats (Ruderfer 

et al., 2006), where simplified environments like in wineries or breweries do not 

require the maintenance of all cellular functions as in the wild habitat (Zörgö et al., 

2012). The maintenance of high levels of heterozygosity in the domesticated isolates 

suggests that recessive deleterious alleles are not exposed to selection and may 

accumulate within domesticated populations. Not exposed to selection, that is, until 

they are brought into the laboratory and passed through a single-spore stage. 

 

The highly heterozygous domesticated primary isolates have not been used in 

heterosis studies, instead most studies used derived monosporic clones as parental 

strains for the F1 hybrids. The monosporic clones are used as parents because it is 

easier to cross them with other genetically divergent monosporic clones in repeated 

crosses, allowing the F1 hybrids to be similar and comparable.  
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Domesticated primary isolates of S. cerevisiae display high levels of heterozygosity 

(Magwene et al., 2011). Thus, we proposed the observed heterosis of the F1 hybrid of 

domesticated strains (Zörgö et al., 2012; Plech et al., 2014) is in fact an artefact of 

comparing the fitness of high heterozygous F1 hybrid to highly homozygous 

monosporic clones parents. Wild primary isolates of S. cerevisiae and S. paradoxus 

have low levels of heterozygosity (Johnson et al., 2004; Magwene et al., 2011) and 

therefore are likely to carry fewer recessive deleterious alleles. If these wild primary 

isolates are made homozygous into monosporic clones, there will be few recessive 

deleterious alleles exposed, consequently, if we were to cross two of these 

monosporic clones, there would be no particular increase of heterozygosity or overall 

fitness. Thus the F1 hybrid fitness would be similar to the original wild primary 

isolate and to its monosporic clones parents. Thus, we proposed that the lack of 

heterosis in F1 hybrids of S. paradoxus populations (Chapter I and Bernardes et al., 

2016) is due to the lack of heterozygosity of the wild populations. 

 

We expect a monosporic clone to immediately fix a proportion of deleterious 

recessive alleles present in the primary heterozygous isolate. When two monosporic 

clones from divergent primary isolates are crossed, much of the heterozygosity will be 

restored and once again recessive mutations will be masked, restoring fitness and 

giving the illusion of heterosis. We predict that monosporic clones derived from 

highly heterozygous domesticated isolates will exhibit a decrease in fitness more 

severe than the monosporic clones derived from less heterozygous wild primary 

isolates, and consequently, a greater fitness advantage of the F1 hybrid made from a 

cross of monosporic clones derived from highly heterozygous domesticated isolates. 

We argue that the F1 hybrid increased fitness will not be higher than the fitness of the 

original heterozygous domesticated isolate, and higher than the monosporic clone 

parent, if the primary isolate has multiple masked deleterious alleles (Figure 1).  

 

We used a set of S. cerevisiae primary isolates with known heterozygosity, isolated 

from both domesticated and wild habitats (Magwene et al., 2011). We set out to 

replicate the normal workflow in the laboratory by deriving monosporic clones from 

the primary isolates and then crossing back the monosporic clones to make a inbred 

form of the primary isolates (Figure S1). We measured spore viability and calculated 
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the asexual growth or fitness of the primary isolates, their derived monosporic clones 

and inbred crosses between different monosporic diploids derived from the same 

primary isolate, by calculating their maximum growth rate. We expected high 

heterozygosity domesticated isolates to have higher growth than the monosporic 

clones, and inbred crosses to have growth intermediate between them. We also 

expected the differences in gorwths between these three types to be less in low 

heterozygosity wild isolates than in high heterozygosity domesticated isolates (Figure 

S1). We found that monosporic clones growth is negative related with their primary 

isolates heterozygosity. Our results suggested that indeed high heterozygosity primary 

isolates accumulate recessive deleterious alleles that are exposed in the monosporic 

clones, and their use in heterosis studies and can lead to inflated levels of heterosis in 

the F1 hybrids. 

 
Figure 1: Diagram of the workflow of heterosis studies and the expected asexual growth or 

fitness of derived Saccharomyces yeasts. Primary isolate is sporulated, and from one single 

spore a monosporic clone is derived, a cross between two monosporic clones from different 

primary isolates produces a F1 hybrid. Recessive deleterious alleles are represented as 

crosses. Recessive deleterious alleles are complemented in the primary isolate and the F1 

hybrid, but are in the homozygous in the monosporic clone. Primary isolates fitness in red, 

derived monosporic clones fitness in orange, and F1 hybrid fitness in red. F1 hybrids have 
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higher fitness or heterosis when compared to the monosporic clones but not higher fitness 

than the primary isolates their monosporic parents were derived from. 

 

 

2. Methods and Materials 
Primary isolates 
We used twelve S. cerevisiae strains with known heterozygosity as primary isolates, 

provided by Magwene et al. (2011), the strains were isolated from diverse range of 

habitats that we classified as either domesticated or wild. We also classified these 

twelve primary isolates into three heterozygosity groups: low heterozygosity with less 

than 600 heterozygous sites, intermediate heterozygosity with less than 8 000 and 

more than 6 000 heterozygous sites, and high heterozygosity with more than 20 000 

heterozygous sites (Table 1). The two low heterozygosity strains were isolated one 

from oak and one was a laboratory strain, the four intermediate heterozygosity strains 

were isolated from vineyards and muscadine grapes, and one from diseased human 

tissue in a clinic, and the six high heterozygosity strains were mostly isolated from 

sick tissue in clinics, and one of them from a rotting fig (precursor of a widely used 

laboratory strain s288c).  

 

Sporulation 
We took every primary isolate and induced sporulation using Elrod et al. (2009) 

method: we grew the strains in YEPD (1% yeast extract, 2% peptone, 2% glucose) for 

24h and inoculate 200 cells from the overnight culture into KAC (1%) for another 48h 

at 30°C. We dissected over 50 tetrads per strain with a dissecting microscope (MSM 

System 400 by Singer®), and we separated the four spores of each tetrad in a YEPD 

dissection plates. We incubated the YEPD plates with the dissected tetrads at 30°C for 

48h and counted the number of visible colonies formed by each tetrad for each strain, 

this gave us a number of viable spores or rate of spore viability which we the 

compared with heterozygosity of the primary isolates. 
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Table 1: Characteristics of the twelve primary isolates. Strains code as in Magwene et al. 

(2011), original habitat of isolation and the classification of the habitat (wild or 

domesticated). Measures of heterozygosity or number of heterozygous sites of the primary 

isolates, and heterozygosity classification into groups (low, intermediate or high 

heterozygosity). 

 

Monosporic clones 
We used the YEPD dissection plates with visible colonies and replica-plate them to 

fresh KAC plates and score the ability of the derived colonies to produce spores. If 

the derived monosporic clones produced spores it meant they had the ability to 

autodiplodized by germinating into haploid cells that underwent mate-type switching 

and mated, forming completely diploid monosporic clone, which are highly 

homozygous. If the derived monosporic clones did not have the ability to sporulate it 

meant they remained a stable haploid, and were not use for further analysis because of 

the difficulty to discern the effect of ploidy in the overall fitness (Gerstein et al., 

2011). For every primary isolate three random tetrads were selected and stored in the -

80°C freezer for future analysis. From nine primary isolates we selected three 

monosporic clones from three different tetrads.  

 

 

Strain code	 Habitat	 Habitat class	 Heterozygosity	 Heterozygosity class	
PMY068	 Lab	 Laboratory	 337	 Low	

PMY017	 Oak	 Wild	 551	 Low	

PMY093	 Mus grape	 Wild/Domesticated	 4086	 Intermediate	

PMY110	 Vineyard	 Wild/Domesticated	 6045	 Intermediate	

PMY112	 Vineyard	 Wild/Domesticated	 6480	 Intermediate	

PMY131	 Clinical	 Domesticated	 7248	 Intermediate	

PMY141	 Clinical	 Domesticated	 22229	 High	

PMY142	 Clinical	 Domesticated	 22987	 High	

PMY144	 Clinical	 Domesticated	 23852	 High	

PMY070	 Fig	 ?	 24420	 High	

PMY127	 Clinical	 Domesticated	 33457	 High	

PMY132	 Clinical	 Domesticated	 37148	 High	
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Inbred crosses 
We used a subset of the primary isolates; one low heterozygosity strain (PMY017), 

two intermediate heterozygosity strains (PMY110 and PMY112) and two high 

heterozygosity strains (PMY142 and PMY127), and marked their three monosporic 

clones with two antibiotic markers conferring resistance to either hygromycin or 

G418 (ura3::HYGMX/URA3 or ura3::KANMX/URA3). Gene transformations were 

done by following methods in Gietz and Woods (2002) with modifications. We then 

proceed to cross the transformed monosporic clones derived from the same primary 

isolate, by crossing the G418 transformed monosporic clones with the hygromycin 

transformed monosporic clone. We replica-plated the cross YEPD plates to KAC 

plates, and incubate them for 5 days, followed by a replica-plating to fresh YEPD 

plates marked with both antibiotics (G418 and hygromycin). We selected for colonies 

with both antibiotic resistances (ura3::HYGMX /ura3::KANMX) that were the result 

of a successfully cross and called them inbred forms. From five primary isolates we 

selected three inbreds from three possible crosses between monosporic clones (Figure 

S2).  

 

Growth rate measures 
We calculated the growth curve of twelve primary isolates, 27 monosporic clones and 

45 inbred crosses using three replicated assays. We prepared a 96-well plate with 

200μL of YEPD in each well and add 2μL of the overnight culture (1:100 dilution). 

