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Abstract

Interdisciplinary research like constrained optimization of partial di�erential equa-
tions (PDE) for trajectory planning or feedback algorithms is an important topic.
Recent technologies in high performance computing and progressing research
in modeling techniques have enabled the feasibility to investigate multiphysics
systems in the context of optimization problems.

In this thesis a conductive heat transfer example is developed and techniques
from PDE constrained optimization are used to solve trajectory planning problems.
In addition, a laboratory experiment is designed to test the algorithms on a real
world application.

Moreover, an extensive investigation on coupling techniques for equations
arising in convective heat transfer is given to provide a basis for optimal control
problems regarding heating ventilation and air conditioning systems.

Furthermore a novel approach using a �atness-based method for optimal
control is derived. This concept allows input and state constraints in trajectory
planning problems for partial di�erential equations combined with an e�cient
computation. The stated method is also extended to a Model Predictive Control
closed-loop formulation. For illustration purposes, all stated problems include
numerical examples.

iii



iv



Zusammenfassung

Fachübergreifende Forschung wie Optimierung von partiellen Di�erenzialgle-
ichungen mit Schranken für Trajektorienplanungs- oder Regelungsalgorithmen
ist ein wichtiges Thema. Aktuelle Technologien im Gebiet der Supercomputer
und Modellierungstechniken erlauben die Analyse von Multiphysik Systemen im
Bereich von Optimierungsproblemen.

In dieser Arbeit wird ein Beispiel anhand eines Wärmeleitprozesses entwick-
elt und Techniken der Optimierung von partiellen Di�erenzialgleichungen mit
Schranken für Trajektorienplanungsprobleme angewandt. Zusätzlich wird ein La-
borexperiment de�niert um die beschriebenen Algorithmen an einer Applikation
zu testen.

Desweiteren werden Kopplungstechniken für Multiphysiksysteme, speziell
für die Kopplung von konvektivem Wr̈metransfer, untersucht und bewertet. Diese
werden in weiteren Optimierungsproblemen, am Beispiel einer Klimatisierung
eines Raumes, angewendet.

Darauf folgend wird ein neuer Ansatz zur Optimalsteuerung auf Basis einer
�achheitsbasierten Methode vorgestellt. Dieses Konzept erlaubt es Eingangs- und
Zustandsschranken in Trajektorienplanungsprobleme für partielle Di�erenzial-
gleichungen zu integrieren. Diese Methode wird mit dem Konzept der modell-
prediktiven Regelung erweitert und abschließend werden numerische Beispiele
beschrieben und Ergebnisse diskutiert.
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Introduction

Numerical experiments are becoming more complex due to evolving technologies
in high performance computing and progressing research in modeling, solving and
preconditioning techniques [55]. Consequently the interest in solving problems
that involve more than one physical phenomenon or the interaction between
them is increasing [48]. Originally those multiphysics problems were handled
by utilizing techniques like operator splitting to decouple the arising system
and known solver and preconditioning techniques were used on the individual
equations [27, 23]. The methods are also used in modern development, due to
existing and well tested codes which require interaction with other simulations
to enable multiphysics research [74]. Tightly coupled frameworks for simulation
of all physics at once exist [31], but require reimplementation of the speci�c
equations. A key to successful and accurate results in this area is the modeling
approach of the coupling of the arising multiphysics system, since inappropriate
methods can lead to physical incorrect outcome. Here one has to analyze the
strength of coupling between the physics thoroughly to ensure su�cient accuracy.
In optimization or optimal control approaches it is not common to analyze the
coupling strength �rst and afterwards make reductions to the model. Therefore a
decoupling approach for optimization of a coupled air �ow and heat transport
system to mitigate long solution times is presented in this work.

These theoretical investigations and software technologies enable interdisci-
plinary research like constrained optimization of partial di�erential equations for
trajectory planning or feedback algorithms using Model Predictive Control (MPC).
As an example for an industry relevant application a technique for cooling steel
pro�les is presented in [26] but no comparison with laboratory experiments is
shown. Beginning with a single physics example an implementation of a parallel
optimal control solver for trajectory planning is presented on a heating problem.
Well known techniques from optimal control [36, 83] like adjoint based gradient
computation are used and combined with modern solver techniques and a par-
allel computing approach. Physical applications that show working concepts in
laboratory experiments and comparisons with the theoretical or simulated results
are rare and therefore a validation on a laboratory experiment is presented.

1



2 Introduction

In the context of multiphysics systems, an example which involves multiple
physical phenomena, namely the �uid �ow and temperature in a room as a
result of heating ventilation and air conditioning (HVAC) is developed. The
arising system consists of the incompressible Navier-Stokes equations coupled
with the energy equation. Discretizing and solving just the coupled system
for simulation is an active research topic and common techniques for e�cient
and stable computations are shown in this work. The equations describing the
optimal control problem are very similar, or even equal, to those arising from the
Boussinesq equations. These problems have been studied by the authors in [6,
43] using nondimensionalized formulations for semiconductor melts. In recent
publications di�erent techniques for optimal control on problems directly related
to HVAC were considered and evaluated, e.g. a classic control theory approach,
the Linear-quadratic regulator, was presented in [11, 16] where the stationary
solution of the linearized Navier-Stokes equation was used. In this thesis, the
decoupling of physics and their feasibility for the optimization problems is shown.
Furthermore, the implementation uses similar optimal control techniques as
the former single physics example and supports parallel computation as well
and also considers the time-dependent and fully nonlinear incompressible �ow
computations.

Using the investigations of the coupling approaches an alternative method
exploiting the concept of di�erential �atness [30] is studied. Originally based
on the theory for �nite dimensional systems, this technique has been extended
to partial di�erential equations with examples in linear and nonliear di�usion-
reaction systems [57, 54, 75], hyperbolic systems [64, 87] and �exible structures
[76, 58]. An industry relevant example on trajectory planning, the heating of deep-
drawing tools aiding manufacturing processes, has been presented in [10] and led
to promising results. One generally uses a Gevrey function for the �at output and
therefore addressing constraints in the input trajectory or in the state is generally
not possible directly. To mitigate this drawback alternatives using splines [22, 79]
and spectral methods using Legendre polynomials with Gauss-Legendre-Lobatto
nodes [70] were developed. In this work, a novel concept on how to handle a
�at output using an integrator chain description based on the concepts from [49]
is extended to partial di�erential equations to solve optimization problems for
trajectory planning. Several scenarios for a di�usion-reaction equation are shown
as examples. Furthermore, the concept is extended and a closed-loop control for
PDEs using MPC is derived.

In Chapter 1 an introduction to the �nite element method is given to serve as
a basis for further discussions in the next chapters.

Following Chapter 2 the heat equation is derived from the fundamental con-
cepts of physics and the corresponding discretization in space is derived by using
the �nite element method in combination with suitable numerical time integra-
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tion methods. This chapter also presents the details of the two implementations
for solving the heat equation that have evolved in the course of this work. The
implementations are validated using the presented validation and veri�cation
methods.

Subsequently the basics of �uid dynamics are summarized in Chapter 3 where
the Navier-Stokes and Boussinesq equations are derived and a suitable and stable
discretization for the Navier-Stokes equation is discussed.

In Section 3.4 the topic of multiphysics coupling is treated and di�erent
coupling techniques are presented for the Boussinesq and the general Navier-
Stokes and heat transfer system. A numerical comparison of the coupling methods
is given and the implementation is validated for the Navier-Stokes equation using
the DFG benchmark of a �ow around a cylinder as well as the Boussinesq equation
with the MIT benchmark of a heated cavity by comparing key parameters of the
results with published results.

In Chapter 4 an introduction on partial di�erential equation constrained opti-
mization is given and followed by an example of a heating process of an aluminum
block. The physical lab experiment served as a benchmark for a trajectory plan-
ning approach using the techniques of optimal control. A homogeneous and
an inhomogeneous temperature pro�le scenario are presented as examples that
show the complete process from numerical computation of the trajectory up to
the measurements of the sensors on the lab experiments.

An alternative method using a novel approach, named �atness-based optimal
control, is presented in Chapter 5. Here, the trajectory planning exploits the
�atness property of the partial di�erential equation to derive an integrator chain
system that re�ects the �at output and its derivatives. A detailed explanation
on the resulting algorithm is given and the results are backed up by numerical
simulations.

Leveraging the concepts of Chapter 5 an extension to a Model Predictive
Control approach is shown in Section 5.2. Using the concepts of the �atness-based
optimal control algorithm, a method on how to apply the concept in combination
with a model predictive control algorithm is derived. This allows formulations
with stabilizing properties and the extension of the concepts in Chapter 5 to
possible unstable systems.

Further remarks and a discussion of the gathered results along with an outlook
on future research ideas is given in Chapter 6.
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Chapter 1

Introduction to the �nite element
method

In the course of this work, several partial di�erential equations occur to describe
di�erent types of physical phenomena. In order to �nd a suitable numerical dis-
cretization in space a variety of methods exist. The Finite Di�erence Method [52,
82] can treat the equations directly in their strong di�erential form but lacks
the �exibility for complex geometries involving curved boundaries. A suitable
method is the Finite Volume Method [29] as it supports complex geometries and
unstructured grids and seems a natural concept for �uid �ow problems due to
the conservation principles but can not be extended to higher-order accuracy on
general unstructured grids (see e.g. [41]).

Due to the extensive mathematical background and �exibility the �nite el-
ement method (see [13]) is used throughout. The method is based on a varia-
tional framework which is summarized in Section 1.1 to give a mathematical
background from a functional analysis point of view. Section 1.2 describes the
necessary concepts of the �nite element method to understand how the numerical
representations of matrices and vectors can be obtained from the weak formu-
lation. To address the problems involving advection, Section 1.3 shows how to
mitigate e�ects arising from a �nite element formulation.

1.1 Variational framework

Let Ω ∈ Rn denote a bounded domain in an n-dimensional space with su�ciently
smooth boundary Γ. The closure Ω̄ of Ω is the union of the domain Ω with its
boundary Ω̄ = Ω ∪ Γ. As a basic example of a generic partial di�erential equation

5



6 1. Introduction to the �nite element method

Ω
n

Γ

Figure 1.1: Domain Ω with boundary Γ and outward unit normal n.

(PDE), consider the Poisson problem

−∇2u = f in Ω, (1.1)
u = uΓ on Γ. (1.2)

It follows a brief overview of the concepts from [33, 13] about the variational
framework needed to describe PDE problems like Equation (1.1) using a weak
formulation for the �nite element method. A frequently needed function space is
the Lebesgue space.

De�nition 1.1 (Lebesgue space). Let Ω ⊂ Rn be a measurable set and let f : Ω →
R be a measurable function. We de�ne for a number p ∈ (1,∞] the Lebesgue
space

Lp (Ω) :=
{
f : ‖ f ‖Lp < ∞

}
,

with the norm

‖ f ‖Lp := *
,

∫
Ω
| f (x ) |p dx+

-

1/p

.

For p = ∞ the norm is denoted by

‖ f ‖L∞ := ess sup
Ω
| f (x ) |Lp .

With the multi-index notation α = (α1, . . . ,αN ) ∈ NN and

|α | =
N∑
i=1

αi ,

denoting derivatives by

Dαu =
∂α1u

∂xα1
1
. . .
∂αNu

∂xαNN
,

we describe functions that are not point wise di�erentiable in L2 using the de�ni-
tion of the weak derivative.
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De�nition 1.2 (Weak derivative). Denote the linear space of in�nitely di�eren-
tiable functions C∞0 (Ω) with compact support on Ω (see [33]) by

D (Ω̄) = {ϕ ∈ C∞0 (Ω)}.
Consider u ∈ L2(Ω) and |α | > 0. If there exists v ∈ L2(Ω) such that∫

Ω
v (x )ϕ (x ) dx = (−1) |α |

∫
Ω
u (x )Dαϕ (x ) dx ∀ϕ ∈ D (Ω),

then v is called the α-th weak derivative of u with Dαu := v .

A frequently used function space along with Lebesgue space is a Hilbert space
dependent on the following de�nition.

De�nition 1.3 (Sobolev space). For each integerm ≥ 0 and real number p with
1 ≤ p ≤ ∞, we de�ne the Sobolev space

Wm,p (Ω) = {u ∈ Lp (Ω) : Dαu ∈ Lp (Ω) ∀|α | ≤ m},
and the corresponding norms for p ∈ (0,∞]

‖u‖Wm,p = *
,

∑
|α |≤m

∫
Ω
|Dαu (x ) |pdx+

-

1/p

and for p = ∞
‖u‖Wm,∞ = max

|α |≤m

(
ess sup
x∈Ω

|Dαu (x ) |
)
.

We denote by Hm (Ω) =Wm,2(Ω), which is a Hilbert space equipped with the
scalar product

(u,v )m =
∑
|α |≤m

∫
Ω
Dαu (x )Dαv (x ) dx .

Let f a di�erentiable scalar function, then the gradient is de�ned as

∇f :=
[
∂ f

∂x
, . . . ,

∂ f

∂xn

]T
.

De�nition 1.4 (Greens identity). Let Ψ,ϕ be at least twice di�erentiable functions
then ∫

Ω
(Ψ∇2ϕ + ∇Ψ · ∇ϕ) dx =

∫
Γ
Ψ(∇ϕ · n) ds .
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Assume V is a suitable function space (e.g. a Hilbert space) for the solution of
u in Equation (1.1). Multiplying by a test function v ∈ V and integrating by parts
using Greens identity (c.f. De�nition 1.4) yields∫

Ω
∇u · ∇v dx =

∫
Ω
f v dx . (1.3)

For notation purposes we introduce the de�nition of a bilinear form.

De�nition 1.5 (Bilinear form). A bilinear form, a(·, ·), on a linear space V is a
mapping a : V ×V → R such that each of the mapsv 7→ a(v,w ) andw 7→ a(v,w )
is a linear form on V . It is symmetric if a(v,w ) = a(w,v ) for all v,w ∈ V . An
inner product, denoted by (·, ·), is a symmetric bilinear form on a linear space
V that satis�es

(v,v ) ≥ 0∀v ∈ V and (a)
(v,v ) = 0⇐⇒ v = 0. (b)

See [13] for the original de�nition.

Subsequently we can denote Equation (1.1) as a variational problem with the
corresponding bilinear (c.f. De�nition 1.5) and linear forms

a(u,v ) =

∫
Ω
∇u · ∇v dx , (1.4)

( f ,v ) =

∫
Ω
f v dx , (1.5)

and can de�ne a variational problem.

Problem 1.1. Find u ∈ V for a given f ∈ V such that

a(u,v ) = ( f ,v ) for all v ∈ V . (1.6)

Existence and uniqueness of the solution of Problem 1.1 can be determined
by making use of the Lax-Milgram theorem [86]

Theorem 1.1 (Lax-Milgram). Let H be a Hilbert space, a(·, ·) a bilinear form with
a : H ×H → R and L(v ) a linear functional L : H → R. If and only if the following
conditions

(i) a(·, ·) is symmetric, a(v,w ) = a(w,v )∀v,w ∈ H ,

(ii) a(·, ·) is elliptic, i.e., there exists α > 0 s.t. a(v,v ) ≥ α ‖v ‖2H∀v ∈ H ,
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(iii) a(·, ·) is continuous, i.e., there exists a C ∈ R+ s.t. |a(v,w ) | ≤ C‖v ‖H ‖w ‖H ,
(iv) L is continuous, i.e., there exists a d ∈ R+ s.t. |L(v ) | ≤ d ‖v ‖H ,

hold true, then there exists a unique solution to a(u,v ) = L(v )∀v ∈ H with the
stability estimate ‖u‖H ≤ d/C .

With these prerequisites we can describe the Galerkin �nite element method.

1.2 The �nite element method
Using the weak formulation in Problem 1.1 in combination with a Galerkin projec-
tion method, the Hilbert spaceV needs to be split up, or discretized, into subspaces.
This is achieved by de�ning a set of linearly independent functions which form
a basis for V . The �nite element method subdivides the continuous domain Ω
into a �nite set of �nite elements (the de�nition originating from [18] for a �nite
element is used throughout this work) using a triangulation (see De�nition 1.7).

De�nition 1.6 (Finite element). Let

(i) K ⊆ Rn be a bounded closed set with nonempty interior and piecewise
smooth boundary (the element domain),

(ii) P be a �nite-dimensional space of functions on K (the space of basis or
shape functions) and

(iii) N = {N1, . . . ,Nk } be a basis for the dual space P′ (the set of nodal vari-
ables).

Then (K ,P,N ) is called a �nite element.

De�nition 1.7 (Triangulation). A triangulation is described by the following
properties.

(i) A subdivision of a domain Ω is a �nite collection of open sets {τi } such that

(i) τi ∩ τj = ∅ if i , j,
(ii) ⋃

τ̄i = Ω̄.

(ii) A subdivision T = {τi : 1 ≤ i ≤ mT } with triangles τi , is a triangulation
if no vertex of any triangle lies in the interior of some edges of another
triangle. Furthermore, let hτ := supx ,y∈T ‖x −y‖ and ρτ the diameter of the
largest possible circle inside of τ .



10 1. Introduction to the �nite element method

−1 −0.5 0 0.5 10

0.5

1
ϕ0 ϕ1

−1 −0.5 0 0.5 1

0

0.5

1

ϕ0

ϕ1

ϕ2

Figure 1.2: One dimensional Lagrange basis functions representing the linear
(left) and quadratic (right) case.

FK : K̂ 7→ KK̂ K

Figure 1.3: Illustration of the reference to physical map. Transformation of the
coordinates in the reference frame K̂ to the physical frame K .

(iii) The maximal mesh width h for a regular triangulation is de�ned by

h := max
τ∈T

hτ .

