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Chapter 1

Introduction

This thesis serves the purpose of examining the role of asymmetric loss functions in time

series analysis. Asymmetric loss functions can sometimes be interpreted as mathematical

representations of risk-averse or risk-seeking behaviour of economic agents. This thesis

shows how these functions may be used for forecasting certain economic variables. It

contains methodological work, statistical simulations as well as empirical studies. It is

based on four articles, one of which is currently under review. The thesis is structured as

follows.

Chapter 2 deals with building an optimal forecast of a long autoregression under an

asymmetric loss. The properties of autoregressive models whose order grows with the

sample size make such long autoregressions a popular tool in time series analysis. Among

others, this semiparametric approach consistently estimates the linear MSE-optimal point

forecast. Should a loss function other than the squared error loss be relevant, e.g. an asym-

metric one, it has been argued that estimation should be conducted under the relevant

loss. The chapter o�ers a loss-speci�c Wold-type decomposition motivating the use of

long autoregressions under the relevant loss. It also shows that �tting under relevant loss

consistently delivers the linear loss-optimal point forecast. The semiparametric approach

is compared to a model-based one in terms of e�ciency. We �nd in Monte Carlo simu-

lations that the semiparametric approach is generally preferable, except for cases where

the series to be forecast exhibits strong GARCH e�ects.

Chapter 3 represents a replication study of Christodoulakis and Mamatzakis (2009,

Journal of Applied Econometrics 24, pp. 583-606). In their article, the authors estimate

the EU Commission loss preferences for selected economic forecasts of 12 EU Member

States. They employ the GMM estimation procedure proposed by Elliott et al. (2005,

Review of Economic Studies 72, pp. 1107-1125) and �nd the forecasts to be somewhat

optimistic on average. This chapter shows, however, the GMM estimator to possess non-

standard limiting distributions when some of the instruments are highly persistent, which

is the case with one of the instruments employed by Christodoulakis and Mamatzakis.

Standard distributions are recovered in some interesting particular cases which are relevant

1



Chapter 1 Introduction

in practice. A re-examination of the EU Commission loss preferences using methods robust

to persistence and an extended dataset reveals that, while the conclusions of the original

study are, by and large, still justi�ed, the EU Commission loss preferences have become

more symmetric over the whole studied period.

Chapter 4 addresses the issue of predicting value-at-risk. This quantity is widely used

in practice for risk management purposes. In the majority of related literature validation

of a VaR, forecasting method is performed using only a few criteria and is often not

discriminatory enough. With this part of my research, I propose a class of models that

often shows to be superior in terms of forecasting performance. I compare the proposed

models to several prominent competitors. Moreover, I combine various validation methods

in a manner that hasn't been used before.

Chapter 5 examines certain bias correction techniques for a widely used log transfor-

mation of data. In many economic applications, it is convenient to model and forecast

the logs rather than the levels of a variable of interest. However, the reverse transfor-

mation from log forecasts to levels introduces a bias. This chapter compares di�erent

bias correction methods for the reverse transformation of log series which follow a linear

process with various types of error distributions. Based on Monte Carlo simulations and

an empirical study of realized volatilities, we �nd that there is no uniformly best choice of

a correction method. By and large, a variance-based correction appears to be preferable,

but bias corrections may even increase the forecast MSE when the log series exhibits high

persistence.

Finally, the last chapter o�ers a short summary and gives an outlook for further research

on the matter.

2



Chapter 2

Long Autoregressions under

Asymmetric Loss

Coauthored by : Matei Demetrescu

2.1 Motivation

Least-squares long autoregressions have been successfully used in time series analysis and fore-

casting since the seminal work of Berk (1974) and Bhansali (1978); see also Gonçalves and Kilian

(2007) for conditional heteroskedasticity, Poskitt (2007) for models with long memory, and Deme-

trescu and Hassler (2016) for the case with changes in the mean. At the same time, forecasting

under asymmetric loss is a relevant task in applied work. E.g. Artis and Marcellino (2001) �nd

IMF and OECD forecasts of the de�cit of G7 countries to be systematically biased, which they

explain by asymmetric loss preferences of the IMF and the OECD. Clements et al. (2007) and

Capistrán (2008) analyze the loss function of the Federal Reserve to �nd asymmetries in its

forecast preferences � and even some time variation thereof. Christodoulakis and Mamatzakis

(2008, 2009) �nd asymmetric preferences of EU institutional forecasts, while Pierdzioch et al.

(2011) does the same for the Bank of Canada. See also Wang and Lee (2014) and Tsuchiya

(2016) for additional evidence. Individual forecasters are not immune to asymmetric forecast

preferences either; see e.g. Elliott et al. (2008), Boero et al. (2008), Aretz et al. (2011), Clatwor-

thy et al. (2012) or Fritsche et al. (2015). A natural question is then, how can one deploy long

autoregressions for forecasting under asymmetric loss?

At least since the work of Weiss and Andersen (1984); Weiss (1996), it has been argued that

estimation should be conducted using the relevant forecast optimality criterion. Naturally, this

suggests estimation of long autoregressions under the relevant loss function. We therefore address

the question, what properties do such long autoregressions under generic loss functions have.

Our contributions are as follows. We �rst derive the theoretical properties of innovations in

in�nite-order linear autoregressive forecasts under a general loss function. In doing so, we focus

on the class of asymmetric power loss functions proposed by Elliott et al. (2005), of which the

asymmetric linear or asymmetric quadratic are particular cases. This derivation provides the

theoretical underpinning of the use of linear autoregressions under the relevant loss as well as a

3



Chapter 2 Long Autoregressions under Asymmetric Loss

Wold-type decomposition which is speci�c to the loss function considered. Then we address the

issue of �tting long autoregressions under the relevant loss. Since the quantile check function is

a particular case of the loss functions we consider, we extend in this respect the work of Zernov

et al. (2009) who discuss quantile long autoregressions, but without any justi�cation for this class

of semiparametric forecast models. Imposing an external loss function has the disadvantage of

potential estimation ine�ciency; here, model-based approaches may perform better in practice,

since, in a more parametric perspective, parameter estimation can be adjusted to take relevant

data features into account. See Dumitrescu and Hansen (2016) for a precise discussion of bias

vs. variance when estimation is conducted under another criterion than the evaluation. To

complete the discussion, we provide a Monte Carlo based comparison of the semiparametric

approach based on long autoregressions under the relevant loss with alternative approaches, in

particular a location-scale model-based procedure.

Let us set some notation before proceeding. By yt, t ∈ Z, we denote the process to be forecast
and by yt (1) the optimal one-step ahead (linear) forecast conditional on the information set

Ft = {yt, yt−1, . . .} under the relevant loss function, i.e. the forecast minimizing the expected

loss of forecasting yt+1 given Ft. Forecasts at higher horizon may be generated by direct forecasts;

while we do not pursue this topic here, it seems plausible that the main �ndings remain valid. The

loss function evaluating the forecast error is denoted by L (·), and we take it to be in di�erence

form. The Lr norm of a random variable is given by ‖·‖p = r
√

E (|·|r). Moreover, ‖·‖p also

denotes the `p vector norm and the corresponding induced matrix norm. We use ‖·‖ and ‖·‖1
to denote Euclidean and city-block norms whenever no confusion is possible. The probabilistic

Landau symbols Op and op have their usual meaning.

2.2 Autoregressive modelling under the relevant loss

We focus on the class of asymmetric loss functions proposed by Elliott et al. (2005): they are

quite �exible but do not place strict requirements on existence of moments of the forecast errors,

unlike the Linex loss which essentially requires �niteness of moments of any order.

Assumption 2.1 Let L : R 7→ R+ be given by

L (u) = (α+ (1− 2α) · 1 (u < 0)) |u|p ,

where α ∈ (0, 1) and p ∈ {1, 2, . . .}, and 1 (·) is the usual indicator function.

The assumption covers the popular asymmetric linear (lin-lin) and asymmetric quadratic

(quad-quad) losses, and has derivative L′ (u) = p (α− 1 (u < 0)) |u|p−1 which is continuous for

p > 1. The parameter α controls the degree of asymmetry of the loss function; α = 0.5 recovers

a symmetric loss function. The parameter p on the other hand controls the tail behavior of L(·).
The case p = 1 leads to the asymmetric linear loss, which is convex and continuous, but not

di�erentiable at 0; this is nothing else than the check function used in quantile regression. For
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Chapter 2 Long Autoregressions under Asymmetric Loss

p > 1, L is strictly convex and piecewise smooth; the second-order derivative is only continuous

for p > 2, or p = 2 and α = 0.5.

Let us now examine the task of linearly forecasting yt+1 under L given its in�nite past,

yt, yt−1, . . ., i.e. �nding

yt (1) =
∑
j≥1

ajyt+1−j + b, (2.1)

for a suitable parameter b and a sequence of parameters {aj}j∈N\{0}. A linear modelling ap-

proach is quite common for the conditional mean, and we only take the idea one step further to

forecasting under asymmetric loss.