We sealed the plate with Breathe-Easy® membrane and measure their growth in a 

plate reader at 30°C with orbital shaking every 10 minutes. We took measures of 

OD660 every 30 minutes for 24 hours, and use the measurements to calculate growth 

rates (𝑑𝑥/𝑑𝑡) to create a growth curve using three replicates of every strain of 

interest. We calculated the maximum growth rate of every single growth curve by 

selecting for the highest 𝑑𝑥/𝑑𝑡, or the lowest doubling time. 
!"
!"

 = (log(ODt+1/ODt) x 100) 
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3. Results 
We tested twelve S. cerevisiae primary isolates with known heterozygosity provided 

by Magwene et al. (2011) and we classified each strain into low, intermediate or high 

heterozygosity. There were two low heterozygosity strains, one isolated from oak and 

the other a laboratory strain, four intermediate heterozygosity strains isolated from 

clinical habitats, vineyards and muscadine grape, and six high heterozygosity strains, 

five isolated from clinical habitats and one isolated from a fig which is a s288c 

precursor, a widely used and first ever sequenced S. cerevisiae strain. 

 

Sporulation 
We induced sporulation of the primary isolates using Elrod et al. (2009) method (see 

methods). For every primary isolate we dissected over 50 tetrads by physically 

separating the four haploid spores on a YEPD plate. We measured germination time 

and the number of spores that formed visible colonies. We measured spore viability 

by calculating the ratio of spores that produced visible colonies over the total number 

of spores dissected (Figure S3 and Table S1). We then compared the spore viability 

with the heterozygosity of primary isolates and there was a significant negative 

relationship between heterozygosity and spore viability rate (F1,10=79.07, P<0.001, 

Figure 2). High heterozygosity strains produced one or two viable spores per four 

spores tetrad, intermediate heterozygosity strains produced three or four viable spores 

per four spores tetrad, and low heterozygosity strains produced four viable spores per 

tetrad (Figure S3). Finally, the strain PMY132 with the highest heterozygosity was 

able to produced only one viable spore from the 50 tetrads dissected, therefor we did 

not used PMY132 for any further analysis. 

 

Monosporic clones 
We induced sporulation of the dissected colonies formed by sporulation of the 

primary isolates, and scored the ability of the cells in these colonies to themselves 

form spores (Table S1). The strains that were able to form spores were declared 

autodiplodized diploids, meaning the haploid spores had the ability to germinate into 

haploid cells that underwent mate-type switching and mated, forming homozygous 

monosporic clones. The colonies derived from one low heterozygosity primary isolate 
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(PMY068) and one high heterozygosity primary isolate (PMY070), remained haploid 

and thus failed to sporulate while PMY141 displayed a majority of haploid colonies 

but we were able to recovered diploid colonies (Table S1). 

 
Figure 2: Negative relationship 

between heterozygosity and 

spore viability rate. Low 

heterozygosity primary isolates 

in blue, intermediate in pink and 

high in purple. Spore viability 

rate was a measure of spores 

that form visible colonies over 

the total of spores dissected.  

 

 

For every primary isolate able to produce spores that autodiplodized, we selected 

three monosporic clones (monosporic clone A, B and C). We calculated the maximum 

growth rate of three monosporic clones and the primary isolates in three replicates 

(Table S2). There was no significant difference between the overall maximum growth 

rate of monosporic clones and the primary isolates (Wilcoxon signed-rank test:     

W=-25, P=0.164). We also individually calculated if there was a significant difference 

between the maximum growth rates of the three monosporic clones and their 

correspondent primary isolate (multiple t-tests: Figure 3 and Table S3). For the 

primary isolate with low heterozygosity (PMY017) there was no significant 

disadvantage between the maximum growth rates of the monosporic clones in relation 

to the primary isolate. For three of the intermediate heterozygosity primary isolates 

(PMY093, PMY110 and PMY131) there was no significant disadvantage of the 

monosporic clones in relation to the primary isolates, while one intermediate 

heterozygosity (PMY112) showed at least two monosporic clones with significant 

lower maximum growth rates in comparison to the primary isolate. For high 

heterozygosity primary isolates, only one (PMY142) had no significant disadvantage 

of the monosporic clones in relation to the primary isolates, while the other three high 

heterozygosity primary isolates (PMY141, PMY144 and PMY127) displayed a 

significant lower maximum growth rate for at least one monosporic clone in 
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comparison to their primary isolates (Figure 3 and Table S3). We also identified a 

significant negative relationship between heterozygosity of the primary isolate and the 

maximum growth rate of the monosporic clones relative to their correspondent 

primary isolates (F1,79=10.03, P=0.002, Figure 6a).  

 
Figure 3: Maximum growth rate of primary isolates and the derived monosporic clones. 

Primary isolates in red, monosporic clone A in light orange, monosporic clone B in orange 

and monosporic clone C in yellow. Bars with error indicate the standard deviation, and the 

dashed lines indicate the average maximum growth rate of the primary isolates. Black asterisk 

and thicker bars indicate significantly lower maximum growth rate of the monosporic clone in 

comparison to the correspondent primary isolate. 

 

Inbred crosses 
For a subset of primary isolates representing each heterozygosity category, we made 

every pairwise cross, which we refer to as an “inbred cross”, between all three 

monosporic clones and measured their maximum growth rate (Figure S2 and Table 

S4). There was no significant difference between the overall maximum growth of the 

inbreds and the primary isolates (Wilcoxon signed-rank test: W=-3, P=0.812). 

However we found in several cases that the inbred crosses had higher growth than 

their primary isolates (multiple t-tests: Figure 4 and Table S5). For the primary isolate 

with low heterozygosity (PMY017), inbred cross 2 and inbred cross 3 showed a 

significant advantage in maximum growth rate in relation to the primary isolate. For 

intermediate heterozygosity primary isolates, PMY110 inbred cross 3 maximum 

growth rate was significantly higher than its primary isolate, while for PMY112 

inbred cross 1 had a significant decrease in maximum growth rates when compared to 

the primary isolate. For high heterozygosity primary isolates; PMY142 inbred cross 3 

showed an advantage in maximum growth rates in comparison to its primary isolate, 
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while PMY127 displayed inbred cross 1 with a significant lower maximum growth 

rate in comparison to its primary isolate (Figure 4, Table S5). We also identified a 

slightly significant negative relationship between heterozygosity of the primary 

isolate and the maximum growth rate of the inbred crosses relative to their 

correspondent primary isolates (F1,43=4.294, P=0.044, Figure 6b).  

 
Figure 4: Maximum growth rate of primary isolates and the derived inbred crosses. Primary 

isolates in red, inbred cross 1 in aqua blue, inbred cross 2 in dark blue and inbred cross 3 in 

blue, same bar colour indicate biological replicates of the same cross (Figure S2). Bars with 

error indicate the standard deviation, and the lines indicate the average maximum growth rate 

of primary isolate. Black asterisk and thicker bars indicate significantly lower maximum 

growth rate of the inbreds in comparison to their primary isolate. Grey asterisk and thicker 

bars indicate significantly higher maximum growth rate of the inbreds in comparison to their 

primary isolate. 

 

We identified no difference between maximum growth rate of the inbreds crosses and 

the monosporic clones used in the inbred crosses (Wilcoxon signed-rank tests: W=62, 

P=0.083). In addition we calculated if there was a significant difference between the 

maximum growth rates of each inbred cross in comparison to the correspondent 

monosporic clones used as parents (multiple t-tests: Figure 5 and Table S6). Nine 

inbred crosses of the 15 inbreds produced had a significant higher maximum growth 

rate than the average of their monosporic parents and only one inbred cross 

(PMY127) had a significant higher maximum growth rate in comparison with the 

average monosporic clones (AxB) (Figure 5 and Table S6). For the primary isolate 

with low heterozygosity (PMY017), inbred 2 and 3 showed a significant advantage in 

maximum growth rate in relation to monosporic clones (AxC and BxC). For 

intermediate heterozygosity primary isolates, PMY110 inbred cross 3 had a 

significant higher maximum growth rate than the average monosporic clone (BxC), 
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while for PMY112 two inbreds crosses 2 and 3 had a significant higher maximum 

growth rates in comparison to the average monosporic clonese. For high 

heterozygosity strains; all PMY142 inbred crosses (1, 2 and 3) showed an advantage 

of maximum growth rates in comparison to their corresponding monosporic clones, 

while PMY127 displayed the only inbred cross 1 with a significant decrease in 

maximum growth rate in comparison to the average monosporic clone (AxC) but still 

a inbred cross 3 with a significant higher maximum growth rate than the 

correspondent monosporic clones (Figure 5, Table S6). 

 
Figure 5: Maximum growth rate of monosporic clones and the correspondent inbred crosses. 

Monosporic clones in orange and inbred cross 1 in aqua blue, inbred cross 2 in dark blue and 

inbred cross 3 in blue. Bars with error bars indicate the standard deviations. Black asterisk 

and thicker bars indicate significantly lower maximum growth of the inbred cross in 

comparison to the average of monosporic clones used as parents. Grey asterisk and thicker 

bars indicate significantly higher maximum growth of the inbred cross in comparison to the 

average of monosporic clones. 

 
Figure 6: Negative relationships between relative growth of the monosporic clones and 

heterozygosity of the primary isolates (a), and between inbred crosses and heterozygosity of 

the primary isolates (b). Relative growth measured as a ratio of maximum growth rate of 

monosporic clones or inbred crosses over primary isolates. Low heterozygosity strains in 

blue, intermediate heterozygosity strains in pink and high heterozygosty strains in the purple.  
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4. Discussion 
Here we used primary isolates of S. cerevisiae with know heterozygosity (Magwene 

et al., 2011) to replicate the workflow of heterosis studies with Saccharomyces yeasts; 

we induced sporulation of the primary isolates and let the haploid spores 

autodiplodized into monosporic clones which we then crossed to form inbred crosses. 

