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Zum Druck genehmigt:

gez. Prof. Dr. Natascha Oppelt, Dekanin

iii





Declaration of Authorship

I, Sergej Mikheev, declare that this thesis titled, ’Portfolio optimization in arbitrary

dimensions in the presence of small bid-ask spreads’ and the work presented in it are

my own. I confirm that:

� This work was done wholly while in candidature for a research degree at this

University.

� No part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations and apart from the supervisor’s guidance, this

thesis is entirely my own work.

� The thesis has been prepared subject to the Rules of Good Scientific Practice of

the German Research Foundation.

Signed:

Date:

v





CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

Mathematisches Seminar

Abstract

Dissertation

Portfolio optimization in arbitrary dimensions in the presence of small

bid-ask spreads

by Sergej Mikheev

This thesis deals with the problem of maximizing the expected utility of terminal wealth

in financial markets with an arbitrary number of risky assets in the presence of small

bid-ask spreads. The goal is to determine an asymptotically optimal trading strategy

and to quantify the asymptotic welfare impact of small proportional fees levied on in-

vestor’s transactions.

The approach taken in this study relies on the concept of a shadow price transforming

the problem of portfolio optimization with proportional costs into a frictionless one.

With the help of the shadow price, an asymptotically optimal trading strategy is shown

to be a solution to a reflecting stochastic differential equation. The (stochastic) reflect-

ing boundary is characterized as solution to a free-boundary problem. The boundary

constrains the motion of the trading strategy to a domain known as the no-trade region.

Instead of attempting to find exact solutions, we propose several simple domains as can-

didates for the no-trade region. Trading strategy to each of the domains is defined as

solution to a stochastic Skorohod problem. By adapting the notion of the shadow price,

we establish a duality relation between trading strategies and martingale measures for

shadow-price processes. This allows us to derive an upper bound on the expected utility

generated by each candidate strategy, which provides an estimate of the expected utility

of the exact asymptotic optimizer.

Expected utility of each trading strategy together with the associated upper bound are

evaluated by means of numerical simulations. The simulations are run on the Black-

Scholes model for portfolios of up to 30 risky assets.
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Chapter 1

Introduction

This thesis is concerned with the problem of maximizing the expected utility of terminal

wealth in financial markets with an arbitrary number of risky assets in the presence

of small bid-ask spreads. The general structure of the problem can be described as

follows. Let u be the utility function of an economic agent investing in n ≥ 1 risky

assets S1, . . . , Sn available on the financial market, for a certain time T > 0. The

investor’s trading strategy is modelled by an Rn-valued stochastic process (ϕt)t∈[0,T ].

For t ∈ [0, T ], the random variable ϕt = (ϕ1
t , . . . , ϕ

n
t )> describes the number of shares

held by the investor in each of the risky assets. Let X(ϕ)t denote the investor’s payoff

if they were to liquidate the portfolio at the time t ∈ [0, T ]. Assuming that there is no

consumption, find a solution to the maximization problem

max: ϕ 7−→ E[u(X(ϕ)T )] . (1.1)

Suppose that we know the optimal solution if the market has no frictions (meaning that

there are no fees on transactions) and denote this solution by ϕ∗. Now suppose that,

for each transaction, the investor has to pay a fee proportional to the current value of

the stock. In such a market, each stock has a bid price, Sj = Sj − εjSj , and an ask

price, S
j

= Sj + εjS
j , with εj being a constant proportionality factor for the stock Sj ,

j = 1, . . . , n. Markets with such proportional fees are referred to as bid-ask spreads.

We are interested in the asymptotic effect of proportional transaction costs. Put dif-

ferently, we analyse the situation in which the proportionality factors are assumed to

satisfy

εj = O(ε), j = 1, . . . , n ,

with ε > 0 being a small parameter. In this asymptotic setting, our first goal is to find

a trading strategy which is optimal at the leading order as ε becomes small. Based on

existing results (e. g.,[SS94, Rog04]), asymptotic optimality of a trading strategy ϕ can

1



Chapter 1. Introduction 2

be characterized as

E[u(X(ϕ)T )] ≥ E[u(X(ψ)T )] + o(ε2/3) ,

with ψ denoting any other strategy. Secondly, given that ϕ is asymptotically optimal,

we want to quantify the expected utility loss

L =
∣∣E[u(X(ϕ∗)T )]− E[u(X(ϕ)T )]

∣∣ . (1.2)

Bid-ask spreads naturally reduce the set of (reasonable) trading strategies to the subset

of finite-variation processes, since strategies having infinite variation generate infinite

transaction costs and lead to bankruptcy. Due to the presence of transaction costs,

trades result in money loss and thereby reduce the investor’s expected utility. Hence,

one aspect of optimality is to avoid unnecessary transactions. However, waiting too

long results in large deviations from the frictionless optimizer, which also generates

utility loss. Therefore, optimality of a trading strategy can be understood as a trade-

off between the two opposite effects. This trade-off manifests itself in the form of a

(stochastic) boundary around the frictionless optimizer. The region inside the boundary

is known as the no-trade region. An optimal trading strategy remains constant inside

the no-trade region. When the boundary is crossed, the strategy changes (meaning that

trades are carried out by the investor) so as to return to the no-trade region. Finding

an optimal boundary and determining the no-trade region is an essential part of the

optimization procedure. To solve the problem, one still needs to determine the optimal

behaviour of the strategy at the boundary.

To approach the optimization problem, we pass to a frictionless market extension, known

as the shadow-price market. A shadow price is a fictitious price process

S̃ = (S̃1, . . . , S̃n)> ∈
n∏
j=1

[Sj , S
j
] ,

evolving inside the bid-ask spread, whose defining property is that the frictionless opti-

mizer with respect to S̃ coincides with the optimizer with respect to the bid-ask spread.

We assume that the shadow price can be represented as a sufficiently well-behaved func-

tion of the trading strategy. By using predominantly heuristic arguments, we show that,

for small transaction costs, this function and the boundary of the (asymptotically) op-

timal no-trade region constitute a solution to a free-boundary problem. An optimal

trading strategy can be obtained as solution to a reflecting stochastic differential equa-

tion with respect to the free boundary. Boundary conditions determining the optimal

behaviour of the trading strategy at the boundary of the no-trade region follow from the

properties of the shadow price. We are mainly interested in solutions in high dimensions,

n� 2. Solving a free-boundary problem together with a system of reflecting stochastic
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differential equations with respect to a stochastic boundary1 in high dimensions is a

very challenging task. Moreover, in order to quantify the loss (1.2), the knowledge of

the distribution of the trading strategy inside the no-trade region is required. Instead

of attempting to solve the problem exactly, we propose several candidate domains as

possible no-trade regions and estimate the loss generated when trading according to a

strategy reflecting at the boundary of the domains. To assess the quality of the approx-

imations, we propose an upper bound on the expected utility the candidates generate,

which we derive using basic methods of the convex duality theory. The main idea is to

construct a frictionless market, similar to the shadow-price market, and show that, under

certain conditions, this market admits an equivalent martingale measure. The measure

then serves as a dual variable generating the upper bound. The conjugate functions

through which a duality relation is established are the utility function and the so-called

convex conjugate of it, the latter being essentially the Fenchel-Legendre transform of the

former. In short, the general structure of the results can be described as follows. Let ϕ

be a candidate strategy (i. e., trading strategy corresponding to a candidate domain ap-

proximating the no-trade region), u the utility function and ũ its convex conjugate. Let

ZT be the density of an equivalent martingale measure for an appropriately constructed

frictionless market extension, as described above. Then, the duality relation is of the

form

E[u(X(ϕ)T )] ≤ const+ E[ũ(const′ZT )] . (1.3)

The left-hand side and the right-hand side of (1.3) are referred to as the primal functional

and the dual functional, respectively. The functionals are evaluated using numerical sim-

ulations. Since the interval defined by the duality relation (1.3) necessarily contains the

value generated by the exact asymptotic optimizer, simulated values of the primal and

dual functionals provide an estimate for the asymptotically optimal value of the opti-

mization problem.

This thesis is organised as follows. Chapter 2 introduces basic definitions and general

notational conventions which will be used throughout this work. In Chapter 3, portfolio

optimization in markets without frictions is discussed. The chapter aims at review-

ing the main results of the frictionless theory and introducing the methodology of the

convex-duality approach. Chapter 4 discusses theoretical aspects of optimizing portfo-

lios in the presence bid-ask spreads. Apart from well-known general aspects, the chapter

introduces the method of asymptotic expansions of the primal and dual functionals for

small transaction costs, an essential tool for obtaining the main results of this thesis.

Moreover, it is shown that, asymptotically, the optimization problem is equivalent to a

free-boundary problem and the problem of finding a solution to a stochastic differential

1The situation is additionally complicated by the fact that the no-trade region turns out to be non-
convex and its boundary non-smooth.
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equation with reflecting boundary conditions. The chapter is concluded by presenting

a few explicitly solvable special cases. In Chapter 5, a simple method for constructing

linear candidate domains is presented and the notion of a trading strategy with respect

to a domain is introduced. The method is then used to select three particular domains

based on different heuristic arguments. Furthermore, a construction scheme for associ-

ating a dual variable with an arbitrary linear domain is proposed. In Chapter 6, the

approximations are implemented to simulate large portfolios within the framework of the

Black-Scholes model. First, a large portfolio is selected based on an implicit parameter-

estimation scheme using real market data. Subsequently, the discretization method and

the implementation algorithm are introduced. The chapter is concluded by presenting

and discussing the results of the computer simulations.



Chapter 2

Preliminaries

This chapter contains the most basic definitions including the notational conventions

that will be used throughout this thesis. Moreover, the notion of utility functions and

their convex conjugates is introduced and their importance is explained.

2.1 Notation

This thesis will deal with continuous multivariate stochastic processes, i. e. continuous

processes taking on their values in Rn for some n ≥ 1. All vectors are assumed to be

column vectors. To denote the components of a multivariate stochastic process, we will

use superscript numbers j ∈ {0, . . . , n}, whereas subscripts will be used to indicate the

time dependence of the process. Thus, e. g., the j-th component of a multivariate process

X = (X1, . . . , Xn)> at the time t will be written as Xj
t . The superscript rule applies

only to stochastic processes; the dimensional components of all non-stochastic objects

(deterministic functions or constants) will be enumerated by using subscripts.

We now give a definition of multi-dimensional stochastic integrals. For the one-dimensional

theory, the reader is referred, e.g., to [Pro04] Chapter 4, [JS13] Chapter I.4.

Definition 2.1. Let X = (X1, . . . , Xn)> be a semimartingale and H = (H1, . . . ,Hn)>

a predictable process. We call H integrable with respect to X and write H ∈ L(X) if, for

each j = 1, . . . , n, Hj is integrable with respect to Xj in the sense of the one-dimensional

integration theory.

We will use the following notation. Given two real-valued processes X and H, H ∈ L(X),

the stochastic Itô integral will be written as

H • X =

∫
H dX

5
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when we mean the process in general. For a t ≥ 0, we write

H • Xt =

∫ t

0
Hs dXs .

Let H = (H1, . . . ,Hn)> and X = (Xn, . . . , Xn)> be two multivariate stochastic pro-

cesses such that H ∈ L(X) in the sense of Definition 2.1. The multi-dimensional Itô

integral of H with respect to X will be written as

X • Y =
n∑
j=1

Xj • Y j =

∫
X dY =

n∑
j=1

∫
Xj dY j .

We remark that this definition of multi-dimensional Itô integrals is not the most general

one. For a discussion of this subject, the reader is referred to [JS13] Chapter III.4a,

Theorem 4.5 and Example 4.10.

An important role will be played by a particular class of semimartingales, the Itô pro-

cesses.

Definition 2.2. A stochastic process X = (X1, . . . , Xn)> is called Itô process if it is of

the form

Xj
t = Xj

0 +

∫ t

0
bX,ju du+

m∑
k=1

∫ t

0
σX,jku dW k

u ,

where W 1, . . . ,Wm, m ≥ n, are standard Brownian motions, and the (predictable)

processes bX and σX satisfy∫ t

0

(∣∣bX,ju

∣∣+
(
σX,jku

)2)
du <∞ a.s. for all t ≥ 0, (j, k) ∈ {1, . . . , n} × {1, . . . ,m} .

The matrix σX is referred to as the diffusion matrix, and we assume it to have full rank

for each (t, ω). The vector-valued process bX is called the drift process of X.

Let X, Y be two Itô processes. From the definition we see that the quadratic covariation

of X and Y , and the quadratic variation of X can be represented as

d[Xj , Y k]t = cX,Y ;jk
t dt and d[Xj , Xk]t = cX,jkt dt ,

where

cX,Y = σX(σY )>, cX = σX(σX)>

are matrix-valued processes that will be referred to as the local quadratic covariation of

X and Y , and the local quadratic variation of X, respectively.

Remark 2.3. Notice that our Definition 2.2 implies that an Itô process is continuous.

This follows from the fact that integrals with respect to continuous local martingales
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(in our case Brownian motion) are again continuous local martingales for all predictable

integrands (cf. [Pro04] Theorem IV.30).

2.2 Market model

Let X = (Ω,F ,F, P ) be a filtered probability space with the filtration F = (Ft)0≤t≤T ,

T ∈ (0,∞), satisfying the usual conditions of completeness and right-continuity. For

n ∈ N, let S0, . . . , Sn : [0, T ] × Ω → R be Itô processes on X . We let the process S0

describe a riskless cash account referred to as the bond, and S = (S1, . . . , Sn)> model n

risky assets also called stocks. For j ∈ {0, . . . , n}, the process Sj will be referred to as the

price process of the underlying asset. For notational convenience, the price process of

the bond will be normalized to unity, S0
t ≡ 1. There is no loss of generality through this

normalization since the bond can always be chosen as numéraire1. Thus, in the following,

the bond price will not be mentioned explicitly, and the process S = (S1, . . . , Sn)> will

be interpreted as modelling the discounted prices of n risky assets.

The stocks are assumed to be non-dividend paying.

2.3 Utility functions

As the name suggests, portfolio optimization is about maximizing the investor’s wealth

over a certain time interval. If we denote the investor’s wealth at the endpoint, T , by

XT , the most naive approach to the optimization problem would therefore probably be

to declare E [XT ] to be the objective function. But maximizing the expected wealth

directly, in general, leads to risky portfolios being selected as optimal, disregarding the

fact that such investments involve a high chance of losing money. In order to account for

a certain (investor-dependent) degree of risk aversion, the concept of utility functions is

used.

In this work, only a specific class of utility functions, the so-called exponential utility, will

be used. Nonetheless, we first provide a general definition of utility functions and collect

some of their most important properties, as it will help present some of the conclusions

we wish to make in the following in a more compact form. For a detailed discussion

of utility functions and their properties in connection with portfolio optimization, the

reader is referred to [Sch01].

Definition 2.4. A utility function is a mapping u : R→ R ∪ {−∞} with the following

properties:

1meaning that the price processes of the stocks can be viewed in units of the bond.
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(i) u is increasing on R and continuous on {u > −∞} ;

(ii) u is differentiable and strictly concave on the interior of {u > −∞}, and it satisfies

lim
x→∞

u′(x) = 0, lim
x→−∞

u′(x) =∞ . (2.1)

Remark 2.5. The assumption of a utility function being an increasing, concave function

makes good sense from an economic point of view. Whereas the property of being an

increasing function is rather obvious (it means that the investor prefers more to less), it

is the concavity of u which guarantees that the investor’s negative reaction to the risk

of losing money, risk aversion, is accounted for.

Given the concept of utility functions, the portfolio-optimization problem amounts to

maximizing the expected utility of the investor’s terminal wealth, E[u(XT )], over all

”allowed” investment strategies. This subject and especially the notion of ”allowed”

strategies is discussed in a more rigorous way in Chapter 3.

Example 2.1 (Exponential utility). Since the main part of this thesis involves only one

special type of utility functions, we pay special attention to it in this example.

For a p > 0, the function

u(x) = −e−px

is a utility function in the sense of Definition 2.4 and is referred to as the exponential

utility function.

2.3.1 Convex conjugate

The theory of convex optimization or convex duality theory is an important tool for

studying stochastic optimization problems (especially in a non-Markovian setting). Given

the primal maximization problem, the idea is to construct a dual minimization problem

whose optimal value coincides with (or is sufficiently close to) the optimal value of the

primal problem one is actually attempting to solve. The objective functions of the pri-

mal and the dual optimization problem are connected via a transformation known as the

convex conjugation. Sometimes this operation is also referred to as the Fenchel-Legendre

transformation. The concept of approaching optimization problems by passing to convex

duality theory plays an important role for the major part of this work. In the remainder

of this subsection, we provide the definition as well as the most important properties of

the convex conjugate only in connection with utility functions. For a general treatment

of the theory of convex optimization refer, e.g., to [BP10] by V. Barbu and T. Precupanu

or to [Roc70] by R. T. Rockafellar.



Chapter 2. Preliminaries 9

Definition 2.6. Let u be a utility function. The function ũ : (0,∞)→ R defined by

ũ(y) = sup
x∈R
{u(x)− xy} (2.2)

is called the convex conjugate of u.

The following two propositions follow directly from the properties of the utility functions

listed in Definition 2.4 and the definition of the convex conjugate.

Proposition 2.7. Let u be a utility function and ũ its convex conjugate. Then,

lim
y→0+

ũ′(y) = −∞, lim
y→0+

ũ(y) = lim
x→∞

u(x) ,

lim
y→∞

ũ(y) = lim
y→∞

ũ′(y) =∞ .
(2.3)

Proposition 2.8. Let u be a utility function and ũ its convex conjugate. Then,

ũ(y) = u(x)− xy ⇔ x = (u′)−1(y), y > 0 , (2.4)

u(x) = inf
y>0
{ũ(y) + xy} , (2.5)

ũ′ = −(u′)−1 . (2.6)

Example 2.2. Let u(x) = −e−px, p > 0. Elementary maximization procedure then

yields

ũ(y) =
y

p

(
ln
y

p
− 1

)
. (2.7)





Chapter 3

Portfolio Optimization: The

Frictionless Case

In this chapter, a detailed discussion of the portfolio-optimization problem without any

frictions (transaction costs or otherwise) is presented.

There are two methods that are used to approach stochastic optimization problems. The

first one is known as dynamic programming and is based on the Bellman’s principle of

optimality. Its adaptation to the setting in which functionals of continuous Markov pro-

cesses are considered is better known as stochastic control theory. This method allows

to formulate a non-linear partial differential equation, known as the Hamilton-Jacobi-

Bellman equation (HJB equation), for the maximum expected utility being a function

of the investor’s initial endowment. In the case of a few tractable models, the problem

can be solved explicitly for the optimal value as well as the optimizing strategy (opti-

mal control). A short introduction with applications can be found in [Øk92], and for a

detailed discussion of the control theory of diffusion processes the reader is referred to

[ABG12]. The first explicit solution within the framework of the Black-Scholes model, a

continuous-time financial model that uses geometric Brownian motion to represent the

asset dynamics, was obtained by R. Merton in 1969 [Mer69, Mer71]. The multidimen-

sional Black-Scholes model will be discussed in detail in Example 3.2.4 at the end of

this chapter. There are very few tractable models for which an explicit solution can be

found. Although potentially very well suited for obtaining explicit solutions, one should

keep in mind that the stochastic-control method is only applicable to models having

Markovian structure.

Another way to approach a portfolio-optimization problem is to apply martingale tech-

niques relying on the theory of convex optimization. This approach amounts to estab-

lishing a duality relation between utility maximization and minimization of a convex

11
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functional with respect to an appropriately chosen set of probability measures. It ap-

plies in great generality and does not require any specific structure of the underlying

model. Important pioneering studies applying the convex duality theory to utility maxi-

mization in incomplete markets and continuous-time models are [HP91, KLSX91, KS99,

Sch01, DGR+02].

The following discussion of the frictionless problem follows the convex duality approach.

Apart from introducing the basic notions of the theory of portfolio optimization, the

aim of this chapter is also to provide a compact illustration of the dual problem and its

relation to exponential-utility maximization and to put the duality results into a form

considered to be more convenient for further applications.

Remark 3.1. All results that are presented in the remainder of this chapter assume the

price process to be only a locally bounded semimartingale. This is a more general market

model than that introduced in Section 2.2 in which the stock prices are represented by Itô

processes. Notice that a continuous semimartingale X with bounded X0 is always locally

bounded. In fact, this is true for all adapted and left-continuous processes. Recall that

a process X with bounded X0 is locally bounded if there exists a sequence of stopping

times increasing to infinity, (τn)n∈N, τn ↗ ∞ a.s., and a sequence (Cn)n∈N in (0,∞)

such that |Xτn
t | ≤ Cn uniformly in (t, ω) for each n. For adapted, left-contiunuous (and

thus predictable) processes, this can be realized by taking τn = inf {t ≥ 0: |Xt| ≥ n}
and Cn = n.

3.1 Basic notions from portfolio theory

In this section, the essentials of the general portfolio theory are presented. Self-financing

and admissible trading strategies are introduced, and the notion of arbitrage absence is

discussed.

Definition 3.2. For a given (discounted) price process S = (S1, . . . , Sn)>, a trading

strategy (also referred to as portfolio or policy) is an F-predictable Rn+1-valued process

(ϕ0, ϕ)> : [0, T ]× Ω→ R× Rn with ϕ = (ϕ1, . . . , ϕn)> ∈ L(S).

For t ≥ 0, the random variable ϕjt , j ∈ {0, . . . , n}, describes the number of shares of the

security described by Sj held at time t.

Definition 3.3. For a price process S and a strategy (ϕ0, ϕ)>, the stochastic process

(Vt)0≤t≤T ,

Vt = ϕ0
t +

n∑
j=1

ϕjtS
j
t , (3.1)
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is called the wealth process.

The random variable Vt then is the monetary value of the portfolio at time t ≥ 0.

Definition 3.4. A portfolio (ϕ0, ϕ)> is called self-financing if

Vt = V0 +

∫ t

0
ϕu dSu = V0 +

n∑
j=1

∫ t

0
ϕju dS

j
u . (3.2)

Thus, when there is no income from outside, the portfolio is self-financing if and only if

the change of the investor’s wealth is solely due to the change in asset prices. Note that

in this case, buying new assets is financed only by selling assets (including the bond)

from the portfolio.

Remark 3.5. A self-financing portfolio (ϕ0, ϕ)> can be identified with its part ϕ de-

scribing only the stock investment. More precisely, given the initial capital V0 and an

S-integrable, Rn-valued process ϕ, there is a unique real-valued process ϕ0,

ϕ0
t = V0 +

∫ t

0
ϕu dSu − ϕ>t St ,

such that (ϕ0, ϕ)> is a self-financing strategy defining a wealth process whose initial

value equals V0.

Assumption A1. Unless otherwise stated, all trading strategies are assumed to be

self-financing. Moreover, by Remark 3.5, we will often drop ϕ0.

3.2 Portfolio optimization

This section gives a detailed introduction to the frictionless portfolio-optimization theory.

For the special case of exponential utility, an appropriate dual minimization problem is

formulated and used to establish an optimality criterion for the primal problem.

Definition 3.6 (Portfolio-optimization problem). Let u be a utility function. Let S

be the price process and x =
∑n

j=0 xj be the investor’s initial endowment with x0

and x1, . . . , xn corresponding to their holdings in bond and stocks 1, . . . , n, respectively.

Define A(x) ⊂ L(S) to be a subset of predictable and S-integrable processes ϕ whose

wealth process satisfies V (ϕ)0 = V0 = x. Note that this implies that x0 = ϕ0
0 and

xj = ϕj0S
j
0, j = 1, . . . , n, with ϕ0 being the unique process such that (ϕ0, ϕ) is self-

financing. In this setting, we first define the so-called value function, v,

v(x) = sup
ϕ∈A(x)

E [u (V (ϕ)T )] . (3.3)
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The value function thus describes the maximum expected utility of terminal wealth when

optimizing over the set A(x).

The portfolio-optimization problem then amounts to finding the value function and de-

termining a strategy ϕ∗ such that

v(x) = E [u (V (ϕ∗)T )] .

Put differently, one seeks an optimizer ϕ∗ with respect to the set A(x) as well as the

expected utility associated with it.

The necessity of restricting the set of strategies as well as the properties of A(x) are

discussed in more detail in the following subsection.

3.2.1 Arbitrage and admissibility

The set A(x) appearing in the above definition can be characterized in a rather obvious,

intuitive way: it must not allow for arbitrage opportunities and must be large enough to

contain the optimizer. Trading strategies in A(x) are then called admissible. It was first

noticed by Harrison et al. (cf. [HK79, HP81]) that by taking A(x) to be the whole set

L(S) one already fails to satisfy the first requirement: there exist arbitrage opportunities

such as doubling strategies and alike investment schemes. A way out is to consider the

set of those strategies in L(S) whose wealth process is uniformly bounded from below.

More precisely, one considers trading strategies ϕ ∈ L(S) that, in addition to the initial

condition x = V (ϕ)0, satisfy

∀t ≥ 0 ∃K > 0: V (ϕ)t ≥ −K a.s. . (3.4)

If (3.4) is taken as the definition of admissibility, it can be easily seen that a sufficient

condition for the absence of arbitrage opportunities among the strategies fulfilling the

above boundedness condition is the existence of an equivalent local martingale measure

(ELMM) for the price process S. To see this, note that an arbitrage strategy ϕ can be

characterized as

(i) V (ϕ)0 = 0, (ii) P (V (ϕ)T ≥ 0) = 1, (iii) P (V (ϕ)T > 0) > 0 . (3.5)

Now let Q ∼ P be such that the price process S is a Q-local martingale. Then, ϕ • S

is a continuous Q-local martingale for each ϕ ∈ L(S) since S is continuous (cf. [Pro04]
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Theorem IV.30)1. Using (3.4) and applying Fatou’s lemma yields that ϕ • S is a Q-

supermartingale. Now let ϕ satisfy (ii) and (iii) of (3.5). Then, setting V (ϕ) = ϕ • S,

we obtain

V (ϕ)0 ≥ EQ [V (ϕ)T ] = EQ
[
V (ϕ)T I{V (ϕ)T>0}

]
> 0 (3.6)

since the equivalence Q ∼ P implies that (3.5) holds for Q as well. Note that the first

inequality is the supermartingale property of ϕ • S.

Remark 3.7. There is a deep connection between equivalent martingale measures and

arbitrage. It turns out that by relaxing the definition of arbitrage (3.5), one can obtain

not only a necessary but also a sufficient condition for the existence of an ELMM for a

price process S being a locally bounded semimartingale. The proper notion of arbitrage

is called ”No Free Lunch with Vanishing Risk” (NFLVR). The reader is referred to the

work by F. Delbaen and W. Schachermayer [DS94] (Theorem 1.1 and Corollary 1.2)

in which the following remarkable result, known as The Fundamental Theorem of Asset

Pricing (FTAP), is proved: For a price process S being a locally bounded semimartingale

there exists an ELMM if and only if the NFLVR condition is fulfilled.

For an extension to the case of unbounded asset prices see [DS96].

Recall the second requirement that the set of admissible strategies must be large enough

to contain the optimizer. It turns out that defining admissibility by (3.4) works well only

in the case of utility functions defined on [0,∞). This situation is analysed in detail,

e. g., in [KS99]. However, if negative wealth is allowed, and this will be the only case

of interest, one is forced to work with utility functions taking on finite values on the

whole real line, R. As pointed out, e.g., in [Sch01], for this class of utility functions, the

condition of uniform boundedness (3.4) is too restrictive since already in the case of the

Black-Scholes model with exponential utility, the optimizer in the sense of (3.3) fails to

fulfil this condition. Although in [Sch01] the authors find a way to resolve this issue,

we will take a different approach and introduce a different notion of admissibility as it

was done in [DGR+02, KS02]. We start by formulating a sufficient optimality condition

which suggests how the set A could look like.

Proposition 3.8. Let x be the investor’s initial endowment, S the price process, and u

a utility function. Assume that there exists a trading strategy ϕ such that

dQ

dP
=

u′(x+ ϕ • ST )

E [u′(x+ ϕ • ST )]

1The integral ϕ • S can also be shown to be a local martingale for a local martingale S which is not
necessarily continuous, and all strategies satisfying (3.4), cf. [Ans94], Proposition 3.3 .



Chapter 3. Portfolio Optimization: The Frictionless Case 16

is the density of a probability measure Q ∼ P with respect to which ϕ • S becomes a

martingale. Then, the strategy ϕ is optimal with respect to the set

A(x) = {ψ ∈ L(S) : V (ψ) = x+ ψ • S is a Q-martingale} . (3.7)

Proof. Since u is concave and differentiable, we have u(y) ≤ u(x) + u′(x)(y − x). Thus,

for a strategy ψ ∈ A,

E [u(x+ ϕ • ST )] ≥ E [u(x+ ψ • ST )] + E
[
u′(x+ ϕ • ST )((ϕ− ψ) • ST )

]
= E [u(x+ ψ • ST )] + E

[
u′(x+ ϕ • ST )

]
EQ [ϕ • ST − ψ • ST ]

= E [u(x+ ψ • ST )] .

The last term in the second line vanishes due to the martingale property demanded in

the definition of A.

Remark 3.9. Defining the set of admissible strategies by (3.7) will, of course, exclude all

arbitrage opportunities. This can be easily seen from (3.6) where the first relation then

holds as an equality due to the martingale property.

Proposition 3.21 will show that the above condition is satisfied in the case of the expo-

nential utility. It can then even be shown to be necessary if the measure Q happens to

have some additional properties (cf. Remark 3.22).

In order to show that, in the case of exponential utility, the above condition holds, the

problem of utility maximization will be linked to a (dual) minimization problem which,

in the special case of interest, can be shown to have a unique solution.

3.2.2 The dual problem

A key role in establishing a duality result for the (primal) optimization problem (Defi-

nition 3.6) is played by the convex conjugate and a trivial consequence of its definition.

From Definition 2.2 we immediately see that the convex conjugate is an upper-bound

for the utility function,

u(x) ≤ xy + ũ(y), x ∈ R, y > 0 , (3.8)

with (3.8) holding as an equality iff x = (u′)−1(y), as already stated in Proposition 2.4.

Some preparation needs to be done before the dual problem can be introduced.
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Definition 3.10. By

Mloc = {Q� P : S is a Q-local martingale} ,

Me
loc = {Q ∼ P : S is a Q-local martingale} ,

(3.9)

we denote the sets of all local martingale measures for the price process S that are abso-

lutely continuous and equivalent with respect to the real-world measure P , respectively.

Let x ∈ R denote the investor’s initial endowment, Q ∈ Mloc and L1(Q) be the set of

all Q-integrable random variables. Define

UQ(x) = sup
η∈Mx

Q

E [u(η)] ,

Mx
Q =

{
η ∈ L1(Q) : EQ[η] ≤ x, E[u(η)−] <∞

}
.

(3.10)

Remark 3.11. Given the interpretation of EQ[η] as the price of the random payoff η

with respect to the measure Q, the quantity UQ(x) can be understood as the maximum

expected utility of those random payoffs satisfying the budget constraint EQ[η] ≤ x, that

is all affordable payoffs in the sense that their Q-price is at most equal to the investor’s

starting capital.

The next lemma provides a useful representation of the supremum utility UQ.

Lemma 3.12 ([GR01], Lemma 4.1). Let Q ∈Mloc and

∀λ > 0: EQ

[
(u′)−1

(
λ
dQ

dP

)]
<∞ .

Then

UQ(x) = min
λ>0

{
λx+ E

[
ũ

(
λ
dQ

dP

)]}
. (3.11)

Remark 3.13. The minimum in (3.11) is attained. To see this, note that, by Proposition

2.4,
d

dλ

{
λx+ E

[
ũ

(
λ
dQ

dP

)]}
= 0

is equivalent to x = EQ

[
(u′)−1

(
λdQdP

)]
. It is assumed that this expectation is finite.

It then follows from the properties of the utility function and of the convex conjugate

that EQ

[
(u′)−1

(
λdQdP

)]
is a continuous and monotonically decreasing function of λ.

Moreover, by Proposition 2.4, ũ′ ((0,∞)) = R. Thus, there is a unique λ solving the

above equation and minimizing the right-hand side of (3.11).

Definition 3.14 (The dual problem). Let UQ be as in the equation (3.10) above. The

problem of finding

U(x) = inf
Q∈Mloc

UQ(x) . (3.12)
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will be referred to as the dual problem.

3.2.3 Duality and optimality

The goal of this subsection is to demonstrate that the minimization problem (3.12) is

dual to the utility-maximization problem formulated in Definition 3.6 and to provide

necessary conditions to ensure that there is no duality gap.

In the following, we consider only the exponential utility function, u(x) = −e−px, p > 0.

As already mentioned in Example 2.2, the convex conjugate of the exponential utility

reads ũ(y) = y
p

(
ln y

p − 1
)

.

Definition 3.15 (Relative entropy). For a probability measure Q� P , the expectation

H(Q,P ) = E

[
dQ

dP
ln
dQ

dP

]
(3.13)

is referred to as the relative entropy of Q with respect to P .

Remark 3.16. By applying Jensen’s inequality to the convex function f(x) = x lnx, one

can easily show that the relative entropy is always non-negative:

H(Q,P ) = E

[
f

(
dQ

dP

)]
≥ f

(
E

[
dQ

dP

])
= ln(1) = 0 .