By the desired optimality of yt (1), the coe�cients minimize the forecast risk,

aj , b = arg min
a∗j , b

∗
E

L
yt+1 −

∑
j≥1

a∗jyt+1−j − b∗
 . (2.2)

Denote by εt+1 the corresponding forecast error,

εt+1 = yt+1 − yt (1) = yt+1 −
∑
j≥1

ajyt+1−j − b. (2.3)

For the case of squared-error loss, one can draw on functional analytic results in Hilbert spaces

of weakly stationary processes to analyze the optimum problem in (2.2), taking e.g. advantage

of the fact that the covariance may be used to de�ne an inner product. The Projection Theorem

then ensures existence and uniqueness of the optimal forecast under quadratic loss, as well as

orthogonality of the forecast errors and the predictors yt+1−j , j ≥ 1. An immediate consequence

is lack of serial correlation of the forecast errors. But if L(·) is not quadratic (or not even

symmetric in general), one is not able to use the approach anymore.

An analogous result may however be proved by elementary methods:

Proposition 2.1 Given a loss function satisfying Assumption 2.1 and a strictly stationary pro-

cess yt for which E [|yt|p] <∞, the following statements hold true.

a) For p > 1, the forecast risk Q
(
a∗j , b

∗
)

= E
[
L
(
yt+1 −

∑
j≥1 a

∗
jyt+1−j − b∗

)]
has a unique

minimum that satis�es the following set of �rst-order conditions

E

L′
yt+1 −

∑
j≥1

ajyt+1−j − b

 = E
[
L′ (εt+1)

]
= 0 and

E

yt+1−jL′
yt+1 −

∑
j≥1

ajyt+1−j − b

 = E
[
yt+1−jL′ (εt+1)

]
= 0 for all j ≥ 1.

b) For p = 1, item a) holds if all �nite-dimensional distributions of yt are absolutely contin-

uous.

Proof: See the Appendix.
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The so-called generalized forecast error, L′ (εt+1), is therefore unbiased and uncorrelated with

the predictors, in other words it is linearly unpredictable given past levels of the series of interest.

Moreover, past forecast errors are linearly noninformative as well, as shown by the following

corollary.

Corollary 2.1 The generalized forecast error, L′ (εt+1), is uncorrelated with past forecast errors,

E [εt+1−jL′ (εt+1)] for all j ≥ 1.

Proof: See the Appendix.

A slightly stricter martingale di�erence condition (given a set of forecast-relevant information

Ft) has often been used in the literature to characterize optimal forecasts (see e.g. Granger,

1999). Such conditions have also been used to set up GMM estimation of the parameters of an

unknown loss function on the basis of observed forecast errors assumed to stem from rational

forecasts (Elliott et al., 2005). The novelties are here the entirely semiparametric approach to

constructing the optimal forecast and the idea of constructing innovations speci�c to the relevant

loss.

Remark 2.1 The linear forecast can in principle be improved upon in nonlinear setups. Since

L is homogenous of degree p, the optimal conditional point forecast under L is given as

ȳt (1) = E [yt+1|Ft] + b̄
√

Var [yt+1|Ft] ; (2.4)

see Patton and Timmermann (2007a). Moreover, b̄ only depends on the shape of the forecast

distribution of yt+1 and on L,

b̄ = arg min
b̄∗

E

[
L

(
yt+1 − E [yt+1|Ft]√

Var [yt+1|Ft]
− b̄∗

)]
,

i.e. b̄ is the optimal forecast of the conditionally standardized series. This suggests that forecasts

based on location-scale models may be an alternative to long autoregressions under the relevant

loss. In practice, the question arises, as to which method should be preferred. In fact, this

is just the bias vs. variance discussion in a slightly modi�ed form: if estimation of the model

in Equation (2.4) is noisy, then a linear (mis-)speci�cation may perform better in terms of

forecasting performance. At the same time, a linear �t ignores conditional heteroskedasticity so

it may be estimated in an ine�cient manner. We compare the two approaches in Section 2.4.

It should be emphasized that di�erent loss functions lead to essentially di�erent linear autore-

gressive representations. To understand the mechanism, let us examine the following example.

Example 2.1 Let yt be a bilinear process, given as

yt = θ1yt−1 + θ2yt−1ut,

6
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where ut ∼ iid (0, 1) and is Lp-bounded, and θ1,2 are such that yt is strictly stationary (see

e.g. Douc et al., 2014, Section 4.3.1, for suitable conditions).

Take the squared-error loss �rst, L = u2. Now, yt is a conditionally heteroskedastic AR(1)

process with martingale di�erence [md] innovations εt = θ2yt−1ut. Under squared-error loss, the

optimal point forecast is the conditional mean given by

E [yt+1|yt, . . .] = θ1yt,

and the optimal conditional forecast under squared error loss is, in the notation of Proposition

2.1, yt (1) = a1yt with a1 = θ1.

Under a loss function L with p 6= 2 or α 6= 0.5, let b̄ denote the optimal forecast of ut;

cf. Eq. (2.4) (for p = 1, assume for simplicity that b̄ is unique). With L′
(
ut − b̄

)
being zero-

mean iid and thus independent of yt−1, . . ., rewrite the model as

yt = a1yt−1 + εt

with a1 = θ1 + b̄θ2 and εt = θ2yt−1

(
ut − b̄

)
. Notice further that, since b̄ is the optimal forecast

of ut, it holds that

E
[
L′ (εt+1) |yt, . . .

]
= |θ2yt|p−1 E

[
L′
(
ut+1 − b̄

)
|yt, . . .

]
= 0,

such that εt+1 satis�es the properties derived in Proposition 2.1 and the optimal forecast is given,

under this second choice for L, by

yt (1) = a1yt with a1 = θ1 + b̄θ2.

Unless b̄ = 0 (or, trivially, θ2 = 0), it holds that θ1 6= a1 and the optimal forecast under L is

quite di�erent from the forecast under squared-error loss.

Hence, under any (non-quadratic) loss function for which b̄ 6= 0, we still have an AR represen-

tation for the process yt, but with di�erent coe�cients depending on the loss function. Conversely,

for θ1 + b̄θ2 = 0, yt is linearly unpredictable under L, although still serially dependent (in both

the conditional mean and the conditional variance).

There is an obvious exception to this dependence of the AR representation on the loss function:

should yt be an invertible general linear process driven by iid innovations, it is straightforward

to show that the sequence of autoregressive parameters (but not b) is the same for all strictly

convex loss functions.1 One is tempted to conjecture that the converse holds as well; we leave

this question for further research.

In a nutshell, each loss function ultimately leads to a speci�c understanding of what the

innovations (forecast errors) should behave like. In lack of a better notation, we may call the

innovations sequence εt from Proposition 2.1 L-innovations.
1In fact, Granger (1969) exploits this to optimally forecast under L linear processes with iid innovations;
see his so-called two-step procedure.
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Note that L-innovations which are not linearly predictable under some loss function need not

be unpredictable under another � for the same process yt. To underscore this, consider the

following re-telling of the previous example from the point of view of the innovations sequence.

Example 2.2 Let εt be a GARCH-in-mean process,

εt = θ1σt + σtut

where σt = f (εt−1, . . . , ut−1, . . .) such that εt is strictly stationary, and ut ∼ iid (0, 1) is inde-

pendent of past ε's.

Clearly, εt is not uncorrelated (unless σt is constant a.s.) and is predictable under squared

error loss with one-step ahead optimal forecast given by yt(1) = θ1σt.

One may however �nd a suitable loss function under which L′ (εt) is a md sequence and as

such εt is an L-innovation, concretely when θ1 = −b̄ with b̄ the optimal forecast of ut under L;
still, εt is linearly predictable under squared error loss.

Some further remarks are in order.

Remark 2.2 Unlike the MSE case, the �rst-order conditions given in Proposition 2.1 cannot be

given in terms of autocovariances of yt, since L′ is nonlinear in general. In the MSE case, weak

stationarity of yt ensures time invariance of this equations system. Here, it is strict stationarity

of yt which guarantees that the system of equations characterizing the solution does not depend

on the time index t. Strict stationarity is a su�cient condition for any loss function considered

here; for a particular loss, however, time invariance of the �rst-order conditions may replace

strict stationarity. One might call such a property weak L-stationarity. We shall stick however

to strict stationarity as it is more convenient not to tie the properties of the data generating

process [DGP] to the loss function, as the loss is � exogenously � imposed by the forecaster.

Remark 2.3 Examining the proof of Proposition 2.1, we note that the result is actually valid for

strictly convex loss functions without additional conditions; for convex (but not strictly convex)

loss functions, additional conditions on the distribution of yt may be required; see the proof for

details. Moreover, the analogous result holds for h-step ahead forecasts if using direct forecasts.