We showed that spore viability of the primary isolates had a strong negative 

relationship with primary isolate heterozygosity. In addition we identified a decrease 

in asexual growth or fitness of monosporic clones in comparison to their primary 

isolates, while inbred crosses displayed a mix of increase and decrease growth when 

compared to the primary isolates but a clear growth advantage when compared to the 

monosporic clones used to as their parents. Finally we identified an effect of primary 

isolates heterozygosity in the subsequent growth of the derived monosporic clones 

and inbred crosses. 

 

For primary isolates we used six strains isolated from disease tissue in human patients 

from clinics around California (McCusker et al., 1994), one strain isolated from a 

rotting fig which is a precursor of the widely used s288c strain (Mortimer & Johnston, 

1986), two strains from a vineyard in Australia and one from muscadine grape from 

North America, one strain isolated from a oak tree in North America, and one 

laboratory strain used as control in Magwene et al. (2011). We induced sporulation of 

the primary isolates; the primary isolate with the highest heterozygosity (PMY132), a 

clinical strain, did not produce any viable spores. Under the microscope we identified 

a low tetrad production and the small size spores within the tetrads. Thus the high 

number of heterozygous sites could be masking possible recessive deleterious alleles 

that prevent adequate sexual reproduction or sporulation, but have no affect in asexual 

reproduction or vegetative growth of the highly heterozygous primary isolate. From 

the primary isolates that were able to produce spores and developed into visible 

colonies, there were two strains (PMY068 and PMY070) that were not able to 

produce diploid colonies and remained in a haploid form. These two primary isolates 

were the low heterozygosity laboratory strain PMY068 (MLY61), where HO 

deletions are a common characteristic, and the high heterozygosity strain isolated 

from a rotting fig PMY070 (EM93). As stated before, we knew a priori that EM93 

was the primary contributor of the reference strain s288c (Mortimer & Johnston, 
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1986), and its HO deletion might be the reason why; having a stable haploid form that 

grows vegetatively makes the strain attractive for a variety of studies. This might have 

been the reasoning behind the Lindegren’s mailing of the haploid form of the EM93 

strain to several colleagues around the world in late 1940’s (Mortimer & Johnston, 

1986), which culminated in s288c being the most well study strain in yeast biology. 

 

From the beginning of our study we identified differences between primary isolates 

with high or low heterozygosity; the number of viable spores per tetrad was lower for 

primary isolates with high heterozygosity and the mode was either one or two viable 

spores per tetrad, while for low heterozygosity primary isolates the mode was four 

viable spores per four spore tetrad (Figure S3). More importantly the rate of viable 

spores was significantly negative related with heterozygosity of the primary isolate 

(F1,10=79.07, P<0.001, Figure 2). These results indicated the possibility of an 

accumulation of recessive deleterious alleles masked in high heterozygosity primary 

isolates, which, upon sporulation, form tetrads with haploid spores with no visible 

physical problems (except PMY132) but that lack the ability to properly germinize 

and form a visible colony. If primary isolates recessive deleterious alleles were 

masked, upon sporulation or haploidization these alleles would be immediately fixed, 

which might render the haploid spores unviable. Other explanations seem unlikely; 

high heterozygosity primary isolates come mostly from clinical samples (McCusker et 

al., 1994) and no relationship has been identified between this habitat and low 

sporulation viability (Muller & McCusker, 2009). However our results showed 

similarities with an older study by Mortimer et al. (1994); where they identified eight 

heterozygous sites in 43 Saccharomyces strains isolated from grape must in Italy, they 

also identified a significant negative relationship between the number of heterozygous 

sites and spore viability. However comparisons between the two studies can be 

difficult due to the different scale number of heterozygous sites (Mortimer et al., 

1994; Magwene et al., 2011), nonetheless both our studies suggested that low spore 

viability is related with the accumulation of deleterious alleles in domesticated 

Saccharomyces strains high heterozygosity.  

 

For all significant differences in growth between monosporic clones and their primary 

isolates, the monosporic clones were always less fit than their primary isolates 
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(multiple t-tests in Table S3 and Figure 3), even though this effect was not significant 

(Wilcoxon signed-rank test: W=-25, P=0.148). In addition, monosporic clones 

derived from low heterozygosity primary isolate showed no decrease in growth, while 

most monosporic clones derived from high heterozygosity primary isolates displayed 

at least one monosporic clone with a significant decrease in growth, and there was a 

the negative relationship between monosporic clone growth and heterozygosity of the 

primary isolate (F1,79=10.03, P=0.002, Figure 6a). Thus supporting the claim that 

highly heterozygous domesticated strains of S. cerevisiae might carry multiple 

recessive deleterious alleles, which upon autodiplodization are exposed and make the 

monosporic clones less fit, while low heterozygous wild strains of S. cerevisiae do not 

accumulate this type of alleles. We also identified that the effect of recessive 

deleterious alleles exposed in the monosporic clones might be meatigated by crossing 

two monosporic clones: We tested inbred crosses made from crossing two 

monosporic clones derived from the same primary isolate in order to restore 

heterozygosity. The inbred crosses had an increase in growth when compared to the 

parental monosporic clones (multiple t-tests Table S6 and Figure 5), however this 

trend was not significant (Wilcoxon signed-rank tests: W=62, P=0.083). Surprisingly 

there was still a slight negative relationship between inbred growth and primary 

isolate heterozygosity (F1,43=4.294, P=0.044, Figure 6b), however inbred crosses 

derived from high heterozygosity primary isolates had similar growth to their primary 

isolates (multiple t-tests Table S5 and Figure 4). This indicated that most inbred 

crosses derived from high heterozygosity primary isolates were fitter than the parental 

monosporic clones but had similar fitness than the primary isolates they were derived 

from, while inbred crosses derived from low heterozygosity primary isolates were 

slighty fitter than the parental monosporic clones which were as fit as the primary 

isolates they were derived from. 

 

This outcome might explain the disparity in results between heterosis studies where 

monosporic clones have been systematically used as parental strains of F1 hybrids 

(Zörgö et al., 2012; Plech et al., 2014; Bernardes et al., 2016). The studies that used 

domesticated S. cerevisiae strains with high heterozygosity identified high levels of 

heterosis (Zörgö et al., 2012; Plech et al., 2014), while studies that used wild S. 

cerevisiae strains with low heterozygosity do not identified heterosis (Plech et al., 
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2014; Bernardes et al., 2016). By using domesticated S. cerevisiae monosporic clones 

as parents overall parental fitness is compromised from the beginning because in 

possible of recessive deleterious alleles will have been exposed by autodiplodization, 

when crossing two monosporic clones from divergent (F1 hybrids) or even similar 

(inbred crosses) populations the fitness would be increased by simple 

complementation of those recessive deleterious alleles, giving the illusion of heterosis 

(Zörgö et al., 2012; Plech et al., 2014). However the resulting F1 hybrids or inbred 

crosses are not necessarily fitter than the primary isolates their monosporic parents 

were derived from. In contrast, wild S. cerevisiae or S. paradoxus monosporic clones 

would be prone to have less deleterious alleles, thus crossing monosporic parents 

from different populations leads to no significant fitness increase in either or inbred 

crosses or F1 hybrids (Plech et al., 2014; Bernardes et al., 2016). It would be 

interesting to study heterosis of a group of F1 hybrids produce by crossing primary 

isolates instead of their monosporic clones. This study would have to be extensive 

because crosses between primary isolates create a variety of F1 hybrids with diverse 

genotypes and consequently phenotypes when the primary isolates are highly 

heterozygous. With this study we could compare the primary isolates with the F1 

hybrid identify if heterosis occurs in primary isolates of Saccharomyces yeasts and it 

is not only a response to manipulation in the laboratory environment. 

 

High heterozygosity has been observed in domesticated but not wild primary isolates 

(Magwene et al., 2011). The maintenance of high levels of heterozygosity suggests 

recessive deleterious alleles are not exposed to selection in domesticated habitats and 

will accumulate, moreover human activity is know to facilitate outcrossing which also 

promotes high heterozygosity (Magwene, 2014). In domesticated habitats simplified 

environments do not require the maintenance of all cellular functions and promote 

specific phenotypes, such as, pseudohyphal growth and robust cell wall for clinical 

primary isolates (Muller et al., 2011). In primary isolates, recessive deleterious alleles 

have small to no effect in growth because they are masked by functional wild-type 

alleles (heterozygous locus), autodiplodization exposes the recessive deleterious 

alleles (homozygous locus), which might cause a decrease in fitness in monosporic 

clones derived from high heterozygous primary isolates. By crossing two monosporic 

clones, the previously exposed recessive deleterious alleles become complemented 
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creating a positive or neutral effect on growth depending on which monosporic clones 

were crossed. However additional studies would be great to directly and 

systematically measure the presence of such recessive deleterious alleles both S. 

cerevisiae and S. paradoxus, by measuring fitness of haplodiplodized and 

autodiplodized strains derived from high heterozygosity primary isolates, followed by 

whole genome sequence we might potentially identify recessive deleterious alleles 

present in the primary isolate. 