Proposition 3.17. Let Q ∈Mloc be such that H(Q,P ) <∞. Then, in the case of the

exponential utility, UQ has the following representation:

UQ(x) = −e−px−H(Q,P ) . (3.14)

Proof. We first note that ũ′(y) = 1
p ln y

p and

EQ

[
(u′)−1

(
λ
dQ

dP

)]
= −EQ

[
ũ′
(
λ
dQ

dP

)]
= −1

p
EQ

[
ln

(
λ

p

dQ

dP

)]
= −1

p
ln
λ

p
− 1

p
H(Q,P ) .

Since we assume that H(Q,P ) < ∞, the requirements of Lemma 3.12 are met, and we

obtain UQ(x) by minimizing over λ.

d

dλ

{
λx+ E

[
ũ

(
λ
dQ

dP

)]}
= x+ EQ

[
ũ′
(
λ
dQ

dP

)]
= x+

1

p
ln
λ

p
+

1

p
H(Q,P ) .

Equating this to zero yields the minimizer

λ∗ = pe−px−H(Q,P ) . (3.15)
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By substituting λ∗, we obtain

λ∗x+E

[
ũ

(
λ∗
dQ

dP

)]
= pxe−px−H(Q,P ) + e−px−H(Q,P )EQ

[
ln
dQ

dP
− px−H(Q,P )− 1

]
,

and the equation (3.14) follows.

The next proposition due to Frittelli (2000) basically shows that the dual problem (3.12)

for the exponential utility admits a unique solution. A similar result can also be found

in [GR01, GR02].

Proposition 3.18 ([Fri00], Theorem 1 and Theorem 2). Let Q ∈ Mloc be a local mar-

tingale measure for the locally bounded price process S and H(Q,P ) < ∞. Then, there

exists a unique Q∗ ∈Mloc such that H(Q∗, P ) = min
Q∈Mloc

H(Q,P ).

If H(Q,P ) <∞ holds for a Q ∈Me
loc, then Q∗ ∼ P .

The minimizer Q∗ is called the Minimal Entropy Martingale Measure (MEMM).

In the following, a standing assumption will be

Assumption A2.

∃Q ∈Me
loc : H(Q,P ) <∞ .

An application of the above results to the dual problem will now be summarized in the

following

Proposition 3.19. Under the Assumption A2, there exists a unique MEMM Q∗ ∼ P

and, for u being the exponential utility function and ũ its convex conjugate, the dual

problem stated in Definition 3.14 admits a unique solution given through

U(x) = min
Q∈Me

loc

min
λ>0

{
λx+ E

[
ũ

(
λ
dQ

dP

)]}

= min
Q∈Me

loc

{
−e−px−H(Q,P )

}
= −e−px−H(Q∗,P ) .

(3.16)

The next result shows that the density of the MEMM has a stochastic integral repre-

sentation. This will be sufficient to establish a connection to the utility maximization

problem.

Proposition 3.20. Let Q∗ ∼ P be the MEMM. Then, there exists a process ϕ ∈ L(S)

such that ϕ • S is a Q∗-martingale and the density of Q∗ with respect to P has the

representation
dQ∗
dP

= exp

(
H(Q∗, P )−

∫ T

0
ϕt dSt

)
(3.17)
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Proof. Consider the function f(x) = x lnx. Then, f ′(x) = 1 + lnx, and −f ′
(
dQ∗
dP

)
is

bounded from below. The assertion then follows from [GR01] Theorem 2.2 combined

with [Jac92] Theorem 3.4 since these theorems guarantee the existence of a c ∈ R and a

strategy ϕ ∈ L(S) such that

f ′
(
dQ∗
dP

)
= c− ϕ • ST

with ϕ • S being a Q∗-martingale. Since f ′
(
dQ∗
dP

)
= 1 + ln dQ∗

dP , taking the expectation

with respect to the MEMM Q∗ on both sides of the equation determines the constant

and yields the result.

The following proposition summarizes all results and shows the existence of an optimal

solution to the utility maximization problem.

Proposition 3.21. Assume there exists a measure Q ∈ Me
loc such that H(Q,P ) <∞.

Let Q∗ ∼ P be the unique solution to the dual problem (3.12), whose existence is ensured

by Proposition 3.19. Then, there exists a strategy ϕ∗ ∈ L(S) maximizing the expected

exponential utility of terminal wealth over the set

A(x) = {ϕ ∈ L(S) : V (ϕ) = x+ ϕ • S is a Q∗-martingale} , (3.18)

i. e.,

v(x) = max
ϕ∈A(x)

E [u(V (ϕ)T )] = E
[
−e−px−p

∫ T
0 ϕ∗t dSt

]
, (3.19)

with x being the investor’s initial endowment. Moreover, the following relation between

the primal maximizer ϕ∗ and the dual minimizer Q∗ holds:

dQ∗
dP

=
u′(x+ ϕ∗ • ST )

E [u′(x+ ϕ∗ • ST )]
. (3.20)

Proof. Let ϕ ∈ L(S), Q ∼ P and λ > 0. From the properties of the utility function and

its convex conjugate, one obtains (see Definition 2.2 and Proposition 2.8)

u(x+ ϕ • ST ) ≤ λdQ
dP

(x+ ϕ • ST ) + ũ

(
λ
dQ

dP

)
. (3.21)

For a measure Q ∼ P , define the set

AQ(x) = {ϕ ∈ L(S) : x+ ϕ • S is a Q-martingale} .

Then, for each ϕ ∈ AQ(x), the inequality (3.21) implies

E[u(x+ ϕ • ST )] ≤ λx+ E

[
ũ

(
λ
dQ

dP

)]
. (3.22)
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Under the assumption

Me
loc(S) ∩ {Q ∼ P : H(Q,P ) <∞} 6= ∅ ,

the right-hand side of (3.22) satisfies

min
Q∈Me

loc(S)
min
λ>0

{
λx+ E

[
ũ

(
λ
dQ

dP

)]}
= λ∗x+ E

[
ũ

(
λ∗
dQ∗
dP

)]
(3.23)

= −e−px−H(Q∗,P ) (3.24)

by Proposition 3.17, 3.19, with the unique minimizers

Q∗ = arg min
Q∈Me

loc(S)
H(Q,P ) ,

λ∗ = pe−px−H(Q∗,P ) .

(3.25)

The integral representation of the density dQ∗
dP , which is presented in Proposition 3.20,

ensures the existence of a strategy ϕ ∈ AQ∗(x) such that

λ∗
dQ∗
dP

= p exp (−px− ϕ • ST ) = u′(x+ ϕ∗ • ST ), ϕ∗ =
ϕ

p
.

This is the relation between the the dual variable λ∗
dQ∗
dP and the primal variable x+ ϕ∗ • ST

that, by Proposition 2.8, guarantees their optimality and uniqueness and ensures that

there is no duality gap.

We define

A(x) = AQ∗(x) .

The value function in (3.19) reads as

v(x) = max
ϕ∈A(x)

E
[
−e−px−p

∫ T
0 ϕt dSt

]
= −e−px−H(Q∗,P ) .

By using

e−H(Q∗,P ) = E
[
e−p

∫ T
0 ϕ∗t dSt

]
,

one obtains the right-hand side of the last equality in (3.19). Finally, Equation (3.20)

follows from λ∗ = E [u′(x+ ϕ∗ • ST )].

Remark 3.22. Proposition 3.21 shows that the sufficient condition 3.8 can be extended

to give a necessary and sufficient optimality condition. Let u be the exponential utility

function and x the investor’s initial wealth. Assume there exists a measure Q ∈ Me
loc

such that H(Q,P ) < ∞, and let Q∗ ∼ P be the (unique) MEMM. Define the set A(x)

of admissible strategies by (3.18). Then, a trading strategy ϕ maximizes the expected
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exponential utility of terminal wealth over the set A(x) if and only if

dQ∗
dP

=
u′(x+ ϕ • ST )

E [u′(x+ ϕ • ST )]
.

The sufficiency of this condition has already been shown in Proposition 3.8. As for the

necessity, if we assume a strategy ϕ to be optimal, it must already satisfy

λ∗(Q∗)
dQ∗
dP

= u′(x+ ϕ • ST ) .

If it was not the case, then, by Proposition 3.21, we could find a strategy which would

satisfy this relation and whose expected utility would be equal to the minimum dual up-

per bound which, in turn, would dominate the expected utility of ϕ and thus contradict

the optimality assumption.

Delbaen et al. 2002, Kabanov and Stricker 2002, Stricker 2002 solve the problem of max-

imizing exponential utility using a similar duality approach and show that the optimal

wealth process, V (ϕ∗) = ϕ∗ • S, has further important properties which are summarized

in the next proposition.

Proposition 3.23. Let ϕ∗ be the maximizer of the expected exponential utility. Then,

(a) ([DGR+02] Theorem 3; [KS02] Theorem 2.1.(b)) the process (ϕ∗ • St)t∈[0,T ] is a

Q-martingale for all Q ∈Mloc such that H(Q,P ) <∞ ;

(b) ([Str02] Theorem 5) there exists a sequence of bounded simple trading strategies,

(ϕk)k∈N, such that

E [u(x+ ϕk • ST )] −→ E [u(x+ ϕ∗ • ST )] . (3.26)

A simple strategy has the form X =
∑N

i=0 hiI(τi,τi+1] with N ≥ 1, 0 = τ0 ≤ . . . ≤
τN+1 ≤ T stopping times and an Rn-valued and Fτi-measurable random variables hi,

0 ≤ i ≤ N . In practice, be it actual trading or computer simulations, only such strategies

are of relevance. Their financial meaning is that they represent linear combinations of

buy-and-hold strategies: at the time τi the investor buys hi units of some asset and

holds this amount until the time τi+1. This fact emphasizes the importance of item (b)

of the above theorem since it ensures that the optimizer can be attained on a sequence

of such buy-and-hold strategies.

Remark 3.24. As pointed out in [Sch03], the class of martingales does not suffice to

cover the case of more general utility functions. Instead, the class of supermartingales

turns out to be the right choice for which the optimality can be proven even for price
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processes being general semimartingales. These results can be found, e.g., in [Sch03,

DS06, BF07, BF08, Be11]

3.2.4 Example: Black-Scholes model

The Black-Scholes model is a special case of the market model introduced in Section 2.2

of Chapter 2, in which the bond is modelled by the deterministic function

S0
t = S0

0e
ρt, t ∈ [0, T ] ,

with ρ ≥ 0 being the constant interest rate, and the n risky assets S1, . . . , Sn are

represented by Itô processes with the dynamics

dSjt = Sjt

(
bjdt+

n∑
k=1

σjkdW
k
t

)
, t ∈ [0, T ], j = 1, . . . , n , (3.27)

with W = (W 1, . . . ,Wn)> being a standard n-dimensional Brownian motion, b =

(b1, . . . , bn)> ∈ Rn and (σjk)jk=1,...,n an invertible matrix with positive entries. Put

differently, S = (S1, . . . , Sn)> is an n-dimensional Itô process with the drift vector

bS = diag(S1, . . . , Sn)b and the diffusion matrix σS = diag(S1, . . . , Sn)σ (cf. Definition

2.2). By applying Itô’s formula to lnSjt , one can easily obtain a solution to the stochastic

differential equations (3.27), and it reads as

Sjt = Sj0 exp
((
bj −

σ2
j

2

)
t+

n∑
k=1

σjkW
k
t

)
, t ∈ [0, T ], j = 1, . . . , n , (3.28)

with σj =
√
cjj and c = σσ> being the volatility of the j-th stock and the covariance

matrix of the log-price lnSjt , respectively. It is common practice to choose the cash

account as the numéraire. In the Black-Scholes setting, the discounted price processes

of the assets are then obtained simply by changing

Sj0 7→
Sj0
S0

0

, bj 7→ bj − ρ, j = 1, . . . , n . (3.29)

In the following, for ease of notation, we take S0
t ≡ 1 and assume the discounting

transformation (3.29) to have already been performed. We now turn to discussing the

optimal trading strategy for maximizing the expected exponential utility of terminal

wealth. The Black-Scholes model is one of the very few market models in which the

problem of maximizing the expected utility can actually be solved explicitly using the

techniques of the stochastic control theory. To derive the optimal policy, one follows a

rather standard procedure of solving the HJB equation and proving that the solution
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is indeed an optimal control. We will forgo presenting this derivation here since it is

purely technical and can be found in standard literature; see, e. g., the original papers

by R. C. Merton [Mer69, Mer71] or Example 11.2.5 of Chapter 11 in [Øk92]. Instead,

we take the Merton portfolio as a candidate and discuss its optimality using the duality

result of Proposition 3.21 in the form as it is presented in Remark 3.22. This approach

is much more instructive as it helps gain insight into the structure of the model.

Let the price process S = (S1, . . . , Sn)> be as defined in (3.28) and let u(x) = −e−px,

p > 0, be the utility function. Then, the strategy

ϕjt =
(c−1b)j

pSjt
(3.30)

maximizes the expected utility of terminal wealth over the set A of admissible strategies

defined in (3.18). To see this, we compute all necessary ingredients for the construction

of an equivalent measure, and we start with the wealth process of the candidate strategy.

Define r = σ−1b. Then,

ϕ • St =
1

p

n∑
j=1

(c−1b)j

∫ t

0
bjdu+

n∑
k=1

σjkdW
k
u =

1

p

(
(r>r)t+ r>Wt

)
. (3.31)

With u′(x) = pe−px, we obtain

u′(x+ ϕ • ST ) = pe−px exp
(
−Tr>r − r>WT

)
= pe−px−

T
2
r>r exp

(
−T

2
r>r − r>WT

)
= pe−px−

T
2
r>rE

(
−r>W

)
T
,

with E(X) = eX−
1
2

[X] being the stochastic exponential. Since r>W is a continuous local

martingale, E
(
−r>W

)
is a uniformly integrable martingale by Novikov’s Criterion (cf.

Theorem 41 in [Pro04]). Hence, we define our candidate measure dQ = ZTdP by

ZT =
u′(x+ ϕ • ST )

E [u′(x+ ϕ • ST )]
= E

(
−r>W

)
T
. (3.32)

Since ZT > 0, we have Q ∼ P . Now note that, for each j = 1, . . . , n, the process Sj is a

P -semimartingale with the decomposition Sj = Aj +M j into a finite-variation process

Aj and a local martingale M j that are given through

Aj = bS,j • I, M j =
n∑
k=1

σS,jk •W k .

By the Girsanov-Meyer Theorem (cf. Theorem 35 in [Pro04]), Sj also aQ-semimartingale

and can be decomposed as Sj = Cj + Lj into a Q-finite-variation process Cj and a Q-

local martingale Lj . In order to conclude that Sj is a Q-local martingale, we need to
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show that Cj = 0. The same theorem tells us that

Lj = M j − 1

Z
• [Z,M j ] .

The stochastic exponential is known to satisfy E(X) = 1 + E(X) • X. Thus, defining

N = −r>W , we obtain

Cj = Sj − Lj = Aj +
1

Z
• [Z • N,M j ] = Aj + [N,M j ]

= Aj −
∑
kl

rkσ
S,jl • [W k,W l] =

(
bS,j −

(
σSr

)j)
• I

=
(
bS,j −

(
diag(S1, . . . , Sn)σσ−1b

)j)
• I = 0 .

The Q-finite-variation process vanishes, and Sj thus is a Q-local martingale. In order

to show that the wealth process ϕ •W is a Q-martingale, we again apply the Girsanov-

Meyer Theorem to conclude that

WQ,j = W j − [N,W j ] = W j + rjI (3.33)

is a Brownian motion with respect to Q (and thus a Q-martingale). Therefore, by

Equation (3.31), the wealth process of ϕ,

ϕ • S =
1

p

(
(r>r)I + r>WQ − (r>r)I

)
=

1

p
r>WQ ,

is a Q-martingale. Altogether, the sufficient condition is satisfied, and ϕ is therefore

optimal with respect to all admissible strategies.

We conclude this example by providing an explicit formula for the expected utility of

terminal wealth. Notice that the utility function satisfies u′(x) = −pu(x). Thus,

E [u(x+ ϕ • ST )] = −1

p
E
[
u′(x+ ϕ • ST )

]
= −1

p
pe−px−

T
2
r>rE

[
E
(
−r>W

)
T

]
= −e−px−

T
2
r>r = −e−px−

T
2
b>c−1b .

(3.34)





Chapter 4

Portfolio Optimization with

Proportional Transaction Costs

The main differences between the frictionless problem and the one with proportional

transaction costs can already be understood (on a qualitative level and only to a certain

extent, of course) by analyzing the situation heuristically. Proportional transaction costs

refer to a fee levied on each transaction, which is equal to a certain fixed percentage

of the amount transacted. When there are no frictions in the market, an optimizing

strategy is, in general, a process of unbounded variation. A prominent example is the

Black-Scholes model, which is discussed in Section 3.2.4, where the optimizer follows

a geometric Brownian motion. Obviously, adopting such a strategy for trading under

transaction costs results in an immediate bankruptcy. Thus, it appears sensible to as-

sume that when transaction fees are present, a good strategy selects an optimal initial

portfolio (meaning that it starts with the frictionless optimizer) and keeps it unchanged

for a certain time. But waiting too long, on the other hand, leads to utility loss due to

a deviation from the optimal allocation which is described by a permanently changing

stochastic process. There must therefore be a trade-off between doing nothing and trad-

ing, which can be thought of as being determined by a boundary around the frictionless

optimum. When this boundary is crossed for the first time, the portfolio should be

adjusted by buying or selling a minimum amount of stock (since the transaction fee is

proportional, and we want to pay as little as possible) sufficient to get inside the bound-

ary again. We conclude that finding an optimal strategy for trading under proportional

transaction costs is equivalent to determining an optimal boundary around the friction-

less optimizer. The region inside the boundary is referred to as the no-transaction or

no-trade region.

The fact that an optimal trading strategy in the presence of proportional transaction

costs is necessarily associated with a certain region about the frictionless optimizer was

27
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first discussed in the pioneering paper by Constantinides and Magill [MC76]. By means

of heuristic arguments, the authors come to the conclusion that in the case of the Black-

Scholes model it is optimal to start at the Merton point and to do nothing as long as

the portfolio stays inside the buffer region. Once the boundary is crossed, the investor

should transact so as to bring the portfolio back to the boundary of the region. However,

the work contains no information about how to calculate the location of the boundaries

and no precise description of the behaviour of the optimizer at these boundaries. A

rigorous mathematical treatment of the problem was first presented by Davis and Nor-

man [DN90]. The situation Davis and Norman considered was that of a Black-Scholes

market with a single risky asset. They showed that the location of the boundaries of

the no-trade region can be obtained by solving a free-boundary problem, and that the

optimal buying and selling strategies are the local times of the stochastic process de-

scribing the monetary value of the bank account and the stock. The paper was given

a detailed review by Shreve and Soner [SS94]. The authors remove many restrictive

assumptions made in [DN90] and provide a very detailed analysis of the value function

of the problem. Moreover, Shreve and Soner investigate the asymptotic impact of pro-

portional transaction costs and show that the leading-order effect on the expected utility

is O
(
ε2/3

)
as ε → 0 with ε being the proportionality factor. They also conclude that,

asymptotically, the width of the no-trade region is of order O
(
ε1/3

)
. These asymptotic

results will play a crucial role in the remainder of this thesis. The case of a Black-Scholes

market with multiple risky assets has been approached in many studies by analysing the

value function of the problem. In [AMS96], the problem is formulated for n ≥ 1 uncor-

related risky assets, and numerical results are provided for the cases n = 1 and n = 2.

Liu [Liu04] considers multiple risky assets and both proportional and fixed transaction

costs. In the uncorrelated case, he obtains an expression for the optimal consumption

and concludes that the optimal no-trade region is a rectangular box. In [LT10, MK06],

asset correlation is incorporated. The authors show that non-zero correlation results

in a distortion of the rectangular no-trade region which becomes parallelogram-like. In

[GO10] the asymptotic effect of small proportional transaction costs is studied, and the

probability density of the optimal portfolio is analysed. Atkinson and Ingpochai [AI12]

study specifically the effect of correlation in the multidimensional Black-Scholes model

with small proportional transaction costs by applying a perturbation technique for small

correlation. The authors obtain numerical results for two and three correlated risky as-

sets and observe that the no-trade region is a non-convex domain with a non-smooth

around the frictionless optimizer. This important observation is also made by Altarovici

et al. [ARS17]. In this study both fixed and proportional costs are considered, no re-

strictions are imposed on asset correlations, and algorithms are provided to determine

the no-trade region as well as the optimal strategies at the leading order as the costs

become small. Numerical computations are performed in the two-dimensional case. A
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different approach is taken by Kallsen and Muhle-Karbe in [KMK15]. The authors con-

sider a general, non-Markovian model of a market with a single risky asset in the case

that the investor’s preference is described by the exponential utility. Instead of applying

the dynamic-programming principle and analysing the value function of the problem,

they use the shadow-price method (see also [KMK10] by the same authors) and calcu-

late the leading-order asymptotic impact of small proportional transaction costs on the

investor’s expected utility.

We begin this chapter by giving a brief review of the main aspects of the theory of

portfolio optimization in the presence of proportional transaction costs, we introduce

the notion of a shadow price and discuss its importance in the context of constrained

portfolio optimization. Subsequently, when focusing on the asymptotics for small trans-

action costs, we generalize the approach taken by Kallsen and Muhle-Karbe to markets

with multiple risky assets.

The main goal of this thesis is to formulate a method for constructing a good upper

bound on the utility loss of an arbitrary candidate policy in high dimensions. The

construction scheme will be presented in Chapter 5. In Chapter 6, the quality of the

upper bound will be assessed with the help of several heuristically constructed candidate

strategies by means of simulations and numerical methods in up to 30 dimensions and

for arbitrary asset correlations. Apart from analysing the main effects of proportional

transaction costs and discussing the asymptotic approximation for small proportional-

ity factors, this chapter mainly aims at reformulating the optimization problem. We

show that the no-trade region can be described as a solution to a free-boundary prob-

lem, which then allows us to characterize the asymptotically optimal trading strategy

as a solution to a multidimensional stochastic differential equation with reflections at

boundary of the no-trade region. The results are summarized in Proposition 4.13. This

and many of the intermediate results obtained in Section 4.3 will be important for the

construction of our approximation scheme in Chapter 5.

Here and in the following chapters, only the exponential utility function will be used.

Thus, unless otherwise stated, when a function u is used to denote a utility function, it

always implies that

u(x) = −e−px, p > 0 .

4.1 Portfolio theory in the presence of proportional costs

Let S : [0, T ] × Ω → Rn and (ϕ0, ϕ)> : [0, T ] × Ω → Rn+1 be the price process (de-

nominated in bond units) and the portfolio process, respectively. Assume that for each

transaction the investor has to pay a fee which is proportional to the current value of



Chapter 4. Portfolio Optimization with Proportional Transaction Costs 30

the stock. We let the proportionality factor be the same for both selling and purchas-

ing stocks, but we allow it to depend on which stock is traded. The presence of such

proportional transaction costs causes each asset to have a purchase price and a selling

price.

Definition 4.1. Let Si be the price process of the i-th stock. The processes

Si = (1− εi)Si and S
i

= (1 + εi)S
i (4.1)

are referred to as the bid price and ask price, respectively.

Hence, the stock can be purchased at a higher ask price and sold at a lower bid price.

Transaction costs reduce the class of trading strategies in the sense that each portfolio

process ϕi, i ≥ 1, must be of finite variation because otherwise infinite transaction costs

would be the result. It follows that for each ϕi there exist two increasing processes, ϕ+,i

and ϕ−,i, which do not increase at the same time, such that

ϕi = ϕ+,i − ϕ−,i . (4.2)

Note that the requirement that ϕ+,i and ϕ−,i do not increase at the same time is quite

natural since buying and selling the same amount of stock at the same time results in

pure money loss due to transaction costs and can therefore never be a part of an optimal

trading strategy.

The definition of a self-financing strategy and the dynamics of the wealth process must

be generalized to account for the effect of the transaction costs. A trading strategy

is called self-financing if stock purchases are financed from selling an amount of bonds

which precisely covers the expenses including the transaction costs, and, similarly, money

gained from selling stocks is immediately invested into the bond. The following definition

is a formalization of this requirement.

Definition 4.2. A trading strategy (ϕ0, ϕ)> is called self-financing if it satisfies

dϕ0 = Sdϕ− − Sdϕ+ . (4.3)
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The dynamics of the wealth process of a self-financing trading strategy (ϕ0, ϕ)> must

therefore have the form

dV = dϕ0 + Sdϕ+ − Sdϕ− + ϕdS

=
n∑
j=1

(
(1− εj)Sjdϕ−,j − (1 + εj)S

jdϕ+,j
)

+ Sdϕ+ − Sdϕ− + ϕdS

= ϕdS −
n∑
j=1

εjS
jd|Dϕj | ,

where |Dϕj |t is the total-variation process of ϕj at time t satisfying

d|Dϕj |t = dϕ+,j
t + dϕ−,jt , j = 1, . . . , n ,

To simplify notation, we set

dϕ̄j = εjd|Dϕj | ,

which allows us to write the wealth process as

Vt = V0 +

∫ t

0
ϕudSu −

∫ t

0
Sudϕ̄u ,

V0 = ϕ0
0 +

n∑
j=1

ϕj0S
j
0 .

(4.4)

If we compare the above expression with Equation (3.1) describing the investor’s wealth

in a market without transaction costs, we see that the right-hand side of (4.4) is just

the expression known from the frictionless case reduced by S • ϕ̄t which equals the

cumulative costs from all transactions up to time t.

The portfolio-optimization problem under proportional transaction costs amounts to

finding an investment strategy such that trading according to this strategy maximizes

the investor’s expected utility of the payoff on the assets when the portfolio is liquidated

the time T ∈ (0,∞). The payoff the investor seeks to maximize will be referred to as

the liquidation wealth.

Definition 4.3. Let (ϕ0, ϕ)> be a self-financing trading strategy. The process

X(ϕ) = ϕ0 +
n∑
j=1

(
I{ϕj≥0}ϕ

jSj + I{ϕj<0}ϕ
jS

j
)

(4.5)

is called the liquidation-wealth process of ϕ.

Remark 4.4. Notice that the liquidation wealth, X(ϕ)t, can be obtain from the usual

wealth process, V (ϕ)t, if we assume that the portfolio is liquidated at the time t > 0

and thus subtract the liquidation costs,
∑
εjS

j
t |ϕ

j
t |, from V (ϕ)t. More precisely, let
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ϕ ∈ L(S) be of finite variation and (ϕ0, ϕ)> self-financing. Then,

X(ϕ) = ϕ0 + ϕ>S −
n∑
j=1

εjS
j
(
ϕjI{ϕj≥0} + ϕjI{ϕj<0}

)
= ϕ0

0 + S • ϕ− + S • ϕ+ + ϕ>0 S0 + ϕ • S + S • ϕ−
n∑
j=1

εjS
j |ϕj |

= ϕ0
0 + ϕ>0 S0 + ϕ • S −

n∑
j=1

εjS
j • |Dϕj | −

n∑
j=1

εjS
j |ϕj |

= V (ϕ)−
n∑
j=1

εjS
j |ϕj | .

In the second line we used the self-financing condition (3.2) and applied integration by

parts to ϕ>S.

We can now obtain a precise statement of the optimization problem under proportional

transaction costs directly from the statement made in Chapter 3, Definition 3.6 for

markets without transaction costs simply by replacing the frictionless wealth process by

the liquidation wealth from the above definition. Let X(ψ) denote the liquidation-wealth

process of a trading strategy ψ. Moreover, let A(x) ⊂ L(S) be a subset of S-integrable

processes of finite variation such that (ϕ0, ϕ)> is self-financing, and ϕ0
0 + ϕ>0 S0 = x is

the initial wealth of the investor. Find a function v and a strategy ϕ such that

v(x) = sup
ψ∈A(x)

E [u(X(ψ)T )] = E [u(X(ϕ)T )] . (4.6)

As in the frictionless case, v will be called the value function of the problem.

The properties of the set A(x) are specified in the following subsection.

4.1.1 Arbitrage and admissibility

As already mentioned in Subsection 3.2.1, the set of admissible strategies A(x) must

exclude arbitrage opportunities and contain the optimizing trading strategy. In the

frictionless case, a sufficient criterion for arbitrage absence is the existence of a (local)

martingale measure for the price process. This result does not extend to markets with

bid-ask spreads. Under proportional transaction costs, the counterpart of (local) mar-

tingale measures ensuring arbitrage absence are the so-called consistent price systems

(CPS). A CPS is essentially a pair (S̃, Q̃) consisting of a process S̃ evolving within the

bid-ask spread, and an equivalent probability measure Q̃ making S̃ a martingale. Start-

ing with the seminal paper [JK95], much research has been devoted to understanding the

connection between CPS and arbitrage under proportional transaction costs, especially
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to the question of the existence of such price systems. We name only a few important

contributions: [Sch04] proves a necessary and sufficient condition in finite and discrete

time, [GRS08] provides an extension to continuous-time models with only one risky as-

set, and [GK12] generalizes the latter result to multidimensional models; [Gua06, IP08]

also prove a sufficient condition for arbitrage absence for a large class of one-dimensional

market models in terms of only the price process and without explicitly mentioning CPS

or martingale measures. The reader is also referred to the detailed treatment of arbi-

trage theory under transaction costs in [KS10] Chapter 3.

For the purpose of this chapter, it will be sufficient to base the definition of admissibility

on the following observation. Assume there exists a process S̃ evolving inside the bid-ask

spread, i. e. Sj ≤ S̃j ≤ S
j
, j = 1, . . . , n. Then, implementing a given strategy ϕ in the

market with the price process S̃ without transaction costs will always yield a higher

payoff than trading according to ϕ in the market with the bid-ask spread (S, S) since

trades can be carried out at more favourable prices. More precisely, let S̃, S̃j ∈ [Sj , S
j
],

be a price process varying inside the bid-ask spread and let ϕ = ϕ+ − ϕ− be of finite

variation such that (ϕ0, ϕ)> is self-financing. Let X = X(ϕ) denote the liquidation-

wealth process generated by trading ϕ in the bid-ask spread and V 0 = V 0(ϕ; S̃) denote

the frictionless wealth of ϕ in the market with the price process S̃. Then,

S̃ • ϕ+ ≤ S • ϕ+ and S̃ • ϕ− ≥ S • ϕ− ,

and we obtain

X = ϕ0
0 + S • ϕ− + S • ϕ+ +

n∑
j=1

(
I{ϕj≥0}ϕ

jSj + I{ϕj<0}ϕ
jS

j
)

≤ ϕ0
0 − S̃ • ϕ+

n∑
j=1

(
I{ϕj≥0}ϕ

jSj + I{ϕj<0}ϕ
jS

j
)

= ϕ0
0 + ϕ>0 S̃0 + ϕ • S̃︸ ︷︷ ︸

=V 0(ϕ;S̃)

−ϕ>S̃ +

n∑
j=1

(
I{ϕj≥0}ϕ

jSj + I{ϕj<0}ϕ
jS

j
)

= V 0 −
n∑
j=1

(
I{ϕj≥0}ϕ

j (S̃j − Sj)︸ ︷︷ ︸
≥0

+I{ϕj<0}ϕ
j (S̃j − Sj)︸ ︷︷ ︸

≤0

)
≤ V 0 .

(4.7)

This observation allows us to state a sufficient no-arbitrage condition for the subset of

trading strategies which we introduce in the following

Definition 4.5. Let x =
∑n

j=0 xj denote the investor’s initial wealth, where x0 and

x1, . . . , xn correspond to their holdings in bond and stocks 1, . . . , n, respectively. A

self-financing policy (ϕ0, ϕ)> : [0, T ]× Ω→ R× Rn satisfying

x0 = ϕ0
0, xj = ϕj0S

j
0, j = 1, . . . , n ,
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will be called admissible if ϕ is S-integrable and of finite-variation, such that

∃K > 0 ∀t ≥ 0: X(ϕ)t ≥ −K .

The set of all admissible strategies to the initial wealth x will be denoted by A(x).

If we now assume the existence of a frictionless market evolving in the bid-ask spread, it

can be easily seen that any no-arbitrage condition that holds in this frictionless market

naturally extends to the market with proportional transaction costs. To see this, recall

that a market is free of arbitrage if

P (X(ϕ)T ≥ 0) = 1 =⇒ P (X(ϕ)T = 0) = 1

for all admissible trading strategies. Let S̃ be a frictionless market evolving in the bid-

ask spread and being free of arbitrage. Then, for any non-zero trading strategy ϕ, there

exists an event E ⊂ Ω with P (E) > 0 such that

V 0(ϕ; S̃)T < 0 on the event E .

Since V 0 is an upper bound to the liquidation wealth X(ϕ), the above statement imme-

diately implies that ϕ cannot be an arbitrage in the market with the bid-ask spread.

Apart from being crucial to ensuring the arbitrage freedom of the market, a frictionless

market extension with the price process evolving inside the bid-ask spread is also the

main ingredient for our asymptotic analysis of the optimality under transaction costs.

In the latter context we will speak of a shadow-price process. The existence of such a

frictionless market is far from obvious. However, when the transaction costs become

small, a shadow price can be characterized in terms of a free-boundary problem, as we

shall see in Subsection 4.3.1.