A simple example of a �nite element is the Lagrange �nite element de�ned
on K (e.g. a quadrilateral). With Q1 the set of linear Lagrange polynomials
(see Figure 1.2 for a one dimensional example) in two dimensions we can de�ne
the �nite element space

Vh = {uh ∈ H 1(Ω) : u |τ ∈ Q1 for all τi ∈ Th}. (1.7)

Transforming the integral over the domain Ω in Equation (1.3) to a sum of integrals
over each cell in the triangulation T results in∑

K∈T

∫
K
∇u · ∇v dx =

∑
K∈T

∫
K
f v dx . (1.8)

The �nite element method relies on basis functions to approximate the solution on
every element. These functions have to be computed based on the topology of the
corresponding cell. It is common practice [88] to de�ne these basis functions once
on a so-called reference cell of the desired topology (e.g. a quadrilateral or triangle)
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and use a one-to-one correspondence between the reference and the physical cell.
Following the notation in [37] we de�ne the reference cell K̂ . To describe the
transformation of the reference cell to the physical cell in the triangulation K ∈ T
we de�ne a reference to physical map FK : K̂ 7→ K (see Figure 1.3). The Pullback
H (grad, K̂ ) 7→ H (grad,K ) is de�ned as the inverse transformation of the basis
function on the reference cell û ◦ F−1

K . De�ning J = ∇̂FK the cell Jacobian matrix
with ∇̂ the di�erentiation in reference coordinates. These representations allow
the transformation of the cell wise integral in physical coordinates to reference
coordinates ∫

Ω
∇u · ∇v dx =

∫
K̂
J−TK ∇̂û · J−TK ∇̂v̂ |JK | dx̂ . (1.9)

With {ξq}Nq
q=1 a set of quadrature points and quadrature weights {wq}Nq

q=1, the
integral is approximated by a sum over the quadrature points and yields

Nq∑
q

wq

(
J−TK (ξq )∇̂û (ξq )

)
·
(
J−TK (ξq )∇̂v̂ (ξq )

)
|JK (ξq ) |. (1.10)

Let us de�ne û, v̂ on the polynomial basis in reference space P̂ according to

û =

Nf∑
i=1

uiϕ̂i , v̂ =

Nf∑
j=1

vjϕ̂j , (1.11)

and expanding the formulation to

Nf∑
i,j=1

uivj

Nq∑
q

wq

(
J−TK (ξq )∇̂ϕ̂i (ξq )

)
·
(
J−TK (ξq )∇̂ϕ̂j (ξq )

)
|JK (ξq ) |︸                                                               ︷︷                                                               ︸

Ae

. (1.12)

The right hand side is described in a similar procedure with

Nf∑
j=1

vj

Nq∑
q

wq f (FK (ξq ))ϕ̂j (ξq ) |JK (ξq ) |. (1.13)

For convenience, the approximated integral functions can be written in matrix
vector notation

vTAeu = v
T fe , (1.14)



12 1. Introduction to the �nite element method

and in residual form

F (u) = vT (Aeu − fe ) = 0, (1.15)

with Ae the element sti�ness (or Jacobian) matrix and u = (u0, . . . ,uNf ),v =
(v0, . . . ,vNf ). Scaling out the test function v results in a linear system for the
local element.
Remark 1. To obtain the sti�ness matrix in a general formulation it is necessary
to compute the Jacobian of the residual

∂F (u)

∂u
= Ae . (1.16)

Using the local element matricesAe and vectors fe combined with an appropri-
ate mapping from the local to the global matrix vector structure, the global linear
system is obtained (c.f. [88]) and can be solved using an appropriate numerical
method.

1.3 Stabilization methods for advection
dominated �ows

In advection dominated equations, using the Galerkin �nite element method
described in Section 1.2 results in spurious oscillations in the solution (see e.g. [9]).
To demonstrate the e�ect consider the time-dependent linear advection equation
which models the transport of a scalar quantity q with constant velocity β = 0.001
on a one-dimensional domain Ω ∈ [0, 1]

∂q

∂t
+ β · ∇q = 0 in Ω, (1.17a)

q = д on Γ, (1.17b)
q = q0 t = 0. (1.17c)

Assume that the initial condition contains a discontinuous bump in the middle of
the domain

q0 =



100 0.25 ≤ x ≤ 0.5,
0 otherwise,

with the boundary condition д = 0. Let us de�ne the variational problem, which
results from multiplying Equation (1.17) with a test functionv ∈ V and integrating
over the domain. After applying the continuous Galerkin �nite element method
we arrive at
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Figure 1.4: Advection dominated without stabilization at t = 100.0.

Problem 1.2. Find qh ∈ Vh such that(
∂qh
∂t
,vh

)
+ (βh · ∇qh,vh ) = 0 for all vh ∈ Vh . (1.18)

Solving this problem with a simple discretization in time (a forward Euler
method in this case) we can see the solution in Figure 1.4 for a time step of
∆t = 1.0. To prevent issues in the solution due to the time discretization we
choose the parameters such that the Courant–Friedrichs–Lewy condition is less
than 1.0 (see e.g. [9])

CFL = |β |∆t
∆x

=
0.001
0.01 = 0.1.

It can be clearly seen in Figure 1.4 that spurious oscillations occur due to the
spatial discretization method. To smooth the high frequency oscillations a sta-
bilization using a di�usion in streamline direction, called Streamline-Upwind
Petrov-Galerkin (SUPG) method, introduced in [15], is used. The stabilization term
is composed of a residual of the corresponding equation and a non conforming
test function

R =
∂q

∂t
− β · ∇q, v̄ = β · ∇v .

Adding the terms to Problem 1.2 results in

Problem 1.3. Find qh ∈ Vh such that

(
∂qh
∂t
,vh ) + (βh · ∇qh,vh ) + (Rh, v̄h ) = 0 for all vh ∈ Vh . (1.19)
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Figure 1.5: Advection dominated with SUPG stabilization at t = 100.0.

One can observe that if qh is the solution the residual R vanishes which makes
this method a consistent stabilization that does not harm the accuracy of the
solution [15]. With the same parameters used in the non stabilized case, the
solution of the stabilized case is shown in Figure 1.5, where the high frequency
oscillations are damped. This simple example demonstrates the stabilization
approach which is used in further chapters.
Remark 2. The author is aware of discontinuous Galerkin methods and corre-
sponding high order techniques for advection dominated �ow (see e.g. [41]). A
recent detailed discussion and performance comparison of continuous and discon-
tinuous Galerkin methods can be reviewed in [50]. Although these methods can
be more robust due to their added Finite Volume Method characteristics through
added internal element face contributions, they require more computational time.
For scenarios expected from requirements of the code which is developed for
this thesis, the discontinuous Galerkin discretization results in increased element
stencil size in the discretization (see [46]) and would be slower. Slower means
here that for the given order a discontinuous Galerkin discretization would take
more time than a continuous Galerkin for the same accuracy achieved.



Chapter 2

Conductive heat transfer

The heat equation is a popular example when it comes to demonstration of
algorithms regarding solution or optimal control of PDEs. Depending on the
setting, this equation can lead to illustrative mathematical examples but can also
address complex industry applications. Although desirable, physical applications
that show working concepts in laboratory experiments and comparisons with
the theoretical or simulated results are rare. As an example for an industry
relevant example a technique for cooling steel pro�les is presented in [26] but no
comparison with laboratory experiments is shown. Recent results on trajectory
planning for the heating of deep-drawing tools aiding manufacturing processes
in the automobile industry are presented in [10]. The authors show a �atness-
based trajectory planning approach and promising results when applied to the
production environment. To address complex applications and show the process
from stating a mathematical problem, we introduce the equations of conductive
heat transfer as a prerequisite for further chapters.

In this chapter, the formulation of the heat equation is derived from general
physical principles and suitable boundary conditions are presented. Section 2.3
shows the discretization of the heat equation using the �nite element method and
describes the two distinct implementations that evolved during this work. The
implemented discretizations and solution methods are veri�ed with the Method
of Manufactured Solutions in Section 2.4.

2.1 Derivation of the heat equation

The partial di�erential equation describing heat distribution in a steady solid
medium can be derived by using the �rst law of thermodynamics which states
that the rate of change of total energy E stored in a control volume is equal to
the rate of heat supplied Q̇ to the volume minus the rate of work Ẇ done on the

15
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system

δE = Q̇ − Ẇ .
Since we describe the solid as steady there is no kinetic energy Ekin in the total
energy E and thus the internal energy E is

δE = δE = Q̇ − Ẇ .
Heat can be supplied through heat �ux across the boundary due to conduction
described by Fourier’s Law that describes the heat �ux with thermal conductivity
k and temperature T as

q = −k∇T .
Assuming a control volume of the steady material domain Ω with boundary Γ we
describe the heat �ux over the boundary in normal direction n as

Ẇ = −
∫
Γ
q · nds,

where the negative sign describes that the energy decreases if heat �ows out of the
region. The heat generated in the volume is assumed to be known and described
by Q . The rate of change of internal energy per unit mass can be described by
the volume integral

∂E
∂t
=

∫
Ω
ρ
∂E

∂t
dx

that describes the mass density of the speci�c material with ρ. Combining the
terms and using the divergence theorem to transform the boundary integral to a
volume integral results in

ρ
∂E

∂t
= ∇ · k∇T +Q

With the simple equation of state, assuming that the temperature ranges are
not too large, we can describe the linear relation between internal energy and
temperature with

dE = CpdT

and arrive at the partial di�erential equation of the heat equation

ρCp
∂T

∂t
+ ∇ · q = Q, (2.1)

where
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• ρ is the density (SI kg/m3),
• Cp is the speci�c heat capacity at constant temperature (SI J/(kg K)),
• T is the absolute temperature (SI K),
• k is the thermal conductivity (SI m2/s),
• q is the heat �ux by conduction (SI W/m2),
• Q contains internal heat sources (SI W/m3).

2.2 Boundary conditions
The most typical boundary conditions for thermal applications are the speci�ed
temperature

T = Ts on Γs (2.2)

and the speci�ed inward heat �ux

−n · q = Qs on Γs (2.3)

wheren is the outward normal vector of the boundary. If the boundary is insulated
this results in

−n · q = 0 on Γs . (2.4)

To describe the physics between the boundary and some temperatureT∞ far away
from the domain the equation

−n · q = h(T∞ −T ) on Γs (2.5)

with the heat transfer coe�cient h with SI unit W/(m2 K) is used. The coe�cient
h approximates everything between the boundary andT∞. This results from New-
tons law of cooling. It simpli�es a common case of radiation which is described
by the Stefan-Boltzmann law

−n · q = ϵσ (T 4
amb −T 4) on Γs (2.6)

which results in nonlinearities.

2.3 Discretization
For the spatial discretization the �nite element method described in Section 1.2
is used and the continuous �nite element space Vh is de�ned for this problem as
follows.
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Impl. Language LA backend Time disc.
MFEM CPP hypre CVODE

Firedrake python PETSc BDF-1

Table 2.1: Overview of the software implementations and used software frame-
works.

De�nition 2.1. Let Ω be a domain in Rn and Th ⊆ T a triangulation of Ω, then
a continuous �nite element space for the heat equation can be de�ned as

Vh =
{
vh ∈ H 1 : qh |τ ∈ Pk for all τi ∈ Th

}
.

A variety of �nite element software frameworks have been evaluated. The
implementation of Equation (2.1) is done in two frameworks. The �rst and
mostly used here is built using a python implementation in combination with
the Firedrake framework [66]. This approach enables quick testing by imple-
menting the linear and bilinear forms directly in UFL, allows rapid prototyping of
new methods and the deep integration with PETSc [5], enables easy testing of
solver and preconditioner combinations. The second implementation uses a CPP
framework called MFEM [62] which is coupled with the high performance parallel
linear algebra backend of hypre [28]. This framework is also easily coupled with
di�erent ODE solvers to enable adaptive time stepping where appropriate. An
overview of the two software combinations is shown in Table 2.1.

With the spatial discretization of Equation (2.1) and according boundary
conditions we end up with a semi-discretized equation in space. For the discretiza-
tion in time we use an adaptive time-stepping algorithm from the SUNDIALS
suite [42] called CVODE which was �rst introduced in [19]. CVODE uses variable-
order, variable-step multi step methods for the solution of initial value problems
and encapsulates methods for sti� and non-sti� systems. For sti� systems the
Backward Di�erentiation Formulas up to order 5 are used.

Since we use the �nite element method for the spatial discretization, the
derivation for the solution of the system in [42] has to be modi�ed with a non-
identity mass matrix. Consider an initial value problem with the variable y ∈ RN
and its time derivative ẏ, then the system of N ordinary di�erential equations we
have to solve is

ẏ = M−1 f (t ,y), y (t0) = y0,

where M is the mass matrix arising from the �nite element discretization. At
every time step the (in general nonlinear) equation

G (yn ) = yn − γM−1 f (tn,yn ) − an = 0
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has to be solved. Here an and γ include coe�cients depending on the time step,
order of the method and history of step sizes. Sti� systems are solved by a series
of Newton iterations (indexed withm and further explained in Algorithm 1) to
obtain a solution for the current time step n. This requires the solution of a linear
system (

I − γM−1J
) [
ym+1
n − ymn

]
= −(ymn − γM−1 f (tn,y

m
n ) − an ) (2.7)

with
∂G

∂y
= I − γM−1J ,

J =
∂ f (t ,y)

∂y

at every time step. Modifying Equation (2.7) by multiplying with the mass matrix
M from the left we obtain

(M − γ J )
[
ym+1
n − ymn

]
= −M (ymn − γM−1 f (tn,y

m
n ) − an ), (2.8)

which requires a mass matrix solve at every function evaluation of ẏ = M−1 f (t ,y)
and a full time dependent Jacobian matrix solve. Therefore, no direct computation
of the inverse mass matrix M−1 is necessary, which can be impossible in certain
situations due to large system sizes.

2.4 Validation and veri�cation
The validation and veri�cation process is a very important step in the development
of scienti�c software. Although, at a �rst glance, a solution generated by a non
veri�ed code may look correct, it is very common that later in the development
process, when for example di�erent parameter sets are evaluated, discrepancies
in consistency of the solution may occur. There are several techniques to mit-
igate those issues and a comprehensive discussion on the topic can be found
in [72]. Veri�cation techniques look at whether the implemented equations are
solved correctly and if the solutions are consistent for di�erent parameter sets
or boundary conditions. It is not concerned with the correctness of the physics
implemented. One technique for veri�cation is the method of manufactured solu-
tions that prescribes a solution which is sophisticated enough and dependent on
all parameters involved in the equation and may depend on time. This equation is
used to compute a forcing function for the equation de�ned on the domain as well
as the boundary conditions. It is possible to compute these with pen and paper but
it is recommended to leave the work to a computer algebra system that derives a



20 2. Conductive heat transfer

symbolic solution and often is able to generate code for the corresponding input
terms of the simulation. After the input functions are determined, a solution
is generated from the code and the desired measures are computed. To test a
spatial discretization a common procedure is to compute an error norm, e.g. the
l2,L2 or H 1 norm of the obtained solution T and the manufactured solution T ∗
for increasing spatial accuracies. A positive test would show a convergence rate
of the error norm according to mathematical analysis dependent on the function
space and �nite element combinations used. This test should be repeated with
di�erent sets of parameters to ensure the consistency of the solutions.

Consider the semi-discretized scenario of a heating problem that includes a
speci�ed inward heat �ux on Γi and a cooling boundary condition on Γc which
has to be modi�ed to include a source term such that

ρCp
∂T

∂t
− k∇2T = Q in Ω × R, (2.9a)

n · k∇T = Qi on Γi × R, (2.9b)
n · k∇T = h(T∞ −T ) +Qc on Γc × R. (2.9c)

This scenario includes every boundary condition type that is implemented in the
code and thus should cover all aspects to be tested. A suitable and sophisticated
manufactured solution on the domain Ω ∈ [0, 1]× [0, 1] with boundary Γ = Γi ∪ Γc
for Equation (2.1) is for example

T ∗(t ) =
ρ

Cp
T0(1 + sin(x )2 sin(2y)2) exp

(
t (t0 − t )

t0

)
, (2.10)

where T0 can include di�erent parameter combinations or an arbitrary constant.
This equation is put into Equation (2.9) and the corresponding forcing termsQ,Qi

and Qc are computed with a computer algebra system. To compute results the
MFEM framework is used and the weak form of Equation (2.9) is then discretized
with linear �nite elements in space and the CVODE time-integration library is used
for the resulting initial value problem, this yields:

Problem 2.1. Find Th ∈ Vh with t ∈ (0, te] where te = 0.5 such that for all vh ∈ Vh∫
ρCp
∂Th
∂t

vh dΩ −
∫

k∇Th · ∇vh dΩ =
∫

Qvh dΩ in Ω × R,∫
n · k∇Tvh dΓi =

∫
Qivh dΓi on Γi × R,∫

n · k∇Tvh dΓc −
∫

h(T∞ −T )vh dΓc =
∫

Qcvh dΓc on Γc × R.
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El. order Ref. level L2-error Conv. rate
1 1 9.572 × 10−3 2.0
1 2 2.415 × 10−3 2.0
1 3 6.081 × 10−4 2.0
1 4 1.523 × 10−4 2.0
2 1 5.769 × 10−3 3.0
2 2 7.256 × 10−4 3.0
2 3 9.083 × 10−6 3.0
2 4 1.134 × 10−6 3.0

Table 2.2: L2-error and convergence rates for the manufactured solution test
problem using MFEM framework.

El. order Ref. level L2-error Conv. rate
1 1 1.260 × 10−2 2.0
1 2 3.194 × 10−3 2.0
1 3 8.015 × 10−4 2.0
1 4 2.006 × 10−4 2.0
2 1 6.793 × 10−4 3.0
2 2 8.660 × 10−5 3.0
2 3 1.088 × 10−5 3.0
2 4 1.362 × 10−6 3.0

Table 2.3: L2-error and convergence rates for the manufactured solution test
problem using Firedrake framework.

The absolute tolerance of CVODE is chosen as 10−8 and does not interfere with
the spatial convergence of the analysis and the algorithm. The CVODE implemen-
tation is assumed to be tested and veri�ed. Computed L2-error and convergence
rates for the manufactured solution test problem can be found in Table 2.2. The
same tests were done with the implementation using Firedrake combined with
the BDF-1 time stepping algorithm and the results are denoted in Table 2.3. Both
results agree with the theoretical convergence rate of the �nite element order
p + 1 and verify the correctness of the code with the used boundary conditions.
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Chapter 3

Convective heat transfer

In the following the derivation of a suitable model for simulating air �ow and
temperature transport in a room, for example an o�ce space, is considered. A
suitable model has to cover air �ows from windows, open doors or a ventilation
system. Associated with these is the exchange of thermal energy heating or
cooling the room. Therefore the Navier-Stokes equations are derived to serve
as a foundation for air �ow. Consequently these equations are coupled with
heat transport. Discretization of the Navier-Stokes equation is not a trivial task
and involves thorough analysis. A common technique covering that problem is
reviewed in Section 3.3. As described in Section 3.4 it is possible to formulate
di�erent versions of the coupled problem depending on the temperature setting.
Moreover a guide on the numerical solution is given in Section 3.4.2 as well as a
numerical comparison on di�erent coupling methods in Section 3.4.3.

The implementation of the solution method of the Navier-Stokes equations
is tested on the DFG benchmark of a �ow around a cylinder in Section 3.5.1.
The more sophisticated solution of the fully-coupled Boussinesq equation, which
covers �uid �ow in combination with heat transport, is validated in Section 3.5.2.

3.1 Derivation of the Navier-Stokes equations
The �uid is treated as a continuum to derive equations describing the �ow velocity
u, thus molecular structure and motion are ignored. The references [7, 3, 23]
describe how to derive the governing di�erential equations by looking at the
three concepts of:

• conservation of mass,

• Newtons second law of motion,

• the �rst law of thermodynamics (conservation of energy).

23
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An important concept to derive the conservation laws is the notion of the material
derivative described in [7] that expresses a di�erentiation following the motion
of the �uid as an operator

D

Dt
=
∂

∂t
+u · ∇. (3.1)

Consider the �uid domain Ω. The mass enclosed by the boundary Γ of Ω is at
every point in time the integral of the density per unit mass over the volume and
the out�ow quantities are described by the rate of mass �owing outwards across
the surface. In mathematical notation this results in absence of any mass source
in ∫

Ω
ρ dx +

∫
Γ
ρu · nds = 0,

and can be transformed to a volume integral∫
Ω

∂ρ

∂t
dx +

∫
Ω
∇ · (ρu) dx = 0,

which has to hold for every chosen volume. If the density ρ does not depend on
the pressure and thus does not change in time the latter expression reduces to
the so-called incompressibility condition

∇ · u = 0.

