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Introduction 

Pharmaceutical oral solid dosage forms such as tablets, capsules, and granules are generally mass-

produced. The manufacture of the drug products include blending of one or more active ingredients 

and functional excipients, granulation of the powder blend to provide a better handling in the following 

unit operations, unit dosing of the final blend, i.e., tableting, encapsulating, or bottle filling, and 

coating of the tablets if needed. Manufacturing process development of drug products has to be based 

on a scientific rationale as the process conditions do affect the drug product quality. Traditionally, 

process validation is performed by demonstrating a successful manufacture of three consecutive 

commercial scale batches at the target manufacturing conditions. However, from a process control 

point of view, the traditional process validation approach is insufficient as to ensure consistency of 

quality in commercial production runs. Regulatory agencies, universities, and pharmaceutical 

industries acknowledged that a comprehensive understanding of the relationship between 

manufacturing conditions and the resultant drug product quality should be investigated prior to 

selecting target manufacturing conditions, and a systematic control strategy of the process should be 

established based on the identified relationship between the manufacturing conditions and drug 

product quality1, 2. 

In 2010, a guideline regarding a systematic approach on establishing the control strategy of the 

pharmaceutical drug product manufacturing process, defined as Quality by Design (QbD) approach, 

was published by the International Conference on Harmonisation of Technical Requirements for 

Registration of Pharmaceuticals for Human Use (ICH); ICH Q8 (R2)3. The systematic approach to the 

manufacturing process development should begin with defining the objectives as the Quality Target 

Product Profile (QTPP), and proceed with product and process understanding and process control to 

satisfy the target quality, based on a scientific rationale including quality risk management. A typical 

example of this activity is to control process risk factors selected by preliminary risk assessment on 

the drug product quality based on a process model, typically derived from a Design of Experiments 

(DoE). DoE is defined as a structured, organized method for determining the relationship between 

                                                   
1 Food and Drug Administration, 2011. Guidance for Industry, Process Validation: General Principles and 

Practices. 

2 European Medicines Agency, 2016. Guideline on process validation for finished products - information 

and data to be provided in regulatory submissions. 

3  International Conference on Harmonisation of Technical Requirements for Registration of 

Pharmaceuticals for Human Use, 2009. Pharmaceutical Development Q8 (R2). 
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factors affecting a process and the output of that process3, 4. This process modeling approach can 

provide a comprehensive understanding of the process by providing a numerical relationship between 

the process condition and the resultant drug product quality5. Setting acceptable ranges of process 

parameters based on the process model, e.g., design space or normal operating ranges (NORs) by 

ensuring the desired drug product quality, should provide a higher assurance of the drug product quality. 

Currently, DoE is a common and standard approach in developing a process model in 

pharmaceutical industry because of its simplicity and the recommendation from authorities. In general, 

it starts with the selection of input parameters that potentially affect the output parameters to be 

controlled. Following to the first step a screening DoE, which is to distinguish which of the many 

input parameters really affect the output parameters, is performed as the second step by using a highly 

fractionated design, e.g., focus on the main effect of the input parameters, to reduce the number of 

experiments. And in the third step, a less fractionated DoE, i.e., factorial or response surface 

experiments, are performed where the effect of interaction and quadratic terms of the input parameters 

on the output parameters can be analyzed in addition to the main effects. Less fractionated DoEs can 

capture the curvilinear correlations between the input and output parameters by considering the 

quadratic terms though it cannot capture the nonlinearity in a general sense, therefore it will provide a 

higher prediction accuracy compared to the model developed in the screening DoE. In general, the 

least squares regressions derived from the third step are utilized for process development and control. 

Due to the simplicity in analyzing the cause and effect relationship, the DoE based process modeling 

is being the first option in the pharmaceutical industry6, 7, 8. 

One common drawback of the DoE based approach is the resources required to develop a reliable 

model for commercial manufacture. Even at a fractionated DoE, a response surface experiment such 

                                                   
4 Yu, L.X., 2008. Pharmaceutical Quality by Design: Product and Process Development, Understanding, 

and Control. Pharm. Res. 25, 4, 781–791. 

5 Huang, J., Kaul, G., Cai, C., Chatlapalli, R., Hernandez-Abad, P., Ghosh, K., Nagi, A., 2009. Quality by 

design case study: An integrated multivariate approach to drug product and process development. Int. J. 

Pharm. 382, 23–32. 

6 Rajalahti, T., Kvalheim, O.M., 2011. Multivariate data analysis in pharmaceutics: a tutorial review. Int. 

J. Pharm. 417, 280–290. 

7 Teckoe, J., Mascaro, T., Farrell, T.P., Rajabi-Siahboomi, A.R., 2013. Process optimization of a novel 

immediate release film coating system using QbD principles. AAPS Pharm. Sci. Technol. 14, 531–540. 

8 Zacour, B.M., Drennen, J.K., Anderson, C.A., 2012. Development of a fluid bed granulation design space 

using critical quality attribute weighted tolerance intervals. J. Pharm. Sci. 101, 2917–2929. 
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as Box-Behnken design requires 15 runs for 3 input parameters9, 10. While it is also possible to develop 

a DoE based process model based on experiments conducted at laboratory or pilot scale, it needs to be 

verified at commercial scale in setting the NORs based on the process model11. If the input parameters 

and output parameters are scale-independent, the verification studies at commercial scale can be 

minimized. However, the scalability of input and output parameters, i.e., the degree of scale 

dependency, has to be taken into account in most of the industrial processes. For example, in a fluid 

bed granulation process where binder solution is sprayed onto the powders fluidized by a heated 

airflow, the heat loss efficiency from the surface of the equipment, which is critical to the process 

performance, is dependent on the size and design of the fluid bed granulator12, 13. The spraying time 

and spray rate are also scale-dependent, and are known to affect the particle size distribution. Further, 

the location of the heat sensor is different between equipment, which can affect the monitored inlet 

and exhaust air temperatures. The other processes also tend to show scale-dependent relationships, 

and even though a scale-independent monitoring parameter, e.g., in-line NIR monitoring of the 

materials properties, is selected as outputs, the challenge of scale dependency remain. Hence in setting 

the design space and NORs of the process parameters to assure the desired quality in a scale-dependent 

process, the process parameters need to be challenged even the process model was developed in a 

laboratory or pilot scale, which require huge resources in general. 

The other problem in utilizing a DoE is that it cannot solve multicollinearity problems. 

Multicollinearity, which is a common issue in industrial processes when having multiple input 

parameters, is defined as the situation where the input parameters are interdependent. Under a 

multicollinearity situation, an effect of an input parameter on the output parameter is not attributed 

solely to the contribution of that single input parameter. This is because the change of the input 

parameter restricted the other input parameters’ range at the same time. As a result, it can increase the 

                                                   
9 Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S. Matos, G.D., David, J.M., Brandão, G.C., da Silva, E.G.P., 

Portugal, L.A., dos Reis, P.S., Souza, A.S., dos Santos, W.N.L., 2007. Box-Behnken design: An alternative 

for the optimization of analytical methods. Anal. Chim. Acta 597, 179–186. 

10  Candioti, L.V., De Zan, M.M., Cámara, M.S., Goicoechea, H.C., 2014. Experimental design and 

multiple response optimization. Using the desirability function in analytical methods development. 

Talanta124, 123–138. 

11 Food and Drug Administration and European Medicines Agency, 2013. Questions and Answers on 

Design Space Verification. 

12 Larsen, C.C., Sonnergaard, J.M., Bertelsen, P., Holm, P., 2003. A new process control strategy for 

aqueous film coating of pellets in fluidised bed. Eur. J. Pharm. Sci. 20, 273–283. 

13 am Ende, M.T., Berchielli, A., 2005. A thermodynamic model for organic and aqueous tablet film 

coating. Pharm. Dev. Technol. 1, 47–58. 
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variance of the coefficient estimates and make the outputs highly responsive to slight changes of the 

inputs in the model, which can deteriorate prediction accuracy14, 15. Even when developing a process 

model using independent process parameters only to avoid the overfitting, the effect of the excluded 

process parameters that are correlated with the input process parameters in the model cannot be 

described although it affect to the outputs. In addition to that, performing DoE at a sufficiently wide 

range to assure the robustness of the process is often not applicable due to the practical 

manufacturability if multicollinearity of the process parameters exists. 

Computer-aided process modeling such as population balance models and numerical models are 

alternative approaches that potentially reduce the resources required in process modeling. In the 

population balance model, phenomena to describe changes in physical and chemical properties of 

materials are expressed and the dynamic changes are calculated by first principles under a conservation 

law. For example, a thermodynamic model to predict moisture content of materials in fluid bed 

granulation and tablet film coating processes is one of the population balance models described in 

solid oral dosage form manufacturing12, 13. While a population balance model is usually independent 

of equipment and formulation, in order to improve the prediction accuracy in a given equipment and 

formulation fitting parameters are sometimes added in the first principles13, 16, 17. The numerical 

model approach is an emerging, compute-intensive technique computing motions, deformations, and 

heat transfers of a large number of small particles, fluids, or a continuum on the basis of forces acting 

on each component and gas flow. With the increasing computational capabilities over the last years, 

the computationally intensive in-silico experiments using Discrete Element Method (DEM) are 

becoming an important tool to understand production processes containing particles such as particle 

packing, particle flow, and particle-fluid flow18, 19. The advantage of DEM is that it is able to capture 

                                                   
14  Burnham, A.J., Viveros, R., MacGregor, J.F., 1996. Frameworks for latent variable multivariate 

regression. J. Chemom. 10, 31–45. 

15 Höskuldsson, A., 1988. PLS regression methods. J. Chemom. 2, 211–228. 

16 Sen, M., Singh, R., Vanarase, A., John, J., Ramachandran R., 2012. Multi-dimensional population 

balance modeling and experimental validation of continuous powder mixing processes. Chem. Eng. Sci. 

80, 349–360. 

17 Barrasso, D., El Hagrasy, A, Litster, J.D., Ramachandran, R., 2015. Multi-dimensional population 

balance model development and validation for a twin screw granulation process. Powder Technol. 270, 

612–621. 

18 Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B., 2007. Discrete particle simulation of particulate systems: 

theoretical developments. Chem. Eng. Sci. 62, 3378–3396. 

19 Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B., 2008. Particle simulation of particulate systems: A review 

of major applications and findings. Chem. Eng. Sci. 63, 5728–5770. 
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the trajectory of each individual particle in the system through Newton's equation of motion, by 

calculating the new positions and velocities of the particles based on the forces acting on them at a 

defined time step. However, in most of the previous studies the particle size and the geometry of 

equipment were far away from the practical manufacturing process19, 20. As a matter of fact, it is still 

not feasible to simulate >1 kg scale processes containing particles of ~100 m in diameter ending up 

with more than ca. 108 particles, since it requires huge computational time. It was reported that even 

a simulation of a blending process containing 225,000 particles over a span of 2 minutes in a V-blender 

required a few weeks of CPU time on a Beowulf cluster20. Due to the fact that DEM simulation is a 

compute-intensive technique, prediction models typically are limited to the evaluation of laboratory 

scale experiments. Up to now the quantitative prediction of larger scales by DEM, which is required 

to utilize the model for identifying the acceptable ranges of the process conditions, i.e., NORs, is not 

addressed yet. 

Further statistical process modeling approaches based on the experimental data set are also available 

and they have a potential to resolve the multicollinearity problem. Among the chemometric techniques, 

partial least squares regression (PLSR) has been utilized for description and control of multivariate 

processes in the pharmaceutical industry because of the high prediction accuracy21 , 22 , 23 . The 

advantage of the PLSR is that it can generate latent variables, which are independent of each other, 

and cope with mutually correlated input variables 24 . By selecting appropriate latent variables a 

multivariate problem that existed in the dataset can be avoided in the PLSR, resulting in a higher 

prediction accuracy compared to the least squares regression used in DoE based process modeling. 

Further, as it can avoid multicollinearity problem by selecting appropriate latent variables, a fixed 

experimental design required in DoE is not necessarily needed in the PLSR model. Therefore it has 

the potential to provide a commercial scale process model with sufficiently wide parameter ranges 

                                                   
20 Lemieux, M., Léonard, G., Doucet, J., Leclaire, L.A., Viens, F., Chaouki, J., Bertrand, F., 2008. Large-

scale numerical investigation of solids mixing in a V-blender using the discrete element method. Powder 

Technol. 181, 205–216. 

21 Gabrielsson, J., Lindberg, N, Lundstedt, T., 2002. Multivariate methods in pharmaceutical applications. 

J. Chemometrics 16, 141-160. 

22 Haware, R.V., Tho, I., Bauer-Brandl, A., 2009. Multivariate analysis of relationships between material 

properties, process parameters and tablet tensile strength for a-lactose monohydrates. 73, 424–431. 

23 Muteki, K., Yamamoto, K., Reid, G.L., Krishnan, M., 2011. De-risking scale-up of a high shear wet 

granulation process using latent variable modeling and near-infrared spectroscopy. J. Pharm. Innov. 6, 142–

156. 

24  Kano, M., Nakagawa, Y., 2008. Data-based process monitoring, process control, and quality 

improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 32, 12–24. 
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even at a process where a multicollinearity problem exists. While the higher prediction accuracy and 

the utilization of the prediction model such as the sensitivity analysis of the input parameters have 

been demonstrated, its applicability to pharmaceutical process development studies such as the 

optimization of a commercial scale process and its control, i.e., setting of acceptable process parameter 

ranges, has not been reported in literature. To facilitate the use of the PLSR model in the 

pharmaceutical development, further understanding of the PLSR modeling including its benefit and 

limitation is required. 

When it comes to the process modeling method selection, it becomes important whether it is 

possible to prepare a large number of manufacturing data performed at different manufacturing 

conditions with reasonable cost, especially at commercial scale, or not. In general, a large-scale batch 

process such as wet granulation, blending, and coating requires a huge amount of resources to prepare 

manufacturing results performed at different conditions, which would be needed to develop a process 

model based on a conventional DoE approach. As resources are limited such a huge number of 

experiments is sometimes unacceptable even when leveraging the benefit of the factorial design to 

reduce the number of experiments, therefore a practicable, cost-effective process modeling approach 

is needed to implement the QbD concept in large-scale batch processes. One alternative and innovative 

process modeling approach to the DoE in order to reduce the amount of experiments is the process 

simulation based on numerical methods such as DEM. However, in a process that can provide several 

manufacturing data performed at different manufacturing conditions with reasonable cost, e.g., a 

small-scale batch process and a continuous process such as dry granulation, tableting, and 

encapsulation, actual experiments still have an advantage over the simulation as they can provide faster 

development speed due to the currently limited computing capacity. In these cases, a statistical process 

modeling based on the PLSR could be a practicable alternative to the conventional DoE based process 

modeling, since it can avoid the multicollinearity problems and hence it is expected to provide a higher 

prediction accuracy and a wider assurance range of the process parameters. However, the actual 

application has not been reported yet. 

In summary, currently there are two challenges in process modeling and the utilization for process 

development and control:  

 First, a method to develop a quantitative process model which does not require a huge 

amount of data or computational time needs to be established for a practicable, cost-

effective process modeling of a large-scale batch process. 

 Second, while a method to develop a prediction model based on multivariate analysis that 

can cope with the multivariate process is already available, the practical utilization for 

process optimization and control needs to be developed for a small-scale batch process 

and a continuous process. 

In order to facilitate process modeling and utilization, this thesis is addressing those two challenges 
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through four case studies; two case studies in a batch blending process, one case study in a continuous 

tableting process, and one case study in a batch coating process. 
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Aim of work and thesis outline 

This thesis aims at providing practicable, reliable, and cost-effective process modeling approaches 

applied to both a large-scale batch process and a continuous process. As the challenges in process 

modeling are different between a large-scale batch and a small-scale batch or a continuous process, 

different process modeling approaches are explored through the four case studies. 

In case study 1, process modeling is demonstrated in a batch blending process utilizing DEM. A 

batch blending process can be expressed as the reorientation of each and every particle existing in a 

blender container caused by the mechanical forces and intended to assure the desired blend uniformity 

of active ingredient to satisfy the critical quality attribute (CQA) of content uniformity. As the blending 

process is known to have a high scalability25, the numerical process modeling and simulation utilizing 

DEM can be potentially a beneficial approach in understanding the process cost-effectively. Adam et 

al. suggested a potential to predict blend uniformity qualitatively based on DEM simulation26. Also, 

the quantitative prediction of blend uniformity, which is a key output parameter of the blending process 

has not been addressed yet, due to the huge computational time in simulating >1 kg blending process 

containing particles of ~100 m in diameter. Herein for the first time, a quantitative prediction model 

for blend uniformity with reduced computational time was developed for the blending process 

understanding and controls. 

To provide a reasonable process control of the blending process in order to assure the blend 

uniformity, the sampling regimen, which is the combination of sampling locations and the number of 

samples from each sampling location, and the acceptance criteria need to be defined with a scientific 

rationale together with the process model derived from case study 1. However, there are little 

publication how to correlate the key factors, i.e., the sampling regimen and the acceptance criteria in 

blend uniformity analysis, and the resultant assurance level of the bulk blend homogeneity, even the 

regulatory agencies emphasized to provide a scientific rationale of the sampling regimen and the 

acceptance criteria in blend uniformity analysis (BUA)27, 28. Therefore in case study 2 the relationship 

between the sampling regimen and acceptance criteria on the assurance level of the content uniformity 

                                                   
25 Levin, M., 2001. Pharmaceutical Process Scale-Up. Marcel Dekker Inc.. 

26 Adam, S., Suzzi, D., Radeke, C., Khinast, J.G., 2011. An integrated Quality by Design (QbD) approach 

towards design space definition of a blending unit operation by Discrete Element Method (DEM) simulation. 

Eur. J. Pharm. Sci. 42, 106–115. 

27 Food and Drug Administration, 2013. Questions and Answers on Current Good Manufacturing Practices, 

Good Guidance Practices, Level 2 Guidance—Production and Process Controls. 

28 Bergum, J.S., Prescott, J.K., Tejwani, R.W., Garcia, T.P., Clark, J., Brown, W., 2014. Current event in 

blend and content uniformity, Pharm. Eng. 34, 1–10. 
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is evaluated based on Monte Carlo simulation and the resultant conditional probability analysis. 

In contrast, for the small-scale batch process and the continuous process with multicollinearity 

problem, an alternative statistical process modeling needs to be developed as the multicollinearity can 

deteriorate the prediction accuracy and interfere with the comprehensive evaluation of the process by 

limiting the species and range of input parameters. Hence to facilitate a process development and 

control comprehensively with an accurate process model even in a process where multicollinearity 

exists, statistical process modeling based on PLSR was demonstrated for the continuous tableting 

process in case study 3. While the tableting process is well understood already, an effect of tablet 

shape on the tablet’s physical robustness, which is a critical quality attribute of the tablet appearance, 

is not well addressed due to the multicollinearity problem. Tablet shape parameters, i.e., diameter, cup 

depth, surface radius, determine the tablet shape. At the same time, the tablet shape parameters have 

constraints in order to build a smooth convex cup portion. Herein the practicability of the PLSR model 

and the application for multivariate process optimization is demonstrated through the tablet shape 

design in case study 3. 

Further, an innovative, cost-effective approach of statistical process modeling was demonstrated in 

case study 4. A common drawback of the statistical process modeling, e.g., DoE and PLSR, is the 

resources required to generate a sufficient amount of experimental data to build a model with high 

prediction accuracy. The coating process is a typical batch process, where coating suspension is 

sprayed onto tablet cores in a rotating drum that are in turn blown dry with a heated drying airflow. 

The moisture content of the spray mist and/or the tablets are considered most decisive for the quality 

such as tablet appearance in the coating process. As the input parameters such as inlet air temperature, 

inlet air volume, and spray rate are mutually correlated to the moisture content, the coating process is 

considered as a process with a multicollinearity problem. Theoretically, exhaust air temperature, which 

is known to correlate with moisture content during the coating process, can be modeled based on 

thermodynamics13. Although this thermodynamics based modeling should be cost-effective compared 

to the DoE based modeling or PLSR modeling, as the heat transfer coefficient from the drying air to 

the droplets and/or tablets depends on equipment and the operating conditions, a couple of experiments 

to estimate the heat transfer coefficient of a given coating equipment at the target condition is needed 

to predict the moisture content in the existing thermodynamic model. Because of this, the semi-

empirical thermodynamic model does not contribute to decreasing the cost required to develop a 

prediction model. A significant workload reduction could be attained if prior knowledge (such as 

existing product batch records) is fully utilized for product-independent process modeling and 

optimization if the multicollinearity problem is appropriately managed. Since the PLSR does not 

require a fixed experimental design like DoE, prior knowledge such as the past manufacturing data of 

other drug products using similar equipment might be applicable for the product independent process 

modeling. Herein, in case study 4 a PLSR model that uses process conditions to predict exhaust air 
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temperature was developed based on prior knowledge and the prediction accuracy was compared with 

that of the conventional semi-empirical thermodynamic model. At the same time, the practicability of 

the PLSR model for process optimization was demonstrated. 

The thesis is finished by an overall discussion emphasizing advantages and limitations of the 

described methods for implementation in pharmaceutical development and will give an outlook into 

future opportunities to speed up and create lean development and validation procedures. 
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Case study 1 - Qualitative and quantitative prediction of 
blend uniformity in a binary granular mixture based on 
DEM simulation 

 

Submitted to European Journal of Pharmaceutical Sciences on 18 July 2018, current status: under 

review (responsible editor: Martin Brandl, Dr. rer. nat. habil, Editor In Chief) 

 

Outline 

Efficient and effective, product-independent process modeling that uses process parameters to 

predict the CQAs is addressed in a batch blending process utilizing DEM simulation. The advantage 

of a theoretical model compared to an experimental model derived from regression analysis of existing 

data is that it could explain the cause and the effect clearly without a large quantity of experimental 

data. As heat production and/or absorption can be neglected in a diffusion blending where a gentle 

powder flow is generated by the rotation of the blender bin, a process model that uses the physical 

properties of particles and the process parameters such as rotation speed and blending time to predict 

the blend uniformity might be able to develop by utilizing DEM. The aim of this case study is to 

develop a quantitative process model of a blending process to predict blend uniformity by DEM, which 

has never been addressed before. Potential applications of the DEM process model of the blending 

process for the efficient process development and validation are also discussed together with the 

outcomes obtained through the second case study. 
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Abstract 

The blending process of a binary granular mixture, active and placebo granules, in a bin blender 

was simulated using the Discrete Element Method (DEM). Three 10 kg blending experiments 

differentiated by the physical properties specifically particle size of granules were performed as 

reference for DEM simulations. Segregation of active granules in the blender was observed during 

diffusion blending. The segregation behavior was common for all blends, while the sample Blend 

Uniformity (BU), i.e., standard deviation of active ingredient content % was different among the three 

blends reflecting segregation due to the particle size differences between the components. Quantitative 

prediction of the sample BU probability density distribution in reality based on the DEM simulation 

results was successfully demonstrated. The average root mean square error normalized by the mean 

(nRMSE) of the mean sample BU in the blends was 0.228. In this study, it was demonstrated that the 

sample BU at given granule properties can be predicted with feasible prediction accuracy. Therefore, 

these in-silico experiments through DEM simulations would help in setting a reliable “edge of failure” 

specification with respect to the particle size and in a broader sense with respect to the physical 

properties in general. 

 

Keywords: Specification setting, In-silico experiments, Segregation, Bin blender, Granules 

 

Introduction 

The blending process is a common and a critical manufacturing process and critically impacts the 

quality of finished dosage units such as the uniformity of active ingredients´ content in tablets, 

capsules, powder filled bottles, etc., which is defined as content uniformity (CU) in pharmaceutical 

industry. Numerous mechanisms are known that play a role when blending particles and granules, 

including convection, diffusion, shear, and percolation, while a diffusion mixer (tumbling) is the most 

common blender29. In general, samples are taken from various locations of the bulk powder blend to 

estimate the homogeneity of the active ingredients in the powder blend; i.e., blend uniformity (BU). 

The physical properties of components in the blend, the sampling regimen that defines sampling 

locations and the number of samples taken from each sampling location, and the acceptance criteria 

are the key factors in blend uniformity analysis to check the homogeneity of the bulk powder blend27, 

28. Usually, the acceptable ranges of the physical properties of the components to assure the desired 

BU at the given sampling regimen and acceptance criteria are confirmed based on experiments. 

However, as resources are limited, it has been considered practically difficult to conduct large numbers 

                                                   
29 Paul E.L., Atiemo-Obeng V.A., Kresta S.M., 2004. Handbook of industrial mixing science and practice. 

Wiley & Sons, Inc.. 
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of commercial scale experimental studies, even with the benefit of sophisticated design of experiments 

(DoEs) to reduce the amount of experimentation. With the increasing computational capabilities over 

the last years, in-silico experiments using the discrete element method (DEM) are becoming an 

important tool to understand production processes such as blending. The advantage of the DEM 

compared to other simulation techniques is that it is able to capture the trajectory of each and every 

particle in the system through Newton's equation of motion. The forces acting on each particle which 

may be due to particle-particle or particle-wall contacts or the non-contact forces such as gravity, 

cohesion etc. enter as source terms in the equation of motion18. A large number of studies have been 

reported to understand blending of granular materials and estimate the homogeneity of components in 

several types of blenders26, 30, 31, 32. Sudah et al.30 and Arratia et al.31, 32 reported the qualitative effect 

of fill level and loading pattern of granules to the blender on the time-series sample BU and granules 

velocity during blending. Adam et al.26 demonstrated a qualitative sample BU evaluation based on 

DEM simulation in a diffusion mixer. However, particle size and the geometry of equipment as 

described in the previous studies are far away from the practical manufacturing process in 

pharmaceutical industry. As a matter of fact it is still not feasible to simulate >1 kg scale blending 

processes containing particles of ~100 m in diameter, since it requires huge computational time. 

Increasing the particle size from actual values and decreasing the geometry of the equipment are 

common practices in DEM simulations to reduce computational time by reducing the number of 

particles in a system26. The DEM simulation with the changes to reduce the computational time 

differentiate the simulated sample BU from the reality. In addition, the distribution of sample BU in 

consideration of the sampling regimen is not addressed in the previous studies, although it is important 

to identify the sample BU probability density distribution to estimate a probability to satisfy the BU 

requirement33. Herein for the first time, this study aims at predicting the sample BU probability density 

distribution quantitatively for given physical properties and sampling regimens by using DEM 

simulation, while considering the effect of the particle size expansion and blender geometry reduction. 

Once this quantitative prediction is demonstrated it will facilitate an effective blending process 

                                                   
30 Sudah, O.S., Coffin-Beach, D., Muzzio, F.J., 2002. Quantitative characterization of mixing of free-

flowing granular material in tote (bin)-blenders. Powder Technol. 126, 191– 2002. 

31 Arratia, P.E., Duong, N., Muzzio, F.J., Godbole, P., Lange, A., Reynolds, S., 2006. Characterizing 

mixing and lubrication in the Bohle Bin blender. Powder Technol. 161, 202 – 208. 

32 Arratia, P.E., Duong, N-H., Muzzio, F.J., Godbole, P., Reynolds, S., 2006. A study of the mixing and 

segregation mechanisms in the Bohle Tote blender via DEM simulations. Powder Technol. 164, 50–57. 

33 Tanabe, S., Miyano, T., Maeda, J., Nakagawa, H., Watanabe, T., Minami, H., Urbanetz, N.A., 2016. 

Scientific rationale for sampling regimen and acceptance criteria of blend uniformity based on Monte Carlo 

simulation. Powder Technol. 301, 336–341. 
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development by describing the relationship between the input parameters such as physical properties 

of components and the sample BU in-silico including possible “edge of failure” conditions 

comprehensively. Those conditions leading to failure need to be verified experimentally, which will 

ensure a higher quality of pharmaceutical drug product finally by setting a reliable “edge of failure” 

specification for the given physical properties. 

 

Materials and Methods 

A binary granular mixture formulation composed of active granules and placebo granules (active : 

placebo = 14 : 86 wt/wt%) is considered. The DEM simulation was performed for the blending process 

using a bin blender to develop a quantitative sample BU prediction procedure. Verification studies 

were performed by comparing the experimental sample BU with the corresponding DEM simulations 

data. 

