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Zusammenfassung

Der Forschungsbereich des Graphzeichnens beschiftigt sich mit der An-
ordnung von Graphelementen auf einer Zeichenfldche. Ein Ziel kann dabei
sein, eine Zeichnung zu erzeugen, die fiir Menschen leicht lesbar ist und
bestimmte Aufgaben vereinfacht. Aus theoretischer Sicht sind die genutzten
Methoden in der Regel gut erforscht. Um bei Problemstellungen aus der
Praxis Anwendung zu finden, fehlen ihnen jedoch meist bestimmte Funk-
tionalititen und eine angemessene Integration in entsprechende Werkzeuge.
Hierfiir gibt es verschiedene Griinde, etwa, dass hdufig wohldefinierte und
abgeschlossene (Teil-)Probleme betrachtet werden, die nicht alle in der
Praxis relevanten Facetten abdecken. Die zu zeichnenden Graphen gehen
oft aus unstrukturierten und komplexen realen Diagrammen hervor und
bestehen daher aus mehr Elementen als Knoten und Kanten. Mit aktuellen
Methoden erstellte Zeichnungen weisen haufig eine schlechte Kompaktheit
auf.

Diese Arbeit beschiftigt sich mit einer dementsprechenden Erweiterung
und Verbesserung des ebenenbasierten Zeichenverfahrens, das 1981 von
Sugiyama et al. vorgestellt wurde. Im Fokus stehen dabei vor allem auch
die speziellen Anforderungen von Datenflussdiagrammen. Das Verfahren
lasst sich in fiinf Schritte gliedern: Kreisentfernung, Ebenenzuweisung,
Kreuzungsminimierung, Koordinatenzuweisung und Kantenrouten.

Die zentralen Ergebnisse dieser Ausarbeitung sind die folgenden. Im
Rahmen der Ebenenzuweisung wird eine neue Methode vorgestellt, die
durch die Kombinierung der ersten beiden Schritte weniger starre Ebenenzu-
weisungen zuldsst und so die Kompaktheit der resultierenden Zeichnungen
erhoht. In einer weiteren Methode werden gegebene Ebenenzuweisun-
gen speziell auf vorgeschriebene Zeichenfldchen zugeschnitten, indem der
Graph schlangenartig in diese eingepasst wird. Im Rahmen der Koordinaten-
zuweisung werden zwei existierende Methoden so verdndert und erweitert,
dass festgelegte Andockpunkte an Knoten sowie orthogonal gezeichnete



Kanten besser unterstiitzt werden; beides sind zentrale Elemente von Daten-
flussdiagrammen. Des Weiteren wird ein Nachbearbeitungsschritt basierend
auf eindimensionaler Kompaktierung vorgeschlagen, der die Fliche von
bereits erzeugten Zeichnungen reduziert und damit deren Kompaktheit
verbessert. Schliefilich werden weitere Forschungsfragen identifiziert und
umrissen, die es zu beantworten gilt, um die Situation in der Praxis weiter

zu verbessern.
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Abstract

The area of graph drawing is concerned with positioning the elements of
a graph on a canvas such that the resulting drawing is well-readable by
humans and aids their execution of certain tasks. While known methods are
usually well-studied from a theoretical perspective, both their applicability
to graphs from practice and their integration into tools from practice are
not always satisfactory. This is due to various reasons, for instance, due to
known methods usually solving well-defined, self-contained problems that
do not cover all of the bits and pieces that must be considered in practice.
There, the diagrams the graphs originate from often comprise more than
just simple nodes and simple edges, they tend to be messy and complex,
and existing methods regularly compute drawings with poor compactness.

This thesis is concerned with improving the well-known layer-based
layout approach, originally proposed by Sugiyama et al., and devotes spe-
cial attention to the requirements of dataflow diagrams. The layer-based
approach is a pipeline of five steps: cycle removal, layer assignment, edge
crossing minimization, coordinate assignment, and edge routing.

The main contributions of this thesis are the following: In the context of
layer assignments, it presents a method that combines the first two steps
allowing less rigid layerings, thereby improving on compactness, and a
method that tailors a layering to a prescribed drawing area by wrapping it
in a snake-like fashion. In the context of coordinate assignments, it presents
extensions to and modifications of two existing methods that better address
ports and orthogonally routed edges, both of which are central elements
of dataflow diagrams. In the context of a generally poor compactness, it
presents a post-processing step applied to a final drawing that reduces
the width of left-to-right drawings by using one-dimensional compaction.
Finally, based on the gained experiences, research tasks are identified and
illustrated that are essential to further better the situation in practice.
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Chapter 1

Introduction

The area of graph drawing is concerned with the task of arranging the
elements of a graph, commonly referred to as nodes and edges, within a given
drawing area [DET+99; KW01; Tam13]. This can be a computer screen or
a sheet of paper. The resulting drawings are supposed to aid the viewer’s
understanding of the graph. As such a drawing must be “tidy” and “nice”
to look at, and its underlying intention may be to highlight the connectivity
or the symmetry within the graph. An example can be seen in Figure 1.1,
which shows a small dataflow diagram, one of this thesis’s main objects of
research.

Textual general purpose programming languages, such as C and Java,
are well-known in public. Less known, but nevertheless extensively used
by both computer scientists and scientists from other fields, are visual
programming languages. Prominent examples of tools employing visual
languages are National Instrument’s LabVIEW and MathWork’s Simulink,
see Figure 1.5, p. 21, for two screenshots. The visual programming task
involves moving and connecting elements of a diagram on a canvas. It has
been found that graph drawing methods can significantly improve the
productivity of a programmer by arranging a diagram’s elements auto-
matically by using an algorithm [KD10; FH10]. However, different visual
languages and different fields of application demand different drawing
styles, resulting in a plethora of interesting and often hard problems for
the graph drawing community. Many of these problems can be formalized
as succinct, self-contained problems with a precise objective, for instance:
Arrange the nodes and edges of a graph in such a way that the total number
of edge crossings is minimized. Things become messier in practice since
one usually has to consider the objectives of multiple, often competing, sub-



1. Introduction

Port Node label Hierarchical node
“s.  Counter Dropped
q » — » ’,,
Consumer /
Producer FrontDropQueue ]
E N I > VariableSleep ' XYPlotter
. > |l

IREm Expression

RandomTime t2|

o

LongToDouble

Hierarchical edge Junction point
of a hyperedge

Figure 1.1. An example of a dataflow diagram taken from the Ptolemy II project.

problems simultaneously to obtain a “good” drawing. Also, the question
of what makes up a good drawing has no definite answer. For one thing,
it depends on application-specific drawing standards. For another thing,
human individuals have different perceptions of what a good drawing is,
starting with longstanding habits: “We always arranged it like that.” The
human intuition seems to have a reasonable feeling of how the elements of
a diagram can be arranged in a way pleasing to the eye. Yet, it is often hard
to capture this intuition in an algorithmic way, and it is neither clear if an
intuitive arrangement aids the understanding of the diagram, nor if it helps
solving a certain task more efficiently.

The task to lay out a diagram in itself is already complex and the used
methods are complicated. A common way to master the complexity is to
formulate simplified subproblems and solve the overall task step by step.
The downside of this is that the subproblems loose touch to the big picture.
An optimal solution to one of the subproblems may be suboptimal when
combined with the solutions of the other subproblems. To give an example,
the layer-based layout approach (cf. Chapter 2) computes a placement of nodes
in the second of five steps, and it estimates the area that is likely to be used



by a final drawing to assess the quality of this placement. Evaluations show,
however, that the obtainable estimations can deviate significantly from the
area of the final drawing (cf. Section 3.2). Apart from this, state-of-the-art
graph drawing methods have several issues when applied in practice, three
of which that are addressed in this thesis are briefly outlined next. First,
they often lack support for elements that frequently occur in diagrams
from practice: ports, edge labels, node labels, and comment boxes, to name a
few. Second, they yield drawings of real-world diagrams that have a poor
compactness: the provided drawing area is not used efficiently, and a lot
of whitespace remains [GHM+14]. This issue is especially imminent when
hierarchical graphs are to be laid out, which are graphs whose nodes can
contain nested graphs and whose edges can connect nodes across different
hierarchies. Third, they usually optimize a set of criteria as good as possible.
However, for a user looking at a drawing that shows hundreds of crossing
edges it usually makes no difference if an alternative drawing is possible
with one crossing less. Instead, users are more bothered with little oddities
of a drawing that are “easy” to fix from their subjective perspective. As an
example, consider a short edge that can obviously be drawn straight but
contains a small kink.

Concluding the introduction, this thesis revolves around three central
topics: the layer-based approach, dataflow diagrams, and compactness.
Formulated as a sentence, it is in large parts concerned with improving
the compactness of dataflow diagrams being laid out with the layer-based
approach. To this end, the identified points for improvement are tackled by
modifying and enhancing the line of action of the layout method itself. It
should be noted, however, that there are usually multiple means to tackle a
certain problem. For instance, improving the compactness of a drawing can
also be achieved by filtering, i.e. temporarily omitting diagram elements
that are irrelevant for the current task, or by distorting, i. e. shrinking the
very same elements [SB92; LA94; Fur06]. Furthermore, blindly improving
on one objective usually does not yield the desired outcome: a maximally
compact drawing may lack whitespace to structure the drawing and to aid a
human’s perception. While such alternative approaches are interesting, they
define their own research areas and are beyond the scope of this thesis.



1. Introduction

1.1 Contributions

The thesis covers contributions to four areas:

Layer Assignments (Chapter 3) The second step of the layer-based ap-
proach assigns the nodes of a graph to layers. The resulting layering directly
influences the width and height of a final drawing, the drawing’s shape so
to say. In a traditional layering as many edges as possible should point into
the same direction, and the objective is to either use a small number of
layers or to keep edges short. Certain use cases, however, require alterna-
tive layer assignment strategies, three of which are discussed here. First,
it is shown how to address varying node sizes in heuristics to compute
layerings with a preferably small number of nodes per layer; so far only the
case of equally-sized nodes has been addressed in the literature. Second,
having as many edges point into the same direction as possible restricts
the number of possible drawing shapes for a particular graph. Here, the
Generalized Layering Problem (GLP) is presented, which is allowed to reverse
more edges than absolutely necessary in case it aids the creation of a certain
(user-desired) drawing shape. Third, whenever a long sequence of actions
is represented with a graph, the corresponding drawing can become very
wide and narrow (assuming the nodes are placed horizontally). To create
drawings that are better suited for common display mediums, e. g. com-
puter screens, a wrapping process is presented, in which the layering of a
graph is split into chunks that are to be drawn one below the other.

Coordinate Assignments (Chapter 4) Given a layering and an order of
the nodes within each layer, the fourth step of the layer-based approach
computes concrete coordinates for the nodes. The step is sensitive to ports
and directly impacts the edges’ routes, in particular, it controls if it is
possible to draw an edge straight (parallel to one of the axes). When drawing
edges orthogonally, i. e. with horizontal and vertical segments only, edge
straightness is an essential factor to avoid visual clutter. Therefore, existing
coordinate assignment methods are adapted and extended in this thesis,
with special attention to ports and orthogonally routed edges.
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Drawing Compaction (Chapter 5) Drawings of diagrams that are laid out
with the layer-based approach and contain nodes with varying dimensions
often contain significant amounts of whitespace. To a great extent, this is due
to the rigid layering, in which a layer has to reserve enough space to fit its
largest node, leaving space empty around smaller nodes. A method based
on one-dimensional compaction is presented to improve matters. It is able to
consider the peculiarities of dataflow diagrams, e.g. ports, orthogonally
routed edges, and prescribed spacings between diagram elements. While
particularly suited for drawings created with the layer-based approach, the
method can be adapted to other drawing styles as well.

Motivation of Further Research (Chapter 6) Many points remain to be
addressed when it comes to putting layout algorithms into practical use.
Based on my experiences from improving and fine-tuning layout algorithms
to be suitable for practical use and from discussions with practitioners
and colleagues who work with diagrams on a daily basis, I summarized
problematic topics and detailed possible avenues of research: the layout
of hierarchical graphs, avoiding obviously not optimal layouts, incorporating
external knowledge into the layout process, and properly configuring layout
algorithms.

Publications

I have contributed to the following publications. The first list represents
publications where the majority of the content is due to my participation.

[GHM+14] Carsten Gutwenger, Reinhard von Hanxleden, Petra Mutzel, Ulf Riiegg,
and Miro Spénemann. “Examining the Compactness of Automatic Layout Algo-
rithms for Practical Diagrams”. In: Proceedings of the Workshop on Graph Visualiza-
tion in Practice (GraphViP '14). 2014, pp. 42-52.

The observation that drawings of graphs from practice often have an
unfortunate aspect ratio and generally a bad compactness is confirmed
by a set of empirical experiments. Possible improvements to overcome
this problem are suggested for the layer-based approach and the topology-
shape-metrics approach [Tam87].
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[RKD+14a] Ulf Riiegg, Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael
Wybrow. “Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with
Ports”. In: Proceedings of the 22nd International Symposium on Graph Drawing (GD
"14). 2014, pp. 319-330.

An approach to draw dataflow diagrams using force-directed methods
is presented. The required “flow” is realized by using separation con-
straints. It is found that compared to the layer-based approach, which in
general lends itself well for dataflow diagrams, the new method shows
an improved aspect ratio and compactness. Further details can be found
in an accompanying technical report [RKD+14b].

[RSC+15] Ulf Ritegg, Christoph Daniel Schulze, John Julian Carstens, and Reinhard
von Hanxleden. “Size- and Port-Aware Horizontal Node Coordinate Assign-
ment”. In: Proceedings of the 23rd International Symposium on Graph Drawing and
Network Visualization (GD "15). 2015, pp. 139-150.

Existing strategies for the coordinate assignment step of the layer-based
approach are not aware of ports and different node dimensions. In this
work, the successful coordinate assignment method of Brandes and
Kopf [BK02] is extended to overcome these two limitations (Section 4.2).

[RES+16a] Ulf Ritegg, Thorsten Ehlers, Miro Spénemann, and Reinhard von
Hanxleden. “A Generalization of the Directed Graph Layering Problem”. In: Pro-
ceedings of the 24th International Symposium on Graph Drawing and Network Visual-
ization (GD ’16). 2016, pp. 196-208.

The work relaxes the requirement that traditional layerings of the layer-
based approach have to have as many edges point into the same di-
rection as possible. It presents an integer programming formulation
and a heuristic to solve the relaxed problem and performs extensive
comparisons of parameters and different layout strategies based on final
drawings (Section 3.2). Further details can be found in accompanying
technical reports [RES+15; RES+16b].



1.1. Contributions

[RSG+16a] Ulf Riiegg, Christoph Daniel Schulze, Daniel Grevismiihl, and Rein-
hard von Hanxleden. “Using One-Dimensional Compaction for Smaller Graph
Drawings”. In: Proceedings of the 9th International Conference on the Theory and
Application of Diagrams (DIAGRAMS ’16). 2016, pp. 212-218.

The rigid layering of the layer-based approach often leaves behind sig-
nificant amounts of whitespace. In this work, a method based on one-
dimensional compaction is presented and tailored to dataflow diagrams
that removes most of the superfluous whitespace (Chapter 5). Further,
the applicability of the method to other scenarios permitting compaction
is discussed. An accompanying technical report contains further de-
tails [RSG+16b].

[RES+17] Ulf Riiegg, Thorsten Ehlers, Miro Spénemann, and Reinhard von Hanxle-
den. “Generalized Layerings for Arbitrary and Fixed Drawing Areas”. In: Journal
of Graph Algorithms and Applications 21.5. 2017, pp. 823-856.

Journal version of the conference paper [RES+16a] that additionally
examines the suitability of the alternative layerings for fixed drawing
areas (Section 3.2.4).

[RH18a] Ulf Ritegg and Reinhard von Hanxleden. “Wrapping Layered Graphs”.
In: Proceedings of the 10th International Conference on the Theory and Application of
Diagrams (DIAGRAMS '18). 2018.

Whenever a long sequence of actions is represented with a graph, the
corresponding drawing can become very wide and narrow (assuming
the nodes are placed horizontally). To create drawings that are better
suited for common display mediums, e. g. computer screens, a wrapping
process is presented, in which the layering of a graph is split into chunks
that are to be drawn one below the other (Section 3.3). An accompanying
technical report contains further details [RH18b].
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Further Publications

[SSR+14a] Miro Spénemann, Christoph Daniel Schulze, Ulf Riiegg, and Reinhard

von Hanxleden. “Counting Crossings for Layered Hypergraphs”. In: Proceed-
ings of the 8th International Conference on the Theory and Application of Diagrams
(DIAGRAMS "14). 2014, pp. 9-15.
Being able to count the number of edge crossings is essential to be able to
minimize the number of edge crossings in a graph’s drawing. Counting
crossings between hyperedges is problematic in the context of the layer-
based approach since the final number of edge crossings is unknown
until the very end of the algorithm and can thus only be estimated during
crossing minimization. This work presents estimating algorithms for
counting hyperedge crossings that turn out to yield less crossings in
the final drawing than exact counting algorithms. Further details can be
found in an accompanying technical report [SSR+14b].

[FHK+14] Patrick Frey, Reinhard von Hanxleden, Christoph Kriiger, Ulf Riiegg,
Christian Schneider, and Miro Sponemann. “Efficient Exploration of Complex
Data Flow Models”. In: Proceedings of Modellierung 2014. 2014, pp. 321-336.

The work discusses strategies to efficiently explore complex dataflow
models. To this end, it states requirements for both tools and layout
algorithms and makes use of transient views.

[AGR14] Mohamed Almory, John Grundy, and Ulf Rilegg. “HorusCML: Context-
aware Domain Specific Visual Languages Designer”. In: Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC "14). 2014,
pp. 133-136.

A prototype of a tool that supports the development of domain-specific
visual languages (DSVLs) is presented. It integrates abstract specifications
of layout algorithms and thereby allows DSVL designers to select and
customize automatic layout to their needs.
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[JMM+16] Adalat Jabrayilov, Sven Mallach, Petra Mutzel, Ulf Riiegg, and Rein-

hard von Hanxleden. “Compact Layered Drawings of General Directed Graphs”.
In: Proceedings of the 24th International Symposium on Graph Drawing and Network
Visualization (GD "16). 2016, pp. 209-221.

The work follows up on the idea of generalized layerings [RES+16a] and
pursues two slightly altered objectives that are faster to solve in terms of
execution time.

[RLP+16] Ulf Riiegg, Rajneesh Lakkundi, Ashwin Prasad, Anand Kodaganur,

Christoph Daniel Schulze, and Reinhard von Hanxleden. “Incremental Diagram
Layout for Automated Model Migration”. In: Proceedings of the ACM/IEEE 19th In-
ternational Conference on Model Driven Engineering Languages and Systems (MoDELS
'16). 2016, pp. 185-195.

Modifying the syntax of visual programming languages entails having to
repair the drawings of existing models, for instance, because the dimen-
sions of a graphical element changed and are afterwards overlapping in
the drawing. The process is referred to as model migration and the work
presents and compares two applicable layout techniques.

Advised Theses

Sven Oliver Reimers. “Port-Aware Node Placement in a Layer-Based Layout
Algorithm”. 2015. Diploma thesis.

Sandra Skrlac. “Enhanced Port Constraints in a Layer-Based Layout”. 2015. Bach-
elor’s thesis.

Alan Schelten. “Hierarchy-Aware Layer Sweep”. 2016. Master’s thesis.

Carsten Sprung. “Edge Bundling Techniques for Dataflow Diagrams”. 2016. Mas-
ter’s thesis.

Michael Cyruk. “Graph Layout of Connected Components”. 2017. Master’s thesis.

Astrid Mariana Flohr. “Edge Routing with Immutable Node Positions”. 2017.
Master’s thesis.

Daniel Grevismdiihl. “Stable Diagram Compaction”. 2017. Master’s thesis.

Kim Christian Mannstedt. “Alternative Layering Strategies for Sugiyama Layout”.
2017. Master’s thesis.



1. Introduction

1.2 Compactness

A recurring goal of the methods presented in this thesis is to improve
the compactness of the resulting drawings. Some of the methods target
compactness straight on, others influence it in a more subtle way. But what
exactly is meant by compactness? According to oxforddictionaries.com! the
linguistic definition of the adjective to be compact is, amongst others:

Closely and neatly packed together; dense.

Having all the necessary components or features neatly fitted into a
small space.

The word stems from the latin verb compingere, a composition of com-,
meaning together, and pangere, meaning fasten.

This definition fits well to the underlying goals of the process of drawing
diagrams — placing all elements neatly in a small area. The word neatly
can be interpreted in different ways. It may solely refer to the packing of
the elements as such, or alternatively, one can further include various aes-
thetics criteria [IWPC+02; BRS+07]. The most compact drawing of a diagram
does not necessarily have to be the best readable or most aesthetic one.
Compactness should therefore be seen as one of many criteria that make
up a good drawing. For instance, in addition to a compact placement, the
diagram’s elements should be evenly distributed within the used space.
Different criteria compete with each other, are often subjective, and must
be weighted in a way suitable to a certain use case. Also, the factors that
make up a good drawing depend on the specific type of diagram. To give
an example, a diagram type may require all edges to point from left to right.
One can imagine that it may be difficult to compactly draw such a diagram
within a very tall but narrow drawing area. Consequently, trade-offs are
necessary between compactness and diagram-specific requirements.

Nevertheless, compactness must be measured for an objective evaluation.
The next section discusses different ways to measure the compactness of a
drawing.

L Accessed 2017/06/11.
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1.2. Compactness

Figure 1.2. Different arrangements of four rectangles. In (a) the rectangles are placed
such that the used area is minimal. In (b) and (c) a predefined drawing area, for
instance a paper sheet or computer screen, is outlined by the dashed box. Note that
the rectangle arrangement as given in (a) has to be scaled down in both cases in
order to fit into the drawing area, whereas the two alternative arrangements can be
placed with the same scaling as used in (a).

Compactness Metrics

Given a drawing of a graph, the width w of a diagram is the difference
between the largest and the smallest x coordinate of any diagram element;
the height & is determined analogously using y coordinates. In the area
of graph drawing, compactness has traditionally been understood as the
goal to either minimize the area w - I or to minimize w or h independently,
cf. for instance the optimization goals for orthogonal compaction discussed
by Klau [Kla01, Chapter 4].

One problem with this definition is that it does not allow a complete
valuation of a drawing, since it is not known how much area is required for
a “good” drawing of a particular graph. Another problem emerges when a
prescribed drawing area is given: It depends on the drawing’s aspect ratio
whether it is well-suited for printing on a sheet of paper or well-suited to be
displayed on a computer screen. Figure 1.2 illustrates this. With no specific
drawing area in mind, (a) represents an arrangement of the four depicted
rectangles with minimum area and an aspect ratio of one. In Figure 1.2b

11



1. Introduction

a drawing area is prescribed, which has an aspect ratio of about 0.4 and
is outlined by a dashed box. With some imagination one can think of a
computer screen rotated by 90°. To fit (a)’s rectangle arrangement into the
prescribed drawing area such that everything is visible, the arrangement
has to be scaled down. This can be seen on the left side of (b). Arranging
the rectangles in a different manner, as depicted on the right side of (b), the
overall arrangement fits into the drawing area without the need to be scaled
down. (c) illustrates the same matter as in (b), this time for a drawing area
with an aspect ratio of 2.25.

Which way of arranging the boxes is the best? One can argue that
arrangement (a) feels more natural and that the individual rectangles can be
distinguished easily despite being scaled down in order to fit them into the
drawing area in (b). However, diagrams representing visual languages are
comprised of more than just rectangles. They may contain various types of
elements that contain text: labels and comment boxes to give two examples.
It is important that these text elements can be read by a user. As such it
helps if they are displayed as large as possible.

Another interesting observation is that while the bounding area of (a)’s
arrangement is smaller than the one of the right side of (b), the amount of
whitespace, the part of the drawing area that remains unused, is larger for
the scaled version of (a). This may result in the feeling that the available
drawing area is not used to its full potential. Compared to the previous
observation regarding label sizes, this point is rather subjective, however.

In summary, the notion of compactness depends on whether a particular
drawing area is prescribed or not. Additionally, when a prescribed drawing
area exists, the area’s aspect ratio and the question of how well a particu-
lar drawing fits this area have to be taken into account when measuring
compactness. Therefore, different compactness measures should be used
for the following two use cases. The measures are detailed further in the
next paragraphs.

1. Minimize the area used by the drawing with no specific drawing area in
mind.

2. Fit the drawing into a prescribed drawing area as good as possible.

12



1.2. Compactness

(b)

(a

Figure 1.3. While the aspect ratio of the rectangle arrangement’s bounding box in (a)
perfectly matches the desired drawing area (dotted), it cannot be scaled larger than
the arrangement in (b). Still, the bounding box in (b) is smaller.

Minimal Area In this scenario, the sole goal is to achieve a drawing
with minimal area. Thus, the area as such is sufficient to compare the
performance of different algorithms. However, since area is an absolute
measure it is not possible to derive from the used area of a particular
drawing of a graph how compact the drawing is in relation to all possible
drawings of the graph. An alternative measure that captures this in a better
way is the whitespace ratio, which can be defined as the ratio between a
drawing’s whitespace and the drawing’s total area. If it is desired that the
created (compact) drawing has a certain aspect ratio, the goal should be
a weighted combination of area and aspect ratio. Neglecting the area, a
drawing could be enlarged artificially until it matches the desired aspect
ratio. The effect can be observed in Figure 1.3, where the drawing with
overall larger area (a) would be the preferable one if solely optimizing for
aspect ratio.

Metrics: area, whitespace ratio, aspect ratio

Prescribed Drawing Area In this scenario, a certain display medium is
given, and the created drawing should use the available area as good as
possible. Above, the quality of the rectangle arrangements in Figure 1.2
were discussed in terms of how a particular arrangement has to be scaled to
fit a given drawing area. This scaling factor is what will be defined as max
scale measure in Section 1.3, and it can be used to measure the compactness
if a drawing area is prescribed.

Metrics: max scale

13



1. Introduction

1.3 Definitions

This section formally introduces the common terminology used throughout
the chapters of this thesis. More intricate definitions that are only relevant
to a certain section are defined there.

1.3.1 Graphs

Definition 1.1 (Graph). A graph G = (V,E) is a set of nodes V connected
by edges E. Edges can be undirected, E < {{u,v} : u,v € V}, or directed,
E < V x V. Correspondingly, the graph is either called undirected graph or
directed graph.

The following definitions assume a directed graph.

Definition 1.2 (Source node, target node). For an edge e = (1,v) € E, u is
called source node of e and v is called target node of e.

Definition 1.3 (Self loop). An edge e = (u,v) is called self loop if u = v.

Definition 1.4 (Outgoing, incoming, and incident edges; in-degree, out-de-
gree, and degree). Let v € V be a node. The set of outgoing edges E,(v) is
{(s,t) € E : s = v}. The set of incoming edges E;(v) is {(s,t) € E : t = v}. The
set of incident edges or connected edges E(v) is E; U E,.

The in-degree of v, d~(v), is |E;(v)|, the out-degree of v, d*(v), is |Eo(v)|,
and the degree of v, d(v), is |E(v)|.

Definition 1.5 (Source, sink). A node v is called source if E;(v) = &, and it
is called sink if E,(v) = &.

Ports

Definition 1.6 (Port, port-based graph, source port, target port). A port is a
dedicated attachment point of an edge on the border of a node. A port-based
graph consequently is a tuple (V, P, E, i), where P is a set of ports uniquely
linked to nodes via the mapping 7t : P — V. Edges connect pairs of ports
instead of nodes: E < P x P. For an edge (p,q) € E, p is called source port of
e and g is called target port of e.

14



1.3. Definitions

Definition 1.7 (Port side, port constraint). Ports are located on one side of
the border of a node: west, north, south, or east. The side of a port p is
denoted by side(p). Port constraints can restrict ports to certain sides or even
fixed positions and are written as pc(p).

Schulze et al. name five port constraint levels [SSH14], four of which are
relevant in this thesis:

FrEge The ports of a node can be distributed arbitrarily on the node’s border.

FixepSIDE For each port the side is prescribed. The order of the ports
sharing a common side can be chosen freely though.

FixepORDER The side of a port is fixed and the order of the ports sharing a
common side is prescribed.

Fixep For each port of a node explicit x and y coordinates are prescribed
relative to the node.

Definition 1.8 (Hyperedge, port-based hypergraph). Given a port-based
graph, a hyperedge connects a set of source ports S = P with a set of target
ports T < P. A port-based hypergraph is a tuple HG = (V, H, P, ), where H
is a set of hyperedges.

To simplify matters for a layout algorithm, a port-based hypergraph can
be turned into a port-based graph. Each hyperedge h = (S,T) € H is
represented by a set of edges: for every pair s € S and t € T a directed
edge e = (s, t) is introduced. The advantage is that layout methods can be
re-used for hypergraphs that are not aware of hyperedges at all.

Hierarchy

In certain applications, the nodes of a graph can contain further nodes; they
form a hierarchy. The following definitions of a hierarchical graph and its
elements are illustrated for better comprehensibility in Figure 1.4. Note that
a hierarchical graph is also known as compound graph in the graph drawing
literature [JMO04, Sec. 2.6].

15



1. Introduction

Definition 1.9 (Hierarchical graph, inclusion tree). A hierarchical graph is a
triple (V, E, I) that consists of a graph (V, E) and an inclusion tree T = (V,I),
where [ is a set of directed inclusion edges that map nodes to parent nodes.
Vp(v) denotes the parent node of a node v € V in the inclusion tree, and
V. (v) denotes the set of v’s children.

Definition 1.10 (Hierarchical node, simple node). A node v of a hierarchical
graph is called hierarchical node if V., (v) # &, otherwise it is a simple node.

Definition 1.11 (Simple edge, hierarchical edge). In a hierarchical graph, a
simple edge (u,v) connects nodes that have the same parent node: V), (u) =
Vp(v). A hierarchical edge, on the other hand, connects nodes with different
parent nodes, and it is short if V(1) = v v V,(v) = u and long otherwise.

Ports can be added to a hierarchical graph straightforwardly.

Definition 1.12 (Simple port, hierarchical port). A port in a hierarchical
graph is simple if it either belongs to a simple node or has no incident
hierarchical edges. A port is hierarchical if it has incident hierarchical edges.

Drawing

So far all definitions were concerned with the structural properties of a
graph. Next, it is defined what a drawing of a graph is and how it can be
created.

Definition 1.13 (Drawing, layout). A drawing D of a graph G is an embed-
ding of G in R%. A drawing is also referred to as the layout of G. Note that
throughout this thesis the values on the y axis grow downwards, as they
usually do in the context of computer screens.

Definition 1.14 (Coordinates, dimensions). The x and y coordinates of a
node v refer to its top left corner and are written as x(v) and y(v). Each
node additionally has a width w(v) and a height h(v). The same is true for
ports, with the difference that the port’s coordinates are relative to the top
left corner of the parent node.

Definition 1.15 (Layout algorithm). A layout algorithm computes a drawing
for a given input graph. The terms layout algorithm, layout approach, and
layout method are used interchangeably throughout this thesis.
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1.3. Definitions

1.3.2 Measures

It is hard to evaluate art. Some people may enjoy the paintings of a particular
painter, others may not like them at all. Somewhat the same applies to the
readability and comprehensibility of a diagram’s drawing. Different users
and different engineers read diagrams in different ways in order to extract
the information they desire. A certain task may be solved more efficiently if
the diagram is specially tailored for this task, as opposed to simply pleasing
the user’s eye. Nevertheless, the visual cognition of humans adheres to
certain laws and it should be possible to identify general guidelines that
should be followed when creating a drawing.

In the context of graph drawing, one tries to assess the quality of a
drawing using measures commonly referred to as aesthetics criteria [WPC+02;
BRS+07]. It is hard, however, if not impossible, to find universal criteria
that apply to each type of diagram and each human being. For instance,
early user studies suggest that the number of edge crossings ranks amongst
the most important aesthetics criteria [Pur97]. Recent work puts this into
perspective and notes that the number of edge crossings is less relevant
in drawings of large and dense graphs [KPS14]. Bennet et al. present
a summary of often used aesthetics criteria alongside available studies
supporting them [BRS+07]. In accordance with what was said above, the
authors note that domain-specific semantics and the specific task may have
a significant influence on how to draw a diagram to fit its purpose, and
they note that metrics may compete with each other such that they have to
be individually weighted for the specific application at hand.

Large parts of this thesis focus on compactness. Therefore, proper for-
malizations of measures to assess the compactness of a drawing are given
next. A rationale for the selected measures has already been given in Sec-
tion 1.2. Throughout the thesis further measures are used which are closely
related to the specific problem and are hence defined in the corresponding
section.

Definition 1.16 (Width, height, area). The width w of a drawing is the
difference between the smallest and the largest x coordinate of any element
of the drawing. Likewise, the height h is the difference between the smallest
and the largest y coordinate. The used area of a drawing is w - h.
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Hierarchical node ------------------- n2

Simple port --------------

Simple node - -

Long hierarchical edge ---
Short hierarchical edge ---

Hierarchical port ---

Simple edge

Selfloop --------------~

(a) Drawing of the graph G, where inclusion is represented by containment

---- Hierarchical node

Simple graph ---- Simple node
(represented by n2) |

Hierarchical graph
(represented by n2)

(b) Underlying inclusion tree T = (V,I)

Figure 1.4. Terminology in the context of a hierarchical graph G = (V, E, I). (Figures
adapted from ELK documentation®)

a http://www.eclipse.org/elk/documentation/tooldevelopers/graphdatastructure.html [Acc. 09/01/2018]
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1.3. Definitions

Definition 1.17 (Whitespace, whitespace ratio). The whitespace of a drawing
is the amount of space that remains unused, thus not occupied by any
element of the diagram. The whitespace ratio is the ratio between the number
of pixels that are not used and the area in pixels.

Definition 1.18 (Aspect ratio, normalized aspect ratio). The aspect ratio a of
a drawing is defined as a = @/i. The normalized aspect ratio G of an aspect
ratio a is defined as:

. {a -1 a=1

a p—

1-— % otherwise.

The normalized aspect ratio is useful when aspect ratios are to be compared
in a plot. Without normalization the range (0,1) would include the same
number of data points as (1,00), making it hard to see how tendencies
above 1 and below 1 correlate.

As discussed in Section 1.2, the aspect ratio does not allow to assess how
well a drawing uses the available space of a given drawing area. To capture
this, the max scale measure is defined next. Let R = (ry, ;) denote the width
and height of a reference drawing area and ag = «/r, its aspect ratio. For
instance, an A4 paper sheet (portrait) has R4 = (210mm,297mm) and
ag,, = 1/v2. When only the relation of the two dimensions to each other is
of interest, R 44 can be simplified to (1, ﬁ) Now, for a given drawing area,
the “best” drawing is the drawing which can be displayed within the given
drawing area with maximum scaling factor.

Definition 1.19 (Max scale). The max scale value s of a drawing D with
width w and height & in relation to a reference frame R = (ry, 13,) is:

. {rw rh}
s = min{ —,—}.
w’' h

Where convenient, e. g. when used as part of a minimization problem, it
can alternatively be defined as the inverse of s: ¢ = max {@/r,, "/, }.

Definition 1.20 (Max scale ratio). Given two drawings, D and D’, with their
max scale values s and s’, the max scale ratio r = s/s' of the two drawings
indicates which of the two drawings can be displayed with a larger scale
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factor within the given frame. In other words, if ¥ > 1, the drawing D can
be displayed larger than D’. Thus, from this measure’s perspective, D is
preferable. To illustrate, a max scale ratio of 2 indicates that the elements of
the better drawing can be displayed twice as large as the elements of the
inferior one.

1.4 Diagram Types

Complex systems are often modeled using visual languages. In other words,
programming is done by creating diagrams and by arranging the diagram’s
elements in a way that represents the desired functionality. Compilers
translate the formal models behind the diagrams into code that can be
executed by a machine, quite often this is C code. A large variety of visual
languages exists and is used for various use cases; corresponding diagram
types that occur throughout this thesis are introduced in the next sections.

1.4.1 Dataflow Diagrams

Dataflow diagrams model the flow of data through a system. The main
building blocks are actors which represent computational units that receive,
process, and emit data. The data is transmitted between arbitrary num-
bers of actors via channels. Often channels connect to actors via dedicated
connection points on their boundary, called ports. A dataflow diagram
has already been seen in Figure 1.1 (page 2), two further examples can
be seen in Figure 1.5. Actors, channels, ports, and the diagram itself can
carry different types of labels. Labels are used to improve the diagram’s
comprehensibility. Actors usually have at least one label that represents
their name. Compared to textual programming languages, the name of an
actor corresponds to the name of a variable. Furthermore, actors can be
atomic or composite. Composite actors are composed of other actors: an actor
is internally represented by a self-contained dataflow diagram. The ports
of the actor represent the actor’s interface, connecting the internals to the
outside. This allows to modularize and reuse code.

Examples of software systems that make use of dataflow diagrams are
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Create test signal = single tone frequency + DC offset ‘

Compute the scaling factor s accarding to formula from the selected spectrum unit table. ‘

Compute the spectrum as selected by spectrum table. ‘

Build cluster of variables
with their values.

Evaluate the (s = fermula)

equation to yield output "FFT Spectrum (Real-mag)” ]
value.

& =0 WFGraph (strict) 51§

(a) LabVIEW

Fepring 100 I— -||:|

Kspring Scope

Normal Force

Friction Model

13

1 1
f 3 N ?[
*a

Against
Force to Velocity to Emil
ReselLogic Velocity Position
{OR) m Xo=-0.5
Reset Veloclty o
at non-zero time
{ boolean
cast

(b) Simulink (source: [Sp615])

Figure 1.5. Two types of dataflow diagrams.
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National Instrument’s LabVIEW, MathWorks’s Simulink, ETAS’s EHAND-
BOOK, and UC Berkeley’s Ptolemy II [Ptol4]. Note that terminology may
differ across different systems.

Layout From the point of view of a layout algorithm, a dataflow diagram
can be represented by a hierarchical port-based (hyper-)graph. The actors
are nodes and the channels are (hyper-)edges. Common conventions to
draw dataflow diagrams are the following:

Clearly visible flow The often directed edges are preferably drawn from left
to right, with feedback edges being an exception.

Orthogonal edge routes (Hyper-)edges are to be drawn in an orthogonal
fashion, i. e. using axis-parallel vertical and horizontal segments only.

In addition to the drawing conventions, a layout algorithm for dataflow dia-
grams has to provide functionality to address the following requirements:

Hierarchy Composite actors result in nodes that contain sub-diagrams. Such
sub-diagrams must be laid out properly and the surrounding node’s
size must be adjusted accordingly.

Cross-hierarchy edges Edges can cross hierarchies, usually through hierarchical
ports, ports on the border of a composite actor.

Port constraints The positioning of ports must conform to certain relative
ordering constraints or to absolute positioning constraints, commonly
referred to as port constraints [SSH14].

Positioning of labels Every graph element (node, edge, and port) can have an
arbitrary number of labels associated with it. They have to be positioned
in a reasonable way.

1.4.2 Control Flow Diagrams

The central elements of dataflow diagrams are data and how data moves
between computational units. As opposed to this, control flow diagrams focus
on which element controls a system at a certain point in time and under
which circumstances control is given to another element. The most basic
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1.4. Diagram Types

version is a state diagram. It is made up of states and transitions. States, as
their name suggests, represent the current state of the system and how the
system behaves at that time. Transitions represent the possibilities to alter
the behavior under certain conditions, which are directly associated with
the transition. State diagrams can, for instance, be used to depict Mealy
machines. Automatic layout of state diagrams has been discussed by Castello
et al. [CMTO02; CMTO04].

In 1987, Harel introduced statecharts as an extension of simple state
machines [Har87]. As new elements he added hierarchy, concurrency, and
communication. A recent dialect of statecharts is Sequentially Constructive
Charts (5CCharts) [HDM+14]. They were introduced by von Hanxleden et al.
in 2014. The idea is to relax some of the rather restrictive semantics of
statecharts with the goal to ease the programming process. SCCharts express
concurrency in the form of regions, an example of which can be seen in
Figure 1.6a, where the state WaitAandB contains two regions, HandleA and
HandleB. During the compilation of SCCharts to machine code, Sequentially
Constructive Graphs (SCGs) are constructed, see Figure 1.6b for an example.
For one thing, SCGs are used for static analysis, for another thing, they can
be used to debug errors in user-created SCCharts as well as to find bugs in
the compiler itself.

Of these four different types of control flow diagrams, only two are of
further interest in this thesis: SCCharts and SCGs. As the two of them have
significantly different requirements when being drawn, they are discussed
separately in the next paragraphs.

Layout of SCCharts SCCharts can be represented by hierarchical graphs.
States and regions are nodes, transitions are edges. By convention, SCCharts
are drawn as follows:

Even distribution of states The placement of states should provide a good
overview of all possible states and how to transition between them.

Smooth routes for transitions It feels natural to use smooth spline routes to
connect evenly distributed states.

A layout algorithm must additionally support several requirements:
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Figure 1.6. Two types of control flow diagrams.
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Labels A node label represents a state’s name. The size of a node has
to be adjusted to provide enough space for the label. The labels on
edges represent conditions and actions that are executed as soon as the
conditions are met. In complex models labels can become quite long.

Regions Regions are used to model concurrency and are not connected to
each other by edges. Thus, arranging the regions can rather be seen as a
packing problem.

Hierarchy States and regions form a hierarchy and occur alternating: States
contain regions, regions contain states.

Layout of SCGs Just as SCCharts, SCGs are a form of control flow dia-
gram. Nevertheless, they are drawn with significantly different conventions:

Clearly visible flow The layout of SCCharts focuses on the overall connectivity.
In SCGs one is interested in the actual sequence of actions. Therefore,
the edges of SCGs should point downwards. An exception are edges
that are part of loops.

Orthogonal edges Edges are drawn in an orthogonal fashion as it is often
the case for flow diagrams. Compared to other edge routing styles it is
also more compact: when using spline routes or arbitrary polylines one
usually tries to avoid sharp bends, i. e. bends with an angle close to or
smaller than 90°. As a consequence an edge’s path requires more space
within a drawing.

Again, several elements must be supported by a layout algorithm.

Edge attachment points SCGs include nodes that represent conditionals.
Edges leaving at the bottom represent the path taken when a condition
evaluates to false. Edges leaving on the right side represent the true
path. Consequently, the algorithm must ensure that such edges connect
to the correct side.

Hierarchy SCGs contain hierarchical nodes that may stem from different
origins, concurrent threads being one example.

Cross-hierarchy edges Edges can cross hierarchies but as opposed to Ptolemy
diagrams no hierarchical ports are involved.
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Labels Again, nodes contain labels and must be resized accordingly. Edge
labels are not as relevant as for SCCharts: in their current form, SCGs
only have true labels on one of the two outgoing edges of a node
representing a conditional.

This concludes the short summary of the diagram types used during
the course of this thesis. The enumerated drawing conventions are not to
be seen as basic truth. They either conform to generally accepted drawing
styles or reflect the way we draw these diagrams in our research group. The
question whether these conventions actually aid the comprehension of a
diagram is an interesting question that is certainly not easy to answer and
is beyond the scope of this thesis.

1.5 Layout Methods

As discussed in the previous section, one follows different conventions and
goals when laying out different diagram types. One reason for this is that
a certain diagram type is used to address a certain task and that certain
layouts lend themselves better to support this task than other layouts do.
To give an example, identifying symmetries within a diagram is easier if
the layout algorithm places the elements in a symmetric way. Similarly, a
user can immediately identify a cycle within a graph if the layout algorithm
arranges the cycle’s nodes on the perimeter of an imaginary circle.

Many different layout approaches have been proposed over the years
and range from physics-emulating approaches to purely combinatorial
ones. Figures 1.7 and 1.8 show different drawings of the same graph. No
approach known to date supports all imaginable drawing requirements
and conventions. Thus, an approach is either suited for a certain diagram
type or not. Furthermore, a drawing created by a layout algorithm should
be well-readable by a user. This legibility aspect is covered and measured
by aesthetics criteria [Pur97; WPC+02; BRS+07]. Prominent examples of
aesthetics criteria are an even distribution of nodes and a low number of
edge crossings. Often the criteria are conflicting both with each other and
with the conventions and requirements of a certain diagram type. Therefore,
they cannot be satisfied equally.
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2 o 0o
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./ @ \.
(a) Eades’s model [Ead84] (b) Stress majorization [GKNO5]

Figure 1.7. A small graph drawn with two different force-directed layout methods.

The following sections outline a set of well-known layout methods. The
interested reader is referred to several summarizing books for descriptions
of further methods [DET+99; KW01; Tam13].

1.5.1 Force-Directed Layout

The most used and most intuitive layout approach is the force-directed
method, which has its roots in work of Tutte in 1963 [Tut63] and Eades in
1984 [Ead84]. An example can be seen in Figure 1.7a. Eades uses a metaphor
from physics: nodes are modeled as rings that are connected by springs, the
edges. The springs exert attracting and repulsing forces on the nodes. That
is, adjacent nodes v and w attract each other with the force

Ci -log (b(zg;u)) ,

and non-adjacent nodes v and w repel each other with the force

_G
b(v,w)? ’
where b(v, w) is the Euclidean distance between the nodes v and w, and

C1,Cy, and C3 are experimentally determined constants. In an iterative
procedure, these forces are calculated repeatedly and the nodes’ positions
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are adjusted until an equilibrium is reached. Another well-known approach
of this kind was proposed by Fruchterman and Reingold [FR91]. The ap-
proaches are also known as spring embedders.

Kamada and Kawai introduced a related approach in 1989 [KK89]. They
seek a drawing in which the spring energy is minimal. Energy is defined
as the difference between the Euclidean distance and the graph-theoretic
distance of each pair of nodes. The graph-theoretic distance of a pair of
nodes equals the shortest path between them in the graph. In the following
equations, let G = (V, E) be a graph with node set V = {vy,...,v,}. For a
pair of these nodes, v; and vj, let b(v;, v]-) denote their Euclidean distance
within a drawing and let d;; denote the graph-theoretic distance between
them. The energy of a drawing is then defined as:

1 2
L Shi(b(oi o) — 1),
<jsn
where [;; is the desired distance between v; and v}, defined as ;; = L-d;;
with L being the desired edge length, and k;; is defined as K/#, K being
some constant.