Before moving on to discuss estimation of the autoregressive representation, we may build

on the above characterization of L-innovations to provide a linear representation of the process

analogous to the Wold decomposition. To this end, let us call a process yt L-predictable i� its

L-innovations εt have zero Lp norm, and regular if it is not predictable.

Proposition 2.2 De�ne St as the span of {1, yt, yt−1 . . .}. Under the conditions of Proposition

2.1, it holds that

yt = mt + et ∀t ∈ Z,

8
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where et =
∑

j≥0 bjεt−j with for εt−j being the L-innovations process of yt and the coe�cients

are taken as

bj =
E [ytL′ (εt−j)]−

∑j−1
k=0 bk E [εt−kL′ (εt−j)]

E [εtL′ (εt)]
,

such that

1. mt+h and L′ (εt) are uncorrelated ∀h ∈ Z;

2. mt ∈ S−∞;

3. et is a regular process;

4. mt is a predictable process.

Proof: See the Appendix.

It should be emphasized again that the decomposition is loss-function speci�c, as illustrated

in the following:

Example 2.3 Let yt = sεt with εt a nondegenerate zero-mean iid sequence, where s is random

and independent of εt ∀t. Then, yt is white noise provided that s and εt are L2-bounded and the

Wold decomposition of yt has no predictable component. Under an asymmetric loss function, let

b be the conditional optimal point forecast of εt (assuming that εt is Lp-bounded). We may then

write

yt = mt + et with et = (εt − b) s and mt = bs.

The conditional optimal point predictor of et is easily seen to be zero; therefore, et is its own

sequence of L-innovations and thus a regular process under L. At the same time, mt = bm is

predictable.

Remark 2.4 Comparing the statement of Proposition 2.2 with the �classical� Wold decomposi-

tion, where one sets bj =
E(ytεt−j)

E(ε2t )
, the additional term −

∑j−1
k=0 bk E (εt−kL′ (εt−j)) adjusts for

the fact that εt−k may be correlated, even if L′ (εt−j) is orthogonal to past εt. Of course, this

term is zero when setting L = u2.

Remark 2.5 Unlike for the Wold decomposition, it cannot be stated that the coe�cients bj are

square summable. To understand why square summability is not available in general, recall the

GARCH-in-mean example. Then, it could well be that σt has long memory (and thus a linear

representation without absolutely summable coe�cients). Now, the convolution of two �lters with

square summable coe�cients does not exist in general, so in order to still have strict stationarity

of yt, the coe�cients bj must be restricted beyond square summability.

To sum up, any strictly stationary, Lp-bounded process possesses an in�nite-order linear rep-

resentation under asymmetric power loss functions, with uniqueness given for p = 1 only under

additional conditions. This parallels the situation under squared-error loss. But the parameters

of the representation depend on the loss function, and the innovations are tailored to the respec-

tive loss. We shall now exploit this characterization to provide the theoretical motivation for

prediction using long autoregressions under asymmetric loss.
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2.3 Fitting long autoregressions under the relevant

loss

2.3.1 Model and assumptions

We move on to setting up forecasts given a sample, y1, . . . , yT . Concretely, we would like to

estimate the coe�cients of the relevant AR representation given a speci�c L. Perhaps not

surprisingly, we will prove in Section 2.3.2 that this task is accomplished by estimation under the

relevant loss; we shall make some regularity assumptions beyond strict stationarity to achieve

our goal. Also, we shall not address the case p = 1 as it has already been discussed by Zernov

et al. (2009). In exchange, this allows us to drop continuity restrictions on the distribution of yt.

Assumption 2.2 Let yt be given by

yt = εt +
∑
j≥1

bjεt−j ,∀t ∈ Z,

where B(L) = 1+
∑

j≥1 bjL
j is an invertible lag polynomial whose coe�cients satisfy

∑
j≥1 |bj | <

∞ and εt a sequence of L-innovations speci�ed below.

Absolute summability is stronger that the square summability often required for linear pro-

cesses with martingale di�erence innovations. The reason is that εt are not predictable under L
(see Assumption 2.3 below), but this does not imply lack of serial correlation; see Remark 2.5.

Therefore, absolute summability simply ensures that yt exists irrespective of the serial correlation

of εt.

Assumption 2.2 e�ectively describes the relevant dependence structure that can be used to set

up forecasts, with εt being linearly unpredictable as speci�ed in

Assumption 2.3 Let the innovations {εt}t∈Z be a nondegenerate strictly stationary and ergodic

process, Lp-bounded. Further, let b exist uniquely such that

E
[
εt−jL′ (εt − b)

]
= 0 ∀ j ≥ 1.

In the case of squared-error loss, it is common to require {εt}t∈Z to possess the martingale

di�erence property. Under general loss, however, this is not the best way to model innovations;

quite naturally in light of Section 2.2, we require them to behave as outlined by Corollary

2.1. This analogue of the white noise property is su�cient for consistency, as shall be seen

in Proposition 2.3 below. However, in order to derive convergence rates of the L-speci�c long

AR coe�cients, we shall strengthen the requirement to an analogue of the md property; see

Assumption 2.4 below. Because of the forecast bias under nonquadratic losses, we do not specify

the expectation of εt to be zero; clearly, E [yt] =
∑

j≥1 bj E [εt], which gives a further reason to

require absolute summability.
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Essentially, we require here εt to be linearly unforecastable given its past; all information rele-

vant for (linearly) forecasting yt under L is thus captured by the linear structure of Assumption

2.2. This is not uncommon in the literature. For p = 1, one recovers the linear in�nite-order

model with zero conditional-quantile innovations of Zernov et al. (2009); cf. also the earlier

CAViaR model of Engle and Manganelli (2004). For p = 2 and α = 0.5, one recovers the

classical case to be estimated by means of least squares.

A preliminary question of interest concerns the stochastic properties of yt from Assumptions

2.2 and 2.3. They are summarized in the following

Lemma 2.1 Under Assumptions 2.2 and 2.3, the process yt exists almost surely, is uniformly

Lp-bounded, strictly stationary, and ergodic.

Proof: See the Appendix.

Ergodicity, for instance, eliminates predictable components. Given the assumed invertibil-

ity and absolute summability of its MA(∞) representation, the process yt also has an AR(∞)

representation in terms of innovations εt,

yt =
∑
j≥1

ajyt−j + εt.

It is known from Brillinger (1975, p. 79) that the coe�cients aj are absolutely summable as well.

Under Assumption 2.3, it is then straightforward to derive the optimal linear one-step ahead

forecast, which is simply given by the autoregression

yt (1) =
∑
j≥1

ajyt+1−j + b.

Given uniqueness of the decomposition from Proposition 2.1, the above AR coe�cients are the

same as the coe�cients from Equation (2.2). (Recall, they are L-speci�c.)
The long autoregression is given by

yt =

hT∑
j=1

ajyt−j + εt,hT , t = hT + 1, . . . , T,

where hT → ∞ at a suitable rate, and the disturbances εt,hT are easily seen to satisfy, like for

the OLS long autoregression,

sup
t∈Z
‖εt,hT − εt‖p ≤ sup

t∈Z
‖yt−j‖p

∑
j≥hT+1

|aj | → 0. (2.5)

The long autoregressive approximation leads to a truncated forecast function:

yt (1) ≈
hT∑
j=1

ajyt+1−j + b.
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For a given sample, one requires estimators to plug in, together with restrictions on hT . To

obtain coe�cient estimators, one minimizes the average observed (in-sample) loss:2

(
â′hT , b̂

)′
= arg min(

a∗′hT
,b∗
)′
∈Θ

1

T

T∑
t=p+1

L

yt − p∑
j=1

a∗jyt−j − b∗
 , (2.6)

where âhT = (â1, . . . , âhT )′ and a∗hT =
(
a∗1, . . . , a

∗
hT

)′
. (They actually form a triangular array but

we drop the extra notation to avoid notational over�ow.) As is common in nonlinear optimization,

we discuss optimization over a compact set Θ, where Θ =
{∥∥∥a∗hT − ahT ∥∥∥1

< C ∀T
}
⊂ `1, the

space of absolutely summable sequences (�lling in zeros for j > hT ).

Minimizing the in-sample risk is chosen to ensure consistency of the estimators for the correct

pseudo-true values. (Beyond the usual pseudo-ML interpretation of the term, we also call them

pseudo-true since their true value depends on L in our setup.) Dumitrescu and Hansen (2016)

point out that such estimation is not e�cient in general, even if the true model is linear. However,

e�ciency is not the main concern here; rather, in their terminology, we need to ensure robustness

of the estimators � i.e. that they deliver the right forecast functional, at least in the limit. For

this minimization to deliver consistent results, we require additional assumptions.

Further, in order to derive convergence rates, we strengthen the no-linear-predictability con-

dition on the innovations εt:

Assumption 2.4 Let εt satisfy Assumption 2.3 with the stronger requirement

E
[
L′ (εt − b) |Ft−1

]
= 0

replacing

E
[
εt−jL′ (εt − b)

]
= 0 ∀ j ≥ 1.

