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Abstract

This thesis concentrates on wind-induced ocean waves in coastal areas including

two main aspects: wave energy assessment with numerical models and development

of a 4D variational assimilation scheme (4DVAR) for nearshore wave simulations.

The method for assessing the wave energy potential was developed out in three

steps: long-term wave power estimation, detailed wave condition analysis and suit-

able location selections for wave energy farms. The method was applied to the south

coast of Java Island. A long-term analysis of a 10-year wave dataset obtained from

the ERA-Interim database was able to suggest that the annual median power is

expected to exceed 20 kW/m along the coast showing the potential for wave energy

extraction. A coastal wave model with an unstructured grid was run over one year

in the coastal area, revealing that swells from the southwest were the major source

of wave energy and highest monthly median wave power reached about 33 kW/m.

General criteria regarding wave conditions, water depth and distance from the coast

were established and applied in the study area revealing two suitable zones for wave

energy farms.

The 4D variational assimilation scheme including partition methods for nearshore

wave models has been tailored to SWAN model for adjusting both, wave boundary

conditions and wind fields. Nonstationary wave boundary conditions were assimi-

lated by providing defined correlations of model inputs in time. Twin experiments

covering both stationary and nonstationary wave conditions were carried out to as-

sess the adequacy of the proposed scheme. The value of the cost function declined to

less than 5% and root mean square errors (RMSE) of spectrum were reduced to less

than 10% under stationary wave conditions. Under nonstationary wave conditions,

the RMSE were reduced to less than 10% after 30 iterations in most assimilation

windows. Also, the proposed scheme was modified for low spatial observation cover-

age by assuming a group of ’basic’ inputs to contain all errors so as to be applied in

the German Bight. The modified scheme using a single observing location performed

comparable assimilation effect with the original scheme without the basic inputs as-

sumption using 25 observing locations in twin experiments. For both schemes wave
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spectrum RMSE were reduced by around 50% throughout the whole computation

domain. The practical experiment revealed that the wave spectrum RMSE at the

validation buoy declined by more than 60% by means of the modified assimilation

scheme with observations from a single in-situ buoy. The results can suggest that the

developed 4D variational scheme is capable of improving the model results effectively

under wave conditions when nonlinear interactions are insignificant. The modified

scheme with ’basic’ inputs can be applied in coastal areas where observations are

spatially limited provided sea states are strongly correlated in space.



Zusammenfassung

Diese Arbeit befasst sich mit wind-induzierten Ozeanwellen in Küstengebieten

und umschließt zwei Aspekte: eine Untersuchung zur Wellenenergie mittels nu-

merischer Modelle und die Entwicklung eines 4D variationellen Datenassimilationsver-

fahrens (4DVAR) für küstennahe Wellensimulation. Die Methode zur Bestimmung

der Wellenenergie wurde in drei Schritten entwickelt: Langzeit Abschätzung der

Wellenenergie, detaillierte Analyse von Wellenbedingungen und Auswahl geeigneter

Gebiete für Wellenkraftanlagen. Die Methode wurde an der Südküste Javas angewen-

det. Die Langzeitanalyse eines Datensatzes der ERA-Interim Datenbank über 10

Jahre deutete darauf hin, dass die mittlere jährliche Leistung entlang der Küste

20 kW/m übersteigt, was auf ein Potenzial zur Gewinnung von Wellenenergie hin-

deutet. Ein Wellenmodell für die Küste mit unstrukturiertem Gitter, welches für

ein Jahr simuliert wurde, zeigt, dass Wellengang aus Südwest die Hauptquelle für

Wellenenergie war und das Gebiet eine mediane maximale monatliche Leistung von

etwa 33 kW/m erreichte. Allgemeine Kriterien zur Beschreibung von Wellenbe-

dingungen, Wassertiefe und Entfernung zur Küste wurden eingeführt und im Un-

tersuchungsgebiet angewendet, wodurch zwei geeignete Zonen für Wellenkraftan-

lagen identifiziert werden konnten. Das 4D variationelle Datenassimilationsver-

fahren, das die Partitionsmethode für küstennahe Wellenmodelle beinhaltet, wurde

für SWAN Modelle zugeschnitten, um sowohl die Wellenrandbedingungen als auch

Windfelder anzupassen. Nichtstationäre Modellrandbedingungen für den Seegang

wurden assimiliert indem definierte Korrelationen von Modelleingabewerten über

die Zeit eingebracht wurden. Parallel-Experimente welche stationäre und nichtsta-

tionäre Wellenbedingungen berücksichtigen wurden durchgeführt, um die Eignung

des vorgeschlagenen Verfahrens zu untersuchen. Unter stationären Bedingungen

verringerte sich der Wert der cost-function auf weniger als 5% und die Fehler des

quadratischen Mittelwertes (root mean square error, RMSE) des Spektrums wur-

den auf weniger als 10% reduziert. Unter nichtstationären Bedingungen wurden

die RMSE nach 30 Iterationen in den meisten Assimilationsfenstern auf weniger

als 10% reduziert. Zudem wurde das vorgeschlagene Verfahren an eine geringe
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räumliche Datendichte angepasst und so in der Deutschen Bucht angewendet, in-

dem eine Gruppe von ”Basiseingaben” angenommen wurde, die alle Fehler bein-

haltet. Das angepasste Verfahren, welches einen einzelnen Beobachtungort verwen-

det, leistete einen vergleichbaren Assimilationseffekt wie das Originalschema ohne

die Basisvorgabe-Annahme unter Verwendung von 25 Beobachtungsstellen in den

Parallel-Experimenten. Für beide Verfahren wurden die RMSE des Wellenspek-

trums im gesamten Modellgebiet um ca. 50% reduziert. Das angewandte Experi-

ment zeigte, dass die RMSE des Wellenspektrums an der Validierungs-Boje um mehr

als 60% abnahm, wenn das angepasste Assimilationsverfahren mit Beobachtungen

einer einzelnen in situ Boje verwendet wurde. Die Ergebnisse weisen darauf hin,

dass das entwickelte 4D variationelle Datenassimilationsverfahren die Modellergeb-

nisse unter Wellenbedingungen, bei denen nichtlineare Interaktionen nicht signifikant

sind, effektiv verbessern kann. Das modifizierte Verfahren mit ”Basisannahmen”

kann in Küstengebieten in denen die räumliche Messdichte begrenzt ist, angewendet

werden, vorausgesetzt der Seegang im Gebiet weist eine starke räumliche Korrelation

auf.
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Chapter 1

Introduction

1.1 Overview

Ocean surface waves, as a most common and visible ocean phenomenon, have

risen the research attention of human kind for thousands of years. Nowadays, stud-

ies on ocean waves from planetary-scale Rossby waves to diurnal-scale tidal waves

or even second-scale wind induced waves, constitute the foundation of oceanography

(Massel, 1996). Especially, when it comes to human activities such as marine trans-

portation, fishery, coastal engineering or other offshore exploitation, the importance

of the small-scale wind induced waves can not be overestimated. Also, wind waves

play a crucial role in other coastal processes. They are a important force for sediment

transport and the energy exchange between waves and currents leads to complicated

nearshore flow patterns. Furthermore, in present world, where the shortage of fossil

fuel energy is becoming a significant problem, ocean waves are considered as one

kind of promising renewable energy which can be harvested in the coastal areas in

a relatively convenient way (Antonio, 2010; Gunn and Stock-Williams, 2012). All

those researches on the ocean waves require solid and sufficient nearshore wave in-

formations. Thus, this study focuses on simulation and assimilation problems of

nearshore wave models.

No doubt, in-situ measurements of sea state, expected to be relatively credible

(Portilla, 2009; Young, 1998), make great contributions to revealing wind wave prop-

erties. However, the measurements are limited by topography, hydrology or other

factors are normally sparse in space, making it difficult to determine wave condi-

tions over whole research ares such as for wave energy farm selections. Nowadays,

numerical simulation is becoming a widely-used tool in studies on waves and other

oceanic phenomena. A straightforward way to simulate waves is directly solving

the momentum equations to obtain sea level fluctuations or water particle motions

1



2 Chapter 1. Introduction

with either Euler or Lagrange view. Numerical models based on those equations

are called the phase-resolved model which can provide temporary positions and ve-

locities of water particles (Blumberg and Mellor, 1987). However, phase-resolved

models require huge amounts of computation resource when simulating small scale

processes such as wind waves, making their applications difficult in relatively large

areas. On the other hand, uncertainties such as turbulence or other randomized

processes make the small scale waves almost impossible to be predicted correctly.

Therefore, a statistic view focusing on the evolution of wave energy, by assuming

wind waves are combinations of countless sine waves with randomized phases, is

widely accepted in wind wave studies (Whitham, 2011). Based on those theories

of stochastic waves by Pierson (1952) and Longuet-Higgins (1957), several numer-

ical wave models solving power density or action density balance equations, have

been developed and applied in researches and engineering problems. Theoretically,

those models can provide relatively credible information of wave conditions with

high spatial and temporal coverage giving a good opportunity to evaluate wave en-

ergy over whole research area. Recently, some assessment of wave energy potential

using the wave informations simulated with the above wave models have been re-

ported (Gallagher et al., 2016; Henfridsson et al., 2007; Iglesias et al., 2009; Iglesias

and Carballo, 2010; Nobre et al., 2009; Rusu and Soares, 2009; Stopa et al., 2011).

Nevertheless, some of the studies utilized only global wave data for their analysis in

coastal areas (Henfridsson et al., 2007; Iglesias et al., 2009; Nobre et al., 2009) and

others only paid attention to wave power itself, neglecting other technical, financial

and evironmental factors affecting the selection of suitable wave energy farm sites

(Iglesias and Carballo, 2010; Rusu and Soares, 2009; Stopa et al., 2011). When it

comes to coastal areas, the accuracy of wave models become an inevitable problem.

Compared with large scale global wave models, the accuracy of wave simulations

in coastal areas characterized by shallow water depth, small wind fetches and short

time periods is more sensitive to wave boundaries, initial conditions, bathymetry

and other model inputs. Therefore, to guarantee the credibility of coastal wave

models, assimilation techniques combining the model results and observations are

widely applied. The basic conception of all assimilation approaches is to find a

proper combination of two groups of data making the results have the minimum

variance from true values. Based on the Bayesian formulation and the assumption

of Gaussian distributions, the problem can be solved by finding the extreme value

of a cost function consisting of variances of observations and first guess modeled

values (Evensen, 2009). Hence, according to the different approaches used to ob-

tain the extremum, assimilation methods are roughly classified into two categories:



1.1. Overview 3

sequential assimilation methods and variational assimilation methods (Fig. 1.1). In

the sequential case, the observations are “fed-back” into the model at each time

they are available producing a best estimate. In the variational case a feasible

state trajectory is found that best fits the observed data over a time window (La-

hoz et al., 2010). Various assimilation schemes based on Optimum interpolations

(OI), Kalman filter (KF) and 4D variational assimilations (4DVAR) belonging to

either of the two categories are developed for wave models (Emmanouil et al., 2010,

2012; Greenslade, 2001; Hasselmann et al., 1997; Hersbach, 1998; Lionello et al.,

1992; Sannasiraj et al., 2006; Siddons et al., 2009; Voorrips et al., 1997, 1999). It

is difficult to conclude which scheme is the most suitable one for nearshore wave

simulations since each one has its own deficiencies and strengths. Among them,

the schemes by means of 4D variational assimilation method usually perform better

than relatively simple schemes with OI and requires fewer computation resources

than schemes with Kalman filter. Besides, 4D variational assimilation method is

more convenient to be applied to correct other model inputs apart from sea state

itself. Nevertheless, the variational method is normally expensive to develop since

in most cases, complex models such as tangent linear equations or adjoint models

need to be coded, making assimilation schemes with that method intimately tied to

a particular model difficult to be attached to a different one (Talagrand, 2012).

Assimilation
Schemes

Sequential
Schemes

Variational
Schemes

SP
OI

KF,EKF
3D-VAR

...

4D-VAR
4D-PSAS

...

Figure 1.1: Applied data assimilation schemes. SP (Successive Correction); OI (Opti-
mal Interpolation); KF (Kalman Filter); EKF (Extended Kalman Filter); 3D-VAR (3D
Variational); 4D-VAR (4D Variational); 4D-PSAS (4D Physical-space Statistical Analysis
System);

This work intends to provide a feasible method for wave farm selection in coastal

areas with wave information from numerical wave models. At the same time, a 4D

variational assimilation scheme suitable for nearshore wave simulation is developed

so as to confirm the model accuracy. In order to identify wave energy and error

sources, two important contributions of wave systems in coastal areas, swells and
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windsea, are discussed separately in the assembled three papers. Wave processes are

regarded as the superposition of the two contributions in the assimilation scheme.

New approaches are proposed to improve the effect of the developed assimilation

scheme in practical applications with limited observations in space. Two coastal

areas, the south coast of the Java Island and the German Bight are introduced in

this study. Detailed information and related questions regarding those areas will be

presented in the next chapters, outlining the motivation for the papers assembled

in this work.

1.2 Wave energy along the coast of the Java Is-

land

Figure 1.2: The south coast of the Java Island

The wave energy level is usually expressed as power per unit length (along the

wave crest or along the shoreline direction) named power density. The regions

with annual average power above 20 kW/m are regarded as having ’good’ wave

conditions (Antonio, 2010; Arinaga and Cheung, 2012). Obviously, the energy of

wind induced waves mainly come from wind inputs and grows through oceans. As

the waves propagate and grow with the wind, coasts in the downwind direction are

expected to have suitable wave conditions for energy extraction. As it is known, the

westerlies in the mid-latitude region have the broadest fetch with the persistent wind

direction from west to east on the earth making the suitable areas for wave farms

mostly occurring along the east coast of oceans (Arinaga and Cheung, 2012). The
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westerlies are relatively strong in the southern hemisphere where less area is covered

by land. Furthermore, seasonal variations are in general considerably larger in the

northern than in the southern hemisphere, which makes the west coasts of South

America, Africa and Australia particularly attractive for wave energy exploitation

(Antonio, 2010).

Java Island is surrounded by the Java Sea to the north, Sunda Strait to the

west, the Indian Ocean to the south and Bali Strait and Madura Strait in the east

(Fig. 1.2). In the Indian Ocean, the west and south coast of Australia, as the

boundary of the fetch of the westerlies, have an average annual wave power of 60

kW/m during the winter months (Arinaga and Cheung, 2012; Hughes and Heap,

2010). Some instruments for wave energy extraction called wave energy converters

have already been deployed there (Antonio, 2010). Since the main direction of these

swells are northeast, it is expected that they approach the south coast of Java Island

with considerable wave energy. Apart from those swells from median latitude area,

Java island is dominated by the Indo-Australian monsoon system. The seasonal

varying monsoon induced waves are supposed to have a great influence on the wave

climate in this area. Therefore, to reveal the wave climate and address the wave

problems in this area, wave information over the whole coast covering at least two

seasons is required.

However, wave climate is not the only limitation for deployment of wave energy

farms. There are various types of wave energy converters such as: oscillating water

column, oscillating body systems and overtopping systems. Different types of con-

verters have different ranges of mooring depth (from dozens meters to thousands

meters) and require different hydrologic conditions (Antonio, 2010). The extraction

efficiency is also different making it difficult to estimate the exploitable wave energy.

For example, the efficiency of the converter Pelamis in the Spanish nearshore area

is around 20% and that of the converter Wave Dragons in the same area is around

40% (Rusu, 2014). Transportation cost of the extracted power, maintaining cost

of the instruments and other financial issues determine whether the wave farms are

valuable. Additionally, since the extraction of wave energy will change the wave

conditions nearby, some environmental issues such as sediment deposition after the

deployment should be considered as well. Nevertheless, it is still possible to find a

set of general criteria to roughly assess suitable locations for wave energy farms.

The main objectives and questions regarding the wave energy along the coast of

the Java Island in this study are:

� Are the wave conditions in this area adequate for wave energy extraction?

� How do swells and local wind contribute to the wave energy in this region?
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� How to select wave energy farms considering the wave climate and other en-

vironmental aspects?

To address those questions, the aim of the work in Ch. 2 is to:

� Analyze the long-term variations of wave conditions in this area.

� Setup a credible coastal wave model to provide sufficient wave information and

estimate the potential wave power in nearshore area.

� Set general criteria based on different conditions. Select suitable locations for

wave farms.

1.3 Nearshore wave assimilation system

For the wave models concentrating on nearshore wave processes, such as the

coastal wave model applied here for wave energy assessments, not only local wind

inputs but also wave boundary inputs are crucial. The input wave conditions and

wind fields normally are provided by global models of which accuracy can not be

guaranteed in coastal areas. In fact, results from different global models are incon-

sistent in some sea areas (Stopa and Cheung, 2014). Expanding the computational

domain to open seas may ease the problem but computation cost will be extremely

increased. On the other hand, some of the source and sink terms in the balance

equation applied in the phase-average wave models are empirical or based on ob-

servations in specific sea areas, which makes the related coefficients inappropriate

when the models are applied in other areas with entirely different wave climates.