In 2005, Gansner et al. noted that the energy term used by Kamada and
Kawai is equal to what is known as stress in the area of multi-dimensional
scaling (MDS) [GKNO5]. There, majorization is used to minimize the stress,
which, as reported by Gansner et al., shows better convergence and stability
compared to the original solution process of Kamada and Kawai. An exam-
ple drawing can be seen in Figure 1.7b. Throughout this thesis, I will refer
to this method as stress minimization. The stress of a drawing is defined as:

2
Y. wij(b(vi,v)) —dyj)”,
i<j<n
where wjj is a normalization constant, which is often set to 1/ dlzj

In a series of papers, Dwyer, Koren, and Marriott combined stress
minimization with linear separation constraints [DK05; DKM06b; DKMO06a;
DKMO09]. The result is a very flexible method that supports a large variety
of layout requirements. To better cope with highly constrained problems,
Dwyer, Marriott, and Wybrow later slightly modified the stress equation,
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introducing P-stress [DMWQ9b]:

Z wij ((fdl] — b(Ui,Z)j))+>2 + Z 2 ((b(vi,vj) — £)+)2,

i<j<n (vi,v;)€E

where / is an ideal edge length, w;; = (Edl-]-)_z, and (z)T = max(z,0).
Intuitively, the left term represents repulsive forces between all pairs of
nodes and the right term represents attractive forces between pairs of nodes
connected by an edge.

As computing all stress contributions is time-consuming, several authors
considered variations of the problem that allow faster execution [GHN12;
KHK+12; GHK13; OKB17; WWS+17].

1.5.2 Layer-Based Layout

The layer-based layout approach was introduced by Sugiyama, Tagawa, and
Toda in 1981 [STT81]. It is also simply known as the Sugiyama approach
and is the most used approach to draw directed graphs as it emphasizes
directionality. See Figure 1.8 for two example drawings and note how most
of the edges point rightwards. The basic idea is to split the layout task
into three consecutive steps: the layer assignment step distributes the nodes
into consecutive layers such that edges only point from lower to higher
layers; the crossing minimization step orders the nodes in each layer such
that the total number of edge crossings is minimized; finally, the coordinate
assignment step determines the actual node coordinates. In practice, an
initial cycle removal step as well as a final edge routing step are often added
to support cyclic graphs and different edge routing styles. The order of
the steps directly defines the order of importance of aesthetics: a coherent
edge direction is more important than a low number of edge crossings, for
instance.

As this thesis requires a detailed understanding of the layer-based
approach, Chapter 2 thoroughly introduces each of the five steps.
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Figure 1.8. Drawings of the same graph using two different implementations of the
Sugiyama layout approach. The graph is cyclic. Both approaches selected two edges
to break cycles, resulting in two leftward pointing edges. As they selected different
edges, the drawings look quite different.

1.5.3 Other Popular Methods

Certain classes of graphs, such as trees and circles, may ask for drawing
aesthetics that are either not provided by general layout algorithms or that
can be achieved by much simpler algorithms. Trees, for instance, can be
drawn without edge crossings and regarding drawing aesthetics it is usually
desired that nodes sharing a level in the tree are placed on parallel lines,
plus that children are placed balanced below their common parent [RT81].
A recent summary of tree layout algorithms is given by Rusu [Rus13].
Figure 1.9 shows a drawing of a tree produced with ELK’s MrTree algorithm,
which is based on ideas presented by Walker [Wal90].

Another fundamentally different method is the fopology-shape-metrics
approach originally introduced by Tamassia et al. [Tam87; TDB88]. It fore-
most focuses on producing drawings with a low number of edge crossings.
Additionally, nodes are placed on a grid and edges are routed in an or-
thogonal fashion. The approach is well-suited to draw UML class diagrams.
Adaptations to support the special requirements of class diagrams, such as
upward pointing edges of generalizations, have been presented by several
authors [GJK+03; EGK+04].
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Figure 1.9. A drawing of a tree using a Figure 1.10. Orthogonal-style draw-
dedicated tree layout algorithm. ing created using the topology-shape-
metrics approach.

1.6 Optimization Problems

In an optimization problem one seeks for the best solution among all valid
solutions for a specific problem. To that end, an objective function, or simply
objective, defines what the best solution is, and a set of constraint functions,
of simply constraints, defines what the valid solutions are. To give a simple
example, the objective could be to make as much profit as possible by
planting and selling potatoes, and the constraining factors are the soil and
the machinery that are available.

Depending on the characteristics of the objective and the constraints,
different classes of optimization problems are distinguished. For instance,
if both the objective and the constraints are linear, and the variables that
describe the problem are reals, one speaks of a linear optimization problem or
linear program (LP). If the set of variables is additionally required to be inte-
gral, it is referred to as integer linear program (ILP). In general, optimization
problems are difficult to solve; solving ILPs is NP-hard, even if the variables
are further restricted to zero and one [Kar72]. However, there are exceptions:
LPs can be solved efficiently, for instance, with interior-point and ellipsoid
methods; nevertheless, in practice often the simplex method turns out advan-
tageous despite its worst-case exponential runtime [BV04]. Well-known
commercial tool suites to formulate and solve optimization problems are
IBM’s CPLEX and Gurobi, both of which provide academic licenses and
have been used to solve optimization problems discussed in this thesis.
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Figure 1.11. Exemplary boxplot of random values taken from two normal distribu-
tions and one beta distribution.

Coming up with a good formulation for a certain problem is often a
difficult task in itself and slight modifications of or extensions to the problem
may result in significant differences in solving time. Consequently, much
research devotes itself to improving the formulations of crucial problems.
In contrast to this, the purpose of the optimization problems occurring
throughout this thesis is to serve as reference point to either assess the
quality of heuristics or to discuss what is theoretically possible. Accordingly,
efficiency is of secondary importance and this brief overview of the area of
optimization problems should suffice.

1.7 Boxplots

Throughout this thesis, several evaluations are conducted that try to assess
the effectiveness of a proposed method based on certain sets of graphs that
originate from practice and do not represent a normally distributed sample.
Thus, stating averaged values of the results is often not enough since it hides
the results’ distribution, in particular the one of outliers. A representation
that works better in this case is a boxplot [VH81], see Figure 1.11 for an
example. In boxplots a set of data points is visualized by dividing it into
four groups that contain the same number of data points; the three split
points are called quartiles. The range of the data points between the first and
the third quartile is represented by a box where a bar within it represents
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the second quartile, the median. Whiskers (dashed lines) potentially extend
to both sides of this box representing the two outer groups. The length of a
whisker is at most 1.5 - IQR (there are also other variants), where IQR is
the inter-quartile range, which is the distance between the first and the third
quartile. Any data point that lies outside of the whiskers is considered to be
an outlier and is indicated by a small black circle. The boxplots presented
here additionally show the mean in the form of a small cross.

There are several variants and extensions of boxplots [MTL78]. An
example of the ones used here can be seen in Figure 1.11 and are created
with R v3.2.3 [R C15]. The left two boxes hold 1000 random values from a
normal distribution with a mean of 50 and different variances as indicated
in the caption, and the right box holds 1000 random values from a beta
distribution to illustrate the different indicators for median and mean.

1.8 The Eclipse Layout Kernel

The Eclipse Layout Kernel (ELK)? is a Java-based open-source project. It
provides an infrastructure that allows to connect diagram editors using
various technologies to layout algorithms written in different languages.
Internally, it uses a central graph structure, the ELK Graph, which allows
to model many types of node-link diagrams. Numerous layout options can
be attached to each element of the graph. The options can be used to
carefully tune a layout algorithm, e. g. to address diagram-specific drawing
requirements. Figure 1.12 shows a block diagram of ELK, and further
details on the underlying concepts can be found in the doctoral thesis of
Sponemann [Spo15]. In addition to the infrastructure, ELK comes with a set
of layout algorithms itself: ELK Layered, ELK Force, and ELK MrTree. While
ELK is part of the Eclipse ecosystem and well-integrated with the platform
itself, the layout algorithms are available as plain Java libraries as well.
ELK Layered is an implementation of the Sugiyama approach (cf. Sec-
tion 1.5.2), is highly configurable to address a large variety of aesthetics,
and contains several extensions specifically tailored to address dataflow

2h‘ctp://www.eclipse.org/elk
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Figure 1.12. Structure of the Eclipse Layout Kernel (ELK). (Figure courtesy of
C.D. Schulze)

diagrams with ports [SSH14]. Most of the methods presented in this thesis
found their way into ELK Layered.

1.9 Test Graphs

Layout algorithms must be tested, not only with regard to bugs but also
with regard to the quality of the resulting drawings. Two sets of graphs
that are frequently used for this purpose in the graph drawing community
are the North graphs and the Rome graphs.®> The sets originate from practical
applications but consist of nodes and edges only, with the nodes being
dimension-less [DGL+97a; DGL+97b]. Diagrams from practice usually have
nodes of varying dimensions and are richer in the number of features they
include: ports and labels, for example. Over the period of this thesis, I came
in contact with several diagram types (cf. Section 1.4) and used them to
evaluate the methods presented here. Due to tooling changes, diagram
notation changes, and improvements of the algorithms’ implementations,
it is possible that re-running the evaluations today may produce slightly
different results. Still, to make it easier to access the various diagram types
for future work and others, I converted them into ELK’s textual graph
format and removed diagram features that are irrelevant from the point of
view of a layout algorithm. The resulting files are available in the KIELER
models repository*. The remainder of this section introduces the sets and

3http ://www.graphdrawing.org/data.html
4https ://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/models-public
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names their particular characteristics, an overview of which is given in
Table 1.1. For further details on common layout conventions, see Section 1.4.

North and Rome Graphs The North graphs were collected by North during
his work at the AT&T Bell Labs [DGL+97a], and are referred to as AT&T
graphs. The Rome graphs were collected by DiBattista et al. The graphs are
based on a set of 112 graphs from real world applications that were altered
in various ways to obtain a larger number of graphs [DGL+97b].

Both sets of graphs consist of dimension-less nodes and edges, nothing
else. The North graphs do not contain directed cycles and are connected,
something that is not necessarily true for the Rome graphs. However, Healy
and Nikolov extracted a subset of the Rome graphs that fulfills these two
criteria as well [HNO02b]. The filtered set is denoted as RoMkF in this thesis.
Furthermore, Riiegg et al. extracted a subset from the North graphs in
which all graphs have at least 20 nodes and yield a large aspect ratio when
drawn left-to-right with the classic layer-based approach [RES+16a]; the set
is referred to as ATTar here.

Ptolemy The assembled set of Ptolemy diagrams originates from the
models shipping with the Ptolemy II suite® itself. Remember that Ptolemy
diagrams are dataflow diagrams and have been introduced in detail in
Section 1.4.1. The prevalent layout direction is left-to-right. In addition
to nodes and edges, the underlying graphs comprise ports with certain
port constraints; usually their order is fixed. The edges are directed and
connect to nodes via ports, and an edge can connect more than two ports,
in which case the edge is a hyperedge. The nodes have different dimensions
and labels associated with them. The graphs can be hierarchical and con-
tain short hierarchical edges. Each hierarchical node can contain multiple
disconnected subgraphs. The graphs may contain directed cycles and self
loops.

In his dissertation, Sponemann discussed a way to flatten the Ptolemy
diagrams by moving the content of all hierarchical nodes to the uppermost

5https://ptolemy.eecs.berkeley.edu/ptolemyII/
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hierarchy level and reconnecting hierarchical edges properly [Sp615, Sec-
tion 2.2.4]. The procedure mainly serves as a way to derive larger graphs
for testing and evaluation.

Characteristics: ports and port constraints, node dimensions, node la-
bels, hyperedges, short hierarchical edges, directed cycles, self loops, hierar-
chy, disconnected subgraphs.

SCCharts SCCharts are control flow diagrams and represent state ma-
chines with hierarchy. For a detailed introduction see Section 1.4.2. The
assembled set originates from student submissions during practical courses
at university. States are nodes, transitions are edges. Hierarchy is realized
by (multiple) regions that are contained in a state and can in turn contain
further state machines, i.e. subgraphs. There are no hierarchical edges.
From a layout algorithm’s perspective regions are unconnected boxes, and
arranging them can be seen as a packing problem. An interesting feature of
SCCharts therefore is the alternation of a “regular” graph layout problem
and a packing problem. Edges have labels that represent guards and actions
and can be rather space-consuming. The graphs may contain directed cycles
and self loops.

SCCharts provide a set of extended features for ease of modeling. In an
initial step of the compilation chain to machine code an SCChart is modified
to contain only core features. From the perspective of the underlying graph,
the transformation to a core SCChart usually increases both the number of
nodes and edges.

Characteristics: node dimensions, edge labels, alternating hierarchy
(regions, state machines), directed cycles, self loops.

SCGs SCGs are control flow diagrams emerging during the compilation
of SCCharts (cf. Section 1.4.2). The prevalent layout direction is top-down.
While usually not explicitly visible, edges attach to nodes via ports. Most
nodes have one input port on the north side and one output port on the
south side to both of which multiple edges can connect. If multiple edges
connect, the edges form a hyperedge. An exception are nodes that represent
conditionals. They have an additional edge connecting to the east side or
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west side of the node. This edge carries a label to indicate which case, true
or false, of the conditional it represents.

During compilation, SCGs take different forms. At one point several
nodes are combined to basic blocks, which can be modeled for layout using
hierarchy. Another form is a sequentialized SCG, which is guaranteed to be
acyclic.

As two evaluations in this thesis use two sets of SCGs that originate
from unit tests of the SCCharts compiler, they are listed in the overview
table as well. Note that while the two sets share most of the originating
models, they were assembled independently at different points in time, thus
the different number of graph instances.

Characteristics: node dimensions, ports with port constraints, hierarchy,
directed cycles, edge labels.
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Table 1.1. Summary of the features and structural properties of the assembled graph sets. Figures in brackets
denote standard deviations. Node counts include simple nodes and hierarchical nodes. Edge counts include
simple edges and short hierarchical edges (there are no long hierarchical edges in the graphs). The node
dimensions only include the contribution of simple nodes, thus when it comes to laying out hierarchical graphs,
larger variances and larger maximum values are to be expected.

Instances  Acyclic ~ Connected  Ports  Hierarchy
Rome 11534
Rome Nikolov 5911 v v
North 1276 v v
North ATTar 146 v v
Ptolemy 256 v v
Ptolemy Flat 294 v
SCCharts 331 v
Core SCCharts 331 v
SCGs 331 v v
SCGs Basic Blocks 330 v v
Seq. SCGs 170 v v v
SCGs (Unittests) 127 v v
Seq. SCGs (Unittests) 135 v v v
Graphs Node Counts Edge Counts Node Widths Node Heights
Min  Max Avg  Min  Max Avg  Min Max Avg  Min Max Avg
Rome 10 110 52.3 [257] 9 158 69.1 [36.1] 00.0 00.0 00.0 [00.0] 00.0 00.0 00.0 [00.0]
Rome Nikolov 10 100 48.3 [25.6] 9 158 62.7 3571 00.0 00.0 00.0 po.o;  00.0 00.0  00.0 [oo.01
North 10 100 32.1 [21.3] 9 241 45113571 00.0 00.0 00.0 [o0.0]  00.0 00.0  00.0 [oo.01
North ATTar 20 99 39.7 179 20 168 60.3 (3391  00.0 00.0 00.0 [0o.0]  00.0 00.0  00.0 [00.01
Ptolemy 11 488 39.7 [60.7] 8 799 58.0 [101.9] 10.0 611.0 58.4 [17.1] 10.0 225.0 38.2 [03.5]
Ptolemy Flat 11 451 33.6 [50.8] 7 661 42.2 [734] 10.0 611.0 58.2 [16.8] 12.0 225.0 37.7 [043]
SCCharts 4 72 18.9 [14.0] 1 110 21.3 [21.3] 02.0 760.0 87.1 (481 02.0 245.0 37.4 [07.4]
Core SCCharts 7 617 84.1 [83.9] 5 723 95.7 oo} 34.0 534.0 853 (1291 34.0 190.0  34.6 [005]
SCGs 7 577 95.2 [87.8] 7 833  123.6 [1169] 750 18485  109.7 [324] 250 145.0 252011
SCGs Basic Blocks 11 1006  156.3 [143.6] 15 2167 295328491 08.0 18485 109.6 3251 08.0 145.0 25.1 [o1.1]
Seq. SCGs 14 941  135.6 [1285] 15 1057 154.0 4611 75.0  2021.0 1421451 25.0 40.0  25.0 [00.01
SCGs (Unittests) 6 563 72.8 7631 6 827 98.0 (11151 75.0 586.0 77.2 10411  25.0 61.0  25.0 [00.1]
Seq. SCGs (Unittests) 10 227 41.1 31.8] 11 253 4551p358]  75.0 1223.0 104.8 23]  25.0 25.0  25.0 [00.0]
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Chapter 2

Layer-Based Layout

The following chapters present various improvements and ameliorations to
the layer-based approach, for which a more thorough overview is required
than the brief overview given in Section 1.5.2. In the area of graph drawing
the method is also known as hierarchical layout, Sugiyama style layout, and
layered layout. I avoid the term hierarchical layout throughout this thesis
since “hierarchical” shall refer to graphs in which nodes can contain further
children (cf. Section 1.3). The reader is also referred to one of several
summarizing books [DET+99; KW01; HN13].

The underlying idea of the approach is to seek a layout for a directed
graph in which most edges point into the same direction, highlighting the
graph’s inherent directionality. As a reminder, the layer-based approach
was originally defined by Sugiyama et al. for acyclic graphs as a pipeline of
three steps [STT81]. Two additional steps are necessary to allow practical
usage, which are marked with asterisks:

1. Cycle removal*: Eliminate all cycles by reversing a preferably small subset
of the graph’s edges. This step adds support for cyclic graphs as input.

2. Layer assignment: Assign all nodes to indexed layers such that edges point
from layers of lower index to layers of higher index. Edges connecting
nodes that are not in consecutive layers are split by introducing dummy
nodes.

3. Crossing minimization: Find an ordering of the nodes within each layer
such that the total number of edge crossings is minimized.

4. Coordinate assignment: Determine explicit node coordinates, e. g. with the
goal to minimize the distance between edge endpoints.

5. Edge routing*: Compute bendpoints for edges, e. g. in an orthogonal style.
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2. Layer-Based Layout

Splitting the overall layout task into several steps significantly reduces the
complexity of the individual steps and allows well-structured implementa-
tions. However, it also constrains the steps to take local decisions that may
turn out to be unfortunate for subsequent steps. The first three steps can be
seen as topological steps since they compute the relative positioning of the
nodes to each other. The last two steps calculate explicit x and y coordinates,
thus they can be seen as geometrical steps. The order of the steps directly
reflects the trade-off of aesthetics: directionality is more important than edge
crossings which are in turn more important than balanced node positions.

The next paragraphs explain the individual steps in further detail and
summarize weaknesses of the current state-of-the-art. Note that as opposed
to most of the existing literature, the explanations in this thesis assume
a left-to-right layout, i.e. layers are vertical strips and layers with lower
indices are left of layers with larger indices. Additionally, most of the time
a port-based graph is assumed, i.e. all edges connect to nodes via ports. A
graph without ports can easily be transformed into a port-based graph by
introducing a source port and a target port for every edge.

21 Cycle Removal

Given a possibly cyclic graph, edges are to be reversed temporarily such
that an acyclic graph is handed to the remaining steps. The idea behind
this is that many graph problems are easier to solve for acyclic graphs.
The original direction of the reversed edges is restored after the final step,
resulting in edges that point into the “wrong” direction within the final
drawing. Consequently, a small number of edges to be reversed is usually
preferred in order to preserve the overall flow.

The problem of finding a minimum set of such edges is also known as
the Feedback Arc Set Problem (FASP) and is NP-complete [G]79]. Several
approaches have been proposed to solve it either optimally or heuristi-
cally [HN13]. The most popular heuristic used in the context of graph
drawing was introduced by Eades et al. [ELS93]. It yields reasonable re-
sults and runs in linear time. It has been noted by Gansner et al., however,
that reversing a minimal number of edges does not necessarily yield the
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best drawings, and application-inherent information might make certain

edges better candidates to be reversed [GKN+93]. Moreover, the decision

which edges to reverse can result in significantly different outcomes of the

subsequent layer assignment step (remember Figure 1.8, p. 30).
Interesting challenges of the cycle removal step are:

P-CR1 Often, more than one set of edges exists to make a graph acyclic.
Since the cycle removal step is not aware of the remaining steps, the
selected set of edges may turn out to be an unfortunate choice for
other steps.

P-CR2 Several diagram types use feedback edges, for instance, to model con-
tinuous systems where computations partly depend on the previous
system state. Inevitably, the underlying graph to lay out is cyclic.
The information which edge of a cycle is the feedback edge could
be used to reverse exactly this edge and help the user to identify
the feedback.

This thesis does not present new methods for the cycle removal step itself
but discusses new methods for the subsequent layer assignment step which
incorporate cycle removal.

2.2 Layer Assignment

A large variety of approaches to compute a layering has emerged over
the years. After further definitions, the approaches are discussed in fur-
ther detail in the next paragraphs, structured according to the pursued
optimization goal.

Definition 2.1 (Layering, proper layering, short and long edge). A layering of
a directed graph G = (V,E) is a mapping L : V — N for which V(u,v) € E:
L(v) — L(u) > 1 holds. An edge ¢ = (u,v) in this layering is called short if
L(v) — L(u) =1, e is called long if L(v) — L(u) > 1. A layering is proper if
all edges are short.

A proper layering can be constructed by splitting all edges that span multi-
ple layers, introducing a dummy node in each spanned layer.
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Definition 2.2 (Width and height of a layering). Given a layering L, the
width of L is the number of used layers, the height of L is the maximum
number of nodes in any layer. For the latter the contribution of dummy
nodes can either be considered or neglected.

The two best-known layering strategies are the following. Eades and
Sugiyama employ a method that is known as longest path layering. It requires
linear time and the resulting number of layers equals the number of nodes
of the graph’s longest path [ES90]. The width of these layerings is thus
minimal. Gansner et al. solve the layer assignment step by minimizing the
number of dummy nodes that have to be introduced, which is tantamount
to minimizing the total edge length [GKN+93]. They show that the problem
is solvable in polynomial time and present a dedicated network simplex algo-
rithm which in turn has not been proven to be polynomial, although it runs
fast in practice. Alternatively, their approach can be formulated and solved
as its dual: a minimum cost flow problem. Dummy node minimization was
found to inherently produce compact drawings and performed best for the
general case in comparison to other layering approaches [HNO2b].

Restricted Height Coffman and Graham’s scheduling algorithm with
precedence constraints can be used to find a layering with a prescribed
bound on the number of original nodes per layer [CG72]. The algorithm
does not consider the contribution of dummy nodes to a layer’s height.
Healy and Nikolov tackle the problem of finding a layering subject to
bounds on the number of layers and the maximum number of nodes in any
layer with consideration of dummy nodes using an integer linear program-
ming approach [HNO2b]. The problem is NP-hard, even without considering
dummy nodes. In a subsequent paper they present a branch-and-cut algo-
rithm to solve the problem faster and for larger graph instances [HN02a].
Later, Nikolov et al. propose and evaluate several heuristics to find layerings
with small height [NTB05]. Section 3.1 takes a closer look at these heuristics.
Another approach to create narrow layerings is presented by Andreev et al.,
which uses ant colony optimization [AHNO7].
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Aspect Ratio Nachmanson et al. present an iterative algorithm to produce
drawings with an aspect ratio close to a previously specified value [NRLOS].
The idea is to execute all steps of the layer-based approach for a given
graph, measure the aspect ratio of the final drawing, and start over if the
measured aspect ratio is too far from the desired aspect ratio. Internally,
they use a slight variation of the Coffman-Graham algorithm to compute a
layering, where the input parameter is a real number /. The sum of node
heights of any layer must not exceed h. The authors use a binary search to
find the best i for the desired aspect ratio. Consequently, their algorithm
is not able to advance towards the desired aspect ratio if a solution to the
unconstrained Coffman-Graham (i = ) is the closest amongst all possible
input parameters.

Restricted Width With known methods, the width of a layering can be
restricted in two ways: the integer program of Healy and Nikolov provides
a parameter to restrict the number of layers, and the longest path algorithm
of Eades and Sugiyama creates a layering with the minimal number of
layers in either case. However, both require the input graph to be acyclic
upfront, and they are bound to a minimum number of layers equal to the
longest path of the graph. This implies that the bound on the number of
layers in the Healy and Nikolov’s integer program cannot be smaller than
the graph’s longest path. This restriction led to the research presented in
Sections 3.2 and 3.3.

Another contributor to the width of a layering is the width of nodes. A
rigid layering can result in unfortunate drawings if the width of the nodes
significantly varies in size (cf. Figure 2.2b). A common attempt at a solution
here is to assign wide nodes to multiple layers, for instance, by splitting
them into multiple small chunks [MEL+95; NW02; FS04]. This comes at the
cost that the crossing minimization step has to keep edges from crossing
nodes, and that the node coordinate assignment step has to assert that all
chunks receive the same y coordinate. Thus, not only do the subsequent
steps have to know about the special layering, their internal complexity
rises as well.
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;

(a) Gansner et al. [GKN+93] (b) Coffman-Graham [CG72]
(c) Nikolov et al.; (d) Alternative drawing,
MinWidth heuristic [NTBO05] half of the edges point leftwards

Figure 2.1. Different drawings of the same tree. The example illustrates the chal-
lenges faced when the height of a tree’s drawing should be kept small. (a)—(c) are
created with existing layering methods, (d) demonstrates what would be possible if
a subset of the graph’s edges were allowed to point leftwards.
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Trees A general directed graph can contain several subtrees. Handling
the subtrees in a particular way is not the prime objective of a layering
algorithm, however, there is enough to say about the matter to deserve
its own paragraph. A significant amount of work has been devoted to
forging layout algorithms for pure trees and to identifying criteria that
make up a good drawing of a tree. A class of such algorithms is called
level-based [Rus13]. The idea is to assign nodes with the same distance to the
graph’s root to the same level. Naturally, such drawings look similar to those
of the layer-based approach. A drawback of the level-based algorithms is
that the drawings become rather high when drawn left-to-right. Computing
a layering for a general graph that contains subtrees with one of the layering
methods discussed above computes layerings for the individual subtrees
as well. How well do the traditional layering methods perform for trees?
The longest path algorithm would place all leaves of each subtree in the
right-most layer, possibly elongating edges unnecessarily, and thus resulting
in unfortunate drawings. The approach of Gansner et al. on the other hand
assigns the layers in the same way level-based tree algorithms would do,
resulting in natural drawings of the subtrees.

It is not immediately clear what a good way to re-arrange the nodes of a
leveled drawing of a tree is to create a drawing with less height. Dedicated
tree layout algorithms solve this problem, for instance, by placing the nodes
on concentric circles (radial layout) or by alternating the layout direction for
subtrees (horizontal-vertical layout) [Rus13]. In the context of the layer-based
approach, one is not able to move away from assigning nodes to layers since
it would alter the approach’s core concept.

Nevertheless, the problem has been identified before: Nachmanson et al.
explicitly mention the desire to reduce the fan-out of large trees in their
paper but note that additional heuristics are required to produce acceptable
layouts [NRLO8]. Consider Figure 2.1: Drawings (b) and (c) are created
with layering methods that specifically aim at smaller heights. While being
slightly narrower, the overall drawing loses quality. In drawing (d) half of
the graph’s edges point left. As a result, a drawing of half of (a)’s height
is possible. Still, the aforementioned problems are just the same for the
“leftward pointing” subgraph and the “rightward pointing” subgraph.
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From a theoretical point of view, the height of a tree’s layering cannot
be altered when dummy nodes contribute just as much to the height of a
layer as original nodes. In practice it is hardly the case that dummy nodes
contribute the same height as original nodes; dummy nodes represent edges
and edges are usually significantly narrower than nodes. Nevertheless,
many coordinate assignment algorithms (subsequent step) aim at placing
consecutive dummy nodes at the same y coordinate, which is synonymous
with the desire to have straight edges. As a consequence, they often space
the dummy nodes further apart than theoretically necessary. Another point
to consider is that subtrees at different places in the graph likely demand
individual treatment based on the immediate neighborhood.

Challenges In summary, restrictions and challenges of the layer assign-
ment step are:

P-LA1 The width of any layering is bound by the longest path, see Fig-
ure 2.2a.

P-LA2 Layerings produced with existing methods are not always well-
suited for certain display mediums such as a computer screen.
Figures 2.2a and 2.2c give an idea of how this can become a problem
for larger graphs.

P-LA3 In the presence of nodes with significantly different widths, the rigid
layering can unnecessarily increase the overall width, see Figure 2.2b.

P-LA4 In the presence of nodes with significantly different heights, layers
can become quite tall. Minimizing the number layers or the number
of dummy nodes may not be desired anymore. An example can be
seen in Figure 2.2d.

Chapter 3 presents several new methods and extensions of existing ap-
proaches to tackle these challenges.
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Figure 2.2. Challenges during layer assignment. (a) and (c) illustrate how certain
layerings result in unfortunate aspect ratios of the drawing. With larger diagrams
this can become a problem. In (b) the drawing is unnecessarily wide due to one
node being pushed to the right. The height of (d) could be reduced by adding an
additional layer between the two taller nodes to accommodate four small nodes.

2.3 Crossing Minimization

Minimizing the number of straight-line edge crossings of a layered graph
has been shown to be NP-complete, even for only two layers with a fixed
node order in one of the layers [G]83; EW94]. As a consequence, a variety
of heuristic procedures has been proposed, among which the layer-sweep
strategy proposed by Sugiyama et al. [STT81] is among the most popular
ones. It sweeps back and forth through the layers and locally minimizes the
number of edge crossings between each pair of layers by fixing one of the
two layers and reordering the nodes within the other layer until no progress
is made or a certain termination criterion is reached. To do so, it requires
two elements: (1) a strategy to select a new order for the nodes within the
free layer based on the order of the nodes in the fixed layer and (2) an
algorithm to count the number of crossings between each pair of layers. For
(1), Sugiyama et al.’s original barycenter heuristic has proven to be fast and
efficient in practice [JM97], nevertheless, many other heuristics have been
proposed [EK86; Dre94; EW94; Cat95]. Further details can also be found
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in comparative studies of Jiinger and Mutzel and of Marti and Laguna
[JM97; MLO03]. Regarding (2), Barth et al. presented an algorithm to count
the number of straight-line crossings between a pair of layers that runs
in O(nlogm), n being the number of edges to consider and m being the
number of nodes in the layer with fewer nodes [BJM02]. For the case that a
graph comprises hyperedges, Eschbach et al. note that counting crossings
is problematic since the final number of crossings cannot be determined
until the edge routing step has finished [EGB03]. Sponemann et al. discuss
this topic further and present heuristic counting algorithms that yield fewer
hyperedge crossings in final drawings [SSR+14a]. The current state-of-
research in the area of crossing minimization is also summarized in the
book chapter of Healy and Nikolov [HN13].

In the presence of ports and hierarchical graphs further interesting
problems arise:

In-layer edge crossings To properly handle ports on the north and south side
of a node, it might be necessary to introduce in-layer edges and to count the
number of edge crossings they are involved in [SSH14]. Schelten shows in
his Master’s thesis how the counting of the edge crossings between layers
can be transformed to the problem of counting crossings between in-layer
edges, which allows to count the regular edge crossings and the in-layer
edge crossings between a pair of layers at the same time [Sch16]. He
further presents an algorithm to do so in O(nlogn), n being the number
of edges, which thus is competitive with Barth et al.’s algorithm at the
benefit of having to implement and maintain only a single algorithm. On
a side node, the problem of counting in-layer edge crossings can also be
seen as counting the crossings in a 1-page book embedding.

Adjustable port sides While westward and eastward ports correlate to the
layout direction and thus are fixed to their respective side prior to the
layering step, it is possible to move northern and southern ports to the
opposite side, e. g. in case it decreases the number of edge crossings. A
possible implementation of such a behavior has been presented by Skrlac
in her Bachelor’s thesis [Skr15].

Hierarchical edges In hierarchical graphs, edges can span hierarchy levels
via ports on the hierarchical nodes (cf. Figure 1.4, p. 18). Laying out
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such a graph in a bottom-up fashion can easily result in unnecessary
edge crossings: when the order of the hierarchical ports is decided on,
the implications for the outer hierarchy levels are unknown. A solution
would be to perform crossing minimization on the whole graph at once,
however, for reasons explained in Section 6.1 it is often desired to employ
a bottom-up strategy. To improve matters, Schelten presents the Hierarchy-
Aware Layer Sweep (HALS) method that not only sweeps the layers back
and forth but, while doing so, sweeps in and out of hierarchical nodes.

2.4 Coordinate Assignment

The coordinate assignment step is the first of the two geometrical steps.
The relative order of nodes to each other has been decided on: horizontally
by the layering and vertically by the order of the nodes within each layer.
Now the task is to calculate explicit y coordinates. Existing approaches
mostly pursue the goal to place nodes in a balanced fashion, to keep
the edges short, and to reduce the number of bends edges have to make.
Additionally, it seems to be generally agreed on that long edges should
be drawn as straight as possible [HN13, p. 441]. No qualitative proof has
been given for this assumption though. The paper of Brandes and Kopf
gives a good overview of the various approaches and their sometimes
subtle differences [BK02]. According to Healy and Nikolov, Brandes and
Kopf’s approach is also the algorithm of choice for coordinate assignment.
It extends ideas of Buchheim et al. [BJL0O1] and runs in linear time.

Central elements of this thesis are node dimensions, ports, and orthogo-
nal edges. They add both a new element of complexity and a new degree
of freedom to the coordinate assignment problem. The goals stated so far
are not necessarily applicable to an orthogonal edge routing style. Consider
Figure 2.3a where three nodes in two layers are connected by two edges.
One may prefer the straightness of one of the two edges over a balanced
node positioning in which both edges require two bendpoints. Regarding
node dimensions and ports, Gansner et al. use a clever transformation of the
coordinate assignment problem to the layer assignment problem and re-use
their network simplex approach to assign y coordinates. They describe

49



2. Layer-Based Layout

o o
oo ol 3

(@ (d)

Figure 2.3. Challenges during coordinate assignment. The two drawings in (a)
illustrate that balanced node positions may not be desired when routing edges
orthogonally. (b) shows how more than one incident edge can be drawn straight
per node when a node is tall enough. (c) shows that moving ports or increasing a
node’s height would allow further straight edges. (d) outlines how tall nodes and
fixed port positions can result in tall drawings when aiming for straight edges.

how their approach can be used to handle different node dimensions and
fixed ports [GKN+93]. Klauske uses a linear program inspired by Gansner
et al.’s formulation to address flexible ports in Simulink diagrams. Nodes
can be resized in height in order to reposition the ports and allow a larger
number of straight edges [Klal2, Section 3.3.3]. In summary, challenges of
the coordinate assignment step are:

P-CA1 Balanced node positions are not necessarily desired when edges are
routed in an orthogonal fashion, see Figure 2.3a.

P-CA2 As shown in Figure 2.3b, the presence of differently sized nodes
allows multiple straight edges per node side.

P-CA3 If ports were allowed to be moved on a node’s border during
coordinate assignment, or if nodes were allowed to be resized, even
more edges may be drawn straight, see Figure 2.3c.

P-CA4 Straightening edges between tall nodes, however, may significantly
increase the height of a drawing as sketched in Figure 2.3d.

Chapter 4 presents new methods that address the first three challenges.
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2.5 Edge Routing

In addition to the positions of a graph’s nodes, the paths of the edges are
a central element of a well-readable drawing, and unless the edges are to
be drawn as straight lines, the task to come up with good edge paths can
become arbitrarily difficult. Four imaginable edge routing styles are:

straight-line each edge is drawn with a single straight line segment;

polyline each edge’s path is a sequence of straight line segments that are
joined with arbitrary angles;

orthogonal each edge’s path is a polyline that is restricted to axis-parallel
segments only, the style is well-known from circuit diagrams;

spline each edge’s path consists of arbitrary curves, also referred to as open
jordan curves [DET+99], with the goal to achieve smooth and visually
pleasing overall edge paths.

The only thing that potentially has to be done for straight-line edge routings
is to find a reasonable attachment point for the edges on a node’s perimeter
if the node has a dimension. The other three styles require more effort:
routing the edges between adjacent layers in an orthogonal fashion restricted
to one vertical segment per edge, for instance, includes the problem to order
the vertical segments such that the number of edge crossings is kept small,
which is NP-complete [San04]. Edge routing techniques for the orthogonal
style, potentially supporting hyperedges, are discussed by Sander [San96a;
San(04] and Eschbach et al. [EGB03; EGB06]. Gansner et al. [GKN+93] discuss
an edge routing technique that computes splines from scratch, subject to the
node positions computed by the previous steps. Nachmanson et al. present
a method that proceeds slightly differently, which uses the positions of
long edge dummies as hints for the splines” paths [NRLO8]. In practice,
further interesting subproblems emerge: the routing of self loops, taking
into account the edges’ labels, and mixing different routing styles within
the same diagram.
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2.6 Port Constraints

The layer-based approach lends itself well for drawing dataflow diagrams,
whose drawing conventions and requirements are discussed in Section 1.4.1.
The layered layout highlights the overall flow of the diagram, and techniques
to draw edges orthogonally exist. The requirements specific to the diagram
type can be handled by a set of extensions [SFH+10; KSS+12; SSH14], of
which handling port constraints is one of the more challenging tasks and
entails three special scenarios that have to be addressed: inverted ports,
north/south ports, and hierarchical ports. Small examples of the three port
types can be seen in Figure 2.4. A common idea of the extensions is to
transform the special requirements into constructs that can be understood
by existing methods and implementations, e.g. by introducing further
dummy nodes.

Remember the different port constraint levels introduced in Section 1.3
that can be specified by a user and range from completely free to rigidly
fixed. During the course of layout execution, the port constraints of a node
are tightened more and more (unless they are fixed from the beginning).
For instance, before the crossing minimization step at least the side of a port
on a node’s border has to be fixed. The order of the ports on a particular
side of a node can, however, still be altered to reduce the number of edge
crossings. Consequently, after the crossing minimization step finishes the
order of ports must not be changed anymore.

The next paragraphs explain how the three special port types are mod-
eled during layout to the extent required for the understanding of this thesis.
The paragraphs mainly summarize the results of three papers [SFH+10;
KSS+12; SSH14].

Inverted Ports A port is called inverted either if it is fixed to the west side
of a node and has outgoing edges or if it is fixed to the east side of a node
and has incoming edges. A small example of a graph with two inverted
ports can be seen in Figure 2.4a. The node u has an outgoing edge connected
to a port on the west side, and the node v has an incoming edge connected
to a port on the east side. After the layer assignment step the side of a port
is guaranteed to be fixed and two dummy nodes d1 and 42 are introduced.
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Figure 2.4. Special requirements of dataflow diagrams that must be handled by a
layout algorithm. Figures modified based on [SSH14].

The original edge e,» now connects the two dummy nodes and two in-layer
edges are added to connect the dummy nodes to their corresponding origins.
In-layer edges are not supported by the traditional layer-based approach
as they break the properness of the layering. Thus, the three subsequent
steps must be aware of in-layer edges: Sponemann thoroughly discusses
how they can be addressed during crossing minimization and edge routing
and ignores them during coordinate assignment [Sp615]. Nevertheless, if
properly considered during coordinate assignment, edge lengths can often
be improved (cf. Chapter 4).

53



2. Layer-Based Layout

North and South Ports The layer-based approach draws edges from one
layer to the next layer. Thus, it makes sense that edges start at a node’s east
side and end at a node’s west side if the layout direction is left-to-right and
port constraints permit.

Wherever a port is fixed to the north side or the south side of a node,
care must be taken that the space required to route the incident edges is not
blocked by other nodes of the same layer. For orthogonally routed edges a
bendpoint must be added to the edge’s path. An example of north/south
ports can be seen in Figure 2.4b, where several edges connect to ports
on the north side of the node v. The figure in the middle illustrates how
north/south port dummies are introduced after layer assignment. Ordering
constraints assert that the dummy nodes stay on the required side during
crossing minimization and prevent other nodes from being placed between
the dummy nodes and the original node [SSH14].

Contrary to inverted ports, no in-layer edges are added that connect the
dummy nodes to the node they originate from. Thus, during coordinate
assignment care has to be taken to prevent the dummies from moving too
far from the node they belong to, unnecessarily elongating the edges. How
this can be handled is described in Chapter 4.

Hierarchical Ports Edges can traverse the hierarchies of hierarchical graphs
via hierarchical ports (remember the definitions of Section 1.3). Hierarchical
graphs can be laid out in a bottom-up fashion using layout algorithms that
are not aware of the hierarchy (cf. Section 6.1). Nevertheless, in the presence
of hierarchical ports care has to be taken that the edges are routed properly
from an inner graph to the hierarchical port. For the layer-based approach
this can be achieved by introducing hierarchical port dummies. Figure 2.4c
shows an example where the dummy nodes d1 and d2 represent the west
side hierarchical port and the east side hierarchical port, respectively. It
must be guaranteed that these dummies end up at the border of the node.
For west and east ports of the hierarchical node this means that the layer
assignment step has to place the dummy nodes in either a separate initial
or a separate last layer. For north and south ports the crossing minimization
step must place them at the beginning or end of a layer. For free or fixed
side port constraint levels, the positions of the dummy nodes can directly
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be transferred to the hierarchical ports. For more restrictive port constraints,
a dedicated edge routing connects the ports to their corresponding dummy
nodes, see Klauske et al. [KSS+12].

This concludes the overview of the layer-based approach and the dis-
cussion of the special requirements of ports and port constraints. The next
chapters keep an eye on these requirements wherever necessary while they
present new methods for individual steps of the approach.
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Chapter 3

The Layer Assignment Step

The second step of the layer-based approach is the layer assignment step.
As a reminder, the step assigns the nodes of a graph to disjoint layers such
that (a) nodes connected by an edge end up in different layers and (b) all
edges point into the same direction. The latter point is always viable due to
the preceding cycle removal step. The two classical approaches are:

* The longest path approach by Eades and Sugiyama [ES90]. It assigns nodes
to layers as “early as possible” starting with the graph’s sinks. As such it
creates a layering with the minimal number of required layers.

* The network simplex approach by Gansner et al. [GKN+93]. It minimizes
the number of dummy nodes that have to be inserted to create a proper
layering for the next step. In other words, it minimizes the total edge
length.

The two approaches are abbreviated as LP and NS throughout this chapter.
Remember that the width of a layering is defined as the number of
used layers and the height is defined as the maximum number of nodes in
any layer. To avoid confusion with the width and height of a final drawing,
which are usually measured in pixels and strongly depend on the remaining
steps of the layer-based approach, the width and height of a layering are
referred to as estimated width w and estimated height h. The dimensions of the
final drawing may also be referred to as effective width and effective height.
Port constraints and the resulting inverted ports and north/south ports
come in effect after the layering step and can therefore be neglected for
now, and hierarchical ports have been converted to dummy nodes prior
to this step. Also, the ports themselves play no relevant role during layer
assignment, which is why throughout this chapter G usually represents a
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directed, port-less graph with nodes V and edges EC V x V.

This chapter is concerned with three main topics: computing layerings
with a restricted number of nodes per layer (Section 3.1), explicitly allowing
further edges to point backwards within the layering (Section 3.2), and
cutting a layering into multiple chunks (Section 3.3). All three topics aim at
improving the compactness of final drawings and at better fitting drawings
to prescribed drawing areas.

3.1 Restricted Number of Nodes per Layer

The classical layering approaches have no control over the width and height
of the resulting layering. As such, it is possible that the layering of a
particular graph has a small number of layers but many nodes per layer:
the layering results in a rather high but narrow drawing. This gives rise to
the desire for a layering approach that creates a layering with a restricted
number of nodes per layer, addressing one facet of challenge P-LA2 (p. 46).
As mentioned in Chapter 2, the Coffman-Graham algorithm allows to
restrict the number of original nodes per layer [CG72]. However, the dummy
nodes introduced for long edges have a significant impact on the height
of a layer and should not be neglected. Branke et al. showed that finding
a layering with minimal height is NP-complete when dummy nodes are
considered [BLM+02]. Nikolov et al. presented heuristics for the problem
and coined the term minimum-width layering, assuming a top-down layout
direction [NTBO05]. The prevalent layout direction in this thesis is left-to-
right, therefore the term “width” is avoided where possible in this chapter.
One of Nikolov et al.’s heuristics is called MiNWipTH. The reader is kindly
asked to not be confused by the fact that here it actually refers to the desire
to reduce the layering’s height. The problem looked at in this section thus
is the following, exemplary drawings can be seen in Figure 3.1.

PROBLEM LAYERING WITH A RESTRICTED NUMBER OF NODES PER LAYER

Given a graph G, find a layering L such that the maximum number of
nodes in any layer, i. e. the layering’s height, is restricted in some sense.
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The exact kind of restriction is left open on purpose and can be made
concrete in various ways. It can, for instance, be a constant specified by
a user that restricts the maximum number of nodes per layer. If dummy
nodes are disregarded, the previously mentioned algorithm of Coffman
and Graham can be used to compute the layering. When dummy nodes are
regarded, however, it is not known upfront to a user how many nodes per
layer are required at the minimum and how many of them are required
for a reasonable layering. Similarly, a fixed bound on the height in pixels
is hard to realize since the height can only be estimated at this point. The
heuristics of Nikolov et al. do not use a hard restriction but try to come up
with a layering whose height is smaller than the height of layerings created
with traditional approaches.
This section seeks to answer the following questions:

1. While Nikolov et al. call it “minimum-width layering”, their heuristics
do not necessarily find a layering with the minimal number of nodes
in any layer. After all they are heuristics. What is the gap between
heuristic solutions and optimum solutions? How do the traditional
layering methods compare to optimal solutions? Both points were not
yet examined by Nikolov et al.

2. Can the heuristics be used to target a certain drawing area, for instance
a computer screen?

3. Is there a need for and an easy way to extend the heuristics to consider
differently-sized nodes?

After a brief introduction of the graphs that are used to evaluate the pre-
sented methods, the three questions are addressed successively in the
following subsections.

Test Graphs The evaluations of this chapter are based on the RomeF graphs
assembled by Nikolov et al. (see Section 1.9) and on three subsets of these
graphs that originate from partitioning them as follows. Laying out the
graphs from left to right using layer and coordinate assignment techniques
presented by Gansner et al. [GKN+93] and a simple polyline edge routing
results in a final drawing with a certain aspect ratio. Based on this aspect
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Figure 3.1. Different layerings of the grafo11465.34 graph from the Rome graphs
collection, produced with traditional methods, (a) and (b), and with the heuristics
of Nikolov et al. [NTBO5], (c)—(f).
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ratio, three graph sets were composed, each with 1000 graphs:
Low: the 1000 graphs with the lowest aspect ratios (roughly 0.3-1.0);

Mippre: the 1000 graphs with aspect ratios around 1.6, the aspect ratio of
up-to-date computer screens (roughly 1.5-1.7); and

Hicu: the 1000 graphs with the highest aspect ratios (roughly 2.2-7.1).

