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ZUSAMMENFASSUNG

Die Verfügbarkeit von Protein- und DNA-Sequenzen hat seit Mitte des zwanzigsten 

Jahrhunderts die Evolutionsbiologie revolutioniert. Erstmalig war es möglich die genetische 

Variation zwischen Individuen auf molekularer Ebene zu beschreiben und sogar zu 

quantifizieren. Diese neue Art von Daten trafen auf eine immense Vielzahl von Theorien zur 

Evolution die über die Jahrhunderte entstanden waren. Sewall Wright, Ronald A. Fisher und 

John B. S. Haldane, den Pionieren auf dem Gebiet der Populationsgenetik, gelang es erstmals

die Evolution von Genen in idealen Populationen zu modellieren. 

Es ist nun möglich ihre theoretischen Vorhersagen zu überprüfen und unter Verwendung 

molekularer Daten die ursprüngliche Populationsgröße und die natürliche Selektion zu 

begreifen. 

In einer Zeit in der es möglich ist vollständige Genome zu sequenzieren stellt sich die 

Überprüfung der theoretischen Annahmen zunächst als Herausforderung heraus. Die 

Zufälligkeit, mit der unterschiedliche evolutionäre Prozesse auf die DNA-Sequenzen 

einwirken, macht es schwer die eigentlichen Signale von Hintergrundrauschen abzugrenzen. 

Auch wenn bereits beträchtliche Fortschritte auf diesem Gebiet erzielt wurden, stehen nur 

wenige verfügbare evolutionäre Modelle den immensen Mengen von verfügbaren 

Sequenzdaten gegenüber.

In dieser Thesis mache ich einen Schritt um diese Lücke zu verkleinern. Meine wichtigste 

Entwicklung ist die der integrierten sequenziellen Markov Koalenzenz (iSMC) – ein 

neuartiges System, dass gleichzeitig die Effekte der Demographie und der molekularen 

Heterogenität der genetischen Diversität moduliert.  Dieses Verfahren ermöglicht es 

realitätsgetreuere Modelle der Populationsgenetik zu erstellen als zuvor. 

Das Schicksal der DNA über mehrere Generationen hinweg wird durch stochastische 

Prozesse innerhalb der Zellen geprägt. Besonders hervorzuheben ist das unvorhersehbare 

Verhalten der Moleküle während der meiotischen Rekombination zwischen homologen 

Chromosomen sowie die Entstehung von Fehlern während der DNA-Replikation (Mutation). 

Beide Mechanismen werden durch komplexe Dynamiken gesteuert. 
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Weiterhin treten Rekombination und Mutationen in bestimmten Regionen des Genoms 

häufiger auf als in anderen. Obwohl solche Heterogenität einen wichtigen Einfluss auf die 

Evolution hat, wurde sie in bisherigen Populations-Genetischen-Modellen vernachlässigt. 

Hier zeige ich, dass die Einbeziehung dieser Heterogenität in die Koaleszenz es ermöglicht 

die genomweite Variation der Rekombinationsrate (Kapitel 1) und Mutationsrate (Kapitel 2) 

zu inferieren. Auf diese Weise bringt das vorgestellte Modell die Populationsgenetik der 

tatsächlichen Biologie von Genomen einen Schritt näher. 

Die Auswirkungen intrazellulärer stochastischer Prozesse erstreckt sich deutlich über den 

Einfluss auf die DNA-Sequenz hinaus. Aufgrund der zufälligen Diffusion verschiedener 

Moleküle können sich isogene Zellen auch in homogener Umgebung stark in ihren 

Expressionsmustern und somit Phänotypen unterscheiden. Um Chaos zu vermeiden ist es 

notwendig die intrazellulären stochastischen Prozesse durch natürliche Selektion zu dämpfen.

Im dritten Kapitel verwende ich Daten aus  Einzelzell- Transkriptomanalysen um zu 

entschlüsseln, welche Faktoren das Hintergrundrauschen der Genexpression verringern. 

Obwohl die Selektion gegen gesteigertes Hintergrundrauschen auf unterschiedlichen 

Organisationsniveaus wirkt, zeige ich, dass sie vor allem durch die Architektur molekularer 

Netzwerke beeinflusst wird. 

Dieses verändern unser Verständnis der Genotyp-Phänotyp-Fitness Interaktionen 

grundlegend. 

(ii)



SUMMARY

The availability of protein and DNA sequences in the second half of the 20th century 

revolutionised evolutionary biology. For the first time, it was possible to quantify genetic 

variation among individuals at the molecular level. These data immediately met a large body 

of theory that had been accumulated in the previous decades. Pioneered by Sewall Wright, 

Ronald A. Fisher and John B. S. Haldane, the field of Population Genetics had been 

modelling the evolution of genes within idealised populations. Now, their theoretical 

predictions could finally be confronted. Using molecular data to understand past demography

and natural selection became an attainable goal. 

In the current era of whole-genome sequences, application of these early theoretical results 

proved to be challenging. The stochastic nature of evolutionary processes acting on DNA 

sequences makes it hard to distinguish signal from noise. Although progress has been made in

this direction, models of molecular evolution are still lagging behind the huge availability of 

sequence data. In this thesis I contribute to bridging this gap, even if slightly. My main result 

is the development of the integrated sequentially Markovian coalescent (iSMC) – a novel 

framework that jointly models the effects of ancestral demography and molecular 

heterogeneity in shaping genetic diversity. This principled approach represents a step towards

more realistic models of Population Genetics.

The fate of DNA over generations is driven by stochastic processes inside the cell. Of 

particular relevance here is that the erratic behaviour of molecules results in both 

chromosomal recombination during meiosis and copy errors during DNA replication 

(mutation). Both mechanisms exhibit complex dynamics, and some regions of the genome are

more likely to experience recombination or mutation events than others. Although such 

heterogeneity impacts evolution, it has largely been neglected by Population Genetic models. 

Here I show that its incorporation into the Coalescent leads to accurate inference of spatial 

variation in the recombination rate (chapter 1) and the mutation rate (chapter 2). The ensuing 

model brings Population Genetics closer to the biology of genomes.
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The consequences of intracellular stochasticity extend beyond DNA sequences, however. Due

to randomness in the diffusion of key molecules, isogenic cells differ in their gene expression 

patterns – hence in their phenotypes – even in homogeneous environments. To avoid chaos, 

intracellular stochasticity must be tamed by natural selection. In the third chapter, I leverage 

single-cell transcriptomics data to disentangle the factors that constrain gene expression 

noise. Although selection against elevated noise acts at different levels of organisation, I 

show that it responds primarily to the architecture of molecular networks. This result may 

impact our understanding of the genotype-phenotype-fitness map.
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“Science is more than a body of knowledge. It's a way of thinking.”

                               – Carl Sagan
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INTRODUCTION

Whether the natural world is fundamentally deterministic or stochastic remains an open 

question [1,2]. The uncertainty arises because deterministic processes can appear to be 

random, as in the amplification of minor differences in the initial conditions of dynamical 

systems known as deterministic chaos [3,4]. This phenomenon happens at all levels of 

organisation – from the interaction of elementary particles [1] to intracelullar reactions [5,6] 

and eco-evolutionary dynamics between species [7,8] – and pertains to the predictability of 

evolution [9]: would replaying the tape of life lead to the same outcome [10,11]? According 

to deterministic chaos, the answer would be yes, although full prediction of the events 

unfolding would require staggeringly complex models as well as infinite precision in their 

variables [1]. As a result, the distinction between deterministic chaos and “true” stochasticity 

is not only unlikely to be settled, but also empirically trivial: since measurements are bound 

to finite precision, the universe through the lens of science is inevitably stochastic. In other 

words, even if we knew the present position of all atoms in the universe, we would neither be 

able to deduce the future nor make perfect inference about the past. This realisation has direct

consequences for the study of evolution. Since the long time-scale where evolution operates 

precludes direct observation of events, we rely on modelling to understand how ancestral 

processes shaped life on Earth. In order to account for a meaningful proportion of the 

possible evolutionary trajectories, our models must be stochastic. In this thesis, I will describe

novel stochastic models of molecular evolution.

1. The importance of stochasticity to evolution

Broadly speaking, evolution can be defined as change in biological diversity over time. From 

its initial formulation as a purely adaptive process whereby variation is sorted 

deterministically by means of natural selection, Darwinian evolution embraced the 

inheritance principles of Mendelian genetics and was reformulated during the Modern 

Synthesis in the first half of the 20th century [12,13]. At that time, the emerging field of 

population genetics sought to formally describe the forces that act on genetic variation to 

effectively promote changes in allele frequencies; in doing so, it provided solid theoretical 

ground to explain how variation at the population level is eventually transformed into the 

phenotypic variation at the species level that had inspired Darwin [12]. Early theoretical 

results showed that the mechanisms of evolution are plenty. Besides natural selection [14], 

1



stochastic processes also play a role [13]. Attempts to quantify the relative importance of both

in affecting allele frequencies have established a long standing debate in the field [15,16]. 

Throughout the development of population genetics theory in the 1940's and 50's, most 

believed that natural selection was the dominant force and that little genetic diversity would 

be present in natural populations [12,17]. As molecular data became available [18], it was 

clear that variation is ubiquitous [19]. The pan-selectionist view where the majority of 

mutations has substantial fitness effects was not able to explain the observed levels of 

molecular polymorphism due to the predicted high cost associated with segregation of non-

optimal variants [17]. To solve the apparent paradox, Kimura posited that most, if not all, 

such variation would behave neutrally [20]. In this scenario, strongly deleterious mutations 

are quickly purged away and are not observed in the data; conversely, strongly advantageous 

mutations are very rare and quickly rise to fixation; the vast majority of single nucleotide 

polymorphisms (SNPs) segregating at the population level are invisible to selection and 

experience a random walk towards either loss or fixation [12]. Subsequent comparative 

studies among different species largely provided evidence in favor of the Neutral Theory. The

observation that divergence tends to accumulate linearly with time formed the basis for the 

molecular clock hypothesis [21], which states that the branches of a phylogenetic tree can be 

dated if one has knowledge about the rate at which mutations happen per nucleotide per unit 

of time. This model was later refined to incorporate a distribution of fitness effects that allows

for a small fraction of mutations being slightly deleterious and an even smaller fraction being 

slightly advantageous – the Nearly Neutral Theory of molecular evolution [22]. Recently, 

however, in light of large-scale whole-genome sequencing and powerful inference tools, the 

old debate has resurfaced [23–25]. As compelling stories of episodic positive selection 

accumulate, together with an increasing appreciation of the role of linkage and recombination

in modulating shared evolutionary histories among sites [26,27], the post-modern neutralist-

selectionist debate focuses mostly around the indirect effect of selection on genome-wide 

diversity. It is not the purpose of this thesis to settle this debate. Rather, I will argue that 

stochasticity pervades molecular evolution regardless of the magnitude of genetic drift; other 

key processes such as mutation, recombination, migration and gene expression are deeply 

rooted in chance.
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2. The nature of stochastic processes in evolutionary biology

Lenormand, Roze and Rousset (2008) [28] have classified stochastic processes in 

evolutionary biology in three major groups. First, random errors during DNA replication 

result in mutations at the nucleotide level, creating variation among individuals. Second, 

chance events in life histories at the individual level lead to random reproductive output and 

consequently to “drifting” of molecular variants. Third, unpredictable fluctuations of 

environmental conditions at the population level constantly re-define the fittest types by 

changing selective pressures. Each of these types of stochasticity influences evolution in a 

different manner. In section 1.2.1 I will describe how stochasticity in reproduction leads to 

the backbone population genetics: a genealogy of the population. Combined with random 

mutations, it results in shared patterns of polymorphism that can be exploited to study past 

evolutionary events. In section 1.2.2 I will briefly introduce the potential consequences of 

random environmental changes, and bring the attention to a fourth type of stochastic process 

that has so far been overlooked in evolutionary biology: noise in the genotype-phenotype 

map.

2.1 Mutations and life-histories

Stochasticity impacts the life-cycle of individuals. Birth, reproduction and death are events of

the highest evolutionary relevance that entail a considerable amount of chance: it is easy to 

imagine that otherwise fit individuals can accidentally die or fail to find food or mates. Let 

birth, reproduction and death be combined such that the object of study becomes a random 

variable that represents the net reproductive output of each individual. The Wright-Fisher 

model [29] can be used to follow their lines of descent over generations. The model considers

a diploid, panmitic population of constant size N that evolves neutrally. Individuals from 

generation t produce a very large pool of gametes and die immediately afterwards, hence 

establishing non-overlapping generations. Their gametes are then paired at random to give 

rise to generation t + 1. Crucially, because the gamete pool is not limiting, the same 

individual can have its gametes chosen to form offspring multiple times (i.e., individuals 

from generation t + 1 can be viewed as a random sample with replacement of the individuals 

from generation t). Since population sizes are typically large (N > 10,000), the number of 

offspring of each individual can therefore be approximated by a Poisson distribution with 

mean and variance both equal to 1. That the variance is greater than 0 implies that some 
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individuals will produce more than one offspring per generation, while others will produce 

none. Indeed, under the Poisson distribution, the probability that an individual leaves no 

descendants in the next generation is P(X = 0) = e-1 ≈ 0.37, meaning that only about 63% of 

individuals are expected to successfully reproduce. As the process is iterated over 

generations, the entire population descends from a small fraction of the population that lived t

generations ago, eventually sharing a most recent common ancestor (MRCA) – an otherwise 

ordinary individual that accidentally became the only one from its generation to have 

descendants in present time. Tracing its lines of descent will paint the genealogy of the 

population. Implicit in the genealogy are birth, reproduction and death, incorporating 

stochasticity in life histories.

Reproduction in such finite populations has consequences for the evolution of diversity 

[30,31]. Consider a population of diploid size N in which there are two allelic types, A and a. 

Our goal is to track the number of these alleles over future generations, thus we further 

approximate by letting go of individual boundaries and treat it as a population of 2N gene 

copies that segregate independently. Therefore, instead of looking at the reproductive output 

of each individual, we are now concerned with the total number of offspring each allelic type 

collectively leaves at each generation. Let the frequency of alleles A and a at generation t be 

p and q = 1 – p, respectively, and assume there are no mutations transforming A individuals 

into type a and vice-versa. Since under neutrality the probability of successful reproduction is

independent of the type, the frequency of individuals carrying allele A in generation t + 1 is 

binomially distributed with mean equal to p and variance given by pq / (2N) [32]. Since the 

variance is inversely proportional to N, the stochastic fluctuation in allele frequencies known 

as genetic drift will be stronger when the population size is small. In the absence of new 

mutations, drift will eventually lead to fixation of one of the alleles.

Backwards-in-time. An alternative way of looking at the forwards-in-time loss of diversity by 

drift is to look at the probability (I) that two randomly chosen alleles in present time are 

identical by descent. Since in a diploid population each individual carries two copies of each 

locus, the probability that two randomly chosen alleles share a parental allele (coalesce) in 

the previous generation is 1 / (2N) [33]. However, even if they do not coalesce in the 

immediately previous generation, they may do so in the generation before that. The same 
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logic extends deeper into the past such that the probability of identity by descent can be 

written down as a recursion [17]:

It=1/ (2N )+(1– 1/(2 N ))×I (t−1) (1)

where t denotes discrete generations steps. The first term on the right-hand side describes the 

probability that the two alleles coalesce in the immediately previous generation. The second 

term describes the probability that the two alleles have distinct parents in the previous 

generation, which are in turn identical by descent with probability It-1. If we now turn things 

around and measure diversity by the heterozigosity coefficient H = 1 – I (i.e., the probability 

that two randomly drawn alleles are not identical), we can express the above recursion as:

1– Ht=1/(2 N )+(1 –1/ (2N ))×(1 – H (t−1)) (2)

Ht=(1 –1/(2N ))×H (t−1)

reaching the classical result that diversity is lost by a rate of 1 / (2N) per generation [32]. To 

illustrate the concept of genealogical variance I have so far considered a population of 

abstract individuals. To bring the model closer to reality, I now assume that they carry (non-

recombining) sequences of DNA, thus, each generation is an opportunity for mutations. In 

this case, identity by descent can only occur if no mutations happened along the branches 

connecting our focal pair of alleles. Representing the mutation rate per generation per locus 

by μ, we have [17]:

It=(1–μ)2×[1/(2N )+(1 –1 /(2 N))×I (t−1)] (3)

As expected, since the factor of (1- μ)2 reduces the probability of identity by descent, 

mutations oppose the effect of drift. We can finally ask how much diversity is maintained in a

population over time (the so-called mutation-drift balance). Such equilibrium state is found 

by letting It = It-1 = I. Ignoring terms of order μ and rearranging as a function of the expected 

heterozigosity, we find that H = 4Nμ / (1 + 4Nμ). (The term 4Nμ is often represented by θ 

and designated the “population-scaled mutation rate”.) Therefore, if we have an estimate of μ 

(e.g. from experimental studies), we can use levels of genetic diversity as a measure of the 
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population size [34]. This is because the mutation-drift balance is nothing more than a tug-of-

war between stochasticity in individual life histories and stochasticity in DNA replication.

The Coalescent. The Wright-Fisher model just presented describes the evolution of tens of 

thousands of individuals for tens of thousands of generations. In many cases, dealing with 

this entire pedigree is impractical – and also unnecessary since we have seen that the vast 

majority of these individuals do not contribute to present-day diversity. Instead, we can 

further develop the backwards-in-time perspective to gain insight on molecular evolution by 

focusing on the statistical properties of the genealogy of a sample of size two (I illustrate here

the concept for n = 2 because the approaches that I develop on chapters 1 and 2 focus on pairs

of genomes). Rather than keeping track of the ancestry of our sample through every 

generation on the way to their MRCA, we can simply ask how long it takes for their MRCA 

to be found (and denote this time the TMRCA). This framework is known as the Coalescent 

[33,35]. It was independently derived by Kingman [36], Tajima [37] and Hudson [38], who 

were motivated to understand the evolution of molecular diversity within populations.

The statistical property we are looking for is the average number of generations that it takes 

for two randomly sampled alleles to find a common ancestor. We have seen that the 

probability that they descend from the same allele (coalesce) in the immediately previous 

generation is 1 / (2N). Similarly, the probability that they coalesce exactly two generations 

ago is the product of the probability that they do not coalesce in the previous generation (1 – 

1 / (2N)) and the probability that they coalesce immediately after that (1 / (2N)). Generalising

this process, the probability that two alleles coalesce exactly t generations ago is

(1 – 1/(2 N ))(t−1)×1/ (2 N ) [17]. That is, they must not coalesce for t – 1 generations and 

then immediately do it. The TMRCA of our sample is therefore geometrically distributed with 

mean 2N and variance 4N2 – 2N [17]. Due to neutrality, the genealogical process is 

independent of the mutational process generating polymorphism. Thus, simulating a short 

DNA fragment under the Coalescent can be done in two steps [35]. First, draw a 

geometrically-distributed random variable to represent the TMRCA. Once the TMRCA of our 

sample has been found, we have a binary tree with two branches of the same length (L). 

Second, add mutations on each branch by drawing a Poisson-distributed random variable 

(representing the number of mutations in the locus) with rate proportional to L×μ [35]. 
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Since mutations on either branch will generate SNPs in our sample, its expected level of 

polymorphism is 2×2 N×μ=θ as in the Wright-Fisher model. Therefore, θ obtained from 

a sample of two haploid individuals (or alternatively, one diploid) is an unbiased estimator of 

the diversity of the population [34]. Here lies the computational efficiency of the Coalescent: 

it concerns only the historical mutations that are pertinent to the sampled sequences. 

The large genealogical variance in the Coalescent (4N2 – 2N) implies that the genealogy of a 

single locus is very noisy. This is an unwelcome property if we wish to accurately estimate 

diversity in a population, because the genealogy of the locus will likely be shorter or taller 

than the average just by chance. Importantly, genealogical variance reflects stochasticity in 

the ancestral process and it is independent of the sampling variance (which is relatively small 

since the probability that the sample has the same MRCA as the entire population increases 

rapidly with sample size [35]). In other words, the true TMRCA of our locus may deviate 

substantially from its expectation given Ne, hence our estimate of θ will be inaccurate 

regardless of the sample size. An obvious solution is to sample multiple independent loci 

(e.g., from different chromosomes) and combine information from their genealogies. In fact, 

it is now possible to sequence entire genomes. Although this approach offers a wealth of 

information, statistical analysis of whole genomes bears an additional challenge: the 

genealogies at neighbouring sites are not independent from each other [39–41]. To account 

for this effect, we need to incorporate another layer of biological complexity: meiotic 

recombination [42,43].

Coalescent with recombination. The nucleotides in a chromosome are physically linked to 

each other [44]. Consequently, in the absence of recombination, chromosomes would travel 

along generations as units, all their sites sharing an identical MRCA. In sexually reproducing 

species, meiotic recombination prevents these shared histories by introducing breakpoints 

where chromosomal blocks part ways in the ancestral process [39]. The crossing-over of 

sister chromatids prior to the formation of gametes shuffles genetic variation within parents 

and results in offspring that has a re-arrangement of the haplotypes from their grandparents 

[35]. In coalescence terms, recombination causes chromosomes to have two parents in the 

previous generation and to be a mosaic of chromosomes from the ancestral population. 

Recombination is itself a stochastic process and the probability that a cross-over event 
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happens between two sites is a function of their distance [45]. Therefore, loci in the same 

chromosome that are sufficiently apart from each other have almost independent genealogies. 

As their physical proximity increases, so does the overlap between their evolutionary 

histories. Even if they do not have the same MRCA, the genealogies might share a sizeable 

proportion of their branches because a cross-over event that happened between them in the 

past will only unlink them from that time backwards. This idea of non-independence of 

genealogies due to physical linkage is referred to as Linkage Disequilibrium (LD) and is 

central to population genomics [44,46].

The existence of LD implies that the genealogy under the Coalescent with recombination can 

no longer be described as a simple bifurcating tree. Instead, it requires a structure that records

both coalescence and recombination events. This structure is known as the Ancestral 

Recombination Graph (ARG) [47,48], and is best introduced by the following thought 

experiment where we simulate the ancestry of our sample. Once more, we let go of the 

concept of individuals, and approximate by treating the population as a collection of 2N 

orthologous chromosomes. Tracing the occurrence of events backwards-in-time, we wait 

exponentially distributed times for either a recombination or a coalescence event. 

Recombination in a chromosome will split it between two parental chromosomes, whereas 

coalescence will merge them into a common ancestral chromosome. The process is iterated 

until all sites find their MRCA (Figure 1A). While the backwards-in-time assembly of the 

ARG offers a complete representation of the ancestral process, its complexity grows with the 

number of sites in the genome (more precisely, with the number of recombination events) 

[35]. Since in practice we do not know the true ARG that underlies our sample, we need to 

integrate over many possible ARGs to have a meaningful representation of the stochastic 

process. Hence, using the Coalescent framework to analyse whole-genome sequences 

requires an alternative interpretation of the ARG.

The key simplification of the Coalescent with recombination – which led to the development 

of important inference tools – happened in two steps, six years apart, and underscores the 

value of creative work that does not necessarily have an immediate application. In 1999, 

Carsten Wiuf and Jotun Hein described the Coalescent as a process unfolding spatially along 

chromosomes [49]. Starting from the TMRCA that describes the ancestry of the first site in an 
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alignment, the spatial Coalescent moves along the chromosome (Figure 1B). Due to linkage, 

neighbouring sites will share their MRCA unless a recombination event has happened 

between them at some point < TMRCA. In this case, one of the chromosomes is split between 

two parents. While its left side follows the original ancestry path, its right side is now 

segregating independently in the ancestral population; it will either coalesce back to the 

original MRCA, or find another one, in which case the TMRCA will change at that particular 

position. The TMRCA  will only change again at the next position that experiences a 

recombination event within its time-frame. The spatial process is iterated sequentially until 

the end of the chromosome, adding recombination events and re-grafting the ARG to 

accommodate new coalescence events as it proceeds. The result is a distribution of TMRCA's 

that can be viewed as a serial collection of genealogies depicting the LD structure. Mutations 

happen in each genomic region with a rate proportional to the local TMRCA.

This change in perspective brought the Coalescent with recombination closer to data analysis.

The difference lies in how the two approaches resolve the multiple MRCAs scattered across 

the chromosome (Figure 1). In the backwards-in-time assembly of the ARG, a new 

recombination event is always allowed to happen at any position, and we constrain 

coalescence times as we move deeper into the past. We thus need to unravel the ancestry of 

the entire chromosome at once – a daunting task. (So complicated, in fact, that the existing 

analytical model can only compute the likelihood between two polymorphic sites [50–52].) 

On the other hand, in the spatial assembly of the ARG, a new coalescence event is always 

allowed to happen at any time point, and we constrain recombination breakpoints as we move

towards the end of the chromosome. Thus we can expand the ARG site-by-site, greatly 

reducing complexity. Such convenience, however, comes at a cost. Whereas assembly of the 

ARG is a Markovian process in time (i.e., the next event only depends on the current sample 

configuration), the same is not true for its spatial counterpart. Due to the presence of so-

called trapped non-ancestral material (see Appendix 2), the probability of transitioning to a 

new TMRCA does not depend only on the current TMRCA , but potentially on all others previously

visited. In 2005, Gil McVean proposed that discarding such rare events would be a robust 

approximation, therefore getting rid of long-range correlations and rendering the process 

Markovian. Such approximation was dubbed the Sequentially Markovian Coalescent (SMC) 

[53,54]. The stage was set for Coalescent inference using whole genomes.
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Figure 1. A very simple Ancestral Recombination Graph. A, the backwards-in-time assembly of the ARG for 

a pair of orthologous chromosomes. Two recombination events (stars) happen early in the ancestry of the 
sample. Thick bars represent nucleotides that are found in the present-day sample (ancestral material) whereas 

lines represent variation that is lost by drift forwards-in-time (non-ancestral material). Coalescence events are 
marked at t1, t2 and t3, where black shading indicates merged ancestral material. B, the equivalent representation 

of the same evolutionary history unfolding spatially along the chromosome. 

Inference using the Coalescent. We have seen that stochasticity in population genetics comes 

in two main flavours: random reproductive success of individuals and random occurrence of 

mutations during DNA replication. The first results in a pedigree of the whole population; the

latter creates variation among individuals that on average reflects such genealogical history. 

To introduce the Coalescent, I took a simulation-like approach and focused on the standard 

model based on the Wright-Fisher population (notably assuming panmixia, constant size, and 

neutrality). These models, however, has been extended in multiple directions and can 

currently incorporate a wide range of evolutionary scenarios [55,56]. The days when the 

Coalescent served merely as a null model of evolution are gone [38]; it has become a 

powerful analytical framework where models of increasing complexity are being developed 

to understand the past [57–59].

We now turn to data analyses. In this setting, we have a sample of DNA sequences and wish 
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to learn about the evolutionary processes that shaped them. For example, we may be 

interested in inferring the demographic history of the population to which our sample 

belongs. Broadly speaking, there are two basic approaches to inference. On the one hand, one

can perform model-based simulations with varying parameter values and contrast summary 

statistics obtained from these simulations with those obtained from the data [60–62]. The 

simulations where statistics are more similar to data are then selected to paint a posterior 

distribution of the parameters we wish to estimate (e.g., the growth rate of the population). 

On the other hand, one can fit an explicit model to data. In this case, our model is a somewhat

parsimonious abstraction of reality that describes how its parameters contribute to the data-

generating process (evolution). We study how varying parameter values affect the likelihood 

– the probability of the model, given the observed data – and use optimisation procedures to 

look for those that best explain the data [63] (e.g., that maximise the likelihood). In chapters 1

and 2, I take this approach to estimate recombination and mutation rates along the genome 

using Coalescent-based models.

As an exercise of reasoning from observed variables (data) to unobserved variables 

(parameters), inference is a difficult endeavour in general [64]. Within the context of 

population genomics, it is further complicated for two reasons. First, the low levels of 

nucleotide diversity in non-structured populations (θ typically ranges from about 10-4 to 10-2 

per site [65]) limits the amount of information that is recorded in sequence data. Second, 

evolutionary processes such as genetic drift (modulated by demographic history), natural 

selection and gene flow all affect patterns of polymorphism, but they can leave similar 

footprints in the data. For this reason, the same pattern can often be equally well explained by

multiple scenarios. Disentangling between them is a major goal of statistical models. 

A critical challenge with population genomic inference is modelling multiple evolutionary 

factors simultaneously. Available methods simplify by focusing on the factors they propose to

study and assuming all others are negligible. For example, models for demographic inference 

[57,66] assume neutrality, whereas models for inference of selection typically assume 

constant population size [67]. The existence of “ghost” factors that substantially influence the

data but are unaccounted for can lead to biased estimates. To illustrate why, consider the 

classic burglars and earthquakes problem [68]. Imagine you have an alarm in your house that 
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goes off when there is a burglar invasion. The same alarm can also be triggered by 

unnoticeable earthquakes. While at work, you receive a call by your neighbour saying the 

alarm is ringing. Your goal is to infer what triggered the alarm. Since earthquakes are fairly 

rare in your region, you assign higher probability to a burglary event. If, however, you turn on

the TV and there is news of a small earthquake, you may decide not to call the police. Now 

consider what would happen if you did not know that small earthquakes could trigger your 

alarm. Every time it went off, you would infer that you have been robbed, leading to false 

positives. The same principle holds for population genomic inference. To better extract signal

from the data, models must incorporate the joint effect of multiple evolutionary factors on 

shaping DNA sequences.

In chapters 1 and 2 I describe iSMC – a novel modelling framework that extends the SMC to 

incorporate spatial heterogeneity of evolutionary processes along the genome. By jointly 

inferring demographic histories and variation in recombination and mutation rates, the current

implementation of iSMC relieves some of the strong simplifying assumptions made by 

available inference tools based on the Coalescent [58,59]. As a result, not only can iSMC 

infer a wider set of parameters than other methods, but its estimates should be more accurate 

because the joint-inference approach can disentangle the effects that different evolutionary 

factors leave on sequence data.

 

2.2 Stochastic changes in environmental conditions 

Environmental conditions are dynamic. Whether biotic or abiotic, most environmental 

variables fluctuate over time. The time-scale of such fluctuations determines how natural 

selection shapes the way individuals deal with them [28]. On one extreme, cyclic fluctuations

that have a duration shorter than the species' generation time (e.g., in human terms, day-night 

cycles and climate seasons) can be dealt with modulation of gene expression levels. These 

short environmental changes trigger biochemical reactions which result in activation or 

deactivation of particular sets of genes. Thus, in the presence of short and cyclic 

environmental fluctuations, natural selection can favour molecular networks capable to 

respond when necessary [69]. 