Therefore, observations ether in-situ or remote are always required to ensure the

credibility of the wave models. Data assimilation is an efficient technique to com-

bine observations and wave model results to improve the model performance.

Early attempts of data assimilation applications in wave simulations started from

1980s with the rise of remote sea surface observations. The most implemented as-

similation method in wave models is optimum interpolations (Portilla, 2009). The

OI method is a simple sequential assimilation method requiring relative low com-

putation cost by replacing the evolving background error covariance matrix with a

constant one (Lahoz et al., 2010). The assumption of constant covariance matrix

makes the method easier and cheaper to be applied. But obviously the constant co-

variance matrix will become inaccurate with the extension of assimilation windows

and consequently, decay the assimilation effect. Kalman filter is another widely
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applied sequential assimilation method. The Kalman filter and the subsequent ex-

tended Kalman filter (EKF) (Kalman et al., 1960) are able to guarantee the accuracy

of the background error covariance matrix to some extend by evolving the covariance

matrix with forward models, but at the same time, the evolution requires a huge

storage space and lowers the assimilation efficiency. Besides, the ideal of sequen-

tial assimilation method, that the forward model gets fed-back at the time when

observations are available, is more suitable to directly adjust initial condition for a

forecasting system. Involving observations only at one time point is obviously not

sufficient to choose model inputs such as wave boundary conditions and winds as

control variables. This is due to the fact that those model inputs force the forward

model thereby affecting waves constantly during a period and normally cannot be

instantly reflected by observed sea states. On the contrary, variational assimilation

method can find sets of model inputs fitting the observations best over an assimi-

lation window. In that sense, a 4D variational assimilation scheme is more suitable

for nearshore wave simulations in this study.

1.3.1 4D variational scheme

For 4Dvar schemes, the adjoint technique is the most commonly used method to

minimize the cost functions by revealing its advantage in reducing the computational

load especially for control vectors with high dimensions. Generally, there are two

ways to obtain the adjoint model for forward models. One is deriving the adjoints

from the analytical form of governing equations and discretizing them later. The

other is deriving the adjoint model directly from the discretized governing equations

which is applied in the forward models. Both ways work and have been applied

in some studies: De Las Heras et al. (1994) and Veeramony et al. (2010) obtained

the analytical adjoints, and Hersbach (1998) and Orzech et al. (2013) directly de-

rived the discretized adjoint model using a so called adjoint compiler. The main

advantage of the adjoint compiler is that non-linear terms in governing equations

can be easily preserved, while deriving the analytical adjoints for non-linear terms

is far more complex. On the other hand, nonlinear wave-wave interactions redis-

tribute the wave energy in frequencies and directions through wave evolutions. The

most important part of the interaction is the energy transfer between swell and

windsea contributions. Nevertheless, the assimilation task in this study is going to

consider the errors from both local winds and swells simultaneously, making identi-

fication and classification for different wave energy contributions important. If the

interactions between those two contributions are significant, the classification will

become difficult thereby degrading the assimilation effect crucially. Therefore, for
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this study, only wave conditions without strong wave-wave non-linear interactions

are considered. In this case the analytical adjoints become more straightforward to

apply.

As mentioned above, classification of wave energy contributions is crucial for

the assimilation. Some simple classification criteria based on wave age such as the

formula provided by Komen et al. (1984) require accurate wind informations. Some

others based on Pierson-Moskowitz (PM) spectrum by Pierson and Moskowitz (1964)

are far too simple to work properly under varying wave conditions. Another widely

used effective algorithm to separate different wave systems is the so called partition

method, which is able to split the 2D wave spectrum into windsea and swell com-

ponents taking the topography of the spectrum into account (Waters et al., 2013).

Partition method has been applied in wave simulations since the early 1990s (Ger-

ling, 1992; Voorrips et al., 1997; Hasselmann et al., 1997). The partition methods

are appropriate in studies in which the accuracy of wind fields is doubtful, since

they separate wave energy contributions by utilizing watershed algorithms which

are mainly based on wave spectra themselves.

Hence, the desired variational wave assimilation scheme is revealed:

� A 4D variational scheme with adjoint method.

� Suitable for nearshore wave model taking swell and windsea contributions into

account.

To fulfill the demands, the aim of the present work in Ch. 3 is to:

� Derive the analytical adjoints and discretize them to establish the adjoint

model.

� Select proper partition algorithm to perform assimilations separately.

� Validate the adjoint model.

� Design twin experiments to assess the developed assimilation scheme.

1.3.2 Application in the German Bight

Apart from the schemes themselves, there are several external factors affecting

the performance of assimilation schemes in applications. For example, background

and observation error covariance matrixes are usually unknown, whereas the accu-

racy of those matrixes is crucial for assimilations by constituting gain matrix in the
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Figure 1.3: The German Bight

Kalman filters or serving as weights of cost functions in variational schemes. How-

ever, in most studies on ocean waves, the error covariance of sea states or winds are

estimated by a priori exponential decay curves with respect to distance (Greenslade

and Young, 2004). Obviously the accuracy cannot be guaranteed. Besides, usually

only the error covariance of wave total energy are estimated but the covariance of

spectra in different frequencies and directions are dismissed. Some studies have tried

to improve the error covariance estimation by providing a more physical-based es-

timate curve (Portilla, 2009). Nevertheless, even once the accurate error covariance

are obtained, the question is, does the assimilation scheme still work with a reduced

number of observations in space and time?

Therefore, the study in Ch. 4 concentrates on the application problem of the

developed 4D variational assimilation scheme. The German Bight, in the south-

eastern North Sea is selected as the research area (see Fig. 1.3). The motivation to

choose the German bight includes two aspects. First of all, the North Sea is one of

the sea areas which are most frequently observed and studied. Therefore, relatively

accurate bathymetry data are available. Furthermore, many empirical formulas or

coefficients applied in wave models are obtained based on the observations in North

Sea (Hasselmann et al., 1973). So, it is expected that in this area, the errors of some

experimental coefficients which are not considered in the assimilation scheme can be

kept as small as possible. Secondly, the wave conditions are various in the German

Bight. Sometimes the swells from the northwest or southwest dominate the bight
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and sometimes pure windsea waves are caused by the easterly winds (Hasselmann

et al., 1973), providing a good opportunity to assess the scheme under different wave

conditions and to examine the applied partition method as well. But still the in-situ

observations are limited. Although some high frequency radars have been deployed

in the area, credible wave data from the radars are not available for now (Gurgel

et al., 2011; Wahle et al., 2015). Hence, a solution guaranteeing the assimilation

effect with limited observations is demanded.

There are several problems when applying the scheme into the German Bight:

� How does observation coverage affect the assimilation effect in the German

Bight?

� How to modify the assimilation scheme to make it more effective when obser-

vations are limited?

To address those questions, the aim of the work in Ch. 4 is to:

� Find out the impact of the observation coverage on the scheme.

� Propose a modified scheme that can work with limited observations

� Assess the modified scheme in the German Bight.

Bibliography

Antonio, F. d. O. (2010). Wave energy utilization: A review of the technologies.

Renewable and sustainable energy reviews, 14(3):899–918.

Arinaga, R. A. and Cheung, K. F. (2012). Atlas of global wave energy from 10 years

of reanalysis and hindcast data. Renewable Energy, 39(1):49–64.

Blumberg, A. F. and Mellor, G. L. (1987). A description of a three-dimensional

coastal ocean circulation model. Three-dimensional coastal ocean models, pages

1–16.

De Las Heras, M. M., Burgers, G., and Janssen, P. a. E. M. (1994). Variational Wave

Data Assimilation in a Third-Generation Wave Model. Journal of Atmospheric

and Oceanic Technology, 11(5):1350–1369.

Emmanouil, G., Galanis, G., and Kallos, G. (2010). A new methodology for using

buoy measurements in sea wave data assimilation. Ocean dynamics, 60(5):1205–

1218.



Bibliography 11

Emmanouil, G., Galanis, G., and Kallos, G. (2012). Combination of statistical

kalman filters and data assimilation for improving ocean waves analysis and fore-

casting. Ocean Modelling, 59:11–23.

Evensen, G. (2009). Data Assimilation: The Ensemble Kalman Filter.

Gallagher, S., Tiron, R., Whelan, E., Gleeson, E., Dias, F., and McGrath, R. (2016).

The nearshore wind and wave energy potential of ireland: a high resolution as-

sessment of availability and accessibility. Renewable Energy, 88:494–516.

Gerling, T. W. (1992). Partitioning sequences and arrays of directional ocean wave

spectra into component wave systems. Journal of atmospheric and Oceanic Tech-

nology, 9(4):444–458.

Greenslade, D. (2001). The assimilation of ers-2 significant wave height data in the

australian region. Journal of Marine Systems, 28(1):141–160.

Greenslade, D. J. and Young, I. R. (2004). Background errors in a global wave

model determined from altimeter data. Journal of Geophysical Research: Oceans,

109(C9).

Gunn, K. and Stock-Williams, C. (2012). Quantifying the global wave power re-

source. Renewable Energy, 44:296–304.

Gurgel, K.-W., Schlick, T., Voulgaris, G., Seemann, J., and Ziemer, F. (2011). Hf

radar observations in the german bight: Measurements and quality control. In

Current, Waves and Turbulence Measurements (CWTM), 2011 IEEE/OES 10th,

pages 51–56. IEEE.

Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K.,

Ewing, J. a., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, a., Muller,

P., Olbers, D. J., Richter, K., Sell, W., and Walden, H. (1973). Measurements of

Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project

(JONSWAP). Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe,

A(8)(8 0):p.95.

Hasselmann, S., Lionello, P., and Hasselmann, K. (1997). An optimal interpolation

of spectral wave data. Journal of Geophysical Research, 102(C7):15,823–15,836.

Henfridsson, U., Neimane, V., Strand, K., Kapper, R., Bernhoff, H., Danielsson, O.,

Leijon, M., Sundberg, J., Thorburn, K., Ericsson, E., et al. (2007). Wave energy

potential in the baltic sea and the danish part of the north sea, with reflections

on the skagerrak. Renewable Energy, 32(12):2069–2084.



12 Chapter 1. Introduction

Hersbach, H. (1998). Application of the adjoint of the WAM model to inverse wave

modeling. J. Geophys. Res., 103:10469–10487.

Hughes, M. G. and Heap, A. D. (2010). National-scale wave energy resource assess-

ment for australia. Renewable Energy, 35(8):1783–1791.

Iglesias, G. and Carballo, R. (2010). Wave energy resource in the estaca de bares

area (spain). Renewable Energy, 35(7):1574–1584.
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Assessment of wave energy potential along the

south coast of Java Island

Qingyang Song and Roberto Mayerle

Abstract: The south coast of Java Island has a great potential for wave

energy. A long-term analysis of a 10-year wave dataset obtained from the

ERA-Interim database is performed for preliminary wave energy assessment

in this area, and it was seen that the annual median power is expected to

exceed 20 kW/m along the coast. A coastal wave model with an unstructured

grid was run to reveal the wave conditions and to assess the wave energy

potential along the coast in detail. The effect of swells and local wind on the

wave conditions is investigated. Annual median wave power, water depth and

distance from the coast are selected as criteria for the identification of suitable

locations for wave energy conversion. Two zones within the study area emerge

to be suitable for wave energy extraction. Swells from the southwest turned

out to be the major source of wave energy and highest monthly median wave

power reached about 33 kW/m.

Keywords: wave energy; swell; local wind; coastal wave model; Java; In-

donesia

2.1 Introduction

Wave energy has recently become the interest of many researchers around the

world. Several studies on global wave resource based on the data obtained from

global wave models such as ECMWF (European Centre for Medium-Range Weather

Forecasts) and NWW3 (National Oceanic and Atmospheric Administration WAVE-

WATCH III) reveal that higher wave heights are more likely to appear on the east

coast of oceans in both hemispheres (Pontes et al., 2002; Antonio, 2010; Arinaga

and Cheung, 2012). As Fig. 2.1 shows, the south of Java Island in Indonesia has

a coast to the east of Indian Ocean. In the southern Indian Ocean, wave activities

17
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are heightened due to strong westerlies in mid-latitude area and propagate north

where they combine with trade wind waves as swells (Arinaga and Cheung, 2012).

Based on the wave energy atlas from Arinaga and Cheung (2012), the highest power

for primary swell appears off the western Australian coast, reaching an average of

60kW/m during the winter months of the southern hemisphere. Since the main

direction of these swell are northeast, they reach the Java Island with considerable

wave energy. Another advantage of exploiting the wave energy in this area is that

the seasonal variation of wave conditions is much lower than in most areas of the

Northern Hemisphere (Antonio, 2010). Thus, wave converters can give more stable

output power throughout the year and the lower appearance of extreme conditions

can reduce the costs of wave projects (Pontes et al., 2002).

Site selection for the installation of wave energy devices depends on available

power, site characteristics, and possible environmental and socio-economic impacts

of the projects. However, wave conditions are still decisive criteria (Nobre et al.,

2009). Several studies have successfully applied wave models to assess the wave

energy potential at different locations in Europe and North America utilizing the

wave data covering around 10 years from WAM or WAVEWATCH III to analyze the

long-term wave variability and to roughly estimate exploitable wave energy (Hen-

fridsson et al., 2007; Iglesias et al., 2009; Iglesias and Carballo, 2010; Stopa et al.,

2011). Coastal wave models with refined computational grids and more accurate

bathymetric data were also put in progress to determine optimum locations for a

wave farm in those studies.

In this study, results of an assessment of the wave conditions and the wave energy

potential in the south coast of Java Island are presented.

2.2 Methodology

Ocean waves are the result of occurrence of a certain number of individual wave

systems originating from different meteorological events. Within the investigated

domain in this study, waves produced in the Indian Ocean spreading to the south

coast of Java Island, and local winds, as a part of the monsoon system, are main

sources of wave energy. Therefore, different wave systems due to swell and local

wind can be expected, and separate parameters for the windsea waves and swells

allow estimation of the power from the dominant wave components using respective

peak periods. Thus, precise information can be provided for planning and design of

wave farms (Arinaga and Cheung, 2012). Generally, the wave conditions and the

associated wave energy in the area are assessed in different time scales. The year-
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Figure 2.1: Overview of the wind and wave environment surrounding the south coast of
Java Island.

to-year variability of the wave conditions is revealed by long-term analysis. After

that, the detailed seasonal variations as well as the evolutions over swell events of

the wave condition and the wave energy in coastal area are presented through wave

simulations.

2.2.1 Wave data and numerical models

The ERA-Interim dataset from ECMWF is chosen for a long-term wave analy-

sis. It provides 6-hourly values on significant wave height, mean wave period and

wave direction (Dee et al., 2011). The data from ECMWF in deep water are more

credible than in coastal areas due to topographical conditions (Stopa and Cheung,

2014). The wave conditions in deep water along the coast using wave data covering

10 years (2004-2014) are analyzed to evaluate the wave potential in down-wave di-

rections, and to reveal year-to-year and longer-term variability (Pontes et al., 2002).

For the analysis, 18 points along the 2000 m isobath line off the coast are selected

(Fig. 2.2). The wave data from ERA-Interim are also utilized to drive the coastal

wave model. Numerical wave simulations are performed with SWAN to reveal de-

tailed wave conditions near the coast. An unstructured triangle grid is constructed

and applied to keep the high resolution in the coastal area, and avoiding unneces-

sary computation resource cost in deep water (Fig. 2.3). The coarsest meshes are on

the open boundary matching the grid of the ERA-Interim dataset with a resolution
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Figure 2.2: Study domain with bathymetry and locations of satellite tracks, wave buoy
station and long-term analysis points

Figure 2.3: Established unstructured mesh grids in the study area

around 14 km, while the finest meshes are off the coast with an average resolution

of about 500 m. The criteria based on a 2D spectrum, which have been used also

in WAM, are implemented in SWAN for the wind-swell-wave identification (Komen

et al., 1994). The criteria formulation is based on wave age U10/cp, shown in the

inequation below:

β
U10

cp
cos(θ − φ) > 1 (2.1)

where θ is wave direction, φ is wind direction, cp is phase speed and U10 is wind

speed in 10 m height above sea surface. β is a calibration factor which is typically

set to be smaller than 1.3 in the region of pure wind sea. (Hasselmann et al., 1996).
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Figure 2.4: Comparison of time series between CWM and buoy: (a) significant wave
height; (b) mean wave period; (c) significant wave height due to swells; (d) significant
wave height due to local winds.