4.2 Shadow price

The concept of a shadow price is essential for our approach to utility maximization under

proportional transaction costs. The idea behind this concept is to construct a fictitious

frictionless market equivalent to the market (S, S) in the sense that optimizing in the

frictionless market yields the same maximum value of the expected utility of terminal

wealth as it does in the market with transaction costs. The notion of a shadow price is

made precise in the following

Definition 4.6. Let S and S be the bid and ask price as defined in (4.1), and let x

denote the investor’s initial endowment. Moreover, let the process X(ψ) describe the
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investor’s liquidation wealth from trading with proportional transaction costs according

to a strategy ψ, as introduced in Definition 4.3. A shadow price is a process S̃ satisfying

(i) Sj ≤ S̃j ≤ Sj , j = 1, . . . , n ;

(ii) sup
ψ∈A(x)

E
[
u(x+ ψ • S̃T )

]
= sup

ψ∈A(x)
E [u(X(ψ)T )] .

Remark 4.7. Recall that if S̃ is an arbitrary frictionless price process evolving within the

bid-ask spread, i.e. satisfying Definition 4.6 (i), and ψ is any non-zero trading strategy,

we have

X(ψ)T ≤ x+ ψ • S̃T

since in the market with the price process S̃ and no transaction costs shares can be

bought at lower and sold at higher prices, and a higher wealth can therefore be gen-

erated (cf. Equation (4.7)). Thus, in order for S̃ to be a shadow price in the sense

of Definition 4.6, the optimizer ϕ in the frictionless market with the price process S̃

must be such that ϕj increases on the set
{
S̃j = (1 + εj)S

j
}

, decreases on the set{
S̃j = (1− εj)Sj

}
and is constant otherwise. This immediately implies that the fric-

tionless optimizer for the shadow price automatically maximizes the expected utility in

the market (S, S). Put differently, not only the values of the two optimization problems

but also the corresponding optimizing strategies coincide.

At the beginning of this chapter, the most obvious properties of an optimizer ϕ in the

presence of proportional transaction costs were discussed in a rather heuristic way. In

particular, we noticed that a no-trade region around the frictionless optimizer should

appear. This no-trade region would then completely determine the behaviour of ϕ by

forcing it to remain constant in the interior and perform a minimal trade at the boundary.

Taking into account the observations made in Remark 4.7, we define

C+,j =
{
S̃j = (1 + εj)S

j
}
, C−,j =

{
S̃j = (1− εj)Sj

}
(4.8)

as subsets of [0, T ]×Ω. These sets implicitly determine the no-trade region in the sense

that the processes ϕ+,j and ϕ−,j , j = 1, . . . , n, which describe the optimal buying and

selling policies, increase only on C+,j and C−,j , respectively.

Note that, in general, the shadow price is not known. Thus, if one chooses to use the

shadow-price method to solve a constrained utility maximization problem, finding a

shadow-price process becomes a part of the optimization procedure.
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4.3 Asymptotics for small transaction costs

In this section, the asymptotic effect of small proportional transaction costs will be

discussed. The treatment of the problem will be mainly heuristic, meaning that some

arguments will lack sufficient mathematical rigour. This will concern two crucial aspects.

Firstly, discussing asymptotic behaviour of objects amounts to analysing their conver-

gence properties. When dealing with the asymptotics of stochastic processes, we will not

specify the type of convergence, tacitly assuming that it happens in some appropriate

sense. Secondly, we will not distinguish between martingales and local martingales. In

particular, this implies that a sufficient condition for arbitrage absence will be the exis-

tence of an equivalent probability measure making the price process a true martingale,

and that integrals with respect to martingales are again true martingales.

We are interested in asymptotic results for small transaction costs ε1, . . . , εn. To be more

precise, when a transaction is made to purchase or sell a particular stock, the transac-

tion costs paid are assumed to be small compared with the size of the transaction. The

transaction costs levied on trading the individual assets are assumed to be small of the

same order. We indicate this by introducing a real parameter ε > 0, which will be taken

to be small throughout this thesis, and demanding

εj = O(ε), j = 1, . . . , n . (4.9)

Put differently, for each j ∈ {1, . . . , n}, the proportionality factor εj can be written as

εj = ελj for an appropriately chosen λj > 0 independent of ε.

As already mentioned at the beginning of this chapter, the effect of small proportional

transaction costs is of order O
(
ε2/3

)
, as observed by Shreve and Soner [SS94], Rogers

[Rog04] (see also [WW97, HMS13, DP13, Bic14]). Motivated by this fact and to clar-

ify the meaning of ”asymptotic results” in the above introduction, we formulate the

following

Definition 4.8. A strategy ϕ is called asymptotically optimal if, for any other strategy

ψ, it satisfies

E [u(X(ϕ)T )] ≥ E [u(X(ψ)T )] + o
(
ε2/3

)
. (4.10)

In other words, we are looking for a strategy which is optimal at the leading order as ε

tends to zero.

Remark 4.9. Notice that the liquidation costs do not contribute to the utility loss at

the leading order since εjS
j |ϕj | = O (ε), j = 1, . . . , n. Thus, asymptotically, expected

utility of the terminal wealth V (ϕ)T and that of the liquidation wealth X(ϕ)T are equal.
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Our goal now is to establish a dual characterization of asymptotic optimality by using

the shadow-price method. As already mentioned in the previous section, the fictitious

market with a shadow-price process can be viewed as the least favourable frictionless

market extension allowing us to reduce the constrained optimization problem to a well-

known problem of utility maximization without transaction costs. Once we are in the

frictionless setting, we can apply the results obtained in Section 3.2.3 where we saw

how the convex-duality approach can be used to formulate a sufficient condition for a

strategy ϕ to be optimal in the frictionless case (cf. Proposition 3.8). As we shall see,

it is possible to obtain an analogous condition for asymptotic optimality by weakening

the requirements of Proposition 3.8.

In the following, we will always assume that the requirements of Proposition 3.21 are

satisfied and the frictionless optimization problem thus admits a solution ϕ∗ which can

be described by a continuous Itô process.

The following construction and the derivation of some of its most important consequences

is a generalization of the results obtained in [KMK15] to the multidimensional case.

Proposition 4.10. Let ϕ = (ϕ1, . . . , ϕn) be a trading strategy and S̃ a price process

such that S̃j ∈ [Sj , S
j
], j ∈ {1, . . . , n}, and satisfying S̃j = Sj and S̃j = S

j
if and only

if ϕj sells respectively buys j-th stock. Assume there exists a real-valued Itô process Z̃

such that

(i) bZ̃ = O
(
ε2/3

)
,

(ii) bZ̃S̃
j

= O
(
ε2/3

)
, j = 1, . . . , n ,

(iii) Z̃T = u′(X(ϕ)T ) +O
(
ε2/3

)
,

where bZ̃ and bZ̃S̃
j

denote drift processes of Z̃ and Z̃S̃j, respectively. Then, the strategy

ϕ is asymptotically optimal.

Proof. Let ψ be another trading strategy converging to the frictionless optimizer as ε

tends to zero, i. e. ψ −−−→
ε→0

ϕ∗. Since the utility function u is concave, we have

E [u(X(ϕ)T )] ≥ E [u(X(ψ)T )] + E
[
u′(X(ϕ)T ) (X(ϕ)T −X(ψ)T )

]
.

According to Remark 4.7, the wealth processes of ϕ and ψ satisfy

X(ϕ)T = x+ ϕ • S̃T , X(ψ)T ≤ x+ ψ • S̃T .
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Together with the condition (iii) this implies

E [u(X(ϕ)T )] ≥ E [u(X(ψ)T )] + E
[
Z̃T

(
(ϕ− ψ) • S̃T

)]
+ o

(
ε2/3

)
.

For each j ∈ {1, . . . , n}, partial integration yields

Z̃T

(
(ϕ− ψ)j • S̃jT

)
=
(
Z̃(ϕ− ψ)j

)
• S̃jT +

(
(ϕ− ψ)j • S̃j

)
• Z̃T + (ϕ− ψ)j • [Z̃, S̃j ]T

and

[Z̃, S̃j ] = Z̃S̃j − Z̃ • S̃j − S̃j • Z̃ .

Altogether,

Z̃T

(
(ϕ− ψ)j • S̃jT

)
=
(

(ϕ− ψ)j • S̃j − (ϕ− ψ)jS̃j
)
• Z̃T + (ϕ− ψ)j • (Z̃S̃j)T ,

and

E
[
Z̃T

(
(ϕ− ψ) • S̃T

)]
=

n∑
j=1

E
[
Z̃T

(
(ϕ− ψ)j • S̃jT

)]
=

n∑
j=1

E
[((

(ϕ− ψ)j • S̃j − (ϕ− ψ)jS̃j
)
bZ̃
)
• IT

]
+

n∑
j=1

E
[(

(ϕ− ψ)jbZ̃S̃
j
)
• IT

]
.

By the conditions (i) and (ii) and the fact that, for all j, ϕj−ψj −−−→
ε→0

0, each expectation

in the last two sums is of order o
(
ε2/3

)
which, in turn, implies the asymptotic optimality

of ϕ.

Remark 4.11. Note that Proposition 4.10 guarantees asymptotic optimality of ϕ also

in the frictionless market with the price process S̃ since X(ϕ)T = x + ϕ • S̃T ; thus,

the process S̃ can be interpreted as a shadow price in the asymptotic sense. Moreover,

conditions (i), (ii) essentially mean that, up to some terms that are sufficiently small

in ε (i. e., asymptotically), Z̃ is the density of an equivalent martingale measure for the

process S̃, and condition (iii) implies that Z̃ is an asymptotically optimal dual variable

(cf. Proposition 3.21, Eq. (3.20)). Thus, Proposition 4.10 provides us with the desired

dual characterization of asymptotic optimality in the sense of Definition 4.8.
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We now assume that, for small transaction costs, our candidate policy ϕ (i. e., trading

strategy whose optimality we wish to varify) and the shadow price S̃ are of the form

ϕ = ϕ∗ + ∆ϕ ,

S̃ = S + ∆S ,
(4.11)

with S and ϕ∗ being the mid-price process and the frictionless optimizer, respectively,

and ∆ϕ, ∆S two Rn-valued semimartingales depending on ε. Since the shadow price

lies inside the bid-ask spread, S̃j ∈ [Sj , S
j
], the process ∆S must obviously satisfy

− εjSj ≤ ∆Sj ≤ εjSj , j = 1, . . . , n . (4.12)

As already mentioned at the end of the previous section, an optimizing strategy ϕj

changes iff the shadow price happens to coincide with either the bid or the ask price,

which is characterized by the sets Cj defined in (4.8). Thus, on the compliment of Cj we

have dϕj = 0, and the semimartingale ∆ϕj has the dynamics

d∆ϕjt = −dϕ∗,jt (4.13)

We will consider processes ∆ϕ and ∆S with properties summarized in the following

Assumption A3.

(a) ∆ϕ = O
(
ε1/3

)
;

(b) ∆S is an Itô process, i. e.

d∆Sjt = b∆S,jt dt+

n∑
k=1

σ∆S,jk
t dW k

t ,

such that ∆S = O(ε) and its drift and diffusion coefficients satisfy

b∆S,j = O
(
ε1/3

)
, σ∆S,jk = O

(
ε2/3

)
, j, k = 1, . . . , n .

As for the asymptotic behaviour of ∆S, the assumption ∆S = O (ε) is rather obvious

from (4.12). The statement in A3 (a) is based on existing results concerning the asymp-

totics of the boundaries of the no-trade region in the one-dimensional case (i. e. for

markets with only one risky asset) [SS94, Rog04, WW97, HMS13, DP13, Bic14, Rog13,

KMK15]. The assumptions about the drift and diffusion coefficients of ∆S are closely

related to an equivalent formulation of the asymptotic optimality conditions that will

be established in the following section.
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4.3.1 Reformulating the optimization problem

Our next goal is to apply the asymptotic optimality condition to construct an optimizing

strategy ϕ = ϕ∗ + ∆ϕ. Before moving on to actually determining the processes Z̃, ∆S

and ∆ϕ (cf. Proposition 4.10 and Assumption A3), we first examine the asymptotic

behaviour of the payoff process of a candidate policy, X(ϕ) = x + ϕ • S̃, with S̃ and x

being a frictionless shadow-price process and the initial capital, respectively. Using the

ansatz (4.11), the wealth process can be written as

X(ϕ) = x+ ϕ • S̃ = x+ ϕ∗ • S + ϕ • ∆S + ∆ϕ • S .

The term x + ϕ∗ • S does not depend on ε and describes the wealth generated by the

frictionless optimizer. The behaviour of the last term is obvious from Assumption A3,

∆ϕj • Sj = O
(
ε1/3

)
for all j. The remaining term satisfies

ϕ • ∆S = ϕ∗ • ∆S + ∆ϕ • ∆S = O
(
ε2/3

)
. (4.14)

To see this, we first apply integration by parts to obtain

ϕ∗,j • ∆Sj = ϕ∗,j∆Sj︸ ︷︷ ︸
=O(ε)

−∆Sj • ϕ∗,j︸ ︷︷ ︸
=O(ε)

− [ϕ∗,j ,∆Sj ]︸ ︷︷ ︸
=O(ε2/3)

= O
(
ε2/3

)
,

where we used that

[ϕ∗,j ,∆Sj ] =
∑
k

σϕ
∗,jkσ∆S,jk • I ,

and σ∆S,jk = O
(
ε2/3

)
by Assumption A3. Moreover, we have

∆ϕj • ∆Sj =
(

∆ϕjb∆S,j︸ ︷︷ ︸
=O(ε2/3)

)
• I +

∑
k

(
∆ϕjσ∆S,jk︸ ︷︷ ︸

=O(ε)

)
•W k = O

(
ε2/3

)

Having understood the behaviour of the individual terms contributing to the wealth

process, we first look at the process Z̃.

u′ (X(ϕ)T ) = u′ (x+ ϕ∗ • ST + ϕ • ∆ST + ∆ϕ • ST )

= u′ (x+ ϕ∗ • ST ) exp (−pϕ • ∆ST − p∆ϕ • ST )

= y∗ZT (1− p∆ϕ • ST ) +O
(
ε2/3

)
.

In the last line, the frictionless optimality condition

u′ (x+ ϕ∗ • ST ) = y∗ZT , y∗ = E
[
u′ (x+ ϕ∗ • ST )

]
,
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was used with ZT being the density of an equivalent martingale measure for S (cf.

Equation (3.20)). The process Z̃ can therefore be chosen as

Z̃ = Z (1− p∆ϕ • S) +O
(
ε2/3

)
. (4.15)

We have constructed Z̃ satisfying (i), (iii) of Proposition 4.10. We now turn to the

problem of finding ∆ϕ and ∆S. Applying integration by parts to the process Z̃S̃j ,

j ∈ {1, . . . , n}, yields

Z̃S̃j − Z̃0S̃
j
0 = Z̃ • S̃j + S̃j • Z̃ + [Z̃, S̃j ]

Since bZ̃ = O
(
ε2/3

)
, the drift coefficient of Z̃S̃j is given by

bZ̃S̃
j

= Z̃
(
bS

j
+ b∆S

j
)

+ cZ̃,S̃
j

+O
(
ε2/3

)
. (4.16)

Using the representation (4.15) and Assumption A3, we obtain

Z̃
(
bS

j
+ b∆S

j
)

= Z (1− p∆ϕ • S)
(
bS

j
+ b∆S

j
)

+O
(
ε2/3

)
= Z

(
bS

j
+ b∆S

j − p(∆ϕ • S)bS
j − p (∆ϕ • S)b∆S

j︸ ︷︷ ︸
=O(ε2/3)

)
+O

(
ε2/3

)

= Z
(
b∆S

j
+ (1− p∆ϕ • S) bS

j
)

+O
(
ε2/3

)
.

(4.17)

To evaluate cZ̃,S̃
j
, we look at the covariation process

[Z̃, S̃j ] = [Z̃, Sj ] + [Z̃,∆Sj ] .

Representing the frictionless density process as a stochastic exponential,

Z = 1 + Z • N ,

and noting that, by Assumption A3, the diffusion coefficients of ∆S satisfy σ∆S,ij =

O
(
ε2/3

)
, yields

[Z̃, S̃j ] = [Z̃, Sj ] +O
(
ε2/3

)
= [Z(1− p∆ϕ • S), Sj ] +O

(
ε2/3

)
.
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Moreover,

[Z(1− p∆ϕ • S), Sj ] = Z • [N,Sj ]− p[Z(∆ϕ • S), Sj ]

= Z •
(
[N,Sj ]− p[∆ϕ • S, Sj ]

)
− p[(∆ϕ • S) • (Z • N), Sj ]

= Z •
(
[N,Sj ]− p(cS∆ϕ)j • I

)
− p[(Z(∆ϕ • S)) • N,Sj ]

= Z •
(
[N,Sj ]− p(cS∆ϕ)j • I

)
− p[Z • ((∆ϕ • S) • N) , Sj ]

= Z •
(
[N,Sj ]− p(cS∆ϕ)j • I − p(∆ϕ • S) • [N,Sj ]

)
=
(
Z
(
cN,S

j
(1− p∆ϕ • S)− p(cS∆ϕ)j

))
• I .

The local covariation cZ̃,S̃
j

therefore reads as

cZ̃,S̃
j

= Z
(
cN,S

j
(1− p∆ϕ • S)− p(cS∆ϕ)j

)
.

Combining this expression with (4.17) and inserting their sum into (4.16) leaves us with

bZ̃S̃
j

= Z
(
b∆S

j
+ (1− p∆ϕ • S) bS

j
)

+ Z
(
cN,S

j
(1− p∆ϕ • S)− p(cS∆ϕ)j

)
+O

(
ε2/3

)
= Z

(
b∆S

j − p(cS∆ϕ)j + (1− p∆ϕ • S)
(
bS

j
+ cN,S

j
))

+O
(
ε2/3

)
= Z

(
b∆S

j − p(cS∆ϕ)j
)

+O
(
ε2/3

)
.

(4.18)

We conclude that in order for the condition (ii) in Proposition 4.10 to be satisfied, the

optimizing strategy ϕ = ϕ∗+ ∆ϕ and the shadow price S̃ = S+ ∆S must be related via

b∆S
j

= p(cS∆ϕ)j , j = 1, . . . , n . (4.19)

We now suppose that a connection between ∆S and ∆ϕ can be established via a suffi-

ciently well-behaved function and write

∆S = f(∆ϕ) .

This ansatz will now be used to derive a partial differential equation for the function

f = (f1, . . . , fn) from the above relation (4.19). We do this by applying Itô’s formula,

and we therefore require that the function f be C2. We first make some remarks about

the notation to be used in the following. As already mentioned at the end of the

previous subsection, the no-trade region is a stochastic domain inside which, starting at

the frictionless optimizer, an optimal trading strategy ϕ = ϕ+ − ϕ− remains constant

and whose boundary determines the behaviour of ϕ±,j , j = 1, . . . , n. This domain is
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implicitly determined by the sets

C±,j =
{
Sj = (1± εj)Sj

}
, j = 1, . . . , n .

This means that, for each (t, ω), ∆St(ω) lies inside the rectangular parallelotope

Kt(ω) := [−ε1S
1
t (ω), ε1S

1
t (ω)]× . . .× [−εnSnt (ω), εnS

n
t (ω)] .

For ease of notation we will often drop the variables (t, ω) and write

K =

n∏
j=1

[−εjSj , εjSj ] .

The no-trade region constraining the movement of the optimizer ϕ will be denoted by

R̃ = ϕ∗ + R with R being a stochastic domain inside which the process ∆ϕ is allowed

to vary. More precisely, for each (t, ω), Rt(ω) ⊂ Rn is a compact set containing ∆ϕt(ω).

Finally, for a function f ∈ C2 (Rn), ∂jfk and ∂2
j fk, ∂i∂jfk will be used to denote the

elements of the Jacobian and the Hessian of f , respectively. Having fixed the basic

notation, we now apply Itô’s formula to f : ∆ϕ 7→ ∆S to obtain an expression for the

drift coefficients b∆S,j .

d∆Sjt = dfj(∆ϕt) =
∑
k

∂kfj(∆ϕt)d∆ϕkt +
1

2

∑
k,l

∂k∂lfj(∆ϕt)d[∆ϕk,∆ϕl]t . (4.20)

As stated in Assumption A3, the drift coefficients are of order O
(
ε1/3

)
. To understand

the asymptotic behaviour of the first and the second partial derivatives of f , we argue

heuristically and claim that

∂kfj(∆ϕ)
ε∼ ∆Sj

∆ϕk
, ∂k∂lfj(∆ϕ)

ε∼ ∆Sj

∆ϕk∆ϕl
.

The symbol
ε∼ is meant to indicate that the quantities exhibit the same asymptotic

behaviour as ε→ 0. Since ∆S = O (ε) and ∆ϕ = O
(
ε1/3

)
,

∂kfj(∆ϕ) = O
(
ε2/3

)
, ∂k∂lfj(∆ϕ) = O

(
ε1/3

)
, j, k, l = 1, . . . , n .

Thus, since we are interested in computing the drift of ∆S, the first partial derivatives

can be neglected at the leading order of O
(
ε1/3

)
by Assumption A3. Moreover, due to

ϕ being a finite-variation process, the quadratic covariations appearing in the above Itô

formula are just those of the components of the frictionless optimizer. The process ∆S
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therefore satisfies

d∆Sjt =
1

2

∑
k,l

∂k∂lfj(∆ϕt)d[ϕ∗,k, ϕ∗,l]t +O
(
ε2/3

)
=

1

2

∑
k,l

∂k∂lfj(∆ϕt)c
ϕ∗,kl
t dt+O

(
ε2/3

)
.

We conclude that the drift coefficients of ∆S satisfy

b∆S,j =
1

2

∑
k,l

∂k∂lfj(∆ϕ)cϕ
∗,kl +O

(
ε2/3

)
. (4.21)

Combining this result with the expression (4.19) yields, at the leading order in ε, a

system of partial differential equations for the function f ,

1

2

∑
k,l

∂k∂lfj(x)cϕ
∗,kl = p

∑
k

cS,jkxk, j = 1, . . . , n . (4.22)

If we denote the Hessian of fj by Hfj , the above system can be written in a more

compact form as

Tr
(
Hfj (x)cϕ

∗
)

= 2p
(
cSx
)j
, j = 1, . . . , n . (4.23)

It remains to impose boundary conditions. Since the no-trade region, R̃ = ϕ∗+R, is not

known (it is actually the object of our interest), imposing conditions at the boundary

∂R will turn the task of finding the function f into a free-boundary problem. To start

with, we decompose the boundary ∂R and write

∂R±,j = f−1
j

(
{±εjSj}

)
,

∂Rj = ∂R+,j ∪ ∂R−,j ,

∂R =
n⋃
j=1

∂Rj .

(4.24)

When ϕ∗,j + ∂R±,j is hit by the process ϕj = ϕ+,j −ϕ−,j , j-th asset is either bought by

ϕ+,j or sold by ϕ−,j ; this, in turn, happens iff ∆Sj = εjS
j or ∆Sj = −εjSj . The above

decomposition thus already contains the first collection of boundary conditions, namely

fj
∣∣
∂R±,j

= ±εjSj , j = 1, . . . , n .

Further boundary conditions can be referred to as arbitrage conditions. We need to make

sure that there exists an equivalent martingale measure for the shadow-price process S̃

so that the market is free of arbitrage. We again turn to the Itô formula for the process
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S̃ = S + f(∆ϕ),

dS̃jt = dSjt + d∆Sjt = dSjt +
∑
k

∂kfj(∆ϕt)d∆ϕkt +
1

2

∑
k,l

∂k∂lfj(∆ϕt)d[∆ϕk,∆ϕl]t

= dSjt −
∑
k

∂kfj(∆ϕt)dϕ
∗,k
t +

1

2

∑
k,l

∂k∂lfj(∆ϕt)d[ϕ∗,k, ϕ∗,l]t +
∑
k

∂kfj(∆ϕt)dϕ
k
t .

The expression in the last line has the structure of an Itô process plus the sum containing

the terms dϕj which only contribute at the boundary of the no-trade region. There is

no way to determine an equivalent measure making such a process a martingale unless

the contribution of each dϕj , j = 1, . . . , n, is eliminated. We therefore demand that, for

all j, k = 1, . . . , n, the partial derivatives ∂kfj vanish at ∂R±,j . We now give a rigorous

statement of the free-boundary problem we finally obtain.

The free-boundary problem:

Find a C2 function f : Rn → Rn and a collection of hypersurfaces ∂Rj such that∑
k,l

∂k∂lfj(x)cϕ
∗,kl = 2p

∑
k

cS,jkxk ,

fj
∣∣
∂R±,j

= ±εjSj ,

∂kfj
∣∣
∂R±,k

= 0 ,

for all j, k = 1, . . . , n .

(4.25)

Having obtained a precise characterization of the boundary of the no-trade region, we

can now describe an asymptotically optimal trading strategy in terms of a solution to

a reflecting stochastic differential equation which is often also referred to as stochastic

Skorohod problem. A precise formulation of this problem is provided in the following.

The Skorohod problem:

Let ϕ∗ = (ϕ∗,1, . . . , ϕ∗,n)>,

ϕ∗,j = ϕ∗,j0 + bϕ
∗,j • I +

m∑
k=1

σϕ
∗,jk •W k, j = 1, . . . , n ,

be the frictionless optimizer and let (f, ∂R), ∂R =
⋃n
j=1 ∂R

+,j ∪ ∂R−,j , be a solution to

the free-boundary problem (4.25). Furthermore, define the function

µ = (µ1, . . . , µn), µj(x) = sgn (fj(x)) .

A finite-variation process ϕ = (ϕ1, . . . , ϕn)> is an asymptotically optimal trading strat-

egy if there exists a semimartingale ∆ϕ = (∆ϕ1, . . . ,∆ϕn)> = O
(
ε1/3

)
which, for all
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j = 1, . . . , n and t ≥ 0, satisfies

∆ϕt = −ϕ∗t + ϕt ∈ Rt, ∆ϕ0 = 0 ,

ϕjt = ϕ∗,j0 +

∫ t

0
µj(∆ϕu)d|Dϕj |u ,

d|Dϕj |
({
t ∈ [0, T ] : ∆ϕt /∈ ∂R±,jt

})
= 0 .

(4.26)

Remark 4.12. At this point it is important to remark that some caution must be taken

when interpreting the above asymptotic results. All the way from introducing the func-

tion f = (f1, . . . , fn) to formulating the free-boundary problem (4.25), the dependency of

f on the proportionality factor ε was tacitly assumed to be only through the arguments

∆ϕ1, . . . ,∆ϕn. However, if the starting point is the free-boundary problem, we should

expect the boundary conditions to add terms to the solution, which can, in general, be

stochastic processes that do not depend on ∆ϕ but depend on ε explicitly. These terms

will contribute to the dynamics of ∆S = f(∆ϕ) and to that of b∆S in Equation (4.21).

Taking this fact into account, the asymptotic results remain valid only if the effect of

the additional terms is of order O(ε2/3); that is to say, if the terms do not contribute at

the leading order in ε. As shown in [KMK15, KL13] and indicated in Subsection 4.3.3 of

this thesis, this is the case for the one-dimensional problem. Moreover, this will also be

the case for our approximate construction of the shadow price, which is to be presented

in Section 5.2 of the next chapter. However, as long as we do not have the function f

in an explicit form, the fact that all additional terms which depend on ε explicitly and

may appear in the expression for f do not contribute at the leading order becomes a

crucial assumption. We will express this assumption by claiming that f is asymptotically

independent of ε.

To summarize the results and emphasize the connection between the free-boundary and

the Skorohod problem on the one hand and the asymptotic optimization problem on the

other hand, we formulate the following

Proposition 4.13. Let f and ∂R =
⋃
j≥1 ∂R

−,j ∪ ∂R+,j be a solution to the free-

boundary problem (4.25), and let f be asymptotically independent of ε in sense of Re-

mark 4.12. Let ϕ∗ be the frictionless optimizer and ZT its dual counterpart, and let

∆ϕ = (∆ϕ1, . . . ,∆ϕn) be a solution to the stochastic Skorohod problem (4.26) with the

initial condition ∆ϕj0 = 0, j = 1, . . . , n. Then, S̃ = S + f(∆ϕ) is a shadow price which

satisfies the asymptotic optimality conditions of Proposition 4.10 with respect to the pro-

cess Z̃ = y∗Z(1 − p∆ϕ • S), and the strategy ϕ = ϕ∗ + ∆ϕ is therefore asymptotically

optimal in the sense of Definition 4.8.
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Proof. Assume that (f, ∂R), with f being asymptotically independent of ε, solves the

free-boundary problem (4.25), and the process ∆ϕ = (∆ϕ1, . . . ,∆ϕn) solves the Skoro-

hod problem (4.26) with ∆ϕj0 = 0, j = 1, . . . , n. Then, the strategy ϕ = ϕ+ − ϕ− =

ϕ∗ + ∆ϕ starts at the frictionless optimizer ϕ∗ and changes only in the j-th component

only if ∆ϕ hits ∂R±,j ; ϕj increases if ∂R+,j is hit, meaning that ϕ+,j increases, and ϕj

decreases if ∂R−,j is hit, meaning that ϕ−,j increases. Since ∂R±,j = f−1
j ({±εjSj}),

transactions are made if and only if S̃j = Sj + fj(∆ϕ) = (1 ± εj)S
j . Setting Z̃ =

Z(1 − p∆ϕ • S) + O
(
ε2/3

)
automatically satisfies the items (i), (iii) of Proposition

4.10 (recall the derivation of Equation (4.15)). Finally, the fact that f solves the free-

boundary problem (4.25) implies that b∆S = pcS∆ϕ+O
(
ε2/3

)
for ∆S = f(∆ϕ) which,

in turn, guarantees that bZ̃S̃
j

= O
(
ε2/3

)
, j = 1, . . . , n, and thus satisfies item (ii).

Remark 4.14. As already mentioned in the introduction to this chapter, some of the

existing results suggest ([AI12, ARS17]) that the boundary of the no-trade region is

non-convex and non-smooth. Whereas non-convexity is less obvious, the fact that the

boundary has ”corners” is not surprising. To each asset there must correspond a part

of the boundary controlling the behaviour of the associated component of the trading

strategy, and this boundary part must be well-distinguished from the others, since the

investor must always be able to tell what asset to trade when the boundary is crossed.

This immediately suggests a non-smooth structure of the boundary. Thus, the existence

of the process ∆ϕ determining the optimal investment policy ϕ = ϕ∗ + ∆ϕ is linked

to two difficult problems: a multidimensional free-boundary problem and a stochastic

Skorohod problem inside a non-convex domain with a non-smooth and time-dependent

reflecting boundary.

Before discussing Proposition 4.13 any further, we first apply the heuristic results to

analyse the asymptotic behaviour of the utility of a candidate policy and to express the

leading-order utility loss in terms of the processes ∆ϕ and ∆S.

4.3.2 The leading-order utility loss

Let ϕ = ϕ∗ + ∆ϕ and S̃ = S + ∆S denote a candidate strategy and a shadow-price

process satisfying the asymptotic optimality conditions of Proposition 4.10. To compute

the leading-order utility loss, we consider the Taylor expansion of the expected utility of

terminal wealth with respect to the frictionless price process S̃. Recall that the leading-

order loss is O
(
ε2/3

)
. In the following Taylor approximation, we will use the asymptotic
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estimates obtained at the beginning of Subsection 4.3.1.

E
[
u(x+ ϕ • S̃T )

]
= E[u(x+ ϕ∗ • ST + ∆ϕ • ST︸ ︷︷ ︸

=O(ε1/3)

+ϕ • ∆ST︸ ︷︷ ︸
=O(ε2/3)

)]

= E [u(x+ ϕ∗ • ST )] + E
[
u′(x+ ϕ∗ • ST )(∆ϕ • ST + ϕ • ∆ST )

]
+

1

2
E
[
u′′(x+ ϕ∗ • ST )(∆ϕ • ST + ϕ • ∆ST )2

]
+ . . . .

Now recall the frictionless optimality condition u′(x + ϕ∗ • ST ) = y∗ZT . Here, ZT is

the density of an equivalent martingale measure for S, the minimum entropy martingale

measure (cf. Proposition 3.18), which will henceforth be denoted by Q. Note also that

u′′(x) = −pu′(x) = p2u(x). We thus obtain

E
[
u(x+ ϕ • S̃T )

]
= E [u(x+ ϕ∗ • ST )] + y∗EQ [∆ϕ • ST + ϕ • ∆ST ]

− py∗
2
EQ
[
(∆ϕ • ST + ϕ • ∆ST )2

]
+ . . .

= E [u(x+ ϕ∗ • ST )]

(
1− pEQ [ϕ • ∆ST ] +

p2

2
EQ
[
(∆ϕ • ST )2

])
+O (ε) .

(4.27)

Notice that since an optimizing strategy necessarily satisfies X(ϕ)T = x + ϕ • S̃T with

x denoting the investor’s initial capital, and the process X describing the liquidation

wealth introduced in Definition 4.3, the transaction costs paid up to time T can be

expressed as

ϕ • S̃T − ϕ • ST = ϕ • ∆ST .