The rationale for this partitioning is that the layering heuristics of Nikolov
et al. ought to perform differently based on the aspect ratio of a “traditional”
drawing. Consider the following example: a low aspect ratio value of 0.5 in a
left-to-right drawing may be an indication that the maximum of the number
of nodes in any layer is larger than the number of layers. To increase the
aspect ratio, thus to better match a computer screen, the maximum number
of nodes per layer would have to be decreased by moving certain nodes to
new layers. Exactly this is what the heuristics try to achieve.

Additionally, a set of graphs made up of SCGs is used, which, contrary
to the Rome graphs, comprises nodes with varying dimensions. Remember
that SCGs are drawn top-down with orthogonal edges. The set is a subset
of the SCGs that originate from unit tests (cf. Section 1.9), and it comprises
of 40 diagrams with final drawings with aspect ratios between 1.3 and 4.5
and one outlier of 8.5. The graphs have between 32 and 563 nodes, 84.3
on average. An average of 9.2 nodes per graph are hierarchical nodes, i.e.
nodes that contain further nodes. The edge counts are between 40 and 827,
113.8 on average. In Section 3.1.2 the set is used to evaluate the presented
extensions of Nikolov et al.’s heuristics to consider individual node sizes.

3.1.1 Evaluating Existing Heuristics

Nikolov et al. were the first to introduce heuristics that create layerings
with a restricted number of nodes per layer while considering dummy
nodes [NTBO5]. In their 2005 paper they discuss the following three heuris-
tics: MINWipTH (MW), StRETCHWIDTH (SW), and PromoTENODES (PN).

The next paragraphs briefly introduce the heuristics and their main
differences. For an in-depth discussion, the reader is referred to one of the
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original papers [TNB04; NTB05; NT06]. Afterwards, the aforementioned
questions are tackled.

MINWIDTH The actions of the MW heuristic are roughly based on the
LP algorithm. The LP algorithm iteratively places all sinks of a graph in a
layer, removes the sinks from the graph, and continues with a new layer
and the newly created sinks until the graph is empty. MW adds two new
elements to this procedure: (1) instead of adding all available sinks to the
current layer, it only adds nodes as long as a certain threshold on the height
(and the predicted height of future layers) is not exceeded, and (2) the next
node to be added to the current layer is chosen to be the one with the
largest out-degree. The idea behind the second point is that the node with
the largest out-degree has the most connections to already placed nodes;
selecting it keeps the number of dummy nodes that have to be introduced
to create a proper layering low.

The last, more subtle difference, is that MW makes use of two input
parameters explained in more detail later. The authors conducted extensive
parameter studies and found a set of eight promising parameter combina-
tions. They propose to run the algorithm for all eight combinations and
select the layering with smallest height.

STRETCHWIDTH The second layering heuristic, SW, constructs the layering
in a similar fashion to MW but does not depend on input parameters.
Instead, SW starts with a low value for the threshold on the height of a layer
and increases it iteratively whenever it finds that the threshold cannot be
realized.

PROMOTENODES Nikolov et al. found that the two previously described
heuristics tend to produce layerings with a large number of unnecessary
dummy nodes, the removal of which would not necessarily harm the
height of the layerings. They therefore suggest to execute a post-processing
algorithm: PN. PN takes a given layering as input and then recursively
checks whether moving groups of nodes to earlier layers decreases the

62



3.1. Restricted Number of Nodes per Layer

overall number of dummy nodes. When used in conjunction with MW or
SW, nodes are only promoted if the height of the layering is not increased.

Differences between MW and SW The most obvious difference is that
MW uses two input parameters (in addition to the graph itself) while SW
does not use any input parameters. Apart from that, both heuristics are
based on the idea of the LP layering algorithm and essentially have two
further decisions to make: (1) select the node which should be placed next,
and (2) start a new layer when a certain height is reached.

Regarding (1), out of all nodes that could possibly be placed in the
current layer, MW picks the node v with the highest out-degree d* (v). SW,
on the other hand, picks the node v with the highest rank, which is defined
as max{d* (v), max(, ;)eg 4" (u)}. The rank allows to look at nodes that
cannot be placed yet but will have a significant influence on the layering’s
height as soon as they are placed. At the same time it yields shorter edges.
Essentially, the rank realizes a one node lookahead with relation to the
nodes’ degrees.

Regarding (2), both heuristics internally use two variables: the height
h; of the currently constructed layer and an estimate of the height of
future layers h,,. MW compares its two input parameters with these internal
variables and starts a new layer if (a) /i exceeds the input parameter for the
upper bound on a layer’s height ubh and no node with outgoing edges can
be placed, or if (b) h;, exceeds ubh multiplied by the second input parameter
ubc. Note that therefore ubh is not a bound on the height in a strict sense
since it allows further nodes to be placed in the current layer as long as
they have outgoing edges. SW, on the other hand, starts with a lower bound
on the allowed height &, e. g. the maximum out-degree of any node in the
graph, and increases this bound until it can construct a feasible layering. A
new layer is created if either (a) /. exceeds the current lower bound or if (b)
hy exceeds the current lower bound multiplied by the average out-degree
of all of the graph’s nodes.

It should also be noted that MW first assigns a selected node to the
current layer and then checks the condition if a new layer should be started.
SW proceeds vice versa, first checking its condition and potentially starting
a new layer, then assigning the selected node.
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True Minimums

The first question to be inspected in this section is how narrow layerings can
become when dummy nodes are considered. The heuristics of Nikolov et al.
aim at finding layerings with minimal height, however, the authors never
compare the heights of their layerings to optimal solutions. Here, an op-
timization problem, described in the next section, is used to compute a
layering with minimal height (OPT). To further evaluate how far the height
can be reduced in a relaxed setting, the requirement that edges have to
point into a common direction is dropped. OPT2 denotes the results of this
variation. Results can be seen in Figure 3.2. In (a) the results for 3519 RomeF
graphs are shown for which OPT finished within a set time limit. The results
of MW, SW, and LP (with subsequent node promotion) as well as NS are
close to each other, with MW resulting in slightly narrower layerings. This
conforms to the results of Nikolov et al. [NTB05]. Concerning the actual
minimum height, there is a gap of about 22 % between MW and OPT. The
results including OPT2 can be seen in Figure 3.2b, finishing for 1902 graphs.
This time there is a gap of about 75% between the results of MW and OPT2.

Concluding, there is a significant gap between the heuristics” results
and optimal results. It must be noted, however, that the heuristics are not
allowed to let edges point backwards, as OPT2 is, and that it is possible
that other metrics such as the number of dummy nodes and a layering’s
width may be significantly worse for OPT and OPT2. Nevertheless, it gives
a feeling of what is theoretically possible when seeking layerings with a
small height.

Optimization Problem As a first try, Healy and Nikolov’s integer pro-
gram for the minimum-width layering problem [HNO02a] was straightfor-
wardly adjusted to minimize the maximum number of nodes in any layer
instead of the number of dummy nodes. However, an approach that com-
bines Constraint Programming (CP) with SAT solving [OSCO07; FS09] turned
out to yield a larger number of optimal results within the same time limit.
The new model is defined in the MiniZinc language', a high-level language

1 http://www.minizinc.org/ [Acc.20/02/2018]

64


http://www.minizinc.org/

3.1. Restricted Number of Nodes per Layer

304
254
204
15+
10

L denves oo
o envene o

T T T T T T T T ]
; 0 10 20 30 40 50 60 70 80 90
Node Count

15

10

P @ NS O MW T T T T T
SW 0O OorT O OPT2 Node Count

(b) 1902 graphs (with OPT2)

Figure 3.2. The y axis shows the estimated heights (maximum number of original
nodes and dummy nodes in any layer) for the different layering methods. OPT
refers to the minimal possible estimated height, OPT2 refers to the minimal possible
estimated height if the requirement is dropped that edges have to point into a
common direction. OPT and OPT2 were implemented as optimization problems
which did not finish for all graphs within a set time limit, thus only subsets of the
graphs are plotted here. The boxplots and the line plots contain the same data.
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for specifying optimization problems independent of a solver. It was exe-
cuted using the open-source solver chuffed?.

Inputs Let G = (V,E) be a graph with a set of nodes V and a set of edges
E. Let {1,...,n} denote the nodes, where n = |V|.

Parameters The layer a node i € V is assigned to is stored in a variable x;
and can take values in {1, ..., n}, where # is a trivial upper bound on the
number of layers. For a layer 1 < | < #, the variable /; holds the number of
regular nodes in this layer. Further, the variable /; holds the sum of regular
nodes as well as dummy nodes in layer /. b2i is an operator that converts a
boolean expression to an integer: true to 1 and false to 0.

Objective Minimize max h; (A)
1<I<n
Constraints
Xj < Xj forall (i,j) e E (B)
I, = Z b2i(x; =1) foralll1<I<n (@)
5%
b=+ Y b2i(x;<lnx>1) foralll<i<n (D)

(i,j)eE
The constraints can easily be altered to allow edges with an arbitrary

direction. For this, constraints (B) and (D) are replaced by the following two
constraints.

Xi # Xj for all (i,j) € E (E)
b=+ ) b2i(min{x;x;} <IAmax{x;x;} >1) foralll<I<n

(ij)eE

(F)

2 http://github.com/geoffchu/chuffed [Acc.20/02/2018]
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Figure 3.3. The width, height, and area (y axis) of the drawings of RomeF graphs
when drawn with different layering methods. Estimated measures (left side) are
marked with a tilde.

Assessing Final Drawings

Nikolov et al. used estimated values of the width and height of a layering
for their evaluations. As mentioned before, it is not enough to assess the
performance of a layering heuristic using estimations of the final dimensions
of a drawing when it comes to practical applications. The layering step only
defines parts of the topology of a drawing and it is not until the coordinate
assignment and edge routing step that explicit coordinates are determined.
For this reason, the evaluation of Nikolov et al. is extended here by further
measures, such as the effective height in pixels.

To obtain final drawings of the RoMeF graphs, a coordinate assignment
technique presented by Gansner et al. [GKN+93] and a simple polyline
edge routing were used. The prescribed spacing between pairs of nodes is
set to 20 pixels, both vertically and horizontally. The parameters ubh and
ubc of MW were set to 4 and 2, respectively.

Summarizing boxplots of the results can be seen in Figure 3.3. The four
layering algorithms behave similarly for the presented measures with MW
being a minor exception: the heights of the layerings created with MW are
slightly smaller but the widths of layerings are larger. This is true for both
estimated and effective values. Looking at the area, the reduction in height
cannot compensate for the increase in width, resulting in an overall larger
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area for MW. Furthermore, while the estimated height is on average larger
than the estimated width for all layering algorithms, it is the opposite way
around for the effective width and effective height. A possible explanation
for this would be different spacing values between pairs of layers and
between pairs of nodes within the same layer. This is not the case here since
both spacings are set to the same value as mentioned above. It is thus more
likely that the additional width is contributed by the final edge routing step,
which makes enough room between pairs of layers to tidily route the edges.
Consequently, the estimated values obtained after the layering step cannot
be used as a reliable indicator for the aspect ratios of the final drawings.

Concluding, it can be said that while the estimations of width and height
are similar to the width and height of a final drawing for the RomeF graphs,
care has to be taken when drawing conclusions based on combinations of
the measures, e. g. the aspect ratio. Moreover, MW indeed slightly reduces
the height of a final drawing, however, at the cost of an overall larger area.
Generally speaking, no significant differences can be observed between the
layering algorithms, particularly no advantages in terms of the drawing
area. This leads to the question whether MW and SW are useful in practice.
The next section addresses this question; after all, reducing the height while
increasing the width can help to better fit the drawing of a graph into a
particular drawing area.

Targeting a Specific Drawing Area

Usually the drawing of a graph ends up being displayed on a screen or
printed on a page. In both cases it is not enough to look at the width and
height of a drawing in isolation to evaluate the drawing’s overall quality.
The max scale measure introduced in Section 1.3.2 grasps this desire to
assess the quality of a drawing with respect to a particular reference frame.

The findings of the previous section lead to the question whether MW
and SW are usable in practice. If one would plot max scale values with
respect to a regular computer screen for the RomeF graphs layered with the
layering methods discussed in this section in the same way as in Figure 3.3,
the conclusion would likely be that NS works better on average than the
heuristics. Nevertheless, even if not usable as general purpose layering
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Figure 3.4. Boxplots for the subsets of the RomeF graphs. A reference frame Ry, 19)
and a left-to-right layout direction were used. The max scale ratio values are relative
to the max scale values of NS.

algorithms, MW and SW may be able to create layerings that are more suitable
for a certain drawing area where NS fails to produce good results. To
evaluate this, the RoMeF graphs, partitioned as explained at the beginning
of this section, are used: Low, MippLEg, and Hica. MW and SW try to create
layerings with a small height, thus they are expected to perform well for
graphs for which NS uses few layers and places many nodes within the
layers, i. e. the Low graphs.

A reference frame R (y¢ 10) serves as the basis for the evaluation, resem-
bling an up-to-date computer screen. The layout direction is left-to-right.
The results seen in Figure 3.4 confirm the presumptions on the one hand
and indicate that one has to be careful when to apply a certain layering
method on the other hand. The boxplots in (a) show max scale ratio values
for MW, SW, and LP relative to NS’s results. The boxplots in (b) show the
number of dummy nodes for each method. For the Low graphs, MW pro-
duces better results than NS for over three quarters of the graphs. However,
a larger number of dummy nodes (thus edge length) is necessary which may
worsen readability. The picture is completely different for MippLg, where
MW produces worse results. NS guarantees a minimum number of dummy
nodes, and thus produces very compact drawings. Because the graphs of
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MippLe were selected to roughly fit R(1419) when drawn with NS, it feels
natural that MW performs worse. For HicH, no conclusion can be drawn
from the results. Still, since the graphs in this set are already quite narrow,
MW and SW would have to behave in the opposite way (putting more nodes
in layers) in order to improve the max scale measure for Ry 10).-

To conclude, it makes sense to use MW and SW in certain cases where
NS is not able to produce drawings that feature the desired aspect ratio.

3.1.2 Considering Actual Node Dimensions

During the previous sections regular nodes and dummy nodes were con-
sidered to have the same dimensions. In practice, however, the dimensions
of a graph’s nodes may vary significantly depending on the application the
graph originates from. Furthermore, the introduced dummy nodes effec-
tively represent edges and usually require less space in a final drawing than
regular nodes. An example of this can be seen in Figure 3.5. The depicted
graph also contains hierarchical nodes.

Nikolov et al. already consider different node heights during their
motivation of the problem but return to a unit height as soon as they
discuss the heuristics. The remainder of this section discusses how actual
node heights can be incorporated into each of the three heuristics. Note
that it is essential that the node promotion heuristic uses the same, or at
least a very similar, notion of a layer’s height as the prior layering heuristic.
Otherwise, it is not possible to prevent nodes from being promoted that
would inadvertently increase the height of the layering. The alterations to
incorporate varying node dimensions are similar for MW and SW, the next
paragraph therefore starts with a general explanation before details specific
to each method are outlined.

The two heuristics essentially use the out-degree and the in-degree of
a node v as predictions for the number of introduced dummy nodes, i.e.
the contribution to the height of layers adjacent to v’s layer. Let hi(v) denote
the height of a node v and let /i denote the smallest height of any node of a
graph. During a pre-processing step, the node heights are normalized with
respect to /1. The normalized heights are referred to as (v). Furthermore,
let the height of dummy nodes /“ be a user-specified minimum separation
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(b) MINWipTH and PROMOTENODES

Figure 3.5. Example of an SCG drawn with different layering methods. Depending
on the available drawing area, one can imagine that either (a) or (b) is advantageous.
For instance, (b) can be scaled larger when fitted on a sheet of paper in portrait
orientation. Node labels would thus be more legible. Remember that as SCGs are
drawn top-down, the maximum number of nodes in any layer determines the
drawing’s width. Also, the graph is hierarchical and is laid out in a bottom-up
fashion using multiple layout executions.
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between edges and be normalized as well. Wherever necessary, one can
have individual heights for dummy nodes, e. g. if edges have different line
widths. This is neglected during the upcoming explanations since it is easy
to incorporate. Now, let i denote the height of the currently constructed
layer and h, denote the predicted height of future layers. Finally, let d—(G)
be the average in-degree of all nodes in G and let 4+ (G) be the average out-
degree. With these definitions, the decision whether to start a new layer can
be adjusted for both MW and SW in the way discussed below. Additionally,
the parts of the original heuristics that keep track of the current layer’s
height h; and the predicted height of future layers h;, must multiply the
node degrees by 1? and use the real height of a node. This can, however, be
amended straightforwardly. Apart from these two modifications, the way
the node is selected to be placed next remains unaltered.

MINWIDTH Let ubh and ubc be the two input parameters to MW as dis-
cussed in Section 3.1.1. Further, let v be the node currently looked at.

Size-Un-Aware The original condition to start a new layer as defined by
Nikolov et al. is:

¢ = ubh A dt(v) <1

h
or h, = ubh-ubc

Size-Aware This is changed to consider actual node heights as follows. The
upper bound on the height of a layer ubh is multiplied by the average height
of all nodes of the graph. The resulting value is denoted by ubh’. If a node’s
height exceeds ubl’, it can still be placed since MW first assigns nodes to
the current layer and then checks the condition.

he = ubl' A d¥(v)-h? <h(v)
or hy, > ubl -ubc
STRETCHWIDTH Let h;;, denote the current maximally allowed height of a

layer that is iteratively increased if it is too small (cf. Section 3.1.1). Further,
let v be the node currently looked at.
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3.1. Restricted Number of Nodes per Layer

Size-Un-Aware The original condition to start a new layer as defined by
Nikolov et al. is:

he —dt(v) +1 > hy
or hy+d=(v) > hy ~dT(G)
Size-Aware This is changed to consider actual node heights as follows:
he —d*(v) -+ h(v) > Iy
or hy +d=(0) b > hy-dT(G) K

During the evaluations it could be observed that the second part of the
condition to start a new layer is hardly true as h, is often too small. A
brief evaluation of a further modification seemed to improve things slightly
but would require more thorough evaluations to make a final statement:
In the original version of the algorithm, the h, variable only accumulates
the in-degrees of the nodes placed within the current layer and is reset
every time a new layer is started. As a consequence, long edges spanning
multiple layers are only considered once and neglected afterwards, i.e.
they only contribute height to one layer no matter how long they are. An
alternative could be to not reset the 1, variable when a new layer is started
but to “correct” it instead: once a node v is placed in the current layer, v’s
out-degree is subtracted from h, and its in-degree is added.

PromoteNodes The PN heuristic tries to improve existing layerings by
reducing the overall number of dummy nodes. When applied after either
MW or SW, which try to create layerings with small height, it is sensible to
prevent PN from increasing the layering’s height again.

As soon as MW and SW are aware of the height of regular nodes and
dummy nodes, PN must consider this as well. It is not hard to incorporate
this into the heuristic. The height of every layer of the given layering can be
computed upfront, and it makes no difference whether regular nodes and
dummy nodes factor in with a height of one or an individual height. Then,
while promoting nodes, it can be checked if moving a node would increase
the maximal height of the original layering.
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Results The example in Figure 3.5 highlights the importance of consider-
ing actual node dimensions: Note that the depicted graph is hierarchical
and is laid out in a bottom-up fashion, consecutively executing the lay-
out algorithm for the different hierarchy levels. As such, the shaded areas
representing hierarchical nodes are at some point “black boxes” from the
perspective of the layout algorithm and are significantly larger than simple
nodes. Looking at the top-level graph with nine nodes and twelve edges, the
estimated height of the layering in both (a) and (b) is five when individual
node heights are not considered. In their original form, neither MW nor
SW would create the drawing (b), which in terms of pixels is significantly
narrower.

The enhanced versions of MW and SW were evaluated using the set of
SCGs, as introduced at the beginning of this section. Four configurations
were used: either without node promotion (NONP) or with node promo-
tion (NP), and either without size-awareness or with size-awareness (SA).
Remember that SCGs are drawn top-down and that the test graphs were
assembled such that they are rather wide (large aspect ratio). This time the
goal is to produce drawings that fit computer screens in portrait-orientation,
i.e. R(10,16)- The results are presented in Figure 3.6. The boxplot shows max
scale ratio values relative to the results produced with the NS approach.
The size-aware heuristics clearly produce better drawings for the defined
setting when compared to the original versions, with drawings that can
be displayed about 1.5 times larger. When not considering node sizes, the
results of the heuristics are worse than NS for the majority of the graphs.
No clear winner can be identified between MW and SW based on the tested
SCGs. The execution of a subsequent node promotion only improves mat-
ters for SW. However, the latter two observations are likely to depend on
the particular set of graphs.

3.1.3 Discussion

The findings of these sections can be summarized by three points. First, for
many of the RomeF graphs a noteworthy gap exists between the heuristic
and an optimal solution. Nevertheless, it is not clear if optimal solutions are
always desirable. After all, a very narrow left-to-right drawing may corrupt
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Figure 3.6. Assessing the impact of considering individual node sizes based on the
set of SCGs. A reference frame Ry 16) is assumed. The plotted max scale ratio
values (y axis) are relative to NS’s results.

other important layout aesthetics, such as the layering’s width, the number
of edge crossings, and the overall edge length. Second, in the general case
the layering heuristics perform inferior to the traditional layering method NS.
However, when used with care, MW and SW are able to produce drawings
that are well suited for certain drawing areas. Third, the heuristics can be
extended to consider individual node dimensions. The experiments with a
set of SCGs suggest that this is both necessary and successful.

The section shall close with a proposal for future work in this area.
Both heuristics are based on the idea of the LP algorithm. Superfluous
dummy nodes are removed by the node promotion post-processing step.
To a certain extent, the latter point mimics the underlying goal of NS:
minimizing the number of dummy nodes. It has been shown that NS
produces good and compact layerings [HNO02b]. Therefore, it may be more
promising to build a heuristic on the idea of NS from the start. Another
point to consider is whether MW’s parameters should be linked to the
graph instance at hand instead of being absolute values. The parameter
values suggested by Nikolov et al. are based on extensive experiments with
the RomeF graphs [NTBO05], which have a specific range of node and edge
counts and are sparse. Denser graphs may require larger parameter values
for good results.
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3.2 A Generalization of the
Directed Layering Problem

The observations of the previous section led to the conclusion that the
traditional definition of a layering, where all edges point forwards and the
input graph must be acyclic, is not flexible enough to address scenarios
in which compactness is of high importance. Also, while the layer-based
approach is explicitly designed for directed graphs and emphasizes inherent
directionality, the approach can well be used to lay out undirected graphs
and graphs where the direction is of minor or no importance such that
compactness takes precedence over directionality.

This section therefore proposes to relax the definition of a layering when
faced with challenging graph instances or peculiar drawing properties: It
presents a new layer assignment method, the Generalized Layering Problem
(GLP), that can handle cyclic graphs and that is able to consider compactness
properties for selecting an edge reversal set. It addresses the posed chal-
lenges P-CR1, P-LA1, and P-LA2 (see Items P-CR1 and P-LA1). To elaborate:
First, it can overcome the lower bound on the number of layers arising from
the longest path of a graph, second, it can be flexibly configured to either
favor elongated or narrow drawings, thus improving on aspect ratio, and
third, compared to previous methods, it is able to reduce both the number
of dummy nodes and the number of reversed edges for certain graphs
simultaneously. See Figures 3.7 and 3.8 for examples.

The section proceeds as follows. First, preliminaries are discussed, fol-
lowed by an integer programming model and a heuristic to solve the new
method’s underlying objective. Both are then evaluated on various sets of
graphs. The evaluations serve as a basis to assess the flexibility of GLP to
target drawing areas with certain aspect ratios. Last, a specialized variant of
GLP that directly optimizes the max scale measure is discussed and evalu-
ated. The results of this variant indicate that there is room for improvement
and led to the research discussed in Section 3.3.

The NS approach of Gansner et al. assigns nodes to layers such that the
overall edge length is minimized [GKN+93]. Layerings created with NS are
generally already compact [HN02b], which is why it serves as the basis for
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(a) 0 reversed edges,
71 dummy nodes

(b) 2 reversed edges, (c) 6 reversed edges,
35 dummy nodes 16 dummy nodes

Figure 3.7. Different drawings of the g.39.29 graph from the North graphs collection
(see Section 1.9). (a) is drawn with NS, (b) and (c) are drawn with GLP. Reversed
edges are bold and dashed.

(a) 5 reversed edges, (b) 3 reversed edges,
55 dummy nodes 34 dummy nodes

Figure 3.8. A graph drawn with (a) EaGa (Eades et al.’s cycle removal [ELS93] and

NS) and (b) GLP. This example illustrates that GLP can perform better in both
metrics: reversed edges (bold and dashed) and dummy nodes.
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the new method. The following problem formalizes the NS approach. Here,
a layering L is said to be valid if ¥(u,v) € E: L(v) — L(u) > 1.

PROBLEM DireCTED LAYERING (DLP)

Let G = (V, E) be an acyclic directed graph. The problem is to find a
minimum k and a valid layering L such that Y, )cg(L(v) — L(u)) = k.

For GLP the requirement of a graph being directed and acyclic is
dropped. The first step of the layer-based approach, removing cycles, is
consequently merged with the layer assignment step. Undirected graphs can
be handled by assigning an arbitrary direction to each edge, thus converting
it into a directed one, and by hardly penalizing reversed edges. A layering
L of a general graph is called feasible if V{u,v} € E : |[L(u) — L(v)| = 1. The
problem then is:

PROBLEM GENERALIZED LAYERING (GLP)

Let G = (V, E) be a possibly cyclic directed graph and let wiepn, Wrey € N
be weighting constants. The problem is to find a minimum k and a
feasible layering L such that

u,v)eE

Wien (( Z ‘L(U) —L(u)‘) +wrev|{(u,v) €E:L(u) > L(v)}’ = k.

Intuitively, the left part of the sum represents the overall edge length
(i. e. the number of dummy nodes) and the right part represents the number
of reversed edges (i.e. the FAS). After reversing all edges in this FAS, the
feasible layering becomes a valid layering. Compared to the standard cycle
removal step combined with DLP, the generalized layering problem allows
more flexible decisions on which edges to reverse. Also note that GLP
with wien = 1, wrey = 0 is equivalent to DLP for acyclic input graphs
and that while DLP is solvable in polynomial time, both parts of GLP are
NP-complete [RES+15].
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3.2.1 IP Approach

Next, an integer programming model is presented that solves GLP. The
rough idea of the model is to assign an integer value to each node of the
given graph that represents the layer in which that node is to be placed.

Input and Parameters Let G = (V,E) be a graph with node set V =
{1,...,n}. Let e be the graph’s adjacency matrix, i.e. e(u,v) = 1if (u,v) € E
and e(u,v) = 0 otherwise. wye, and wrey are weighting constants larger
than zero.

Integer Decision Variables [(v) takes a value in {1,...,n} indicating that
node v is placed in layer I(v), for allv e V.

Boolean Decision Variables r(u,v) =1 if and only if edge e = (u,v) € E
and e is reversed, i.e. [(u) > I(v), for all u,v € V. Otherwise, r(u,v) = 0.

Objective

Minimize — wien Y [I(u) = 1(0)| 4+ wrey Y r(1,0).
(M,U)EE (M,U)EE

The sums represent the edge lengths, i. e. the number of dummy nodes, and
the number of reversed edges, respectively.

Constraints
1 <Il(v) <n VoeV (A)
[H(u)—1(v)] = 1 V(u,v) € E (B)
n-r(u,0)+1(v) = I(u)+1 V(u,v) € E ©)

Constraint (A) restricts the range of possible layers. (B) ensures that the
resulting layering is feasible. (C) binds the decision variables in r to the
layering; because 7 is part of the objective, and wyey > 0, 7(1, v) gets assigned
0 unless I(v) < I(u), for all (u,v) € E.
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Variations The model can easily be extended to restrict the number of
layers by replacing the n in Constraint (A) by a desired bound b < n.
The edge matrix can be extended to contain a weight w, , for each edge
(u,v) € E. This can be helpful if further semantic information is available,
e.g. about feedback edges that lend themselves well to be reversed.

Jabrayilov et al. present two MIP models for slight variations of GLP
[JMM+16]. The first one, called CGL, considers the contribution of dummy
nodes to a layer’s height and adds the overall height of the layering to the
objective function. Consequently, a reasonable bound on the width must be
set, which is part of the input. The second one, called MML, neglects the
contribution of dummy nodes to a layer’s height and maximizes the length
of reversed edges, significantly improving on execution time. For certain
use cases the reversed edge length maximization may be desired.

3.2.2 Heuristic Approach

Interactive modeling tools providing automatic layout facilities require
execution times significantly shorter than one second. As the IP formulation
discussed above rarely meets this requirement, a heuristic to solve GLP is
presented next. It proceeds as follows:

1. Leaf nodes are removed iteratively, since it is trivial to place them with
minimum edge length and a desired edge direction. Note that therefore
the heuristic is not able to improve on trees that yield a poor compactness.
As outlined in Section 2.2, a compact layered layout of (sub-)trees cannot
be created straightforwardly, the issue is therefore left for future research.

2. An initial feasible layering is constructed for the possibly cyclic input
graph, which is used to deduce edge directions yielding an acyclic graph.

3. Using NS, a solution with minimal edge length is created.

4. A greedy improvement procedure is executed, after which edge direc-
tions are deduced again and leaves are re-attached.

5. NS is executed a second time to get a proper layering with minimal edge
lengths for the next steps of the layer-based approach.

The next paragraphs discuss steps 2 and 4 in further detail.
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2

1
. 1
{ {westSucig !

Figure 3.9. Illustrating the regions used by the heuristic.

Step 2: Layering Construction The construction of an initial feasible solu-
tion is based on an idea that was first presented by McAllister as part of a
greedy heuristic for the linear arrangement problem (LAP) [McA99] and
was later extended by Pantrigo et al. [PMD+12].

Nodes are assigned to distinct indices, where as a start, a node is selected
randomly, assigned to the first index, and added to a list of assigned nodes.
Based on the list of assigned nodes, a candidate list is formed and the most
promising node is assigned to the next index. The decision criterion is the
difference between the number of edges incident to unassigned nodes and
the number of edges incident to assigned nodes. This procedure is repeated
until all nodes are assigned to distinct indices (see Algorithm 3.1).

In contrast to McAllister, the GLP heuristic can add nodes either at
the beginning of the list of assigned nodes or at the list’s end. The side is
decided based on the number of reversed edges that would emerge from
placing a certain node on that side. In the pseudo code the beginning of the
list is represented by the decreasing left index variable [Index, and the end
of the list is represented by the increasing right index variable rIndex.

Step 4: Layering Improvement At this point, a feasible layering with a
minimum number of dummy nodes with respect to the chosen FAS is given
since NS ran beforehand. Thus, only the number of reversed edges can be
improved, which is done by identifying possible moves and by deciding
whether to take a move based on a profit value. The profit value captures
the trade-off between short edges and few reversed edges. For ease of
presentation, consider the following notions, also illustrated in Figure 3.9.
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Algorithm 3.1: Feasible Layering Construction

S N N

o ® N o

11
12
13

14
15
16
17
18
19

20
21
22

Input: Directed graph G = (V, E)

Data: Sets U, C. For all v € V: score[v], incAs[v], out As[v]
[Index < —1, rIndex < 0

Output: index[v]: feasible layering of G

forve V do
score[v] — [{w | {v,w} € E}|
incAs[v] « 0
outAs[v] « 0
Addvto U

Remove random v from U
c—v
Addcto C
while U not empty do
if incAs|c] < outAs|c] then
| index|c] — lIndex--
else
| index|c] «— rIndex++

Remove ¢ from U and C

cScore — o

forve{w | {cw}eEArwelU} do
AddovtoC
score[v]—-
if (c,v) € E then incAs[v]++ else out As[v]++

forve C do
if score[v] < cScore then cScore < score[v]
c—7v
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An example: For a node v, westSuc are the nodes connected to v via an
outgoing edge of v and are currently assigned to a layer with lower index
than v’s index. Intuitively, westSuc (just as eastPre) are nodes connected by an
edge pointing into the “wrong” direction.

v.awestSuc = {w: (v,w) € E A L(v) > L(w)} wv.eastSuc = {w: (v,w) € E A L(v) < L(w)}
v.westPre = {w: (w,v) € E A L(w) < L(v)} v.eastPre = {w: (w,v) € E A L(w) > L(v)}
v.westAdj = v.westSuc U v.westPre v.eastAdj = v.eastSuc L v.eastPre

For every function a suffix exists allowing to query for a certain set of nodes
before or after a certain index. For instance, all west successors of v before
index i are v.westSucBefore(i) = {w LW € V.westSuc A L(w) < l}

Now, let move : V — IN denote a function assigning a natural value to
each node. The function describes whether it is possible, and if it makes
sense, to move a node without violating the layering’s feasibility as well
as how far the node should be moved. For instance, let westPre be empty
for a node v, and westSuc be non-empty. In that case, v can be moved to an
arbitrary layer with lower index than L(v). A good choice would be exactly
one layer before any w € v.westSuc since this would alter the incident edges
to all point into the desired direction.

0 if v.westSuc = &,
move(v) = ¢ L(v) —min({L(w) : w € v.westSuc}) + 1 if v.westPre = (5,
L(v) — max({L(w) : w € v.westPre\v.westSuc}) —1  otherwise,’

where max(gf) = L(v) — 1.

Let profit : V x N x IN — Z denote a function assigning a quality score
to a node v that decides if it is worth to move v and increase the length of
some edges for a subset of the edges to point into the desired direction. For
this, let the natural m be the value computed by the move function defined
above, and let x represent the layer v would be moved to. Note that wiep
and wrey are used here but they were not expected to allow fine-grained
control as for the IP. The evaluations verified this. The discussed results are

3 During the evaluations, L(v) — max({L(w) : w € v.westPre}) — 1 was used as the third
case. This did not necessarily preserve the layering’s feasibility but was turned into a proper
layering by the subsequent NS execution in either case.
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3. The Layer Assignment Step

Algorithm 3.2: Layering Improvement

1
2
3
4

o N o a

10
11
12
13

Input: Feasible layering of G = (V, E) in index[v]
Data: Priority queue PQ

For all v € V: move[v], profit[v]

Output: index[v]: feasible layering of G

forve Vdo
move[v] < move(v)
profit[v] « profit(v, move[v], index[v] — move[v])
if profit[v] > 0 then Enqueue v to PQ
while PQ not empty do
v < Dequeue PQ
index[v] —= move[v]
forwe {w | {v,w} € E} do
Update move[w] and profit[w]
if profitfw] > 0 then
‘ Enqueue/update w to/in PQ
else
L Possibly dequeue w from PQ

for values of 1 and 5.

As seen in Algorithm 3.2, the move and profit functions are computed
initially for a given feasible layering. A queue, sorted based on profit values,
is then used to successively perform moves that yield a profit. After a move
of node 7, both functions can be updated for all nodes in n’s adjacency.

Time Complexity Removing leaf nodes requires linear time, O(|V| + |E|).
Algorithm 3.1 is quadratic in the number of nodes, O(|V|?): The while loop
has to assign an index to every node and the two inner for loops are, for a
complete graph, iterated |VI/2 times on average. Note that determining the
next candidate (lines 20-22) could be accelerated using dedicated data struc-
tures. The runtime of the improvement step strongly depends on the input
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3.2. A Generalization of the Directed Layering Problem

graph, however, the way the move function is defined, no edge is reversed
more than once. Also, a very loose bound on the runtime is O(|E|?log |V])
since the while loop is iterated at most |E| times, neighborhood updates can
be realized such that for each move they are bound by the total number of
edges, and priority queue operations can be implemented with O(log |V]).
The NS method runs reportedly fast in practice [GKN+93]. The evaluations
showed that the heuristic’s overall execution time is clearly dominated by
the NS method.

3.2.3 Evaluation

The main measures of interest here are height, area, and aspect ratio. Re-
member that the layer-based approach is defined as a pipeline of several
independent steps and that at this point the area and aspect ratio of a final
drawing can only be estimated using the number of dummy nodes, the
number of layers, and the maximal number of nodes in a layer.

This section evaluates three points:

1. the general feasibility of GLP to improve the compactness of drawings,

2. the quality of the used estimates of the area and aspect ratio as opposed
to effective values measured in pixels, and

3. the performance of the presented IP and heuristic.

The results can be seen in Tables 3.1 and 3.2 and are discussed in more
detail in the next paragraphs.

Obtaining a Final Drawing In order to collect all desired metrics, a fi-
nal drawing of a graph is required. As outlined in the previous chapter,
over time numerous strategies have been presented for each step of the
layer-based approach that can be combined in different ways. Here, cycle
removal is performed by the heuristic of Eades et al. [ELS93]. Layerings
are computed either by the newly presented approach GLP (both the IP
method and heuristic, denoted by GLP-IP and GLP-H) or alternatively the
NS approach. The combination of Eades et al.’s cycle removal and the NS
layering of Gansner et al. is written as EaGa. Note that in combination it
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3. The Layer Assignment Step

is an alternative to GLP which performs the cycle removal itself. Cross-
ings between pairs of layers are minimized using a layer-sweep method
in conjunction with the barycenter heuristic, as originally proposed by
Sugiyama et al. [STT81]. Two different strategies are used to determine
node coordinates: First, a method introduced by Buchheim et al. that was
extended by Brandes and Kopf [BJL01; BK02], which is denoted by BK.
It is also discussed and improved in Section 4.2 of this thesis. Second,
LS, a method inspired by Sander [San96a]. Edges are routed either using
polylines (Pory) or orthogonal segments (OrTH). The orthogonal router is
based on the methods presented by Sander [San04]. Overall, this gives
twelve setups of the algorithm: three layering methods, two coordinate
assignment algorithms, and two edge routing procedures. In the following,
let Wien-wrev-GLP denote the used weights for GLP. If GLP is not further
qualified, the IP model is meant.

Test Graphs The new approach is intended to improve the drawings of
graphs with a large width and relatively small height, hence unfavorable
aspect ratio. Nevertheless, a set of 160 randomly generated graphs is used
as well to evaluate the generality of the approach. The graphs have 17 to
60 nodes and an average of 1.5 edges per node. They were generated by
creating a number of nodes, assigning out-degrees to each node such that
the sum of outgoing edges is 1.5 times the nodes, and finally creating the
outgoing edges with a randomly chosen target node. Unconnected nodes
were removed. Second, the set of North graphs was filtered based on the
aspect ratio of a final drawing created using BK and Potry. 146 graphs that
have at least 20 nodes and a drawing with an aspect ratio above 2, i.e. at
least twice as wide as high, were selected. The filtered set is referred to
ATTar (cf. Section 1.9).

Additionally, plain paths were removed, that is, pairs of nodes connected
by exactly one edge, as well as trees. For these special cases GLP in its
current form would not change the resulting number of reversed edges as
all edges can be drawn with length one. This is also true for any bipartite
graph. Note however that GLP can easily incorporate a bound on the
number of layers which can straightforwardly be used to force more edges
to be reversed, resulting in a drawing with better aspect ratio.
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Table 3.1. Results for final drawings of the set of random graphs when applying
different layout strategies. For GLP-IP wien, = 1 and wrev = 30 were used. Area is
normalized by a graph’s node count. The most interesting comparisons are between
columns where EaGa and GLP use the same strategies for the remaining steps.

Edge routing Pory ORrTH

Node coord. BK LS BK LS
Layering EaGa GLP-IP GLP-H  EaGa GLP-IP GLP-H  EaGa GLP-IP GLP-H  EaGa GLP-IP GLP-H
Width 1,165 1,043 898 943 824 732 790 711 652 817 746 678
Area 20,194 18,683 15,575 12,383 11,035 10,075 13,582 12,642 11,272 10,666 9,917 9,295

Aspect ratio 169 149 149 182 156 156 119 1.04 111 159 143 147

Table 3.2. Average values for different layering strategies employed to the test
graphs. Different weights are used for GLP-IP as specified in the column head, and
final drawings were created using BK and Pory. For GLP-H* no improvement was
performed.

a. Random graphs

1-10 1-20 1-30 1-40 1-50 EaGa GLP-H GLP-H*

Reversed edges 3.71 2.89 2.64 2.54 2.44 2.93 8.67 10.36
Dummy nodes 34.45 46.73 52.79 56.14 60.53 72.64 48.48 58.21

Edge crossings 2.41 218 2.10 2.04 2.02 1.98 1.93 1.84
Width 843 943 980 1,004 1,025 1,084 930 1,027
Area 631,737 672,717 691,216 700,385 708,361 737,159 656,070 720,798
Aspect ratio 1.3 1.54 1.59 1.64 1.69 1.82 1.49 1.67

b. ATTar graphs

1-10 1-20 1-30 1-40 1-50 EaGa GLP-H GLP-H*

Reversed edges 2.74 147 1.02 0.72 0.56 0 7.07 8.55
Dummy nodes 39.91 55.47 65.73 75.66 82.47  141.30 53.53 68.91
Edge crossings 1.46 1.23 113 1.06 0.99 0.86 1.19 112
Width 1,068 1,224 1,334 1,409 1,469 1,727 1,137 1,216
Area 587,727 622,838 641,581 660,842 695494 874,374 629,778 691,372
Aspect ratio 2.94 3.57 4.17 4.35 4.55 5.00 3.03 3.12
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General Feasibility of GLP An exemplary result of the GLP approach
compared to EaGa can be seen in Figure 3.8. For that specific drawing, GLP
produces fewer reversed edges, fewer dummy nodes, and less area (both
in width and height). For all tested setups the average effective width and
area (normalized by the number of nodes) of GLP and the heuristic are
smaller than EaGa’s, see Table 3.1. The average aspect ratios decrease, i. e.
the drawings change in the desired way.

Furthermore, altering the weights wrey and wye, allows a trade-off be-
tween reversed edges and resulting dummy nodes (and thus area and
aspect ratio). This can be seen well in Table 3.2a for the random graphs.

The results for the ATTar graphs are similar. Since the ATTar graphs
are acyclic, the cycle removal step is not required, and current layering
algorithms cannot reduce the width. The GLP approach, however, can freely
reverse edges and hereby change the width and aspect ratio. Results can
be seen in Table 3.2b. Clearly, EaGa has no reversed edges as all graphs
are acyclic. 1-10-GLP starts with an average of 2.7 reversed edges, and the
value constantly decreases with an increased weight on reversed edges. The
number of dummy nodes on the other hand constantly decreases from 141.3
for EaGa to 39.9 for 1-10-GLP. For both sets of graphs the average number
of edge crossings per edge slightly increases when a lower weight is set for
wrey. This makes sense since more edges have to be routed between a lower
number of layers. The average width and average area of the final drawings
decrease with an increasing number of reversed edges. For 1-10-GLP the
average width and area are 38.2% and 33.8% smaller than EaGa. The aspect
ratio changes from an average of 5.00 for EaGa to 2.94 for 1-10-GLP.

The results show that for the selected graphs, for which current methods
cannot improve on width, the weights of the new approach allow to find
a satisfying trade-off between reversed edges and dummy nodes. Further-
more, the improvements in compactness stem solely from the selection of
weights, not from an upper bound on the number of layers. Naturally, such
a bound can further improve the width and aspect ratio.

Metric Estimations Table 3.1 presents results that were measured on
the final drawing of a graph. As mentioned earlier, these values are not
available when analyzing the result of the layering step, and estimations are
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commonly used to deduce the quality of a result. For the example graphs,
the estimated area decreases from 222.9 (EaGa) to 187.4 (1-30-GLP) on
average. The estimated aspect ratios decrease on average from 1.35 to 1.19.
Note that these estimations are not included in the table. Both tendencies
conform to the averaged effective values in Table 3.1, i.e. GLP-IP and the
GLP-H perform better. However, for 64 % of the graphs the tendency of the
estimated area contradicts the tendency of the effective area (using BK and
Pory), and for 54 % when not considering dummy nodes. In other words, for
a specific graph the estimated area might be decreased for GLP compared
to EaGa but the effective area is increased for GLP (or vice versa). This
clearly indicates that an estimation can be misleading. Besides, coordinate
assignment and edge routing can have a non-negligible impact on the aspect
ratio and compactness of the final drawing.

Performance of the Heuristic Results for final drawings using the pre-
sented heuristic are included in Table 3.1 and are comparable to 1-30-GLP,
i.e. the heuristic performs better than EaGa with respect to the desired
metrics. Table 3.2a and Table 3.2b underline this result and also show that
the improvement step of the heuristic clearly improves on all measured
metrics. On the downside, the heuristic clearly yields more reversed edges.

Execution Times The IP model was solved using CPLEX 12.6 and exe-
cuted on a server with an Intel Xeon E5540 CPU and 24 GB memory. The
execution times for GLP-IP vary between 476ms for a graph with 19 nodes
and 541s for a graph with 58 nodes and exponentially increase with the
graph’s node count. This is impracticable for interactive tools from prac-
tice that rely on responsive automatic layout, but is fast enough to collect
optimal results of medium sized graphs for research purposes.

The execution time of the heuristic is compared to EaGa and was mea-
sured on a laptop with an Intel i7 2GHz CPU and 8GB memory. The
reported time includes only the first two steps of the layer-based approach.
It turns out that the execution time of the heuristic is on average 2.3 times
longer than EaGa. This seems reasonable, as it involves two executions
of the NS layering method. For the tested graphs, the construction and
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improvement steps of the heuristic hardly contribute to its overall execution
time. The effective execution time ranges between 0.1ms and 10.0ms for
EaGa and 0.3ms and 19.7ms for the heuristic. The heuristic is thus fast
enough to be used in interactive tools.

The algorithm was also run five times for five randomly generated
graphs with 1000 nodes and 1500 edges. EaGa required an average of
374ms, the heuristic 666ms with about 4ms for layering construction and
2ms for improvement. This shows that the time contribution of the latter
two is negligible even for larger graphs.

3.2.4 Targeting a Specific Drawing Area

The previous section showed that GLP allows to reduce the number of
dummy nodes by increasing the number of reversed edges. Adjusting the
weights wrey and wyey,, the aspect ratio of the resulting drawing can be
influenced to a certain extent. This section investigates in further detail
whether GLP is able to create drawings that are particularly suited for a
prescribed drawing area. The measures used so far are not sufficient for
this. Therefore, the max scale values of the final drawings created for the
ATTar graphs as discussed in Section 3.2.3 are measured based on the width
and height in pixels for four different exemplary reference frames with
aspect ratios of 0.5, 1.0, 2.0, and 4.0. The results can be seen in Figure 3.10.
Remember that no comparison can be made across target aspect ratios but
only between the results of different layering methods for the same target
aspect ratio.