 

2.1. Manufacturing of the binary mixtures formulation 

Active granules composed of active ingredients, mannitol, pregelatinized starch, crospovidone, and 

hydroxypropyl cellulose and placebo granules composed of xylitol and carboxymethyl cellulose 

sodium salt were manufactured separately by fluid bed granulation followed by screening. The fluid 

bed granulator S2-B5-F2 (Aeromatic Fielder AG, Bubendorf, Switzerland) and the screening mill QC-

197s (Quadro Comil, Ontario, Canada) were used for the granulation and screening, respectively. A 

50 L bin blender (Limitec GmbH, Keckum, Germany) was used to mix the active and the placebo 

granules (Figure 1). Fill mass was 10 kg which is equivalent to around 25% fill level and corresponds 

to ca. 3650 dosage units. The rotation radius of the 50 L blender is 0.583 m. Blending was performed 

for 20 min at the rotation speed of 6 rpm, the Froude number is 0.02, in an oscillating mode: clockwise 

and anticlockwise rotation repeated alternately every minute. After 20 min blending the binary mixture 

was discharged and part of the granules was bottled with the bottle filling equipment SW 703 

(Collischan GmbH & Co. KG, Nürnberg, Germany), as a unit dose package. Three different binary 

mixtures having different particle size distributions of the active granules and the placebo granules 

were manufactured as shown in Table 1 by varying the granulation and screening conditions. 
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Figure 1 Bin blender used in the experiment. (a) Front view. (b) Top view. (c) Blender geometry. (d) 

Rotation of blender. 

 

 

Table 1 Granule properties used in the actual experiments. NA: not available 

 

 

2.2. Sample analysis 

Particle size distribution 

The mass based particle size distributions of the active and the placebo granules were evaluated 

using a vibratory sieve shaker AS 200 (Retsch GmbH, Haan, Germany). Stainless steel sieves with 

200 mm in diameter and 50 mm in height were used. The mesh sizes of the sieve stack were 1000 µm, 

500 µm, 355µm, 250 µm, 180 µm, 150 µm, 106 µm, and 75 µm. 50 g of the granules were used for 

the analyses. The amplitude, which means the vertical vibration height of the sieves was fixed at 1.5 

mm and the sieving duration was 5 min. The x10, x50 and x90 of the blends and the individual 

components are given in Table 1. 

 

(a) (b)

583 mm

6 rpm

450 mm

150 mm

259 mm

76 mm

178 mm

(c) (d)

Sample PSD X10 PSD X50 PSD X90 Bulk density Tapped density LoD Sphericity S50 ffc

m m m g/mL g/mL % - -

A1 69 137 232 0.30 0.40 2.2 0.88 9.04

A2 76 177 310 0.36 0.51 2.0 0.88 10.00

A3 58 212 466 0.36 0.50 2.0 0.88 8.81

P1 105 234 346 0.47 0.61 0.5 0.88 15.56

P2 65 179 267 0.53 0.74 0.5 0.88 8.13

P3 62 181 292 0.56 0.78 0.5 0.88 8.61

FB1 (A1+P1) 101 225 344 0.46 0.60 0.8 NA 12.00

FB2 (A2+P2) 83 185 292 0.52 0.69 0.7 NA 10.30

FB3 (A3+P3) 77 192 317 0.54 0.72 1.0 NA 9.41
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Particle flowability, friction, and cohesiveness 

A Ring Shear Tester RST-XS.s (Dr.-Ing. Dietmar Schulze, Wolfenbuettel, Germany) was used for 

the evaluation of flowability, internal friction, and wall friction. A bulk sample of 30 mL was prepared 

in a shear cell and the shear cell was covered with a lid. The sample was consolidated at the vertical 

normal stress c of 2000 Pa, which is called pre-shear stress pre, and sheared by rotating the cell to 

identify the maximum shear stress. After the pre-shearing procedure, the sample was consolidated at 

specific normal stresses sh (300 Pa, 950 Pa, and 1600 Pa). At each normal stress the powder was 

sheared to find the corresponding shear stress which is then used to describe the yield locus. The 

flowability, ffc, of the granules was characterized by σc as a function of the vertical consolidation stress 

σ1 shown in equation 1, based on the yield locus. All measurements were done in triplicate. The ffc 

values of all blends including individual components are provided in Table 1. 

ffc = 1 / c   (1) 

 

Particle shape analysis 

The particle shape of the active and placebo granules was analyzed using the QICPIC RODOS (dry 

dispersion method) (Sympatec GmbH, Clausthal-Zellerfeld, Germany). Equipped with a high-speed 

image analysis sensor, QIPIC captures the particle shapes in an extremely short exposure time of 1 ns. 

A sufficient amount of granules (about 1 g) was poured into the dispersing system inlet delivering a 

stream of particles into the image-capturing zone. As soon as the particles appeared in this zone, their 

images were captured at a rate of up to 500 frames per second (fps). These images were then 

summarized as a gallery with multiple filter functions by the attached software WINDOX. The 

software also calculates the sphericity, aspect ratio, shape distribution of particles, and other shape 

characteristics. Additional details about the instrument are given by Witt et. al.34. All measurements 

were done in triplicate and a summary of these measurements is reported in Table 1. 

 

Moisture analysis 

The halogen moisture analyzer HR73 of Mettler Toledo GmbH (Giessen, Germany) was used. 

About 1 g of sample was heated at 80C (active granules) or 90C (placebo granules) at the switch-

off mode 5, i.e., drying was finished when a weight variation of less than 1 mg for 140 seconds 

occurred. The loss of water is quantified and called “Loss on Drying (LoD)”. The measured data of 

different blends, active and placebo granules, is listed in Table 1. 

 

                                                   
34 Witt, W., Kohler, U., List, J., 2004. Direct Imaging of Very Fast Particles Opens the Application of the 

Powerful (Dry) Dispersion for Size and Shape Characterization. In Proceedings of the PARTEC 2004, 16–

18 March, Nuremberg, Germany. 
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Blend and Content Uniformity Analysis, Assay in PSD fractions 

Samples were taken from 10 different locations in the blender as depicted in Figure 2 at blending 

times of 10, 15, and 20 min to evaluate the sample BU. A sampling spoon having a 2 mL hollow 

cylinder (Figure 3) was used for the sampling. The sample amount was equivalent to one unit dose of 

2.75 g. The sample CU, defined as the standard deviation of active ingredient content % to the label 

claim in the unit dose package was evaluated using 10 samples taken following the stratified sampling 

approach during the bottle filling process35. The assays of the samples were evaluated by UPLC 

Acquity (Waters, Massachusetts, US). The analytical validation of the assay measurement revealed 

that the analytical error of the intermediate precision was 0.4% SD. The sample BU and sample CU 

as the standard deviation of assay s (%) were calculated by the following equation. 

1

)(
(%)

210

1





 

n

yy
s n n

  (2)  

Where yn denotes the assay of individual sample as the ratio to the label claim (%), y  denotes the 

mean assay (%). The assays of the active granules in the five particle size fractions: over 250 µm, 250 

µm - 180 µm, 180 µm - 106 µm, 106 µm - 75 µm, and under 75 µm were also analyzed. 

 

Figure 2 Sampling points for blend uniformity analysis. (a) Top view. (b) Side view. 

 

 

 

 

 

 

 

                                                   
35 Bergum, J.S., Parks, T., Prescott, J.K., Tejwani, R.W., Clark, J., Brown, W., Muzzio, F., Patel, S., 

Hoiberg, C., 2015. Assessment of blend and content uniformity. Technical discussion of sampling plans 

and application of ASTM E2709/E2810. J. Pharm. Innov. 10, 84–97. 
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Figure 3 Sampling spoon. (a) Top view. (b) Side view. 

 

 

2.3. Numerical approach 

Discrete element method (DEM) 

All computations were performed using the open source DEM software known as LIGGGHTS36. 

LIGGGHTS has been developed based on the molecular dynamic simulation tool known as LAMMPS, 

which in turn has been developed by Sandia National Laboratories37. In this study, LIGGGHTS 

version 3.2.1 was used for all DEM simulations. The models chosen in this study included Hertz and 

Mindlin & Deresiewicz theories for the calculation of normal and tangential forces between particles, 

respectively38. The cohesion was included through the simplified Johnson-Kendall-Roberts model39 

which adds an additional normal force contribution as successfully implemented in reference studies40, 

41, 42. The other non-contact force considered included gravity. The implementation of the above 

mentioned models as well as their validation within LIGGGHTS was given by Kloss et al.36. The 

impact of fluid presence on the particle motion was ignored in this study, which is a valid assumption 

for densely packed granular flows involving large particles where body forces such as gravity are 

                                                   
36 Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S., 2012. Models, algorithms and validation for 

opensource DEM and CFD-DEM. Prog. Comput. Fluid Dy. An Int. J. 12, 140–152. 

37 Plimpton, S., 1995. Fast parallel algorithms for short-rangemolecular dynamics. J. Comput. Phys. 117, 

1–19. 

38 Di Renzo, A., Di Maio, F.P., 2004. Comparison of contact-force models for the simulation of collisions 

in DEM-based granular flow codes. Chem. Eng. Sci. 59, 525–541. 

39 Johnson, K.L., Kendall, K., Roberts, A.D., 1971. Surface energy and the contact of elastic solids. P. Roy. 

Soc. Lond. A Mat. 324, 301–313. 

40 Ketterhagen, W.R., 2015. Simulation of powder flow in a lab-scale tablet press feed frame: effects of 

design and operating parameters on measures of tablet quality. Powder Technol. 275, 361–374. 

41 Mateo-Ortiz, D., Muzzio, F.J., Méndez, R., 2014. Particle size segregation promoted by powder flow in 

confined space: the die filling process case. Powder Technol. 262, 215–222. 

42 Gopireddy, S.R., Hildebrandt, C., Urbanetz, N.A., 2016. Numerical simulation of powder flow in a 

pharmaceutical tablet press lab-scale gravity feeder. Powder Technol. 302, 309–327. 

(a)

(b)
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several orders of magnitude higher than the hydrodynamic forces26, 43. This is true for particles larger 

than 100 µm, and in case that the particles are lower than 100 µm the effect of fluid presence on the 

particles can be modeled by coupling the DEM with the conservation of mass, momentum and energy 

equations of fluid. 

The actual bin blender had a volume of 50 L, and the smallest particle size of the granules (active 

and placebo) was about 75 µm. In this configuration with the actual PSD, the total number of particles 

in 10 kg of blend is in the order of 3.5 to 5.4 billion. Table 2 shows the number of particles in 1 kg of 

final blend for the three batches manufactured in this study (see column 2). This is a by far too huge 

number of particles to simulate with the current computational capacity in a realistic time even for a 

blending period of 1 minute. To address this challenge, two parameters were changed which include 

(1) increasing the particle size by multiplication with a constant factor while keeping the distribution 

shape same as the measured data, and (2) decreasing the dimensions of the geometry while keeping 

the size ratios equal to the actual equipment. Increasing the particle size from actual values is a 

common practice in DEM simulations as it is not feasible to simulate true particle size44. This increase 

in particle size results in a decreased number of particles in the system. The extent of particle size 

increase is generally chosen such that the bulk behavior of material is reproduced while keeping the 

total computational time under control. It is reported that including higher numbers of particles will 

have diminishing advantages45 . In this study, the simulations were performed with particle size 

increase factors (FPS) of 3, 5, and 7 in order to evaluate the impact of FPS by comparing the sample BU 

among these three levels. Even with such an increase in particle size, the number of particles in 10 kg 

of blend is about 10 million (FPS=7) to 200 million (FPS=3), see Table 2. Still it is a huge number of 

particles considering that the domain in which the blender rotates is about 0.5 x 1.2 x 1.2 m3. To bridge 

this gap of unrealistic computational cost, the geometry of the blender was reduced to one-fifth scale 

(FG=0.2) uniformly in each dimension. This enabled a fill mass of 80 g (reduction from 10 kg in actual 

due to decrease in blender dimensions, i.e. 10 kg * 0.23) that can be simulated in a reasonable time, as 

the number of particles in 80 g at FPS=3 is about 1 million to 2 million. The impact of geometry scaling 

down was studied by performing additional simulations with a geometry reduced to one-tenth in each 

dimension (results in a fill mass of 10 g) and one-twentieth (results in a fill mass of 1.25 g) by 

comparing the sample BU among all three. Constant revolutions per minute were applied for all FG 

                                                   
43 Ketterhagen, W.R., Am Ende, M.T., Hancock, B.C., 2009. Process Modeling in the Pharmaceutical 

Industry using the Discrete Element Method. J. Pharm. Sci. 98, 442–470. 

44 Dubey, A., 2017. Powder flow and blending. In: Pandey, P., Bharadwaj, R. (Eds.), Predictive Modeling 

of Pharmaceutical Unit Operations. Woodhead Publishing, pp. 39–69. 

45 Hassanpour, A., Tan, H., Bayly, A., Gopalkrishnan, P., Ng, B., Ghadiri, M., 2011. Analysis of particle 

motion in a paddle mixer using Discrete Element Method (DEM). Powder Technol. 206, 189–194. 
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since all simulation conditions and the actual experiment condition showed a value of Froude number 

below 0.2, where the degree of mixing is independent of the speed of rotation46, 47. Such an increase 

in particle size and geometry scaling down is valid with a caution, where it is recommended to keep 

in mind the ratio between blender diameter (D) to mean particle diameter (d), which was found to be 

critical, and set in the range of 20 to 5044. The values of D/d ratio for the minimum and maximum case 

are about 18 (FPS=7, FG=0.05) to 167 (FPS=3, FG=0.2), which are very close to the recommended range 

for the minimum case and well within the recommended range for the others. DEM simulations were 

performed not only for the three blends listed in Table 1 but also for a blend having mono-size particles 

(180 m in diameter) without cohesion, in order to support the discussion on developing a quantitative 

sample BU prediction model, see section 2.4. Moreover, blending simulations at different fill amounts 

were conducted with mono-size particles to capture the wide ranges of blending conditions such as 

different fill levels. Table 3 summarizes the DEM simulation setups performed in this study together 

with the particle number in each DEM run. In total, 19 different blending process DEM simulations 

(7 mono-size particle size cases, 12 poly-size particle cases) were performed in this study. The DEM 

input parameters to compute the trajectories and velocities of the particles during the blending process 

are summarized in Table 4. The selected values are well within the reported DEM input parameters42, 

26, 48. Different fill masses within a feasible fill level range for the blender were evaluated in mono-

size particles cases in addition to the target fill mass, which were used to develop a generalized 

quantitative prediction model. 

 

Table 2 No. of particles in 1 kg of final blends in DEM simulation. 

 

 

 

 

 

                                                   
46 Brone, D., Alexander, A., Muzzio, F.J., 1998. Quantitative characterization of mixing of dry powders in 

V-blenders. AIChE J. 44, 271–278. 

47 Brone, D., Muzzio, F.J., 2000. Enhanced mixing in double-cone blenders. Powder Technol. 15, 215–

236. 

48 Kuo, H.P., Knight, P.C., Parker, D.J., Tsuji, Y., Adams, M.J., Seville, J.P.K., 2002. The influence of 

DEM simulation parameters on the particle behavior in a V-mixer. Chem. Eng. Sci. 57, 3621–3638. 

FB No.
No. of particles in 1 kg

FPS = 1 FPS = 3 FPS = 5 FPS = 7

1 351,083,189 13,003,081 2,808,666 1,023,566

2 518,777,125 19,213,968 4,150,217 1,512,470

3 540,895,699 20,033,174 4,327,166 1,576,955
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Table 3 Total No. of particles in a blender in each DEM simulation performed in this study. NA: not 

available 

 

 

Table 4 DEM parameters 

 

 

The computational geometry as given in Figure 1 at first was filled with the particles similar to the 

actual blending experiment, i.e., at first little more than 50% (by weight) of total placebo granules 

were inserted randomly within the blender and they were allowed to settle down due to gravity. 

Following this, the total amount of active granules was inserted and after settling of these granules the 

remaining portion of placebo granules was inserted. This was done to achieve a sandwich like structure 

containing active granules in between the placebo granules, which was similar to the experiment. 

During the whole filling operation, total kinetic energy of the granules was calculated. When all the 

particles filling was finished, the particles were given sufficient time so that their total kinetic energy 

reached close to zero, i.e. in other words all particles were completely settled in the blender. To get a 

detailed understanding of the blending pattern of these binary poly-disperse particle size mixtures, 

each particle size was assigned a color. Figure 4 exemplarily shows the FB2 in blender downsized 

with FG=0.1 and particles having FPS of 5 to facilitate the understanding of the coloring of particles 

based on particle size (Figure 4a, red: large size particles, blue: small size particles), and based on 

material type (Figure 4b) after the sandwich like filling (red: active granules, blue: placebo granules). 

Following the filling, the lid of the blender, which contains two blades protruding inside the blender, 

was closed. The lid was placed in such a way that the blades were positioned at 45° to the blender 

vertical axis. The same procedure was done in simulations as well. After this, the blending was started 

Blend Name Fill level
FPS = 5 FPS = 7 FPS = 5 FPS = 3 FPS = 5

FG = 0.05 FG = 0.1 FG = 0.1 FG = 0.1 FG = 0.2

Mono disperse blend 25% 2048 6000 16380 75900 131097

Mono disperse blend 37.5% NA NA 24650 NA NA

Mono disperse blend 50% NA NA 32889 NA NA

FB1 25% 3528 10300 28150 130193 224986

FB2 25% 5127 15298 41550 192491 332483

FB3 25% NA NA 43273 NA 346654

Parameter Property of

Mono-disperse particle 

mixing

Poly-disperse particle 

mixing

Young’s modulus (GPa) Particle 8.7 8.7

Wall 210 210

Poisson’s ratio (-) Particle 0.3 0.3

Wall 0.35 0.35

Coefficient of friction (-) Particle-particle contact 0.15 0.15

Particle-wall contact 0.54 0.54

Coefficient of restitution (-) Particle-particle contact 0.35 0.35

Particle-wall contact 0.30 0.30

Cohesion energy density (MJ/m3) Particle-particle contact 0 1.4

Adhesion energy density (MJ/m3) Particle-wall contact 3.0 3.0
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at a speed of 6 rpm in anti-clockwise direction. The rotation direction was reversed after every minute 

of blending. 

 

Figure 4. FB2 at FG=0.2 and FPS=5 at the state before blending. (a) Particles are colored based on 

particle size. (b) Particles are colored based on material type. 

 

 

At a given blending time, the powder bed was divided into 10 equivalent mass spaces, which were 

considered as sampling locations (Figure 5a and 5b). Each of the sampling locations was subdivided 

into N (N = 4 or 8) equivalent mass spaces as depicted in Figure 5c. The mass contained in the 1/(10N) 

was assumed to be the sample size in DEM simulation. Population BU was calculated using all sample 

mass spaces existing in the blend. The plateau value of the population BU was calculated by the first-

order equation provided below49. 

kt

t essss 

  )( 0
  (3) 

Here st denotes the degree of blending (s at time t), s denotes the plateau value of the population 

BU as the best possible homogeneity, s0 is the initial blend uniformity, t is the time, and k is the rate 

constant for blending, in units of 1/time. A sample BU was also calculated using the samples taken 

according to a sampling regimen, i.e., 1 sample each from 10 locations (10x1), according to the 

equation 2. In the case of 10x1 sampling regimen at N = 8, there are 108 ways of sample BU values. 

In this study, a probability density distribution of sample BU was calculated based on all sample BU 

results. Mean sample BU and the relative standard deviation of the sample BU RSDsample BU (%) was 

                                                   
49 Garcia, T.P., Prescott, J.K., 2008. Blending and Blend Uniformity, in book: Pharmaceutical Dosage 

Forms – Tablets (Vol. 1): Unit Operations and Mechanical Properties, Eds: L.L. Augsburger, S.W. Hoag, 

informa healthcare, New York, 3rd edition. 

a b
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calculated based on the probability density distribution. To summarize, each of the 19 DEM 

simulations were analyzed at two different subdivisions of the sampling locations N (N = 4 or 8). In 

total 38 s and sample BU probability density distributions (14 mono-particle size cases, 24 poly-

particle size cases) were calculated. A qualitative analysis was also carried out to visualize the blending 

pattern of these binary mixtures. 

 

Figure 5 Sampling locations in DEM simulation. (a) Top view. (b) Side view. (c) Subdivision of the 

sampling locations into 8 equivalent spaces (N = 8). 

 

 

2.4. Quantitative prediction of sample BU 

Quantitative prediction was demonstrated based on the predicted s and sample BU probability 

density distribution through the equations discussed in the following section. It has been reported that 

the theoretical variance at the randomly mixed state of a blend (r
2 ) is calculated by the weight 

fractions of components and the number of particles in a sample, as shown in equation 429. 

M

pp )1(2

r


    (4) 

Here p denotes the weight ratio of the active granules, M denotes the number of particles in the 

sample. According to the equation 3, the variance of randomly mixed blend becomes an xth part when 

the number of particles in a sample become x times. Therefore, it is suggested that the sample BU of 

a blend can be calculated based on the sample BU of the same blend with the same material properties 

having a different particle number in a sample derived from the differences in FPS, FG, and N as 

provided in equation 5. 

  5.0

1221 SSSS PNPNBUBU    (5) 

Here BUS1 and BUS2 are the s of the DEM condition 1 and 2, PNS1 and PNS2 are the particle 

numbers in a sample of the DEM condition 1 and 2. Normalized root mean square error (nRMSE), i.e. 

RMSE divided by the mean predicted s, was used to evaluate the accuracy of the quantitative 

prediction. For mono-disperse particle size case, (FPS, FG) = (5, 0.1), N = 8 was considered to be a 

reference to calculate the nRMSE. 
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Here yref and ypred denote the blend uniformity of the reference blend and the predicted values by the 

other DEM conditions, n denotes the number of predicted values, and predy  denotes the average of 

the predicted blend uniformity. yref and ypred in mono-disperse particle size cases are the simulated and 

predicted s, respectively. yref of the poly-disperse particle size case denotes the mean value of the 

three sample BU taken at 10, 15, and 20 min of blending. ypred of the poly disperse particle size case 

are calculated based on the predicted s and the analytical error as shown in equation 7.  

2

a

2

polypred, ssy       (7) 

Here sa denotes the analytical error as the standard deviation (0.4%). Though equation 5 can provide 

good results, however, it does not account for change in total number of particles among different 

blends. This is because the total number of particles is not included in equation 5 and the number of 

particles in a sample is independent to the total number of particles in general. Equation 8, which is a 

variation of equation 5 was developed in this study to achieve a higher prediction accuracy. Total 

number of particles is a potential critical parameter to the sample BU since it can reflect FPS, FG, and 

N. 

   bSS

a

SSSS TPNTPNPNPNBUBU 121221    (8) 

Here TPNS1 and TPNS2 are the total particle numbers in a blender of the DEM condition 1 and 2, a 

and b are the exponents of PN and TPN, respectively. Exponents a and b were calculated based on an 

optimization by the generalized reduced gradient (GRG) method, which is one of the nonlinear 

programming methods50. The GRG method derives the approximated gradient of an objective function 

by moving each decision variable, i.e., exponents a and b. The mono-disperse PSD cases were used 

as a training set to optimize the exponents a and b. The nRMSE of mono-disperse PSD cases calculated 

by considering the mean sample BU at (FPS, FG) = (5, 0.1), N = 8 as a reference with the condition that 

the objective function was to be minimized. Based on the derived gradient, a better solution was 

searched iteratively until a local optimal solution was found which satisfies the predetermined 

constraints. Local optimal solutions were obtained by evaluating 100 randomly selected initial points 

of exponents a and b to find a global optimal solution. 

                                                   
50 Lasdon, L.S., Fox, R.L., Ratner, M.W., 1974. Nonlinear optimization using the generalized reduced 

gradient method. RAIRO—Oper. Res.—Recherche Opérationnelle 8 (3), 73–103. 



25 

 

The prediction accuracy of equation 5 and 8 was evaluated by calculating the nRMSE of the poly-

disperse PSD cases, i.e., three FBs. Three FBs are independent of the data used to optimize the 

exponents a and b in equation 8, according to the principle of external validation. 

 

Results 

3.1. Experimental results: granule properties, sample BU, and sample CU 

Physical properties of the three final blends (FBs) were evaluated as shown in Table 1 and Figure 

6. FB1 contained the active granules A1 whose particle size was smaller than that of placebo granules 

P1. FB2 contained active granules A2 and placebo granules P2 that had similar particle size 

distribution. FB3 contained the active granules A3 whose particle size was larger than the placebo 

granules P3 in x50. Bulk and tapped densities of the active granules were smaller than those of the 

placebo granules, while the differences within the same components were negligible. Active granules, 

placebo granules, and FBs showed LoD of 2.0 – 2.2%, 0.5%, and 0.7 – 1.0%, respectively. All granules 

were classified as good or flee-flowing powders according to the flow function coefficient, ffc. All 

granules had ffc values between 8 and 15.5. It was confirmed that the active ingredient content among 

PSD fractions of the active granules was comparable, as the active ingredient concentration in the PSD 

fractions ranged from 87.4% to 106.5%. Hence, it was considered acceptable to assume that there is 

no variation of API content among PSD fractions of the active granules in DEM simulation. The 

shapes of the active and placebo granules were quite spherical with an aspect ratio of 0.88, which was 

considered enough to assume that they are spherical in DEM simulation. 

The sample BU and the sample CU are summarized in Table 5. The sample BU was determined 

after 10 min, 15 min and 20 min blending time at which blending is supposed to be completed and no 

segregation is assumed to occur. The sample BU fluctuated around the average in all FBs in the three 

time points, caused by incidental differences in sampling (sampling bias). This is a valid consideration 

for the blending of the free-flowing granules in a diffusion mixer with baffles (Sudah et al., 2002). The 

sample CU of the three FBs decreased in the order of FB1, FB3, and FB2 similar to the mean sample 

BU, while the sample CU were smaller than those of sample BU. This could possibly be because a 

part of the granules was bottled and therefore segregation in the blend was not fully observed in the 

sample CU. The three FBs having different sample BU and sample CU were manufactured in 10 kg 

scale. 
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Figure 6 PSD of three active granules, placebo granules, and final blends. (a) FB1. (b) FB2. (c) FB3. 

 

 

Table 5 Sample BU and sample CU in blending experiments. 

 

 

3.2. Mono sized granular blending in DEM simulation 

3.2.1 Qualitative analysis of bi-component mono-disperse particles blending 

In the DEM simulation of mono-sized granular blending, a blend of active and placebo granules 

having the same size (= 180 µm in diameter) and the same density without cohesion was considered, 

which is able to reach complete random blending in theory. To elucidate the temporal development of 

blending dynamics, qualitative analysis was carried out by coloring the particles as per the material 

type as mentioned in section 2.3. The initial state of particles after they were filled into the blender is 

shown in Figure 7 (t = 0 s), which is the 25% fill level blend at FG=0.2, FPS=5. The red colored particles 

indicate the active particles whereas the blue colored ones indicate the placebo particles. These were 

filled in such a way that a sandwich like structure is established: the active particles are in the middle 

of placebo particles (see Figure 7). The blending state of this mono-disperse particles is shown after 

1, 4 and 12 rotations of the blender in Figure 7, which correspond to 10 s, 40 s and 120 s of blending 
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time. The front view, bottom view, and half cut front view are displayed for these time intervals. The 

half cut front view helps to understand whether the blending pattern observed with the front view is 

limited to blender periphery or appears inside the core of the blender as well. The results reveal that 

the particles are blending dominantly by diffusion. After one complete rotation, the red particles 

already start to appear everywhere in the blender: top (see front view at 10 s) to bottom (see bottom 

view at 10 s) of the blender. This phenomenon is the resultant of the blades, which penetrate the powder 

bed at an angle of 45° to the blender vertical axis. The blades size and position induce convective 

blending, may be to a certain extent, as they displace the particles by holding and releasing some of 

the powder while the blender is rotating. The powder bed at 10 s and 40 s are inclined to the left side 

walls of the blender due to the rotational direction of the blender, i.e., the blender rotates in anti-

clockwise direction and changes its direction after every one minute. This is reflected in particle 

arrangement at 120 s, where the powder bed is oriented to the right side of the blender walls. The 

blending pattern at 40 s in front view and half cut front view reveal that blending is more or less 

complete, however, the bottom view shows that there are still spots where the blending is still 

incomplete. This can be seen, e.g. in the bottom view at the cone-cylinder and in the left side, where 

still blue color-rich zones appear. Such a detailed visualization enabled by simulation reveals 

intriguing blending development, and helps e.g. to identify the critical regions of blending thereby 

optimizing the sampling locations. The blending pattern shown at 120 s (12 rotations of blending), 

shows that blending is complete, and any further blending may not be necessary. 
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Figure 7 Temporal blending evolution of bi-component mixture having mono-disperse PSD with 30 g 

fill amount at FG=0.2, FPS=5. 