Recalling the definition of the liquidation wealth (cf. Equation (4.4), Definition 4.3 and

Remark 4.4), we obtain, at the leading order in ε,

ϕ • ∆S = −S • ϕ̄ = −
∑
j

εjS
j • (ϕ−,j + ϕ+,j) . (4.28)

The first term contributing to the leading-order utility loss can therefore be interpreted

as loss due to transactions, and we write

LUtc = −pEQ [ϕ • ∆ST ] . (4.29)

The deviation from the frictionless optimizer, ∆ϕ, enters the expression for the utility

loss in the form of a Q-martingale and thus appears only in the second-order Taylor

expansion. Its contribution to the leading-order utility loss is the second term,

LUdisp =
p2

2
EQ
[
(∆ϕ • ST )2

]
=
p2

2
EQ

[
∆ϕ>cS∆ϕ • IT

]
, (4.30)
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which can be interpreted as loss due to displacement. We also define

LUtot = LUtc + LUdisp (4.31)

and stress that LUtot provides the total utility percentage lost due to the presence of trans-

action costs.

We now introduce the notion of the certainty equivalent which will be used in the nu-

merical analysis later in this work. When dealing with the utility of terminal wealth or,

in particular, with the utility loss due to market frictions, it is rather difficult to com-

prehend how much is actually lost. We have no natural utility-based scale of measure.

Instead, everyone is used to quantifying gains and losses in currency units, and this is

the rationale for using certainty equivalent. Assume we have a money amount X at our

disposal. The exponential utility associated with this amount is given by

U = −e−pX .

To reverse things, if one starts with the utility, U , then the amount of money to which

this utility corresponds is just

X = −1

p
ln (−U) .

This is the motivation behind the following

Definition 4.15. Let X(ϕ)T be the payoff generated by a trading strategy ϕ. The

certainty equivalent associated with the expected utility of this payoff is defined as

CE(X(ϕ)T ) = −1

p
ln (−E [u(X(ϕ)T )]) . (4.32)

With the help of the certainty equivalent, the expected utility of the payoff X(ϕ)T can

be given the following interpretation: trading according to ϕ up to the time T is expected

to be as good as getting CE(X(ϕ)T ) currency units.

To express Equation (4.27) in terms of the certainty equivalent, we first denote the

certainty equivalent corresponding to the wealth generated by the frictionless optimizer

by CE∗. Then, the certainty equivalent of X(ϕ)T , the liquidation wealth at time T

generated by a strategy ϕ trading with transaction costs, at the leading order is obtained

by a Taylor expansion of (4.32) combined with (4.27):

CE = CE∗ + EQ [ϕ • ∆ST ]− p

2
EQ

[
∆ϕ>cS∆ϕ • IT

]
+ o

(
ε2/3

)
= CE∗ − 1

p
LUtot + o

(
ε2/3

)
.

(4.33)
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One can summarize the results of our asymptotic considerations as follows. The heuristic

method presented in Subsection 4.3.1 allowed us to transform the optimization problem

for small transaction costs into the multidimensional free-boundary problem (4.25), con-

taining the information about the no-trade region, together with the system of stochas-

tic differential equations with reflections at the boundary of the no-trade region (4.26).

However, for the portfolio dimension of at least two, even the approximation for small

transaction costs does not simplify the problem sufficiently so that it can be solved ex-

plicitly using any tractable method, at least to the knowledge of the author. As one can

see from Proposition 4.13, the difficulties start with the free-boundary problem which is

quite challenging in the multidimensional case. But even if one had the exact boundary,

one would still need to show the existence of a process ∆ϕ with a prescribed dynamics

in the interior and a proper componentwise reflection at this boundary. Put differently,

to obtain an asymptotic optimizer ϕ = ϕ∗ + ∆ϕ, one requires a strong solution, the

process ∆ϕ, to the stochastic Skorohod problem (4.26) in a non-convex domain with a

non-smooth and time-dependent reflecting boundary. Moreover, in order to make any

quantitative statements about utility or certainty-equivalent loss (cf. (4.33), (4.31)),

which is given in terms of Q-expectations of expressions depending on ∆ϕ, some knowl-

edge or at least additional assumptions about the distribution of ∆ϕ in the no-trade

region are required. In the one-dimensional case (the case with only one risky asset),

however, the asymptotic optimization problem can be solved explicitly. The complete

heuristic treatment can be found in [KMK15], and in [KL13] a rigorous proof is given.

The one-dimensional result can be easily extended to the multidimensional cases of zero

correlation and of complete correlation between the assets. These three special cases

will be discussed in the remainder of this section. As for the actually interesting case

of arbitrarily correlated assets in high dimensions, our treatment of it will rely on an

approximation of the no-trade region which will be based on the results obtained in this

chapter; in particular, the exact one-dimensional solution, to be discussed in the next

subsection, will play a crucial role. With the help of this approximation, several can-

didate strategies as well as an appropriately constructed dual variable will be derived.

These, in turn, will be used to estimate the expected utility of the actual asymptotic

optimizer numerically.

4.3.3 The one-dimensional case

In the case of a single risky asset, the system of partial differential equations of the

free-boundary problem (4.25) is reduced to the single ordinary differential equation

f ′′(x) =
2pcS

cϕ∗
x . (4.34)
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The no-trade region is then given by R̃ = ϕ∗ + R with R = [R−, R+] ⊂ R being an

interval, and the boundary conditions read

f ′(R±) = 0, f(R±) = ∓εS . (4.35)

Integrating and using the conditions for the first derivative yields

R+ = −R− =: ∆ ,

and

f(x) =
pcS

3cϕ∗
x3 − pcS

cϕ∗
∆2x+ const .

The remaining conditions imply that const = 0, and we obtain

f(x) =
εS

2

(( x
∆

)3
− 3

x

∆

)
,

∆ =

(
3

2p

cϕ
∗

cS
εS

)1/3

.

(4.36)

Having fixed the boundary, we now turn to finding the asymptotic optimizer ϕ = ϕ∗ + ∆ϕ.

The results from Section 4.3.1 show that the process ∆ϕ ∈ [−∆,∆] can be obtained as

a solution to the stochastic Skorohod problem (4.26) for n = 1. The existence of such

a solution is shown in [SW13] (see also [KL13], Lemma 5.5). With ∆S = f(∆ϕ), the

process S̃ = S + ∆S is then the shadow price with respect to which ϕ = ϕ∗ + ∆ϕ is

proved to be asymptotically optimal in [KL13].

To see that the solution is asymptotically optimal in terms of the heuristic arguments

made in Subsecion 4.3.1, we should recall Remark 4.12. The essence is that the free-

boundary problem (4.25) and the Skorohod problem (4.26) guarantee asymptotic opti-

mality only under the condition that f is asymptotically independent of ε. That is to say

that, at the leading order of O(ε1/3), only the dynamics of [∆ϕj ,∆ϕk], j, k = 1, . . . , n,

contributes to the drift of ∆S = f(∆ϕ); more formally,

b∆S,j =
1

2

∑
k,l

∂k∂lfj(∆ϕ)cϕ
∗,kl +O(ε2/3), j = 1, . . . , n .

This can be easily checked directly by computing df(∆ϕ)t using (4.36). Hence, for only

one risky asset, the leading-order utility loss defined in (4.31) reads

LUtot = −pEQ [ϕ • ∆ST ] +
p2

2
EQ
[
((∆ϕ)2cS) • IT

]
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It can be shown that (cf. [KMK15], A.5)

LUtot =
p2

2
EQ
[
(∆2cS) • IT

]
. (4.37)

In terms of the certainty-equivalent loss one obtains (compare also [KL13], Corollary

5.18)

CE = CE∗ − p

2
EQ
[
(∆2cS) • IT

]
+ o

(
ε2/3

)
. (4.38)

Note that in (4.37), (4.38) ∆ denotes the one-dimensional stochastic boundary intro-

duced in (4.36).

4.3.4 The uncorrelated multidimensional case

We consider a market with n ≥ 2 risky assets with no correlation. The price processes

as well as the frictionless optimizers are modelled as

dXj
t = bX

j

t dt+ σX
j

t dW j
t , X ∈ {S, ϕ∗}

with the usual assumption that W 1, . . . ,Wn are independent Brownian motions. The

local quadratic covariation of X = (X1, . . . , Xn) is given by the diagonal matrix

cX = diag
(

(σX
1
)2, . . . , (σX

n
)2
)
.

The system of partial differential equations of the free-boundary problem (4.25) reduces

to
n∑
k=1

cϕ
∗,k
∂2
kfj(x) = 2pcS

j
xj , j = 1, . . . , n . (4.39)

It appears reasonable to assume that in the case of zero correlation, when each price

process is independent of the others, the problem can be tackled by an ansatz replicating

the one-dimensional solution in each dimension. It can indeed be verified that the free-

boundary problem (4.25) with the system of partial differential equations reduced to

(4.39) is solved by

f(x) = (f1(x1), . . . , fn(xn)),

fj(xj) =
εjS

j

2

(( xj
∆j

)3
− 3

xj
∆j

)
,

∆j =

(
3

2p

cϕ
∗,j

cSj
εjS

j

)1/3

,

(4.40)
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and the boundary is given by

∂R±,j =

j−1∏
k=1

[−∆k,∆k]× {∓∆j} ×
n∏

k=j+1

[−∆k,∆k] . (4.41)

Put differently, the no-trade region is a rectangular parallelotope of the form

ϕ∗ +R =
n∏
j=1

[ϕ∗,j −∆j , ϕ∗,j + ∆j ] . (4.42)

The function f from (4.40) can be shown to be asymptotically independent of ε in the

sense of Remark 4.12 by computing df(∆ϕ)t explicitly. Hence, the leading-order utility

loss is given in terms of

LUtc = −p
n∑
j=1

EQ
[
ϕj • fj(∆ϕ

j)T
]

and

LUdisp =
p2

2

n∑
j=1

EQ
[(

(∆ϕj)2cS,jj
)
• IT

]
,

which is just the sum of the one-dimensional losses due to transactions and displacement,

respectively. Thus, using (4.37), we expect the total utility loss in the uncorrelated

multidimensional case to be of the form

LUtot =
p2

2

n∑
j=1

EQ

[(
(∆jσS

j
)2
)
• IT

]
. (4.43)

4.3.5 The case of complete correlation

In the present study, the situation of our interest is that of long-term investments in large

portfolios. This puts certain restrictions on portfolios with extreme correlations between

the assets. Allowing several different assets to be highly correlated creates a sort of an

arbitrage opportunity. Take two assets for simplicity, and let ρ denote their correlation

coefficient. Now assume that the assets are almost completely correlated, ρ ∼ 1, but, at

the same time, let them have different expected rates of return and different volatilities.

Then, depending on the ratio of the rate of return to the volatility of the individual

assets, the optimal strategy will select one of the assets to go short in. Put differently,

the investor can short one of the stocks and invest the money in the ”better” one. After

a certain time, the ”better” stock can be sold so as to close the short position and make

profit. If such investment opportunities exist, they do so for a very short time. They

are purely speculative and have very little to do with long-term investment strategies
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we wish to consider. The situation can easiest be illustrated with the help of the Black-

Scholes model. In Section 3.2.4 of Chapter 3, it was shown that for an investor whose

preference is described by the exponential utility function, u(x) = −e−px, p > 0, it is

optimal to keep a constant amount of money in each stock,

ϕ∗,jSj =
1

p
(c−1b)j .

The covariance matrix satisfies

c =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
, c−1 =

1

1− ρ2

 1
σ2
1

− ρ
σ1σ2

− ρ
σ1σ2

1
σ2
2

 ,

with σ1, σ2 being the volatilities of the assets. Simple matrix multiplication shows that

if we wish to have a strictly positive amount of money invested in both assets, we must

satisfy (
b1
σ1

> ρ
b2
σ2

)
∧

(
b2
σ2

> ρ
b1
σ1

)
.

Both inequalities can only be fulfilled for an arbitrary ρ if both assets have equal rates

of return and equal volatilities. But splitting the amount of money one wishes to invest

between multiple completely correlated and thus essentially identical assets is exactly as

good as to invest the entire money in one of them. Thus, the case complete correlation

(short-selling strategies excluded) is already covered by the one-dimensional solution

discussed in Subsection 4.3.3. This fact will also be confirmed by the simulation results

to be presented in Chapter 6.

We can define the no-trade region for a completely correlated portfolio by means of

a rather heuristic argument. Assume that we invest in n > 1 completely correlated

assets. As discussed above, an optimal frictionless investment strategy in this case is

splitting the optimal one-stock investment equally between the completely correlated

assets. In other words, in each portfolio component, we hold the n-th fraction of the

optimal number prescribed by the one-dimensional frictionless solution. In the presence

of proportional transaction costs, an optimal strategy will start at the frictionless op-

timizer and vary along the straight line with the directional vector 1, 1j = 1 for all

j = 1, . . . , n, since each component is treated equally due to their indistinguishability.

To obtain the asymptotically optimal maximum distance from the frictionless optimizer,

we exploit the one-dimensional analogy. Recall that the boundary process ∆ describing

the half-width of the one-dimensional no-trade region measures the number of shares

by which the portfolio can maximally deviate from the optimum (cf. Equation (4.36)).

We now demand that the n-asset portfolio must not deviate farther from the frictionless

optimum than ±∆ shares in total. This implies that each portfolio component takes

on its values in the interval
[
− 1
n∆, 1

n∆
]
. Therefore, in the limiting case of complete
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correlation, the no-trade region can be described as a line segment in Rn given by

R̃ =
{
x ∈ Rn : x = ϕ∗ + λ∆1, λ ∈ [−1, 1]

}
. (4.44)

Note also that the line segment has the length 2∆ with respect to the l1-distance.





Chapter 5

Approximations

As discussed in the previous chapter, given the frictionless optimizing strategy ϕ∗, solv-

ing the portfolio-optimization problem with small proportional transaction costs, i. e.

determining an asymptotically optimal trading strategy of the form ϕ = ϕ∗ + ∆ϕ, is

equivalent to first finding the boundary of the no-trade region, given as a solution to the

free-boundary problem (4.25), and then solving the stochastic Skorohod problem (4.26)

to obtain the process ∆ϕ. However, already the free-boundary problem presents a great

challenge even in the case of low dimensionality, such as n = 3, not to mention the

cases of moderate to high dimensionality, such as n = 10, n = 30 or higher. The next

obstacle is the existence of the process ∆ϕ as a strong solution to a reflecting stochastic

differential equation, since, as we already stressed in Remark 4.14, the no-trade region is

expected to be non-convex with a non-smooth and time-dependent boundary. Finally,

in order to calculate the utility loss of a candidate strategy ϕ = ϕ∗+ ∆ϕ, the knowledge

of the distribution of the process ∆ϕ inside the no-trade region is required.

In this chapter, a construction scheme of an approximation to the no-trade region is

proposed. Our primary goal is to obtain a tractable approximation which can easily be

implemented in computer simulations. Important properties of no-trade regions were

already discussed in Chapter 4; in particular, in Remark 4.14, we argued that the bound-

ary of a no-trade region must be non-smooth. Our approximations will have the form

of convex polyhedra constructed symmetrically around the frictionless optimizer. To be

more precise, we will consider convex polyhedral domains which can be represented as

linear transformations of rectangular parallelotops, which poses a great advantage in nu-

merical applications. Candidate strategies with respect to approximate no-trade regions

will be defined as solutions to Skorohod problems with appropriate boundary conditions

(cf. Definition 5.1). Moreover, in Section 5.2, we will introduce a simple method for

associating a dual upper bound with a given approximation of the no-trade region. As in

the general asymptotic model, which was treated heuristically in the previous chapter,

57
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a dual variable will be a pair (Q̃, S̃) consisting of a shadow-price process S̃ = S + ∆S

and a measure Q̃ ∼ P making S̃ a martingale. The main difference to the previously

discussed asymptotic theory is that there will be no connection between shadow prices

and trading strategies via a free-boundary problem. It will be shown that ∆S can be

constructed from an auxiliary process ψ = ϕ∗ + ∆ψ via ∆S = f(∆ψ). The process

ψ behaves almost like a trading strategy in the sense that it satisfies d∆ψ = −dϕ∗

in the interior of the approximate no-trade region but its reflecting properties at the

boundary are different from those of a usual trading strategy1. The unusual behaviour

at the boundary will turn out to be necessary in order to ensure the existence of an

equivalent martingale measure such that the frictionless market S̃ = S + ∆S is free of

arbitrage. Finally, the dual variable (Q̃, S̃) will be used to derive an upper bound on the

expected payoff generated by an arbitrary candidate strategy. The quality of such an

upper bound is rather difficult to asses. The value of the upper bound alone does not tell

us how much better than the trivial upper bound, the expected utility of the frictionless

optimizer, it actually is. To deal with this problem, in the subsections 5.1.1 – 5.1.3, we

introduce three different candidate strategies which will be analysed numerically in the

Black-Scholes model in Chapter 6 to compare the expected utility of these policies with

the value of the upper bound.

5.1 No-trade region and trading strategy

In this section, we introduce three domains to serve as candidates for the no-trade region,

which will be basic to the numerical analysis of the next chapter. As already mentioned

in the introduction to this chapter, the no-trade regions will have the form of linearly

transformed rectangular parallelotops. In Subsection 4.3.1, we introduced trading strate-

gies as solutions to Skorohod problems (cf. Equations (4.26)). The boundary conditions

of the reflecting stochastic differential equations in (4.26) as well as the boundary of

the no-trade region as such are determined by the shadow-price process linked to the

trading strategy via the free-boundary problem (4.25) (see also Equations (4.24)). In

our approach, this connection does not exist: we define trading strategies with respect

to a given candidate domain, and the shadow price must then be found using different

techniques. Whereas the latter will be the subject of the next section, we begin this

section with a proper definition of a trading strategy with respect to a general parallelo-

tope as the no-trade region. Our candidates will be introduced subsequently as special

cases.

As already mentioned, when dealing with an asymptotically optimal trading strategy,

1A usual trading strategy is a process ϕ = ϕ∗ + ∆ϕ satisfying Definition 5.1
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the boundary of the no-trade region and the behaviour of the strategy at this boundary

are both determined by the associated shadow price. In particular, as stated in (4.26),

reflections of the trading strategy occur in a single component with probability one.

Given a candidate domain approximating the no-trade region, the direction of reflection

of the associated trading strategy may be arbitrary as long as the strategy stays inside

the no-trade region after the reflection. One could, of course, argue that there must be

at least one distinguished direction of reflection, namely the one leading to an optimal

trading strategy with respect to a given domain. However, this argument does not help

construct tractable approximations since it results in yet another optimization problem.

We will construct our approximations by continuing to work with strategies reflecting

in a single component at the boundary of the parallelotope we choose to be the no-trade

region. That is to say that each side of the parallelotope corresponds to only one asset

and vice versa. The notion of a trading strategy corresponding to a given candidate

domain is made precise in the following

Definition 5.1. Let ϕ∗ = (ϕ∗,1, . . . , ϕ∗,n)>,

ϕ∗,jt = ϕ∗,j0 +

∫ t

0
bϕ
∗,j
u du+

m∑
k=1

∫ t

0
σϕ
∗,jk

u dW k
u

be the frictionless optimizing strategy and ∆ = (∆1, . . . ,∆n)> a stochastic process such

that ∆j ∈ O
(
ε1/3

)
, j = 1, . . . , n. Set

R =
n∏
j=1

[−∆j ,∆j ] .

For an invertible matrix L ∈ Rn×n, we define the no-trade region associated with L and

∆ through

R̃ = ϕ∗ +R, R = LR . (5.1)

The boundary of R then satisfies

∂R =
n⋃
j=1

∂R+,j ∪ ∂R−,j , ∂R±,j = L∂R
±,j

,

∂R
±,j

=

j−1∏
k=1

[−∆k,∆k]× {∓∆j} ×
n∏

k=j+1

[−∆k,∆k] .

(5.2)

Let µ = (µ1, . . . , µn) be a function defined by

µj(x) = sgn
(
(L−1x)j

)
.
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A finite-variation process ϕ = (ϕ1, . . . , ϕn)> will be called a trading strategy to the

no-trade region R̃ if there exists a stochastic process ∆ϕ = (∆ϕ1, . . . ,∆ϕn)> = O
(
ε1/3

)
which, for all j = 1, . . . , n and t ≥ 0, satisfies

∆ϕt = −ϕ∗t + ϕt ∈ Rt, ∆ϕ0 = 0 ,

ϕjt = ϕ∗,j0 +

∫ t

0
µj(∆ϕu)d|Dϕj |u ,

|Dϕj |t =

∫ t

0
I
∂R±,ju

(∆ϕu)d|Dϕj |u ,

(5.3)

where |Dϕj | denotes the total-variation process of ϕj , j = 1, . . . , n.

Remark 5.2. Before introducing the candidate domains and the associated trading

strategies, we recapitulate the results obtained in the previous chapter, which concern the

two explicitly solvable multidimensional problems: the case of zero correlation and the

case of complete correlation (cf. Subsections 4.3.4, 4.3.5). In the uncorrelated case, the

no-trade region was shown to be a rectangular parallelotope ϕ∗+
∏

[−∆j ,∆j ] with ∆j ,

j = 1, . . . , n, being the boundary process associated with the one-dimensional solution

corresponding to the price process Sj (cf. Subsection 4.3.3). As discussed in Subsection

4.3.5, for completely correlated assets, the no-trade region can be represented as the line

segment connecting the points ϕ∗ ±∆1, ∆ being the half-width of the one-dimensional

no-trade region (cf. Equation (4.44)). Thus, a candidate domain R = LR, as introduced

in Definition 5.1, should have the following properties:

(i) For n uncorrelated assets S1, . . . , Sn, R must coincide with the exact asymptotic

solution, i. e.,

R =

n∏
j=1

[−∆j ,∆j ] , (5.4)

∆j , j = 1, . . . , n, being the half-width of the one-dimensional no-trade region

associated with Sj (cf. Equations (4.40), (4.42)).

(ii) As already argued, in the limiting case of complete correlation we essentially deal

with n identical assets, and the no-trade region can be described by a line segment

(cf. Eqution (4.42)). Our candidate domain need not become a line segment in

the limiting case. It must rather be such that its boundary limits the movement of

a candidate strategy to a segment of the length 2∆ (with respect to the l1-norm),

∆ being the half-width of the asymptotically optimal one-dimensional no-trade

region. More formally, the line along which the portfolio varies is given by ϕ∗+R1,

and our candidate domain is of the form R̃ = ϕ∗+R, R = LR (cf. Definition 5.1).

Let δ1 and δ2 be the two intersection points of the line R1 with the boundary of
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R,

{δ1, δ2} = R1 ∩ ∂R .

Then, the candidate domain will have the property of the no-trade region in the

limiting case of complete correlation if

∥∥δ1 − δ2
∥∥

1
= 2∆ , (5.5)

with ‖x‖1 =
∑n

j=1 |xn| denoting the l1-norm of x ∈ Rn.

5.1.1 Naive candidate

Our first candidate for the no-trade region is probably the simplest construction incorpo-

rating the one-dimensional solution discussed in Subsection 4.3.3. Let S = (S1, . . . , Sn)>

be the price process of n arbitrarily correlated assets and ϕ∗ = (ϕ∗,1, . . . , ϕ∗,n)> be the

frictionless optimizer for this market. Define the boundary process ∆ = (∆1, . . . ,∆n)>

by

∆j =

(
3

2p

cϕ
∗,jj

cS,jj
εjS

j

)1/3

(5.6)

and let the transformation matrix be the identity, Lij = δij (compare the definition of

the boundary process with the one-dimensional solution (4.36) in Subsection 4.3.3). The

no-trade region thus is the rectangular parallelotope ϕ∗ +R,

R =

n∏
j=1

[−∆j ,∆j ] . (5.7)

Note that possible correlations between the assets are not neglected in this construction.

The correlation coefficients enter into the above definition of the no-trade region via the

local quadratic covariation of the frictionless optimizer, cϕ
∗
. For example, in the Black-

Scholes model we have (cf. Equation (6.5))

cϕ
∗,jj =

(
σj(c

−1b)j
pSj

)2

, cjk = σjσkρjk ,

with ρ being the correlation matrix. However, since the linear transformation L is trivial,

asset correlations may affect only the size and proportions of the no-trade region which

then still remains rectangular.
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5.1.2 A more sophisticated construction

A more sophisticated construction of the approximate no-trade region proposed here

is based on solving a series of one-dimensional problems. Consider the price process

S = (S1, . . . , Sn)> of n arbitrarily correlated assets and let ϕ∗ = (ϕ∗,1, . . . , ϕ∗,n)> be

the frictionless optimizer for this market. For a fixed i ∈ {1, . . . , n}, let the processes

(ϕj)j 6=i be of the form ϕj = ϕ∗,j+∆ϕj where the deviations from the frictionless optimiz-

ers, ∆ϕj , are taken to be small. Assume that the investor can only control the position

in the i-th asset, the trades can be carried out without transaction costs, and the re-

maining portfolio positions are taken care of optimally by some individuals. Under these

assumptions, we are first interested in the value of ϕi = ϕ∗,i+ ∆ϕi which maximizes the

expected utility of the terminal wealth of the entire portfolio at the leading order in ∆ϕ.

Put differently, we want to determine the optimal value of ∆ϕi given that (∆ϕj)j 6=i are

already at the optimal position. We then denote the optimal position in the i-th asset by

ϕ̃∗,i and take it be the starting point for a constrained one-dimensional problem. Next,

we impose boundaries around ϕ̃∗,i that are known from the one-dimensional case (cf.

Section 4.3.3, Equation (4.36)). For all possible values of xj = ϕjt (ω) = ϕ∗,jt (ω)+∆ϕjt (ω),

j 6= i, and the associated optimal responses x∗i = ϕ̃∗,it (ω), this construction defines a set

R(i) ⊂ Rn whose elements x = (x1, . . . , xn) are such that xi is confined to the bound-

aries of the one-dimensional solution around x∗i . By repeating this procedure for each

i = 1, . . . , n, we then define our approximation of the no-trade region as R̃ =
⋂
R(i). As

we shall see in the following, at the leading order in ε, R̃ will turn out to be a parallelo-

tope.

In the above setting, let i ∈ {1, . . . , n} be fixed, and let all ∆ϕj = ϕj −ϕ∗,j , j 6= i, be at

their optimal positions. We now determine the optimal value of ∆ϕi such as to maximize

the expected utility of terminal wealth of the entire portfolio (ϕ∗,k + ∆ϕk)k=1,...,n. The

terminal wealth associated with the strategy ϕ = (ϕ1, . . . , ϕn)> can be written as

VT = V 0
T + ∆VT =

n∑
k=1

(ϕ∗,k • SkT + ∆ϕk • SkT ) .

The Taylor expansion of the utility function in powers of ∆VT at V 0
T then reads as

u(VT ) = u(V 0
T ) + u′(V 0

T )∆VT +
1

2
u′′(V 0

T )(∆VT )2 +O
(
(∆VT )3

)
.
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Using u(x) = −e−px and recalling the frictionless optimality condition u′(V 0
T ) = ZTE(u′(V 0

T )),

ZT being the density of an equivalent martingale measure for S, one obtains

E(u(VT )) = E(V 0
T )

(
1− pEQ(∆VT )− p2

2
EQ
(
(∆VT )2

))
+O

(
(∆VT )3

)
.

Since ∆ϕj • Sj is a Q-martingale for all j, the term EQ(∆VT ) vanishes, and the problem

is reduced to minimizing EQ
(
(∆VT )2

)
with respect to ∆ϕi.

EQ
(
(∆VT )2

)
=EQ

∑
k,l

(∆ϕk • SkT )(∆ϕl • SlT )


=
∑
k,l

EQ

((
∆ϕl(∆ϕk • Sk)

)
• SlT +

(
∆ϕk(∆ϕl • Sl)

)
• SkT

)
+
∑
k,l

EQ

(
(∆ϕk∆ϕl) • [Sk, Sl]T

)
=
∑
k,l

EQ

(
∆ϕk∆ϕlcS,kl • IT

)
= EQ

(∫ T

0
∆ϕ>t c

S
t ∆ϕt dt

)
.

Since the local quadratic covariation cS is a positive semi-definite matrix for each (t, ω),

the optimal value of ∆ϕi is obtained by minimizing the integrand for each (t, ω). Tak-

ing into account the symmetry of cS , the value of ∆ϕi minimizing the quadratic form

∆ϕ>cS∆ϕ is given through

∆ϕi = −
∑
j 6=i

cS,ij

cS,ii
∆ϕj . (5.8)

Now let ϕ̃∗,i denote the value of the strategy ϕ∗,i+∆ϕi with ∆ϕi satisfying the optimality

condition (5.8). This value then reads as

ϕ̃∗,i = ϕ∗,i −
∑
j 6=i

cS,ij

cS,ii
∆ϕj =

1

cS,ii
(
cSϕ∗

)
i
−
∑
j 6=i

cS,ij

cS,ii
ϕj . (5.9)

Note that, for all possible choices of (ϕj)j 6=i, the corresponding optimizers can be viewed

as lying in the hyperplane x∗i e
(i) +H(i)2,

H(i) =

x ∈ Rn : xi = −
∑
j 6=i

cS,ij

cS,ii
xj

 , x∗i =
1

cS,ii
(
cSϕ∗

)
i
. (5.10)

Next, we take the point

ϕ̃(i) = (ϕ1, . . . , ϕi−1, ϕ̃∗,i(ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn), ϕi+1, . . . , ϕn) (5.11)

2e(i) denotes the i-th standard-basis vector of Rn.
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to be the optimal one for the one-dimensional constrained problem along the line

ϕ̃(i) + Re(i) and impose a boundary around ϕ̃(i) known from the solution of the one-

dimensional free-boundary problem (4.36). In other words, the portfolio, now having

only one degree of freedom, varies on the line segment ϕ̃(i) + re(i), r ∈ [−∆i,∆i], ∆i

being the half-width of the one-dimensional no-trade region (4.36). Thus, for all possible

values of (ϕj)j 6=i, the location of the portfolios under the one-dimensional constraint is

confined to the space between the two hypersurfaces H
(i)
± satisfying

H
(i)
± =

x ∈ Rn : xi = x∗i −
∑
j 6=i

cS,ij

cS,ii
xj ±∆i

 , (5.12)

with x∗i defined in (5.10).

By Equation (4.36), the results obtained for the one-dimensional constrained optimiza-

tion problem imply that the boundary process ∆i is given through

∆i =

(
3

2p

cϕ̃
∗,i

cS,ii
εiS

i

)1/3

, (5.13)

where cϕ̃
∗,i

refers to the local quadratic covariation of the optimizer (5.9), which is to

distinguish from cϕ
∗

originally used in the one-dimensional solution (4.36). To compute

cϕ̃
∗,i

, consider the process
[
ϕ̃∗,i
]
. From (5.9) one obtains

d
[
ϕ̃∗,i
]

= d
[
ϕ∗,i
]
− 2

∑
j 6=i

d

[
ϕ∗,i,

cS,ij

cS,ii
∆ϕj

]
+
∑
j,k 6=i

d

[
cS,ij

cS,ii
∆ϕj ,

cS,ik

cS,ii
∆ϕk

]
.

Applying integration by parts to the terms cS,ij

cS,ii
∆ϕj leads to

d
[
ϕ̃∗,i
]

= d
[
ϕ∗,i
]
− 2

∑
j 6=i

∆ϕjd

[
ϕ∗,i,

cS,ij

cS,ii

]
− 2

∑
j 6=i

cS,ij

cS,ii
d
[
ϕ∗,i,∆ϕj

]
+
∑
j,k 6=i

∆ϕj∆ϕkd

[
cS,ij

cS,ii
,
cS,ik

cS,ii

]
+
∑
j,k 6=i

cS,ijcS,ik

(cS,ii)2 d
[
∆ϕj ,∆ϕk

]
.

Since the boundary processes ∆j as well as the candidate strategies ∆ϕj are of order

O
(
ε1/3

)
, we must have

[
ϕ̃∗,i
]

= O(1) (cf. Eq. (5.13)). Since, in addition, d∆ϕj = −dϕ∗,j

in the interior of the no-trade region, the local quadratic covariation cϕ̃
∗,i

t =
d[ϕ̃∗,i]

t
dt of

the optimizer ϕ̃∗,i can be expressed as

cϕ̃
∗,i

= cϕ
∗,ii + 2

∑
j 6=i

cS,ij

cS,ii
cϕ
∗,ij +

∑
j,k 6=i

cS,ijcS,ik

(cS,ii)2 cϕ
∗,jk +O

(
ε1/3

)
. (5.14)
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Substituting this result into (5.13) gives (after an appropriate term rearrangement)

∆i =
1

cS,ii

[
3εiS

i

2p

(
cScϕ

∗
cS
)ii]1/3

+O
(
ε2/3

)
. (5.15)

Hence, at the leading order in ε, H
(i)
± in (5.12) define two hyperplanes and can therefore

be written as

H
(i)
± = (x∗i ±∆i)e(i) +H(i). (5.16)

Define R(i) to be the set of all points lying between H
(i)
+ and H

(i)
− ; more formally,

R(i) =
{
x ∈ Rn : ∃ δ ∈ [−∆i,∆i] : x ∈ (x∗i + δ)e(i) +H(i)

}
. (5.17)

The set R(i) can be interpreted as the no-trade region of an investor which can only

control the i-th component of the portfolio with the remaining components being ad-

justed exogenously. Finally, intersecting the sets R(i) for all i ∈ {1, . . . , n} we obtain the

no-trade region:

R̃ =
n⋂
i=1

R(i) . (5.18)

Remark 5.3. At first glance, one might think that the set R̃ defined in the above Equation

5.18 is already the asymptotically optimal no-trade region. Indeed, one could argue that

R̃ is obtained by successively optimizing each portfolio component, which must result

in an optimal final solution. To see that this is not the case, we must keep in mind that

in the above derivation we take ε ∼ 0 only in one portfolio component, tacitly assuming

that the asymptotic limit does not affect the rest of the portfolio. This assumption, of

course, can be viewed only as an approximation allowing us to apply the one-dimensional

asymptotic results established in Subsection 4.3.3.