On the other extreme, stochastic changes that establish new conditions for undetermined 

12



periods of time are more challenging to cope with. Since the new conditions are unexpected, 

natural selection is unlikely to promote the evolution of a well-adapted molecular network 

that can be switched on upon stimulation. One possibility is that selection constantly acts on 

variants better fit to standing environmental conditions. Regardless of whether such recurrent 

episodes of positive selection act on protein sequences or gene expression levels, if the 

resulting sweeps are strong, it is possible that alleles favoured under particular conditions rise

to fixation. In this case, the next change in the environment can threaten extinction – unless a 

new beneficial mutation arises, a situation known as evolutionary rescue [70]. An alternative 

possibility is that selection promotes plasticity in molecular networks such that an individual 

can explore a range of possible phenotypes [71,72]. For example, a scenario where the 

environmental conditions change often enough (although unpredictably) to impose a selective

pressure can favour the evolution of so-called bet-hedging strategies: when fitness is reduced 

under “regular” conditions, but increased under stress. One way to achieve this flexibility is 

by means of Stochastic Gene Expression (SGE).

A fundamental goal of biology is to understand the flow of information from DNA sequences 

(genotype) to the effect of its encoded proteins on organismal traits (phenotype), and the 

consequences of trait variation on reproductive output (fitness). Much effort has been placed 

into deciphering the layers of the so-called genotype-phenotype-fitness map [73]. For 

example, it is now widely recognised that most traits have complex architectures: their 

variation is influenced by hundreds of genes, even the entire genome (as described by the 

omnigenic model [74]). Thus the effect of one gene can be compensated by another, such that

models of trait evolution allow the mapping of multiple genotypes onto the same phenotype. 

So far, however, a standard assumption has been that each genotype maps to a single 

phenotype. The increasing recognition of gene expression as an inherently stochastic process 

challenges this view [75–77]. 

To appreciate the impact of SGE on the genotype-phenotype-fitness map, we must understand

an organism as a complex adaptive system. We can describe its architecture by a collection of

networks, where nodes represent individual parts and edges represent interactions among 

them [78,79]. Inside the cell, smaller networks connect to each other if the product of one is a

node of the other, thereby establishing a higher level of organisation [80]. Modularity is an 
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important property here: the ability to isolate the components of a system to minimise 

external interference, and also to integrate and recombine different modules in order to 

achieve novel biological function [81]. Within this context, it is tempting to picture the 

intracellular environment as a perfectly orchestrated clockwork machine. However, the 

random diffusion of molecules imposes a challenge to faithful execution of biochemical 

functions. Network edges are not permanent and their establishment is a stochastic process, 

raising the question of how network nodes are put together exactly when necessary.  

A partial explanation is provided by the law of large numbers. Many essential ions and small 

molecules are present in vast quantities such that stochasticity in their individual movements 

is averaged out collectively. The law of large numbers, however, does not hold everywhere in 

the cell [72,76]. In particular, key processes such as gene expression are performed by 

molecules that are maintained at low copy number relative to their targets. Considering the 

typical number of genes in an organism (of the order of 104), the low numbers of players such

as transcription factors and RNA polymerases implies that stochasticity in their diffusion and 

binding will not be perfectly compensated [82]. Consequently, the spatio-temporal 

distribution of proteins is actually heterogeneous. Since their distribution determines which 

networks are active, stochasticity is an inherent property of cells. This idea was confirmed by 

an experiment showing that isogenic bacteria behave differently even in homogeneous 

environments [72].

Although SGE is conceptually well-understood [75,83], its evolutionary consequences have 

not been thoroughly explored. Intuitively, SGE can be either advantageous or deleterious. In 

the presence of fluctuating environmental conditions, selection may favour genotypes with 

noisy expression as a way to explore the phenotypic space without committing to particular 

DNA variants [84,85]. Thus, SGE can be viewed as a way to cope with an uncertain 

environment, increasing the probability that at any point at least a fraction of cells is fit. On 

the other hand, cells must avoid noise propagation across the networks [86,87]: because the 

distribution of proteins influences gene expression and vice-versa, SGE is self-reinforcing. 

Therefore, it is expected that selection acts to reduce stochasticity in the expression of core 

genes, i.e., those that code for highly connected proteins in central networks [88]. In chapter 

3, I put SGE in a evolutionary systems biology framework, investigating how natural 
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selection shapes gene-specific transcriptional noise given the constraints imposed by 

intracellular networks, and discuss the major determinants of the evolution of SGE.

CONCLUDING REMARKS

A model is an abstract description of reality. It should be simple enough that it can be 

formulated rigorously and precisely, but also complex enough to capture key components of 

the process we are trying to understand. The Wright-Fisher is a mathematical model of life 

histories in a population where individuals do not feed or flee from predators. Still, it layed 

the foundation of population genetics and fostered the development of more complex models 

of molecular evolution [56]. Any laboratory experiment is also a model. For example, a set-

up to study the dynamics of predator-prey systems ignores a myriad of other species and 

biochemical molecules that would be present in the wild, as well as fluctuations in 

environmental conditions. Yet it can answer important questions, which will in turn motivate 

the development of more realistic experiments [89]. In this process of refinement, where 

model predictions are confronted with data, we re-evaluate previous assumptions and 

progressively achieve a better understanding of the world [90].

As biologists dig deeper into extracting signal from sequence data, there is an increasing 

demand for more realistic models in population genomics. The parsimony principle itself has 

been challenged in the context of eco-evolutionary models [91]. In the first two chapters of 

this thesis, I develop the integrated sequentially Markovian Coalescent (iSMC) – which 

extends the SMC to incorporate heterogeneity in molecular rates along the genome – and 

demonstrate its accuracy with case studies in three different species. Broadly speaking, the 

resulting model jointly accounts for the effect of time and space in the Coalescent. By 

incorporating biological complexity in a principled fashion, it helps bridging the gap between

theoretical population genetics (what we know about the evolutionary forces shaping 

population dynamics) and data analyses (how much of this knowledge is implemented in 

computational tools that can be used for inference in real datasets). Further, application of the

iSMC framework is not restricted to heterogeneity in the recombination rate (chapter 1) or in 

the mutation rate (chapter 2). Promising avenues of research include modelling spatial 

variation in the migration rate (as a result of differential permissiveness to gene-flow along 
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the genome [92]) and in the effective population size (as a result of gene-flow itself or natural

selection modulating the number of individuals that contribute to diversity around focal loci 

[93]). I therefore expect iSMC to have a positive impact on the field in the years to come.

More than an inference tool, iSMC represents a defense of the view of science championed 

by Judea Pearl [64] and David Deutsch [90]. Its approach to extract biological signal from 

DNA sequences using conceptualised relations of how evolution (as represented by model 

parameters) is expected to influence polymorphism data contrasts with the instrumentalist 

view of so-called data-mining techniques. While I agree that “black box” inference is 

valuable when the study system is too complicated to be formulated concisely, I strongly 

subscribe to the idea that science is ultimately an exercise of explaining the natural world – 

which can only be achieved by a patient quest for causality.

Finally, I show in chapter 3 how selection at different levels of organisation can drive the 

evolution of SGE. Understanding this phenomenon may influence the way we model the 

genotype-phenotype-fitness map. For example, an intriguing question in human evolution is 

how to concile the extensive phenotypic differences between humans and chimpanzees with 

the striking similarity in their proteome. Fraser (2013) [94] suggested that selection along the 

human lineage has primarily acted on gene expression levels, which promoted phenotypic 

changes while keeping protein structures intact (which presumably are close to their fitness 

peaks). The results I present on chapter 3 suggest that SGE is an important component of the 

phenotype and a constant target of selection. With the increasing recognition that the 

architecture of complex traits [95] as well as the dominance effects of mutations [96] are 

deeply entrenched into gene expression and molecular networks, incorporating SGE into 

these models can be an important step towards solving the so-called mystery of the missing 

heritability [97,98]. 
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CHAPTER 1

Inference of recombination maps from a single pair of

genomes and its application to ancient samples

Authors: Gustavo V. Barroso*1, Natasa Puzovic1 and Julien Y. Dutheil1,

Affiliations: 1) Max Planck Institute for Evolutionary Biology. Department of Evolutionary 

Genetics. August-Thienemann-Straße 2 24306 Plön – GERMANY

ABSTRACT:

Understanding the causes and consequences of recombination rate evolution is a fundamental

goal in genetics that requires recombination maps from across the tree of life. Since statistical

inference of recombination maps typically depends on large samples, research in non-model 

organisms requires alternative tools. Here we extend the sequentially Markovian coalescent 

model to jointly infer demography and the variation in recombination along a pair of 

genomes. Using extensive simulations and sequence data from humans, fruit-flies and a 

fungal pathogen, we demonstrate that iSMC accurately infers recombination maps under a 

wide range of scenarios – remarkably, even from a single pair of unphased genomes. We 

exploit this possibility and reconstruct the recombination maps of ancient hominins. We 

report that the ancient and modern maps are highly correlated, in a manner that reflects the 

established phylogeny of Neanderthals, Denisovans and modern human populations.
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1. INTRODUCTION:

Meiotic recombination is a major driver of the evolution of sexually-reproducing species 

[99]. The crossing-over of homologous chromosomes creates new haplotypes and breaks 

down linkage between neighbouring loci, thereby impacting natural selection [100,101] and 

consequently the genome-wide distribution of diversity [65]. The distribution of such cross-

over events is heterogeneous within and among chromosomes [102,103], and commonly 

referred to as the recombination landscape – a  picture of how often genetic variation is 

shuffled in different parts of the genome. Interestingly, this picture is not static, but instead is 

an evolving trait that varies between populations [104,105] and species [106]. Moreover, the 

proximate mechanisms responsible for shaping the recombination landscape vary among 

taxa. For example, among primates (where the PRDM9 gene is a key player determining the 

location of so-called recombination hotspots [107]) the landscape is conserved at the mega-

base (Mb) scale, but not at the kilo-base (kb) scale [108]. In birds, which lack PRDM9, the 

hotspots are found near transcription start sites in the species that have been studied so far 

[105,109]. In Drosophila (where clear hotspots appear to be absent [110]), inter-specific 

changes are associated with mei-218 variants [111], a gene involved in the positioning of 

double-strand breaks [112]. The molecular machinery influencing the distribution of cross-

over events is still poorly understood in many other groups, where estimates of the 

recombination landscape in closely related species are lacking. 

Aside from their intrinsic value in genetics, accurate recombination maps are needed to 

interpret the distribution of diversity along the genome. Since the rate of recombination 

determines the extent to which linked loci share a common evolutionary history [27], 

inferring selection [113–115], introgression [114,116] and identifying causal loci in 

association studies requires knowledge of the degree of linkage between sites [117]. 

Furthermore, recombination can cause GC-biased gene conversion [118,119], which can 

mimic the effect of selection [120] or interfere with it [121]. Obtaining recombination maps, 

however, remains a challenging task. Due to the typically low density of markers, 

experimental approaches provide broad-scale estimates and are limited in the number of 

amenable taxa. Conversely, population genomic approaches based on coalescent theory 

[122,123] have proved instrumental in inferring recombination rates from polymorphism 

data.
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Traditionally, population genomic methods infer recombination maps from variation in 

linkage disequilibrium (LD) between pairs of single nucleotide polymorphisms (SNPs) [124–

126]. However, since “LD-based” methods typically require large sample sizes per population

(from a dozen haplotypes [127]), their application is restricted to a few model organisms 

where such sequencing effort could be afforded. Here we introduce a new modeling 

framework (iSMC) to infer the variation in the recombination rate along the genome (as 

reflected by cross-over events), using a single pair of unphased genomes. Using simulations, 

we show that iSMC is able to accurately recover the recombination landscape under diverse 

scenarios. We further demonstrate its efficacy with case studies in Humans, Fruit-flies and the

fungal pathogen Zymoseptoria tritici, where experimental genetic maps are available. Finally,

we exploit our new method to investigate the recombination landscape of ancient hominin 

samples: Ust’Ishim, the Vindija Neandertal, the Altai Neandertal and the Denisovan. Because 

it allows inference from datasets for which sample size is intrinsically limited, such as ancient

DNA samples, our method opens a new window in the study of the recombination landscape 

evolution.

2. RESULTS: 

Overview of iSMC

Besides its common interpretation as a backwards-in-time process, the coalescent with 

recombination [41,128] can also be modelled as unfolding spatially along chromosomes [49].

Starting from a genealogy at the first position of the alignment, the process moves along the 

chromosome sequence, adding recombination and coalescence events to the ensuing ancestral

recombination graph (ARG) [47,48] (Figure 1A). Due to long-range correlations imposed by 

rare recombination events that happen outside the ancestry of the sample (in so-called trapped

non-ancestral material [35]), the genealogy after a recombination event cannot be entirely 

deduced from the genealogy before, rendering the process non-Markovian. The sequentially 

Markovian coalescent process (SMC) [53,54] ignores such recombination events, but 

captures most of the properties of the original coalescent [129] while being computationally 

tractable. This model is the foundation of recent tools for demographic inference [57,58,130] 

and has been used to infer the broad-scale recombination map of the human-chimpanzee 

ancestor based on patterns of incomplete lineage sorting [131,132]. 
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In the SMC, transition probabilities between genealogies are functions of ancestral 

coalescence rates and – of key relevance to this study – the population recombination rate (ρ 

= 4.Ne.r) [57,58]. Thus, heterogeneous recombination landscapes affect the SMC by 

modulating the frequency of genealogy transitions: genomic regions with higher 

recombination rate are expected to harbour relatively more genealogies than regions with 

smaller recombination rate (Figure 1). We leverage this information by extending the SMC to

accommodate spatial heterogeneity in ρ (see Methods). In brief, our new model combines the 

discretised distribution of times to the most recent common ancestor (TMRCAs) of the 

pairwise SMC [57] with a discretised distribution of ρ to jointly model their variation along 

the genome. Since we model the transition between discretised ρ categories as a spatially 

Markovian process along the genome, combining the SMC with the Markov model of 

recombination variation leads to a Markov-modulated Markov model. We cast it as a hidden 

Markov model [133,134] (HMM) to generate a likelihood function, where the observed states

are orthologous nucleotides and the hidden states are {TMRCA, ρ-category} pairs (Figure 

1C). We name our new approach “integrative sequentially Markov coalescent (iSMC)”, as it 

enables jointly capturing the effect of time and space in the Coalescent. This framework 

explicitly connects the genealogical process with the classical definition of LD as the non-

random association of alleles at different loci [44], which has been formulated in terms of 

covariances in coalescence times [135]. Henceforth, we restrict the use of the term LD to its 

“topological” interpretation [136].

The SMC is a neutral model where time is re-scaled and measured in units of the effective 

population size (Ne). Thus, information about the recombination rate is obtained in the form 

of the compound parameter ρ = 4.Ne.r. Since under neutrality and panmixia Ne is constant 

along autosomes, we use the inferred ρ landscape as a proxy for the spatial variation in the 

molecular rate r. (Importantly, local variation in TMRCA primarily reflects genealogical and 

sampling variance and cannot, on its own, be used to tease apart Ne and r.) Our approach is to

model spatial variation in r using a single discrete distribution (Figure 1B), which can be 

accommodated to various models of recombination rate variation (see Methods). After fitting 

the alternative distributions to sequence data, Akaike's Information Criterium (AIC) [137] is 

employed as a mean of model selection. If AIC favours a spatially heterogeneous model over 

the null model where ρ is constant along the genome, iSMC then estimates a recombination 
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landscape of single-nucleotide resolution by weighting the discretised values of the favoured 

distribution of ρ with their local posterior probabilities. In the following section, we 

benchmark our model on different simulated scenarios. Therein, we computed the proportion 

of variance (R2) in simulated maps that is explained by inferred maps after binning the 

landscapes into windows of 50 kb, 200 kb, 500 kb and 1 Mb.

Figure 1. Schematic representation of iSMC for one pair of genomes, with five time intervals and three 

recombination rate categories. A, In the SMC process, the spatial distribution of TMRCAs can be described 
by a matrix of transition probabilities that depend on the population recombination rate ρ and the ancestral 

coalescence rates. B, variation in ρ along the genome, modelled as a Markovian process and described by a 
matrix of transition probabilities. C, the combination of both Markovian processes leads to a Markov-modulated

Markovian process. The hidden states of the resulting hidden Markov model are all pairwise combinations of 
discretized classes in A and B.

Simulation study

To assess iSMC’s overall performance, we simulated five recombination landscapes 

corresponding to different patterns of magnitude and frequency of change in ρ and a “null” 

scenario with constant recombination rate along the genome (see Methods). For each 
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landscape, we simulated 10 ARGs using SCRM [138], each describing the ancestry of 2 

haploid chromosomes. We tested two discretisation schemes for the joint distribution of 

TMRCAs and recombination rates: the first with 40 time intervals, five ρ categories; the 

second with 20 time intervals, 10 ρ categories, leading to a total of 200 hidden states in both 

configurations. Model selection based on AIC favours the correct model in 45 of the 50 

datasets (Table S1), with the five exceptions belonging to the scenario where changes are 

frequent and of small magnitude. In this regime, transitions to regions of slightly different 

recombination rates do not significantly skew the distribution of genealogies, and the short 

length of blocks with constant ρ leaves little signal in the data. Accordingly, R2 ranges from 

8.1% to 70.5% in the five identifiable replicates with frequent changes of low magnitude, and

from 60.2% to 98.8% in the other three scenarios (Figure 2A, Table S2). Overall, the results 

are consistent between replicates and robust to the choice of discretisation, although the 40x5 

configuration performs better in the scenario with a challenging parameter combination 

(Figure 2A). Therefore, in the following we focus on the 40x5 configuration, noting that it 

implements a finer discretisation of time that is more adequate to capture the effect of 

ancestral demography. As we introduce new simulated scenarios, we focus on the 

recombination landscape with frequent changes of large magnitude.

Demographic history. The random sampling of haplotypes during population bottlenecks and 

expansions affects LD between SNPs, thus creating spurious signals of variation in ρ 

[52,139,140]. To test whether iSMC could capture the effect of demography on the inference 

of recombination maps, we simulated a heterogeneous recombination landscape coupled with

either a recent 20-fold increase, or ancient 20-fold decrease in population size. We then fit our

model twice for each scenario: first, erroneously assuming a flat demographic history; 

second, allowing iSMC to infer piecewise constant coalescence rates in order to 

accommodate population size changes. Overall, R2 is high (ranging from 46.2% to 91.9%, 

Figure 3), showing that the inferred recombination landscape is relatively robust to 

misspecification of the demographic scenario, but is systematically higher when demography 

is jointly inferred (Figure 2B-C, Table S3). The difference is stronger at the fine scale, 

where, in the presence of complex demography the distribution of genealogies can get locally

confined to a time period, and ignorance about differential coalescence rates reflects poorly 

on local ρ estimates. We conclude that the joint-inference approach of iSMC can disentangle 
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the signal that variable recombination and fluctuating population sizes leave on the 

distribution of SNPs.

Introgression events. Recent studies suggested that introgression is a frequent phenomenon in

nature [141,142]. The influx of a subset of chromosomes from a “source” into a “target” 

population (in a process analogous to a genetic bottleneck) introduces long stretches of SNPs 

in strong LD. Past introgression events will thus affect runs of homozygosity, biasing the 

distribution of genealogies. To test the robustness of iSMC to the confounding effect of 

introgression, we simulated two scenarios of admixture which differ in their time of 

secondary contact between populations (see Methods). The proportion of variance explained 

remains high (ranging from 49.1% to 83.3%, Figure 2D, Table S4) and depends on the time 

when introgression occurred. Recombination maps are less accurately recovered in case of 

recent introgression, because in such case there has been less time for recombination to break 

SNP associations that do not reflect local ρ in the target, sampled population.

Variation in mutation rate. The rate of de novo mutations varies along the genome of many 

species. For example, CpG di-nucleotides experience an increase in mutation rate (μ) as a 

result of methylation followed by deamination into thymine, whereas the efficiency of the 

molecular repair machinery is negatively correlated with the distance from the DNA 

replication origin, causing μ to vary accordingly [143]. Such heterogeneity could bias iSMC's

estimates because the transition into a region of higher μ mimics the transition to a genealogy

with a more ancient common ancestor, since in both cases the outcome is locally increased 

genetic diversity. To assess the impact of variation of mutation rate on the estimation of 

recombination rate, we simulated two scenarios of variation of θ = 4.Ne.μ along the genome, 

corresponding to low and high frequency of change, relative to the frequency of change in the

recombination rate. We report that transitions to different mutation rates along the genome 

globally do not introduce substantial biases in our estimates (R2 ranges from 73.8% to 92.4%,

Figure 2E, Table S5).

Application to a fungal pathogen, fruit-flies and humans

Next, we benchmarked iSMC on model organisms with contrasting genomic architectures 

and evolutionary histories. We used the proportion of variance in genetic maps that is 
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explained by corresponding iSMC-inferred maps as a proxy for iSMC's accuracy, noting, 

however, that these maps are not expected to be perfectly correlated due to evolution of the 

recombination landscape (see [110] and Discussion). To estimate 95% confidence intervals 

(CI) for each R2 , we performed 100 bootstrap replicates of the bins in the recombination 

maps. In all three species, R2 values are significant (CI does not include zero) and robust to 

the choice of model (Table 1).

Figure 2. Recombination map recovery under various simulated scenarios according to bin size. Dot plots 

show the distribution of squared Pearson correlation coefficients (R2) between the simulated and inferred 
recombination maps. A, four scenarios of spatial variation in the recombination rate, corresponding to different 

combinations of parameters (colour), and comparison between two discretisation schemes (panels). B-C, 
comparison between a model where demography is mis-specified and another where it is jointly inferred 

(colour), in scenarios of recent growth (B) or ancient bottleneck (C). D, two scenarios of spatial variation in the 
mutation rate, varying its frequency of change (colour). E, two scenarios of introgression, varying the time of 

gene-flow (colour). Legend: A is the shape of the Gama distribution; g is the average length of blocks.
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Figure 3. Inference of recombination maps in the presence of recent population growth. Each column 
represents a bin size (50 kb, 200 kb, 500 kb and 1 Mb). A-D, scatter-plots of inferred versus simulated maps, 

coloured according to the θ / ρ ratio (green >= 1, blue < 1).  Dashed magenta line represents ordinary least 
squares regression. E-H, corresponding simulated (black) and inferred (orange) maps. 

The leaf blotch Zymoseptoria tritici is a highly polymorphic fungal pathogen with a compact 

genome (40 Mb) that is under widespread selection [144,145] and exhibits an extremely 

rugged recombination landscape [146,147]. In this species, AIC favours a heterogeneous 

model with the presence of recombination hotspots in all three pairs of genomes analysed 

(Table 1, see Methods). R2 ranges from 24% to 38% at the 20 kb scale and from 27% to 36% 

at the 100 kb scale. In sharp contrast to Z. tritici, the recombination landscape in Drosophila 

is notably smooth [110], and AIC favours a heterogeneous model based on a Gamma 

distribution (Table 1). In this species, R2 ranges from 14% to 28% at the 100 kb scale and 

from 44% to 78% at the 1 Mb scale. Like in Z. tritici, model fitting in humans favours a 

heterogeneous distribution of recombination rates with the presence of hotspots (Table 1). We

inferred recombination maps under this model for each of the three Yoruban (African), three 

Dai Chinese (Asian) and three Finnish (European) genomes available in the Simons Genome 

Diversity Project [148], and compared them to the sex-averaged genetic map from DECODE 

[104]. The proportion of variance in the DECODE map explained by iSMC maps inferred 

from African individuals (3%, 2% and 2% at the 50 kb scale; 30%, 20% and 20% at the 1 Mb

scale) are lower than when R2 is computed using individual maps from either Asia (6%, 6% 

and 5%; 46%, 39% and 38%) or Europe (7% 5% and 4%; 39%, 36% and 40%). This is 
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expected since the DECODE map was estimated from a pedigree study of a non-African 

population, which has a different present-day distribution of cross-over events than African 

populations due to evolution of the recombination landscape since their split. Taken together 

these results show that iSMC can infer recombination maps from species with extremely 

different recombination profiles.

Table 1: Performance of iSMC in three distantly related species. AIC and proportion of variance in genetic 
maps from each species that is explained by iSMC-inferred maps (R2 +/- 95% Confidence Interval), according to

different models of spatial variation in the recombination rate. 

Application to ancient samples

At the fine scale (~ 2 kb), the location of cross-over events in great apes is strongly 

influenced by the sequence of the PRDM9 gene [103,107,149]. Such recombination hotspots 

tend to erode over time, being replaced somewhere else in the genome with the rise of new 

PRDM9 alleles [150,151]. Therefore, recombination maps should become more dissimilar 

with increasing divergence between populations and species. This hypothesis has been 

corroborated by two lines of evidence. First, comparisons between recombination maps of 

extant great ape species show no overlap of hotspots at the fine scale but correlations increase

with window size, suggesting that molecular players other than PRDM9 shape the landscape 

at the large scale. Second, in silico prediction of PRDM9 binding sites in the Denisovan 

genome has shown no overlap of hotspots with modern humans [152]. iSMC’s unique ability 

to extract information from single diploids allowed for an alternative test of this hypothesis 

through the analyses of four ancient samples [153]: the Altai Neanderthal [154], the Vindija 

Neanderthal [155], the Denisovan [156] and the Ust’Ishim individual [157], a 45,000-year-
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Configuration Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

40x5 573962.4 590963.9 590982.2 2240750.1 2248567.9 2207897.3 1404461.8 1380086.0 1439539.1

AIC

40x(4+1) 573970.1 590899.1 590902.4 2242199.2 2249872.2 2209533.9 1404531.0 1380123.9 1439580.1

40x2 573953.6 590894.4 590899.1 2242195.2 2249868.2 2209529.7 1404526.1 1380119.8 1439576.3

100x2 572721.5 589636.2 589695.5 2242103.8 2249770.3 2209444.2 1404297.4 1379833.2 1439380.1

40x5

40x(4+1)

40x2

100x2

40x5

40x(4+1)

40x2

100x2

Zymoseptoria (chr 1)

20-kb / 100-kb

Drosophila (chr 2L)

100-kb / 1-Mb

European Humans (chr 10)

50-kb / 1-Mb

R^2

 fine-scale

0.281 +/- 0.13 0.302 +/- 0.12 0.379 +/- 0.16 0.241 +/- 0. 8 0.173 +/- 0.07 0.213 +/- 0.09 0.062 +/- 0.022 0.056 +/- 0.02 0.048 +/- 0.02

0.243 +/- 0.1 0.244 +/- 0.12 0.329 +/- 0.13 0.259 +/- 0.07 0.137 +/- 0.05 0.284 +/- 0.09 0.062 +/- 0.02 0.052 +/- 0.02 0.044 +/- 0.02

0.242 +/- 0.12 0.244 +/- 0.12 0.329 +/- 0.13 0.258 +/- 0.08 0.226 +/- 0.08 0.283 +/- 0.08 0.062 +/- 0.022 0.051 +/- 0.02 0.044 +/- 0.02

0.261 +/- 0.12 0.245 +/- 0.14 0.325 +/- 0.13 0.26 +/- 0.07 0.208 +/- 0.08 0.282 +/- 0.08 0.066 +/- 0.024 0.05 +/- 0.02 0.044 +/- 0.02

R^2 

large-scale

0.302 +/- 0.19 0.355 +/- 0.18 0.341 +/- 0.20 0.714 +/- 0.27 0.555 +/- 0.19 0.727 +/- 0.22 0.426 +/- 0.13 0.355 +/- 0.13 0.411 +/- 0.13

0.326 +/- 0.20 0.334 +/- 0.19 0.314 +/- 0.19 0.764 +/- 0.16 0.435 +/- 0.18 0.783 +/- 0.17 0.409 +/- 0.13 0.368 +/- 0.12 0.407 +/- 0.15

0.326 +/- 0.19 0.334 +/- 0.17 0.314 +/- 0.18 0.764 +/- 0.14 0.637 +/- 0.19 0.782 +/- 0.14 0.41 +/- 0.15 0.368 +/- 0.13 0.407 +/- 0.13

0.348 +/- 0.22 0.324 +/- 0.15 0.268 +/- 0.16 0.765 +/- 0.17 0.595 +/- 0.18 0.783 +/- 0.14 0.397 +/- 0.13 0.364 +/- 0.13 0.405 +/- 0.12



old modern human from Siberia. Since the low density of polymorphic sites in humans makes

estimates of ρ excessively noisy at the 2 kb scale (the scale where PRMD9 acts), we used 50 

kb maps as a proxy for the fine-scale recombination landscape undergoing rapid evolution. 

Pair-wise correlations between individual maps at this scale reveal that the evolution of the 

recombination landscape reflects the evolutionary history of hominins: Asians and Europeans

form a distinct cluster; the 45,000 year-old Ust’Ishim is sister to the modern humans clade, 

depicting similarities in the recombination landscape that have been frozen by his demise 

soon after the out-of-Africa migration; and all modern humans are diverged from the 

monophyletic Neanderthal-Denisovan group (Figure 4A, B). Overall, the topology is 

consistent at larger scales (Figure 4D, F), with a few notable exceptions. First, the 

differentiation among clades of modern human populations becomes blurrier with increasing 

window size, as expected due to slower evolution of the recombination landscape at larger 

scales. Second, the pair-wise correlations within Africans is lower than within non-Africans 

(Figure 4A, C, E). Under panmixia, individual maps from the same population should be 

highly similar since chromosomes are expected to spend the same number of generations in 

the different genomic backgrounds during the ancestral process. However, if there is high 

polymorphism in genes that modulate the position of cross-over events, it is possible that 

stochasticity in meiotic segregation leads to chromosomes being more often associated with 

particular alleles – leading to differences among individual recombination maps. Therefore, 

since African populations carry as much as 50 times more PRDM9 alleles than non-Africans 

[158,159], we hypothesise that allelic diversity in trans-acting modifiers of recombination has

led to differences in the degree of within-population similarities observed in our 

correlograms. Third, at the 1 Mb scale, the two Neanderthals (Altai and Vindija) no longer 

form a monophyletic group; instead, Altai clusters with the Denisovan. While it is plausible 

that this association is driven by biological signal (both the Altai Neaderthal and the 

Denisovan come from the same cave in Russia – where a first generation hybrid between the 

two populations has been recently found [160] – while the Vindija Neanderthal comes from 

Croatia), it is also possible that their recombination maps are similar enough at this scale that 

the observed clustering is driven by the lower sequence quality of the Vindija genome. 