2.2.2 Wave model validation

Coastal wave model (CWM) is validated based on both wave buoy and satel-

lite data. Location of the wave buoy, which generates raw north, west and vertical

displacements at a rate of 1.28 Hz, is indicated in Fig. 2.2. Fig. 2.4a-b show the com-

parisons of significant wave height and mean wave period between CWM and buoy

observations, and the comparison of significant wave height due to swell (Hsswell)

and local wind (Hswind) can be seen in Fig. 2.4c-d. They also reveal that the main

wave energy comes from swell at the location of the buoy. The satellite altimeter

data from Jason-2, provided by AVISO (Achieving Validation and Interpolation of

Satellite Oceanographic Data), is also employed to validate the model due to lack

of in-situ wave measurements along the south coast of Java Island. The dataset

contains significant wave height only. The measurement interval at one sub-satellite

point is about 10 days. The locations of sub-satellite points on 8 passes in the model

domain are showed in Fig. 2.2. Fig. 2.5a-b show significant wave height scatter plot

of CWM versus altimetry data from Jason-2. The figures show that CWM has a

better agreement with altimetry data in the dry season (2014/5 to 2014/10) than

in the rainy season (2013/11 to 2014/04). It is seen that the difference of signif-

icant wave height between CWM and the altimetry data are usually smaller than

0.5 m. Fig. 2.6a-d reveals that swells dominate the wave field both in extreme

wave condition (Fig. 2.6a-b) and the average wave condition (Fig. 2.6c-d). Primary
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Figure 2.5: Significant wave height scatter plot of CWM versus altimetry data from Jason-
2: (a) rainy season; (b) dry season.

Figure 2.6: 2D spectrum comparison between CWM and buoy: (a, c) buoy; (b, d) CWM.
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Figure 2.7: Wave rose (a,b) and average wave power (c,d) from 24/05/2014 to 16/09/2014.

swells in two time points (S1, S2 in Fig. 2.4a) are from different directions. In

the southern hemisphere, the strong westerlies result in heightened wave activities

in mid-latitude throughout the year and those waves combine with the trade wind

waves when propagate to north (Arinaga and Cheung, 2012). This fact implies that

the southwesterly primary swell in the extreme wave condition is due to the wester-

lies while the southeasterly primary swell in the average wave condition is due to the

trade wind. Analysis showed that most waves in studied domain come from south

direction. Peak wave direction is in a directional sector of 60 degree, and waves from

southwest contain more energy (Fig. 2.7).
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2.3 Characterization of wave energy potential in

the study area

2.3.1 Long term analysis of wave data

The 10-year wave data from the 18 points along the 2000 m isobath line off

the coast are analyzed in this section. Results are shown in table 1 and table 2.

Mean significant wave height is about 2.04 m and the mean wave period is about

10.69 s. The inter-annual variation of these two wave parameters is small. In

addition, significant wave height in dry seasons is higher than in rainy seasons with

a mean difference of about 0.43 m. Furthermore, mean wave period in dry seasons

is approximately 0.4 s higher than rainy seasons. Since the points for the analysis

are located in deep waters, mean annual median wave power can be estimated with

the wave statistic parameters as follows by Waters et al. (2009):

P =
ρg2

64π
H2
sTm01 (2.2)

where ρ is water density, g is gravitational acceleration, Hs is significant wave height,

Tm01 is mean wave period. Estimated mean annual median wave power based on

Eq. (2.2) is 22 kW/m, while required annual median wave power for most commercial

wave energy converters is around 20 kW/m (Antonio, 2010). From Table 1, it can

also be seen that the seasonal variation of wave power in this area is insignificant.

Even in rainy seasons, the seasonal median wave power reaches 17 kW/m. Spatial

variations of the two wave parameters along the coast can be found in Table 2.

Generally, mean wave period in the west part of the coast is lower than in the east

part, while the significant wave height does not show a similar pattern. Highest

average significant wave height of about 2.14 m and highest average wave power of

23.89 kW/m appear at point 11. On the other hand, the lowest average significant

wave height of about 1.91 m is observed at point 18 (figure 1), while the lowest

average wave power is observed at point 2. Although the long-term analysis reveals

the wave conditions and the wave energy distributions along the coast, more detailed

evaluations of regional wave conditions with CWM are required for the wave energy

assessment.
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Table 2.1: Temporal variations of average wave statistic parameters from 2004 to 2014.

year
Hs(m) Tm01(s) Power(kW/m)

An. Dry Rainy An. Dry Rainy An. Dry Rainy
04-05 2.08 2.29 1.87 11.04 11.20 10.88 23.52 28.93 18.73
05-06 2.13 2.33 1.93 10.93 11.09 10.78 24.50 29.70 19.85
06-07 2.08 2.33 1.83 10.82 11.08 10.55 22.97 29.55 17.34
07-08 2.10 2.28 1.91 10.61 10.79 10.43 22.94 27.70 18.69
08-09 2.05 2.25 1.85 10.69 10.96 10.42 22.07 27.31 17.49
09-10 1.89 2.14 1.64 10.56 10.78 10.33 18.55 24.93 17.38
10-11 1.98 2.13 1.84 10.28 10.57 9.99 19.94 23.61 16.65
11-12 2.02 2.19 1.85 10.43 10.56 10.30 20.96 24.93 17.38
12-13 2.07 2.28 1.85 10.77 10.91 10.63 22.66 27.98 17.95
13-14 2.04 2.34 1.74 10.81 10.93 10.69 22.19 29.43 16.03
mean 2.04 2.26 1.83 10.69 10.89 10.50 22.03 27.34 17.38

Table 2.2: Spatial variations of average wave statistic parameters at 18 selected points
from 2004 to 2014.

Hs(m) Tm01(s) Power(kW/m)
An. Dry Rainy An. Dry Rainy An. Dry Rainy

1 2.03 2.26 1.81 10.33 10.54 10.13 21.08 26.58 16.31
2 1.97 2.19 1.75 10.33 10.53 10.13 19.78 24.84 15.38
3 2.13 2.39 1.87 10.23 10.31 10.15 22.90 29.05 17.53
4 2.13 2.39 1.87 10.23 10.31 10.15 22.90 29.05 17.53
5 2.06 2.28 1.85 10.58 10.78 10.38 22.22 27.66 17.47
6 2.02 2.22 1.82 10.65 10.89 10.42 21.44 26.55 16.97
7 2.01 2.21 1.81 10.68 10.92 10.45 21.19 26.21 16.80
8 2.00 2.21 1.80 10.69 10.90 10.49 21.19 26.25 16.76
9 2.02 2.23 1.81 10.68 10.87 10.50 21.43 26.58 16.92
10 2.01 2.22 1.80 10.69 10.86 10.52 21.37 26.47 16.90
11 2.14 2.37 1.91 10.58 10.70 10.46 23.89 29.72 18.77
12 2.12 2.34 1.89 10.68 10.81 10.54 23.62 29.28 18.63
13 2.10 2.32 1.89 10.76 10.91 10.60 23.46 28.98 18.60
14 2.08 2.28 1.87 10.84 11.03 10.65 23.07 28.39 18.39
15 2.04 2.24 1.85 10.94 11.17 10.71 22.57 27.66 18.09
16 2.00 2.19 1.82 11.07 11.35 10.80 21.96 26.80 17.70
17 1.97 2.15 1.79 11.06 11.33 10.79 21.29 25.97 17.17
18 1.91 2.08 1.74 11.14 11.42 10.86 20.15 24.52 16.30

2.3.2 Seasonal variation

Detailed information of wave conditions in the coastal area are based on the

results from CWM. Wave power calculations are made using equation as follows:

P =

∫ π

0

∫ fmax

fmin

ρgcgE(θ, f)dfdθ (2.3)
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Figure 2.8: (a) Seasonal variations of monthly median wave power, wave power due to
swells and wind from 2013/11 to 2014/10 over the area within 30 nautical miles off the
coast. (b) Seasonal variations of monthly median significant wave height and mean wave
period.

Figure 2.9: Monthly median wave conditions in Aug. 2014 within 30 nautical miles off
the coast. (a) Wave power and energy transport direction due to swells; (b) Wave power
and energy transport direction due to local winds; (c) Significant wave height and mean
wave direction2014; (d) Mean wave period. POWER: average wave power over the area;
WDIR: average wind direction over the area; WS: average wind speed over the area; HS:
average significant wave height over the area; TM01: average mean wave direction over
the area.

Figure 2.10: Wave case studies: (upper) rainy season; (lower) dry season.

where P is the wave power, cg is the wave group speed and E(θ, f) is the power

density as a function of the wave direction (θ) and frequency (f). Monthly median

significant wave height, mean wave period and wave power within 30 nautical miles
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off the coast are estimated. Swells provide the majority of wave energy (Fig. 2.8),

while mild local winds of speed about 3-5 m/s does not play an important role on

wave conditions through the year. The average monthly median wave power for

swells is estimated as 15 kW/m from November 2013 to April 2014, and 25 kW/m

from May 2014 to October 2014. Meanwhile, the wave power for winds is less than

1 kW/m through the year and varies with the wind speed and direction. With the

dominance of the swells, significant wave height in the dry season is higher than in

the rainy season. The mean wave period in this area is around 6-8 s through the

year. The stronger swells in dry season result in the larger mean wave period of

around 8 s. The peak wave power appears in August 2014 during the period. The

detailed information in that month is provided by Fig. 2.9. In August 2014, the

monthly median wave power of more than 30 kw/m is mainly from the southerly

swells. The local winds from southeast only provide the wave power of 0.9 kw/m.

2.3.3 Swell events

Wave conditions in rainy and dry seasons, each covering one swell event, are

selected. Both cases can be broken into four stages: wave growing (P1), peak (P2),

wave decaying (P3) and subsequently steady state according to the significant wave

height (P4) at the location of the buoy (Fig. 2.10). Spatial variations of wave

power within 30 nautical miles off the coast during each stage of swell events are

shown in Fig. 2.11 (rainy season) and Fig. 2.12 (dry season). The swells selected in

both seasons are from southwest with slightly different directionalities. The swell

in the dry season approaches to the western part of the coast first, and the energy

propagates from west to east. While in the wet season, the swell approaches directly

to the middle part of the coastline (from 108°E to 112°E) and transfers the energy

to both sides. The highest wave power, Pmax, occurs during the steady stage in both

seasons, when the energy flux mainly comes from the coast. That implies that even

in steady stages when the primary swell has declined, the wave energy are mostly

come from swells.

2.3.4 Site selection

The selection of locations for deployment of wave energy farms or converters

is an issue involving wave conditions, technical feasibility, economic benefit and

environmental impact. Three simple criteria for preliminary screening of locations

suitable for wave energy farms are presented as follows: 1. Annual median power is

larger than 20 kW/m 2. Water depth is less than 200 m and greater than 30 m 3.
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Figure 2.11: Wave power in wave case 1: (a) growing; (b) peak; (c) decaying; (d) steady.

Figure 2.12: Wave power in wave case 2: (a) growing; (b) peak; (c) decaying; (d) steady.

Distance to the coast is less than 12 nautical miles Based on the described criteria
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and one-year output from CWM, regions unfit for wave energy farms are filtered.

Fig. 2.13 shows suitable locations, which appears mainly off the middle part of the

coast, concentrating on two zones, marked by dash lines. Since the swells is more

likely to approach the eastern and middle part of the Java Island at first, annual

median power in most areas off the western part of the coast is lower than 20 kW/m,

insufficient for wave energy farms. On the other hand, water depth off the eastern

part of the coast is deep, more than 200 m in most areas. Mooring wave energy

converters in that location is more difficult and more costly than in shallower water,

although the annual median power is acceptable.

Figure 2.13: Distribution of Annual median wave power along the south coast of Java
Island.

2.4 Summary

Long-term analysis of wave data from ERA-Interim over 10 years at the 18 points

along the isobath of 2000 m suggests that there is considerable wave energy available

off the south coast of Java Island. From the long-term wave data, the annual median

significant wave height is around 2m and the mean wave period is around 11 s in this

area. The mean annual median wave power of the 18 points reaches 22 kW/m. The

mean median wave power in dry season (27 kW/m) is higher than in rainy season

(17 kW/m). One advantage for setting up wave energy farms there is the smaller

seasonal variation than the west coast of Australia.

More detailed wave conditions are revealed from the buoy data and the coastal

wave model, CWM. Generally, the majority of wave energy in this area is provided

by swells from southwest produced in mid-latitude region. Thus, the swells as well
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as the wave power due to the swells in the study area strengthen or recede along

with the seasonal variation of the westerlies. From 2013/11 to 2014/10, the highest

monthly wave power of 31 kW/m appears in Aug., 2014. Additionally, from the

2D spectra of the buoy data and the wave case studies, another wave system due to

southeasterly swells is found and dominates the wave field in average wave conditions

in the dry season. Although the mild southwesterly trade wind of speed about 3-

5m/s through the year only have limited local impact on waves, the waves will grow

through the fetch and perform as relative weak southeasterly swells when approach

the study coastal area. The wave energy distribution along the coast over two swell

events are presented as well. After setting annual median wave power, water depth,

and distance from the coast as criteria, two zones suitable for wave energy farms

emerged. Zone A has the highest annual median power around 23 kW/m. Zone B

has more suitable locations where some of them are close to the coast.

The model validation results of CWM are plausible (relative RMS of significant

wave height is around 10%). However, CWM is not able to describe a two wave

system when the both systems are due to swells. Fortunately, the southeasterly wave

system due to the swell for the trade wind is much weaker than southwesterly one

and its wave energy actually is overlapped to the primary swell system. Therefore,

the difference of wave systems does not sway the assessment of wave energy potential.

Even so, we still hope a model with larger domain can solve this problem in following

research. Additionally, to further screen the suitable locations for deployment of

wave energy farms, more detailed measurement and associated environmental and

economical evaluation are required.
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A 4D variational assimilation scheme with

partition method for nearshore wave models

Qingyang Song and Roberto Mayerle

Abstract: This paper summarizes the development steps of a 4D variational

assimilation scheme for nearshore wave models. A partition method is applied

for adjusting both wave boundary conditions and wind fields. Nonstationary

conditions are assimilated by providing defined correlations of model inputs in

time. The scheme is implemented into the SWAN model. Twin experiments

covering both stationary and nonstationary wave conditions are carried out to

assess the adequacy of the proposed scheme. Stationary experiments are car-

ried out considering separately windsea, swells and mixed sea. Cost functions

decline to less than 5% and RMS spectrum errors are reduced to less than

10%. The nonstationary experiment covers one day simulation under mixed

wave conditions with assimilation windows of 3 hours. RMS spectrum errors

are reduced to less than 10% after 30 iterations in most assimilation windows.

The results show that for spatially uniform model inputs, model accuracy is

improved notably by the assimilation scheme throughout the computational do-

main. It is found that under wave conditions in which observed spectra can

be well classified, the assimilation scheme is able to improve model results

significantly.

Keywords: 4D variational assimilation; Wave modeling; Adjoint; Partition

3.1 Introduction

Wave conditions are essential to many fields such as shipping, engineering and

weather forecasts. Simulation of ocean waves provides improvement of understand-

ing of coastal processes helping the design of coastal structures. However, accurate

modelling of waves in coastal regions remains a major challenge as the quality of the

predictions are very much dependent on model inputs. In particular, bathymetry,

35
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open sea boundary conditions and winds play a major role in wave predictions. In

this respect, data assimilation techniques integrating observations and simulations

prove to be quite helpful.

Data assimilation has been applied to wave models from 1980s since remote sea

surface observations as SAR and altimetry data became available. Early attempts

by Esteva (1988), Lionello et al. (1992) and Bauer et al. (1992) used assimilation

schemes with optimal interpolation techniques. This was followed by the adoption

of variational assimilation scheme with adjoint method (De las Heras and Janssen,

1992; De Las Heras et al., 1994; Hersbach, 1998). Compared with early simple

schemes as the optimal interpolations, variational schemes are more capable of re-

flecting correlations of model results in space and time by means of adjoint method

(De Las Heras et al., 1994). Partitioned spectrum wave data has been used in assim-

ilation schemes from the mid 1990s (Voorrips et al., 1997; Hasselmann et al., 1997).

In this case, modeled spectrum information can be improved to some extent with

optimal interpolations by partitioning the spectra into their various contributions.

Partitioning methods are able to split the wave spectrum into windsea and swell

components taking the topography of the spectrum into account. Hence, they are

suitable to the identification of all the existing component wave trains (Waters et al.,

2013). To date, although partition methods has been applied in several different as-

similation schemes (eg. Portilla (2009); Emmanouil et al. (2010, 2012); Waters et al.

(2013)), there are few researches addressing the application of partition methods in

variational assimilation scheme with the full adjoint.

Several applications of assimilation schemes for waves in coastal regions have

been reported recently (eg. Siddons et al. (2009); Veeramony et al. (2010); Waters

et al. (2013); Wahle et al. (2015)). Most applications consider significant wave

heights as observations. However, directional information is also important in coastal

areas especially for studying sediment transport and wave-current coupling. Thus,

Veeramony et al. (2010) developed a variational assimilation scheme in which the

observed 2D spectra are directly included in the assimilation process by adjusting

input wave spectra on open boundaries. In the derivation of the adjoint, all source

terms are removed and only stationary simulations are considered. As the size of

the area considered is of the order of a few kilometers, the effect due to local winds

can usually be neglected.