 

 

3.2.2 Qualitative evaluation of sample BU in bi-component mono-disperse particles blending 

The qualitative observations shown here are in agreement with the time-series population BU results. 

The population BU of the 14 results; 7 different mono-particle size cases, 2 different number of 

subdivision in sampling locations for each of the mono-particle size cases, reached a plateau state after 

12 rotations of blending. The blending time needed to achieve the plateau state of homogeneity was 

different reflecting the number of particles in the bin blender as shown in Figure 8 (a) and (b). In the 

blend at FG=0.2, FPS=5 where the largest number of particles existed in the bin blender, the population 

BU reached to the plateau state of homogeneity after 10 to 12 rotations as explained in section 3.2.1. 

On the other hand, in the blend at FG=0.05, FPS=5 where the smallest number of particles existed, the 

blend uniformity reached the plateau state after 1 or 2 rotations. The mean sample BU and the 

population BU in a given combination of FG and FPS showed similar values. At the plateau state the 

probability density distribution of sample BU was normally distributed, which is a reasonable 

approximation of a binomial distribution for a complete random mixture of a binary blend. The s 
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calculated by equation 3 using the time series population BU became small as the number of particles 

in a sample increase as reported in the previous study29, 30, also shown in Figure 8 (c). The RSDsample 

BU at the plateau state of homogeneity, e.g., at 120 sec, was constant regardless of the number of 

particles in a sample as shown in Figure 8 (d). 

 

Figure 8 DEM results for mono particle size cases. (a) Time-series sample BU and population BU at 

FG=0.05, FPS=5. (b) Time-series sample BU and population BU at FG=0.2, FPS=5. (c) Relationship 

between No. of particles in a sample and s. (d) Relationship between No. of particles in a sample and 

RSDsample BU. 

 

 

The nRMSE calculated according to equation 5 was 0.093, which implied a prediction error of 

around 9% of the mean predicted population BU. The nRMSE calculated according to equation 8 was 

0.067 and the coefficients in equation 8 determined by the optimization procedure using the training 

set of mono-size particles cases were: a = 0.554 and b = -0.096. The exponents implied that the sample 

BU will decrease as the number of particles in a sample increased. At the same time, while the number 

of particles in a sample has a larger effect on the blend uniformity compared to the total number of 

particles in the blender, the sample BU will increase when the total number of particles in the blender 

decreased. Here, assume that the s of a test blend and a reference blend are s, t and s, r, and s, t is 

predicted based on the s, r, TPNr, and TPNt where TPNr and TPNt are the total number of particles in 

the reference and test blend. In this case, predicted s, t using equation 5 is (TPNt/TPNr)0.096 times 

smaller than that predicted using equation 8 at the same number of particles in a sample. If TPNt is 10 

times larger than TPNr, s, t predicted according to equation 8 will be 24.7% larger than that predicted 

(a) (b)

(c) (d)
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according to equation 5. Therefore it was assumed that the prediction accuracy of equation 5 might be 

deteriorated when predicting a blend uniformity in an experiment based on the DEM simulation 

containing a smaller number of particles with the blender geometry downscaling and the particle size 

upscaling. As it is practically impossible to simulate the blending process of > 1 kg scale by DEM, the 

sample BU probability density distribution of > 1 kg scale is worth being predicted quantitatively by 

equation 8 and the DEM results obtained with the downscaled blender geometry FG and up-scaled 

particle size FPS. For blender geometry downscaling and particle size upscaling please refer to Chapter 

2.3. 

 

3.3 Blending of bi-component poly-disperse PSD  

3.3.1 Qualitative analysis of bi-component poly-disperse PSD blending 

Similar to the mono-size particles blending pattern, temporal blending evolution of a bi-component 

mixture having poly-disperse PSD at FG=0.2, FPS=5 is displayed in Figure 9. The view shown here is 

from the bottom of the blender. The blending patterns of FB1, FB2 and FB3 are shown in the top, 

middle and bottom part of this figure, respectively. The PSD of these blends is provided in Table 1 and 

Figure 6 in section 3.1. The particles are assigned different colors according to their radius; the smallest 

particles are indicated in blue color and largest particles in red color. Figure 9 shows the initial state 

of particles after filling the blender (t = 0 s), particles blending pattern at t = 10 s (after 1 rotation), 40 

s (after 4 rotations), and 120 s (after 12 rotations). The initial state reveals that particles are 

homogeneously dispersed across the blender without any segregation (as per the particle size). The 

individual components are filled in a similar way as done in case of the mono-size particles, however, 

the active and placebo particles cannot be separately visualized in this figure as the coloring is based 

on the particle size but not the particle type. The particles’ state at 10 s in all FBs shows that the smaller 

size particles (blue color) are accumulating at the periphery/walls of the blender highlighted by the 

dotted green ovals, whereas the larger ones stay in the core of the blender. This indicates a segregation 

based on particle size, and mechanisms of segregation are mainly driven by percolation and trajectory 

segregation. This can be explained as follows. (1) The smaller particles enter the spaces between the 

larger particles thereby seep through them (percolation segregation). (2) The larger particles gain 

higher momentum due to their higher inertia during the blending and fall from the top to the bottom 

of the container due to gravity along with gained momentum at faster pace (trajectory segregation). 

Similar segregation was observed at 40 s and 120 s as shown in Figure 9 as the result of these two 

segregation phenomena. Since these segregation phenomena are caused by particle size differences, 

the s is thought to increase as the difference of particle size between active and placebo granules 

increases. 
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Figure 9 Temporal blending evolution of bi-component mixture having poly-disperse PSD at FG=0.2, 

FPS=5. 

 

 

3.3.2 Quantitative evaluation of sample BU in bi-component poly-disperse PSD 

The segregation behavior shown in section 3.3.1 was also analyzed quantitatively by collecting 

samples across the blender. The samples collected at the center of the blender contained less particles 

than those located at the periphery (data not shown) indicating that the fines are mainly located at the 

periphery of the blender as observed in Figure 9. Mean sample BU was similar to the population BU 

in FBs as well as the mono-disperse PSD cases as shown in Figure 10 (a). The time required to reach 

the plateau state of homogeneity was also correlated to the total number of particles, and the 

relationship suggested that the blend uniformity after 10 min in 10 kg scale blending experiments are 

in a plateau state of homogeneity. The time-series population BU did not show the de-mixing after 

having reached the plateau state of homogeneity, which is common in pharmaceutical formulations 

unless long blend times or unusual material properties are present49. It was confirmed that the s 

became small when the number of particles in a sample increases, see Figure 10 (b). On the other hand, 

when the number of particles in a sample is small, the s was not clearly correlated to the number of 

particles in a sample, especially in FB1. This was considered to be because of the prominent 

segregation in blends containing smaller number of particles in a sample, which was observed as 

distribution patterns of sample BU. The sample BU distribution patterns depend on the number of 
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particles in a sample (or in a blender). As shown in Figure 11, the sample BU of FB2 was multimodal 

or asymmetric unimodal when (FPS, FG) = (3, 0.1), (5, 0.1), (7, 0.1), and (5, 0.05) where the total 

number of particles was less than ca. 200,000. Table 6 shows the number % at each particle size 

fraction in DEM simulation based on the sieve analysis. In poly-disperse PSD DEM simulations 

particles of 8 different sizes were generated to mimic the cumulative mass % PSD based on the sieve 

analysis results, assuming that the particles are spherical. As large active particles such as > 500 m 

are quite few, the location of large-sized single active particle affected the sample BU significantly if 

total number of particles in a sample were small. On the other hand, when the total particle number is 

more than 300,000, such as in case of (FPS, FG) = (5, 0.2), the sample BU distribution became 

symmetric unimodal in FB2. The probability density distribution of sample BU at plateau state of 

homogeneity in blending experiments was considered to be normally distributed considering the 

gradual changes observed in DEM results similar to the mono-particle size cases. As the s and the 

RSDsample BU at the plateau state of homogeneity depend on the distribution patterns of the sample BU, 

the s and the RSDsample BU calculated at the total particle number of more than 300,000 were considered 

reliable for quantitative prediction of FB2. Moreover, the required number of particles to achieve a 

symmetric unimodal sample BU distribution depends on the particle size distribution of the 

components. When active granules had larger particle size compared to the placebo granules such as 

in FB3, the probability density distribution of sample BU was not symmetric unimodal even at (FPS, 

FG) = (5, 0.2), where ca. 350,000 particles were considered. Similarly, as FB1 contains fewer number 

of large-sized active particles compared to FB2 and FB3, the required total number of particles to 

achieve a symmetric unimodal sample BU probability density distribution was smaller than the others. 

Probability density distribution of sample BU of FB1 was normally distributed in (FPS, FG) = (3, 0.1) 

and (5, 0.2). The number of subdivision of sampling locations N also influenced the sample BU 

probability density distribution. As N affects the number of particles in a sample, it impacts not only 

the s and mean sample BU but also the shape of the sample BU probability density distribution. In 

summary, DEM simulation results in case of (FPS, FG) = (5, 0.2), N = 8 for FB1 and FB2, (FPS, FG) = 

(5, 0.2), N = 4 for FB2, and (FPS, FG) = (3, 0.1), N = 8 for FB1 showed symmetric unimodal sample 

BU probability density distribution. As the RSDsample BU was considered to be constant based on the 

mono-size cases, it was possible to predict the sample BU probability density distribution 

quantitatively, based on the s of these DEM results if the sample BU showed symmetric unimodal 

distribution. These results demonstrated that the required up-scaling of particle size and downscaling 

of the blender geometry are different depending on the particle size distribution of the active granules. 

It was considered that to identify the minimum required total number of particles showing a symmetric 

unimodal distribution of sample BU probability density distribution, which was required to conduct a 

quantitative prediction, several DEM simulations varying FPS and FG need to be performed and the 

normality of the sample BU distribution needs to be tested. It should be noted that the order of sample 
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BU probability density distribution range was similar to the experimental results in (FPS, FG) = (5, 0.2). 

The sample BU probability density distributions of the FBs were in the order of FB1, FB3, and FB2 

from large to small, see Figure 11. Though FB3 requires larger total particle number to achieve a 

symmetric unimodal distribution than (FPS, FG) = (5, 0.2), which is needed to predict a sample BU 

probability density distribution in reality, qualitative comparison between the FBs was successfully 

demonstrated at least. Quantitative predictions were demonstrated based on the DEM simulation 

results at (FPS, FG) = (5, 0.2), N=8 of FB1 and FB2 where the largest number of particles existed in the 

blender. The sample BU was normally distributed, therefore the s and the RSDsample BU should be the 

most reliable for the quantitative prediction compared to the other DEM simulation results. 

 

Figure 10 DEM results for poly-disperse particle size cases. (a) Time-series mean sample BU and 

population BU of the FB2 at FG=0.2, FPS=5. (b) Relationship between No. of particles in a sample and 

s. 

 

 

  

(a) (b)
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Figure 11 Sample BU results of poly-disperse particle size cases in DEM simulation. (a) FB1, N = 4. 

(b) FB1, N = 8. (c) FB2, N = 4. (d) FB2, N = 8. (e) FB3, N = 4. (f) FB3, N = 8. 

 

 

Table 6 Particle size distribution of three active and placebo granules. 

 

 

Quantitative prediction results of sample BU probability density distribution as the mean sample 

BU calculated by equation 7 and the RSDsample BU based on equation 5 and equation 8 are provided in 

Table 7. The predicted results based on equation 5 utilizing the difference in number of particles in a 

sample showed relatively large prediction errors, as the nRMSE for FB1 and FB2 were 1.345 and 

1.122, respectively, which are ca. 15 and 12 times larger than the nRMSE for the mono-size case of 

0.093. These results suggested that the number of particles in a sample might not be the only input 

(a) (b)

(c) (d)

(e) (f)

Fraction Mass% at each particle size fraction in sieve analysis Number% at each particle size fraction in DEM

(m) A1 A2 A3 P1 P2 P3 A1 A2 A3 P1 P2 P3

1000 0.1 0.3 7.0 0.4 0.2 0.0 1.1*10-4 6.6*10-4 1.5*10-2 1.5*10-3 5.0*10-4 0.0

500 0.3 2.0 12.9 6.6 0.6 1.0 5.0*10-3 3.8*10-2 0.2 0.2 1.0*10-2 1.7*10-2

355 3.6 18.0 19.8 36.1 11.0 15.1 0.1 0.9 1.0 3.2 0.6 0.7

250 23.4 28.5 18.7 29.9 37.8 34.6 2.8 4.3 2.6 7.6 5.5 4.9

180 14.5 10.7 6.2 7.9 13.8 11.9 4.6 4.3 2.3 5.4 5.4 4.5

150 28.0 19.4 12.5 9.1 17.8 17.4 15.3 13.6 8.2 10.7 12.1 11.4

106 19.2 11.5 9.8 3.8 7.4 7.9 29.7 22.8 18.1 12.7 14.2 14.7

75 10.9 9.7 13.0 6.3 11.5 12.2 47.5 54.0 67.6 60.1 62.2 63.8

<75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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parameter to explain the sample BU between the different FPS and FG in poly-disperse PSD binary 

mixtures. Since the total number of particles affected the sample BU distribution in DEM simulation, 

equation 8 was expected to show a better prediction accuracy compared to equation 5. The nRMSE 

for FB1 and FB2 as the external validation of equation 8 was 0.281 and 0.176, respectively. Although 

the average of the nRMSEs for FB1 and FB2, 0.228, were smaller than that of the equation 5, it was 

still larger than the nRMSE for the mono-size case of 0.067, which is the minimum value in the 

optimization of exponents a and b in equation 8. This larger nRMSE in the external validation could 

be originated both from the disturbance caused by the sampling operation in experiments and 

inaccurate mean sample BU in experiments due to the limited number of experimental data (n=3 per 

FB). As FB1 and FB2 are independent of the determination of the exponents a and b, these results 

suggest that the equation 8 has a higher prediction accuracy compared to equation 5 in this study. 

Though the smallest particle size of the granules was less than 100 m where the effect of fluid 

presence on the particles might be not negligible, the sample BU prediction was successfully 

demonstrated, possibly because the majority of the granules were larger than 100 m. The predicted 

sample BU distributions of FB1 and FB2 in the 10 kg scale blending are provided in Figure 12. The 

probability to pass or fail the sample BU requirement, such as not more than 5.0 SD%, can be easily 

calculated based on the predicted sample BU probability density distribution. Considering the nature 

of DEM, the quantitative sample BU probability density distribution of the blend having a given 

particle size should be able to be predicted at a comparable accuracy by using the DEM simulation 

and equation 8 if the assumption in DEM simulation, i.e., the impact of fluid presence on the particle 

motion was negligible, is valid in the given blend. Those in-silico experiments will provide a 

comprehensive understanding of the relationship between particle size or in a broader sense physical 

properties and sample BU beyond the verified range, without dispensing any of the materials. This 

means that the allowable range of physical properties where the target quality is satisfied with desired 

probability, e.g., > 90% probability to satisfy the sample BU < 5.0% SD, can be identified by 

performing additional in-silico experiments. Further, as the sample BU probability density distribution 

predicted by the DEM simulation is reflecting the sampling regimen, it is possible to evaluate the 

allowable ranges of physical properties taking the effect of sampling regimen in a specific formulation 

in a specific blender into account. For example, sampling regimen of 5x1, which is defined as taking 

a sample each from 5 locations, was predicted to have broader sample BU distributions compared to 

those of 10x1 in FB1 and FB2 at the same sample size, see Figure 12. The probability to satisfy the 

sample BU < 5.0% SD at the sampling regimen of 5x1 and 10x1 in FB1 were 71.1% and 80.8%, 

respectively. In summary, the probability to satisfy the desired blend uniformity at given physical 

properties (e.g., particle size distribution, cohesiveness, etc.) of components can be identified based 

on the DEM simulations that reflect the effect of sampling regimen in blend uniformity analysis. A 

reliable, scientifically verified acceptance criteria for the physical properties of components can be 
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gained based on the visualized edges of failure expressed as the probability to satisfy the desired blend 

uniformity that are calculated by the comprehensive in-silico experiments utilizing DEM simulation. 

The hybrid approach of the actual experiments for the verification of the in-silico experiments and 

complemental in-silico experiments demonstrated in this study will contribute to the higher assurance 

of blend and content uniformity of drug product, which leads to the higher assurance of safety, efficacy, 

and efficiency to the patients finally. 

 

Table 7 Predicted mean sample BU s and RSDsample BU of FB1 and FB2 based on the DEM simulation 

results at FG=0.2 and FPS=5. 

 

 

Figure 12 Comparison of the sample BU probability density distribution for poly-disperse particle size 

blending in (FPS, FG) = (5, 0.2), N = 8. 

 

 

Conclusions 

Qualitative and quantitative prediction of sample BU probability density distribution in a binary 

granular mixture was successfully demonstrated. The segregation due to the differences in physical 

properties of granules, such as particle size distribution between the active and placebo granules, was 

observed both visually and numerically using DEM simulation. The quantitative prediction of the 

sample BU probability density distribution of the three FBs manufactured in 10 kg scale was 

Blend
Mean sample BU s (%)

RSDsample BU (%)2

Experiments1 Equation 5 Equation 8

FB1 5.6 2.4 4.4 16.7

FB2 2.1 1.0 1.8 21.9

1 Mean of the sample BU evaluated at 10 min, 15 min, and 20 min blending in 10 kg scale experiments

2 RSDsample BU (%) is calculated from DEM simulation
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successfully demonstrated with keeping the computational time reasonably low, by up-scaling the 

particle size and downscaling the blender geometry. Prediction accuracy of the s as the nRMSE was 

0.228, indicating a prediction error of around 23%. The nRMSE could be derived both from the 

disturbance caused by the sampling operation in experiments and inaccurate mean sample BU in 

experiments due to the limited number of experimental data (n=3 per FB). The total number of 

particles in the blender and the number of particles in a sample were considered to be critical 

parameters in predicting the sample BU of a blend in experiments based on DEM results. As the 

RSDsample BU was confirmed to be constant regardless of the number of particles in a sample and total 

number of particles, it was concluded that the sample BU probability density distribution was 

successfully predicted based on DEM simulations. The hybrid approach combining the limited number 

of actual experiments for verification purpose and the complemental in-silico experiments towards the 

blending process development demonstrated in this study showed potential to provide a 

comprehensive understanding of the blending process efficiently, without dispensing huge amount of 

materials for exploratory, trial and error experiments. A similar approach could be applicable to not 

only other types of batch type blenders (V-blenders, double cone blenders, cube blenders, etc) but also 

continuous manufacturing facilities. This fact also suggests a possibility to evaluate and compare the 

mixing performance of the blenders based on the expected blend uniformity at the manufacture of a 

given formulation. Further development in computational capability in near future will accelerate the 

demonstrated hybrid approach, resulting in a higher assurance level of drug product quality based on 

the concept of Quality by Design. 
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Case study 2 - Scientific rationale for sampling regimen 
and acceptance criteria of blend uniformity based on 
Monte Carlo simulation 

 

 

Outline 

The scientific rationale for setting acceptance limits for the blend uniformity is studied in a blending 

process. Blend uniformity, defined as the homogeneity of active ingredients in the blend, is one of the 

intermediate CQAs to assure the CQA of content uniformity in the finished drug product. A challenge 

in the BUA is that the homogeneity of the whole potential samples not being tested in the bulk blend 

needs to be assured based on the homogeneity of the actually tested samples. Certainly, the sampling 

regimen, which is the combination of sampling locations and the number and amount of samples from 

each sampling location, and the acceptance criteria are the key factors for assuring the homogeneity 

of the whole bulk blend. However, there is little literature on how to correlate the key factors and the 

resultant assurance level of bulk blend homogeneity. Herein the aim of this case study is to develop a 

scientific rationale for the selection of sampling regimen and acceptance criteria, which includes 

setting of the requirements for the whole potential samples not tested in the bulk blend. The 

comprehensive blending process control can be established together with the process model developed 

in case study 1 finally. 
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Abstract 

This study proposes an alternative sampling regimen (number of sampling points, number of 

samples from each sampling point) and setting of the acceptance criteria for blend uniformity based 

on a statistical rationale. Currently, the sampling regimen and the acceptance criteria for the blend 

uniformity test of powder blends are determined according to the withdrawn guidance for industry by 

the Food and Drug Administration (FDA) and the proposal of the International Society for 

Pharmaceutical Engineering (ISPE)-sponsored Blend Uniformity and Content Uniformity (BUCU) 

Group to substitute the withdrawn guidance. However, both approaches lack scientific rationale in 

their publications. Herein this study addresses the scientific background based on the simulations 

utilizing the Monte Carlo method, in order to provide a scientific rationale for the sampling regimen 

and acceptance criteria. False positive probability, defined as the probability of failure to meet the 

minimum necessary requirement in future samples even when the tested sample satisfies the 

acceptance criteria in fact were used to evaluate the adequacy of the sampling regimen and acceptance 

criteria. This study aims at stimulating the discussion about blend uniformity that may ensure a higher 

quality of pharmaceutical products finally. 

 

Keywords: Blend and content uniformity, Monte Carlo simulation, Statistics 

  

Introduction 

The blending process is one of the common critical manufacturing processes to assure the quality 

of finished products such as uniformity of active ingredients content in the finished dosage units, 

defined as content uniformity. In general, samples taken from various points of bulk powder blend are 

evaluated to estimate the homogeneity of the active ingredients in the powder blend; i.e., blend 

uniformity. The sampling regimen, which is the combination of sampling points and the number of 

samples from each sampling point, and the acceptance criteria are the key factors in blend uniformity 

test. This is because usually the quality of the bulk powder is assured based on the test results of the 

samples. In the pharmaceutical industry, the discussion for the sampling regimen and the acceptance 

criteria for the blend uniformity test have been raised recently, initiated by the Food and Drug 

Administration (FDA). In August 2013, the FDA announced the withdrawal of its draft guidance for 

industry on Powder Blends and Finished Dosage Units — Stratified In-Process Dosage Unit Sampling 

and Assessment27. FDA’s major concern was that Sections V and VII of the withdrawn draft guidance, 

which had been used as a basis for the sampling regimen and the acceptance criteria of blend 

uniformity test, no longer represented the agency’s current thinking. The agency’s recommendation to 

address the concerns is twofold. First, between- and within-location variability in the powder blend is 

a critical component of finished product quality and therefore should be evaluated. Second, the 
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procedures and acceptance criteria in USP <905> are not a statistical sampling plan and so the results 

of the procedures should not be extrapolated to larger populations28, 35. Considering these points, a 

systematic sampling regimen for the blend uniformity test is required taking the between- as well as 

the within-location variability into account, since the within-location variability; i.e., sampling bias, 

may bias the between-location variability which reflects the true variability of the active ingredient’s 

content in the bulk powder blend. Regarding the acceptance criteria for the samples, the statistical 

rationale is desired to assure the homogeneity of the bulk powder blend considering the applied 

sampling regimen. 

In 2014, the Blend Uniformity and Content Uniformity Group (BUCU Group) of the International 

Society for Pharmaceutical Engineering (ISPE) published two papers to propose the modifications to 

the withdrawn FDA draft guidance28, 35. The statistical rationale for the proposed sampling regimen 

and the acceptance criteria for the content uniformity test of finished dosage units are provided in the 

publications and the ASTM E2709-12 and ASTM E2810-1151, 52. However, there is little scientific or 

statistical rationale for the proposal of the sampling regimen and the acceptance criteria of the blend 

uniformity compared to the content uniformity. In addition, the BUCU Group encouraged other 

statistical, science and risk-based approaches in their publication. Application of process analytical 

tools such as in-line monitoring of the blend uniformity throughout the blending process would be one 

of the alternative modern approaches they had described for example53, 54. However, not only PAT 

offering continuous monitoring of blend uniformity but also traditional endpoint controls with higher 

quality assurance could be beneficial to reduce research and development cost. The aim of this study 

is to evaluate the usefulness of the Monte Carlo simulation for the statistical rationale of the alternative 

sampling regimen and acceptance criteria following the BUCU Group´s call for other statistical, 

science and risk-based approaches. 

 

 

 

                                                   
51 American Society for Testing and Materials, 2012. Standard Practice for Demonstrating Capability to 

Comply with an Acceptance Procedure. ASTM E2709-12. 

52 American Society for Testing and Materials, 2011. Standard Practice for Demonstrating Capability to 

Comply with the Test for Uniformity of Dosage Units. ASTM E2810-11. 

53 El-Hagrasy, A.S., Morris, H.R., D’Amico, F., Lodder, R.A., Drennen III, J.K., 2001. Near-Infrared 

Spectroscopy and Imaging for the Monitoring of Powder Blend Homogeneity. J. Pharm. Sci., 90, 1298–

1307. 

54  Wu, H., Tawakkul, M., White, M., Khan, M., 2009. Quality-by Design (QbD): An integrated 

multivariate approach for the component quantification in powder blends. Int. J. Pharm., 372, 39–48. 
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Methods 

2.1. Acceptance criteria of population blend uniformity – lower probability bound (LB) 

In general, content uniformity of the finished dosage units such as tablets and capsules is affected 

by the four factors: mean concentration of the active ingredients in the powder blend used, uniformity 

of the active ingredient amount in the powder blend used, mean weight of unit dosage forms, and the 

weight variation of unit dosage forms. Segregation of the active ingredients content during the unit 

dosing process such as tableting and capsule filling will be also a factor affecting content uniformity. 

Therefore, the acceptance criteria of the blend uniformity should be equal to or lower than the 

acceptance criteria for the content uniformity of unit dosage forms in order to ensure that the tablets 

manufactured using the powder blend meet the content uniformity test. In addition, since the blend 

uniformity test is conducted for the samples taken from the population, i.e., bulk powder blend, the 

acceptance criteria for the samples should be set considering the estimated probability density 

distribution of the population. Based on this consideration, the minimum necessary requirement for 

the population blend uniformity, and the acceptance criteria for the samples taken from the powder 

blend were set as follows: 

The minimum necessary requirement for the population powder blend was set such that it will assure 

that the future samples taken from the population will meet the USP<905> acceptance criteria with 

the predefined probability at least (lower probability bound (LB)). This is the same requirement for 

the population drug product content uniformity provided in ASTM E2810, which is the upper limit of 

the standard deviation (SD) of the assay with respect to the mean assay value. Note that the assay is 

defined as a percentage of active ingredients’ label claim in powder blend, tablets, and finished dosage 

units. LB=95% was selected in this study because it is provided in the ASTM E2810 as an example, 

and commonly used in the regulatory area. At LB=95%, the upper limit of the assay SD, i.e., 

homogeneity of the active ingredients, at the mean assay value of 100% is 6.0%55. Generally, the target 

assay value in the blending process is 100%, therefore, the minimum necessary requirement for the 

population assay SD was set to not more than 6.0%. 

 

2.2. Estimation of false positive probability based upon Monte Carlo simulation 

To compare the adequacy of the sampling regimen and acceptance criteria of samples to assure the 

population blend uniformity, false positive probability, defined as the probability of failure to the 

minimum requirement in future samples even when the tested sample satisfies the acceptance criteria, 

were calculated. The false positive probabilities of the various sampling regimen and acceptance 

criteria were calculated based upon probability density distributions. As pointed out by the agency, 

                                                   
55 Bergum, J.S., Li, H., 2007. Acceptance Limits for the New ICH USP 29 Content-Uniformity Test. Pharm. 

Tech., 90–100. 
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two individual variations, between- and within-location variability, should be considered to estimate 

the probability density distributions, however, it is difficult to establish the mathematical estimation 

model of the probability density distribution that has two independent variabilities. Alternatively, the 

distribution was calculated using the Monte Carlo method. Monte Carlo simulation is widely applied 

in science and engineering with experiments on random numbers56. The algorithm used here is a 

simple sampling method as follows and illustrated in Figure 1. 