Further investigation is needed to sort out these hypotheses – ideally, as the number of high-

quality ancient genomes continues to increase in the next years. Concretely, these results 

show that 1) iSMC can extract information from ancient genomes, and 2) in hominins, the 
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divergence of the recombination landscape mirrors the divergence of the species.

3. DISCUSSION:

Our analyses show that iSMC is able to infer accurate recombination maps from high-

coverage single pairs of genomes. Nevertheless, the proportion of variance explained in 

experimental maps (Table 1) is consistently lower than that obtained in simulations. While 

this difference can be partly explained by technical noise (e.g., sequencing or SNP calling 

errors), there are alternative explanations for it. First, biological processes that affect Ne 

locally but are unaccounted for by our model will affect LD without reflecting the 

recombination rate. Among these, introgression and natural selection [59] can introduce a 

bias if prevalent along the genome. Second, the distinct data types used by experimental and 

statistical methods imply that they measure different facets of recombination [110]. While 

experimental maps are a snapshot of the landscape at present-day generation, the historical 

map estimated by iSMC reflects the time-average cross-over rate at each position of the 

genome because ancient recombination events also influence the TMRCA distribution. As a 

result of this contrast between experimental and statistical approaches, the ensuing maps are 

not expected to be perfectly correlated. Since evolution of the recombination landscape 

occurs more rapidly at the fine scale, the similarity between experimental and statistical maps

should increase with window size, in accordance with our results (Table 1). While this 

observation could be driven by a reduction in estimation noise when maps are averaged 

within larger windows, in the simulation study – where the recombination landscape is static 

over time – accuracy increases only slightly with increasing window sizes (Figure 2). This 

suggests that the differences in R2 between simulation and case studies are not only driven by 

noise, but also by evolution of the recombination landscape.

Evolution of the recombination landscape implies that the present-day distribution of cross-

over events may carry little information about linkage that influenced long-term processes 

such as linked selection and introgression. Therefore, historical maps are more meaningful 

than present-day maps in the context of assessing the evolutionary consequences of 

recombination rate variation [141]. Due to its power with restricted sample sizes, iSMC is 

well suited to extract LD information from population genomic datasets with high quality 

whole-genome sequences from a relatively small number of individuals [158–161]. 
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Figure 4. Evolution of the recombination landscape in hominins. Left: pair-wise Spearman correlations between
individual recombination maps (average over 22 chromosomes). Shades of blue indicate the strength of each 

correlation. Right: corresponding dendograms, estimated using 1 – correlation as a measure of distance. A-B, 50
kb windows. C-D, 200 kb windows. E-F, 1 Mb windows.
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We have demonstrated its accuracy in species with contrasting levels of diversity, 

demographic histories and selective pressures, and posit that it will be useful for investigation

in other species. Not only will such maps aid the interpretation of diversity in non-model 

organisms, but a picture of the recombination landscape in different groups will tell us about 

the nature of recombination itself [162]. Open questions include whether the recombination 

landscape is associated with large-scale genome architecture and how variation in the 

recombination landscape relates to life history and ecological traits. Finally, as ancient DNA 

samples become more common (including species other than humans [163]), it will be 

possible to obtain maps from extinct taxa, granting the opportunity to study the evolution of 

the recombination landscape with unprecedented resolution [131,164]. 

4. METHODS:

The Markov-modulated Hidden Markov Model framework

SMC models discretise a distribution of coalescence times into t intervals to implement a 

discrete space Hidden Markov Model (HMM) with t x t transition matrix: 

                                           Q (ρ)smc=[
G 11 G12 ⋯ G1t

G 21 G 2t

⋮ ⋮
Gt1 Gt2 ⋯ Gtt

] (1)

where Gij (the transition probabilities between genealogies i and j) is a function of ancestral 

coalescence rates and the global parameter ρ, which is assumed to be constant along the 

genome [54,58]. The key innovation in iSMC is to relieve this assumption by letting ρ vary 

along the genome, following its own Markov process, where values drawn from an a priori 

distribution are used to compute the transition probabilities between genealogies. Let R be 

any strictly positive probability distribution with mean 1.0 describing the variation in 

recombination along the genome. If R is discretised into k categories of equal density, the 

possible values that ρ can assume in the Markov-modulated process are all rj * ρ0 , where rj  is 

the jth R category and ρ0 is the genome-wide average population recombination rate. Our 

Markov model (inspired by the observation that the distribution of cross-over events is not 
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random, but clustered in regions of similar values) states that the probability distribution of R 

at position i + 1 only depends on the distribution at position i. We consider the case where the

transition probability between any two R categories (Pij) is identical and equivalent to one 

auto-correlation parameter (δ). The transition matrix of this Markovian process is simply:

                 Qρ=[
P11 P12 ⋯ P1k

P21 P2k

⋮ ⋮
Pk 1 Pk 2 ⋯ Pkk

] = [
1−δ δ

k−1
⋯ δ

k−1
δ

k−1
1−δ δ

k−1

⋮ ⋮
δ

k−1
δ

k−1
⋯ 1−δ ] (2)

Because ρ is a parameter of the SMC, variation in the recombination rate affects the transition

probabilities between genealogies (QSMC). Since spatial variation in ρ is modeled as a 

Markovian process, the combined process is said to be Markov-modulated by ρ, leading to a 

Markov-modulated HMM. If t is the number of discrete genealogies of the SMC, and k is the 

number of discretised ρ categories, then the Markov-modulated HMM is a HMM with n = t x 

k hidden states (Figure 1). The transition matrix of the Markov-modulated process, QiSMC, is 

given by the Kronecker product of Qρ and QSMC:

QiSMC=Qρ⊗QSMC=[P11⋅Q(ρ1)SMC ⋯ P1 k⋅Q(ρk)SMC

⋮ ⋮
Pk 1⋅Q(ρ1)SMC ⋯ Pkk⋅Q(ρk)SMC

] (3)

In brief, QiSMC is a composition of k2 sub-matrices of dimension t x t, each being a QSMC 

assembled using ρ0 scaled by the corresponding category of R. The main diagonal sub-

matrices are further scaled by 1 – δ, and the off-diagonal sub-matrices by δ / (k – 1).

Modelling spatial variation in recombination rates

iSMC implements three models of spatial variation in the recombination rate. We first 

consider a Gamma probability density function with a single parameter (α = β), which 

constrains it to have a mean equal to 1.0. After discretisation into k categories of equal 

density, the mean value inside each category is drawn to scale ρ0 during integration over all 
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recombination rates in the forward recursion (equation 4). In our simulation study, since we 

used a continuous Gamma distribution to draw values of the recombination landscape, we 

used this model to infer recombination maps. In the second model, we extend the Gamma 

distribution by adding a category that represents the intensity of the recombination rate in 

sharp hotspots (parameter H). Since hotspots are narrow relative to the extension of the 

background recombination rate, we use extra parameters to accommodate this effect. As 

before, δ is the transition probability between gamma categories, and we introduce w as the 

transition probability from any gamma category to H, and z as the transition probability from 

H to any gamma category. The third model is a particular case of the second one, obtained by 

letting the number of discretised categories of the Gamma distribution equal to 1, such that it 

becomes a probability mass function of only two categories. Importantly, because of the 

scaling factor provided by the posterior probabilities, reconstruction of the recombination 

landscape by the posterior average of ρ allows for a much wider range of values than the sole 

categories of such discrete distributions. In other words, the posterior average naturally 

smooths the landscape to fit values that are intermediate between categories, such that even a 

binary background-hotspot model can infer gradual changes in the landscape.

Model selection and computation of the posterior recombination landscape

iSMC works in two steps: (1) fitting models of recombination rate variation and (2) inferring 

recombination maps based on the selected model. During step 1, the model parameters are 

optimized by maximizing the likelihood using the Powell multi-dimensions procedure [165], 

which is computed for the entire sequence by applying the forward recursion of the HMM 

[134] as implemented in the zipHMMlib [166] at every position i of the alignment:

   Fi , G
v
(ρm)=(∑

l=1

k

(∑
u=1

t

Fi−1,G
u
(ρl)×Pr (Gu→Gv∣ρl)×Pr(ρl→ρm)))×Pr (Gv→Si) (4)

where we integrate over all k discretized values of ρ and over all t TMRCA intervals. The 

transition between genealogies ( Gu→Gv ) is a function of both the focal recombination rate

(ρl) and the ancestral coalescence rates, and Gv→Si represents the emission probability 

from Gs to the observed state at position i. In case AIC favours one of the heterogeneous 

models, in step 2 iSMC uses the estimated parameters to estimate the posterior average ρ for 
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all sites in the genome. To this end, it first uses the so-called posterior decoding method [134]

as implemented in zipHMMlib [166] to compute the posterior probability of every hidden 

state at each position in the sequence. Since in the Markov-modulated HMM the hidden 

states are pairs of ρ categories and TMRCA intervals, this results in joint probability 

distributions Pi(x , y ) of recombination values x and coalescence times y, for all sites i in 

the genome. Thus, if rl is the value of R inside discretised category l and ρ0 the genome-wide 

average recombination rate, the posterior average ρ at position i is given by

                                      (ρi)=
1

k
×(∑

l=1

k

(∑
j=1

t

Pi(xl , y j))×rl×ρ0) (5)

Testing hidden state configurations

The hidden states of iSMC are pairs of genealogies and recombination rates where both 

elements are drawn from discretised distributions. Since the complexity of the forward 

algorithm (which computes the likelihood) is quadratic in the number of hidden states, there 

is a limit to the discretisation scheme that can be adopted, as too fine a discretisation would 

lead to impractical execution times. We set the number of hidden states to 200, and used this 

limit to run iSMC in all simulated and real datasets. Within this maximum, however, it is 

possible to devise several combinations of hidden states by changing the way in which we 

discretise the TMRCA and ρ distributions. The goal of reconstructing the recombination 

landscape would in principle make natural the choice of investing in a fine-grained 

discretisation of the distribution of ρ. However, this would mean a coarse-grained 

discretisation of time and, since the signal for fitting the distribution of ρ comes from the 

expected number of TMRCA transitions, this strategy could reduce iSMC's power to detect 

such changes. Therefore, in the simulation study, we tested the performance of two 

configurations: 20 time intervals x 10 ρ categories and 40 time intervals x 5 ρ categories 

(Table S2). When fitting the “Hotspot model” to humans, fruit-flies and Z. tritici, we tested a 

configuration with 40 time intervals x 2 ρ categories and another with 100 time intervals x 2 

ρ categories.

Modelling complex demographic histories

The original HMM implementation of the SMC [57] uses the expectation-maximisation 
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algorithm to optimise transition probabilities, where the actual targets of inference – the 

coalescence rates at each time interval – are latent variables of the model. Here we use cubic 

spline interpolation [130] to map coalescence rates at time boundaries, which are then 

assumed to be piecewise constant for the duration of each interval. Because we use three 

internal splines knots (i.e., the demographic history is divided into four epochs wherein a 

cubic curve is fitted), the number of parameters is substantially reduced in our model – in 

particular when a fine discretisation of TMRCA is employed. Importantly, in the spline 

implementation, the number of model parameters is independent of the number of classes in 

the discretization scheme.

Computational resources and  performance

The limiting computing resources are different between the optimisation and decoding steps 

of iSMC. During optimisation, execution time is key: for human chromosome 10, the 

program uses around 2 Gb of RAM, and runs for about 18 h to fit the hotspot model with 100

time intervals on chromosome 10 from an African individual, using a 2.6 Ghz machine. On 

the other hand, the limiting resource during computation of the posterior average is memory. 

On the same 2.6 Ghz machine, it takes around 15 minutes and 20 Gb of RAM to decode a 5 

Mb fragment. 

Simulation study

Four scenarios of spatial variation in ρ. We simulated a piecewise constant recombination 

rate along the genome by drawing values from a Gamma distribution with parameters α and 

β, and segment lengths from a geometric distribution with mean length g. We considered four

possible scenarios where α = β = 0.5 or 5.0, and g = 100 kb or 1 Mb. For each of the four 

combinations, we simulated 10 independent pairs of two 30 Mb haploid chromosomes under 

a constant population size model, assuming θ = 0.003 and ρ = 0.0012. For each of the 

following simulated scenarios, we focus on the landscape with α = 0.5 and g = 100 kb. All 

scenarios share the same sequence length, sample size, as well as  θ and ρ parameter values,.

Demographic history. We simulated two demographic scenarios. First, a 20-fold population 

expansion  0.01 coalescent time units ago; second, a 20-fold population bottleneck 0.5 
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coalescent time units ago. Assuming an effective population size of 30,000, these coalescent 

times correspond to 1,200 and 60,000 generations ago, for the expansion and bottleneck 

events, respectively.

Introgression events. We simulated two introgression scenarios where a source population 

introduces a pulse of genetic material into a target population. In both scenarios, the split 

between source and target populations happened 2.0 coalescent time units ago, and the source

replaces 10% of the genetic pool of the target. In the first scenario, secondary contact 

happened 0.125 coalescent time units ago; in the second, it happened 0.25 coalescent time 

units ago. Assuming an effective population size of 30,000, the split between population 

happened 240,000 generations ago, and the introgression events happened 15,000 and 30,000 

generations ago, respectively.

Variation in the mutation rate. We simulated a piecewise constant mutation rate along the 

genome by drawing rate values from a uniform distribution and segment lengths from a 

geometric distribution with mean length f, where f is either 20 kb or 500 kb. The uniform 

distribution generating scaling factors of θ has mean = 5.05 instead of 1.0. In this case, the 

expected genome-wide average θ = 0.015. The reason for that is our focus on the spatial 

distribution of θ itself. If the landscape had mean = 0.003, its highly heterogeneous nature 

would scale θ down to values well below ρ (0.0012) too often along the 30 Mb sequence. The

ensuing loss of signal (due to low SNP density) would result in poorly inferred maps that 

display low correlations with the simulations, not because of spatial heterogeneity in θ (local 

transitions), but instead because the ratio θ / ρ would be too low in many windows across the 

chromosome. In all the above scenarios, the proportion of variance (R2) in simulated maps 

that is explained by inferred maps was computed after binning the landscapes into non-

overlapping windows of 50 kb, 200 kb, 500 kb and 1 Mb, that is, the analysis is agnostic to 

the true breakpoints of the simulated landscapes.

Data analysis

Model selection followed by inference of recombination maps in the three species studied 

(Table 1) was performed using publicly available sequences (chromosome 2L from haploid 

pairs ZI161 / ZI170, ZI179 / ZI191 and ZI129 / ZI138 in the Drosophila Population 
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Genomics Project Phase 3 [167]; chromosome 1 from haploid pairs Zt09 / Zt150, Zt154 / 

Zt155 and Zt05 / Zt07 for Z. tritici [146]; chromosome 10 from three Finnish individuals 

(LP6005442-DNA_C10, LP6005442-DNA_D10, LP6005592-DNA_A02) available in the 

Simons Genome Diversity Project [148] for humans). In the first two species, gaps and 

unknown nucleotides in the sequences (in FASTA format) were assigned as missing data, 

whereas in Humans the available strict mask for the dataset was applied after parsing the 

VCF files.

iSMC was fitted four times to each pair of genomes of the three species: 1) with 40 

discretised time intervals and a model of variation in ρ based on a Gamma distribution with 

five discretised categories; 2) with 40 discretised time intervals and a model of variation in ρ 

based on an extended Gamma distribution with four discretised categories and an additional 

“Hotspot” category; 3) with 40 discretised time intervals and a model of variation in ρ based 

on a probability mass function of two categories; 4) with 100 discretised time intervals and a 

model of variation in ρ based on a probability mass function of two categories. In each case, 

R2 was computed as the square of the Pearson correlation coefficient between the resulting 

recombination landscape and available genetic maps both at the fine scale (100 kb for 

Drosophila, 20 kb for Z. tritici and 50 kb for Humans) and at the large scale (1 Mb for 

Drosophila, 100 kb for Z. tritici and 1 Mb for Humans). For each R2, its 95% Confidence 

Interval was computed from a distribution obtained by performing 100 bootstrap replicates of

the binned recombination maps.

Whole-genome sequence data were used for in-depth analyses of the recombination 

landscape in the hominin clade. Model fit (based on the “Hotspot” distribution) and inference

of recombination maps was performed independently on each chromosome. The individual 

IDs within the Simons Genome Diversity Project [148] and corresponding population of 

origin of the six contemporary modern humans are as follows: African (Yoruban): 

LP6005442-DNA_A02, LP6005442-DNA_B02 and SS6004475; Asian (Dai Chinese): 

LP6005441-DNA_D04, LP6005443-DNA_B01 and LP6005592-DNA_D03; European 

(Finnish): LP6005442-DNA_C10, LP6005442-DNA_D10, LP6005592-DNA_A02. The 

available strict mask for the dataset was applied to assign low-quality positions as missing 

data. The four ancient DNA samples were downloaded from the server at the Max Planck 
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Institute for Evolutionary Anthropology in Leipzig 

(http://cdna.eva.mpg.de/neandertal/Vindija/VCF/) in May 2018. Since these are complete 

VCF files where all callable positions are reported, no mask was used and absent positions 

were assigned as missing data. 

The analyses of modern and ancient datasets were performed considering only positions 

present in the DECODE genetic map. The correlograms and dendograms presented in Figure 

4 were obtained by hierarchical clustering (using UPGMA) of pair-wise distances computed 

from 1 – rs, where rs is the Spearman correlation of ranks between two individual 

recombination maps. Correlation matrices were computed separately for each chromosome 

after discarding bins with more than 50% missing data in any of the diploid sequences, and 

the average correlation matrix over all chromosomes was used to compute the pair-wise 

distances. Recombination maps for all samples are available as a resource in FigShare: 

https://figshare.com/projects/Archaic_Recombination_maps/44354
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SUPPLEMENTAL MATERIAL:

The following supplemental material is available in the digital archive (Appendix 1):

Table S1: AIC value for each replicate of each of the simulated landscapes.

Table S2: R2 for each replicate of each parameter of the simulated landscape, according to
 discretisation scheme.

Table S3: R2 for each replicate of each simulated demographic history, according to whether 

coalescence rates were jointly-inferred or not.

Table S4: R2 for each replicate of each scenario of introgression.

Table S5: R2 for each replicate of each scenario of mutation rate variation.
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ABSTRACT: 

In sexually-reproducing species, the distribution of diversity along the genome is influenced 

by variation in (1) branch lengths of genealogies as a result of genetic drift; (2) effective 

population size as a result of natural selection and gene-flow; (3) recombination rate, via GC-

biased gene conversion and modulation of linked selection; and (4) the rate of de novo 

mutations generating polymorphism. Quantifying the relative importance of these factors in 

shaping patterns of diversity is a major goal of population genomics, however, spatial 

variation in the mutation rate has largely been neglected by empirical studies, in part due to 

its difficult estimation. This is problematic because regions of the genome with differential 

mutation rates will either mimic or dilute the signal of selection, leading to false positives and

negatives in genome-wide scans. Here we present a new statistical model (iSMC) that infers 

the genomic landscape of mutation rates from polymorphism data while accounting for the 

effect of demography and recombination rate variation. Our simulation study demonstrates 

that it has high accuracy in diverse scenarios. We find that spatial variation in the mutation 

rate is a significant explanatory factor of the distribution of diversity in a fungal pathogen. 

This result suggests that mutation rate heterogeneity should be more often incorporated in 

data analysis. Our explicit model of the mutation landscape allows parametric inference from 

polymorphism data, thus fostering research in species where large-scale sequencing of 

pedigrees is not feasible.
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1. INTRODUCTION:

In sexually-reproducing species, levels of genetic diversity vary along the genome [65] 

according to four major determinants. First, stochasticity in the ancestral process changes the 

total branch lengths of genealogies in different parts of the genome, causing the number of 

mutations they undergo to differ proportionally [123]. This variation is further enlarged by 

demography [57]. Second, natural selection disturbs local genealogies away from their 

distribution under neutrality [128,168]. Both negative and positive selection shorten branch 

lengths in the vicinity around the selected locus (linked selection) [27,59,169] , while 

balancing selection has the opposite effect [170]. Third, recombination impacts diversity 

either neutrally through GC-biased gene conversion [121,171] or indirectly by modulating the

extent to which neighbouring loci share their evolutionary histories with selected sites (i.e., 

the breadth of linked selection) [27]. Finally, spatial variation in the rate of de novo mutations

(μ) depends on a number of genomic features such as base composition (e.g., CpG di-

nucleotides) and distance from the DNA replication origin [143]. A fundamental goal in 

population genomics is to quantify the relative importance of each of these factors in 

contributing to genome-wide levels of diversity in natural populations [65].

Indeed, a major challenge in population genomics inference is to disentangle the effects of 

different evolutionary forces shaping DNA sequences. On the one hand, methods that 

simultaneously model demography and local variation in μ and the effective population size 

(Ne) are restricted to unlinked loci [172–174]. While this simplification avoids the 

confounding effect of linkage disequilibrium, it leaves out most of the genome, where local 

variation in μ and Ne may be highly relevant. On the other hand, models that incorporate 

linkage information typically focus on characterising a single process (e.g., either 

demography [58,130] or the recombination landscape [124] or selection [59]) that alone is 

expected to explain the observed patterns of polymorphism. This approach is problematic 

because spatial variation in branch lengths, mutation and recombination rates, as well as Ne, 

can leave similar footprints on sequence data [175]. For example, a genomic region with 

increased diversity could be explained either by a more ancient common ancestor, balancing 

selection or higher mutation rate, but its level of polymorphism can only inform on the 

compound parameter θ = 4.Ne.μ. Therefore, neglecting the existence of important factors that

play a role in shaping diversity leads to inference that is both biased and statistically 
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confident (since under-parametrised models have less uncertainty about which parameter is 

driving the signal). A prominent such “ghost” factor in population genomic inference is the 

spatial heterogeneity of μ. Since its incorporation leads to more accurate inference from 

unlinked loci [174], it is expected to have a similar effect with whole-genome data.

Obtaining unbiased estimates of the mutation landscape is challenging. Naive observation 

from sequence data – either through divergence with a closely relates species or diversity 

within populations – is susceptible to the confounding effects outlined above. An alternative 

approach is large-scale sequencing of family trios to pinpoint de novo mutation events in the 

germ-line by contrasting the sequences of parents and offspring [176,177]. However, not only

this method requires huge resources, it also relies on pedigree information that can only be 

obtained from a handful of species. Nevertheless, a recent study based on human pedigrees 

suggest that the impact of spatial variation of μ on polymorphism data may be greater than 

previously recognised: up to 46% of the human-chimp divergence, and up to 69% of human 

diversity, can potentially be explained by variation in de novo mutation rates at the 100 kb 

scale [178]. Bearing these results in mind, spatial variation in μ may have been overlooked as

an explanation for the genome-wide distribution of diversity [179], and a thorough 

assessment of its importance in other species is of interest. 

We have previously described a modelling framework (iSMC) that jointly infers the 

demographic history of the sample and variation in the population recombination rate ρ = 

4.Ne.r along the genome [180]. Here we further extend this framework to account for spatial 

variation of the population mutation rate θ = 4.Ne.μ. Since it explicitly accounts for the 

distribution of genealogies, this integration allows statistical inference of the mutation 

landscape along genomes using polymorphism data. We demonstrate via simulations that our 

model can accurately recover the mutation landscape using a single pair of genomes. Results 

from the fungal pathogen Zymoseptoria tritici show that the rate of de novo mutations is an 

important factor shaping genetic diversity in this species. 

2. RESULTS:

Overview of the model
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The first implementation of the sequentially Markovian Coalescent (SMC) describes how 

genealogies change along a diploid genome as a function of ancestral population sizes and the

global recombination rate ρ [57]. Model fitting is achieved by casting the SMC as a hidden 

Markov model (HMM) [133] and assuming that the probability of observing a heterozygous 

site is a function of the underlying TMRCA and the global mutation rate θ (see Methods). We

previously showed how this process can be framed in a more general model called iSMC, 

where ρ is allowed to vary along the genome by following its own Markov process that 

modulates the frequency of transitions of local genealogies [180].

In the general case, iSMC is a HMM where the observed states are the configurations of 

nucleotides at each orthologous position of the alignment, and the hidden states are n-tuples 

storing all possible combinations of genealogies and discretised values of each parameter of 

interest that is allowed to vary along the genome. If one such parameter affects either the 

transition or emission probabilities of the HMM, then the parameters that control its degree of

variation can be optimised, e.g., by maximum likelihood. In the ρ-modulated iSMC (ρ-iSMC)

the hidden states are 2-tuples containing pairs of TMRCA intervals and recombination rates. 

We now allow θ to also vary along the genome (Figure 1), following its own Markov 

process, i.e., letting the hidden states be {TMRCA, θ-category, ρ-category} triplets. Crucially,

the signal of variation in ρ and θ left on the distribution of SNPs is discernible because their 

contributions to the likelihood are orthogonal: the recombination and mutation rates affect 

transition and emission probabilities of the HMM, respectively and exclusively. We also note 

that information about the mutation rate is obtained in the form of the compound parameter θ 

= 4.Ne.μ. By assuming neutrality and panmixia (hence homogeneous Ne along the genome), 

we use the inferred θ landscape as a proxy for the spatial variation in the molecular rate μ. 

Importantly, local variation in TMRCA primarily reflects genealogical and sampling variance

and cannot, on its own, be used to tease apart Ne and μ.

Simulation study

We conducted a simulation study designed to test iSMC's ability to reconstruct the mutation 

landscape in distinct scenarios (Figure 2). We used SCRM [138] to simulate 10 ancestral 

recombination graphs (ARG) describing the ancestry of 2 haploid chromosomes. We obtained

binary sequences by first simulating μ landscapes (see Methods), then placing mutation 
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events along the branches of the genealogies proportionally to the local mutation rate. The 

first three sets of simulations share a flat recombination landscape. We could therefore 

dismiss the distribution of ρ values and analyse these data by constructing hidden states as 2-

tuples with five θ categories along with 40 time intervals (θ-iSMC). The last simulated 

dataset concerns the potential confounding impact of a heterogeneous recombination 

landscape. Therein we configure hidden states as triplets (θ-ρ-iSMC). In all cases, the 

proportion of variance in simulated maps that is explained by inferred maps (R2) was 

estimated after binning the landscapes in windows of 50 kb, 200 kb, 500 kb and 1 Mb.

Mutation landscapes. We first simulated five scenarios of spatial variation in the mutation 

rate corresponding to four different patterns of magnitude and frequency of change in θ as 

well as a “null” scenario with constant mutation rate along the genome (see Methods). We 

evaluated iSMC's ability to distinguish between scenarios by fitting it twice to each dataset 

(Figure 2, top): first, assuming that θ is constant along the genome (standard SMC), and 

second, allowing it to vary (θ-iSMC). Model selection based on Akaike's Information 

Criterium (AIC) shows that iSMC correctly favours the heterogeneous model in all replicates 

of all scenarios where there is indeed spatial heterogeneity in the mutation rate (Table S1). 

On the other hand, it selects a heterogeneous model in five out of 10 replicates when the 

mutation rate is actually constant along the genome. The inferred mutation landscapes, 

however, are flat in all these five cases, meaning that false positives in model selection will 

not lead to spurious identification of spatial heterogeneity in θ. This indicates that iSMC can 

distinguish between local variation in polymorphism that results from genealogical variance 

and that which results from variation in the mutation rate. 

Next, we assessed iSMC's accuracy in reconstructing each of the four heterogeneous 

landscapes. We report high R2 for all scenarios (Figure 3A, Table S2), ranging from 47.1% to

99.6%. The good performance in the scenario with frequent changes of low magnitude in θ 

may seem counter-intuitive because subtle differences in θ that do not span long segments 

could have their effect confounded by the distribution of genealogies itself. However, iSMC 

is able to distinguish between the effects that mildly heterogeneous mutation rates and the 

distribution of genealogies leave on sequence data.
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Figure 1. Schematic representation of θ-iSMC for one pair of genomes, with five time intervals and three 

mutation rate categories. A, In the SMC process, the spatial distribution of TMRCAs can be described by a 
matrix of transition probabilities that depend on the population recombination rate ρ and the ancestral 

coalescence rates. B, variation in the mutation rate θ along the genome, modelled as a Markovian process and 
described by a matrix of transition probabilities. C, the combination of both Markovian processes leads to a 

Markov-modulated Markovian process. The hidden states of the resulting hidden Markov model are all pairwise 
combinations of discretized classes in A and B. D. The emission probabilities of θ-iSMC

Demographic history. A history of fluctuating population sizes enlarges variance in the 

distribution of genealogies; it results in higher density of coalescence events in epochs of 

small Ne and lower density of coalescence events in epochs of large Ne [35]. In the simple 

case of a single population bottleneck, a bimodal distribution of TMRCAs is expected, with 
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many recent coalescence events when sequences are segregating in a small population, and 

taking on average much more time to coalesce from the backwards-in-time point when Ne 

increases. Since recent coalescence events tend to involve long blocks of contiguous ancestral

material while ancient coalescent events tend to involve much shorter segments, a bottleneck 

influences the distribution of SNPs along a diploid genome: an increased density of both long

runs of homosigosity and short blocks of enriched polymorphism is expected relative to the 

expectation under mutation-drift balance. This suggests that using coalescent-based methods 

to identify regions of the genome with different mutation rates while neglecting the 

demographic history should lead to biased inference. We tested this hypothesis by coupling 

our four simulated mutation landscapes with a strong population bottleneck (see Methods), 

and fitting θ-iSMC twice to each dataset (Figure 2, bottom right): first, erroneously assuming

a flat demographic history, and second, allowing iSMC to infer piecewise constant 

coalescence rates in order to accommodate population size changes. As expected, the R2 is 

substantially higher when demography is jointly-inferred (ranging from 37.8% to 83.5%, 

Figure 3C) than when it is assumed to be constant (ranging from 2.9% to 66.7%, Figure 3B, 

Table S3). Notably, the difference in the distribution of R2 between demography-aware and 

demography-oblivious models is much sharper than the one observed in the case of 

recombination [180], demonstrating that the distribution of genealogies interferes more with 

the inference of the θ landscape than with the inference of the ρ landscape.

Introgression. Next, we investigated the robustness of iSMC to the impact of introgression, 

which can affect the distribution of SNPs but is not accounted for by the model. After a 

period of isolation, gene-flow from the “source” population introduces linked polymorphism 

into the gene pool of the “target” population. As recombination events break introgressed 

chromosomes apart, repeated back-crossing maintains introgressed blocks segregating. 