As in larger areas, wind effect becomes relevant, both winds and boundary waves

may need to be adjusted. Hence, a variational assimilation scheme should consider

the source terms due to winds in the adjoint and the wave spectra should be split

into its various components. In relatively small coastal areas where observations
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react to boundary conditions quickly, boundary conditions in one time window can

be reflected by the observations in the same time window. That implies that the

model input at the start and end points during a time window can be improved

effectively by combining the observations during the same time window provided

their distributions in time are appropriate. Hence, for nonstationary wave conditions

when model inputs during a time window can be represented explicitly by values

at the start and end points of the window, a relatively simple assimilation scheme,

different from the scheme by Orzech et al. (2013), is feasible. In this study, the

derivation steps of a 4D variational assimilation scheme for nearshore wave model

are described. The scheme considers errors from both winds and wave boundary

conditions by means of a partition method. In this paper, results of the assessment

of the scheme on the basis of several experiments considering both stationary and

nonstationary conditions on the German Bight are presented.

3.2 Method

3.2.1 The wave model SWAN

SWAN (Simulating Waves Nearshore) is a third generation wave model widely

suitable to coastal areas (Booij et al., 1999). The following action balanced is solved:

∂N

∂t
+ ~∇(~CN) =

S

2πf
(3.1)

where N is the action density, ~C = (Cx, Cy, Cθ, Cf ) represents the propagation

velocity of wave energy in space and spectrum domain and S is the total source and

sink terms of wave energy including wind input, dissipation and nonlinear wave-

wave interaction. Details of the source terms used in the derivation of the adjoint

is presented in Appendix A. As a phase-averaged wave model, Eq. (3.1) is solved

with given model inputs such as wind fields and wave boundary conditions so as

to obtain information of wave spectra throughout the computation domain. The

version of the SWAN model applied in this study is 41.01.

3.2.2 Assimilation methodology

Variational assimilations are a class of algorithms to improve model results by

minimizing a scalar function named cost function with respect to control variables

(Lahoz et al., 2010). The 4D variational assimilation scheme adopted in this study is

developed with reference to previous studies by De las Heras and Janssen (1992), De
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Las Heras et al. (1994) and Veeramony et al. (2010). The cost function is minimized

with the adjoint.

The cost function is made up of two parts: (1) deviation of analyzed model

results from observations and (2) deviation from first guess model results. Normally,

the deviations from first guess model results are related to the control variable

selected for adjustment. Here, wind components and 2D wave spectra on open

boundaries are set as control variables. Initial conditions are not regarded as control

variables in this study. The assimilation effect for initial conditions depends on not

only how well the assimilation scheme works but also on how accurately estimated

background correlations are. Thus, to assess the assimilation scheme itself, the

correlation problem and the assimilation for initial conditions are not be addressed in

this study. Although other sets of the control variables can be considered, wind and

wave boundary data are the most important inputs of a nearshore model. Regardless

of realistic situations, they are considered suitable for testing purposes. The cost

function reads as follows:

J = J1 + J2 + J3 (3.2)

where J1, J2, J3 are related respectively to deviations from observations, first guess

winds and first guess boundary conditions. Since the 2D spectra on open boundaries

are control variables, the deviation from observations should be expressed by error

variance of spectra. The J1 reads as follows:

J1(E) =
1

Mobs

Mobs∑
a=1

∫∫
W1(E − Êa)2dθdf (3.3)

Where E and Êa are the modeled and the observed spectrum power density respec-

tively. Mobs indicates the total number of the observations used for assimilation over

space and time. W1 is the corresponding weight and reflect the reliability of obser-

vations. In a real case, W1 is a function of position, time, direction and frequency

related to the covariance matrix of observations. J2 is expressed by deviations from

first guess wind components. J2 is defined as follows:

J2(u, v) =

∫∫
W2[(u− u1st)

2 + (v − v1st)
2]dxdt (3.4)

Where (u, v) are the wind components and the subscript 1st indicates the first-guess

values. W2 is the weight. Although wind input is space and time dependent, it is

always determined by linear interpolation between the wind at the end and start

points of a given input interval in SWAN. The period over an input interval is named
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here as input window. By setting control variables as wind components u0, v0 and

u1, v1 respectively at a start and end points, the model wind during this wind input

window can be explicitly expressed as:

u(x, t) = (1− w1(t))u0 + w1(t)u1

v(x, t) = (1− w1(t))v0 + w1(t)v1

(3.5)

where w1(t) denotes the interpolation weighting function with respect to time. It

should be pointed out that if time resolution of input wind fields is not capable of

describing real winds properly, the interpolation algorithm is easily to be modified

to a piecewise function by adding a new couple of wind components as control

variables in the forward and the adjoint model. But in this study, for test purpose,

the simplified form of w1(t) reads:

w1(t) =
t− tst
ted − tst

(3.6)

Where tst and ted are the start and end time points of a input window respectively.

Hence, by replacing time dependent u and v with u0, v0 and u1, v1 in an input

window, J2 becomes:

J2(u0, v0, u1, v1) =
∫
W2[(u0 − u01st)

2 + (u1 − u11st)
2+

(v0 − v01st)
2 + (v1 − v11st)

2]dx
(3.7)

The form of J2 implies the assumption that the winds at the start and end points

are independent. Similarly, J3 reads:

J3(E0, E1) =
∫∫∫

W3[(E0 − E01st)
2 + (E1 − E11st)

2] dθdfdx (3.8)

where E0 and E1 are respectively the input wave spectrum power density at the

start and end point during the input window. W3 is the weight.

W2 and W3 reflect the degrees of uncertainty of model input as pointed out by

Bennett and McIntosh (1982). They are related to the covariance matrix of the first

guess input. Since correlations of the input winds in time are actually determined by

the above processes, W2 and W3 are no longer functions of time, but still functions

of positions.

It is almost impossible to improve model results over the whole computational

area with limited observations in space, particularly if correlations of the control

variables are not known or the control variables are uncorrelated in space. In a

relatively small nearshore area, strong correlations of the control variables are to
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be expected. In this study, as stated above, for testing purposes, the correlation

problem in space will not be addressed. Therefore, uniform winds and wave open

boundary conditions in space are considered. As a result, Eq. (3.7) and Eq. (3.8)

are reduced to:

J2(u0, v0, u1, v1) = W2[(u0 − u01st)
2 + (u1 − u11st)

2+

(v0 − v01st)
2 + (v1 − v11st)

2]
(3.9)

J3(E0, E1) = W3

∫∫
[(E0 − E01st)

2 + (E1 − E11st)
2] dθdf (3.10)

In which W2 and W3 are set to be constants. Although the cost function is a

quadratic function, it depends implicitly on the control variables. To minimize

the function, the method of Lagrange multiplier is applied. Combining the action

balance equation Eq. (3.1) with the cost function Eq. (3.2), the complete Lagrange

function reads as:

L(u0, v0, u1, v1, E0, E1, E, λ) = J +

∫∫∫∫
λ[
∂N

∂t
+ ~∇(~CN)− S

2πf
]dθdfdxdt (3.11)

where λ(x, t, θ, f) is the Lagrange multipliers. The wave event taken for analysis is

such that the wave systems due to swells and local winds can be classified and sepa-

rated completely and the energy transfer from local winds to swells neglected. That

means waves can be regarded as a linear superposition of different wave systems.

Meanwhile, the observed and modeled 2D spectra can be separated by a partition

method. Therefore, the Lagrange function is separated into two contributions as

follows:

L(u0, v0, u1, v1, E0, E1, E, λ) = Lw(u0, v0, u1, v1, E, λw) + Ls(E0, E1, E, λs) (3.12)

Lw and Ls represent the Lagrange function related to windsea and swell respectively.

Lw reads as follows:

Lw(u0, v0, u1, v1, E, λw) =

∫∫∫∫
λw[

∂N

∂t
+ ~∇(~CN)− Sw

2πf
]dθdfdxdt+

W2J2 +

∫∫∫∫
Sob1dθdfdxdt

Sob1(E) = W1Jw(E)δ(x− xa)δ(t− ta)

Jw(E) =
1

Mobs

Mobs∑
a=1

(h(f, θ)E − ĥ(f, θ)Êa)
2

(3.13)
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In Eq. (3.13), Jw is the windsea contribution of J1, Sw is the source term in the

action balance equation due to winds, h(f, θ) and ĥ(f, θ) are Heaviside step func-

tions denoting if a grid of the 2D spectrum belongs to windsea components. The

source term Sw includes wind growth, white capping and bottom friction. Nonlinear

wave-wave interaction can only affect wave energy transfer over a frequency domain

rather than the total wave energy. Gradients with respect to wind components are

calculated by integrating a function of λw over the whole spectrum domain which

mainly reflect the total energy difference. Hence, the influence of the nonlinear inter-

actions on the gradients of wind components is expected to be small. On the other

hand, the derivation of the adjoint to the nonlinear interactions is very complex

as pointed out by Hersbach (1998). After weighing advantages and disadvantages,

nonlinear wave-wave interaction is not include in Sw. Similarly, Ls reads as follows:

Ls(E0, E1, E, λs) =

∫∫∫∫
λs[

∂N

∂t
+ ~∇(~CN)− Ss

2πf
]dθdfdxdt+W3J3+∫∫∫∫

Sob2dθdfdxdt

Sob2(E) = W1Js(E)δ(x− xa)δ(t− ta)

Js(E) =
1

Mobs

Mobs∑
a=1

((1− h)E − (1− ĥ)Êa)
2

(3.14)

where Ss is the source term affecting swells. The assumption adopted by Veeramony

et al. (2010) is taken in this study. Besides, only ‘ classic ’ swell with narrow spectra

as described in Hasselmann et al. (1973) is considered. In other words, only bottom

friction is included in Ss. Different from the terms Ss and Sw used in the adjoint

model, in the forward SWAN model, all the source terms are included. Based on

Eq. (3.13) and Eq. (3.14), the resulting Euler equations by differentiating L read as:

for δλw and δλs:
∂N

∂t
+ ~∇(~CN) =

S

2πf
(3.15)

for δN in Lw: − ∂λw
∂t
− ~C ~∇λw = λw

∂Sw
∂E
− ∂Sob1

∂N
(3.16)

for δN in Ls: −
∂λs
∂t
− ~C ~∇λw = λs

∂Ss
∂E
− ∂Sob2

∂N
(3.17)
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for δu0, δu1, δv0 and δv1:

gradu0J =
∂J2

∂u0

−
∫∫∫∫

[
λw(1− w1(t))

2πf

∂Sw
∂u

]dθdfdxdt

gradu1J =
∂J2

∂u1

−
∫∫∫∫

[
λww1(t)

2πf

∂Sw
∂u

]dθdfdxdt

gradv0J =
∂J2

∂v0

−
∫∫∫∫

[
λw(1− w1(t))

2πf

∂Sw
∂v

]dθdfdxdt

gradv1J =
∂J2

∂v1

−
∫∫∫∫

[
λww1(t)

2πf

∂Sw
∂v

]dθdfdxdt

(3.18)

for δE0 and δE1:

gradE0
J =

∂J3

∂E0

−
∫∫

[
1− w2(t)

2πf
λs ~C ~nb]dxbdt

gradE1
J =

∂J3

∂E1

−
∫∫

[
w2(t)

2πf
λs ~C ~nb]dxbdt

(3.19)

where xb is the grid location on the computational domain boundary and ~nb is the

direction normal to the wave boundary. Eq. (3.16) and Eq. (3.17) are the adjoints

which can be solved backward in time to yield λw and λs. For more detailed infor-

mation of the adjoint model, the reader is referred to A and B. λw and λs represent

the sensitivity of the cost function to changes in the control variables (De Las Heras

et al., 1994). That means that errors due to different control variables can be sepa-

rated by solving Eq. (3.16) and Eq. (3.17) independently. Hence, the gradients of

the cost function with respect to the control variables can be calculated following

Eq. (3.18) and Eq. (3.19) directly. The increments of the control variables are ob-

tained in turn by means of the conjugate-gradient descent algorithm (Polak, 1971).

After that, the forward model is solved with the updated control variables. As shown

in Fig. 3.1, the procedure is repeated iteratively to find the control variables which

minimize the cost function. The assimilation process for nonstationary simulations

is illustrated in Fig. 3.2. Since correlations in time are determined, the assimilation

and input windows can differ if the control variables at the points of each input

windows are added to the cost function.

For classifying wave systems into windsea and swell parts, the partition algorithm

after Hasselmann et al. (1997) is applied in this study. It is assumed that, in

relatively small nearshore areas, wave systems due to local winds are unique and

the first guess wind field is not accurate but reasonable. So if the first guess wind is

strong enough, the wave system with the hightest frequency either from observations
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Figure 3.1: Adopted data assimilation scheme
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Figure 3.2: Nonstationary assimilation process

or model results is regarded as windsea part. The rest is regarded as swell. The

applied partition steps are as follows:

1. Split the 2D spectra from both observations and model results with the

watershed algorithm.

2. Discard the low energy portions with a given threshhold (energy below 1% of

the total energy).

3. Based on the model input winds, identify if the partition with highest fre-

quency of the modeled spectra belongs to windsea. If so, regard it as windsea

partition and the rest as swell partitions. Otherwise, regard all partitions as swell

partitions.

4. If there is a windsea partition of modeled spectra after step 3, regard the

partition with highest frequency of the observed spectra as windsea partition and

the other partitions as swell partitions. Otherwise, regard all partitions as swell

partitions.
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3.3 Validation of the adjoint

As stated above, the adjoint in this study is derived directly from differential

equations. To ensure the consistency between the built adjoint model and the for-

ward model, some validation tests are required. The validation of the adjoint aims

at figuring out whether the adjoint model can describe the propergation of pertur-

bations backwards properly so as to obtain correct gradients. There are several

methods for the validation. In this study, a simple method suggested by De Las

Heras et al. (1994) is applied.

For a change ∆c in a control variable c, the corresponding change of the cost

function is:

∆J = J(c+ ∆c)− J(c) (3.20)

If the norm of the difference, |∆c|, is small enough, the following equation holds:

∆J ≈ ∆c · gradcJ (3.21)

∆J can be directly calculated by Eq. (3.20) based on results from the forward model

with the control variable c and c + ∆c. Meanwhile, gradcJ is obtained by running

the adjoint model. Therefore, Eq. (3.21) can be checked through comparing ∆J and

∆c · gradcJ . Defining that:

R = | ∆J

∆c · gradcJ
− 1| (3.22)

Where R should converge to 0 for |∆c| down to 0 if the adjoint is correct. In this

study, the control variables E0 and u0 in stationary wave conditions are chosen for

the validation tests. To be specific:

for E0: ∆c · gradcJ =

∫∫
∆E0 · gradE0

Jdθdf

for u0: ∆c · gradcJ = ∆u0 · gradu0J

(3.23)

The validation tests are performed in a rectangular region of 50km × 50km with

a uniform bathymetry of 20m. The ’observation’ is set at the center of the region

from the forward model driven by westerly swell with a wave height of 2m from

the west boundaries and a westerly wind of 10m/s over the whole region. The first

guess E0 is a westerly swell with wave height of 2.5m and u0 is 12.5m/s westerly.

All the source terms not applied in the derivation of the adjoint are turned off in the

forward model to keep the consistency. Then the first guess E0 and u0 are changed

independently to calculate R. As shown in Fig. 3.3, R is converged to a value down
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Figure 3.3: Validation of the adjoint. E0:Changing the control variable E0; u0:Changing
the control variable u0

to a precision of 10−3 when the relative changes of E0 and u0 are approaching the

magnitude of 10−3. The results suggest that the adjoint model is consistent with the

forward model. The accuracy is in agreement with the tests by De Las Heras et al.

(1994) in which the nonlinear wind growth term are not included. That is because

the wind growth term applied in this study is linear as suggested by Snyder et al.

(1981) and Komen et al. (1984).

Figure 3.4: Computation domain for twin experiments

3.4 Twin experiments

Three stationary and one nonstationary experiments are carried out. The area

chosen for testing the assimilation scheme is the German Bight on the North Sea.
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Table 3.1: Assimilated input boundary conditions, Hs (significant wave height), Tm (mean
wave period) and Dm (mean wave direction), and winds in pd (pseudo observation model),
bf (model before the assimilatino) and af (model after the assimilation) in three stationary
cases: W(Windsea), S(Swell) and M(Mixed sea).

Case
Boundary condition Wind

Hs(m) Tm(s) Dm(◦) u(m/s) v(m/s)

W
pd -9.78 -2.84
bf -6.72 -3.5
af -9.66 -3.01

S
pd 1.26 7.46 162.4
bf 0.81 5.8 135.9
af 1.22 7.52 156.7

M
pd 0.84 9.71 148.6 -7.87 -7.26
bf 1.02 9.00 128.6 -5.9 -5.14
af 0.83 9.75 145.8 -7.94 -7.54

The computational domain covers an area of around 100 km × 90 km (see Fig. 3.4).