We also need to ensure that the process is not overdi�erenced in a certain sense. Therefore,

Assumption 2.5 Let smallest eigenvalue of the sample autocovariance matrix of order hT of yt

be bounded away from zero w.p. 1.

It may be surprising that, unlike for the characterization of the L-innovations, the (sample)

autocovariances play a role, but it should be reminded that the memory of the process is closely

related to this behavior of the sample autocovariances in a linear setup. In fact, one may impose

low-level conditions on the dependence of yt such that the above assumption is ful�lled, but we

�nd the assumption on autocovariances to be more informative.

2To this end, one can use the numerical method proposed by Demetrescu (2006), which is tailored for
this kind of loss minimization problems.
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2.3.2 Asymptotic results

We �rst discuss consistency.

For OLS estimation of the coe�cients {aj}j≥1, Berk (1974) suggested that the `2 (Euclidean)

vector norm of the di�erence between the vector of autoregressive estimates and ahT , the vector

containing the �rst hT elements of the sequence of (pseudo-)true parameter values, should vanish

as T →∞ and hT →∞. Elementwise convergence is not su�cient for a number of applications,

in particular forecasting using long autoregressions.

The following proposition gives the �rst asymptotic result. It establishes consistency in `1

vector norm (which, taken alone, is stronger than in `2 norm).

Proposition 2.3 Under Assumptions 2.1 with p > 1 , 2.2 and 2.3, it holds as hT , T →∞ such

that hT /T → 0 that ∥∥∥∥(â′hT , b̂)′ − (a′hT , b)′∥∥∥∥
1

p→ 0.

Proof: See the Appendix.

Clearly, this also implies convergence in L2 vector norm, which has been discussed before; see

e.g. Berk (1974) for the OLS case. The assumptions on hT are, however, less strict here than in

the literature on OLS long autoregressions. This is because the latter results usually also allow

one to establish limiting distributions and
√
T consistency, which are not of interest (yet).

To obtain an (asymptotically) optimal forecast, the di�erence between the theoretical forecast,

yt (1) =
∑

j≥1 ajyt+1−j + b, and its sample counterpart yt (1) =
∑

j≥1 âjyt+1−j + b̂ should vanish

asymptotically,
hT∑
j=1

(âj − aj) yt+1−j +
∑

j≥hT+1

ajyt+1−j +
(
b− b̂

)
p→ 0. (2.7)

The sum
∑

j≥hT+1 ajyt−j , and hence
∑

j≥hT+1 ajyt+1−j , vanishes as hT → ∞, see Equation

(2.6).

Unless yt is a.s. bounded, the above consistency of the estimators is not su�cient for consis-

tency of the forecast function, since hT → ∞. So we are left with showing that âj converge

fast enough. Let us now examine the convergence rates required for setting up a forecast. We

provide a result for the L2 vector norm as it is more convenient for later use.

Proposition 2.4 Let ∃r ≥ 2p such that εt is uniformly Lr-bounded and ∃s > 1/2 such that∑
j≥1 j

s |bj | <∞. Moreover, if p = 2, let εt have absolutely continuous conditional distribution.

Then, under Assumptions 2.1 � 2.5 with p > 1 and hT /T
1/2 → 0 as T →∞, it holds that

∥∥∥∥(â′hT , b̂)′ − (a′hT , b)′∥∥∥∥
2

= Op

(
max

{
h

1/2−s
T ;

h
1/2
T

T 1/4

})
.

Proof: See the Appendix.
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Remark 2.6 The convergence rates depend on sample covariance matrix of yt, and not of non-

linear transformations thereof. Comparing with Proposition 2.3, we note that the requirements

here are stronger, since Proposition 2.4 requires in any case hT = o
(√

T
)
. This is because of the

di�erent proof technique, here the e�ect of the bias terms is stronger; see the proof for details.

Given the convergence rates, we may then show that the linear forecast function is estimated

consistently, considering further restrictions on hT .

Corollary 2.2 If s > 1 and hT = o( 4
√
T ) then yt (1)− yt (1)

p→ 0.

Proof: Obvious and omitted.

The following section provides an evaluation of the �nite-sample predictive performance of the

semiparametric long autoregressive approach under asymmetric loss functions.

2.4 Finite sample evidence

2.4.1 Forecast methods

First, we �t a long autoregression of increasing order hT under asymmetric loss. The plug-

in estimates are obtained according to (2.6). The choice of the model order hT of the long

autoregression in�uences the quality of the forecasts. To select an autoregressive model order,

we work with information criteria [IC] in the spirit of Weiss (1996). Since we must choose a

lag order under a given loss function, we use the modi�ed information criterion proposed by

Demetrescu and Hoke (2019) for the family of asymmetric power loss functions, given by

ICL (k) =
2

p
log
(∑

L (ε̂t,k)
)

+
2k

T
,

where ε̂t,k are the residuals �tted for an autoregressive model of order k estimated under L.
This version of the loss information criterion is based on the Akaike criterion. We hold it for

obvious that choosing hT by minimizing ICL(k) over k ∈ {1, 2, . . . , hmax} with hmax → ∞
ensures that hT → ∞ if the true model order (under the relevant L) is not �nite. We simulate

with hmax = b4(T/100)0.25c, where b·c is the �oor function.
We compare the long autoregression against two alternatives. The �rst is the two-step pro-

cedure proposed by Granger (1969), while the second one is based on a standard AR-GARCH

model with QML estimation. The two-step procedure described by Granger (1969) consists of

�rst �tting an AR(hT ) process with intercept by OLS. Here we choose hT using the standard

AIC. One thus obtains estimators ϕ̂j for the autoregressive parameters, ĉ for the (OLS-speci�c)

intercept, followed by computation of the OLS residuals,

êt,hT = yt −
hT∑
j=1

ϕ̂jyt−j − ĉ, t = hT + 1, . . . , T. (2.8)

14
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Since the OLS residuals êt,hT are demeaned by construction, one only needs to estimate the

so-called bias factor in the second step (see Granger, 1969),

b̂ = arg min
b∗∈R

1

T

T∑
t=hT+1

L (êt,hT − b
∗) , (2.9)

and the two-step forecast for yt+1 is given under the loss function L by

ỹt (1) = m̂+ b̂+

hT∑
j=1

âjyt+1−j .

In the presence of conditional heteroskedasticity, this forecast is suboptimal in the terminology

of Christo�ersen and Diebold (1997) as it averages the volatility dynamics; also, the �rst-step

least-squares estimation is ine�cient.

The second alternative approach is more parametric in nature and consists of �tting an AR-

GARCH model to capture the dynamics in both the conditional mean and the conditional vari-

ance. Here we estimate an AR(hT )-GARCH(1,1) model by means of quasi-maximum-likelihood

assuming conditionally Gaussian innovations. We use the �classical� AIC for selecting the lag

order of the autoregressive part of the AR-GARCH model, while the GARCH(1,1) component is

�xed. Based on this approximate model, we forecast the conditional mean and the conditional

variance, which are then used to scale and shift the estimated standardized innovations to obtain

an estimate of the forecast distribution. Based on this forecast distribution, we minimize in

the last step the forecast loss to obtain the needed optimal forecast. An early paper proposing

such an approach for forecasting under general loss functions is McCullough (2000);3 see also

Dumitrescu and Hansen (2016). Such model-based approaches have the advantage that it applies

too in situations where L is not homogenous, or even not in di�erence form. Moreover, parame-

ter estimation is more e�cient when accounting for conditional heteroskedasticity whenever this

is present. However, if no conditional heteroskedasticity is present, then an AR-GARCH based

forecast may underperform, as will be seen in the following.

2.4.2 Data generating processes

We generate a variety of ARMA(1,1)-GARCH(1,1) series with di�erent degrees of serial correla-

tion and heteroskedasticity for several sample sizes. Moreover, we allow the standardized shocks

ηt to exhibit nonzero skewness and excess kurtosis. The �rst data generating process is as follows:

yt = φ yt−1 + θ et−1 + et (2.10)

et = σt ηt (2.11)

σ2
t = ω + γ e2

t−1 + β σ2
t−1, (2.12)

3McCullough (2000) employs a bootstrap scheme, which allows him to take the in�uence of estimation
risk on the optimal point forecast into account.
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where ηt ∼ iid(0, 1). The simulated data can be split into two main groups, namely

a) strong serial correlation with weak conditional heteroskedasticity (φ = 0.9, θ = 0.6; ω = 1,

γ = 0.1, β = 0.1);

b) weak serial correlation with strong conditional heteroskedasticity (φ = 0.1, θ = 0.5; ω = 1,

γ = 0.3, β = 0.6).