1. 400 combinations of between-location variability (x) and within-location variability (y) were 

prepared. x and y were ranged from 0.5% to 10.0%. The two variations were changed 

independently in 0.5% steps to cover the entire possible situation. 

2. The assay SD of any optional sampling regimen (e.g., 3 samples each from 10 points) were 

calculated thirty thousand times (sample size N = 3.0104) per each combination of x and y 

to acquire the respective probability density distribution of the assay SD. The sample size N is 

determined considering the robustness of the estimated probability as described below. Note 

that these probability densities are based on the assumption of normal distributions by using 

normal random number generator whose accuracy was confirmed (see Appendix). 

3. The probabilities that satisfy the predefined acceptance criteria (e.g., assay SD  5.0%) (P1) 

and the probabilities that deviate from the minimum necessary requirement for the population 

(assay SD  6.0%) (P2) for each combination of x and y were calculated. 

4. The false positive probability that the future sample of the population will deviate from the 

minimum necessary requirement although the current sample satisfies the predefined 

acceptance criteria (P3) was calculated. P3 is calculated by equation 1 as follows: 

 

100213 PPP    (1) 

 

 

 

 

 

 

 

 

 

 

                                                   
56 Huang, C.Y., Ku, S.M., 2010. Prediction of drug particle size and content uniformity in low-dose solid 

dosage forms. Int. J. Pharm. 383, 70–80. 
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Figure 1 Algorithm of the Monte Carlo simulation in the case of sampling regimen 103, acceptance 

criteria of not more than 5.0% SD 

 

 

A low P3 means that at the combination of x and y, sampling regimen, and acceptance criteria, 

future samples from the population powder blend whose sample had met the acceptance criteria will 

satisfy the minimum necessary requirement. Therefore P3 is comparable to the confidence level (C) 

in the ASTM E2810. 

The sample size N for the Monte Carlo simulation has determined based upon the Chernoff bound; 

 











2

2ln(
(N   (2) 

 

With the Equation 2, the smallest sample size required to assure that the probability of an estimation 

error exceeding  is less than or equal to  is calculated57, 58. For this study,  =  = 0.01 which 

correspond to a 1% error was selected as a robust estimation, and the smallest required sample size N 

                                                   
57 Chernoff, H., 1952. A measure of asymptotic efficiency for test of hypothesis based on the sum of 

observations, Ann. Math. Statist. 23, 493–507. 

58 Tempo, R., Bai, E.W., Dabbene, F., 1997. Probabilistic robustness analysis: Explicit bounds for the 

minimum number of samples. Syst. Control Lett. 30, 237–242. 

AA

AA1

AA2

AA3…

AJ

AJ1

AJ2

AJ3

SD

Sample set 1

…

Sample set 30,000

x and y

combination #1

…

AA

AA1

AA2

AA3…

AJ

AJ1

AJ2

AJ3

SD

Sample set 1

…

Sample set 30,000

x and y

combination #400

P1#1

P2#1

P3#1 = P1#1P2#1/100

P1#400

P2#400

P3#400 = P1#400P2#400/100



44 

 

is 2.6104. In order to be on the safe side, 2.6104 was rounded up to 3.0104. 

In this study, the sampling regimen is abbreviated as follows: 103 for 3 samples each from well-

distributed 10 points in the container blender. The Monte Carlo simulation was conducted for various 

sampling regimens such as 101, 102, 103, and 62, and the predefined acceptance criteria was not 

more than (NMT) 3.0% SD, 4.0% SD, or 5.0% SD. Figure 2 is an example of the sampling regimen 

of 103. Equation 3 and 4 represent the calculation procedure of the individual assays to acquire the 

SD of the sample. 

 

CxMAp     (3) 

 

CyAA ppq     (4) 

 

Where 
pA  denotes assay of location p, M denotes the target assay of the blend (100%), C denotes 

normal random number, and 
pqA  denotes assay of the individual sample from the location p. In the 

case of 103 provided in Figure 2, p = A, B, C, D, E, F, G, H, I, and J and q = 1, 2, and 3. Sample SDs 

were calculated by using the individual assay value. Note that the simulation conducted in this study 

is built on the assumption that the samples are taken from the well-distributed sampling points. 

 

Figure 2 Example of sampling regimen 103 from container blender. (a) side view (b) top view  

 

 

2.3. Comparison of the prediction accuracy of between- and within-location variability  

When the assay SD of the powder blend sample is close to the acceptance criteria, it is worth to 

identify whether x or y was the cause to avoid the false positive. In such cases, the accurate 

prediction of x and y would be preferred. In particular, the accurate prediction is desired in the cases 

where P3 was expected to be high. This is because the high P3 means that the probability density 

distribution of the assay SD is relatively wide, therefore, there is a possibility that the sample blend 

uniformity may have been estimated lower than the actual one due to the wide distribution even when 
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the sample satisfies the acceptance criteria near the limit. Herein the accuracy of the predicted 

between- and within-location variability (sx and sy) to the x and y whose P3 were predicted to be 

high was evaluated through variance components analysis (VCA) in the Monte Carlo simulation. The 

model associated with the prediction of sx and sy by the VCA is given as: 

 

xij =  + ai + eij  (5) 

 

Where xij is the observation of the jth unit in the ith sampling point,  is the general mean, ai is the 

effect of ith sampling point, and eij is the residual error consisting of within-location variation. The sx 

and sy were calculated as equation 6 and 7. 

 

n

syns
sx

22

LM 
   (6) 

 

n

sy

sy

n

l

l
 1

2

   (7) 

 

Where n denotes number of samples per each sampling point, sLM
2 denotes variance of the mean 

assay values of each sampling point, syl
2 denotes the variations of the assay values in each sampling 

point. When nsLM
2 minus syl

2 became negative, it was assumed as zero. sx and sy were calculated 

thirty thousand times (sample size N = 3.0104) to obtain the probability density distribution based on 

the sample sets provided by equation 3 and 4. The accuracy of sx and sy to the x and y were 

compared between the sampling regimens based on the estimated probability density distributions. 

 

Results and Discussion 

The simulation results of the sampling regimen 101, acceptance criteria of NMT 5.0% SD was 

thought to be a reference to the others since it had been applied as a standard procedure on the basis 

of the withdrawn guidance. Figure 3 shows an example of probability density distribution of 101, 

(x, y) = (4, 2). When the acceptance criteria for the sample assay SD was set to be NMT 5.0%, then 

P1=74.1%, P2=6.2%, and P3=4.6%, respectively. 
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Figure 3 Probability density distribution of the assay SD using the sampling regimen 101, (x, y) = 

(4, 2)  

 

 

Figure 4 shows the P3 of each combination of x and y for the sampling regimen of 101 and the 

acceptance criteria of NMT 5.0% SD. Its horizontal axis is for the between-location variation, and the 

vertical axis is for the within-location variation. The green colored combination shows 2.5%  P3  

5.0%, the blue colored combination shows 5.0%  P3  10.0%, and the red colored combination shows 

10.0%  P3, respectively. There exist many colored combinations, that is, there are risks to deviate the 

minimum necessary requirement in the future samples even when the sample under investigation 

meets the acceptance criteria. 

 

Figure 4 P3 of the each combination of x and y for 101, acceptance criteria NMT 5.0% SD  

 

 

To compare the risks for the deviation in the future samples, four different sampling regimens (101, 

102, 103, and 62) with various acceptance criteria (NMT 3.0% SD, 4.0% SD, and 5.0% SD) were 

evaluated as shown in Figure 5. The number of the colored combinations decrease as replicates 
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increase, and they decrease when tighter acceptance criteria are applied. 101 with the acceptance 

criteria of NMT 3.0% SD, 103 with the acceptance criteria of NMT 3.0% SD, and 103 with the 

acceptance criteria of NMT 5.0% SD that are the alternative procedures proposed by the BUCU Group, 

were confirmed to be much more conservative compared to the 101 with acceptance criteria of NMT 

5.0% SD, the conventional approach according to the withdrawn guidance. The simulation proved that 

by applying tighter acceptance criteria, one can assure the homogeneity of the bulk powder blend 

without taking replicate samples from each sampling point, though it is impossible to predict the 

between- and within-location variability. In addition, using 62 with the acceptance criteria of NMT 

4.0% SD, lacks red colored regions at all. This means that the false positive probability is not more 

than 10% regardless of the between-location variation x and within-location variation y. Therefore 

by applying 62 with acceptance criteria of NMT 4.0% SD, the population blend uniformity could be 

assured with C=90%/LB=95%, that would be an equivalent or even more severe quality control 

without increasing the number of samples significantly compared to the 103 with the acceptance 

criteria of NMT 5.0% SD, the stage 2 blend testing proposed by the BUCU Group. This assurance 

level is higher than that for the content uniformity test proposed by the BUCU Group, 

C=50%/LB=95% for process qualification, process verification and routine release testing of drug 

products. This difference would be appropriate considering the risks of content uniformity failure due 

to processes such as segregation during tableting. 
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Figure 5 P3 of the each combination of x and y for various sampling regimen and acceptance criteria 

(AC). (a) 101, AC: NMT 5.0% SD, (b) 102, AC: NMT 5.0% SD, (c) 103, AC: NMT 5.0% SD, (d) 

62, AC: NMT 5.0% SD, (e) 101, AC: NMT 4.0% SD, (f) 102, AC: NMT 4.0% SD, (g) 103, AC: 

NMT 4.0% SD, (h) 62, AC: NMT 4.0% SD, (i) 101, AC: NMT 3.0% SD, (j) 102, AC: NMT 3.0% 

SD, (k) 103, AC: NMT 3.0% SD, (l) 62, AC: NMT 3.0% SD 
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4.0 1.4 1.7 2.1 3.2 4.7 6.8 9.4 11.4 12.6 12.2 11.3 10.0 7.8 6.3 4.8 3.8 2.4 2.0 1.3 1.0 0.7 4.0 0.9 1.1 1.3 1.8 2.4 3.2 3.9 4.2 4.3 3.8 3.1 2.6 2.0 1.4 1.0 0.8 0.5 0.4 0.3 0.2 0.2 4.0 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.7 0.7 0.5 0.5 0.3 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0

4.5 4.8 5.1 5.8 7.3 8.4 10.2 11.8 12.6 12.7 11.7 10.2 8.5 6.7 5.1 4.0 3.1 2.3 1.5 1.3 0.8 0.6 4.5 2.5 2.6 2.8 3.4 3.6 4.0 4.3 4.2 3.9 3.3 2.8 2.1 1.6 1.1 0.9 0.7 0.5 0.3 0.3 0.1 0.1 4.5 0.6 0.6 0.6 0.7 0.7 0.8 0.7 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0

5.0 9.3 9.3 10.1 10.9 11.8 12.5 12.5 12.4 11.3 10.1 8.9 7.1 5.5 4.2 3.2 2.5 1.9 1.4 1.1 0.7 0.6 5.0 3.9 3.9 4.1 4.2 4.3 4.4 4.0 3.6 3.2 2.7 2.3 1.7 1.2 0.9 0.6 0.5 0.5 0.3 0.2 0.1 0.1 5.0 0.8 0.7 0.8 0.8 0.7 0.7 0.7 0.5 0.5 0.3 0.3 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

5.5 12.2 12.2 12.2 12.7 12.6 12.3 11.9 11.1 9.8 8.5 7.0 5.7 4.4 3.5 2.6 2.1 1.6 1.3 0.9 0.7 0.5 5.5 4.3 4.3 4.2 4.4 4.1 3.7 3.4 3.2 2.5 2.0 1.6 1.3 0.9 0.8 0.5 0.4 0.3 0.3 0.2 0.1 0.1 5.5 0.7 0.7 0.7 0.7 0.6 0.6 0.5 0.4 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

6.0 12.4 12.3 12.3 12.1 11.7 11.0 10.3 9.2 8.0 6.8 5.6 4.4 3.5 2.9 2.2 1.7 1.2 0.8 0.8 0.5 0.5 6.0 3.9 3.8 3.9 3.5 3.5 3.0 2.8 2.4 2.0 1.5 1.2 0.9 0.8 0.6 0.4 0.3 0.2 0.1 0.1 0.1 0.1 6.0 0.6 0.6 0.6 0.5 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

6.5 11.3 11.0 10.7 10.3 9.9 9.3 8.2 7.2 6.3 5.4 4.5 3.6 2.8 2.2 1.7 1.3 1.0 0.7 0.6 0.4 0.4 6.5 3.1 3.0 3.0 2.7 2.6 2.3 2.0 1.7 1.5 1.2 1.0 0.7 0.5 0.4 0.4 0.2 0.2 0.1 0.1 0.1 0.1 6.5 0.5 0.4 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7.0 8.9 8.8 8.6 8.5 7.6 7.0 6.5 5.7 4.6 4.1 3.2 2.6 2.1 1.8 1.3 1.0 0.8 0.6 0.5 0.3 0.3 7.0 2.2 2.2 2.1 2.1 2.0 1.7 1.6 1.2 1.0 1.0 0.6 0.5 0.4 0.3 0.3 0.2 0.1 0.1 0.1 0.0 0.1 7.0 0.3 0.3 0.2 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7.5 6.8 6.9 6.7 5.9 5.9 5.3 4.7 4.1 3.7 3.2 2.6 2.0 1.5 1.2 0.9 0.9 0.6 0.4 0.4 0.3 0.2 7.5 1.6 1.7 1.5 1.3 1.3 1.2 1.0 0.8 0.8 0.7 0.5 0.4 0.3 0.2 0.1 0.2 0.1 0.1 0.0 0.1 0.0 7.5 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.0 5.0 5.0 4.6 4.4 4.1 3.7 3.6 3.0 2.6 2.2 1.8 1.5 1.2 1.0 0.8 0.6 0.5 0.4 0.3 0.2 0.2 8.0 1.0 1.1 1.0 1.0 0.9 0.8 0.7 0.6 0.6 0.4 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 8.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.5 3.4 3.6 3.4 3.2 3.1 2.9 2.6 2.3 1.9 1.6 1.5 1.2 0.9 0.9 0.7 0.5 0.4 0.4 0.3 0.2 0.2 8.5 0.7 0.8 0.7 0.7 0.7 0.6 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 8.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.0 2.5 2.5 2.5 2.4 2.1 2.0 1.9 1.6 1.4 1.3 1.0 0.7 0.7 0.5 0.4 0.4 0.4 0.3 0.2 0.2 0.2 9.0 0.5 0.5 0.4 0.5 0.4 0.5 0.4 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 9.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.5 1.9 1.8 1.9 1.5 1.6 1.4 1.2 1.1 1.1 0.8 0.7 0.6 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.1 9.5 0.4 0.4 0.3 0.3 0.4 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10.0 1.3 1.3 1.1 1.1 1.0 1.0 0.9 0.8 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.3 0.2 0.1 0.1 0.1 0.1 10.0 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.0 3.8 8.3 11.7 12.6 11.6 9.7 7.7 5.7 4.0 2.9 2.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 2.0 3.6 4.4 4.1 3.4 2.5 1.9 1.3 0.9 0.6 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.7 0.8 0.6 0.5 0.3 0.2 0.1 0.1 0.1 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.1 4.1 8.4 11.6 12.6 11.5 9.6 7.6 5.5 4.2 3.0 2.1 1.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 2.2 3.6 4.2 4.1 3.2 2.6 1.8 1.2 0.9 0.6 0.4 0.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.7 0.7 0.6 0.5 0.3 0.2 0.1 0.1 0.1 0.0 0.0

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.4 4.6 8.8 11.7 12.3 11.3 9.3 7.2 5.3 3.6 2.8 1.9 1.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 2.3 3.7 4.1 3.7 3.1 2.2 1.7 1.1 0.7 0.6 0.3 0.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.5 0.6 0.6 0.5 0.3 0.3 0.1 0.1 0.1 0.1 0.0 0.0

1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.9 5.4 9.5 11.9 11.9 10.7 8.5 6.4 4.8 3.4 2.4 1.8 1.2 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.1 2.5 3.5 3.8 3.3 2.7 1.9 1.3 0.9 0.7 0.4 0.3 0.2 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.4 0.5 0.5 0.4 0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 3.0 6.6 10.3 11.9 11.3 9.6 7.5 5.6 4.2 2.8 2.1 1.4 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.5 2.7 3.4 3.4 2.9 2.2 1.6 1.1 0.7 0.5 0.3 0.3 0.2 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.4 0.4 0.3 0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0

2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.5 4.6 8.3 10.8 11.4 10.5 8.4 6.3 4.8 3.4 2.5 1.9 1.3 0.9 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 1.9 2.8 3.1 2.8 2.4 1.7 1.1 0.8 0.5 0.4 0.3 0.2 0.1 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 3.1 6.5 9.5 11.0 10.6 8.8 6.9 5.3 3.7 2.6 1.8 1.3 0.9 0.7 3.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 1.3 2.1 2.6 2.6 2.1 1.5 1.2 0.8 0.5 0.3 0.3 0.2 0.1 0.1 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

3.5 0.0 0.0 0.0 0.0 0.2 0.9 2.7 5.5 8.4 10.2 10.2 9.1 6.9 5.4 3.8 2.8 2.0 1.4 1.0 0.6 0.5 3.5 0.0 0.0 0.0 0.0 0.1 0.4 1.0 1.6 2.0 2.1 1.8 1.4 1.0 0.7 0.4 0.3 0.2 0.1 0.1 0.1 0.1 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.0 0.1 0.1 0.3 0.6 1.4 3.1 5.7 8.0 9.6 9.6 8.6 6.7 5.3 3.9 2.8 1.9 1.4 1.0 0.7 0.5 0.3 4.0 0.1 0.1 0.2 0.3 0.5 1.0 1.5 1.7 1.7 1.5 1.2 0.9 0.6 0.4 0.3 0.3 0.1 0.1 0.1 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.5 1.5 1.7 2.2 3.1 4.5 6.4 8.1 9.2 8.9 7.9 6.8 5.0 3.6 2.6 1.9 1.2 0.9 0.6 0.4 0.4 0.2 4.5 0.5 0.6 0.7 0.9 1.1 1.4 1.5 1.4 1.3 1.0 0.7 0.5 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5.0 5.3 5.5 6.0 6.8 7.7 8.5 8.8 8.2 7.2 5.7 4.5 3.3 2.2 1.6 1.1 0.8 0.5 0.4 0.2 0.2 0.1 5.0 1.2 1.2 1.2 1.3 1.3 1.2 1.2 0.9 0.7 0.5 0.4 0.3 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5.5 8.1 8.3 8.5 8.6 8.4 7.8 7.3 5.9 4.7 3.6 2.6 1.9 1.4 0.9 0.7 0.5 0.3 0.2 0.1 0.1 0.1 5.5 1.2 1.2 1.2 1.1 1.1 0.9 0.8 0.6 0.3 0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6.0 7.9 7.6 7.5 7.1 6.5 5.7 4.6 3.8 2.9 2.1 1.5 1.2 0.8 0.5 0.4 0.3 0.3 0.1 0.1 0.1 0.0 6.0 0.8 0.8 0.7 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6.5 5.4 5.3 5.2 4.6 3.9 3.6 2.6 2.1 1.6 1.2 0.9 0.6 0.5 0.3 0.2 0.1 0.1 0.1 0.0 0.0 0.0 6.5 0.5 0.4 0.4 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7.0 3.1 3.0 2.7 2.6 2.3 2.0 1.5 1.1 0.9 0.6 0.5 0.3 0.3 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 7.0 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7.5 1.7 1.6 1.4 1.2 1.1 0.9 0.8 0.5 0.5 0.3 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 7.5 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.0 0.8 0.8 0.6 0.7 0.5 0.5 0.4 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.5 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.0 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.5 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.6 7.9 11.2 12.6 12.0 9.9 8.2 5.8 4.3 3.1 2.2 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 2.0 3.5 4.2 4.2 3.5 2.6 2.2 1.3 0.9 0.6 0.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.7 0.7 0.6 0.5 0.3 0.3 0.1 0.1 0.1 0.1 0.0

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 3.7 8.0 11.2 12.7 12.0 9.9 8.0 5.5 4.3 3.0 2.2 1.6 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.6 2.0 3.5 4.1 4.1 3.5 2.6 2.0 1.2 0.9 0.6 0.4 0.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.7 0.7 0.6 0.5 0.3 0.3 0.1 0.1 0.1 0.0 0.0

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.2 4.1 8.6 11.4 12.4 11.4 9.3 7.1 5.5 3.9 3.0 2.1 1.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 2.1 3.6 4.0 3.7 3.0 2.3 1.6 1.2 0.8 0.6 0.4 0.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.6 0.6 0.5 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.0

1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.7 5.0 9.0 11.9 11.9 10.7 8.6 6.7 4.8 3.5 2.6 1.7 1.2 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 2.3 3.3 3.8 3.3 2.7 1.9 1.4 0.9 0.6 0.5 0.3 0.2 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 0.5 0.5 0.4 0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0
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3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 2.2 5.5 8.7 10.3 9.9 8.2 6.6 4.8 3.3 2.5 1.7 1.1 0.9 0.6 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 1.6 2.0 2.0 1.6 1.2 0.8 0.6 0.3 0.2 0.2 0.1 0.1 0.1 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.5 0.0 0.0 0.0 0.0 0.0 0.3 1.6 4.2 7.3 9.2 9.3 8.0 6.5 4.8 3.2 2.2 1.6 1.1 0.7 0.6 0.4 3.5 0.0 0.0 0.0 0.0 0.0 0.1 0.5 1.0 1.4 1.4 1.2 0.9 0.6 0.5 0.3 0.2 0.1 0.1 0.0 0.0 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.0 0.0 0.0 0.0 0.1 0.5 1.7 3.9 6.5 8.0 8.3 7.4 5.6 4.0 2.9 1.9 1.3 0.9 0.7 0.4 0.3 0.2 4.0 0.0 0.0 0.0 0.1 0.2 0.4 0.7 0.9 0.9 0.7 0.6 0.4 0.3 0.2 0.1 0.1 0.0 0.1 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.5 0.5 0.5 0.9 1.4 2.7 4.4 6.3 7.4 7.3 6.2 4.9 3.6 2.3 1.6 1.1 0.7 0.6 0.3 0.2 0.1 0.1 4.5 0.1 0.1 0.2 0.3 0.4 0.6 0.6 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5.0 3.2 3.3 3.9 4.6 5.6 6.4 6.4 6.1 5.1 3.6 2.7 1.9 1.3 0.8 0.6 0.4 0.3 0.2 0.1 0.1 0.1 5.0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5.5 5.9 6.0 6.0 6.1 5.9 5.4 4.7 3.6 2.7 2.0 1.3 0.9 0.7 0.3 0.2 0.1 0.1 0.1 0.0 0.0 0.0 5.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6.0 5.2 5.1 4.8 4.4 4.0 3.0 2.4 1.8 1.1 0.8 0.5 0.4 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 6.0 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6.5 2.8 2.6 2.3 2.3 1.8 1.4 1.0 0.7 0.5 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7.0 1.2 1.0 1.0 0.8 0.7 0.5 0.4 0.4 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7.5 0.5 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.5 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 3.2 7.1 10.8 13.8 15.2 15.2 14.3 12.8 11.1 9.9 8.5 7.1 5.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 2.3 4.4 6.1 7.2 7.4 7.0 6.4 5.4 4.5 3.9 3.1 2.7 2.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.0 1.8 2.2 2.4 2.3 2.1 1.8 1.5 1.2 1.1 0.9 0.7 0.6

1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.3 4.0 7.8 11.6 14.0 15.0 14.8 13.9 12.2 10.8 9.5 7.7 6.4 5.4 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 2.6 4.7 6.3 7.0 6.9 6.5 5.8 5.1 4.1 3.7 2.9 2.2 2.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 1.1 1.7 2.1 2.2 2.0 1.8 1.5 1.3 1.0 0.9 0.7 0.6 0.4
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4.0 0.9 1.1 1.4 2.2 3.5 5.6 8.2 10.5 12.2 12.9 12.7 11.9 10.5 9.0 8.0 6.4 5.4 4.4 3.7 3.0 2.5 4.0 0.5 0.7 0.8 1.2 1.7 2.5 3.3 3.9 4.2 4.2 3.8 3.3 2.9 2.4 2.1 1.6 1.4 1.1 0.8 0.6 0.5 4.0 0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.6 0.6 0.5 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.1
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5.0 8.4 8.3 8.9 9.8 10.6 11.6 11.8 11.7 11.2 10.3 9.2 7.8 6.7 5.5 4.6 4.0 3.1 2.6 2.1 1.8 1.5 5.0 3.0 3.0 3.2 3.3 3.3 3.5 3.3 3.1 2.9 2.5 2.0 1.7 1.5 1.2 0.9 0.8 0.6 0.5 0.4 0.3 0.3 5.0 0.4 0.4 0.5 0.4 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0

5.5 11.2 11.0 11.2 11.5 11.5 11.3 10.8 10.3 9.4 8.5 7.2 6.1 5.0 4.1 3.5 2.7 2.3 2.0 1.6 1.4 1.1 5.5 3.4 3.2 3.2 3.2 3.2 2.9 2.6 2.3 2.1 1.8 1.4 1.3 1.0 0.8 0.6 0.5 0.4 0.4 0.3 0.2 0.2 5.5 0.4 0.4 0.3 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6.0 11.4 11.3 11.2 10.7 10.5 10.0 8.9 8.2 7.3 6.3 5.4 4.5 3.7 3.2 2.7 2.1 1.6 1.3 1.2 1.0 0.9 6.0 2.8 2.9 2.6 2.5 2.4 2.2 1.9 1.6 1.4 1.3 1.0 0.8 0.7 0.6 0.5 0.3 0.3 0.2 0.2 0.1 0.2 6.0 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6.5 9.5 9.4 9.5 8.9 8.2 7.6 7.1 6.0 5.3 4.5 3.8 3.3 2.6 2.2 1.8 1.4 1.2 0.9 0.8 0.6 0.6 6.5 2.0 2.0 2.0 1.9 1.6 1.5 1.3 1.1 1.0 0.7 0.7 0.5 0.4 0.4 0.3 0.2 0.2 0.1 0.2 0.1 0.1 6.5 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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10.0 0.7 0.7 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 10.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Between location variation ( x )

Between location variation ( x )

Between location variation ( x )

Between location variation ( x )

W
it

h
in

 l
o

c
a
ti

o
n

 v
a
ri

a
ti

o
n

 (


y
)

W
it

h
in

 l
o

c
a
ti

o
n

 v
a
ri

a
ti

o
n

 (


y
)

W
it

h
in

 l
o

c
a
ti

o
n

 v
a
ri

a
ti

o
n

 (


y
)

W
it

h
in

 l
o

c
a
ti

o
n

 v
a
ri

a
ti

o
n

 (


y
)

Between location variation ( x )

Between location variation ( x )

Between location variation ( x )

Between location variation ( x )

W
it

h
in

 l
o

c
a
ti

o
n

 v
a
ri

a
ti

o
n

 (


y
)

W
it

h
in

 l
o

c
a
ti

o
n

 v
a
ri

a
ti

o
n

 (


y
)

W
it

h
in

 l
o

c
a
ti

o
n

 v
a
ri

a
ti

o
n

 (


y
)

W
it

h
in

 l
o

c
a
ti

o
n

 v
a
ri

a
ti

o
n

 (


y
)

Between location variation ( x )

Between location variation ( x )

Between location variation ( x )

Between location variation ( x )

W
it

h
in

 l
o

c
a
ti

o
n

 v
a
ri

a
ti

o
n

 (


y
)

W
it

h
in

 l
o

c
a
ti

o
n

 v
a
ri

a
ti

o
n

 (


y
)

W
it

h
in

 l
o

c
a
ti

o
n

 v
a
ri

a
ti

o
n

 (


y
)

W
it

h
in

 l
o

c
a
ti

o
n

 v
a
ri

a
ti

o
n

 (


y
)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)



49 

 

To compare the prediction accuracy of x and y between the sampling regimens of 103 and 62, 

probability density distributions of sx and sy at the three combinations of x and y: (x, y) = (6, 

0.5), (5, 3), and (0.5, 5.5) were evaluated. According to Figure 5, (x, y) = (6, 0.5) was expected to 

have the highest P3 due to the high x in the sampling regimens of 103 and 62. (x, y) = (5, 3) 

was also predicted to have relatively high P3, and both x and y were the cause of the high P3. P3 at 

(x, y) = (0.5, 5.5) was also expected to be high compared to the other combinations, and y was the 

cause of the high P3. Figure 6 shows the probability density distributions of sx and sy. As shown in 

Figure 6 (a) and (b), in the case of (x, y) = (6, 0.5), the predicted range of sx was significantly higher 

than sy reflecting the x and y. It was confirmed that though it was difficult to predict x accurately 

based on sx in both sampling regimens, the accurate estimation of y was considered possible. 