For a target aspect ratio of 4.0 EaGa shows the best max scale values,
which is not surprising since the set of test graphs was selected based on
EaGa producing a drawing with an aspect ratio above 2.0. Also, the GLP
configurations aim at producing horizontally narrower drawings. For aspect
ratios smaller than 4.0, all variants of GLP produce better max scale values
than EaGa. Also, the selected weights gradually change the max scale value,
which is coherent with the observations for width, area, and aspect ratio
in Section 3.2.3. However, the configuration with the smallest weight on
reversed edges, 1-10-GLP, gives the best max scale values for three out of
the four reference frames. While this is not immediately surprising since
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Figure 3.10. Computed max scale values (y axis) for four different target aspect
ratios (x axis), using the results for the tested ATTar graphs and the GLP variants as

discussed in Section 3.2.3.

1-10-GLP’s drawings are the ones with the smallest area, it prevents a
static mapping which weights should be used for which reference frames.
Additionally, it leads to the question whether significantly larger max scale
values are possible, and if so, what trade-offs have to be made to achieve
them. The remainder of this section therefore investigates the following
points:

1. How do GLP’s drawings relate to drawings with optimal max scale

values? How much better are the optimal ones?

2. How many edges have to be reversed to achieve optimal values?
To obtain optimal max scale values, GLP must be extended to incorporate

the max scale measure into its objective:

Minimize Wen Y |L(w)—L(v)]
(v,w)eE
+ Wrev |{(v,w) € E:L(v) > L(w)}|
wit) KUY,

—+ (Wms Max { ,—
Tw Ty

where R = (ry,7;,) denotes the desired reference frame, w(L) the estimated
width of the layering, and h(L) the estimated height of the layering, which
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in this case includes dummy nodes.

To solve this modified version, which is referred to as GLP-MS, the IP
formulation presented in Section 3.2.1 is not particularly suited: The max
scale measure requires reasonable estimates of the width and height of the
drawing. This is only possible if the contributions of dummy nodes to the
layer heights are considered. Thus, a more sophisticated MIP model (CGL)
serves as a basis, which has been presented by Jabrayilov et al. [[MM+16]
for a variation of GLP. The authors presume a top-down layout direction.
To be consistent with the other parts of this thesis, their explanations are
altered to a left-to-right direction in what follows.

The main difference between CGL and GLP is that Jabrayilov et al. set a
fixed bound W on the width and add the overall height H of the layering
to the objective. They make use of three types of binary variables. First, v, i
equals 1 if and only if L(v) < k for all v € V and 1 < k < H. The reverse
variables yy , (equal to 1 if and only if k < L(v)) are part of the model for
ease of understanding but can be eliminated when implementing the model.
Second, 1, equals 1 if and only if the edge (1, ) is reversed. Third, z,,
equals 1 if and only if the edge (u#,v) produces a dummy node in layer k
forall2<k<W-1

To use CGL for GLP-MS, W is set to |V|, thus removing W from the
input. Two new input variables are introduced to denote the reference
frame, 1y, and ry,. The height term of Jabrayilov et al.’s objective, wyq - H,
is replaced by wms - MS, where MS represents the inverse max scale value
to be minimized and wy;q and wms are weighting constants. Further, the
constraints of the original model that are connected to H are removed, while
the model is extended by the following constraints to properly incorporate
MS. Two dummy nodes s and e are added to the graph’s nodes, which are
used to mark the very first layer and the very last layer. A dummy edge
(s,e) is added to the graph’s edges. With this, the following constraints are
added to bound MS (the full model and the computation of the height h (k)
of a layer k can be found in the next section):

Yis =0 foralll <k <W (A)
Yo S Yke forall1 <k <W,ve V\{e} (B)
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h(kz_l < MS  foralll<k<W ©

h

Tt lickew¥be g (D)
Tw

Constraints (A) and (B) assure that no original node is placed before
and after the s node and the e node, respectively. Consequently, a dummy
node is introduced in every intermediate layer. Since the number of dummy
nodes is subject to minimization, s is placed in the first layer and e is placed
in the last layer. Constraints (C) restrict MS by the height of the layers. The
dummy nodes originating from (s, e) are discarded by the —1. Finally, (D)
restricts MS by the layering’s width, i.e. it counts the number of layers that
are smaller than e’s layer and adds the layer itself. It is possible to model
the overall width and height of the layering like this, since every node and
every dummy node is assumed to have a width and height of one.

Full GLP-MS MIP Model

For completeness, the full model is included below, for further details see
the original paper [[MM+16]. Given is a graph G = (V, E), which includes
a dummy edge (s,¢) € E as discussed above. Let W = |V| and let r,, and 7},
denote the input parameters specifying the drawing area.

W-1
Minimize (Wlen Y X Zuv,k) + (wm ) ru,U) + wms MS, s.t.
( E k=2 E

uv)e (u,0)e

Yo,1 =0 forallveV (E)
Ywo =0 forallve V (F)
Yro + Yok+1 =1 forallveV,1<k<W-1 (G)
Yk+1,0 = Yio <0 forallve V,1<k<W-2 (H)
—Yuk — Yko — Tup < -1 forall (u,v) e E,21<k<W 1))

N

—Yiku — Yok T Tup forall (u,v) € E,1<k<W 1))
Yiu T Yok — Zuvk

Yko + Yuk — Zuvk

N
- = o

(u,0)
forall (u,v) e E2<k<W-1 (K)
(u,0)

N

forall (u,v) e E,2<k<W-1 (L)
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Yks =0 foralll<k<W M)
Yio < Yke foralll1 <k <W,ve V\{e} (N)
(42(1 - yu,k - yk,ll)) -1

eV < MS forall ke {1, W} (®)]

T

eV (u,0)€E

(Z(l —Yuk — ]/k,u) + Z);Zuv,k) -1

p <MS forall2<k<W-1 (P)
h

14+ <ksw Vke < MS Q

Tw =

Yokr Yko €{0,1} forallveV,1<k<W

Tu,o € [0,1] for all (u,v) € E

Zuvk € [0,1] forall (u,v) e E,2<k<W-1

MS € ]R;o
Results

The model was executed using Gurobi 7¢ on a server with an Intel Xeon
E5540 CPU and 24 GB memory. Within the set time limit of two hours, 354
of 438 executions of the ATTar graphs finished. That is, for each of the 146
graphs the model ran for three different aspect ratios. For 112 of the graphs
all three executions finished. Divided by target aspect ratio 0.5, 1.0, and 2.0,
execution took on average 710, 1.938, and 4.926 seconds, respectively.

The results discussed in the following are for the subset of the 112
graphs. The nodes of the ATTar graphs have no specified width and height.
Both are set to 20 when measuring pixels and, as said before, have a unit
width and height for GLP-MS. Thus, a dummy node contributes the same
height to a layer as a regular node.

The weights wjen, Wrev, and wis are selected such that the max scale mea-
sure is prioritized over both other terms and a reversed edge is penalized

4http://www.gurobi.cc)m/
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stronger than long edges:
Wien =1,  Wrey = Wien |E| |V], and ~ wms = wrev(1 + |E|) max{ry, r;}.

Note that care has to be taken when using large weights like this with
MIP solvers. A solution is considered optimal by a solver if the relative
gap between the lower and upper bound on the objective is lower than a
specified parameter. Therefore, since the objective value is dominated by
the max scale part, it can happen that the term measuring the edge length
is neglected if the parameter value is too large. Gurobi’s default 10~ may
cause issues with the graphs we tested, which is why we set it to 1071°.

Remember that the results presented in Figure 3.10 suggest that while
the differently weighted GLP is able to improve the max scale values when
aiming for a certain drawing area no significant improvements can be made
when only a small number of edges is reversed. This feels natural, as by
reversing a small number of edges the overall character of the graph is not
changed. A very “long” graph will never be suited for the opposite kind of
drawing area.

The results of applying GLP-MS to the ATTar graphs are shown in
Figure 3.11. They clearly indicate that it is possible to achieve significantly
larger max scale values for notably different drawing areas if enough edges
may be reversed. For all three tested target aspect ratios, 0.5, 1.0, and 2.0,
the max scale values created with GLP-MS are on average at least two times
larger. Answering Question (1.) (p. 91), this indicates that GLP’s results are
still improvable when it comes to a specific drawing area. Nevertheless,
answering Question (2.), it must be said that GLP-MS reverses about a
quarter of the edges on average.

3.2.5 Discussion

To conclude, GLP is a configurable method for the layering step that, com-
pared to other state-of-the-art methods, shows on average improved perfor-
mance on compactness. That is, the number of dummy nodes is reduced
significantly for most graphs and can never increase. While the number
of dummy nodes only allows for an estimation of the area, the effective
area of the final drawing, measured in pixels, is reduced as well. Further-
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Figure 3.11. Results of applying GLP-MS with three different target aspect ratios
(x axis) to 112 of the ATTar graphs. The number of reversed edges in (b) is in percent.

more, graph instances for which current methods yield unfavorable aspect
ratios can easily be improved. The performance of the presented heuristic
is largely comparable to the optimal solutions delivered by the IP approach
with the exception of the number of reversed edges. For use cases where
the directionality is not that important, the compactness can be improved
even further as demonstrated using GLP-MS. Nevertheless, for uses case
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(b) 9 reversed edges,
max scale 2.66

(a) 0 reversed edges, (c) 5 reversed edges,
max scale 1.23 max scale 2.4

Figure 3.12. Different drawings of the g.31.37 graph from the North graphs collec-
tion [DGL+97a]. Note that the layout direction of this example is top-to-bottom. (a)
is drawn with EaGa, (b) with 2-3-GLP. (c) is created by bluntly cutting the layering
of (a) at two points and placing the chunks next to each other. The stated max scale
values are for R = (1920,1080), an up-to-date resolution of a wide screen. Of the
three drawings (b), is the most compact one, however, it is not evident that it is the

same graph as in (a).
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where directionally should in fact be preserved, a different approach may
lend itself better. A higher number of reversed edges seems to be inevitable,
however, this may be acceptable if the reversed edges are clearly distin-
guishable from the regular edges. This would, for instance, be the case if the
reversed edges are spatially close within the drawing. Consider Figure 3.12
as a further illustration. While the traditional drawing (a) is unsuited for a
wide screen, drawing (c) better matches such a screen’s aspect ratio, and
the well-defined sections where edges point upwards allow to follow the
overall flow of the graph easily. This is not true for drawing (b), on the other
hand, which nevertheless is the most compact one. The approach pursued
by (c) is investigated in further detail in the next section.
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3.3 Wrapping

This section follows up on the idea of the previous section to cut a given
layering into multiple chunks, instead of altering the definition of a layering
as GLP does. From now on this procedure is referred to as wrapping. As
seen before, one reason for unfortunately large aspect ratios is the fact that
all edges have to point into the same direction, another reason is that certain
graph types occurring in practice encourage drawings with unfortunate
aspect ratios by nature. An example can be seen in Figure 3.13a. It shows
a sequentialized SCG (cf. Section 1.4.2), where each node represents an
execution step of a program. The larger the program represented by the
SCG, the longer the resulting drawing will become. As a consequence,
at some point either only a small part of the drawing can be displayed
on a computer screen or the graph’s drawing has to be scaled down to
illegibility. A solution to this problem is the proposed wrapping: split the
graph’s layering into multiple chunks and draw the chunks side by side,
as demonstrated in Figure 3.13b. While the edges that connect one chunk
with another chunk point backwards, the chunks are well-separated and
the overall flow of the diagram remains clearly visible. The points where
the layering is split are referred to as cuts:

Definition 3.1 (Cut index). Given a graph G = (V, E) and a corresponding
layering L = (Ly,..., L), a cut index c is an index out of {2,...,m} where
m > 2 is assumed, otherwise splitting a layering is not required. A cut index
¢ may be valid. The exact definition of valid depends on the use case and
will be defined more precisely later on. If c is not valid, it is forbidden.

An ordered set of monotonically increasing valid cut indices C = (cy, ..., cx)
partitions a layering L into k + 1 chunks:

Sty Sksr = (Lo s Ley1), (Leys o) os ooy Le1), (Legs o+ -y L)

Let m’ = maxjgj<ky1|Si|- A new layering L' = (L{,...,L!,) can be con-
structed by subsequently adding the nodes of each S; to the layers of L,
each time starting at L}.

To compute reasonable cut indices, it is necessary to be aware of a
graph’s dimensions. The previous section on GLP used estimates on the
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93 = pre(g2)

g2=9g38&&! cg3| g1

g4=g38& cg3

92=g38&!_cg3 || ot

(a) No cut, one chunk (c) Two cuts, three chunks

Figure 3.13. A sequentialized SCG drawn with different numbers of cuts. The aspect
ratios of the drawings vary significantly, each well-suited for a certain drawing area.
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width and the height of a layer that assumed nodes to have a unit dimension.
This time, the method shall be more precise: One can conservatively estimate
the width and height of each individual layer L; of a layering L as follows:

w(L;) = max (w(v) +s), h(L;) = Z (h(v) +s).
’UEL[ 'UEL,‘
The constant s is a prescribed spacing value to be preserved between pairs
of nodes. To be more precise, one would have to sum up one s less. The
overall width and height of a given layering L can then be estimated as:

w(L) = LiZEZL w(Li), h(L) = max h(L;).

While this is more accurate than what was used in the context of GLP,
the quality of the estimations still depends on the complexity of the used
graph instances. In particular, the definitions neglect two elements that may
have a significant impact on the dimensions of a drawing: (a) north/south
port dummies that are introduced later, just before the third step of the
layer-based approach, and contribute further height to a layer and (b) edge
routes that can increase the distance between pairs of layers, increasing
the overall width. Furthermore, remember that the goal is to draw the
computed chunks one below the other with backward wrapping edges
in-between. Generally, the subsequent steps of the layer-based approach
will ensure that those edges are drawn straight in a final drawing. As a
consequence, the nodes within the new layering’s layers are not as close to
each other as assumed by the height estimates defined above. To address
this, further width and height estimates are defined as follows that consider
the computed chunks. The dimensions of the individual chunks Sy, ..., Sk41
are:

w(s) = ), w(Ly), h(Si) = max h(L;).

The chunk-based estimates of the new layering L’ then are:

L) = S)), he(L) = h(S;).
ws(L) = max, w(S) st 1<i§<+1 &

Note, however, that this time wg(L’) intuitively feels inferior to w(L'):
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ws(L') may underestimate the width of the individual layers since the
different chunks share the same set of layers. Thus, the combination of
w(L'") and hs(L") would be expected to be the most accurate one. For ease
of presentation and since an informal experiment with the test graphs
used here did not show significant differences in the results, the following
explanations use the chunk-based estimates only. Nevertheless, it may be
worthwhile to explore the impact of different estimates in greater detail in
the future.

With these notations at hand, the following problem can be defined:

PROBLEM WRAPPING LAYERED GrAPHS (WLGP)

Given a graph G = (V, E), a corresponding layering L, and a prescribed
drawing area R = (ry,1), the problem is to find a set of valid cut
indices C such that for the induced layering L’

1. the prescribed drawing area is used as good as possible, and

2. the number of edges that point into the “wrong” direction is kept
small.

The first point is assessed based on the max scale value as defined in
Section 1.3. Since an optimization problem used below is a minimization
problem, the inverse definition of max scale is used:
ws(L") hg(L
Minimize max { ﬁ, S()} .
Tw T

Further note that the second point of the problem does not relate to the
number of cuts but to the number of edges that span a certain cut index.

Now, from a technical point of view, the WLGP can be solved in two
different ways. The first solution, discussed in the next section, is easier
to implement but only allows a single edge to wrap backwards per cut.
The second solution requires more intricate adaptations of the layer-based
approach but works for an arbitrary number of wrapped edges and is
discussed in Section 3.3.2.
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3.3.1 Single-Edge

The first solution of WLGP is restricted to wrapping a single edge per
cut, thus referred to as WLGPse in what follows. Valid cuts are therefore
in-between pairs of layers that are connected by exactly one edge:

Definition 3.2 (Spanning edge). Given a graph G = (V,E) and a layering
L = (Ly,...,Ly), an edge e = (u,v) € E is spanning an index i with
1<iémifueL]»,j<iandveLk,k>i.

Definition 3.3 (Valid cut index in WLGPse). A cut index c is valid for
WLGPse if [{e € E : e spans c}| < 1.

The wrapping can then be realized using a single processing element
after the crossing minimization step which reconstructs the layering ac-
cording to any computed cut indices. The order of the nodes within the
layers can be derived straightforwardly and has largely been determined by
the crossing minimization. Wherever a backward wrapping edge is to be
inserted, the processor has to create a chain of long edge dummies.

The remainder of this section is structured as follows. First, an optimiza-
tion problem and two straightforward and fast heuristics to solve WLGPse
are presented. Afterwards, the three methods are evaluated based on a set
of graphs from practice. The results of the optimization problem serve as a
reference for the results of the heuristics.

Optimization Problem

Note that while the computed cut indices are optimal for the way the widths
and heights are estimated, the indices are not necessarily the best ones with
respect to a final drawing as the dimensions of a final drawing additionally
depend on the subsequent coordinate assignment step and edge routing
step.
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Input and Parameters Let G = (V, E) be a graph with original layering
L=(Ly,...,Ly). Let w(v) and h(v) denote the width and height of a node
veV.

Let M be the maximum number of allowed cut indices. An obvious upper
bound is m — 1.

a(c) indicate if cutting at index c is allowed (a(c) = 1) or forbidden (a(c) =
0) and is defined for 2 < ¢ < m.

ag is the aspect ratio of the desired reference frame R. ry, and 1y, are
computed such that ag = :—’}‘1’ and can reasonably be approximated using
continued fractions, for instance.

Decision Variables cuts(i), 1 <i < M, represent the cuts that should be
applied in ascending order and take values in {2,...,m}. The cuts split the
original layering into M + 1 ranges:

,e s TM+1 = (Ll, . chuts(l)fl) PR (Lcuts(M)/Lm) .

Note that it is allowed for a cut index to occur more than once. It yields
an empty range which is simply discarded when constructing the new
layering.

max,(j), 1 < j < M+ 1, holds the maximum height of any layer in the
range ;.

Likewise, sum, (j) holds the sum of layer widths in the range 7;.

dy and dj, represent the width and height if the assigned cuts were applied
and thus realize the ws(L’') and hg(L'): dy is the maximum of all sum,
variables and d}, is the sum of all max, variables. Further, let b2i denote a
function mapping false to 0 and true to 1.

Objective
Minimize max { @, d—h }
Tw Ty
Constraints
cuts(i) <cuts(i+1) forall 1<i<M (A)
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b2i(a(i) =0) < b2i(cuts(j) # 1) forall 2<i<m,1<j<M
(B)

max,(1) = max h(L;) (@)
1<i<cuts(1)

maxy(j) = max h(L;) forall2<j<M (D)
cuts(j—1)<i<cuts(j)

max,(M+1) =  max h(L;) (E)
cuts(M)<i<m

sum, (1) = Y  w(L (F)
1<i<cuts(1)

sum,(j) = w(L;) forall 2<j<M (G)
cuts(j—1)<i<cuts(j)

sum,(M+1) = ) w(L;) (H)
cuts(M)<i<m

dw = Jmax sum, (i) (D)

dy, = Y max(i) 0
1<i<M+1

Constraints (A) assert that the assigned cuts are sorted ascendingly.
(B) prevent forbidden cuts. (C)—(E) bind the variables that hold the max-
imum height of a range. Likewise, (F)-(H) bind the sum of the width
variables. Finally, (I) and (J) bind the variables that estimate the overall
width and height of the layering induced by the assigned cut indices.

Heuristics

Next, two fast and simple heuristics to determine cut indices are presented.
The first one tries to come close to a desired aspect ratio of the final drawing,
hence it is referred to as aspect ratio-driven (ARD). The second one tries,
at the cost of further work, to maximize the max scale value, hence it is
referred to as max scale-driven (MSD).

Aspect Ratio-Driven (ARD) Let a graph G, a layering L, and a prescribed
drawing area R = (rq,1;) be given. The desired aspect ratio of the new
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layering L' is @ = r«/r,, and the heuristic should compute chunks in a way
such that a ~ ws(L’)/ig(L’). The number of chunks z the old layering L has
to be split into in order to achieve a can be estimated as follows, where the
heuristic assumes that ws(L') ~ w(L)/z and hg(L') ~ z- h(L).

_ w(L)
z = round ( a~h(L)> .

A corresponding set of potential cut indices is

IL| . .
= _— <i< .
C {[24_1 i|+1, 1<i<z

z can be bound from above since there cannot be more chunks than layers:
z = min{z, |L| —1}. Since ILl/z+1 = 1, no two elements of C are equal.

Max Scale-Driven (MSD) As explained thoroughly in Section 1.2, aiming
at a specific aspect ratio does not necessarily result in a drawing that uses a
given drawing area to its full potential. The aforementioned ARD heuristic
simply splits the graph such that the resulting layering roughly matches the
aspect ratio of the given drawing area. The MSD heuristic takes a different
approach by directly addressing the max scale measure.

To better understand its idea, remember the definition of max scale:
min {o/w,™n/h}, where ry, and rj, are the width and height of a prescribed
drawing area, and w and h are the width and height of a produced drawing.
Clearly, to get a large max scale value, small values of w and / are advanta-
geous. Following this, MSD’s goal is to choose z cut indices in a manner
such that the prescribed drawing area’s aspect ratio is matched roughly and
such that either w or & is minimized.

Let a graph G and layering L be given. The tentative width wg (L") of the
layering L’ to be constructed is the maximum of sums (each sum represents
the width of a single chunk). Given z, a set of cut indices that minimizes
this maximum can be calculated efficiently. A list cw of length m = |L|
stores at each index i the cumulative width of all layers at smaller indices
than i. Thus, cw(m) holds the overall width. Every chunk should consist
of layers whose widths roughly sum up to cw(m)/z +1. The algorithm then
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finds the cut indices by iterating cw from start to end and collecting each
index at which the desired sum is exceeded. Since MSD must know z to do
so, it uses the z calculated by ARD as an initial guess but is able to freely
increment or decrement it since its measure to evaluate the set of computed
cut indices is independent of z. During the upcoming evaluations this is
denoted by MSD-k, where k indicates the amount of freedom. For instance,
k =1 and z = 3 would allow MSD to try layerings with two, three, and
four chunks.

The tentative height of L" has not been considered so far: improvidently
minimizing the sum of maximums (where the maximums are the heights
of the individual layers) is very likely to result in unbalanced cut indices;
a “good” set of cut indices, with respect to the minimal height, would put
the narrowest nodes in chunks by their own and put as many nodes as
possible in the same rows as the tallest nodes. Nevertheless, it should be
investigated further in the future.

Validification Remember that it is not allowed to cut at every index. As a
consequence, the forbidden indices in C have to be altered. In what follows,
this process is referred to as validification.

Two interchangeable validification strategies are evaluated here. The first
strategy is outlined in Algorithm 3.3 and increments every forbidden cut
index until it is valid. To preserve the original distances between consecutive
cut indices, the remaining cut indices are increased accordingly. This can
result in indices larger than the number of original layers. Such indices are
simply discarded. The method is referred to as GREEDY. The second strategy
proceeds in a more sophisticated fashion. It is outlined in Algorithm 3.4
and seeks for each forbidden index the closest valid index position. For this,
it iterates all possible index positions from 2 to |L| and keeps track of the
last valid index. When a forbidden cut index is encountered, the iteration is
continued until either a valid (larger) index is found or the distance to the
next valid index is larger than the distance to the last valid index. If both
distances are the same, the smaller index is picked. The intention behind
this method is to distribute the cut indices more evenly and to avoid having
to discard indices. It is referred to as LOOKBACK.
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Algorithm 3.3: GREEDY Validification

Input: Graph G with layering L and cut indices C sorted ascendingly
Output: Valid cut indices C
C « empty list
offset «— 0
force C do

¢ <« ¢+ offset

while ¢ < |L| and ¢ not valid do

L Increment c and offset

if ¢ > |L| then Stop
Add cto C

return C

Algorithm 3.4: LookBack Validification

Input: Graph G with layering L and ascendingly sorted list (c1,...,¢) of
desired cuts
Output: Valid cut indices C

Let I = (i1 = —0,dp,...,iym_1,im = +00) be an ascendingly sorted list,
where the iy, 1 < ¢ < m, are all possible indices that would be valid cuts

C « empty list

k—1,0<1

offset < 0

while k < nand ¢ < m do

d — ci + offset

while iy, < d do Increment ¢

ifd—iy<ip,g —dthens —QOelses 1

Add iy to C

offset — offset + iy, —d

do Increment k

while k < n and ¢i + offset < i,

{—0+1+s

return C
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Evaluation

The two presented heuristics, ARD and MSD, were evaluated using 135
sequentialized SCGs that originate from unit tests (cf. Section 1.9) with 10
to 227 nodes, 41.1 on average, and 11 to 253 edges, 45.5 on average. SCGs
are drawn top-to-bottom, thus wrapping is expected to be advantageous
for larger aspect ratios, and all of the graphs permit valid cut indices. For
every graph the two heuristics and the optimization problem were used to
compute five different drawings with a particular drawing area in mind.
For the optimization problem, denoted by OPT, the number of allowed cuts
M was selected such that for every graph at least one cut remained unused.
A timeout was set to two hours but never reached. Four questions were to
be answered:

Q1 How do the max scale values of drawings created with ARD, MSD, and
OPT compare to drawings where no wrapping is applied?

Q2 Which validification method performs better?

Q3 How close are the estimations of width and height to the width and
height of the final drawing?

Q4 What is a reasonable value of k for MSD-k?

Regarding the general quality of the heuristics” results (Q1), consider
Figure 3.14, which shows max scale ratios relative to no wrapping. It can
be seen that both heuristics are advantageous for target aspect ratios from
1.0 to 4.0, with MSD-1 producing drawings that can be scaled more than
four times larger on average for 4.0 than when no wrapping is applied.
Also, starting with a target aspect ratio of 1.0, neither heuristic results in
worse max scale values than no wrapping. For 0.25 the heuristics compute
a single cut for 5 (ARD) and 22 (MSD) graphs without any significant
improvement in max scale, indicating that the traditional layerings already
fit the drawing area best; something one would expect. For the tested graphs,
MSD-1 produces on average slightly larger max scale values than ARD,
which stem from an on average larger number of cuts. Looking at OPT’s
results it can be seen that there is some potential for improvement for target
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Figure 3.14. Comparing results for final drawings of SCGs either created with a
wrapping heuristic, ARD or MSD-1, the optimization problem OPT, or without
wrapping (No). (a) and (b) show different measures (y axis) plotted against varying
target aspect ratios (x axis). Where wrapping is required (for larger aspect ratios
due to the top-to-bottom layout direction), the heuristics significantly improve the
max scale values.

aspect ratios of 2.0 and 4.0, where OPT uses a larger number of cuts but
yields better max scale values than the heuristics on average. Remember
that OPT does not necessarily give the best result for final drawing areas
since it is only optimal with respect to the computed estimates and the set
bound on M, something that can be seen for a target aspect ratio of 1.0, for
instance, where ARD and MSD yield larger max scale values for a couple
of graph instances.

Regarding Q2, Figure 3.15 indicates that the LooxBack method is su-
perior. Applied after both ARD and MSD, it consistently produces equal
or better max scale values on average for the final drawings, particularly
for larger aspect ratios. Following this observation, the remaining plots are
produced with the LookBack method.

When using max scale as quality measure, it is not important that the
heuristics work with estimates of width and height that are as close as
possible to the final pixels of a drawing but that the relation between the
estimates resembles their relation within the final drawing. Thus, to address
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Figure 3.15. Max scale ratios between Figure 3.16. Differences between esti-
the two presented validification meth- mated and final normalized aspect ratios
ods, GREEDY and LOOKBACK, measured (y axis) for ARD and MSD-1, i.e. what
on final drawings for both heuristics aspect ratio a method thinks it creates
(y axis). Values larger than zero indicate and what it actually creates. A value of
that LoOKBACK performs better. zero means an exact match.

Q3, Figure 3.16 shows normalized aspect ratio differences between the
estimated dimensions of a drawing and the dimensions of a final drawing
for both heuristics. The tested SCGs usually result in a layering with no
more than one original node per layer and thus the width and height
estimations are expected to be rather accurate. The figure supports this in
that the estimates are quite close to the final results, with MSD-1 being
more accurate than ARD. For larger aspect ratios, both heuristics start
to overestimate the final drawings’ aspect ratios: the estimated height is
smaller than and the estimated width is larger than the respective final
values. It remains to be explored how much the quality of the estimates
impacts the results and whether better estimations can actually produce
better results. After all, it is likely that better estimations require further
knowledge about the remaining layer-based steps to be executed after
wrapping, the coordinate assignment step and the edge routing step, and
would thus significantly increase the complexity of an implementation.
Regarding MSD’s k (Q4), consider Figure 3.17. It can be seen that for
target aspect ratios larger than or equal to 0.5, setting k to 1 instead of 0
produces slightly better max scale values, while further increasing k does

111



3. The Layer Assignment Step

,ol B KW KOk OIS
1.8
1.6 o« 0 0 T
- T ro
11 Lo Lo
14+ I o
. e e [ | Lo o
P 111 il
P
1.0 _x__i__i__l_ +_2__8__2_ e — e - -
I I I
0.8 | I . { tt e ) ‘ i i L
|
0.25 0.5 1.0 2.0 4.0

Figure 3.17. Max scale ratio values (y axis) for different ks of MSD w.r.t. k = 0.

not significantly improve the results. It can further be observed that an
increased k yields a worse max scale value for certain graph instances. This
is explained by the fact that a validification method is executed after the
heuristic, i. e. MSD-1 finds better cut indices than MSD-0 but the validified
indices of MSD-0 allow for final drawings with a larger max scale value.

The next section takes a look at the unconstrained WLGP, which in turn
is allowed to cut multiple edges per index.

3.3.2 Multi-Edge

The wrapping presented in the previous section addresses a very restricted
scenario in which only one backward wrapping edge per cut is allowed.
This restriction allows good estimations on the width and height of the final
drawing and allows an easy implementation. However, the desire to leverage
the space of a given presentation medium to its full potential remains as well
for graphs for which it is not always possible to wrap only a single edge per
cut. Flexibly altering the aspect ratio of final drawings for general graphs has
already been discussed in Section 3.2 as the Generalized Layering Problem
(GLP). There, a layering is computed from scratch, the input graph may
be cyclic, and arbitrary edges may be reversed. Consequently, a layering
computed by GLP can look quite different compared to a layering computed
with a traditional layering method that requires an acyclic graph as input.
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Figure 3.18. Three drawings of the same graph, each time with a different number
of cut edges.
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Figure 3.19. Selecting unfortunate cut indices can result in poor and cluttered
drawings. In (b) the two cut indices of (a) were increased and decreased by one,
respectively.
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Algorithm 3.5: Edge-Aware Cut Improvement

Input: Graph G with layering L, cut indices C sorted ascendingly, number
of spanning edges spans, cost function cost, and a distance function &
Output: Improved cut indices C

C « empty list
do |C| times
Calculate all costs
Find idx € {2,...,|L|}, s.t. cost(idx) is minimal
Add idx to C
Remove ¢ from C for which 6 (idx) is minimal

return C

The idea behind the unconstrained WLGP is therefore to better preserve
the recognizability and to better preserve the overall directionality when
looking at a layering before and after modification. For this, an initial
layering is created with a traditional layering method and is cut into chunks
afterwards. Figure 3.18 illustrates the idea to preserve the recognizability of
a graph. It is discernible that (a), (b), and (c) are different drawings of the
same graph. As opposed to this, the drawings shown in Figure 3.7 (p. 77),
produced with GLP, do not immediately look alike.

When allowing to cut multiple edges, care has to be taken: The space
between a pair of layers can be populated by many edges, especially for
denser graphs. Cutting many edges results in a large number of backward
wrapping edges, which in turn results in poor and cluttered final drawings.
See Figure 3.19 for an example. Good cuts are therefore between pairs
of layers that have a small number of edges in-between. The next section
introduces a method that uses initial cut indices determined by ARD or
MSD and afterwards applies an improvement strategy: slightly alter the
indices in order to reduce the total number of cut index spanning edges.

Edge-Aware Cut Improvement

Algorithm 3.5 presents a greedy method (ECI) to improve a given set of
cuts C with respect to the number of cut index spanning edges. Let I denote
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the set of possible indices, i.e. I = {2,...,|L|}, and let spans(i) denote the
number of edges spanning index i € I. The method uses a cost function cost
to rate the quality of an index as a cut. Here, the following function is used:

cost(i) = spans(i) + 6(i)°,

where 6(i) =min |i—c|
ceC

is the minimal distance of an index i to any of the cut indices of C. The
preservation of the existing cuts can be weighted larger by increasing e,
where the fact that e is an exponent already strongly limits their freedom.
To give an example, for e = 2 an index with a distance of two is deemed
better than a given cut index that would save more than four edge reversals.
Using the cost function, the method calculates the cost of each index and
greedily picks the index with lowest cost. Afterwards, the cut index in C
that is closest to the picked index is removed, thus resulting in different cost
values for the next index to pick. The algorithm runs in O(|C| - |L|) time.

Technical Integration

This section gives technical details on how the multi-edge wrapping pro-
cedure can be integrated into the layer-based approach without changing
an existing implementation. It consists of three ameliorations, which are
illustrated in Figure 3.20.

First, immediately after the layering step, before the layering is turned
into a proper layering, dummy nodes are inserted wherever a cut is planned.
More precisely, for a planned cut between two layers i and j, two new layers
are inserted and every edge that either connects or spans i and j is split
by adding two breaking point dummies in the new layers. The dummies are
called s and e for start and end, and while one can surely come up with
an implementation that manages without them, they are helpful as clear
markers in both documentation and code. This initial step is illustrated in
Figure 3.20a. Afterwards, the existing implementation takes care of making
the layering proper by adding dummy nodes for long edges, and it executes
the crossing minimization step. There, the breaking point dummies can be
understood as long edge dummies and therefore do not actively increase
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e - A e
Le]
(a) Dummy nodes for breaking points (s and e) are introduced after the layering
step based on calculated cut indices.

(b) After crossing minimization, the breaking point dummies are used to alter the
layering. In a left-to-right layout, the chunks defined by the cut indices are placed
as rows one below the other. Chains of dummy nodes are inserted for the edges
between s and e. Note that the gray circled dummy nodes are connected by in-layer

edges.
e —~©O3@ jle

(0) After the edge routing step and after merging the dummy nodes of long edges,
the s and e dummy nodes remain. They are removed and the three involved edges
are simply joined to form the final edge path.

Figure 3.20. Illustrating the wrapping procedure as part of the layer-based approach.
(@), (b), and (c) are three new intermediate steps to be executed at different points
during the overall execution of the layer-based approach.
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the number of edge crossings.

Second, the new layering can be formed as depicted in Figure 3.20b.
The e dummy nodes of every pair of breaking point dummies in a certain
layer can be moved to the very first layer of the new layering (in given
order). Any successive nodes are moved to the next layer and so forth.
The edge that connects the two dummies now runs from the very first
layer to one of the later layers of the new layering. Since such a layering
would not be proper, dummy nodes must be introduced in the same way as
they are introduced for long edges after the layering step. Note that if the
chains of long edge dummies are introduced in the reversed in-layer order
than the breaking point dummies, no new crossings have to be introduced.
Further note that the edges that connect the gray circled dummy nodes to s
and e are normally prohibited as they connect nodes that are located in the
same layer. ELK Layered already comprises methods that handle such cases
(cf. Section 2.6), alternatively, the gray dummy nodes could be dropped and
s and e could be connected directly to the adjacent white dummy nodes.
This would then require additional edge routing code that makes sure the
corresponding edges are properly routed around the s and e nodes. Third,
after edge routing and after removing long edge dummies, the scenario
depicted in the left drawing of Figure 3.20c is given. The paths of the three
edges incident to the s and e nodes can simply be joined to form the final
path of the backward edge. At this point certain edges may take superfluous
detours, e. g. the edge connecting node 1 and node 4 in the right drawing
of Figure 3.20c. While the detour below node 2 is necessary for certain
graph instances to prevent edge crossings, it introduces two unnecessary
edge bends and increases the edge’s overall length in this particular case.
Chapter 5 discusses a technique called one-dimensional compaction and
shows (p. 188) how it can be used to improve the final edge paths to obtain
results as seen in the right drawing of Figure 3.21.

Edge Path Improvements

Besides the small edge detour just mentioned, there are two other types of
unfortunate edge paths that stem from the very rigid procedure discussed
above:
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1. An edge can span multiple cut indices resulting in a back and forth edge
path as depicted on the left side of Figure 3.22.

2. A cut edge is first routed to the last layer, then back to the very first layer,
and finally to the target node. This can result in unnecessarily long edge
paths as depicted on the left side of Figure 3.23.

The next two paragraphs discuss how to tackle these two problems. Example
drawings with improved edge paths have already been seen in Figure 3.18.

Edges Spanning Multiple Cuts The first problem stems from the fact that
splitting a single edge (u,v) at multiple cut indices results in subsequent
pairs of breaking point dummies s and e, which are then connected by long
edge dummies. Let * denote a chain of zero or more dummy nodes. The
sequence of nodes connecting 1 and v can be written as (following the path
between u and v irrespective of the edge directions):

* * * * * *
u,dy,s1,d5,e1,d3,50,...,05_o,5n,dy_q,en,dy, 0.

As illustrated in Figure 3.22, this sequence can be reduced by re-connecting
e, to the last dummy of d} and dropping all dummy nodes in-between:

* * *
u, d] 7S1, d2 s€n, dm/ 0.

As a consequence, every cut edge is routed back to the initial layer immedi-
ately after it is cut. The edge then skips a number of rows vertically, before
it is routed to its target node. While this significantly reduces the length of
the edges and avoids back and forth edge routes, which feel very unnatural
to a human and are tedious to follow, it can happen that new edge crossings
are introduced that are otherwise avoided by the intertwining edge routes.

Overly Long Backward Edges The second problem occurs simply due to
the methodical procedure of wrapping back the edges by splitting between
the two breaking point dummies and inserting a chain of long edge dum-
mies. If the source and target node are not located at the beginning and end
of a chunk, this automatically produces overly long edge paths. Figure 3.23
shows an example. Both the s node and the e node are next to a long edge
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T
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Figure 3.21. Poor edge routes resulting from the very methodical wrapping proce-
dure can be improved using one-dimensional compaction as discussed in Chapter 5.

2]
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Figure 3.22. Edges spanning multiple cut indices result in back and forth edge paths.
In the example, one pair of s and e is superfluous and can be removed.

Figure 3.23. The overall edge length can be reduced by replacing superfluous
dummy nodes.
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3. The Layer Assignment Step

dummy (dashed outline) on their left and right side, respectively. Consider
only the s node for the moment. If the pair p of the s node and the gray
in-layer dummy below it are adjacent within their common layer, and if the
same is true for the two neighboring dashed long edge dummies, the two
long edge dummies can simply be removed. They are then replaced by p. If
one traverses the nodes within the layers from bottom to top, any “nested” s
nodes are processed first, making room for other s nodes that were blocked
beforehand. The e node in Figure 3.23 can be treated analogously with the
exception that this time the layer is traversed in its regular order.

Evaluation

The multi-edge wrapping is evaluated using the ATTar graphs, which have
a large aspect ratio when drawn from left to right (cf. Section 1.9).> Note that
the evaluation of the single-edge wrapping, which was based on SCGs, used
a top-to-bottom layout direction and was expected to improve drawings for
which traditional layerings yield tall and narrow drawings. For the ATTar
graphs, on the other hand, the goal primarily is to improve on wide and
flat drawings that are to be fit into drawing areas with a small aspect ratio.

Different configurations of the layout algorithm were executed and are
denoted as follows: no wrapping is performed (No), wrapping is performed
but neither the cuts are improved nor the edge length is optimized (WR),
wrapping is performed and cuts are improved (WRI), and finally, wrapping
is performed and all improvements are executed (WRir). For all configura-
tions that include wrapping, the score function’s exponent is set to 2.0 and
MSD-1 is used to obtain initial cuts. During the evaluation of the single-edge
wrapping, measures such as backward edges, edge length, and edge cross-
ings are not of major interest since only single edges are routed backward
and no new edge crossings can be introduced. This is different this time.
As discussed before, cutting many edges results in very cluttered drawings
with an increased edge length. Also, optimizing long chains of breaking
point dummy nodes can result in additional edge crossings that can make
it more difficult to follow specific edge paths. Therefore, in addition to the

5 9.29.15 was excluded from the results presented in this section since it is significantly
denser than the other graphs and worsens the presentation.
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max scale measure, the following plots include results on the number of cut
edges, the average length per edge, and the average number of crossings
per edge. The following questions were to be answered:

Q1 Does the wrapping improve the max scale measure?

Q2 What is the effect of ECI on max scale and on the number of cut edges?
Is the overall edge length reduced by the proposed optimizations?

Q3 The computed cut indices of which of the two heuristic, ARD and MSD,
are a better basis for subsequent ECI? Does the score function behave
as desired?

Q4 How close are the width and height estimates to the width and height
of the final drawing?

Figure 3.24 shows results. When aiming at drawing areas with aspect
ratios below or equal to 1.0, executing either of the three wrapping config-
urations improves the max scale values compared to No (Q1). Drawings
created with WRII can on average be scaled more than twice as large as
No for a target aspect ratio of 0.25. For aspect ratios larger than 1.0 no
significant improvement can be observed. In fact, for 4.0 No yields the
largest max scale values on average; for 72 graphs no wrapping was per-
formed, and for 51 graphs wrapping was performed but resulted in worse
max scale values than No. This indicates that one has to be careful when
applying the wrapping procedure in ranges where a traditional layering is
already close to the prescribed drawing area. This is not surprising since the
backward wrapping edges occupy additional space. Moreover, wrapping
yields an increased number of cut edges and an increased average edge
length, which correlates with the target aspect ratio: the more cuts are
required to reach the prescribed drawing area, the more edges must be cut,
naturally increasing the total edge length. Figures 3.24b and 3.24c show
that the number of cut edges can be decreased using ECI and that the edge
length can be improved using the two proposed edge path optimizations
(Q2). The increased number of crossings for Wriy, as seen in Figure 3.24d,
is expected, and the slight variations visible in the outliers of the other
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Figure 3.24. Results of wrapping ATTar graphs with varying improvements. Target
aspect ratios (x axis) are plotted against the measures stated in the captions (y axis).

three methods can be explained by the heuristic nature of the employed
layer-sweep strategy to minimize crossings (cf. Section 2.3).

Figure 3.25 shows results of executing WRt with either ARD or MSD-1
to obtain the initial cuts (Q3). No clear winner can be identified. MSD
performs on average slightly better for target aspect ratios of 0.25 and 0.5
but yields worse results for target aspect ratios that are closer to a layering’s
“natural” aspect ratio (2.0 and 4.0). In terms of cut edges, MSD cuts more
edges for all target aspect ratios on average.
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Figure 3.25. Comparing the quality of ARD and MSD-1 as basis for subsequent ECI
(without edge length improvement). The measures stated in the captions (y axis)
are plotted for various target aspect ratios (x axis).
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123



3. The Layer Assignment Step

© ARD ..
4- m MSD-1 4 T
|
§ ot
2+ — 2 .-
T L. L1 e B
T . g;l; ; | - ‘.r
0-| E Bomm 5P - 0 - =" s
Ty TR TMe T
[ | L . L
24 f 2 ; L *
‘
-
4 -4
| | | | | | | | | |
025 05 1.0 2.0 40 025 05 1.0 2.0 40
(a) For SCGs (b) For ATTar, Wr

Figure 3.27. Differences between estimated and final normalized aspect ratios (y axis)
for ARD and MSD-1. The plot in (a) has already been shown during the evaluation
of single-edge wrapping (Figure 3.16). To improve comprehensibility, the aspect
ratios for which the wrapping procedure is expected to create a larger number of
chunks are underlined. They are different in (a) and (b) as different layout directions
are used.

Regarding the behavior of the score function, Figure 3.26 illustrates the
impact of the function’s exponent e. As one would expect, a lower value of
e results in less cut edges but can result in worse max scale values. Only for
a target aspect ratio of 0.25 a significant improvement in max scale can be
observed when setting e to 2.0 or 2.5 instead of 1.5, however, at the cost of
significantly increasing the number of cut edges.

Regarding width and height estimations (Q4), Figure 3.27 indicates that,
similar to single-edge wrapping, MSD-1 produces more accurate estimates.
This time, however, the heuristics start to underestimate the aspect ratios of
the final drawing for the relevant target aspect ratios of 0.25 and 0.5. This
can presumably be explained by the fact that compared to the SCGs the
ATTar graphs contain more edges that have to be routed between pairs of
layers and thus contribute additional width. This is also the reason for the
outliers in the bottom right of (b). The corresponding graph (g.46.3) has 46
nodes and 168 edges and requires, due to its edge count, significantly more
width between adjacent layers than the other ATTar graphs.
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3.3.3 Discussion

The previous sections presented a methodical procedure that cuts a tradi-
tional layering into multiple chunks and places them side by side with the
goal to maximize the scale factor with which a drawing can be displayed
in a prescribed drawing area. It works best with sparse and “elongated”
graphs and graphs that regularly have “bottlenecks”. The method can easily
be explained to and understood by a user. Apart from the cut points a
drawing looks similar to a traditional drawing without any cuts applied.
Furthermore, the inherent flow of directed graphs is well-preserved by the
wrapping process; the “later” the node is situated within the flow, the “later”
the chunk the node ends up in. All of the cut edges that are now pointing
backwards are routed in well-defined areas of the drawing, in-between pairs
of chunks, and can therefore easily be identified and followed by a user.
Concerning execution time, which has not been discussed so far, the
wrapping process adds a significant number of dummy nodes (s and e,
and long edge dummies) to the graph, of which mainly the long edge
dummies created after crossing minimization generate additional work. It
thus depends on the complexity of the subsequent coordinate assignment
and edge routing steps how much the overall execution time increases.
To get a rough idea of the overhead, consider Figure 3.28, which show
results of executing the two wrapping variants for one graph each on a
laptop with an Intel i7 2GHz CPU and 8GB memory: the sequentialized
SCG scg_seq.503.00 with 503 nodes and 574 edges, and the North graph
g.95.1 with 95 nodes and 132 edges. For each graph, ELK Layered® was run
20 times, and the fastest run was plotted. It can be seen that the overhead
keeps within limits: the single-edge execution (SE) took about 18ms instead
of 13ms, the multi-edge execution (ME) took about 12ms instead of 8ms. For
the SE case, coordinate assignment took 5.6ms instead of 3.1ms. This is as
to be expected since the used coordinate assignment algorithm runs in time
linear to the number of nodes at that point, which, with increasing numbers
of cuts, almost equals twice the number of original nodes. For the ME

6 Using a variation of Brandes and Kopf’s coordinate assignment algorithm [BK02] and
orthogonal edge routes. When wrapping, MSD-1 is used, WRriI for the multi-edge case, and a
drawing area with an aspect ratio of 0.25 is targeted.
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Figure 3.28. Execution time profiles of ELK Layered for (a) single-edge wrapping
and (b) multi-edge wrapping compared to no wrapping (No). The barplots show
the execution time in ms (y axis) of each layout processor (x axis) and the combined
execution time in the very left pair of bars. Only the interesting layout processors
are labeled: P1-P5 are the five steps of the layer-based approach, SEW is the sole
processor for single-edge wrapping, and BP1-BP3 are the three processors for multi-
edge wrapping. The total number of layout processors in (a) and (b) is different
since they are assembled dynamically based on the graph’s requirements [SSH14].

case, the crossing minimization contributes a significant amount to the total
execution time and itself increases from 4.8ms to 6.4ms due to the added s
and e dummies. The lower the execution time of an individual processor
was, the larger was the variance between executions. This is also the reason
for the slight increase in the execution time of the layer assignment step
during ME, which works on the same graph in either case.