Hence, when diploids from the target population are sampled, regions where an introgressed 

segment is paired with a “native” segment in the homologous chromosome should display an 

excess of SNPs. Thus, introgression distorts the distribution of genealogies, mimicking the 

effect of local changes in θ, the magnitude of which is a function of (1) the split time between

populations (the longer the time, the higher the divergence between sequences from source 

and target); (2) the effective number of migrants from the source that contributes to the gene 

pool of the target (the higher the proportion of introgressed chromosomes, the more often 
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they are to be found in a randomly sampled diploid); and (3) the time since the admixture 

event (the longer the time, the more sparsely distributed the introgressed blocks will be in the 

present population, and the stronger the fluctuations in their frequency imposed by drift). We 

sought to test this confounding effect on iSMC's estimates of the mutation maps by adding to 

our four simulated landscapes two scenarios of introgression that differ in their time since 

admixture (Figure 2, bottom center, see Methods). Although lower than in the simulations 

with no model violation, R2 values in the presence of introgression remain high (ranging from

56.0% to 94.2% for recent introgression, Figure 3D, and from 20.8% to 85.9% for ancient 

introgression, Figure 3E, Table S4). 

Spatial variation in recombination rates. Finally, we investigated the impact of spatially 

heterogeneous recombination rates on inference of the mutation landscape. For example, in 

regions of low ρ, TRMCAs will span an unusually long number of sites. They will thus 

mimic the effect of local differences in mutation rates by emitting more or fewer SNPs than 

expected under constant recombination. Therefore, if left as a ghost factor, a heterogeneous ρ 

landscape should affect iSMC's ability to distinguish whether genealogies or variable 

mutation rates are affecting the lengths of runs of homosigosity. To quantify the magnitude of

this confounding factor, we imposed a landscape of frequent changes of large magnitude in 

recombination rates along the genome, and fitted our model twice to this dataset (Figure 2, 

bottom left): first, defining hidden states as pairs of discretised genealogies and mutation 

rates (θ-iSMC, which does not model variation in ρ); second, defining hidden states as triplets

of discretised genealogies, mutation and recombination rates (θ-ρ-iSMC, which models 

variation in both rates). As expected, model selection based on AIC favours θ-ρ-iSMC over θ-

iSMC for all ten replicate ARGs from this scenario (Table S5). The proportion of variance 

explained when the model accounts for the recombination landscape (θ-ρ-iSMC) is 

systematically higher (R2 ranging from 35.4% to 96.7%, Figure 3G) than when the model 

neglects it (θ-iSMC, R2 ranging from 21.5% to 87.5%, Figure 3F, Table S6). Because 

accuracy globally increases once variation in ρ is jointly-modelled with variation in θ, we 

conclude that iSMC can disentangle the effects that genome-wide distributions of 

genealogies, mutation and recombination rates leave on the distribution of diversity.
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Figure 2. Overview of the simulation study. Four basic landscapes of mutation rate variation (bolded 

rectangle) are use to evaluate iSMC’s baseline discriminatory power (top) and then appended with more 
complex evolutionary scenarios (bottom).
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Figure 3. Mutation map recovery under various simulated scenarios according to bin size. Dot plots show 
the distribution of squared Pearson correlation coefficients (R2) between the simulated and inferred mutation 

maps. A, four scenarios of spatial variation in the mutation rate, corresponding to different combinations of 
parameters (colour). B-C, comparison between a model where demography is mis-specified (B) and another 

where it is jointly inferred (C), in the presence of an ancient bottleneck. D-E, comparison between a scenario of 
recent introgression (D) and a scenario of ancient introgression (E). F-G, comparison between a model where 

recombination rate is assumed to be flat (F) and another where it is allowed to vary (G), in the presence of a 
heterogeneous recombination landscape. Legend: A is the shape of the Gama distribution; g is the average 

length of blocks.

48



Case study in Zymoseptoria tritici

We performed a case study on the mutation landscape of Zymoseptoria tritici using six 

previously published haploid genomes of this species (data from chromosome 1, see 

Methods). We aimed at answering two questions: (1) How much variation in diversity is 

explained by the landscape of de novo mutations in Z. tritici? and (2) Is there evidence of a 

mutagenic effect of recombination in Z. tritici? 

In order to increase power in jointly-inferring the distributions of genealogies, recombination 

and mutation rates, we further extended iSMC to accommodate multiple genomes. In this 

augmented model, input genomes are combined in pairs such that the genealogies underlying 

each of them are still binary, i.e., their topology is trivial and they can be summarised by their

TMRCA (Figure 1A). Although under Kingman’s Coalescent [36] the genealogies of 

multiple pairs of genomes are not independent, we approximate and compute the composite 

log-likelihood of the entire dataset by summing the log-likelihoods of each pair. At any 

generation, variation in the genomic background of individuals should lead to variation in 

their spatial distribution of mutation and recombination events. For example, population-level

diversity in trans-acting modifiers of recombination will cause individuals carrying different 

sets of alleles to have different expectations for the position of their cross-over events. 

However, these differences are averaged out within the time-frame of the Coalescent, since 

chromosomes are expected to spend the same number of generations in each type during the 

ancestral process. Hence, under panmixia, all pairs of genomes should carry the signatures of 

the same molecular landscapes. In accordance, iSMC enforces all pairs of genomes to share 

parameters values, but it does not explicitly enforce a common landscape. Rather, after 

optimisation of model parameters, it uses the so-called posterior decoding method [134] to 

infer mutation and recombination maps of single-nucleotide resolution separately for each 

pair of genomes. Variance of the ARG results in variation among these individual maps. To 

obtain a consensus of the whole sample, iSMC computes the average θ and ρ (over all pairs 

of genomes) for all sites in the genome. 

Since the genome sequences in the Z. tritici dataset were obtained from the haploid phase of 

each individual, we were able to combine the six haploid sequences in 15 distinct 

(overlapping) pairs of genomes. We first fitted θ-ρ-iSMC with a hotspot model of variation in
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ρ to these data. There were, however, estimation issues, suggesting that the hotspot model of 

recombination interferes with the distribution of mutation rates. When fitting iSMC using 

Gamma distributions to describe variation in both θ and ρ, we were able to obtain their 

consensus maps (Figure 4). To check whether mutation rate heterogeneity influences the 

inference of recombination maps in this species, we first estimated the proportion of variance 

in an experimental cross-over map [147] that is explained by the consensus recombination 

map inferred with θ-ρ-iSMC (R2  = 65.98%). We then fitted ρ-iSMC (40x5 configuration) to 

the same dataset of 15 pairs of genomes and obtained a R2 of 62.52%. The small 

improvement confirms that the mutation landscape introduces only a small bias when 

inferring the recombination landscape [180], and that our model can disentangle the effects 

that they both leave on the distribution of diversity along the genome.

Figure 4. The genomic landscapes along chromosome 1 of Z. tritici. A, Genetic diversity, mutation and 

recombination maps, individually normalised to highlight the contrast in their degree of variation. B, genetic 
diversity, as measured by Tajima’s pi. C, mutation rate landscape inferred with iSMC. D, recombination rate 

landscape inferred with iSMC.
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To further investigate the joint influence of mutation and recombination in shaping genome-

wide diversity in Z. tritici, we built a linear model with the average pair-wise diversity among

all pairs of genomes (π) as the dependent variable and the consensus θ and ρ maps as 

independent variables, allowing for an interaction between them. We found that spatial 

variation in both mutation and recombination rates have a significant positive effect on the 

distribution of diversity (Table S7). The positive influence of the mutation rate is expected 

since regions of the genome with higher μ should – other things being equal – display higher 

polymorphism. On the other hand, the positive influence of recombination can be interpreted 

as a result of a reduced effect of linked selection in regions of higher recombination rate. We 

also found a significant negative interaction between mutation and recombination, which 

goes in the reverse direction that would be expected if the mutagenic effect of recombination 

was an important determinant of genome-wide diversity [181]. This can be explained by (1) 

continuous evolution of the recombination landscape diluting the signature that imperfect 

repair of double-strand breaks leaves on polymorphism levels or (2) negligibility of the 

mutagenic effect of recombination compared to other factors shaping diversity in this species,

or a combination of both. The negative interaction suggests that in genomic regions where 

both θ and ρ are high, the two rates “compete” for leaving their footprints on diversity. 

Overall, our linear model explains 50.64% of variance in the distribution of diversity 

(adjusted R2). To assess the contribution of each variable, we performed relative importance 

and ANOVA tests (Table S8). The landscape of de novo mutations is the strongest factor 

(0.60 relative importance), contributing to 38.08% of variance in diversity, whereas the 

landscape of recombination (0.31 relative importance, 8.6% variance explained) and the 

interaction between mutation and recombination (0.09 relative importance, 4.48% variance 

explained) are also significant. Taken together, these results suggests that spatial variation in 

θ is an important factor shaping diversity in Z. tritici.

3. DISCUSSION: 

Our new implementation of iSMC can reconstruct the genome-wide landscape of the 

population mutation rate θ. Its joint-inference approach disentangles the effects of three 

evolutionary forces on polymorphism data, namely, genetic drift (as modulated by 

demography), mutation and recombination. To illustrate this point, we re-consider the case of 
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locally increased diversity in a region of the genome. If the population is panmitic and 

evolves neutrally, this observation could result from either a higher mutation rate or deeper 

TMRCAs. iSMC will assign posterior probabilities to these competing explanations by taking

into account both their global pattern of variation and local information from surrounding 

positions. If θ tends to vary at a broad scale, it is less likely to explain a narrow hotspot of 

SNPs. Conversely, if the region of increased diversity is long, a large block with ancient 

TMRCAs would be unlikely, unless the local recombination rate is unusually low or the 

demographic history favours a high density of coalescence events in the deep past. In 

accordance with the rationale of weighting competing explanations, we have shown that 

simultaneously modelling multiple evolutionary forces leads to more accurate inference of 

both mutation and recombination maps.

So far, inference of the mutation landscape has been restricted to either direct observation of 

de novo mutations in large-scale pedigree studies or indirect estimates from diversity or 

divergence data. iSMC now allows for parametric inference of the mutation landscape from 

polymorphism data, making estimates of spatial variation in θ more accessible. As is the case 

with the recombination landscape [180], it should be noted that the mutation landscape 

obtained from pedigree studies and population genomic methods are fundamentally different. 

The former estimates the distribution of mutation events in the present population, while the 

latter estimates a mutation landscape of historical influence dating back to the various 

TMRCA’s spread along the genome. Importantly, for the θ landscape inferred by iSMC to be 

interpreted strictly as variation in the rate of de novo mutations, two assumptions must be 

met. First, that the generation time remains constant within the time-scale of interest (~4.0 

coalescent units, a measure of time scaled by Ne). For example, if there has been a 

considerable decrease in generation time around 2.0 coalescent units ago, regions of the 

genome with a TMRCA < 2.0 will tend to harbour more SNPs than expected because these 

segments will have experienced more reproductive events (hence more frequent DNA 

replication). Second, that diversity evolves neutrally. In regions of the genome that are under 

selection, levels of polymorphism at linked sites will be distorted resulting in biased estimates

of the local mutation rate. This demonstrates that more complex modelling incorporating an 

increasing number of biological processes has the potential to unravel more insights into the 

evolutionary factors shaping the distribution of diversity along genomes.
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3. METHODS:

Modelling spatial variation in θ

Because iSMC models pairs of genomes, the genealogies underlying each orthologous site 

can be summarized by τ, the time to their most recent common ancestor (TMRCA). The pair 

of DNA sequences can be described as a binary sequence where 0 represents a homozygous 

position and 1 represents a heterozygous position (thus phasing information is discarded). 

Under the infinite-sites mutation model, the probability of observing a 0 or 1 at any given 

position of the genome depends only on τ and the population mutation rate θ. If the hidden 

state configuration precludes variation in the mutation rate, then θ is assumed to be a global 

parameter such that the emission probabilities of homozygous and heterozygous states can be

compute for every site as P(0 | τ) = exp(-θτ), and P(1 | τ) = 1 – exp(-θτ) , respectively. 

To incorporate spatial heterogeneity in the mutation rate, we set Watterson’s estimator of θ as 

the genome-wide average mutation rate, and modulate it drawing scaling factors from a 

discretised prior distribution with mean equal to 1.0. The parameters shaping this distribution 

can be viewed as hyper-parameters of our HMM. We model the changes in mutation rate 

along the genome as a Markov process where the transition probability between each pair of 

categories is the same (parameter ω). The justification for the Markov model is that sites in 

close proximity are expected to have similar mutation rates, for example, as is the case when 

the efficiency of the replication machinery decreases with increasing distance from the start 

of the replication fork. Since the emission probabilities depend on θ, the resulting process is 

Markov-modulated by the mutation rate. Let t be the number of discretised TMRCA intervals,

and k be the number of discretised categories of the prior distribution of scaling factors of θ. 

The ensuing Markov-modulated HMM is an HMM with n = t x k hidden states, whose 

emission probabilities are captured by the n x 2 matrix depicted in Figure 1d. Moreover, 

even though θ itself does not affect the transition probabilities of the HMM, the transition 

between its categories weight in the transition probabilities between hidden states [180]. The 

transition matrix for spatial variation in θ is:
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And the forward recursion for this model at genomic position i can be written as:

  Fi , G
v
(θm)=(∑

l=1

k

(∑
u=1

t

Fi−1,G
u
(θl)⋅Pr (Gu→Gv )⋅Pr (θl→θm)))⋅Pr (Gv→Si∣θm) (1)

where θm is the product of the genome-wide average mutation rate and the value of the mth 

discretised category drawn from its prior distribution. The emission probability of binary state

Si depends on the TMRCA of genealogy Gv and the focal mutation rate θm. The forward 

recursion integrates over all k discretised values of θ and over all t TMRCA intervals. In the 

double-modulated model, this integration is performed over discretised values of θ, TMRCA 

intervals as well as a discretised values of ρ, which weight in the transition probability 

between genealogies:

Fi , Gv
(θm,ρc)=(∑l=1

k

(∑
b=1

a

(∑
u=1

t

Fi−1,Gu
(θl ,ρb)⋅Pr(Gu→Gv∣ρb)⋅Pr (θl→θm)⋅Pr (ρb→ρc))))⋅Pr (Gv→Si∣θm)

(2)

And the single-nucleotide mutation landscapes is obtained as in [180] (chapter 1).

Simulation study

Four scenarios of spatial variation in θ. We simulated a piecewise constant recombination 

rate along the genome by drawing values from a Gamma distribution with parameters α and 

β, and segment lengths from a geometric distribution with mean length g. We considered four

possible scenarios where α = β = 0.5 or 5.0, and g = 100 kb or 1 Mb. For each of the four 

combinations, we simulated 10 independent pairs of two 30 Mb haploid chromosomes under 

a constant population size model, assuming θ = 0.003 and ρ = 0.0012. All of the following 
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simulated scenarios share base parameters values and have an extra layer of complexity. A 

schematic representation of the simulation study can be found in Figure 2. The R2 values 

reported correspond to the square of the Pearson correlation coefficient between simulated 

and inferred maps.

Demographic history. We simulated the scenario of population bottleneck 0.5 coalescent

time units ago. Translating it to generations based on effective population sizes, the 

bottleneck happened 30,000 generations ago.

Introgression. We simulated two introgression scenarios where a source population

introduces a pulse of genetic material into a target population. In both scenarios, the split

between source and target populations happened 2.0 coalescent time units ago, and the source

replaces 10% of the genetic pool of the target. In the first scenario, secondary contact 

happened 0.125 coalescent time units ago; in the second, it happened 0.25 coalescent time 

units ago. Translating these coalescent times based on effective population sizes, the split 

between population happened 120,000 generations ago, and the introgression events 

happened 7,500 and 15,000 generations ago, respectively.

Variation in the recombination rate. We simulated a piecewise constant recombination rate 

along the genome by drawing rate values from a gamma distribution with parameters α = β = 

0.5 and segment lengths from a geometric distribution with mean length 100 kb. 

Analysis of the mutation landscape in Z. tritici

To fit the double-modulated iSMC model to data from Z. tritici, we used as input all the 15 

pair-wise combinations of the following six haploid sequences from chromosome 1 [146]: 

Zt05, Zt07, Zt09, Zt150, Zt154, Zt155. After obtaining consensus mutation and 

recombination maps of this sample at the 20 kb scale, we first excluded nine of the 294 

windows that displayed an excess of diversity and are likely the product of introgression 

(personal communication from Alice Feurtey, manuscript in preparation). We then built an 

ordinary least squares regression model with the average pair-wise diversity (π) as response 

variable and the inferred maps as explanatory variables, allowing for an interaction between 

them. The model was Box-Cox transformed using the MASS package [182] to bring the 
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distribution of residuals closer to normality (nevertheless, the Shapiro-Wilk test of normality 

was significant with p-value = 0.0052). Both the Harrison-McCabe test for homoscedasticity 

and the Durbin-Watson test for auto-correlation yielded non-significant results. We performed

an ANOVA test and computed the proportion of variance explained by each variable as their 

relative sum of squares; we computed their relative importance using the relaimpo package 

[183].

SUPPLEMENTAL MATERIAL:

The following supplemental material is available in the digital archive

Table S1: AIC values according to replicate, combination of parameters in the mutation 

landscape and iSMC model (homogeneous or θ-modulated).

Table S2: R2 values according to replicate, combination of parameters in the mutation 
landscape and bin size used to average the maps.

Table S3: R2 values according to replicate, combination of parameters in the mutation 
landscape, bin size used to average the maps and whether the demography was jointly-

inferred.

Table S4: R2 values according to replicate, combination of parameters in the mutation 

landscape, bin size used to average the maps and time since introgression event.

Table S5: AIC values according to replicate, combination of parameters in the mutation 
landscape and iSMC model (θ-modulated or θ-ρ-modulated).

Table S6: R2 values according to replicate, combination of parameters in the mutation 

landscape, bin size used to average the maps and whether the recombination landscape is 
jointly-modelled. 

Table S7: Summary of the linear model fitted to Z. tritici data: π = β0 + β1θ + β2ρ + β3θρ + ei.

Table S8: ANOVA table based on the linear model fitted to Z. tritici data.
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Selection at the pathway level drives the evolution of gene-
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ABSTRACT: 

Biochemical reactions within individual cells result from the interactions of molecules, 

typically in small numbers. Consequently, the inherent stochasticity of binding and diffusion 

processes generate noise along the cascade that leads to the synthesis of a protein from its 

encoding gene. As a result, isogenic cell populations display phenotypic variability even in 

homogeneous environments. The extent and consequences of this stochastic gene expression 

have only recently been assessed on a genome-wide scale, in particular owing to the advent 

of single cell transcriptomics. However, the evolutionary forces shaping this stochasticity 

have yet to be unraveled. We take advantage of two recently published data sets of the single-

cell transcriptome of the domestic mouse Mus musculus in order to characterize the effect of 

natural selection on gene-specific transcriptional stochasticity. We show that noise levels in 

the mRNA distributions (a.k.a. transcriptional noise) significantly correlate with three-

dimensional nuclear domain organization, evolutionary constraint on the encoded protein and

gene age. The position of the encoded protein in biological pathways, however, is the main 

factor that explains observed levels of transcriptional noise, in agreement with models of 

noise propagation within gene networks. Because transcriptional noise is under widespread 

selection, we argue that it constitutes an important component of the phenotype and that 

variance of expression is a potential target of adaptation. Stochastic gene expression should 

therefore be considered together with mean expression level in functional and evolutionary 

studies of gene expression.
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1. INTRODUCTION:

Isogenic cell populations display phenotypic variability even in homogeneous environments 

[72]. This observation challenged the clockwork view of the intra-cellular molecular 

machinery and led to the recognition of the stochastic nature of gene expression. Since 

biochemical reactions result from the interactions of individual molecules in small numbers 

[184], the inherent stochasticity of binding and diffusion processes generates noise along the 

biochemical cascade leading to the synthesis of a protein from its encoding gene (Figure 1). 

The study of stochastic gene expression (SGE) classically recognizes two sources of 

expression noise. Following the definition introduced by Elowitz et al [75], extrinsic noise 

results from variation in concentration, state and location of shared key molecules involved in

the reaction cascade from transcription initiation to protein folding. This is because molecules

that are shared among genes, such as ribosomes and RNA polymerases, are typically present 

in low copy numbers relative to the number of genes actively transcribed [185]. Extrinsic 

factors also include physical properties of the cell such as size and growth rate, likely to 

impact the diffusion process of all molecular players. Extrinsic factors therefore affect every 

gene in a cell equally. Conversely, intrinsic factors generate noise in a gene-specific manner. 

They involve, for example, the strength of cis-regulatory elements [186] as well as the 

stability of the mRNA molecules that are transcribed [77,187]. Every gene is affected by both

sources of stochasticity and the relative importance of each has been discussed in the 

literature [188,189]. Shahrezaei and Swain [185] proposed a more general, systemic and 

explicit definition for any organization level, where intrinsic stochasticity is “generated by the

dynamics of the system from the random timing of individual reactions” and extrinsic 

stochasticity is “generated by the system interacting with other stochastic systems in the cell 

or its environment”. This generic definition therefore includes Raser and O’Shea's [190] 

suggestion to further distinguish extrinsic noise occurring “within pathways” and “between 

pathways”. Other  organization levels of gene expression are also likely to affect expression 

noise, such as chromatin structure [82,191], and three-dimensional genome organization 

[192].
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Figure 1: A systemic view of gene expression.

Pioneering work by Fraser et al [88] has shown that SGE is an evolvable trait which is 

subject to natural selection. First, genes involved in core functions of the cell are expected to 

behave more deterministically [76] because temporal oscillations in the concentration of their

encoded proteins are likely to have a deleterious effect. Second, genes involved in immune 

response [193,194] and response to environmental conditions can benefit from being 

unpredictably expressed in the context of selection for bet-hedging [195]. As the relation 

between fitness and stochasticity depends on the function of the underlying gene, selection on

SGE is expected to act mostly at the intrinsic level [196–198]. The molecular mechanisms by 

which natural selection operates to regulate expression noise, however, remain to be 

elucidated.

Due to methodological limitations, seminal studies on SGE (both at the mRNA and protein 
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levels) have focused on only a handful of genes [75,199,200]. The canonical approach 

consists in selecting genes of interest and recording the change of their noise levels in a 

population of clonal cells as a function of either (1) the concentration of the molecule that 

allosterically controls affinity of the transcription factor to the promoter region of the gene 

[82,201] or (2) mutations artificially imposed in regulatory sequences [199]. In parallel with 

theoretical work [202–205], these pioneering studies have provided the basis of our current 

understanding of the proximate molecular mechanisms behind SGE, namely complex 

regulation by transcription factors, architecture of the upstream region (including the 

presence of TATA box) and gene orientation [206], translation efficiency and mRNA / protein

stability [207], properties of the protein-protein interaction network [208]. Measurements at 

the genome scale coupled with rigourous statistical analyses are however needed in order to 

go beyond gene idiosyncrasies and particular histories, and test hypotheses about the 

evolutionary forces shaping SGE [209].

The recent advent of single-cell RNA sequencing makes it possible to sequence the 

transcriptome of each individual cell in a collection of clones, and to observe the variation of 

gene-specific mRNA quantities across cells. This provides a genome-wide assessment of 

transcriptional noise. While not accounting for putative noise resulting from the process of 

translation of mRNAs into proteins, transcriptional noise accounts for noise generated by 

both synthesis and degradation of mRNA molecules (Figure 1). Previous studies, however, 

have shown that transcription is a limiting step in gene expression, and that transcriptional 

noise is therefore a good proxy for expression noise [196,210]. Here, we used publicly 

available single-cell transcriptomics data sets to quantify gene-specific transcriptional noise 

and relate it to other genomic factors, including protein conservation and position in the 

interaction network, in order to uncover the molecular basis of selection on stochastic gene 

expression.

2. RESULTS:

A new measure of noise to study genome-wide patterns of stochastic gene expression

We used the dataset generated by Sasagawa et al (2013), which quantifies gene-specific 
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amounts of mRNA as fragments per kilobase of transcripts per million mapped fragments 

(FPKM) values for each gene and each individual cell. Among these, we selected all genes in 

a subset containing 20 embryonic stem cells in G1 phase in order to avoid recording variance 

that is due to different cell types or cell-cycle phases. The Quartz-Seq sequencing protocol 

captures every poly-A RNA present in the cell at one specific moment, allowing to assess 

transcriptional noise.  Following Shalek et al (2014) we first filtered out genes that were not 

appreciably expressed in order to reduce the contribution of technical noise to the total noise. 

For each gene we further calculated the mean μ in FPKM units and variance σ
2

in FPKM2 

units, as well as two previously published measures of stochasticity: the Fano factor, usually 

referred to as the bursty parameter, defined as σ
2/ μ and  Noise, defined as the coefficient of

variation squared ( σ
2/ μ

2
). Both the variance and Fano factor are monotonically increasing

functions of the mean (Figure 2A). Noise is inversely proportional to mean expression 

(Figure 2A), in agreement with previous observations at the protein level [201,210]. While 

this negative correlation was theoretically predicted [211] it may confound the analyses of 

transcriptional noise at the genome level, because mean gene expression is under specific 

selective pressure [212] In order to disentangle these effects, we developed a new quantitative

measure of noise, independent of the mean expression level of each gene. 

To achieve this we performed polynomial regressions  in the log-space plot of variance 

versus mean. We defined F* as σobs
2 /σ pred

2
(see Material and Methods) that is, the ratio of 

the observed variance over the variance component predicted by the mean expression level. 

We selected the simplest model for which no correlation between F* and mean expression 

was observed, and found that a degree 3 polynomial model was sufficient to remove further 

correlation  (Kendall’s tau = -0.0037, p-value = 0.5217, Figure 2A). Genes with F* < 1 have 

a variance lower than expected according to their mean expression whereas genes with F* > 1

behave the opposite way (Figure 2B). This approach fulfills the same goal as the running 

median approach of Newman et. al [196], whilst it includes the effect of mean expression 

directly into the measure of stochasticity instead of correcting a posteriori a dependent 

measure (in that case, the Fano factor). We therefore use F* as a measure of SGE throughout 

this study.
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Figure 2: Transcriptional noise and mean gene expression. A, Measures of noise plotted against the mean 

gene expression for each gene, in logarithmic scales: Variance, Fano factor (variance / mean), noise (square of 
the coefficient of variation, variance / mean2) and F* (this study). Lines represent quantile regression fits 

(median, first and third quartiles). Point and bars represent median, first and third quartiles for each category of 
mean expression obtained by discretization of the x axis. B, Distribution of F* over all genes in this study. 

Vertical line corresponds to F* = 1.

Stochastic gene expression correlates with the three-dimensional structure of the 

genome

We first sought to investigate whether genome organization significantly impacts the patterns 

of stochastic gene expression. We assessed whether genes in proximity along chromosomes 

display more similar amount of transcriptional noise than distant genes. We tested this 

hypothesis by computing the primary distance on the genome between each pair of genes, 

that is, the number of base pairs separating them on the chromosome, as well as the relative 

difference in their transcriptional noise (see Methods). We found no significant association 

between the two distances (Mantel tests, each chromosome tested independently). Contiguous

genes in one dimension, however, have significantly more similar transcriptional noise that 

non-contiguous genes (permutation test, p-value < 1E-4, Figure S1). Using Hi-C data from 

mouse embryonic cells [213], we report that genes in contact in three-dimensions have 

significantly more similar transcriptional noise than genes not in contact (permutation test, p-

value < 1E-3, Figure S1). Most contiguous genes in one-dimension also appear to be close in

three-dimensions and the effect of 3D contact is stronger than that of 1D contact. These 

62



results therefore suggest that the three-dimensional structure of the genome has a stronger 

impact on stochastic gene expression than the position of the genes along the chromosomes. 

We further note that while highly significant, the size of this effect is small, with a difference 

in relative expression of -1.10% (Figure S1).

Transcription factors binding and histone methylation impact stochastic gene 

expression

The binding of transcription factors (TF) to promoter constitutes one notable source of 

transcriptional noise (Figure 1) [82,196]. In eukaryotes, the accessibility of promoters is 

determined by the chromatin state, which is itself controlled by histone methylation. We 

assessed the extent to which transcriptional noise is linked to particular TFs and histone 

marks by using data from the Ensembl regulatory build [214], which provides data from 

experimental evidence of TF binding and methylation sites along the genome. First we 

contrasted the F* values of genes with binding evidence for each annotated TF independently.

Among 13 TF represented by at least 5 genes in our data set, we found that 4 of them 

significantly influence F* after adjusting for a global false discovery rate of 5%: the 

transcription repressor CTFC (adjusted p-value = 0.0321), the transcription factor CP2-like 1 

(Tcfcp2l1, adjusted p-value = 0.0087), the X-Linked Zinc Finger Protein (Zfx, adjusted p-

value = 0.0284) and the Myc transcription factor (MYC, ajusted p-value = 0.0104). 

Interestingly, association with each of these four TFs led to an increase in transcriptional 

noise. We also report a weak but significant positive correlation between the number of 

transcription factors associated with each gene and the amount of transcriptional noise 

(Kendall’s tau = 0.0238, p-value = 0.0007). This observation is consistent with the idea that 

noise generated by each TF is cumulative [215]. We then tested if particular histone marks are

associated with transcriptional noise. Among five histone marks represented in our data set, 

three were found to be highly significantly associated to a higher transcriptional noise: 

H3K4me3 (adjusted p-value = 1.9981E-146), H3K4me2 (adjusted p-value = 5.4524E-121) 

and H3K27me3 (adjusted p-value = 5.2985E-34). Methylation on the fourth Lysine of histone

H3 is associated with gene activation in humans, while tri-methylation on lysine 27 is usually

associated with gene repression [216]. These results suggest that both gene activation and 

silencing contribute to the stochasticity of gene expression, in agreement with the view that 
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bursty transcription leads to increased noise [82,196,203]. 

Low noise genes are enriched for housekeeping functions

We investigated the function of genes at both ends of the F* spectrum. We defined as 

candidate gene sets the top 10% least noisy or the top 10% most noisy genes in our data set, 

and tested for enrichment of GO terms and Reactome pathways (see Methods). It is expected 

that genes encoding proteins participating in housekeeping pathways are less noisy because 

fluctuations in concentration of their products might have stronger deleterious effects [86]. 

On the other hand, stochastic gene expression could be selectively advantageous for genes 

involved in immune and stress response, as part of a bet-hedging strategy [193,217]. GO 

terms enrichment test revealed significant categories enriched in the low noise gene set only: 

molecular functions “nucleic acid binding” and “structural constituent of ribosome”, the 

biological processes “nucleosome assembly”, “innate immune response in mucosa” and 

“translation”, as well as the cellular component “cytosolic large ribosomal subunit” (Table 1).