Furthermore, since the distribution range of sx was confirmed much higher than that of sy, sx will be 

identified correctly as the cause of the high assay SD in both sampling regimens. In the case of (x, 

y) = (0.5, 5.5) provided in Figure 6 (c) and (d), the distribution range of sy was confirmed to be higher 

than that of sx though their distributions overlap. Based on the distributions, it was confirmed that sy 

will be identified correctly as the cause of high assay SD. When both x and y were the cause of the 

high assay SD as is the case of (x, y) = (5, 3), it was considered difficult to predict the causes 

because both, x and y, have wide distribution in both sampling regimens as shown in Figure 6 (e) 

and (f). To summarize, the adequacy of the root cause analysis was confirmed to be comparable 

between the sampling regimens of 103 and 62. 
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Figure 6 Probability density distributions of sx and sy. (a) 103, (x, y) = (6, 0.5), (b) 62, (x, y) 

= (6, 0.5), (c) 103, (x, y) = (0.5, 5.5), (d) 62, (x, y) = (0.5, 5.5), (e) 103, (x, y) = (5, 3), (f) 

62, (x, y) = (5, 3) 

 

 

It was expected that once the process and the analytical validation of sampling method will have 

been accomplished (e.g., sampling bias was validated to be not  2%), it will be possible to select the 

appropriate sampling regimen and the acceptance criteria assuring the desired level of P3 within the 

range of y  2%. The uniformity of the powder blend, which affect a critical quality attribute of 

content uniformity, will be assured on a scientific basis through the applied sampling regimen and 

acceptance criteria, without fixing the sampling points and the number of samples from each sampling 

point in a blind way. 

In conclusion, Monte Carlo simulation enables to estimate the risks on blend and content uniformity 

for each sampling regimen and acceptance criteria. Therefore, by utilizing the Monte Carlo simulation, 

it is possible to provide the scientific rationale for the any sampling regimen and acceptance criteria. 
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Conclusions 

Monte Carlo simulation revealed that the novel sampling regimen and the acceptance criteria 

proposed by the BUCU Group in ASTM E2709 and ASTM E2810 can assure higher probability of 

passing the minimum necessary requirement for future samples compared to the conventional 

procedure based on the withdrawn FDA draft guidance for industry on Powder Blends and Finished 

Dosage Units — Stratified In-Process Dosage Unit Sampling and Assessment. In addition, the 

simulation had confirmed that both, the sampling regimen and the acceptance criteria affect the 

probability of the future samples that will satisfy the minimum necessary requirement. Therefore, it is 

possible to assure the same probability using other sampling regimens and acceptance criteria as the 

procedure proposed by the BUCU Group. Furthermore, by combining the VCA for the sample 

measurement results and the Monte Carlo simulation, the accuracy of sx and sy to the x and y in 

respective sampling regimens were successfully estimated. It was concluded that by utilizing the 

Monte Carlo simulation, it is possible to provide the scientific rationale for the any sampling regimen 

and acceptance criteria. 

  

Appendix 

Normality of the random number generated in the Monte Carlo simulation is tested by comparing 

observed and theoretical distribution of chi-squared value59. A sample value of chi-square in the 

sampling regimens of 101 is calculated as follows at the situation in which y is zero: 

2

2




Vdf
MC     (A1) 

Where 2
MC denotes a sample value of chi-square, V denotes unbiased sample variance, df denotes 

degree of freedom (df = 9 for 101), and 2 denotes population variance, which is equal to x2. 2
MC 

is calculated thirty thousand times to build the cumulative percentage distribution. Theoretically, the 

distribution of 2
MC should have a chi-squared distribution with 9 df if the samples generated in the 

Monte Carlo simulation are normally distributed. Since 2
MC is independent of x, 2.0% is applied to 

x in this test. As shown in Table A1, the difference between 2
MC and theoretical chi-squared value 

2 was not more than 0.5% at 1.0%, 2.5%, 50.0%, 97.5%, and 99.0% cumulative points, which suggest 

that the normality of random number generated in the Monte Carlo simulation is reliable. 

 

 

 

                                                   
59 Greenwood, P.E. and Nikulin, M.S., 1996. A guide to chi-squared testing. New York: Wiley & Sons, 

Inc.. 
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Table A1 Observed and theoretical values of chi-square 

 1.0% 2.5% 50.0% 97.5% 99.0% 

2
MC 2.088 2.700 8.343 19.02 21.67 

2 2.096 2.688 8.336 19.02 21.66 

% difference 0.382 0.446 0.084 0 0.046 
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Case study 3 - Selection of a round convex tablet shape 
that mitigates the risk of chipping and capping based on 
systematic evaluation by utilizing multivariate analysis 

 

 

Outline 

In case study 3, process optimization based on a process model is studied with focus on tablet shape. 

Unlike a blending process, a tableting process is typically a continuous process, therefore it is possible 

to perform various process conditions including DoEs with reasonable cost. Chemometric techniques, 

PLSR for example, is widely applied for industrial process modeling when plenty of data is available. 

This is because the accuracy and the applicable range of a chemometric model depend on the quality 

and quantity of the data set used for model development. Further, the PLSR model has an additional 

advantage as PLSR is one of the linear regression methods that can solve the multicollinearity problem 

by using latent variables, which are linear combinations of the original input parameters and are 

independent of each other. The optimization of tablet shape is one example of a multivariate problem 

that is not understood comprehensively, as the parameters determining the tablet shape, i.e., cup depth 

and surface radius, are mutually correlated to form a convex cup portion of a tablet. Because of the 

multicollinearity, similar tablet shape can be built with different combinations of tablet shape 

parameters, which makes the comprehensive understanding of the relationship between tablet shape 

and the physical robustness difficult. Herein the aim of this case study is to demonstrate the practical 

benefits of process modeling and optimization of a multicollinearity problem through the selection of 

a tablet shape having the desired physical robustness. 
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Abstract 

Selecting a tablet shape that minimizes the risk of chipping and capping during manufacture is 

important in pharmaceutical industry. Here, the selection was performed based on systematic 

evaluation for the first time. Abrasion and stress relaxation time were utilized as indices of the 

occurrences of chipping and capping, respectively. Partial least square regression models that used 

tablet shape parameters to estimate the tablet’s abrasion and stress relaxation time were utilized to 

develop response surface plots of the effect of the tablet shapes on the occurrence of chipping and 

capping systematically, and to identify an optimum tablet shape that is expected to have a low 

occurrence of chipping and capping. A verification study using commercial scale facilities proved that 

the optimum tablet shape had a lower occurrence of chipping and capping compared to suboptimum 

examples as speculated by their abrasion and stress relaxation time. The observed mathematical 

relationship between the tablet shapes and the occurrence of chipping and capping were consistent 

with the previous studies based on the comparison of limited number of tablet shapes using different 

formulations. Consequently, it is expected to be applicable to other formulations beyond the evaluated 

formulation in the present study. 

 

Keywords: Abrasion, Stress relaxation time, Partial least squares regression (PLSR) 

 

Introduction 

Tablets are a common pharmaceutical solid dosage form consisting of one or more active ingredients 

in combination with excipients. In general, tablets are manufactured by compression of a powder blend 

or granules, and a polymer coating is often applied to the tablets. The tablets are packed in blisters or 

bottles to be shipped to hospitals or community pharmacies. Physical defects of the tablets are one of 

the most common problems resulting from the compression process and the following processes of 

handling, coating, packaging, and shipping, since the physical defects will have a negative impact on 

critical quality attributes such as assay, content uniformity, and visual appearance. 

Figure 1 shows two common types of tablet physical defects. The physical defect provided in Figure 

1 (a), generally called chipping, is the loss of a small portion at the edges or the cup surface. Chipping 

is considered to be due to a low inter-granular binding force that apart from chipping also leads to low 

tablet hardness and high friability. Figure 1 (b) shows a partial or complete separation of the cup 

portion of the tablet, generally called capping. It was considered that the elastic recovery of a tablet 

after compression is one of the primary causes of the physical defects including capping, which is 

correlated with other reported root causes such as die-wall pressure during decompression, non-

uniform density and stress distribution in a tablet. Air entrapment at the compression has also been 

known as one of the other common root causes of capping, which can be solved by prolonging the 
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total compression time60 . Garr and Rubinstein (1991)61  reported that the occurrence of capping 

increased as the elastic energy stored at the end of compression, i.e., the residual die-wall pressure, 

which causes elastic recovery during decompression, became high. The non-uniformity of shear stress 

and density distributions in a tablet are caused by the elastic recovery, which was considered to be the 

root cause of chipping and capping during the tableting process and the following processes62, 63. The 

type of the physical defects derived from the tablets’ elastic recovery depends on the tablet shape62. 

Akseli (2013)63 reported that the elastic properties of a tablet measured after the compression also 

correlated with the capping tendency, whereas Garr and Rubinstein (1991)61 and Wu (2008)62 focused 

on the stress relaxation and elastic recovery during the compression process. 

 

Figure 1 Typical cracks in 8 mm diameter tablets. (a) Chipping. (b) Capping. 

 

 

Tablet shape is one of a number of factors affecting the mechanical strength of tablets, even among 

round tablet shapes. The round tablet is recognized as the most common tablet shape, usually 

consisting of a cylinder portion with a flat face or convex as shown in Figure 2. In most cases the 

curvature of the convex cup portion is composed of a single or double radius. Figure 3 shows the 

definitions of the parameters that constitute a single or double radius cup portion. R1, R2, cup depth 

                                                   
60 Tanino, T., Aoki, Y., Furuya, Y., Koji, S., Takeda, T., Mizuta, T., 1995. Occurrence of capping due to 

insufficient air escape during tablet compression and a method to prevent it. Chem. Pharm. Bull. 43, 1772–

1779. 

61 Garr, J.S.M. and Rubinstein, M.H., 1991. An investigation into capping of paracetamol at increasing 

speed of compression. Int. J. Pharm. 72, 117–122. 

62 Wu, C.Y., Hancock, B.C., Mills, A., Bentham, A.C., Best, S.M., Elliott, J.A., 2008. Numerical and 

experimental investigation of capping mechanisms during pharmaceutical tablet compaction. Powder 

Technol. 181, 121–129. 

63 Akseli, I., Ladyzhynsky, N., Katz, J., He, X., 2013. Development of predictive tools to assess capping 

tendency of tablet formulations. Powder Technol. 236, 139–148. 

(a) (b)
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(C), diameter (DIA), land, , and  define the cup portion. The value obtained by dividing C by DIA 

can be used to classify a convex tablet into categories such as a shallow convex (C/DIA = ca. 0.07), 

standard convex (C/DIA = ca. 0.10), deep convex (C/DIA = ca. 0.13), and extra deep convex (C/DIA 

= ca. 0.19). Chowhan et al. (1992)64 reported that the friability of extra deep convex tablets was lower 

than that of standard and deep convex tablets. Wu et al. (2008)62 reported that single radius standard 

convex tablets had a higher occurrence of capping compared to single radius shallow convex and flat-

faced cylindrical tablets, whereas the single radius shallow convex and flat-faced cylindrical tablets 

had a higher occurrence of chipping. The type of the physical defects correlated with the tilt angle of 

intensive shear stress band at the edge of cup portion during decompression estimated by X-ray 

tomography and finite element (FE) modeling in the same study. The tilt angle of the intensive shear 

stress band against compression direction was larger in the single radius standard convex tablet 

compared with the single radius shallow convex tablet and flat-faced cylindrical tablets. The larger tilt 

angle of the intensive shear stress band was considered to facilitate the separation of the cup portion 

in the single radius standard convex tablet. On the other hand, the low tilt angle of the intensive shear 

stress band against compression direction lead to the loss of a small portion at the edge of the cup 

portion in the single radius shallow convex tablet and flat-faced cylindrical tablets62. Laity et al. 

(2010)65 reported that flat-faced cylindrical tablets had a higher occurrence of chipping compared to 

that of the single radius extra deep convex tablets. The results by small-angle X-ray scattering (SAXS) 

measurement and FE modeling showed that the flat-faced cylindrical tablets had a low density part at 

the bottom corners but the single radius extra deep convex tablets appeared to present well compacted 

regions over most of their surfaces. Furukawa et al. (2015)66 reported that when comparing the single 

radius shallow convex tablet and the double radius deep convex tablets, the occurrences of capping 

were higher in the double radius deep convex tablets compared to the single radius shallow convex 

tablets due to the difference in plastic strain distribution during compression. These studies proved 

that the tablet shape affects the occurrence of chipping and capping. However, in these reference 

studies the mechanical strength of limited numbers of tablet shapes were evaluated by using different 

formulations. Due to the lack of a systematic evaluation of tablet mechanical strength versus shape to 

gain a comprehensive understanding of the chipping and capping behavior, by employing such a 

                                                   
64 Chowhan, Z.T., Amaro, A.A., Ong, J.T.H., 1992. Punch geometry and formulation consideration in 

reducing tablet friability and their effect on in vitro dissolution. J. Pharm. Sci. 81, 290–294. 

65 Laity, P.R., Han, L., Elliott, J., Cameron, R.E., 2010. Variation in compaction behaviour for tablets of 

different size and shape, revealed by small-angle x-ray scattering. J. Pharm. Sci. 99, 4380–4389. 

66 Furukawa, R., Chen, Y., Horiguchi, A., Takagaki, K., Nishi, J., Konishi, A., Shirakawa, Y., Sugimoto, 

M., Narisawa, S., 2015. Numerical evaluation of the capping tendency of microcrystalline cellulose tablets 

during a diametrical compression test. Int. J. Pharm. 493, 182–191. 
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systematic approach the proposal of a tablet shape that has a lower occurrence of both chipping and 

capping has not yet occurred. Thus, the approach to the selection of a round tablet shape by 

pharmaceutical companies has been generally performed for all compounds having different physical 

and chemical properties through trial-and-error procedures to minimize the chipping and capping. 

Herein, the aim of this study is to understand the effect of a round tablet shape on the mechanical 

strength systematically and to select a round tablet shape that has a lower occurrence of chipping and 

capping compared to other round tablet shapes based on this systematic understanding. 

A round convex tablet shape was the focus of the systematic evaluation in this study since it is the 

most common tablet shape in use today. Target values of DIA, tablet weight (W), and apparent tablet 

density (D) are usually fixed according to formulation and the desired quality attributes such as 

dissolution. Therefore, the effects of R1/DIA, R2/DIA, and C/DIA on the occurrence of chipping and 

capping at the target values of land, W, and D were evaluated. The ideal combinations of R1/DIA, 

R2/DIA, and C/DIA in terms of the mechanical strength of the tablet were identified based on this 

evaluation. Abrasion (A) and stress relaxation time (RT) were utilized as indices of physical defects, 

i.e., chipping and capping. Tablets that have few abrasions are expected to show a lower occurrence 

of chipping67. Tablets that have a short stress relaxation time are expected to show fewer occurrences 

of both chipping and capping61, 62. This is because the short stress relaxation time of a tablet implies 

that the tablet stores low elastic energy at the end of compression due to the immediate relaxation, 

which results in its low die-wall pressure and low elastic recovery during decompression compared 

with the other tablets having the same formulation. The low elastic recovery correlates with less 

variation of the shear stress in a tablet, which had been reported to be the root cause of chipping and 

capping62. 

 

 

 

 

 

 

 

 

 

 

 

                                                   
67 Osei-Yeboah F., Sun C.C., 2015. Validation and applications of an expedited tablet friability method. 

Int. J. Pharm. 484, 146–155. 
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Figure 2 Round tablet shapes. (a) Top view. (b) Side view of a flat-faced cylindrical tablet. (c) Side 

view of a convex tablet. 

 

 

Figure 3 Definitions of the parameters that constitute a single or double radius cup portion. (a) Single 

radius convex cup portion. (b) Double radius convex cup portion. 

 

 

Materials and Methods 

Tablets used in this study were immediate release tablets mainly composed of active ingredient and 

mannitol. Fluid bed granulation followed by screening was performed to prepare the granules. Then 

the granules were blended with magnesium stearate to be compacted. All tablets were proportionally 

similar, which means that the granule formulation was the same. In general, the round convex tablets 

manufactured by a rotary tableting machine had two equal convex portions at the top and bottom, and 

a cylinder portion in between. The parameters provided in Figure 3 are dependent upon each other to 

satisfy a smooth convex cup portion as shown in Equations 1 and 2. 

)sin(sin2)sin1(1   RRC     (1) 

)cos(cos2cos1
2

  RRLand
DIA

   (2) 

Where R1  R2,   , DIA/2  Land. Angles of  and  are determined dependently when R1, R2, C, 

DIA, and Land are determined. Per definition, in the case of a single radius convex tablet, R2 is equal 

DIA
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
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to R1 and  is equal to . The edge angle, which is the tangent angle at the edge of the cup portion, is 

the complementary angle of . The cylinder diameter is equal to DIA. 

Tablet height is correlated to W and D. In general, the length of land is determined to provide 

punches for compression with a sufficient pressure resistance. Therefore, usually it is constant with 

any combinations of R1, R2, C, and DIA. 

The use of normalized values of R1, R2, and C by DIA for defining the optimum tablet shape is 

considered reasonable, since the tablet shape defined by R1/DIA, R2/DIA, and C/DIA can summarize 

the optimum tablet shape in various DIA in a simple form. To evaluate the effects of R1/DIA, R2/DIA, 

and C/DIA on the abrasion and the stress relaxation time systematically, partial least squares regression 

(PLSR) models that use R1/DIA, R2/DIA, and C/DIA to estimate tablets’ abrasion and stress relaxation 

times were developed. PLSR is one of the linear regression methods that can solve the 

multicollinearity problem by using latent variables68, 69. The main advantage of the PLSR is that it can 

generate latent variables, which are independent from each other, and cope with mutually correlated 

input variables24, e.g., R1/DIA, R2/DIA, and C/DIA. W, D, and the three granule properties bulk 

specific volume (SVB), tapped specific volume (SVT), and mean volume diameter (MVD) were also 

used as input parameters in the PLSR models to take into account their effects on abrasion and stress 

relaxation time. The ideal combination of R1/DIA, R2/DIA, and C/DIA was determined based on the 

predicted abrasion and stress relaxation time of the various combinations that were practically 

available and within the confidence limits of the PLSR models. 

The identified optimum round tablet shape according to the PLSR models and the suboptimum 

examples, called a verification set in this study, were manufactured and handled in commercial scale 

facilities in order to mimic real conditions for verifying its mechanical strength. Abrasion and stress 

relaxation times were evaluated to confirm their consistency with the predicted values by the PLSR 

models. The number of defective tablets observed after the manufacture was evaluated and taken as 

an indicator for the mechanical strength of the evaluated samples. 

 

2.1. Calibration set and test set 

The distribution of calibration set and test set for the PLSR model development was shown in Figure 

4. Tabulated data of the calibration set and the test set were provided as supplementary information. 

R1, R2, C, DIA, and land were assumed equal to the dimensions of the punches and dies used. DIA 

and W were strongly correlated according to principle as provided in Figure 4 (d). D and W showed 

                                                   
68 Wold, H, 1974. Causal flows with latent variables: Partings of the ways in the light of NIPALS modelling. 

Eur. Econ. Rev. 5, 67–86. 

69 Geladi, P., Kowalski, B.R., 1986. Partial least squares regressions: a tutorial. Anal. Chim. Acta. 185, 1–

17. 
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moderate correlation in the data set as shown in Figure 4 (e). Land, defined in Figure 2 (c), of all 

punches used in this study is 0.1 mm. The calibration set contains 100 combinations using 40 different 

punches, various W, and D including a wide range of tablet shapes of single and double radius convex 

tablets that have been generally manufactured in the pharmaceutical industry. Thirteen different 

punches were used to prepare the test set containing thirteen combinations, which by principle was 

independent of the calibration set. Tableting of the calibration set and the test set were carried out 

using a rotary tableting machine VIRGO (Kikusui Seisakusho Ltd., Kyoto, JP) equipped with a gravity 

feeder. Turntable rotation speed was 30 rpm which corresponds to the dwell time of ca. 0.03 sec. The 

ratio of the pre-compression force to the main compression force was 30% in the calibration set and 

test set manufacture. Figure 5 shows four typical round tablet shapes that were included in the 

calibration set. Figures 5 (a) and (b) show single radius and double radius shallow convex tablets, 

respectively. Figures 5 (c) and (d) show single radius and double radius deep convex tablets, 

respectively. The four typical tablet shapes provided in Figure 5 are highlighted by dotted circles in 

Figures 4 (a), (b), and (c). 

 

Figure 4 Tablet shape distributions in calibration set and test set. (a) Three-dimensional distribution of 

R1/DIA, R2/DIA, and C/DIA. (b) R1/DIA - R2/DIA. (c) R1/DIA - C/DIA. 
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Figure 4 Tablet shape distributions in calibration set and test set (continued). (d) DIA - W.  

(e) D - W. 

 

 

Figure 5 Four typical tablet shapes. (a) Single radius shallow convex tablet. R1/DIA = 1.875, C/DIA = 

0.065. (b) Double radius shallow convex tablet. R1/DIA = 2.056, R2/DIA = 0.222, C/DIA = 0.072. (c) 

Single radius deep convex tablet. R1/DIA = 0.782, C/DIA = 0.172. (d) Double radius deep convex 

tablet. R1/DIA = 0.905, R2/DIA = 0.238, C/DIA = 0.147. 

 

 

2.2. Abrasion test 

An abrasion test was conducted to evaluate the tablets’ friability using the abrasion tester SZ-03 

(Rinkan Kogyo Co., Ltd., Kanagawa, JP) proposed by Webster and van Abbé (1955)70, shown in 

Figure 6. In this tester, 10 weighed tablets are loaded into the upper side of borosilicate glass cylinder 

equipped with a sieve at the center, and the cylinder moves upwards and downwards at 250 rpm for 2 

minutes. This analysis provides the friability of samples at a more severe frictional condition than the 

friability test provided in USP/EP/JP, which helped us to identify the most robust round tablet shape. 

Abrasion was calculated by Equation 3. 

                                                   
70 Webster, A.R. and van Abbé N.J., 1955. A test for the mechanical strength of compressed tablets. J. 

Pharm. Pharmacol. 7, 882–891. 
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)(100 
       (3) 

Where A denotes abrasion (%), WI denotes initial mean tablet weight, WF denotes mean tablet weight 

after abrasion. An average value of n=2 tests was reported in this study. 

 

Figure 6 Abrasion tester. (a) Appearance of the tester. (b) Cylinder geometry. (c) Geometry and 

schematic image of movement. 

 

 

2.3. Stress relaxation time measurement 

Stress relaxation time was measured using the texture analyzer TA-XT2i (Eko Instruments Co., Ltd., 

Tokyo, JP) working with a 5 kg load cell. The schematic image of stress relaxation time measurement 

was provided in Figure 7. Tablets were placed on a flat surface and their tops pressed from above at 

0.05 mm/s until the force reached to 9.81 N which is equal to 1 kg. At the position of 9.81 N force, the 

probe stopped at the 9.81 N force position and the decay of the force was recorded, i.e., the stress 

relaxation profile, for 10 seconds. Here the stress relaxation was assumed to obey the Maxwell model, 

consisting of a Hookean spring and a Newtonian dashpot in series71. Using the stress relaxation profile, 

the stress relaxation time was calculated by Equation 4. 

                                                   
71 Christensen, R.M., 1971. Theory of viscoelasticity. Academic Press, New York. 
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        (4) 

Where RT denotes stress relaxation time, t denotes delay time (10 s for this study), F0 denotes the force 

at the beginning (9.81 N), Ft denotes the force at 10 s. An average value of n=5 tests was reported in 

this study. 

 

Figure 7 Schematic image of stress relaxation time measurement 

 

 

2.4. Bulk and tapped specific volume measurement 

The bulk and tapped specific volume of lubricated granules were measured in duplicate according 

to the standards provided in Japanese Pharmacopoeia 17th edition, 3.01 Determination of bulk and 

tapped densities, Method 1: Measurement in a graduated cylinder. Tapping apparatus SZ-02 (Rinkan 

Kogyo Co., Ltd., Kanagawa, JP) was used for this analysis. 

 

2.5. Mean volume diameter measurement of the granules 

The mean volume diameter was measured according to the standards provided in Japanese 

Pharmacopoeia 17th edition, 3.04 Particle size determination, Method 2: Analytical sieving method. 

The measurement was performed by using Robot Sifter RPS-105 (Seishin Enterprise Co., Ltd., Tokyo, 

JP). Eight test sieves of 1000 m, 500 m, 355 m, 250 m, 180 m, 150 m, 106 m and 75 m 

openings and a sieve diameter of 75 mm are used. 

 

2.6. Tablet weight and apparent tablet density measurement 

The values of tablet weight and height of 20 tablets were measured using the automated tablet tester 

WHT 3ME (Pharma Test Apparatebau AG, Hainburg, GER) and mean values were calculated. 

Apparent tablet density was calculated by Equation 5. 

))2()2/(2/( 2 CHDIACVWD       (5) 

Where D denotes apparent tablet density (mg/mm3), W denotes tablet weight (mg), CV denotes cup 

volume of a tablet (mm3), DIA denotes tablet diameter (mm),  denotes circular constant, H denotes 

tablet height (mm), C denotes cup depth of a tablet (mm). 
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2.7. Partial Least Squares Regressions 

SVB, SVT, MVD, R1/DIA, R2/DIA, C/DIA, D, and W are the input variables in the PLSR models that 

predict abrasion and stress relaxation time. The input variables and output variables of abrasion as 

well as stress relaxation time were centered by subtracting mean values and scaled by dividing by the 

sample standard deviation, which is a so-called auto-scaling. Base-10 log transformation was applied 

to abrasion before the auto-scaling to correct for heteroscedasticity, and to convert distributions into 

more symmetric curves72. SIMCA 13.0.3 (Umetrics, Umeå, SWE) was used to build the PLSR models. 

The number of latent variables was determined on the basis of the root-mean-square error of cross 

validation (RMSECV) of the leave-one-out cross validation. External validation using the test set 

provided in Figure 4 and in supplementary information was performed to test the prediction accuracy 

of the PLSR models. 

 

2.8. Identification of optimum round tablet shape based on the PLSR models 

The optimum round tablet shape was defined as the combination of R1/DIA, R2/DIA, and C/DIA 

that showed least abrasion and the shortest stress relaxation time of all combinations. The coefficients 

of the R1/DIA, R2/DIA, and C/DIA were used to identify their contributions to the output parameters23. 

The optimum combination was identified based on the predicted abrasion and stress relaxation times 

of the tablet shapes that were well distributed within the reliable ranges of the PLSR models, defined 

as the prediction set. The reliability of the predicted abrasion and stress relaxation times by the PLSR 

models was assured by the Hotelling’s T2 calculated with Equation 6 and the sum of squared residuals 

Q calculated with Equation 7 (squared prediction error, SPE)23, 24, 73, 74. 
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72  van den Berg, R.A., Hoefsloot, H.C.J., Westerhuis, J.A., Smilde, A.K, van der Werf, M.J., 2006. 

Centering, scaling, and transformations: improving the biological information content of metabolomics data. 

BMC Genomics 7, 142. 