 

Heterosis studies are not only important due to their applications in agriculture crops 

and cattle breeding, but are also a useful tool to discern characteristics acquired 

during evolutionary history of the parental populations. Thus it is important to provide 

a critical analysis in the way we conduct heterosis studies by keeping the evolutionary 

history of the parental population in mind. Yeast studies due to their simplicity and 

reproducibility, together with their ability of being a facultative sexual model system 

offers useful tools to assess the factors contributing heterosis and sheds light on the 

reasons behind heterosis.  
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5. Supplementary Material 
Figure S1: Aim of our study using three forms of S. cerevisiae strains with known 

heterozygosity and measuring their asexual growth or fitness. Primary isolate with know 

heterozygosity was sporulated, we selected one spore that formed one visible diploid colony 

as monosporic clones, and a cross between monosporic clones from the same primary isolate 

produced an inbred. Primary isolate with high heterozygosity depicted as red-orange 

genomes, and primary isolate with low heterozygosity depicted as purple genomes. Recessive 

deleterious alleles are represented as crosses in high heterozygosity strains. For high 

heterozygosity primary isolates we expected the primary isolate to have a higher fitness than 

both monosporic clones and similar or higher than the inbred. For low heterozygosity primary 

isolates we expect similar fitness between the primary isolate, the monosporic clone and F1 

inbred. 
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Figure S2: Diagram of the derived strains (monosporic clones and inbreds) from five primary 

isolates. The primary isolates are depicted on top, for each primary isolate three monosporic 

clones were isolated (A, B and C), these were transformed with two antibiotic markers 

(KANMX in red and HYGMX in green), which were crossed between monosporic clones to 

form the inbreds (depicted in different blue tones), for each primary isolate three inbreds were 

formed (1, 2 and 3). We tested the maximum growth rate of the primary isolates, their three 

monosporic clones and their three inbreds independently in three replicates. 

 
  

PMY110	

PMY110A	 PMY110B	 PMY110C	

110B-KANMX	 110B-HYGMX	110A-KANMX	 110A-HYGMX	 110C-HYGMX	

PMY110-1	 PMY110-3	PMY110-2	

PMY112	

PMY112A	 PMY112B	 PMY112C	

112B-KANMX	 112B-HYGMX	112A-KANMX	 112A-HYGMX	 112C-HYGMX	

PMY112-1	 PMY112-2	 PMY112-3	

PMY017	

PMY017A	 PMY017B	 PMY017C	

17B-KANMX	17B-HYGMX	17A-KANMX	 17A-HYGMX	 17C-HYGMX	

PMY017-3	PMY017-1	 PMY017-2	

Primary isolate	

Monosporic clone	

Inbred	

Primary isolate	

Monosporic clone	

Inbred	

Primary isolate	

Monosporic clone	

Inbred	

PMY127	

PMY127A	 PMY127B	 PMY127C	

127B-KANMX	 127B-HYGMX	127A-KANMX	 127C-HYGMX	

PMY127-1	 PMY127-2	 PMY127-3	

PMY142	

PMY142A	 PMY142B	 PMY142C	

142B-KANMX	 142B-HYGMX	142A-KANMX	 142C-HYGMX	

PMY142-1	 PMY142-2	 PMY142-3	

Primary isolate	

Monosporic clone	

Inbred	

Primary isolate	

Monosporic clone	

Inbred	

142A-HYGMX	

127A-HYGMX	



Chapter III	

104	

Figure S3: Percentage of viable spores for each tetrad produced by the primary isolate. 

Viable spores by score by the ability to form visible colonies. Percentage of 4 viable spores 

tetrads (black), 3 viable spores tetrads (dark grey), 2 viable spore tetrads (grey), 1 viable spore 

tetrads (light grey) and 0 viable spores (white). Two low heterozygosity strains surrounded by 

blue, three intermediate heterozygosity strains surrounded by pink and six high heterozygosty 

strains surrounded by purple. 
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Table S1: Primary isolates sporulation details. Strain code for each primary isolate, number 

of days needed for the tetrads to form, number of tetrads dissected, total number of spores 

dissected and quantity of viable spores, i.e. spores that formed visible colonies. Spore 

viability (%) as a ratio of viable spores over the total number of spores dissected. 

Heterozygosity measured by calculating the heterozygous sites for a array of SNPs in 

Magwene et al. (2011). Monosporic clones formed were classified as either haploid or diploid 

depending on the ability to sporulate. 

 
  

Strain code	 Sporulation 
time (days)	

Tetrads 
dissected	 Total  spores	 Viable spores	 Spore viability	 Heterozygosity 	 Heterozygosity 

classification	
Monosporic 

clones	
PMY068	 4	 63	 252	 241	 95.635	 337	 Low	 haploid	
PMY017	 2	 60	 240	 233	 97.083	 551	 Low	 diploid	
PMY093	 2	 54	 216	 214	 99.074	 4086	 Intermediate	 diploid	
PMY110	 5	 55	 220	 190	 86.364	 6045	 Intermediate	 diploid	
PMY112	 5	 59	 236	 235	 99.576	 6480	 Intermediate	 diploid	
PMY131	 2	 57	 228	 149	 65.351	 7248	 Intermediate	 diploid	
PMY141	 5	 54	 216	 41	 20.098	 22229	 High	 diploid	
PMY142	 2	 55	 220	 59	 27.315	 22987	 High	 diploid	
PMY144	 4	 54	 216	 84	 37.5	 23852	 High	 diploid	
PMY070	 5	 57	 228	 107	 46.930	 24420	 High	 haploid	
PMY127	 5	 49	 196	 54	 27.551	 33457	 High	 diploid	
PMY132	 5	 50	 200	 1	 0.5	 37148	 High	 -	
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Table S2: Primary isolates and their derived monosporic clones maximum growth rates. 

Maximum growth rate of the primary isolate and monosporic clones in three replicates (1, 2 

and 3). Monosporic clones were selected by the ability of derived spores from the primary 

isolates to autodiplodized (become diploid). Monosporic clones A, B and C refer to 

autodiplodized colonies randomly selected from different tetrads of the same primary isolate. 

 

  

Strain code	
Primary isolate	 Monosporic clone A	 Monosporic clone B	 Monosporic clone C	

1	 2	 3	 1	 2	 3	 1	 2	 3	 1	 2	 3	
PMY017	 3.814	 4.103	 3.647	 3.920	 4.227	 4.121	 4.080	 4.087	 4.060	 4.177	 4.046	 4.374	
PMY093	 3.828	 4.301	 3.765	 4.184	 4.238	 4.319	 4.170	 4.498	 4.167	 4.321	 4.241	 4.260	
PMY110	 4.501	 4.815	 3.212	 3.760	 3.592	 3.641	 4.658	 4.792	 4.607	 4.451	 3.862	 4.506	
PMY112	 4.735	 4.838	 4.667	 3.964	 4.099	 4.491	 4.012	 3.212	 4.163	 4.814	 4.539	 4.292	
PMY131	 3.493	 3.742	 3.613	 4.059	 4.127	 3.521	 3.550	 3.562	 3.238	 2.997	 3.862	 3.122	
PMY141	 3.255	 3.156	 3.212	 3.572	 4.153	 2.750	 2.365	 2.687	 2.630	 2.572	 2.250	 3.025	
PMY142	 3.627	 4.005	 3.921	 3.943	 3.212	 3.742	 4.188	 3.212	 4.191	 3.069	 3.902	 3.387	
PMY144	 3.012	 4.044	 3.772	 3.343	 3.324	 3.432	 0.593	 0.710	 0.529	 3.829	 3.784	 3.874	
PMY127	 4.105	 4.227	 4.106	 3.343	 4.498	 4.292	 3.772	 3.484	 3.212	 2.572	 3.742	 4.238	
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Table S3: Multiple unpaired t-tests between maximum growth rates of the primary isolate 

and the derived monosporic clones (A, B and C). P-value corrected for multiple comparisons, 

mean of the primary isolates, mean of the monosporic clones, difference between primary 

isolates and their monosporic clones (Difference), and standard error of the difference of 

means (SE of difference). T-ratio for every comparison with 4 degrees of freedom for t-tests. 

Highlight in green for significant lower growth of the monosporic clones in comparison to the 

primary isolates. 

 

  

Monosporic clone A	
P-value	 Primary 

isolate mean	
Monosporic 
clone mean	 Difference	 SE of 

difference	 t ratio	
Strain code	
PMY017	 0.218	 3.855	 4.089	 -0.235	 0.161	 1.460	
PMY093	 0.180	 3.965	 4.247	 -0.282	 0.174	 1.623	
PMY110	 0.358	 4.176	 3.664	 0.512	 0.493	 1.038	
PMY112	 0.028	 4.747	 4.184	 0.562	 0.166	 3.391	
PMY131	 0.234	 3.616	 3.903	 -0.286	 0.205	 1.399	
PMY141	 0.524	 3.208	 3.492	 -0.284	 0.408	 0.697	
PMY142	 0.425	 3.851	 3.632	 0.219	 0.246	 0.888	
PMY144	 0.478	 3.609	 3.367	 0.243	 0.310	 0.782	
PMY127	 0.791	 4.146	 4.045	 0.101	 0.358	 0.283	

Monosporic clone B	
P-value	 Primary 

isolate mean	
Monosporic 
clone mean	 Difference	 SE of 

difference	 t ratio	
Strain code	
PMY017	 0.173	 3.855	 4.076	 -0.221	 0.133	 1.656	
PMY093	 0.195	 3.965	 4.278	 -0.314	 0.202	 1.555	
PMY110	 0.360	 4.176	 4.686	 -0.510	 0.494	 1.032	
PMY112	 0.034	 4.747	 3.796	 0.951	 0.300	 3.175	
PMY131	 0.265	 3.616	 3.450	 0.166	 0.128	 1.296	
PMY141	 0.003	 3.208	 2.561	 0.647	 0.103	 6.257	
PMY142	 0.973	 3.851	 3.864	 -0.012	 0.346	 0.036	
PMY144	 0.001	 3.609	 0.611	 2.998	 0.313	 9.577	
PMY127	 0.017	 4.146	 3.489	 0.657	 0.167	 3.939	

Monosporic clone C	
P-value	 Primary 

isolate mean	
Monosporic 
clone mean	 Difference	 SE of 

difference	 t ratio	
Strain code	
PMY017	 0.103	 3.855	 4.199	 -0.344	 0.164	 2.103	
PMY093	 0.145	 3.965	 4.274	 -0.309	 0.171	 1.810	
PMY110	 0.864	 4.176	 4.273	 -0.097	 0.532	 0.182	
PMY112	 0.279	 4.747	 4.548	 0.198	 0.159	 1.252	
PMY131	 0.359	 3.616	 3.327	 0.289	 0.279	 1.035	
PMY141	 0.059	 3.208	 2.615	 0.592	 0.227	 2.613	
PMY142	 0.212	 3.851	 3.453	 0.399	 0.268	 1.485	
PMY144	 0.517	 3.609	 3.829	 -0.220	 0.310	 0.710	
PMY127	 0.273	 4.146	 3.517	 0.628	 0.495	 1.268	
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Table S4: Inbreds maximum growth rates. Maximum growth rate of the inbreds in three 

replicates (1, 2 and 3). Inbreds were made by crossing two different monosporic clones 

derived from the same primary isolates and marked with antibiotic markers. Inbreds 1, 2 and 

3 refer to three different crosses (indicated in the first column of the table and in Figure S2), 

and A, B and C refer the three independent crosses selected from the same monosporic clone 

parental cross.		