To describe the motion of a �uid we denote the rate of change of the momentum
ρu with the material derivative integrated over a part of the �uid volume∫

Ω

(
ρ
∂u

∂t
+ ρu · ∇u

)
dx .

The total volume forces are denoted by f and the stress tensorT , which represent
every surface force acting on the control volume of the �uid. Therefore, we can
write the momentum balance in the form∫

Ω

(
ρ
∂u

∂t
+ ρu · ∇u

)
dx =

∫
Ω
ρ f dx +

∫
Ω
∇ ·T dx ,

which has to hold for every choice of �uid volume Ω and thus requires

ρ
∂u

∂t
+ ρu · ∇u = ρ f + ∇ ·T .
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The stress tensorT describes the mechanical de�nition of pressure as a volumetric
stress and deviatoric stress with

T = (−p + λ tr(D))I + 2µD,

with the symmetric strain rate tensor

D =
1
2

(
∇u + ∇uT

)
.

The constant λ can be determined by taking into account the Stokes hypothesis,
which states that the bulk viscosity vanishes, holds and thus

2µ + 3λ = 0, λ =
2
3µ,

with the kinematic viscosity µ of the �uid. The last needed quantity is the internal
energy E which is derived using the �rst law of thermodynamics stating that the
rate of change of total energy E of a �uid part is equal to the rate of heat supplied
to the system minus the rate of work done on the system,

δE = Q̇ − Ẇ .

To derive the internal energy we note that the total energy consists of kinetic
energy Ekin and internal energy E [7, 63]

δE = δEkin + δE.

The whole work done on the system is de�ned by the change of kinetic energy
and the in�uence of all body and surface forces acting on the material. Neglecting
heat sources inside the material, the only way heat can be supplied is through
heat �ux across the boundary due to conduction described by Fourier’s Law that
describes the heat �ux as

q = −k∇T .

Then the total rate of work done on the �uid volume is (c.f. [7])

W =
1
ρ
T : D,

and the rate of heat supplied is

Q = − 1
ρ
∇ · q.
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Furthermore we describe the internal energy balance with

ρ
DE

Dt
= T : D + ∇ · k∇T .

Expanding the dyadic expressions results in

ρ
DE

Dt
= −p∇ · u + ∇ · k∇T + Φ,

where

Φ =
(2
3µ + λ

)
tr (D)2 + 2µD′ : D′

is the dissipation of energy due to viscous e�ects. We assume the ideal gas law
and can describe the temperature and pressure using the equations of state

dE = CvT ,

p = (γ − 1)ρE

with the speci�c heat constants Cv ,Cp and ratio γ = Cv
Cp

. From these relations,
one can observe that in an ideal gas the internal energy is only dependent on
the temperature. Using these prerequisites we describe the compressible Navier-
Stokes equations

ρ
∂u

∂t
+ ρu · ∇u = ρ f + ∇ ·T in Ω × R, (3.2a)

∂ρ

∂t
+ ∇ · (ρu) = 0 in Ω × R, (3.2b)

ρ
∂E

∂t
+ ρu · ∇E = −p∇ · u + ∇ · k∇T + Φ in Ω × R. (3.2c)

If the incompressibility condition holds, Equations (3.2a) to (3.2c) reduce to the
incompressible Navier-Stokes equations

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p + µ∇2u + ρ f in Ω × R, (3.3a)

∇ · u = 0 in Ω × R, (3.3b)
which are independent of the energy equation. The SI units of the used quantities
are described below:

• ρ is the density (SI kg/m3),
• u is the vector valued velocity (SI m/s),
• µ is the kinematic viscosity (SI kg/ms),
• p is the pressure (SI Pa),
• f contains internal forces on the �uid (SI m/s).

Looking at Equations (3.3a) and (3.3b), there is no relation between temperature
changes and the resulting volume force in the velocity of the �uid due to the
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assumption of a constant density. Some applications still show e�ects of natural
convection due to the gravity acceleration д and are assumed incompressible. In
relevant applications, for example heating or cooling of a room in a home or o�ce
environment where air�ow velocities are in the range for 3 m s−1 to 5 m s−1 the
velocity of the �uid is in range of д. This e�ect is approximated by a Buoyancy
force which can be modeled with a volume force term in Equation (3.3a) only
dependent on the gravity acceleration д the temperature di�erence relative to a
reference temperature T0 and a thermal expansion coe�cient α [K−1]. Thus the
change in density is approximated by

∆ρд ≈ −ρдα (T −T0). (3.4)

Using Equation (3.4) as a volume force in Equation (3.3a) results in the Boussinesq
equations

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p + µ∇2u − ρдα (T −T0) in Ω × R, (3.5a)

∇ · u = 0 in Ω × R, (3.5b)

ρCp
∂T

∂t
+ ρCpu · ∇T = ∇ · k∇T in Ω × R. (3.5c)

According to [29] this approximation is valid especially for α (T −T0) < 1 and for
temperature di�erences of ∆T = 2 K for water and ∆T = 15 K for air.

3.2 Boundary conditions
When analyzing �ow problems most scenarios include a typical set of boundary
conditions which utilize at least an in�ow, out�ow and a wall. In this work,
we restrict the presentation to these boundary conditions but more complicated
conditions can be formulated.

A �uid near a wall is assumed to have the same velocity as the wall itself. If
the wall does not move a no-slip boundary condition is introduced which sets
the velocity via a Dirichlet type at the wall to zero using

u = 0 on Γw .

An in�ow with known velocity is mostly introduced by prescribing the velocity
directly

u = uin on Γin .

When describing an outlet there are more possibilities. Most commonly one does
not know the velocity at the outlet interface and thus a direct assignment like in
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the in�ow is not possible. An easy way to describe the out�ow is to prescribe the
pressure at the interface with

p = 0 on Γout ,

which basically introduces a no stress condition at the interface for the �uid.
This method is not always convenient for the numerical method which are dis-
cussed in Section 3.3. Therefore the stress-free (also called do nothing) boundary
condition for out�ows is introduced by imposing no traction on the boundary
with

T · n = 0 on Γout ,

or equivalently

−pn + λ tr(D)n + 2µD · n = 0 on Γout ,

which yields for the incompressible form

µ∇u · n − pn = 0 on Γout .

3.3 Discretization
Finding a stable and performant discretization of the Navier-Stokes equations
can be a di�cult topic. Depending on the scenarios and the resulting �ow �elds
one wants to analyze, a proper choice has to be made. Herein the �nite element
method is used for the spatial discretization. Since all scenarios in this work
include only incompressible �ow we use Equations (3.3a) and (3.3b) to derive
the variational form by multiplying with a test function and integrating by parts.
Looking at the terms separately we have to introduce two operators that are
di�erentiable with u, v ∈ Rn and n = 2, 3 the divergence of a vector �eld and
dyadic product of two tensors are denoted by

∇ · u := ∂ui
∂xi
+ · · · + ∂un

∂xn
,

∇u : ∇v :=
N∑
i=1

N∑
j=1

∂ui
∂xj

∂vi
∂xj
.

For illustration purposes, assume only Dirichlet boundary conditions on Γ. Let us
introduce the corresponding function spaces for the test functionv of the velocity
u and the test function q of the pressure p as

V = {v ∈ H 1, v |Γ = 0} and Q = {q ∈ L2}.
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Multiplying Equation (3.3a) byv and Equation (3.3b) by q, integrating over the
domain, yields after reordering the terms∫

Ω

[
ρ
∂u

∂t
+ ρ (u · ∇)u + ∇p − µ∇2u − ρ f

]
·v dx = 0, (3.6a)∫

Ω
∇ · uq dx = 0. (3.6b)

Looking at speci�c terms of the �rst equation separately and de�ne the following
bilinear and linear forms using the inner product notation (see De�nition 1.5).
The bilinear form

a(u,v ) :=
∫
Ω
µ∇u : ∇v dx (3.7)

results from integrating by parts and using Greens identity (see De�nition 1.4).
The remaining forms are

b (v,q) :=
∫
Ω
q∇ ·v dx , (3.8)

c (u,v ) :=
∫
Ω
ρ (u · ∇)u) ·v dx . (3.9)

With these prerequisites we can now formulate a variational problem consisting
of Equations (3.3a) and (3.3b) that reads:

Problem 3.1. Find u ∈ V and p ∈ Q such that(
ρ
∂u

∂t
,v

)
+ c (u,v ) + a(u,v ) − b (v,p) − (ρ f ,v ) = 0 for allv ∈ V , (3.10a)

b (u,q) = 0 for all q ∈ Q . (3.10b)

The next step is to �nd a suitable �nite element pair that discretizes the mixed
function space of V × Q . Looking at the literature (especially [13, 14]), these
pairs have to ful�ll certain conditions in order to give a meaningful solution. A
fundamental result is the following lemma,

Lemma 3.1 (Inf-sup condition). In order for a �nite element discretization of Equa-
tions (3.3a) and (3.3b) to have a unique solution, it is necessary and su�cient that

0 < β := inf sup
v∈V h ,q∈Qh

|b (v,q) |
‖v ‖V ‖q‖Q . (3.11)

Proof. See [13, p. 342]. �
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Figure 3.1: (P2/P1) Taylor-Hood �nite elements in Rn.

From this we conclude, that if a �nite element pair (V h,Qh ) ful�lls the inf-sup
condition, then a solution exists and is unique (see [13, 34]). An example of a
stable �nite element pair is presented in the following de�nition and is depicted
in Figure 3.1.

De�nition 3.1 (Taylor-Hood). Let Ω be a domain in Rn and Th ⊆ T be a tri-
angulation of Ω in a �nite number of simplexes. Then the Taylor-Hood �nite
element space is denoted by

V h = {vh ∈ H 1 : v |τ ∈ (Pk+1)
N for all τi ∈ Th}, (3.12a)

Qh =

{
qh ∈ L2 : qh |τ ∈ Pk for all τi ∈ Th,

∫
Ω
qh dx = 0

}
. (3.12b)

De�nition 3.1 was introduced in [80] including an extensive stability analysis.
Other stable �nite elements exist, but are not considered in this case. As a result,
we de�ne the discretized variational form of Problem 3.1 using Equation (3.12).
This yields

Problem 3.2. Find uh ∈ V h and ph ∈ Qh such that(
ρ
∂uh

∂t
,vh

)
+ c (uh,vh ) + a(uh,vh ) − b (vh,ph ) − (ρ f h,vh ) = 0, (3.13)

b (uh,qh ) = 0, (3.14)

for allvh ∈ V h and qh ∈ Qh .

As mentioned in Section 1.3 the �ow in Problem 3.2 can be advection domi-
nated and in such cases even a stable �nite element pair leads to high oscillations
in the solution. Therefore we adapt the Streamline-Upwind Petrov-Galerkin
(SUPG) method for the Navier-Stokes equation from [81]. For notation purposes
let us de�ne the residual formulation of Problem 3.2 with

A (uh,vh,ph,qh ) = (3.13) − (3.14) = 0, (3.15)
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and the residual formulation of the incompressible Navier-Stokes equation with

R (uh,ph ) = (3.3a) − (3.3b) = 0. (3.16)

Now with the SUPG stabilization term

τSUPG (uh · ∇)vh (3.17)

we de�ne the stabilized problem:

Problem 3.3. Find uh ∈ V h and ph ∈ Qh such that

A (uh,vh,ph,qh ) +
∑
K∈T

∫
τSUPG (uh · ∇)vh · R (uh,ph ) dK = 0 (3.18)

for allvh ∈ V h and qh ∈ Qh .

Like in the simple example in Section 1.3 one can observe that the stabilization
term is only non-zero when a residual R (uh ) is present. If uh approaches the
exact solution the term vanishes. The choice of the stabilization parameter τSUPG

is a research topic on its own and the interested reader is referred to [81] and the
references therein. The given parameter is subsequently used

τSUPG =



( 2
∆t

)2
+

(
2|uh |
h

)2
+

(4ν
h2

)2

− 1
2

(3.19)

and includes the chosen time step ∆t and the element diameter h.
Remark 3. This stabilization is not assumed to be applied by default. It is in the
following always mentioned, when the stabilized version is used and why it is
appropriate in that case.

Another related stabilization is the Pressure Stabilizing Petrov Galerkin method
introduced in [45]. Reviewing this approach, it allows the use of equal order el-
ements and prevents the restriction from the inf-sup condition. Similar to the
pressure de�ned outlet boundary condition, this leads to an unwanted e�ect in
the discretized system that will be mentioned in the next paragraph and therefore
this technique will not be considered further. Solving the discretized system
in Problem 3.2 requires a nonlinear solution method like the Newton method
to be used. A Newton method is based on the evaluation of the residual in the
generically unknown vector x

F (x ) = 0,
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Algorithm 1 Newton’s method
x0 ← initial guess
for k = 1, 2, . . . do

Solve J (xk−1)δx = −F (xk−1)
xk = xk−1 + δx

end for

and a solution of a linear system at every iteration involving the system Jacobian

J (x ) =
∂F (x )

∂x
,

which resembles a directional derivative of the residual. The complete algorithm
is given in Algorithm 1. Due to the large number of degrees of freedom involved
in �uid �ow based models, parallel computing techniques involving iterative
solvers and preconditioners like Krylov methods are necessary. A comprehensive
review of those techniques is given in [71]. For further analysis and discussion of
the used techniques we consider the system of Problem 3.2. Applying Algorithm 1
we form the Jacobian by linearizing about a state x by applying the Gateaux
derivative. This results in a block matrix of the form

J (x ) =

[
A BT

B 0

]
, (3.20)

and is described as a saddle point system. The linear system, which has to be
solved in every Newton iteration is now of the form

[
A BT

B 0

] [
δxu
δxp

]
=

[
ru
rp

]
. (3.21)

with ru and rp the residuals computed from −F (x ). These systems are notoriously
hard to solve using Krylov methods like the Generalized minimal residual method
(GMRES) and the e�ectiveness of the solver depends on the availability of a good
preconditioner. While it is possible to de�ne a preconditioner for the whole block
matrix like domain decomposition techniques, one is advised to use speci�cally
developed methods. A common technique is to consider the pressure Schur
complement which reads

S = BA−1BT (3.22)

and results from the full factorization of the Jacobian in a lower triangular, diago-
nal and upper triangular part

[
A BT

B 0

]
=

[
I 0

BA−1 I

] [
A BT

0 −S
]
. (3.23)
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Since it is necessary to provide the inverse of S , one also has to compute the inverse
of A which is almost completely dense and therefore these specialized techniques
focus on �nding a good enough approximation to S̃ ≈ S . A very e�cient technique
for approximation, the Least-squares commutator (LSC), is described in [25] and
summarized in the next paragraph. This technique approximates the Jacobian
of Problem 3.2 by a block-triangular system with

J ≈
[
A BT

0 −S̃
]

(3.24)

and solving the system by using the second row to compute xp

δxp = −S̃−1rp

and using the solution to compute δxu with

δxu = A−1(ru − BTδxp ).
The solution procedure requires the computation of two inverses S̃−1 and A−1.
Following the descriptions in [25], S̃ is approximated by

S̃ = −(BM−1
u BT )−1(BM−1

u AM−1
u BT ) (BM−1

u BT )−1

with M−1
u the inverse of the mass matrix of the velocity space. Moreover we now

have to provide solver and preconditioner combinations for

P = BM−1
u BT (3.25)

and M−1
u . The authors in the reference state that the matrix resulting from Equa-

tion (3.25) resembles a scaled Poisson matrix and therefore an optimal precondi-
tioner for this is an Algebraic Multigrid technique [71] and the mass matrix of the
velocity space is preconditioned with a diagonal smoother. This preconditioning
algorithm allows the parallel computation using iterative solvers.

3.4 Coupling of �uid �ow and heat transfer
Encapsulating multiple physical phenomena such as �uid �ow and accompanied
heat transfer or �uid structure interaction in one simulation is a topic of recent
research [48]. Techniques and discussions in this resource are of great interest for
the research in this work because of the multiphysics character of the Boussinesq
equation which is used to model air �ow and heat transfer. For the solution one
has to identify how much accuracy is needed for the purpose that the simulation
has to ful�ll and weigh up the resulting computational needs for one simulation or
number of simulations needed for further analysis like optimization. Consequently
one has to decide between the formulation of a coupled or decoupled problem.
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3.4.1 Loose and tight coupling
The solution techniques for multiphysics problems can be simpli�ed and split into
two major approaches. Consider a system with multiple physics described by a
residual formulation using a partial di�erential equation which is also dependent
on time

F1(x1,x2) =
∂x1
∂t
− f1(x1,x2) = 0, (3.26a)

F2(x1,x2) =
∂x2
∂t
− f2(x1,x2) = 0. (3.26b)

A common approach is the operator splitting approach described in Algorithm 2,
which is convenient because it looks independently at the di�erent physical
components by taking the known previous timestep of the second variable and
solving the �rst equation and afterwards using the known �rst variable to solve the
second equation. This technique is easy to implement and available software and

Algorithm 2 Operator splitting
{x1(t0),x2(t0)} ← initial guess
for k = 1, 2, . . . do

Solve for one timestep ∂x1
∂t − f1(x1,x2(tk−1)) = 0

Solve for one timestep ∂x2
∂t − f2(x1(tk ),x2) = 0

end for

solution techniques for the individual physics can be used, although the solution
is bound to �rst order accuracy in time due to the splitting approach unless an
involved process of higher order splitting methods is introduced. Furthermore,
any coupling terms that would appear in a formulation which was built from
scratch to support multiphysics are basically neglected. Due to this we refer to
this approach as loose coupling.