We now represent the no-trade region R̃ as a linear transformation of a rectangular

parallelotope, in the sense of Definition 5.1. Define the transformation M ,

M ij =
cS,ij

cS,ii
, (5.19)

and let

R = [−∆1,∆1]× . . .× [−∆n,∆n] , (5.20)
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with ∆j , j = 1, . . . , n, being the boundary processes introduced in (5.15). The no-trade

region R̃ defined in (5.18) then satisfies

R̃ =
n⋂
i=1

x : ∃ ξi ∈ [−∆i,∆i] : xi = x∗i + ξi −
∑
j 6=i

cS,ij

cS,ii
xj


=

n⋂
i=1

{
x : ∃ ξi ∈ [−∆i,∆i] : (Mx)i = (Mϕ∗)i + ξi

}
=
{
x : ∃ ξ ∈ R : x = ϕ∗ +M−1ξ

}
= ϕ∗ +R ,

(5.21)

with

R = M−1R .

Definition 5.1 now applies with L = M−1.

5.1.3 Alternative candidate

To construct an alternative candidate, we begin by simplifying the construction of the

naive candidate presented in Subsection 5.1.1. In the definition of the boundary process

∆, Equation (5.6), replace the local quadratic covariation of the frictionless optimizer,

cϕ
∗
, by cϕ̂ with ϕ̂ = (ϕ̂1, . . . , ϕ̂n)> and ϕ̂j , j = 1, . . . , n, being the one-dimensional

frictionless optimizer to the price process Sj . In particular, this means that we assume

the components of ϕ̂ to satisfy

dϕ̂jt = bϕ̂
j

t dt+ σϕ̂
j

t dW j
t , j = 1, . . . , n ,

with W 1, . . . ,Wn being independent standard Brownian motions, which, in turn, implies

that the local quadratic covariation of ϕ̂ is of the form

cϕ̂ = diag
(

(σϕ̂
1
)2, . . . , (σϕ̂

n
)2
)
.

We obtain the boundary processes (cf. Equation (5.6))

∆j =

(
3εjS

j

2p

(σϕ̂
j
)2

cS,jj

)1/3

. (5.22)

The set ϕ∗ +
∏

[−∆j ,∆j ] as a candidate for the no-trade region has the major draw-

back of being independent of possible stock correlations. This issue can be dealt with

by choosing the linear transformation L from Definition 5.1 such as to multiply each

boundary process ∆j , j = 1, . . . , n, by a correlation-dependent scale factor κj . We

define κ = (κ1, . . . , κn)> such that the resulting set LR, R =
∏

[−∆j ,∆j ], fulfils the
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conditions outlined in Remark 5.2. From Equation (5.22) we see that in the case of

uncorrelated assets, κ must satisfy κj ≡ 1 since ϕ∗ +
∏

[−∆j ,∆j ] coincides with the

exact solution from Subsection 4.3.4, Equation (4.42). Now let the portfolio consist of

n > 1 completely correlated assets. Then all components of ∆ are identical, and we set

∆j ≡ ∆̂. In this case, κ must be such that the condition (5.5) is satisfied. The line R1

intersects the boundary of [−∆̂, ∆̂]n in the two vertices

δ1,2 = ±∆̂1 .

The l1-length of the resulting line segment then reads ‖δ1 − δ2‖1 = 2n∆̂. Hence, to

obtain the correct no-trade region, κ must fulfil κj ≡ 1/n in the case of n > 1 completely

correlated assets.

To construct such a scaling vector, let ϕ̂j again denote the one-dimensional optimal

investment strategy to the price process Sj , for each j = 1, . . . , n. Define

κj =
ϕ∗,j

ϕ̂j
, j = 1, . . . , n . (5.23)

Then, for each j, κ has the desired property of taking on the value 1 and 1/n in the

cases of zero and complete correlation, respectively. Thus, our alternative candidate is

given by the pair (L,∆) consisting of the linear transformation

L = diag
(
κ1, . . . , κn

)
, (5.24)

and the boundary process defined in Equation (5.22).

5.2 Dual upper bound

The upper bound on the expected utility of candidate strategies we propose will be

given in terms of the convex conjugate of the utility function. As demonstrated in

Chapter 3 (cf. Proposition 3.21), when taking the convex-duality approach to the utility-

maximization problem, the set of all equivalent (local) martingale measures (which we

often identify with their densities with respect to the real-world measure, P ) for the

price process S turns out to be the right choice for the set of dual variables. To explain

how the dual theory can be used to construct a non-trivial upper bound for candidate

strategies, we briefly recapitulate the main assertions of Proposition 4.13 suggesting how

asymptotic optimality can be obtained. Let ϕ = ϕ∗ + ∆ϕ = ϕ+ − ϕ− be a candidate
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strategy. If a function f = (f1, . . . , fn) and a boundary ∂R,

∂R =
⋃
j≥1

f−1
j

(
{εjSj}

)
∪ f−1

j

(
{−εjSj}

)
,

solve the free-boundary problem (4.25), then ϕ is optimal if ∆ϕ solves the Skorohod

problem (4.26) with respect to ∂R. In other words, we have asymptotic optimality if

∂R is chosen to be the boundary of the no-trade region for ϕ. In this case, d∆ϕ = −dϕ∗

is satisfied in the interior, and ϕ±,j increases when f−1
j ({ ± εjS

j}) is hit causing ϕ

to properly reflect from the boundary. The dual theory comes into play when proving

optimality via a frictionless extension of the constrained problem by defining the process

S̃ = S + ∆S, ∆S = f(∆ϕ), and constructing an equivalent measure with the density

Z̃T such that the pair (S̃, Z̃) meets the requirements of the dual characterization of

asymptotic optimality in the sense of Proposition 4.10 (see also Remark 4.11).

When dealing with an approximation of the no-trade region, the situation is different

since we do not have an exact solution. Instead, we already start with a candidate domain

and must then find a way to construct an arbitrage-free shadow-price process. Such a

shadow price, in general, will have nothing to do with the trading strategy associated

with the approximate no-trade region by Definition 5.3. This fact poses a problem

since the very notion of the shadow price is linked to (asymptotically) optimal trading

strategies (cf. Definition 4.6 and also Proposition 4.10, Remark 4.11). Nonetheless, there

is a way out, and a key observation upon which the construction of a dual upper bound

will be based is as follows. Consider a process S̃ = (S̃1, . . . , S̃n) such that S̃j ∈ [Sj , S
j
],

j ∈ {1, . . . , n}, evolving within the bid-ask spread. Assume there exists an equivalent

martingale measure Q̃ ∼ P for S̃ with the density Z̃T = dQ̃
dP . Recall that, by Remark

4.7, any strategy ϕ satisfies X(ϕ)T ≤ x + ϕ • S̃T , where X(ϕ) is the payoff process

generated by ϕ in the market (S, S) with transaction costs, and x is the investor’s

initial endowment. From the definition of the convex conjugate (cf. Definition 2.2) we

immediately see that

E [u(X(ϕ)T )] ≤ E
[
yZ̃TX(ϕ)T + ũ(yZ̃T )

]
≤ E

[
yZ̃T (x+ ϕ • S̃T ) + ũ(yZ̃T )

]
= xy + E

[
ũ(yZ̃T )

]
, y > 0 .

Since this inequality holds for all y > 0, we have

E [u(X(ϕ)T )] ≤ min
y>0

{
xy + E

[
ũ(yZ̃T )

]}
= −e−px−H(Q̃,P ) . (5.25)

The right-hand side of the equality is the representation of the minimum in the special

case of the exponential utility derived in Proposition 3.17. Thus, we see that any pair

(S̃, Z̃) consisting of a price process S̃, S̃j ∈ [Sj , S
j
], for which there exists an equivalent
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martingale measure with the density process Z̃ can be used to upper-bound the primal

functional. We will start by constructing a process S̃ ∈
∏

[Sj , S
j
] from the usual ansatz

S̃ = S + ∆S and demand that ∆S satisfy the requirements of Assumption A3. That

means that ∆S must take on its values inside
∏

[−εjSj , εjSj ] and follow an Itô process,

∆Sj = b∆S,j • I +
m∑
k=1

σ∆S,jk •W k j = 1, . . . , n ,

with W = (W 1, . . . ,Wm)>, m ≥ n, being an Rm-valued standard Brownian motion,

and the drift and diffusion processes satisfying

b∆S = O
(
ε1/3

)
, σ∆S = O

(
ε2/3

)
.

In the following, we will still refer to such a process S̃ = S + ∆S as a shadow price for

simplicity. However, one must keep in mind that, strictly speaking, S̃ is not a shadow

price in the sense of Definition 4.6 as there is no trading strategy with the properties

required to satisfy the item (ii) of that definition.

We begin by introducing a stochastic process ∆ψ = (∆ψ1, . . . ,∆ψn)> taking on its

values inside the parallelotope R constructed according to the scheme introduced in

Definition 5.1. Let ∆ψ satisfy d∆ψ = −dϕ∗ in the interior of R and reflect in the

direction of ∓Le(j) each time the boundary ∂R±,j is hit. Put differently, the direction

of the reflection is given by the j-the column vector of the matrix associated with the

linear mapping

L : R =
n∏
k=1

[−∆k,∆k] −→ R ,

as introduced in Definition 5.1. Let f̃ be a function given through

f̃ = (f̃1, . . . , f̃n) : R3n −→ Rn ,

f̃j(x, y, z) =
εjyj

2

((
xj
zj

)3

− 3
xj
zj

)
.

(5.26)

Now define ∆ϕ̃ = L−1∆ψ and set ∆S = f̃(∆ϕ̃, S,∆). Observe that, since ∆j ,∆ψj =

O
(
ε1/3

)
, j = 1, . . . , n, we have ∆S = O(ε). The process ∆ϕ̃ varies inside the rectangular

parallelotope R, and ∆ϕ̃j reflects along ∓e(j) when it hits ±∆j . Note that, for all

j, k = 1, . . . , n, the function f̃ satisfies

f̃j(x, S,∆)
∣∣
xj=±∆j = ∓εjSj , (5.27)

∂xk f̃j(x, S,∆)
∣∣
xk=±∆k = 0 . (5.28)
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Define S̃ = S+∆S. The property (5.27) implies that the process S̃ satisfies S̃j ∈ [Sj , S
j
],

j = 1, . . . , n.

The construction of ∆S can, of course, be viewed in terms of the process ∆ψ reflecting

at the boundary of the parallelotope, ∂R, along the vectors ∓Le(j) rather than in terms

of ∆ϕ̃ = L−1∆ψ. Then, defining f(·, y, z) = f̃(·, y, z) ◦ L−1, for all j, k = 1, . . . , n, we

obtain the conditions

fj(x, S,∆)
∣∣
∂R±,j

= ∓εjSj , (5.29)

n∑
l=1

Llk∂xlfj(x, S,∆)
∣∣
∂R±,k

= 0 . (5.30)

The property (5.30) means that the directional derivatives of f(·, S,∆) along ∓Le(k)

vanish each time a reflection at ∂R±,k takes place.

The above construction scheme generates a process S̃ = S + ∆S, with ∆S having

the necessary property of evolving inside
∏n
j=1 [−εSj , εSj ], associated with an arbitrary

linear approximation of the no-trade region determined by the pair (∆, L) (cf. Definition

5.1). We next show that if we assume that cS and cϕ
∗

are Itô processes, ∆S becomes

an Itô process as well. Moreover, the drift and diffusion coefficients of ∆S then exhibit

the desired asymptotic behaviour, as demanded in Assumption A3.

We first look at the dynamics of ∆S = f(∆ψ, S,∆) with f(·, S,∆) = f̃(·, S,∆) ◦ L−1

and f̃ being the function introduced in (5.26). Ito’s formula yields

d∆Sjt =
n∑
k=1

(
∂xkfjd∆ψkt + ∂ykfjdS

k
t + ∂zkfjd∆k

t

)
+

1

2

n∑
k,l=1

(
∂xk∂xlfjd[∆ψk,∆ψl]t + ∂yk∂ylfjd[Sk, Sl]t

+∂zk∂zlfjd[∆k,∆l]t + ∂xk∂ylfjd[∆ψk, Sl]t

+∂xk∂zlfjd[∆ψk,∆l]t + ∂yk∂zlfjd[Sk,∆l]t

)
,

(5.31)

for all j = 1, . . . , n, where we used fj ≡ fj(∆ψ, S,∆)t for brevity. Since f(∆ψ, S,∆) =

O(ε), the partial derivatives appearing in the above representation satisfy for all j, k

∂xkfj(∆ψ, S,∆), ∂zkfj(∆ψ, S,∆) = O
(
ε2/3

)
,

∂ykfj(∆ψ, S,∆) = O (ε) ,

(5.32)
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and

∂xk∂xlfj(∆ψ, S,∆), ∂zk∂zlfj(∆ψ, S,∆), ∂xk∂zlfj(∆ψ, S,∆) = O
(
ε1/3

)
,

∂xk∂ylfj(∆ψ, S,∆), ∂yk∂zlfj(∆ψ, S,∆) = O
(
ε2/3

)
,

(5.33)

which can be verified directly by computing the derivatives. Noting that, for all j, the

function fj depends on y and z only through their j-th component and recalling that

∆ψ = ϕ−ϕ∗ with ϕ being a finite-variation process, the expression (5.31) can be written

as

d∆Sjt =
n∑
k=1

∂xkfjd∆ψkt + ∂yjfjdS
j
t + ∂zjfjd∆j

t

+
1

2

n∑
k,l=1

∂xk∂xlfjd[ϕ∗,k, ϕ∗,l]t +
1

2
∂2
zjfjd[∆j ]t +

1

2
∂yj∂zjfjd[Sj ,∆j ]t

−
n∑
k=1

∂xk∂yjfjd[ϕ∗,k, Sj ]t −
n∑
k=1

∂xk∂zjfjd[ϕ∗,k,∆j ]t ,

(5.34)

for all j = 1, . . . , n. Note that ∂yk∂ylfj ≡ 0. We now assume that the local quadratic

covariations cϕ
∗

and cS follow Itô processes. Then, by Equation (5.15), the boundary

process ∆ = (∆1, . . . ,∆n)>, at the leading order in ε, can be written as

∆j = ε
1/3
j Y j , j = 1, . . . , n , (5.35)

with Y = (Y 1, . . . , Y n)> being an Itô process independent of ε. Thus, except for∑n
k=1 ∂xkfjd∆ψkt , all terms on the right-hand side of (5.34) are Itô processes. In the

interior of the no-trade region, the process ∆ψ satisfies d∆ψj = −dϕ∗,j , j = 1, . . . , n,

and ϕ∗ is again an Itô process by assumption. Hence, the only ”critical” region is the

boundary, ∂R, where the finite-variation part, ϕ = ϕ+ − ϕ−, contributes. Now observe

that

n∑
k=1

∂xkfj(∆ψ, S,∆)t d∆ψkt =

n∑
l=1

n∑
k=1

Lkl∂xkfj(∆ψ, S,∆)t d∆ϕ̃lt

=

n∑
l=1

∂xl f̃j(∆ϕ̃, S,∆)t d∆ϕ̃lt, j = 1, . . . , n .

Hence, the boundary conditions for f respectively f̃ , given by Equations (5.28), (5.30),

force the contributions of ϕ to vanish, which, in turn, means that ∆S is an Itô process.
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Using (5.35), Equation (5.34) can be rewritten as

d∆Sjt = −
n∑
k=1

∂xkfjdϕ
∗,k
t + ∂yjfjdS

j
t + ε

1/3
j ∂zjfjdY

j
t

+
1

2

n∑
k,l=1

∂xk∂xlfjd[ϕ∗,k, ϕ∗,l]t +
ε

1/3
j

2
∂2
zjfjd[Y j ]t +

ε
1/3
j

2
∂yj∂zjfjd[Sj , Y j ]t

−
n∑
k=1

∂xk∂yjfjd[ϕ∗,k, Sj ]t −
n∑
k=1

ε
1/3
j ∂xk∂zjfjd[ϕ∗,k, Y j ]t, j = 1, . . . , n .

(5.36)

Finally, for all j = 1, . . . , n, using (5.32), (5.33) and

dϕ∗,jt = bϕ
∗,j
t dt+

m∑
k=1

σϕ
∗,jk

t dW k
t ,

the dynamics of ∆S can be represented as

d∆Sjt = b∆S,jt dt+

m∑
k=1

σ∆S,jk
t dW k

t

with

b∆S,j =
1

2

n∑
k,l=1

∂xk∂xlfj(∆ψ, S,∆)cϕ
∗,kl +O

(
ε2/3

)
,

σ∆S,jk = −
n∑
l=1

∂xlfj(∆ψ, S,∆)σϕ
∗,lk +O (ε) .

(5.37)

These expressions can also be written in a more compact form as

b∆S,j =
1

2
Tr
[
Hfj (∆ψ, S,∆)cϕ

∗
]

+O
(
ε2/3

)
,

σ∆S = −Jf (∆ψ, S,∆)σϕ
∗

+O (ε) ,

(5.38)

with Hfj , j = 1, . . . , n, and Jf being the Hessian of fj and the Jacobian of f , respec-

tively.

As already mentioned at the beginning of this section, although the process S̃ = S+∆S is

referred to as shadow price, it should not be understood as a shadow price in the sense of

Definition 4.6. This is due to the fact that we do not have an optimizing strategy to sat-

isfy item (ii) of that definition. However, the auxiliary process S̃ of this section still ex-

hibits the properties of evolving inside the bid-ask spread, S̃ ∈
∏

[(1− εj)Sj , (1 + εj)S
j ],

and giving rise to a dual variable which provides an upper bound on the expected utility

of a candidate strategy (cf. Equation (5.25)). To eliminate the ambiguity in the notion

of a shadow price and to summarize the main results of the above construction, we

formulate the following
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Definition 5.4. Let the pair (∆, L) define a candidate domain in the sense of Definition

5.1. Assume that the frictionless optimizer, ϕ∗, follows an Itô process. Define the process

ϕ̃∗ = L−1ϕ∗

and the function
µ = (µ1, . . . , µn) : Rn → Rn ,

µj(x) = sgn(xj) .

As in Definition 5.1, let

R =

n∏
j=1

[−∆j ,∆j ] .

The boundary ∂R is given by

∂R =

n⋃
j=1

∂R
+,j ∪ ∂R−,j ,

∂R
±,j

=
{
x ∈ Rn : xj = ∓∆j

}
.

Let ∆ϕ̃ = (∆ϕ̃1, . . . ,∆ϕ̃n)> and the finite-variation process ϕ̃ = (ϕ̃1, . . . , ϕ̃n)> be a

solution to the following stochastic Skorohod problem:

∆ϕ̃t = −ϕ̃∗t + ϕ̃t ∈ Rt, ∆ϕ̃0 = 0 ,

ϕ̃jt = ϕ̃∗0 +

∫ t

0
µj(∆ϕ̃u)d|Dϕ̃j |u ,

|Dϕ̃j |t =

∫ t

0
I
∂R
±,j
u

(∆ϕ̃u)d|Dϕ̃j |u ,

(5.39)

for all j = 1, . . . , n and t ≥ 0. Define

∆S = f̃(∆ϕ̃, S,∆) ,

with f̃ being the function introduced in Equation (5.26). In the following, the process

S̃ = S+∆S will be referred to as the shadow price associated with the candidate domain

(∆, L).

Remark 5.5. In the remainder of this section, we will consider only the pair (∆, L)

corresponding to the candidate introduced in Subsection 5.1.2. This means that the

process ∆ = (∆1, . . . ,∆n)> is given by (5.15), and the linear transformation is chosen

as L = M−1 with M defined in (5.19). The reason for this restriction is that, according

to the simulation results, only this choice of (∆, L) generates a non-trivial upper bound.
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But it does so only among the candidates we have analysed in this study; this does not

mean that this choice is the best possible.

Before moving on, we calculate the second partial derivatives in (5.37) to obtain an

explicit expression for the drift process, b∆S , in terms of the process ∆ψ = M−1∆ϕ̃,

which will be required in the following. For f(·, x, y) = f̃(·, y, z) ◦M , f̃ as in (5.26),

j, k, l = 1, . . . , n, we obtain

∂xk∂xlfj(∆ψ, S,∆) =
3εjS

jM jkM jl

(∆j)3

(
M∆ψ

)j
.

Substituting this result into the expression (5.37), leads to

b∆S,j =
3εjS

j

2(∆j)3

(
M∆ψ

)j∑
k,l

M jkM jlcϕ
∗,kl =

3εjS
j

2(∆j)3

(
Mcϕ

∗
M>

)jj (
M∆ψ

)j
.

Now recall that the linear transformation M is given by Mij = cS,ij/cS,ii (cf. Eq. (5.19));

thus, (
Mcϕ

∗
M>

)jj (
M∆ψ

)j
=

1

(cS,jj)3

(
xScϕ

∗
cS
)jj (

cS∆ψ
)j
.

By Equation (5.15), (
∆j
)3

=
1

(cS,jj)3

3εjS
j

2p

(
xScϕ

∗
cS
)jj

,

and we finally obtain

b∆S = pcS∆ψ . (5.40)

As shown in Equation (5.25), to obtain an upper bound on the expected utility of the

final payoff of a candidate strategy, we still require an equivalent probability measure,

Q̃ ∼ P , making S̃ a martingale. Since S̃ is shown to be an Itô process, an equivalent

martingale measure can be obtained via a Girsanov transformation.

Let Q be a martingale measure for the mid-price process S. We start by representing

the density Z̃T of Q̃ with respect to P as

Z̃T =
dQ

dP

dQ̃

dQ
= ZT Z̃

Q
T . (5.41)

Now consider the Q-dynamics of the process S̃,

S̃j = Sj + b∆S,j • I +

m∑
k=1

σ∆S,jk •W k, j = 1, . . . , n , (5.42)
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where W 1, . . . ,Wm, m ≥ n, are independent Brownian motions under Q. Note that

(5.42) is a decomposition of the semimartingale S̃ into a Q-martingale

M j = Sj +
m∑
k=1

σ∆S,jk •W k

and a Q-finite-variation process

Aj = b∆S,j • I .

The goal is to determine an equivalent measure that ”removes” A = (A1, . . . , An). We

make the ansatz

Z̃Q = E(N) = exp

(
h • S − 1

2
(h>cSh) • I

)
, (5.43)

with N = h • S and h = (h1, . . . , hn) being a stochastic process yet to be determined.

By the Girsanov-Meyer Theorem3, there exists a Q̃-martingale Lj as well as a Q̃-finite-

variation process Cj such that, for each j = 1, . . . , n,

Lj = M j − 1

Z̃Q
• [Z̃Q,M j ], Cj = S̃ − Lj , (5.44)

Next, note that Z̃Q, as a stochastic exponential, can be written as

Z̃Q = 1 + Z̃Q • N .

To determine the new semimartingale decomposition of S̃, we calculate the processes

introduced in (5.44). The Q̃-martingale reads

Lj = M j − 1

Z̃Q
• [Z̃Q,M j ] = M j − 1

Z̃Q
• [1 + Z̃Q • N,M j ] = M j − [N,M j ]

= M j −
∑
k

hk • [Sk,M j ] = M j −
∑
k

hk • [Sk, Sj ]−
∑
k

hk • [Sk, (σ∆S •W )j ]

= M j −
∑
k

hk • [Sk, Sj ]−
∑
k

hk • [Sk,∆Sj −Aj ]

= M j −
∑
k

hk • [Sk, Sj ]−
∑
k

hk • [Sk,∆Sj ]

= M j −

(∑
k

(cS + cS,∆S)jkhk

)
• I, j = 1, . . . , n .

Note that in the fourth line we used that A is a continuous finite-variation process, and

its quadratic covariation with S thus is zero. The Q̃-finite-variation process Cj is given

3cf. [Pro04], Theorem III.35.
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through

Cj = S̃j − Lj = Aj +
(
(cS + cS,∆S)h

)j
• I =

(
b∆S,j + (c̃h)j

)
• I ,

for all j = 1, . . . , n, where c̃ = cS + cS,∆S . Hence, in order for S̃ to be a Q̃-martingale,

we must have

b∆S,j + (c̃h)j = 0, j = 1, . . . , n ,

or, equivalently,

h = −c̃−1b∆S . (5.45)

We now take a closer look at the matrix c̃−1. As ∆S satisfies Assumption A3, we have

cS,∆S = O
(
ε2/3

)
. By setting B = −(cS)−1cS,∆S , the inverse of c̃ can be written as

c̃−1 = (cS + cS,∆S)−1 = (Id−B)−1(cS)−1 .

Since

(Id−B)−1 = Id +O
(
ε2/3

)
,

the asymptotic behaviour of the process h defined in (5.45) can be characterized as

h = −(cS)−1b∆S +O (ε) = −p∆ψ +O (ε) . (5.46)

The second equality follows from the expression (5.40) for the drift process of ∆S.

Our next goal is to express the dual upper bound provided in (5.25) in terms of the

auxiliary process ∆ψ. To accomplish this, we need to evaluate the entropy

H(Q̃, P ) = E
[
Z̃T ln Z̃T

]
.

Note that, by Proposition 3.20, the density of the MEMM Q ∼ P , ZT , is connected with

the frictionless optimizer ϕ∗ via

ZT = exp {H(Q,P )− pϕ∗ • ST } .

We thus obtain

H(Q̃, P ) = E
[
ZT Z̃

Q
T

(
lnZT + ln Z̃QT

)]
= H(Q,P ) +H(Q̃,Q)− pE

[
Z̃T (ϕ∗ • ST )

]
The frictionless wealth process ϕ∗ • S can be expressed as

ϕ∗ • S = (ψ −∆ψ) • (S̃ −∆S) = ψ • S̃ − ψ • ∆S −∆ψ • S .
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Since ψ • S̃ is a Q̃-martingale, we have

E
[
Z̃T (ϕ∗ • ST )

]
= −EQ

[
Z̃QT
(
ψ • ∆ST︸ ︷︷ ︸
=O(ε2/3)

+ ∆ψ • ST︸ ︷︷ ︸
=O(ε1/3)

)]
.

Furthermore, by Equation (5.46), h = O
(
ε1/3

)
, and it follows

Z̃QT = exp

{
h • ST −

1

2
h>cSh • IT

}
= 1 + h • ST −

1

2
h>cSh • IT +

1

2
(h • ST )2 +O (ε) .

(5.47)

The above expectation now reads as

E
[
Z̃T (ϕ∗ • ST )

]
= −EQ

[
ψ • ∆ST + ∆ψ • ST

]
− EQ

[(
h • ST

)(
∆ψ • ST

)]
+O (ε) .

Applying integration by parts to the last term on the right-hand side and using that S

is a martingale with respect to Q yields

E
[
Z̃T (ϕ∗ • ST )

]
= −EQ

[
ψ • ∆ST

]
− EQ

[
h>cS∆ψ • IT

]
.

Using the expansion of Z̃QT given in (5.47), we now evaluate the entropy H(Q̃,Q).

Z̃QT ln Z̃QT =
(
h • ST −

1

2
h>cSh • IT

)(
1 + h • ST

)
+O (ε)

= h • ST −
1

2
h>cSh • IT +

(
h • ST

)2
+O (ε) .

Integration by parts and the martingale property of the stochastic integral yield

H(Q̃,Q) =
1

2
EQ

[
h>cSh • IT

]
+O (ε) .

Altogether we obtain

H(Q̃, P ) = H(Q,P )+pEQ
[
ψ • ∆ST

]
+pEQ

[
h>cS∆ψ • IT

]
+

1

2
EQ

[
h>cSh • IT

]
+O (ε) .

Finally, we use the asymptotic expression for the process h given in (5.46), combine it

with the leading-order representation (5.40) of the drift process b∆S to obtain

H(Q̃, P ) = H(Q,P ) + pEQ
[
ψ • ∆ST

]
− p2

2
EQ

[
∆ψ>cS∆ψ • IT

]
+O (ε) .
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Substituting this entropy approximation into the expression for the dual upper bound

given in (5.25) yields (up to O (ε) in the argument of the exponential)

− e−px−H(Q̃,P ) = −e−px−H(Q,P ) exp

{
−pEQ

[
ψ • ∆ST

]
+
p2

2
EQ

[
∆ψ>cS∆ψ • IT

]}
(5.48)

The last step is to first note that, by the frictionless optimality condition,

−e−px−H(Q,P ) = E [u(x+ ϕ∗ • ST )]

and then expand the exponential on the right-hand side of (5.48) at the leading order

in ε, which gives us

− e−px−H(Q̃,P ) = E [u(x+ ϕ∗ • ST )]

(
1− pEQ

[
ψ • ∆ST

]
+
p2

2
EQ

[
∆ψ>cS∆ψ • IT

])
,

(5.49)

which, yet again, is to be understood as an approximation up to O (ε).

Now suppose that we are given an arbitrary candidate strategy, ϕ = ϕ∗ + ∆ϕ, ∆ϕ =

O
(
ε1/3

)
. The payoff generated by this strategy is given by (cf. Definition 4.3, Remark

4.4 and Equation (4.4))

X(ϕ)T = V (ϕ)T −
n∑
j=1

εjS
j
T |ϕ

j
T | = x+ ϕ∗ • ST + ∆ϕ • ST − S • ϕ̄T −

n∑
j=1

εjS
j
T |ϕ

j
T |

Note that, by Equations (4.14), (4.28), S • ϕ̄ = O
(
ε2/3

)
. Hence, the utility of the final

payoff reads as

u(X(ϕ)T ) = u(x+ ϕ∗ • ST ) + u′(x+ ϕ∗ • ST )(∆ϕ • ST − S • ϕ̄T )

+
1

2
u′′(x+ ϕ∗ • ST )(∆ϕ • ST − S • ϕ̄T )2 +O (ε) .

Taking the P -expectation on both sides and using u′′(x) = −pu′(x) = p2u(x) together

with the frictionless optimality condition gives us the following expression for the ex-

pected utility at the leading order in ε:

E[u(X(ϕ)T )] = E[u(x+ ϕ∗ • ST )]

(
1 + pEQ[S • ϕ̄T ] +

p2

2
EQ
[
(∆ϕ • ST )2

])

= E[u(x+ ϕ∗ • ST )]

(
1 + pEQ[S • ϕ̄T ] +

p2

2
EQ

[
∆ϕ>cS∆ϕ • IT

])
.

(5.50)

By the relation (5.25), the expression on the right-hand side of (5.49) is an upper bound
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for (5.50), the expected utility of the final payoff generated by an arbitrary candidate

strategy. This fact is of crucial importance for the numerical analysis to be presented in

the following chapter.

Remark 5.6. It is important to stress that, for each pair consisting of a trading strategy

and a dual variable, the values of the corresponding primal and a dual functionals

(given by (5.49) and (5.50), respectively) define an interval containing the value of

the expected utility of terminal payoff generated by the exact asymptotic optimizer.

Thus, the smaller is the primal-dual interval, the more precisely the exact value of the

asymptotic optimization problem can be estimated.





Chapter 6

Numerical Analysis in the

Black-Scholes Setting

In this chapter, the three primal candidates constructed in the subsections 5.1.1 – 5.1.3

and the dual candidate derived in Section 5.2 are analysed numerically in the Black-

Scholes model. We begin by adapting all relevant expressions to the model of interest.

Our next goal will be to select a realistic portfolio in n = 30 dimensions according to

the formula for the frictionless optimizer in the Black-Scholes model. Such a portfolio

is determined by a vector of drift coefficients and a covariance matrix. To obtain these

parameters, we introduce an implicit parameter-estimation scheme in Section 6.2. In

the following section, the estimation scheme will be applied to select a portfolio from the

German stock market index. A discrete-time approximation of the problem, which is re-

quired for computer simulations, will be presented in the same section. Moreover, before

running the multi-dimensional simulations, we will determine a suitable transaction-cost

percentage, ε. To achieve this, the expected utility of a one-dimensional portfolio will

be simulated and compared with the exact asymptotic solution presented in Subsection

4.3.3. In the final section, the results of multi-dimensional simulations are presented.

6.1 Approximations in the Black-Scholes model

A detailed discussion of the Black-Scholes model was already presented in Subsection

3.2.4. Here, we add a few explicit calculations concerning the frictionless optimizing

strategy and use them to adapt the approximation results from the previous chapter to

this specific model. We let S1, . . . , Sn denote the discounted price processes following

81
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the dynamics

dSjt = Sjt

(
bjdt+

n∑
k=1

σjkdW
k
t

)
, t ∈ [0, T ], j = 1, . . . , n , (6.1)

with b = (b1, . . . , bn) ∈ Rn and an invertible matrix (σjk)j,k=1,...,n, σjk > 0 for all j, k.