The spatial resolution of the model is 500 m. The time interval in the nonstation-

ary simulation is 5 min. Pseudo observations are mainly obtained by two sets of

input data. The wind data is obtained from the GME model (Majewski et al.,

2002) whereas the wave boundary data is taken from the ERA-I dataset provided

by ECMWF (European Centre for Medium-Range Weather Forecasts) (Dee et al.,

2011). For generating pseudo observations, the wave data at location A (see Fig. 3.4)

is set to be the wave boundary data for the whole open boundaries and the wind

data at location B (see Fig. 3.4) is set to be the wind over the whole computational

domain. The pseudo observations are produced by a model run with the prescribed

’correct’ winds and boundary conditions. The directional resolution is 5 degree and

the number of frequencies from 0.01 Hz to 0.64 Hz is 40. The input window is three

hours. Although spectra data of ERA-I are available, only wave statistic parameters

such as significant wave height, mean wave period and mean wave direction are used

in this study. The wave data is interpolated into a 3-hour interval to match the input

window. Those data are Swells from the open boundaries are assumed to be formed

as a Gaussian swell spectrum. Thus, the input 2D spectra on the boundaries are

able to be inversed by the wave parameters. The first guess inputs are generated by

adding random errors on the ‘real’ model inputs. The errors are less than 30% of

actual values of the corresponding inputs. The reason to set 30% as the limitation

is to ensure that the classification for windsea or swell partitions is correct.

There are two wave buoys from BSH (Bundesamt Fuer Seeschifffahrt und Hydro-

graphie) in the area. They are named Elbe (ELB) and Helgoland (HEL) as shown

in Fig. 3.4. Although the observations from the stations are not used in this study,
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their locations are chosen for the output of pseudo observations. Since the model

inputs are uniform, only the output at the station ELB is used in the cost function

for assimilation while the output at the station HEL is used for validation. The local

bathymetry at the station HEL is complex in which case nonlinear wave interactions

are expected. However, the adjoint applied in this study does not contain the non-

linear terms so that the errors at the station HEL may not be inversed correctly

by the adjoint model. Therefore, using the observation at ELB for assimilation is a

better option for assessing the scheme keeping nonlinear effects as weak as possible.

The weights W1, W2, and W3 are set as follows:

W1 = 1

W2 =
0.01Ē2

w̄2

W3 = 0.01

(3.24)

where w̄ is the average value of the first guess wind and Ē is the average value of the

wave energy of the first guess model results. The weights W1 and W3 are selected

according to Walker (2006). The values 0.01 and 1 suggest that observations are

much more credible than results from simulations. A smaller W3 could be more

reasonable if the observations are trusted as the true value. But in this study, 0.01

is small enough so as to correct the model results to the observations. The rate

betweenĒ and w̄ in W2 is one kind of normalization to make the dimension of con-

trol variables uniform, provided that the orders of the variance are proportional to

that of the corresponding variables. Different from the stationary simulations, ini-

tial conditions influence the model results in the nonstationy simulations especially

for a short time window. As mentioned in Sect. 4.2.2, the assimilation for initial

conditions requires spatially broad observations and credible correlations of model

results in space which are not addressed in the study. So the initial conditions in the

first assimilation window are kept correct here in nonstationary experiments. Thus,

if a proper assimilation window is found, the control variables can be effectively cor-

rected by combining the observations keeping the model results accurate enough for

a hot-start of the next assimilation window. In this experiment, pseudo observations

are provided with a time interval of 30 minute including the start and end points

of the input window. Therefore, it is assumed that the analyzed results after the

assimilation in every input window are accurate enough. So the input window is set

as the assimilation window and the errors from the hot-start data and the model

inputs of the start point in the next assimilation window are ignored. At the same

time, since nonlinear effects and convergence speeds of every assimilation window
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Figure 3.5: Cost function and differences between ohs (’observed’ significant wave height)
and mhs (modelled significant wave height) at station ELB with respect to iteration num-
ber. (a) Windsea; (b) Swells; (c) Mixed sea.

are unknown in advance, a constant number of iterations equal to 30 is set in the

nonstationary experiment.

To assess the assimilation scheme, a normalized RMS spectrum difference is

defined as follows:

Erms =

√
〈(Eobs − Emod)2〉

〈E2
obs〉

(3.25)

Where Emod is the modelled spectrum density, Eobs is the ’observed’ spectrum den-

sity. The angular brackets denote averaging in space, time, and over the frequency

domain. Similar metrics are used in Orzech et al. (2013) and Panteleev et al. (2015)

to assess their assimilation schemes.

3.4.1 Stationary experiments

Three different wave cases are selected as stationary experiments:

1. Pure windsea at 12:00:00 on 2011/02/18 .
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Figure 3.6: Significant wave height and mean wave direction throughout the computational
domain in the windsea case. (a) Pseudo observations; (b) Before assimilation; (c) After
assimilation.

Figure 3.7: 2D spectrum at the station HEL in the windsea case. (a) Pseudo observations;
(b) Before assimilation; (c) After assimilation.

2. Swells only at 00:00:00 on 2011/03/06 .

3. Mixed sea at 12:00:00 on 2011/03/14 .

Table 3.1 gives the ’real’ and the corresponding first guess model inputs in the

stationary experiments.

Windsea

In this case, there are offshore winds throughout the domain and barely any swell

energy input from open boundaries. Fig. 4.4 shows the variations of the cost function

J1 and significant wave height at ELB with respect to the iteration step. It can be

seen that J1 is reduced by around 50% from 1 to 0.5 in the first iteration. After

ten iterations, the cost function almost converges to its minimum, corresponding to

about 3% of the initial cost function value. The input u and v after the assimilation

are not exactly the same as the ’real’ wind components (Table 3.1). A small error
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Figure 3.8: Significant wave height and mean wave direction throughout the computational
domain in the swells case. (a) Pseudo observations; (b) Before assimilation; (c) After
assimilation.

Figure 3.9: 2D spectrum at the station HEL in the swells case. (a) Pseudo observations;
(b) Before assimilation; (c) After assimilation.

remains after the assimilation. As already mentioned, the absence of nonlinear terms

in the adjoint leads to a slightly different distribution of λw in the frequency domain.

Although for calculating the gradient as Eq. (3.18), λw is integrated, nonlinear

interactions still have some influence on the total wave energy error. But based on

Fig. 3.6, the assimilation is effective throughout the domain where the Erms declined

from around 0.85 to 0.05, even under the conditions in which the obtained ’best’ wind

still contains some errors. Fig. 3.7 compares the 2D spectrum at the station HEL.

The bathymetry surrounding the station HEL is much more irregular than at the

station ELB. This leads to more complex spectrum at HEL. Before the assimilation,

the modeled power density of the northern part is higher than the ’observation’, and

the high density domain is slightly wider. Notably, the 2D spectrum is corrected by

the assimilation as well.
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Figure 3.10: Significant wave height and mean wave direction throughout the computa-
tional domain in the mixed sea case. (a) Pseudo observations; (b) Before assimilation; (c)
After assimilation.

Figure 3.11: 2D spectrum at the station HEL in the mixed sea case. (a) Pseudo observa-
tions; (b) Before assimilation; (c) After assimilation.

Swells

In this case, onshore swells originating from the northwest are considered and

the wind speed of around 0.5m/s can be neglected. Different from the windsea

case, the convergence of the cost function J1 goes much slower with the iterations.

However, the convergence speed is reasonable considering that the 2D wave spectrum

on boundaries is a hundreds dimensional variable rather than a two-dimensional

variable as the uniform wind in the windsea case. After 20 iterations, the cost

function J1 reduces to 0.01% and almost reaches its minimum. This is in agreement

with the research made by Veeramony et al. (2010) in which the cost functions can

be reduced to almost zero if the nonlinear effect is small. But the integral boundary

conditions are not recovered to the ’real’ values as seen in Table 3.1. That may be

due to the fact that numerical noises and errors are inevitable in the calculation of

the backward adjoint model and the gradient of the boundary condition with single
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observation location. Although those computational errors adjusted in the boundary

conditions do not affect the location of the observation due to dissipations, they have

some influence on locations with relatively complicated bathymetry and closer to the

open boundaries just as the station HEL. Therefore, Erms over the domain is 0.11

after the assimilation larger than that in the windsea case (see Fig. 3.8). And the

2D spectrum at HEL is not that well recovered as expected where the peak power

density of analyzed spectrum is lower than the pseudo observation (see Fig. 3.9).

Mixed sea

In this case, onshore swells and northeasterly offshore winds are included. The

windsea and swell components of the 2D spectrum at the station ELB can be easily

separated and classified. From Fig. 4.4, both the cost function components due to

winds Jw and swells Js reach convergence by the assimilation with the partition

algorithm. Jw captures more than 80% of the cost function J1 and converges faster

than Js in the experiment. As seen in Fig. 3.11, after 15 iterations, the remaining cost

function is around 4% and the wind component is around 3%. The 2D spectrum at

the station HEL presents both swell and windsea components. Although the power

density of the windsea component becomes slightly higher than the ’observation’,

both windsea and swell components are almost recovered after the assimilation. The

reduced Erms (from 0.68 to 0.09) and the integral wave parameters throughout the

domain confirm the assimilation effect (see Fig. 3.10). The results suggest that the

partition assimilation scheme is able to improve model results effectively for wave

conditions under which the observed spectrum can be separated and classified into

different components properly.

3.4.2 Nonstationary experiment

An experiment covering one day from 2011/03/14 to 2011/03/15 is carried out. It

can be seen that, in general, the input winds in the experiment are from northeast

to southwest. Wind speed increases from 5m/s to around 10m/s and the input

swells rotates from southeast to south over the simulated period (see Fig. 3.12).

Fig. 3.13a shows the assimilation results after 30 iterations. Erms throughout the

region are reduced to less than 0.1 in most assimilation windows. The model inputs

are almost entirely corrected (see Fig. 3.12). At the last assimilation window, the

rest cost function is about 15% and the Erms is still 0.13 after the assimilation. This

slightly larger value is related to the fact that at that window, the mean directions

of the swells are closer to the wind direction. Additionally, the windsea part of
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Figure 3.12: Differences of the model inputs among psobs (pseudo observations), bfas
(model before the assimilation) and afas (model after the assimilation) in the nonstationary
case. (a) Input winds; (b) Boundary conditions.

spectrum is in a lower frequency domain due to the larger wind speed (10m/s).

Meanwhile, the mean wave period of the swells has declined to around 7s. Under

such conditions, nonlinear wave-wave interactions and subsequent energy transport

from windsea component to swells can be expected(Hasselmann, 1963). At the same

time, the interaction between swell and windsea components also leads to some errors

during the implementation of the partition algorithm. Even so, the integral wave

parameters at HEL in the last window are well recovered. Based on the results of

the experiments, the assimilation scheme is found to be feasible for nonstationary

simulations.

3.5 Summary

In this study an assimilation scheme suitable to wave models in shallow waters

is tailored to the SWAN wave model. The scheme based on the 4D variational

method combined with adjoint technique is found to be effective to nearshore wave

simulations. Winds and boundary conditions are assimilated by implementing the

partition algorithm. Nonstationary conditions are solved by giving a determined

correlation of the control variables in time. The twin experiments confirm that

the assimilation scheme is capable of recovering the model results throughout the
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Figure 3.13: (a) Erms and (b) Cost function and wave parameters at the station HEL
among psobs (pseudo observations), bfas (model before the assimilation) and afas (model
after the assimilation) in the nonstationary case.

computational domain when model inputs are uniform. Both winds and boundary

conditions are corrected even without including nonlinear wave-wave interactions in

the adjoint. Nevertheless, to some extent, the nonlinear term still affects the repro-

duction of the wave energy due to wind. The deficiency of the assimilation scheme

developed in this study is obvious. When the wave energy due to swells and local

winds can not be properly separated, it is not possible to distinguish the error con-

tributions from different model inputs. Hence, subsequent adjustments to the model

inputs cannot be performed correctly. As pointed out by Veeramony et al. (2010),

under such conditions, interactions between swells and windsea components will

make the reproduction of the boundary conditions difficult with the adjoint exclud-

ing the nonlinear interaction term even if the boundary conditions are assimilated

solely. On the other hand, uniform winds and boundary conditions actually give a

perfect correlation of the control variables in space. Hence, it is expected that the

assimilation scheme works in areas where the spatially varying model inputs are well

correlated and the covariance matrix are well estimated even with limited observa-

tions. Therefore, even without spatially broad observations, practical applications

are possible in the German Bight or other regions when credible correlations for
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model inputs in space are obtained.
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An application study on 4D variational wave

assimilation scheme in German Bight with low

spatial observation coverage

Qingyang Song and Roberto Mayerle

Abstract: A 4D variational assimilation scheme with partition method is

modified for practical application of wave simulation in German Bight. Sen-

sitivity analysis reveals that limited observing locations cannot be sensitive to

errors of boundary conditions over the whole wave boundaries under varying

wave conditions. Therefore, a scheme designed for low spatial observation

coverage by assuming couple of ’basic’ inputs containing all errors is pro-

posed. Twin experiments with pseudo observations are carried out to assess

the feasibility of the scheme with basic inputs. The proposed scheme using a

single observing location shows comparable assimilation effect with the origi-

nal scheme without the basic inputs assumption using 25 observing locations,

reducing spectrum RMS errors by around 50% throughout the whole computa-

tion domain. The practical experiment is performed over one day, considering

both wave boundary conditions and wind fields as control variables. The spec-

trum RMS errors at the validation buoy decline by more than 60% by means of

the proposed assimilation scheme with observations from a single in-situ buoy.

Overall, although the basic input assumption will somehow overestimate the

spatial correlation of the input errors and consequently adjust the model in-

puts improperly in some areas, the scheme is still a good option for nearshore

wave simulation where sea states are strong correlated when observations are

spatially limited.

Keywords: 4D variational assimilation; Wave modeling; sensitivity; obser-

vation coverage
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4.1 Introduction

Ocean wave conditions are crucial for human activities in coastal areas. The

need of the accurate information about waves is keeping increasing since marine ex-

ploitation, commercial transportation and coastal construction are becoming more

and more frequent. Numerical simulation is a convenient and economical option to

hindcast or forecast ocean waves. However, in practice, modeling ocean waves is

always challenging, especially in coastal areas. Nowadays, assimilation techniques

are widely applied to improve the accuracy of numerical ocean models with vari-

ous assimilation approaches eg. 4D variation, optimal interpolation, and Kalman

filters. But regardless of the approaches applied, observations are always essential

for assimilation effects. In-situ wave observations in coastal area are occasionally

restricted to irregular bathymetry or extreme wave conditions and in most case,

relatively expensive. It is almost impossible to provide spatially broad distributed

wave data. On the other hand, using of remote sensing data is handicapped by its

long measuring cycles and difficulties in information retrieval. Therefore, effective

assimilation schemes requiring only limited observations are useful in nearshore wave

simulations.

Recently, several assimilation schemes have been applied in regional wave mod-

els concentrating on coastal process (Portilla, 2009; Siddons et al., 2009; Veeramony

et al., 2010; Waters et al., 2013; Wahle et al., 2015; Song and Mayerle, 2017). Com-

pared with large scale models, sea state conditions in coastal domains with the size

in the order of a few kilometers are usually strong correlated in space, which makes

it possible to provide spatially uniform model inputs over the study area such as

wind fields, boundary conditions or drag coefficients (Veeramony et al., 2010). But

obviously, the simplication is inappropriate for larger area. Siddons et al. (2009)

employed HF radar wave data so as to improve the assimilation scheme incorpo-

rating spatially correlated errors. Portilla (2009) designed a specific gain matrix

in their optimal interpolation scheme according to the topography off the Belgian

continental shelf. The gain matrix allows for a more realistic correlations of wave

conditions surrounding the location of a single buoy and consequently improves the

assimilation effect. Besides, Panteleev et al. (2015) developed a regional wave assim-

ilation scheme based on adjoint-free methods to correct initial wave conditions and

Wahle et al. (2015) applied neural networks to improve input wind fields. Those two

studies both utilized pseudo observations to assess their assimilation schemes and

the results revealed the importance of spatial observation coverage in the research

domains to some extent. At the same time, some attempts were made to extend

the beneficial influence of the assimilation combining limited observations in time
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and space (Emmanouil et al., 2010, 2012). They kept the observation information

longer in the simulation procedure by applying a bias correction within the forecast-

ing horizon in their second-order KF and optimal interpolation schemes to improve

the model performance in the North Atlantic. Additionally, Orzech et al. (2014) ap-

plied adjoint-based sensitivity map for waves to identify alternate locations whose

spectral energy levels are most correlated with the concerned area. The technique

can also be utilized to identify sensitivity of observations to control variables in an

adjoint-based assimilation scheme.

In the present study, the 4D variational assimilation scheme with partition meth-

ods for nearshore wave model developed by Song and Mayerle (2017) is modified

and applied in the German Bight using buoy in-situ observations provided by BSH

(Bundesamt Fuer Seeschi fahrt und Hydrographie). To improve the assimilation

effect with limited observations from a single buoy, it is assumed that there is a set

of basic model inputs containing all the errors. Therefore, spatially varying model

inputs such as wind fields and wave conditions can be explicitly represented by the

basic inputs combined with some perturbations. Hence, under the basic input as-

sumption, observations at a selected buoy location become sensitive to the model

inputs throughout the whole computation area, which makes the scheme capable of

correcting the spatially varying model inputs with low spatial observation coverage.