If we formulate the residual as a vector residual that reads

F (x1,x2) =

[
F1(x1,x2)
F2(x1,x2)

]
= 0, (3.27)

we can use a Newton method to couple the system using Algorithm 1. The authors
in [48] also highlight that using the Newton method, thus building the Jacobian

∂F (x )

∂x
=



∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2


(3.28)

in every iteration, includes the o� diagonal terms. In a loose coupling approach
these terms are not present and therefore the Newton method is referred to as
being tightly coupled.
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3.4.2 Preconditioning
Solving tightly coupled systems can be involving especially when tackling large
problems which require Krylov methods and thus appropriate preconditioners.
Recently there is a momentum in software packages to support physics based
preconditioners or also called block preconditioners. To demonstrate the applica-
tion we consider the Boussinesq equations Equation (3.5) which can be described
with a combined residual

F (u,p,T ) =



F1(u,p,T )
F2(u,p,T )
F3(u,p,T )


= 0,

and the corresponding Jacobian after discretization and linearization

∂F (u,p,T )

∂(u,p,T )
=



∂F1
∂u

∂F1
∂p

∂F1
∂T

∂F2
∂u

∂F2
∂p

∂F2
∂T

∂F3
∂u

∂F3
∂p

∂F3
∂T



=



A BT C
B 0 0
D 0 E


. (3.29)

Equation (3.29) clearly shows the physics coupling terms on the o�-diagonal of the
Jacobian. Finding a good preconditioner is a matter of approximating the inverse
of an operator as accurately as necessary and e�ciently as possible. Therefore we
concentrate on the block diagonal part of Equation (3.29) which can be decoupled
by ignoring the o�-diagonal terms and formulating separate preconditioners for
the �rst block of the variables u and p

[
A BT

B 0

]

and the advection-di�usion block of the variable T denoted by matrix E. As
we saw in Section 3.3 for the velocity/pressure block it is now convenient to
use the LSC technique. Due to the characteristics of the temperature block, we
conveniently use an Algebraic Multigrid technique as well.
Remark 4. The reader has to keep in mind, that we just ignore the o�-diagonal
blocks in the preconditioning techniques. This does not degrade the tight coupling,
since we still involve these blocks in the fully coupled Newton solve and their
contributions to the overall residual are still present.

3.4.3 Numerical comparison
In this section we analyze the behavior of a natural convection problem described
by Equation (3.5) with real physical parameters by using a loose and a tight
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Figure 3.2: Natural convection problem in a cavity.

coupling approach to determine which formulation is appropriate for further
algorithm development and suitability for optimization. We consider a two di-
mensional domain consisting of a square cavity with 10 cm side length and �lled
with air (c.f. Figure 3.2. The left side is �xed to the cold temperature of 293 K and
the right side is �xed to the hot temperature of 294 K while the top and bottom
walls are ideally insulated. We use a time dependent formulation (although this
test is often done using an equilibrium assumption) to compare the time depen-
dent behaviors of the coupling approaches. The density of air at around 293 K
is ρ = 1.225 kg/m3, the kinematic viscosity ν = 1.567 × 10−5 m2/s, the thermal
conductivity k = 0.025 37 W/(m K), the speci�c heat capacity Cp = 1005 J/(kg K)
and we assume the thermal expansion coe�cient to be α = 3.47 × 10−3 1/K.

The loose coupling follows the regime of Algorithm 2, where the momentum
equation of the Navier-Stokes equations is solved �rst using the temperature
solution of the previous solve and then the computed velocity is used to compute
the solution of the energy equation to determine the new temperature. Tight
coupling is achieved by formulating a combined residual and using a monolithic
Newton approach as shown in Algorithm 1.

To determine a measure of correctness for comparison of both approaches,
we assume that the tightly coupled method is “more correct” than the loosely
coupled. Therefore we use the solution as a desired solution x∗ = [u∗,p∗,T ∗]T to
compute the in�nity norm

‖x − x∗‖∞ = max
i
|x (ti ) − x∗(ti ) |

and observe if or how much the solution deviates. One can see the visualized
results in Figure 3.3 and we compute the previously discussed norm solely on the
temperature �eld

‖T −T ∗‖∞ = 2.14 × 10−8. (3.30)
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Concluding from the result of Equation (3.30) and the visual solutions in Figure 3.3
there is just a slight numerical di�erence in the solution when comparing the
two methods. There is no signi�cant di�erence in computational cost and both
simulations took ≈ 2.5 min to complete. This behavior leads to the assumption
that it is safe to decouple the energy equation part in the solution of the Boussinesq
equations if one does not strive for more than �rst order accuracy in time. It also
encourages the intention in Chapter 4 where we try to decouple multiphysics to
reduce computational in optimization problems.
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(a) Coupled t = 5 s. (b) Decoupled t = 5 s.

(c) Coupled t = 50 s. (d) Decoupled t = 50 s.

(e) Color bar for the temperature pro�le range.

Figure 3.3: Comparison of loose and tight coupling in a natural convection prob-
lem. The temperature pro�le tightly coupled method is shown in the left column
and the loose coupling in the right column.
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3.5 Validation and veri�cation

3.5.1 Flow around a cylinder
Besides the usual Method of Manufactured Solutions we test the developed code
against a benchmark problem of a �ow around a cylinder �rst described by [73].
Consider the non-dimensionalized incompressible Navier-Stokes Equations (3.3a)
and (3.3b) with density ρ = 1 and kinematic viscosity ν = 0.001. The geometry
for this example is depicted in Figure 3.4 and consists of a channel Ω ∈ [0, 2.2] ×
[0, 0.41] with a cylinder located at (0.2, 0.2) with radius 0.05. The upper and
lower wall as well as the cylinder boundary are modeled as walls with a no-slip
boundary condition. The in�ow boundary condition on the left is implemented
with the pro�le

u =
[
4umy (0.41 − y)0.412, 0

]T

and um = 1.5. The out�ow boundary condition is implemented using a stress-free
out�ow described by

νu · n − pn = 0.

From these quantities and the characteristic length of the �ow L = 0.1 we can
compute the Reynolds number as

Re =
umL

ν
=

1.0 · 0.1
0.001 = 100.

To compare our results to the published benchmark results in [73] we compute
the numerical quantities including the drag and lift forces described by the normal
forces on the cylinder boundary by

[FDFL]T =
∫
Γc

(ν∇u − pI)ndΓ,

0.2

0.21

0.2

2.2

0.41

Figure 3.4: Flow around a cylinder.
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Figure 3.5: Velocity magnitude of the DFG 2D benchmark test of transient �ow
around a cylinder with fully developed periodic �ow.

CDmax CLmax Pd

Ref. [73] [3.0804, 3.32] [0.688, 1.25] [2.0954, 2.6066]
Impl. 3.1161 1.0517 2.4458

Table 3.1: Comparison of numerical quantities with reference values from [73]
for the DFG 2D benchmark test of transient �ow around a cylinder.

and the corresponding drag and lift coe�cients

CD =
2

u2
mL

FD, CL =
2

u2
mL

FL.

Furthermore we also compute a pressure di�erence between the points P1 =
(0.15, 0.2) and P2 = (0.25, 0.2) with

Pd = P1 − P2.

The simulation process matches the one described in [73], where the simulation is
run until 25 s and an arbitrary cycle of the periodic �ow with frequency f = 0.33 s
is post processed to compute the maximum of CD,CL and mean of the pressure
di�erence Pd . A snapshot of the velocity magnitude pro�le in that time frame can
be seen in Figure 3.5.

The authors in [73] gathered results from a variety of participants in the
benchmark study and provide reference values for the computed quantities. There
is no speci�c participant in the reference that used a comparable algorithm to the
one suggested in this work for the solution above. The closest example is a similar
discretization using a compatible Taylor-Hood �nite element pair (P2/P1) , but
with a segregated or pressure projection scheme. Hence the three most spatially
re�ned results of each participant are used for a comparison range in Table 3.1.
The simulation was run with a constant time step of ∆t = 0.005 using the BDF-1
method and a spatial discretization with 28127 degrees of freedom. As one can
see, all computed values lie within the reference range.
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Figure 3.6: Cavity.

3.5.2 MIT cavity benchmark
The MIT cavity benchmark example proposed by [17] simulates a �ow in a cavity
driven by a temperature di�erence of the side walls modeled by the Boussi-
nesq Equation (3.5). In this particular case Equation (3.5) is non dimensionalized

∂u

∂t
+ (u · ∇)u = −∇p +

√
Pr

Ra
∇2u − дT in Ω × R, (3.31a)

∇ · u = 0 in Ω × R, (3.31b)
∂T

∂t
+u · ∇T = 1√

RaPr
∇2T in Ω × R (3.31c)

and described by the values of the Rayleigh number Ra = 3.4 × 105 and the
Prandtl number Pr = 0.71. The height of the cavity is set with H = 8 and the
width isW = 1. All velocity boundary conditions are chosen to be no-slip on the
walls and a hot temperature Th = 0.5 on the left as well as a cold temperature
Tc = −0.5 on the right are introduced. The top and bottom of the cavity are
assumed to be isolated and gravity д is pointing downwards. An illustration of
this can be viewed in Figure 3.6. The objective described in [17] is to compute
the quantities of the velocity u and the temperature T at di�erent points in the
domain (although just P1 = (0.1810, 7.3700) is considered here) as well as the
Nusselt number

Nu =
1
H

∫ H

0

∂T

∂x
|x=0,W dy
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u1 T1 −Nu
? 0.058 0.26 4.59
Turek 0.057 0.26 4.58
Davis 0.056 0.27 4.58
Gresho 0.057 0.27 4.58
Le Quéré 0.056 0.27 4.58

Table 3.2: Computed quantities of the MIT benchmark of a heated cavity with 8:1
aspect ratio at measurement point P1 (denoted by?) compared to results gathered
in [21].

on the walls. The spatial discretization uses a structured grid built with 40
triangles in the horizontal and 100 triangles in the vertical direction. We use no
local re�nement like other authors mentioned in [21] do. Using the mentioned
discretization this results in 25 754 degrees of freedom in the nonlinear system
which is not nearly as much as the numbers mentioned in the publication with a
range from ∼ 85 000 to ∼ 560 000. In [21] a few results are gathered from di�erent
authors and listed for comparison in Table 3.2. The temperature and velocity
pro�le with fully developed oscillating �ow can be viewed in Figure 3.7. Although
there may be small di�erences, the results are conforming with the gathered
results of other authors. Reviewing the comparison, one has to keep in mind the
di�erence in grid resolution and choice of element types (quadrilaterals in most
references and triangles in the present implementation) as well as solution and
preconditioning method of the linear and nonlinear system.
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(a) Temperature. (b) Velocity magnitude.

Figure 3.7: MIT cavity benchmark example showing the temperature pro�le in
(a) and the velocity magnitude in (b).
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Chapter 4

Optimal control

One of the main aspects in this work is to investigate viable methods for optimiza-
tion problems in multiphysics systems using the �nite element method. Looking
at the examples developed in Chapter 2 and Chapter 3 we can de�ne situations
in which optimal control approaches are reasonable. Taking for example a heat-
ing process of a plate where the objective is to achieve a certain homogeneous
temperature at a speci�c time on the material controlled by heating elements.
The problem here would be compute a time dependent trajectory for the heating
elements that ful�ll these conditions and upholds the underlying physics. This
can be described in the general context of PDE constrained optimization. In most
literature (see i.e. [83]) these problems are de�ned on decision variables x for the
optimal control problem which are in the function space of the partial di�erential
equation and therefore x ∈ H 1 or x ∈ L2. In all following cases we only consider
decision variables x ∈ Rn. This is achieved by mapping operations that describe
for example a percentage or amplitude of an actuator that heats a certain part of a
boundary. Details of this process are further explained in the upcoming sections.

In recent publications many di�erent techniques have evolved regarding the
control of heating ventilation and air conditioning (HVAC) systems. The most
similar approach to the method presented in this work is [40], where the Navier-
Stokes equations are used in combination with a di�usion-convection model but
a stationary air �ow pro�le is assumed and therefore no time dependency in the
Navier-Stokes equations is introduced. Furthermore in [40] the process involves
the full set of equations in the optimization process. Similarly the authors in [11,
16] analyzed a linear-quadratic regulator approach based on the linearized Navier-
Stokes model combined with stationary air �ow pro�les. Other approaches like
the one described in [38, 39] use similar techniques based on lower dimensional
ordinary di�erential equation models and using Model Predictive Control methods.
These methods are generally more computationally e�cient, but cannot make
use of the air �ow pro�le information.

45
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4.1 PDE constrained optimization
With the intention to solve the mentioned tasks, like �nding an input for a heating
problem that su�ces certain conditions and restrictions, one has to properly
de�ne an optimal control problem in a suitable mathematical setting. A general
optimization problem can be described as follows:

Problem 4.1 (General optimization problem). Let x ∈ Rn and f ,дi ,hj be functions,
then we can formulate a static optimization problem by

min
x

f (x ) (4.1a)

subject to
hi = 0, (4.1b)
дi ≤ 0, (4.1c)
x ∈ [xl ,xu] , (4.1d)

with дi the, probably nonlinear, functions describing inequality constraints and
hi describing equality constraints. Equation (4.1d) prescribes the bounds that the
decision variables x are allowed to reside in, with xl and xu being lower and upper
bounds respectively. The objective is now to �nd and a solution for x that minimizes
f (x ) such that all constraints are ful�lled.

To motivate the discussion in the next sections an example of an optimal
control problem for a partial di�erential equation is developed. These presented
concepts include only a brief overview of the existing theory and are required
to explain the background in the process of the next sections and concepts from
[83, 36] are used. Looking at a simpli�ed example of Equation (2.1) we de�ne the
stationary heat equation with density ρ = 1, speci�c heat capacity Cp = 1 and
thermal conductivity k = 1 as

−∇2T = 0 in Ω, (4.2a)
∇T · n = α (Q −T ) on Γ. (4.2b)

Furthermore we de�ne a so-called objective functional where we assume that Q
is our input. A typical objective functional is the quadratic term

J (T , c ) =
1
2 ‖T −T

∗‖2L2 (Ω) +
γ

2 ‖Q ‖
2
L2 (Γ)

(4.3)

which states that the solution T should be as close to the desired solution T ∗ as
possible in the L2 norm while keeping the control input Q small. The variable γ
serves as a tunable Tikhonov regularization parameter.
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To understand the necessity of a mapping for the control variable mentioned
in the introduction of this chapter, one has to look at the physical aspects of the
terms. When Q ∈ L2 is the control variable for our problem, then this means
that we have a physical device that can heat in�nitely small parts of a domain to
a speci�c temperature (and therefore in L2). Here, available devices work with
di�erent concepts and provide a constant temperature for the whole actuator
device and thus heat homogeneously on the whole domain of the device and
therefore the boundary part of the domain. Although it might be viable to look at
the problems with a control input de�ned in L2, one has to adapt the solution or
hardware afterwards in order to comply with a physical example. Concluding
these thoughts a simple mapping is introduced by using the decision variable
c ∈ R, which represents a percentage of a possible control range for an input
Q ∈ L2 such that the problem in Equation (4.2) is reformulated as

−∇2T = 0 in Ω, (4.4a)
∇T · n = α (cQ −T ) on Γ. (4.4b)

The corresponding objective functional is then

J (T , c ) =
1
2 ‖T −T

∗‖2L2 (Ω) +
γ

2c
2. (4.5)

This formulation restricts the solution space numerically in comparison to an
L2 control, since Q is constant, but represents a more physical formulation for
the actuation. This mapping is feasible, if Q ∈ L2 and |c | < ∞ then it holds that
cQ ∈ L2 since

‖Q ‖L2 =
*
,

∫
Ω
|Q |2 dx+

-

1/2

< ∞, (4.6)

then

‖cQ ‖L2 =
*
,

∫
Ω
|cQ |2 dx+

-

1/2

< ∞. (4.7)

The objective depends on two unknown variables, the temperature T and the
control input c . In this context it is assumed that the primary state variable (in
this case T ) always has to be computed �rst and thus it is possible to write J (c ).
Finally, we state an optimal control problem, which is constrained by a partial
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di�erential equation using the formulation

min
c

J (c ) =
1
2 ‖T −T

∗‖2L2 (Ω) +
γ

2c
2 (4.8a)

subject to
F (T ) = 0, (4.8b)
c ∈ [0, 1] , (4.8c)

where F (T ) is the residual formulation of Equation (4.4). To solve an optimal con-
trol problem de�ned by Equation (4.8) the Karush-Kuhn-Tucker (KKT) conditions
have to be ful�lled. These de�ne �rst-order necessary conditions for the solution
to be optimal [12]. They state that x̄ is an optimal point of Problem 4.1 and it
ful�lls the following conditions

∇f (x̄ ) +
m∑
i=1

µi∇дi (x̄ ) +
l∑

j=1
λj∇hj (x̄ ) = 0 (4.9a)

дi (x̄ ) ≤ 0 for all i = 1, . . . ,m (4.9b)
hj (x̄ ) = 0 for all j = 1, . . . , l (4.9c)

µi ≥ 0 for all i = 1, . . . ,m (4.9d)
µiдi (x̄ ) = 0 for all i = 1, . . . ,m. (4.9e)

The �rst step in solving the example in Equation (4.8) is to de�ne a Lagrangian
(the KKT conditions are a generalization of Lagrange multipliers [12, 53]) by
taking the inner product with the Lagrange multiplier λ, de�ned in an appropriate
space, with the equality constrained partial di�erential equation and subtracting
it to the objective functional we get

L = J (c ) +
∫
Ω
∇2Tλdx . (4.10)

Remark 5. The reader should note, that the formulation for Hilbert spaces is used
and thus an inner product notation is used.

To ful�ll Equation (4.9) the gradient of the Lagrangian has to be computed
which is done by taking the Gateaux derivative of Equation (4.10). This is usually
a tedious process even for the most simple problems and the next part should
gather as much steps as possible in order to cover the common pitfalls in the
process. Therefore the control variable c has to be perturbed by hĉ . This operation
basically means that we analyze what a small di�erence in the control input would
have on the system and thus the output, hence this is also called the sensitivity.
If a variable is dependent on the perturbation the short notation

T̃ = T (c + hĉ )
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is used. The Gateaux derivative of Equation (4.10) reads

δL = ∂
∂h

[∫
Ω

1
2 (T̃ −T

∗)2 dx +
γ

2 (c + hĉ )
2 +

∫
Ω
λ∇2T̃ dx

]

h=0
.

Di�erentiating the �rst and second term and substituting

T̂ =
∂

∂h

[
T (c + hĉ )

]

h=0
,

as well as using the chain rule for the �rst term where it holds that

∂

∂h

[∫
Ω

1
2 (T (c + hĉ ) −T

∗)2 dx
]

h=0
=

∫
Ω

∂T (c + hĉ )

∂h

�����h=0
(T (c + hĉ ) |h=0 −T ∗) dx

this leads to

δL =
∫
Ω
(T −T ∗)T̂ dx + γcĉ +

∂

∂h

[∫
Ω
λ∇2T̃ dx

]

h=0
. (4.11)

Using partial integration and Greens identity for the last term twice results in

δL =
∫
Ω
(T −T ∗)T̂ dx + γcĉ

+
∂

∂h

[∫
Ω
T̃∇2λdx −

∫
Γ
T̃∇λ · n ds +

∫
Γ
λ∇T̃ · nds

]

h=0
(4.12)

Substituting the boundary condition like in the process of a variational formulation
in the last term yields

δL =
∫
Ω
(T −T ∗)T̂ dx + γcĉ

+
∂

∂h

[∫
Ω
T̃∇2λdx −

∫
Γ
T̃∇λ · n ds

]

h=0

+
∂

∂h

[∫
Γ
λ(−αT̃ + αQ (c + hĉ )) ds

]

h=0
. (4.13)

Now by pulling in the derivative ∂
∂h and setting h = 0 afterwards

δL =
∫
Ω
(T −T ∗)T̂ dx + γcĉ +

∫
Ω
T̂∇2λdx

−
∫
Γ
T̂∇λ · nds −

∫
Γ
αλT̂ ds +

∫
Γ
αλQĉ ds . (4.14)



50 4. Optimal control

Finally, terms containing T̂ and ĉ are collected to visually di�erentiate between
the two computed sensitivities

δL =
∫
Ω
(T −T ∗)T̂ dx +

∫
Ω
∇2λT̂ dx −

∫
Γ
T̂∇λ · nds −

∫
Γ
αλT̂ ds

+ γcĉ +

∫
Γ
αQλĉ ds . (4.15)

The so called adjoint equations are obtained from the T̂ terms, which is stated
in residual form, but can easily be reformulated as a partial di�erential equation
with boundary conditions like

−∇2λ = T −T ∗ in Ω, (4.16a)
∇λ · n + αλ = 0 on Γ. (4.16b)

Equation (4.16) does not depend on the control input c and is only driven by the
T −T ∗, the di�erence from the state and the desired state. Furthermore a reduced
gradient can be obtained by assuming Equation (4.16) can be solved and thus the
residual appearing in the Lagrangian is zero and yields by dividing with ĉ

∂J

∂c
= γc +

∫
Γ
αQλds . (4.17)

The presented derivation is a classical way of �rst optimize then discretize. An
alternative way, called �rst discretize then optimize, is discussed in the context of
gradient computation in the next section.
Remark 6. Note that this derivation could also be done in the way thatQ would be
perturbed by hQ̂ and afterwards is de�ned to be dependent on c . The notation of
Q (c ) would be introduced and the derivation would be the same and still correct,
since this is only a matter of preference and notation to make clear that the control
and thus the gradient are in R.