73 Jackson, J. E., Mudholkar, G. S., 1979. Control Procedures for Residuals Associated With Principal 

Component Analysis. Technometrics. 21, 3,341–349. 

74 Kamohara, H., Takinami, A., Takeda, M., Kano, M., Hasebe, S., Hashimoto, I., 2004. Product Quality 

Estimation and Operating Condition Monitoring for Industrial Ethylene Fractionator. J Chem. Eng. Japan. 

37, 3, 422–428. 
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Here, K is the number of adopted latent variables, it  is the score of the ith latent variable, 
2

it
s  is its 

variance, P is the number of input variables, and px  and 𝑥̂𝑝 are experimental and reconstructed 

values of the pth input variable. Muteki et al. (2011)23 reported that the two distance criteria, T2 and 

Q, could test the validity of the PLSR model under new input variables. In the present work, the 

abrasion and stress relaxation time values were predicted with the constraint of 99% confidence 

intervals for both T2 and Q. 

 

2.9. Verification of the mechanical strength of tablets against physical defects 

The tablets of the verification set were transferred using the material handling facility illustrated in 

Figure 8. The number of physically defected tablets was counted by visual inspection after the 

transferring in order to verify the assumption that the differences of abrasion and stress relaxation time 

caused by the differences in tablet shapes reflect the occurrences of physical defects. Tablets that had 

a physical defect bigger than ca. 1 mm2 were considered as the defected tablets. Note that the 

comparison of the number of physically defected tablets was performed between the samples that had 

the same tablet weight and were manufactured by using the same tableting machine. 

 

Figure 8 Material handling facility used in the verification study 

 

 

Results 

3.1. Relationship between tablet shape and the mechanical strength 

Three latent variables were adopted for the PLSR models predicting abrasion and stress relaxation 

time. Figure 9 and Table 1 show the prediction performances of the PLSR models such as correlation 

coefficients, slopes, intercepts, RMSECV, and external validation results expressed as the root-mean-
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square errors of prediction (RMSEPs). The prediction of abrasion of fragile tables exhibiting abrasion 

is > 2% is less accurate, possibly due to the relatively large analytical errors of the destructive testing 

of fragile tablets. Table 2 shows the coefficients of input variables of the two PLSR models. The 

absolute values of the coefficients of R2/DIA and C/DIA for abrasion were greater than that of R1/DIA, 

which suggests that the variations of R2/DIA and C/DIA have a greater influence on abrasion than that 

of R1/DIA. On the other hand, the absolute value of the coefficient of R1/DIA for stress relaxation time 

was greater than those of R2/DIA and C/DIA. 

 

Figure 9 Prediction performances of the PLSR models for (a) abrasion and (b) stress relaxation time. 

Solid and dotted lines are the regression line and the 95% upper and lower confidence intervals of 

prediction, respectively. Dashed line shows y = x. 

 

 

Table 1 Prediction performances of the PLSR models 

 

 

Table 2 Coefficients of input variables of the PLSR models 
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Parameters PLSR model for A PLSR model for RT

Correlation coefficient 0.880 0.942

Slope 0.913 0.886

Intercept 0.046 % 51.6 s

RMSECV 0.345 % 32.6 s

RMSEP 0.232 % 30.9 s

Input variable
Abrasion Stress relaxation time

Coefficients Coefficients

SVB 0.01951 -0.11259

SVT -0.00530 -0.08816

MVD -0.13389 -0.01048

R1/DIA 0.07435 0.19862

R2/DIA 0.31845 0.07791

C/DIA -0.35884 -0.06953

D -0.60307 0.60154

W -0.28901 0.25441
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Figures 10 (a) and (b) show the response surfaces of abrasion for six tablet shape groups of a 

prediction set differentiated by three levels of C/DIA (0.08, 0.12, and 0.16), and three levels of R2/DIA 

(0.2, 0.8, and 1.4). Figures 10 (c) and (d) show the response surfaces of stress relaxation times for the 

same tablet shape groups. For the prediction of abrasion and stress relaxation times, constant input 

variables of granule properties, apparent tablet density, and tablet weight were used to evaluate the 

effect of tablet shape parameters; SVB = 2.7 mL/g, SVT = 2.2 mL/g, MVD = 135 um, D = 1.28 mg/mm3, 

and W = 400 mg. It was assumed that the granule properties does not affect the magnitude relations of 

the abrasion and stress relaxation time among the tablet shapes, whereas the granule properties do 

affect the numerical values of the abrasion and stress relaxation time. Therefore, to maximize the 

predictable ranges of R1/DIA, R2/DIA, and C/DIA according to the T2 and Q, the granule properties 

applied were the average values of the calibration set. The values of D and W used were the target 

values in the verification study. Figure 10 clearly shows the practical effect of the variation in R1/DIA, 

R2/DIA, and C/DIA on abrasion and stress relaxation time within the applicable ranges according to 

the constraints of Equation 1, Equation 2, and the PLSR models. As expected by the coefficients of 

PLSR models, abrasion and stress relaxation times were reduced when R1/DIA and R2/DIA decreased 

and C/DIA increased. These results indicated that the single radius shallow convex tablet (e.g., Figure 

5 (a)) was the worst tablet shape in terms of the occurrence of chipping and capping compared to the 

other tablet shapes. The estimated best tablet shape was the double radius deep or extra deep convex 

tablet (e.g., Figure 5 (d)). The worst and the best tablet shapes in the prediction set are provided in 

Table 3. Samples P1 and P2 showed the lowest abrasion and stress relaxation time, respectively. 

Samples P3 and P4 showed the highest abrasion and stress relaxation time, respectively. As expected 

by the response surface plots, the tablet shapes that minimize and maximize the abrasion were similar 

to the tablet shapes that minimize and maximize stress relaxation time as well as their predicted 

abrasion and stress relaxation time. The differences of abrasion and stress relaxation time in the best 

(sample P1) and the worst (sample P3) tablet shapes were considered significant, since the differences 

were 1.144% and 126.4 s, respectively, which were more than four times greater than the RMSEPs 

(0.232% and 30.9 s). In summary, the PLSR models proved that both abrasion and stress relaxation 

times could be reduced significantly by optimizing the tablet shape. 
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Figure 10 Response surfaces of abrasion and stress relaxation time. (a) Response surfaces of abrasion 

with C/DIA = 0.08, 0.12, and 0.16. (b) Response surfaces of abrasion with R2/DIA = 0.2, 0.8, 1.4. (c) 

Response surfaces of stress relaxation time with C/DIA = 0.08, 0.12, and 0.16. (d) Response surfaces 

of stress relaxation time with R2/DIA = 0.2, 0.8, 1.4. 

 

 

Table 3 Best and worst tablet shapes in prediction set 

 

 

3.2. Verification results using material handling facilities at commercial scale 

The assumption that the differences of abrasion and stress relaxation time caused by differences in 

tablet shapes reflects the occurrence of physical defects was verified by using the four tablet shapes 

provided in Table 4, which is defined as the verification set. The verification set contained two DIA: 

8.5 mm for samples V1 and V2 and 10.5 mm for samples V3 and V4. Samples V1 and V2 were 

manufactured by using a rotary tablet press AQU3 10362L2J II (Kikusui Seisakusho Ltd., Kyoto, JP). 

Samples V3 and V4 were manufactured by using a rotary tablet press VIRGO (Kikusui Seisakusho 

Ltd., Kyoto, JP). Pre-compression force ratio of 30% to the main compression force was applied in 

(a) (b)

(c) (d)

No. R1/DIA R2/DIA C/DIA Apred RTpred

- - - % s

P1 0.838 0.200 0.164 0.230 476.0

P2 0.838 0.143 0.160 0.231 475.9

P3 2.400 1.400 0.052 1.374 602.4

P4 2.438 1.400 0.055 1.355 603.9
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the verification set manufacture. Turntable rotation speed was 30 rpm. The resultant dwell time in the 

AQU3 10362L2J II and VIRGO was 0.015 sec and 0.03 sec, respectively. The objective of the 

verification study using the two DIA tablets was to check that the optimal tablet shape defined by 

R1/DIA, R2/DIA, and C/DIA is effective in different DIAs when the granule properties, tablet weight, 

and tablet density are equivalent. Samples V1 and V3 were single radius and double radius deep 

convex tablets, respectively, that were located close to the optimal tablet shape of the prediction set. 

Sample V2 was a so called single radius standard convex tablet, which had a larger R1/DIA, R2/DIA, 

and smaller C/DIA than sample V1. Sample V4 was a double radius standard convex tablet, which had 

a larger R1/DIA and smaller R2/DIA and C/DIA than sample V3. 

 

Table 4 Verification set consisting of 4 samples 

 

 

The correlation between the measured and the predicted abrasion and stress relaxation times was 

similar, as shown in Table 4. However, the verification set was outside of the confidence limits of the 

PLSR models, mainly due to the granule properties derived from the different granulation condition, 

meaning that the calculated numerical values are not accurate for prediction. Note that the granule 

properties, apparent tablet density, and tablet weight used for the prediction were as follows; SVB = 

2.7 mL/g, SVT = 2.2 mL/g, MVD = 135 um, D = 1.28 mg/mm3, and W = 200 mg (V1 and V2) and 400 

mg (V3 and V4). Sample V2 showed an increased abrasion and stress relaxation time compared to 

sample V1. Abrasion of sample V4 was reduced compared to sample V3, but they were considered 

comparable since the difference was small and most likely within the range of the error of the analytical 

technique. On the other hand, the difference of stress relaxation time was significant between sample 

V3 and sample V4. In summary, it was confirmed that the verification set contained the tablet shapes 

closest to the optimum shape and suboptimum examples that had higher abrasion and/or stress 

relaxation times. 

Table 5 shows the results of the verification study. Sample V1 showed only 19 cracked tablets 

among the 200,000 tablets, whereas the sample V2 showed 811 cracked tablets at the same scale. The 

type of physical defects, i.e., chipping and capping, was not evaluated because in the practical 

manufacture both defects are not acceptable and in most cases it is difficult to distinguish between the 

two. For the comparison of sample V3 and sample V4, sample V3 showed 3 cracked tablets, whereas 

the sample V4 showed 10 cracked tablets among 7,500 tablets. The difference of the number of 

cracked tablets was smaller than that when comparing the samples V1 and V2. This could be because 

No. SVB SVT MPS DIA R1/DIA R2/DIA C/DIA D W A RT Apred RTpred
mL/g mL/g m mm - - - mg/mm3 mg % s % s

V1 2.79 2.26 174.1 8.5 0.824 0.824 0.160 1.270 200.3 0.4 285.4 0.486 441.1

V2 2.71 2.29 179.3 8.5 1.176 1.176 0.106 1.250 201.5 1.2 471.6 0.964 476.9

V3 2.53 2.13 149.8 10.5 0.952 0.467 0.143 1.274 401.0 0.4 324.3 0.320 490.8

V4 2.53 2.13 149.8 10.5 1.651 0.238 0.119 1.269 400.5 0.2 435.4 0.388 529.6
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the sample V4 showed sufficiently low abrasion compared to the sample V1, though the stress 

relaxation time was relatively long. In summary, it was proven that by selecting the appropriate tablet 

shape without changing formulation, including tablet weight, apparent tablet density, and the granule 

properties, it is possible to prevent tablets from cracking during manufacture. Abrasion and stress 

relaxation time were demonstrated as effective indicators for estimating the mechanical strength of 

tablets against physical defects in their manufacture. 

 

Table 5 Results of the verification study 

 

 

Discussion 

The overall relationship between the tablet shapes and the mechanical strength could be identified 

in this study. Comparing results with previous studies the consistency of this relationship can be 

confirmed. In detail, as mentioned earlier Chowhan et al. (1992)64 reported that the friability of extra 

deep convex tablets was lower than that of standard and deep convex tablets. Laity et al. (2010)65 

reported that flat-faced cylindrical tablets showed higher occurrences of chipping than single radius 

extra deep convex tablets. As provided in Figure 10, our analysis showed that instances of abrasion 

become fewer as R1/DIA and R2/DIA decrease and C/DIA increases, which leads to fewer occurrences 

of chipping. Since the flat-faced cylindrical tablets can be assumed to have an R1/DIA approaching 

infinity and a C/DIA approaching zero, these observations were consistent with the results of Chowhan 

and Laity. Furukawa et al. (2015)66 reported that double radius deep convex tablets (R1/DIA = 1.38, 

R2/DIA = 0.47, C/DIA = 0.13) showed a higher occurrence of capping compared to single radius 

shallow convex tablets (R/DIA = 1.50, C/DIA = 0.08) during a diametrical compression test. Abrasion 

of the single radius shallow convex tablet evaluated in Furukawa’s study was significantly higher than 

that of the double radius deep convex tablet, whereas the stress relaxation time of the single radius 

shallow convex tablet was equal to or greater than that of the double radius deep convex tablet 

according to the PLSR models, as shown in Table 6. The granule properties used in Furukawa’s study 

were assumed to be equal to the formulation used in this study for predicting the abrasion and the 

stress relaxation time, on the estimation of the difference in abrasion and stress relaxation time derived 

from the tablet shapes used in Furukawa’s study. It was considered that due to the high instance of 

abrasion of the single radius shallow convex tablet, the single radius shallow convex tablet showed a 

chipping tendency rather than a capping tendency, although the stress relaxation times of the single 

radius shallow convex tablets were similar to those of the double radius deep convex tablets. The 

No. Number of cracked tablets Number of sample tested % of cracked tablets

V1 19 200,000 0.010

V2 811 200,000 0.406

V3 3 7,500 0.040

V4 10 7,500 0.133
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double radius deep convex tablets showed a capping tendency in the hardness test rather than a 

chipping tendency because of the low instance of abrasion and relatively high stress relaxation time. 

At the same time, the tilt angle of the intensive shear stress band at the edge of the cup portion may be 

different reflecting the differences in tablet shape as reported by Wu et al. (2008)62. The difference of 

the tilt angle of the intensive shear stress band determined the type of the physical defects derived 

from the stored elastic energy during decompression. They reported that a single radius standard 

convex tablet has a higher occurrence of capping compared to single radius shallow convex and flat-

faced cylindrical tablets, whereas the single radius shallow convex and flat-faced cylindrical tablets 

have a higher occurrence of chipping. According to Figure 10, the single radius shallow convex and 

the flat-faced tablets were expected to have more increased abrasion and stress relaxation times than 

the single radius standard convex tablets. However, possibly due to the insufficient mechanical 

strength to withstand chipping rather than capping, which derived from the abrasion, the stress 

relaxation time, and the tile angle of the intensive shear stress band, the single radius shallow convex 

and flat-faced tablets showed chipping. These facts imply that the type of physical defects depend on 

the tablet shape, abrasion, and stress relaxation time. Though the thresholds of the tablet shape, 

abrasion, and stress relaxation time determining the type of the physical defects due to the friability 

and elastic properties were not evaluated in this study, it was confirmed in this study (as well as in the 

reference studies) that chipping and capping can be reduced by modifying tablet shapes. In summary, 

the results obtained in the present study using the formulation mainly composed of active ingredient 

and mannitol were consistent with the reference studies performed using each of the different 

formulations. The formulations used in the reference studies were as follows. Chowhan (1992)64 used 

a formulation composed of active ingredient, microcrystalline cellulose, lactose, starch, citric acid, 

povidone, methylcellulose, stearic acid, and magnesium stearate. Laity (2010)65 and Furukawa 

(2015)66 used a formulation composed of microcrystalline cellulose. Wu (2008)62 used a formulation 

composed of lactose. Therefore, the observed effects of the tablet shapes on the occurrences of 

chipping and capping are considered reasonable, and will be applicable to not only the evaluated 

formulation in the present study, but to other formulations as well. To the best of the author’s 

knowledge, the response surface plots of the effect of tablet shapes defined by R1/DIA, R2/DIA, and 

C/DIA on the occurrence of chipping and capping were developed for the first time. The verification 

study and the comparison with the previous studies suggested that the response surface plots are 

applicable to the selection of a single and double radius convex tablet shape, which has high 

mechanical strength, in various formulations containing several active ingredients and excipients 

having different physical and chemical properties. 
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Table 6 Predicted abrading and stress relaxation time of the tablet shapes used in Furukawa’s report 

 

 

As a matter of fact, the maximum allowable compression force of punches decreases as edge angle 

increases, which takes place when R1/DIA and R2/DIA decrease and C/DIA increases. The potential 

risk of tablet weight non-uniformity is also increased when C/DIA increases. The required fill depth 

in a tableting process to achieve the target weight increased when the C/DIA increased. Usually, the 

potential risk of incomplete die filling will increase as the required fill depth increases, which leads to 

tablet weight non-uniformity. Nevertheless, this identified relationship between the tablet shape and 

the mechanical strength is beneficial to the pharmaceutical industry, since this information could 

support the appropriate selection of a tablet shape for any given formulation, providing a lower risk of 

physical defects in tablets. Understanding the systematic relationship between tablet shapes and their 

mechanical strength against physical defects on the basis of abrasion and stress relaxation time can 

save significant resources, API, and reduce the formulation and process development time. It is 

expected that further root cause analysis of the chipping and capping employing not only the 

microscopic analysis based on SAXS and FE modeling, but also macroscopic analysis, such as the 

simulation of mechanical stress during material handling in manufacturing using a discrete element 

method, could serve to validate the observations in this study. 

 

Conclusions 

PLSR models successfully revealed the systematic relationship between tablet shape and the 

mechanical strength of tablets, i.e., abrasion and stress relaxation time. The PLSR models indicated 

that tablet abrasion and stress relaxation time significantly changed by varying R1/DIA, R2/DIA, and 

C/DIA. A verification study using commercial scale facilities proved that the optimum tablet shape of 

double radius deep or extra deep convex tablets have a lower occurrence of physical defects compared 

to the suboptimum examples as speculated by their abrasion and stress relaxation times. The observed 

effects of tablet shapes on the occurrences of chipping and capping were consistent with a general 

understanding according to previous studies based on microscopic analysis, such as SAXS, FE 

modeling, etc. Consequently, the identified optimum tablet shape was considered reasonable, and the 

response surface plots of the effect of tablet shapes defined by R1/DIA, R2/DIA, and C/DIA on the 

occurrence of chipping and capping will be applicable to other formulations beyond the successfully 

evaluated formulation in this study. 

Shape DIA R1 R2 C D W R1/DIA R2/DIA C/DIA Apred RTpred

- mm mm mm mm mg/mm3 mg - - - % s

Double radius convex 8.0 11 3.75 1.02 1.30 200 1.38 0.47 0.13 0.5 494.7

Single radius convex 8.0 12 12 0.65 1.30 200 1.50 1.50 0.08 1.2 528.1
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Case study 4 - Setting the process parameters for the 
coating process in order to assure tablet appearance 
based on multivariate analysis of prior data 

 

 

Outline 

In case study 4, process modeling and optimization based on the PLSR model are studied in a batch 

coating process. As the coating process is a typical batch process and the final process in tablet 

manufacture, preparing a sufficient number of experimental results for DoE or for PLSR modeling is 

unrealistic. As the coating process is a thermodynamic process where the spray drying of coating 

suspension at the surface of tablet cores occurs, a traditional semi-empirical thermodynamic model is 

available to predict the moisture content and exhaust air temperature as the indicators of the process 

and the resultant tablet quality. However, to obtain a high prediction accuracy by the semi-empirical 

thermodynamic model a couple of preliminary experiments are needed anyway. On the other hand, if 

the coating equipment has been used previously in the manufacture of other products, the existing data 

set might be able to be used to develop a product-independent process model if the multicollinearity 

problem in the existing data were avoided. Therefore, the PLSR modeling of a coating process is 

demonstrated to show the prediction accuracy compared to the conventional semi-empirical 

thermodynamic model. The optimization of the coating process to improve the tablet appearance was 

performed as an example of practical application of the PLSR model in process development. 
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Abstract 

Designing efficient, robust process parameters in drug product manufacturing is important to assure 

a drug’s critical quality attributes. In this research, an efficient, novel procedure for a coating process 

parameter setting was developed, which establishes a prediction model for setting suitable input 

process parameters by utilizing prior manufacturing knowledge for partial least squares regression 

(PLSR). In the proposed procedure, target values or ranges of the output parameters are first 

determined, including tablet moisture content, spray mist condition, and mechanical stress on tablets. 

Following the preparation of predictive models relating input process parameters to corresponding 

output parameters, optimal input process parameters are determined using these models so that the 

output parameters hold within the target ranges. In predicting the exhaust air temperature output 

parameter, which reflects the tablets’ moisture content, PLSR was employed based on prior measured 

data (such as batch records of other products rather than design of experiments), leading to minimal 

new experiments. The PLSR model was revealed to be more accurate at predicting the exhaust air 

temperature than a conventional semi-empirical thermodynamic model. A commercial scale 

verification demonstrated that the proposed process parameter setting procedure enabled assurance of 

the quality of tablet appearance without any trial-and-error experiments. 

 

Keywords: Tablet film coating, Process parameter optimization, Scale-up, Multivariate analysis, 

Partial least squares regression (PLSR) 

 

Introduction 

The utilization of a tablet film coating process is recognized as one of the common unit operations 

in the pharmaceutical industry. In general, the film coating on pharmaceutical solid dosage forms aims 

at providing distinguishability, functionality, and elegance8, 75. Suitable process conditions that assure 

a desired product quality often depend on manufacturing scale, equipment used, and formulation, and 

thus process parameter settings have generally been researched at each scale in most current equipment 

and drug product formulations. Considering the concept of quality by design (QbD), a systematic 

approach defined in ICH Q8 should be applied for determining manufacturing process parameter 

settings to assure the desired product quality3. An enhanced approach for determining the functional 

relationships between process parameters and critical quality attributes (CQAs), such as tablet 

functionality and appearance, has been developed to realize more robust processes and higher 

assurances of the CQAs6, 8. Teckoe et al. (2013)7 developed a design space through design of 

                                                   
75  Knop, K., Kleinebudde, P., 2013. PAT-tools for process control in pharmaceutical film coating 

applications. Int. J. Pharm. 457, 527–536. 
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experiments (DoE) to visualize acceptable ranges of process parameters that can assure two CQAs, 

i.e., tablet appearance and disintegration time, within an acceptable process time. DoE is a typical 

approach for developing a reliable process model with minimal and well-organized experiments. As 

resources are limited and as the coating process is typically the final process of a tablet’s manufacturing, 

it has been considered practically difficult to conduct many commercial scale experimental studies, 

even with the benefit of sophisticated DoEs to reduce the amount of experimentation and its impact 

on pharmaceutical companies. A significant workload reduction could be attained if prior knowledge 

(such as existing product batch records) is fully utilized for product-independent process modeling 

and optimization. The product-independent process models for assuring the CQA of tablet appearance 

require standardized product-independent output parameters. Macroscopic and microscopic moisture 

content, spray mist condition, and mechanical stress on tablets are the typical product-independent 

output parameters that affect tablet appearance25, and the desired appearance can be attained by setting 

these four output parameters within their respective optimal ranges76. 

Regarding macroscopic and microscopic moisture content, exhaust air temperature TEA and local 

moisture MLM, defined as the maximum amount of water received in a single rotation, have been 

reported as macroscopic and microscopic indices, respectively, to derive desirable process parameters 

with less trial-and-error experiments13, 76, 77. Few models for the mist condition have been reported, 

i.e., size and distribution of mist droplets in the spray area, because this mist condition can be easily 

evaluated through an actual experiment without coating. Mechanical stress, which is the last parameter 

in the four output parameters affecting coating appearance, is difficult to measure directly; therefore, 

some computational simulation models for predicting the mechanical stress on tablets have been 

developed based on a discrete element method78, 79. However, from a viewpoint of practicality, it 

would not always be suitable for predicting the optimal coating parameter because of the huge 

workload involved in generating the simulation and the difficulty in validating the predicted 

mechanical stress on tablets. In this report, hence we focused on optimizing the former two parameters 

of macroscopic and microscopic moisture content by using prediction models, and the latter two of 

                                                   
76 Pandey, P., Turton, R., Joshi, N., Hammerman, E., Ergun, J., 2006. Scale-up of a Pan-Coating Process. 

AAPS Pharm. Sci. Tech. 7, Article 102. 

77 Prpich, A., am Ende, M. T., Katzschner, T., Lubczyk, V., Weyhers, H., Bernhard, G., 2010. Drug product 

modeling predictions for scale-up of tablet film coating—A quality by design approach. Comput. Chem. 

Eng. 34, 1092–1097. 

78 Hancock, B. C., Mojica, N., St.John-Green, K., Elliott, J. A., Bharadwaj, R., 2010. An investigation into 

the kinetic (sliding) friction of some tablets and capsules. Int. J. Pharm. 384, 39–45. 

79 Kodam, M., Curtis, J., Hancock, B., Wassgren, C., 2012. Discrete element method modeling of bi-

convex pharmaceutical tablets: Contact detection algorithms and validation. Chem. Eng. Sci. 69, 587–601. 
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mist condition and mechanical stress were determined based on the results of previous experience. 

There is a traditional chemical engineering calculation used to justify the relationship between 

moisture content and temperature, however, the conventional model for predicting exhaust air 

temperature TEA exhibits a challenge in its prediction accuracy. TEA has been predicted by semi-

empirical thermodynamic models12, 13, 77. In such semi-empirical thermodynamic models, the intrinsic 

heat loss for a given coater, which is required to predict TEA, is determined based on a set of 

experimental data. However, it is difficult to identify the representative tablet surface temperature, 

which is needed to estimate the intrinsic heat loss based on the mass heat balance. Although exhaust 

air temperature is utilized as tablet surface temperature in some thermodynamic models, it is not 

identical to the tablet surface temperature within common coating equipment equipped with a non-

circulation type drying system. This is due to a very short contact time between the inlet air and tablets. 

Since this deviation in the intrinsic heat loss leads to deteriorating prediction accuracy in the semi-

empirical thermodynamic model, there is a need for building a precise prediction model for the exhaust 

air temperature. 

Based on the above background, the issue that should be solved in setting these process parameters 

is to develop a more precise model that predicts the exhaust air temperature without a DoE study, 

leading to a reduced workload compared with sophisticated systematic experiments. In this work, a 

practical process parameter setting based on prior knowledge is performed at a commercial scale. In 

the proposed process parameter setting method, the output parameters of exhaust air temperature as 

an index of macroscopic moisture content, local moisture as an index of microscopic moisture content, 

mist condition, and mechanical stress on tablets were taken into account to assure the CQA of tablet 

appearance. As part of the proposed process parameter setting, a novel exhaust air temperature 

prediction model based upon multivariate analysis was developed and its prediction accuracy was 

compared with the conventional thermodynamic model. Since the prediction accuracy might 

deteriorate due to multicollinearity of process parameters when various manufacturing results are used 

instead of DoE results, partial least squares regression (PLSR) is used to construct the exhaust air 

temperature prediction model. PLSR is one of the linear regression methods that can solve the 

multicollinearity problem by using latent variables14, 15. Among the other output parameters, the local 

moisture MLM was calculated through a physical formula. No models were developed to predict the 

mist condition and mechanical stress on tablets in this work. 

 

Materials and Methods 

2.1. Materials 

Eleven formulations (formulation A to K) were used in this study. All of these formulations were 

immediate release tablets with various shapes. The tablet coater used in this work was the AQUA 

COATER AQC-17AF from Freund corporation, which is a typical drum coating apparatus. Both 
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input and output manufacturing data in the formulations A to J were derived from the corresponding 

batch records obtained over the past several years from the target coating machine. 

 

2.2. Exhaust air temperature prediction 

2.2.1. Conventional mass heat balance model 

In the steady state of an aqueous coating process, the following mass heat balance equation applies: 

   (1) 

where Q is the difference in heat quantity between inlet and exhaust air, QE is latent heat of 

vaporization of water in the coating suspension, QH is sensible heat used to warm the water in the 

coating suspension to the tablet surface temperature, and QL is intrinsic heat loss of the coating 

equipment. In constant-pressure drying, the change of heat quantity is equal to the enthalpy change (Q 

= H) since changes in potential energy are negligible. On the basis of the mass heat balance equation 

(1), a semi-empirical thermodynamic model for predicting the exhaust air temperature was developed 

by am Ende and Berchielli (2005)13. In this model, tablet surface temperature is assumed equal to the 

exhaust air temperature, and the latent heat of water vaporization is fixed at 540 cal/g regardless of the 

tablet surface temperature. The intrinsic heat loss QL is calculated by equation (2), and it is described 

with the product of heat loss factor fHL and difference in the temperature between exhaust air TEA and 

operating room TR
12, 13, 80. 