Experiments with pseudo observations are performed to examine the feasibility of

the proposed scheme after sensitivity analysis. The assimilation effect by adjusting

wave boundary conditions of the modified scheme using a single observational loca-

tion is compared with that of the original scheme without basic inputs assumption

using varying numbers of observational locations in the experiments. After that,

a practical experiment under nonstationary conditions considering both wind fields

and wave boundary conditions as control variables is carried out to further assess

the proposed scheme.

4.2 Method

4.2.1 SWAN wave model

SWAN (Simulating Waves Nearshore) is a third generation wave model widely

used in coastal areas, lakes, and estuaries (Booij et al., 1999). As a phase-averaged

stochastic wave model, SWAN solves the following action balanced equation:

∂N

∂t
+ ~∇(~CN) =

S

σ
(4.1)
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The first term in the left is the local variation of the action density N(x, y, θ, σ).

The second term describes the propagation of N , where ~C = (Cx, Cy, Cθ, Cσ) is

the propagation velocity of wave energy in space and spectrum domain. The term

in the right is the source and sink term of N , where σ is the circular frequency

and S includes wind growth, dissipations and nonlinear wave-wave interactions. By

provided correct bathymetry, wave boundary conditions, wind fields and other model

inputs, SWAN is able to solve Eq. (4.1) with limited difference method obtaining

2D wave spectra throughout whole computational domains.

4.2.2 Assimilation scheme

The assimilation scheme applied in this study is a 4D variational assimilation

scheme with partition methods tailored for SWAN wave model. The scheme applies

a full adjoint model derived directly from differential equations apart from the non-

linear terms to minimize the cost function. Partition methods are implemented in

the scheme to correct swell and windsea contributions of wave spectra separately. By

providing defined correlations of model inputs in time, the scheme can be applied

under nonstationary wave conditions. For assessing the scheme, a set of uniform

model inputs, wave boundary conditions and wind components, is selected as control

variables by Song and Mayerle (2017). Nevertheless, the uniform model inputs in

space are obviously inappropriate in this study. Therefore, spatially varying model

inputs are employed in the modified schemes. However, initial sea state is still not set

as the control vector in this study. Actually, accurate initial sea state can be obtained

by adjusting other model inputs such as winds and wave boundary conditions under

stationary simulations in which case the initial sea state will not affect the eventual

simulation results through several iterations. On the other hand, occasionally, sea

state over the whole computation domain is difficult to be effectively assimilated

with limited observations by means of the scheme proposed in this study. Hence,

the cost function reads:

J = J1 + J2 + J3 (4.2)

where J1, J2 and J3 are observation deviation, wind deviation and boundary spec-

trum deviation terms respectively. The deviation from observations is expressed by

error variance of spectra. The J1 reads:

J1(E) =
1

Mobs

1

T

∫∫∫
(EEE −EaEaEa)TW1W1W1(EEE −EaEaEa)dθdfdt (4.3)
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Where EEE is a compact form in space of the wave spectrum density and the subscript

a denotes the observations. W1W1W1 reflects the uncertainty of observations. In this case,

W1W1W1 is the inverse spatial error covariance matrix of observed wave energy assuming

that the observed spectrum density has the same spatial correlations in all the

frequencies and directions. Mobs indicates the total number of the observations used

for assimilation over space and time. J2 is the wind deviation, it reads:

J2(u, v) =
1

AD

∫∫
[(uuu− u1stu1stu1st)

TW2uW2uW2u(uuu− u1stu1stu1st)+

(vvv − v1stv1stv1st)
TW2vW2vW2v(vvv − v1stv1stv1st)]dxdt

(4.4)

Where uuu and vvv are the space vectors of wind components and the subscript 1st

indicates the first guess value. W2uW2uW2u and W2vW2vW2v are the inverse error covariance matrix

of uuu and vvv respectively. AD is the area of computation domain. Similarly, J3 reads:

J3(Eb) = 1
Lb

∫∫∫∫
(EbEbEb −Eb1stEb1stEb1st)

TW3W3W3(EbEbEb −Eb1stEb1stEb1st) dθdfdxbdt (4.5)

Where the subscript b denotes the input wave spectra on open boundaries and Lb

is the length of the boundaries. Analogously, W3W3W3 is the inverse spatial covariance

matrix of the first guess input wave energy on open boundaries.

Time dependent model inputs such as wind fields or wave boundaries in a for-

ward model are normally obtained by interpolating the inputs at the start and end

points of an input interval to match the computation time step. Therefore, a time

dependent control variable c can be expressed by a linear combination of multiple

time independent control variables:

c(t) =
∑N

n=1wn(t)cn (4.6)

where wn(t) denotes the interpolation weighting function with respect to time and cn

is the control variable at the start or end time point of an input interval. Normally,

wn(t) is a linear function of time. Thus, the time dependent control variables Eb

and u, v in Eq. (4.4) and Eq. (4.5) can be replaced by time independent control

variables Ebn and un, vn. The expressions of J2 and J3 are changed to:

J2(un, vn) =
1

AD

N∑
n=1

∫
[(ununun − un1st

un1stun1st)
TW2nuW2nuW2nu(ununun − un1st

un1stun1st)+

(vnvnvn − vn1st
vn1stvn1st)

TW2nvW2nvW2nv(vnvnvn − vn1st
vn1stvn1st)]dx

(4.7)

J3(Ebn) = 1
Lb

∑N
n=1

∫∫∫
(EbnEbnEbn −Ebn1st

Ebn1stEbn1st)
TW3nW3nW3n(EbnEbnEbn −Ebn1st

Ebn1stEbn1st) dθdfdxb (4.8)
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According to Song and Mayerle (2017), it is assumed that waves can be regarded as

linear superpositions of swell and windsea contributions. Hence, following Lagrange

multiplier method, the resulting adjoints read:

for windsea:

− ∂λw
∂t
− ~C ~∇λw = λw

∂Sw
∂E
− ∂J1w

∂N
δ(x− xa)δ(t− ta)

(4.9)

for swell:

− ∂λs
∂t
− ~C ~∇λs = λs

∂Ss
∂E
− ∂J1s

∂N
δ(x− xa)δ(t− ta)

(4.10)

J1w and J1s are the windsea and swell contributions of J1 respectively. The windsea

and swell contributions are separated and classified by the partition method (Has-

selmann et al., 1997). Sw and Ss are the source/sink terms related to local winds

and swells respectively. After obtaining the Lagrange multipliers λw and λs, through

solving Eq. (4.9) and Eq. (4.10), gradients of the cost function with respect to the

control variables can be calculated using the formulas as follows:

for wind fields:

gradunJ =
∂J2

∂un
−
∫∫∫

[
λwwn(t)

2πf

∂Sw
∂u

]dθdfdt

gradvnJ =
∂J2

∂vn
−
∫∫∫

[
λwwn(t)

2πf

∂Sw
∂v

]dθdfdt

(4.11)

for wave boundaries:

gradEbn
J =

∂J3

∂Ebn
−
∫

[
wn(t)

2πf
λs ~C ~nb]dt

(4.12)

where (un, vn) are the input wind components, Ebn is the input wave spectra on

open boundaries and ~nb is the direction vector normal to the boundary. Since the

gradients are accessible, increments of the control variables can be obtained by

means of optimization algorithms such as the conjugate-gradient descent algorithm

(Polak, 1971) to update the forward wave model. From Eq. (4.2) to Eq. (4.12), the

assimilation scheme, hereafter referred to as OAS (the original assimilation scheme),

requires accurately estimated spatial error covariance matrix of observations and

the chosen model inputs. Meanwhile, the assimilation effect with spatially limited

observations is doubtful, since the sensitivity of the observations to the control

variables is unknown.
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Figure 4.1: Adopted data assimilation scheme

4.2.3 Basic model inputs

It is expected that, in the coastal sea area where the sea states are strong corre-

lated, dimensionality reduction of the control variable vectors is a good option for

applications when only limited observations are available.

It is assumed that there are a spatially uniform basic wave boundary condition

and a couple of basic wind components in the study area. The spatially varying

local inputs such as wave boundary conditions and winds can be regarded as the

’bases’ combined with perturbations in which way the model inputs are spatially

correlated. Another assumption is that the errors of the input waves and wind fields

only exist in the ’bases’. In other words, it is assumed that errors in the chosen

model inputs throughout certain coastal area are related to a same error source.

Hence, in this study, Ebs
b and (ubs, vbs) are set as the basic model inputs and as well

the control variables. In the view of energy, the basic model inputs are regarded

as the energy source thereby dissipating or growing to the magnitude of the local

inputs. So spatially varying wave boundary conditions and wind components are

represented as follows:

Eb(x) = KE(x)Ebs
b + ∆E(x)

u(x) = Kw(x)ubs + ∆u(x)

v(x) = Kw(x)vbs + ∆v(x)

(4.13)

where KE and Kw are the coefficients to adjust the magnitude of the basic inputs

to that of the local inputs. Hence, they are related to the ratio of the wave energy
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and wind speed between basic and local inputs as follows:

KE(x) = (
Hs(x)

Hbs
s

)2;Kw(x) =
w(x)

wbs
(4.14)

where Hs is the significant wave height and w is the wind speed. Since the control

variables are changed, the cost function J2 and J3 should be modified to:

J2(ubsn , v
bs
n ) =

N∑
n=1

[W2nu(u
bs
n − ubsn1st

)2 +W2nv(v
bs
n − vbsn1st

)2]

J3(Ebs
bn) =

N∑
n=1

∫∫
[W3n(Ebs

bn − Ebs
bn1st

)2] dθdf

(4.15)

Therefore, the gradient Eq. (4.11) and Eq. (4.12) are subsequently changed as:

for wind fields:

gradubsn J =
∂J2

∂ubsn
−

∫∫∫∫
[
λwwn(t)

2πf

∂Sw
∂u

∂u

∂ubs
]dθdfdxdt

gradvbsn J =
∂J2

∂vbsn
−

∫∫∫∫
[
λwwn(t)

2πf

∂Sw
∂v

∂v

∂vbs
]dθdfdxdt

(4.16)

for wave boundaries:

gradEbs
bn
J =

∂J3

∂Ebs
bn

−
∫∫

[
λswn(t)

2πf
~C ~nb

∂Eb
∂Ebs

bn

]dxbdt
(4.17)

In this study, the first guess Ebs
1st and (ubs1st, v

bs
1st) in Eq. (4.13) are obtained through

averaging the first guess input wave boundary conditions and wind fields. After that,

KE and Kw can be calculated through Eq. (4.14). Then, ∆E(x) and (∆u(x),∆v(x)),

are obtained by Eq. (4.13). The calculation is completed before wave simulations

and assimilations. In the assimilation process (see Fig. 4.1), keeping KE, Kw, ∆E(x)

and (∆u(x),∆v(x)) constant, Ebs and (ubs, vbs) are updated by using the gradient

calculated through Eq. (4.16) and Eq. (4.17). It is expected that the assimilation

scheme, hereafter referred to as BAS (the ’base’ assimilation scheme), would work

well when errors are only contained in Ebs and (ubs, vbs). But what should be pointed

out is that the method proposed in this section is essentially an interpolation method

to provide a assumed spatial correlations of the wave boundary conditions or the

wind fields. In that sense, it is analogous to what is applied in time domain. This

scheme is consistent with the scheme provided by Song and Mayerle (2017). Actu-

ally, when KE and Kw equal one and ∆E(x) and (∆u(x),∆v(x)) equal zero, the
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assimilation scheme will return to the case with uniform wave boundary conditions

and wind fields. What should be pointed out is that the intension of the proposed

scheme is not to reduce the dimension of control vectors. The reduction can be done

through some schemes such as 4D-PSAS by transferring the control variables from

model space to observation space (Courtier, 1997). But those schemes are designed

to save computation resources rather than making contributions to improving as-

similation results with limit observations. Differently, the proposed scheme BAS

is an expedient and convenient method for sea areas with well-correlated sea stats

when lack of broadly distributed observations.

Figure 4.2: Computation domain in German Bight

4.3 Twin experiments

Twin experiments are performed to verify the feasibility of the proposed ’base’

scheme. The two different schemes, OAS and BAS, are applied in the German

Bight with pseudo observations. The experiments are designed to reveal the impact

of observation distributions on the assimilation effect of OAS and to compare the

assimilation effects of the two schemes in the study area.

4.3.1 Experiment setup

The computational domain in the German Bight on the North Sea covers an area

of around 100km × 90km (see Fig. 4.2). The spatial resolution of the model is 500 m.

The bathymetry data is provided by GEBCO (The General Bathymetric Chart of

the Oceans) dataset (Becker et al., 2009). The wind data is obtained from the GME

model (Majewski et al., 2002) whereas the wave boundary data is taken from the

ERA-I dataset provided by ECMWF (European Centre for Medium-Range Weather
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Forecasts) (Dee et al., 2011). A scenario (at 00:00:00 on 2011/03/06) in which swells

are dominant in the study area is selected for the experiments. Therefore only wave

boundary conditions are considered as the control variables.

There are three groups of input wave boundary conditions used in the experi-

ments: the ’real’ wave boundaries, the wave boundaries providing pseudo observa-

tions and the first guess boundaries. The original wave boundary conditions from

ERA-I are regarded as the ’real’ wave boundaries. Since only the wave statistic

parameters are used in this study providing the boundary conditions, the total

wave energy on the boundaries is changed by altering the significant wave height

to produce the other two groups of the wave boundaries. The experiments are only

performed at 00:00:00 on 2011/03/06 under the stationary wave condition but the

calculation of covariance requires a relative large sample number so as to prevent

producing a singular covariance matrix with low rank by accidents. Although the

singular matrix will not handicap the calculation if using a pseudo inverse, it is

not normally consistent with the real case for boundary conditions. Therefore, the

alteration of the significant wave height is processed as follows:

Hp
S(xb, t) = Hr

S(xb, t) +N0.1(t), N0.1 ∼ N(0, 0.1Hr
S(xb, t0))

Hf
S(xb, t) = Hr

S(xb, t) +N0.3(t), N0.3 ∼ N(0, 0.3Hr
S(xb, t0))

(4.18)

where N0.1 and N0.3 are random functions with normal distributions, the superscripts

r, p and f denotes the ’real’ case, the pseudo case and the first guess case, t0 denotes

the time chosen for the stationary experiments. The three groups of the wave

boundaries are applied in the SWAN model covering the period from 2011/02/17 to

2011/03/17 to calculate the variance of the wave energy of the pseudo observations

and the first guess wave boundary conditions. Additionally, spatially homogeneous

and isotropic error correlation structure is assumed in the study area as a exponential

decay curves with distance (Voorrips et al., 1997; Portilla, 2009):

ρij = exp[−(
|xi − xj|

L
)a] (4.19)

where |xi−xj| gives the distance between two grids, L is a correlation length and a is

a estimated power. L is set to be 200 km and a is set to be 1.5 following the research

form Voorrips et al. (1997); Portilla (2009). Thus, the error covariance matrix of

wave energy can be obtained through multiplying the correlation structure with the

calculated variance and subsequently obtaining W1 and W3. The motivation not to

calculate the covariance directly is that the identical boundary conditions at some

grids on boundaries due to the relatively lower spatial resolution of ERA-I data are
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Figure 4.3: sensitivity map of boundary conditions to single observing location on the
selected curve

easier to result in a singular covariance matrix.

Another issue required to be addressed in the experiments is the locations of

pseudo observations used for assimilations. There are two wave buoys from BSH

(Bundesamt Fuer Seeschifffahrt und Hydrographie) named Elbe (ELB) and Hel-

goland (HEL) in this area. Since the derived adjoint does not include non-linear

wave-wave interactions, keeping the non-linear effect as weak as possible around

the observing location for assimilations will be important to guarantee assimilation

effects of the schemes. Therefore, the locations with complex local bathymetry as

the station HEL where bottom refractions are expected or at the very shallow water

where steep waves will lead to strong non-linear interactions (Beji and Battjes, 1993)

are not proper options for assimilated observing locations. Hence, a curve crossing

the station ELB (Fig. 4.2) and almost covering all the wave traveling paths from

the open boundaries is selected for the pseudo observing locations. 25 locations

are determined with constant distance from the station ELB spreading towards two

sides along the curve. The station ELB will be the single observation selected for

the scheme BAS. In the scheme OAS, the number of observing locations increases

in turn as 1, 2, 4, 7, 13, 25 to reveal the effect of spatial observation coverage.

A normalized RMS spectrum difference is defined as follows to assess the two

schemes (Song and Mayerle, 2017):

Erms =

√
〈(Ereal − Emod)2〉

〈E2
real〉

(4.20)

Where Emod is the modeled spectrum density, Ereal is the ’real’ spectrum density.

The angular brackets denote averaging in space, time, and over the frequency domain

(Panteleev et al., 2015).
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Figure 4.4: Relative cost function with respect to iteration number of BAS and OAS with
different numbers of observing locations and in twin experiments.