We will refer to the constant bj , j = 1, . . . , n, as the mean rate of return or the drift

coefficient of the j-th asset. The matrix

c = σσ>

will be called the covariance matrix of the assets. The covariance matrix is a symmetric,

positive definite matrix which can be represented as

cjk = σjσkρjk,

with (ρjk)j,k=1,...,n being a symmetric, positive definite matrix with ρjk ∈ [−1, 1] and

ρjj = 1 for all (j, k) ∈ {1, . . . , n}2. The constant σj , j = 1, . . . , n, will be referred to as

the volatility of the j-th asset, and the matrix ρ will be called the correlation matrix of

the assets. Recall that, for each j = 1, . . . , n, the solution to the stochastic differential

equation (6.1) reads as (cf. Equation (3.28))

Sjt = Sj0 exp
(
νjt+

n∑
k=1

σjkW
k
t

)
, t ∈ [0, T ] ,

νj = bj −
σ2
j

2
.

(6.2)

As shown in Subsection 3.2.4, the frictionless optimizer in the Black-Scholes model,

ϕ∗ = (ϕ∗,1, . . . , ϕ∗,n), with respect to the exponential utility function u(x) = −e−px,

p > 0, is given by

ϕ∗,j =
(c−1b)j
pSj

. (6.3)

To compute the boundary processes of the candidate domains introduced in the sub-

sections 5.1.1 – 5.1.3, we also need the local quadratic covariations of the price process

S and the frictionless optimizer ϕ∗, cS and cϕ
∗
. The process cS can be easily ob-

tained from Equation (6.1). The quadratic covariations of the price processes Sj , Sk,

j, k ∈ {1, . . . , n}, satisfy

d[Sj , Sk]t =

n∑
l,m=1

SjtS
k
t σjlσkmd[W l,Wm]t =

n∑
l=1

SjtS
k
t σjlσkldt = SjtS

k
t cjkdt ,

which implies

cS,jk = SjSkcjk . (6.4)
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To compute cϕ
∗
, we apply Itô’s formula to the right-hand side of (6.3) to first obtain

dϕ∗,jt =
(c−1b)j
p

d

(
1

Sj

)
t

=
(c−1b)j
p

(
− dSjt(

Sjt
)2 +

d[Sj ]t(
Sjt
)3
)

= ϕ∗,jt

(
(σ2
j − bj)dt−

n∑
k=1

σjkdW
k
t

)
,

which then leads to

d[ϕ∗,j , ϕ∗,k]t = ϕ∗,jt ϕ∗,kt

n∑
l,m=1

σjlσkmd[W l,Wm]t = ϕ∗,jt ϕ∗,kt cjkdt ,

and the local quadratic covariation therefore reads as

cϕ
∗,jk = ϕ∗,jϕ∗,kcjk . (6.5)

The main objects of our study, on the one hand, are the approximations of the no-

trade region, together with the associated candidate strategies. As described in the

previous chapter in Definition 5.1, the no-trade region is determined by a pair (∆, L)

consisting of a boundary process ∆ = (∆1, . . . ,∆n)> and a linear transformation L, and

the corresponding trading strategies are defined as solutions to the Skorohod problem

(5.3)1. On the other hand, we have dual candidates (S̃, Z̃), S̃ being an auxiliary price

process and Z̃ the density process of an equivalent martingale measure for S̃, that can

be associated with any linear no-trade region (∆, L) via the algorithm introduced in

Section 5.2. The role of the dual candidate is to generate an upper bound on the

expected utility of the terminal payoff of a candidate strategy, as indicated in (5.25).

Our goal now is to adapt the expressions describing our candidate domains and trading

strategies, introduced in Subsections 5.1.1 – 5.1.3, to the Black-Scholes setting.

Primal candidates

1. Naive candidate (∆(1), L(1)): The candidate domain introduced in Subsection 5.1.1

is characterized by a boundary process ∆(1) = (∆(1),1, . . . ,∆(1),n)> as defined in

Equation (5.6) and the trivial linear transformation L(1) = Id. Using (6.4), (6.5),

we obtain

∆(1),j =

(
3

2p

cϕ
∗,jj

cS,jj
εjS

j

)1/3

=

(
3

2p

(ϕ∗,j)2

(Sj)2
εjS

j

)1/3

=
d1,j

Sj
,

d1,j =
1

p

(
3

2
εj(c

−1b)2
j

)1/3

.

(6.6)

1In the following, we will often refer to the trading strategies as the primal candidates.
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2. More sophisticated candidate (∆(2), L(2)): We now look at the candidate from Sub-

section 5.1.2. The boundary process ∆(2) for this candidate is given by Equation

(5.15), and the linear transformation, L(2), is defined by the inverse of the matrix

M̃jk = cS,jk/cS,jj (cf. Equation (5.19)). Equations (6.4), (6.5) yield

M̃ jk =
Sk

Sj
Mjk, Mjk =

cjk
cjj

.

The inverse is given by

(M−1)jk =
Sj

Sk
M−1
jk .

Hence, the linear transformation associated with this candidate domain reads as

L(2),jk =
Sj

Sk
σ2
j c
−1
jk . (6.7)

To compute the boundary processes ∆(2),j , j = 1, . . . , n, which, at the leading

order, read as (cf. Equation (5.15))

∆(2),j =
1

cS,jj

[
3εjS

j

2p

(
cScϕ

∗
cS
)jj]1/3

,

we first evaluate the diagonal elements of the matrix product using Equations

(6.4), (6.5):

(
cScϕ

∗
cS
)jj

=

n∑
k,l=1

cS,jkcϕ
∗,klcS,lj = (Sj)2

n∑
k,l=1

SkSlϕ∗,kϕ∗,lcjkcklclj ,

Setting wj = (c−1b)j , j = 1, . . . , n, we obtain by Equation (6.3)

(
cScϕ

∗
cS
)jj

=
(Sj)2

p2
vj , vj =

n∑
k,l=1

wkwlcjkcklclj ,

which yields

∆(2),j =
d2,j

Sj
, d2,j =

1

pσ2
j

(
3

2
εjvj

)1/3

. (6.8)

3. Alternative candidate (∆(3), L(3)): The first ingredient of the construction pre-

sented in Subsection 5.1.3 is the process ϕ̂ = (ϕ̂1, . . . , ϕ̂n)> whose components are

the one-dimensional optimal strategies. For each j = 1, . . . , n, we now have

ϕ̂j =
bj

pσ2
jS

j
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and

(σϕ̂
j
)2 = (ϕ̂j)2σ2 =

(
bj

pσjSj

)2

.

Moreover, the scale factors κ1, . . . , κn, κj = ϕ∗,j/ϕ̂j , j = 1, . . . , n (cf. Equation

(5.23)), read as

κj =
σ2
j

bj
(c−1b)j .

Substituting these quantities into the equations (5.22) and (5.24) yields the fol-

lowing expressions for the linear transformation and the boundary process:

L(3) = diag

(
σ2

1

b1
(c−1b)1, . . . ,

σ2
n

bn
(c−1b)n

)
, (6.9)

∆(3),j =
d3,j

Sj
, d3,j =

1

p

(
3εjb

2
j

2σ4
j

)1/3

, (6.10)

j = 1, . . . , n.

Dual candidate

Dual candidate refers to the pair (S̃, Z̃) consisting of a shadow-price process S̃ in the

sense of Definition 5.4 and the density process Z̃ of the equivalent martingale measure

for S̃, which was calculated in Section 5.2 (cf. Equation (5.41) and the following calcu-

lations). Given a candidate domain (∆, L), both S̃ and Z̃ are determined by the process

∆ψ = L∆ϕ̃, with ∆ϕ̃ being a solution to the Skorohod problem (5.39) formulated in

Definition 5.4. As already mentioned in Remark 5.5, only the candidate (∆,M−1) intro-

duced in Subsection 5.1.2 and defined by the equations (5.15), (5.19) yields a non-trivial

upper bound. Thus, the representation of the dual candidate in the Black-Scholes model

is already determined by the candidate domain (∆(2), L(2)) given by the equations (6.7),

(6.8).

6.2 Replicating the DAX

The main goal of this section is to select a large portfolio using existing market data.

This will provide us with a realistic framework within which the proposed upper bound

(5.49) together with the three candidate strategies introduced in Subsections 5.1.1 –

5.1.3, whose utility loss at the leading order will be computed using (5.50), will be anal-

ysed numerically. Such a portfolio selection amounts to estimating the mean rate of

return as well as the covariance matrix (cf. Section 6.1) of the assets to be included in

the portfolio from the time series of these assets. The difficulties arising in this context
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are very well described in Chapter 4 of the monograph [Rog13] by L. C. G. Rogers, and

the reader is referred to this work for a detailed overview. Our main concern will be

the estimation of the annualized rate of return, the vector b = (b1, . . . , bn) introduced at

the beginning of Section 6.1. The only quantity that actually carries information about

the rate of return of an asset is the change in price of this asset over the whole obser-

vation period. This typically results in estimates having very wide confidence intervals.

A discouraging example provided in Chapter 4 of [Rog13] shows that if one wishes to

estimate the annualized volatility together with the annualized rate of return of a stock

both with an accuracy of ±0.01 and confidence level of 95% based on daily observations,

one will require an observation period of over 1500 years to achieve this accuracy when

estimating the rate of return, whereas 13 years are sufficient for an accurate volatility

estimation.

To overcome the issue concerning the drift estimation, instead of choosing some partic-

ular stocks, we will select a portfolio based on the rank of the stocks with respect to

their market capitalization. This means that the stocks will be identified not by their

name but rather by their rank. This approach is inspired by the analysis of rank-based

portfolios in Stochastic Portfolio Theory presented in [KF09] and in [Fer02]. As demon-

strated in the latter monograph, the capital distribution, i. e. the relative capitalization

of the highest-rank stocks, remains remarkably stable over long time periods — decades,

in fact (cf. [Fer02], Figure 5.1). This stability property will be of crucial importance for

the construction of our estimation scheme which will be based on the analysis of a stock

market index consisting of largest-capitalization stocks. As we shall see in the following,

the additional information coming from the dynamics of the entire index, rather than

that of the individual assets, can then be used to estimate the drifts of the individual

stocks in our rank-based portfolio.

6.2.1 Theoretical preliminaries

We begin with a few introductory remarks concerning the so-called market portfolios.

For a detailed treatment of this subject, the reader is referred to [KF09], Section 2 of

Chapter 1. Let the assets with the price processes S1, . . . , Sn comprise the entire market.

Moreover, assume that each of the stocks has only one share. Then, Sjt , j = 1, . . . , n,

describes the capitalization of the j-th company at time t, and the capitalization of the

whole market is given by S =
∑

j S
j . The relative capitalization of the j-th company

at time t is defined as

γjt =
Sjt
St
, j = 1, . . . , n . (6.11)

In the terminology of [KF09], the collection γ = (γ1, . . . , γn)> is referred to as the

market portfolio. γ can be thought of as a portfolio which, at each time t, invests the
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fixed proportion γjt of the investor’s capital in the j-th stock. We have the obvious

relation
dSt
St

=

n∑
j=1

γjt
dSjt

Sjt
. (6.12)

We now introduce the ordered market-weight distribution

γ(1) ≥ γ(2) ≥ . . . ≥ γ(n)

starting with the largest relative capitalization,

γ(1) = max{γ1, . . . , γn} ,

γ(2) = max({γ1, . . . , γn} \ {γ(1)}) ,
...

γ(n) = min{γ1, . . . , γn} .

(6.13)

The collection {γ(1), . . . , γ(n)} of the largest weights arranged in decreasing order is called

the capital distribution of the market. The price processes corresponding to the ranks

will be denoted by

S(1), . . . , S(n)

and referred to as the rank processes. In Chapter 5 of [Fer02], the author analyses

the capital-distribution curves for the U.S. stock market in the time period from 1929

to 1999. In this time, the number of stocks increased from 700 to around 7500, and

the overall stock-exchange composition had been changing permanently. Despite the

dynamic structure of the stock market, the shape of the capital-distribution curves

remained remarkably stable ([Fer02], pp. 93; Figure 5.1 on page 95).

To understand how the above observations actually pertain to our goal of estimating the

parameters of a large number of stocks, we look at the German stock market index DAX

(Deutscher AktienindeX ). The DAX is comprised of 30 largest companies by market

capitalization and trading volume. The stocks in the DAX are weighted according to

their free-float capitalization. Both the index composition and the weighting of a given

composition are subject to change. We adopt the perspective that the dynamics of

the DAX represents the overall dynamics of a market containing only the 30 largest

companies. The weights of the assets in the DAX are then viewed as building a market

portfolio γ = (γ1, . . . , γ30)> in the sense of (6.11). Let Γ = (γ(1), . . . , γ(30))>, γ(1) <

. . . < γ(30), be the tuple of decreasingly ordered weights in γ, as introduced in (6.13).

Then, at a given time t, Γt can be interpreted as a sample from the capital distribution of

the 30 largest companies represented in the DAX. The rank processes corresponding to

the ordered weights in Γ will be denoted by S(1), . . . , S(30). The advantage of adopting a
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rank-based perspective is twofold. As will be shown in the following, the drift coefficients

of the individual assets can be estimated based on long-term observations of both the

overall index dynamics and the dynamics of the assets. However, over the long term,

the index composition changes, which complicates the approach significantly. This fact

is the first reason we consider a rank-based model: it is immune to changes in the index

composition. Another reason is the aforementioned stability of the capital distribution,

presented and discussed in [Fer02]. Our rank-based framework will be used to analyse

long-term investment strategies: the time horizon in the simulations will be set to T =

30 years. Since S(1), . . . , S(30) represent the dynamics of the 30 largest companies, we

expect the ranked weights Γ of these assets to exhibit a similar stability property over

the long term. To make use of the advantages of rank-based models and keep the

estimation algorithm tractable at the same time, we will introduce a simplified rank-

based model. As a result, we will obtain a model which can only be viewed as a rather

rough approximation of both, the real stock market index and the ranked assets included.

Nonetheless, this will be sufficient since, for our purpose, we need a set of parameters

that are only close to reality, and the index will rather play the role of a proxy providing

us with the information required to obtain such parameters. The assumptions needed to

keep the algorithm sufficiently simple will be made explicit in the following description

of the parameter-estimation scheme. We will return to discussing our assumptions and

their consequences after introducing the estimation algorithm.

We introduce our approach to estimating the mean rates of return in a general form

and let the number of assets be n > 1. To emphasize different stages of the estimation

procedure, the description is split into four steps.

1. Let the stock market consist of n stocks, S1, . . . , Sn, and assume the rank processes

of the assets follow geometric Brownian motions,

dS
(j)
t = S

(j)
t

(
b(j)dt+

n∑
k=1

σ(jk)dW
k
t

)
. (6.14)

Consider a portfolio composed of S(1), . . . , S(n) in the sense of the Mutual-fund

theorem (MFT). MFT, as initially formulated by Tobin in [Tob58], states that ev-

ery economic agent seeking to maximize their expected utility of terminal wealth

will achieve their goal by investing in the risk-free asset and a certain linear com-

bination of risky assets available on the market. The combination of the risky

assets is the same for all investors irrespective of their utility function and their

initial endowment. Put differently, only the ratio of the risk-free to the overall

risky investment may change; the basket of risky investments in the portfolio is

the same for all agents [SST09]. Now let γ(j) denote the capital proportion invested

in the j-th rank. By the MFT, this proportion is the same for all agents (i. e., for
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all utility functions). Noting that, e. g., in the case of the exponential utility the

capital invested in the j-th asset is proportional to (c−1b)j , we can write

γ(j) =
(c−1b)(j)∑
l (c
−1b)l

,

which can be rewritten as

b = Kcγ, K =

n∑
l=1

(c−1b)l . (6.15)

Note that γ = (γ(1), . . . , γ(n))
> is constant. The fund describing the basket of risky

investments in the sense of the MFT can now be represented by a process with

the dynamics

dSt = St

n∑
j=1

γ(j)
dS

(j)
t

S
(j)
t

= St

n∑
j=1

γ(j)

(
b(j)dt+

n∑
k=1

σ(jk)dW
k
t

)
(6.16)

and some (constant) initial value S0.

2. Equation (6.16) shows that the process S itself follows a geometric Brownian mo-

tion. We thus write the dynamics of S as

dSt = St(bSdt+ σSdW t) , (6.17)

and express the drift coefficient, bS , the diffusion coefficient, σS , as well as the one-

dimensional Brownian motionW in terms of b = (b(1), . . . , b(n))
>, σ = (σ(jk))j,k=1,...,n,

γ = (γ(1), . . . , γ(n))
> and the independent Brownian motions (W j)j=1,...,n. Com-

paring the drift terms in (6.16) and (6.17) and using the drift condition (6.15), we

immediately get

bS = γ>b = Kγ>cγ . (6.18)

Representation (6.17) then follows by defining

W =
1√
γ>cγ

∑
j,k

γ(j)σ(jk)W
k ,

which is easily seen to be a Brownian motion by the Lévy characterization2, and

σS =
√
γ>cγ . (6.19)

Finally, note that Equation (6.18) together with the drift condition (6.15) form a

system of n+ 1 linear equations, which allows us to express the vector of the drift

2cf. Theorem II.39 in [Pro04]
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coefficients of the assets, b = (b(1), . . . , b(n))
>, as

b =
bS
γ>cγ

cγ . (6.20)

In Equation (6.20), the covariance matrix, c, is the only quantity which can be ob-

tained within the framework of our model: it can be estimated based on long-term

observations of the rank processes. There remain n+ 1 undetermined parameters:

n relative capitalizations γ(1), . . . , γ(n),

γ(1) + . . .+ γ(n) = 1 ,

determining the basket of risky investments in the sense of the MFT, and the drift

coefficient bS of the fund process S.

3. Let D denote the price process of a stock market index composed of n highest-rank

stocks with respect to their capitalization. Let γ(1), . . . , γ(n) denote the ranked

weights of the stocks in the index. The n+ 1 free parameters from item 2 will now

be chosen as follows.

• Estimate bS to be the mean rate of return of the stock index D .

• Choose γ(1), . . . , γ(n) as

γ(j) = γ
(j)
t , j = 1, . . . , n

for some t ≥ 0.

4. We still need to determine one important parameter: the risk aversion, p. There

is no such thing as a typical risk aversion in the sense that this quantity depends

decisively on the individual preference of the investor, on their perception of risk.

Thus, we choose p as corresponding to an investor having a capital of 10000CU3

and investing half of it, 5000CU , optimally in the fund S. We assume that the

investor’s preference is described by the exponential utility function. The process

S is described by a one-dimensional geometric Brownian motion (cf. Equation

(6.17)); thus, Merton’s optimality condition implies

5000 =
bS
pσ2

S

, (6.21)

which determines the risk aversion, p.

3CU =Currency Unit
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The assumptions made in the above parameter-estimation scheme can be summarized as

follows. We assume that the rank processes of all stocks available on the market follow

geometric Brownian motions and expect the ranked weights of the corresponding market

portfolio to be stable over the long term. By applying the Mutual-fund theorem to the

rank processes, we construct a fund with constant relative capitalizations of the assets

included and assume that, over the long term, this fund approximates the behaviour

of the market portfolio. In the final step, we consider a stock market index weighted

according to the capitalization of the member assets. The capital distribution of the

index (being a subset of the market portfolio) is assumed to have a similar stability

property, and the associated part of the MFT-fund is taken to be an approximation of

the index over the long term. We conclude by elaborating on all these assumptions.

The first remark concerns the rank-based portfolio introduced in item 1. The fact that

the rank processes follow geometric Brownian motions is necessary in order to apply

the Mutual-fund Theorem and obtain constant proportions of capital, γ(1), . . . , γ(n),

invested in risky assets. This, in turn, is required in order for the price process of the

fund, S, to follow a geometric Brownian motion as well (cf. (6.16), (6.17)). But the

question of whether the rank processes can be represented such as to satisfy (6.14) in

continuous time is quite challenging. This is due to the fact that the stocks may swap

their ranks. Each time the rank of a stock changes, the drift and diffusion coefficients

of the associated price process must be adjusted accordingly. In a discrete-time setting,

this does not seem to be an issue. The possible rank swaps, which can essentially be

viewed as a ”relabeling” of the stocks, do not change the fact that, at each instant, the

logarithmic stock prices are described by normally distributed random variables, and

the event of two stocks having equal ranks occurs with zero probability. The situation

does not change if we make the interval between the time instants smaller by including

more time steps in the discretization. The intuition suggests that there is a proper

continuous-time limit. However, rigorous treatment requires a proof of existence and

uniqueness of the limit of such discrete-time sequences. For details on this subject, the

reader is referred to [BFK05, IPB+11, Fer02]. As for the representation we obtain in

Equations (6.16), (6.17), it can only be viewed as an approximation of what we assume

to exist in the continuous time.

Next, we address the question of how we can justify identifying the constant weights of

the MFT-fund with a sample from the capital distribution of the market portfolio. An

essential ingredient of our estimation scheme is the empirical observation that the capital

distribution of the highest-rank stocks remains stable over the long term (R. Fernholz,

[Fer02]). This stability property can be interpreted as expressing the fact that the Rn-

valued process Γ = (γ(1), . . . , γ(n))> has a stationary distribution with small variance.

By no means, however, does this stability property imply that the ranked weights are
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constant. What we rather expect when equating the constant weights of the MFT-

fund with the capital distribution of the entire market is that the distribution stabilizes

around a value which is close to (γ(1), . . . , γ(n)). If it were not case, then, over the long

term, the MFT-fund would beat the market creating a sort of an arbitrage opportunity.

In our model, the fact that the ranked weights of the market portfolio are not constant

can be interpreted as being due to the presence of agents following different investment

strategies. However, we assume that the market is dominated by the agents investing

optimally according to the Merton strategy in the sense of the MFT.

In the final step, we identify the stock market index, D, with a part of the market

portfolio and assume that this part can be approximated by the corresponding part of

the MFT-fund by means of the above arguments. By making this approximation, we

expect that the part of the market portfolio associated with the member assets of the

index is not influenced much by the rest of the market.

The estimation scheme presented is based on rather strong assumptions. Therefore, we

stress once again that we do not claim that our scheme is suitable for obtaining precise

estimates. However, we do expect that the estimation scheme yields drift coefficients

that are close to reality, which is sufficient for our purposes.

6.2.2 Applying the estimation scheme

To select a portfolio replicating the DAX (German stock market index consisting of

30 largest stocks) using the approach presented in the previous subsection, we need to

estimate 466 parameter: 465 elements of the (symmetric) covariance matrix plus the

mean rate of return, bD, of the index. To start with, we find the longest time period in

the recent history, in which the DAX composition remained constant4. The data of the

historical DAX compositions can be found on the official web page www.dax-indices.com

provided by the Deutsche Börse Group. According to the data, the longest time period

is

21 June 2010 — 23 September 2012 . (6.22)

Remark 6.1. In the following, we will always refer to the ranked statistics. That means,

j-th component corresponds to the j-th largest weight, which, in the previous subsection,

was indicated by putting parentheses around indices. In the following, we will drop

the parentheses for ease of notation and understand all vectors and matrices of stock

parameters as being rank ordered.

We begin with the estimation of the covariance matrix. This is a standard procedure,

but, for the reader’s convenience, we briefly review it here. The price process of each

4there have been quite a few; we will pick the longest.
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asset is given by the solution (6.2). Consider an equidistant partition of the time interval

[0, T ], (tk)k=0,...,N ,

0 = t0 < t1 < . . . < tN−1 < tN = T ,

tk − tk−1 ≡ ∆t .

Equation (6.2) then implies

Sjtk = Sj0 exp

(
νjtk−1 + νj∆t+

∑
l

σjl
(
W l
tk
−W l

tk−1
+W l

tk−1

))

= Sj0 exp

(
νjtk−1 +

∑
l

σjlW
l
tk−1

)
exp

(
νj∆t+

∑
l

σjl
(
W l
tk
−W l

tk−1

))

= Sjtk−1
exp

(
νj∆t+

∑
l

σjlZl

)
,

for all j, l = 1, . . . , n and k = 1, . . . , N , and Z1, . . . , Zn are independent and identically

distributed random variables such that Z1 ∼ N (0,∆t). For each j = 1, . . . , n, define the

random variables (Xj
k)k=1,...,N ,

Xj
k = log

Sjtk
Sjtk−1

≡ νj∆t+
∑
l

σjlZl .

The expectations and the covariancies of these random variables then read as

E[Xj
k] ≡ νj∆t ,

Cov(Xi
k, X

j
k) ≡

n∑
l,m=1

σilσjmCov(Zl, Zm) =
n∑
l=1

σilσjl∆t = cij∆t .
(6.23)

In this setting, for each i, j = 1, . . . , n, the sample mean and the sample covariancies of

the sequence (Xj
k)k=1,...,N ,

µ̂i =
1

N

N∑
k=1

Xi
k,

ŝ2
ij =

1

N − 1

N∑
k=1

(Xi
k − µ̂i)(X

j
k − µ̂j) ,

(6.24)

are used as estimators for the parameters νj and cjk. By Equation (6.23), we obtain

ν̂j =
µ̂j
∆t

, ĉjk =
ŝ2
jk

∆t
. (6.25)

Our estimates will be based on data coming from daily observations of the stock prices.

Thus, the time step ∆t appearing in the above estimates must be understood as being
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equal to 1 trading day. Usually, however, the mean rates of return as well as the covari-

ance matrix are considered with respect to the trading year rather than trading day. To

annualize the estimates, we adopt the standard convention that one trading year equals

252 trading days. Hence, in annual terms, ∆t = 1
252 years. We indicate this symbolically

by

ν̂year = 252× ν̂day, ĉyear = 252× ĉday . (6.26)

Remark 6.2. There are two different statistics of the DAX, the Price Index and the Total

Return Index. Whereas the price index tracks only the capital gains of the stocks, the

total return index is calculated under the assumption that the dividends on the stocks

are reinvested back in the index. We will consider the total-return version of the DAX.

This fact must be accounted for by considering time series of the stock prices that also

include dividend payments.

In the following, we will make another simplifying assumption concerning in particular

our estimate of the covariance matrix. As discussed at the end of the previous subsection,

the process representing the stock index in our formal description of the estimation

scheme, whose drift and diffusion coefficients we require to obtain estimates for the drift

coefficients of the rank processes, is an approximation of the actual index, DAX. This

is due to the assumption that the weights of the rank processes are constant. But even

within this approximate framework, to estimate the ranked covariance matrix properly,

one has to interchange the statistics of two stocks each time the two swap their ranks. To

analyse the data obtained from time series in this regard would require a considerable

amount of work. To get a sense of how often rank swaps may have occurred in the

observation time, one can look directly at relative stock capitalization in the index.

More precisely, let S1, . . . , S30 be the price processes of the stocks (not the ranks) in

the index, and let D denote the index price5. The weights γ1, . . . , γ30 of the assets are

proportional to the relative capitalization of these assets, and we therefore assume that

there exist constants C1, . . . , C30 ∈ R such that

γj = Cj
Sj

D
, j = 1, . . . , 30 .

We know the weights at the last day of the observation period (6.22), and we denote

them here by γ̂1, . . . , γ̂30. The observed weights can now be used to determine the

constants C1, . . . , C30, which then gives us the dynamics of γ1, . . . , γ30 by the above

equation. Implementing this with the real data shows that, in the observation time

(6.22), rank swaps did occur. For the purpose of the present study, however, we need

a set of parameters that are only close to those of the real stocks. Therefore, in our

estimation, we will not account for the rank changes of the assets. This is equivalent to

5Here we mean the price that is actually observed, not an approximation in any sense.
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the simplifying assumption that the stocks kept their ranks over the entire observation

period.

The time series of the stocks that are contained in the DAX in the time period indicated

in (6.22) are taken from www.ariva.de. The DAX composition in this time period as well

as the associated asset weights are shown in Table A.1. The estimates of the annualized

covariance and the associated correlation matrix are presented in Table A.2 and Table

A.3, respectively.

As one can see from the tables A.2, A.3, the minimum/maximum volatilities and corre-

lation coefficients are

σmin = σ18 ≈ 0.19, σmax = σ22 ≈ 0.5834 ,

ρmin = ρ18,22 = ρ22,18 ≈ 0.1533, ρmax = ρ7,14 = ρ14,7 ≈ 0.8588 .

The estimated correlation matrix allows us to determine the volatility of the stock index.

Equation (6.19) yields the value

σD =
√
γ>cγ ≈ 0.2222 . (6.27)

To obtain an estimate of the drift coefficients of the stocks, by Equation (6.20), we

require the annualized mean rate of return of the DAX, bD. This quantity is estimated

from a DAX time series in the time period

7 October 1977 — 29 August 2016 . (6.28)

We obtain the following estimated value:

bD ≈ 0.0992 . (6.29)

Notice that the drift coefficients b1, . . . , bn as well as bD appearing in the equations of

Section 6.2 refer to those of the discounted rank processes. As discussed in Subsection

3.2.4, in the Black-Scholes model, discounting amounts to reducing the drift coefficients

by the (annualized) risk-free interest rate (cf. Equation (3.29)), which, in the following,

will be denoted by r. An estimate of the interest rate can be obtained from time series

of the German bond index REX (REntenindeX). As in the case of the DAX, there are

two versions of the REX, the price index and the total return index. We will opt for the

latter version. Denoting the bond price by B = (Bt)t∈[0,T ] and assuming

Bt = B0e
rt ,
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Rank MROR Rank MROR

(1) 0.0533 (16) 0.0396

(2) 0.0427 (17) 0.0192

(3) 0.0206 (18) 0.0169

(4) 0.0319 (19) 0.0292

(5) 0.0582 (20) 0.0372

(6) 0.0589 (21) 0.0536

(7) 0.0487 (22) 0.0731

(8) 0.0689 (23) 0.0443

(9) 0.0322 (24) 0.0556

(10) 0.0352 (25) 0.0280

(11) 0.0455 (26) 0.0660

(12) 0.0569 (27) 0.0624

(13) 0.0422 (28) 0.0541

(14) 0.0507 (29) 0.0489

(15) 0.0391 (30) 0.0416

Table 6.1: Anualized estimated mean rates of return (MROR) of the discounted rank
processes.

the interest rate can be estimated by the slope of the line connecting the initial and the

terminal value of the logarithmic bond price, i. e., the values lnB0 and lnB0 +rT . From

a series of daily observations over the time period

27 April 1992 — 26 August 2016 , (6.30)

the annualized interest rate can be estimated to be

r ≈ 0.055 . (6.31)

We now have all the ingredients to calculate the drift coefficients of the (discounted) rank

processes, b1, . . . , bn, as well as the risk aversion, p. The latter follows from Equation

(6.21) after replacing bD by bD − r and using (6.27), which yields

p ≈ 1.7906 · 10−4 . (6.32)

The mean rates of return are obtained from Equation (6.20) where, yet again, discounting

must be accounted for by bD 7→ bD − r. The estimated values are presented in Table

6.1.
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6.3 Implementation algorithm

Our goal is to calculate the values of the primal and the dual functional derived in

Section 5.2 of the previous chapter and given by the equations (5.49), (5.50). To achieve

this, numerical methods will be used. Recall that the functional (5.50) describes the

expected utility E[u(X(ϕ)T )] of terminal payoff generated by a candidate strategy ϕ.

The functional −e−px−H(Q̃,P ) evaluated in (5.49), for each appropriately constructed

EMM Q̃ ∼ P , yields an upper bound on the expected utility of any candidate strategy6,

E[u(X(ϕ)T )] ≤ −e−px−H(Q̃,P ) . (6.33)

As emphasized in Remark 5.6, the relation (6.33), for all strategies and appropriate

martingale measures, defines an interval containing the exact value of the asymptotic

optimization problem. Thus, the quality of a primal-dual pair can be assessed from

two perspectives, a practical and a theoretical one. From the practical perspective, the

information provided by (6.33) is a direct measure of the performance of an investor

following one of our candidate strategies. From the theoretical point of view, (6.33)

yields an estimate of the expected utility of the (unknown) asymptotic optimizer. In the

following, we will provide the values of primal and dual functionals resulting from our

numerical simulations, which should always be interpreted from the two aforementioned

complementary perspectives.

For the purpose of numerical calculations, it will be more convenient to analyse our

candidates in terms of utility loss rather than total utility generated. We therefore

begin this section by defining and explaining the meaning of the quantities we will use

to measure the investor’s loss due to the presence of proportional transaction costs.

Subsequently, we introduce the discrete-time version of the model and explain how

these quantities can be obtained by means numerical simulations. This section will be

concluded by presenting and discussing the results of our numerical analysis.

6.3.1 Measures of loss and their dual bounds

In Chapter 4, Section 4.3.2, we discussed the leading-order contributions to the utility

loss of a strategy trading in a bid-ask spread. We briefly recapitulate the key observations

here for convenience. At the leading order in ε, the total utility percentage lost by trading

according to a strategy ϕ = ϕ∗ + ∆ϕ = ϕ+ − ϕ− in a bid-ask spread is the sum of the

6See Equation (5.25) and its derivation for details.
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utility loss due to fees levied on each transaction,

LUtc = pEQ[S • ϕ̄T ] = p
n∑
j=1

εjEQ[Sj • (ϕ+,j + ϕ−,j)T ] ,

and the utility loss due to the deviation of the candidate strategy from the frictionless

optimizer,

LUdisp =
p2

2
EQ[∆ϕ>cS∆ϕ • IT ] .

Our main measure of the investor’s loss will be the functional

LUtot(ϕ) = LUtc(ϕ) + LUdisp(ϕ) , (6.34)

with ϕ standing for one of the candidates introduced in the subsections 5.1.1 – 5.1.3.