Reviewing Equation (4.9) and assuming no inequality constraints (m = 0) the
state equation Equation (4.4) and adjoint Equation (4.16) ful�ll the KKT conditions
if the control input c̄ is in the admissible set de�ned by the bounds. An intuitive
way of solving the problem is to formulate them as a monolithic system, which
resembles the full space method, where all variables are solved simultaneously
for example with a Newton method. This results in a complex block system
which is often ill-conditioned (see e.g. [1]). In time dependent problems the
block system increases to unmanageable dimensions and one is forced to use
�xed time grids. Due to the problems here being time dependent, this method
is not considered and we concentrate on the reduced space approach in which
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Algorithm 3 Reduced space optimization
c0 ← initial guess
for k = 1, 2, . . . do

Solve state equation (4.4) for T
Solve adjoint equation (4.16) for λ
Compute ∂J∂c = γc +

∫
Γ
αQλds

Decide how to change c and continue
end for

the dependent variables are basically eliminated by solving the state and adjoint
equations separately. A general way for solving would be to �rst compute a
solution of the state equation Equation (4.4) and therefore eliminate the unknown
T from Equation (4.16). Afterwards the adjoint equation is solved to obtain λ. In
every case, this system is linear and depends on the state of the state equation.
Finally the gradient Equation (4.17) can be computed using the adjoint variable λ.
The procedure is summarized in Algorithm 3. This method is attractive because
it allows the decoupling of the solution of the state and adjoint equation and it
is possible to use speci�c numerical techniques for each problem. There exist a
variety of solution methods to solve optimization problems as the one de�ned
above and an overview is given in [47]. The most common are gradient and
Newton or Quasi-Newton type methods. For the sake of simplicity these methods
are assumed to be given in the following context.

Remark 7. Since this work does not deal with decision variables in spaces other
than R it is possible to utilize given implementations of the mentioned optimiza-
tion algorithms. If the decision variables is de�ned in a vector function space
like H 1 or L2 most of the implementations do not comply with the inner product
choices and have to be used very carefully. One should review this problem in [77]
where a detailed explanation is given regarding the problem.

Remark 8. In this remark a brief overview about the two fundamental methods
on how to derive an expression for the gradient is given. As introduced in the
last section the computation of the gradient is an elementary step in solving an
optimization problem. The presented approach leaves the equation as is and starts
to derive a formulation that optimizes the problem. For numerical computation
the results still have to be discretized in space and often also in time. Thus it
is called �rst optimize then discretize and allows a thorough breakdown on a
mathematical basis during the whole derivation but requires an involving process
to compute the adjoint equation and gradient expression symbolically by hand.
Further bene�ts are that one is able to theoretically use di�erent discretization
methods for the state and adjoint equation since the formulation does not assume
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anything speci�c. Even time discretization can be chosen completely independent
and an implementation of the state equation using backward Euler and a forward
Euler method for the adjoint is possible (assuming numerical stability). Hence
it is even possible to use adaptive time stepping methods such that dynamic
characteristics can be exploited and computational times can be greatly reduced
(see e.g. [78]).

In the other major approach the state equation and objective functional are dis-
cretized in the �rst step and the Lagrangian is formed from that. Then optimality
conditions are derived from the discretized equations. A considerable advantage
to this method is the possibility to use automatic di�erentiation which allows us
to derive the gradient of the Lagrangian by simply using the appropriate software
calls in the implementation which is much less error prone than the derivation
by hand. This leads to the aspect that the discretization in space and time has to
be the same for the state and adjoint equation and there is no possibility known
to the author to use adaptive time stepping in that context. As mentioned in [1]
and the references therein, in particular [36], the optimality conditions can be
very di�erent from the �rst optimize then discretize approach but there are also
references that show a corresponding gradient using automatic di�erentiation and
a symbolic derivation of the adjoint [44]. Since the �rst optimize then discretize
approach allows for more �exibility, the method is used in the following.

4.2 Heating process of an aluminum block

To demonstrate the application of an optimization problem on a physical ex-
ample, a benchmark was developed in the course of this work. An illustration
of the CAD model can be seen in Figure 4.1. The construction consists of a
15 cm × 15 cm × 10 cm aluminum block of EN AW 5083 material. The 36 side
holes �t actuators with 8 mm diameter and 40 mm length. Not all holes are
occupied by actuators but rather should provide options for di�erent actuator
con�gurations. The actuators are cartridge heaters from the company hotset
GmbH, speci�cally hotrod type HHP. Sensors are placed on the surface for vali-
dation and are thermocouple elements of type J. In a benchmark run there are
a total of 8 actuators and 8 sensors connected to a hotset hotcontrol cDT 12
which communicates with a LabView computer connected via Ethernet.

4.2.1 Mathematical modeling and parameter identi�cation

At �rst the behavior of the actuators is analyzed. For this purpose we use the
hotcontrol unit and put the desired temperature to 333.15 K and measure the
temperature at the tip of the actuator with the integrated sensor. As one can
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Figure 4.1: Illustration of the CAD model for the heating benchmark problem.

see in Figure 4.2, the temperature rises from 302 K to the desired temperature of
333.15 K in 244 s with a slight overshoot, which happens because of lower level
controllers in the hotcontrol unit. Looking at the steep gradient in Figure 4.2 we
can see the 30 K di�erence in the �rst 9 s where the actuator is active. Therefore
we can verify the manufacturer response time of 0.3 s per K.

In order to compute appropriate optimization examples, the simulation model
has to be de�ned and discretized properly. We de�ne the computational domain
with the aluminum block with Ω and the boundaries Γ := Γs ∪ Γc with contact to
the actuators are de�ned by Γs , where s indicates an incoming heat �ux from a
source. Boundaries with no contact to another solid material are indicated with
Γc (c for cooling). Furthermore a measurement boundary Γtop at y = 15 cm in the
XZ plane is de�ned. Then the model can be described by:

ρCp
∂T

∂t
− k∇2T = 0 in Ω × R, (4.18a)

n · k∇T = ciQi on Γsi × R, (4.18b)
n · k∇T = h(T∞ −T ) on Γc × R. (4.18c)

Before trying to compute a solution to an optimal control problem the physical
material parameters have to be identi�ed. For this purpose guideline variables
were chosen from the materials as follows

• density ρ = 2700 kg/m3,
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Figure 4.2: Actuator jump from 302 K to 333.15 K.

• speci�c heat capacity Cp = 921 J/kg K,

• thermal conductivity k = 210 W/m K.

The only missing parameter is the heat transfer coe�cient h which in this case
has to be de�ned for aluminum and air and no forced convection (no air �ow
assumed). According to [85] this parameter is in the range of ≈ 5 W/m2 K for
a temperature di�erence of 30 K. Equation (4.18) is discretized using the �nite
element method described in Section 2.3 and di�erent values for h are simulated
and evaluated by comparison with on measurements. The MFEM implementation
introduced in Section 2.3 was used for the identi�cation because of the adaptive
time stepping capabilities. The solutions are compared against a run on the

2 3 4

Figure 4.3: Actuator con�guration from the front view in the XY plane.

physical benchmark that used 7 actuators and 9 sensors in the con�guration
seen in Figures 4.3 to 4.5 which heat the aluminum block from 301 K on the top
surface to ≈ 380 K by setting a constant actuator percentage of 25% during a
9000 s time frame. The sensor con�guration included 7 sensors on the top surface
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1

Figure 4.4: Actuator con�guration from the side view in the YZ plane.

1 5

2 3 4

8 7 6

Figure 4.5: Sensor con�guration from the top view in the XZ plane.
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Figure 4.6: 25 % on 7 actuators during a 9000 s timeframe. Sensor 9 is an actuator
in this case which is used only for measurement.

because one sensor was used to measure the ambient temperature to verify the
hypotheses that the ambient temperature does not change signi�cantly in a small
distance (here ≈ 10 cm) of the block. Figure 4.6 shows the comparison using
h = 7.5 W/m2 K. It is clear to see that the simulation matches the behavior of
the physical benchmark and therefore is a suitable model for further analysis in
optimal control problems.

4.2.2 Homogeneous temperature example

As an example for an optimal control problem that can be tested on the experiment
consider the setup described in Section 4.2.1 so that the 8 actuators and 8 sensors
are in the same positions as in Figures 4.3 to 4.5. An objective functional that
penalizes the pro�le di�erence from the desired pro�le at a speci�c end time te as
well as the control input amplitude ci of each of the Na = 8 actuators over the
whole time frame is introduced. The complete problem is described by

min
c

J (c ) =
Na∑
i=1

∫
γ1
2 c2

i dt +

∫
Γtop

γ2
2 (T (te ) −T ∗)2 ds (4.19a)
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subject to

ρCp
∂T

∂t
− k∇2T = 0 in Ω × R, (4.19b)

n · k∇T = ciQi on Γsi × R, (4.19c)
n · k∇T = h(T∞ −T ) on Γc × R (4.19d)

and

−10 ≤ ∂ci
∂t
≤ 10 for all t ∈ (t0, te ), (4.19e)

0 ≤ ci ≤ 100 for all t ∈ (t0, te ). (4.19f)

The equality constraint now contains the time dependent partial di�erential
equation of the transient heat equation. Furthermore an inequality constraint
is introduced in Equation (4.19e) whose purpose is to limit the rate of change
of the control input ci (t ) to not change more than 10% in every control interval.
To work with a gradient based optimization algorithm the Lagrangian has to be
formulated and an expression for the gradient has to be derived. As in previous
examples the continuous adjoint method is used to compute the gradient and
the process deriving the adjoint equation for the problem above can be reviewed
in Appendix A. The adjoint equation then reads

−ρCp
∂λ

∂t
− k∇2λ = 0 in Ω × R, (4.20)

k∇λ · n = 0 on Γsi × R, (4.21)
k∇λ · n + κλ = 0 on Γc × R. (4.22)

It should be pointed out that the time di�erentiated part in the equation has a
negative sign and therefore has to be time reversed. The negative term would
go from t0 to te , as derived in Appendix A and by changing the sign and thus
switching the bounds of the time interval the time for the adjoint equation goes
from te to t0. The initial condition can be derived (since the equation is time
reversed this is indicated with te ) from

ρCpλ(te ) |Γtop + γ2(T (te ) −T ∗) = 0 (4.23)

λ(te ) |Γtop = −
γ2
ρCp

(T (te ) −T ∗) (4.24)

and the gradient expression is given by

dLi

dci
=

∫
γ1ci dt −

"
Γsi

λQi dsdt . (4.25)
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The solving process requires Equations (4.19b) and (4.20) to be discretized in space
and time. In this case the �nite element method for discretization in space and
the BDF-1 method with equidistant time steps is used for discretization in time.
Every solution of the state equation is saved temporarily so that no snapshotting
and interpolation algorithm needs to be implemented to have the states available
for the adjoint solve. These choices were made to have a simple proof of concept
con�guration in the Firedrake environment. The sequential quadratic program-
ming algorithm for large scale systems implemented in SNOPT [32] is used to
solve the numerical optimization problem. Since the problem includes inequality
constraints, the optimization algorithm implementation in SNOPT requires a Ja-
cobian matrix for these. By discretizing Equation (4.19e) with �rst order �nite
di�erences

д(c ) =
∂c

∂t
≈ cn+1 − cn

∆t

it is straight forward to compute the Jacobian

∂д(c )

∂c
=



− 1
∆t

1
∆t 0 . . . 0

0 − 1
∆t

1
∆t

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 − 1
∆t

1
∆t



.

The ambient temperatureT∞ was measured at the time of computation as 301.15 K
and set accordingly with the heat transfer coe�cient of h = 7.5 W/m2 K. Regu-
larization parameters were set to γ0 = 0.0, γ1 = 1 × 102 and γ2 = 1 × 10−6. The
desired temperature is set to T ∗ |Γtop = 303.15 K which has to reached in the time
frame from t0 = 0 s to the �nal time te = 30 s. The major optimization tolerance
(termination criterion) for SNOPT was chosen to 1 × 10−4. Since the chosen time
step is equal for both state and control input the number of decision variables can
be computed by the number of actuators multiplied by the number of time steps

Na × Nt = 240. (4.26)

Running the computation, the implementation using SNOPT is able to solve the
problem in 5 major iterations taking 52.42 s. The functional can be reduced from
an initial value of J = 0.8 to a �nal value of J = 9.2 × 10−5.
Remark 9. Since SNOPT is a serial implementation of an optimization algorithm,
only the state and adjoint equations are solved in parallel. The optimization
process and algorithm runs on the root process and communicates the necessary
data to the other processes and vice versa.
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Figure 4.7: Desired state T ∗ of the homogeneous test scenario.

Figure 4.8: Final state T (te ) of the homogeneous test scenario.
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Figure 4.9: Control inputs c̄ of the homogeneous test scenario.

Figure 4.10: Di�erence of the �nal state and desired state T (te ) −T ∗ of the homo-
geneous test scenario.
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Reviewing the visualizations one can see the chosen desired state in Figure 4.7
which demands a homogeneous temperature at the top of the aluminum block.
Since it is clear that this pro�le is not possible to achieve exactly with the given
actuator con�guration it just serves as a desired state that can be reached up
to a certain error. In Figure 4.8 the simulated solution at the �nal time T (te )
using the optimal control input c̄ is shown. The computed control inputs c̄ for the
actuators are depicted in Figure 4.9 and all controls comply with the stated bounds
and inequality constraints. All actuators take a very similar trajectory besides
actuator 8. Although no real physical reason can be stated for this behavior, since
a homogeneous pro�le is requested, this could be explained by the fact that the
achieved pro�le still overshoots the desired pro�le by a slight margin and the
lagging control compensates for this situation. Note that this is just a possible
explanation and no evidence was found. From the visualization it is clear that the
top of the block resembles the desired state. Computing the average just on the
surface results in

∫
Γtop

T (te ) ds = 304 K, (4.27)

which is an overshoot of 0.85 K and lower than the sensor accuracy. The part
below the top surface does not conform with the desired state at all, but this is
explained by the cost functional, which is only dependent on the top surface
Γtop and does not weigh any contribution of the domain Ω or other parts of the
boundary. Figure 4.10 shows the di�erence of the �nal state and the desired state
T (te ) −T ∗. This pro�le resembles all other observations of the simulation results
and one can see the small di�erence between the achieved and desired state in the
considered region. Moving to the experiment, no complete pro�les can be shown
since no observer technique for reconstruction of the whole state is implemented.
Therefore only the sensor measurements are shown in Figure 4.11. It was tried to
re�ect the circumstances in the simulation as close as possible to the experiment
and coincide with environmental temperatures. This is a hard task, because the
experiment is not an enclosed space but resides in an open laboratory exposed to
non homogeneous conditions regarding air �ow. Reviewing Figure 4.11 one can
observe the sensor measurements at the top surface recognizing the temperature
change from the actuators at about 10 s and reaching an average temperature of
about 303.8 K at about 30 s. The results gathered in the physical experiment lead
to the conclusion that this approach is successful and is suitable for trajectory
planning of heating processes.
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Figure 4.11: Measurements of the sensors on the top surface of the homogeneous
test scenario.

4.2.3 Inhomogeneous temperature example
Extending the example described in Section 4.2.2 to form a more complex scenario,
an inhomogeneous pro�le for the top surface is de�ned as desired state T ∗. The
optimal control problem is described by using Equation (4.19) and therefore has to
comply with the same bounds and constraints. Tolerances and parameters for the
optimization algorithm were exactly the same as in the previous example besides
the �nal time which was increased to te = 60 s. To de�ne a smooth transition
between the inhomogeneous parts of the pro�le the smooth step function

Φ(t ,a,b) = Ψ(t ,a,b)2(3 − (2Ψ(t ,a,b))

is used with the saturation function

Ψ(t ,a,b) = max(0,min(1, (t − a)/(b − a))).
The parameters are chosen to a = −0.05 and b = 0.075 to provide a smooth
transition from the lower right corner into the remaining part of the pro�le. This
regulates the desired pro�le T ∗ and makes it more suitable for the optimization
approach than de�ning discontinuous �elds. Therefore the desired pro�le is
de�ned as

T ∗ = 296.15 + 3Φ(x ,a,b)Φ(z,a,b).
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Figure 4.12: Desired state T ∗ of the inhomogeneous test scenario.

In Figure 4.12 the pro�le interpolated on the whole block is depicted. Results from
the simulation such as the pro�le at the �nal time T (te ) illustrated in Figure 4.13
suggest that the pro�le is reachable up to a certain error. Looking at Figure 4.14
which shows the di�erence of the �nal state and desired state T (te ) − T ∗ and
the top surface di�erence in Figure 4.14, it is clear that the error on the top
surface is in a reasonable range. Reviewing the control inputs in Figure 4.16
computed by solving the optimal control problem, one can see that the acutators
in the lower right corner, namely actuators 3, 4 and 5, receive the highest input
percentage to achieve the temperature di�erence. Other actuators are supporting
the temperature increase in other parts of the surface during the trajectory interval.
After applying the control inputs to the experiment one can observe the sensor
values on the top surface in Figure 4.17. All sensors show the expected behavior
and resemble the simulation results. To support this statement, the simulated
sensor 6 and real measurement from sensor 6 are depicted in Figure 4.18 along
with the sensor uncertainty. The di�erence in this illustration can be explained
by the fact that the real sensor adheres to a PT1 behavior during the measurement
but the simulated sensor just picks the value instantly. Nevertheless the time
series of both sensors coincide qualitatively and the trajectory planning approach
shows good results even for inhomogeneous pro�les.
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Figure 4.13: Final state T (te ) of the inhomogeneous test scenario.