 
  

Inbred 1 	
(cross)	

Inbred 1A	 Inbred 1B	 Inbred 1C	
1	 2	 3	 1	 2	 3	 1	 2	 3	

17A x 17B	 3.863	 3.584	 4.095	 4.067	 3.829	 4.007	 4.052	 3.222	 4.337	
110A x 110B	 4.591	 4.616	 5.312	 3.236	 3.847	 3.415	 4.377	 5.104	 4.902	
112A x 112B	 3.976	 3.996	 4.049	 4.466	 3.832	 4.018	 5.004	 3.746	 4.581	
142A x 142B	 3.980	 4.638	 3.997	 4.275	 4.035	 5.349	 3.998	 4.240	 4.416	
127A x 127B	 2.400	 2.681	 3.975	 3.058	 2.687	 2.967	 3.687	 2.038	 3.609	

Inbred 2 	
(cross)	

Inbred 2A	 Inbred 2B	 Inbred 2C	
1	 2	 3	 1	 2	 3	 1	 2	 3	

17A x 17C	 4.186	 4.513	 4.487	 4.399	 4.235	 4.511	 4.515	 4.490	 4.799	
110A x 110C	 4.632	 4.336	 4.676	 3.642	 3.995	 4.253	 4.308	 4.138	 4.728	
112A x 112C	 4.724	 5.136	 5.228	 5.491	 4.343	 5.582	 4.491	 5.413	 4.967	
142A x 142C	 3.990	 3.990	 3.989	 4.013	 4.288	 4.859	 4.185	 4.562	 4.324	
127A x 127C	 3.001	 3.623	 4.185	 3.959	 3.839	 4.287	 4.406	 4.150	 4.128	

Inbred 3	
(cross)	

Inbred 3A	 Inbred 3B	 Inbred 3C	
1	 2	 3	 1	 2	 3	 1	 2	 3	

17B x 17C	 4.332	 3.964	 4.810	 5.966	 4.532	 4.287	 5.240	 5.570	 4.266	
110B x 110C	 5.437	 5.320	 4.843	 4.590	 4.830	 5.230	 5.202	 5.143	 5.123	
112B x 112C	 4.784	 4.765	 3.974	 4.492	 4.928	 5.125	 4.933	 4.388	 5.027	
142B x 142C	 4.385	 4.374	 4.358	 4.146	 3.791	 4.619	 4.547	 4.414	 4.461	
127B x 127C	 4.227	 4.727	 4.384	 3.639	 4.309	 4.809	 4.906	 4.085	 4.551	
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Table S5: Multiple unpaired t-tests between maximum growth rates of the primary isolate 

and the derived inbreds crosses (inbreds as 1, 2 and 3). P-value corrected for multiple 

comparisons, mean of the primary isolates, mean of the inbred crosses, difference between 

primary isolates and inbreds (Difference), and standard error of the difference of means (SE 

of difference). T-ratio for every comparison with 4 degrees of freedom for t-tests. Highlight in 

green for lower growth of the inbreds in comparison to the primary isolates, and highlighted 

in red for higher growth of the inbreds in comparison to the primary isolates. 

 
 
  

Strain	 P-value	 Primary isolate	 Inbred 1	 Difference	 SE of difference	 t ratio	

PMY017	 0.849	 3.855	 3.895	 -0.041	 0.207	 0.196	
PMY110	 0.698	 4.176	 4.378	 -0.202	 0.505	 0.400	
PMY112	 0.046	 4.747	 4.185	 0.562	 0.246	 2.280	
PMY142	 0.112	 3.851	 4.325	 -0.474	 0.272	 1.745	
PMY127	 0.014	 4.146	 3.011	 1.135	 0.382	 2.967	

 	

Strain	 P-value	 Primary isolate	 Inbred 2	 Difference	 SE of difference	 t ratio	

PMY017	 0.001	 3.855	 4.459	 -0.605	 0.127	 4.776	
PMY110	 0.712	 4.176	 4.301	 -0.125	 0.329	 0.380	
PMY112	 0.293	 4.747	 5.042	 -0.295	 0.266	 1.109	
PMY142	 0.066	 3.851	 4.244	 -0.393	 0.191	 2.063	
PMY127	 0.469	 4.146	 3.953	 0.193	 0.256	 0.752	

Strain	 P-value	 Primary isolate	 Inbred 3	 Difference	 SE of difference	 t ratio	

PMY017	 0.049	 3.855	 4.774	 -0.920	 0.410	 2.242	
PMY110	 0.013	 4.176	 5.080	 -0.904	 0.300	 3.008	
PMY112	 0.880	 4.747	 4.713	 0.034	 0.220	 0.155	
PMY142	 0.011	 3.851	 4.344	 -0.493	 0.158	 3.117	
PMY127	 0.304	 4.146	 4.404	 -0.258	 0.238	 1.083	



Chapter III	

110	

Table S6: Multiple unpaired t-tests between maximum growth rates of the inbred cross and 

the average maximum growth rates of the monosporic clones used to make the inbred crosses. 

P-value corrected for multiple comparisons, mean of the monosporic clones used to make the 

correspondent inbred, mean of the inbreds (inbred 1 2 and 3), difference between monosporic 

clones and inbreds (Difference), and standard error of the difference of means (SE of 

difference). T-ratio for every comparison with 4 degrees of freedom for t-tests. Highlight in 

green for lower growth of the inbreds in comparison to the monosporic clones, and 

highlighted in red for higher growth of the inbreds in comparison to the monosporic clones. 

 
 

Strain	 P-value	 Monosporic (AxB)	 Inbred 1	 Difference	 SE of difference	 t ratio	

PMY017	 0.201	 4.083	 3.895	 0.187	 0.139	 1.346	

PMY110	 0.577	 4.175	 4.378	 -0.203	 0.355	 0.572	

PMY112	 0.389	 3.990	 4.185	 -0.195	 0.219	 0.890	

PMY142	 0.029	 3.748	 4.325	 -0.577	 0.235	 2.457	

PMY127	 0.032	 3.767	 3.011	 0.756	 0.316	 2.395	

 	

Strain	 P-value	 Monosporic (AxC)	 Inbred 2	 Difference	 SE of difference	 t ratio	

PMY017	 0.004	 4.144	 4.459	 -0.315	 0.090	 3.519	

PMY110	 0.116	 3.969	 4.301	 -0.332	 0.197	 1.686	

PMY112	 0.007	 4.367	 5.042	 -0.675	 0.210	 3.220	

PMY142	 0.001	 3.543	 4.244	 -0.702	 0.175	 4.022	

PMY127	 0.571	 3.781	 3.953	 -0.172	 0.296	 0.582	

Strain	 P-value	 Monosporic (BxC)	 Inbred 3	 Difference	 SE of difference	 t ratio	

PMY017	 0.043	 4.137	 4.774	 -0.637	 0.283	 2.248	

PMY110	 0.002	 4.479	 5.080	 -0.600	 0.154	 3.889	

PMY112	 0.038	 4.172	 4.713	 -0.541	 0.235	 2.304	

PMY142	 0.003	 3.658	 4.344	 -0.686	 0.192	 3.570	

PMY127	 0.003	 3.503	 4.404	 -0.901	 0.249	 3.624	
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Conclusion & Perspectives 
The aim of my thesis was to identify the mechanisms underlying heterosis. I used 

Saccharomyces yeast as a model system because of its practicality in evolution 

studies, where fast and repeatable growth measures are useful to directly estimate 

asexual growth or fitness, and small genome size with high quality reference genomes 

allow for an thorough analysis of transcription. Saccharomyces yeasts have the ability 

to form hybrids between highly genetically diverged populations or species. I was 

interested in identifying heterosis in F1 hybrids from crosses that had not been tested 

before, in discerning genetic and molecular mechanisms behind heterosis, and in 

detecting heterosis predictors than can be applied on a broader scale. 

 

1. Heterosis and ecological background of F1 hybrids 
My thesis supported the idea that the ecological background of the parental strains 

had a significant effect on the strenght of heterosis. A previous study by Plech et al. 

(2014) identified heterosis in crosses between domesticated but not wild S. cerevisiae 

parents. In the first Chapter, I identified both mid- and best-parent heterosis for 

crosses between wild S. paradoxus and domesticated S. cerevisiae parents, but no 

heterosis for crosses between divergent wild S. paradoxus parents (Chapter I and 

Bernardes et al., 2016). 