4.3.2 Sensitivity map

system indicator by computing the differential of that indicator at all domain

locations in response to a unit impulse applied to a specific system parameter at

a chosen location (Orzech et al., 2014). A sensitive map over open boundaries in

response to impulses at observing locations is helpful to understand the importance

of the observation coverage in the study area under certain wave conditions. A

sensitivity metrics based on adjoint-estimated gradient of the cost function with

respect to the control variables is defined as follows:

G(xb) = (
λs

2πf
~C ~nb

∂Eb
∂Eb

)|xbdxb (4.21)

S(G)S(G)S(G) =

√∫∫
(GGG)2dθdf (4.22)

Where GGG is analogous to the gain matrix in the Kalman Filter method reflecting the

sensitivity of the analytic system with respect to the observations (Cardinali, 2014),

the sensitivity metrics SSS is defined as sensitive energy integrated over the spectral

sensitivity. The sensitivity metrics is calculated through the adjoint model along

the whole open boundaries setting the spectral deviation of the first guess results

from the pseudo observations at each observing location on the curve as an impulse.

Four different sensitivity maps are shown in Fig. 4.3 with different source locations

of the impulse on the curve. The sensitivity metrics SSS has a peak segment on each

the west and north boundary. The directionally distributed wave energy at source

locations of impulses comes from different segments in each boundaries. Thus, the

peak segments are roughly located on each boundaries where providing most wave

energy to selected source locations. The mean wave direction of the input swells is

around 300 degree in nautical coordinates alongside with the south-north isobath
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Figure 4.5: Significant wave height and mean wave direction throughout the computational
domain. (1) Real; (2) First guess results; (3) BAS; (4)-(9) OAS with 1,2,4,7,13,25 obser-
vational locations respectively. Black solid circles denote the involved observing locations
in the assimilations

direction causing more wave energy from the west boundary and consequently high

sensitivities on it. A double-peak structure appears on both boundaries when the

source locations are moved to the center region of the study area where are further

away from the boundaries. The fact indicates the spectral differences on the source

locations further from the boundaries mainly come from two different segments on

one boundary due to directional spreading of the input wave spectra and diffusions

when wave propagates. oppositely, if the source locations are closer to the boundaries

or the island Heligoland is in wave travel paths blocking incoming waves by reflection

and refraction, the double-peaked structure disappears. Generally, the sensitivity

distribution on the wave open boundaries depends on wave travel paths affected by

topography, wave diffusion, wave reflection and directional spreading of wave spectra

as expected. In other words, sensitivity maps varies with wave conditions even

impulses come from the same location, which implies that it is difficult to guarantee

spatial observation coverage sufficient when applying OAS if wave conditions are
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Figure 4.6: 2D spectrum at the station HEL. (1) Real; (2) First guess results; (3) BAS;
(4)-(9) OAS with 1,2,4,7,13,25 observational locations respectively.

arbitrary.

4.3.3 Experiment results

The assimilation results after 50 iterations are presented in this section. In the

experiments, the scheme BAS is proved to have a higher convergence rate due to

a lower dimension of the control vectors. The cost function J of BAS converges to

around 10% after 20 iterations, while OAS converges after 40 iterations (see Fig. 4.4).

The coverage of observations does not have a notable influence on eventual iteration

steps of convergence but it does affect the early convergence rate which may be

resulted from the varying sensitivity of the observing locations to the boundary
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conditions (Fig. 4.4).

Fig. 4.5 reveals that, for the assimilation scheme OAS, broadening the observa-

tion coverage makes contributes to improve the assimilation effect by which through

the whole computation domain, the remaining Erms after assimilations declines from

0.32 to 0.20. Actually, the reduction of Erms slows down when the two endpoints of

the curve have been occupied as the observing locations(Fig. 4.5(6) to Fig. 4.5(9)).

In the view of the sensitivity, the four observations in Fig. 4.5(6) are the most

efficient strategy to correct boundary conditions for the scheme OAS in the exper-

iments. Nevertheless, the remaining Erms is still 0.2 even with 25 observations on

the selected curve which is larger than the results of Song and Mayerle (2017) with

uniform inputs. It is noticed that the assimilation scheme dose not function properly

in the segment on the boundaries around the upwave side of the Heligoland island.

The island blocks the wave propagation in which case observations on the curve

contain few wave energy from that segment. Therefore, errors of the input waves

from the segment can not be inversed and corrected by the adjoint properly, unless

provided a strong spatial correlations such as assuming a uniform boundary condi-

tion. The scheme BAS actually gives a relative strong correlations with the basic

boundary conditions consequently being more influential in that area (Fig. 4.5(3)).

The scheme BAS shows better performance with the remaining Erms of 0.21 than

OAS when using the same single observation at the station ELB. Also, the adjust-

ment for the north open boundary in BAS is more prominent than the OAS due

to the basic boundary conditions. But at the same time, the scheme BAS overly

adjust the boundary conditions in some segments compared with the results from

OAS with multiple observations. For example, at the station HEL, the spectrum

density after BAS becomes lower than the ’real’ one in some directions (Fig. 4.6).

Even so, the experiments confirm that the scheme BAS is feasible in the study area

as an expedient with limited observations.

4.4 Practical experiment

A practical experiment in the German Bight is presented here to further assess

the proposed assimilation scheme BAS, as the feasibility has been proved in the twin

experiments. The experiment is carried out with nonstationary wave conditions over

one day (From 2011/03/12 to 2011/03/13). The first guess wind fields and wave

boundary conditions are from the same database as applied in the twin experiments.

According to the first guess input data on 2011/03/12, in the study area, the average

wind speed fluctuate from 5m/s to 10m/s and there are swells entering from the west
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Figure 4.7: Initial 1D frequencial spectrum at the buoy locations from obs (observation),
bfas (first guess results before assimilation) and afas (analyzed results after assimilation)
at 23:49:00 on 2011/03/11. (a) ELB station; (b) HEL station.

and north boundaries. Hence, wind fields and wave boundary conditions are both

considered as the control variables. The involved in-situ data is 1D wave spectra

with peak direction and directional spread in each frequencies at the station HEL

and ELB provided by BSH. The data at ELB is used for assimilation, while the

data at HEL is for validation. The 2D spectra assimilated are reconstructed from

the in-situ 1D spectra through the method given by Kuik et al. (1988). Different

from the twin experiments, the buoy observations are trusted to be credible assumed

as the ’real’ sea state. Thus, in the practical experiment, using the scheme BAS,
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Figure 4.8: Time series from obs (observation), bfas (first guess results before assimila-
tion) and afas (analyzed results after assimilation) at the station HEL in the practical
experiment of (a) Significant wave height; (b) Mean wave period; (c)Mean wave direction.

the weights are dimensionally reduced to scalars as follows:

W1 = 1

W2u =
0.01Ē2

ū2

W2v =
0.01Ē2

v̄2

W3 = 0.01

(4.23)

where (ū, v̄) is the average value of the first guess wind components and Ē is the

average value of the first guess wave energy. The weights W1 and W3 are selected
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according to Walker (2006). The values 0.01 and 1 suggest that observations are

much more credible than results from simulations. The rate between wave energy

and wind speed in W2 is to make the dimension of control variables uniform, pro-

vided that the orders of the variance are proportional to that of the corresponding

variables.

Initial sea states are obtained by assimilating the in-situ data under stationary

conditions at 23:49:00 on 2011/03/11 so as to assume the initial conditions correct in

the practical experiment (see Fig. 4.7). It should be pointed out that the 1D in-situ

spectrum at HEL is obtained by interpolation due to the absence of measurements

at that time.

On 2011/03/12, the Erms at the validation station HEL declined from around

1.9 to 0.7 after assimilation through 30 iterations (Fig. 4.8 and Fig. 4.9). The assim-

ilation scheme is proved to be most effective on the total wave energy represented

by significant wave height (Fig. 4.8). On the contrary, mean wave period at HEL

is not well corrected, especially when wave energy from swells recedes after 18:00.

The fact suggests the wave energy distribution in frequencies is inaccurate, as the

mean wave period Tm01 is obtained by calculating the first moment of the power-

density-weighted wave period. Different from normally irregular-shaped observation

spectra, the 1D spectra from simulation results driven by first guess model inputs

reveal relative notable dividing frequencies between swell and wind-sea contributions

and regular shapes in both contributions (see Fig. 4.9). Some spectrum shape of

swell contributions can be corrected closely to the irregular-shaped in-situ spectra by

adjusting the input wave spectra directly on open boundaries in the assimilations.

Nevertheless, wind-sea contributions can only be corrected through adjusting the

wind components by which total wave energy, peak directions and peak frequen-

cies rather subtle spectrum shapes will be modified. Therefore, the assimilation

scheme becomes even more difficult to take effect on redistribution of wave energy

in frequencies when wind-sea contributions become more dominant such as on late

03/12. Additionally, some fluctuates of the wave conditions are not emerged in the

results after assimilations. That is because a three-hour input window with linear

time weights wn(t) between control variables is almost impossible to recur all the

fluctuates of half-hour observations. Even so, the scheme BAS generally covers more

than 60% of the errors at the station HEL after assimilations proved to be feasible

in practical applications.
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Figure 4.9: 1D frequencial spectrum at the validation station HEL from obs (observation),
bfas (first guess results before assimilation) and afas (analyzed results after assimilation).
(a) At 06:14:00; (b) At 12:14:00; (c) At 18:14:00 on 2011/03/12.

4.5 Summary

In this study, to apply the 4D variational assimilation scheme provided by Song

and Mayerle (2017) in the German Bight with a single observation station, basic

model inputs are proposed assuming that they contain all the errors. Hence, the

spatially varying model inputs such as wave boundary conditions and wind fields can

be corrected through adjusting the basic inputs. Before the practical experiment,

sensitivity analysis of boundary conditions in response to impulses at observing lo-

cations are carried out suggesting that a single observing location is not possible

to be sensitive to the input waves over the whole open boundary under varying

wave conditions. Since at locations without observations, innovations will be re-

garded as zero meaning no errors there, the boundary conditions sensitive to the

locations will not be adjusted correctly. Further, the twin experiments with pseudo

observations confirm the impact of the spatial observation coverage on the assim-

ilation effect through comparing the assimilation results with different coverage of

observations. The twin experiments also reveal the feasibility of the basic input

assumption, although the scheme BAS with a single observation does not show

remarkable advantages compared with OAS using 25 observations on the selected

curve. In the one-day practical experiment, the Erms is reduced by more than 60%

with the scheme BAS. The assimilation results suggest that basic input assumption

is appropriate not only for boundary conditions but also for wind fields in this area

if regardless of the deficiency of the original assimilation scheme itself such as in-

capacity of correcting the spectrum shape of wind-sea contributions and absence of

the non-linear terms in the adjoint model for the present. According to the experi-

ments results, it is believed that for the nearshore areas where sea states are strong

correlated, the proposed scheme with basic input assumption is a feasible expedient
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when the observation coverage is low in space occasionally. Besides, although the

proposed scheme are designed for wave hindcast systems, the obtained sea states

through assimilations under stationary conditions are adequate as initial conditions

contributing to wave forecast.
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Chapter 5

Summary

This study concerns on simulations of wave conditions in coastal areas. Simulated

wave conditions are applied in the assessment of wave energy potential in coastal

area of the Java Island. In addition, a new 4D variational scheme is developed

to improve the accuracy of the nearshore wave models. The scheme is tailored to

SWAN wave model. Application experiments are performed in the German Bight.

In this section, the main findings of each part are briefly summarized. Deficiencies

and strengths of the applied methods and techniques are also discussed providing a

guideline for future works.

5.1 Conclusions

5.1.1 Wave energy assessment

The study on wave energy potential along the south coast of the Java Island in

Ch. 2 describes an approach according to wave conditions and other geographical

conditions for selecting suitable deployment locations of wave farms in nearshore

areas. The assessments of wave energy in the study mainly rely on the wave infor-

mation from numerical models. Long-term analysis based on the data from a global

wave model over 10 years along the isobath of 2000 m provides a rough estimation

and general knowledge of wave climate in the study area. From the long-term wave

data, the wave energy along the south coast of Java Island with slight annual varia-

tion is proved to be adequate for wave energy farms (the annual median significant

wave height is around 2 m and the mean annual median wave power reaches 22

kW/m). Additionally, although the mean median wave power in dry seasons (27

kW/m) is higher than in rainy seasons (17 kW/m), there is a smaller seasonal vari-

83
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ation than at the west coast of Australia which makes it more suitable for wave

energy extraction. Later, wave conditions have been simulated for a period over one

year by the coastal wave model (CWM) demonstrate the wave energy contributions

in this area. Generally, the majority of wave energy in this area is due to swells from

two different sources rather than waves due to local winds. The primary swell is

from southwest initiated in mid-latitude region caused by the westerlies. Thus, the

wave power due to the swell strengthen and weaken with the seasonal variation of

the westerlies in which case the highest monthly wave power appears in summer (wet

seasons in Indonesia) and the lowest appears in winter (dry seasons in Indonesia).

The other founded southeasterly swell is caused by the trade winds. It dominates

the wave field in average wave conditions in dry seasons. Although the trade winds

are only about 3-5 m/s through the year having limited local impact on waves, the

induced waves will grow through the fetch and perform as relative weak southeast-

erly swells when approaching the study area. In the coastal areas, the annual wave

power from Nov. 2013 to Oct. 2014 is around 21 kW/m and the highest monthly

median wave power appears in Aug. reaching about 33 kW/m. Wave conditions

along with water depth, and distance from the coast are set as criteria for the selec-

tion of wave farms. The general criteria lead to a visible map which raises suitable

wave farm regions providing useful reference for further feasibility investigations.

Generally, the process is appropriate in most cases for wave energy assessment as

long as the wave information is credible.

5.1.2 4D wave assimilation scheme

A 4D variational assimilation scheme with partition method is developed for

SWAN wave model in Ch. 3. The scheme is modified by providing a set of basic

inputs thereby being more effective in scenarios with spatially limited observations

in Ch. 4. The German Bight is selected as the computational domain for the twin

experiments and practical experiments in both studies. Spatially uniform wind fields

and wave boundary conditions are assumed in Ch. 3 to assess the original scheme.

Although the derived adjoints abandon the nonlinear wave-wave interaction terms,

the twin experiment results still demonstrate remarkable effects of the assimilation

scheme (the RMS errors of spectra decrease by around 80%) under the wave condi-

tions when the swell and windsea contributions are able to be classified and separated

completely. Nevertheless, uniform model inputs actually provide an assumption of

spatially perfect correlations reducing the rank of the error covariance matrix. In

other words, under the uniform assumption, observations can be always sensitive to

model inputs regardless of where the specific observing site is. But in real cases,
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model inputs are not perfectly correlated even in a relative small area. Accordingly,

as presented specifically in the sensitive analysis in Ch. 4, the location of observing

sites will not be sensitive to wave conditions over the whole boundaries. Therefore,

twin experiments are carried out in Ch. 4 to assess the original assimilation scheme

(OAS) with spatially varying model inputs using various number of observing sites

for assimilations. At the same time, the scheme with basic model input assump-

tion (BAS) is proposed and compared with the original one. The results of twin

experiments confirm that the assimilation effect is improved with the extension of

the spatial observation coverage. Also, the scheme BAS with a single observation

site shows comparable assimilation results with OAS using 25 observation sites on

the selected curve (both of the schemes reduce Erms by around 50% throughout the

whole computational domain). Additionally, in the one-day practical experiment in

the German Bight, the BAS reduces the Erms at the validation station by more than

60%, despite the fact that the windsea contributions is not well corrected as expected

during some periods. Hence, according to the experiments, when the nonlinear in-

teractions are not prominent, the developed 4D assimilation scheme is believed to

be suitable for nearshore wave simulations even with spatially limited observations.

Besides, as presented in the practical experiment, the obtained analysis sea states

through assimilations under stationary conditions are adequate as initial conditions

contributing to wave forecast.