Figure 4.14: Di�erence of the �nal state and desired state T (te ) −T ∗ of the inho-
mogeneous test scenario.



4.2. Heating process of an aluminum block 65

Figure 4.15: Di�erence of the �nal state and desired state T (te ) −T ∗ at the top
surface of the inhomogeneous test scenario.
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Figure 4.16: Control inputs c̄ of the inhomogeneous test scenario.
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Figure 4.17: Measurements of the sensors on the top surface of the inhomogeneous
test scenario.
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Figure 4.18: Simulation of sensor 6 and measurement data on the top surface of
the inhomogeneous test scenario. The uncertainty interval due to the sensor error
is depicted as well.
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4.3 Air conditioning control in a room
The control of �uid �ow is a widely researched topic in the �eld of PDE constrained
optimization (see e.g. [36]). With new methods in discretization for the PDEs and
solution techniques for the arising systems, the topic is often revisited. In the
context of multiphysics systems we develop an example which involves multiple
physical phenomena, namely the �uid �ow and temperature in a room as a result
of an air conditioning device. We make use of the results from the investigations
in Chapter 3 where the in�uence of loose or tight coupling was shown for the
incompressible Navier-Stokes equations and a separate energy equation and apply
these to the context of optimization. Due to the forced air�ow inlet, the natural
convection phenomenon arising from temperature di�erences in the domain is
assumed to be negligable. Therefore the Navier-Stokes equation part of the state
equation has no dependency on the temperature and it is feasible to use a loose
coupling approach.

Demonstrating this on an example, an optimization problem that has to
compute a suitable input trajectory c (t ) ∈ R for the temperature at the inlet
at Γs of the air conditioner is de�ned where a steady inlet velocity is assumed.
Consider the input constrained minimization problem for the domain illustrated
in Figure 4.19,

min
c

J =

∫
Γs

γ1
2 c2 dt +

∫
Ω

γ2
2 (T (te ) −T ∗)2 dx ,dt (4.28a)

subject to

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p + µ∇2u in Ω × (t0, te ), (4.28b)

∇ · u = 0 in Ω × (t0, te ), (4.28c)
u = us on Γs × (t0, te ), (4.28d)
u = 0 on Γw × (t0, te ), (4.28e)

µ∇u · n − pn = 0 on Γo × (t0, te ), (4.28f)

ρCp
∂T

∂t
+ ρCpu · ∇T − k∇2T = 0 in Ω × (t0, te ), (4.28g)

n · k∇T = h(cQ −T ) on Γs × (t0, te ), (4.28h)
n · k∇T = 0 on Γw ∪ Γo × (t0, te ), (4.28i)

and

−5 ≤ ∂c
∂t
≤ 5 for all t ∈ (t0, te ), (4.28j)

T (t0) ≤ c ≤ 315.15 for all t ∈ (t0, te ). (4.28k)
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Figure 4.19: Illustration of the air conditioning control problem in a room with
symmetric and asymmetric inlet.

In this problem the control input c (t ) is the decision variable which arises as a
boundary control term in the energy Equation (4.28h) and is bounded from below
by a minimum value T (t0), which is the initial condition for the temperature for
the room, and a maximum value of 315.15 K. Furthermore there is a constraint
on the rate of change of 5 K/s to regulate the input and avoid jumps. As one can
see in the state equations, there is no direct dependency of the velocity u on the
temperature T and therefore the gradient and optimization problem will only
be dependent on the temperature due to the control input c (t ). We exploit this
property by using only the energy equation part in the optimization procedure
and precompute the velocity �eld for the speci�ed time interval. This allows us
to adhere to the nonlinear velocity �elds arising from the incompressible Navier-
Stokes equations but avoid recomputing them in every optimization loop since
we assume the in�uence of the temperature change to be minor to the velocity.

For the optimization process the same approach as in the previous examples is
used and consequently an adjoint equation has to be derived in order to compute
the gradient. The detailed derivation procedure can be reviewed in Appendix B.
The time dependent adjoint equation reads

−ρCp
∂λ

∂t
− ρCpu · ∇λ − k∇2λ = 0 in Ω × (t0, te ), (4.29a)

(ρCpλu + k∇λ) · n + λh = 0 on Γs × (t0, te ), (4.29b)
(ρCpλu + k∇λ) · n = 0 on Γw ∪ Γo × (t0, te ). (4.29c)

The terminal condition is given by

λ(te ) = − γ2
ρCp

(T (te ) −T ∗) (4.30)
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and the gradient expression reads

dL
dc
=

∫
γ1c dt −

"
Γs

λQhdsdt . (4.31)

The forward problem is discretized by using the �nite element method discretiza-
tion presented in Section 3.3 for the Navier-Stokes part of the equation. The
energy equation part is discretized as described in Section 2.3. Since both physics
are advection dominated they are stabilized using the SUPG method (see Sec-
tion 1.3) to reduce oscillations in the solution. The same procedure is applied to
the adjoint equation. Due to the property of the SUPG method being a consistent
stabilization, the solution and thus the gradient is not distorted. This procedure
is a key part of the solution process and makes a solution possible.

To make the solution and optimization process more clear we show the neces-
sary steps for the implementation. As mentioned before, the discretized velocity
pro�le uh is precomputed using the following stabilized variational formulation

Problem 4.2. Find uh ∈ V h and ph ∈ Qh such that

A (uh,vh,ph,qh ) +
∑
K∈T

∫
τ0(uh · ∇)vh · R0(uh,ph ) dK = 0 (4.32)

for allvh ∈ V h and qh ∈ Qh with V h,Qh de�ned in Equation (3.12) and R0(uh,ph )
the residual form of the Navier-Stokes equations. The stabilization parameter τ0 is
de�ned in Equation (3.19).

We de�ne the function space Sh for the temperature Th as

Sh =
{
sh ∈ L2 : sh |τ ∈ P1 for all τi ∈ Th

}
. (4.33)

Now we can de�ne the variational problem for the state equation of the advection
di�usion part of equation Equation (4.28) with the following problem.

Problem 4.3. Find Th ∈ Sh such that(
ρCp
∂Th
∂t
, sh

)
+ (ρCpuh · ∇T , s ) + (k∇T ,∇s ) − (h(cQ −T ), s )Γs

+
∑
K∈T

∫
τ1(uh · ∇)sh · R1(Th,uh ) dK = 0 (4.34)

for all sh ∈ Sh and R1(Th,uh ) the residual form of the advection di�usion part
of Equation (4.28).
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Algorithm 4 Convective heat transfer reduced space optimization
Precompute velocity uh ∈ [t0, te] from Problem 4.2
c (t )0 ← initial guess
for k = 1, 2, . . . do

Solve state equation from Problem 4.3 for T
Solve adjoint equation from Problem 4.4 for λ
Compute dL

dc =
∫
γ1c dt −

!
Γs
λh dsdt .

Decide how to change c and continue
end for

The discretized adjoint state λh ∈ Sh is computed by the following variational
problem.

Problem 4.4. Find λh ∈ Sh such that

−
(
ρCp
∂λh
∂t
, sh

)
+ (ρCpuh · ∇s, λ) + (k∇T ,∇s ) + (hλ, s )Γs

+
∑
K∈T

∫
τ1(uh · ∇)sh · R2(λh,uh ) dK = 0 (4.35)

for all sh ∈ Sh and R2(λh,uh ) the residual form of Equation (4.29).

Note that in the derivation of the adjoint state, the advection term is integrated
by parts because of the arising boundary condition and therefore di�erent from
the forward state variational form. The stabilization parameter τ1 is de�ned by

τ1 =

(
4k
h2 +

2|uh |
h

)−1
, (4.36)

which has shown to provide decent stability in this scenario. Finally, all parts of the
equations are discretized in time by BDF-1 with equidistant time steps on the same
grid for the given time interval. The implementation is done in the Firedrake
framework. The optimization procedure is illustrated in Algorithm 4. Since
the SNOPT library is used for optimization, this does not exactly resemble how
often the forward and adjoint equations and therefore the gradient is evaluated.
Furthermore it has to be emphasized that Problems 4.2 to 4.4 are solved using
a parallel implementation. The results for the serial optimization algorithm
implemented in SNOPT are collected on the root process and evaluated on that
node. This allows to analyze large scale systems, as present in this case, in a
reasonable time frame.
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4.3.1 Symmetric inlet
In the �rst example we consider a symmetric velocity and temperature inlet Γs for a
two dimensional slice of a room with 2.5 m×2.5 m shown in Figure 4.19a. Velocity
outlets are de�ned in the left and right bottom corner on the boundaries Γo . For the
parameters of the �uid we consider air with density ρ = 1.244 kg/m3, kinematic
viscosity µ = 1.8 × 10−5 kg/m s, speci�c heat capacity Cp = 1005.0 J/kg K and
thermal conductivity 0.0253 W/m K. The velocity at the inlet is �xed at us =

−0.4 m/s and the initial condition is chosen asu (t0) = 0. The initial temperature of
the room isT (t0) = 291.15 K and the desired temperature after a time frame of 15 s
is set to T ∗ = 296.15 K. As in Section 4.2.2, the optimization algorithm of SNOPT
is used with the same tolerance of 1 × 10−4. The regularization parameters in the
objective functional are set to γ1 = 1 × 10−6 and γ2 = 1 × 102. In this test case the
number of actuators is Na = 1 and with an equidistant time step of ∆t = 0.05 the
number of decision variables for the optimization problem is

Na × Nt = 300.

In Figure 4.20 the computed control input c (tk ) is shown along with the resulting
temperature at the inletT |Γs and the average temperature in the whole domain T̄ |Ω.
The resulting temperature pro�les are shown in Figure 4.21 for di�erent time
steps. In this idealized case of a large inlet for velocity and temperature compared
to the whole size of the domain, one can observe that the computed control can
achieve the desired state up to a small di�erence.

4.3.2 Asymmetric inlet
The second example, illustrated in Figure 4.19b, only di�ers from the prior by nar-
rowing the inlet boundary Γs and consequently providing an asymmetric in�ow of
velocity and temperature and solves the optimization problem in Equation (4.28).
In Figure 4.22 the computed control input c (tk ) is depicted along with the re-
sulting temperature at the inlet T |Γs and the average temperature in the whole
domain T̄ |Ω. The control input adheres to the bounds and constraints prescribed
by the optimization problem. Looking at the average temperature in Figure 4.22
the desired temperature of T ∗ = 296.15 K is not reached completely after t = 15 s
but the acquired solution lies within a feasible region. In Figure 4.23 the tem-
perature pro�les at di�erent time steps are shown resulting from the computed
control input. The transient temperature pro�le behavior emphasizes the fact
that the asymmetric inlet can not reach the desired temperature in the same time
frame as the larger symmetric inlet. To reduce the di�erence even further, one
could increase the time frame for the optimization problem or increase the inlet
velocity.
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Figure 4.20: Control input c (tk ), Inlet temperature T |Γs and average temperature
T̄ |Ω in the symmetric case.
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(a) Temperature at t = 2.5 s. (b) Temperature at t = 5 s.

(c) Temperature at t = 10 s. (d) Temperature at t = 15 s.

(e) Color bar for the temperature pro�le range.

Figure 4.21: Temperature pro�les resulting from the computed control applied to
the air conditioning problem with an symmetric inlet at di�erent time steps.
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Figure 4.22: Control input c (tk ), Inlet temperature T |Γs and average temperature
T̄ |Ω in the asymmetric case.
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(a) Temperature at t = 2.5 s. (b) Temperature at t = 5 s.

(c) Temperature at t = 10 s. (d) Temperature at t = 15 s.

(e) Color bar for the Temperature pro�le range.

Figure 4.23: Temperature pro�les resulting from the computed control applied to
the air conditioning problem with an asymmetric inlet at di�erent time steps.
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Chapter 5

Flatness-based optimal control

The techniques derived in Chapter 4 are suitable for trajectory planning or feed-
back control techniques like model predictive control [35]. An alternative strategy
to solve a trajectory planning problem is to exploit the concept of di�erential
�atness [30]. This technique is based on theory for �nite dimensional systems
but has been extended for use with partial di�erential equations in recent years
including linear and nonlinear di�usion-reaction systems [57, 54, 75] or hyper-
bolic systems [64, 87] and �exible structures [76, 58]. Most examples are shown
for one dimensional systems, although there are references that treat higher
dimensional domains [56, 10, 58]. Parametrization of the state has been studied
in a variety of publications and there exist several techniques depending on the
equation properties. For linear systems the Laplace transformation and spectral
methods [68, 20] along with eigenvalue decompositions [58] have been used.
Nonlinear systems have been treated using formal power series [24, 61] or formal
integration [56] approaches. Reviewing most of the references suggest that a
Gevrey function is chosen for the �at output due to the requirements imposed
by the transition restrictions. In the general �atness-based design of trajectory
planning algorithms one cannot incorporate constraints directly. To address
optimization constraints on the trajectory or the state the authors in [22, 79] use
splines for parametrization of the trajectory and a nonlinear model predictive
control approach is implemented for constraint handling. Similar approaches
to circumvent the restrictions of Gevrey functions consist of spectral methods
using Legendre polynomials [70] with Gauss-Legendre-Lobatto nodes which in
combination yield high order accuracy for derivatives.

77
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5.1 Constrained trajectory planning
An alternative to the mentioned approaches from [22, 79, 70], where splines or
spectral methods are used, is the approach of [49]. On the example of a �nite
dimensional system, the authors utilize piecewise constant functions to express
the highest derivative of the �at output and formulate an integrator chain system
to describe the derivatives. In this work we extend the method of [49] to an
example including partial di�erential equations, a di�usion-reaction system in
particular. The formulation using an integrator chain is appealing because it
allows the incorporation of state and input constraints, that have to be satis�ed
by the computed trajectory, by design. All derivations and results were published
by the author in [4].

5.1.1 Problem formulation
As an illustrative example consider the linear di�usion-reaction system

∂q

∂t
=
∂2q

∂x2 + rq for x ∈ (0, 1) , t > 0, (5.1a)

∂q

∂x
= 0 on x = 0, (5.1b)

q = u on x = 1, (5.1c)
q(t0) = q

0, in x ∈ [0, 1] (5.1d)

that describes the quantity q(x , t ) on the one-dimensional domain x ∈ [0, 1]. The
constant scalar parameter r ∈ R can be set to 0 and Equation (5.1) results in the
linear heat equation with all material depending parameters set to 1. This can be
achieved, without loss of generality, by properly scaling x , t and q. The notation
here is used on purpose since we only deal with one dimensional problems in this
chapter. The purpose of planning a trajectory is to transfer the state q(t0) to a
desired state q∗(te ) in a �nite time te using a precomputed input u (t ). The end
time does not have to be �xed and is determined by the optimization process in
this approach. We can formulate an optimal control problem with the objective
functional

min
u

J =

∫ te

0

∫ 1

0
l (t ,q,u) dxdt (5.2a)

subject to (5.1) and the state and input constraints

q− ≤ q ≤ q+ for all t ≥ 0, x ∈ [0, 1] (5.2b)
u− ≤ u ≤ u+ for all t ≥ 0. (5.2c)
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As one can see this is a very similar optimal control problem to Equation (4.19).
Finding a solution to Equation (5.2a) results in a trajectory ū that provides an
open-loop input for Equation (5.1). In this work the method of [49] is extended
to be applicable to Equation (5.2a) that involves a partial di�erential equation
as equality constraint. Therefore we employ a �atness-based formulation of
Equation (5.1) by using the de�nition from [30].

De�nition 5.1 (Di�erential Flatness). The nonlinear system with z ∈ Rn and
u ∈ Rm

ż (t ) = f (z (t ),u (t )), t > 0 (5.3)
z (0) = z0 ∈ Rn (5.4)

is called �at, if there exists a �at, also called basic outputy with dimy = dimu =m
enabling a di�erential parametrization of the states z (t ) and the inputs u (t ) in
the form

z (t ) = θz
(
y (t ),y (1) (t ), . . . ,y (β−1) (t )

)
, (5.5)

u (t ) = θu
(
y (t ),y (1) (t ), . . . ,y (β ) (t )

)
(5.6)

for some tuple β = (β1, . . . , βm ) with ∑m
j=1 βj ≥ dim z.

We can also employ the techniques from [51, 57] to derive a �at output for
the di�usion-reaction system Equation (5.1) based on the formal power series

q(x , t ) =
∞∑
n

an (t )
xn

n! . (5.7)

We substitute Equation (5.7) in Equation (5.1), evaluate the resulting term and
sort terms of equal degree in x . This yields the recursion formula

an+2(t ) = ȧn (t ) − ran (t ), n ≥ 0.

Furthermore the boundary conditions have to be ful�lled and the series coe�cient
corresponding to Equation (5.1b) is a1(t ) = 0. The coe�cient a0(t ) is set to
a0(t ) = y (t ) which is some function that should serve as a �at output later on.
This recursion admits a closed-form solution

a2n (t ) =
n∑
j=0

(
n

j

)
(−r )n−jy (j ) (t ), a2n+1(t ) = 0.
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Substituting the derived coe�cients in Equation (5.7) yields a state and input
parametrization

q(x , t ) =
∞∑
n=0

x2n

(2n)!

n∑
j=0

(
n

j

)
(−r )n−jy (j ) (t ), (5.8)

u (t ) = q(1, t ), (5.9)

which is described by the �at output y (t ) due to De�nition 5.1. The general
approach in [30] and the references therein would be to �nd a suitable function
for y (t ), that has very strict requirements in most cases. In particular y (t ) has
to be in�nitely di�erentiable. A popular choice is a Gevrey class function (see
e.g. [59]). A particular example is the function Φ(t ) that is locally non-analytic
for t ∈ [0, t]

Φ(t ) =




0 t ≤ 0,∫ t
0 hT ,ω (p)dp∫ T

0 h(p)dp
t ∈ (0,T ),

1 t ≥ T ,
(5.10)

and

h(t ) := exp *.
,
− *.

,

(
1 − t

T

)
t

T
+/
-

ω

+/
-
. (5.11)

This function can only be modi�ed with the parametersT , that basically resembles
the end time of the trajectory, and the slope ω. Therefore the possibilities to ful�ll
more criteria than the transition between two known steady states is very limited.

To incorporate the state and input constraints de�ned in Equations (5.2b)
and (5.2c) we use a piecewise constant function to express the highest derivative of
the �at outputy (t ). In the following we also omit the domain and time dependency
on known equations for readability. Since the piecewise constant function has to
be at least β-times di�erentiable, an integrator chain formulation is imposed by

ż =



0 1 . . . 0
...

. . .
...