Alternatively, one could compute node coordinates and edge routes
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Figure 3.29. Different drawings of ATTar graph g.22.76, targeting a drawing area
with an aspect ratio of 4.0 in cases (b) and (c). The drawings are scaled to a common
height.

for each chunk separately, entirely avoiding the long edge dummies, and
stitch the chunks together afterwards. However, this alters the layer-based
approach’s line of action in a way that may not be realizable in every
existing implementation.

As mentioned, the method becomes less effective when many edges have
to be cut, e. g. as it is the case for denser graphs. A problematic example can
be seen in Figure 3.29. While the cut improvement significantly enhances
the appearance of drawing (b), resulting in drawing (c), neither of the two
is necessarily a clear improvement over the traditional layering (a). This
problem can likely be addressed with alternative presentation styles, for
instance: A set of backward edges in-between a pair of chunks could be
bundled if it does not involve any edge crossings, since the order of the
edges leaving at the first chunk is exactly the same order with which the
edges enter the second chunk. It is therefore not necessary to follow the
edge paths in detail. Likewise, the edge paths could be omitted completely
and the connection between the bottom and the top part of the cut edges
could be realized using labeling numbers.
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3.4 High-Degree Nodes

As discussed during the introduction of the layer-based approach (cf. Chap-
ter 2), traditional layer assignment methods focus on minimizing the number
of layers or on minimizing the overall edge length. The latter implicitly
keeps the number of layers low as well. In certain dataflow diagram types
it is common that larger nodes collect and process a large number of sig-
nals originating from small nodes. Having few layers is not particularly
suited for such a scenario. Large and small nodes end up in common lay-
ers and possibly result in tall diagrams with unfortunate edge routes, see
Figure 3.30a for an example. This problem matches the stated challenge
P-LA4 (see p. 46), and its importance in practice is further illustrated in
Figure 3.31.

In what follows, the large nodes are called high-degree nodes and the
small nodes connected to high-degree nodes are called leaf nodes. A simple
solution to improve an existing layering is to move the leaf nodes to newly
introduced layers which are adjacent to the high-degree node’s layer. An
example can be seen in Figure 3.30b. To address further scenarios, one can
allow to move whole trees connected to the high-degree node instead of just
the leaf nodes.

A procedure that can be incorporated as a post-processor after the layer
assignment step to do this is described in Algorithms 3.6 and 3.7. A given
layering L is iterated layer by layer and high-degree nodes are identified,
that is, nodes with a degree larger than a threshold value t;,,. For every
high-degree node of a specific layer, attached trees of tree-height at most
ty, are collected and separated into left trees (located in layers of lower
index) and right trees (located in layers of higher index). Then, new layers
are introduced on both sides of the currently handled layer, based on the
highest tree on the corresponding side. No new layers are introduced on a
side if no tree exists on that side. Afterwards, the previously identified trees
are moved to the newly created layers. Note that the trees connected to high-
degree nodes sharing the same layer are placed in the same set of newly
created layers. All other nodes, just as the high-degree nodes themselves,
remain in their original layers. The identification of trees can be realized as
a recursive function isTreeRoot, as outlined in Algorithm 3.7. For ease of
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(a) Five layers (b) Seven layers

Figure 3.30. Illustration how introducing additional layers can improve the readabil-
ity of a diagram.

description, the two functions a and ¢ denote an ancestor function and a
descendant function, which are either incoming or outgoing edges based on
the side (left or right) for which trees are to be identified. Remember that
the graph at this point is acyclic and that all edges point rightwards within
the layering. Self loops can simply be ignored during the whole procedure.
Hierarchical port dummies (cf. Section 2.6, p. 54), however, must potentially
be placed in the very first or very last layer. Let v denote a hierarchical port
dummy. To adhere to the layering constraint, one can either refrain from
handling the whole subtree of v or just ignore v when moving the subtree.
Further note that in the proposed solution a subtree’s nodes are moved
to the new layers such that adjacent nodes are in adjacent layers, i. e. the
subtree is layered with the minimum number of layers and minimal edge
length; it does not matter how the nodes of the subtree were placed in the
initial layering, but it is also imaginable to preserve the previous layering.

Execution Time The algorithm is linear in the number of nodes, edges,
and newly introduced layers. The number of new layers is bound by the
number of nodes. As part of the outer loop, the nodes of every layer
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Algorithm 3.6: Handling of High-Degree Nodes
Input: Graph G = (V, E) with layering L, threshold values t;,, and t;,

for/ e L do
H—{vell d(v)>thdn}
T, Fr < {} // trees to be moved
max; < 0, max, < 0
forve ¥ do
(my, &; my, 0y) < findTrees(v, ty,)
max; < max {max;, m;}
max, < max {max,, m,}
Add ¢, to 7;
Add ¢, to 7,

Il — Insert max; layers before [

for root € ; do Move root’s tree to 1]
Ir « Insert max, layers after |

for root € 7, do Move root’s tree to Ir

are visited exactly once. Then, for each identified high-degree node, the
isTreeRoot function is called for every connected node, identifying subtrees.
As such, every edge of the graph is visited at most once. Finally, new layers
are added and every node that is part of an identified subtree is moved to
its new layer. The degree of a node does not change during this procedure
and can therefore be queried in constant time. The same is true for the size
of the set of incoming or outgoing edges of a node. Therefore, the running
time is O(|V| + |E| + |V| + |V|) or O(|V| + |E]).

Remarks A contact from industry who works with Simulink diagrams on
a daily basis reports that specifically handling high-degree nodes “helps
a lot”, and is “a must-have feature”. Still, at least two points should be
examined further in the future: First, currently, separate new layers are
introduced for each of two high-degree nodes that are in adjacent layers
of the original layering. While it feels natural to clearly separate the trees,
it would be possible to share the set of new layers in-between their corre-
sponding original layers, with the goal to reduce the overall width. Second,
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Algorithm 3.7: Identifying Trees

Input: High-degree node 1, tree height threshold ¢,

O = o <1
mleo;mreO

// sets of identified trees
// maximal tree heights

function isTreeRoot(v, a, d)
if v is high-degree node then return —1
if |a(v)| > 1 then return —1

f

f

if [4(v)] = 0 then return 1
h<0
for {v,w} € d(v) do

h «— max {h, sh}

| return h+1

orw € E;(v) do
h < isTreeRoot(w, E,, E;)
if i > 0 then
L m; «— max { my, h}
Add w to 19[

orw € E,(v) do
h « isTreeRoot(w, E;, E,)
if i > 0 then
L my < max { my, h}
Add w to 9,

return (m;, 9, m;, %)

sh « isTreeRoot(w, a, d)
if sh = —1 then return —1

if h > ty, then return —1

// collect western trees

// collect eastern trees

in the proposed solution the two threshold parameters on the degree of a
node and on the maximal height of a tree have to be set by a user. Finding
appropriate values is a tedious task, and simply setting large values for t,
and low values for ty4, can result in rather wide drawings. It should be
possible to identify reasonable values on a per diagram basis. Also, it may
be reasonable to use different thresholds for different nodes and subtrees.
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(b) Paying attention to (c) Flexible port positions
high-degree nodes and node sizes

Figure 3.31. Example derived from a Simulink diagram from practice. In (a) the
problem addressed in this section can be seen. It stems from the nature of traditional
layerings in conjunction with high-degree nodes. (b) shows a drawing of the same
diagram in which the three high-degree nodes have been handled specifically. If one
additionally applies the methods presented in Section 4.1, the drawing seen in (c) is
possible.
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Chapter 4

The Coordinate Assignment Step

The third step of the layer-based approach, the coordinate assignment step,
assigns y coordinates to all nodes the graph is composed of at this point.
That is, it assigns y coordinates to the nodes of the input graph as well as to
the introduced dummy nodes. As mentioned during the initial introduction
of the step (see p. 49), often pursued goals are the following [BK02; HN13]:

> short edges,
= balanced neighbors,
> straight long edges.

Desired drawings can be seen in Figure 4.1. A common idea in the literature
is to tackle these goals with optimization problems that minimize the
y coordinate difference between the source points and the end points of the
edges. Building on existing methods, this chapter addresses the challenges
arising from the existence of ports and the resulting special dummy nodes
introduced for inverted ports and north/south ports, as well as from the
orthogonally routed edges. To explain the challenges in further detail:

Ports Nodes have a height, and multiple edges can connect to the same
node at different ports. Ports may be free to move alongside a node’s
border, as long as they maintain their relative order.

Inverted and North/South Port Dummies Both types of dummy nodes do not
fit the classic concept of the layer-based approach in that the inverted
port dummies are connected to their parent node via in-layer edges and
in that the north/south port dummies do not have any connection to
their parent node at all.
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(b) Ptolemy (c) SCG

Figure 4.1. Exemplary drawings using the coordinate assignment methods presented
in Section 4.2.

Orthogonal Edges Wherever edges are routed orthogonally, edge bendpoints
must be introduced between adjacent layers when the edge’s source
y coordinate differs from the edge’s target y coordinate. Minimizing the
number of bendpoints may become an additional goal that may take
precedence over balanced node positions. This applies in particular to
long edges as illustrated in Figure 4.2.

The next two sections present extensions to the approaches of Gansner et al.
[GKN+93] and Brandes and Kopf [BKO02]. The first one already supports
fixed port positions and is flexibly extensible, the second one produces good
results in the general case and runs fast [HN13]. In their original versions,
neither of the two are particularly suited for orthogonally routed edges.
Both sections use common notations with respect to the underlying port-
based graph G = (V,P,E, ). At this point of the layer-based approach,
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ol

(@ (b) ()

Figure 4.2. [llustrating the staircase effect of long edges. Small black circles represent
dummy nodes. With regard to the total edge length, all three drawings are equivalent.
However, they differ in the number of edge bendpoints.

the graph has only short edges, may contain several types of dummy
nodes, has a layering L = (Ly,...,Ly), and the nodes within each layer
have a particular order as computed by the crossing minimization step:
L; = (v},...,v},), where m = |L;|. The position of a node v; in layer i is
denoted by pos(v;-) = j. An edge is said to be straight if it is parallel to the

X axis.

4.1 Network Simplex Approach

This section presents extensions to the coordinate assignment method pre-
sented by Gansner et al. [GKN+93], tackling challenges P-CA1, P-CA2, and
P-CA3 as stated on page 50. The section is structured as follows. First, it
outlines the basics of the method and shows how to incorporate inverted
ports and north/south ports. It then explains how flexible port positions and
flexible node sizes can be realized during coordinate assignment (P-CA2,
P-CA3). Finally, it details how straight edges can take precedence over
balanced node positions (P-CA1).

Gansner et al.’s method is based on the observation that just as the
layer assignment step, the coordinate assignment step seeks for short edges,
only that it does so in a different dimension. They therefore formulate the
coordinate assignment problem as a layering problem and use their methods

135



4. The Coordinate Assignment Step

for the Directed Layering Problem (DLP) (see Section 3.2), namely their
network simplex algorithm, to solve it. Nevertheless, there are two essential
differences between computing a layering and a coordinate assignment
that will become clearer during the explanations of the remainder of this
section: First, the positioning of a pair of nodes relative to each other is not
prescribed this time, which it was by the partial order represented by the
directed acyclic input graph during the layering step. And second, nodes
connected by an edge are allowed to end up in the same “layer”; they are
even desired to, since this would result in a straight edge within the final
drawing.

The Original Approach

The optimization problem that is pursued by Gansner et al. for coordinate
assignment mapped to a port-based graph is the following. It minimizes the
total sum of y coordinate differences between the source point and target
points of the graph’s edges. When edges are routed orthogonally, it can be
simply viewed as minimizing the overall vertical edge length.

Min. B Q) @i (=) +y(p)) = (w(x@) +v@)| &)
pAq)E

s.t. y(v;) +h(v;) + Sy, < y(v))
Voj,viel:i+1=j, Vl=(vq,...,0p) €L,

where each edge has an individual weight w that can be specified by a
user and encodes how important the edge is in terms of shortness and
straightness. Further, sy, is a prescribed separation between pairs of nodes.
As mentioned before, and as depicted in Figure 4.2, long edges are to be as
straight as possible to avoid “staircases”. For this purpose the () weights
are used and set as follows: 1 — if both nodes of an edge are regular nodes,
2 — if one of the two nodes is a dummy node, and 8 - if both nodes are
dummy nodes.

With this optimization problem in mind, Gansner et al. construct an
auxiliary graph NG from G, such that an optimal “layer assignment” for
NG represents an optimal coordinate assignment on G and vice versa. NG
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4.1. Network Simplex Approach

(a) Input graph (b) Corresponding ngraph

Figure 4.3. The auxiliary graph (b) for the input graph (a) as used by Gansner et al.
to solve the coordinate assignment step using a layering algorithm. The small black
circle represents a dummy node introduced after the layering step. In (b), the dashed
edges represent separation preserving edges, and the white circles together with
two solid edges each are surrogates for the edges of the input graph.

is called ngraph in the remainder of this section since it represents the graph
that is fed to the network simplex algorithm. An exemplary ngraph can be
seen in Figure 4.3.

The ngraph is a tuple NG = (Vng, Eng) of nodes and edges. Each
directed edge e = (u,v) € Eyg connects a pair of nodes u,v € Vyg and
carries real weights w, > 0 and natural separation values é, > 0. Nodes are
dimensionless. Recall the definition of the DLP (p. ??), which seeks for a
mapping A : Vyg — N:

Min. ) @) (A(0) = A(u))
(u,0)€EnG

s.t. (A(0) = A(u)) = 8,0y V(1,0) € Eng.

Note that contrary to the initial discussion of the DLP in Section 3.2, the §
values are allowed to be zero this time.

Next, the transformation of the port-based graph G to the ngraph NG
is discussed. For ease of explanation, assume for the moment that no in-
layer edges exist and that the edges connect to a node at the node’s most
northern point, i.e. as if for all ports p it holds that y(p) = 0. The next
sections explain how to handle in-layer edges and relative port positions.
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4. The Coordinate Assignment Step

The nodes V of G are nodes of Vyg. Each edge (p,q) of E yields an
additional dummy node dj; in Vyg. The dummy node is connected to
the two original nodes of the edge: ¢, = (dyg, 7t(p)) and e, = (dpg, 71(q))
are added to Eng. Essentially, this models the absolute function in (A).
The weights are set to we, = we, = O} 5)W(p,q) and the minimum edge
lengths to J,, = &, = 0. To preserve the order of the nodes within the
layers as computed by the crossing minimization step and to adhere to
spacing constraints, separating edges are introduced: for each pair of nodes
u,v where u is the immediate predecessor of v within their common layer,
an edge e,, = (1,v) is added to Exg with w,,, = 0, i.e. it has no influence
on the cost function, and with 6,,, = h(u) + s,,, where s, is the minimum
vertical separation between nodes u and v. Note how the height of a node
is encoded in the separating edge. After execution of the network simplex
algorithm, the y coordinate of a node v, y(v), is set to A(v).

Compared to the size of the graph that is passed to the network simplex
algorithm during the layer assignment step, the ngraph can be significantly
larger. This is for two reasons: due to the auxiliary elements discussed
above and due to long edge dummies created after the layer assignment
step that are now part of V. To be precise, the ngraph has |V| + |E| nodes
and 2|E| + |V| — |L| edges.

4.1.1 Ports

Ports whose positions are fixed relative to their parent nodes are addressed
by Gansner et al. with altered separation values for the e¢; and e, edges.
The idea is that one of the two edges is as long as the offset difference
of the two involved ports, which is illustrated in Figure 4.4. Given an
edge e = (p,q) € E, the two separation values are set as follows: d,, =
max{0,y(q) — y(p)} and &, = max{0,y(p) — y(q)}.

The explanations up to this point summarize the ideas presented by
Gansner et al. adjusted to a port-based graph. Something that has not been
considered by Gansner et al. are north/south ports and inverted ports, both
of which result in further dummy nodes being introduced (cf. Section 2.6).
To obtain acceptable final drawings, these dummy nodes require special
treatment during coordinate assignment as explained next.
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e

(a) Input graph (b) Corresponding ngraph

Figure 4.4. Handling fixed port positions during coordinate assignment. The place-
ment of the original nodes in (b) represents an optimal placement and would thus
yield a straight edge in the final drawing.

North/South Ports Let d, denote a dummy node that has been introduced
for a north/south port p. d, and 77(p) are located in the same layer, although
not necessarily adjacent, and they are not connected by an edge. When there
is no connection between the two in the optimization problem, the distance
between dj, and 71(p) can become arbitrarily large; even if the lengths of
other edges are unaffected. This unnecessarily elongates the edge connected
to the north/south port in the final drawing.

To improve matters, an edge e, = (dp, (p)) is added to Eng if p is
a north port, and e, = (7(p),dp) is added if p is a south port (cf. upper
part of Figures 4.5b and 4.5¢). The ¢, is set to zero and w, is set to a
user-configurable weight. A small weight w,, « 1 favors the shortness of
edges connecting to the western or eastern side of a node, which should be
the desired behavior in most cases. If d, and 77(p) are adjacent within their
layer, the e, edge is redundant to the already introduced separating edge.
In such a case it is enough to increase the weight of the separating edge,
which is zero by default.

Inverted Ports Let d), denote the dummy node that has been introduced
for an inverted port p. d, and 7(p) are located in the same layer and are
connected by an in-layer edge. The relative order of the two nodes has
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(a) Input graph (b) Internal graph during (c) Corresponding ngraph
coordinate assignment elements, center layer

Figure 4.5. Handling north/south ports and inverted ports during coordinate as-
signment. The dashed box in (b) indicates that apart from long edge dummy nodes
no other nodes must be placed in-between the north/south port dummy and v.
Doing so would result in those nodes being crossed by an edge in the final drawing.

been determined during crossing minimization. The following description
assumes d, has been placed above 77(p), the other case works analog.

Let e = {p,q} denote the edge incident to p. To keep the “inverted”
part of ¢’s route short, an edge e, = (dp, 71(p)) is added to Eng (cf. lower
part of Figures 4.5b and 4.5¢c). The minimum separation is set to zero,
and the weight is set to we. If d, and 71(p) are adjacent in their layer, the
same simplification, reusing the separating edge, can be made as before for
north/south ports.

4.1.2 Flexible Port Positions and Node Sizes

The handling of ports as discussed in the previous section requires the ports’
positions to be fixed relative to their respective parent nodes. If this is not
already the case within the input graph, it can be achieved by continuously
rising the port constraint levels during the first three steps of the layer-based
approach and by computing reasonable port positions prior the coordinate
assignment step as described by Schulze et al. [SSH14]. A node’s ports
could, for instance, be evenly distributed on each side of the node.
However, to increase the number of straight edges incident to a node
(P-CA2, P-CA3) and to further reduce the edges’ lengths, one could let
the coordinate assignment algorithm decide the relative positions of the
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ports, and potentially adjust the heights of the nodes. Either behavior may
be prohibited for certain nodes, e. g. due to the diagram’s syntax. Thus, it
must be possible to configure the behavior per node. The nodes for which
one of the two options is allowed are referred to as flexible in what follows.
Both options can be incorporated into Gansner et al.’s approach by adding
further elements to the ngraph as described next.

Similar behavior has been proposed by Klauske in the context of laying
out Simulink diagrams, who further alters the objective of the optimization
problem and adds additional constraints [Kla12].

Flexible Port Positions The idea is to model each node v € G that allows
flexible port positions by two dummy nodes d,, and d; plus one dummy
node for each west and east port and add all of them to V. d, represents
v’s northern border and d; represents v’s southern border. An example is
shown in Figure 4.6. The separating edges incident to the predecessor node
and the successor node in v’s layer must connect to d,, and ds, respectively.
An edge ¢, = (dy,ds) is added to control the node’s height. Since the
network simplex method only supports to specify minimum edge lengths,
not maximum edge lengths, the minimum separation is set to v’s height
and the weight is set to infinity (in practice to a sufficiently large value)
since node heights are non-flexible at this point: ., = h(v), we, = 0.

Let (pl, .., pn) denote the west ports of v in the order from the northern
border to the southern border, and let d;,, denote the dummy node added
to Vg for p;. Edges (dy, dp,), (dp,,dp,), ..., (dp,, ds) are added to Eyg. The
edges ensure that the computed port order is preserved and correspond to
the separating edges for regular nodes. The minimum separation values are
set to prescribed separation values either between a border of the node and
the first or last port, or between pairs of ports. The weights of the edges are
set to zero. The east ports of v are handled in the same way.

Representing flexible nodes in this way further increases the size of the
ngraph: Let V; < V denote the set of flexible nodes, and let Py = {p €
P : 7t(p) € Vf A side(p) € {east, west}} be the set of west and east ports
of these nodes. | V| + |P¢| additional dummy nodes are added to V¢ and
3|V¢| + |Pf| additional edges are added to Eng.
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P1

12 Py

P3

(a) (b)

Figure 4.6. A flexible node with four ports (a), and the corresponding representation
in the ngraph (b).

Flexible Node Heights To allow flexible node heights, the weight of the
ey edge is reduced. Instead of setting it to infinity, it is set to a value that
is smaller than the weight of regular edges. A minimum height can be
guaranteed by setting J,, to the desired value; it can be set to zero if no
minimum height is required.

4.1.3 Straightening Edges

As mentioned in the introduction of this chapter, routing edges in an
orthogonal fashion may give rise to the desire to additionally reduce the
number of edge bendpoints. For the coordinate assignment step this means
that the y coordinate of the source of an edge must equal the y coordinate
of the edge’s target.

The method described so far allows many symmetrical solutions wher-
ever it is not possible to reduce the y coordinate difference to zero, see
Figure 4.7 for an illustration. The placements of (a) and (b) are equivalent
from the point of view of the optimization problem that simply minimizes
the sum of y coordinate differences. Solution (b) has fewer edge bends,
however, as would have a solution in which alternatively the edge (n3,
n4) is straightened. Klauske addresses this issue by statically altering the

142



4.1. Network Simplex Approach

(a) (b)

Figure 4.7. When minimizing total edge length, the solutions (a) and (b) are both
optimal; the overall edge length cannot be reduced further, since the spacing between
nl and n2 is prescribed. However, (b) has less edge bendpoints when edges are
routed orthogonally.

Q) weights of (A), before solving the optimization problem [Klal2, Sec-
tion 3.3.1]. In the example, solution (b) would be favored by setting ()(n2, n3)
> (Y(n3,n4)- This has the drawback that only one of the two possible solutions
that have fewer bends can be obtained. In a scenario in which n3 is blocked
by a different node from below, for instance, no bend reduction could be
achieved. This section therefore proposes an alternative approach: Altered
weights are only used if they do not enforce one-sided decisions. Otherwise,
a heuristic post-processing step is used that seeks to alter an ngraph with
computed positions in a way that reduces the number of bends without
worsening the objective.

Recall the desire to draw long edges as straight as possible to avoid a
“staircase” effect. From the perspective of the coordinate assignment step,
long edges are sequences of nodes, where the first and last node are regular
nodes, all inner nodes are long edge dummies, and each consecutive pair of
nodes in the sequence is connected by a single short edge. Let (ey,...,e,)
denote such a sequence of short edges. The goal is to produce as many
straight e;s as possible, which Gansner et al. address with the () weights.
A drawback of setting ()., = Q,, < ), with 1 < i < n, is that no tie is
broken between the straightness of the first and the last short edge, i.e. it
allows the scenario as depicted in Figure 4.2b (p. 135). In the example, two
bendpoints could be saved for each of the long edges if the whole vertical
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edge length is assigned to either the first or the last short edge, as seen in
(c). However, the longer the long edge is, the less distracting it is if the first
and last short edges are not straight.

Back to the original problem to increase the overall number of straight
edges: avoiding staircases not only applies to long edges but also to se-
quences of regular nodes where pairs of consecutive nodes are connected
by a single edge. An example is the node sequence n2, n3, n4 in Figure 4.7.
The idea to improve such cases is to identify paths within the input graph
that can potentially be modified, either before or after executing the net-
work simplex algorithm, such that the number of straight edges increases,
without increasing the overall edge length.

Definition 4.1 (IPath). An improvable path #, short ipath, is a sequence of at
least two edges, for which holds:

* P = (elr---rem) = ((S/pl)/ (P21P3)/---r(Pn;t)); m = 2/
s nt(p;)) = m(px) forallj+ 1=k je{2z+1:zeNgrz < 5 —1},
o d(n(p;)) =dt(n(p;)) =1foralll <i<n.

If the length of the sequence is exactly two, the ipath is called short ipath,
and if it is larger than two, it is called long ipath.

A single depth-first traversal of the graph, starting at the graph’s sinks,
is sufficient to identify all ipaths. The identified ipaths are then processed
as follows.

Long IPath For long ipaths, one can proceed in the same manner as for
long edges. Before executing the network simplex algorithm, the (2 weights
are altered: for # = (ey,...,en), set Qe = Q,, = 2 and Q,, = 8 with
1 < i < m. Obviously, this would not improve the situation for short ipaths:
the same () weight would be assigned to the two involved short edges.

Short IPath Short ipaths are processed after the network simplex algo-
rithm has been executed for the ngraph. A short ipath #» = ((s,p), (9, 1))
involves three nodes v; = 71(s), v. = n(p) = n(q), and v, = 7t(t), all of
which are part of Vg and thus a position has been assigned to them. The
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three nodes may be referred to as left, center, and right. Given a coordinate
assignment represented by A, four cases can be differentiated based on the
relative positions of the three nodes to each other:

Case A: A(v)) < A

Case B: A(v;) > A(ve) > A(vy),
Case C: A(v) < A
Case D: A(v.) > A

Figure 4.8 illustrates the cases and shows how each of them could be
improved. In cases A and B it may be possible to alter v.’s position to either
Ave) = A(vy) (A1/B1) or to A(v:) = A(v;) (A2/B2). Both modifications
would save two bends in a final drawing with orthogonal edges and are
feasible if v, is not blocked by another node in the same layer, either from
above or from below. Note that it is possible that moving a specific v, makes
room for another center node to be handled that had been blocked before.
Figure 4.9a shows an example: moving v, downwards allows to move v;
downwards afterwards. Thus, it makes sense to iterate the nodes of a layer
once from top to bottom and then a second time from bottom to top to
leverage previous moves. Another question that emerges at this point is
which move, upwards or downwards, should be favored if both of them
are possible. An option is to select the shorter move, although this does
not impact the overall edge length. Alternatively, one could favor similar
moves, see Figure 4.9b for an example in which both center nodes have
been moved downwards. The dotted line and the gray circle indicate the
alternative position for vy, resulting in a larger separation of the two edges.

Cases C and D cannot occur if A represents an optimal assignment: in
the depicted examples, v. must be blocked by another node within the
same layer (dashed areas), since otherwise either the left edge’s length or
the right edge’s length could have been reduced further. Consequently, it is
not possible to straighten an edge in these two cases, and it is not possible
that the treatment of cases A and B results in a scenario where either of the
cases C and D can be improved afterwards. This is due to the fact that A
and B represent scenarios where the position of the v, is somewhat free
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Figure 4.8. The four cases of short ipaths are shown in the left column. The center
column and right column show for each case a possibility to move v, such that two
bends are saved in the final drawing. The gray arrows indicate the direction into
which v, has to be moved and are labeled with the necessary distance of the move.
For instance, |a| denotes that v, must be moved by the (vertical) length of edge 2. A
move is only possible if no other node blocks the center node on the respective side
(above or below). The circled nodes illustrate the ngraph’s dummy nodes that are
introduced for edges of the input graph.

N\

146



4.1. Network Simplex Approach

(%1

(%)

(@ (b)

Figure 4.9. Illustrating the effect of different move orders and tie-breaking. (a) Ini-
tially v can only be moved upwards and v, can only be moved downwards. After
moving v; upwards, vy can both be moved upwards and downwards, or vice versa.
(b) Moving both nodes into the same direction, say downwards, creates similar
edge paths, while moving one node upwards and the other one downwards clearly
separates the two edges (dotted path).

and does not impair the objective. If a case C or D were affected by an A or
B, the computed placement would not be optimal. Nevertheless, the cases
are included in the figure for future reference, as there may be alternative
methods to increase the overall number of straight edges.

414 Remarks

Amongst other things, the previous sections discussed two ways to poten-
tially increase the number of straight edges: a) allow ports to move on a
node’s border, and b) additionally allow a node’s height to increase. Due to
the nature of the layer-based approach, both points only apply to western
and eastern ports. Edges incident to northern and southern ports cannot
become straight since the (original) nodes connected by the corresponding
edge must lay in different layers. Additionally, the coordinate assignment
step does not decide on the nodes” x coordinates. To allow straight edges
between opposing northern and southern ports, it would thus be necessary
to weaken the notion of a layering and to add functionality to detect and
handle such cases at multiple points of the algorithm, e. g. layer assignment,
crossing minimization, and edge routing; at the cost of a significant increase
in complexity. Moreover, both options should be applied with care and
should usually not be activated for all nodes of a diagram, for at least
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two reasons. For one thing, the syntax of a diagram type may implicitly
prescribe the port positions and the dimensions of certain nodes. This is, for
instance, the case when the ports’ positions are related to certain graphical
elements that are part of the node’s rendering. Resizing the node, or moving
ports, would then break this connection. For another thing, and this time
in favor of the two options, diagram types often contain nodes that are
predestined for resizing. To give an example, nodes of a dataflow diagram
at which the dataflow forks or joins often have a large in- and/or out-degree.
Allowing them to change their size may save edge length, bendpoints, and
as a consequence diagram area as well (see Figure 3.31c, p. 132).

A point to improve on is the fact that in conjunction with both options, a)
and b), the created drawings are unbalanced at times. For instance, the ports
of a larger node may conglomerate at the northern part of one of the node’s
vertical sides, even in case they could be distributed evenly along that
particular side without negatively interfering with the remaining drawing.
From a practical point of view, this is a significant drawback. The reason is
mainly the underlying method, the DLP, which solves a linear optimization
problem and therefore cannot encode balance. The issue diminishes when
carefully selecting the nodes for which flexibility is allowed. Still, further
work is required here. To start, it should be possible to identify sets of nodes
within the ngraph, after positions have been computed, that shall remain
fixed relative to each other and to apply a balancing post-processing step
afterwards. This applies in particular to those nodes which are connected
by a straight edge.

Another point to be aware of is that the computed node coordinates are
necessarily integral because the underlying method computes a “layering”.
This can become problematic when ports are present and the ports’ positions
are real-valued. If the positions of an edge’s pair of ports (p, q) are fixed
to different non-integer positions relative to the corresponding nodes, it
is not possible to get a straight edge after coordinate assignment. This is
particularly unpleasant when edges are routed orthogonally, since it results
in small, but disruptive, kinks. In practice, however, it is usually acceptable
to slightly alter the ports” positions to be integral prior to the coordinate
assignment step.
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4.2 Brandes and Kopf Approach

This section presents extensions of the coordinate assignment algorithm of
Brandes and Kopf [BK02], tackling P-CA1 and P-CA2 (see p. 50). Parts of
the discussed extensions have already been proposed by Carstens in his
Master’s thesis [Car12] and will be clearly marked in the following. The
original algorithm assumes that all nodes have the same size and does not
take ports into account; thus it straightens at most one incident edge per side
per node. Here, both of these restrictions are removed, allowing drawings
as the ones seen in Figure 4.1 (p. 134). Other than the previous section,
which discussed extensions of Gansner et al.’s method, this section assumes
that the coordinate assignment algorithm can neither alter the size of nodes
nor the positions of ports. The underlying idea of Brandes and Kopf's
algorithm is to create four extremal coordinate assignments and to combine
them into a balanced final coordinate assignment. For brevity, a concrete
coordinate assignment shall also be referred to as a “layout” throughout
this section. Each extremal layout emerges from iterating the graph’s layers
either rightwards or leftwards, and from iterating the nodes within each
layer either downwards or upwards. Within each extremal layout the goal
is to minimize the total edge length by aligning nodes with their median
neighbors. A neighbor at this is another node that is connected by either an
incoming or outgoing edge, depending on the iteration direction.

The interested reader, who may consult the original paper [BK02] for
further details, shall be warned that the explanations in this section are
for a left-to-right layout direction whereas the paper assumes a top-to-
bottom direction. Additionally, most of the following explanations are
solely for an iteration direction of rightwards and downwards. The other
three combinations work analog.

The Original Approach

This section summarizes the original algorithm of Brandes and Kopf, the
discussion of new contributions starts in Section 4.2.1. The algorithm is
divided into the following three steps, each of which is briefly outlined
below.
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Figure 4.10. Gray boxes in (b) show calculated alignments (blocks) for the graph (a).
(c) depicts the block graph with sinks in darker gray, and (d) shows the correspond-
ing class graph.

Alignment Combine the nodes into so-called blocks. Different iteration direc-
tions may result in different blocks. Edges between the nodes in a block
will be drawn straight in a final drawing.

Compaction Move the computed blocks as close to each other as possible and
assign explicit y coordinates to the nodes. Depending on the direction,
blocks are compacted either upwards or downwards.

Balancing Combine the four extremal layouts resulting from the previous
two steps into a final drawing.
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Alignment During the alignment step, as many nodes as possible are to
be aligned with their median neighbor in the preceding layer. That is, for
a node v with k incoming edges (u1,v), ..., (1, v) the median neighbor is
Uk +1)/,- As there is no median if k is even, Brandes and Kopf use one of
the two values m; = [51] and my = | 541 ]. If k is odd, m; equals my, and
it depends on the iteration direction which value, u,, or uy,, is preferred.
The idea behind using the median is that for a sequence x, ..., x; the sum
Yi<i<k |x — xi| is minimized if x is the median. An example alignment can
be seen between node n4 and node n2 in Figure 4.10b.

Not every pair of nodes is alignable: wherever a pair of edges crosses,
only one pair of the connected nodes can be aligned at a time. Brandes
and Kopf distinguish and handle three types of conflicts depending on how
many short edges, originating from long edges in the original graph, are
involved in a crossing. Their goal is to favor those edges that would result in
straight long edges in the final drawing. Since the details of the conflicts and
how the alignments are computed are of minor relevance for the presented
contributions, they are not discussed further. It shall be sufficient to know
that certain edges may be flagged as non-alignable.

Nevertheless, it is necessary to know which nodes were aligned. Series
of aligned nodes are referred to as blocks, see Figure 4.10b for an illustration.

Definition 4.2 (Block). A block is a series of edges (e, ..., en), connecting
nodes in consecutive layers. The edges of a block are to be drawn straight
in a corresponding drawing. Alternatively, the same block can be written as
a series of the involved nodes: (vq,...,0,41).

A block b has a position y(b), which is initially set to zero. In the original
version of the algorithm, the block’s position directly stands for the position
of the block’s nodes.

Compaction For compaction, Brandes and Kopf consider an auxiliary
block graph, which is visualized in Figure 4.10c. Blocks are the nodes of the
block graph and are connected by an edge if two nodes of different blocks
are adjacent within their layer: for two blocks by and b, an edge (b1, by)
is introduced for each u € by and v € by with L(u) = L(v) A pos(u) —1 =
pos(v).
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The block graph is further divided into classes. Every block that is a
sink within the block graph defines its own class. Examples are the two
slightly darker blocks in Figure 4.10c. Every other block belongs to the class
defined by the left-most sink it can reach within the block graph. Note that
left-most is replaced by right-most if iterating the layers leftwards instead
of rightwards.

Compaction then works in two steps. First, positions are assigned to
blocks using a longest path layering (cf. Chapter 2, p. 57) within each class,
which recursively assigns positions relative to the class’s sink. Each pair of
blocks is separated by a global separation value s;. Second, the classes as a
whole are moved as close to each other as possible, preserving s, between
adjacent blocks of different classes.

Both steps can be executed in one go by continuously remembering
the required separations between classes whenever an adjacent pair of
blocks of different classes is encountered during iteration and by applying
the separations after all blocks have been placed. Note that iterating the
nodes within the layers downwards, as is assumed during the following
explanations, implies compacting the blocks upwards.

Balancing As mentioned earlier, the two previous steps, alignment and
compaction, are executed four times with different iteration directions. This
gives four layouts, two of which are compacted upwards and two of which
are compacted downwards. To get a final layout, the four layouts are aligned
such that the minimum coordinate of the upwards compacted layouts agrees
with the minimum coordinate of the layout of smallest height, and such that
the maximum coordinate of the downwards compacted layouts agrees with
the maximum coordinate of the layout of smallest height. Afterwards, every
node v has four positions y1(v) < ... < y4(v). Brandes and Kopf compute
v’s final position as follows:

y2(v) +y3(0)

yo) = =" (A)
This resembles what they call average median and is generally defined as

1

3 (x\_(k+1)/2J + x[<k+1>/z]) , (B)
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B,
Sp
B,
(a) Original (b) Compact
(c) Balanced (d) Straight

Figure 4.11. Illustration of the additional challenges for the Brandes and Kopf
algorithm imposed by node sizes and ports. In (a) a global separation value s;
is used to space blocks By and B,, and ports are neglected. (b) shows a compact
drawing, where ports are considered and the blocks can flow into one another using
a local separation s, between the nodes. (c) shows that executing the balancing step
(as it is part of the original algorithm) in conjunction with orthogonally drawn edges
results in edge bendpoints that are avoidable as illustrated in (d).

for k real values x; < ... < x;. They proved that the average median
preserves the order of the nodes within each layer and preserves prescribed
separations (see Lemma 4.3, p. 158). Moreover, Brandes and Kopf mention
that an advantage of the average median, as opposed to simple averaging,
is that it creates straight edges whenever a pair of nodes is aligned in
two of the extremal layouts, while being positioned asymmetrically in the
remaining two layouts.
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Remarks As mentioned earlier, the original approach does not cater for
varying node sizes and ports. Ports pose two problems that are illustrated in
Figure 4.11a. First, even though all nodes of the blocks By and B; are neatly
top-aligned, not a single edge is drawn straight in the depicted drawing.
And straight edges are arguably the more important aesthetics criterion in
this case as opposed to top-aligning. Second, node n1 has two ports, both
of which would allow the connected edge to be drawn straight. Yet, n1 and
n4 are part of different blocks that will be separated during the compaction
step. Furthermore, different node sizes render the global separation value
sy between blocks impractical. s, would have to be larger than the tallest
node of the graph to avoid overlapping nodes, possibly leaving a lot of
whitespace. Figures 4.11b to 4.11d show drawings that are more desirable,
which use a local separation value s, between pairs of adjacent nodes. The
following sections address all of these issues.

The introduction of this chapter mentions that balanced node positions
are not always desired when edges are routed orthogonally. For this reason,
Carstens suggests to consider the balancing step to be optional and to
select one of the four extremal layouts as the final layout instead, based
on a certain decision criterion [Car12]. Two reasonable criteria are the total
height of the drawing and the total number of bendpoints.

4.2.1 Ports and Node Sizes

This section explains the necessary extensions of the original algorithm to
account for ports and varying node heights. The original algorithm assigns
the same y coordinate to all nodes within a block. This automatically yields
straight edges if all nodes have the same size and the same attachment
points for edges. With ports this is not true anymore. Therefore, an inner shift
is computed for every node, which represents the necessary offset of a node
within its block so that all edges of the block are drawn straight. Figure 4.12
illustrates the effect of the inner shift. Additionally, to address varying node
heights, the compaction step is modified to consider node heights when
calculating y coordinates for blocks. The inner shift and blocks of non-zero
height have already been proposed by Carstens [Car12], however, not that
every node’s individual height is considered during compaction.
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Figure 4.12. [llustration of the inner shift and the interweaving of blocks. Nodes n2,
n3, and n5 have an inner shift value different from zero. The inner shift defines the
offset of a node within its block and is depicted by the spacing markers. Furthermore,
block B, reaches into the bounding box of By, resulting in a compact coordinate
assignment.

The following explanations describe the extensions in a declarative fash-
ion. This is different from the paper of Brandes and Kopf and the conference
paper presenting the extensions [BK02; RSC+15], which employ an algorith-
mic presentation that may prove valuable when actually implementing the
method. The different presentation has been chosen to allow an incremental
explanation of the individual ideas without having to worry about the
concrete control flow.

Inner Shift Given a set of blocks B as computed by the alignment method
of the original algorithm, an inner shift ¢(v) is computed for every node
veV.Letb= ((p1,91),---,(pn,gn)) denote a block. The inner shift is then
computed for 1 < i < n as follows:

o(m(p1)) =0 ©
o(r(q:)) = o(me(pi) +y(pi) — y(q:) (D)

The computation can yield negative inner shift values. To agree on the
top-most position of the blocks, the values are offset such that the smallest
inner shift value of a block is zero. At this point the height of a block b is

final: h(b) = max (o(0) + () (E)

155



4. The Coordinate Assignment Step

This height was used by Carstens to determine block positions and to
compute the total height of each extremal layout, which in turn may be
used as decision criterion for the final layout in case the final balancing step
is omitted. Here, this height will not be used, since it is not fine-grained
enough to achieve the best compaction.

Block Compaction Given an inner shift for the nodes of each block, com-
paction of the blocks can be performed using the block graph. Contrary
to the original method, the inner shift and the heights of the nodes are
considered when computing the y coordinate of a block. Note that the
individual height of every node is used and not the overall height of a block.
This allows blocks to “flow” into each other, as seen in Figure 4.12.

Further notations are necessary before the computation of a block’s
position can be explained properly: Remember that the block graph BG =
(B, BE) is a tuple of the computed blocks B and the edges BE < B x B that
originate from pairs of nodes u and v that are adjacent within a layer of
the original graph’s layering. Let ¢ denote a mapping that maps an edge
e = (by,by) € BE to the pair of nodes of the underlying graph: g(e) = (u,v)
where u € b; and v € by. The () brackets are used for the pair to avoid
confusion with the notation of an edge. Let C denote the set of classes. The
block graph BG can be restricted to a certain class ¢ € C, which is written
as BG|.. In such a case, the set of blocks of the restricted graph is B, = c,
and the set of edges is BE|, = {(by,bp) € BE: by e c A by e c}.

The adjacent blocks of a block b that belong to the same class ¢ are
connected via an outgoing edge of b: adj.(b) = {b* : (b,b*) € BE}.
The neighbor pairs, which essentially dictate a block’s position, are pairs of
nodes of the original graph: np.(b) = {(u,v) = g((b,b*)) : (b,b*) € BE}.
Further, let b(v) denote the block of node v, and let ¢(v) denote the class of
node v.

As in the original algorithm, the blocks of each class’s restricted block
graph can be positioned recursively in the fashion of a longest path layering;
only that the computation of each block’s y coordinate is more intricate. For
each c € C, a block b € ¢ can be positioned as soon as all b* € adj.(b) have
been positioned. Since the block graph is acyclic by construction, one can
start with the graph’s sinks and iteratively assign positions until all blocks
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have been positioned. The position of a block b then is:

y(b) = (u,v?el;?;):l(b) {(y(b(v)) +0o(v) +h(v) + sn> — O'(Ll)} . (F)

Class Compaction The previous step compacted the blocks within each
class as much as possible, with the sink block of each class being positioned
at zero. The positions of blocks belonging to different classes may thus
either still overlap or offer further compaction potential. Therefore, now the
classes themselves must be moved as close to each other as possible without
overlapping. For that a class graph can be considered: CG = (C,CE), where
CE is a subset of the block graph’s edges: CE = {(by,by) € BE : ¢(by) #
c(by) }. Corresponding to the block graph, adjacent classes and neighbor pairs
are defined for the class graph. Given a class ¢, the adjacent classes are
adj(c) = {c(by) : (b1,b2) € CE A c(by) = c}, and the neighbor pairs are
np(c) = {(,0) = g((b1,b2)) : (b1, ba) € CE A c(by) = c}.

Given these definitions, a position is computed for every class in the
same fashion as was done for the block graph. The position is then used to
offset the classes’ nodes. Let ¢ € C be a class for which all c* € adj(c) have
been positioned. ¢’s position is:

y(©) = max | (y(e(®) +y(b(@) +0(0) +h(o) +51) ~c(w)] . (©)

The final block positions are computed as follows, resulting in a maxi-
mally compact and overlap-free layout:

Yo(b) =y(b) +y(c) forallce C,bec. (H)

Final Node Coordinates The computed block positions and the inside
shifts give the final node coordinates:

y(v) =yo(b) +0(v) forallbe B,veb. @

Balancing Given the four extremal layouts computed with the modified
compaction step, the same balancing procedure can be applied as discussed
above (p. 152). For this to work, however, the average median must preserve
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the order of the nodes within their layers and the prescribed spacing values
even if nodes have varying heights. That this is the case can be shown with
a small addition to Brandes and Kopf’'s lemma, which originally reads as
follows.

Let v and w be a pair of adjacent nodes within the same layer, i.e.
pos(w) —1 = pos(v). By construction of the different extremal layouts
1 < i < n (usually n = 4), positions are computed for the two nodes such
that y(v); + 6 < y(w); holds for any spacing value é > 0. In particular, this
spacing value can be a different one for each pair of nodes. The median is
computed over a set of ordered values. Therefore, let ' denote a reordering
of the y such that ¥/ (v); < ... <y (v)p and y'(w); < ... <Y (W)n.