Heterosis studies in yeast, as described in Chapter I and Bernardes et al. (2016), or by 

Zörgö et al. (2012) and Plech et al. (2014) use monosporic clones as parental strains, 

as is conventional in yeast genetics studies. Monosporic clones are derived from 

single haploid spores by mating-type switching and autodiplodization, and are thus 

perfectly homozygous, except at the mating type locus. Domesticated yeast 

populations tend to accumulate recessive deleterious alleles (Magwene, 2014) 

evidenced by the high heterozygosity levels displayed in clinical and other 

domesticated S. cerevisiae primary isolates (Magwene et al., 2011). Domesticated 

habitats have optimized growth conditions which often select only for specific 

phenotypes, such as high ethanol tolerance in wineries and breweries (Casey & 

Ingledew, 1986), or pseudo hyphae growth in medical clinics (Muller et al., 2011). 

Thus strong directional selection in domesticated habitats relaxes selection for other 

cellular functions and allows for accumulation of recessive deleterious alleles in these 
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yeast populations. Wild yeast populations are not expected to accumulate as many 

recessive deleterious alleles evidenced by the low heterozygosity levels displayed by 

S. cerevisiae primary isolates from oak (Magwene et al., 2011). Wild habitats are 

characterized by strong selective pressures, such as season fluctuations on 

temperature and food resources, which can maintain balancing selection on multiple 

traits (Goncalves et al., 2011; Kowallik & Greig, 2016). Also, such stressful 

conditions might lead to starvation, which is known to induce sexual reproduction in 

yeast; the formation of haploid yeasts exposes recessive deleterious alleles to 

selection, purging yeast with such alleles out of the population. Monosporic clones 

are formed by autodiploidization of a haploid spore, exposing previously masked 

deleterious alleles as homozygous. If domesticated primary isolates tend to 

accumulate more recessive deleterious alleles than wild primary isolates, then more 

deleterious alleles become exposed in monosporic clones with a domesticated 

background. Thus monosporic clones with domesticated background have a fitness 

decrease in comparison to their primary isolate, while monosporic clones with a wild 

background have a similar fitness to their primary isolate because less deleterious 

alleles become homozygous (Chapter III). When crossing two monosporic clones 

from diverged yeast populations recessive deleterious alleles might be complemented, 

giving the F1 hybrid an advantage in relation to its homozygous monosporic parents. 

Thus by crossing a domesticated monosporic parent with another diverged 

domesticated or wild monosporic parent we are increasing the chances of 

complementing deleterious alleles and having a fitter individual than its parents or 

heterosis. While by crossing two divergent wild monosporic parents, there will be a 

smaller number of deleterious alleles to complement, so small the resulting individual 

shows no advantage or no heterosis. Consequently, heterosis is highly dependent on 

the ecology of Saccharomyces yeast natural populations (domesticated or wild) 

because of its impact on parental strains fitness. Moreover, by using only monosporic 

clones or perfectly homozygous strains as parents we might be failing to capture the 

diversity of hybridisation outcomes. 

My thesis work does not clarify if the F1 hybrids are fitter than the domesticated or 

wild primary isolates the monosporic parents were derived from. To answer this 

question I would need to gather more direct data; I suggest repeating the F1 hybrid 

crosses using Saccharomyces yeast primary isolates collected directly from 
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domesticated and wild habitats as parental strains. By re-testing the F1 hybrid asexual 

fitness and competitive growth against their heterozygous parents (primary isolates), I 

would expect greater fitness variability than the one detected in Chapter I, due to the 

diversity in parental genotypes and phenotypes. Heterosis would depend on the 

amount of recessive deleterious alleles complemented in the F1 hybrid cross, and if 

these number is lower or higher than the primary isolates. Such study would 

determine whether heterosis depends on advantages of the F1 hybrid or on 

disadvantages of the monosporic parents, and would clarify the importance of certain 

genetic mechanisms behind heterosis of Saccharomyces yeasts (see 2. Heterosis 

genetic mechanisms). 

 

2. Genetic mechanisms for heterosis 
Throughout my thesis I intended to discern genetic mechanisms that contribute to 

heterosis in Saccharomyces yeasts. To simplify the analysis I focused solely on 

dominance and overdominance mechanisms for heterosis, due to the difficulties of 

identifying epistasis events in even simple model organisms such as Saccharomyces 

yeast. However, a recently published gene-interaction map of ~6000 S. cerevisiae 

genes might be a useful tool to disentangle how epistatic interactions might be 

affecting F1 hybrids fitness (Costanzo et al., 2016). Heterosis studies in 

Saccharomyces yeasts mainly support dominance genetic mechanism for heterosis 

(Zörgö et al., 2012; Plech et al., 2014; Shapira et al., 2014) but cannot completely 

discard overdominance mechanism for heterosis (Shapira et al., 2014). In Chapter I, 

F1 hybrids with a domesticated background displayed significant competitive 

advantages, even though, wild S. paradoxus parents showed lower competitive 

growth than domesticated S. cerevisiae parents for almost every environment tested. 

Moreover, best-parent heterosis was prevalent in crosses between different species, 

however crosses between highly divergent wild yeast populations displayed no 

heterosis (Chapter I and Bernardes et al., 2016). 

Heterosis can be attributed to reciprocal complementation of the recessive deleterious 

alleles in the F1 hybrid genome, or dominance mechanism for heterosis, where one 

less advantageous or deleterious parental allele is complemented by a more 

advantageous or wild-type parental allele in a dominant interaction at multiple loci 

(Shull, 1948; Zörgö et al., 2012). By crossing individuals from divergent populations 
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with accumulation of recessive deleterious alleles, these alleles are more likely to be 

complemented by functional wild-type alleles, giving the F1 hybrid a fitness 

advantage over its parents. While crossing individuals from divergent populations 

with less recessive deleterious alleles, will lead to a smaller advantage in F1 hybrid in 

comparison to its parents. As such, we expect F1 hybrids with a domesticated 

background to have higher heterosis because, as discussed before, they are more 

likely to complement recessive deleterious alleles than a F1 hybrid with an 

exclusively wild background (as discussed in 1. Heterosis and ecological background 

of F1 hybrids). However dominance mechanism cannot explain why wild S. 

paradoxus parents, with less recessive deleterious alleles, had a lower competitive 

growth than the domesticated S. cerevisiae parent for the majority of environments. 

One explanation for this occurrence refers to the characteristics of the environments 

chosen in Chapter I; where all environments were highly artificial and the 

competitions were done under laboratory conditions. Thus even if S. paradoxus 

parents had a competitive advantage in their wild natural habitat, this advantage 

would be hard to capture under artificial laboratory conditions, in contrast, S. 

cerevisiae parents which have been used in the laboratory for decades (Mortimer & 

Johnston, 1986) should easily outcompete less adapted wild yeast.  

Prevalent best-parent heterosis in Chapter I might be better explain by overdominance 

mechanism for heterosis, which attributes the F1 hybrid advantage to numerous 

heterozygous loci (Shull, 1948; Shapira et al., 2014). In this case, having one S. 

cerevisiae and one S. paradoxus parental allele for a certain locus produces a positive 

interaction that contributes to a superior fitness of the F1 hybrid in comparison to 

their correspondent homozygous S. cerevisiae or S. paradoxus parental locus. Thus, 

significant best-parent heterosis for almost every environment might be due to the 

positive interaction of highly divergent alleles, instead of complementation of 

deleterious alleles, because one would expect at least for one environment the 

domesticated parent to be better adapted than the F1 hybrid cross. According to 

overdominance mechanism, crosses between highly divergent wild S. paradoxus 

strains (1-5% genetic divergence) should have higher heterosis than crosses between 

less divergent domesticated S. cerevisiae strains (>1% genetic divergence). However, 

our results showed the opposite; the genetic divergence of wild parental strains 

crosses had no relationship with the F1 hybrid fitness, and F1 hybrids with a wild 
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background showed on average no heterosis for competitive growth, as expected by 

the overdominance mechanism for heterosis.  

Thus the genetic mechanism(s) behind heterosis remain a debatable subject. Using the 

study suggested previously (1. Heterosis and ecological background of F1 hybrids), 

where primary isolates are used as parental strains of F1 hybrids instead of 

monosporic clones might be useful to directly measure overdominance. By crossing 

two divergent domesticated primary isolates, we control for ‘inbreeding depression’ 

of monosporic clones normally used as parents. If these F1 hybrid crosses display 

overall heterosis, its likely caused by overdominant interactions, because deleterious 

alleles would be complemented in both F1 hybrids and domesticated primary isolates 

used as parents, thus heterosis would not have been due to complementation of 

deleterious alleles. Genetic mechanisms behind heterosis remain a controversial topic 

even after a century of heterosis studies in different model systems. Advances in 

molecular techniques might clarify such mechanisms, and lead to a new mechanism 

for heterosis. 

 

3. Molecular mechanisms for heterosis 
The results of my thesis supported a molecular mechanism for heterosis where the F1 

hybrid has the ability to regulate its transcription according to the surrounding 

environment. Previous studies that used S. cerevisiae hybrids mainly focused on 

regulation of transcription, and they identified widespread cis-regulated transcription 

however they did not provide any complementary fitness studies (Tirosh et al., 2009; 

McManus et al., 2014). Thus, as far as I know, heterosis has never been tested at the 

transcriptome level; Chapter II presents a thorough analysis of transcriptome of the F1 

hybrid and its parents in different environments. The environments were chosen a 

priori so each environment favoured one of the parental strains, while the F1 hybrid 

had a competitive advantage under both environments (Chapter I and Bernardes et al., 

2016). The F1 hybrid transcription profiles resembled the fitter parent for a specific 

environment, and the majority of differentially transcribed genes were cis-regulated 

(Chapter II).  