This design delivers e�cient estimation, since the AR-GARCH model is correctly speci�ed (tak-

ing for granted that the AR part reasonably approximates the ARMA DGP). To allow for some

misspeci�cation, we also consider the following DGP building on Example 2.1

yt = θ1 yt−1 + et (2.13)

et = (θ0 + θ2 yt−1) ut (2.14)

where ut ∼ iid(0, 1). As before, we control for the intensity of the mean and variance dynamics

by changing the respective parameters:

a) strong serial correlation with weak conditional heteroskedasticity (θ0 = 1, θ1 = 0.7, θ2 =

0.2);

b) weak serial correlation with strong conditional heteroskedasticity (θ0 = 1, θ1 = 0.2, θ2 =

0.4).

The innovations in both scenarios were generated to follow skewed t distributions as in Fer-

nández and Steel (1998) with shape parameters ν ∈ {5, 50}, the number of degrees of freedom,

and ξ ∈ {0.5, 2}, representing left and right skewness, respectively. Each parameterization was

repeated with increasing sample size T ∈ {100, 150, . . . , 450, 500}, so that convergent behavior

would become more evident.4 The shapes of the respective loss functions were controlled by the

degree of asymmetry α ∈ {0.2, 0.8}5 and the tail parameter p ∈ {2, 3}. The number of Monte

Carlo replications was set toMC = 25, 000. All simulations were conducted in R (R-Core-Team,

2014; Ghalanos, 2019).

We report p-roots of average forecast losses normalized to the losses of the theoretical one-step

ahead forecast

p

√√√√√ 1
MC

∑MC
i=1 L

(
yT+1 − ŷT (1)

)
1

MC

∑MC
i=1 L

(
yT+1 − ȳT (1)

)
with ȳT (1) de�ned in (2.4) and b̄ obtained numerically. The ratio takes values larger than unity,

since the true model parameters are used to compute the theoretical optimal forecast ȳT (1),

which is therefore not plagued by any estimation risk. Hence, the smallest �gures give the best

relative forecasting performance.

4We also performed estimation on sample sizes up to 1000. The results did not change signi�cantly
after T = 500 and we do not report them to save space.

5The results for estimation under symmetric loss were also left out, since the setup parallels minimizing
the MSE.
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Figure 2.1: Relative forecast performance for highly serially correlated ARMA-GARCH
processes
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Notes: Loss function with tail parameter p = 2 and asymmetry parameter α ∈ {0.2, 0.8}, skewed
Student t(50) innovations with left and right skewness ξ ∈ {0.5, 2}

2.4.3 Results

First, we discuss the results for ARMA-GARCH DGPs as de�ned by Equations (2.10)�(2.12)

with linear dynamics as dominating feature.

Figure 2.1 displays the relative performances for di�erent combinations of the loss function

asymmetry and skewness of the innovations in presence of high serial correlation. As T grows, the

di�erence to the theoretical optimal predictor decreases, illustrating the convergence behavior

of the involved estimators. The upper left set of curves represents a case when a forecaster

puts higher weight on positive forecast errors while dealing with a process driven by left-skewed

innovations. Here �tting a long autoregression under asymmetric loss yields the best results

compared to the alternatives. The same can be observed in a reversed situation (lower right plot

of Figure 2.1). It is interesting that the long autoregression under the relevant loss delivers the

best results whenever the asymmetry of the loss function �compensates� for the skewness of the

innovations (of course, in these cases, negative of the log-likelihood is closest to the observed

loss and estimators are e�cient). In the cases where the negative quasi log-likelihood is at odds
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Chapter 2 Long Autoregressions under Asymmetric Loss

with the loss function used in estimation (upper right and lower left panels), estimation under

the relevant loss is ine�cient, and the two-step OLS-based procedure delivers best forecasts.

The cases in Figure 2.1 have linearity as the main data generation feature, since the conditional

heteroskedasticity is being held rather tame. This explains why �tting a full AR-GARCH model

and building forecasts based on this model is dominated by either estimation under the relevant

loss or by Granger's two-step procedure. Among the latter two there is no clear winner, as the

ranking depends on the estimation e�ciency as pinned down here by the match or mismatch in

innovations skewness and loss function asymmetry.

With strong well-speci�ed GARCH e�ects, the picture changes in favor of a modelling ap-

proach.

Figure 2.2: Relative forecast performance for weakly serially correlated ARMA-GARCH
processes

100 200 300 400 500

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

1.
35

α = 0.8  and  ξ = 0.5

Sample Size

F
or

ec
as

t P
er

fo
rm

an
ce

●

●
●

●

●

●
● ●

●

●

Method

AsyLoss
OLS
GARCH

100 200 300 400 500

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

1.
35

α = 0.2  and  ξ = 0.5

Sample Size

F
or

ec
as

t P
er

fo
rm

an
ce

●

●

●

●
●

●

●

●

●

●

Method

AsyLoss
OLS
GARCH

100 200 300 400 500

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

1.
35

α = 0.8  and  ξ = 2

Sample Size

F
or

ec
as

t P
er

fo
rm

an
ce

● ●

●
●

●
● ● ●

●

●

Method

AsyLoss
OLS
GARCH

100 200 300 400 500

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

1.
35

α = 0.2  and  ξ = 2

Sample Size

F
or

ec
as

t P
er

fo
rm

an
ce

●

●

●
●

●

●

●
●

●

●

Method

AsyLoss
OLS
GARCH

Notes: See Figure 2.1 for details.

Figure 2.2 depicts the simulation results for weakly serially correlated processes with high

degree of volatility clustering. Here, using an AR-GARCH model for forecasting delivers the

better forecasts. Fitting the AR-GARCH model is thus more bene�cial in cases, when conditional

heteroskedasticity is the main feature of the data. The di�erences between the long autoregression
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under the relevant loss and Granger's two-step procedures are minimal, with some advantage of

the former when estimation under the relevant loss is e�cient.

It may seem that one should in principle use a model-based forecast, at least whenever there is

strong volatility clustering. Part of the good performance of the AR-GARCH forecast is however

due to the fact that the volatility model is the correct one. Figures 2.3 and 2.3 presenting the

results for the second DGP de�ned by equations (2.13) and (2.14) show that knowing the true

volatility model indeed gives a boost in forecasting performance.

Figure 2.3: Relative forecast performance for strongly serially correlated bilinear processes
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Notes: See Figure 2.1 for details.

As shown in Figure 2.3, the long autoregression under the relevant loss dominates for all of the

skewness/asymmetry combinations, now that the AR-GARCH based forecast only approximates

the true volatility dynamics. The improvement in the relative performance of one-step forecasting

is rather impressive, but not surprising in the light of Example 2.1. The two-step OLS-based

approach is not competitive at all. Figure 2.4 con�rms this conclusion.

Further results for di�erent loss functions (p = 3) and kurtosis (ν = 5) can be found in the

Appendix; they largely con�rm the above �ndings. AR-GARCH models do well in certain high-

GARCH cases, but lose edge when volatility model not well speci�ed; long autoregressions under
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Figure 2.4: Relative forecast performance for weakly serially correlated bilinear processes
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Notes: See Figure 2.1 for details.
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asymmetric loss appear to be somewhat more robust; moreover, when they dominate, they do so

by a larger margin that in the cases where estimation is ine�cient. All in all, we may recommend

the use of long autoregressions under asymmetric loss, except for the cases where GARCH e�ects

are strong.

2.5 Summary

Long autoregressions have proved to be indispensable in theoretical and applied time series

analysis. This paper provides arguments in favor of using long autoregressions for forecasts in

conjunction with generic loss functions.

Concretely, we characterized a loss-speci�c autoregressive representation of strictly stationary

processes which provides a theoretical justi�cation for long autoregressions under the relevant

loss. Consistency and convergence rates of the relevant coe�cient estimators is established under

mild regularity conditions.

A �nite-sample evaluation of the forecasting performance of long autoregressions under the

relevant loss functions shows that they deliver reliable forecasts for a variety of data generating

processes. One exception is represented by strong GARCH e�ects, where AR-GARCH models

have the potential to provide better forecasts.
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Appendix

The following Lemma is required for the proofs of Proposition 2.3.

Lemma 2.2 Let εt and ut−1 be two possibly dependent, non-degenerate, uniformly Lp-bounded

random variables and L(·) a loss function obeying Assumption 2.1. Let b be the optimal predictor

(with respect to L) for εt conditional on ut−1. It then holds

E [L (εt + ut−1 − b∗)] > E [L (εt − b)] ∀b∗ ∈ R.

Proof of Lemma 2.1

By using uniform Lp-boundedness of εt and Minkowski's inequality, it follows that yt itself is

uniformly Lp-bounded, and thus L1-bounded. The a.s. existence follows e.g. from Torres (1986),

and, given the existence, strict stationarity and ergodicity follow; see e.g. White (2001, Theorem

3.35).

Proof of Lemma 2.2

By assumption we have

E [L (εt − b∗ + ut−1) |ut−1] > E [L (εt − b) |ut−1] , ∀b∗ 6= b+ ut−1.

The result follows with the Law of Iterated Expectations since ut−1 is nondegenerate and the

probability that b∗ = b+ ut−1 is strictly smaller than one.