All these terms but one relate to gene expression, in agreement with previously reported 

findings in yeast [196]. We further find a total of 41 Reactome pathways significantly over-

represented in the low-noise gene set (false discovery rate set to 1%). Interestingly, the top 

most significant pathways belong to modules related to translation (RNA processing, 

initiation of translation and ribosomal assembly), as well as several modules relating to gene 

expression, including chromatin regulation and mRNA splicing (Figure 3). Only one 

pathway was found to be enriched in the high noise set: TP53 regulation of transcription of 

cell cycle genes (p-value = 0.0079). This finding is interesting because TP53 is a central 

regulator of stress response in the cell [218]. These results therefore corroborate previous 

findings that genes involved in stress response might be evolving under selection for high 

noise as part of a bet hedging strategy [217,219]. 

The small amount of significantly enriched Reactome pathways by high noise genes can 

potentially be explained by the nature of the data set: as the original experiment was based on

unstimulated cells, genes that directly benefit from high SGE might not be expressed in these 

conditions.
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Figure 3: Enriched pathways in the low-noise gene set. Depicted pathways are the fifteen most significant  in 

the 10% genes with lowest transcriptional noise.

Highly connected proteins are synthesized by low-noise genes

The structure of the interaction network of proteins inside the cell can greatly impact the 

evolutionary dynamics of genes [80,220]. Furthermore, the contribution of each constitutive 

node within a given network varies. This asymmetry is largely reflected in the power-law-like

degree distribution that is observed in virtually all biological networks [221] with a few genes

displaying many connections and a majority of genes displaying only a few. The individual 

characteristics of each node in a network can be characterized by various measures of 

centrality [222]. Following previous studies on protein evolutionary rate [223–225] and 

protein-protein interaction (PPI) networks [208] we asked whether, at the gene level, there is 

a link between centrality of a protein and the amount of transcriptional noise. We study six 

centrality metrics measured on two types of network data: (i) pathway annotations from the 

Reactome database [226] and (ii) PPI data from the iRefIndex database. PPI data are typically

more complete (5,553 genes with gene expression data) but do not provide functional 

evidence. The Reactome database is based on published functional evidence, but 

encompasses less genes (4,454 genes for which expression data is available). In addition, 

graph representing PPI network are not oriented while graph representing Pathway 

annotations are, implying that distinct statistics can be computed on both types of networks.
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We first estimated the pleiotropy index of each gene by counting how many different 

pathways the corresponding proteins are involved in. We then computed centrality measures 

as averages over all pathways in which each gene is involved. These measures include (1) 

node degree, which corresponds to the number of other nodes a given node is directly 

connected with, (2) hub score, which estimates the extent to which a node links to other 

central nodes, (3) authority score, which estimates the importance of a node by assessing how

many hubs link to it, (4) transitivity, or clustering coefficient, defined as the proportion of 

neighbors that also connect to each other, (5) closeness, a measure of the topological distance 

between a node and every other reachable node (the fewer edge hops it takes for a protein to 

reach every other protein in a network, the higher its closeness), and (6) betweenness, a 

measure of the frequency with which a protein belongs to the shortest path between every 

pairs of nodes.

We find that node degree, hub score, authority score and transitivity are all significantly 

negatively correlated with transcriptional noise on pathway-based networks: the more central 

a protein is, the less transcriptional noise it displays (Figure 4A-D and Table 2). We also 

observed that pleiotropy is negatively correlated with F* (Kendall’s tau = -0.0514, p-value = 

8.31E-07, Figure 4E, Table 2), suggesting that a protein that potentially performs multiple 

functions at the same time needs to be less noisy. This effect is not an artifact of the fact that 

pleiotropic genes are themselves more central (e.g. correlation of pleiotropy and node degree:

Kendall’s tau = 0.2215, p-value < 2.2E-16) or evolve more slowly (correlation of pleiotropy 

and Ka / Ks ratio: Kendall’s tau = -0.1060, p-value < 2.2E-16) since it is still significant after 

controlling for these variables (partial correlation of pleiotropy and F*, accounting for 

centrality measures and Ka / Ks: Kendall's tau = -0.0254, p-value = 7.45E-06). Closeness and

betweenness, on the other hand, show a negative correlation with F*, yet much less 

significant (Kendall’s tau = -0.0254, p-value = 0.0109 for closeness and tau = -0.0175, p-

value = 0.0865 for betweenness, see Figure 4F-G and Table 2). In modular networks [81] 

nodes that connect different modules are extremely important to the cell [227]and show high 

betweenness scores. In yeast, high betweenness proteins tend to be older and more essential 

[228], an observation also supported by our data set (betweenness vs gene age, Kendall's tau 

= 0.0619, p-value = 1.09E-07; betweenness vs Ka/Ks, Kendall's tau = -0.0857, p-value = 

3.83E-16). It has been argued, however, that in protein-protein interaction networks high 
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betweenness proteins are less essential due to the lack of directed information flow, compared

to, for instance, regulatory networks [229], a hypothesis which could explain the observed 

lack of correlation.

By applying similar measures on the PPI network, we report significant negative correlation 

between F* and PPI centrality measures (Figure 4H-K , Table 2). Because the PPI network 

is not directed, authority scores and hub scores cannot be distinguished. The results obtained 

with the mouse PPI interaction network are qualitatively similar to the ones obtained by Li et 

al (2010) on Yeast expression data [208]. In addition, we further report that genes involved in 

complex interactions (that is, genes which interact with more than one other protein 

simultaneously) have reduced noise in gene expression (Wilcoxon rank test, p-value = 

8.053E-05, Figure 4L), corroborating previous findings in Yeast [88]. Conversely, genes 

involved in polymeric interactions, that is, where multiple copies of the encoded protein 

interact with each other, did not show significantly different noise than other genes (Wilcoxon

rank test, p-value = 0.0821, Figure 4M).

It was previously shown that centrality measures negatively correlate with evolutionary rate 

[230]. Our results suggest that central genes are selectively constrained for their 

transcriptional noise, and that centrality therefore also influences the regulation of gene 

expression. Interestingly, it has been reported that central genes tend to be more duplicated 

[231]. The authors proposed that such duplication events would have been favored as they 

would confer greater robustness to deleterious mutations in proteins. Our results are 

compatible with another, non exclusive, possible advantage: having more gene copies could 

reduce transcriptional noise by averaging the amount of transcripts produced by each gene 

copy [190].

Network structure impacts transcriptional noise of constitutive genes

Whereas estimators of node centrality highlight gene-specific properties inside a given 

network, measures at the whole-network level enable the comparison of networks with 

distinct properties. 

67



Figure 4: Factors driving stochastic gene expression. Correlation of F* and all tested network centrality 

measures, as well as protein conservation (Ka / Ks ratio) and gene age. Point and bars represent median, first 
and third quartiles for each category of mean expression obtained by discretization of the x axis, together with 

the quantile regression lines estimated on the full data set.
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We computed the size, diameter and global transitivity for each annotated network in our data

set (1,364 networks, Supplementary Material) which we compare with the average F* 

measure of all constitutive nodes. The size of a network is defined as its total number of 

nodes, while diameter is the length of the shortest path between the two most distant nodes. 

Transitivity is a measure of connectivity, defined as the average of all nodes' clustering 

coefficients. Interestingly, while network size is positively correlated with average degree and

transitivity (Kendall’s tau = 0.5880, p-value < 2.2E-16 and Kendall’s tau = 0.1166, p-value = 

1.08E-10, respectively), diameter displays a positive correlation with average degree 

(Kendall’s tau = 0.2959, p-value < 2.2E-16) but a negative correlation with transitivity 

(Kendall’s tau = -0.0840, p-value = 2.17E-05). This is because diameter increases 

logarithmically with size, that is, addition of new nodes to large networks do not increase the 

diameter as much as additions to small networks. This suggests that larger networks are 

relatively more compact than smaller ones, and their constitutive nodes are therefore more 

connected. We find that average transcriptional noise correlates negatively with network size 

(Kendall’s tau = -0.0514, p-value = 0.0039), while being independent of the diameter 

(Kendall’s tau = 0.0061, p-value = 0.7547 see Table 3). These results are in line with the 

node-based analyses, and show that the more connections a network has, the less stochastic 

the expression of the underlying genes is. This supports the view of Raser and Oshea [190] 

that the gene-extrinsic, pathway-intrinsic level is functionally pertinent and needs to be 

distinguished from the globally extrinsic level. We further asked whether genes with similar 

transcriptional noise tend to synthesize proteins that connect to each other (positive 

assortativity) in a given network, or on the contrary, tend to avoid each other (negative 

assortativity). We considered all Reactome pathways annotated to the mouse and estimated 

their respective F* assortativity. We found the mean assortativity to be significantly negative, 

with a value of -0.1384 (one sample Wilcoxon rank test, p-value < 2.2E-16), meaning that 

proteins with different F* values tend to connect with each other (Figure S3). Maslov & 

Sneppen [232] reported a negative assortativity between hubs in protein-protein interaction 

networks, which they hypothesized to be the result of selection for reduced vulnerability to 

deleterious perturbations. In our data set, however, we find the assortativity of hub scores to 

be significantly positive (average of 0.1221, one sample Wilcoxon rank test, p-value = 

1.212E-12, Figure S5), although with a large distribution of assortativity values. As we 

showed that hub scores correlates negatively with F* (Table 2), we asked whether the 
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negative assortativity of hub proteins can at least partly explain the negative assortativity of 

F*. We found a significantly positive correlation between the two assortativity measures 

(Kendall’s tau = 0.2581, p-value < 2.2E-16). The relationship between the measures, 

however, is not linear (Figure S5), suggesting a distinct relationship between hub score and 

F* for negative and positive hub score assortativity. Negative assortativity of hub proteins 

contributes to a negative assortativity of SGE (Kendall’s tau = 0.2730, p-value < 2.2E-16), 

while for pathways with positive hub score assortativity the effect vanishes (Kendall’s tau = 

0.0940, p-value = 3.135E-4). While assortativity of F* is closer to 0 for pathways with 

positive assortativity of hub score, we note that it is still significantly negative (average = 

-0.0818, one sample Wilcoxon test with p-value < 2.2E-16). This suggests the existence of 

additional constraints that act on the distribution of noisy proteins in a network.

Transcriptional noise is positively correlated with the evolutionary rate of proteins

In the yeast Saccharomyces cerevisiae, evolutionary divergence between orthologous coding 

sequences correlates negatively with fitness effect on knock-out strains of the corresponding 

genes [233], demonstrating that protein functional importance is reflected in the strength of 

purifying selection acting on it. Fraser et al [88] studied transcription and translation rates of 

yeast genes and classified genes in distinct noise categories according to their expression 

strategies. They reported that genes with high fitness effect display lower expression noise 

than the rest. Following these pioneering observations, we hypothesized that genes under 

strong purifying selection at the protein sequence level should also be highly constrained for 

their expression and therefore display a lower transcriptional noise. To test this hypothesis, 

we correlated F* with the ratio of non-synonymous (Ka) to synonymous substitutions (Ks), as

measured by sequence comparison between mouse genes and their human orthologs, after 

discarding genes with evidence for positive selection (n = 5). In agreement with our 

prediction, we report a significantly positive correlation between the Ka / Ks ratio and F* 

(Figure 4N, Kendall's tau = 0.0557, p-value < 1.143E-05), that is, highly constrained genes 

(low Ka / Ks ratio) display less transcriptional noise (low F*) than fast evolving ones. This 

result demonstrates that genes encoding proteins under strong purifying selection are also 

more constrained on their transcriptional noise.
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Older genes are less noisy

Evolution of new genes was long thought to occur via duplication and modification of 

existing genetic material (“evolutionary tinkering”, [234]). Evidence for de novo gene 

emergence is however becoming more and more common [235,236]. De novo created genes 

undergo several optimization steps, including their integration into a regulatory network 

[237]. We tested whether the historical process of incorporation of new genes into pathways 

impacts the evolution of transcriptional noise. We used the phylostratigraphic approach of 

Neme & Tautz [237], which categorizes genes into 20 strata, to compute gene age and tested 

for a correlation with F*. As older genes tend to be more conserved [238], more central 

(according to the preferential attachment model of network growth [220,239]) and more 

pleiotropic, we controlled for these confounding factors (Kendall's tau = -0.0663, p-value = 

1.58E-37 ; partial correlation controlling for Ka / Ks ratio, centrality measures and pleiotropy 

level, Figure 4O). These results suggest that older genes are more deterministically expressed

while younger genes are more noisy. While we cannot rule out that functional constraints not 

fully accounted for by the Ka / Ks ratio or unavailable functional annotations could explain at

least partially the correlation of gene age and transcriptional noise, we hypothesise that the 

observed correlation results from ancient genes having acquired more complex regulation 

schemes through time. Such schemes include for instance negative feedback loops, which 

have been shown to stabilize gene expression and reduce expression noise [77,240].

Position in the protein network is the main driver of transcriptional noise

In order to jointly assess the effect of network topology, epigenomic factors, Ka / Ks ratio and

gene age, we modeled the patterns of transcriptional noise as a function of multiple predictive

factors within the linear model framework. This analysis could be performed on a set of 2,794

genes for which values were available jointly for all variables. In order to avoid colinearity 

issues because some of these variables are intrinsically correlated, we performed data 

reduction procedures prior to modeling. For continuous variables, including Pathway and PPI

network variables, Ka / Ks ratio and gene age, we conducted a principal component analysis 

(PCA) and used as synthetic measures the first eight principal components (PC), explaining 

together more than 80% of the total inertia (Figure S2A). The first principal component 

(PC1) of the PCA analysis is associated with pathway centrality measures (degree, hub score, 
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authority score and transitivity, Figure S2B). The second principal component (PC2) 

corresponds to PPI centrality measures (degree, hub score and betweenness), while the third 

component (PC3) relates to gene age and Ka / Ks ratio. The fourth component (PC4) is 

associated with PPI complex interactions and transitivity. PC5 and PC6 are essentially 

associated to betweenness and closeness of the pathway network, PC7 with PPI polymeric 

interactions and PC8 with pathway pleiotropy. As transcription factors and histone marks data

are binary (presence / absence for each gene), we performed a logistic PCA for both type of 

variables [241]. For transcription factors, we selected the three first components (hereby 

noted TFPC), which explained 78% of deviance (Figure S3A). The loads on the first 

component (TFPC1) are all negative, meaning that TFPC1 captures a global correlation trend 

and does not discriminate between TFs. Tcfcp2l1 appears to be the TF with the highest 

correlation to TFPC1. The second component TFPC2 is dominated by TCFC (positive 

loading) and Oct4 (negative loading), while the third component TFPC3 is dominated by 

Esrrb (positive loading) and MYC, nMyc and E2F1 (negative loadings, Figure S3B). For 

histone marks, the two first components (hereby noted HistPC) explained 95% of variance 

and were therefore retained (Figure S4A). HistPC1 is dominated by marks H3K27me3 linked

to gene repression (negative loadings) and HistPC2 by marks H3K4me1 and H3K4me3 

linked to gene activation (positive loadings, Figure S4A).

We fitted a linear model with F* as a response variable and all 13 synthetic variables as 

explanatory variables. We find that PC1 has a significant positive effect on F* (Table 3). As 

the loadings of the centrality measures on PC1  are negative (Figure S2C), this result is 

consistent with our finding of a negative correlation of pathway-based centrality measure 

with F*. PC3 has a highly significant negative effect on F*, which is consistent with a 

negative correlation with gene age (positive loading on PC3) and a positive correlation with 

the Ka / Ks ratio (negative loading on PC3, Figure S2D). The last highly significant variable 

is the first principal component of the logistic PCA on histone methylation patterns, HistPC1, 

which has a negative effect on F*. Because the loadings are essentially negative on HistPC1, 

this suggests a positive effect of methylation, in particular the repressive H3K27me3. 

Altogether, the linear model with all variables explained 4.01% of the total variance (adjusted

R2). This small value indicates either that gene idiosyncrasies largely predominate over 

general effects, or that our estimates of transcriptional noise have a large measurement error, 
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or both. To compare the individual effects of each explanatory variable, we conducted a 

relative importance analysis. As a mean of comparison, we fitted a similar model with mean 

expression as a response variable. We find that pathway centrality measures (PC1 variables) 

account for 38% of the explained variance, while protein constraints and gene age (PC3) 

account for 32%. Chromatin state (HistPC1) account for another 15% of the variance (Figure

5). These results contrast with the model of mean expression, where HistPC1 and HistPC2 

respectively account for 51% and 9% of the explained variance, and PC1 and PC3 20% and 

10% only (Figure 5). This suggests (1) that among all factors tested, position in protein 

network is the main driver of the evolution of gene-specific stochastic expression, followed 

by protein constraints and gene age and (2) that different selective pressures act on the mean 

and cell-to-cell variability of gene expression. 

We further included the effect of three-dimensional organization of the genome in order to 

assess whether it could act as a confounding factor. We developed a correlation model 

allowing for genes in contact to have correlated values of transcriptional noise. The 

correlation model was fitted together with the previous linear model in the generalized least 

square (GLS) framework. This model allows for one additional parameter, λ, which captures 

the strength of correlation due to three-dimensional organization of the genome (see 

Methods). The estimate of λ was found to be 0.0016, which means that the spatial 

autocorrelation of transcriptional noise is low on average. This estimate is significantly higher

than zero, and model comparison using Akaike’s information criterion favors the linear model

with three-dimensional correlation (AIC = 4880.858 vs. AIC = 4890.396 for a linear model 

without three-dimensional correlation). Despite the significant effect of 3D genome 

correlation, our results were qualitatively and quantitatively very similar to the model 

ignoring 3D correlation (Table 3).

Analysis of bone marrow-derived dendritic cells supports the generality of the results

We assessed the reproducibility of our results by analyzing an additional single-cell 

transcriptomics data set of 95 unstimulated bone marrow-derived dendritic cells (BMDC) 

[242]. After filtering (see Methods), the data set consisted of 11,640 genes. Using the same 

normalization procedure as for the ESC data set, we nonetheless report a weak but significant
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negative correlation between F* and the mean expression, even with a degree-5 polynomial 

regression (-0.0459, p-value < 1.13E-13). This effect is due to the distribution of per-gene, 

between cell RFKM values being extremely skewed in this data set. In order to assess the 

impact of the residual correlation with the mean, we computed a value of F* (noted FR*) on a 

restricted dataset where the variance was between 1/8 and 8 times the mean (75% of all 

genes) using a quantile regression on the median instead of a linear regression. A second 

degree polynomial quantile regression proved to be sufficient to remove the effect of mean 

expression (Kendall’s tau = 0.0114, p-value = 0.1125) on this restricted data set. As all results

were consistent when using the FR* and F* measures, we only discuss here results obtained 

with F* and refer to Supplementary Data 1 for detailed results obtained with the FR* 

measure.

Figure 5: Relative importance of explanatory factors on mean gene expression and F*. Significance codes 

refer to ANOVA test of variance, *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1.

We report a highly significant positive correlation between F* values measured on the 8,792 

genes with expression in both data sets, suggesting that cell-to-cell variance in gene 

expression is to a large extent conserved among the two cell types (Kendall’s tau = 0.1289, p-

value < 2.2E-16, Figure S6A). GO terms or reactome pathways enrichment analyses reveal 
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less significant but consistant terms with the ESM analysis: the high F* gene set did not show

any significantly enriched GO term or reactome pathway (FDR set to 1%) and the low F* 

gene set revealed RNA-binding as a significantly enriched molecular function, as well as 21 

enriched pathways (Figure S7). In agreement with results from the ESM analysis, many of 

the most significant enriched pathways relate to gene expression, including translation and 

splicing. Interestingly, the two most significant pathways, however, are “Vesicle-mediated 

transport” and “Membrane trafficking”, two essential pathways for the functioning of 

dendritic cells. Analyses of network centrality measures also generally show consistent 

results with the ESC data set, more central genes displaying reduced gene expression noise 

(Figure S6B-N, Table S1). Quantitative differences consists of PPI betweenness, as well as 

pathway closeness and betweenness are highly significantly negatively correlated with F* 

while they were only weakly or non-significant with the ESC data set. The only discrepancies

that we report between the two data sets relate to pathway level statistics. Pathway size 

appears to be significantly positively correlated with mean F*, while it was negatively 

correlated on the ESC data set, yet with a comparatively higher p-value. Similarly pathway 

diameter is significantly positively correlated with mean F* in the BMDC data set, while it 

was not significant with the ESC data. We currently have no hypothesis to explain this 

particular discrepancy. While these results support the generality of our observations, they 

also illustrate that in details, the fine structure of translational noise may vary in a cell type-

specific manner.

We fitted linear models as for the embryonic stem cell (ESC) data set, with the exception that 

no epigenomic data was available for this cell type. Data reduction was performed using a 

principal component analysis, with the eight first principal components explaining 81% of the

total deviance (Figure S8A). We report consistent results with the ESC analysis, with all 

major effects similar in direction and intensity, highlighting the impact of network centrality 

measures on expression noise (Table S2). With the BMDC data, however, the second 

principal component PC2 which is associated with PPI centrality measures (Figure S8B) 

appears to have a significant negative impact on F*, while it was not significant with the ESC

dataset. As the loading of the PPI centrality measures are positive on PC2, this is consistent 

with central genes having a lower transcriptional noise as for the pathway network metrics 

(Figure S8C). When taking 3D genome correlations into account, we estimated a low 
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correlation coefficient as for the ESC dataset (lambda = 0.0004), and the AIC favored the 

model without correlation in this case. Relative importance analysis revealed that network 

centrality measures contributed most to the explained variance (48% and 21% for PC1 and 

PC2 respectively), while the contribution of protein constraints and gene age (PC3) was 24%.

Biological, not technical noise is responsible for the observed patterns

The variance in gene expression measured from single-cell transcriptomics is a combination 

of biological and technical variance. While the two sources of variance are a priori 

independent, gene-specific technical variance has been observed in micro-array experiments 

[243] making a correlation of the two types of variance plausible. If similar effects also affect

RNA-Seq experiments, technical variance could be correlated to gene function and therefore 

act as a covariate in our analyses. In order to assess whether this is the case, we used the 

dataset of Shalek et al [217], which contains both single-cell transcriptomics and 3 replicates 

of 10,000 pooled-cell RNA sequencing. In traditional RNA sequencing, which is typically 

performed on pooled populations of several thousands of cells, biological variance is 

averaged out so that the resulting measured variance between replicates is essentially the 

result of technical noise. We computed the mean and variance in expression of each gene 

across the three populations of cells. By plotting the variance versus the mean in log-space, 

we were able to compute a “technical” F* ( Ft

*
) value for each gene (see Methods). We 

fitted linear models as for the single cell data, using Ft

*
instead of F*. We report that no 

variable had a significant effect on Ft

*
(Table S3). In addition, there was no enrichment of 

the lower 10th Ft

*
 percentile for any particular pathway or GO term. The upper 90th 

percentile showed no GO term enrichment, but four pathways appeared to be significant: 

“Chromosome maintenance” (adjusted p-value = 0.0043), “Polymerase switching on the C-

strand of the telomere” (adjusted p-value = 0.0062), “Polymerase switching” (adjusted p-

value = 0.0062) and “Leading strand synthesis” (adjusted p-value = 0.0062), which relate to 

DNA replication. While it is unclear why genes involved in these pathways would display 

higher technical variance in RNA sequencing, these results strikingly differ from our analyses

of single cell RNA sequencing and therefore suggest that technical variance does not act as a 

confounding factor in our analyses.

76



Because only three replicates were available in the pooled RNA-Seq data set, we asked 

whether the resulting estimate of mean and variance in expression is accurate enough to allow

proper inference of noise and its correlation with other variables. We conducted a jackknife 

procedure where we sampled the original cells from the ESC data set and re-estimated F* for 

each sample. We tested combinations of 3, 5, 10 and 15 cells, with 1,000 samples in each 

case. In each sample, we computed F* with the same procedure as for the complete data set, 

and fitted a linear model with all 13 synthetic variables. For computational efficiency, we did 

not include 3D correlation in this analysis. We compute for each variable the number of 

samples where the effect is significant at the 5% level and has the same sign as in the model 

fitted on the full data set. We find that the model coefficients are very robust to the number of

cells used (Figure S9A) and that 3 cells are enough to infer the effect of the PC1 and PC3 

variables, the most significant in our analyses. Two main conclusions can be drawn from this 

jackknife analysis: (1) that the lack of significant effect of our explanatory variables on 

technical noise is not due to the low number of replicates used to compute the mean and 

variance in expression and (2) that our conclusions are very robust to the actual cells used in 

the analysis, ruling out drop-out and amplification biases as possible source of errors [244].

3. DISCUSSION:

Throughout this work, we provided the first genome-wide evolutionary and systemic study of

transcriptional noise, using mouse cells as a model. We have shown that transcriptional noise 

correlates with functional constraints both at the level of the gene itself via the protein it 

encodes, but also at the level of the pathway(s) the gene belongs to. We further discuss here 

potential confounding factors in our analyses and argue that our results are compatible with 

selection acting to reduce noise-propagation at the network level. 

In this study, we exhibited several factors explaining the variation in transcriptional noise 

between genes. While highly significant, the effects we report are of small size, and a 

complex model accounting for all tested sources of variation only explains a few percent of 

the total observed variance. There are several possible explanations for this reduced 

explanatory power: (1) transcriptional noise is a proxy for noise in gene expression, at which 
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selection occurs (Figure 1). As transcriptional noise is not randomly distributed across the 

genome, it must constitute a significant component of expression noise, in agreement with 

previous observations [82,196]. Translational noise, however, might constitute an important 

part of the expression noise and was not assessed in this study. (2) Gene expression levels 

were assessed on embryonic stem cells in culture. Such an experimental system may result in 

gene expression that differs from that in natural conditions under which natural selection 

acted. (3) Functional annotations, in particular pathways and gene interactions are 

incomplete, and network-based measures have most likely large error rates. (4) While the 

newly introduced F* measure allowed us to assess the distribution of transcriptional noise 

independently of the average mean expression, it does not capture the full complexity of 

SGE. Explicit modeling, for instance based in the Beta-Poisson model [245] is a promising 

avenue for the development of more sophisticated quantitative measures.

In a pioneering study, Fraser et al [88], followed by Shalek et al [217], demonstrated that 

essential genes whose deletion is deleterious, and genes encoding subunits of molecular 

complexes as well as housekeeping genes display reduced gene expression noise. Our 

findings go beyond these early observations by providing a statistical assessment of the joint 

effect of multiple explanatory factors. Our analyses reveal that network centrality measures 

are the explanatory factors that explained the most significant part of the distribution of 

transcriptional noise in the genome. Network-based statistics were first tested by Li et al 

[208] using PPI data in Yeast. While we are able to extend these results to mouse cells, we 

show that more detailed annotation as provided by the Reactome database lead to new 

insights into the selective forces acting on expression noise. Our results suggest that 

“pathways” constitute a relevant systemic level of organisation, at which selection can act 

and drive the evolution of SGE at the gene level. This multi-level selection mechanism, we 

propose, can be explained by selection against noise propagation within networks. It has been

experimentally demonstrated that expression noise can be transmitted from one gene to 

another gene with which it is interacting [86]. Large noise at the network level is deleterious 

[76] but each gene does not contribute equally to it, thus the strength of selective pressure 

against noise varies among genes in a given network. We have shown that highly connected, 

“central” proteins typically display reduced transcriptional noise. Such nodes are likely to 

constitute key players in the flow of noise in intra-cellular networks as they are more likely to
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transmit noise to other components. In accordance with this hypothesis, we find genes with 

the lowest amount of transcriptional noise to be enriched for top-level functions, in particular 

involved in the regulation of other genes. 

These results have several implications for the evolution of gene networks. First, this means 

that new connections in a network can potentially be deleterious if they link genes with 

highly stochastic expression. Second, distinct selective pressures at the “regulome” and 

“interactome” levels (Figure 1) might act in opposite direction. We expect genes encoding 

highly connected proteins to have more complex regulation schemes, in particular if their 

proteins are involved in several biological pathways. In accordance, several studies 

demonstrated that expression noise of a gene positively correlates with the number of 

transcription factors controlling its regulation [215], a correlation that we also find significant

in the data set analyzed in this work. Central genes, while being under negative selection 

against stochastic behavior, are then more likely to be controlled by numerous transcription 

factors which increase transcriptional noise. As a consequence, if the number of connections 

at the interactome level is correlated with the number of connections at the regulome level, 

we predict the existence of a trade-off in the number of connections a gene can make in a 

network. Alternatively, highly connected genes might evolve regulatory mechanisms allowing

them to uncouple these two levels: negative feedback loops, for instance, where the product 

of a gene down-regulates its own production have been shown to stabilize expression and 

significantly reduce stochasticity [211,240,246]. We therefore predict that negative feedback 

loops are more likely to occur at genes that are more central in protein networks, as they will 

confer greater resilience against high SGE, which is advantageous for this class of genes.

Our results enabled the identification of possible selective pressures acting on the level of 

stochasticity in gene expression. The mechanisms by which the amount of stochasticity can 

be controlled remain however to be elucidated. We evoked the existence of negative feedback

loops which reduce stochasticity and the multiplicity of upstream regulator which increase it. 

Recent work by Wolf et al [247] and Metzger et al [248] add further perspective to this 

scheme. Wolf and colleagues found that in Escherichia coli noise is higher for natural than 

experimentally evolved promoters selected for their mean expression level. They 
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hypothesized that higher noise is selectively advantageous in case of changing environments. 

On the other hand,  Metzger and colleagues performed mutagenesis experiments and found 

signature of selection for reduced noise in natural populations of Saccharomyces cerevisae. 

These seemingly opposing results combined with our observations provide additional 

evidence that the amount of stochasticity in the expression of single genes has an optimum, as

high values are deleterious because of noise propagation in the network, whilst lower values, 

which result in reduced phenotypic plasticity, are suboptimal in case of dynamic 

environment. 

4. CONCLUSION:

Using a new measure of transcriptional noise, our results demonstrate that the position of the 

protein in the interactome is a major driver of selection against stochastic gene expression. As

such, transcriptional noise is an essential component of the phenotype, in addition to the 

mean expression level and the actual sequence and structure of the encoded proteins. This is 

currently an under-appreciated phenomenon, and gene expression studies that focus only on 

the mean expression of genes may be missing key information about expression diversity. 