Lemma 4.3. The average median is order and separation preserving. That is,

1 1
> (y’(v)w“)/ﬂ +y'(v) [(k+1)/ﬂ) +o< 5 (y/(w)L(kH)/zJ +y'(w) [(k+1)/ﬂ) .

It follows for nodes with heights and the prescribed spacing value s,:

Corollary 4.4. The average median is order and separation preserving if the nodes
have a height.

Proof. For the pair of nodes v and w, set 6 = s, + h(v). O

4.2.2 Straightening Edges

The extensions discussed in the previous section enable the coordinate
assignment method of Brandes and Kopf to properly draw diagrams that
include ports and nodes with varying heights. This section addresses the
desire to favor, at least to a certain extent, straight edges over the most
compact layout possible (P-CA2). Figure 4.12 shows an example in which
the taller node n1 allows for more than one incident edge to be drawn
straight, at the risk of increasing the drawing’s overall height. The original
algorithm did not have to address this since nodes were considered to be
uniform. There are two parts to the solution proposed here. For one thing,
the compaction step is slightly modified, and for another thing, a simple
post-processing step is executed after the compaction step.
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(a) Without straightening (b) With threshold (c) After post-processing

Figure 4.13. Illustration of the procedure to straighten additional edges during
the compaction step. A threshold value is used to prevent n5 in (b) from being
compacted “too far”. (c) shows the desired final result, obtained by shifting n4
upwards during a post-processing.

Remember that the extended compaction step, discussed in the previous
section, compacts blocks and classes as much as possible. This implies
that for a given iteration direction only such edges are possible candidates
for additional straightening where one of the involved blocks was moved
“too far”, for instance, see the edge (n5, n3) between blocks B3 and B
in Figure 4.13a (when compacting upwards). To stick to the notion of
“aligning nodes”, such an edge is referred to as a desired alignment of two
nodes belonging to different blocks. The corresponding blocks should
thus be placed in a manner that allows the edge to be drawn straight.
Figures 4.13b and 4.13c illustrate the two parts of the proposed solution.
Without modification, everything is compacted as much as possible as seen
in (a). In (b) a threshold value ¢ prevents the block B3 from moving further
upwards, resulting in an additional straight edge. The threshold value is
computed based on the edge (n5, n3). (c) shows the desired final result in
which the edge (n4, n3) was straightened during a post-processing step.

The post-processing step is necessary because a threshold value can only
be determined during the compaction process if one the involved blocks has
already been assigned a position. Consider Figure 4.13a and the iteration
direction rightwards and downwards, which means compacting the blocks
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upwards. The algorithm has to place block B, before it can place block
B;. Consequently, when looking at the edge (n4, n3), no threshold can be
calculated because node n3, or rather its block, has not been placed yet. In
such a case, the straightening of the outgoing edge of n4 is delayed until all
blocks have been placed.

Desired Alignments There are different possibilities to select desired
alignments. A simple solution is to select them greedily on the fly while
iterating through the graph during the compaction step. For every edge that
is visited, it is checked whether it is a candidate for a desired alignment.
If so, and if it can be handled straight away, the aforementioned threshold
value is computed and applied as explained below. Otherwise, the edge is
recorded for post-processing. Moreover, only those edges are considered
that are incident to either the first node of a block or the last node of a block.
Note that a block can consist of a single node, in which case both cases are
true.

This procedure can be improved at at least three points: (1) be more
intelligent in selecting an edge instead of just using the first one that is
encountered; (2) check whether edges between nodes that are neither the
first nor the last in a block are candidates for desired alignments, there may
be multiple of them per block; and (3) when multiple edges incident to a
block are candidates to be drawn straight (although not simultaneously),
choose the one that allows the most compact layout. Nevertheless, the
greedy procedure mentioned above already selects many edges that, to a
human, are obvious candidates for straightening.

Threshold A computed threshold shall affect the positioning of a block, as
initially defined in (F), as follows. Let b denote a block to be positioned, and
let e = {p,q} denote an edge that has been selected as desired alignment.
It is necessary to work with an undirected edge here since it can be both
an incoming and an outgoing edge of b’s nodes. Assume that 4's node is
in b: 7t(q) € b. Furthermore, it is required that the other block b* = b(7(p))
has already been placed and that the two blocks belong to the same class:
c(b) = c(b*).
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(F) computes the most compact position y(b) for block b. To fulfill the
desired alignment, a threshold value is derived from e and the new position
for b is computed subject to this threshold:

8(b,e) = (y(b*) +o(x(p)) +y(p)) = (c(x@) +¥(@) O
vo(b) = max{y(b), 9(b,e)} (K)

For the next computations of yet unplaced blocks that depend on b’s posi-
tion, y(b) is then considered to take the value of y4(b).

The max in (K) is due to compacting upwards, and would be a min
when compacting downwards. Where desired, one can limit the maximum
difference of the initial block position and the adjusted block position at
this point. A reason to do this might be to avoid a layout from becoming
too tall in order to draw a single edge straight.

Post-Processing As mentioned above, certain desired alignments must be
postponed as it is not always possible to address them immediately. Due
to the way the edges are iterated during the compaction step, it is possible
to collect postponed desired alignments in a queue and process them one
after another afterwards. To illustrate, consider Figure 4.13 again. Imagine
a further node n4’ connected to n3 and located between n4 and n2. Just as
n4, it will be delayed. To give both edges a chance to be straightened, it
is important to post-process n4 prior to n4’. Using a queue allows to do
exactly this. Care has to be taken, however, that blocks that are already part
of a desired alignment, e. g. due to a previously applied threshold value,
must not be moved.

As soon as all blocks and classes have been positioned, the desired
alignments in the queue can be processed one after another, each time
checking for the involved edge and block how far the block can be shifted
without overlapping other nodes. This way, the processed edge becomes
either straight or shortens as much as possible. The required computations
to come up with a new block position are the following. Let b be the block
to be post-processed and e be the edge that should become straight. Further,
let np(b) be the set of neighbor pairs of b that are not restricted to a certain
class: np(b) = {(u,v) = g((b,b*)) : (b,b*) € BE}. Two values need to be
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known to safely shift a block: g;, the extent by which b has to be shifted
upwards for e to become straight, and ¢, the maximum extent by which b
can be shifted upwards without introducing overlaps.

¢s = 0(be) —yo(b) (L)
Gro = —o(0) + | max [ (40(b(0)) +0(0) + h(2) +1) —o()] M
Ypp(b) = yo(b) —min { [gs], [Gnol } (N)

Note that the threshold in (L) must be newly computed at this point. Since
both ¢ values are negative when compacting upwards, b’s position if shifted
by the smaller amount of the two. Again, the shift is performed even if
the desired alignment cannot be fulfilled since it reduces the length of the
edge e. ypp(b) replaces y,(b) for further computations.

4.2.3 Remarks

The remaining paragraphs of this section discuss several intricacies of the
balancing step in conjunction with node heights and edge straightening,
and of dummy nodes introduced for north/south ports and inverted ports.

Balancing The introduction of individual node heights has adverse impli-
cations for the balancing step as it was defined by Brandes and Kopf. Since
blocks are now non-uniform in height and are allowed to asymmetrically
interweave, the four extremal layouts are less “symmetrical” in comparison
to each other. As a consequence, it does not necessarily hold anymore that
straightness prevails for twice aligned nodes (cf. p. 152). An example can
be seen in Figure 4.14a. The edge (n1, n3) would be straight after applying
the original algorithm, at the cost of moving n2 downwards and increasing
the diagram’s height.

The situation can get worse when the edge straightening strategy pro-
posed in the previous section is applied. The way desired alignments are
chosen within the individual extremal layouts is not necessarily symmetric
among the four layouts. This collides with the idea to have four extremal
layouts that, taken together, compensate each other’s biases. As a conse-
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ot £ e

(a)

(b) (c)

Figure 4.14. Issues with the final balancing step: ports, node sizes, and the procedure
to straighten further edges may result in the unfortunately balanced drawings (a)
and (b). (c) shows a drawing without balancing applied.

quence, balancing in conjunction with straightening may result in drawings
as the one seen in Figure 4.14b. The edge (n1, n3) makes an unnecessary dip
downwards, which would not exist without the additional straightening
procedure.

Nevertheless, the effect usually keeps within limits and only occurs when
the final balancing step is used. As an illustration, (c) shows a drawing with
the maximum number of straight edges, which is one of the four extremal
layouts. Still, both mentioned balancing problems should be addressed in
the future.

North/South Ports and Inverted Ports Both types of ports result in special
dummy nodes being created, with inverted ports additionally yielding in-
layer edges and north/south ports yielding partly unconnected dummy
nodes. Carstens addresses this situation by simply ignoring both types
of dummy nodes in the sense that he regards them as plain long edge
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n1 n2 n3
) 1
e O
n4 T T
n5 n6
(a) Input graph (b) Block graph

Figure 4.15. Internally, two inverted port dummy nodes are created for the edge (ns,
n5). The dummy nodes are connected to n5 and n6, respectively, by in-layer edges.
Ignoring the in-layer edges during the alignment step results in “floating” blocks,
as seen in (b), that yield unnecessarily elongated edges.

dummies. Additionally, he omits the in-layer edges connected to inverted
port dummies whenever a node’s edges are iterated during the algorithm.
While this enables the algorithm to work with those particular types of
ports, the resulting drawings are unsatisfactory at times. See Figure 4.15 for
an example.

Matters can be improved for inverted ports if one allows the post-
processing step to select in-layer edges as candidates for straightening.
Obviously, it is not possible to straighten an in-layer edge, however, the
involved blocks are moved as close to each other as possible, reducing the
edge’s length. Furthermore, it is possible to handle the dummy nodes of
north/south ports in the same way, by temporarily connecting them with
the nodes they originate from. This enhancement is part of, and depends
on, the straightening step. Thus, it is not available where no straightening
is desired.

Implementation Details The descriptions above give an intuition of how
the modified compaction step and the straightening method proceed and ex-
plain how concrete positions are computed. They give, however, no concrete
implementation hints. Pseudo code that details an efficient implementation
can be found in the two corresponding papers [BK02; RSC+15]. Brandes
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and Kopf show that all three steps can be realized in linear time and require
only a small number of arrays that hold pointers to the graph’s nodes. Also,
it is enough to iterate the graph’s nodes once per step within the selected
iteration direction to compute all required information. The extensions to
the original algorithm as discussed above integrate seamlessly with this
and preserve, depending on the post-processing strategy, the overall linear
execution time. The inner shift values can be computed in time linear to the
number of edges that are part of blocks. The size-aware block compaction
only adds constant time operations to the computation of a block’s position.
The strategy to straighten further edges can be realized in linear time as
well: to select an edge, the edges incident to a block are looked at at most
once; calculating and comparing threshold values are constant time opera-
tions; adding elements to and removing them from a queue can be done in
constant time as well; finally, it must be checked during the post-processing
step how far blocks can be moved into a certain direction, which looks at
each node of the graph at most once.
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4.3 Discussion

The previous two sections presented modifications and extensions of the
coordinate assignment methods of Gansner et al. and Brandes and Kopf.
When compared to each other in their original form, each method has its
strengths and weaknesses. The same applies to the modifications discussed
here, which target specific problems that may or may not be present for
certain diagram types. Thus, there is no definite answer to the question
which method, in conjunction with which modifications, is the best. The
following evaluation is therefore to be understood as an attempt to verify
that the methods behave as expected when applied to diagrams from
practice. To make the discussions easier to follow, the coordinate assignment
methods and their variants are abbreviated as follows:

* Brandes and Ko6pf’s approach extended with ports and node sizes without
balancing, either without additional edge straightening (BK) or with edge
straightening (BKS); and

* Gansner et al.’s approach with edge straightening (NS) and with the
option to enlarge nodes where reasonable (NSN).

Based on the nature of each of the aforementioned variants, the following
four hypotheses are expected to hold:

H1 compared to BK, BKS reduces the number of edge bends at the cost of
an increased drawing height;

H2 compared to NS, NSN reduces the number of edge bends at the cost of
an increased drawing height;

H3 both BK and BKS produce fewer edge bends than NS; and
H4 regarding execution time, BK is faster than NS, NS faster than NSS.

The variants were applied to two different diagram types: flattened Ptolemy
diagrams drawn from left to right and SCGs drawn from top to bottom. See
Section 1.4 for an introduction of both diagram types and Section 1.9 for
a detailed description of the concrete graph instances. Flexible node sizes
were allowed during NSN for nodes that have at least two ports on one of
the relevant sides, i. e. on the west or east side for a left-to-right layout.
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Figure 4.16. Results on the number of edge bends and on the size of the final
drawing for the four variations of the discussed coordinate assignment methods.
The size is either the width or the height, depending on the layout direction. Values
are normalized for each graph instance with respect to the result of BKS, and for
each measure the same y axis range is used.

Figure 4.16 shows the results for the number of edge bends and the
drawing area size, both of which are normalized with respect to BKS’s
results. Thus, a bend count value of another method that is larger than
1.0 indicates that BKS produced less bendpoints than the other method.
Accordingly, a size value larger than 1.0 means that BKS produced less size.

For both diagram types the number of bends reduces for BKS compared
to BK, supporting H1. However, a significant change can only be seen for
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the SCGs. The size increases slightly for a small number of Ptolemy diagram
instances and about a third of the SCGs. Surprisingly, the straightening
reduces the size of 21 SCGs, which can be explained as follows. The SCGs are
hierarchical, and it turns out that in the affected cases certain straightening
decisions within hierarchical nodes allow a more compact placement on
higher hierarchy levels.

NS and NSN, compared to each other, behave as hypothesized in H2
for the Ptolemy diagrams: the number of bends reduces on average if one
allows flexible node sizes while the average size slightly increases. The
SCGs do not profit from flexible node sizes, which is likely due to the fact
that most of the nodes have a single incoming and a single outgoing edge.
As hypothesized in H3, the BK variants produce less bends than NS on
average and for most of the graph instances. NS yields smaller drawings
on average instead. However, there is a non-negligible number of graph
instances for which BK’s drawing is smaller in turn.

Figure 4.17 shows the execution times of the methods plotted against
the number of nodes during coordinate assignment. The node counts are
on average 1.47 times larger than the node counts of the input graphs, with
a standard deviation of 0.46. The evaluation was performed on a laptop
with an Intel i7 2GHz CPU and 8GB memory. It can be seen that for up to
200 nodes all methods finish in under 50ms, which makes them fast enough
for interactive applications. BKS remains fast with increasing numbers of
nodes: it stays below or close to 10ms for up to 500 nodes. This is different
for the other two methods, which require up to 500ms for 500 nodes. H4
can be verified: BKS is significantly faster than NS, which in turn is faster
than NSN.

Summarizing the observations, in general and when looking at the
right set of graphs, the stated hypotheses hold. Nevertheless, the presented
results include many outliers, which are both due to the heterogenous data
sets and due to the fact that the methods are sensitive to the concrete graph
instance.

To conclude this chapter, extensions and modifications to two coordinate
assignment methods have been presented that allow them to be flexibly
adjusted to the needs of a broader range of diagram types. The approach of
Gansner et al. has been modified to optionally allow flexible port positions
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Figure 4.17. Execution time plotted against the number of nodes for the tested
Ptolemy graphs. Both axes are logarithmic. For each node count value the maximum
execution time of any graph instance with that node count is plotted.

on a node’s border and to allow a node to resize in height, both for the
case that it increases the total number of straight edges. Furthermore, it
has been shown how certain edge paths can be post-processed, again to
increase the number of straight edges. Due to the underlying optimization
method, execution times increase significantly for larger graphs.

The approach of Brandes and Kopf has been extended to support dif-
ferent node sizes and ports, which makes it usable for a wider range of
diagram types, such as dataflow diagrams. Additionally, modifications to
further increase the number of straight edges have been presented. At its
core, the method first and foremost aims at straight edges, potentially at
the cost of a larger drawing size. The method is fast, even for larger graphs.

The presented extensions of both methods leave room for further work
with practical relevance, two points in particular:

Balance Improve BK with respect to combining the four extremal layouts
without impairing straightness, and improve NS with respect to finding
balanced port positions when flexible nodes are involved.

Compactness Address item P-CA4 (p. 50), where the goal is to identify a
preferably small set of edges and to intentionally draw those edges
non-straight to obtain a more compact drawing.
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Chapter 5

Post-Processing: Width Reduction

The previous chapters were concerned with improving several known
methods for various steps of the layer-based approach. This chapter, on the
other hand, discusses a new method that aims at reducing the width of
the created drawings and is executed as a post-processing step after the
five traditional steps. It addresses challenges P-LA1 and P-LAS3 as stated
in Section 2.2 (p. 46). The underlying idea of the presented method is to
use the simple and well-studied technique of one-dimensional compaction
to pull a drawing’s elements together as much as possible. For this to be
effective, it must be possible to move the elements of the diagram in a way
that is less restrictive than prescribed by the usual rigid layering. Since the
compaction ought to be executed as post-processing, it is unproblematic
to abandon the layering since the traditional algorithm that requires it has
completed. An example can be seen in Figure 5.1. A lot of space is saved
in (b) by abandoning the rigid layering and by compacting everything
as much as possible within the x dimension. As mentioned in Chapter 2
(p- 43), computing somewhat relaxed layerings has been proposed before
in the context of the layer assignment step itself, the used methods impose
additional challenges on the subsequent steps, however. Contrary to that,
the post-processing step proposed here runs independently.

This chapter is structured as follows. First, the technique of one-dimen-
sional compaction is reviewed. Second, it is explained how the technique
can be used in the context of graph layout and the layer-based approach.
In particular, Sections 5.2 and 5.3 explain what has to be considered when
compacting either dataflow diagrams or state diagrams. The chapter then
closes with a small evaluation to assess the method’s practicality and a
discussion.
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(]

(a)

(b)

Figure 5.1. Illustration of applying one-dimensional compaction to a layer-based
drawing of a dataflow diagram. (a) An automatically drawn diagram with traditional
methods. Circled nodes are pushed to the right due to the rigid layering. (b) The
same diagram after post-processing. The diagram’s width is reduced by about 16 %
and the average edge length is reduced by over 50 %.
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5.1. One-Dimensional Compaction

5.1 One-Dimensional Compaction

One-dimensional compaction is a well-known technique to minimize the
area occupied by a set of objects in the plane. As opposed to the often NP-
hard two-dimensional compaction problems, it can be solved efficiently in
time O(nlogn), n being the number of objects to compact [Len90]. Lengauer
thoroughly discusses one-dimensional compaction in the context of VLSI
design and presents methods for several, quite general, variations [Len90].
Here, only those concepts are discussed that are relevant for the remainder
of this thesis. The interested reader is referred to the well-written book for
further details.

Let R denote a set of rectangles in R2. A rectangle r = (ry, Ty, Tw, ry) is
a quadruple of the rectangle’s top left position (r,7,) € R? and its size
(rw,7) € R*2. Let the union (u) of a pair of rectangles be defined as the
set of points (a,b) € R? that are covered by either of the rectangles (hence
the resulting set does not necessarily describe a rectangle), and let the
intersection (n) be the set of points that are covered by both of them.

Definition 5.1 (Left of, overlap horizontally). Similar to Lengauer, r is said
to be left of s with r,s € R if (ry + 14 < sx), and r and s are said to overlap
horizontally (r < s) if

(ry <sy+sp) A (sy<ry+r,) A rleftofs.

A set of rectangles R is valid if Vr # s € R : r ns = . The one-dimensional
compaction problem in the x dimension seeks for a transformation of a
valid set of rectangles R into a valid set of rectangles R’ by changing
x coordinates only and by preserving the order <, such that the width w is
minimized, with

w = maxXyex (Y +71,) — mingegs 7.

Note that the case to compact the height can be defined analogously in the
y dimension.

Two steps are executed to solve the problem. First, a constraint graph is
derived from a given set of rectangles. It encodes which rectangles overlap
horizontally. Second, the constraint graph is used to position the rectangles
in a way that yields minimum width.
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n2 n2
n1 n1
‘ | n4 ’ | n4
(a)

(b) (c)

Figure 5.2. A set of rectangles (a) with two possible constraint graphs. The vertical
segments of edges are represented by rectangles. The constraint graph in (b) contains
redundant constraints, which were removed in (c).

Constraint Graph

The constraint graph CG = (R, C) is a tuple of a valid set of rectangles
R, i.e. the nodes of the graph and a set of constraints C. The constraints
C € R x R form the directed edges of the graph. An edge ¢ = (s,r)
with s,7 € R is added to CG if r < s. Note that this graph is acyclic by
construction.

Naively, the constraint graph can be constructed in O(n?) time by check-
ing for every pair of rectangles if they overlap horizontally, n being the
number of rectangles. However, this way the number of edges is in O(n?)
and several edges may be redundant. Consider Figure 5.2b, where the con-
straint between the pair of rectangles n1 and n4 is transitively guaranteed
by the two constraints (n1, n2) and (n2, n4). Figure 5.2c shows a constraint
graph without redundant constraints.

Lengauer shows how the constraint graph can be computed using a
scanline technique in time O(n log n) and with O(n) edges [Len90]. The
procedure is illustrated in Algorithm 5.1. Let Y~ = {r, : r € R} denote the
set of the upper coordinates of all rectangles and let Y* = {r, + 1, : r € R}
denote the set of lower coordinates. For a point p € Y~ u Y™, let r(p) denote
the rectangle for which p was added. The scanline processes the points in
increasing order from top to bottom. An array (cand) is used to hold con-
straint candidates. The set S, ordered based on the rectangles’ x coordinates,
allows to query the (current) predecessor (left(r)) and successor (right(r))
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5.1. One-Dimensional Compaction

Algorithm 5.1: Constraint Graph Computation

Input: R: set of rectangles

Data: cand[r]: constraint candidates indexed by rectangle,
S: sorted set of rectangles

Output: C: set of constraints

points < Y~ u YT
Sort points ascendingly (prioritizing Y)
for p in points do
if pe Y™ then
r — r(p)
Put r into S
cand[r] « S.left(r)
cand[S.right(r)] < r
else
if S.left(r) exists A S.left(r) = cand[r] then
| Add (r, S.left(r)) to C
if cand|[S.right(r)] = r then
| Add (S.right(r), r) to C
L Remove r from S

of a rectangle r according to the order. Its implementation must provide
insert and delete operations that run in O(logn) time and constant time
operations to access neighbor elements. When the scanline encounters an
upper coordinate, it adds the corresponding rectangle to S and updates
the constraint candidates. When a lower coordinate is encountered, the
scanline “finishes” the corresponding rectangle by removing it from S and
by checking the set of candidate constraints, possibly adding them to the
constraints of the final graph. By definition of <, no constraint must be
added between a pair of adjacent rectangles r and s if the lower coordinate
of one of the rectangles equals the upper coordinate of the other rectangle,
e.g. ry + 1, = sy. This can be achieved by prioritizing Y* over Y~ during
scanline execution. For the correctness of this procedure and minimality of
the resulting constraint graph, see Lengauer [Len90].
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(a) Grouped rectangles (b) Corresponding constraints

Figure 5.3. Nodes n1, n2, and n3 are in the same group. Cycles within the grouped
constraint graph prevent compaction: n1 must be positioned before n4, however, n4
must be positioned prior to n3. Since n1 and n3 belong to the same group, they must
be positioned simultaneously.

Grouping

In certain use cases it is required that two or more rectangles keep their
relative positioning to each other. An example are a rectangle that represents
a vertical edge segment incident to north/south ports and a rectangle that
represents the node which the edge is incident to (cf. Figure 5.9b, p. 186,
for an illustration). The segment does not overlap horizontally with the
node and thus may detach during compaction. To avoid this, rectangles
are grouped, which is similar to the concept of grouping constraints used
by Lengauer. Formally, the constraint graph CG = (R, C) is extended to a
grouped constraint graph GCG = (R, C, G) where every rectangle is part of a
group. A group g € G is a non-empty set of rectangles ¢ (R where every
rectangle has an offset 5 € IR? to an imaginary origin (gx, ). By convention,
the left-most rectangle of a group has an offset of zero. During compaction,
the relative positions between grouped rectangles are to be preserved by
the algorithm. A grouping is valid if no rectangle is in more than one group:
Vg # gj € G: gingj = J. Any constraint ¢ = (,s) € C can be neglected if
r and s are in the same group. Let ¢(r),r € R, stand for r’s group. out(g)
denotes the outgoing constraints of g, i.e. {(r,s) e C:r,se R Ar € g}, and
in(g) denotes the incoming constraints. 6*(g) = |out(g)| denotes the out-
degree of group g, i.e. the number of constraints leaving g, 6~ (g) = |in(g)]
denotes the in-degree.

It is possible to group nodes in a way that yields a cyclic grouped
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5.2. Dataflow Diagrams

constraint graph. Consider Figure 5.3. The filled nodes n1, n2, and n3 form a
group g. To fix n4’s position, the position of g, and thus the positions of all of
g’s nodes, must be fixed first because of the constraint (n4, n1). However, n3
requires that n4 has been positioned because of the constraint (n3, n4). Thus,
neither of the four nodes can be positioned in this scenario. The depicted
scenario corresponds to a directed cycle: ¢ € out(g(n4)) and g(n4) € out(g).
It is important to keep this in mind when using the compaction algorithm
that is presented in the next section since it requires the input graph to be
acyclic.

Compaction

The minimum width that can be achieved is bound by the longest path
of the grouped constraint graph. To obtain a placement with minimum
width, Algorithm 5.2 can be executed. Initially, the method sets the tentative
positions of all groups to zero. It then selects the sinks of the graph and
performs three actions. Let g denote such a sink:

1. Turn g’s tentative position into its final position and position g’s rectan-
gles based on the specified offsets.

2. Update the tentative positions of groups ¢* that are constrained by g to
max{g¥, maxyeg(ry + 1w) }-

3. Remove g’s incoming edges in(g) from the graph.

The procedure is repeated until all groups have been placed. It takes linear

time and is guaranteed to terminate if the input graph is acyclic.

This closes the brief review of one-dimensional compaction. The next
section turns to the question how to use it in the context of graph layout.

5.2 Dataflow Diagrams

Working with dataflow diagrams laid out by the layer-based approach,
I frequently observed scenarios where wide nodes prevent more compact
drawings by pushing other nodes far to the right in order to respect the
rigid layering. Figure 5.1 already exemplified such a scenario, and it is the
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Algorithm 5.2: Group Compaction

Input: GCG = (R, C, G): grouped constraint graph
gx <0 VgeG
sinks — {geG:6(g)=0}
while sinks not empty do
g < sinks poll
forre g do
L 7x=8x+T1s
for (s,r) e {(s,r) e C:re g} do
8(s)x = max{g(s)x,7x + rw}
Remove (s,r) from C
if 57 (g(s)) = 0 then
| Add g(s) to sinks

initial motivation for the work presented in this chapter. The method is not
limited to dataflow diagrams, though. The subsequent section, Section 5.3,
illustrates how the presented compaction technique can be adjusted to work
for state diagrams as well. The main difference there is that edges are often
drawn using splines instead of in an orthogonal fashion.

First, however, this section shows how to convert a given drawing of
a dataflow diagram into a one-dimensional compaction problem. It pays
special attention to the peculiarities of dataflow diagrams: orthogonally
routed (hyper-)edges, inverted ports, and north/south ports. It furthermore
discusses how to sensibly consider the lengths of edges as well as prescribed
spacing values that are to be preserved between graph elements.

Representing a Dataflow Diagram with Rectangles

The goal is to represent all relevant elements of a diagram using rectangles.
Remember that the one-dimensional compaction technique discussed above
requires a set of non-overlapping rectangles. After applying the layer-based
approach this is mostly the case, in particular: (1) nodes and edges do not
overlap, (2) prescribed spacings between graph elements are respected, and
(3) the connection point of an edge on the corresponding node’s perimeter
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5.2. Dataflow Diagrams

D'\:

(@) (b) (c)

Figure 5.4. Depending on the representation of hyperedges, vertical segments of
edges have to be merged. Assume that the hyperedge seen in (a) is represented
by three individual edges (n1, n2), (n1, n3), and (n1, n4) whose vertical segments
are simply drawn on top of each other. To illustrate, the three vertical segments
are drawn next to each other in (b). For compaction they are merged into a single
rectangle as shown in (c).

is fixed. Note that if overlaps would exist, one could try to remove the
overlaps before performing compaction, which is a well-studied task in
itself [DMS06; GH09; NNB+16].

As mentioned before, dataflow diagrams can be seen as directed hy-
pergraphs, and as explained in Section 1.3 hypergraphs can be translated
into regular port-based graphs. To that end, each hyperedge is represented
by a set of regular edges. The translation allows to use traditional layer-
based methods without the requirement to specifically address hyperedges.
However, it also means that multiple segments of different edges, all rep-
resenting the same hyperedge, may lay on top of each other — a fact that
must be considered in the following and is illustrated in Figure 5.4.

Let PG = (V, P, E, ) denote the given port-based graph representing
a laid out dataflow diagram. For one-dimensional compaction, the nodes
V form the set of rectangles (R where each rectangle represents a node’s
bounding box. Furthermore, for every vertical segment of an edgee€ E, a
rectangle with corresponding height and width is added to R. The width
corresponds to the edge’s thickness within the drawing. The following
explanations simply assume a unit width. In case the diagram contains
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Label on an edge n (:)ﬂ
(a)

Label on an edge n (:)@
(b)

Figure 5.5. Small diagrams (left) and the corresponding constraint graphs (right).
Edge labels can be considered during compaction by adding a label’s bounding
box to the set of rectangles (filled boxes). Care must be taken that a rectangle that
represents an edge label stays close to the edge: there is no leftward constraint
for either of the depicted edge labels. It is thus possible that the label ends up to
the very left of the drawing, completely detached from the corresponding edge.
(b) additionally illustrates potential for compaction that occurs in the presence of
inverted ports: the edge label can well be moved above n1.

hyperedges, some of the rectangles created for the edge segments may
overlap and must be merged prior to compaction. This can be done effi-
ciently and is explained in further detail in Section 5.2.2. The horizontal
segments of the edges do not have to be considered at this point. However,
during the compaction process the length of an edge may change implicitly,
and usually short edges are desired. This topic is discussed separately in
Section 5.2.1. Because of assumptions (1)-(3) and the potential merging
of the vertical segments’ rectangles, the set of rectangles R is valid and a
constraint graph can be computed.

Another important element of diagrams are labels. Both nodes and
edges can carry labels. How to consider them during compaction depends
on the way the labels are modeled during layout. For instance, node labels
that are placed inside the bounding box of the node itself do not require
additional treatment. If the labels are placed outside of the node itself, the
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node’s bounding box can be enlarged to comprise the label. Edge labels are
more demanding: In ELK Layered, edge labels are often modeled as dummy
nodes and added to the graph itself for the time the layout algorithm is
executed. This allows to reserve enough space for labels during both the
placement of nodes and the routing of edges. Consequently, the labels do
not overlap with any other graph element and their bounding box can
safely be added to R. Nevertheless, care has to be taken during compaction
that a label remains connected to the corresponding edge. The rectangle
that represents the label during compaction is not necessarily constrained
by other elements, as is illustrated in Figure 5.5. A possible solution is to
manually add constraints between the rectangle that represents the label
and the adjacent vertical segments of the edge. If the edge’s path does not
have a vertical segment or only on one side of the label, the label should
already be constrained by a node.

The next sections discuss further facets of dataflow diagrams that must
be considered to get satisfying results. In particular, solely minimizing the
width of a drawing is not sufficient to get aesthetically pleasing drawings.
Consider Figure 5.6b, where placing node n2 further to the right would
reduce the length of the incident edge. Consequently, it is important to min-
imize, or at least consider, the total edge length during width minimization.

5.2.1 Edge Length

One-dimensional compaction itself is not aware of the edges of the input
diagram and thus does not consider the length of the individual edges. As
just mentioned, this is illustrated in Figure 5.6b. The problem of finding
positions for a graph’s nodes that minimize the total edge length is known
from Chapter 3, where it is referred to as DLP. The problem has also been
studied in the context of VLSI design, where the length of electrical wires
on a circuit board should be minimized [Len90; HT92].

Next, two solutions are suggested that are simple and specifically tai-
lored to graph layout. Nevertheless, it might be worthwhile to explore
and compare further existing algorithms, in particular the ones of Ham-
brusch et al. that among all solutions with minimum total edge length find
the ones with minimum width [HT92].
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(a) Input
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(b) Naive (c¢) Desired

Figure 5.6. Example of applying one-dimensional compaction to the input graph
(a). Comparing (b) and (c) illustrates the importance of considering edge length
in addition to minimal width (see (n2, n5)) as well as the importance of special
handling of certain vertical segments (see (n5, n6) and (n4, n3)).

LR To achieve minimal width with some edge length reduction, compact
everything to the left first, using Algorithm 5.2. Then fix the positions of
nodes that have no outgoing edge in the original graph, and fix the positions
of vertical segments that are not constrained eastwards by a node they are
connected to, such as the right vertical segment of edge (n4, n3) in Figure 5.6.
Afterwards, execute another compaction pass to the right subject to the just
fixed positions. This would yield the desired result as seen in Figure 5.6c
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(a) (b)

Figure 5.7. Two suboptimal compaction results when considering edge length. In (a)
moving n3 to the left would decrease the overall edge length, and in (b) moving the
two nodes n1 and n3 to the right would have the same effect.

but may yield sub-optimal results for other diagrams, consider the two
examples seen in Figure 5.7, for instance.

EL To minimize the total edge length, one can use Gansner et al.’s NS
algorithm for DLP (cf. Chapter 3, p. 57). Note that in this case the compaction
is performed by NS, i.e. Algorithm 5.2 is not used.

Before the constraint graph is passed to NS, it is augmented with the
edges of the original graph and further auxiliary edges as explained next.
Only the original edges should be subject to minimization. Therefore, zero
weights are assigned to the edges of the initial constraint graph. Prescribed
spacings can be addressed by assigning corresponding minimal edge length
values. Unfortunately, it is not always possible to directly add the original
edges: consider Figures 5.8a and 5.8b. Adding an edge from n1 to n2 would
prevent n1 from being placed below n2 in both cases, since in that case
the left-most coordinate of n2 must stay right of the right-most coordinate
of n1. To solve this, one can use Gansner et al.’s construction to minimize
an edge’s length without prescribing the order of the connected node pair
(cf. Section 4.1). As a reminder: an auxiliary node is added to the network
simplex graph and two edges from it to both of the existing nodes. The
minimal lengths of these edges are chosen such that they reflect the offsets
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A bit longer

(@ (b) ()

Figure 5.8. When aiming for a compact layout with short edges, several special cases
have to be considered. In (a) and (b) node n1 should be allowed to be placed below
n2. In (c) the labels of hierarchical ports have different lengths, which results in
compaction potential: n1 can be moved further to the left.

of the edges’ attachment points on the nodes’ perimeters. This allows edges
to become straight that directly connect north and south ports, such as the
one seen in Figure 5.8b. The traditional layer-based approach is not able to
do this since it must place n1 and n2 in different layers. A small drawback
of the proposed solution is that it does not necessarily preserve the order of
the involved nodes: it can result in a backward pointing edge (n1, n2) if the
structure of the remaining graph encourages placing n2 to the left of nl. In
certain use cases this may even be desired, though.

5.2.2 Vertical Segments

Remember that at this point we are only concerned with orthogonally
routed edges, which essentially are alternating sequences of horizontal
segments and vertical segments. During one-dimensional compaction in the
x dimension, only the vertical segments must be considered. As discussed
before, the segments can simply be modeled as narrow rectangles. Never-
theless, to obtain acceptable results, care has to be taken in the presence
of hyperedges and in the presence of a type of vertical segments that will
shortly be defined as free segments. For the sake of simplicity, the following
explanations and figures assume that edges connect to nodes via ports
but refrain from explicitly mentioning or drawing the ports. They further
assume that all edges have a single source and a single target.
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Hyperedges As mentioned above, hyperedges can be represented by a set
of one-to-one edges. In such a case, vertical segments that are part of the
same hyperedge may overlap within a drawing. For one thing, this prevents
compaction since an overlap-free set of rectangles is required. For another
thing, one must ensure that the set of overlapping vertical segments moves
synchronously during compaction to not break apart the edge’s route. The
easiest solution is to simply merge the set of overlapping rectangles into a
single rectangle. This can be done in a pre-processing step before constraints
are computed. It requires O(nlogn) time, n being the number of vertical
segments: Partition the segments based on x coordinates and sort them
based on y coordinates. A single execution of a sorting algorithm is enough
for this. Afterwards, for each partition, merge the segments that share an
extent within the y dimension.

After compaction, only the new x coordinate of a merged vertical seg-
ment s has to be transferred to the set of vertical segments s originates from.
The y coordinates are not altered during compaction and thus do not have
to be transferred back to the input graph.

In the other case, where hyperedges are drawn using a set of overlap-free
segments, no special actions must be taken.

Free Segments Informally, a free segment is a vertical segment that has
too much leeway. Its position after compaction may result in unnecessarily
elongated edges, see Figure 5.9 for three examples. More formally:

Definition 5.2 (Free segment). Let s denote a vertical segment which is
represented by a rectangle 7. Let e = (u,v) be the edge whose route s is
part of, and let r,, and r, denote the rectangles that represent the nodes u
and v, respectively. Finally, let S denote the possibly empty set of rectangles
representing other vertical segments of e. s is called a free segment if its
rectangle is not overlapped horizontally by either of the aforementioned
rectangles. That is, Vr € S U {ry, r, } holds that r A rs.

Note that free segments may well be constrained by other elements of the
diagram. Nevertheless, they are still likely to be moved “too far” to the left
(during leftward compaction) resulting in undesired drawings. The three
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(a) Touching vertical seg-  (b) North/south ports (c) Inverted ports
ments

Figure 5.9. Problems with unconstrained vertical segments (bold). Without special
handling, the dashed edge paths would be created. For illustration, the nodes and
other vertical segments are not moved.

types of free segments that are illustrated in Figure 5.9 can be handled as
described in the next sections. They occur in the context of

(a) “touching” vertical segments,
(b) north/south ports, and

(c) inverted ports.

Touching Vertical Segments The route of an edge can contain multiple
vertical segments, some of which can be free segments, see Figure 5.9a.
The horizontal order of the vertical segments shall be preserved during
compaction for two reasons: (1) to preserve the intention of the layer-based
approach to let edges point forward, and (2) to avoid results such as the
unnecessarily elongated dashed routes depicted in the figure. Apart from
this, it is both allowed and desired that the vertical segments can move as
close to each other during compaction as possible. In the best case, they
collapse into a single vertical segment, removing a kink from the edge’s
route.

A possible solution to preserve the order of the segments is to ensure
that a constraint is added to the constraint graph whenever a pair of vertical
segments originating from the same edge shares a common y coordinate.
Remember that this case is not covered by the definition of <. The necessary
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constraints can, for instance, be added manually while transforming the
segments of an edge into rectangles. Alternatively, prior to computing
the constraints, the rectangles that represent the vertical segments can be
enlarged slightly within the y dimension to overlap horizontally. To allow
segments to collapse, the compaction algorithm must be aware of whether a
pair of vertical segments belongs to the same edge. In such a case it can omit
the width of the “left” segment’s rectangle when computing the tentative
x coordinate of the other segment’s rectangle.

One can imagine that a diagram can be compacted to a larger extent
if one was allowed to break apart certain vertical segments or to change
the order of the vertical segments. Figure 5.9a is an example for the second
point: if the dashed edge route is allowed, n2 can be moved above nl,
resulting in a maximally compact drawing at the cost of a longer edge path.
This is an interesting topic and should possibly be pursued further in the
future. Beforehand, however, it should thoroughly be evaluated to what
extent users accept the disruption of the otherwise left-to-right flow and
whether the methods used here are applicable. For instance, based on the
constraint graph used here, it cannot straightforwardly be decided which
vertical segments to split (additionally to existing bends), where to split
them, and how often to split them.

North/South Ports North/south ports are ports that are located at either
the northern border or the southern border of a node. Section 2.6 outlined
how to properly incorporate them into the layer-based approach.

A first or last segment of an orthogonally routed edge that is incident
to a north/south port is always a free vertical segment. Figure 5.9b shows
an example with both a north port (on n1) and a south port (on n2). One-
dimensional compaction, as specified above, would allow both vertical
segments to detach from the nodes’ perimeters. To prevent this, the rectangle
r, that represents a node n and any rectangle rys that represents a vertical
segment incident to a north/south port of n are added to a common group.
The offset between the r, and r,s within the group is set to the vertical
segment’s attachment point subtracted by the node’s x coordinate (assuming
a common coordinate system).

This, in conjunction with the explanations of the previous section on
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“touching” segments, allows a result that is not possible with the traditional
layer-based approach. Edge routes directly connecting a northern port with
a southern port can now collapse into a single vertical segment. The effect
can be seen for the edge (n5,n6) in Figure 5.6c. In the traditional algorithm
this is not possible because there n5 and n6é must be located in different
layers.

Inverted Ports Inverted ports are either western ports with outgoing edges
or eastern ports with incoming edges. To get a proper drawing, the edges
have to be routed around the node they are incident to, and they therefore
have to run “against” the flow for some section. This necessarily yields free
segments, where it depends on the compaction direction which segments
are affected: when compacting to the left, only the edges of western ports
are relevant. To be precise, the routes’ first vertical segments are free in
that case. Accordingly, when compacting to the right, the very last vertical
segments of the incoming edges of eastern ports are free. An example of the
former can be seen in Figure 5.9c. Just as for touching segments, the free
segment should stay close to the corresponding node to keep the overall
edge length short.

A possible solution proceeds as follows. A pull is assigned to the rectan-
gles that represent the vertical segments when they are initially created. A
vertical segment on the western side, such as the one in Figure 5.9¢, gets
assigned a right pull. A vertical segment on the eastern side gets assigned a
left pull. It then is the responsibility of the used strategy to address edge
lengths (cf. Section 5.2.1) to interpret the pull. LR fixes the positions of
leftwards pulled vertical segments during its second compaction run, where
everything is compacted to the right. EL adds additional auxiliary edges
to the network simplex graph that connect leftwards pulled segments and
rightwards pulled segments to the corresponding node. The weight of the
auxiliary edge can be set to a low value to favor a more compact drawing
over short inverted edges, or to a high value to favor the opposite.

In the context of wrapping layered graphs (cf. Section 3.3.2), a use case
was mentioned where only the orthogonal edge paths of a drawing should
be compacted, or rather optimized, without modifying node positions.
Hereto, pulls are assigned to all vertical segments as follows. Following an

188



5.2. Dataflow Diagrams

edge path from source node s to target node t gives an order of the two
nodes and the vertical segments: s,vsy,...,vs,, t. Letrq,..., 1,42 denote the
corresponding rectangles, where r; is s’s rectangle and r,,1 7 is t’s rectan-
gle. For vertical segments that are not free, regardless of the compaction
direction, it is usually not important into which direction they are pulled.
As long as they keep their relative order, the direction that allows a more
compact drawing should be favored. As such, a third type of pull is used:
dc, which stands for don’t care. Vertical segments with a dc pull are referred
to as dc segments in what follows.

For 2 <i<n+1, assign a pull to vs;_y:

dc if Tic1, <Tip, N Ti, <Vit1,,
pull(vs;_1) = 1 left ifriqg, <ri, A Tip1, <ri,
right if Tii1, >V, A Tig1, > T

With these pulls and fixed node positions, the LR technique is sufficient to
improve the edge paths of wrapped graphs as desired. An example was
already shown in Figure 3.21 (Chapter 5, p. 119).

Where desired, it is possible to balance the positions of the dc segments:
After LR’s second compaction pass, which compacts rightwards, the po-
sitions of the dc segments are stored. Let them be denoted by vs, for a
dc segment vs. Then, a third compaction pass is executed leftwards again,
resulting in new positions vs} for the dc segments. Note that at this point
neither the leftwards and rightwards pulled segments alter their position
nor do the nodes. Thus, the final position of a dc segment can be set to the

*
: syl vs (&
mean of its two extremal positions: %

As a final remark of this section, note that simply grouping vertical
segments that stem from inverted ports with the corresponding node can
result in a cyclic constraint graph. Since the segment does not connect
directly to the node’s perimeter, scenarios as the one depicted in Figure 5.3
are possible. Additionally, rigidly fixing the relative position between a
node and a vertical segment can eliminate compaction potential.
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(@) (b)

Figure 5.10. Prescribed spacings in diagrams. In (a) a global spacing value sg
must be preserved between elements. In (b) three different spacing values must be
considered: 5,1, Sy, and se. between pairs of nodes, pairs of a node and an edge, and
pairs of edges, respectively. The dashed circle in (a) marks an area where prescribed
spacings must be violated to properly route the edges to the node.

5.2.3 Spacings

Diagram types prescribe spacing values that are to be preserved between
elements and that can differ based on element types. Three spacing types
are discussed here: (a) a single global spacing value s is used to separate
any pair of elements from each other, (b) several global spacing values are
to be preserved between pairs of elements depending on element types,
and (c) every element has an individual spacing value, possibly a different
one for each side and possibly a different one in conjunction with every
other element. Figure 5.10 illustrates the first two spacing types.

To handle the prescribed spacing values during one-dimensional com-
paction, the rectangles that represent the elements of a diagram can be
enlarged in specific manners. The main difficulty there is to retain a valid
set of rectangles. The next paragraphs discuss why this is challenging, even
for the simplest type of spacing (a).

Scenario (a): The global spacing s¢ can straightforwardly be preserved
during compaction by adding ss/2 to each side of the rectangles before the
constraint graph is computed without introducing any overlaps. Neverthe-
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less, the drawings that should be compacted are not always free of spacing
violations as illustrated by the circled area in Figure 5.10a. To properly con-
nect the edges to the common node, the edge paths must come closer to each
other than permitted by s,. And while the depicted horizontal segments
are irrelevant during one-dimensional compaction, the problem would be
just the same for a set of vertical segments connecting to north/south ports.

Scenario (b): Since spacings are defined between pairs of element types,
it is not possible to enlarge the individual rectangles by a fixed value without
introducing overlaps. To give an example, let s, < sm/2. Extending every
node-representing rectangle using s« /2 may result in an overlap between a
rectangle that represents a node and a rectangle that represents a vertical
segment. A solution could be to enlarge rectangles by the largest possible
value that does not introduce overlaps, however, this can then result in a
compacted diagram in which prescribed spacings are violated.

Scenario (c): As this scenario can be used to model (b), at least the same
problems apply as before.