Proof of Proposition 2.1

Since L is nonnegative with L (u) 6= 0 ∀u 6= 0, Q is nonnegative and a minimum exists. For

characterizing the minimum, it su�ces to focus on sequences of parameters aj for which the

linear combinations yt+1 −
∑

j≥1 a
∗
jyt+1−j − b have �nite expected loss.

Examine yt+1 −
∑

j≥1 a
∗
jyt+1−j ; should this have a degenerate distribution for some values

of a∗j = aj , one may obviously choose b = E
[
yt+1 −

∑
j≥1 ajyt+1−j

]
such that the forecast loss

is zero w.p. 1 and the minimum is found. The f.o.c. are obviously ful�lled for p ≥ 1 since

yt+1 −
∑

j≥1 ajyt+1−j − b = 0 and L′ (0) = 0 w.p. 1. This is the case of a purely predictable

process yt.

Let us then examine the nondegenerate case; we discuss p > 1 �rst, where the function

Q(a∗j , b
∗) = E

L
yt+1 −

∑
j≥1

a∗jyt+1−j − b∗


is di�erentiable. Also, we show Q to be a strictly convex function in the parameters (aj , b), such

that Q is coercive, implying that the in�mum is attained and a global minimum of Q exists in
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`1, the space of absolutely summable real sequences. To establish the desired convexity, de�ne

y∗t+1 = (yt+1,−yt,−yt−1, ...,−1) and u = (1, a1, a2, . . . , b), and consider the function

Qt (u) = L
(
y′∗t+1u

)
,

which we show to be strictly convex for p > 1 as follows: for any λ ∈ (0, 1) and u1,u2 ∈ RN, we

have

Qt (λu1 + (1− λ)u2) = L
(
y∗t+1 (λu1 + (1− λ)u2)

)
= L

(
λy′∗t+1u1 + (1− λ)y′∗t+1u2

)
;

since L is strictly convex for p > 16, it holds for any real u1 6= u2 that

L (λu1 + (1− λ)u2) < λL (u1) + (1− λ)L (u2) ,

so let u1,2 = y′∗t+1u1,2 to obtain

L
(
λy′∗t+1u1 + (1− λ)y′∗t+1u2

)
< λL

(
y′∗t+1u1

)
+ (1− λ)L

(
y′∗t+1u2

)
leading to

Qt (λu1 + (1− λ)u2) < λQt (u1) + (1− λ)Qt (u2) ,

i.e. strict convexity ofQt. Strict convexity ofQ is established by taking expectations and recalling

that we discuss the nondegenerate case, y′∗t+1u 6= 0 w.p. 1. To complete the case p > 1, recall

that, if a strictly convex function has a global minimum, the minimum is unique. Moreover, the

optimum has to be a stationary point due to di�erentiability of Q, which is the case here since

L′ is continuous for p > 1. The f.o.c. are time-invariant due to strict stationarity of yt.

The case p = 1 of an asymmetric linear loss function is not essentially di�erent. Convexity

is established analogously to the case p > 1, such that a minimum exists. To establish the

uniqueness, assume that the minimum of Q(a∗j , b
∗) is not unique. Note however that the set of

optimum points must be a star domain, otherwise Q(a∗j , b
∗) would not be convex. We may hence

examine the e�ect on Q
(
a∗j , b

∗
)
of arbitrarily small deviations from some optimum aj , b within

this domain, and show that continuity of the distributions su�ces for an increase in Q, hence

nonuniqueness is contradicted. We have that

Q (aj + ξj , b+ ξ) = E

L
yt+1 −

∑
j≥1

ajyt+1−j − b−

∑
j≥1

ξjyt+1−j + ξ


= E [L (vt+1 − ψt)]

with vt+1 = yt+1 −
∑

j≥1 ajyt+1−j − b (which is not degenerate) and ψt =
∑

j≥1 ξjyt+1−j +

ξ. Note that E [L (vt+1 − c)] is minimized at c = 0 by the construction of vt+1 since aj , b

6Note that the proof for p > 1 holds for smooth, strictly convex loss functions in general and not just
asymmetric power loss; a necessary condition is however �niteness of the expected loss.
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characterize a minimum. Then, if all �nite-dimensional distributions of yt are continuous, so

are the distributions of vt+1 and ψt (with the exception of the trivial case ξj = 0). With L
the asymmetric linear loss function, E [L (vt − c)] is minimized uniquely at some quantile of the

distribution of vt+1, which, given continuity of the distribution of vt+1, must be unique. Since

ψt is not a degenerate random variable, Lemma 2.2 implies that E [L (vt+1 − ψt)] > E [L (vt+1)]

for all a∗j , b
∗ di�erent from aj , b, as required for the uniqueness.

Finally, given the continuity of the �nite-dimensional distributions of yt, the discontinuity of

L′ occurs on a set of measure zero and the same characterization of the stationary point emerges

for p = 1 as for p > 1.

Proof of Corollary 2.1

Recall that the generalized forecast error at time t+1 is uncorrelated with y at all times t+1− i
for i ≥ 1. Then, having thus for all i

εt+1−i = yt+1−i −
∑
j≥1

ajyt+1−i−j − b,

we have that

L′ (εt+1) εt+1−i = L′ (εt+1) yt+1−i −
∑
j≥1

ajL′ (εt+1) yt+1−i−j − bL′ (εt+1) ;

the result follows upon taking expectations.

Proof of Proposition 2.2

Begin by noting that b0 = 1:

b0 =
E [ytL′ (εt)]
E [εtL′ (εt)]

=
E [(yt−1 (1) + εt)L′ (εt)]

E [εtL′ (εt)]

where yt−1 (1) is the optimal linear forecast of yt given its in�nite past and as such uncorrelated

with L′ (εt).

1. Write

E
[
mt+hL′(εt)

]
= E

yt+h −∑
j≥0

bjεt+h−j

L′(εt)
 ,

and the result is immediate for h < 0 given Proposition 2.2 and Corollary 2.1. For h ≥ 0,

rewrite bj as

bj =
E [yt+jL′ (εt)]−

∑j−1
k=0 bk E [εt+j−kL′ (εt)]

E [εtL′ (εt)]
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exploiting strict stationarity of yt. Then,

E
[
mt+hL′(εt)

]
= E

[
yt+hL′(εt)

]
− E

L′(εt)∑
j≥0

bjεt+h−j

 =

= b0 E
[
εt+hL′(εt)

]
+ . . .+ bh E

[
εtL′(εt)

]
− E

L′(εt)∑
j≥0

bjεt+h−j


= −E

L′(εt) ∑
j≥h+1

bjεt+h−j


which is zero thanks to Corollary 2.1.

2. Since mt ∈ St and mt and L′ (εt) are uncorrelated, mt ∈ St−1. Apply this inductively to

conclude that mt ∈ S−∞.

3. Recall that et = εt +
∑

j≥1 bjεt−j . Since L′ (εt) is orthogonal to St−1 and et−j ∈ St−1

∀j ≥ 1, εt must be the generalized innovation of et, while
∑

j≥1 bjεt−j is its linear predictor,

based on et's past. Hence, et is a regular process.

4. Since mt ∈ St−1, St−1 contains all the information about mt. Hence, the linear forecast of

mt given St−1 can only be mt itself. So mt is predictable.

Proof of Proposition 2.3

In the OLS framework, where closed-form expressions for the estimators exist, the `2 vector

norm (and the corresponding induced matrix norm) is the natural choice. For the general case

of estimation under the relevant loss function, however, we prefer the use of the `1 norm (or

city-block norm),

‖x‖1 =
m∑
j=1

|xj | ∀x = (x1, . . . , xm)′ ∈ Rm,

simplifying the arguments. Note that convergence in the `1-sense implies convergence in the

`2-sense; the converse, however, does not always hold true.

Let with a∗ =
(
a∗1, a

∗
2, . . . , a

∗
p, 0, . . .

)′ ∈ Θ,

QT
(
a∗′, b∗

)
=

1

T

T∑
t=hT+1

L

yt − b∗ − hT∑
j=1

a∗jyt−j


=

1

T

T∑
t=hT+1

L

εt − (b∗ − b)−
∞∑
j=1

(
a∗j − a

)
yt−j


and assume that the result of the numerical optimization exists w.p. 1. Since, for any sample

size, this procedure only delivers a vector of dimension hT +1, while, in the limit, in�nitely many

elements are required, we set the `missing estimates' equal to zero. Further, let a = (a1, a2, . . .)
′ ∈
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Chapter 2 Long Autoregressions under Asymmetric Loss

`1, the space of absolutely summable sequences. Since
∑

j>hT
|aj | → 0, convergence of â =

(â1, . . . , âhT , 0, . . .)
′ to a in L1 norm implies the convergence posited in Proposition 2.3.