The study of gene expression must consider changes in noise in addition to change in mean 

expression level as a putative explanation for adaptation. Further work aiming to unravel the 

exact structure of the regulome is however needed in order to fully understand how 

transcriptional noise is generated or inhibited.

5. METHODS:

Single-cell gene expression data set

We used the dataset generated by Sasagawa et al. [249] retrieved from the Gene Expression 

Omnibus repository (accession number GSE42268). We analyzed expression data 

corresponding to embryonic stem cells in G1 phase, for which more individual cells were 

sequenced. A total of 17,063 genes had non-zero expression in at least one of the 20 single 

cells. Similar to Shalek et al [242], a filtering procedure was performed where only genes 

whose expression level satisfied log(FPKM+1) > 1.5 in at least one single cell were kept for 

80



further analyses. This filtering step resulted in a total of 13,660 appreciably expressed genes 

for which transcriptional noise was evaluated.

Measure of transcriptional noise

The expression mean ( μ ) and variance ( σ
2

) of each gene over all single cells were 

computed. We measured stochastic gene expression as the ratio F
*= σ2

^σ2(μ)
, where

^σ2(μ) is the expected variance given the mean expression. In order to compute 
^σ2(μ) , 

we performed several polynomial regressions with log(σ
2) as a function of log (μ) , 

with degrees between 1 and 5. We then tested the resulting F* measures for residual 

correlation with mean expression using Kendall’s rank correlation test. We find that a degree-

3 polynomial regression was sufficient to remove any residual correlation with F* (Kendall’s 

tau = 0.0037, p-value = 0.5217). F* can be seen as a general expression for the Fano factor 

and noise measure: when using a polynome of degree 1, the expression of F* becomes

F
*= σ2

exp (a+b . log(μ))
= σ2

exp(a).μb
, and is therefore equivalent to the Fano factor when a

= 0 and b = 1, and equivalent to noise when a = 0 and b = 2.

Genome architecture

The mouse proteome from Ensembl (genome version: mm9) was used in order to get 

coordinates of all genes. The Hi-C dataset for embryonic stem cells (ES) from Dixon et al 

[213] was used to get three-dimensional domain information. Two genes were considered in  

proximity in one dimension (1D) if they are on the same chromosome and no protein-coding 

gene was found between them. The primary distance (in number of nucleotides) between 

their midpoint coordinates was also recorded as 1D a distance measure between the genes. 

Two genes were considered in proximity in three dimensions (3D) if the normalized contact 

number between the two windows the genes belong was non-null. Two genes belonging to 

the same window were considered in proximity. We further computed the relative difference 

of stochastic gene expression between two genes by computing the ratio
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(F2

*−F1

*)/(F2

*+F1

*) . For each chromosome, we independently tested if there was a 

correlation between the primary distance and the relative difference in stochastic gene 

expression with a Mantel test, as implemented in the ade4 package [250]. In order to test 

whether genes in proximity (1D and 3D) had more similar transcriptional noise than distant 

genes, we contrasted the relative differences in transcription noise between pairs of genes in 

proximity and pairs of distant genes. As we test all pairs of genes, we performed a 

randomization procedure in order to assess the significance of the observed differences by 

permuting the rows and columns in the proximity matrices 10,000 times. Linear models 

accounting for spatial interactions with genes were fitted using the generalized least squares 

(GLS) procedure as implemented in the “nlme” package for R. A correlation matrix between 

all tested genes was defined as G={gi , j} , where gi , j is the correlation between genes i 

and j. We defined gi , j=1−exp (−λδ i, j) , where δi , j  takes 1 if genes i and j are in 

proximity, 0 otherwise (binary model). Alternatively, δi , j can be defined as the actual 

number of contacts between the two 20 kb regions (as defined by Dixon et al) the genes 

belong to (proportional model). Parameter λ was estimated jointly with other model 

parameters,  it measures the strength of the genome “spatial” correlation. Models were 

compared using Akaike’s information criterion (AIC). We find that the proportional 

correlation model fitted the data better and therefore selected it for further analyses.

Transcription factors and histone marks

Transcription factor (TF) mapping data from the Ensembl regulatory build [214] were 

obtained via the biomaRt package for R. We used the Grch37 build as it contained data for 

stem cells epigenomes. Genes were considered to be associated with a given TF when at least

one binding evidence was present in the 3 kb upstream flanking region. Transcription factors 

associated with less than 5 genes for which transcriptional noise could be computed were not 

considered further. A similar mapping was performed for histone marks by counting the 

evidence of histone modification in the 3 kb upstream and downstream regions of each gene. 

A logistic principal component analysis was conducted on the resulting binary contingency 

tables using the logisticPCA package for R [241], for TF and histone marks separately. 

Principal components were used to define synthetic variables for further analyses.
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Biological pathways, protein-protein interactions and network topology

We defined genes either in the top 10% least noisy or in the top 10% most noisy as candidate 

sets and used the Reactome PA package [251] to search the mouse Reactome database for 

overrepresented pathways with a 1% false discovery rate. 

Centrality measures were computed using a combination of the “igraph” [252] and “graphite”

[253] packages for R. As the calculation of assortativity does not handle missing data (that is, 

nodes of the pathway for which no value could be computed), we computed assortativity on 

the sub-network with nodes for which data were available. Reactome centrality measures 

could be computed for a total of 4,454 genes with expression data.

Protein-protein interactions (PPI) were retrieved from the iRefIndex database [254]using the 

iRefR package for R [255]. Interactions were converted to a graph using the dedicated R 

functions in the package, and the same methods were used to compute centrality measures as 

for the pathway analysis. Because the PPI-based graph was not oriented, authority scores 

were not computed for this data (as this gave identical results to hub scores). Furthermore, as 

most genes are part of a single graph structure in the case of PPI interactions, closeness 

values were not further analysed as they were virtually identical for all genes.

Gene Ontology Enrichment

Eight thousand three hundreds and twenty five out of the 13,660 genes were associated with 

Gene Ontology (GO) terms. We tested genes for GO terms enrichment at both ends of the F* 

spectrum using the same threshold percentile of 10% low / high noise genes as we did for the 

Reactome analysis. We carried out GO enrichment analyses using two different algorithms: 

“Parent-child” [256] and “Weight01”, a mixture of two algorithms developed by Alexa et al 

[257]. We kept only the terms that appeared simultaneously on both Parent-child and 

Weight01 under 1% significance level, controlling for multiple testing using the FDR method

[258].

Sequence divergence

The Ensembl's Biomart interface was used to retrieve the proportion of non-synonymous (Ka)
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and synonymous (Ks) divergence estimates for each mouse gene relative to the human 

ortholog. This information was available for 13,136 genes.

Gene Age

The relative taxonomic ages of the mouse genes have been computed and is available in the 

form of 20 Phylostrata [237]. Each Phylostratum corresponds to a node in the phylogenetic 

tree of life. Phylostratum 1 corresponds to “All cellular organisms” whereas Phylostratum 20 

corresponds to “Mus musculus”, with other levels in between. We used this published 

information to assign each of our genes to a specific Phylostratum and used this as a relative 

measure of gene age: Age = 21 - Phylostratum, so that an age of 1 corresponds to genes 

specific to M. musculus and genes with an age of 20 are found in all cellular organisms. 

Linear modeling

We simultaneously assessed the effect of different factors on transcriptional noise by fitting 

linear models to the gene-specific F* estimates. To avoid colinearity issues of intrinsically 

correlated explanatory variables, we conducted a data reduction procedure using multivariate 

analysis. We used variants of principal component analysis (PCA) on explanatory variables in

three groups: network centrality measures, Ka / Ks and gene age with standard PCA, 

transcription factor binding evidence and histone methylation patterns using logistic PCA, a 

generalization of PCA for binary variables [241]. In each case, we used the most 

representative components (totaling at least 75% of the total deviance) as synthetic variables. 

PCA analysis was conducted  using the ade4 package for R [250], logistic PCA was 

performed using the logisticPCA package [241].

We built a linear model with F* as a response variable and thirteen synthetic variables as 

explanatory variables. As the synthetic variables are principal components, they are 

orthogonal by construction. The fitted model displayed significant departure to normality and 

was further transformed using the Box-Cox procedure (“boxcox” function from the MASS 

package for R [182]). Residues of the selected model had normal, independent residue 

distributions (Shapiro-Wilk test of normality, p-value = 0.121, Ljung-Box test of 

independence, p-value = 0.2061) but still displayed significant heteroscedasticity (Harrison-
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McCabe test, p-value = 0.003). In order to ensure that this departure from the Gauss-Markov 

assumptions does not bias our inference, we used the “robcov” function of the “rms” package

in order to get robust estimates of the effect significativity [259]. Relative importance of each

explanatory factor was assessed using the method of Lindeman, Merenda and Gold [260] as 

implemented is the R package “relaimpo”. The significance of the level of variance explained

by each factor was computed using standard ANOVA procedure.

Additional data sets

The aforementioned analyses were additionally conducted on the bone marrow-derived 

dendritic cells data set of Shalek et al [242]. Following the filtering procedure established by 

the authors in the original paper, genes which did not satisfied the condition of being 

expressed by an amount such that log(TPM+1) > 1 in at least one of the 95 single cells were 

further discarded, where TPM stands for transcripts per million. This cut-off threshold 

resulted in 11,640 genes being kept for investigation. The rest of the analyses was conducted 

in the same way as for the ESM data set.

Jackknife procedure

A jackknife procedure was conducted in order to assess (1) the robustness of our results to the

choice of actual cells used to estimate mean and variance in gene expression and (2) the 

power of the pooled RNA-seq analysis for which only three replicates were available. This 

analysis was conducted by sampling 3, 5, 10 and 15 of the original 20 single cells of the ESM

data set [249], 1,000 times in each case. The exact same analysis was conducted on each 

random sample as for the complete data set, and model coefficients and their associated p-

values were recorded. 
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SUPPLEMENTAL MATERIAL:

The following supplemental material is available in the digital archive

Table S1: Correlation of transcriptional noise with genes centrality measures and pleiotropy 
for the bone marrow-derived dendritic cells data set. Legends as in Table 2. 

Table S2: Linear models of transcriptional noise with genomic factors for the bone marrow-
derived dendritic cells data set. Legend as in Table 4.

Table S3: Linear model of transcriptional noise with genomic factors with pooled RNA-Seq 
data. Legend as in Table 4.

Figure S1: Impact of genome organization on the distribution of transcriptional noise. 
The x-axis shows the mean relative difference in transcriptional noise. Vertical lines show 
observed values and histograms the distribution over 10,000 permutations (see Methods). 
Left panel: distribution for neighbor genes along the genome. Right panel: distribution for 
genes in contact in three-dimensions.

Figure S2: Principal component analysis of pathways centrality measures. A, Proportion 
of deviance explained by models with 1, 2, etc. principal components. B, Contributions, 
computed as proportion of deviance, of each input variable to each principal component. C, 
Loadings of each variable on the 2 first components. D, Loadings of each variable on the 3rd 

and 4th principal components.  

Figure S3: Logistic principal component analysis of transcription factor binding 
evidences. A, Proportion of deviance explained by models with 1, 2, etc. principal 
components. B, Contributions, computed as proportion of deviance, of each input variable to 

each principal component. C, Loadings of each variable on the 2 first components. D, 
Loadings of each variable on the 2nd and 3rd principal components. 

86



Figure S4: Logistic principal component analysis of histone marks. A, Proportion of 
deviance explained by models with 1, 2, etc. principal components. B, Contributions, 
computed as proportion of deviance, of each input variable to each principal component. C, 
Loadings of each variable on the 2 first components.

Figure S5: Assortativity in networks. A, Distribution of assortativity values for hub scores. 
B, Distribution of assortativity values for F*. C, Assortativity for F* and hub scores are 
plotted against each other. Solid lines represent linear regressions fitted on pathways with 
negative or positive hub score assortativity, respectively. Dashed line represents a linear 

regression fitted on all data.

Figure S6: Factors driving stochastic gene expression in the bone marrow-derived 
dendritic cells data set. Legends as in Figure 4.

Figure S7: Enriched pathways in the low-noise gene set of the bone marrow-derived 
dendritic cells data set.

Figure S8: Principal component analysis of pathways centrality measures of the bone 
marrow-derived dendritic cells data set. Legends as in Figure S2.

Figure S9: Robustness and power analysis. A jackknife procedure was conducted by 
fitted linear models with all explanatory variables on a subset of cells taken randomly 
(x-axis). A, estimated coefficient of each effect. B, proportion of simulations where the 

coefficient is significant at the 5% level. Filled bars correspond to significant effect when the 
complete data set is used. PC: principal component. PPI: protein-protein interactions. TF: 

transcription factors.
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This appendix contains a chapter to be published in the upcoming book 

Statistical Population Genomics
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4 Contents

Summary. Population genomics is a growing field stemming from more than thirty

years of developments in population genetics. Here, we summarize the main theoret-

ical concepts and terminology underlying both theoretical and empirical statistical

population genomics studies. We provide the reader with pointers toward the original

literature as well as methodological and historical reviews.

Keywords: Population genetics, Neutral theory, Coalescent theory, Muta-

tion, Recombination, Selection, Lexicon

Running head: Population Genomics Lexicon

1 Genomic variation

1.1 Loci, alleles, and polymorphism

Population genetics studies the evolution of genome variants in populations.

A locus (pl. loci) refers to a given location in the genome, defined by a chro-

mosome id, as well as begin and end positions. The particular sequence at a

given locus may vary between individuals, each variant being termed an allele.

We call loci with at least two alleles polymorphic and invariant loci monomor-

phic. The term polymorphism refers to the presence of multiple alleles but is

commonly used as a countable noun as a substitute for “polymorphic locus”

(one polymorphism, several polymorphisms).

Alleles may differ because of the nucleotide content, but also in length, as

a result of nucleotide insertions or deletions (a.k.a. indels). Variable loci of

length one can have up to four distinct alleles (A, C, G or T) and are termed

single nucleotide polymorphisms (SNPs). SNPs constitute so far the majority

of the data accounted for by population genetic models.
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1.2 Mutations

Molecular events altering the genome are termed mutations. Mutations in-

clude substitution of a nucleotide into another one, removal or addition of one

or several nucleotides, as well as multiplication of some part of the genome.

Mutation is the process by which new alleles are formed. The infinite site

model assumes that during the timeframe of evolution modeled, each locus

have undergone at most one mutation [1, 2, 3]. This model also implies that

each mutation creates a new allele in the population and that there is no

“backward” or “reverse” mutation. The infinite site model is a generally rea-

sonable assumption as the mutation rate is typically low and genomes are

large. It might be locally invalidated, however, in case of mutation hotspots

or when larger evolutionary timescales are considered. Under this premise, at

most two alleles are expected per locus. Loci with two alleles are termed di-

allelic or biallelic, the first term having historical precedence and being more

accurate [4], while the second is more commonly used since the 1990s. Fur-

thermore, in a population genomic dataset, a sampled diallelic locus is called

a singleton if one of the two alleles is present in only one individual, and a

doubleton if it is present in precisely two individuals.

1.3 The Wright-Fisher model

The most straightforward process of allele evolution within a single popula-

tion is named the Wright-Fisher model. It describes the evolution of alleles

in a population of fixed and constant size, where all alleles have the same

fitness, and therefore the same chance to be transmitted to the next gener-

ation (neutral evolution). The population is assumed to be panmictic, that

is, individuals are randomly mating. Time is discretized in non-overlapping

generations so that the alleles in the current generation are a random sample
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of the alleles from the previous generation. Under such conditions, allelic fre-

quencies evolve only because of the stochasticity in the sampling of gametes

that will contribute to the next generation, a process termed genetic drift.

Because populations are of finite size, alleles will be sampled at their actual

frequencies on average only and the ultimate fate of any allele is either to

reach frequency zero in the population and be lost, when by chance no in-

dividual carrying this allele has any descendant in the next generation or to

become fixed when all other alleles have been lost. When genetic drift is the

only force acting on a population, the number of alleles at a given locus is

necessarily decreasing over time.

The Wright-Fisher model with mutation extends the Wright-Fisher model

by introducing new alleles in the population, at a given rate. Mutation and

drift act in opposite direction and a mutation-drift equilibrium is reached

when the rate of allele creation by mutation equals the rate of allele loss by

drift. The genetic diversity is then determined by the sole product of the

population size N and the mutation rate u. Under the infinite site model, the

expected heterozygosity at a locus in a population of diploid individuals is

approximated by

ĥ =
4 ·N · u

4 ·N · u+ 1
[1]

while the expected number of distinct alleles and their respective frequencies

can be estimated using Ewens’s sampling formula [5].

A substitution occurs when a new mutation has spread in the population,

increasing from frequency 1/(2N) to 1 (see Note 1). Kimura showed that the

average time to fixation of a new mutation is 4N in a population of diploid in-

dividuals [6]. Furthermore, as a neutral mutation has a probability of reaching

fixation equal to 1/(2N) and given that there are 2N · u new mutations per
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generation, in a purely neutrally evolving population, the expected number

of substitutions per generation is equal to 2N · u · 1/(2N) = u. The substitu-

tion rate is therefore independent of the population size, and the number of

substitutions between two populations is a direct measure of the number of

generations separating them, a phenomenon termed molecular clock [7].

1.4 The backward Wright-Fisher model: the standard coalescent

While the Wright-Fisher process naturally describes the evolution of sequences

within populations one generation after the other, population genetic data

typically represent individuals sampled at a given time point. For inference

purposes, it is therefore convenient to model the history of the genetic material

that gave rise to the sample. The modelization of the ancestry of a sample

(also known as the genealogy) is typically done backward in time, as every

locus find a common ancestor in the past, until the most recent common

ancestor (MRCA) of the sample. The merging of two lineages in the past is

called a coalescence event, and the set of mathematical tools describing this

process under a variety of demographic models is referred to as the coalescence

theory. Kingman [8] first described the standard coalescent, the genealogical

model corresponding to the Wright-Fisher model (but see [9] and [10] for a

historical perspective). The standard coalescent is sometimes referred to as

the Kingman’s coalescent.

2 Beyond the Wright-Fisher model

The Wright-Fisher model has been extended in several ways to include more

realistic assumptions on the underlying evolutionary process. These exten-

sions led to the concept of Effective population size (Ne), originally defined as
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the number of individuals contributing to the gene pool. When a population

deviates from the assumptions of the Wright-Fisher model, Ne is no longer

equal to the census population size (N). Often (but not always) in such cases,

Ne can be obtained by a linear scaling of N such that it reflects the number

of individuals from an idealized Wright-Fisher population that would display

the same genetic diversity as the actual population under study [11].

2.1 Demography

A possible deviation from the Wright-Fisher assumptions happens when the

population size is not constant across generations. The term demographic his-

tory generally refers to the collection of demographic parameters (effective

sizes, growth rates) that describes the history of the population until its most

recent common ancestor [12]. When population size varies in a cyclic manner

with relatively small period n, the resulting genealogies can be modeled by a

Wright-Fisher process with a population size equal to the harmonic mean of

the historical population sizes, so that

Ne =
nPn
i

1
Ni

,

where the Ni refer to the ith population size [13]. More drastic demographic

effects include genetic bottlenecks, corresponding to a sharp decrease (shrink-

age) in population size.

2.2 Population structure

In the absence of panmixia, genetic exchanges occur more often between cer-

tain individuals, resulting in population structure with several subpopulations

(Fig. 1). Population structure may occur for different reasons such as overlap-
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ping generations, assortative mating or geographic isolation [12]. Assortative

mating occurs when individuals choose their mates according to some simi-

larity between their phenotypes. If the phenotype is genetically determined,

assortative mating can influence the level of heterozygosity in the population

[14].

Gene flow describes the migration of genetic variants between subpopula-

tions under a scenario of population structure. It reduces genetic differentia-

tion among subpopulations [15]. Ultimately, subpopulations can diverge and

become genetically isolated, a process called speciation. The simplest specia-

tion processes involve spontaneous isolation (isolation model) or spontaneous

isolation followed by a period of gene flow (isolation with migration model)

[16]. When speciation events occur in a short timeframe and ancestral pop-

ulation sizes are large, ancestral polymorphism may persist in the ancestral

species, a phenomenon called incomplete lineage sorting (ILS) (Fig. 1) [17].

The expected amount of incomplete lineage sorting depends on the number

of generations between two isolation events (�T ) and the ancestral effective

population size NeA [18]:

Pr(ILS) =
2

3
e

⇣
� 2·�T

NeA

⌘

The term introgression is used to depict the transfer of genetic material be-

tween diverged populations or species through secondary contact (hybridiza-

tion, see Fig. 1) [19]. As a result, extant lineages share a common ancestor

that predates the two isolation or speciation events. The resulting genealogy

may, therefore, be incongruent with the phylogeny defined by the two splits,

depending on the order of coalescence events between lineages [20].
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3 Statistics on nucleotide diversity

Statistics are needed to infer population genetics parameters from polymor-

phism data. The site frequency spectrum (SFS) describes the empirical dis-

tribution of allele frequencies across segregating sites of a given (set of) loci

in a population sample. For a sample of n chromosomes, the unfolded SFS

is the set of counts of derived alleles X = (X1, X2, . . . , Xn�1), where sample

configurations Xi denote the number of sites that have n � i ancestral and

i derived alleles. The ancestral state is usually estimated using an outgroup

sequence. In cases where we cannot assess the ancestral allele, the folded site

frequency spectrum, X 0, may be calculated instead. X 0 represents the distri-

bution of the minor allele frequencies, such as X 0
i = Xi + Xn�i for i < n/2

and X 0
n/2 = Xn/2 [13, 21, 22]. The shape of the SFS is affected by underlying

population genetic processes, such as demography and selection, and therefore

serves as the input of many population genetics methods [23].

Watterson’s theta is an estimator of the population mutation rate ✓ =

4Ne ·u, where Ne is the (diploid) effective population size and u the mutation

rate. It is derived from the number of segregating sites Sn of a sample of size

n [24]. Assuming an infinite sites model, Sn is equal to the product of u and

the expected time to coalescence:

E[Sn] = u · 4 ·Ne
n�1X

i=1

i.

Since 4Ne · u = ✓ the equation may be written as E[Sn] = ✓ · an, where

an =
Pn�1

i=1 i. The proposed estimator of ✓ is

✓̂ =
Ŝn

an
=

Ŝn⇣
1 + 1

2 + . . .+ 1
n�1

⌘ ,
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where Ŝn is the observed number of segregating sites in the sample. This

estimator is unbiased when the data is generated from a Wright-Fisher process

but is not robust to deviations from it [25].

Tajima’s ⇡, the average pairwise heterozygosity is a measure of nucleotide

diversity defined as the number of pairwise differences between a set of se-

quences [26]. Under the infinite sites model, the number of mutations sepa-

rating two orthologous chromosomes Dij is equal to the number of nucleotide

differences between sequences i and j. As the expectation of the average pair-

wise nucleotide differences between all pairs of sequences in a sample is equal

to ✓ = 4Ne · u [27], Tajima’s estimator of ✓ is:

⇡̂ =
2

n(n� 1) · L

n�1X

i=1

nX

j=i+1

Dij ,

where L is the total sequence length.

4 Selective processes

4.1 Protein-coding genes

The coding region of a protein-coding gene, also known as Coding DNA Se-

quence (CDS) is the portion of DNA, or RNA, that encodes a protein. A start

and stop codons limit the coding region at the five-prime and three-prime end,

respectively. In mRNAs, the CDS is bounded by the five-prime untranslated

region (5’-UTR) and the three-prime untranslated region (3’-UTR), also in-

cluded in the exons. Mutations within coding regions are expected to be of

distinct types: synonymous mutations lead to no change of amino-acid at the

protein level due to the redundancy of the genetic code, as opposed to non-

synonymous mutations. Non-synonymous mutations can further be classified
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as conservative and non-conservative (= radical), whether they replace an

amino-acid by a biochemically similar one or not.

4.2 Fitness effect

The resulting change of fitness at the organism level characterizes the type

of mutations: neutral mutations have no impact on the fitness, while harm-

ful or deleterious mutations induce a lower fitness. Conversely, advantageous

mutations increase the fitness of the organism compared to the non-mutated

genotype. There is, however, a wide range of selective effects, which extends

the categorization of mutations from strongly deleterious, through weakly

deleterious, neutral to mildly and highly adaptive mutations. The relative fre-

quencies of these types of mutations represent the distribution of fitness effects

[28, 29].

The selection coefficient (s) is a measure of differences in fitness, which

determines the changes in genotype frequencies that occur due to selection.

It is commonly expressed as a relative fitness. If one considers a single locus

with two alleles A and a, a standard parametrization is to attribute a fitness

of 1 to the homozygote AA and relative fitness of 1 + s for the homozygote

aa. The heterozygote Aa is attributed a fitness of 1 + h · s, where h is the

so-called coefficient of dominance. The s parameter varies between �1 and

+infinity (but see Note 2), wherein values comprised among �1 and 0 are

indicative of negative selection, while positive values correspond to positive

selection [13, 30].

4.3 Types of selection

Positive selection acts on alleles that increase fitness, raising their frequency

in the population over time, while negative selection (= purifying selection)
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decrease the frequency of alleles that impair fitness. Both positive and neg-

ative selection decrease genetic diversity. Conversely, balancing selection acts

by maintaining multiple alleles in the gene pool of a population at frequencies

higher than expected by drift alone. Three mechanisms are generally acknowl-

edged: heterozygous advantage, where heterozygotes have a higher fitness than

homozygotes and maintain genetic polymorphism; frequency-dependent selec-

tion, where the fitness of the genotype is inversely proportional to its frequency

in the population; and environment-dependent fitness of genotypes [30, 31].

Under positive selection, a new beneficial mutation will rise in frequency

in a population. As the new positively-selected allele increases its frequency,

nearby linked alleles on the chromosome will “hitchhike” along with it, also

growing in frequency, thus producing a selective sweep of genetic diversity.

Hard sweeps occur when a new mutation is positively selected and is therefore

exclusively associated with the genetic background where it arose. Conversely,

soft sweeps occur when a mutation is already segregating in the population at

the onset of selection. This mutation may exist in several genetic backgrounds

and therefore does not prompt a complete loss of genetic variation after the

selective sweep [32].

4.4 Inference of selection

The strength and direction of selection acting on protein-coding regions may

be assessed by contrasting the rate of non-synonymous (potentially under

selection, dN) to synonymous (assumed to be neutral, dS) substitutions be-

tween species. In a population of sequences evolving neutrally, all substitu-

tions are neutral and the two rates are equal, leading to a dN/dS ratio equal

to one on average. Assuming non-synonymous mutations are either neutral

or deleterious while synonymous mutations are always neutral, the rate of
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non-synonymous substitutions will be lower than the rate of synonymous sub-

stitutions, and the dN/dS ratio will be lower than one. Conversely, if non-

synonymous mutations are positively selected, their rate of fixation may ex-

ceed the rate of synonymous mutation, leading to a higher substitution rate

and a dN/dS ratio higher than one.

At the population level, the ratio of non-synonymous (pN) and synony-

mous (pS) polymorphism is indicative of the strength of purifying selection

acting on a protein. Because non-synonymous mutations are more likely to

have a negative effect and be counter-selected, they will be removed from

the population or segregate at low-frequency. We can estimate the synony-

mous and non-synonymous genetic diversity by computing the average pair-

wise heterozygosity ⇡ separately for non-synonymous and synonymous muta-

tions, noted ⇡N and ⇡S , respectively. The ⇡N/⇡S ratio is therefore generally

below one, the stronger the purifying selection, the closer the ratio is to zero.

Contrasting the dN/dS and pN/pS ratios allows to test the selection

regime acting on the sequences [33]. If mutations are all neutral, we expect the

ratios dN/dS and pN/pS to be equal. Positively selected mutations will tend

to quickly rise to fixation and will not be observed as polymorphism, leading

to an increased dN/dS ratio higher than pN/pS. Conversely, balancing selec-

tion will lead to an excess of polymorphism detectable as dN/dS < pN/pS

[34]. A simple measure of the proportion of amino-acid substitutions result-

ing from positive selection (↵) is given by 1 � (dS · pN/dN · pS) [35]. Using

the complete synonymous and non-synonymous site-frequency spectra, it is

further possible to estimate the distribution of fitness effects and account for

slightly deleterious and slightly advantageous mutations when estimating the

rate of adaptive substitutions (see Chapter 5) [36].
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5 Linkage and recombination

5.1 The coalescent with recombination

In sexually reproducing species, recombination refers to both the shuffling of

non-homologous chromosomes and the rearrangement of homologous chromo-

somes during meiosis. Such cross-over events cause each chromosome to have

two parent chromosomes in the previous generation, which are themselves the

products of recombination events in the previous generations. Therefore, any

chromosome in the current generation can be viewed as a mosaic of chromo-

somes that existed in the past (Fig. 3) [37]. The collection of coalescence and

recombination events that describes the history of sampled chromosomes until

the most recent common ancestor of each non-recombining block is reached

(Fig. 3) is called the ancestral recombination graph (ARG) [40]. Compared to

a tree-like genealogy of a sample without recombination, whose complexity

depends only on the sample size, the complexity of the ARG grows with the

sample size and the number of recombination events in the ancestry of the

sample.

Backward-in-time, the most recent common ancestor (MRCA) denotes the

first individual where the entire sample (population) coalesces for a particular

non-recombining block. The TMRCA notes the timing of such event. DNA

sequences provide no information beyond the MRCA in a sample of genomes

since all individuals will share any mutation that happens further back in time

[39]. In the presence of recombination, different parts of the genome will have

different MRCAs. In this case, all ancestral material is eventually found as a

contiguous sequence in the grand most recent common ancestor (GMRCA) of

the sample (Fig. 3). If the GMRCA is not an MRCA for any nucleotide, this

individual does not have any significance for DNA sequences [40].
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In the ARG, nucleotide segments that are found both in past chromo-

somes and in contemporary samples are termed ancestral genetic material

(see Fig. 2). Conversely, non-ancestral genetic material refers to segments

that are found in past chromosomes but not in contemporary samples. Fur-

thermore, non-ancestral genetic material flanked on both sides by ancestral

genetic material is referred to as trapped genetic material. In this setting, re-

combination events that happen in trapped genetic material can affect linkage

disequilibrium between present-day nucleotides (Fig. 2). Thus the existence of

trapped genetic material introduces long-range correlations between genealo-

gies rendering the coalescent with recombination a non-Markovian process

along chromosomes [41]. The Sequentially Markov coalescent (SMC) is an

approximation to the coalescent with recombination whereby recombination

events are assumed to happen only within ancestral material. This approxima-

tion allows the use of efficient algorithms in both simulation and data analysis

[42, 43].