5.2 Discussions

5.2.1 Wave energy assessment

In the assessment of wave energy potential, the total extractable wave energy over

the study areas is always attractive for researchers. But in Ch. 2, the wave power

per unit length named wave power density rather than the exploitable wave energy

is defined to evaluate the wave energy potential. The motivation not to involve

exploitable wave energy directly is that the computation of exploitable wave energy

crucially depends on the type of deployed instruments. For instance, Gunn and

Stock-Williams (2012) considered Pelamis P2 as the wave converter to estimate wave

energy resources. The basic conception for wave energy calculation is to multiply

wave power density obtained from wave data with the ’effective length’ of coasts

(the projection length of coasts in the direction normal to incoming waves). Hence,

they gave a roughly estimation of the wave source globally (mean wave power of

2.11 TW). However, for a specific instrument, the extraction efficiency must be

considered when calculating the exploitable wave energy. In fact, the quantity of
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deployed instruments can not be unlimited over the whole coast, since the extraction

of wave energy leads to the drop of wave fluctuation over the area surrounding the

instrument (Bernhoff et al., 2006). Hence, a space between two adjacent converters

is required. Specifically, for Pelamis P2 the space is 400 m. Thus Gunn and Stock-

Williams (2012) gave a global wave power of 96.6 GW that can be extracted by

the selected converter. In our case, the same approach can be applied to roughly

estimate the exploitable wave energy. The total wave power is around 506 MW and

the consequently exploitable wave power by Pelamis P2 is around 20 MW along the

coast. So the exploitable wave energy is convenient to be obtained from the wave

information provided by numerical wave models if the instruments which will be

deployed are decided. Another inevitable problem is the accuracy of global wave

data used in long-term analysis and as open boundary conditions in the coastal wave

model. Stopa and Cheung (2014) compared global wave and wind database from

ECMWF and NCEP (National Centers for Environmental Predictions). But there

are few buoys in south Indian Ocean involved in their study. Thus, wave conditions

from both database are applied and compared as wave boundary conditions in the

coastal wave model along the Java coast in the preliminary test stage. It is found

that the wave data from ERA-I have a better agreement with the observations than

that from CFSR-W (NCEP Climate Forecast System Reanalysis) which occasionally

overestimates the wave heights in this area. Therefore, finding a credible method to

correct model inputs is necessary in case global wave and wind data are inaccurate

when applying the assessment method to other sea areas.

5.2.2 4D wave assimilation scheme

The main problem in the developed assimilation scheme is the exclusion of the

nonlinear wave-wave interaction terms in the adjoints. In this study, the nonlinear

terms are neglected with consideration of the separation for windsea and swell contri-

butions. But there is no doubt that the nonlinear impact on the waves in nearshore

area is crucial in some situations. For wave conditions that are dominated by a

single wave system or contain errors from an unique and identified source, the intro-

duction of nonlinear terms in the derivation of the adjoints is expected to make the

adjoints more consistent with the governing equations. The nonlinear wave-wave

interactions theory given by Phillips (1960) and Hasselmann (1962, 1963) describe

the energy exchange between different wave components, thereby redistributing the

energy over the spectrum. Since the full computation of wave-wave interactions is

extremely time consuming and not convenient in an operational wave model (Team

et al., 2009), the calculations of nonlinear terms in SWAN model are carried out
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with the DIA (Discrete Interaction Approximation) for quadruplet wave-wave inter-

actions and LTA (Lumped Triad Approximation) for triad wave-wave interactions

(Hasselmann et al., 1985; Eldeberky and Battjes, 1996). It is much easier to obtain

the adjoints from discretized equations through an adjoint compiler when nonlinear

terms are considered (Hersbach, 1998). Some studies have developed the adjoints

from the discretized form of DIA (De Las Heras et al., 1994), although the results

in their studies did not demonstrate the advantage of the nonlinear terms. Other

easier approach to employ the nonlinear terms is to parameterize the wave-wave

interactions. Bauer et al. (1996) replaced the derivative of source terms with a lin-

ear combination of source terms themselves. Similar processes can be applied in the

derivative of the nonlinear source terms with respect to action density or wind speed,

to obtain linear explicit expressions so that the derivation of the adjoints becomes

easier. Nevertheless, the parameterization always requires plenty of experiments to

obtain an optimal approximation in advance. Even then, the universality of the

parameterized forms under various wave conditions is still doubtful. Besides, theo-

retically, although there are no approximation in the derivation from Tangent Linear

Model (TLM) to the adjoint, TLM is linearlized from forward equations and holds

when perturbations are small enough if high order nonlinear terms exist. Normally,

perturbations will increase with the evolution of the forward model. Therefore,

when nonlinear interaction terms are considered, the range of validity of the TLM

is expected to become shorter and requires to be reexamined (Tanguay et al., 1995).

Apart from the nonlinear terms, there are still some problems in the reproduction

for the spectrum of windsea contributions emerging in Ch. 4. Despite the fact that

SWAN does not predefine spectrum shapes, the properties of the spectrum shape

due to winds is still affected by some coefficients. Generally, the spectrum shape is

formed by the balance between wind input terms and dissipation terms. However,

among the source terms, only the exponential wind growth coefficient by Komen

et al. (1984) and Janssen (1991) explicitly relates to wind components. Therefore,

corrections of wind components which are selected as the control variables in the

proposed schemes, are incapable of adjusting the spectrum shape subtly. The facts

imply that other coefficients in dissipation terms should be added as control vari-

ables if accurate spectrum shapes are required. For example, in the white capping

dissipation terms, the coefficient Fw in Eq. (A.4) by Janssen (1991); Günther et al.

(1992) is a polynomial consisted of mean frequency, mean wave number, steepness

and frequencies thereby affecting the widths and positions of spectrum peaks in

frequency domain. So if p and δ are set as parts of control variables, the spectrum

shape is expected to be corrected more effectively. But certainly, the selection of
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control variables should be according to sensitivity analysis with consideration of

physical processes and realities.

5.3 Future work

On account of the problems discussed in the above sections, future works mainly

concentrate on several different aspects as follows:

� Applications of the approach of wave energy potential assessment. The de-

veloped assimilation scheme is able to be applied in coastal wave models to

improve the results in other attractive areas where the accuracy of global wave

and wind data used to drive the coastal models is doubtful. On the other hand,

different types of wave converters can be considered to provide more detailed

information for the selection of deployment locations by setting specific criteria

according to the properties of the converters.

� Impact assessment of nonlinear wave-wave interaction terms. The influence

of the nonlinear terms on the assimilation effect of the proposed scheme is

unknown. The nonlinear terms need to be added in the adjoint model and

experiments should be designed to reveal the effect of the nonlinear terms

under different wave conditions. Hence, adjoint compliers will be considered

as a option to develop a new adjoint model.

� Improvement of the correction for the spectrum shape of windsea contribu-

tions. As mentioned in proceeding sections, merely choosing wind compo-

nents as control variables is not sufficient to reform accurate spectrum shapes.

Experiments should be performed to find suitable sets of coefficients in the dis-

sipation terms which can be used to efficiently correct spectrum shapes along

with the wind components.

� Applications in wave predictions. Although the 4D variational scheme origi-

nally is designed for hindcast systems requiring continuous observations through

a time window, the applications in wave forecasting systems are possible if ac-

curate initial wave conditions and other model inputs are obtained by the

scheme. In that case, studies on benefit period and the optimal assimilation

window of the assimilation scheme are required. Additionally, different sources

of the assimilated observations such as remote sensing data from SAR images

should be attempted.
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� Coupling with flow models. Although the action balance equation is conserved

with currents, interactions of currents and ocean waves actually transfer energy

between each other. Accurate wave fields will make contributions to flow

simulations and vise versa. Since previous works presented encouraging results

in flow assimilations by Zheng et al. (2016), an assimilation system includes

flows and waves in coastal areas is expected. Experiments through full coupled

ocean models Delft3D (externally coupled with the SWAN model) (Hydraulics,

1999) with assimilation technique implemented both in waves and flows will

be carried out to assess the potential of the assimilation system.
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Appendix A

Source terms in the adjoint and

the gradient

Sw including three terms: wind growth, whitecapping dissipation and bottom

friction dissipation. It reads:

Sw = Swg + Sdw + Sdf (A.1)

where Swg is the wind growth, Sdw is the whitecapping dissipation and Sdf is the

bottom friction dissipation. The wind growth term Swg applied in this study is

based on Snyder et al. (1981) and Komen et al. (1984). It reads:

Swg = 0.25ρaw(
28U∗cos(θ − θw)

2πf/k
− 1)2πfE(f, θ) (A.2)

where ρaw is a ratio between the density of air and the density of water, θw is the

direction of wind vector, k is the wave number and U∗ is a friction velocity. U∗ reads:

U2
∗ = CDU

2
10

CD =

1.2875× 10−3 U10 < 7.5m/s

(0.8 + 0.065U10)10−3 U10 ≥ 7.5m/s

(A.3)

where U10 is the wind speed at 10 meters elevation and CD is the drag coefficient

from Wu (1982). The expression of white capping dissipation is (Janssen, 1991;

91
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Günther et al., 1992):

Sdw = Fw(f̄ , k̄, Et)E(f, θ)

Fw = −Cds
s̄ppm

2πf̄ k̄pE
p/2
t ((1− δ)k

k̄
+ δ(

k

k̄
)2)

(A.4)

where f̄ is a mean frequency, k̄ is a mean wave number, Et is the total wave en-

ergy and s̄pm is the wave steepness in Pierson-Moskowitz spectrum (Pierson and

Moskowitz, 1964). Cds, δ and p are tunable coefficients. Following Komen et al.

(1984), the default number of Cds in the SWAN model equals to 2.36 × 10−5, p

equals to 2 and δ equals to 1. The bottom friction dissipation term Sdf reads:

Sdf = −Cb
(2πf)2

g2sinh2(kd)
E(f, θ) (A.5)

where Cb is the bottom friction coefficient set to be 0.067m2/s3. Based on Eq. (A.1)

to (A.5), derivatives of Sw with respect to E in Eq. (3.16) are:

∂Swg
∂E

= 0.25ρaw(
28U∗cos(θ − θw)

2πf/k
− 1)2πf (A.6)

∂Sdf
∂E

= −Cb
(2πf)2

g2sinh2(kd)
(A.7)

∂Sdw
∂E

=
∂Fw
∂E

E + Fw

∂Fw
∂E

=
∂Fw
∂Et

∂Et
∂E

+
∂Fw
∂f̄

∂f̄

∂E
+
∂Fw
∂k̄

∂k̄

∂E

(A.8)

∂Et

∂E
, ∂f̄
∂E

and ∂k̄
∂E

in Eq. (A.8) can be calculated as (De Las Heras et al., 1994):

∂Et
∂E

= 1

∂f̄

∂E
=

f̄

Et
(1− f̄

f
)

∂k̄

∂E
=

2k̄

Et
[1− (

k̄

k
)]

(A.9)

Hence, the source terms ∂Sw

∂E
in Eq. (3.16) can be calculated explicitly with Eq.

(A.1) to (A.9). The source term ∂Ss

∂E
in Eq. (3.17) can also be obtained by Eq. (A.7)
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since the friction bottom dissipation is the only term in Ss.

The wind components u and v only explicitly relate to Swg. Therefore, ∂Sw

∂u
and

∂Sw

∂u
in Eq. (3.18) can be obtained as

∂Sw
∂u

=
∂Swg
∂u

=
∂Swg
∂U∗

∂U∗

∂u
+
∂Swg
∂θw

∂θw
∂u

∂Sw
∂v

=
∂Swg
∂v

=
∂Swg
∂U∗

∂U∗

∂v
+
∂Swg
∂θw

∂θw
∂v

(A.10)

where ∂Swg

∂U∗
and ∂Swg

∂θw
can be expressed as

∂Swg
∂U∗

= 0.25ρaw(28kcos(θ − θw))E(f, θ)

∂Swg
∂θw

= 0.25ρaw(28kU∗sin(θ − θw))E(f, θ)

(A.11)

From Eq. (A.3), obviously, U∗ is related to the wind speed. So we have

∂U∗

∂u
=

∂U∗

∂U10

∂U10

∂u
∂U∗

∂v
=

∂U∗

∂U10

∂U10

∂v

(A.12)

That means the only required information for Eq. (A.10) is the conversion from the

wind speed U10 and the wind direction θw to the wind components u and v which

can be easily obtained as:

∂U10

∂u
=

u

U10

,
∂U10

∂v
=

v

U10

∂θw
∂u

=


u2−U2

10

U3
10sin(θw)

sin(θw) 6= 0

−uv
U3
10cos(θw)

sin(θw) = 0

∂θw
∂v

=


U2
10−v2

U3
10cos(θw)

cos(θw) 6= 0

uv
U3
10sin(θw)

cos(θw) = 0

(A.13)

Hence, based on Eq. (A.10) to (A.13), the gradient calculation for the wind com-

ponents in Eq. (3.18) can be processed.

The wind growth expression used in the Cycle 4 of the WAM model is also

optional (Komen et al., 1994). In that case, the calculation of the deviation is much

more complicated. The details can be found in De Las Heras et al. (1994) .
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Appendix B

Discrete forms of the adjoints

Generally, the discrete schemes applied in the adjoints of Eq. (3.16) and Eq. (3.17)

are based on the SWAN forward model which is a implicit scheme but being solved

explicitly (Team et al., 2010). The discrete forms of Eq. (3.16) and Eq. (3.17) are:

1

∆t
((λw)n−1

i,j,l,m − (λw)ni,j,l,m) +
1

∆x
Cx((λw)n−1

i−1/2,j,l,m − (λw)n−1
i+1/2,j,l,m) + Cy((λw)n−1

i,j−1/2,l,m

− (λw)n−1
i,j+1/2,l,m) +

1

2π∆f
Cf ((λw)n−1

i,j,l−1/2,m − (λw)n−1
i,j,l+1/2,m) +

1

∆θ
Cθ((λw)n−1

i,j,l,m−1/2−

(λw)n−1
i,j+1/2,l,m+1/2) = (λw)ni,j,l,m(SEwg)

n
i,j,l,m + (λw)ni,j,l,m(SEdw)ni,j,l,m + (λw)ni,j,l,m(SEdf )

n
i,j,l,m

− (SNob1)ni,j,l,m

(B.1)

1

∆t
((λs)

n−1
i,j,l,m − (λs)

n
i,j,l,m) +

1

∆x
Cx((λs)

n−1
i−1/2,j,l,m − (λs)

n−1
i+1/2,j,l,m) + Cy((λs)

n−1
i,j−1/2,l,m−

(λs)
n−1
i,j+1/2,l,m) +

1

2π∆f
Cf ((λs)

n−1
i,j,l−1/2,m − (λs)

n−1
i,j,l+1/2,m) +

1

∆θ
Cθ((λs)

n−1
i,j,l,m−1/2

− (λs)
n−1
i,j+1/2,l,m+1/2) = (λs)

n
i,j,l,m(SEdf )

n
i,j,l,m − (SNob2)ni,j,l,m

(B.2)
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Where SEwg, S
E
dw, SEdf , S

N
ob1 and SNob2 represent the discrete forms of ∂Swg

∂E
, ∂Sdw

∂E
,
∂Sdf

∂E
,

∂Sob1

∂N
and ∂Sob1

∂N
respectively. Their expressions read:

(SEwg)
n
i,j,l,m =(

∂Swg
∂E

)ni,j,l,m

(SEdw)ni,j,l,m =(
∂Sdw
∂E

)ni,j,l,m

(SEdf )
n
i,j,l,m =(

∂Sdf
∂E

)ni,j,l,m

(SNob1)ni,j,l,m =
4πfW1

Mobs

Mobs∑
a=1

(hE − ĥÊa)

δiai δ
ja
j δ

la
l δ

ma
m δna

n |ni,j,k,m

(SNob2)ni,j,l,m =
4πfW1

Mobs

Mobs∑
a=1

((1− h)E − (1− ĥ)Êa)

δiai δ
ja
j δ

la
l δ

ma
m δna

n |ni,j,k,m

(B.3)

First order upwind schemes are employed for the discretization in both geographical

and spectral space for the forward model (Team et al., 2010). But the adjoint

model is calculated backward in time so that the upwind scheme must turn to the

’downwind’ scheme. Therefore, the schemes become:

If (Cf )i,j,l,m > 0 then

λi,j,l+1/2,m = (1− 0.5µ)λi,j,l+1,m + 0.5µλi,j,l,m

λi,j,l−1/2,m = (1− 0.5µ)λi,j,l,m + 0.5µλi,j,l−1,m

If (Cf )i,j,l,m < 0 then

λi,j,l+1/2,m = (1− 0.5µ)λi,j,l,m + 0.5µλi,j,l+1,m

λi,j,l−1/2,m = (1− 0.5µ)λi,j,l−1,m + 0.5µλi,j,l,m

If (Cθ)i,j,l,m > 0 then

λi,j,l,m+1/2 = (1− 0.5ν)λi,j,l,m+1 + 0.5νλi,j,l,m

λi,j,l,m−1/2 = (1− 0.5ν)λi,j,l,m + 0.5νλi,j,l,m−1

If (Cθ)i,j,l,m < 0 then

λi,j,l,m+1/2 = (1− 0.5ν)λi,j,l,m + 0.5νλi,j,l,m+1

λi,j,l,m−1/2 = (1− 0.5ν)λi,j,l,m−1 + 0.5νλi,j,l,m

(B.4)
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If (Cx)i,j,l,m > 0 then λi+1/2,j,l,m = λi+1,j,l,m

λi−1/2,j,l,m = λi,j,l,m

If (Cx)i,j,l,m < 0 then λi+1/2,j,l,m = λi,j,l,m

λi−1/2,j,l,m = λi−1,j,l,m

If (Cy)i,j,l,m > 0 then λi,j+1/2,l,m = λi,j+1,l,m

λi,j−1/2,l,m = λi,j,l,m

If (Cy)i,j,l,m < 0 then λi,j+1/2,l,m = λi,j,l,m

λi,j−1/2,l,m = λi,j−1,l,m

(B.5)

where µ = 0 and ν = 0 are set for the downwind scheme.
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