  (2) 

where fHL is defined as intrinsic heat efficiency that depends on the mechanical characteristics of the 

coating equipment, such as surface area; fHL is not affected by manufacturing conditions. When the 

semi-empirical thermodynamic model was used in this study as the reference, the fHL for a given coater 

was determined based on a set of experimental data provided in Table 1 as performed by Prpich 

(2010)77. The fHL was varied as a fitting parameter to minimize the residual sum of squares (RSS) 

between the measured and the predicted exhaust air temperatures. The calculated fHL which minimized 

the RSS was used to predict the exhaust air temperature for the given coater based on the Q, QE, and 

QH at the given process parameters. Q, QE, and QH are calculated through: 

  (3) 

    (4) 

                                                   
80  Dewettinck, K., Visscher, A. D., Deroo, L., Huyghebaert, A., 1999. Modeling the steady-state 

thermodynamic operation point of top-spray fluidized bed processing. J. Food Eng. 39, 131–143. 
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  (5) 

and the exhaust air temperature TEA is calculated by substituting equations (2), (3), (4), and (5) into 

equation (1). 

  (6) 

   (7) 

where CP,A denotes specific heat of air (0.238 cal/g C), CP,W denotes specific heat of water (1 cal/g 

C), Hv,w denotes latent heat of water vaporization (540 cal/g), Mw denotes spray rate of water (g/min), 

TEA denotes exhaust air temperature (C), and TIA denotes inlet air temperature (C). In this study, 

coating suspension temperature TC (C) was defined as being identical to room temperature TR (C) 

because the coating suspension was stored overnight in an air-conditioned operating room. Inlet air 

volume MIA (g/min) was calculated from inlet air volume FIA (m3/min). 

   (8) 

)R(273.15

PM

IAT
   (9) 

where  (g/m3) is air density in the coating pan at ambient pressure when the air follows ideal gas law, 

P denotes pressure of atmosphere (1.01325105 Pa), M denotes mean molecular weight of ideal gas 

(28.8 g/mol), R denotes gas constant (8.31451 Pa m3/mol K), and TIA (C) denotes inlet air temperature. 

 

2.2.2. Partial least squares regression (PLSR) 

The PLSR model was developed using the calibration set shown in Table 1. The process parameters 

that potentially affect the exhaust air temperature were used as input variables of the PLSR model to 

predict the exhaust air temperature. The employed eight input variables were inlet air temperature TIA 

(C), dew point temperature TD (C), room temperature TR (C), absolute humidity of inlet air HIA (g 

water/kg DA), inlet air volume FIA (m3/min), spray rate of water MW (g/min), drum rotational speed 

D (rpm), and charge amount WT (kg). The following preprocessing was applied in this study: 
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where ix  and 
P

ix  are the ith experimental value and its preprocessed value, and N is the number of 
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samples in the calibration set. SIMCA® (Umetrics) was used to build the PLSR model. The number 

of latent variables was determined on the basis of the root-mean-square error of cross validation 

(RMSECV) of the leave-one-out cross validation. 
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Table 1 Calibration set consisting of 50 samples 

 

 

2.2.3. Comparison of thermodynamic model and PLSR model 

The prediction accuracies of the semi-empirical thermodynamic and the PLSR models were 

compared by calculating the root-mean-square error of prediction (RMSEP) in external validation 

using the test set provided in Table 2. The test set is independent of the batches in the calibration set, 

according to principle, with a different formulation (formulation K) or the same formulations 

No.
Formu-

lation
TD HIA TR TIA FIA D MW WT TEA

C g water/kg DA °C C m3/min rpm g/min kg C

1 A 20.9 9.488 22.8 70 40 2.0 268.7 162.92 48.6

2 A 20.8 9.252 22.8 70 40 3.0 275.9 162.92 48.9

3 A 21.0 9.360 22.8 70 40 6.0 386.6 162.92 45.1

4 A 24.9 7.797 22.6 70 40 6.0 384.8 187.52 44.4

5 A 26.2 4.686 22.0 70 40 6.0 384.4 190.14 44.7

6 A 25.0 6.457 22.5 70 40 2.0 275.3 191.49 47.5

7 A 25.3 6.802 22.5 70 40 3.0 275.8 191.49 47.4

8 B 25.3 4.925 22.5 70 40 3.0 320.3 186.12 46.4

9 B 24.5 6.054 22.5 70 40 2.0 329.5 190.26 45.3

10 B 25.5 6.404 22.5 70 40 6.0 384.3 190.26 44.3

11 B 26.6 9.331 22.0 70 40 2.0 321.1 191.95 46.4

12 C 23.9 10.403 22.1 72 50 4.0 437.2 332.24 47.4

13 C 24.1 10.741 22.1 72 50 7.0 492.6 332.24 46.7

14 C 23.5 10.381 22.2 75 50 3.0 325.3 306.30 51.7

15 C 24.2 11.022 22.2 72 50 5.0 489.4 306.30 46.6

16 C 24.0 10.680 22.2 72 50 7.0 491.8 306.30 47.0

17 D 23.3 10.264 22.8 72 50 4.0 424.7 337.37 48.0

18 D 23.7 10.500 22.8 72 50 7.0 492.9 337.37 46.8

19 D 23.5 10.593 22.2 73 50 4.0 438.2 299.15 48.5

20 D 23.7 10.714 22.2 73 50 8.0 492.4 299.15 47.4

21 D 26.1 3.374 22.1 75 50 3.0 341.6 340.87 50.1

22 D 26.0 3.354 22.1 72 50 4.0 401.6 340.87 48.5

23 D 26.4 3.650 22.1 72 50 7.0 452.6 340.87 47.6

24 E 23.0 10.296 22.0 70 50 2.5 434.5 325.23 45.5

25 E 23.3 10.473 22.0 70 50 4.0 434.1 325.23 46.6

26 E 23.8 10.560 22.0 68 50 2.0 439.9 307.65 44.0

27 E 23.8 10.560 22.0 70 50 5.0 492.9 307.65 44.5

28 E 25.8 8.352 22.4 78 50 2.5 440.7 343.21 50.1

29 E 25.8 8.564 22.4 80 50 4.0 439.9 343.21 53.3

30 E 24.0 9.016 22.4 85 60 2.5 331.4 326.32 61.7

31 E 24.1 9.071 22.4 85 60 4.0 331.1 326.32 63.9

32 E 23.7 9.228 22.6 80 60 2.5 322.9 339.06 56.4

33 E 23.9 9.151 22.6 80 60 4.0 330.5 339.06 58.6

34 E 24.6 9.350 22.3 80 55 2.5 329.4 341.34 55.6

35 E 24.6 9.152 22.3 80 55 4.0 330.9 341.34 57.5

36 E 24.4 9.237 22.2 80 50 2.5 330.2 341.74 54.1

37 E 24.4 9.237 22.2 80 50 4.0 329.6 341.74 55.8

38 F 24.2 9.512 22.1 63 50 4.0 417.0 497.63 41.9

39 F 23.1 7.995 22.6 63 50 4.0 410.2 497.47 42.0

40 G 24.1 9.071 22.1 63 50 5.0 415.9 482.38 42.5

41 G 24.0 2.790 22.4 63 50 5.0 414.7 482.98 42.4

42 G 23.9 3.330 22.4 63 50 5.0 414.2 482.98 42.1

43 H 25.4 2.830 22.7 70 50 6.0 486.9 385.23 44.8

44 H 25.3 9.381 22.6 70 50 3.0 436.2 347.66 45.8

45 H 23.9 5.202 22.6 70 50 4.0 435.9 360.29 46.0

46 I 23.1 9.526 22.7 70 50 4.0 437.3 370.17 45.8

47 I 25.9 8.489 23.0 70 50 3.0 434.9 375.39 46.2

48 I 25.1 8.349 23.0 70 50 6.0 488.4 375.39 44.9

49 J 23.8 10.775 22.2 73 50 3.0 429.9 307.35 48.4

50 J 23.7 10.714 22.2 72 50 2.0 494.9 307.35 46.2
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(formulations A to J) but different manufacturing batches. 

 

Table 2 Test set consisting of 22 samples 

 

 

2.3. Coating process parameter optimization  

2.3.1. Proposed process parameter setting procedure 

The proposed process parameter setting procedure aims to assure the desired appearance by 

corresponding output parameters being within the optimal range. This procedure was applied to 

formulation K, which is not included in the calibration set. As a first step, a cause and effect diagram 

of a typical non-functional film coating process was developed to summarize the relationship among 

the CQAs of tablet appearance, process time, output parameters, and input process parameters. As a 

second step, the target values of the input process parameters were set by optimization calculation 

based on the product-independent process models that predict exhaust air temperature, local moisture, 

and process time, whose details will be described in the next section. In the optimization calculation, 

the acceptable range of the process parameters potentially affecting the mist condition and the 

mechanical stress on tablets based on the cause and effect diagram were set as one of the constraints, 

keeping the output parameters within the appropriate range. Finally, an actual coating experiment was 

conducted with the specified process parameters at a commercial scale to verify the level of refinement 

evidenced by the process parameter setting procedure. 

 

2.3.2 Models and constraints 

As described in section 2.3.1, three models that predict exhaust air temperature, local moisture, and 

No.
Formu-

lation
TD HIA TR TIA FIA D MW WT TEA

C g water/kg DA °C C m3/min rpm g/min kg C

1 A 23.8 5.819 22.6 70 40 2.0 275.6 187.52 47.3

2 B 25.4 6.604 22.5 70 40 3.0 327.6 190.26 45.9

3 B 25.8 9.407 22.0 70 40 6.0 374.1 191.95 44.8

4 C 23.5 8.931 22.3 72 50 7.0 487.7 338.98 46.4

5 E 25.6 7.418 22.5 79 50 2.5 437.4 339.10 50.6

6 E 25.8 7.718 22.5 80 50 4.0 438.0 339.10 53.3

7 E 23.5 9.301 22.0 80 50 2.5 329.4 337.09 52.1

8 E 23.8 9.284 22.0 80 50 4.0 328.7 337.09 53.7

9 E 24.5 9.293 22.0 80 50 2.5 329.1 337.56 54.2

10 E 24.7 9.207 22.0 80 50 4.0 330.8 337.56 55.8

11 F 24.5 9.293 22.4 63 50 4.0 416.9 497.85 42.1

12 F 22.9 8.254 22.0 63 50 4.0 409.3 497.45 42.3

13 G 24.5 2.875 22.4 63 50 5.0 418.9 482.96 42.0

14 H 25.7 2.638 22.7 70 50 3.0 441.7 385.23 45.7

15 H 25.6 10.733 22.6 70 50 4.0 437.3 347.66 46.0

16 H 24.3 5.764 22.6 70 50 6.0 489.6 360.29 44.7

17 I 23.4 9.480 22.7 70 50 3.0 435.5 370.17 45.7

18 I 23.3 9.636 22.7 70 50 6.0 487.3 370.17 44.7

19 I 25.7 8.635 23.0 70 50 4.0 436.7 375.39 46.3

20 K 23.4 10.323 22.4 73 50 2.0 398.6 286.22 49.4

21 K 23.5 10.381 22.4 73 50 3.0 398.7 286.22 49.9

22 K 23.7 10.500 22.4 73 50 6.0 465.7 286.22 48.4
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process time were used in the proposed method. The exhaust air temperature was predicted by the 

PLSR model. To avoid extrapolation and consequently prevent unexpected errors in the prediction by 

the PLSR model, Kamohara et al. (2004)74 proposed a PLSR-based framework, in which a PLSR 

model was integrated with an online monitoring system based on the concept of multivariate statistical 

process control (MSPC). MSPC has been widely used as practical technique for fault detection; 

Hotelling’s T2 and the sum of squared residuals Q (squared prediction error, SPE) have been used as 

monitored indices based on principal component analysis (PCA) 24, 73. 

   (11) 

  (12) 

Here, K is the number of adopted principal components, 𝑡𝑖 is the score of the ith principal component, 

𝑠𝑡𝑖
2  is its variance, P is the number of input variables, and 𝑥𝑝  and 𝑥̂𝑝  are experimental and 

reconstructed values of the pth input variable. Muteki et al. (2011)23 reported that the two distance 

criteria, T2 and Q, could test the validity of the PLSR model under new input variables. In the present 

work, therefore, process parameter optimization was conducted with the constraint of 99% confidence 

intervals for both T2 and Q. 
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A model which calculates the local moisture MLM, defined as the maximum amount of water received 

in a single rotation, is provided as follows: 
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where MW denotes spray rate of water (g/min), LSA is distance that the spray tracks in the direction of 

the tablet flow (m), VT is tablet velocity (m/min), and SSA is spray area (m2). 

Process time was selected as an additional constraint, since it is necessary to keep the manufacturing 

efficiency at a certain level in commercial manufacturing. It is calculated from the amount of coating 

suspension WS and the spray rate of suspension MS: 
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The necessary amount of coating suspension in one batch coating depends on the charged uncoated 

tablet amount, and loss of the suspension during processing. The loss of the suspension sprayed was 

assumed to be constant in the optimization. 

The input process parameters were optimized based on the three models that predict exhaust air 

temperature, local moisture, and process time, by the generalized reduced gradient (GRG) method, 

which is one of the nonlinear programming methods50. The GRG method derives the approximated 

gradient of an objective function by moving each decision variable, i.e., process parameter. In this 

study, the combined index of T2 and Q was selected as the objective function to be minimized to 

validate the predicted exhaust air temperature based on the PLSR model81, 82, 83. Based on the derived 

gradient, a better solution is searched iteratively until a local optimal solution is found within the 

predetermined constraints. Local optimal solutions are obtained by evaluating 100 randomly selected 

initial points of decision variables to find a global optimal solution. 

In the optimization, reducing process time and consequently increasing efficiency was also 

considered. The manufacturing condition was designed to have three coating steps, in which drum 

rotation speed was increased step-by-step. In summary, the objective function F(x) to be minimized 

was defined as the combined index of T2 and Q in three coating steps: 
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where  denotes a weighing factor between 0 and 1. Because of the complimentary nature of T2 and 

Q,  was fixed to 0.5 to have the same weight in this study83. 

 

Results and Discussion 

3.1. Comparison of semi-empirical thermodynamic model and PLSR model 

Six latent variables were adopted into the PLSR model that predict exhaust air temperature on the 

basis of RMSECV. Figure 1 shows the external validation results; the RMSEP of the PLSR model was 

0.80C while that of the semi-empirical thermodynamic model was 1.76C. It was confirmed that the 

PLSR model was more accurate than the semi-empirical thermodynamic model. 

 

                                                   
81 Raich, A., Ҫinar, A., 1996. Statistical Process Monitoring and Disturbance Diagnosis in Multivariable 

Continuous Processes. AIChE J., 42, 995–1009. 

82 Kano, M., Fujiwara, K., 2013. Virtual Sensing Technology in Process Industries: Trends and Challenges 

Revealed by Recent Industrial Applications. J. Chem. Eng. Japan., 46, 1–17. 

83 Qin, S.J., 2012. Survey on data-driven industrial process monitoring and diagnosis. Annu. Rev. Control 

36, 220–234. 
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Figure 1 External validation results of (a) semi-empirical thermodynamic model and (b) PLSR model. 

The prediction performance was evaluated on the basis of root-mean-square error of prediction 

(RMSEP) and correlation coefficient (r) between measured and predicted values of exhaust air 

temperature TEA. 

 

 

The reason for the lower prediction accuracy of the semi-empirical thermodynamic model can be 

explained as follows. In the semi-empirical thermodynamic model, the heat loss factor fHL should be 

constant regardless of the operating condition13, 77. As shown in Figure 2, however, the individual fHL 

were positively correlated to the TEA. The individual fHL were determined with equation (7) based on 

each of the experimental data provided in Table 1 and Table 2. The dependence of the exhaust air 

temperature on the difference in temperature between the tablet surface and the exhaust air was 

considered as the cause of this positive correlation. In general, tablet surface temperature is lower than 

the exhaust air temperature because of the evaporative cooling at the tablet surface. The difference in 

temperature between the tablet surface and the exhaust air is larger when the evaporation rate at the 

tablet surface is higher, which is typically the case with higher tablet moisture content. Therefore, 

Figure 2 (a) implies that the difference in temperature between the tablet surface and the exhaust air 

is larger in the lower exhaust air temperature, where the latent heat QH is overestimated by the semi-

empirical thermodynamic model according to equation (5). Considering this correlation, the semi-

empirical thermodynamic model, which assumes the tablet surface temperature is equal to the exhaust 

air temperature, can predict the exhaust air temperature precisely only when the difference in 

temperature between the tablet surface and the exhaust air of the batch to be predicted is just equal to 

the batch used to determine the fHL of a given coater. In addition, the semi-empirical thermodynamic 

model does not take account of charge amount and drum rotational speed, both of which will affect 

intrinsic heat loss QL. It has been reported that the drying efficiency depends on the charged uncoated 

tablet amount and the bulk density in coating equipment84. As shown in Figure 2 (b), the individual 

                                                   
84  Himmelblau, D. M., 1982. Basic principles and calculations in chemical engineering 4th edition. 

Prentice-Hall, Inc., Englewood Cliffs, N. J.. 
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fHL were negatively correlated to D, which implies that the drying efficiency is higher when the drum 

rotational speed is higher. Though the charged uncoated tablet amount was expected to correlate with 

the individual fHL, there is no clear correlation that can be observed in the experimental data provided 

in Table 1 and Table 2. This might be explained by the fact that the effect of the charged uncoated 

tablet amount on the individual fHL was smaller than that of the other factors such as TEA and D. The 

above information indicates that in order to improve the prediction accuracy in the semi-empirical 

thermodynamic model, the fHL needs to be calculated based on the set of experimental data, accounting 

not only for the difference in temperature between the tablet surface and the exhaust air, but also the 

drum rotational speed, and the charged uncoated tablet amount and should be similar to the expected 

condition, since the semi-empirical thermodynamic model does not consider the effects of these 

variations. If the prediction accuracy of the semi-empirical thermodynamic model shall be improved, 

multiple experiments in actual commercial scales will have to be conducted to confirm its accuracy. 

 

Figure 2 (a) Relationship between TEA and fHL in the calibration set and the test set (n=72). (b) 

Relationship between D and fHL in the calibration set and the test set (n=72). 

 

 

Previous batch records including other drug products’ manufacturing should be used effectively to 

improve prediction accuracy of the exhaust air temperature. The PLSR can easily derive a more 

accurate model to predict TEA by taking into account the input variables which are not considered in 

the semi-empirical thermodynamic model without additional experiments, if sufficient data are 

available. Table 3 shows the coefficients of each input variable of the PLSR model. The order of 

magnitude of the coefficients and the positive/negative effects of each input variable were matched to 

the empirical knowledge derived from the manufacturing data. Therefore, the PLSR model can test 

the robustness of the derived optimal coating process parameters for confirming the exhaust air 

temperature, if some of the process parameters have a certain range of variation. It was concluded that 

the PLSR model is more appropriate for the proposed process parameter optimization. The developed 

PLSR model is provided in equation (18). 
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where 
ys  and 

x

ls  denote the preprocessing factors of the exhaust air temperature and the lth input 

variables of the PLSR model summarized in Table 3, which are calculated from the calibration set 

according to equation 10, lc  denotes the coefficient of the lth input variable as provided in Table 3, 

lx denotes the input variables of the PLSR models before preprocessing. 

 

Table 3 Coefficients and preprocessing factors of PLSR model 

 

 

3.2. Coating process parameter optimization 

3.2.1. Typical issue in the conventional process parameter setting procedure 

Prior to applying the proposed parameter setting method, a conventional parameter setting was 

applied to compare the quality of tablet appearance. In the conventional process parameter setting, the 

equivalent process parameters used in the comparable drug products based on the experts’ experiences 

were applied. Figure 3 shows the tablets having poor appearance, which were found upon visual 

inspection of a batch manufactured based on the conventional process parameter setting procedure. 

Cracks and color variation were not observed, but blistering, i.e., filling of deboss, was found in most 

of the tablets. In general, blistering is caused by entrapment of gas in or under the film due to 

overheating during spraying. In addition, a small number of twinning tablets were also observed. Since 

this poor tablet appearance is unacceptable, this process parameter setting procedure requires further 

trial-and-error experiments to achieve a good quality of tablet appearance. 

Input variable Coefficients Preprocessing factor

Inlet air temperature TIA 0.6488 24.29479

Dew point temperature TD 0.0480 8.679321

Room temperature TR 0.0567 22.38176

Absolute humidity of inlet air HIA 0.0119 72.34584

Inlet air volume FIA 0.5556 49.10193

Spray rate of water MW -0.2634 4.378356

Drum rotational speed D 0.0265 404.0727

Charge amount WT -0.0887 327.8024

Exhaust air temperature TEA - 48.49255
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Figure 3 Appearance of film coated tablets: (a) appearance of the deboss in the conventional process 

parameter setting procedure (b) twinning observed in the conventional process parameter setting 

procedure (c) appearance of deboss in the proposed process parameter setting procedure 

 

 

3.2.2. Proposed process parameter setting 

Risk assessment of a typical non-functional coating process was conducted to set the process 

parameters systematically. Table 4 shows the cause and effect diagram of a typical non-functional film 

coating process, which summarizes the relationship among the CQA of tablet appearance, process time, 

output parameters, and process parameters. Elements 1, i.e., the CQA of tablet appearance and process 

time, are the quality to be assured or a constraint of the process. Elements 2, i.e., the critical material 

attributes (CMAs) to assure the CQA of tablet appearance, are controlled properly; namely, it is 

necessary to make uniform films to prevent defects related to films such as blistering, bridging, or 

twinning, and to prevent physical defects of tablets such as cracks and abrasion. Elements 3 to assure 

the above CMAs, i.e., output parameters, vary depending on the variation of the input process 

parameters. Thus, Elements 1 can be finally assured by adopting the optimal combination of process 

parameters, i.e., the optimal coating conditions, so that all of Elements 3 (and Elements 2) will be kept 

within the optimal range. 

(a) (b) (c)
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Table 4 Cause and effect diagram of a typical non-functional film coating process 

 

 

The optimal range of the exhaust air temperature and local moisture in formulation K were 

determined on the basis of the results of the eighteen batches of formulations A and B, because the 

formulations A, B, and K were manufactured using the same coating suspension. The exhaust air 

temperature TEA that resulted in a good quality of tablet appearance of formulations A and B was 

determined as ranging from 44.2C to 48.3C. The TEA in formulations A and B was designed to be 

gradually lowered in three steps from the initial spraying to the endpoint by changing process 

parameters to achieve a good quality of tablet appearance and shorten process time. Therefore, the 

target values of TEA in the first, second, and third step were determined as 47.5C, 47.0C, and 45.5C, 

respectively, to satisfy the acceptable range of TEA, which was identified in the manufacture of 

formulations A and B, taking the maximum prediction error of 0.8C in validation into account. The 

local moisture MLM, calculated by equation (15), of the batches of formulations A and B with a good 

quality of tablet appearance was not more than 11 g/m2 (data not shown). Typically, the risks of 

sticking and/or picking are increased when the MLM is higher, since the cohesive and adhesive forces 

between tablet-tablet interfaces are higher when the moisture content is higher. The target range of 

MLM, which was determined to be not more than 11 g/m2, was judged as suitable to prevent such a 

failure in appearance. The acceptable range of the process time, the final output parameter represented 

by equation (16), was set to be not more than 280 min based on the previous manufacturing 

experiences. 

Elements 1 Elements 2 Elements 3 (output parameters) Related process parameters

Tablet appearance (CQA) Uniformity of films Mist condition Spray rate of water

Spray air pressure

Gun setting

Gun species

Water concentration in coating suspension

Species of solid component in coating suspension

Local moisture Spray rate of water

Drum rotational speed

Charge amount

Gun setting

Gun species

Elegance of the tablet surface Mist condition Spray rate of water

Spray air pressure

Gun setting

Gun species

Water concentration in coating suspension

Species of solid component in coating suspension

Exhaust air temperature Inlet air temperature

Dew point temperature

Room temperature

Absolute humidity of inlet air

Inlet air volume

Spray rate of water

Drum rotational speed

Charge amount

Mechanical stress on tablets Drum rotational speed

Charge amount

Process time Spray rate of water

Spray air pressure

Gun setting

Amount of coating suspension sprayed
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To assure the remaining other two output parameters, i.e., mist condition and mechanical stress on 

tablets, acceptable ranges of the related process parameters were set based on experiments or previous 

manufacturing experience. Those relationships between the (input) process and output parameters are 

summarized as a part of Table 5. Regarding the mist condition, the upper limit for the spray rate at 

constant spray air pressure was determined through an actual experiment without coating, since the 

coating suspension, gun species, and gun setting in the manufacture of formulation K is the same as 

that in the formulations A and B. It was confirmed that the upper limit of MW should be 494.9 g/min, 

which is the highest value in the calibration set, to keep the mist conditions such as size and distribution 

of mist droplets in the spray area acceptable. With respect to the mechanical stress on tablets, drum 

rotational speed and charged amount were judged to be factors which affect the mechanical stress on 

tablets. Since the robustness of the formulation K tablet core was comparable to formulations A and 

B, these process parameters were determined to be the same as formulations A and B. 

 

Table 5 Relationships between process parameters and elements 3 (output parameters) 

 

 

In addition to the above target values and the acceptable ranges, some limits were set as constraints 

for optimizing the process parameters also provided in Table 5. To predict the potentially affecting 

environmental factors (weather, season, etc.) of the representative exhaust air temperature, the mean 

values of the dew point temperature, the room temperature, and the absolute humidity of inlet air in 

the calibration set were utilized in the optimization because they vary within a small range according 

to the weather and season. To keep a stable operation, the inlet air volume was set as constant at the 

three steps. The evaluation ranges of the process parameters to be optimized by the GRG method, i.e., 

inlet air temperature, inlet air volume, and spray rate of water, were set to be equal to those in the 

calibration set to optimize them efficiently. To summarize, inlet air temperature, inlet air volume, and 

spray rate of water were optimized by calculation to satisfy both the target values of the output 

parameters and the constraints as described in Table 6. 

Process parameters

Output parameters

Exhaust air temp. Local moisture Mist condition
Mechanical stress 

on tablets
Process time

Inlet air temp. Y - - - -

Dew point temp. Y - - - -

Room temp. Y - - - -

Absolute humidity of inlet air Y - - - -

Inlet air volume Y - - - -

Spray rate of water Y Y Y - Y

Drum rotational speed Y Y - Y -

Charge amount Y Y - Y -

Spray air pressure - - Y - Y

Gun setting - Y Y - Y

Gun species - Y Y - -

Water concentration in coating suspension - - Y - -

Species of solid component in coating suspension - - Y - -

Amount of coating suspension sprayed - - - - Y

Y: The process parameter affects the output parameter

-: The process parameter doesn’t affect the output parameter
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Table 6 Summary of process parameters optimization 

 

 

The process parameters determined by the proposed procedure are provided in Table 7. To verify 

the robustness of the derived optimal coating process parameters, the influence of the normal variation 

in the process parameters on the exhaust air temperature was investigated. Among the process 

parameters, WT was expected to have a variation of within 280 kg to 300 kg due to the yields of the 

previous processes. When the normal variation ranges of TD, TR, and HIA were assumed as the ranges 

of Table 1 and Table 2, the probability that the values of TD, TR, and HIA lie outside of the interval 

SD2MV  did not exceed 0.5 according to the Chebyshev’s inequality85. Herein, by considering the 

ranges of TD, TR, and HIA as the possible variable ranges, the lowest and the highest exhaust air 

temperature within the possible variable ranges were predicted. Table 8 shows the predicted lowest 

and highest exhaust air temperatures in each coating step based on the PLSR model. Note that 1-H in 

Table 8 means the highest TEA, pred and 1-L meant the lowest TEA, pred within the evaluated ranges of 

WT, TD, TR, and HIA in spray step 1. The Q of 1-H (TEA, pred = 48.1C) exceeded the 99% confidence 

interval, which means that the predicted exhaust air temperature might be inaccurate. Therefore instead 

of the 1-H, one additional process condition (1-H’) was evaluated in which HIA was decreased to 

satisfy the 99% confidence interval of T2 and Q. This was because HIA showed the lowest impact on 

exhaust air temperature according to Table 3 and therefore the TEA, pred at the 1-H’ is close to the TEA, 

pred of 1-H. The exhaust air temperature was confirmed to be within the acceptable range of 44.2C to 

48.3C when the WT, TD, TR, and HIA changed within the ranges. Note that the other process parameters 

                                                   
85 Abramowitz, M., Stegun, I. A., 1972. . Handbook of Mathematical Functions: with Formulas, Graphs, 

and Mathematical Tables. New York: Dover. 