We show in a �rst step that, for any a∗,

sup
Θ

∣∣∣∣∣QT (a∗′, b∗)− 1

T

T∑
t=1

L
(
εt + u∗t−1

)∣∣∣∣∣ p→ 0 (2.15)

where u∗t−1 = −
∑

j≥1

(
a∗j − aj

)
yt−j−(b∗ − b) (with a∗−a obviously being absolutely summable).

Using Lemma 2.1, one can in fact also conclude that u∗t−1 is uniformly Lp-bounded, stationary

and ergodic. Note also that the Lp boundedness of u∗t−1 is uniform in a∗ as well (and not only

in t), since ‖a∗‖1 < M . Let Rt,hT =
∑∞

j=hT+1 a
∗
jyt−j such that

QT =
1

T

T∑
t=hT+1

L
(
εt + u∗t−1 +Rt,hT

)
.

For p = 1, L is Lipschitz and we have immediately that∣∣∣∣∣QT (a∗′hT , b∗)− 1

T

T∑
t=1+1

L
(
εt + u∗t−1

)∣∣∣∣∣ ≤ C 1

T

T∑
t=hT+1

|Rt,hT |+ C
1

T

hT∑
t=1

L
(
εt + u∗t−1

)
.

Now, yt is uniformly Lp-bounded, so

0 ≤ E

 1

T

T∑
t=hT+1

|Rt,hT |

 ≤ E (|yt|)
∑

j≥hT+1

∣∣a∗j ∣∣→ 0 for all a∗

and the �rst summand vanishes in L1 norm at a uniform rate, since
∑

j≥1

∣∣∣a∗j ∣∣∣ < C ∀a∗ ∈ Θ.

For the second summand, we note that, for p = 1, L (εt + ut−1) ≤ C
(
|εt|+

∣∣u∗t−1

∣∣) with εt and
ut−1 uniformly L1-bounded, and hence

0 ≤ E

[
1

T

hT∑
t=1

L
(
εt + u∗t−1

)]
≤ ChT

T

for all a∗ with ‖a∗‖1 < C as required for (2.15).

For p > 1, we exploit the power shape of the loss function. Concretely, use the mean value

theorem to conclude that

L
(
εt + u∗t−1 +Rt,hT

)
= L

(
εt + u∗t−1

)
+ L′

(
εt + u∗t−1 + υt

)
Rt,hT

with |υt| ≤ |Rt,hT |, where, thanks to Hölder's inequality,

E

[∣∣∣∣ 1

T

∑
L′
(
εt + u∗t−1 + υt

)
Rt,hT

∣∣∣∣] ≤ 1

T

T∑
t=hT+1

p
p−1

√
E
[∣∣L′ (εt + u∗t−1 + υt

)∣∣ p
p−1

]
p

√
E [|Rt,hT |

p].
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Chapter 2 Long Autoregressions under Asymmetric Loss

Note that, thanks to the Minkowski's inequality, p
√

E [|Rt,hT |
p] ≤

∑∞
j=hT+1

∣∣∣a∗j ∣∣∣ p
√

E [|yt|p] → 0

like in the case p = 1, so we only need to show that E
[∣∣L′ (εt + u∗t−1 + υt

)∣∣ p
p−1

]
< C for all t.

To this end, note that L′ has power tails with index p− 1, so

E
[∣∣L′ (εt + u∗t−1 + υt

)∣∣ p
p−1

]
≤ C E

[∣∣εt + u∗t−1 + υt
∣∣p] .

Furthermore, Minkowski's inequality and the fact that |υt| ≤ |Rt,hT | imply

p

√
E
(∣∣εt + u∗t−1 + υt

∣∣p) = p

√
E
[∣∣εt + u∗t−1 + υt

∣∣p]
≤ p

√
E [|εt|p] + p

√
E
[∣∣u∗t−1

∣∣p]+ p

√
E [|υt|p]

≤ p

√
E [|εt|p] + p

√
E
[∣∣u∗t−1

∣∣p]+ p

√
E [|Rt,hT |

p] < C

so indeed E
[∣∣L′ (εt + u∗t−1 + υt

)∣∣ p
p−1

]
< C for all t as required. An equicontinuity argument

similar to the one used for the case p = 1 leads to the desired result.

Furthermore, εt + u∗t−1 is itself stationary and ergodic, and it follows with Lemma 2.1 that it

also is Lp bounded, so E
(
L
(
εt + u∗t−1

))
<∞. It then holds due to the ergodic theorem (see e.g.

Davidson, 1994, Theorem 13.12) that

1

T

T∑
t=1

L
(
εt + u∗t−1

) p→ E
(
L
(
εt + u∗t−1

))
as T →∞. We now establish uniformity of the above convergence. To accomplish this task, we

show the sequence of target functions to be stochastically equicontinuous. See, among others,

Andrews (1992) for a discussion on generic uniform convergence. We show the following condition

to hold true

sup∥∥∥(a∗′1 ,b∗1)′−(a∗′2 ,b∗2)
′
∥∥∥
1
<δT

∣∣∣∣∣ 1

T

T∑
t=1

L
(
εt + u∗1,t−1

)
− 1

T

T∑
t=1

L
(
εt + u∗2,t−1

)∣∣∣∣∣ p→ 0 (2.16)

for some deterministic sequence δT → 0 and u∗i,t−1 = −
∑

j≥1

(
a∗i,j − aj

)
yt−j − (b∗i − b).

For p = 1, a Lipschitz argument immediately leads to the desired result, while for p > 1 we

resort again to the mean value theorem to obtain for each t

L
(
εt + u∗1,t−1

)
− L

(
εt + u∗2,t−1

)
= L′ (ξt)

(
u∗1,t−1 − u∗2,t−1

)
for ξt = w

(
εt + u∗1,t−1

)
+ (1− w)

(
εt + u∗2,t−1

)
where w ∈ [0, 1]. Therefore,

∣∣∣∣∣ 1

T

T∑
t=1

L
(
εt + u∗1,t−1

)
− 1

T

T∑
t=1

L
(
εt + u∗2,t−1

)∣∣∣∣∣ ≤ 1

T

T∑
t=1

|L′ (ξt)|

∣∣∣∣∣∣
∑
j≥1

(
a∗1,j − a∗2,j

)
yt−j

∣∣∣∣∣∣+ |b∗1 − b∗2|

 .

With ξt easily shown to be uniformly Lp-bounded, and therefore L′ (ξt) uniformly L p
p−1

-

27



Chapter 2 Long Autoregressions under Asymmetric Loss

bounded, Markov's inequality implies that

|b∗1 − b∗2|
1

T

T∑
t=1

|L′ (ξt)|
p→ 0;

at the same time,
(∑

j≥1

∣∣a∗1,j − a∗2,j∣∣)−1 ∣∣∣∑j≥1

(
a∗1,j − a∗2,j

)
yt−j

∣∣∣ is uniformly Lp-bounded,
so Hölder's inequality implies that

E

[
|L′ (ξt)|

∣∣∣∣∣∑
j≥1

(
a∗1,j − a∗2,j

)
yt−j

∣∣∣∣∣
]
≤ C

∑
j≥1

∣∣a∗1,j − a∗2,j∣∣ ≤ CδT → 0

as required to establish (2.16).

Summing up, it holds that

sup(
a∗′hT

,b∗
)
∈Θ

∣∣∣∣∣QT (a∗′hT , b∗)− E

[
L

(
yt −

∑
j≥1

a∗jyt−j − b∗
)]∣∣∣∣∣ p→ 0 (2.17)

as T, hT → ∞. But the expectation is the target function in Proposition 2.1, which

is uniquely minimized at parameters solving the f.o.c. from Proposition 2.1. Since the

pseudo-true values aj, b satisfy exactly these conditions according to Assumption 2.3,

identi�cation is provided for. Given uniform convergence, the result follows with Theorem

4.1.1 in Amemiya (1985) since Θ is compact and the target function is continuous.