0 0 . . . 1
0 0 . . . 0

︸            ︷︷            ︸
A

z +



0
...
0
1

︸︷︷︸
b

v

z (0) = z0 ∈ Rβ

(5.12a)

with the state

z =
[
y,y (1), . . . ,y (β−2),y (β−1)

]T
(5.12b)
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and input

v = y (β ) . (5.12c)

The here de�ned function v is the highest derivative and the system described
in Equation (5.12a) makes it possible to enforce restrictions ony and its derivatives
when incorporated in an optimization procedure. This makes it possible to
formulate equality constraints that ensure a transition form the steady state z (0)
to the steady state z (te ) by setting all derivates of y to zero at t = 0 and t = te
with

z (0) =



y (0)
0
...
0



, z (te ) =



y (te )
0
...
0



. (5.13)

We can now use the parametrization of q and u with y with a �nite number of
derivatives (which approximates the in�nite sum) and replace the state z with
the augmented state ẑ = [zT ,v]T so that

q(ẑ) =

β∑
n=0

x2n

(2n)!

n∑
j=0

(
n

j

)
(−r )n−jẑj+1(t ), (5.14)

u (ẑ) = q(ẑ) on x = 1. (5.15)

The optimal control problem Equation (5.2a) has to be reformulated using the
augmented state ẑ which results in

min
v

J =

∫ te

0

∫ 1

0
l (t ,q(ẑ),u (ẑ)) dxdt (5.16a)

subject to Equation (5.12a), i.e.

ż = Az + bv (5.16b)

and state and input constraints

q− ≤ q(ẑ) ≤ q+ for all t ≥ 0, x ∈ [0, 1] (5.16c)
u− ≤ u (ẑ) ≤ u+ for all t ≥ 0. (5.16d)

as well as initial and terminal values in (5.13).
Remark 10. The solution of Equation (5.16a) does not involve the computation
of a solution of the partial di�erential equation given in Equation (5.1). The
procedure is rather a shaping of an input trajectory parameterized by ẑ that
ful�lls all conditions of a �at output.
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Remark 11. In some applications it is desirable to not specify an end time te
especially in situations where one is not able to predict an accurate time interval
that could lead to a feasible trajectory. Therefore the mapping

t 7→ τ (t ) =
t

te
. (5.17)

is introduced to normalize the time variable to the unit time interval. This mapping
is applied to the time variable t in Equation (5.16) resulting in

min
v (τ ), te

J =

∫ 1

0

∫ 1

0
l (τ ,q(τ ; ẑ (τ )),u (τ ; ẑ (τ )))dxdτ (5.18a)

with the augmented state ẑ (τ ) = [zT (τ ),v (τ )]T subject to

∂z (τ )

∂τ
= Ãz (τ ) + b̃v (τ ), τ > 0 (5.18b)

z (0) = z0 (5.18c)

with Ã = teA, b̃ = teb and the state and input constraints

q− ≤ q(τ ; ẑ (τ )) ≤ q+ τ ∈ [0, 1], x ∈ [0, 1], (5.18d)
u− ≤ u (τ ; ẑ (τ )) ≤ u+ τ ∈ [0, 1] (5.18e)

and initial as well as terminal values according to Equation (5.13).

This formulation introduces te as another independent variable in Equa-
tion (5.18a) next to the �at outputs highest derivative normalized in time v (τ ).

5.1.2 Discretization

For the solution of Equation (5.18) numerical methods for optimizations are used.
Therefore the problem has to be discretized in time and the solution is described
as piecewise constant with the sample time Ts . Let zk = z (kTs ), vk = v (kTs ) be
the discrete time sampled solution and input of the integrator chain system we
can describe

zk+1 = Φzk +γvk , k ≥ 0 (5.19a)
z0 = z0 (5.19b)
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where

Φ = exp(ÃTs ) =



1 teTs . . .
(teTs )

β

β!

0 1 . . .
(teTs )

β−1

(β − 1)!
...

...
0 0 . . . teTs
0 0 . . . 1



, (5.19c)

and

γ =

∫ (k+1)Ts

kTs

exp
(
Ã[(k + 1)Ts − s]

)
b̃ds

=

[
(teTs )

β+1

(β + 1)!
(teTs )

β

β! . . . teTs

]T
. (5.19d)

Introducing the same sampling variables in the objective functional in Equa-
tion (5.18a) and replacing the time integral with an appropriate approximation
using a sum representation with weight ak , using the Simpson or trapezoidal rule,
this yields

J =

∫ 1

0

N∑
k=0

akl (kTs ,qk (ẑk ),uk (ẑk ))dx , (5.20)

with k = 0, 1, . . . ,N and N = 1/Ts . Finally we have to de�ne the discretized
parametrizations of the state and input equation with

qk (ẑk ) =

β∑
n=0

x2n

(2n)!

n∑
j=0

(
n

j

)
(−r )n−jẑk,j+1 (5.21)

uk (ẑk ) = qk (ẑk ) on x = 1 (5.22)
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with ẑk,j+1 the j-th element of the vector ẑk . In order to clarify clear how Equa-
tion (5.19) is evaluated we list the state variable at each k for 0, 1, . . . ,N

z0 =
0

z1 = Φz0 + γv0

z2 = Φ2z0 +
[
Φγ γ

] [
v0
v1

]

...

zN = ΦNz0 +
[
ΦN−1γ . . . Φγ γ

]


v0
...

vN−1


.

(5.23)

Next, the matrix

Sk =
[
Φk−1γ . . . Φγ γ

]
∈ Rβ×k

is introduced. Using the vector

Vk =
[
v0 v1 . . . vk−1

]T ∈ Rk

we obtain

ẑk =

[
zk
vk

]
=

[
Sk
eT
k

]
Vk +

[
Φk

0T
]
z0, (5.24)

where eT
k
= [0, . . . , 0, 1] ∈ R1×k . Reformulating the integrator chain system in this

way highlights the only unknown ẑ (Vk ) in the formulation which is the full vector
of unknown constant coe�cients yielding the discretized highest derivative of
the �at output. Finally the fully time discretized optimization problem can be
denoted by replacing ẑk in Equation (5.20) with Equation (5.24)

min
Vk , te

J =
N∑
k=0

akl (kTs ,qk (Vk ),uk (Vk )), (5.25a)

subject to state and input constraints

q− ≤ qk (Vk ) ≤ q+ x ∈ [0, 1], (5.25b)
u− ≤ uk (Vk ) ≤ u+, (5.25c)

for k = 0, 1, . . . ,N and the terminal condition

zN =
[
I 0

]
ẑN (VN ) = z (te ), (5.25d)

where I is the (β × β ) identity matrix. The optimization problem in this form
yields a dimension of dimVk + dim te = N + 1 independent variables.
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Scenario Ts r β α u+ t+e

1 0.0125 0.0 5 1 × 10−8 1.2 2.0
2 0.0125 0.0 5 1 × 10−8 1.2 1.35
3 0.0125 -2.0 5 1 × 10−8 0.4 4.0
4 0.0125 0.0 5 1 × 10−20 1.2 2.0
4 0.0125 0.0 5 1 × 10−10 1.2 2.0
4 0.0125 0.0 5 1 × 10−8 1.2 2.0
4 0.0125 0.0 5 1.0 1.2 2.0

Table 5.1: Simulation parameters for the �atness-based optimal control scenarios.

5.1.3 Examples
Consider the reaction-di�usion system in Equation (5.1) and the derivation of
a �at output parameterized by the integrator chain method described in the
previous chapter. In the following examples Equation (5.1) is discretized using
the Firedrake framework to obtain a simulation model to test the computed
trajectories. The arising optimization problem is solved using IPOPT which
implements a primal-dual interior point method [84].

The optimal control problem is described by

min J = 1
2

*
,
α

N−1∑
k=0

v2
k + t

2
e

+
-

(5.26a)

subject to

q− ≤ qk ≤ q+ ∀k ∈ [0, . . . ,N ], (5.26b)
0 ≤ uk ≤ u+ ∀k ∈ [0, . . . ,N ], (5.26c)
0 < te ≤ t+e (5.26d)

y (n)0 = 0 ∀n ∈ [1, . . . , β], (5.26e)
y (n)N = 0 ∀n ∈ [1, . . . , β]. (5.26f)

Reviewing Equation (5.26), the end time te is not �xed and is determined during the
optimization routine and bounded by Equation (5.26d). The primary independent
variablesvk are regulated using a Tikhonov parameterα , which serves the purpose
of scaling the objective functional to cope with possible numerical di�culties in
the optimization procedure.

The simulation parameters can be obtained from Table 5.1 and for every
trajectory planning problem we consider the initial state q(x ,τ = 0) = 0 and
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Figure 5.1: Input and output trajectory of scenario 1.

de�ne a desired �nal state q∗(0, te ) = 1. The sampling time is set toTs = 0.0125 so
that N = 80. A crucial point in the approximation is that we require the �at output
y to be at least β = 5-times di�erentiable. This reveals a trade-o� in the choice of
time domain discretization points and di�erentiability. In the test scenarios the
Thikonov regularization parameter is always set to α = 1 × 10−8.

In the �rst scenario the reaction parameter is set to r = 0 and therefore the
dynamics resemble pure di�usion. The upper bound of the input is set to u+ = 1.2
and the �nal time is restricted to t+e = 2.0. Reviewing the depicted results of
the control input and corresponding output in Figure 5.1 show that a reasonable
input can be computed by the method that leads to the desired output q∗(0, te )
in a time frame that ful�lls te ≤ t+e . A space and time solution pro�le is shown
in Figure 5.2.

Since the control input does not seem to exhaust the bounds and constraints,
a second scenario that restricts the upper bound of the �nal time even further
with t+e = 1.35 is employed. The results are shown in Figures 5.3 and 5.4. This
makes clear that this restriction is demanding on the control input and the value
is even touching the bounds so that no further decrease in the upper bound is
considered.

In the last scenario we show the behavior of a reaction parameter r = −2.0.
Herein the control input upper bound is reduced signi�cantly to u+ = 0.4, since
we assume the reaction is generating energy in the system and assist the control.
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Figure 5.2: Pro�le of the solution of scenario 1.
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Figure 5.3: Input and output trajectory of scenario 2.
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Time 0.0
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Do
ma

in
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Figure 5.4: Pro�le of the solution of scenario 2.

Furthermore the upper bound on the �nal time is increased to t+e = 4.0 to com-
pensate the reduced control input. As one can observe in Figures 5.5 and 5.6 the
method is able to generate a control input trajectory that ful�lls constraints in
the control input and state to meet the trajectory planning criteria. To demon-
strate the impact of the Thikhonov regularization parameter α in the objective
functional the �rst scenario is repeated using the di�erent values from Table 5.1
corresponding to scenario 4. The results can be observed in Figures 5.7 and 5.8.
Analyzing the behavior it shows a decreasing penalization of the input trajectory
and the weighting of the �nal time t+e increases with shrinking α values.
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Figure 5.5: Input and output trajectory of scenario 3.
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Figure 5.6: Pro�le of the solution of scenario 3.
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Figure 5.7: Input of scenario 1 with varying Tikhonov parameter.
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Figure 5.8: Output of scenario 1 with varying Tikhonov parameter.
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5.2 Extension to �atness-based model predictive
control

A suitable extension to the method derived in the previous section is the concept
of model predictive control. Since Section 5.1 considers the constrained trajectory
planning problem by computing a feed forward control input, the method is
extended by employing a stabilizing model predictive control (MPC) formulation.
A variety of academic and industrial applications for MPC can be found in [67, 35,
65]. General feedback controller designs are used in combinations with limiters to
comply with restrictions on inputs or states. The MPC method can be appealing
in those cases due to the fact that one can consider constraints on the control
input and states in the formulation itself. Spatially discretized partial di�erential
equations that form a system of ODEs can be used in combination with this
approach but lead to high computational cost due to the optimization character
of MPC. Therefore techniques that provide reduced order models like proper
orthogonal decomposition (POD) to reduce the system size and computational
burden are analyzed in [8, 2].

As in Section 5.1 the �atness-based method is used to parameterize the equa-
tion using a �at output to address the closed-loop by employing a MPC formula-
tion. All derivations and results were published in [60].

5.2.1 Problem formulation
Equation (5.1) is extended to form a di�usion-convection-reaction system and a
temporary state variable q̃(z, t ) is used to describe the problem, which is trans-
formed later on in order to describe an equivalent formulation in q(z, t ) that has
no convection term. Consider the domain x ∈ (0, 1) with

∂q̃

∂t
= a
∂2q̃

∂x2 + ν
∂q̃

∂x
+ rq̃ for x ∈ (0, 1) , t > 0, (5.27a)

∂q̃

∂x
= д(w (t ) − q̃) on x = 0, (5.27b)

∂q̃

∂x
= b (ũ − q̃) on x = 1 (5.27c)

and initial state x̃ (t0) = q̃0. The parameters a,ν , r ,д and b are for convenience to
enable or disable certain e�ects or even disable contributions of, e.g., convection
with ν = 0. As mentioned above we transform the temporary state q̃ and input ũ
by substituting

q̃ = exp
(
− ν2a

)
q, ũ = exp

( ν
2a

)
u (5.28)
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in Equation (5.27a) and arrive at a di�usion-reaction system using c = r − ν2

4a

∂q

∂t
= a
∂2q

∂x2 + cq for x ∈ (0, 1) , t > 0, (5.29a)

∂q

∂x
= дw (t ) −

(
д − ν

2a

)
q on x = 0, (5.29b)

∂q

∂x
= bu −

(
b − ν

2a

)
q on x = 1 (5.29c)

and initial state q(t0) = q0. A general MPC implementation looks like Algorithm 5
(see [35]). Here,U ⊂ U denotes the feasible input space andQ ⊂ Q the state space.

Algorithm 5 Model Predictive Control
Set horizon T
for k = 1, 2, . . . do

q0 := q(tk )
Solve the optimal control problem on the horizon T

min
u

J = ϕ (q(tk +T )) +

∫ tk+T

tk

l (q,u, t ) dt

subject to Equation (5.29) with u ∈ U and q ∈ Q .
Use ū from the optimal control problem for the next control interval.

end for

This notation serves as a formulation for state and input constraints. Reviewing
the MPC process, it can be observed that for every control interval an optimization
problem de�ned over a prescribed horizon T has to be solved.

5.2.2 State and input parametrization
Similar to Section 5.1, a �at output to Equation (5.29) has to be derived. The
procedure of formal integration was shown in [56, 75] and used in the following.
Subsequently Equation (5.29) is solved for ∂

2q
∂x2 and integrated twice with respect

to the domain variable x which results in

q = y
(
1 + x

( ν
2a − д

))
+ дxw +

1
a

∫ x

0

∫ p

0

(
∂q

∂t
− cq

)
dxdp. (5.30)

By using the in�nite series approximation

q =
∞∑
i=0

qi (5.31)
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to substitute the state q in Equation (5.30) we get

q0 = y
(
1 + x

( ν
2a − д

))
+ дxw, (5.32)

qi+1 =
1
a

∫ x

0

∫ p

0

(
∂q

∂t
− cq

)
dsdp. (5.33)

Every state coe�cient qi can be formally expressed by the �at output y and the
already known function w thus the parameterized state coe�cients are denoted
by qi (y). The input u can be formulated in terms of y by

u =
exp

(
− ν

2a

)
b

∞∑
i=0

(
∂qi (y)

∂z
+

(
b − ν

2aqi (y)
))

on x = 1. (5.34)

Like in Section 5.1 the integrator chain approach for the de�nition of y is used
instead of incorporating a Gevrey class function so that the ODE system de�ned
in Equation (5.12a) de�nes the �at output y and its derivatives. Therefore we
de�ne again

ż =



0 1 . . . 0
...

. . .
...

0 0 . . . 1
0 0 . . . 0

︸            ︷︷            ︸
A

z +



0
...
0
1

︸︷︷︸
b

v

z (0) = z0 ∈ Rβ

(5.35a)

with the state

z =
[
y,y (1), . . . ,y (β−2),y (β−1)

]T
(5.35b)

and input

v = y (β ) . (5.35c)

As stated in Equation (5.12a) the variable v is the highest derivative of the β-
times di�erentiable function y. Using Algorithm 5 with the parameterized system
requires a reformulation of the objective functional J in terms of the �at output y
described through z, which yields

min J = ϕ (z) +
∫ tk+T

tk

l (z,v, t ) dt . (5.36)
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Additionally a state observer is designed by assuming that the �at output y
can be measured. The fact that y is described by the integrator chain in Equa-
tion (5.12a), enables the possibility to reconstruct the whole state q through the
observer described by

˙̂z = Aẑ + bv + Lz̃1 (5.37a)
z̃1 = c

T (z − ẑ) (5.37b)

for t > 0 and ẑ (0) = ẑ0 and cT = [1, 0, . . . , 0]. The observer gain is determined by
the use of the Ackermann formula, which yields

L =
(
p0I + p1A + · · · + pN−1A

N−1 +AN
)
w,

with the coe�cients of a Hurwitz polynomial pi and w the last column of the
inverse observability matrix.

5.2.3 Time discretization
For simulation purposes the equations involved to solve Equation (5.36) have to
be discretized in time. We use Equation (5.31) for the evaluation of the spatial
state q and stop the series at the upper limit β and de�ne

q̄ =

β∑
i

qi (v ), ū =

β∑
i

ui (v ). (5.38)

Recalling Section 5.1.1 and the piecewise constant function for the highest deriva-
tive of the �at output

Vk =
[
v0 v1 . . . vk−1

]T ∈ Rk ,
we de�ne the state q̄ and input ū at the time step tk as

q̄k (Vk ) = q̄(v ) |t=tk , ūk (Vk ) = ū (v ) |t=tk . (5.39)

The optimal control problem on the time horizon T that has to be solved in every
time step to determine the control for the next interval is determined by

min
Vk

J = ϕ (q̄N (zk ,Vk )) +

∫ N∑
k=0

akl (q̄k (zk ,Vk ), ūk (zk ,Vk )) dx , (5.40a)

subject to state and input constraints

q− ≤ q̄k (zk ,Vk ) ≤ q+ x ∈ [0, 1], (5.40b)
u− ≤ ūk (zk ,Vk ) ≤ u+, (5.40c)

for k = 0, 1, . . . ,N .
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Remark 12. Note that every function in the objective functional and constraints is
only dependent on the �at output and its derivatives. Therefore no evaluation of
the partial di�erential equation is necessary for solving the optimization problem.

5.2.4 Examples
For the examples a direct approach is used assuming a full discretization of Equa-
tion (5.40). To implement Algorithm 5 we use the sampling intervalTs = 0.01 and
evaluate Equation (5.29) in every time step to provide a measurement for the state
observer. With the provided initial state ẑ (tk ) at the beginning of the horizon, a
solution to Equation (5.40) is computed over the interval T = NTs . We use the
objective functional

min
u

J = ‖q̄N (zk ,Vk ) |x=0 − q∗‖2L2

+

N∑
k=0

ak
(
‖q̄k (zk ,Vk ) |x=0 − q∗‖2L2

+ ū (zk ,Vk )
2
)
, (5.41)

with the the �rst term weighing the terminal state q̄N of the horizon. For the �rst
scenario the parameters of Equation (5.29) are set to a = 1,v = 2, c = 5,д = 1
and b = ∞ such that the mixed boundary conditions yields an inhomogeneous
Dirichlet boundary condition. The choice of the parameters yields an unstable
partial di�erential equation when no stabilization controller is applied.