Transcriptome analysis showed that the F1 hybrid transcription resembled S. 

paradoxus parent for the environment where S. paradoxus had an advantage, and F1 

hybrid transcription resembled S. cerevisiae parent for the environment where S. 
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cerevisiae had an advantage. These results hint for a molecular mechanism behind 

heterosis where the F1 hybrid has the ability to change its transcription profile 

depending on the environment. The ability to modify Saccharomyces yeast 

transcription profile was first described in Gasch et al. (2000), where they identified 

several genes with differential transcription upon environmental change. If there is 

variation in transcription of S. cerevisiae upon environmental change, the variation 

should be greater in a F1 hybrid cross between two divergent species, due to their 

high heterozygosity. The environment surrounding the F1 hybrid might determine 

advantageous parental alleles at multiple loci, and these might be preferentially 

transcribe accordingly. The ability to distinguish advantageous parental alleles was 

first proposed by Goff (2011) molecular model for multigenic heterosis, where the 

ability of the hybrid cell to detect the advantageous parental alleles depends on the 

stability of encoded proteins. Thus less advantageous parental alleles produce less 

stable proteins, which signal or feedback to preferential transcribe the advantageous 

parental alleles. However stability of encoded proteins is a difficult characteristic to 

measure because of protein’s transient state, and, although Goff’s (2011) model seems 

convincing, it relies on a feedback process that remains elusive to modern techniques. 

Another simpler model might also explain these results; F1 hybrid displays 

transcription profile diversity, i.e. different transcription profiles with one or the other 

parental allele differentially transcribed at multiple loci. If we grow the F1 hybrid 

under a specific environment where one transcription profile is more advantageous, 

this transcription profile would have a higher growth and it would spread in the F1 

hybrid cell population. When we sequence the transcriptome of Saccharomyces yeasts 

growing in a specific environment, we sequence not one cell but a part of the cell 

population, thus it is impossible to accurately determine the diversity of transcription 

profiles. 

Both molecular models assume that heterosis is due to the ability of the F1 hybrid to 

resemble the fitter parent in a specific environment, using preferential transcription of 

advantageous alleles. The difference between the models is how the F1 hybrid 

discerns the advantageous transcription profile, whether by protein stability or by an 

advantage in growth of a specific transcription profile, further studies are necessary to 

clarify which model holds true. It would be interesting to use single-cell sequencing 

technology to study transcription profile diversity within the F1 hybrid cell population 
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at different time periods. If the majority of cells display one heterotic transcription 

profile consistently throughout time, would suggest heterosis depends on signal or 

feedback process, which can be based on protein stability, as hypothesize by Goff 

(2011). While if transcription profiles are diverse and this diversity diminishes 

throughout time so a specific heterotic trancription profile dominates the cell 

population, would suggest F1 hybrid transcription initially displays stochasticity but 

will be overcome by one heterotic transcription profile. Nonetheless, more data is 

needed to support any molecular model for heterosis, and as shown in my thesis, 

Saccharomyces yeast is an excellent model system to dissect allele specific expression 

of a hybrid genome due to the availability good quality reference genomes and high 

divergent Saccharomyces populations (Liti et al., 2009). However I do recommend 

uniformity in transcriptome analysis methods in future studies, and even some 

previous measures of competitive growth or fitness, to give researchers a sense of 

how transcription might be influencing the fitness of an individual.  

 

4. Heterosis predictions 
My thesis proposed certain parental characteristics which impact heterosis in 

Saccharomyces yeast. Heterosis has been thoroughly studied for over century, thus 

common parental characteristics that produce a higher yield hybrid in crop plants 

have been systematically identified (Shull, 1908; Fehr & Hadley, 1980). Throughout 

my thesis I observed similar patterns; parental phenotypic divergence was positive 

related to F1 hybrid competitive growth (Chapter I and Bernardes et al., 2016), and 

indirectly, highly inbred monosporic clones derived from high heterozygosity 

domesticated primary isolates displayed lower asexual growth than monosporic 

clones derived from low heterozygosity wild primary isolates (Chapter III). 

Heterosis was primarily identified and studied in crop plants (Shull, 1908; East, 

1936), where crosses between divergent and highly inbred parents resulted in 

offspring with greater biomass than both inbred parents. Parental divergence could be 

a measure of genetic or phenotypic divergence; I did not identify any relationship 

between heterosis and genetic divergence (Chapter I and Bernardes et al., 2016) 

neither did Zörgö et al. (2012) or Plech et al. (2014) studies, I did identify a positive 

relationship between phenotypic divergence and heterosis. Phenotypic divergence, or 

difference between divergent Saccharomyces parents competitive growth was positive 
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related to heterosis in a wide variety of crosses, between wild populations of S. 

paradoxus and between domesticated and wild Saccharomyces species, and in 

different environments (Chapter I and Bernardes et al., 2016). Thus suggesting 

phenotypic divergence can be a general predictor for heterosis in Saccharomyces 

yeast as it already is in crop plants. Another good predictor for heterosis relates 

heterozygosity of the primary isolates from which we normally derived the F1 hybrid 

parental strains. Heterozygosity of the primary isolates can be indicative of the 

number of recessive deleterious alleles present yeast populations. Autodiplodization 

or inbreeding of highly heterozygous primary isolates (domesticated) results in inbred 

parents with lower fitness due to exposure of deleterious alleles, while 

autodiplodization of low heterozygous primary isolates (wild) exposes less deleterious 

alleles producing inbred parents with higher fitness (Chapter III). Thus if we were to 

cross two highly inbred parents derived from domesticated populations with high 

heterozygosity we would expect several deleterious alleles to be complemented in the 

F1 hybrid, giving it a fitness advantage over its inbred parents. While if we were to 

cross two monosporic clones derived from divergent wild populations only a smaller 

number of alleles would be complemented in the F1 hybrid.  

Inbreeding and phenotypic divergence of parental strains are readily measured in 

Saccharomyces yeast, but further applications of these patterns should be applied in 

useful areas such as crop plant breeding and cattle breeding. Studies in 

Saccharomyces yeasts can be easily applied to crop plant breeding, due to similarities 

in domestication and reproduction of yeast and most crop plants (Birchler et al., 

2010). Both Saccharomyces yeasts and crop plants can be selected for highly inbred 

strains, by autodiplodization in yeast and rounds of self-fertilization in crop plants, 

specific and desirable phenotypic characteristics can be favoured. Both plants and 

yeast can be easily hybridise and tolerate crosses between different species (Fehr & 

Hadley, 1980), producing viable but infertile hybrids, however infertility can be 

overcome by their fast asexual reproduction that leads to a higher yield in size and 

number of (infertile) seeds, used for human consumption in crop plants. Thus similar 

parental characteristics that contribute to heterosis in Saccharomyces yeasts such as 

parental divergence, inbreeding and heterozygosity may also contribute to heterosis in 

crop plants. However these characteristics are challenging to apply in other 

economically important goods such as animal cattle; selection of favourable and 
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desirable characters through inbreeding can be much more time consuming, due to big 

generation times in mammals, and also hybridisation can be prevented by pre- and 

pos-zygotic barriers which are much more strict than for crop plants or and 

Saccharomyces yeast. But the parallelisms between crop plants and Saccharomyces 

yeast outcomes of hybridisation are astonishing, and further studies are desirable to 

apply what we have learned from Saccharomyces yeasts heterosis studies and 

predictions to crop plant breeding. 

 

5. Isolation of Saccharomyces yeasts 
In my thesis I only used Saccharomyces yeasts that had been previously isolated by 

enrichment cultures (Chapter I, Bernardes et al. (2016), Chapter II and Chapter III), 

this method is a widespread technique used to isolate Saccharomyces yeast from 

natural environments. However, the use of enrichment cultures might be depleting a 

great proportion of Saccharomyces yeast diversity from our sampling. 

A caveat in heterosis studies is the way we isolate Saccharomyces from their natural 

habitats or how we get primary isolates. Standard practice uses enrichment cultures 

where environmental samples are placed in rich growth medium and then incubated. 

This method distorts the quantity and diversity of yeast populations present in the 

sample because it selects for fast growing inbred diploids present (Goddard & Greig, 

2015). For example, if the environmental samples are composed of haploid 

homothallic spores, rich growth medium and incubation will induce spores to 

autodiplodize depleting the population of heterozygosity by forming completely 

homozygous diploid strains (Mortimer et al., 1994), and diminishing diversity by 

selecting for a fast growing primary isolates, culminating in the isolation of fast 

growing primary isolates with low heterozygosity. While when the environmental 

samples are composed of vegetative mitotic diploids, enrichment cultures will select 

for genotypes that grow fast in artificial media, not capturing slow growing, and 

potentially heterozygous, yeasts that might be fit in their natural environment 

(Goddard et al., 2010). This might explain why we identify low heterozygosity levels 

for Saccharomyces isolated from wild habitats, and high heterozygosity levels for 

Saccharomyces isolated from wine ferments (Knight & Goddard, 2015) or other 

domesticated environments (Magwene et al., 2011), because wild yeast populations 

are more likely to go through a haploid form more often due to strong selection that 
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induces higher rates of sexual reproduction (Tsai et al., 2008), while domesticated 

strains are more likely to remain diploids (Cubillos et al., 2009) maintaining the levels 

of heterozygosity of the environmental sample but diminishing any diversity that 

might be present.  

It would be interesting to develop other method for Saccharomyces yeasts isolation 

that does not constrict yeast diversity by selecting for autodiplodization or fast 

growth. By not selecting for fast growth in artificial media we could probably capture 

a higher diversity of Saccharomyces, also it would be useful to identify different 

autodiplodized haploid spores that were collected in the environmental sample. If 

there was such method we could compare the Saccharomyces populations isolated 

with the enrichment cultures and have a critical discussion in whether enrichment 

culture is truly capturing the diversity of Saccharomyces yeasts present in the natural 

habitats. 