The dual upper bound on the expected utility, which is described by the functional

−e−px−H(Q̃,P ), can be transformed into a dual lower bound on the utility loss in a rather

natural way. By Equation (5.49), the dual functional

DU (ψ) = −pEQ[ψ • ∆ST ] +
p2

2
EQ[∆ψ>cS∆ψ • IT ] (6.35)

satisfies

LUtot(ϕ) ≥ DU (ψ) (6.36)

for any candidate strategy ϕ and the auxiliary process ψ = ϕ∗ + ∆ψ, ∆ψ = M−1∆ϕ̃,

used to generate the shadow price process in the sense of Definition 5.4 (see also Remark

5.5).

Another measure of loss is given in terms of the certainty equivalent introduced Chapter

4, Definition 4.15. For the exponential utility function, the certainty equivalent reads as

CE(ϕ)T = −1

p
ln (−E [u(X(ϕ)T )]) ,

with ϕ being a trading strategy and X its payoff process. Let CE∗ denote the certainty

equivalent of the frictionless optimizer ϕ∗. By Equation (3.34) from Subsection 3.2.4,

CE∗ in the Black-Scholes model can easily be shown to satisfy

CE∗ = x+
T

2p
b>c−1b . (6.37)

As shown in Subsection 4.3.2, Equation (4.33), the certainty equivalent of a strategy

ϕ = ϕ∗ + ∆ϕ, ∆ϕ = O(ε1/3), at the leading order in ε, reads as

CE = CE∗ − 1

p
LUtot .
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The second functional we will use to quantify the investor’s loss is the relative certainty-

equivalent loss,

LCErel (ϕ) =
CE∗ − CE(ϕ)

CE∗
=

LUtot(ϕ)

px+ T
2 b
>c−1b

. (6.38)

This quantity measures the percentage of the certainty equivalent lost due to the presence

of the bid-ask spread. By the relation (6.36), the functional

DCE
rel (ψ) =

DU (ψ)

px+ T
2 b
>c−1b

(6.39)

satisfies

LCErel (ϕ) ≥ DCE
rel (ψ) . (6.40)

The certainty-equivalent loss, CE∗ − CE, can be related to the total amount invested

in the optimal portfolio at the beginning. In the Black-Scholes model, the total ini-

tial investment is given by 1
p

∑
(c−1b)j , and we obtain our third measure of loss, the

functional

LCEinv (ϕ) =
CE∗ − CE(ϕ)

1
p

∑
(c−1b)j

=
LUtot(ϕ)∑

(c−1b)j
. (6.41)

The corresponding dual lower bound for the loss functional LCEinv is given by

DCE
inv (ψ) =

DU (ψ)∑
(c−1b)j

, (6.42)

so that

LCEinv (ϕ) ≥ DCE
inv (ψ) . (6.43)

As already mentioned in the introduction of Chapter 4, the presence of a no-trade

region in markets with a bid-ask spread is a natural consequence of two opposite effects

balancing out: trading so as to stay close to the frictionless optimizer, and keeping the

position unchanged in order to avoid unnecessary transaction fees. Thus, an optimal

no-trade region will necessarily result in an optimal trade-off between the displacement

and transaction loss. It will therefore be instructive to compare the overall performance

of a candidate strategy with the ratio of the displacement loss to the transaction loss it

generates. To measure this ratio, we introduce the functional

F (ϕ) =
LUtc(ϕ)

LUdisp(ϕ)
. (6.44)
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6.3.2 Discretization scheme

Let [0, T ] be the time interval of the optimization problem. Let N ∈ N and set

∆t =
T

N
.

We will use an equidistant partition (tk)k=0,...,N of the time interval given by

0 = t0 < t1 < . . . < tN = T ,

tk − tk−1 ≡ ∆t .

The processes we need to simulate in order to implement our approximation scheme fall

into two categories. First, there are the processes associated with the frictionless mar-

ket: the rank processes S1, . . . , Sn following geometric Brownian motions (cf. Equation

(6.14)), and the optimizer ϕ∗ = (ϕ∗,1, . . . , ϕ∗,n)> defined in (6.3). The second category

comprises primal and dual candidates which are essentially determined by the candi-

date domains (∆(i), L(i)), i = 1, 2, 3, (cf. equations (6.6) – (6.10)) and the associated

Skorohod problems (5.3), (5.39). Since S1, . . . , Sn are known explicitly (cf. Equation

(6.2)), simulating these processes essentially amounts to generating n independent and

normally distributed random variables and discretizing the explicit solution. Once the

values of the rank processes are obtained, the frictionless optimizing strategy follows by

Equation (6.3). By (6.6) – (6.10), the processes S1, . . . , Sn also determine the candidate

domains. To obtain the trading strategies ϕ = ϕ∗ + ∆ϕ to each candidate domain,

and the dual candidate (S̃, Z̃) to the domain (∆(2), L(2)), the Skorohod problems (5.3),

(5.39) must be solved, which turns out to be the most challenging part of the discretiza-

tion procedure. To be more precise, we need a discrete-time approximation of a strong

solution (if it exists) to a Skorohod problem in a convex domain with a non-smooth and

time-dependent boundary. As already mentioned, the one-dimensional case is covered in

[SW13]. As for the multi-dimensional case, there exist many results on the existence of

strong solutions and different approximation techniques for Skorohod problems in gen-

eral, time-independent domains [DI93, DI08, S l01, S l13, S l14]. The existence of a weak

solutions to stochastic differential equations with oblique reflection in time-dependent

domains is proved in [Nn10a], and in the subsequent article [Nn10b], the authors de-

velop an algorithm for weak approximations of such solutions. This algorithm as well as

the aforementioned approximations in time-independent domains, [S l01], suggest that

an Euler scheme with projections onto the boundary of the no-trade region along the

direction of reflection may provide a good algorithm to implement a time-discrete ap-

proximation in our case. However, when one attempts to implement such a projection

scheme in numerical simulations with finite computational resources, one immediately
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faces a problem connected with the non-smooth structure of the boundary of the do-

main. To understand the source of the problem, recall the formulation of the Skorohod

problem provided in Definition 5.1. A candidate domain, R, is determined by a pair

(∆, L) via

R = LR, R =

n∏
j=1

[−∆j ,∆j ] ,

L being a linear transformation. The boundary of R, ∂R, satisfies

∂R =
n⋃
j=1

∂R+,j ∪ ∂R−,j ,

∂R±,j =
{
x ∈ R : (L−1x)j = ∓∆j

}
.

For j = 1, . . . , n, define the sets

Q+,j =
{
x ∈ Rn : (L−1x)j < −∆j

}
, Q−,j =

{
x ∈ Rn : (L−1x)j > ∆j

}
, (6.45)

P±,j =
{
x ∈ Q±,j : ∃λ > 0: x± λe(j) ∈ ∂R±,j

}
,

P =
n⋃
j=1

P+,j ∪ P−,j .
(6.46)

The elements of P will be referred to as simply projectable. Note that the sets Q±,j

describe half-spaces; they are not restricted to R in any other than the defining direction.

This is not the case for the sets P±,j . A discrete-time approximation of ∆ϕ, starting at

the origin and evolving according to d∆ϕ = −dϕ∗ in the interior of R, will eventually

cross the boundary by jumping from an interior point to an element of Rc. With positive

probability, this element can also be an element of Rc \ P . It is clear that for a non-

degenerate portfolio, i. e. a portfolio of assets whose correlation matrix ρ satisfies ρij < 1

for all i, j = 1, . . . , n, the probability of jumping to an element of Rc \ P will decrease

to zero as ∆t → 0. However, in computer simulations, the step size is finite, and we

have to construct our algorithm such as to account for those events. Assume that the

process ∆ϕ jumps to a point x ∈ Rc \ P . What point on the boundary of R do we

associate with x? Obviously, there are many possibilities to map such an x onto the

boundary of R. It is important to notice that from the region Rc\P , the boundary of the

domain can be reached only by adjusting at least two components of x. This is not an

immediate consequence of the definition of P since, in a non-rectangular domain, there

exist x ∈ (Q−,j \P−,j)∪(Q+,j \P+,j) satisfying x+λe(j) ∈ ∂R\(∂R+,j∪∂R−,j), for some

λ ∈ R. However, such projections should be forbidden since it appears reasonable to

demand that an exterior point satisfying x ∈ Q+,j ∪Q−,j be projected onto a boundary

element contained in ∂R+,j ∪ ∂R−,j . We propose here a projection scheme involving
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at most n iteration steps. Simply projectable points are detected automatically in the

sense that for all x ∈ P , the algorithm terminates after the first iteration. The details

of the algorithm are presented in the following

Definition 6.3. Let (∆, L) define a candidate domain. We define the projection

πR : Rn −→ R

by the following algorithm. Let y ∈ Rn. Set y(0) = y and x(0) = L−1y(0). Define

I(0) =
{
i ∈ {1, . . . , n} : |x(0)

i | > ∆i
}
.

If I(0) = ∅,
πR(y) = y(0) = y .

Otherwise, let

x(0)
m1

= max
{
|x(0)
i | −∆i : i ∈ I(0)

}
.

Set

y(1) = y(0) + λ(1)em1 ,

x(1) = L−1y(1) = x(0) + λ(1)(L−1)(m1) ,

with (L−1)(j), j = 1, . . . , n, denoting the j-th column vector of L−1. Demand

x(1)
m1

= x(0)
m1

+ λ(1)L−1
m1,m1

!
= sgn(x(0)

m1
)∆m1 ,

wich implies

x(1) = x(0) +
sgn(x

(0)
m1)∆m1 − x(0)

m1

L−1
m1,m1

(L−1)(m1) ,

y(1) = y(0) +
sgn(x

(0)
m1)∆m1 − x(0)

m1

L−1
m1,m1

e(m1) .

Define

I(1) =
{
i ∈ {1, . . . , n} : |x(1)

i | > ∆i
}
.

If I(1) = ∅, set

πR(y) = y(1) .
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Otherwise, let k > 1 and set

y(k) = y(k−1) +

k∑
j=1

λ
(k)
j e(mj) ,

x(k) = L−1y(k) = x(k−1) +

k∑
j=1

λ
(k)
j (L−1)(mj) ,

(6.47)

with m1, . . . ,mk−1 being the old maximum indeces and mk defined through

x(k−1)
mk

= max
i∈I(k−1)

{
|x(k−1)
i | > ∆i

}
.

Demand

x(k)
ml

= x(k−1)
ml

+
k∑
j=1

λ
(k)
j L−1

ml,mj

!
= x(k−1)

ml
, l = 1, . . . , k − 1 ,

x(k)
mk

= x(k−1)
mk

+

k∑
j=1

λ
(k)
j L−1

mk,mj

!
= sgn(x(k−1)

mk
)∆mk .

This yields the following system of k linear equations:

k∑
j=1

λ
(k)
j L−1

ml,mj
= 0, l = 1, . . . , k − 1 ,

k∑
j=1

λ
(k)
j L−1

mk,mj
= sgn(x(k−1)

mk
)∆mk − x(k−1)

mk
.

(6.48)

Solve (6.48) for λ
(k)
1 , . . . λ

(k)
k and obtain y(k) from (6.47). Define

I(k) =
{
i ∈ {1, . . . , n} : |x(k)

i | > ∆i
}
.

If I(k) = ∅, set

πR(y) = y(k) .

Otherwise, k 7→ k + 1 and proceed to compute the next iteration starting from (6.47).

Remark 6.4. In the case of a rectangular domain, the algorithm can be simplified sig-

nificantly. This is due to the fact that each point x ∈ Rc can be uniquely identified with

an element of the boundary of R in a natural way. The domain (∆, L) is recatangular

if the matrix L is diagonal, Lij = Liδij . The no-trade region is given by

R =

n∏
j=1

[−∆̃j , ∆̃j ], ∆̃j = Lj∆
j .
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For each x ∈ Rc, there exists a tuple (i1, . . . , ik) ∈ {1, . . . , n}k, k ≤ n, such that

x ∈
k⋂
l=1

Qµl,il ,

with µ1, . . . , µk ∈ {−1, 1} symbolizing +, −, as introduced in Equation (6.45). This can

also be expressed as

|xil | > ∆̃il ∧ sgn(xil) = µl, l = 1, . . . , k .

The point x is then simply projectable (cf. Equation (6.46)) if and only if k = 1,

meaning that x is contained in precisely one of the 2n half-spaces Q±,j , j = 1, . . . , n.

The projection of x onto the boundary of R, πR(x), can be defined as

(
πR(x)

)
j

=

µj∆̃j , j ∈ {i1, . . . , ik} ,

xj , otherwise .

This can also be viewed as being defined on the whole of Rn since πR
∣∣
R

= Id. In this

case, a more appropriate definition would be

(
πR(x)

)
j

= max{min{xj , ∆̃j},−∆̃j}, j ∈ {1, . . . , n} . (6.49)

This equation gives us a direct expression for the projection map πR, introduced in

Definition 6.3, without any iterations.

The projection scheme presented in Definition 6.3 and Remark 6.4 allows us to construct

discrete-time approximations of the primal and dual candidates with respect to the

domains defined by (6.6) – (6.10). The algorithm presented in Definition 6.3 is required

only for the primal candidate corresponding to the domain (∆(2), L(2)) given by a non-

diagonal linear transformation (cf. Subsection 5.1.2 and Equation (6.7), (6.8)). The

domains (∆(i), L(i)), i = 1, 3, are rectangular, and the corresponding candidates can be

obtained using the simplified projection scheme from Remark 6.4. This is also the case

for the dual candidate. It is generated by the process ∆ψ = M−1∆ϕ̃, with M−1 = L(2)

given by (6.7) and ∆ϕ̃ solving the Skorohod problem (5.39) which is formulated with

respect to a rectangular domain. In Appendix B, we discuss an alternative projection

scheme based on l1-minimization. The reader can see the surprisingly big difference in

the performance of both schemes by comparing the simulation results presented in Table

B.1.

We can now present the algorithm for simulating the trading strategies and computing

the values of the primal and dual functionals introduced in Subsection 6.3.1, Equation

(6.34) – (6.44). Being different measures of the investor’s loss due to the presence of
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proportional transaction costs, all these functionals are given in terms of expected values

of a few (stochastic) integrals with respect to the EMM Q ∼ P . To avoid changing the

probability measure when evaluating the expectations, the values of the price processes

will be simulated with respect to the measure Q. With all relevant processes computed,

the integrals can be easily calculated by a standard discretization procedure. To obtain

the respective expectations, Monte-Carlo method will be employed.

In the following, let ϕ(i) = ϕ∗ + ∆ϕ(i) be the trading strategy corresponding to the

domain (∆(i), L(i)), i = 1, 2, 3, as introduced in Definition 5.1, and let ψ = ϕ∗ + ∆ψ,

∆ψ = L(2)∆ϕ̃, be the auxiliary process generating the shadow price (in the sense of

Definition 5.4) with respect to the domain (∆(2), L(2)). For convenience, we recapitulate

briefly that the shadow price S̃ = S + ∆S is determined by ∆S = f̃(∆ϕ̃, S,∆(2)), with

f̃j(x, y, z) =
εjyj

2

((
xj
zj

)3

− 3
xj
zj

)
. (6.50)

The implementation algorithm consists of the following steps:

1. Time step t0 = 0: Initialize the stock prices:

S0 = (S1
0 , . . . , S

n
0 )> .

By (6.3) and (6.6) – (6.10) obtain the frictionless optimizer and the candidate

domains,

ϕ∗0 = (ϕ∗,10 , . . . , ϕ∗,n0 )>, (∆
(i)
0 , L

(i)
0 ), i = 1, 2, 3 .

For j = 1, . . . , n, i = 1, 2, 3, set ∆ϕ
(i),j
0 = ∆ϕ̃j0 = 0, which yields ∆ψj0 = L

(2)
0 ∆ϕ̃j0 =

0 and

ϕ
(i),j
0 = ψj0 = ϕ∗,j0

For the shadow price, this implies ∆Sj0 = f̃j

(
∆ϕ̃j0, S0,∆

(2)
0

)
= 0, j = 1, . . . , n,

and S̃0 = S0.

2. Time steps tk > t0: Generate n independent and identically distributed random

variables Z1, . . . , Zn such that Z1 ∼ N(0, 1). For k = 1, . . . , N − 1, obtain the

price value at the time tk, Sk = (S1
k , . . . , S

n
k )>, via (cf. Section 6.1, Equation

(6.2))

Sjk = Sjk−1 exp

{
−
σ2
j

2
∆t+

n∑
l=1

σjlZl

}
, (6.51)

which, by the equations (6.3), (6.6) – (6.10), then yields the associated frictionless

optimizer and the candidate domains,

ϕ∗k = (ϕ∗,1k , . . . , ϕ∗,nk )>, (∆
(i)
k , L

(i)
k ), i = 1, 2, 3 .
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Note that the right-hand side of (6.51) is the representation of the price processes

with respect to a Q-Brownian motion, which can be obtained from Equation (6.2)

by

W j 7−→W j − (σ−1b)jI ,

for all j = 1, . . . , n, with σ being the Cholesky factor of the covariance matrix (cf.

Subsection 3.2.4, Equation (3.33)). Set

ϕ̃∗k = (L(2))−1ϕ∗k .

For each i = 1, 2, 3, let

R
(i)
k =

n∏
j=1

[−∆
(i)
k ,∆

(i)
k ], Rk = L

(i)
k R

(i)
k

Define

ξk = ∆ϕk−1 − ϕ∗k + ϕ∗k−1 ,

ηk = ∆ϕ̃k−1 − ϕ̃∗k + ϕ̃∗k−1 ,

and set, for i = 1, 2, 3,

∆ϕ
(i)
k = πRk(ξk), ∆ϕ̃k = πRk(ηk), ∆ψk = L

(2)
k ∆ϕ̃k

ϕ
(i)
k = ϕ∗k + ∆ϕ

(i)
k , ψk = ϕ∗k + ∆ψk .

Recall that ∆ϕ̃ and ∆ϕ(i), i = 1, 3, evolve in rectangular domains. Hence, for these

processes, the simplified version of the projection map, introduced in Remark 6.4,

should be used. The value of the shadow price reads as

S̃k = Sk + ∆Sk, ∆Sk = f̃(∆ϕ̃k, Sk,∆
(2)
k ) ,

with f̃ given by (6.50).

Liquidate the portfolio at the time tN = T .

3. Integral computation: Introduce the following discretizations of the integrals ap-

pearing in the functionals (6.34), (6.35):

Itc(ϕ)t ≈
∫ t

0
Su dϕ̄u, Idisp(β)t ≈

∫ t

0
β>u c

S
uβu du, I(ψ) ≈

∫ t

0
ψu d∆Su ,

β ∈
{

∆ψ,∆ϕ(1),∆ϕ(2),∆ϕ(3)
}

. Recall that

dϕ̄j = εjd|Dϕj | = εj(dϕ
+,j + dϕ−,j) .
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Noting that, for j = 1, . . . , n, k = 1, . . . , N ,

ϕ̄jk − ϕ̄
j
k−1 = εj(ϕ

+,j
k − ϕ+,j

k−1) + εj(ϕ
−,j
k − ϕ−,jk−1) = εj

∣∣ϕjk − ϕjk−1

∣∣ ,
the first term reads as

Itc(ϕ)T =
n∑
j=1

N−1∑
k=1

εjS
j
k

∣∣ϕjk − ϕjk−1

∣∣
=

n∑
j=1

N−1∑
k=1

εjS
j
k

∣∣πRk1 (ξk)
j − ξjk

∣∣ (6.52)

Notice that the liquidation costs,
∑n

j=1 εjS
j
N

∣∣ϕN−1|, are dropped in (6.52). The

remaining integrals are discretized as

Idisp(β)T = ∆t
N−1∑
k=1

β>k c
S
kβk = ∆t

n∑
i,j=1

cij

N−1∑
k=1

βikβ
j
kS

i
kS

j
k . (6.53)

I(ψ)T =

n∑
j=1

N∑
k=1

ψjk−1(∆Sjk −∆Sjk−1) . (6.54)

4. Monte Carlo: Let L be a large integer (typically, L� 103). Repeat steps 1 – 3 L

times and obtain L realizations of the random variables Itc(ϕ)T , I(ψ)T , Idisp(β)T ,

β ∈
{

∆ψ,∆ϕ(1),∆ϕ(2),∆ϕ(3)
}

. The Q-expectations of the integrals can then be

estimated by the sample means of the Monte-Carlo realizations. More precisely,

let Y (1), . . . , Y (L) be the outcomes of L independent Monte-Carlo simulations of a

random variable Y . The expectation of Y can be estimated by

Ŷ =
1

L

L∑
l=1

Y (l) . (6.55)

The standard deviation of the Monte-Carlo estimates will be computed by

ŝY =

√√√√ 1

L− 1

L∑
l=1

(Y (l) − Ŷ )2 . (6.56)

6.3.3 Asymptotics

In the present study we investigate the asymptotic behaviour of the expected utility

loss due to the presence of a bid-ask spread. In theory, investigating the asymptotics

amounts to analysing the leading-order contributions of all relevant terms to the utility
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functional as ε tends to zero. In practice, in order to obtain the utility loss via numer-

ical simulations, the proportionality factor determining the transaction costs must be

assigned a certain value. In order for the simulation results to be consistent with the the-

oretical asymptotic approximations, the value of ε we choose must have an appropriate

order of magnitude. Thus, when implementing the approximation scheme practically,

the following question must be addressed: How small do we have to choose ε to ensure

the applicability of the theoretical asymptotic approximations? To answer this question,

we first simulate a one-dimensional portfolio (portfolio with only one risky asset) for

different values of ε. Then, we compute numerically the expected utility of terminal

wealth of the portfolio without any asymptotic approximations and compare the results

with the exact asymptotic solution presented in Subsection 4.3.3.

According to Equation (4.37), at the leading order in ε, the utility loss of a single-stock

portfolio is given by

LUtot =
p2

2
EQ
[
(∆2cS) • IT

]
, (6.57)

with

∆ =

(
3

2p

cϕ
∗

cS
εS

)1/3

being the half-width of the asymptotically optimal no-trade region. For a Black-Scholes

asset with the drift coefficient b and the volatility σ, we have (cf. Subsection 6.1)

ϕ∗ =
b

pσ2S2
, cS = σ2S2, cϕ

∗
= σ2(ϕ∗)2 ,

which yields

∆ =
1

pS

(
3εb2

2σ4

)1/3

(6.58)

and

∆2cS =
σ2

p2

(
3εb2

2σ4

)2/3

.

Inserting this result into (6.57) leads to the following expression for the leading-order

utility loss in the Black-Scholes model:

LUtot =

(
9ε2b4

32σ2

)1/3

T . (6.59)

Equation (6.59) is used to produce the analytic reference plot presented in Figure 6.1. To

simulate the expected utility loss without any asymptotic approximations, we essentially

follow the algorithm presented in Subsection 6.3.2. A few adjustments must, however,

be made, and we therefore present the main steps here once again for clarity.

The exact asymptotic solution to the one-dimensional optimization problem is the pair

(∆ϕ,ϕ), ∆ϕ being a semimartingale and ϕ a finite-variation process, which solves the
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Skorohod problem

∆ϕt = −ϕ∗t + ϕt ∈ [−∆t,∆t], ∆ϕ0 = 0 ,

ϕt =

∫ t

0
−sgn(∆ϕu)d|Dϕ|u ,

|Dϕ|t =

∫ t

0
I{±∆u}(∆ϕu)d|Dϕ|u ,

(6.60)

with ∆ being the boundary process (6.58). This problem is shown to have a unique strong

solution in [SW13]. Our goal is to estimate the value of the functional E[u(X(ϕ)T )] by

means of numerical simulations, with X(ϕ) denoting the payoff process generated by

ϕ. Consider the time-interval partition 0 = t0 < . . . < tN = T , and let S0 denote the

initial value of the stock price which we assume to follow a one-dimensional geometric

Brownian motion (cf. Equation (6.2)). The discrete-time approximation of the price

process and that of the frictionless optimizer read as

Sk = Sk−1 exp (ν∆t+ σZ), ν = b− σ2

2
, Z ∼ N(0, 1) ,

ϕ∗k =
b

pσ2Sk
,

(6.61)

for all k = 1, . . . , N . Note that, unlike in (6.51), ν is used in the deterministic part of

the exponent. This is due to the fact that the simulations are performed with respect

to a P -Brownian motion, which makes sense since we are interested in calculating a

P -expectation at the end. To discretize the startegy ϕ = ϕ∗ + ∆ϕ, we use the Euler

projection scheme proposed in [SW13]. Let [−a, a] ⊂ R be an interval. Define

πa(x) = max{min{a, x},−a} . (6.62)

Set ∆ϕ0 = 0 and

ξk = ∆ϕk−1 − ϕ∗k + ϕ∗k−1, ∆ϕk = π∆k(ξk) ,

ϕk = ϕ∗k + ∆ϕk .
(6.63)

Assuming the investor’s initial endowment to be zero, the discretized terminal payoff is

given by

X(ϕ)T =
N∑
k=1

ϕk−1(Sk − Sk−1)− ε
N−1∑
k=1

Sk|ϕk − ϕk−1| − εSN |ϕN−1| .
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p b σ N L T (yrs.)

10−4 0.05 0.3 104 107 30

Table 6.2: Simulation parameters.
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Figure 6.1: Utility loss for different bid-ask spreads: Exact asymptotics vs. simulated
loss without asymptotic approximations.

The P -expectation E[u(X(ϕ)T )] will be estimated by the Monte-Carlo method. Recall-

ing that, by Equation (3.34) from Subsection 3.2.4,

E[u(x+ ϕ∗ • ST )] = −e−px−
T
2
b2

σ2 ,

we calculate

LUtot = −epx+T
2
b2

σ2E[u(X(ϕ)T )]− 1 .

to obtain the value of utility loss. The parameters we choose for the numerical simulation

are presented in Table 6.2. The (anualized) drift coefficient, b, and the volatility, σ, are

chosen close to the average of the estimated values of the portfolio selected in Subsection

6.2.2 (cf. Table 6.1 and Table A.2). The parameters N and L describe the number of

time intervals in the partition and the number of Monte-Carlo samples, respectively.

Simulation results are shown in Table 6.3, Figure 6.1. We can see from the data that

the asymptotic results can be considered to be applicable even at the largest value of

the transaction-cost percentage, ε = 10−3. We therefore expect that all the asymptotic

approximations used in the theoretical preliminaries of Chapter 5 to obtain leading-order



Chapter 6. Numerical Analysis in the Black-Scholes Setting 111

ε× 10−4 REF LUtot SD × 10−5

1.0 0.001741 0.001720 1.0744

1.5 0.002280 0.002268 1.2326

2.0 0.002763 0.002793 1.3514

2.5 0.003206 0.003214 1.4541

3.0 0.003621 0.003566 1.5490

3.5 0.004012 0.004034 1.6257

4.0 0.004386 0.004389 1.6999

4.5 0.004744 0.004721 1.7676

5.0 0.005090 0.005049 1.8298

5.5 0.005423 0.005370 1.8920

6.0 0.005747 0.005666 1.9463

6.5 0.006062 0.006015 1.9997

7.0 0.006369 0.006322 2.0450

7.5 0.006669 0.006604 2.0926

8.0 0.006962 0.006874 2.1439

8.5 0.007250 0.007205 2.1863

9.0 0.007531 0.007479 2.2267

9.5 0.007808 0.007705 2.2600

10.0 0.008079 0.008028 2.3098

Table 6.3: Simulated utility loss for different bid-ask spreads.

SD = Standard Deviation; REF = exact value obtained from (6.59).

expressions for the primal and dual functional are valid. Since with a shrinking bid-ask

spread its effect on the utility loss decreases, we will use the largest value of ε so as to

obtain numerical values that are large enough to be well distinguished from the noise

introduced by the standard deviation of the Monte-Carlo simulations. Hence, we will

set ε = 10−3 in the following simulations.

Remark 6.5. To obtain the results presented in Table 6.3, the values of the expected

utility loss were calculated from the values of the total expected utility, E[u(X(ϕ)T )],

which exceed the loss values by approximately two orders of magnitude. This resulted

in very large standard deviations of the Monte-Carlo estimates. To cope with this issue,

we had to produce L = 107 Monte-Carlo samples and use variance-reduction techniques

in addition7. We opted for the Control-Variate Method. As expected, choosing the

7The reader is referred to the detailed discussion of the basic variance-reduction techniques presented
in Chapter 4 of [Gla04].
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frictionless utility, u(x+ϕ∗ • ST ), as a control variate for the random variable of interest,

u(X(ϕ)T ), yielded satisfactory results.

6.4 Portfolio performance

In this section we present the results of numerical simulations for two types of portfolios.

First, we discuss the performance of the DAX portfolio, a 30-asset portfolio selected

according to the scheme introduced in Section 6.2. In addition, we analyse the symmetric

portfolio in different dimensions. By symmetric portfolio we mean a multi-asset portfolio

characterized by the drift vector

bsym = b1, b ∈ R ,

the volatility vector

σsym = σ1, σ > 0 ,

the correlation matrix

(ρsym)ij =

1 , i = j

ρ , i 6= j
, ρ ∈ [0, 1) ,

and the covariance matrix

csym = σ2ρsym .

In all simulations, we assume the transaction-cost percentage to be the same for all

assets and denote it by

εj = ε, j = 1, . . . , n .

Table 6.4 shows the values of the parameters which will remain unchanged for all nu-

merical simulations of the multi-dimensional portfolios discussed in this section.

p N L T (yrs.) ε

1.79× 10−4 104 104 30 10−3

Table 6.4: Simulation parameters.

The value of the risk aversion p was determined in Subsection 6.2.2. The choice of

the transaction-cost percentage, ε, was discussed in Subsection 6.3.3. N and L denote

the number of time intervals in the partition and the number of Monte-Carlo samples,

respectively.
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6.4.1 One-dimensional portfolio

In this subsection, we test the algorithm by simulating a portfolio with only one risky

asset and comparing the results with the exact asymptotic solution. Basically, we are

in the setting of Subsection 6.3.3, but instead of simulating the complete functional

E[X(ϕ)T ] for different values of the bid-ask spread, we simulate the asymptotic expan-

sions of the primal and dual functionals, Equation (5.50), (5.49), for a fixed bid-ask

spread, ε = 10−3. An important part of this benchmark is to compare two discretization

schemes for solutions of one-dimensional Skorohod problems — the projection scheme

and the reflection scheme. Recall that, in Subsection 6.3.3, the projection scheme was

used to analyse the asymptotic behaviour of the loss functional. That means, the dis-

cretization was implemented using the projection mapping

πa(x) = max{min{a, x},−a}, a > 0 . (6.64)

To implement the reflection scheme, we simply replace πa with the mapping

ra(x) = 2πa(x)− x, a > 0 . (6.65)

Notice that for n = 1 all primal candidates coincide. Moreover, the auxiliary process ψ

generating the shadow-price process and appearing in the expression (5.49) for the dual

functional is equal to the trading strategy ϕ.

For both discretization schemes, we compute the total utility-loss percentage, LUtot, its

dual bound, DU , as well as the ratio of the transaction loss to the displacement loss, F

(cf. Equations (6.34), (6.35) and (6.44), respectively). To get a sense of the quality of

the discretization, we will perform three simulations each time increasing the number of

intervals in the partition of the time interval, N , by one order of magnitude. The drift

and the diffusion coefficient are b = 0.05 and σ = 0.3, respectively. Apart from N , all

other parameters are chosen as presented in Table 6.4. The exact asymptotic values of

the functionals are

LUtot = DU ≈ 0.008079, F = 2 . (6.66)

The fact that the exact value of the (asymptotic) transaction-to-displacement ratio is

F = 2 does not follow from the rather qualitative discussion of the one-dimensional

solution presented in Subsection 4.3.3. However, this can be shown to hold true by

analysing the stationary distribution of the process ∆ϕ = ϕ−ϕ∗. As shown in [KMK15]

(see also [KL13], Lemma 5.17), asymptotically, the transaction loss and the displacement

loss satisfy

LUtc =
2

3
LUtot, LUdisp =

1

3
LUtot .
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N F LUtot SD × 10−6 DU SD × 10−6

104 1.5984 0.008006 6.58 0.007984 6.55

105 1.8118 0.007998 6.36 0.007995 6.35

106 1.8901 0.007989 6.32 0.007989 6.31

Table 6.5: Performance of the projection scheme.

N F LUtot SD × 10−6 DU SD × 10−6

104 1.928 0.0079921 6.30 0.007941 6.24

105 1.9307 0.008003 6.29 0.007998 6.28

106 1.9283 0.007997 6.27 0.007997 6.27

Table 6.6: Performance of the reflection scheme.