The �rst scenario assumes an initial condition of q0 = x − 0.5, which leads to
an unstable state, and the desired steady state is chosen to q∗ = 0. The observer
initial state is set to ẑ0 = 0 which di�ers from q0 and therefore the observer has
to converge to the state z. All control inputs are illustrated in Figure 5.9. Results
without constraints are shown in Figure 5.10. In Figure 5.11 only state constraints
are considered with −0.5 ≤ z ≤ 0.5. In Figure 5.12 only input constraints are
imposed by −1 ≤ u ≤ 1 and one can clearly observe that the input constrained
control inputs are at the edge of feasibility for the chosen equation but still lead
to a stabilized pro�le. In a second example scenario the initial condition q0 = 0 is
used and the desired solution is set toq∗ = 1 at x = 1. The parameters are the same
as in the �rst example. This scenario also demonstrates using an excitation signal
w = sin(2πt ). In Figure 5.13 the computed control inputs are illustrated. In the
example without excitation, the desired state is reached without much e�ort from
the control input which can be observed in Figure 5.14. Reviewing Figure 5.15,
the excitation signal leads to a persistent error in the desired pro�le and no steady
state can be reached.
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Figure 5.9: Controls for the MPC scenario with non-zero initial condition to zero
steady state.
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Figure 5.10: MPC scenario from non-zero initial condition to zero steady state
without constraints.
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Figure 5.11: MPC scenario from non-zero initial condition to zero steady state
with state constraints.
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Figure 5.12: MPC scenario from non-zero initial condition to zero steady state
with input constraints.
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Figure 5.13: MPC scenario from zero initial condition to steady state.
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Figure 5.14: MPC scenario from zero initial condition to steady state without
excitation.
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Figure 5.15: MPC scenario from zero initial condition to steady state with excita-
tion.
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Chapter 6

Conclusion

In this work a description to the solution of �nite element method based dis-
cretizations for conductive and convective heat transfer is given to provide a
major component for analysis of optimization problems leading to trajectory
planning algorithms for optimal control. In Chapter 1 an introduction to the �-
nite element method is given and followed by the derivation of conductive heat
transfer through the heat equation in Chapter 2.

The physical phenomena are extended in Chapter 3 after summarizing the
basics of �uid �ow by deriving the Navier-Stokes equations. Both physics, the
conductive and convective heat transfer, are discussed and an appropriate dis-
cretization is derived. Leveraging recent software libraries for discretization
like Firedrake and MFEM, as well as PETSc and hypre for the solution of the
arising linear and nonlinear systems, allows the e�cient numerical solution of
the mentioned equations. The implementation using these frameworks enabled
a parallel computation which was crucial for the optimization problems which
involved several solutions of the equations during the optimization process. There
is also an emphasis on a detailed validation process to guarantee a �awless imple-
mentation which is carried out using the Method of Manufactured Solutions as
well as several benchmark problems that provided public data for comparison.

In Section 3.4 the topic of multiphysics coupling is treated and di�erent
coupling techniques were presented. The arising equations from Chapter 3 are
tightly coupled in the symbolic formulation. For optimization problems the
equations, that have to be solved for objective and gradient evaluations, should be
as simple as possible. Therefore a numerical comparison of the coupling methods
is given to serve as a basis for argumentation on decoupling for optimization
problems. These showed that it is feasible to ignore a tight coupling between
�uid �ow and energy transport in the numerical solution, if there is no necessity
for higher order time stepping techniques.

In Chapter 4 an introduction on optimization concepts were given and fol-
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lowed by a physical experiment that served as an example for a real world tra-
jectory planning problem using the techniques of optimal control. A physical
lab experiment was developed for this purpose, consisting of a heat control and
monitoring system for an aluminum block. Tests were done using a desired pro�le
consisting of a homogeneous and inhomogeneous temperature. Both examples
showed e�cient computational time for the trajectory planning problem consid-
ering the system size and both scenarios could be solved up to a certain error
which correlated with the sensor error. The comparison of the simulations and
measurements during the experiments were in good agreement as well.

Taking advantage of the observations in Section 3.4 a heating ventilation and
air (HVAC) conditioning scenerio is shown in Section 4.3 to demonstrate the
decoupling of physics and their feasibility for the optimization problems. A two
dimensional problem that consists of heating up a room in a certain time frame
using a variable temperature at an air conditioning inlet has been illustrated.
Due to the formulation of the problem, only the energy equation part of the
state equations is used for the optimization process. Two di�erent scenarios are
considered. In an idealized example a symmetric inlet is de�ned to heat up the
room and the algorithm and optimization procedure resulted in a trajectory that
controlled the room temperature to the desired state up to a small error in a
narrow time frame. A more involving example for the control was shown using
an asymmetric, smaller, inlet. Due to the resulting velocity �eld, this example
gave a worse result considering the desired temperature distribution.

An alternative method using a novel approach, named �atness-based optimal
control, was shown in Chapter 5. Here the �atness property of the PDE is used
to derive an integrator chain representation of the �at output and detailed ex-
planations about the algorithm along with numerical examples were presented.
Developing this technique allow incorporation of input and state constraints in
the trajectory planning using �atness-based methods. Furthermore it allows to
neglect the actual PDE in the optimization process by using the integrator chain
parameterization, which led to e�cient computation times. Several examples
involving pure di�usion and combined di�usion-reaction equations have been
shown for numerical examples.

Finally in Section 5.2 this method is extended to a Model Predictive Control
approach which allows stabilizing properties and a closed-loop analysis. Param-
eterizing the optimization problem with the integrator chain of the �at output
provided a basis for the MPC formulation of a mixed di�usion-convection-reaction
system. An example consisting of an unstable initial condition and a desired state
of a zero pro�le is shown with an unconstrained, state constrained and input
constrained formulation. A second example is provided to show the transition
from a zero steady state to a desired steady state, once without any external
disturbance and with an external disturbance on the state. All examples showed
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desired behavior and promising results.
Finally, suggestions on further research regarding the topics is given. Con-

sidering the results provided by the optimal control problem formulation for
the heating process of an aluminum block in Section 4.2, one should look at an
improvement and extension of the lab experiment. The �rst addition could be
a homogeneous test environment to guarantee a speci�c ambient temperature.
Furthermore a cooling concept, consisting of either water cooling pipes or forced
convection cooling through ventilation, is an interesting addition. This would
enable to lower the bounds on the desired pro�le and control inputs for the opti-
mization problem and allow for even more interesting pro�le selections. Beyond
that a comprehensive analysis of feasibility to control and measure temperature
gradients in the material is another interesting topic.

Evaluating the approaches of Section 4.3 lead to the conclusion that the method
is interesting in terms of a priori analysis, but due to the long solution times,
resulting from the needed discretizations, is not feasible in real time circumstances.
An extension to three dimensions would increase the computational burden, but
opens up room for deeper analysis in �ow pro�les and temperature distribution.

In Chapter 5 and Section 5.2 promising results regarding feasibility of the
�atness-based optimal control were shown. Extending these methods to multi-
dimensional approaches could show feasibility for more complex applications.
Furthermore the application of the concept to provide a closed-loop control
algorithm for the heating process of an aluminum block lab experiment would be
a viable extension as well.
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Appendix A

Adjoint of conductive heat
transfer

The transient heat equation with multiple actuators is described in Section 4.2.2
subsequently we present a derivation of the necessary adjoint and gradient for-
mulation given

ρCp
∂T

∂t
− k∇2T = 0 in Ω × (t0, te ), (A.1)

n · k∇T = ciQi on Γsi × (t0, te ), (A.2)
n · k∇T = κ (T∞ −T ) on Γc × (t0, te ), (A.3)

with the objective functional

J =

"
Ω

γ0
2 (T −T ∗)2 dxdt +

Na∑
i=1

∫
γ1
2 c2

i dt +

∫
Ω

γ2
2 (T (te ) −T ∗)2dx . (A.4)

Equation (A.4) includes a tracking term and a �nal condition on the whole domain
Ω instead of just a speci�c surface (e.g. Γtop) in contrast to the objective functional
presented in Section 4.2.2. The derivation of the adjoint equation and gradient
does not di�er because of this. We start with formulating the Lagrangian by
adding the state equation Equation (A.1) to the objective function using the
Lagrange multiplier λ, resulting in

L = J︸︷︷︸
L1

+

"
Ω
ρCp
∂T

∂t
λ dxdt −

"
Ω
k∇2Tλdxdt︸                                             ︷︷                                             ︸

L2

. (A.5)

Since ci is the input variable which controls the amplitude of the actuator input
we introduce the shorthand notation for a perturbation of ci which results in a
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variation of dependent variables like the temperature T and we de�ne

T̃ = T (ci + hĉi ). (A.6)

The two parts of the Lagrangian L1 and L2 are treated separately for clarity.
Starting with the variation of L1 by perturbing ci we get

δL1i =
∂

∂h

["
Ω

γ0
2 (T̃ −T ∗)2 dxdt +

∫
γ1
2 (ci + hĉi )

2 dt

+

"
Γ

γ2
2 (T̃ (te ) −T ∗)2 dsdt

]

h=0
. (A.7)

Note that the sum notation is not incorporated because we just look at one control
variable for the derivation, since it is the same for each actuator. This fact results
in the �nal gradient being a vector of size Na in the continuous case. De�ning
the notation

T̂ =
∂

∂h

[
T (ci + hĉi )

]

h=0
, (A.8)

the variation for L1 in the i-th control ci yields

δL1i =

"
Ω
γ0(T −T ∗)T̂ dxdt +

∫
γ1ciĉi dt

+

"
Ω
γ2(T (te ) −T ∗)T̂ (te ) dxdt . (A.9)

Additionally the L2 has to treated in a similar way. Starting with the perturbation
of the i-th control ci and integrating the �rst term by parts in the time variable t
results in

δL2i =
∂

∂h

[ [∫
Ω
ρCpλT̃ dx

]te

t0

−
"

Ω
ρCp
∂λ

∂t
T̃ dxdt

+

"
Ω
k∇λ · ∇T̃ dxdt −

"
Γ
kλ∇T̃ · ndsdt

]

h=0
. (A.10)

Integrating by parts in the domain twice, using Greens identity we get

δL2i =
∂

∂h

[ [∫
Ω
ρCpλT̃ (te ) dx −

∫
Ω
ρCpλT̃ (t0) dx

]
−
"

Ω
ρCp
∂λ

∂t
T̃ dxdt

−
"

Ω
k∇2λT̃ dxdt +

"
Γ
kT̃∇λ · ndsdt −

"
Γ
kλ∇T̃ · n dsdt

]

h=0
. (A.11)
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Now terms on the boundary can be replaced by the prede�ned boundary condi-
tions

δL2i =

[∫
Ω
ρCpλT̂ (te ) dx −

∫
Ω
ρCpλT̂ (t0) dx

]

−
"

Ω
ρCP
∂λ

∂t
T̂ dxdt −

"
Ω
k∇2λT̂ dxdt

+
∂

∂h

["
Γsi

k∇λ · nT̃ dsdt −
"

Γsi

λQi (ci + hĉi ) dsdt

+

"
Γc

k∇λ · nT̃ dsdt −
"

Γc

λκ (T∞ − T̃ ) dsdt
]

h=0
. (A.12)

Finally the derivative ∂
∂h is pulled into the remaining terms and the resulting

equation yields

δL2i =

[∫
Ω
ρCpλT̂ (te ) dx −

∫
Ω
ρCpλT̂ (t0) dx

]

−
"

Ω
ρCP
∂λ

∂t
T̂ dxdt −

"
Ω
k∇2λT̂ dxdt

+

"
Γsi

k∇λ · nT̂ dsdt −
"

Γsi

λQĉi dsdt

+

"
Γc

k∇λ · nT̂ dsdt +

"
Γc

κλT̂ dsdt . (A.13)

In order to ful�ll the optimality conditions, the perturbed Lagrangian δLi =

δL1i +δL2i has to be zero. Therefore all terms containing T̂ are collected. Looking
at those terms and considering the integral over the domains and boundaries, this
results in the adjoint state equation

−ρCp
∂λ

∂t
− k∇2λ + γ0(T −T ∗) = 0 in Ω × (t0, te ), (A.14)

k∇λ · n = 0 on Γsi × (t0, te ), (A.15)
k∇λ · n + κλ = 0 on Γc × (t0, te ). (A.16)

The resulting time dependent system in Equation (A.14) has a minus sign in front
of the time dependent term. Therefore one has to integrate the system backwards
in time or interchange the time integration bounds which results in a sign switch
of the time dependent term. The initial condition (at te because of the backwards
integration in time) can be derived from the remaining terms containing T̂ (te )
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and

ρCpλ(te ) + γ2(T (te ) −T ∗) = 0 (A.17)

λ(te ) = − γ2
ρCp

(T (te ) −T ∗) (A.18)

Since there is no change of the initial condition in the state equation due to the
perturbation of ci , the relation∫

Ω
ρCpλT̂ (t0) dx = 0

holds. Collecting all terms containing ĉi results in the i-th gradient contribution
of the objective functional

dLi

dci
=

∫
γ1ci dt −

"
Γsi

λQi dsdt . (A.19)

Therefore the multi-dimensional gradient in continuous space

dL
dc
∈ RNa i� c ∈ RNa (A.20)

can be described by

dL
dc
=



∫
γ1c1 dt −

!
Γs1
λQ dsdt∫

γ1c2 dt −
!

Γs2
λQ dsdt

...∫
γ1cNa dt −

!
ΓsNa

λQ dsdt



. (A.21)

Remark 13. The whole derivation is in the continuous setting without any assump-
tion of discretization in space or time. In Section 4.2.2 the problem is discretized
in time with a �rst order BDF and therefore the resulting control inputs ci are
piecewise continuous over the time intervals. Assuming that there are Nt intervals
the gradient for one control input ci is of size Na × Nt .

For a more detailed discussion on variational methods in general see [69] as
well as [53] for and optimization related discussion on Lagrange methods for
general vector spaces.
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Adjoint of convective heat transfer

In this section a comprehensive derivation of the adjoint equation and gradient
formulation is given for the optimization problem described by Equation (4.28).
Consider the energy equation part of the the problem described by

ρCp
∂T

∂t
+ ρCpu · ∇T − k∇2T = 0 in Ω × (t0, te ), (B.1)

n · k∇T = h(cQ −T ) on Γs × (t0, te ), (B.2)
n · k∇T = 0 on Γw ∪ Γo × (t0, te ), (B.3)

and the objective functional

J =

∫
γ1
2 c2 dt +

∫
Ω

γ2
2 (T (te ) −T ∗)2dx . (B.4)

The Lagrangian is formed by adding the state equation Equation (B.1) to the
objective functional and multiplying by the Lagrange multiplier λ and integration
over the domain Ω and time interval t
L = J︸︷︷︸

L1

+

"
Ω
ρCp
∂T

∂t
λ dxdt +

"
Ω
ρCpu · ∇Tλdxdt −

"
Ω
k∇2Tλdxdt︸                                                                               ︷︷                                                                               ︸

L2

. (B.5)

As a shorthand notation we introduce
T̃ = T (t , c + hĉ ), (B.6)

to describe the e�ect of the perturbed independent variable c on a dependent
variable. Forming the variation of L1 results in

δL1 =
∂

∂h

[∫
γ1
2 (c + hĉ )2 dt +

"
Γ

γ2
2 (T̃ (te ) −T ∗)2 dsdt

]

h=0
(B.7)

111



112 B. Adjoint of convective heat transfer

and using the notation

T̂ =
∂

∂h

[
T (c + hĉ )

]

h=0
, (B.8)

the variation of L1 results in

δL1 =

∫
γ1cĉ dt +

"
Ω
γ2(T (te ) −T ∗)T̂ (te ) dxdt . (B.9)

The same procedure is used for the second term L2. Integration of terms by parts
and applying the divergence theorem and Greens identity yields

δL2 =
∂

∂h

[ [∫
Ω
ρCpλT̃ dx

]te

t0

−
"

Ω
ρCp
∂λ

∂t
T̃ dxdt

−
"

Ω
ρCpu · ∇λT̃ dxdt +

"
Γ
ρCpλT̃u · ndsdt

+

"
Ω
k∇λ · ∇T̃ dxdt −

"
Γ
kλ∇T̃ · ndsdt

]

h=0
. (B.10)

To move all derivatives to the Lagrange multiplier λ the di�usion term has to be
integrated by parts once more and we arrive at

δL2 =
∂

∂h

[ [∫
Ω
ρCpλT̃ (te ) dx −

∫
Ω
ρCpλT̃ (t0) dx

]
−
"

Ω
ρCp
∂λ

∂t
T̃ dxdt

−
"

Ω
ρCpu · ∇λT̃ dxdt +

"
Γ
ρCpλT̃u · ndsdt

−
"

Ω
k∇2λT̃ dxdt +

"
Γ
kT̃∇λ · ndsdt −

"
Γ
kλ∇T̃ · n dsdt

]

h=0
. (B.11)

Boundary terms can be replaced with the prescribed conditions from Equa-
tion (B.1) and therefore

δL2 =

[∫
Ω
ρCpλT̂ (te ) dx −

∫
Ω
ρCpλT̂ (t0) dx

]
−
"

Ω
ρCP
∂λ

∂t
T̂ dxdt

−
"

Ω
ρCpu · ∇λT̂ dxdt +

"
Γ
ρCpλT̂u · ndsdt

−
"

Ω
k∇2λT̂ dxdt

+
∂

∂h

["
Γs

k∇λ · nT̃ dsdt −
"

Γs

λh((c + hĉ )Q −T )) dsdt
]

h=0
. (B.12)
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Finally the partial derivative is applied to the equation which yields

δL2 =

[∫
Ω
ρCpλT̂ (te ) dx −

∫
Ω
ρCpλT̂ (t0) dx

]
−
"

Ω
ρCP
∂λ

∂t
T̂ dxdt

−
"

Ω
ρCpu · ∇λT̂ dxdt +

"
Γ
ρCpλT̂u · ndsdt

−
"

Ω
k∇2λT̂ dxdt +

"
Γ
T̂k∇λ · n dsdt

−
"

Γs

λhQĉ dsdt +

"
Γs

T̂ λh dsdt . (B.13)

The integral kernels have to eliminated and by collecting all terms containing T̂
in the domain Ω and the boundary Γ the transient adjoint equation for the energy
equation can be formulated

−ρCp
∂λ

∂t
− ρCpu · ∇λ − k∇2λ = 0 in Ω × (te , t0), (B.14)

(ρCpλu + k∇λ) · n + λh = 0 on Γs × (te , t0), (B.15)
(ρCpλu + k∇λ) · n = 0 on Γw ∪ Γo × (te , t0). (B.16)

The initial condition for the adjoint variable λ(te ) is obtained from terms contain-
ing T̂ (te ) and results in

λ(te ) = − γ2
ρCp

(T (te ) −T ∗) (B.17)

Collecting all terms containing the variation of the independent variable ĉ leads
to the gradient formulation

dL
dc
=

∫
γ1c dt −

"
Γs

λhQ dsdt . (B.18)
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