Process parameters 1st step 2nd step 3rd step

TIA (C) X X X

TD (C) 24.3 24.3 24.3

TR (°C) 22.4 22.4 22.4

HIA (g water/kg DA) 8.329 8.329 8.329

FIA (m3/min) X X X

MW (g/min) X X X

D (rpm) 2 3 6

WT (kg) 290 290 290

Constraints and targets 1st step 2nd step 3rd step

TEA (C) 47.5 47.0 45.5

MLM (g/m2) Not more than 11

Process time (min) Not more than 280

TIA (C) Between 63 to 85

MW (g/min) Between 268.7 to 494.9

FIA (m3/min) Between 40 to 60, constant during step 1 to step 3

Hotelling’s T2 Not more than 21.67

Q (SPE) Not more than 0.0119

(x) Minimize, calculated according to equation (17)

X: Calculated to satisfy constraints
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were expected to remain constant. The results indicate that the exhaust air temperature at the optimized 

coating process parameters is expected to be sufficiently robust against expected process parameters’ 

variations. 

 

Table 7 Comparison of coating process parameters of formulation K 

 

 

Table 8 Robustness of optimized coating process parameters 

 

 

Figure 3 (c) shows the appearances of coated tablets manufactured at the specified process 

parameters based on the proposed procedure. Total inspection proved that there was no bridging or 

twinning. TEA was ranged from 44.8C to 47.2C; it was within the preset acceptable range of 44.2C 

to 48.3C. These results demonstrated that the proposed process parameter setting method can assure 

the desired quality of tablet appearance by controlling the output parameters systematically. 

 

Conclusions 

In the present work, a novel efficient process parameter setting procedure was successfully 

performed to assure the quality of tablet appearance in the film coating process, and an efficient 

process parameter setting of a particular formulation was realized without trial-and-error experiments 

and DoE. In the proposed process parameter setting procedure, the target values or ranges of output 

parameters, including the exhaust air temperature, the local moisture content of tablets, the mist 

Coating conditions Conventional method Proposed method Calibration set

Coating steps 1 2 3 1 2 3 max min

TIA (C) 73 73 73 67 70.5 71.5 85 63

TD (C) 23.4 23.5 23.7 24.3 24.3 24.3 26.6 20.8

TR (°C) 22.4 22.4 22.4 22.4 22.4 22.4 23 22

HIA (g water/kg DA) 10.323 10.381 10.500 8.329 8.329 8.329 11.022 2.790

FIA (m3/min) 50 50 50 48 48 48 60 40

MW (g/min) 398.6 398.7 465.7 328.1 401.0 492.2 494.9 268.7

D (rpm) 2 3 6 2 3 6 8 2

WT (kg) 286.22 286.22 286.22 290 290 290 497.63 162.92

TEA, pred (C) 49.1 49.4 48.2 47.5 47.0 45.5 63.9 41.9

Hotelling's T2 3.264 1.322 4.131 3.806 1.256 4.044 21.671) -

Q (SPE) 0.5369 0.4472 0.2441 0.0048 0.0004 0.0001 0.01191) -

MLM (g/m2) 14 11 9 11 11 10 - -

Process time (min) 269 in total 278 in total - -

1: 99% confidence interval

Coating steps TD (C) TR (C) HIA (g water/ kg DA) WT (kg) TEA, pred (C) Hotelling's T2 Q (SPE)

1-H 26.0 22.8 11.682 280 48.1 9.197 0.01341)

1-H’ 26.0 22.8 10.405 280 48.0 6.952 0.0119

1-L 22.6 22.0 4.927 300 47.0 6.366 0.0062

2-H 26.0 22.8 11.682 280 47.6 3.973 0.0014

2-L 22.6 22.0 4.927 300 46.5 6.516 0.0053

3-H 26.0 22.8 11.682 280 46.0 6.253 0.0002

3-L 22.6 22.0 4.927 300 44.9 9.809 0.0061

1: Exceeded to the 99% confidence interval (0.0119)
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condition, and the mechanical stress on tablets, were derived, and then appropriate process parameters 

predicted by the models were identified by using the PLSR model for exhaust air temperature and the 

formulae for local moisture. The PLSR model to predict exhaust air temperature was developed by 

using existing batch records, and it achieved a higher prediction accuracy than the conventional semi-

empirical thermodynamic model. In the commercial-scale experiment, the output parameters were 

successfully controlled within the appropriate ranges in the acceptable process time by setting 

appropriate target values of process parameters through the proposed process parameter setting 

procedure based on the cause and effect diagram. The results have demonstrated that the proposed 

process parameter setting procedure can contribute to the efficient scale-up of a tablet film coating 

process. As a matter of fact, the proposed process parameter setting procedure based on a PLSR model 

cannot be applied to coating equipment other than the one used for model establishment and the 

predictable range of the process conditions depends on the data used for the model development. 

However, the proposed approach is applicable and efficient because it does not require any preliminary 

experiments such as DoE when sufficient manufacturing batch records are available. Therefore, it can 

be concluded that the required workload and the cost for process parameter setting will be significantly 

decreased by applying the proposed approach. The whole approach demonstrated in this work is 

expected to stimulate PLSR based process development and optimization of a wide range of unit 

operations, including coating procedures with functional coatings, fluid bed granulation, and spray 

drying. 
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Overall discussion 

The approaches demonstrated in this thesis facilitate understanding of the process performance over 

a range of material attributes and process parameters with reasonable cost and will contribute to 

increase the assurance level of the drug product quality with a scientific rationale based on process 

modeling and the utilization for process control beyond the processes performed in the case studies. 

The advantages and limitations of the demonstrated process modeling approaches in the four case 

studies are discussed in the following section. 

The computer-aided process modeling utilizing DEM coupled with statistical analysis as shown in 

case studies 1 and 2 was demonstrated to contribute in developing a process model cost-effectively. 

Even though up-scaling of particle size and/or down-scaling of geometry of equipment were needed 

when simulating systems such as > 1 kg due to the current computational capacity, a quantitative 

prediction of the output parameters was successfully demonstrated by taking the effect of those 

changes on the process outputs into account. With process simulation resources required in process 

development can be reduced by reducing the number of experiments needed for both setting the design 

space and NOR, which in turn accelerates process development. Process modeling by DEM is 

applicable to any process where particulate matter (particles, granules, or tablets) is involved in 

manufacturing processes such as transport, storage, blending, granulation, tableting, and coating43. 

However, most of the preliminary DEM based process modeling approaches were limited to capture 

qualitative trends 86 , 87 , 88  or quantitative analysis of large particles (> 1 mm in diameter) in 

experiments89, 90 due to the inherent computational intensity. Nevertheless, quantitative prediction of 

the homogeneity will be possible by taking the scale effect based on the comparison of several DEM 

simulations at different geometry reduction levels and different particle size expansion levels into 

account and coupling with statistical analysis as demonstrated in case studies 1 and 2. The quantitative 

                                                   
86  Boerner, M., Bueck, A., Tsotsas, E., 2017. DEM-CFD investigation of particle residence time 

distribution in top-spray fluidized bed granulation. Chem. Eng. Sci. 161, 187–197. 

87 Nakamura, H., Fujii, H., Watano, S., 2013. Scale-up of high shear mixer-granulator based on discrete 

element analysis. Powder Technol. 236, 149–156. 

88  Hildebrandt, C., Gopireddy, S.R., Scherlie R., Urbanetz, N.A., 2018. Simulation of particle size 

segregation in a pharmaceutical tablet press lab-scale gravity feeder. Adv. Powder Technol. 29, 765–780. 

89 Fries, L., Antonyuk, S., Heinrich, S., Palzer, S., 2011. DEM-CFD modeling of a fluidized bed spray 

granulator. Chem. Eng. Sci. 66, 2340–2355. 

90 Ramirez-Aragon, C., Alba-Elias, F., Gonzalez-Marcos, A., Ordieres-Mere, J., 2018. Segregation in the 

tank of a rotary tablet press machine using experimental and discrete element methods. Powder Technol. 

328, 452–469. 
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in-silico simulation can provide clear correlations between input and output parameters, which are not 

biased by sampling errors and accidental fluctuations of the process that are the common disturbances 

in experiments. Those reliable in-silico experimental data at different process conditions will 

guarantee a better understanding and control of the process based upon accurate responses of the 

output parameters at given input parameters. 

Further on, in case study 1 it was seen that there is a limitation of the level of particle size expansion 

and geometry reduction to conduct quantitative prediction at a reasonable computational time. As the 

number of particles in a system decreases by enlarging particle size and shrinking the geometry 

compared to reality, the effect of single particle performance increases, and above a certain level, the 

outputs of the DEM simulation do not any more reflect reality. In case study 1 a quantitative prediction 

of the blend uniformity was impossible when the active component whose homogeneity is to be tested 

exhibits large particle size distribution for example ranging from < 75 m to > 500 m in diameter. 

Even when considering approximately 350,000 particles at the active to placebo granule ratio of 15:85, 

there are only 15 particles corresponding to the original active granule particle size fraction of > 500 

m. In that case due to the huge contribution of single large-sized particle the probability density 

distribution of the blend uniformity calculated by DEM was not symmetric unimodal. As the 

symmetricity is the precondition of quantitative prediction based on the mean and RSD of the 

probability density distribution of blend uniformity, quantitative prediction of blend uniformity was 

not applicable. This issue can be resolved by changing the level of particle size expansion and 

geometry reduction more close to reality. However, it may diminish the benefit of in-silico simulation 

as it will require a long computational time. It should be noted that the simulation at the largest particle 

number run containing ca. 350,000 particles in case study 1 took more than 2 months to simulate 2 

minutes blending. Long simulation time might be practically unacceptable considering the process 

development timeframe and hence experiments might be given preference over the simulation even 

when considering the cost benefit. In addition, since the existence of fluid/gas is neglected in case 

study 1, precise prediction of the homogeneity in a strict sense is still no possible with DEM alone, 

but would need a coupled approach of DEM and Computational Fluid Dynamics (CFD), which is a 

numerical method solving mass, momentum, and energy of fluids. This applies even more for 

processes where particles are significantly affected by the presence of a fluid/gas such as pneumatic 

conveying and die filling with suction pressure during tableting. Further, other critical output 

parameters in a particulate system such as hardness and porosity of the materials manufactured through 

compression of particles, e.g., dry granulation, tableting, and encapsulation, and particle size 

distribution after size reduction process, e.g., screening and milling, are out of evaluation scope in this 

thesis. It is expected to be captured by DEM simulation quantitatively in the next step. 

The reliability and applicability of a process modeling approach based on alternative statistical 

analysis, i.e., PLSR, to a process where multicollinearity is involved was successfully demonstrated 
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in case studies 3 and 4. Optimizing tablet shape with respect to the tablets’ physical resistance in the 

subsequent material handling is a typical multivariate problem as discussed in case study 3. A 

comprehensive visualization of the effect of tablet shape parameters on the physical robustness of the 

tablet and the tablet shape optimization based on the process model, which was impossible to address 

by DoE based approach, was demonstrated for the first time. As the response surface of the tablet 

shape parameters on the tablets’ physical robustness were in good agreement with the verification 

study performed in case study 3 and previous studies where only very limited number of table shapes 

were compared, accuracy of the process model was shown. As demonstrated in case study 3 the 

advantage of the PLSR based process modeling is that it can provide a robust process model including 

a huge variety of input parameters and wide ranges of each input parameter even when 

multicollinearity is involved. While the resources required to prepare experimental data to build such 

a model was considered to be a common drawback of both DoE and PLSR based approaches, a 

solution to this drawback in PLSR modeling was demonstrated in case study 4. In case study 4 the 

optimization of the process conditions to control the exhaust air temperature was shown. The coating 

process is a typical batch process where multicollinearity is involved, therefore usually the 

experimental data performed at a commercial scale are required for PLSR modeling. To reduce the 

workload significantly the existing product batch records of other drug products were fully utilized for 

product-independent process modeling and optimization. Through the verification study, it was 

confirmed that the product-independent PLSR model was more accurate than the conventional semi-

empirical thermodynamic model. An optimization of the process conditions to improve tablet 

appearance was successfully demonstrated with a minimal number of experiments. 

However, the limitation in PLSR based process modeling when it comes to nonlinear relationships 

became apparent in this thesis. In case study 3 the abrasion was confirmed to be nonlinearly related to 

the tablet shapes and/or properties; the abrasion increased exponentially as the tablet becomes fragile. 

Though the negative effect of nonlinearity on prediction accuracy was reduced by base-10 log 

transformation in case study 3, that kind of transformation might be not always effective in increasing 

the prediction accuracy. Treating nonlinear PLSR as an extension of conventional PLSR has been 

proposed recently91, however, its practicability and reliability have not been demonstrated yet and it 

is not implemented in commercial software. Further research is required to develop a statistical process 

modeling approach that can cope with both multicollinearity and nonlinearity and to utilize it for 

process development and control specifically for setting a design space and NOR to assure robust 

commercial manufacture. 

                                                   
91 Rosipal, R., Yamanishi, Y., 2011. “Nonlinear partial least squares: An overview” in Chemoinformatics 

and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative 

Techniques, IGI Global, pp. 169–189. 
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Outlook 

To further facilitate a reliable and cost-effective process modeling in pharmaceutical dosage form 

development, quantitative prediction based on combined numerical approaches and an extended DEM 

technique as discussed below are considered as a next step as it can be applicable to a broader range 

of processes. CFD is a numerical method where the components are assumed to be a continuum and 

mass, momentum, and energy balances are solved numerically. CFD-DEM coupling is considered to 

be an appropriate solution to simulate processes where fluids and particulate matter is involved at the 

same time like fluid bed granulation/drying and pneumatic transportation86, 89 where for example 

airflow affects the movement of discrete particles. The Finite Element Method (FEM), which is a 

different numerical approach where components are treated as a continuous material and the materials’ 

elastic or elasto-plastic deformations are solved numerically, is suitable to describe a compression of 

densely packed particles such as in roller compaction and tableting processes92, 93, 94. Recently a 

research on DEM-FEM coupling to develop a dynamic process model in the roller compaction process 

has been reported where particles fed by the screw feeding are compressed to form ribbons95. There is 

another approach towards the elasto-plastic deformation by calculating an adhesive contact model 

based on DEM96, 97. In case study 1 only elastic collision is considered, however, by incorporating the 

plastic deformation based on the proposed theory, a compaction process and a size reduction process 

such as in roller compaction and subsequent screening can be numerically addressed. Although those 

numerical methods have a potential to contribute to process modeling, these approaches are limited to 

qualitative analysis or quantitative analysis of a laboratory scale process currently, due to the immense 

computational time required to simulate large-scale processes and the difficulties in verifying the 

                                                   
92 Cunningham, J.C., Winstead, D., Zavaliangos, A., 2010. Understanding variation in roller compaction 

through finite element-based process modeling. Comput. Chem. Eng. 34, 1058–1071. 

93 Diarra, H., Mazel, V., Boillon, A., Rehault, L., Busignies, V., Bureau, S., Tchoreloff, P., 2012. Finite 

element method (FEM) modeling of the powder compaction of cosmetic products: comparison between 

simulated and experimental results. Powder Technol. 224, 233–240. 

94 Korok, A., Peciar, M., Fekete, R., 2014. Numerical investigation into the influence of the punch shape 

on the mechanical behavior of pharmaceutical powders during compaction. Particuology, 116–131. 

95 Mazor, A., Orefice, L., Michrafy, A., de Ryck, A., Khinast, J.G., 2017. A combined DEM & FEM 

approach for modelling roll compaction process. Powder Technol. Article in Press. 

96 Thornton, C., Ning, A, 1998. A theoretical mode1 for the stick/bounce behaviour of adhesive, elastic-

plastic spheres. Powder Technol. 99, 154–162. 

97 Pasha, M., Dogbe, S., Hare, C., Hassanpour, A., Ghadiri, M., 2014. A linear model of elasto-plastic and 

adhesive contact deformation. Granular Matter 16, 151–162. 
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simulation outputs. However, once the quantitative process modeling based on the numerical 

approaches can be developed with feasible computational time, a better process understanding which 

leads to a higher quality assurance level and process robustness against uncontrollable variations such 

as raw material properties, seasonal effect, etc., will be gained for the processes beyond the blending 

process demonstrated in this thesis at reasonable cost. Such process modeling innovation will help 

protecting the environment by reducing the energies and resources required for the QbD approach. 

On the other hand, even if the computer-aided process simulation is successfully applied, the 

computational time required for quantitative DEM simulation should still not be neglected. In such 

case, statistical process modeling based on a limited number of in-silico experimental results can 

streamline process development and the utilization for process control similar to the process modeling 

activities based on actual experiments as demonstrated in case studies 3 and 4. As mentioned in the 

overall discussion, the PLSR modeling utilized in this thesis is not able to cope with nonlinearity. This 

drawback needs to be addressed, as nonlinearity and multicollinearity may be involved at the same 

time in industrial processes98. Several nonlinear regression analyses are available and would have a 

potential to be utilized in process modeling and control91. Locally weighted PLSR (LW-PLSR) is one 

of the nonlinear regression methods based on PLSR99. In LW-PLSR, the similarity of a given input 

parameter condition (as a vector of input parameters) to the individual data in the calibration set is 

calculated based on a weighted Euclidean distance in the model, and the data having high similarity 

receive a larger weight in developing the localized prediction model to predict a given input parameter 

condition. The prediction accuracy of LW-PLSR was demonstrated to be higher than the conventional 

PLSR if the test set is well within the calibration set99, 100, therefore it is potentially beneficial for 

process optimization within a given experimental data set. Meanwhile, in contrast to PLSR, up to now 

LW-PLSR does not have a clear criterion or a method how to avoid extrapolation, therefore the 

predicted result might be not reliable. To provide a comprehensive understanding of the process based 

on a model, a method to evaluate the extrapolation need to be developed for LW-PLSR. Gaussian 

process regression (GPR) is a different alternative nonlinear regression analysis, which also has a 

                                                   
98 Hsu, S-H., Reklaitis, G.V., Venkatasubramanian, V., 2010. Modeling and Control of Roller Compaction 

for Pharmaceutical Manufacturing. Part I: Process Dynamics and Control Framework. J. Pharm. Innov. 5, 

14–23. 

99 Kim, S., Kano, M., Nakagawa, H., Hasebe, S., 2011. Estimation of active pharmaceutical ingredients 

content using locally weighted partial least squares and statistical wavelength selection. Int. J. Pharm. 421, 

269–274. 

100 Nakagawa, H., Tajima, T., Kano, M., Kim, S., Hasebe, S., Suzuki, T., Nakagami, H., 2012. Evaluation 

of infrared-reflection absorption spectroscopy measurement and locally weighted partial least-squares for 

rapid analysis of residual drug substances in cleaning processes. Anal. Chem. 84, 3820–3826. 
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potential to be used for a comprehensive understanding of a process101, 102. As GPR is a probabilistic 

model, it can predict the reliability of predicted response as error bars on the given input parameters. 

Hence, the GPR based process modeling has a potential to provide a comprehensive understanding of 

the processes where multicollinearity and nonlinearity are involved. However, it is not commonly used 

in the pharmaceutical industry. Further evaluation to apply nonlinear regression analysis for the 

process development is expected to facilitate the efficient and cost-effective process development. 

                                                   
101 Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian processes for machine learning. The MIT press, 

Cambridge, MA. 

102 Yuan, J., Wang, K., Yu, T., Fang, M., 2008. Reliable multi-objective optimization of high-speed 

WEDM process based on Gaussian process regression. Int. J. Mach. Tools Manuf. 48, 47–60. 
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Appendix 

Abstract 

To assure the drug products’ quality in the mass-production for commercial distribution, process 

understanding and control based on a process model is a common and important process development 

activity in the pharmaceutical industry. The most common of many approaches to build a process 

model is the Design of Experiments (DoE) approach as recommended by the International Conference 

on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use 

(ICH). However, this conventional process modeling approach has a challenge with respect to 1) the 

resources required to conduct experiments for DoE based modeling and 2) the prediction accuracy and 

the predictable range of the process model when multicollinearity is involved. The reason for the first 

challenge, i.e., huge resources required to develop a DoE based process model, is because most 

industrial processes show high scalability and hence typically DoE runs for design space and Normal 

Operating Range (NOR) setting need to be performed at commercial scale. The second challenge is 

also common in the industrial process and relates to multicollinearity, that cannot be described 

properly using DoE based process modeling, where the species and the ranges of the input parameters 

are limited if. These two challenges are addressed separately in the four case studies in this thesis. 

In case studies 1 and 2 a computer-aided process simulation utilizing Discrete Element Method 

(DEM) was demonstrated to address the first challenge in a blending process to reduce the process 

development cost by substituting actual experiments with in-silico experiments. Quantitative 

prediction of the blend uniformity was successfully demonstrated, opening up the possibility to reduce 

the number of experiments in process development. To address the second challenge alternative 

statistical process modeling was applied for a process involving multicollinearity in case studies 3 and 

4 where tablet shape had to be optimized in order to reduce the risk of physical defects and coating 

process optimization to assure the proper appearance of film-coated tablets. Process models were built 

based on Partial Least Squares Regression (PLSR), which can cope with mutually correlated 

parameters by using latent variables. The response surfaces were in good agreement with the 

verification study results, suggesting a high prediction accuracy for a process involving 

multicollinearity and a potential to develop a design space and NORs ensuring the desired quality. 

While the advantages and applicability were demonstrated in the four case studies, the computer-

aided process simulation and the alternative statistical process modeling approach also showed 

limitations and revealed the need to further facilitate effective and efficient process modeling. In the 

case studies 1 and 2 the DEM simulation was applied neglecting the existence of fluid/gas and elasto-

plastic deformation. Hence to reproduce a process where solid particles are conveyed by fluid/gas and 

solid particle show plastic deformation, coupled numerical methods such as Computational Fluid 
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Dynamics (CFD)-DEM, DEM-Finite Element Method (FEM), and an extended DEM to incorporate 

the elasto-plastic deformation in DEM calculations are considered as a next step. With regard to the 

statistical process modeling as an alternative to the DoE based approach, the PLSR based modeling 

applied in case studies 3 and 4 has its limits when it comes to processes involving nonlinearity. 

Concluding, practicable process development approaches that can cope with both multicollinearity 

and nonlinearity need to be further developed to facilitate reliable process modeling for a broader 

variety of processes. 



101 

 

Kurzfassung 

Um die Qualität der Arzneimittel in der Massenproduktion für den kommerziellen Vertrieb 

sicherzustellen, ist das Prozessverständnis und die Prozesssteuerung basierend auf einem 

Prozessmodell eine übliche und wichtige Prozessentwicklungsaktivität in der pharmazeutischen 

Industrie. Eines der gängigsten Verfahren ist die Entwicklung eines Prozessmodells mit Hilfe eines 

Design of Experiments (DoE), wie es von der International Conference on Harmonisation of Technical 

Requirements for Registration of Pharmaceuticals for Human Use (ICH) empfohlen wird. Der übliche 

Prozessmodellierungsansatz ist jedoch problematisch im Hinblick auf 1) die erforderlichen 

Ressourcen zur Durchführung von Experimenten für DoE-basierte Modellierung und 2) die 

Vorhersagegenauigkeit und dem vorhersagbaren Bereich des Prozesssmodells, wenn 

Multikollinearität vorliegt. Der Grund für die erste Herausforderung, nämlich dass große Ressourcen 

verbraucht werden, um ein DoE-basiertes Prozessmodells zu entwickeln, liegt darin, dass - wenn der 

Prozess wie die meisten industriellen Prozesse eine hohe Skalierbarkeit aufweist,- typischerweise 

DoE-Läufe für die Festlegung von Design Space und Normal Operating Ranges im kommerziellen 

Maßstab durchgeführt werden müssen. Die zweite Herausforderung kommt in industriellen Prozessen 

häufig vor und ist mit dem Problem der Multikollinearität verknüpft, die mit einem DoE basierten 

Prozessmodel nicht adäquat beschrieben werden kann, da Art und Bereiche der Inputvariablen limitiert 

sind. Diese beiden Herausforderungen werden in den vier Fallstudien dieser Arbeit gesondert 

behandelt. 

In den Fallstudien 1 und 2 wurde an einem Mischprozess gezeigt, dass die erste Herausforderung 

durch eine computergestützte Prozesssimulation unter Verwendung von DEM adressiert werden kann, 

mit dem Ziel, die Prozessentwicklungskosten zu reduzieren, indem tatsächliche Experimente durch 

In-Silico-Experimente ersetzt wurden. Die quantitative Vorhersagbarkeit der Gleichmäßigkeit der 

Mischung wurde erfolgreich gezeigt, was die Möglichkeit eröffnet, die Anzahl der Experimente in der 

Prozessentwicklung zu reduzieren. Um der zweiten Herausforderung zu begegnen, wurde in den 

Falbeispielen 3 und 4 eine alternative statistische Prozessmodellierung für einen Prozess mit 

Multikollinearität angewandt, bei dem die Tablettenform im Hinblick auf die Vermeidung 

physikalischer Defekte und im Hinblick auf die anschließende Coatingprozedur sowie das Aussehen 

der überzogenen Tabletten optimiert werden sollte. Prozessmodelle wurden auf der Basis von Partial 

Least Squares Regression (PLSR) erstellt, die die miteinander korrelierten Parameter mithilfe von 

latenten Variablen bewältigen können. Die Response Surface Plots stimmten gut mit den Ergebnissen 

der Verifizierungsstudie überein, was auf eine hohe Vorhersagegenauigkeit für einen Prozess hindeutet, 

bei dem Multikollinearität existiert, und auch auf ein Potential zur Entwicklung von Design Space und 

NOR, die die gewünschte Qualität sicherstellen. 

Während die Vorteile und Anwendbarkeit von Prozessmodellen in den vier Fallstudien gezeigt 

wurden, zeigten die computergestützte Prozesssimulation und der alternative statistische 
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Prozessmodellierungsansatz auch Einschränkungen und ließen die Notwendigkeit offenbar werden, 

die Prozessmodellierung im Hinblick auf Effektivität und Effizienz weiterzuentwickeln.. In den 

Fallstudien 1 und 2 wurde die DEM-Simulation angewendet, bei der das Vorhandensein von 

Flüssigkeit/Gas und elasto-plastischer Verformung vernachlässigt wird. Ein nächster Schritt, um 

Prozesse zu reproduzieren, bei dem feste Partikel durch ein Fluid oder Gas gefördert werden und feste 

Partikel plastische Verformung zeigen, wären daher an DEM gekoppelte numerische Verfahren wie z. 

B Computational Fluid Dynamics (CFD)-DEM, DEM-Finite Element Method (FEM) und ein 

erweitertes DEM zur Berücksichtigung der elasto-plastischen Verformung in der DEM-Berechnung. 

Im Hinblick auf die statistische Prozessmodellierung als Alternative zum DoE-basierten Ansatz weist 

die PLSR-basierte Modellierung, die in den Fallstudien 3 und 4 gezeigt wurde, eine Einschränkung 

bei der Modellierung nicht linearer Systeme auf. Zusammenfassend gilt es,in der Zukunft, Ansätze zu 

entwickeln, die sowohl Multikollinearität als auch Nichtlinearität bewältigen, um eine zuverlässige 

Prozessmodellierung für eine breite Palette von Prozessen zu ermöglichen. 
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