As one can see from Table 6.5, in terms of the values of F , the projection scheme is not

stable with respect to the number of partition intervals, N , but it does (rather slowly)

approach the exact value as N increases. However, increasing N has no effect on the

utility loss, and the primal and dual values are indistinguishable. All this, of course,

is true only at the precision level provided by the standard diviation, SD. As for the

reflection scheme, Table 6.6 shows stable values of the ratio F , which are very close to

the exact value of 2. In the case of this discretization scheme, increasing N appears to

affect neither the ratio F nor the total utility-loss percentage. However, for N = 104,

there is a small difference between the primal and the dual value, which is larger than

two standard deviations. This discrepancy does not occur for larger values of N . Both

discretization schemes slightly underestimate the exact value shown in (6.66); the av-

erage difference is approximately 9 × 10−5. Unfortunately, we were unable to explain

this difference. There are three sources of possible approximation errors in our simu-

lation. The first one is the asymptotic approximation for ε ∼ 0. This cannot be the

reason since we simulate the value of an asymptotic expansion. The second source is

the Monte-Carlo approximation. This can also be excluded since the difference cannot

be explained by the standard deviation. The third one is the Euler approximation of

the stochastic differential equation. This cannot be excluded with certainty. However,

taking into account that the values remain stable as the number of time steps increases,

this type of error does not seem to explain the difference either.

In the following, when simulating multi-dimensional portfolios, we will opt for the pro-

jection scheme. If we were to implement the reflection scheme in multi-dimensional

domains, it would be much more difficult to decide what points inside a given domain
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R to assign to the elements of Rc. To see this, let (∆, L) define a candidate domain R,

and let πR be the projection algorithm introduced in Definition 6.3. At first it appears

reasonable to implement the reflection scheme simply by setting

rR(x) = 2πR(x)− x .

But if the matrix L defining the domain is non-diagonal, then, in general, there exist

elements x ∈ Rc such that rR(x) ∈ Rc, meaning that the algorithm fails to find an

element of R. This can happen even if x is very close to the boundary. A further

argument for choosing the simpler discretization algorithm is that, although it fails

to reproduce the exact value of the transaction-to-displacement ratio F , the values it

calculates for the utility loss are indistinguishable at the given precision level from those

generated by the reflection scheme.

6.4.2 DAX portfolio

The DAX portfolio approximates the 30 highest ranks (with respect to the market capi-

talization) of the German stock market index (cf. Section 6.2 for details). The estimated

drift coefficients and covariance matrix are presented in Table 6.1 and Table A.2, re-

spectively. The remaining simulation parameters are presented in Table 6.4. Table 6.7

shows the values of the loss functionals introduced in Subsection 6.3.1 for the three pri-

mal candidates, P (i), i = 1, 2, 3, and the dual bound, D. The second primal candidate

corresponding to the domain constructed in Subsection 5.1.2 of Chapter 5 shows the

best performance. The value of the total utility loss of P (2) is less than one percent.

However, this value is still roughly 32% higher than that of the dual lower bound. Al-

ternatively, we can also interpret the results by concluding that the value of the total

utility loss of the exact asymptotic optimizer lies inside the interval (0.007344, 0.009703).

The functional LCErel measures the loss generated by the candidate in terms of the cer-

tainty equivalent, in relation to the certainty equivalent of the frictionless optimizer. In

the case of LCEinv , the certainty-equivalent loss of the candidate is related to the total

amount invested in the portfolio. The primal candidate P (1) corresponding to the do-

main constructed in Subsection 5.1.1 generates loss values roughly twice as high as those

of P (2). The candidate P (3) trading with respect to the domain from Subsection 5.1.3

performs surprisingly well: its loss values are only ∼ 4.3% worse than those of P (2).

Taking into account the simple construction of P (3) and the resulting straightforward

numerical implementation due to the rectangular no-trade region, the high performance

of this candidate appears even more remarkable. The value of the functional F shows

how the total utility loss is distributed between the transaction and the displacement

loss. In the case of the candidate P (1), the displacement loss is almost five times the
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P (1) P (2) P (3) D

LUtot 0.01889 0.009703 0.010124 0.007344

SD 3.52×10−5 7.15×10−6 6.35×10−6 8.37×10−6

LCErel 0.03183 0.016347 0.017055 0.012373

LCEinv 0.02110 0.010838 0.011307 0.008203

F 0.18754 1.227002 2.805036 —

Table 6.7: Performance of the DAX portfolio.

transaction loss. If we look at P (3), we see that for this candidate, the utility loss due

to transactions is greater than the loss due to displacement by the factor of 2.81, which

yields a significantly better result.

6.4.3 Symmetric portfolio

The purpose of the symmetric portfolio is to demonstrate the effect of asset correlations

in different dimensions. As mentioned at the beginning of this subsection, a symmetric

portfolio consists of n assets having equal drift and diffusion coefficients. In addition,

each asset pair is assumed to have the same correlation coefficient. Simulations were

run in four different dimensions, n ∈ {2, 5, 10, 30}. The drift and the diffusion coefficient

were chosen as in the one-dimensional simulation in Subsection 6.3.3, Table 6.2, namely

b = 0.05, σ = 0.3. The remaining simulation parameters are presented in Table 6.4.

The only analytic value with which we can compare the simulation results to assess

their quality is the one-dimensional asymptotic solution presented in Subsection 4.3.3.

In Subsection 6.3.3, the solution was calculated for the Black-Scholes model, and the

resulting total utility-loss percentage is given by Equation (6.59). For the simulation

parameters from Table 6.4 and b = 0.05, σ = 0.3, the utility loss reads as

LU,1tot ≈ 0.008079 , (6.67)

where the superscript 1 is meant to indicate the exact one-dimensional asymptotic

solution. As discussed in Subsection 4.3.4 and 4.3.5, in the uncorrelated case, ρ = 0, we

expect the symmetric portfolio to generate the total utility-loss percentage

LUtot ≈ nL
U,1
tot .

In the case of (almost) complete correlation, we expect

LUtot ≈ L
U,1
tot .
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n 2 5 10 30

Exact value 0.016158 0.040395 0.08079 0.24237

Numerical value 0.016019 0.040025 0.080115 0.240298

Table 6.8: Expected utility loss of the uncorrelated portfolio in different dimension.

The data presented in the tables 6.9, 6.13, 6.17, 6.21 shows that the simulation results

provide a good approximation of the exact values. However, we can see that the numeri-

cal values underestimate the exact values. To emphasize this observation, the simulated

expected utility loss of the uncorrelated, symmetric portfolio is compared with the exact

values in Table 6.8. The same effect is also present in the case of complete correlation.

We remark that the effect was already observed in the benchmark of the one-dimensional

portfolio. We refer to Subsection 6.4.1 for discussion.

In the discussion of the simulation results obtained for the DAX portfolio, we al-

ready mentioned that the three primal candidates are quite different in terms of the

transaction-to-displacement ratio, F . A similar behaviour of the candidates can be ob-

served in the case of the symmetric portfolio. The values of F for the candidate P (1)

decrease as the correlation increases. This indicates that the rectangular domain cor-

responding to this candidate is too big, and, as a consequence, the trading strategy

deviates too far from the frictionless optimizer. The result is the extremely low per-

formance of this candidate in terms of utility and certainty-equivalent loss in the range

from moderate to high correlations. The candidate P (2) shows the best performance

in all dimensions of the symmetric portfolio. The values of the functional F generated

by this candidate remain rather stable. The candidate P (3) is placed second in terms

of its overall performance. The values of the ratio F generated by P (3) are very large

compared to the other two candidates, which indicates that trades are carried out very

often.
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Dimension n = 2.

ρ P (1) SD(1) P (2) SD(2) P (3) SD(3) D SD

0.0 0.016019 9.16×10−6 0.016019 9.16×10−6 0.016019 9.16×10−6 0.015992 9.06×10−6

0.1 0.014141 8.45×10−6 0.014131 8.41×10−6 0.014093 8.30×10−6 0.014085 8.27×10−6

0.2 0.012741 8.02×10−6 0.012700 7.87×10−6 0.012666 7.75×10−6 0.012590 7.94×10−6

0.3 0.011632 7.67×10−6 0.011541 7.38×10−6 0.011533 7.26×10−6 0.011378 7.60×10−6

0.4 0.010766 7.67×10−6 0.010595 7.18×10−6 0.010634 7.11×10−6 0.010417 7.39×10−6

0.5 0.010104 7.59×10−6 0.009840 6.83×10−6 0.009925 6.85×10−6 0.009676 7.08×10−6

0.6 0.009588 7.52×10−6 0.009221 6.70×10−6 0.009345 6.69×10−6 0.009120 6.96×10−6

0.7 0.009187 7.56×10−6 0.008740 6.66×10−6 0.008868 6.58×10−6 0.008701 6.89×10−6

0.8 0.008931 7.70×10−6 0.008414 6.70×10−6 0.008507 6.59×10−6 0.008371 6.74×10−6

0.9 0.008753 7.75×10−6 0.008163 6.64×10−6 0.008202 6.55×10−6 0.008150 6.60×10−6

0.999999 0.008730 7.87×10−6 0.008013 6.59×10−6 0.008013 6.58×10−6 0.007984 6.58×10−6

Table 6.9: Total utility loss, LU
tot, for a symmetric portfolio in n = 2 dimensions.
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Figure 6.2: Total utility loss, LU
tot, corresponding to Table 6.9.
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ρ P (1) P (2) P (3) D

0.0 0.019223 0.019223 0.019223 0.019191

0.1 0.018667 0.018653 0.018603 0.018593

0.2 0.018347 0.018288 0.018239 0.018130

0.3 0.018145 0.018003 0.017992 0.017750

0.4 0.018087 0.017800 0.017866 0.017501

0.5 0.018187 0.017712 0.017865 0.017417

0.6 0.018410 0.017705 0.017944 0.017511

0.7 0.018742 0.017830 0.018091 0.017751

0.8 0.019291 0.018174 0.018376 0.018083

0.9 0.019958 0.018612 0.018702 0.018582

0.999999 0.020954 0.019233 0.019233 0.019163

Table 6.10: Relative certainty-equivalent loss, LCE
rel , for a symmetric portfolio in n = 2

dimensions.
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Figure 6.3: Relative certainty-equivalent loss, LCE
rel , corresponding to Table 6.10.
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ρ P (1) P (2) P (3) D

0.0 0.014417 0.014417 0.014417 0.014393

0.1 0.014000 0.013990 0.013952 0.013944

0.2 0.013760 0.013716 0.013679 0.013597

0.3 0.013609 0.013502 0.013494 0.013313

0.4 0.013565 0.013350 0.013399 0.013125

0.5 0.013640 0.013284 0.013399 0.013063

0.6 0.013807 0.013278 0.013458 0.013133

0.7 0.014057 0.013372 0.013568 0.013313

0.8 0.014468 0.013630 0.013782 0.013562

0.9 0.014968 0.013959 0.014027 0.013936

0.999999 0.015715 0.014425 0.014425 0.014372

Table 6.11: Certainty-equivalent loss on investment, LCE
inv , for a symmetric portfolio

in n = 2 dimensions.
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Figure 6.4: Certainty-equivalent loss on investment, LCE
inv , corresponding to Table

6.11.
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ρ P (1) P (2) P (3)

0.0 1.599294 1.599294 1.599294

0.1 1.585011 1.597893 1.738152

0.2 1.550903 1.583172 1.850681

0.3 1.490050 1.561924 1.922599

0.4 1.410580 1.550290 1.957243

0.5 1.324113 1.556935 1.965099

0.6 1.222330 1.572553 1.933942

0.7 1.119939 1.589434 1.880565

0.8 1.019584 1.603606 1.809791

0.9 0.915674 1.601312 1.713697

0.999999 0.814292 1.600387 1.600388

Table 6.12: Transaction loss to displacement loss, F , for a symmetric portfolio in
n = 2 dimensions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

Correlation, ρ

T
ra

ns
ac

tio
n 

lo
ss

/D
is

pl
ac

em
en

t l
os

s

 

 

cand. (1)
cand. (2)
cand. (3)

Figure 6.5: Transaction loss to displacement loss, F , corresponding to Table 6.12.
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Dimension n = 5.

ρ P (1) SD(1) P (2) SD(2) P (3) SD(3) D SD

0.0 0.040025 1.46×10−5 0.040025 1.46×10−5 0.040025 1.46×10−5 0.039928 1.45×10−5

0.1 0.025931 1.08×10−5 0.025826 1.06×10−5 0.025788 1.01×10−5 0.025540 1.06×10−5

0.2 0.019295 9.71×10−6 0.018982 8.75×10−6 0.019160 8.43×10−6 0.018305 8.89×10−6

0.3 0.015694 9.67×10−6 0.015044 7.80×10−6 0.015422 7.62×10−6 0.014263 8.24×10−6

0.4 0.013612 1.00×10−5 0.012529 7.25×10−6 0.013061 7.21×10−6 0.011917 7.97×10−6

0.5 0.012358 1.06×10−5 0.010865 7.23×10−6 0.011449 7.08×10−6 0.010486 7.69×10−6

0.6 0.011610 1.11×10−5 0.009757 7.13×10−6 0.010287 6.89×10−6 0.009586 7.66×10−6

0.7 0.011258 1.14×10−5 0.009054 7.09×10−6 0.009449 6.73×10−6 0.008970 7.24×10−6

0.8 0.011123 1.17×10−5 0.008575 6.97×10−6 0.008801 6.64×10−6 0.008556 7.00×10−6

0.9 0.011246 1.18×10−5 0.008253 6.70×10−6 0.008327 6.53×10−6 0.008232 6.76×10−6

0.999999 0.011647 1.19×10−5 0.008019 6.52×10−6 0.008019 6.52×10−6 0.007982 6.48×10−6

Table 6.13: Total utility loss, LU
tot, for a symmetric portfolio in n = 5 dimensions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Correlation, ρ

U
til

ity
 lo

ss

 

 

cand. (1)
cand. (2)
cand. (3)
dual cand.

Figure 6.6: Total utility loss, LU
tot, corresponding to Table 6.13.
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ρ P (1) P (2) P (3) D

0.0 0.019212 0.019212 0.019212 0.019218

0.1 0.017425 0.017355 0.017330 0.017325

0.2 0.016671 0.016401 0.016554 0.016550

0.3 0.016573 0.015886 0.016286 0.016298

0.4 0.016988 0.015637 0.016301 0.016307

0.5 0.017795 0.015646 0.016487 0.016499

0.6 0.018947 0.015924 0.016788 0.016807

0.7 0.020535 0.016515 0.017235 0.017226

0.8 0.022425 0.017287 0.017744 0.017745

0.9 0.024831 0.018224 0.018387 0.018375

0.999999 0.027954 0.019247 0.019247 0.019234

Table 6.14: Relative ceretainty-equivalent loss, LCE
rel , for a symmetric portfolio in

n = 5 dimensions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

Correlation, ρ

R
el

at
iv

e 
C

E
 lo

ss

 

 

cand. (1)
cand. (2)
cand. (3)
dual cand.

Figure 6.7: Relative ceretainty-equivalent loss, LCE
rel , corresponding to Table 6.14.
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ρ P (1) P (2) P (3) D

0.0 0.014409 0.014409 0.014409 0.014374

0.1 0.013069 0.013016 0.012997 0.012872

0.2 0.012503 0.012300 0.012415 0.011861

0.3 0.012430 0.011914 0.012214 0.011926

0.4 0.012741 0.011727 0.012225 0.011155

0.5 0.013346 0.011734 0.012365 0.011325

0.6 0.014210 0.011943 0.012591 0.011733

0.7 0.015401 0.012386 0.012926 0.012271

0.8 0.016819 0.012965 0.013308 0.012938

0.9 0.018623 0.013668 0.013790 0.013633

0.999999 0.020965 0.014435 0.014435 0.014367

Table 6.15: Certainty-equivalent loss on investment, LCE
inv , for a symmetric portfolio

in n = 5 dimensions.
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Figure 6.8: Certainty-equivalent loss on investment, LCE
inv , corresponding to Table

6.15.
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ρ P (1) P (2) P (3)

0.0 1.598927 1.598927 1.598927

0.1 1.545858 1.585153 2.146752

0.2 1.401330 1.489796 2.500660

0.3 1.214402 1.432152 2.652685

0.4 1.020659 1.443862 2.642768

0.5 0.847118 1.498835 2.534195

0.6 0.699780 1.554514 2.373108

0.7 0.577451 1.593969 2.186458

0.8 0.476743 1.606409 1.994438

0.9 0.394267 1.606062 1.802027

0.999999 0.323233 1.600150 1.600153

Table 6.16: Transaction loss to displacement loss, F , for a symmetric portfolio in
n = 5 dimensions.
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Figure 6.9: Transaction loss to displacement loss, F , corresponding to Table 6.16.
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Dimension n = 10.

ρ P (1) SD(1) P (2) SD(2) P (3) SD(3) D SD

0.0 0.080115 2.08×10−5 0.080115 2.08×10−5 0.080115 2.08×10−5 0.079886 2.06×10−5

0.1 0.035194 1.23×10−5 0.034806 1.15×10−5 0.035275 1.05×10−5 0.033754 1.13×10−5

0.2 0.022942 1.20×10−5 0.021885 8.80×10−6 0.022862 8.37×10−6 0.020037 9.26×10−6

0.3 0.018010 1.34×10−5 0.015977 7.75×10−6 0.017224 7.58×10−6 0.014498 8.82×10−6

0.4 0.015733 1.50×10−5 0.012735 7.57×10−6 0.014038 7.31×10−6 0.011882 8.52×10−6

0.5 0.014695 1.65×10−5 0.010880 7.49×10−6 0.012029 7.00×10−6 0.010480 8.21×10−6

0.6 0.014256 1.75×10−5 0.009769 7.41×10−6 0.010634 6.79×10−6 0.009604 7.93×10−6

0.7 0.014332 1.89×10−5 0.009073 7.42×10−6 0.009638 6.83×10−6 0.009020 7.47×10−6

0.8 0.014661 1.95×10−5 0.008620 7.15×10−6 0.008913 6.69×10−6 0.008587 7.15×10−6

0.9 0.015271 2.03×10−5 0.008269 6.84×10−6 0.008362 6.62×10−6 0.008251 6.78×10−6

0.999999 0.016201 1.98×10−5 0.008012 6.50×10−6 0.008012 6.50×10−6 0.007991 6.42×10−6

Table 6.17: Total utility loss, LU
tot, for a symmetric portfolio in n = 10 dimensions.
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Figure 6.10: Total utility loss, LU
tot, corresponding Table 6.17.
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ρ P (1) P (2) P (3) D

0.0 0.019227 0.019227 0.019227 0.019172

0.1 0.016048 0.015871 0.016085 0.015391

0.2 0.015417 0.014706 0.015363 0.013465

0.3 0.015993 0.014187 0.015295 0.012874

0.4 0.017369 0.014059 0.015498 0.013117

0.5 0.019397 0.014362 0.015878 0.013833

0.6 0.021897 0.015005 0.016335 0.014752

0.7 0.025110 0.015897 0.016886 0.015803

0.8 0.028854 0.016964 0.017541 0.016899

0.9 0.033353 0.018061 0.018262 0.018022

0.999999 0.038884 0.019230 0.019230 0.019178

Table 6.18: Relative certainty-equivalent loss, LCE
rel , for a symmetric portfolio in

n = 10 dimensions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Correlation, ρ

R
el

at
iv

e 
C

E
 lo

ss

 

 

cand. (1)
cand. (2)
cand. (3)
dual cand.

Figure 6.11: Relative certainty-equivalent loss, LCE
rel , corresponding to Table 6.18.
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ρ P (1) P (2) P (3) D

0.0 0.014420 0.014420 0.014420 0.014379

0.1 0.012036 0.011903 0.012064 0.011543

0.2 0.011563 0.011030 0.011522 0.010099

0.3 0.011995 0.010640 0.011471 0.009656

0.4 0.013027 0.010544 0.011623 0.009838

0.5 0.014548 0.010771 0.011909 0.010375

0.6 0.016423 0.011254 0.012251 0.011064

0.7 0.018833 0.011923 0.012665 0.011852

0.8 0.021640 0.012723 0.013155 0.012674

0.9 0.025014 0.013546 0.013696 0.013516

0.999999 0.029163 0.014423 0.014423 0.014384

Table 6.19: Certainty-equivalent loss on investment, LCE
inv , for a symmetric portfolio

in n = 10 dimensions.
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Figure 6.12: Certainty-equivalent loss on investment, LCE
inv , corresponding to Table

6.19.
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ρ P (1) P (2) P (3)

0.0 1.599722 1.599722 1.599722

0.1 1.470716 1.524523 2.775319

0.2 1.185927 1.330311 3.344850

0.3 0.902468 1.307875 3.408993

0.4 0.677362 1.396126 3.211834

0.5 0.513121 1.500972 2.923836

0.6 0.396000 1.570124 2.622711

0.7 0.307890 1.602652 2.334245

0.8 0.244383 1.612467 2.073626

0.9 0.195012 1.605554 1.833249

0.999999 0.155481 1.598968 1.598971

Table 6.20: Transaction loss to displacement loss, F , for a symmetric portfolio in
n = 10 dimensions.
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Figure 6.13: Transaction loss to displacement loss, F , corresponding to Table 6.20.
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Dimension n = 30.

ρ P (1) SD(1) P (2) SD(2) P (3) SD(3) D SD

0.0 0.240297 3.60×10−5 0.240298 3.60×10−5 0.240297 3.60×10−5 0.239572 3.53×10−5

0.1 0.044463 1.86×10−5 0.042040 1.11×10−5 0.045868 9.86×10−6 0.036514 1.05×10−5

0.2 0.027924 2.66×10−5 0.022135 8.27×10−6 0.025937 7.93×10−6 0.018114 1.06×10−5

0.3 0.023864 3.39×10−5 0.015097 7.98×10−6 0.018555 7.44×10−6 0.013393 1.02×10−5

0.4 0.023101 3.99×10−5 0.012042 8.23×10−6 0.014730 7.11×10−6 0.011390 9.38×10−6

0.5 0.023465 4.56×10−5 0.010519 8.26×10−6 0.012411 6.93×10−6 0.010280 8.82×10−6

0.6 0.024486 4.98×10−5 0.009646 8.02×10−6 0.010871 6.86×10−6 0.009554 8.14×10−6

0.7 0.025789 5.35×10−5 0.009050 7.66×10−6 0.009765 6.78×10−6 0.009003 7.71×10−6

0.8 0.027276 5.60×10−5 0.008636 7.25×10−6 0.008981 6.72×10−6 0.008610 7.23×10−6

0.9 0.029169 5.74×10−5 0.008297 6.86×10−6 0.008398 6.60×10−6 0.008260 6.84×10−6

0.999999 0.31630 5.65×10−5 0.008005 6.54×10−6 0.008005 6.54×10−6 0.007995 6.50×10−6

Table 6.21: Total utility loss, LU
tot, for a symmetric portfolio in n = 30 dimensions.
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Figure 6.14: Total utility loss, LU
tot, corresponding to Table 6.21.
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ρ P (1) P (2) P (3) D

0.0 0.019223 0.019223 0.019223 0.019165

0.1 0.013872 0.013116 0.014311 0.011392

0.2 0.015191 0.012041 0.014110 0.009854

0.3 0.018518 0.011715 0.014399 0.010393

0.4 0.023268 0.012138 0.014848 0.011481

0.5 0.029097 0.013043 0.015390 0.012748

0.6 0.036044 0.014200 0.016002 0.014063

0.7 0.043945 0.015422 0.016641 0.015341

0.8 0.052808 0.016720 0.017387 0.016669

0.9 0.063239 0.017988 0.018207 0.017909

0.999999 0.075913 0.019212 0.019212 0.019189

Table 6.22: Relative certainty-equivalent loss, LCE
rel , for a symmetric portfolio in

n = 30 dimensions.
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Figure 6.15: Relative certainty-equivalent loss, LCE
rel , corresponding to Table 6.22.
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ρ P (1) P (2) P (3) D

0.0 0.014417 0.014417 0.014417 0.014374

0.1 0.010404 0.009837 0.010733 0.008544

0.2 0.011393 0.009031 0.010582 0.007390

0.3 0.013889 0.008786 0.010799 0.007795

0.4 0.017464 0.009104 0.011136 0.008611

0.5 0.021822 0.009782 0.011543 0.009561

0.6 0.027033 0.010650 0.012002 0.010547

0.7 0.032958 0.011566 0.012480 0.011506

0.8 0.039606 0.012540 0.013040 0.012502

0.9 0.047429 0.013491 0.013655 0.013432

0.999999 0.056934 0.014409 0.014409 0.014391

Table 6.23: Certainty-equivalent loss on investment, LCE
inv , for a symmetric portfolio

in n = 30 dimensions.
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Figure 6.16: Certainty-equivalent loss on investment, LCE
inv , corresponding to Table

6.23.
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ρ P (1) P (2) P (3)

0.0 1.598988 1.598988 1.598988

0.1 1.159087 1.210734 4.767740

0.2 0.667479 1.075889 5.186914

0.3 0.401388 1.260496 4.602253

0.4 0.258220 1.449775 3.908813

0.5 0.177786 1.559024 3.318750

0.6 0.127789 1.605658 2.838823

0.7 0.095028 1.614207 2.449766

0.8 0.073580 1.616192 2.133558

0.9 0.057437 1.609879 1.859427

0.999999 0.045046 1.599665 1.599668

Table 6.24: Transaction loss to displacement loss, F , for a symmetric portfolio in
n = 30 dimensions.
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Figure 6.17: Transaction loss to displacement loss, F , from Table 6.24.





Conclusion

This thesis addressed the problem of maximizing the expected utility of terminal wealth

in arbitrary dimensions in the presence of small proportional transaction costs. We used

the shadow-price method to formulate a sufficient condition for asymptotic optimality

of a trading strategy. We showed that an asymptotically optimal trading strategy can

be described as solution to a reflecting stochastic differential equation. The reflecting

boundary defining the no-trade region of the strategy was characterized as solution to a

free-boundary problem. Instead of attempting to solve the problem exactly, we proposed

three candidate domains as possible no-trade regions. With each candidate domain, we

associated a trading strategy by defining it as solution to a stochastic Skorohod prob-

lem with reflections at the boundary of the domain. By modifying the notion of the

shadow price, we established a duality relation between trading strategies and martin-

gale measures for shadow-price processes. As a result, we obtained an upper bound on

the expected utility of an arbitrary trading strategy. The values of the expected utility

of each of our candidate strategies as well as the value of the dual upper bound were

obtained by means of numerical simulations. The simulations were run on the Black-

Scholes model for two different portfolios. The first portfolio consisted of 30 stocks

replicating the German stock market index DAX. The second portfolio contained identi-

cal assets; it was analysed to demonstrate the effect of asset correlations on the expected

utility of trading strategies in different dimensions.

The numerical analysis of the DAX portfolio showed that the long-term impact of small

proportional transaction costs is rather small. Our best candidate strategy generated a

total utility loss percentage of ∼ 0.97%. In terms of the certainty equivalent, this corre-

sponds to a loss of ∼ 1.63% compared to the frictionless market. The value of the dual

bound on the utility loss is ∼ 0.73%, or ∼ 1.24% in terms of the certainty equivalent.

The meaning of the dual values is that no strategy can generate less utility respectively

certainty-equivalent loss than the values provided by the dual bounds.

A further interesting result is the observation that one can already do remarkably well

when trading according to a strategy defined in a very simple rectangular domain. The

values we obtained were ∼ 1.01% utility loss and ∼ 1.7% certainty-equivalent loss.
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Summarizing the results of this study, we can say that solving the problem exactly is

a very challenging task. This is primarily due to the fact that the no-trade region,

which essentially defines an asymptotically optimal trading strategy, is characterized

by a multi-dimensional free-boundary problem. But even if one had the exact bound-

ary, one would still have to solve a Skorohod problem in a non-convex domain with a

non-smooth stochastic boundary to obtain an asymptotically optimal trading strategy.

If one also wants to compute the expected utility loss, one immediately faces another

problem: one requires the knowledge of the distribution of the trading strategy inside

the no-trade region. Considering all the challenges described, it seems to be reasonable

to use numerical methods to analyse the problem in high dimensions.

The numerical approach we described can be extended to other utility function. The

properties of the exponential utility were used to obtain a simple asymptotic expansion

of both the primal and the dual functional. This, in turn, allowed us to simulate the

small first-order contributions to the utility loss directly as Q-expectations of certain

(stocahstic) integrals. Nonetheless, all approximations of Chapter 5 and the implemen-

tation scheme presented in Chapter 6 do not depend on the particular choice of the

utility function.

As discussed in Section 6.4, our algorithm for simulating the asymptotic expansions of

the loss functionals slightly underestimated the existing exact values. Unfortunately, we

were not able to resolve this issue. Hence, one should attempt to improve the numerical

implementation, which might lead to better results.



Appendix A

DAX Data

In this appendix, we collect the data that was used in Subsection 6.2.2 to replicate the

DAX.

Company Weight(%) Company Weight(%)

BASF 9.772 Deutsche Post 2.1487

Siemens 9.5991 Fresenius 2.0009

Beiersdorf 8.3453 Fresenius med. care 1.7545

SAP 7.8424 Henkel Vz. 1.6636

Allianz 6.5383 Deutsche Boerse 1.4379

Daimler 5.8741 Infineon 1.1726

E.ON 5.6357 Commerzbank 1.0903

Deutsche Bank 4.8395 K+S 1.0158

Deutsche Telekom 4.7424 BMW St. 0.9522

Linde 3.8096 Merck 0.9167

Beyer 3.41 Heidelberg Cement 0.8795

Volkswagen Vz. 3.3324 Thyssen Krupp 0.8422

Munich Re 3.198 MAN 0.8378

RWE St. 2.8185 Lufthansa 0.7041

Adidas 2.25356 Metro 0.5723

Table A.1: DAX composition in the time 21 June 2010 — 23 September 2012.
The weights of the stocks in the table are those of the last trading day of the time period.

Source: www.dax-indeces.de
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Appendix A. DAX Data 139
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Appendix B

Alternative Projection Scheme

In Subsection 6.3.2, we introduced the discretization used for computer simulations. We

defined the projection scheme, πR, for simulating reflected processes in Definition 6.3.

However, there is no rule which determines what elements of the boundary of the no-

trade region R should be assigned to the points x ∈ Rc. For this reason, we introduce

here an alternative projection scheme which we compare with the scheme from Definition

6.3 by running a simulation of the DAX portfolio. The alternative scheme is based on

the l1-projection onto the boundary. More formally, define

πR1 : Rn → R, x 7→ arg min
y∈R

‖x− y‖1 .

At first glance, projecting onto the boundary by minimizing the l1-distance appears very

reasonable since it minimizes the investor’s transaction costs. However, the simulation

results show that, in general, πR1 leads to trading strategies generating significantly

higher values of the expected utility loss. We compare πR1 with πR by simulating the

primal candidate P (2) (cf. Table 6.7). The results are shown in Table B.1. Notice the

difference in the values of the functional F . The proportion of the displacement loss

in the case of πR1 is much larger than in the case of πR. It is worth mentioning that

both schemes perform equally well for rectangular domains. Moreover, in the case of

the symmetric portfolio, the results are also equal for the candidate P (2).

πR πR1

LUtot 0.009703 0.035429

SD 7.15×10−6 1.43×10−4

F 1.227002 0.492674

Table B.1: Performance of the l1-projection.
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[GR01] Thomas Goll and Ludger Rüschendorf. Minimax and minimal distance mar-

tingale measures and their relationship to portfolio optimization. Finance

and Stochastics, 5(4):557–581, 2001.

[GR02] Peter Grandits and Thorsten Rheinländer. On the minimal entropy martin-

gale measure. Ann. Probab., 30(3):1003–1038, 07 2002.
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[SW13] Leszek S lomiński and Tomasz Wojciechowski. Stochastic differential equa-

tions with time-dependent reflecting barriers. Stochastics, 85(1):27–47, 2013.

[Tob58] James Tobin. Liquidity preference as behavior towards risk. Review of Eco-

nomic Studies, 25(2):65–86, 1958.

[WW97] A. E. Whalley and P. Wilmott. An asymptotic analysis of an optimal hedg-

ing model for option pricing with transaction costs. Mathematical Finance,

7(3):307–324, 1997.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Market model
	2.3 Utility functions
	2.3.1 Convex conjugate


	3 Portfolio Optimization: The Frictionless Case
	3.1 Basic notions from portfolio theory
	3.2 Portfolio optimization
	3.2.1 Arbitrage and admissibility
	3.2.2 The dual problem
	3.2.3 Duality and optimality
	3.2.4 Example: Black-Scholes model


	4 Portfolio Optimization with Proportional Transaction Costs
	4.1 Portfolio theory in the presence of proportional costs
	4.1.1 Arbitrage and admissibility

	4.2 Shadow price
	4.3 Asymptotics for small transaction costs
	4.3.1 Reformulating the optimization problem
	4.3.2 The leading-order utility loss
	4.3.3 The one-dimensional case
	4.3.4 The uncorrelated multidimensional case
	4.3.5 The case of complete correlation


	5 Approximations
	5.1 No-trade region and trading strategy
	5.1.1 Naive candidate
	5.1.2 A more sophisticated construction
	5.1.3 Alternative candidate

	5.2 Dual upper bound

	6 Numerical Analysis in the Black-Scholes Setting
	6.1 Approximations in the Black-Scholes model
	6.2 Replicating the DAX
	6.2.1 Theoretical preliminaries
	6.2.2 Applying the estimation scheme

	6.3 Implementation algorithm
	6.3.1 Measures of loss and their dual bounds
	6.3.2 Discretization scheme
	6.3.3 Asymptotics

	6.4 Portfolio performance
	6.4.1 One-dimensional portfolio
	6.4.2 DAX portfolio
	6.4.3 Symmetric portfolio


	Conclusion
	A DAX Data
	B Alternative Projection Scheme
	Bibliography