5.2 Impact of linkage on selection

An excess of linkage between loci compared to a random association in termed

linkage disequilibrium (LD). LD arises from genetic drift, population admix-

ture, and selection, but is removed by recombination. It is, therefore, higher

between close loci and decays with increasing physical distance [44].

Linked selection refer to the reduction of diversity at neutral sites that

happens as a result of their physical linkage to variants under selection. In

the absence of recombination, all variants segregating in a chromosome would

undergo the same shift in frequency as the selected variant. However, recom-

bination creates new allelic combinations and reduces this correlation as the

physical distance from the selected locus increases. In some cases, we can
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model the local reduction in diversity as a result of linked selection as a local

reduction in the effective population size [45]. Background selection refers to a

form of linked selection where the reduction of diversity at neutral loci results

from linkage to a locus under purifying selection [46], and genetic hitchhiking

is commonly used to depict linked selection due to linkage to a locus under

positive directional selection [32]. Linkage of two or more loci can also impair

the efficacy of selection. In the absence of recombination between selected loci,

only the unlikely event of recurrent mutations can generate the optimal hap-

lotypic combination [47], a phenomenon termed Hill-Robertson Interference

(HRI).
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6 Notes

6.1 Note 1

The use of the term substitution differs in population genetics and molecular

biology. In the latter case, it describes a particular type of mutation where

a single nucleotide replaces a distinct one (as opposed to insertions/deletions

for instance).

6.2 Note 2

In some instances, s is substituted by �s, so that the relative fitnesses become

!AA = 1, !Aa = 1� h · s and !aa = 1� s.
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Dotted lines represent the genealogy of a non-recombining chromosomal segment ex-
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ABSTRACT Biochemical reactions within individual cells result from the interactions of molecules, typically in small numbers.
Consequently, the inherent stochasticity of binding and diffusion processes generates noise along the cascade that leads to the
synthesis of a protein from its encoding gene. As a result, isogenic cell populations display phenotypic variability even in homogeneous
environments. The extent and consequences of this stochastic gene expression have only recently been assessed on a genome-wide
scale, owing, in particular, to the advent of single-cell transcriptomics. However, the evolutionary forces shaping this stochasticity have
yet to be unraveled. Here, we take advantage of two recently published data sets for the single-cell transcriptome of the domestic
mouse Mus musculus to characterize the effect of natural selection on gene-specific transcriptional stochasticity. We show that noise
levels in the mRNA distributions (also known as transcriptional noise) significantly correlate with three-dimensional nuclear domain
organization, evolutionary constraints on the encoded protein, and gene age. However, the position of the encoded protein in a
biological pathway is the main factor that explains observed levels of transcriptional noise, in agreement with models of noise
propagation within gene networks. Because transcriptional noise is under widespread selection, we argue that it constitutes an
important component of the phenotype and that variance of expression is a potential target of adaptation. Stochastic gene expression
should therefore be considered together with the mean expression level in functional and evolutionary studies of gene expression.

KEYWORDS evolution of gene expression; systems biology; expression noise; biological networks; Mus musculus

ISOGENIC cell populations display phenotypic variability even
in homogeneous environments (Spudich and Koshland 1976).

This observation challenged the clockwork view of the intracel-
lular molecular machinery and led to the recognition of the sto-
chastic nature of gene expression. Since biochemical reactions
result from the interactions of individualmolecules in small num-
bers (Gillespie 1977), the inherent stochasticity of binding and
diffusion processes generates noise along the biochemical cas-
cade leading to the synthesis of a protein from its encoding gene
(Figure 1). The study of stochastic gene expression (SGE) classi-
cally recognizes two sources of expression noise. Following the
definition introduced by Elowitz et al. (2002), extrinsic noise

results from variation in the concentration, state, and location
of shared key molecules involved in the reaction cascade from
transcription initiation to protein folding. This is because mole-
cules that are shared among genes, such as ribosomes and RNA
polymerases, are typically present in low copy numbers relative
to the number of genes that are actively transcribed (Shahrezaei
and Swain 2008). Extrinsic factors also include physical proper-
ties of the cell such as size and growth rate, which are likely to
impact the diffusion process of all molecular players. Extrinsic
factors therefore affect every gene in a cell equally. Conversely,
intrinsic factors generate noise in a gene-specific manner. They
involve, for example, the strength of cis-regulatory elements
(Suter et al. 2011), as well as the stability of the mRNA mole-
cules that are transcribed (McAdams and Arkin 1997; Thattai
and Oudenaarden 2001). Every gene is affected by both
sources of stochasticity and the relative importance of each has
been discussed in the literature (Becskei et al. 2005; Raj and
Oudenaarden 2008). Shahrezaei and Swain (2008) proposed
a more general, systemic definition for any organization level,
where intrinsic stochasticity is “generated by the dynamics of
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the system from the random timing of individual reactions”
and extrinsic stochasticity is “generated by the system interact-
ing with other stochastic systems in the cell or its environment.”
This generic definition therefore includes Raser and O’Shea’s
suggestion to further distinguish extrinsic noise occurring
“within pathways” and “between pathways” (Raser and O’Shea
2005). Other organization levels of gene expression are also
likely to affect expression noise, such as chromatin structure
(Blake et al. 2003; Hebenstreit 2013) and three-dimensional
(3D) genome organization (Pombo and Dillon 2015).

Pioneeringwork by Fraser et al. (2004) has shown that SGE is
an evolvable trait that is subject to natural selection. First, genes
involved in core functions of the cell are expected to behavemore
deterministically (Barkai and Leibler 1999) because temporal
oscillations in the concentration of their encoded proteins are
likely to have a deleterious effect. Second, genes involved in
the immune response (Arkin et al. 1998; Norman et al. 2015)
and responses to environmental conditions can benefit from
being unpredictably expressed in the context of selection for
bet-hedging (Thattai and Oudenaarden 2004). As the relation-
ship between fitness and stochasticity depends on the function of
the underlying gene, selection onSGE is expected to actmostly at
the intrinsic level (Newman et al. 2006; Lehner 2008;Wang and
Zhang 2011). However, the molecular mechanisms by which
natural selection operates to regulate expression noise remain
to be elucidated.

Due to methodological limitations, seminal studies on SGE
(both at the mRNA and protein levels) have focused on only a
handful of genes (Elowitz et al.2002;Ozbudak et al.2002;Chubb
et al.2006). The canonical approach consists of selecting genes of
interest and recording the change of their noise levels in a pop-
ulation of clonal cells as a function of either: (1) the concentra-
tion of the molecule that controls the affinity of the transcription
factor (TF) to the promoter region of the gene (Blake et al. 2003;
Bar-Even et al. 2006) or (2) mutations artificially imposed in
regulatory sequences (Ozbudak et al. 2002). In parallel with
theoretical work (Kepler and Elston 2001; Batada and Hurst
2007; Kaufmann and van Oudenaarden 2007; Sánchez and
Kondev 2008), these pioneering studies have provided the basis
of our current understanding of the proximate molecular mech-
anisms behind SGE, namely complex regulation by TFs, architec-
ture of the upstream region (including the presence of the TATA
box), gene orientation (Wang et al. 2011), translation efficiency,
mRNA/protein stability (Eldar andElowitz 2010), andproperties
of the protein–protein interaction (PPI) network (Li et al. 2010).
However, measurements at the genome scale coupled with rig-
orous statistical analyses are needed to go beyond gene idiosyn-
crasies and particular histories, and test hypotheses about the
evolutionary forces shaping SGE (Sauer et al. 2007).

The recent advent of single-cell RNA sequencing makes it
possible to sequence the transcriptomeofeach individual cell ina
collection of clones, and to observe the variation of gene-specific
mRNA quantities across cells. This provides a genome-wide
assessment of transcriptional noise. While not accounting for
putativenoise resulting fromtheprocessof translationofmRNAs
into proteins, transcriptional noise accounts for noise generated

byboththesynthesisanddegradationofmRNAmolecules(Figure
1). However, previous studies have shown that transcription is a
limiting step in gene expression and that transcriptional noise is
therefore a goodproxy for expressionnoise (Newman et al.2006;
Taniguchi et al. 2011). Here, we used publicly available single-
cell transcriptomics data sets to quantify gene-specific transcrip-
tional noise and relate it to other genomic factors to uncover the
molecular basis of selection on SGE.

Materials and Methods

Single-cell gene expression data set

We used the data set generated by Sasagawa et al. (2013)
retrieved from the Gene Expression Omnibus repository (ac-
cession number GSE42268). We analyzed expression data
corresponding to embryonic stem cells (ESC) in G1 phase,
for which more individual cells were sequenced. A total of
17,063 genes had non-zero expression in at least one of the
20 single cells. Similar to Shalek et al. (2014), a filtering
procedure was performed where only genes whose expres-
sion level satisfied log[fragments per kilobase of transcripts
per million mapped fragments (FPKM) + 1] .1.5 in at least
one single cell were kept for further analyses. This filtering
step resulted in a total of 13,660 appreciably expressed genes
for which transcriptional noise was evaluated.

Measure of transcriptional noise

The expressionmean (m) and variance (s2) of each gene over
all single cells were computed. Wemeasured SGE as the ratio
F* ¼ s2= ds2ðmÞ; where ds2ðmÞ is the expected variance given
the mean expression. To compute ds2ðmÞ; we performed sev-
eral polynomial regressions with logðs2Þ as a function of
logðmÞ; with degrees between 1 and 5. We then tested
the resulting F* measures for residual correlation with
mean expression using Kendall’s rank correlation test.
We find that a degree 3 polynomial regression was suffi-
cient to remove any residual correlation with F* (Kendall’s
t= 0.0037, P-value = 0.5217). F* can be seen as a general
expression for the Fano factor and noise measure: when
using a polynome of degree 1, the expression of F*
becomes F* ¼ s2=exp

!
aþ b:logðmÞ

"
¼ s2

#
expðaÞ:mb; and is

therefore equivalent to the Fano factor when a= 0 and b= 1,
and equivalent to noise when a = 0 and b = 2.

Genome architecture

The mouse proteome from Ensembl (genome version: mm9)
was used to get coordinates of all genes. The Hi-C data set for
ESCs from Dixon et al. (2012) was used to get 3D domain
information. Two genes were considered in proximity in one
dimension (1D) if they are on the same chromosome and no
protein-coding gene was found between them. The primary
distance (in number of nucleotides) between their mid-
point coordinates was also recorded as 1D a distance mea-
sure between the genes. Two genes were considered in
proximity in 3D if the normalized contact number between
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the twowindows that the genes belonged to was non-null. Two
genes belonging to the same window were considered to be in
proximity. We further computed the relative difference of SGE
between two genes by computing the ratio ðF*2 2 F*1Þ

#
ðF*2 þ F*1Þ:

For each chromosome, we independently tested whether there
was a correlation between the primary distance and the relative
difference in SGE with a Mantel test, as implemented in the
ade4 package (Dray and Dufour 2007). To test whether genes
in proximity (1D and 3D) hadmore similar transcriptional noise
than distant genes, we contrasted the relative differences in
transcription noise between pairs of genes in proximity and
pairs of distant genes. As we test all pairs of genes, we per-
formed a randomization procedure to assess the significance
of the observed differences by permuting the rows and columns
in the proximity matrices 10,000 times. Linear models account-
ing for “spatial” interactions with genes were fitted using the
generalized least squares (GLS) procedure, as implemented in
the nlme package for R. A correlation matrix between all tested
genes was defined as G ¼ fgi;jg; where gi;j is the correlation
between genes i and j.We defined gi;j ¼ 12 expð2ldi;jÞ;where
di; j takes 1 if genes i and j are in proximity, and 0 otherwise
(binary model). Alternatively, di; j can be defined as the actual
number of contacts between the two 20-kb regions [as defined
by Dixon et al. (2012)] to which the genes belong (proportional
model). Parameter l was estimated jointly with other model
parameters, it measures the strength of the genome spatial
correlation. Models were compared using Akaike’s informa-
tion criterion (AIC). We find that the proportional correlation
model fitted the data better and therefore selected it for fur-
ther analyses.

TFs and histone marks

TFmapping data from the Ensembl regulatory build (Zerbino
et al. 2015) were obtained via the biomaRt package for R. We
used the Grch37 build as it contained data for stem cell epi-
genomes. Genes were considered to be associated with a
given TF when at least one binding evidence was present in
the 3-kb upstream flanking region. TFs associated with more
than five genes for which transcriptional noise could be com-
puted were not considered further. A similar mapping was
performed for histone marks by counting the evidence of
histone modifications in the 3-kb upstream and downstream
regions of each gene. A logistic principal component analysis
(PCA) was conducted on the resulting binary contingency
tables using the logisticPCA package for R (Landgraf and
Lee 2015), for TF and histone marks separately. Principal
components (PCs) were used to define synthetic variables
for further analyses.

Biological pathways, PPIs, and network topology

Wedefinedgenes either in the top10% least noisy or in the top
10% most noisy as candidate sets, and used the Reactome PA
package (Yu and He 2016) to search the mouse Reactome
database for overrepresented pathways with a 1% false dis-
covery rate (FDR).

Centrality measures were computed using a combination
of the igraph (Csardi and Nepusz 2006) and graphite (Sales
et al. 2012) packages for R. As the calculation of assortativity
does not handle missing data (that is, nodes of the pathway
for which no value could be computed), we computed assor-
tativity on the subnetwork with nodes for which data were
available. Reactome centrality measures could be computed
for a total of 4454 genes with expression data.

PPIs were retrieved from the iRefIndex database (Razick
et al. 2008) using the iRefR package forR (Mora andDonaldson
2011). Interactions were converted to a graph using the ded-
icated R functions in the package, and the same methods
were used to compute centrality measures as for the pathway
analysis. Because the PPI-based graph was not oriented, au-
thority scores were not computed for this data (as this gave
identical results to hub scores). Furthermore, as most genes
are part of a single graph structure in the case of PPIs, close-
ness values were not further analyzed as they were virtually
identical for all genes.

Gene ontology enrichment

Of the 13,660 genes, 8325 were associated with Gene Ontology
(GO)terms.Wetestedgenes forGOtermenrichmentatbothends
of the F* spectrum using the same threshold percentile of 10%
low/high-noise genes as we did for the Reactome analysis. We
carried out GO enrichment analyses using two different algo-
rithms implemented in the /topGO/ R package.: “Parent-child”
(Grossmann et al. 2007) and “Weight01,” a mixture of two algo-
rithms developed by Alexa et al. (2006). We kept only the terms
that appeared simultaneously onbothParent-child andWeight01
at under a 1% significance level, controlling for multiple testing
using the FDR method (Benjamini and Hochberg 1995).

Sequence divergence

Ensembl’s Biomart interface was used to retrieve the proportion
of nonsynonymous (Ka) and synonymous (Ks) divergence esti-
mates for eachmouse gene relative to the human ortholog. This
information was available for 13,124 genes.

Gene age

The relative taxonomic ages of the mouse genes have been
computed and are available in the form of 20 phylostrata
(Neme and Tautz 2013). Each phylostratum corresponds to a
node in thephylogenetic tree of life. Phylostratum1corresponds
to “All cellularorganisms”whereasphylostratum20corresponds
to “Mus musculus,” with other levels in between. We used this
published information to assign each of our genes to a specific
phylostratum and used this as a relative measure of gene age:
Age = 21 2 phylostratum, so that an age of 1 corresponds to
genes specific to M. musculus and genes with an age of 20 are
found in all cellular organisms.

Linear modeling

We simultaneously assessed the effect of different factors on
transcriptional noise byfitting linearmodels to the gene-specific
F* estimates. To avoid colinearity issues of intrinsically
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correlated explanatory variables, we conducted a data reduction
procedure using multivariate analysis. We used variants of PCA
onexplanatory variables in three groups: network centralitymea-
sures, Ka/Ks and gene age with standard PCA, and TF-binding
evidence and histone methylation patterns using logistic PCA, a
generalization of PCA for binary variables (Landgraf and Lee
2015). In each case, we used the most representative compo-
nents (totaling $75% of the total deviance) as synthetic vari-
ables. PCA analysis was conducted using the ade4 package for R
(Dray and Dufour 2007) and logistic PCA was performed using
the logisticPCA package (Landgraf and Lee 2015).

We built a linear model with F* as a response variable and
13 synthetic variables as explanatory variables. As the synthetic
variables are PCs, they are orthogonal by construction. The fitted
model displayed a significant departure to normality and was
further transformed using the Box-Cox procedure [“boxcox”
function from the MASS package for R (Venables and Ripley
2002)]. Residues of the selectedmodel hadnormal, independent
residue distributions (Shapiro–Wilk test of normality, P-value =
0.121; Ljung–Box test of independence, P-value = 0.2061) but
still displayed significant heteroscedasticity (Harrison–McCabe
test, P-value = 0.003). To ensure that this departure from the
Gauss–Markov assumptions does not bias our inference, we used
the “robcov” function of the rms package to get robust estimates
of the effect significativity (Harrell 2015). The relative impor-
tance of each explanatory factor was assessed using the method
of Lindeman, Merenda, and Gold (Lindeman et al. 1979), as
implemented is the R package relaimpo. The significance of the
level of variance explained by each factor was computed using a
standard ANOVA procedure.

Additional data sets

The aforementioned analyseswere additionally conducted on
the bone marrow-derived dendritic cell (BMDC) data set of

Shalek et al. (2014). Following the filtering procedure estab-
lished by the authors in the original paper, genes that did not
satisfied the condition of being expressed by an amount such
that log(TPM + 1) . 1 in at least one of the 95 single cells
were further discarded, where TPM stands for transcripts per
million. This cut-off threshold resulted in 11,640 genes being
kept for investigation. The rest of the analyses were con-
ducted in the same way as for the ESC data set.

Jackknife procedure

A jackknife procedure was conducted to assess: (1) the ro-
bustness of our results to the choice of actual cells used to
estimate mean and variance in gene expression and (2) the
power of the pooled RNA sequencing analysis for which only
three replicates were available. This analysis was conducted
by sampling3,5, 10, and15of theoriginal 20 single cells of the
ESC data set (Sasagawa et al. 2013), 1000 times in each case.
The exact same analysis was conducted on each random
sample as for the complete data set, and model coefficients
and their associated P-values were recorded.

Data availability

All data sets and scripts to reproduce the results of this study
are available under the DOI 10.6084/m9.figshare.4587169.

Results

A new measure of noise to study genome-wide
patterns of SGE

We used the data set generated by Sasagawa et al. (2013),
which quantifies gene-specific amounts of mRNA as FPKM
values for each gene and each individual cell. Among these,
we selected all genes in a subset containing 20 ESCs in G1
phase to avoid recording variance that is due to different cell

Figure 1 A systemic view of gene expression. CDS, coding
sequence; TFs, transcription factors.
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types or cell-cycle phases. The Quartz-Seq sequencing pro-
tocol captures every poly-A RNA present in the cell at one
specific moment, allowing the assessment of transcriptional
noise. Following Shalek et al. (2014), we first filtered out
genes that were not appreciably expressed to reduce the con-
tribution of “technical” noise to the total noise. For each gene,
we further calculated the mean m in FPKM units and variance
s2 in FPKM2 units, as well as two previously published mea-
sures of stochasticity: the Fano factor, usually referred to as
the bursty parameter, defined as s2=m, and noise, defined as
the coefficient of variation squared (s2=m2). Both the vari-
ance and Fano factor are monotonically increasing functions
of the mean (Figure 2A). Noise is inversely related to mean
expression (Figure 2A), in agreement with previous observa-
tions at the protein level (Bar-Even et al. 2006; Taniguchi
et al. 2011). While this negative correlation was theoretically
predicted (Tao et al. 2007), it may confound the analyses of
transcriptional noise at the genome level, because mean gene
expression is under specific selective pressure (Pál et al.
2001). To disentangle these effects, we developed a new
quantitative measure of noise, independent of the mean ex-
pression level of each gene. To achieve this, we performed
polynomial regressions in the log-space plot of variance vs.
mean. We defined F* as s2

obs=s
2
pred (see Materials and Meth-

ods), that is, the ratio of the observed variance over the var-
iance component predicted by the mean expression level. We
selected the simplest model for which no correlation between
F* and mean expression was observed, and found that a de-
gree 3 polynomial model was sufficient to remove further
correlation (Kendall’s t=20.0037, P-value= 0.5217, Figure
2A). Genes with F*, 1 have a variance lower than expected
according to their mean expression, whereas genes with F*.
1 behave the opposite way (Figure 2B). This approach fulfills
the same goal as the running median approach of Newman
et al. (2006), while it includes the effect of mean expression
directly into themeasure of stochasticity instead of correcting
a posteriori a dependent measure (in that case, the Fano
factor). We therefore use F* as a measure of SGE throughout
this study.

SGE correlates with the 3D structure of the genome

We first sought to investigate whether genome organiza-
tion significantly impacts the patterns of SGE. We assessed
whether genes in proximity along chromosomes displaymore
similar amounts of transcriptional noise than distant genes.
We tested this hypothesis by computing the primary distance
on the genomebetween eachpair of genes, that is, the number
of base pairs separating them on the chromosome, as well as
the relative difference in their transcriptional noise (see Ma-
terials and Methods). We found no significant association be-
tween the two distances (Mantel tests, each chromosome
tested independently). However, contiguous genes had sig-
nificantly more similar transcriptional noise that noncontig-
uous genes (permutation test, P-value , 1 3 10204, Figure
S1). Using Hi-C data frommouse embryonic cells (Dixon et al.
2012), we report that genes in contact in three dimensions

have significantly more similar transcriptional noise than
genes not in contact (permutation test, P-value , 1 3 10203,
Figure S1). Most contiguous genes in one dimension also ap-
pear to be close in three dimensions, and the effect of 3D
contact is stronger than that of 1D contact. These results
therefore suggest that the 3D structure of the genome has a
stronger impact on SGE than the position of the genes along
the chromosomes. We further note that while highly signifi-
cant, the size of this effect is small, with a mean difference in
relative expression of 21.10% (Figure S1).

TF binding and histone methylation impact SGE

The binding of TFs to promoters constitutes one notable
source of transcriptional noise (Figure 1) (Blake et al.
2003; Newman et al. 2006). In eukaryotes, the accessibility
of promoters is determined by the chromatin state, which is
itself controlled by histone methylation. We assessed the ex-
tent to which transcriptional noise is linked to particular TFs
and histonemarks by using data from the Ensembl regulatory
build (Zerbino et al. 2015), which summarizes experimental
evidence of TF binding and methylation sites along the ge-
nome. First, we contrasted the F* values of genes with bind-
ing evidence for each annotated TF independently. Among
13 TFs represented by at least five genes in our data set, we
found that four of them significantly influence F* after adjust-
ing for a global FDR of 5%: the transcription repressor CTFC
(adjusted P-value = 0.0321), the TF CP2-like 1 (Tcfcp2l1 ,
adjusted P-value = 0.0087), the X-linked Zinc Finger Protein
(Zfx, adjusted P-value = 0.0284), and the Myc TF (MYC,
adjusted P-value = 0.0104). Interestingly, association with
each of these four TFs led to an increase in transcriptional
noise. We also report a weak but significant positive correla-
tion between the number of TFs associated with each gene
and the amount of transcriptional noise (Kendall’s t =
0.0238, P-value = 0.0007). This observation is consistent
with the idea that noise generated by each TF is cumulative
(Sharon et al. 2014). We then tested if particular histone
marks are associated with transcriptional noise. Among five
histone marks represented in our data set, three were found
to be highly significantly associated to a higher transcrip-
tional noise: H3K4me3 (adjusted P-value = 2.0 3 102146),
H3K4me2 (adjusted P-value = 5.53 102121), and H3K27me3
(adjusted P-value = 5.3 3 10234). Methylation on the fourth
lysine of histone H3 is associated with gene activation in
humans, while trimethylation on lysine 27 is usually associ-
ated with gene repression (Barski et al. 2007). These results
suggest that both gene activation and silencing contribute
to the stochasticity of gene expression, in agreement with
the view that bursty transcription leads to increased noise
(Blake et al. 2003; Newman et al. 2006; Batada and Hurst
2007).

Low noise genes are enriched for housekeeping
functions

We investigated the function of genes at both ends of the F*
spectrum. We defined as candidate gene sets the top 10%
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Figure 2 Transcriptional noise and mean gene
expression. (A) Measures of noise plotted against
the mean gene expression for each gene, in log-
arithmic scales: Variance, Fano factor (variance/
mean), noise (square of the coefficient of varia-
tion, variance/mean2), and F* (this study). Lines
represent quantile regression fits (median, first,
and third quartiles). Point and bars represent me-
dian, first, and third quartiles for each category of
mean expression obtained by discretization of the
x-axis. (B) Distribution of F* over all genes in this
study. Vertical line corresponds to F* = 1. SGE,
stochastic gene expression.
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least noisy or the top 10% most noisy genes in our data set,
and tested for enrichment of GO terms and Reactome path-
ways (see Materials and Methods). It is expected that genes
encoding proteins participating in housekeeping pathways
are less noisy because fluctuations in the concentrations of
their products might have stronger deleterious effects
(Pedraza and van Oudenaarden 2005). On the other hand,
SGE could be selectively advantageous for genes involved in
immune and stress responses, as part of a bet-hedging strat-
egy (e.g., Arkin et al. 1998; Shalek et al. 2013). A GO terms
enrichment test revealed significant categories enriched in
the low-noise gene set only: molecular functions “nucleic
acid binding” and “structural constituent of ribosome;” the
biological processes “nucleosome assembly,” “innate immune
response in mucosa,” and “translation;” and the cellular
component “cytosolic large ribosomal subunit” (Table 1).
All these terms but one relate to gene expression, in agree-
ment with previously reported findings in yeast (Newman
et al. 2006). We further find a total of 41 Reactome pathways
significantly overrepresented in the low-noise gene set (FDR
set to 1%). Interestingly, the most significant pathways be-
long to modules related to translation (RNA processing, ini-
tiation of translation, and ribosomal assembly), as well as
several modules relating to gene expression, including chro-
matin regulation and mRNA splicing (Figure 3). Only one
pathway was found to be enriched in the high-noise set:
TP53 regulation of transcription of cell cycle genes (P-value =
0.0079). This finding is interesting because TP53 is a central
regulator of the stress response in the cell (Hussain and
Harris 2006). These results therefore corroborate previous
findings that genes involved in the stress response might be
evolving under selection for high noise as part of a bet-hedging
strategy (Shalek et al. 2013; Viney and Reece 2013). The small
amount of significantly enriched Reactome pathways by high-
noise genes can potentially be explained by the nature of the
data set: as the original experiment was based on unstimulated
cells, genes that directly benefit from high SGE might not be
expressed under these experimental conditions.

Highly connected proteins are synthesized by
low-noise genes

The structure of the interaction network of proteins inside the
cell can greatly impact the evolutionary dynamics of genes
(Jeong et al. 2000; Barabási and Oltvai 2004). Furthermore,
the contribution of each constitutive node within a given
network varies. This asymmetry is largely reflected in the

power-law-like degree distribution that is observed in virtu-
ally all biological networks (Barabási and Albert 1999), with
a few genes displaying many connections and a majority of
genes displaying only a few. The individual characteristics of
each node in a network can be characterized by various mea-
sures of centrality (Newman 2003). Following previous stud-
ies on protein evolutionary rate (Fraser et al. 2002; Hahn
et al. 2004; Jovelin and Phillips 2009) and PPI networks (Li
et al. 2010), we asked whether, at the gene level, there is a
link between the centrality of a protein and the amount of
transcriptional noise. We study six centrality metrics mea-
sured on two types of network data: (1) pathway annotations
from the Reactome database (Fabregat et al. 2016) and (2)
PPI data from the iRefIndex database. PPI data are typically
more complete (5553 genes with gene expression data) but
do not include information on functional interactions. The
Reactome database is based on published functional evi-
dence, but encompasses less genes (4454 genes for which
expression data are available). In addition, graphs represent-
ing PPI networks are not oriented while graphs representing
Pathway annotations are, implying that distinct statistics can
be computed on both types of networks.

We first estimated the pleiotropy index of each gene by
counting how many different pathways the corresponding
proteins are involved in. We then computed centrality mea-
sures as averages over all pathways in which each gene is
involved. These measures include: (1) node degree, which
corresponds to the number of other nodes a given node is
directly connected with; (2) hub score, which estimates the
extent to which a node links to other central nodes; (3)
authority score, which estimates the importance of a node
by assessing how many hubs link to it; (4) transitivity, or
clustering coefficient, defined as the proportion of neighbors
that also connect to eachother; (5) closeness, ameasureof the
topological distance between a node and every other reach-
able node (the fewer edge hops it takes for a protein to reach
everyother protein in anetwork, thehigher its closeness); and
(6) betweenness, a measure of the frequency with which a
protein belongs to the shortest path between every pair of
nodes.

We find that node degree, hub score, authority score; and
transitivity are all significantly negatively correlated with
transcriptional noise on pathway-based networks: the more
central a protein is, the less transcriptional noise it displays
(Figure 4, A–D and Table 2). We also observed that pleiot-
ropy is negatively correlated with F* (Kendall’s t=20.0514,

Table 1 GO terms significantly enriched in the 10% genes with lowest transcriptional noise

Ontology GO ID GO term FDR Fisher “parent2child” FDR Fisher “weight01”

MF GO:0003735 Structural constituent of ribosome 2.28 3 10207 6.81 3 10220

MF GO:0003676 Nucleic acid binding 8.16 3 10206 6.06 3 10204

BP GO:0006412 Translation 4.08 3 10208 7.15 3 10212

BP GO:0002227 Innate immune response in mucosa 6.49 3 10204 6.22 3 10203

CC GO:0022625 Cytosolic large ribosomal subunit 4.48 3 10203 1.40 3 10212

GO, Gene Ontology; ID, identifier; FDR, False Discovery Rate; MF, Molecular Function; BP, Biological Process; CC, Cellular Compartment.
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P-value = 8.31 3 10207, Figure 4E and Table 2), suggesting
that a protein that potentially performs multiple functions at
the same time needs to be less noisy. As pleiotropic genes are
themselves more central (e.g., correlation of pleiotropy and
node degree: Kendall’s t = 0.2215, P-value , 2.2 3 10216)
and evolve more slowly (correlation of pleiotropy and Ka/Ks
ratio: Kendall’s t = 20.1060, P-value , 2.2 3 10216), we
controlled for these variables and found consistent results
(partial correlation of pleiotropy and F*, accounting for cen-
trality measures and Ka/Ks: Kendall’s t=20.0254, P-value =
7.45 3 10206). Closeness and betweenness, on the other
hand, show a negative correlation with F*, yet this was much
less significant (Kendall’s t=20.0254, P-value = 0.0109 for
closeness and t = 20.0175, P-value = 0.0865 for between-
ness, see Figure 4, F and G and Table 2). Inmodular networks
(Hartwell et al. 1999), nodes that connect different modules
are extremely important to the cell (Guimera and Amaral
2005) and show high betweenness scores. In yeast, high be-
tweenness proteins tend to be older and more essential (Joy
et al. 2005), an observation also supported by our data set
(betweenness vs. gene age, Kendall’s t = 0.0619, P-value =
1.09 3 10207; betweenness vs. Ka/Ks, Kendall’s t = 20.0857,
P-value = 3.83 3 10216). However, it has been argued that in
PPI networks, high betweenness proteins are less essential due
to the lack of directed information flow, compared to, for in-
stance, regulatory networks (Yu et al. 2007), a hypothesis that
could explain the observed lack of correlation.