 

6. General conclusion 
Heterosis is one of the most interesting phenomenons in biology and its importance to 

world economy is undeniable. Agriculture and crop breeding have been the focus of 

heterosis studies for over a century due to their direct applications and relevance to 

human consumption. The rise of Saccharomyces yeasts as a model system for the 

study of heterosis comes with a promise of simplifying the study of genetic and 

molecular mechanisms behind heterosis. Thus a molecular mechanism that explains 

multigenic heterosis at a cell level for multiple species under different environmental 

conditions can be paramount in future advances and applications of heterosis. 

Heterosis applications in crop and cattle breeding can benefit human society, 

highlighting the impact of evolutionary biology studies on our lives. 
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Glossary & List of Abbreviations 
Additive transcription 
When the F1 hybrid gene transcription is 
similar to the average of the parental 
strains. 
 
Allele specific expression 
Specific transcription of the parental 
alleles in the F1 hybrid, when the F1 
hybrid has the ability to differentiate 
parental alleles. Distinguish parental 
alleles transcription by mapping the 
RNA-seq reads of the F1 hybrid to two 
divergent parental genomes. If a read 
maps to both genomes in the same 
amount, there is no allele specific 
expression. 
 
Asexual reproduction 
Diploid or haploid yeasts grow 
vegetatively by budding. The offspring is 
identical to the parent in terms of genome 
and ploidy. 
 
Autodiplodization 
Germination of a haploid spore, followed 
by mate-type switching of the haploid 
cell and cross with a sister haploid cell 
from the same spore-colony. Complete 
duplication of a haploid genome to a 
diploid genome. Complete homozygosity 
upon autodiplodization. 
 
Best-parent heterosis (BPH) 
When the F1 hybrid fitness is higher than 
the parent with the highest fitness.  
 
Competitive growth 
Measure of asexual growth of a test 
strain against a control. In my thesis, 
asexual growth of F1 hybrid when in 
direct competition with the parental 
strains in pairwise comparisons. 
 
Cis-regulated transcription 
Transcription is regulated by elements 
closely linked to the gene(s) they affect 
(i. e. enhancers or TATA box). Cis-

regulatory effects control only the 
parental alleles they are linked to in the 
F1 hybrid. Cis-regulation can be 
identified by significant differences in 
allelic specific expression in the F1 
hybrid. 
 
Conserved transcription 
When the F1 hybrid gene transcription is 
similar to both parental strains. 
 
Diploid 
Yeast cell contains a pair of homologous 
chromosomes, 32 chromosomes in total. 
 
Domestic habitat 
Man made habitats where yeast is 
isolated from, normally wineries, 
breweries or clinics. Relative simplified 
habitat with strong directional selection, 
characterized by very low rates of sex 
(lower than wild habitats). Yeast 
populations isolated from this habitat 
display high heterozygosity, and 
consequently accumulation of recessive 
deleterious alleles. 
 
Dominance genetic mechanism 
Heterosis mechanisms by which the F1 
hybrid has a higher fitness due to 
complementation of recessive deleterious 
alleles of the parental strains. 
 
Dominant Transcription 
When the F1 hybrid gene transcription is 
similar to one of the parental strains but 
not the other parental strain. 
 
Enrichment culture 
Method of isolating yeast from primary 
natural habitats, which uses rich culture 
media selecting for rapid growth yeasts. 
If the yeast isolates are haploid there are 
high chances for autodiplodization, and if 
the yeast isolates are diploids they 
remain diploids. 
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Environmental-stress related genes 
(ESR) 
Several genes with specific transcription 
response regardless of the environmental 
change. ESR genes comprise around 
16% of the yeast genome. 
 
Epistasis genetic mechanism 
Heterosis mechanism by which the F1 
hybrid has a higher fitness due to 
interaction between alleles from unlinked 
loci. 
 
F1 hybrid 
First generation of an intra-specific or an 
inter-specific cross between divergent 
parental populations. 
 
Facultative sexual reproduction 
Ability to reproduce sexually or 
asexually. 
 
Fitness 
In this thesis, fitness refers to a measure 
of asexual growth such as competitive 
growth (Chapter I and II) or maximum 
growth rate (Chapter III). 
 
Haploid 
Yeast cell contains a homologous 
chromosome, 16 chromosomes in total. 
 
Heterosis 
Advantage of the F1 hybrid in 
comparison to one or both parental 
species. Also known as hybrid vigour. 
 
Heterozygosity 
Number or heterozygous sites in a given 
genome. 
 
Heterozygous 
When a gene has two different alleles for 
a certain locus. 
 
Homozygous 
When a gene has the same two alleles for 
a certain locus. 
 
 

Hybridisation 
Cross between two individuals of 
divergent populations (intra-specific) or 
between two individuals of different 
species (inter-specific). Hybridisation is 
detected by direct observation or by 
analysis of population genomic data. 
 
Inbred 
Cross between two spores of the same 
tetrad. Complementation of haploid 
genomes into a diploid similar to the 
original parent (Chapter III).  
 
Inbreeding depression 
Low fitness of a hybrid individual due to 
inbreeding. Normally cause by decrease 
in heterozygosity, which might expose 
recessive deleterious alleles.  
 
Inter-specific hybridisation 
Result of a cross between two individuals 
of different species. 
 
Intra-specific hybridisation 
Result of a cross between two individuals 
of divergent populations. 
 
Maximum growth rate  
Measure of asexual growth taken from 
the steepest slope of a certain growth 
curve when a strain grows in isolation 
(MG=(LOG(ODt+1/ODt)) x100). 
 
Mid-parent heterosis (MPH) 
When the F1 hybrid fitness is higher than 
the parental average. 
 
Misexpression 
When the F1 hybrid gene transcription is 
significantly higher or lower than both 
parental strains, also refer to as 
overdominant for a particular strain. 
 
Monosporic clone 
Result of autodiplodization. Complete 
homozygous strains normally used in the 
laboratory for experiments or sequence 
due to their stability. 
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Negative heterosis 
When a F1 hybrid has lower fitness than 
one or both parents. Disagreeing with 
Shull (1941) definition for heterosis. 
 
Next Generation Sequencing (NGS) 
Or High-throughput sequencing refers to 
modern sequencing techniques like 
Illumina sequencing. These sequencing 
techniques are normally used in whole-
genome sequencing (WGS) and RNA-
seq. 
 
Outcrossing 
Cross between two spores from tetrads or 
ascus belonging to divergent yeast 
populations. Result in a strain with 
higher heterozygosity than the parental 
strains. 
 
Overdominance genetic mechanism 
Mechanism by which the F1 hybrid has a 
higher fitness due to the intrinsic 
advantage of heterozygous loci. 
 
Overdominant transcription 
Extreme form of dominant transcription 
when the transcription value is not 
similar to any of the parents but goes 
beyond one specific parental strains. 
 
Positive heterosis 
When a F1 hybrid has a similar or higher 
fitness than one or both parents. 
 
Recessive deleterious alleles 
The result of recessive deleterious 
mutations. When a locus is dominant and 
heterozygous with one recessive 
deleterious allele and one wild-type 
allele, there will be no negative effect on 
the individual (masked deleterious 
allele). When a locus is homozygous 
with both alleles recessive deleterious 
alleles or is haploid with recessive 
deleterious alleles, there will be a 
negative effect on the individual 
(exposed deleterious alleles).  
 
 

RNA-Seq 
Whole transcriptome sequencing by 
Next-generation sequencing (NGS). 
Account of the presence and quantity of 
mRNA in a biological sample at a given 
moment in time (transcription profile). 
 
Saccharomyces yeasts 
Saccharomyces yeasts form a complex of 
seven closely related, genetically 
tractable yeast species with similar 
morphologies. Species are S. cerevisiae, 
S. paradoxus, S. mikatae, S. kudriavzevii, 
S. arboricola, S. eubayanus, and S. 
uvarum. 
 
Sexual reproduction 
Diploid yeast sporulates and forms a 
tetrad with four haploid spores within. 
Each spore is able to autodiplodized, to 
inbreed or to outcross. The offspring will 
be different from the parental strains if 
the haploid spore outcross. The offspring 
will be similar to the parent if the haploid 
spore inbreeds or autodiplodizes. 
 
Single Nucleotide Polymorphism 
(SNP) 
DNA sequence variation occurring when 
a single nucleotide differs between 
individuals of different species or 
divergent populations. 
 
Spore viability 
Number of viable spores over the total 
number of spores. In my thesis, viable 
spores form visible colonies (Chapter 
III). 
 
TATA box 
Conserved element in the promoter 
region of a gene that bounds to a TATA-
biding protein and affects on the 
initiation of gene transcription. Only 
20% of the yeast genes contain TATA 
box in their promoter region and have 
been associated with stress-related 
response. 
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Tetrad 
Or ascus is the sac where the four 
haploid spores are stored that is formed 
upon sexual reproduction. 
 
Trans-regulated transcription 
Transcription is regulated by elements 
not linked to the gene(s) they affect (i. e. 
transcription factors). Trans-regulatory 
effects affect both parental alleles of a 
particular gene in the F1 hybrid. 
 
Transcription profile 
Presence and quantity of genes 
transcribed by an. 
 
Whole Genome Sequence (WGS) 
Modern sequence technique that 
determine the complete DNA sequence 

of the genome of an individual or 
biological sample. 
 
Wild habitat 
Natural habitats where yeast is isolated 
normally bark or leaf litter of trees. 
Relative stressful and complex habitats 
with strong selection, characterized by 
low rates of sex (higher than 
domesticated habitats). Yeast populations 
isolated from this habitat display low 
heterozygosity, and consequently no 
accumulation of recessive deleterious 
alleles. 
 
Worst-parent heterosis 
F1 hybrid fitness lower than the parent 
with the lowest fitness. Disagreeing with 
Shull (1941) definition for heterosis. 
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