So how can a practical solution look like? Technically, the ELK Layered
algorithm provides the facilities to let users specify spacings of type (c).
However, to date most implementations of the five steps only properly
support spacings of type (b). For this reason and due to the problems
explained above, a best effort approach to support the type (b) spacings
shown in Figure 5.10b is outlined next. The three spacings are sy, 540, and
See, Which prescribe the minimal distance between pairs of nodes, pairs of a
node and an edge, and pairs of edges, respectively.

Instead of computing the constraint graph in one pass, it is built in-
crementally by executing the scanline algorithm multiple times. Note that
this may yield more constraints than absolutely necessary. Each time a
different subset of the overall set of rectangles is considered and each time
the rectangles are enlarged by a different value. Consequently, a rectangle
has no unique value by which it is enlarged, which is why the subsequent
compaction step operates on the original-sized rectangles. For this to be fea-
sible, an individual “length” ¢ is associated with every constraint ¢, which
corresponds to the minimum spacing between the two involved elements
and therefore resembles the enlarging of rectangles. Now, when executing
the compaction algorithm, the tentative x coordinates of constrained rectan-
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gles are computed in a way taking the ¢;s into consideration. Further note
that during scanline execution constraints are computed looking at overlaps
within the y dimension only. Thus, it is enough to enlarge the rectangles
within the y dimension.

For the three given spacing values, the scanline algorithm is executed
three times: First, only node-representing rectangles are considered and
enlarged by sm /2. Second, edge-representing rectangles are enlarged by se/2
and constraints are generated solely between pairs of edges. These two
passes guarantee valid spacings between pairs of nodes and pairs of edge
segments. The third pass is executed using all rectangles. This time the
selection of the enlarging value is more intricate and three cases must be
distinguished based on the value of s;,.. Either of the three cases results in
a valid input to the scanline algorithm by carefully enlarging rectangles
such that no overlaps are introduced. Note that the first two cases are not
exclusive. If both conditions hold, either case can be chosen. The third case
permits constraints that may result in a compacted diagram with slightly
violated prescribed spacings. This is because the rectangles are enlarged by
the smallest spacing value in order to avoid overlaps.

Spe < SLZ”: Add sy, to all node-representing rectangles.
Sne < *%¢: Add sy, to all edge-representing rectangles.

Sne > MiN{Syy, See }: Add min{s,,, sec} to the node-representing rectangles.

A different way to ensure valid spacings in every scenario is to compute
the constraint graph in the naive way mentioned in Section 5.1. While it
takes quadratic time and yields a quadratic number of constraints, the
pair-wise comparison of elements allows to handle every scenario discussed
above. Again, a length has to be associated with every constraint and must
be considered by the compaction algorithm.

Violated Spacings As mentioned before, sometimes prescribed spacing
values must be violated by the layout algorithm itself, e. g. to bring edges
incident to a common side of a node close enough together for them
to properly connect to the node. The circled area in Figure 5.10a shows
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(a) (b) (c)

Figure 5.11. Spacing violations are inevitable within the immediate vicinity of a
node.

an example. A problem arises in scenarios such as the one depicted in
Figure 5.11a: the vertical segments of the three edges incident to the same
node share that same x coordinate. Enlarging either of the rectangles that
represent the vertical segments 4, b, or ¢ would immediately result in vertical
overlaps. It is described next how such overlaps can be avoided. The overall
set of vertical segments VS can be split into three subsets:

VSus: vertical segments that are incident to north/south ports,

VSuwe: vertical segments that are the first or last segment of edges incident
to west and east ports, and

VS,: all other vertical segments.

Now the idea is to block the vertical segments of VS, and VS, in one of
three ways: upwards, downwards, or into both directions. The consequence
of being blocked is that the corresponding rectangle is not enlarged within
the blocked direction during constraint computation. The segments of VS,
do not have to be considered.

Let vs,; < vsy, denote the two endpoints of a vertical segment vs, and
let » denote the rectangle of the node vs’s edge is incident to. All vs € V5;,
are blocked upwards if they are incident to a south port and are blocked
downwards if they are incident to a north port. Additionally, whenever the
corresponding node’s rectangle is enlarged by a certain value s, all vs € VS,
must be shrunken by s within the blocked direction. The vs € VS, are

193



5. Post-Processing: Width Reduction

blocked as follows:

upwards ifvs,p > 1y + 1,
blockye(vs) = { downwards if vs,1 <1y,
both otherwise.

Unfortunately, the blocking is problematic in scenarios as depicted
in Figure 5.11b. Both vertical segments d and e are blocked within both
directions, and no constraint will be created between the pair of them. As
a consequence, the two vertical segments could collapse into a single line
during compaction, making it hard to tell apart the two edges. To prevent
this, further constraints can be created: The given horizontal order of the
vertical segments is the result of an informed decision of the orthogonal
edge router. It is chosen such that the number of edge crossings stays low
and such that overlapping edge paths are prevented. Therefore, one can
simply add constraints between the vertical segments of edges that are
incident to the same side of a node that resemble the segments” horizontal
order.

Still, this does not solve the problem for two unrelated vertical segments
as shown in Figure 5.11c. f is blocked downwards, and g is blocked upwards.
It remains open how to solve this.

5.3 State Diagrams

The desire to reduce the width of a drawing exists for state diagrams
as well. Figure 5.12 shows an example in which first and foremost the
diagram’s labels, and how they are dealt with during layer-based layout,
are responsible for the drawing’s significant width.

A crucial difference between dataflow diagrams and state diagrams is
that state diagrams’ edges are often drawn by using splines. In the previous
section, the key idea to handle the orthogonally routed edges of dataflow
diagrams during compaction is to use narrow rectangles to represent the
vertical segments of the orthogonal edge routes. This is not immediately
possible for splines. Therefore, to handle splines, the compaction procedure
must either be extended to allow collision-detection between nodes and
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(@)

(b)

Figure 5.12. Applying one-dimensional compaction to a layer-based drawing of an
SCChart. In (a) dummies for edge labels in combination with the rigid layering
result in an unfortunately wide drawing. (b) shows an alternative drawing obtained
by applying the compaction method proposed here.

splines and between pairs of splines, which seems like a rather complex
undertaking, or the splines’ routes must be approximated using rectangles.
Depending on the way splines are computed by a layout algorithm, the
latter option is viable.

The idea then is to apply one-dimensional compaction to state diagrams
in exactly the way as described in the previous section, only that the edges
are represented differently: Whenever a section of a spline is parallel to
the y axis or curved, the area in which that section would be located is
represented by a rectangle. The remaining sections of a spline run parallel
to the x axis and can be ignored, just as for orthogonally routed edges. After
compaction, a spline’s route is simply offset according to the movement of
the representing rectangles. For this to work, two things are required:

R-51: good, overlap-free, and rectangular approximations of the sections of
a spline that are to be represented by rectangles, and

R-S2: the ability to transfer the rectangles’ new positions to the splines
without disturbing the splines” smooth curvature.

It depends on the used type of spline whether this is possible or not.
Also, the transformation of spline routes to rectangles is closely connected
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to the concrete technical realization of the splines. This thesis is mainly
concerned with the ELK Layered algorithm, which computes splines in a
fashion that is compatible with the procedure outlined above. The following
explanations are therefore based on the way splines are implemented in
ELK Layered. Nevertheless, one can incorporate the presented procedure
into other algorithms wherever the used techniques allow it.

The convenient feature of ELK Layered’s splines is that curved parts
are exclusively located in-between layers. Accordingly, whenever the spline
passes a layer, it runs parallel to the x axis. This is true both for the case
where the spline passes the layer completely from left to right as well as
for the case where it passes only a part of the layer until it reaches the
node it is incident to. It is thus possible to cover the curved parts with
rectangles that are guaranteed to not overlap with the bounding boxes
of nodes. Figure 5.13 shows an exemplary spline route covered by two
rectangles. The next sections describe the proposed procedure in further
detail.

Note that while this way of drawing splines is advantageous for one-
dimensional compaction as there are clearly-defined, well-separated areas
in which a spline curves, the routing style feels sub-optimal at times. In
particular, the rather long sections parallel to the x axis do not really feel
“spline-ish”. However, this thesis is not concerned with the spline edge
routing process itself and thus takes the edge routes as they are.

5.3.1 Splines in ELK Layered

The spline edge routing technique used in ELK Layered was proposed
and implemented by Toepffer in his diploma thesis [Toel4]. Its central
concepts are to use the dummy nodes that have been introduced for long
edges as reference points for the splines and to use techniques known
from orthogonal edge routing to order the “vertical” sections in a way
that prevents unnecessary edge crossings. Clamped B-Splines are used as
internal spline representation. They allow an intuitive positioning of the
control points and automatically yield smooth curves. Since the spline is
clamped, it starts at the first control point and ends in the last control point.
A disadvantage is that the spline does not run through any of the inner

196



5.3. State Diagrams

Figure 5.13. [llustration of how ELK Layered routes edges as splines. The small black
circles are the control points of the created B-Spline. Layers are outlined as gray
boxes. The dashed boxes represent areas in which the spline may not be parallel to
the x axis.

control points. Selecting control points in the right way, however, one can
ensure that the spline comes very close to a desired point, such as the
position of a dummy node [Toel4]. Figure 5.13 shows an example of how
the control points are composed for a long edge. For final presentation
the B-Splines have to be converted into a representation understood by
a rendering framework, many of which use Bézier splines. It is easy to
transform B-Splines into Bézier splines, e. g. using Boehm’s algorithm [Boe80].

Remember that during the edge routing step all edges are short because
long edges have been split with dummy nodes. Toepffer proceeds as follows
to create the overall route for an original edge of the input graph. First,
control points are generated locally: they are computed for every short edge,
where only straight edges and non-straight edges are differentiated. At
this point, straight means parallel to the x axis. For the straight edges a
single control point is inserted halfway between the source node and the
target node. For non-straight edges control points are inserted in the way
illustrated in Figure 5.13. The spline route is then finalized during the
process of removing long edge dummies: the control points calculated for
the individual short edges can simply be joined to form the overall spline.

An important topic in the context of spline edge routing are self loops,
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for which ELK Layered computes control points during an intermediate
step prior to the edge routing step itself. The space occupied by the self loop
is added to corresponding node’s margins. As a consequence, self loops can
be omitted during one-dimensional compaction since the rectangles created
for nodes include the nodes” margins.

5.3.2 Vertical Segments

Thanks to the use of B-Splines and the way the control points are placed,
both requirements mentioned above, R-S1 and R-52, can be fulfilled without
much effort.

A single rectangle is created for each curved part of a spline. These
curved parts are referred to as vertical segments in the following, and
they are equivalent to the vertical segments of orthogonally routed edges
apart from having a larger width. Let py, ..., p» denote the control points
that describe a vertical segment between a pair of layers. The representing
rectangle r is then described by:

ry = min p; ry = min p;
1<i<n Pix Y7 i<i<n Piy
rw = ( max p;.) — 7y r, = (max p; ) —1y.
(jmax piy) =7z, n = (max piy) =1y

See the dashed boxes in Figure 5.13 for an illustration. It is obvious that
vertical segments’ rectangles can overlap. And as opposed to the vertical
segments of orthogonally routed edges, this time they can overlap in both
x dimension and y dimension. To turn them into a valid set of rectangles for
one-dimensional compaction, the rectangles can be merged in the same way
as explained for orthogonally routed edges (cf. Section 5.2.2). Afterwards,
compaction can be performed, and when it comes to adjusting the spline
route according to the computed positions, one can proceed as follows. Let
r* be the position of r after compaction. The control points of r are offset
by 6 = rx —r¥. Thatis, pf = p;, —dforall 1 <i<n.

This leaves the control points that have been omitted so far: the ones
that are not part of vertical segments. Let ps, p1, ..., Pm, pt be a subsequence
of such control points. At this, p; and p; can be one of the following two
cases:
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(@ (b)

Figure 5.14. The difference between the rectangles (dashed boxes) created for vertical
segments that originate from (a) orthogonally routed edges and from (b) spline
edges.

* an attachment point on the border of the corresponding node, or
* the first or last control point of a vertical segment.

In either case, the control points have the same y coordinate, and due to
the nature of B-Splines, it is sufficient to distribute the inner control points
p1,-- -, Pm equidistantly between ps, and p;, in order to roughly preserve
the appearance of the spline.

5.3.3 Spacings

Section 5.2.3 discussed how to handle prescribed spacing values by en-
larging rectangles. Figure 5.14 illustrates an important difference between
orthogonal edge routes and spline edge routes. It depicts a scenario where
two edges run between adjacent layers. In (a) the vertical segments cover
only a small portion of the width between the two layers. Enlarging the
representing rectangles (dashed) does not result in overlaps. In (b), on
the other hand, the rectangles span the whole width due to the way the
rectangles are constructed for the spline sections. As a consequence, the
rectangles cannot safely be enlarged.

One solution would be to merge the rectangles once more after they have
been enlarged, and to un-merge the rectangles after the required constraints
have been computed. This can, however, result in many rectangles between
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a pair of layers being merged, effectively having the same blocking effect as
the rigid layering itself. Another solution is to simply refrain from enlarging
the rectangles that represent vertical segments, and to accept that some
edges may come closer to each other than desired. With splines this is not
as bad as with orthogonal edges. The rectangles that represent vertical
segments comprise a lot of whitespace that prevents other elements from
coming too close to the edges’ paths in many cases. If the second solution
is pursued, one has to be careful to preserve the horizontal order of the
vertical segments: a solution described in Section 5.2.2 relies on the fact
that constraints emerge automatically due to vertically overlapping vertical
segments. If the rectangles are not enlarged, this is not the case. However, it
is easy to determine the required constraints between the vertical segments
of a single edge and to simply add them to the constraint graph.

5.3.4 Sloppy Splines

As mentioned above, the way Toepffer selects the control points for the
spline routes ensures that no nodes are overlapped but may feel unesthetic at
times since they are reminiscent of orthogonal edge routes. This motivated
N. B. Wechselberg to explore leaving out a number of control points to
increase the splines’ curvature.

Unless an edge is straight (parallel to the x axis), Toepffer creates four
control points py, ..., ps within the area between a pair of layers (cf. Fig-
ure 5.13). Wechselberg alters this depending on the type of nodes involved
in the way illustrated in Figure 5.15:

Two regular nodes Instead of creating four control points, a single control
point is created halfway between the two layers. Its y coordinate depends
on the difference between the out- and in-degree of the source and target
node, respectively. If the difference is zero, the y coordinate is selected
such that it yields a straight edge, otherwise some curvature is added as
depicted by the two gray paths in Figure 5.15a.

Regular node and dummy node In the case that one of the two nodes is a
dummy node, two of Toepffer’s control points are reused: p3, p4 if the
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(a) (b) (c)

Figure 5.15. Control points for sloppy splines as proposed by Wechselberg.

target node is the dummy node (as seen in Figure 5.15b), and p, p; if
the source node is the dummy node (as seen in Figure 5.15c).

Two dummy nodes 1f both involved nodes are dummy nodes, Wechselberg
does not alter the existing behavior, thus either four control points
are created or a single control point halfway between the layers if the
corresponding edge is straight. Most of the time consecutive dummy
nodes are long edge dummies which are preferably placed at the same
y coordinate by the previous coordinate assignment step. Therefore, in
the majority of the cases a single control point should be added.

From the edge paths seen in Figure 5.15 one can imagine that the result-
ing spline routes are visually more pleasing than when created with the
conservative approach of Toepffer. However, one can also see that the edge
paths leave the areas marked by the dashed rectangle. Consequently, the
paths may overlap nodes in a final drawing. The more a diagram’s nodes
vary in size, the likelier it is that overlaps occur, an example can be seen in
Figure 5.16.

The proposed compaction procedure can still be used, given that one
derives the vertical segments from Toepffer’s control points (as sketched in
Figure 5.15). Otherwise, the created vertical segments would have no vertical
extent and it would not be possible to properly preserve the horizontal
order of elements during compaction. Additionally, it should be noted that
new overlaps between edge paths and nodes can be introduced due to
compaction. However, with sloppy splines these overlaps may already be
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(a) No compaction (b) After left compaction

Figure 5.16. Sloppy spline routing can result in edges overlapping with nodes.
During compaction, edge overlaps may both be removed and introduced.

there, and it is also possible that overlaps are removed due to compaction.
To see this, consider Figure 5.16, where in (b) one edge overlap is removed
and one edge overlap is introduced by compacting to the left.

5.4 Discussion

The previous sections explained how one-dimensional compaction can be
applied to both dataflow diagrams and state diagrams. In Section 6.1.1
the technique will additionally be used to improve the arrangements of
disconnected subgraphs in hierarchical graphs.

As an indication for the practicality of the proposed method, consider
Table 5.1. It summarizes the results of a series of evaluations based on three
sets of diagrams from practice: two sets of dataflow diagrams and one set of
state diagrams. The dataflow diagrams are 69 diagrams from the commer-
cial interactive model browsing solution EHANDBOOK! and 529 Ptolemy
diagrams derived from a subset of the diagrams introduced in Section 1.9.
Both diagram types are hierarchical. For this evaluation the hierarchy was
removed: sub-diagrams were extracted and evaluated separately. This is
feasible since the layout algorithm considers every sub-diagram separately
anyway. The state diagrams are 331 SCCharts, which represent student

1http://www.etas.com/de/products/ehandbook.php
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Table 5.1. Results of applying one-dimensional compaction to layer-based drawings.
LR stands for left compaction followed by right compaction, and EL stands for
compaction aiming for short edges. 77 and ¢ denote the average number of nodes
and edges. W denotes the average width after compaction in percent of the original
width, and el the average edge length. Standard deviations are given in brackets.

n e W (%) el (%)

EHANDBOOK 25.4 [15.0] 30.8 [18.3] LR 83.7 [11.9] 78.2 [154]
EL 85.3 [11.2] 76.6 [16.2]

Ptolemy 157 o741 19.6 1151 LR 93.6[0s2]  88.3 [138]
EL 94.3 [07.4] 87.1 [13.3]
SCCharts 18.9 114.1] 21.3 [21.2] LR 91.6 [104] 89.0 [10.8]

EL 91.9 110.2) 88.4 [11.2]

submissions in the context of practical courses at university (cf. Section 1.9).
The splines of the computed layouts are represented by cubic Bézier splines,
concatenations of Bézier curves. Each curve is defined by four control points.
To measure the splines’ lengths, each curve was approximated by twenty
points that were connected with straight lines. This time, the hierarchy
was not flattened since the individual diagrams would become very small.
The stated node counts and edge counts comprise the whole hierarchy, in
particular, they include hierarchical nodes.

Results are reported for both compaction strategies mentioned in Sec-
tion 5.2.1: subsequent left-right compaction with node locking (LR) and
total edge length minimization (EL). The average width of the drawings
decreased between 16 % and 6%, the edge lengths decreased between 22 %
and 11%. No significant difference can be observed between the two com-
paction strategies. Still, since those edges that can obviously be shortened
are immediately noticed by users, the strategy that minimizes edge lengths
should be favored in most scenarios.

Additionally, it should be noted that the degree of the compaction also
depends on the used method for the coordinate assignment step. To give an
example, the evaluation above used the approach of Brandes and Kopf (BK)
(cf. Section 4.2). Using Gansner et al.’s network simplex approach (cf. Sec-
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Figure 5.17. Execution times for the dataflow diagrams and the two compaction
strategies plotted against the number of nodes: LR (bold lines) and EL (thin lines).
The solid lines show the absolute execution time in seconds (left y axis), and the
dashed lines show the relative execution time compared to the overall algorithm
(right y axis).

tion 4.2), the width of the SCCharts drawings after applying LR decreases
only to 93.3% instead of to the 91.6% seen in Table 5.1. The difference is
explained by the fact that the BK approach tends to produce drawings with
larger height, providing more space for horizontal compaction.

Concerning execution times, Figure 5.17 shows that both methods finish
in well under 10ms for up to 100 nodes, with EL using about a fifth of the
overall execution time and LR using about a tenth. For up to 1000 nodes
EL’s execution time increases significantly, which is expected since the
network simplex algorithm is used. Still, it finishes in under 0.6s. Therefore,
all setups are fast enough for applications that involve user interaction. The
evaluations were performed on an Intel i7 2GHz CPU and 8GB memory
laptop using a 64bit JVM.

The decision to handle prescribed spacing values by enlarging the rect-
angles that represent graph elements turned out to be unfortunate. Many
special cases have to be considered, and which rectangles to enlarge at
which point in time must carefully be thought through. Even worse, certain
spacings cannot be guaranteed. Therefore, it should be examined whether
it is possible to consider different types of prescribed spacing values as
part of a fast constraint calculation algorithm itself that then replaces the
scanline procedure outlined above.
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Figure 5.18. Further opportunities to reduce the width of a drawing: (a) splitting a
vertical segment and allowing an edge to take a detour, and (b) allowing node n3 to
jump over the adjacent vertical segment.

Furthermore, the width of the drawings could be reduced even further
if certain assumptions were relaxed. For instance, if edges were allowed
to partly run “against” the flow, vertical segments could be split such that
the corresponding edge takes a small detour with the effect that the overall
diagram becomes narrower, see Figure 5.18a. Chen and Lee discuss this topic
in the context of VLSI design, where it is referred to as jog insertion [CL97].
Additionally, if the relative order of elements to each other were allowed to
change, nodes could for instance jump over vertical segments wherever it
saves space. Figure 5.18b shows an example.
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Chapter 6

Further Topics of
Practical Relevance

This chapter discusses several topics that I believe have not been addressed
to their full potential yet, be it in the literature or in practical applications.
The selection of topics is mainly based on personal experience, on feedback
of colleagues who work with drawings of SCCharts and SCGs on a daily
basis, and on requests we get from users of our open-source project ELK.
Most of the points that are going to be mentioned have been discussed
in the literature before, and the need for improvement often stems, as
Spénemann puts it in his doctoral thesis, from both a discrepancy between
research results and practically accessible implementations [Sp615, p. 1] and
from the disregard of the fact that details matter for an implementation to be
useful in practice [Sp615, Section 7.2]. To some extent, these shortcomings
arise from the greatly varying requirements that are placed on layout
algorithms by specific use cases, often including algorithmically challenging
problems and imprecise definitions of the desired outcome. Furthermore,
the tool developers who integrate and fine-tune layout algorithms are often
not familiar with the exact domain-specific demands on final drawings;
sometimes even the domain experts are not completely certain what the
most useful way to lay out a certain diagram is or they do not share the
same opinion. As an analogy, consider different coding styles for textual
programming languages: some people prefer opening curly braces of code
blocks to be placed in a new line, others do not.

Next, every topic is briefly outlined, the first four topics are discussed
in further detail afterwards, in the hope of motivating future research.
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Hierarchical graphs Many diagram types from practice and their underlying
graph representations are hierarchical. Hierarchical graphs can be laid
out by (1) specifically designed layout methods that are aware of the
hierarchy, or (2) by transforming the problem to laying out a number
of simple graphs in a bottom-up fashion, for instance. Both strategies
have their strengths and weaknesses and taken by themselves neither
addressed every problem that may occur in practice. A challenging
problem is how the drawing of a hierarchical graph can be tailored to fit
a prescribed drawing area as good as possible.

O-NO avoidance In practice it is often not important to find the drawing
that is optimal with regard to a particular metric, but to find a drawing
for which it is not obvious to a human how it can be improved. A layout
algorithm therefore should avoid arrangements within a drawing that
are obviously not optimal (O-NO).

Knowledge-based drawings When humans lay out diagrams manually, they
usually base their decisions on some kind of background knowledge.
For instance, when arranging nodes that represent physical locations,
a human may have the desire to resemble the relative positions of the
locations to each other within the drawing. A question is how to realize
such behavior with an algorithm while simultaneously fulfilling other
relevant aesthetics criteria. Furthermore, in certain use cases a drawing
of a diagram already exists, and the task of a layout algorithm may then
be to alter the drawing with the goal to “clean it up,” while preserving
its overall appearance. Various aspects of this have been studied in the
literature, however, questions remain especially on the tooling side of
things, e. g. how to integrate the methods properly into existing tools
and how to let users intuitively guide the layout process.

Layout configuration Layout algorithms usually offer a number of parameters
that influence their behavior. While this allows to adjust the algorithm
to very specific needs, it is often hard for a user to keep track of the
available parameters and how they interact with each other. This leads to
the questions how users can be assisted in their task to find the desired
parameters and what good default values are that work for the majority
of an algorithm’s use cases.

208



6.1. Hierarchical Layout

Extended graph features In their most basic form, graphs comprise of nodes
and edges. A significant number of layout algorithm implementations is
limited to these two elements. Many diagram types, however, demand
further elements to be considered, the reasonable placement of which is
essential to obtain a satisfying drawing. Examples are ports, labels, and
hyperedges. While dedicated algorithms exist for certain elements, their
results are inadequate at times. An example are edge label placement
algorithms that are executed after the actual layout algorithm, with the
effect that the required space between a pair of nodes to fit in an edge
label without overlapping any node may not be available.

Small graphs vs. large graphs The layout of small graphs, small in terms of
node and edge counts, has different requirements than that of larger
graphs. Arguably, the drawing of a small graph, which can be perceived
at once, must be of higher quality than a drawing of a large graph,
for which the flaws are not immediately apparent. Within this context,
researchers have, for instance, explored whether different layouts are
beneficial when either gaining an overview of a diagram or when trying
to understanding the details of a specific part of a diagram [DMS+08]
and whether the number of edge crossings is equally important for small
and large graphs [KPS14].

6.1 Hierarchical Layout

The layout methods discussed in the previous chapters were concerned
with laying out simple graphs. When computing positions for the nodes
and edges, they mainly had to consider the adjacency relations between the
nodes. The layout of diagrams that are hierarchical is usually more difficult
since in addition to the adjacency relations of the underlying graph’s nodes,
the inclusion relations have to be considered. That is, common drawing
conventions require that a node included within another node is to be fully
contained within its parent node in a drawing; for the diagrams considered
in this thesis this is always a hard requirement.

Examples of hierarchical diagrams have already been seen in the intro-
duction of this thesis, e.g. the Ptolemy diagram in Figure 1.1 (p. 2) and
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6. Further Topics of Practical Relevance

both diagrams in Figure 1.6 (p. 24). Formally, the underlying graph of a
hierarchical diagram has been defined in Section 1.3 as a hierarchical graph.
It is a graph G = (V, E) that is additionally characterized by an inclusion
tree T = (V,I) where I is a set of directed inclusion edges. The inclusion
edges specify which node is to be contained within which other node in a
resulting drawing. Figure 1.4 (p. 18) visualizes the concepts of a hierarchical
graph.

Several related definitions exist in the literature, at times with subtle
differences for identical terms. For instance, Jiinger and Mutzel define
compound graphs in accordance with the definition of hierarchical graphs
here [JMO04, Sec. 2.6], while Brockenauer and Cornelsen do not require the
inclusion information to be a tree [BC01]. The concept of clustered graphs can
be seen as compound graphs in which the edges may only connect leaves
of the inclusion tree [JM04, Sec. 2.6]. Another similar formalism is that of
higraphs, as given by Harel [Har88].

Thorough overviews of methods to lay out compound graphs, or spe-
cial cases of them, can be found in the book chapter of Brockenauer and
Cornelsen [BC01] and in the diploma thesis of Fuhrmann [Fuh12]. Most
of the proposed methods are either based on force-directed ideas [BM99;
DGC+05; DGC+09] or modify the traditional layer-based approach [SM91;
SM96; San96b; For02; Rai06]. For the special case of clustered graphs, the
force-directed idea is again popular [WM96; EHO00; HE98; FT04;, BAMO07;
IMM+09], while other strategies have been pursued as well [EF96; BD07].

Apart from the layout methodology itself, there are various strategies to
traverse the hierarchical graph’s inclusion tree during the layout process:

Top-down Starting at the root node, traverse the inclusion tree in level-order,
i.e. breadth-first. This strategy is usually not useful in practice since the
dimensions of a hierarchical node are unknown until its children have
been arranged.

Bottom-up Traverse the inclusion tree in level-order starting at the deepest
level, or alternatively, traverse the tree in post-order. Both traversal
strategies ensure that a hierarchical node is only laid out after its children
have been laid out.
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6.1. Hierarchical Layout

Mixed The previous two strategies have disadvantages: either the dimen-
sions of inner hierarchical nodes are unknown or the surroundings of
hierarchical nodes are unknown. To overcome this, one can traverse the
inclusion tree multiple times, e.g. to pass hints to inner hierarchical
nodes on how they should be laid out to aid the layout of its surround-
ings.

Global Process the whole graph at once, e. g. by constructing an auxiliary
graph in which the boundaries of hierarchical nodes are represented by
dummy nodes.

In a survey paper, Sander mentions advantages and disadvantages of the
bottom-up and the global strategy that are summarized next [San99]. The
bottom-up strategy is easy to implement, allows to configure different layout
algorithms for each hierarchical node, and allows to recompute only parts of
the layout if an inner node changes: only the direct path from the changed
node to the inclusion tree’s root. On the downside, hierarchical edges, edges
connecting nodes with different parents, cannot be laid out properly. The
global strategy, on the other hand, can respect the global situation when
positioning nodes and can lay out hierarchical edges. However, it is more
complex to implement, it is slower in terms of execution time, it must
compute a completely new layout if something changes, and it must use
the same layout method for the whole graph.

Thus, when deciding on a strategy to lay out hierarchical graphs, two
central questions are (a) how much complexity is acceptable, both in terms
of implementation effort and execution time, and (b) whether the graphs
to be laid out contain edges that cross hierarchies. In Section 1.3 such
hierarchy-crossing edges are defined as hierarchical edges and two subtypes
are distinguished: short and long. Already short hierarchical edges require
special attention during bottom-up layout. They connect a node to the
boundary of its parent node, i. e. the currently processed hierarchical node,
or vice versa. At the time the edge route is determined, however, the
boundary is neither final nor has it a structural representation within the
graph. Klauske et al. describe a procedure to handle short hierarchical
edges [KSS+12]. As explained above, handling long hierarchical edges is im-
possible during bottom-up layout, unless one makes certain arrangements.
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For instance, one could transform each hierarchical edge into a set of short
hierarchical edges prior to executing a layout algorithm. A drawback of this
is that each short hierarchical edge can only be routed locally: it is not clear
where the best spot for each short hierarchical edge is to leave its parent’s
boundary from a global perspective.

The following sections are concerned with the question how to im-
prove layouts in the context of the bottom-up approach. The first topic
(Section 6.1.1) pursues similar goals as some of the layering methods pre-
sented in Chapter 3, which seek layerings that result in a drawing that
best suits a prescribed drawing area. When laying out hierarchical graphs
bottom-up, the drawing that results from laying out the simple graph repre-
sented by the top-level hierarchical node should fit the prescribed drawing
area; it is unclear, however, how the shape of the prescribed drawing areas
for the individual hierarchical subgraphs should look like. See Figure 6.1
for an illustration. Therefore, the problem to be solved is to assign a de-
sired drawing area to each hierarchical subgraph such that, taken together,
the top-level drawing area is used to its full potential. The second topic
(Section 6.1.2) deals with compacting disconnected subgraphs with short
hierarchical edges. Assuming that the disconnected subgraphs have been
laid out separately, Schulze presented a simple algorithm, called cell pack-
ing [RSG+16b], to safely position the subgraphs relative to each other such
that the short hierarchical edges do not overlap other subgraphs. Here, it is
discussed how the resulting drawing can be made more compact.

Before continuing, a short note on the situation in ELK: Where required,
the framework lays out hierarchical graphs using the bottom-up strategy,
applying a specific layout algorithm to each hierarchical node. Consequently,
long hierarchical edges must be omitted during layout. To support these
and to generally improve the layout of hierarchical graphs in the context of
ELK’s layer-based implementation, Fuhrmann implemented a global layout
strategy based on an approach by Sander in her diploma thesis [San96b;
Fuh12]. However, while working well, the implementation was removed
again from the framework after a while since it requires intricate modifi-
cations of the otherwise well-separated and flexible implementation of the
traditional layer-based approach, conflicting with the clearly defined goal of
ELK Layered to keep the code-complexity low and to stay as maintainable
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Figure 6.1. Illustrating the difficulty of the bottom-up layout strategy to aim at a
prescribed drawing area. Assume that the prescribed drawing area has an aspect
ratio of 1.6 and that each box in the figure represents a hierarchical node. The two
inner hierarchical nodes in (a) and (b) have been laid out with the goal to match a
prescribed drawing area with an aspect ratio of 1.6. Say the result is a drawing of
113 x 71 pixels, thus an area of about 8,000. It can be seen that neither arrangement
of the two nodes comes particularly close to the prescribed drawing area at the
top-level (1.6). (c) illustrates that targeting an aspect ratio of 0.8 for the two inner
nodes instead allows to perfectly match the prescribed drawing area at the top-level
without increasing the occupied area.

as possible [SSH14]. It was later replaced by a strategy that pursues the
splitting of long hierarchical edges as outlined above.

6.1.1 Drawing Area Awareness

Diagrams are generally viewed on a medium with a fixed drawing area,
e.g. a computer screen or a sheet of paper. As such, a drawing should not
only adhere to certain aesthetics criteria, but it should also use the available
drawing area to its full potential. Several authors discussed this topic for
simple graphs in the context of various layout methodologies, for instance,
by adding additional forces to adhere to the drawing area for force-directed
approaches [FR91; DH96] and by computing specially tailored layerings
for layer-based approaches [HN02a; NRL11]. The matter is different for
hierarchical graphs that are laid out in a bottom-up fashion: When the
inner-most hierarchical subgraphs are laid out, it is not clear what “local”
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6. Further Topics of Practical Relevance

drawing area should be targeted at this point in order to use the top-level
drawing area to its full potential. Figure 6.1 illustrates the matter.

A possible formalization of the hierarchical problem reads as follows.
Let G = (V, E,I) denote a hierarchical graph with inclusion tree T = (V,I),
and let H = {he V : Vy(h) # &} be the set of hierarchical nodes. Further,
let A be an algorithm that applies a layout algorithm to a simple graph
represented by a hierarchical node. A additionally takes a configuration
that is used to configure the concrete layout algorithm itself and how it
should behave. A configuration could read: use an implementation of the
layer-based approach and have it lay out the graph left-to-right. The topic
of layout configuration is discussed further in Section 6.4.

Let hq, ..., h, be an enumeration of the hierarchical nodes H in the order
as they would be visited by a post-order traversal of the inclusion tree. Let
C denote a set of potential configurations, and let ¢ = (cy,...,c,) denote
a tuple of these configurations where each c; € C is the configuration to
be used for h;. A bottom-up layout then is a sequence of layout algorithm

invocations:
S = ﬂ(hl,cl), .. .,ﬂ(hn,cn),

and the problem to solve is:
PROBLEM DrAWING AREA-AWARE HIERARCHICAL LayouT (DAHLP)

Given a hierarchical graph G and a cost function f, the goal is to find
the tuple c that, after executing S, minimizes f measured on the final

drawing;: min f(ﬂ (hn, Cn))'

Assuming that every hierarchical node allows the same configurations,
there are |C|" possible configurations of G, which makes it impractical to
simply test every configuration. Assuming that a single layout run takes
10ms and that only two different configurations are used, the required time
for a hierarchical graph with 20 hierarchical nodes is already 10ms - 220 =
2.9 hours.

As discussed during the introduction (p. 13), the max scale measure is
advantageous when assessing how well a drawing fits a prescribed drawing
area. Consequently, its inverse version lends itself for f. Figure 6.2 shows
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(c) s =1.63 (d) s =137

Figure 6.2. Four drawings of the same SCChart that differ in the employed layout
direction for the two regions. With respect to a reference frame of a standard
computer screen, R1950,1080), (¢) has the highest max scale value s and is thus
considered to be the best drawing out of the four.
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an example in which two possible configurations are allowed per region of
the SCChart: either the layout direction is rightwards or it is downwards.
For the given SCChart, the best drawing with respect to max scale, (c), is
found when the top region is laid out left-to-right and the bottom region is
laid out top-to-bottom. The next section extends this illustration to a small
evaluation that emphasizes the necessity to address such problems arising
from the hierarchical nature of the graph to obtain satisfying drawings in
practice.

Bruteforcing SCCharts

The feasibility of the imagined procedure is examined in the following
using the SCCharts as introduced in Section 1.9. However, since comput-
ing a layout for every configuration combination is expensive, only those
SCCharts were used whose underlying graphs have less than 40 nodes,
leaving 289 instances. Remember that SCCharts comprise of alternating
hierarchy levels represented by states and regions. To keep matters simple,
only the region representing nodes shall allow different configurations and
only the layout direction shall be altered. The regions contained in state
representing nodes are arranged by a simple packing algorithm with the
goal to achieve a certain aspect ratio, which was set to the aspect ratio of
the desired top-level drawing area for each state. Clearly, this point offers
potential for improvement.

The following four strategies were evaluated. Setting the layout direction
of a region refers to setting the layout direction of the hierarchical node that
represents the region, and thus the direction with which the simple graph
represented by that hierarchical node is to be laid out.

RIGHT Set the layout direction of every region to left-to-right.
DOWN Set the layout direction of every region to top-to-bottom.

HV (horizontal-vertical) Let the levels of the inclusion tree be numbered,
where the Oth level contains the root node. The even layers hold regions
that contain states to be laid out by a regular layout algorithm. The odd
layers in turn hold states that contain regions that are excluded from the
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(b) Max scale ratio (w.r.t. OPT)
bottom-up layout. (a) shows max scale values (y axis) for the four different strategies

used and for the thirteen different tested aspect ratios of prescribed drawing areas
(x axis). (b) shows the max scale ratio between OPT and the best of the other three.

The additional percentage numbers in (b) are the relative graph counts, out of 289,

Figure 6.3. Results of laying out SCCharts using different layout directions during
for which none of the other three found a solution as good as OPT.
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configuration process for reasons explained above. Now, alternate the
layout direction for the regions: set it to left-to-right if a region is in a
level | with I mod 4 = 0 and to top-to-bottom if I mod 4 = 2.

OPT For the n regions, find the configuration tuple c out of C" with C =
{{directionzleft—to—right} , {direction:top—to—bottom}} that maximizes the max
scale measure.

Each graph was laid out with each of the four just described strategies
for thirteen different target drawing areas using ELK Layered as layout
algorithm. Since the explicit dimensions of the drawing areas are irrelevant
at this point, only their aspect ratio is stated in what follows. The results are
summarized in Figure 6.3a. As one would expect, laying out every region
downwards comes close to or equal to OPT in many cases when targeting
a narrow but high drawing area (0.25-0.66). Accordingly, laying out every
region rightwards is advantageous for wide but flat drawing areas (3.5-4.0).
The HV strategy performs well for drawing areas with medium aspect
ratios (1.5-2.5). However, as shown in Figure 6.3b, the OPT strategy found
better drawings in a significant number of cases, between 17 % and 33 % of
the diagrams for the tested aspect ratios. The plot in Figure 6.3b shows the
max scale ratio between OPT’s result and the best result of the other three
strategies.

For larger graphs it is to be expected that the gap to optimal results
increases, which highlights that new methods are required to compute
drawings for hierarchical diagrams that are to be tailored for prescribed
drawing areas.

Summary

Compared to a global layout strategy, a bottom-up layout has two significant
advantages: different layout algorithms and configurations can be used for
each hierarchical node, and the bottom-up layout procedure is easy to
implement; even without knowing which concrete layout algorithms are
ever going to be executed. However, to create drawings of hierarchical
graphs that fit a prescribed drawing area, new methods are required. The
relevant points to be addressed in this context are:
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6.1. Hierarchical Layout

Capable basic layout algorithms The algorithms that are used to lay out the
individual simple graphs must be able to produce drawings tailored for
a specific drawing area.

Guiding traversal algorithm An algorithm must decide what the desired
drawing area of each individual hierarchical subgraph is. It may turn
out during later layout runs that earlier layouts are disadvantageous,
in which case it would make sense to move back and forth within the
inclusion tree instead of traversing it in a single post-order pass.

Assess ability to change To decide how the drawing area of certain hierar-
chical subgraphs should look like, it must be possible to assess what
“shapes” a graph’s drawing can take on. For instance, the drawing of
a path differs significantly when drawn either left-to-right or top-to-
bottom, while the direction does not have a significant impact on the
shape if the drawings of a graph are “squarish”.

6.1.2 Short Hierarchical Edges

When a hierarchical node contains multiple subgraphs that are not con-
nected among each other, see Figure 6.4 for a simple example, the problem
arises to place the subgraphs in the plane such that little space is used. Here,
it is assumed that each subgraph has been laid out separately beforehand. A
possible strategy is to approximate each subgraph by its bounding box and
formulate the problem as a rectangle packing problem. However, such prob-
lems are often NP-hard [Len90] and rectangles may be poor approximations.
Freivalds et al. and Goehlsdorf et al. discuss the relevant related work from
a graph drawing perspective and present heuristics for the problem based
on a polyomino representation, which approximates every subgraph using
squares on a grid [FDK02; GKS07].! The polyomino approach works well
for simple graphs without hierarchical edges. However, Ptolemy diagrams
(cf. Section 1.4), for instance, are hierarchical and regularly contain short
hierarchical edges that connect different hierarchy levels of the diagram
through hierarchical ports. The edge between the Const node and its parent

1 As a side note: the idea of polyominoes was also used by Gansner et al. in the context of
dynamic graph layout (cf. Section 6.3) aiming at layout stability [GHN13].
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node ConfigurelnputFile in the top right corner of Figure 6.4 is an example of a
short hierarchical edge. When placing the subgraphs in the plane, the short
hierarchical edges have to be considered specifically. They are not allowed
to cross other subgraphs, which cannot be prevented using the previously
mentioned methods. Furthermore, subgraphs should be placed such that
the overall length of short hierarchical edges is as small as possible. In the
area of VLSI design, Lai et al. presented a method based on the sequence-pair
representation that allows to specify for a module, i.e. a rectangle, that it
has to touch one of the four boundaries [LLW+01]. However, this is not
sufficient for the previously described problem and, as said, rectangles do
not approximate subgraphs well.

The methods discussed in the following are restricted to a scenario in
which the side of the hierarchical node a short hierarchical edge connects
to is preset. In this setting, Schulze presented the cell packing algorithm to
compute a placement of subgraphs with short hierarchical edges that is
guaranteed to be overlap-free [RSG+16b]. A weakness of the algorithm is
that its results are suboptimal in terms of the used area and the total length
of the short hierarchical edges. The remainder of this section therefore
explains how the placements of the cell packing algorithm can be improved
using the one-dimensional compaction technique known from Section 5.1.
To better approximate a subgraph, the rectilinear convex hull of the subgraph’s
elements is constructed and is split into a set of rectangles. Both can be
done in O(n log n) time using a scanline method, where # is the number of
points used to represent the area covered by a subgraph in the first case,
and the number of corners of the rectilinear convex hull in the second case.
Before explaining the compaction procedure further, a general formulation
of the problem is outlined.

Let C denote a set of components. Each component ¢; € C is a tuple
c; = (R;, &) where R; is a non-empty set of rectangles and &; is a (possibly
empty) set of external extensions. Rectangles are quadruples (x,y, w, ), with
all elements in R. The k-th rectangle of c; is r¥. Assume that all rectangles
of the same component touch somewhere alongside their border. The I-th
external extension eﬁ = (df-, (511-, ef) of a component ¢; is a triple of a direction
df € {n,e,s,w}, an offset (5f relative to r?, and a width ef . The offset and
the width describe an extension clockwise, i. e. for a south extension, the
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Figure 6.4. Placing the subgraphs of a hierarchical node must assert that no short
hierarchical edge crosses another subgraph. In the depicted example, the Const
node (top right corner) must not be placed to the left of the other nodes because
its short hierarchical edge must connect to the right border of the hierarchical
node ConfigurelnputFile. (a) shows a feasible placement, and (b) shows the placement
optimized with one-dimensional compaction. (c) and (d) show the bounding boxes
of the two subgraphs and illustrate how they must overlap to obtain the placement

(b).

offset is its right-most point and the width points to the left. Intuitively,
it represents a line or a strip attached to the border of a rectangle which
extends infinitely into the specified direction. We say an extension (d, 4, €)
is horizontal if d € {w,e} and vertical if d € {n,s}. A set of components
C is considered proper if no pair of components overlaps and no external
extension overlaps a component; horizontal extensions may overlap vertical
extensions. The length of an external extension is defined as the distance
between the extension’s attachment point and the intersection point with
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tel

Figure 6.5. The figure shows two components cy and c;. ¢y consists of three rect-
angles and two external extensions and c; consists of a single rectangle and two
extensions. The external extensions ¢! and e} are allowed to overlap since one is
vertical and the other one is horizontal. They are not, however, allowed to overlap
with any of the rectangles.

the bounding box that surrounds all component rectangles. See Figure 6.5
for an illustration.

PROBLEM CoMPACTING COMPONENTS WITH EXTERNAL ExTENsIONS (CEP)

Given a set of components C, transform it into a proper set C’ that uses
little area and keeps external extensions as short as possible.

In terms of placing the subgraphs of a hierarchical node, a component
represents a subgraph’s rectilinear convex hull, and each external extension
represents a short hierarchical edge.

For the use case of compacting layer-based drawings, as described in
Chapter 5, it was sufficient to compact within the x dimension only. This
time, however, it is necessary to compact in both dimensions. This is possi-
ble by continuously applying one-dimensional compaction in alternating
dimensions and directions until no further, or little, progress is made. The
compaction procedure for a given set of components C that has been ar-
ranged with the cell packing algorithm, thus proper, then looks as follows.
As the set is proper, a grouped constraint graph (cf. Section 5.1, p. 176)
can be constructed. Each component is represented by a group and the
component’s rectangles are added to it. The external extensions are con-
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verted into finite rectangles: each external extension is cut at the point
where it intersects with the bounding box surrounding all components of
C. After each compaction pass these lengths have to be adjusted to prevent
components from permuting.

Rectangle representing horizontal and vertical extensions cannot be
present at the same time during one-dimensional compaction since in that
case the set of rectangles to compact may not be valid: External extensions
are allowed to overlap with each other in the context of CEP but the repre-
senting rectangles for compaction are not allowed to overlap. Nevertheless,
it is important that the horizontal extensions are considered during vertical
compaction, to prevent nodes from overlapping with external extensions.
And the same is true for vertical extensions during horizontal compaction.
The independent application of horizontal and vertical compaction allows
to use two different sets of rectangles during compaction based on the
current direction: in addition to the R; of the components, the rectangles for
vertical external extensions are considered during horizontal compaction,
and the rectangles for horizontal external extensions are considered during
vertical compaction.