Byapplying similarmeasureson thePPInetwork,we report
significant negative correlations between F* and PPI central-
ity measures (Figure 4, H–K and Table 2). Because the PPI
network is not directed, authority scores and hub scores can-
not be distinguished. The results obtained with the mouse

PPI interaction network are qualitatively similar to the ones
obtained by Li et al. (2010) on Yeast expression data (Li et al.
2010). In addition, we further report that genes involved in
complex interactions (that is, genes that interact with more
than one other protein simultaneously) have reduced noise in
gene expression (Wilcoxon rank test, P-value = 8.053 3
10205, Figure 4L), corroborating previous findings in Yeast
(Fraser et al. 2004). Conversely, genes involved in polymeric
interactions, that is, where multiple copies of the encoded
protein interact with each other, did not show significantly
different noise than other genes (Wilcoxon rank test,
P-value = 0.0821, Figure 4M).

It was previously shown that centrality measures nega-
tively correlatewith evolutionary rate (Hahn andKern 2004).
Our results suggest that central genes are selectively con-
strained for their transcriptional noise, and that centrality
therefore also influences the regulation of gene expression.
Interestingly, it has been reported that central genes tend to
be more duplicated (Vitkup et al. 2006). The authors pro-
posed that such duplication events would have been favored
as they would confer greater robustness to deleterious muta-
tions in proteins. Our results are compatible with another
nonexclusive, possible advantage: having more gene copies
could reduce transcriptional noise by averaging the number
of transcripts produced by each gene copy (Raser and O’Shea
2005).

Network structure impacts transcriptional noise of
constitutive genes

Whereas estimators of node centrality highlight gene-specific
properties inside a given network, measures at the whole-
network level enable the comparisonofnetworkswithdistinct

Figure 3 Enriched pathways in the low-noise gene set. Depicted pathways are the 15 most significant in the 10% of genes with lowest transcriptional
noise.
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properties. We computed the size, diameter, and global tran-
sitivity for each annotated network in our data set (1,364 net-
works, see SupplementaryMaterial, File S1), whichwe compared

with the average F*measure of all constitutive nodes. The size
of a network is defined as its total number of nodes, while
diameter is the length of the shortest path between the two

Figure 4 Factors driving stochastic gene expression. Correlation of F* and all tested network centrality measures (A-G: pathway networks, H-M: protein-protein
interaction networks), as well as protein conservation (Ka/Ks ratio) and gene age (N andO). Point and bars represent median, first, and third quartiles for each category of
mean expression obtained by discretization of the x-axis, together with the quantile regression lines estimated on the full data set. PPI, protein–protein interaction.
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most distant nodes. Transitivity is a measure of connectivity, de-
fined as the average of all nodes’ clustering coefficients. Interest-
ingly, while network size is positively correlated with average
degree and transitivity (Kendall’s t=0.5880,P-value, 2.2310216

andKendall’s t=0.1166, P-value=1.08310210, respectively),
diameter displays a positive correlation with average degree
(Kendall’s t = 0.2959, P-value , 2.2e216) but a negative
correlation with transitivity (Kendall’s t = 20.0840, P-value =
2.17310205). This is becausediameter increases logarithmically
with size, that is, the addition of new nodes to large networks
does not increase the diameter as much as addition to small
networks. This suggests that larger networks are relatively more
compact than smaller ones, and that their constitutive nodes are
therefore more connected. We find that average transcriptional
noise correlates negatively with network size (Kendall’s t =
20.0514, P-value = 0.0039), while being independent of the
diameter (Kendall’s t = 0.0061, P-value = 0.7547 see Table
3). These results are in line with the node-based analyses, and
show that themore connections anetworkhas, the less stochastic
the expression of the underlying genes is. This supports the view
of Raser and O’Shea (2005), that the gene-extrinsic, pathway-
intrinsic level is functionally pertinent and needs to be distin-
guished from the globally-extrinsic level.

We further asked whether genes with similar transcriptional
noise tend to synthesize proteins that connect to each other
(positive assortativity) in a given network or, on the contrary,
tend to avoid each other (negative assortativity).We considered
all Reactome pathways annotated to the mouse and estimated
their respective F* assortativity.We found themeanassortativity
to be significantly negative, with a value of20.1384 (one sam-
ple Wilcoxon rank test, P-value, 2.2e216), meaning that pro-
teins with different F* values tend to connect with each other
(Figure S3). Maslov and Sneppen (2002) reported a negative
assortativity between hubs in PPI networks, which they hypoth-
esized to be the result of selection for reduced vulnerability to

deleterious perturbations. However, in our data set, we find the
assortativity of hub scores to be significantly positive (average
of 0.1221, one sample Wilcoxon rank test, P-value = 1.212 3
10212, Figure S5), although with a large distribution of assor-
tativity values. As we showed that hub scores correlate nega-
tively with F* (Table 2), we asked whether the assortativity of
hub proteins can explain the assortativity of F*. We found a
significantly positive correlation between the two assortativity
measures (Kendall’s t = 0.2581, P-value , 2.2 3 10216).
However, the relationship between the measures is not linear
(Figure S5), suggesting a distinct relationship between hub
score and F* for negative and positive hub score assortativity.
Negative assortativity of hub proteins contributes to a negative
assortativity of SGE (Kendall’s t = 0.2730, P-value , 2.2 3
10216), while the effect vanishes for pathways with positive
hub score assortativity (Kendall’s t = 0.0940, P-value = 3.1353
10204). While assortativity of F* is closer to 0 for pathways
with positive assortativity of hub score, we note that it is still
significantly negative (average = 20.0818, one sample
Wilcoxon test with P-value , 2.2 3 10216). These results
suggest the existence of additional constraints that act on
the distribution of noisy proteins in a network.

Transcriptional noise is positively correlated with the
evolutionary rate of proteins

In the yeast Saccharomyces cerevisiae, evolutionary divergence
between orthologous coding sequences correlates negatively
withfitness effect on knockout strains of the corresponding genes
(Hirsh and Fraser 2001), demonstrating that protein functional
importance is reflected in the strength of purifying selection act-
ing on it. Fraser et al. (2004) studied transcription and translation
rates of yeast genes and classified genes in distinct noise cate-
gories according to their expression strategies. They reported that
essential genes display lower expression noise than the rest. Fol-
lowing these pioneering observations, we hypothesized that
genes under strong purifying selection at the protein sequence
level should also be highly constrained for their expression and
therefore display a lower transcriptional noise. To test this hy-
pothesis, we correlated F* with the ratio of Ka/Ks, as measured
by sequence comparison betweenmouse genes and their human
orthologs, after discarding geneswith evidence for positive selec-
tion (n = 5). In agreement with our prediction, we report a
significantly positive correlation between the Ka/Ks ratio and
F* (Figure 4N, Kendall’s t = 0.0557, P-value, 1.1433 10205),
that is, highly constrained genes (low Ka/Ks ratio) display less
transcriptional noise (lowF*) than fast-evolving ones. This result
demonstrates that genes encoding proteins under strong purify-
ing selection are also more constrained on their transcriptional
noise.

Older genes are less noisy

Evolutionofnewgeneswas long thought tooccur viaduplication
and modification of existing genetic material [“evolutionary tin-
kering,” (Jacob 1977)]. However, evidence for de novo gene
emergence is becoming more and more common (Tautz and
Domazet-Lošo 2011; Xie et al. 2012). De novo-created genes

Table 2 Correlation of transcriptional noise with gene centrality
measures and pleiotropy, as estimated from pathway annotations
and PPI networks

Data Measure
Correlation with

F* P-value

PathwaysDegree 20.0745 1.14 3 10213***
Hub score 20.0808 6.61 3 10216***
Authority score 20.0666 2.72 3 10211***
Clustering coefficient 20.0794 4.55 3 10215***
Closeness 20.0254 1.09 3 10202*
Betweenness 20.0175 8.65 3 10202.

Pleiotropy 20.0514 8.31 3 10207***
Size 20.0514 3.91 3 10203***
Diameter 0.0061 7.55 3 10201 (NS)
Global transitivity 20.1532 3.06 3 10217***

PPI Degree 20.0249 8.20 3 10203**
Hub score 20.0942 , 2.2 3 10216***
Transitivity 20.0338 6.24 3 10204***
Betweenness 20.0140 1.31 3 10201 (NS)

All correlations are computed using Kendall’s rank correlation test, with P-value
codes defined as *** , 0.001 , ** , 0.01 , * , 0.05 , . , 0.1. NS, non-
significant; PPI, protein–protein interaction.
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undergo several optimization steps, including their integration
into a regulatory network (Neme and Tautz 2013). We tested
whether the historical process of incorporation of new genes into
pathways impacts the evolution of transcriptional noise. We used
the phylostratigraphic approach of Neme and Tautz (2013),
which categorizes genes into 20 strata, to compute gene age
and tested for a correlation with F*. As older genes tend to be
more conserved (Wolf et al. 2009),more central [according to the
preferential attachment model of network growth (Jeong et al.
2000, 2001)], and more pleiotropic, we controlled for these
confounding factors (Kendall’s t = 20.0663, P-value = 1.58 3
10237 ; partial correlation controlling for Ka/Ks ratio, central-
ity measures and pleiotropy level, Figure 4O). These results sug-
gest that older genes are more deterministically expressed while
younger genes are noisier. While we cannot rule out that func-
tional constraints not fully accounted for by the Ka/Ks ratio could
at least partially explain the correlation of gene age and transcrip-
tional noise, we hypothesize that the observed correlation results
from ancient genes having acquired more complex regulation
schemes through time. Such schemes include, for instance, neg-
ative feedback loops, which have been shown to stabilize gene
expression and reduce expression noise (Becskei and Serrano
2000; Thattai and Oudenaarden 2001).

Position in the protein network is the main driver of
transcriptional noise

To jointly assess the effect of network topology, epigenomic
factors, Ka/Ks ratio, and gene age, we modeled the patterns
of transcriptional noise as a function of multiple predictive
factorswithin the linearmodel framework.This analysis could
be performed on a set of 2794 genes for which values were
available jointly for all variables. To avoid colinearity issues
because some of these variables are intrinsically correlated,
we performed data reduction procedures prior to modeling.
For continuous variables, including pathway and PPI network
variables, Ka/Ks ratio, and gene age, we conducted a PCA and

used as synthetic measures the first eight PCs, explaining
together . 80% of the total inertia (Figure S2A). The first
PC (PC1) of the PCA analysis is associated with pathway
centrality measures (degree, hub score, authority score, and
transitivity, Figure S2B). The second PC (PC2) corresponds
to PPI centrality measures (degree, hub score, and between-
ness), while the third component (PC3) relates to gene age
and Ka/Ks ratio. The fourth component (PC4) is associated
with PPI complex interactions and transitivity. PC5 and PC6
are essentially associated with betweenness and closeness
of the pathway network, PC7 with PPI polymeric interac-
tions, and PC8 with pathway pleiotropy. As TFs and histone
mark data are binary (presence/absence for each gene),
we performed a logistic PCA for both types of variable
(Landgraf and Lee 2015). For TFs, we selected the three first
components (hereby denoted as TFPC), which explained
78% of deviance (Figure S3A). The loads on the first compo-
nent (TFPC1) are all negative, meaning that TFPC1 captures
a global correlation trend and does not discriminate between
TFs. Tcfcp2l1 appears to be the TF with the highest correla-
tion to TFPC1. The second component TFPC2 is dominated
by TCFC (positive loading) and Oct4 (negative loading),
while the third component TFPC3 is dominated by Esrrb
(positive loading), MYC, nMyc, and E2F1 (negative loadings,
Figure S3B). For histone marks, the two first components
(hereby noted HistPC) explained 95% of variance and were
therefore retained (Figure S4A). HistPC1 is dominated by
mark H3K27me3 linked to gene repression (negative load-
ings), and HistPC2 by marks H3K4me1 and H3K4me3 linked
to gene activation (positive loadings, Figure S4A).

We fitted a linearmodel with F* as a response variable and
all 13 synthetic variables as explanatory variables. We find
that PC1 has a significant positive effect on F* (Table 3). As
the loadings of the centrality measures on PC1 are negative
(Figure S2C), this result is consistent with our finding of a
negative correlation of pathway-based centrality measures

Table 3 Linear models of transcriptional noise with genomic and epigenomic factors

OLS GLS

Coefficient SE P-value Coefficient SE P-value

(Intercept) 0.1612 0.0781 0.0392* 0.1665 0.0663 0.0121*
PC1 0.0390 0.0065 , 0.0001*** 0.0396 0.0065 , 0.0001***
PC2 20.0048 0.0069 0.4854 20.0048 0.0069 0.4838
PC3 20.0526 0.0091 , 0.0001*** 20.0518 0.0092 , 0.0001***
PC4 20.0102 0.0097 0.2905 20.0109 0.0100 0.2773
PC5 0.0117 0.0106 0.2713 0.0123 0.0106 0.2456
PC6 20.0152 0.0107 0.1536 20.0152 0.0109 0.1623
PC7 0.0210 0.0102 0.0384* 0.0211 0.0110 0.0561.

PC8 0.0100 0.0113 0.3778 0.0073 0.0114 0.5250
TFPC1 0.0028 0.0041 0.4912 0.0025 0.0034 0.4658
TFPC2 0.0025 0.0027 0.3664 0.0024 0.0026 0.3585
TFPC3 0.0032 0.0042 0.4513 0.0032 0.0037 0.3825
HistPC1 20.0031 0.001 0.0015** 20.0033 0.0010 0.0007***
HistPC2 20.0027 0.0016 0.0846. 20.0029 0.0015 0.0566.

All correlations are computed using Kendall’s rank correlation test, with P-value codes defined as *** , 0.001 , ** , 0.01 , * , 0.05 , . , 0.1. OLS, Ordinary Least
Squares; GLS, Generalized Least Squares; Pathway PC1–8, principal components on centrality measures, protein conservation, and gene age; TFPC1–3, principal components
of the logistic PCA on transcription factor binding evidence; HistPC1 and 2, principal components of the logistic PCA on histone modification marks.
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with F*. PC3 has a highly significant negative effect on F*,
which is consistent with a negative correlation with gene age
(positive loading on PC3) and a positive correlation with the
Ka/Ks ratio (negative loading on PC3, Figure S2D). The last
highly significant variable is the first PC of the logistic PCA on
histone methylation patterns, HistPC1, which has a negative
effect on F*. Because the loadings are essentially negative on
HistPC1, this suggests a positive effect of methylation, in
particular the repressive H3K27me3. Altogether, the linear
model with all variables explained 4.01% of the total vari-
ance (adjusted R2). This small value indicates either that
gene idiosyncrasies largely predominate over general effects,
or that our estimates of transcriptional noise have a large
measurement error, or both. To compare the individual ef-
fects of each explanatory variable, we conducted a relative
importance analysis. As a mean of comparison, we fitted a
similar model with mean expression as a response variable.
We find that pathway centrality measures (PC1 variable)
account for 38% of the explained variance, while protein
constraints and gene age (PC3) account for 32%. Chromatin
state (HistPC1) accounts for another 15% of the variance
(Figure 5). These results contrast with the model of mean
expression, where HistPC1 and HistPC2 account for 51 and
9% of the explained variance, respectively, and PC1 and PC3
20 and 10% only (Figure 5). This suggests that: (1) among all
factors tested, position in the protein network is the main
driver of the evolution of gene-specific stochastic expression,
followed by protein constraints and gene age, and (2) that
different selective pressures act on the mean and cell-to-cell
variability of gene expression.

We further included the effect of 3D organization of the
genome to assesswhether it could act as a confounding factor.
We developed a correlation model that allowed for genes in
contact to have correlated values of transcriptional noise. The
correlationmodel was fitted together with the previous linear
model in the GLS framework. This new model allows for one
additional parameter, l, which captures the strength of cor-
relation due to 3D organization of the genome (seeMaterials
and Methods). The estimate of l was found to be 0.0016,
which means that the spatial autocorrelation of transcrip-
tional noise is low on average. This estimate is significantly
higher than zero, and model comparison using AIC favors the
linear model with 3D correlation (AIC = 4880.858 vs. AIC =
4890.396 for a linear model without 3D correlation). Despite
the significant effect of 3D genome correlation, our results
were qualitatively and quantitatively very similar to the model
ignoring 3D correlation (Table 3).

Analysis of BMDCs supports the generality of the results

We assessed the reproducibility of our results by analyzing an
additional single-cell transcriptomics data set of 95 unstimu-
lated BMDCs (Shalek et al. 2014). After filtering (see Mate-
rials and Methods), the data set consisted of 11,640 genes.
Using the same normalization procedure as for the ESC data
set, we nonetheless report a weak but significant negative
correlation between F* andmean expression, evenwith a degree

5 polynomial regression (20.0459, P-value , 1.13e213). This
effect is due to cell RFKM values being extremely skewed in this
data set, due to the distribution per gene. To assess the impact of
the residual correlation with the mean, we computed a value of
F* (noted FR*) on a restricted data set where the variance was
between one-eighth and eight times themean (75%of all genes)
using a quantile regression on the median instead of a linear
regression. A second-degree polynomial quantile regression
proved to be sufficient to remove the effect of mean expression
(Kendall’s t=0.0114, P-value= 0.1125) on this restricted data
set. As all results were consistent when using the FR* and F*
measures, we only discuss here results obtained with F* and
refer to Supplementary Data 1 (available on FigShare under
the DOI 10.6084/m9.figshare.4587169) for detailed results
obtained with the FR* measure.

We report a highly significant positive correlation between
F* values measured on the 8792 genes with expression in
both data sets, suggesting that cell-to-cell variance in gene
expression is, to a large extent, conserved among the two cell
types (Kendall’s t = 0.1289, P-value , 2.2 3 10216, Figure
S6A). GO terms or Reactome pathway enrichment analyses
reveal less significant but consistent terms with the ESC anal-
ysis: the high-F* gene set did not show any significantly
enriched GO term or Reactome pathway (FDR set to 1%)
and the low-F* gene set revealed RNA binding as a signifi-
cantly enriched molecular function, as well as 21 enriched
pathways (Figure S7). In agreement with results from the
ESC analysis, many of the most significantly enriched path-
ways relate to gene expression, including translation and
splicing. Interestingly, the two most significant pathways
are “Vesicle-mediated transport” and “Membrane traffick-
ing,” two essential pathways for the functioning of dendritic
cells. Analyses of network centrality measures also generally
showed consistent results with the ESC data set, with more
central genes displaying reduced gene expression noise (Fig-
ure S6, B–N and Table S1). Quantitative differences con-
sisted of PPI betweenness, as well as pathway closeness
and betweenness being highly significantly negatively corre-
lated with F* while they were only weakly significant or non-
significant with the ESC data set. The only discrepancies that
we report between the two data sets relate to pathway-level
statistics. Pathway size appeared to be significantly positively
correlated with mean F*, while it was negatively correlated
on the ESC data set, yet with a comparatively higher P-value.
Similarly, pathway diameter was significantly positively cor-
related with mean F* in the BMDC data set, while it was not
significant with the ESC data. We currently have no hypoth-
esis to explain this particular discrepancy. While these results
support the generality of our observations, they also illustrate
that, in detail, the fine structure of translational noise may
vary in a cell type-specific manner.

We fitted linear models as for the ESC data set, with the
exception that no epigenomic and 3D genome data were
available for this cell type. Data reduction was performed
using PCA, with the eight first PCs explaining 81% of the total
deviance (Figure S8A). We report consistent results with the
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ESC analysis, with all major effects similar in direction and in-
tensity, highlighting the impact of network centrality measures
on expression noise (Table S2). However, with the BMDC data,
the PC2, which is associated with PPI centrality measures (Fig-
ure S8B), appears to have a significant negative impact on F*,
while it was not significantwith the ESC data set. As the loading
of the PPI centrality measures are positive on PC2, this is con-
sistentwith central genes having a lower transcriptional noise as
for the pathway network metrics (Figure S8C). Relative impor-
tance analysis revealed that network centrality measures con-
tributed most to the explained variance (48 and 21% for PC1
and PC2 respectively), while the contribution of protein con-
straints and gene age (PC3) was 24%.

Biological, not technical, noise is responsible for the
observed patterns

The noise in gene expression measured from single-cell tran-
scriptomics is a combination of biological and technical noise.
While the two sources of noise are a priori independent, gene-
specific technical noise has been observed in microarray exper-
iments (Pozhitkov et al. 2007), making a correlation of the two
types of noise plausible. If similar effects also affect RNA se-
quencing experiments, technical noise could be correlated to
gene function and therefore act as a covariate in our analyses.
To assesswhether this is the case, we used the data set of Shalek
et al. (2013), which contains both single-cell transcriptomics
and three replicates of 10,000 pooled-cell RNA sequencing. In
traditional RNA sequencing, which is typically performed on
pooled populations of several thousands of cells, biological noise
is averaged out so that the resulting measured noise between
replicates is essentially the result of technical noise. We com-
puted the mean and variance in expression of each gene across

the three populations of cells. By plotting the variance vs. the
mean in log-space, we were able to compute a technical F* (F*t )
value for each gene (see Materials and Methods). We fitted
linear models as for the single-cell data using F*t instead of F*.
We report that no variable had a significant effect on F*t (Table
S3). In addition, there was no enrichment of the lower 10th F*t
percentile for any particular pathway or GO term. The upper
90th percentile showed no GO term enrichment, but four path-
ways appeared to be significant: “Chromosome maintenance”
(adjusted P-value = 0.0043), “Polymerase switching on the
C-strand of the telomere” (adjusted P-value = 0.0062), “Poly-
merase switching” (adjusted P-value = 0.0062), and “Leading
strand synthesis” (adjusted P-value = 0.0062), which all relate
to DNA replication. While it is unclear why genes involved in
these pathways would display higher technical variance in RNA
sequencing, these results differ strikingly from our analyses of
single-cell RNA sequencing and therefore suggest that technical
variance does not act as a confounding factor in our analyses.

Becauseonly threereplicateswereavailable in thepooledRNA
sequencing data set, we asked whether the resulting estimate of
mean and variance in expression is accurate enough to allow
proper inference of noise and its correlation with other variables.
We conducted a jackknife procedure, where we sampled the
original cells from the ESC data set and reestimated F* for each
sample. We tested combinations of 3, 5, 10, and 15 cells, with
1000 samples in each case. In each sample,we computed F*with
the same procedure as for the complete data set, and fitted a
linear model with all 13 synthetic variables. For computational
efficiency, we did not include 3D correlation in this analysis. We
compute for each variable the number of samples where the
effect is significant at the 5% level and has the same sign as in
the model fitted on the full data set. We find that the model

Figure 5 Relative importance of explanatory factors on mean gene expression and F*. Significance codes refer to ANOVA test of variance: ***, 0.001
, ** , 0.01 , * , 0.05 , . , 0.1. PC, principal component; TF, transcription factor.
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coefficients are very robust to the number of cells used (Figure
S9A) and that three cells are enough to infer the effect of the PC1
andPC3variables, themost significant in our analyses. Twomain
conclusions can be drawn from this jackknife analysis: (1) that
the lack of significant effect of our explanatory variables on tech-
nical noise is not due to the low number of replicates used to
compute the mean and variance in expression, and (2) that our
conclusions are very robust to the actual cells used in the analysis,
ruling out drop-out and amplification biases as possible source of
errors (Kharchenko et al. 2014).

Discussion

Through this work, we provide the first genome-wide evolu-
tionary and systemic study of transcriptional noise, using
mouse cells as a model. We have shown that transcriptional
noise correlates with functional constraints not only at the
level of the gene itself via the protein it encodes, but also at the
level of thepathway(s) thegenebelongs to.We furtherdiscuss
here potential confounding factors in our analyses and argue
that our results are compatible with selection acting to reduce
noise propagation at the network level.

In this study, we exhibited several factors explaining the
variation in transcriptional noise between genes. While highly
significant, the effects we report are of small size, and a complex
model accounting for all tested sources of variationonly explains
a few percent of the total observed variance. There are several
possible explanations for this reduced explanatory power. (1)
Transcriptional noise is a proxy for noise in gene expression, at
which selection occurs (Figure 1). As transcriptional noise is not
randomly distributed across the genome, it must constitute a
significant component of expression noise, in agreement with
previous observations (Blake et al. 2003; Newman et al. 2006).
However, translational noisemight constitute an important part
of the expression noise and was not assessed in this study. (2)
Gene expression levels were assessed on ESCs in culture. Such
an experimental system may result in gene expression that dif-
fers from that in natural conditions under which natural selec-
tion acted. (3) Functional annotations in particular pathways
and gene interaction are incomplete, and network-based mea-
sures most likely have large error rates. (4) While the newly
introduced F* measure allowed us to assess the distribution of
transcriptional noise independently of the averagemean expres-
sion, it does not capture the full complexity of SGE. Explicit
modeling, for instance based in the b-Poisson model (Vu et al.
2016), is a promising avenue for the development of more so-
phisticated quantitative measures.

In a pioneering study, Fraser et al. (2004), followed byShalek
et al. (2013), demonstrated that essential genes whose deletion
is deleterious, and genes encoding subunits of molecular com-
plexes as well as housekeeping genes, display reduced gene
expression noise. Our findings go beyond these early observa-
tions by providing a statistical assessment of the joint effect of
multiple explanatory factors. Our analyses reveal that network
centrality measures are the explanatory factors that explain the
most significant part of the distribution of transcriptional noise

in the genome. Network-based statistics were first tested by Li
et al. (2010) using PPI data inYeast.Whilewe are able to extend
these results to mouse cells, we show that more detailed anno-
tation, as provided by the Reactome database, can lead to new
insights into the selective forces acting on expression noise. Our
results suggest that pathways constitute a relevant systemic
level of organization, at which selection can act and drive the
evolution of SGE at the gene level. This multi-level selection
mechanism, we propose, can be explained by selection against
noise propagation within networks. It has been experimentally
demonstrated that expression noise can be transmitted from
one gene to another with which it is interacting (Pedraza and
van Oudenaarden 2005). Large noise at the network level is
deleterious (Barkai and Leibler 1999) but each gene does not
contribute equally to it, thus the strength of selective pressure
against noise varies among genes in a given network. We have
shown that highly connected, “central”proteins typically display
reduced transcriptional noise. Such nodes are likely to consti-
tute key players in the flow of noise in intracellular networks as
they are more likely to transmit noise to other components. In
accordance with this hypothesis, we find genes with the lowest
amount of transcriptional noise to be enriched for top-level
functions, particularly if they are involved in the regulation of
other genes.

These results have several implications for the evolution of
gene networks. First, this means that new connections in a
network can potentially be deleterious if they link genes with
highly stochastic expression. Second, distinct selective pressures
at the “regulome” and “interactome” levels (Figure 1) might act
in opposite directions. We expect genes encoding highly con-
nected proteins to have more complex regulation schemes, par-
ticularly if their proteins are involved in several biological
pathways. In accordance, several studies have demonstrated
that expression noise of a gene positively correlates with the
number of TFs controlling its regulation (Sharon et al. 2014),
a correlation that we also find significant in the data set ana-
lyzed in this work. Central genes, while being under negative
selection against stochastic behavior, are then more likely to be
controlled by numerous TFs that increase transcriptional noise.
As a consequence, if the number of connections at the interac-
tome level is correlated with the number of connections at the
regulome level, we predict the existence of a trade-off in the
number of connections that a gene can make in a network.
Alternatively, highly connected genes might evolve regulatory
mechanisms allowing them to uncouple these two levels: neg-
ative feedback loops, for instance, where the product of a gene
downregulates its ownproduction, have been shown to stabilize
expression and significantly reduce stochasticity (Becskei and
Serrano 2000; Dublanche et al. 2006; Tao et al. 2007). We
therefore predict that negative feedback loops are more likely
to occur at genes that are more central in protein networks, as
they will confer greater resilience against high SGE, which is
advantageous for this class of genes.

Our results enabled the identification of possible selective
pressures acting on the level of stochasticity in gene expression.
However, the mechanisms by which the amount of stochasticity
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can be controlled remain to be elucidated. We evoked the exis-
tence of negative feedback loops that reduce stochasticity and the
multiplicityofupstreamregulatorsthat increaseit.Recentworkby
Wolf et al. (2015) andMetzger et al. (2015) add further perspec-
tive to this scheme.Wolf and colleagues found that, inEscherichia
coli, noise is higher for natural than experimentally evolved pro-
moters selected for their mean expression level. They hypothe-
sized that higher noise is selectively advantageous in cases of
changing environments. On the other hand, Metzger and col-
leagues performed mutagenesis experiments and found signa-
tures of selection for reduced noise in natural populations of
S. cerevisiae. These seemingly opposing results, combined with
our observations, provide additional evidence that the amount of
stochasticity in the expression of single genes has an optimum, as
high values are deleterious because of noise propagation in the
network; while lower values, which result in reduced phenotypic
plasticity,might be suboptimal in cases of dynamic environments.

Conclusions

Using a newmeasure of transcriptional noise, our results demon-
strate that the position of a protein in the interactome is a major
driver of selection against SGE. As such, transcriptional noise is an
essential component of the phenotype, in addition to the mean
expression level and the actual sequence and structure of the
encoded proteins. This is currently an underappreciated phenom-
enon, and gene expression studies that focus only on the mean
expression of genesmay bemissing key information about expres-
siondiversity. The studyof gene expressionmust consider changes
in noise in addition to changes in mean expression level as a
putative explanation for adaptation. However, further work that
aims to unravel the exact structure of the regulome is needed to
fullyunderstandhowtranscriptionalnoise isgeneratedorinhibited.
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