As mentioned earlier, the goal is not only to achieve a small area but
also to achieve short external extensions. To address this, an additional
compaction pass can be executed in each dimension in conjunction with one
of the locking strategies discussed in Section 5.2.1 that aim at shorter edges.
Alternatively, the network simplex approach, discussed in that section as
well, can be used with an artificial source and sink node connected to
rectangle representing nodes with corresponding external edges.

Polyomino Compaction

A disadvantage of the cell packing approach and the subsequent one-
dimensional compaction is the lack of control regarding the shape of the
final drawing, i. e. its aspect ratio. The compacted drawing is often either
flat and wide or narrow and tall, depending on which dimension is com-
pacted first. To overcome this, the polyomino approach of Freivalds et al.,
mentioned above, can be used [FDK02]. By default, it creates drawings
with an aspect ratio around 1.0, and the authors describe an easy way to
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(a) Disconnected graphs (b) Polyomino representation

Figure 6.6. Illustration of the polyomino representation as used by Freivalds et al.
to obtain compact placements of disconnected graphs [FDKO02]. Figures based on
[Cyr17].

explicitly target certain aspect ratios. However, to work for the scenario
tackled here, it must be extended to support short hierarchical edges.

As a brief reminder, polyominoes approximate the area occupied by
a subgraph using squares, see Figure 6.6. The smaller the squares, the
better the approximation. The polyominoes are then placed iteratively on
a cellular grid, subject to an objective function. Let (x, y), x,y € Z, denote
the position of a polyomino. Freivalds et al. place a polyomino such that
max{|x|, [y|} is minimized. Note that this may allow multiple best positions
for a polyomino. Furthermore, three interesting points are to be decided
on: (a) the concrete location of a polyomino, (x,y), e.g. the top left corner
or the barycenter of filled cells; (b) the order with which the polyominoes
are placed, e. g. based on size; and (c) the tie-breaking strategy in case of
multiple possible positions.

The practical realizability of the polyomino approach for CEP has been
examined by Cyruk in his Master’s thesis [Cyr17]. In essence, he associated
a state with each grid cell: empty, filled, or weakly filled. The last state is
used to represent external extensions and the fact that they are allowed
to overlap each other but are not allowed to overlap the elements of other
components. Additionally, he divides the grid into quadrants, with (0,0)
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being the origin, and limits the placement of certain polyominoes to certain
quadrants, depending on the directions of the external extensions associated
with the polyomino. For instance, a polyomino with extensions to the west
and north side is only allowed to be placed in the top left quadrant. The
idea behind this is to place polyominoes in areas that yield short edges and
avoid high numbers of edge crossings.

A comparison of drawings of the same graph created with the cell
packing algorithm, with additional one-dimensional compaction, and with
the polyomino approach can be seen in Figure 6.7. The figure shows an
artificially created hierarchical graph with a single hierarchical node that
comprises 25 subgraphs with around 10 nodes each that, taken together,
have 34 short hierarchical edges. It can be seen that the one-dimensional
compaction technique significantly reduces the area of the cell packing
algorithm (cf. (a) and (b)) and also yields the smallest area. The polyomino
approach, on the other hand, is able to consider a desired aspect ratio,
which is 1.6 in this case, and comes closest to it (1.3). It also yields a smaller
number of edge crossings between the short hierarchical edges and shorter
short hierarchical edges.

Summary

This section discussed the problem to find positions for disconnected sub-
graphs of a hierarchical node & that themselves have already been laid out
and possibly are connected to /1 via short hierarchical edges. Two strategies
to find such positions were discussed both of which can be enhanced further
in the future. Apart from that, the scenario discussed here could be relaxed:
instead of assuming a present “direction” for the short hierarchical edges,
one could try to identify those directions that allow for the shortest edges
and the fewest edge crossings (if port constraints permit). Also, allowing
additional bendpoints to be used for the short hierarchical edges would be
beneficial for compactness: consider the top left subgraph in Figure 6.7a,
which could be moved slightly to the right to reduce the used drawing area,
at the cost of two new bendpoints.

Moreover, considering the surroundings of # may help to avoid unnec-
essary crossings on other hierarchy levels.
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(a) After cell packing (b) After compaction of (a)
a~19.1Mpx, ar ~ 0.7, a ~ 10.8 Mpx, ar ~ 0.5,
c =59, e~ 5.1 kpx c=D59, e~ 4.6 kpx

(c) After polyomino-based packing
a~11.3 Mpx, ar ~ 1.3,
c=24,e~33kpx

Figure 6.7. Drawings of the same graph, created with different strategies to place
the subgraphs. The same scaling factor has been used for the three drawings. a
denotes the required area in pixels, ar the aspect ratio, ¢ the number of crossings
between short hierarchical edges, and e the average length of the short hierarchical
edges in pixels.
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6.2 O-NO Drawing Avoidance

Graph drawers usually approach the task to lay out a graph with a com-
bination of optimization problems whose individual objectives are backed
by aesthetics criteria. Despite many efforts to identify most relevant and
commonly accepted aesthetics criteria [Pur97; Har98; Pur02; BRS+07; PPP12;
MPW+12; KPS14], the subject has not been answered conclusively yet, and
it may never be.

Alternatively, one could guide the layout task from the opposite per-
spective: avoid what feels unaesthetic, or rather, avoid what is obviously not
optimal (O-NO) to a human viewer. The idea behind the term O-NO is simi-
lar to what is known as the law of least astonishment [Jam86]. It states “that
[a] program should always respond to the user in the way that astonishes
him least.” Transferred to the area of graph drawing, a user should not be
astonished by the way a drawing’s elements are arranged and should not
feel the urge to manually alter the drawing.

Next, a set of O-NOs is discussed to further exemplify the term. Most
of the presented drawings originate from the Ptolemy diagrams (see Sec-
tion 1.9) and are stripped-down to those parts that are relevant for each
illustrated issue. For each drawing three points are discussed: (1) what
is considered O-NO, (2) what would be a better solution, and (3) why is
it drawn like it is. Since all presented drawings were created using ELK
Layered, point (3) will mainly be concerned with explaining limitations of
the layer-based approach, or rather its concrete implementation in ELK. It
will be seen that often detailed knowledge is required to understand the
issues. All drawings except the last one are drawn from left to right, in
which case layers are vertical strips.

Further note that the discussed examples are not necessarily to be seen
as open problems but as illustrations of what disturbs the perception of
a drawing in practice. Many of the illustrated issues have been addressed
before or would simply not occur if one had used a different layout method.
However, it does not help much if each individual issue can be solved
somehow; for a user to be satisfied with a drawing, all issues must be absent
simultaneously.
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Edge Path and Compactness

Figure 6.8. O-NO example.

The two issues seen in Figure 6.8 are part of the motivation for the research
presented in Chapter 5, and they are also solved by it. For one thing, the
edge ¢ is unnecessarily long. For another thing, the two nodes in the top
right corner of the drawing are located further to the right than necessary,
increasing the drawing’s width and elongating connected edges.

The cause for both issues is the wide node at the bottom of the drawing,
which results in an equally wide layer / indicated by the gray area. Regard-
ing the first issue: the edge e is conservatively routed to the end of the wide
layer. Afterwards, its vertical part is routed in the area in-between | and
its right neighbor layer. Finally, the edge runs westwards to the inverted
port dummy (small black circle) that is created internally by the layout
algorithm. Being conservative is necessary because the area between ¢’s
two horizontal segments could contain further nodes that must not be
overlapped by the edge path. Regarding the second issue: the two nodes
in the top right corner are pushed to the right as the wide layer may, by
definition of a layering, contain only a single node of the sequence of nodes
at the top of the drawing.

As stated above, both issues are solved by the methods presented in
Chapter 5, where a one-dimensional compaction technique is used. However,
the first issue is easier to solve: when creating the path between the inverted
port dummy and the corresponding node within the same layer, one could
explicitly check if other elements lie in-between. If that is not the case, the
path could be routed as short as possible, “through” the layer itself.
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Edge Path
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Figure 6.9. O-NO edge path.

In Figure 6.9, the edge ¢ makes a superfluous detour upwards, elongating
the edge’s path. It is obvious how to improve matters: move the topmost
horizontal segment of ¢’s path downwards until it aligns with the leftmost
horizontal segment. This yields two fewer bendpoints, an edge path as short
as possible, and an unchanged number of edge crossings. The ELK Layered
algorithm creates the depicted drawing for the following reason. Prior to
the third step, crossing minimization (CM), long edges are split by dummy
nodes, indicated by small black circles in the figure. e and the adjacent edge
have to cross because the port order is fixed in this example. However, as
far as CM is concerned, it does not matter if the crossing occurs before
or after the layer / that contains two dummy nodes. In the given drawing,
CM placed the crossing before I. The fourth step, coordinate assignment,
then decides which parts of the edges should be drawn straight, i. e. x axis
parallel. In this case, it favored the adjacent edge over e.

If CM had decided to let the edges cross after /, the desired outcome
would have been created. Consequently, to be able to make better decisions,
CM would have to know which parts of the edges will be drawn straight
afterwards, which in turn depends on the outcome of the CM step itself.
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Edge Paths and Edge Crossings
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Figure 6.10. O-NO edge paths.

Figure 6.10 contains two obviously improvable edge paths. First, it is possi-
ble to improve e1’s path by moving its right horizontal segment upwards
to the top of the drawing. This saves two bendpoints and visual clutter.
Second, it is possible to improve e;’s path by moving its bottom horizontal
segment upwards and its left vertical segment rightwards. This saves an
edge crossing and reduces the path’s length. Note that the port order must
not be changed by convention.

At first sight, the path of e; resembles the case that has just been de-
scribed for Figure 6.9. This is true if one accepts that e;’s path runs along
the upper side of the node in the top left corner, v, with the exception that
the relocation of the edge crossing does not yield a shorter edge length
this time. The reason for the path running along the very top is more in-
tricate. e; crosses a hyperedge. Counting the number of crossings during
CM is imprecise if hyperedges are involved [San04; EGB06; SSR+14a] since
the final number of crossings depends on the concrete edge paths created
during the final edge routing step. Consequently, the CM must work with
estimates and may think it has to create two crossings with the hyperedge’s
vertical segment when it routes e¢; around the bottom of v — as opposed
to one crossing with the horizontal segment, as seen in the drawing. This
explains e;’s path as well: no matter where the crossings occur, the CM step
counts three crossings between e, and the involved edges.
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Figure 6.11. O-NO hyperedge paths.

The three marked edge paths in Figure 6.11 are part of hyperedges. There
are two points to criticize: the hyperedges” paths split earlier than necessary
for e; and e3, and they take unnecessary detours around the nodes they
connect to for e; and es.

ELK Layered works with hyperedges as if they were sets of simple
edges [SSR+14b]. This has the advantage that apart from the edge routing
step no other step must be aware of hyperedges, which significantly reduces
the complexity of step implementations. On the downside, it may yield
unfortunate edge paths as seen in the figure. e; shall serve as the example
to explain the cause, which is the same for all three edge paths. During the
layout process, e; is split by a dummy node d;. Additionally, a south port
dummy d; is introduced for the second simple edge incident to node v in
the bottom left. The edge routing step routes edges locally between adjacent
layers. Thus, between the first and the second layer it routes the edge paths
from v to d; and from v to d,. The vertical edge segment between d; and
the port it connects to is routed by a separate intermediate processor after the
actual edge routing step [SSH14]. This clearly separated course of action
explains why the edge paths split earlier than necessary.

The superfluous edge length stems from two separate issues in this
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example. First, as explained before, the crossing minimization step does not
know what a specific node order within a layer implies with respect to the
final edge lengths. In particular, it does not know that the individual simple
edges could originate from the same hyperedge and thus may share parts
of the final hyperedge path, which explains e,. Second, the reason for d;
being placed at the top of its layer is due to crossing minimization being a
heuristic and not finding the optimal solution in terms of the number of
crossings in this case. Placing d; at the very bottom of its layer would save
a crossing but would still yield excessive edge length.

Edge Crossings, Node Positions

RecordAssembler3

TOutArray

Expression2 '

PlotterFractionShadingOn Simulator

.

4 i

CurrentTime ) SimulationTime
Expression

-

WallClockTime RunTime

5 8

Const

Const2

-

StringConst

ArrayRemoveElement

Emptyltem

=

—a
"

RecordAssembler2

TOutArray

- %

Figure 6.12. O-NO node positions and edge crossings.

Figure 6.12 demonstrates two issues. To understand them, it is important to
know that the grayish area represents a single layer. The layer is as wide
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as it is because it contains a node as wide as the area that is omitted in the
figure.

Now to the issues: For one thing, it stands out that the two small nodes in
the center of the drawing can be moved downwards, which would decrease
the length of the incident edges. The cause for the node positions is the
following. A layer can be seen as a single column with as many rows as it
contains nodes. Each row may only hold a single node, which determines
the y coordinate. In ELK Layered the horizontal alignment of a node within
its row (the x coordinate) depends on the connected edges: nodes without
westward edges are aligned rightwards, nodes without eastward edges
leftwards. This, together with the extensive width of the layer yields the
unfortunate node positions seen in the figure.

For another thing, it is obvious how to improve the path of edge e: (a)
the rightmost vertical segment of e’s path can be moved to the left side of
the previously discussed two small nodes, decreasing e’s total length and
saving three edge crossings; (b) one can go further and move ¢’s bottom
horizontal segment upwards to further decrease the edge length, although
this introduces an additional edge crossing. Within the context of the layer-
based approach (a) is not feasible since edges must not be routed “within”
a layer but only in the area between layers. (b), on the other hand, is feasible
and can be achieved by moving the inverted port dummy (small black
circle) upwards, directly below the node e is incident to. It would also be a
better solution in terms of edge crossings: three instead of five. The reason
for the sub-optimal node order in this example is again the heuristic nature
of the crossing minimization. Increasing the number of performed sweeps
finds a better solution.

Hierarchy

The final O-NO example, shown in Figure 6.13, originates from an SCG
with basic blocks (cf. Section 1.4 and p. 37), is drawn from top to bottom,
and illustrates a series of obvious issues. Two of them have already been
discussed above: unnecessarily elongated edge paths for inverted ports
as seen below node N52 and above node N63, and premature splitting
of hyperedges as seen above node N52 and above node N61. Apart from
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Figure 6.13. O-NO hierarchical.

that, there are three issues that have not been discussed so far. First, the
hierarchical node g25 could be moved further to the right, which would
decrease the length of the incident edge. Second, there is an edge crossing
in the upper part of the hierarchical node g43. It is obvious that the crossing
can be removed by swapping the attachment points of the two involved
edges on the northern border of node N120, without negatively affecting
the omitted part of the drawing. Third, the westward edge of N64 makes
an unnecessary detour downwards. Instead, it could leave the hierarchical
node g12 on the west side, reducing the edge’s length.

The cause for all three issues is the local nature of the bottom-up strategy
used by ELK Layered to lay out hierarchical graphs: it lays out the “inner”
graph of a hierarchical node without any knowledge of the surrounding
graph. Edges that connect to nodes outside of the current hierarchical node
are internally split into multiple edges, and only the edge that connects the
hierarchical node’s boundary to an inner node is routed. For instance, the
three northern edges of N120 are routed to the northern border of g43. This
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explains the unnecessary crossing: regardless of how the three northern
edges of N120 are ordered horizontally, no crossing is introduced. Only
when it comes to deciding the order of the edges incident to the northern
side of g43 from the outside, the algorithm may notice that the previous
decision was unfortunate. Schelten addresses this particular problem in his
Master’s thesis [Sch16].

The situation is similar for g25. When the algorithm assigns a position
to g25, any horizontal position at the bottom of the surrounding node is
fine since it yields the shortest possible length of the southward edge that
extends to the boundary of the surrounding node. Only when the algorithm
handles the topmost hierarchy level it decides where to position g43.

Summary

The previous examples illustrated a range of different types of O-NOs.
As seen, there are usually reasonable explanations for the flaws of each
individual drawing. However, they are far from understandable by users
without background knowledge in the area of graph drawing. An interesting
question therefore is whether it is possible to formalize and classify O-NOs,
potentially based on a specific diagram type at hand, in ways that allow
to either come up with new algorithms that eliminate the O-NOs in given
drawings or to guide existing layout algorithms to avoid O-NOs in the first
place.

This section shall close with the observation that many of the presented
O-NO examples are concerned with a flawed orthogonal edge routing.
The edge routing of the layer-based approach depends in parts on the
placement of dummy nodes during the earlier steps. On the positive side,
this ensures that enough space is available to properly route the edges.
On the negative side, both the process to place the dummy nodes and the
process to route the edges between pairs of layers only work locally and
with limited knowledge about their decisions” implications. It may thus be
an option to use dedicated orthogonal edge routing techniques after the
other elements of a diagram have been placed [WMS10; WMS12; MSW14].
When routing edges with splines, this strategy has been applied before by
different authors [GKN+93; NRLOS].
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6.3 Knowledge-Based Drawings

Often diagrams are drawn based on some kind of background knowledge,
be it manually by a human or automatically by an algorithm. The exact type
of additional information used is manifold and depends on the specific use
case. Misue et al. distinguish two types of layout processes: layout creation
and layout adjustment, where the first one is concerned with the creation
of a drawing and the second one is concerned with altering the positions
of the elements within an existing drawing [MEL+95]. The second type
is required, for instance, in a scenario where nodes and edges have been
added to a graph for which a drawing already exists: existing elements
may have to be moved to properly incorporate the new elements into the
drawing. This process is also known as drawing dynamic graphs [Bra01],
for which a variety of dedicated visualization techniques exists that has
recently been surveyed by Beck et al. [BBD+17]. During both layout types,
layout creation and layout adjustment, additional information can be used
in various ways, which is detailed in the reminder of this section.

Layout Creation The process to create a drawing is usually guided by an
underlying intention. This is already true for the traditional layout method-
ologies discussed in Section 1.5: the layer-based approach intends to empha-
size direction and the force-directed approach intends to distribute nodes
evenly and symmetrically. However, often there is a more specific kind of
intention when it comes to laying out concrete diagram instances that is
based on further knowledge about the concrete instance. For instance, when
humans manually create a drawing of a graph, they often try to resemble
something they already know. This may be due to various reasons. For one
thing, it may help them to come up with a step-wise plan, a strategy, to
pursue and to justify their actions. For another thing, they may have the
intention to ease the understanding of the created drawing for others. And
while the previous statements may seem intuitive, they are speculative. Petre
approached the topic how humans arrange and read diagrams scientifically
by means of user studies and observing expert users during their daily
work [Pet95]. He found that an essential element of a diagram’s drawing
is secondary notation, something that is not explicitly part of the diagram
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(a) Snippet of a model railway’s schematic plan showing N
a train station with three lanes. The original schematic i
was created by Hohrmann [Hoh06].

(b) Hand-crafted drawing of a dataflow diagram modeling
the controlling unit. The nodes” positions in the drawing
resemble the physical topology.

Figure 6.14. Illustration of how knowledge of a system’s physical topology can
influence the positions of the system’s elements in a corresponding drawing.

type’s syntax. More precisely, it is “the use of layout and perceptual cues
(elements such as adjacency, clustering, white space, labelling, and so on) to
clarify information (such as structure, function, or relationship) or to give
hints to the reader.” As such, secondary notation relies on experience and
conventions and is therefore utilized extensively by experts, as opposed to
novices. He further notes that if used incorrectly, secondary notation may
be misleading.

To give a concrete example, consider Figure 6.14. It shows a snippet
of a schematic representation of a model railway and a dataflow diagram
that models the control unit of the depicted part of the overall track, i.e. it
models the dataflow between train stations, signals, switches, and further
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sensors and actuators. The schematic representation is an abstraction of the
physical world in the sense that distances are not true to scale but that the
topology is preserved. It is clearly visible, for instance, that a train station
with three tracks connected by a set of switches is depicted. The drawing
of the dataflow diagram has been created by hand and the drawer chose
to resemble the structure of the schematic. This may help viewers of the
diagram, who are familiar with either the physical structure of the tracks
or the schematic, to immediately find the parts within the drawing of the
dataflow diagram they are interested in. Figure 6.15a shows a drawing of
the same diagram that has been created with a creational layout algorithm
without considering any additional information. As a result, no similarities
between the laid out diagram and the schematic can be observed, and the
question arises how to capture to desire to resemble something known with
a layout algorithm. This has been studied before: In terms of creational
graph drawing techniques that use background knowledge, Brandes et al.
discussed sketch-driven layout, which creates an orthogonal-style drawing
based on a sketch [BEK+02]. Such a sketch does not necessarily have to
be created by a human and can be as simple as merely defining x and
y coordinates for a graph’s nodes. This work inspired the interactive layout
discussed by Sponemann [Sp615]. It realizes the first three steps of the layer-
based approach with implementations that derive the desired topology of
a final drawing, i. e. the horizontal node order (layering) and the vertical
node order (order within each layer), from a given sketch and executes
the approach’s latter two steps to obtain a tidy drawing. Furthermore, the
extension of stress minimizing layout with separation constraints presented by
Dwryer et al. allows to flexibly guide the layout algorithm to obey to user-
requirements [DKMO06a], e. g. to preserve topology. On a meta level, several
authors looked at how humans lay out graphs, how human-created draw-
ings compare to automatically created ones, and what aesthetics humans
pursue [HamRO08; DLF+09; PPP12]; others looked at visual structures within
drawings that aid memorability [MPW+12]. Recently, Kieffer et al. devel-
oped an algorithm, Human-Like Orthogonal Layout (HOLA), which aims at
creating drawings that are similar to what a human would create [KDM+16].
They used user studies to identify what makes drawings “human-like”,
designed their algorithm based on these findings, and double-checked the
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(b) Sketch-based layout
H__ as discussed by Sponemann [Sp615]

(c) Fully-automated layout
(a) Fully-automatic layout minimizing stress [GKN05]
using ELK Layered

Figure 6.15. Three alternative drawings of the diagram seen in Figure 6.14b, this
time created by layout algorithms. In (b) the hand-crafted drawing is fed as sketch
to the layer-based approach with the interactive extensions of Spénemann. Method-
inherent limitations impair the quality of the drawing: the rigid layering prevents
connected nodes from being placed horizontally overlapping, something that has
extensively been done in the manual layout. In (c) a stress minimizing method is
used (cf. Section 1.5.1) that produces a layout structurally similar to the manual one
without any further hints. In can be seen that analogously to the manual layout, the
small nodes are located close to the larger nodes, and that by aligning certain edges
with the x axis, the drawing could become quite similar to the manual one.
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results with further user studies.

Using two of the aforementioned methods, the drawings seen in Fig-
ures 6.15b and 6.15c are possible whose appearances come closer to that of
the hand-crafted one. Note that a drawing very similar to (b) would also
be possible with the classic layer-based approach by providing a dedicated
cycle removal implementation that reverses the edges of the diagram ac-
cording to a predefined direction. That is, the larger nodes of the diagram
are connected pairwise with two edges. For each node, one of the two edges
is an outgoing edge and the other one is an incoming edge (not visible
within the drawing). Since therefore each of these pairs of edges forms a
cycle, it is hard for the default implementations of the cycle removal step
to come up with a reasonable FAS. With the knowledge about the graph’s
structure just outlined, however, one can ensure that always the same “kind”
of edge, say the upper one in the drawing, is reversed.

Two further illustrative examples from practice that incorporate domain-
specific knowledge into drawings are:

Metro maps The task to lay out metro maps involves preserving the topology
of the individual metro stations’ actual geographic locations relative to
each other while abandoning true distances between pairs of stations to
aid clarity [SR04; HMNO04; NW11].

Control-flow diagrams In control-flow diagrams, such as SCCharts and SCGs,
it is usually desired to place the nodes that represent the start of the
execution in a dedicated place (cf. secondary notation). For instance, if
the overall layout direction is left-to-right, it is sensible to place such
nodes on the very left.

Layout Adjustment As opposed to layout creation, layout adjustment
works with an existing drawing, i. e. at a minimum each node has a position.
Depending on the complexity of the underlying diagram, edges may have
been routed and labels may have been placed. Note that to some extent the
sketch-based approaches mentioned above can be classified as adjusting
algorithms. The adjustment task may pursue various objectives, among
which layout stability and preserving a user’s mental map [ELM+91] after
structural changes are the most discussed topics. Two examples of structural
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changes are:

* new elements that have been added to the diagram and must now be
incorporated into the drawing, and

* elements that represent hierarchy have been expanded by a user to look at
their internals and consequently require more space within the drawing,
possibly overlapping other elements.

Informally, the concept of the mental map covers the desire that when
users look at a newly laid out diagram they were familiar with before-
hand they should immediately recognize the diagram and be able to orient
themselves. Formally, mental map preservation is defined as preserving
topology, proximity, and orthogonal ordering, and studies have been conducted
to determine meaningful metrics to measure the similarity of a pair of draw-
ings [BT98; BT02]. An overview is also given by Branke [Bra01]. However,
while the identified metrics give a general feeling of similarity, they may
miss domain-specific knowledge and requirements.

Topology-preserving methods have been presented for most of the well-
known graph drawing approaches. For instance, Bridgeman et al. addressed
orthogonal drawing methods [BFG+97], Dwyer et al. used a stress model
and separation constraints for force-based drawing methods [DMW09b],
and North and Woodhull extended the layer-based layout method [NWO02].
Still, the produced drawings reflect the aesthetics selected by the specific
method. Alternatively, Freivalds and Kikusts presented a method that aimed
at preserving a drawing’s topology by minimizing the distance between a
node’s new and old position subject to certain ordering constraints [FKO01].

Three illustrative applications of layout adjustment in practice are:

Model migration In the area of model-driven engineering (MDE) one often
differentiates the concrete syntax and the abstract syntax of a modeling
language [KRV07; MMMO8]. For graphical modeling languages, i.e.
languages that use diagrams as representation, the concrete syntax
defines the appearance and dimensions of the diagrams’ elements and
thus affects the way the diagrams are laid out. Modeling languages,
and thus both syntaxes, are subject to modifications over time, which
gives rise to the task of model migration. For instance, after a language
change, the width of a diagram element might have increased, resulting
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in overlaps within the drawings. While this problem has been discussed,
and existing tools have been compared in the form of contests [RHM+12],
Paige et al. note that the migration of the concrete syntax has not been
given enough attention yet [PMR16]. A technique targeting LabVIEW
diagrams in particular has been discussed recently [RLP+16].

Node overlap removal Force-directed layout methods often have no notion of
node dimensions. As such, they create drawings in which nodes overlap,
and to create satisfying drawings, one seeks to remove those overlaps
in a post-processing step. Several authors tackle the problem using a
broad variety of techniques [HIM+98; MST+03; LEN05; DMS06; HLS+07;
GHO09], often aiming at a trade-off between preserving the mental map
and minimizing area.

Interactive diagramming support Even in cases where users have a clear
idea of how a drawing should look like and reject fully automatic
layout algorithms, handy tool features are usually welcome: preserving
manually specified alignments between nodes and re-routing the edges
connected to a node that is being manually moved interactively. An
editor providing such supporting editing facilities is Dunnart [DMW(09a].

Summary

Users working with and creating diagrams as part of their job on a daily
basis are often hesitant when it comes to fully automatic layout of dia-
grams [Spo15]. In parts this may be due to the lack of secondary notation
when diagrams are laid out automatically. The goal of future research
should therefore be to identify the points that cause users’ reservations
and to provide methods that overcome these reservations. A step into this
direction could be to provide a set of supporting tool-mechanisms that
are perceived convenient by users. Apart from this, over the years many
diagrams have already been laid out without the aid of automatic layout
algorithms. Being able to maintain such diagrams, be it in the context of
model migration or due to the desire to clean up the drawings for bet-
ter readability, requires to take into account conscious user decisions, i.e.
extract and preserve secondary notation.
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Apart from the identification of the problems’ sources, further work in
at least two areas is required:

Layout methods Highly flexible layout methods are required. As explained,
it strongly depends on the use case how a drawing should look like
and what domain-specific knowledge may influence the positioning of
elements. At this point, the fitting layout methodology must usually
be chosen on a per use case basis and often be specifically tailored.
Moreover, the methods have technical limitations which are at times
inexplicable and unacceptable to users. In the context of the layer-based
approach, for instance, no plausible explanation exists as to why it is a
“good idea” to forbid connected nodes from being placed one above the
other at times in a left-to-right drawing (apart from the formal definition
of a layering).

In my eyes, constrained stress minimizing layout (cf. Section 1.5.1) along
the lines of the methods presented by Dwyer et al. [DK05; DKM06a;
DKMO09] is the most promising existing approach to base on here. It
starts with a relatively unbiased objective: minimize stress, which merely
states that nodes should be somewhat distributed and that those nodes
connected by an edge should likely be somewhat closer to each other.
By identifying the right set of constraints, one can use it to lay out
dataflow diagrams [RKD+14a], a diagram type whose layout conven-
tions are rather different from what stress-based approaches produce
naturally. Recently, Wang et al. followed up on these approaches in that
they reformulated the traditionally employed stress majorization tech-
nique [GKNO5] to allow a larger variety of constraints [WWS+17] and to
allow faster execution, e. g. by parallelization on GPUs.

Tooling From my experience, tools” user interfaces for layout algorithms
are often incomprehensible and the performed actions are perceived
as intrusive black-boxes. For instance, a common feature is a “layout
button” that, upon being pressed, executes a layout algorithm and re-
arranges the elements of a diagram. If users are unsatisfied with the
result, some tools allow to configure the layout algorithm further. To this
end, they face the users with a dialog window, presenting vast numbers
of configuration options. Understanding these options and identifying
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the values that yield the desired effect often requires detailed knowledge
of the internal functioning of the used layout algorithm.

Either way, a user should not be locked out of the layout process —
something that is often unavoidable due to the nature of creational
layout algorithms — but should be able to guide the layout process in
an adequate way by providing hints on how certain elements should,
or could, be positioned. Layout methods then must be able to regard
these hints, and the tools must be able to persist them for future layout
executions.

Therefore, further questions to be examined in this context are: What
kind of layout support helps users with certain tasks at hand? What is an
intuitive way for the user to use and configure a layout algorithm? And
what is the right level of detail when presenting configuration options?
Answering these questions requires to take results of the area of human
computer interaction (HCI) into account, which is directly concerned with
designing intuitive and user-friendly interfaces between humans and
computers.
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6.4 Layout Method Configuration

To cope with the requirements of different diagram types and use cases,
layout algorithms can usually be configured extensively using parameters
that are referred to as layout options, or simply options, in what follows.

An example of how much of an impact the configuration of a layout
algorithm can have on the quality of the resulting drawing is shown in
Figure 6.16. (a) shows a rather chaotic drawing of an SCChart, which is the
result of applying ELK Layered in default configuration. (b) shows a draw-
ing of the same graph that makes a more structured and tidy impression,
this time laid out with Graphviz’s dot [GKNO02] in default configuration. Just
like ELK Layered, dot is an implementation of the layer-based approach.
To create the third drawing, (c), ELK Layered was configured to use the
same cycle removal strategy as dot and to use a smaller spacing between
adjacent layers. The effect is that ELK Layered’s drawing now looks similar
to dot’s and nothing like (a) anymore. This highlights two points: (a) a slight
modification of a layout algorithm’s configuration can significantly improve
(or worsen) the resulting drawing’s quality, and (b) can yield dissimilar
drawings, for which a human could not immediately tell that they originate
from the same graph. Layout options therefore have to be used cautiously
and are both a blessing and a curse.

Depending on its purpose, a layout option has a certain scope: it can be
set for different graph elements (nodes, edges, etc.), for individual elements
of a concrete graph instance (e. g. “node n12”), or for the layout algorithm
itself. To give a few examples:

Algorithm: configure the preferred direction into which edges should point.

Hierarchical node: configure the layout algorithm used for the represented
simple graph of a concrete hierarchical node.

Simple node: configure the port constraints of a concrete node or the spacing
to be preserved between any pair of nodes.

Edge: configure the importance of a specific edge to be short.

Label: configure the desired placement of a diagram’s labels relative to its
nodes or edges.
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(a) ELK Layered (b) dot (c) ELK Layered
configured

Figure 6.16. Different drawings of the same SCChart, illustrating that different
configurations of a layout algorithm can lead to significantly different drawings.

Some layout algorithms offer large numbers of layout options. For instance,
ELK Layered’s documentation page? lists over one hundred layout options,
and Graphviz’s website? lists over two hundred attributes, although not all
of them are supported by each of their layout algorithms and not every
attribute influences the layout, e. g. the attribute to set the color of a node.
Nevertheless, as soon as the default configuration of a layout algorithm
does not produce the desired drawing, someone has to understand the
layout options and has to modify them in a way that creates the desired
effect. In practical applications, e.g. in the context of tools that build on
automatic layout, it is possible to configure layout algorithms on at least
two levels: first, specifying a default configuration for a diagram type that
yields reasonable drawings for the majority of the possible diagrams, and
second, fine-tuning such a configuration for a concrete diagram instance. The
first scenario requires detailed knowledge of the layout approach and of
most of the layout options and should therefore be performed by an expert

2 http://www.eclipse.org/elk/reference/algorithms/org-eclipse-elk- layered.html [Acc. 27/09/17]
3 http://www.graphviz.org/content/attrs [Acc. 27/09/17]
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or a tool-smith. The second scenario is usually performed by users that
work with a tool and want to slightly alter the appearance of a drawing, for
instance, to improve it for presentation purposes or because they know that
an alternative arrangement of a subset of elements would aid the drawing’s
comprehensibility for other users. However, not every option can easily be
understood and configured by a user, which is why it may make sense to
expose only a subset of the available options to a users.

An orthogonal question is how to come up with “good” configurations
in either of the two mentioned scenarios. Since the number of possible com-
binations of layout options is large, it is worthwhile to consider supportive
algorithms. Sponemann et al. call the process to come up with a reasonable
configuration meta layout [SDH14]. They define an abstract layout of a graph
to be a description of which layout algorithm to apply and which values
to use for its supported layout options. Together with a concrete graph
instance, the abstract layout yields a concrete layout, a different term for a
drawing. To identify an abstract layout that has the desired effects, they use
an evolutionary optimization technique that rates concrete layouts based on
commonly used aesthetics criteria [BRS+07].

As seen, when it comes to configuring layout algorithms to yield the
desired outcome, there is research potential in at least two areas:

User interfaces How should layout options be exposed to users, what are
intuitive ways to manipulate them, and which layout options should
better be hidden? When users are allowed to alter or influence the layout,
how can such decisions be persisted for and integrated into future layout
executions?

Automatic layout configuration What are good strategies to identify layout
configurations that yield the best results not only for a single graph but
for a class of graphs? How can the user be integrated into this process?
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Chapter 7

Conclusions

This thesis presents several modifications and extensions to the layer-based
approach in order to improve and broaden its usefulness in practice, and
at this it lays a specific focus on dataflow diagrams. Next, the main contri-
butions and gained insights are summarized, afterwards, the thesis closes
with ideas for future research.

Layer Assignments The traditional formulation of a layering has two
crucial inherent limitations:

> The requirement that all edges have to point “forward” significantly
limits the solution space of possible layerings, in particular, for certain
graph instances it prevents compact drawings and drawings that suite a
prescribed drawing area.

> The width of a layer is dictated by its widest node, possibly resulting in
large amounts of whitespace to the left and right side of narrower nodes
within the same layer.

The first limitation is addressed with the introduction of the Generalized
Layering Problem (GLP) (Section 3.2) and the introduction of a wrapping
procedure (Section 3.3). GLP is allowed to reverse certain edges if it aids
the creation of a layering that yields a more compact drawing. An integer
program and a heuristic are presented for the new problem and evaluated
extensively. For the used set of graphs, GLP is able to create layerings that,
when compared to traditional layerings, are more compact, and it is able to
control the aspect ratio of final drawings to a certain extent. For use cases
where the directionality is not that important, i. e. an arbitrary number of
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edges may be reversed, the compactness can be improved even further as
demonstrated using a variant of GLP that directly optimizes the max scale
measure. Where directionality is of greater interest the proposed wrapping
procedure is able to tailor layerings to prescribed drawing areas while
resembling traditional layerings in large parts. It does so by splitting a tradi-
tional layering into chunks at reasonable points and by placing the chunks
side by side. Evaluations based on SCGs show that the proposed procedure
is successful. The last contribution in the area of layerings addresses the
problem of finding layerings with a restricted number of nodes per layer.
Existing work did not consider actual node dimensions, a shortcoming that
is overcome here (Section 3.1).

The second limitation mentioned above is addressed in a section below.

Coordinate Assignments The layout of dataflow diagrams poses chal-
lenges on the coordinate assignment algorithms:

> Edges may not connect to the nodes itself but to ports that are located
on the nodes’ boundaries. The ports may be free to move alongside the
boundaries, and node sizes may be free to change.

> The coordinate assignment step determines whether an edge can be
drawn parallel to the x axis, simply referred to as straight below, in a
left-to-right drawing. This is particularly relevant when edges are to be
routed orthogonally since any edge that is not straight requires at least
two edge bendpoints.

To address these challenges, two established methods are extended and
modified in ways that allow them to be flexibly adjusted to the needs of a
broader range of diagram types. First, the method of Gansner et al. [GKN+93]
has been modified to optionally allow flexible port positions on a node’s
border and to allow a node to resize in height, both if it helps increasing the
total number of straight edges (Section 4.1). Furthermore, it has been shown
how certain edge paths can be post-processed, again to increase the number
of straight edges. Second, the method of Brandes and Kopf [BK02] has
been extended to support different node sizes as well as ports (Section 4.2).
Additionally, modifications to further increase the number of straight edges
have been presented, potentially at the cost of additional drawing height.
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Drawing Compaction As mentioned above, drawings created with the
layer-based approach often suffer from significant amounts of whitespace
that stem from nodes with different widths being placed in common lay-
ers. To improve matters, it is explained how the simple technique of one-
dimensional compaction can be applied (Chapter 5). While the technique is
well-known and widely used to compact electrical circuit boards in the
area of VLSI, for instance, various peculiarities have to be considered when
compacting drawings of diagrams and in particular drawings of dataflow
diagrams. An evaluation based on diagrams from practice shows that the
width of the corresponding drawings can often be reduced significantly by
applying this strategy.

Hierarchical Layout Laying out hierarchical graphs is a challenging task.
To cope with complexity, one can apply a bottom-up strategy that lays out
a sequence of simple graphs that, taken together, result in a drawing of
the whole graph. The simplification comes at the cost that each invocation
of a layout algorithm to lay out a simple graph has to work with limited
knowledge of the subgraph’s surroundings, possibly making decisions that
turn out to be unfortunate in the final drawing. Instead of resorting to a
global layout strategy, however, it is often possible to improve on certain
subproblems while keeping the modifications of the bottom-up layout
strategy to a minimum.

Two subproblems were discussed here: computing layouts of hierarchi-
cal graphs that fit prescribed drawing areas (Section 6.1.1) and packing
disconnected subgraphs of a hierarchical node that comprise short hierarchi-
cal edges (Section 6.1.2). For the first problem a methodology is proposed
and outlined that assigns a “local” target drawing area to each hierarchical
node such that the combined drawing matches the prescribed drawing area.
An initial evaluation based on a small set of SCCharts shows promising
results. For the second problem two strategies are briefly discussed that are
based on one-dimensional compaction and polyomino packing, respectively.
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7.1 Lessons Learned

During my thesis I faced two recurring difficulties that are briefly outlined
next.

Objectives Must be Clear A central question worked on in the context
of graph drawing that has not been answered conclusively yet is: What do
humans like and dislike about the way elements are arranged in certain
drawings? The aesthetics criteria pursued by layout algorithms are often
defined by graph drawers, not by domain experts who actually work with
the created diagrams. To find reliable answers, however, domain experts
and layout algorithm engineers should closely work together.

Nevertheless, many efforts are being made to verify or refute the im-
portance of certain aesthetics criteria, often in form of user studies. Unfor-
tunately, such user studies are difficult to conduct both due to the lack of
expert participants and the relatively simple questions that can be looked
at. Furthermore, it is not clear if a particular aesthetics criterion that ap-
pears visually pleasing to a human or aids perception actually improves
the performance with respect to a certain work task. Similarly, pursuing
specific aesthetics criteria may be advantageous for certain use cases and
simultaneously be disadvantageous for other use cases.

Results Must be Explainable It is often hard for humans to comprehend
and accept certain decisions of a layout algorithm because they see an easy
way to improve a drawing according to their subjective perception. At times,
the unsatisfying results are owed to methodological limitations, at other
times they could be improved but the ways a user can interact with a layout
algorithm to tell it to produce the desired result are often not intuitive and
require unjustifiable knowledge acquisition about the algorithm’s internals
from the user. The methodological limitations often stem from splitting
the overall layout task into manageable subproblems. Each subproblem is
then solved as good as possible, which may have negative consequences for
subsequent steps. To give an example that is discussed in this thesis: The
cycle removal step of the layer-based approach dictates what is achievable
during the layer assignment step (cf. Chapter 3), and seeking for minimum
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number of reversed edges may eliminate those layerings from the feasible
set of solutions that would yield desired results. One could therefore say
that striving for optimality for subproblems is too much and too little at the
same time. Subproblems should be solved while taking their context and
their effects into account. An alternative way of thinking about the overall
layout problem has been proposed in Section 6.2: Instead of seeking optimal
solutions with respect to quantifiable aspects, avoid what subjectively feels
not optimal to a human.

7.2 Future Work

During the course of this thesis, several points emerged that are worthwhile
to pursue further; some concern enhancements of methods presented in this
thesis, others concern whole areas of research that involve many questions
yet to be answered. Chapter 6 already covers several topics that I believe
are relevant for practice and still offer many open questions, in particular:

* laying out hierarchical graphs,
* avoiding obviously not optimal (O-NO) drawings, and
* allowing a user to get involved with flexible layout methods.

Another interesting question is whether techniques from the recently re-
vitalized area of machine learning, in particular deep learning and neural
networks, can be used to create drawings of diagrams. A starting point could
be to let a network resemble the behavior of a traditional layout method
and afterwards train it to avoid O-NOs.

In addition to these topics, there are concrete points in which the meth-
ods presented in this thesis can be improved further.

Layer Assignments Computing alternative layer assignments can be im-
proved in two ways. On the one hand, improved heuristics for GLP could
be designed that are not only superior in terms of the resulting numbers of
dummy nodes and reversed edges but are also more flexible and able to
address graph classes such as paths and trees. Besides, the impact of alter-
native cycle removal algorithms could be examined. The effect of pursuing a
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123456 7 101112 8 9

1234567 8 9 101112

(a) (b)

Figure 7.1. A wrapped graph (a) and an alternative presentation (b) in which only
parts of the cut edges are drawn; labelling numbers are used to indicate connections.

slightly different strategy to eliminate cycles has already been demonstrated
in Figure 6.16 (p. 248). On the other hand, alternative presentation styles
could be explored in the context of the presented wrapping procedure
that avoid cluttering the drawing with excessively long edge paths, see
Figure 7.1 for an example.

The traditional notion of a layering disregards node dimensions, which
is one of the main reasons for poor compactness of drawings in practice,
where the dimensions of the nodes can vary significantly. And while GLP
already alters the notion of a layering by allowing backward edges, it
still ignores node dimensions. It may be worthwhile to explore alternative
layering formulations that explicitly incorporate node dimensions, ideally
not affecting the remaining steps. This would also address the problem that
one has to work with estimates of the width and height of the final drawing
during the layer assignment step, which can deviate significantly and may
be misleading at times [RES+16a].

Coordinate Assignments The two discussed methods for coordinate as-
signment focus on supporting ports and on drawing a preferably large
number of edges straight to cater for orthogonally routed edges. In terms
of balance, the computed positions leave room for improvement. It should
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Figure 7.2. Two possibilities to reduce the width of a drawing: (a) allowing an edge
to take a detour, and (b) allowing a node to jump over the adjacent edge.

be explored if it is possible to apply a simple post-processing procedure
to a given coordinate assignment that preserves the deliberate decisions
of the previous steps, e.g. which edges are to be drawn straight, while
seeking for the most balanced positions possible. Moreover, drawing many
edges straight can have a negative side-effect: it can excessively increase the
drawing’s area. One could identify edges that would have this effect and
intentionally ignore them.

Drawing Compaction Diagram types may prescribe various different
spacings to be preserved between diagram elements (cf. Section 5.2.3). Dur-
ing the proposed compaction procedure they are handled by enlarging the
rectangles that represent the diagram’s elements. This decision turned out
to be unfortunate: many special cases have to be considered, and which rect-
angles to enlarge at which point in time must carefully be thought through.
Even worse, certain spacings cannot be guaranteed anymore. It should
therefore be examined whether it is possible to consider prescribed spac-
ings during a fast constraint calculation algorithm, assigning an individual
minimum length to the separating constraints.

Furthermore, drawings could be compacted even further if certain as-
sumptions were relaxed. For instance, if edge segments were allowed to
be split, edges could take small detours with the effect that the overall
diagram becomes smaller, see Figure 7.2a. Additionally, if the relative order
of elements to each other were allowed to change, nodes could for instance
jump over vertical segments wherever it decreases the overall diagram area.
Figure 7.2b shows an example. In both cases it would have to be evaluated
to which extent users accept such modifications.
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Glossary

Acronyms

CPU Central processing unit

DSL Domain-specific language

DSVL Domain-specific visual language

ELK Eclipse Layout Kernel
http://www.eclipse.org/elk

ETAS Engineering Tools, Application and Services
http://www.etas.com/

FAS Feedback arc set

GPU Graphics processing unit

HALS Hierarchy-Aware Layer Sweep

HCI Human computer interaction

HOLA Human-Like Orthogonal Layout

IBM International Business Machines
http://wa. ibm. con/

ILP Integer linear program

KCSS Kiel Computer Science Series
http://waw. informatik.uni-kiel.de/kess

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

http://www.informatik.uni-kiel.de/rtsys/kieler/
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Glossary

LabVIEW Laboratory Virtual Instrumentation Engineering Workbench

http://www.ni.com/labview

LAP Linear arrangement problem
LpP Linear program
MDE Model-driven engineering
MDS Multi-dimensional scaling
OGDF Open Graph Drawing Framework
http://www.ogdf .net/
O-NO Obviously not optimal
SCADE Safety Critical Application Development Environment
SCChart Sequentially Constructive Chart
http://www.sccharts. con/
SCG Sequentially Constructive Graph
VLSI Very large scale integration
Problems
CEP Compacting Components with External Extensions
DAHLP Drawing Area-Aware Hierarchical Layout
DLP Directed Layering
GLP Generalized Layering
LRLP Layering With a Restricted Number of Nodes per Layer
WLGP Wrapping Layered Graphs
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