Proof of Proposition 2.4

We drop b for simplicity, as it does not a�ect the derivations in an essential manner. Also,

it is more convenient to now treat QT as having hT arguments rather than a ∈ `1. For

the case p > 2, the proof uses the usual argument of an elementwise �rst-order Taylor

expansion of the gradient of the target function around ahT . Let sj
(
a∗hT
)
, j = 1, . . . , hT ,

be the jth element of the gradient of QT , s = {sj}1≤j≤hT . Then,

sj (âhT ) = sj (ahT ) +
∂sj
(
a∗hT
)

∂a∗hT

∣∣∣∣∣
′

ξj,hT

(âhT − ahT ) ,

where ξj,hT is a convex combination of ahT and âhT . Since âhT is the solution of (2.6),

it holds that s (âhT ) = 0, and we obtain after pre-multiplication with the inverse of the

Hessian that

‖âhT − ahT ‖2 ≤
∥∥(ΞhT )−1

∥∥
2

∥∥∥∥∥∥ ∂QT
(
a∗hT
)

∂a∗hT

∣∣∣∣∣
ahT

∥∥∥∥∥∥
2

,
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where ‖·‖2 denotes the induced matrix norm and ΞhT is the matrix having
∂sj

(
a∗hT

)
∂a∗hT

∣∣∣∣′
ξj,hT

as jth row. Now,

sj (ahT ) = − 1

T

T∑
t=hT+1

yt−jL′
(
εt +

∑
k>hT

akyt−k

)

where

L′
(
εt +

∑
k>hT

akyt−k

)
= L′ (εt) + L′′ (ψt)

∑
k>hT

akyt−k

with ψt a convex combination of εt+
∑

k>hT
akyt−k and εt. The shape of the loss function,

the s-summability of ak and the uniform moment properties of εt and yt imply that L′′ (ψt)
is uniformly L2p/(p−2) bounded. We have therefore that

sj = − 1

T

T∑
t=hT+1

yt−jL′ (εt)−Rj,T ,

where

√
E
[
|Rj,T |2

]
=

√√√√√E

∣∣∣∣∣ 1

T

T∑
t=hT+1

yt−jL′′ (ψt)
∑
k>hT

akyt−k

∣∣∣∣∣
2
 ≤ ∑

k>hT

|ak|
√

E
[
|yt−jL′′ (ψt) yt−k|2

]
.

It is easily shown by using the Hölder's inequality that E
[
|yt−jL′′ (ψt) yt−k|2

]
is uniformly

bounded, which implies √
E
[
|Rj,T |2

]
= o

(
h−sT
)

uniformly in j. We also have uniformly in j that

Var

[
1

T

T∑
t=hT+1

yt−jL′ (εt)

]
= O

(
1

T

)

thanks to the md property of L′ (εt) and the moment properties of L′ (εt) and yt−j, so,

summing up,

‖s (ahT )‖2 = Op

(√
hT max

{
h−sT , T−0.5

})
.

To discuss (the inverse of) ΞhT , note that its i, jth element is given by

1

T

T∑
t=hT+1

yt−iyt−jL′′
(
εt +

hT∑
k=1

(ak − ξk,j,hT ) yt−k +
∑
k>hT

akyt−k

)
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where ξj,hT = (ξ1,j,hT , . . . , ξhT ,j,hT )′. Let L = minu∈R L′′ (u) and write ΞhT as the sum of

two matrices,

ΞhT = A + B,

where

A =

{
L

1

T

T∑
t=hT+1

yt−iyt−j

}
i,j

and

B =

{
1

T

T∑
t=hT+1

yt−iyt−j

(
L′′
(
εt +

hT∑
k=1

(ak − ξk.j,hT ) yt−k +
∑
k>hT

akyt−k

)
− L

)}
i,j

.

Note that A is the scaled sample autocovariance matrix of yt (with L > 0), while B may

be written as

B = Y′DY

with Y stacking hT lags of yt, t = hT + 1, . . . , T and

D = diag

{
L′′
(
εt +

hT∑
k=1

(ak − ξk.j,hT ) yt−k +
∑
k>hT

akyt−k

)
− L

}

having nonnegative diagonal elements by construction. Therefore, both A and B are

positive semide�nite; for two positive semide�nite matrices A and B it can be shown that

the smallest eigenvalue of the sum A+B is not smaller than any of the eigenvalues of A or

B (to see this, write min eigenval(A + B) = minx
x′(A+B)x

x′x
≥ minx

(
x′Ax
x′x

+ x′Bx
x′x

)
where

the latter summands must both be nonnegative). Summing up, the smallest eigenvalue

of ΞhT is not smaller than the smallest eigenvalue of the autocovariance matrix of yt,

implying upon inversion that

∥∥(ΞhT )−1
∥∥

2
≤ 1

L

∥∥∥∥∥∥
({

1

T

∑
yt−iyt−j

}
i,j

)−1
∥∥∥∥∥∥

2

= Op (1)

by Assumption 2.5. Summing up (again), we obtain

‖âhT − ahT ‖2 = Op

(
max

{
h

1/2−s
T ,

√
h
T

T 1/2

})
.

The extension for p = 2, where for α 6= 0.5 we assumed εt to have absolutely continuous

conditional distribution, is tedious yet straightforward and we omit the details.
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Additional �gures

Figure 2.5: Relative forecast performance for strongly serially correlated ARMA-GARCH
processes (Student t(50) innovations, p = 3)
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Chapter 2 Long Autoregressions under Asymmetric Loss

Figure 2.6: Relative forecast performance for weakly serially correlated ARMA-GARCH
processes (Student t(50) innovations, p = 3)
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Chapter 2 Long Autoregressions under Asymmetric Loss

Figure 2.7: Relative forecast performance for strongly serially correlated ARMA-GARCH
processes (Student t(5) innovations, p = 2)
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Chapter 2 Long Autoregressions under Asymmetric Loss

Figure 2.8: Relative forecast performance for weakly serially correlated ARMA-GARCH
processes (Student t(5) innovations, p = 2)
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Chapter 3

Re-Evaluating the Prudence of

Economic Forecasts in the EU:

The role of instrument persistence

Coauthored by : Matei Demetrescu and Christoph Roling

3.1 Motivation

The evaluation of forecasts is one of the important feed-back loops in applied econometrics. It

has e.g. become routine to test realized forecast error series for unbiasedness or lack of serial

correlation. But most tests rely on the assumption that the relevant optimality criterion is based

on the mean squared error [MSE]. Under other loss functions, and in particular asymmetric ones,

it actually is quite rational to produce biased forecasts. Thus, it is of interest to learn the shape

of the loss function underlying a given sequence of forecasts. Elliott et al. (2005) propose a

class of loss functions indexed by two parameters: the asymmetry and the tail weight. GMM

estimation of the asymmetry parameter is possible (for simplicity often assuming known tail

weight), provided that variables are available, which would improve forecasts if the latter were

not rational; such instrument variables are e.g. the original predictors, lagged forecast errors, or

lagged target variables.

Building on this method, Christodoulakis and Mamatzakis (2008, 2009) �nd asymmetric pref-

erences in series forecasts of EU institutions and countries. Clements et al. (2007) and Capistrán

(2008) discuss the loss function of the Federal Reserve, while Pierdzioch et al. (2011) �nd evi-

dence of asymmetry in the loss function of the Bank of Canada, and Tsuchiya (2016) provides

evidence for Japan. Along the same lines, Elliott et al. (2008), Boero et al. (2008), Aretz et al.

(2011), Clatworthy et al. (2012) or Fritsche et al. (2015) �nd asymmetric loss preferences of

individual forecasters.

One limitation of the GMM method by Elliott et al. (2005) is that the instruments are as-

sumed stationary. This may seem benign; but many typical instruments are, on the contrary,

quite persistent. In their assessment of the EU Commission loss preferences, Christodoulakis
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and Mamatzakis (2009) use the lagged levels of in�ation, unemployment, government balance,

investment and current account as instruments, which are often regarded as having a stochastic

trend; see Section 3.3 for concrete evidence on the persistence of these variables. We therefore

re-examine the forecast preferences of the EU Commission in light of possibly highly persistent

instruments.

To this end, we show in Section 3.2 that the limiting distribution of the GMM estimator is non-

Gaussian in general. Moreover, the family of J-tests discussed by Elliott et al. (2005) loses the

chi-square limiting distributions, and decisions based on χ2 critical values lead to over-rejections

of the respective null hypotheses. But we also �nd some cases where the limiting distribution of

the t-statistic of the asymmetry parameter is standard normal in spite of instrument persistence,

such that the usual critical values are still appropriate. This is the case under a homoskedasticity

restriction, or when a persistent instrument is combined with an intercept only.

In Section 3.3 we extend the original data set to cover the full 1970�2016 period, and use

our theoretical insights to re-evaluate the prudence of economic forecasts of the EU Commission

in a robust fashion. Christodoulakis and Mamatzakis (2009) found that apparent irrational

forecasting behavior of the EU commission can well be explained by asymmetries in the loss

preferences. For the year-ahead forecasts, they �nd that forecasts tend to be optimistic, while

the current-year forecasts are somewhat pessimistic (as if to counter-balance the year-ahead

optimism). We con�rm the conclusions of Christodoulakis and Mamatzakis for the original data.

Considering the extended data set, we observe however an overall reduction of deviations from

symmetry in the EU commission forecasts, as well as a somewhat reduced evidence of forecast

irrationality. The �nal section concludes.

3.2 GMM inference under instrument persistence

3.2.1 Estimation of asymmetry

To keep the note self-contained, we brie�y review the GMM estimation procedure of Elliott et al.

(2005). The one-step ahead optimal predictor of a series yt is given by

ŷt = arg min
y∗

Et−1 (L (yt − y∗)) ,

where L denotes the relevant loss function � which should be quasi-convex (see e.g. Granger,

1999) � and Et−1 denotes the expectation taken w.r.t. the conditional forecast density given the

available information. The class of functions proposed by Elliott et al. (2005) is given by

L (u) = (α+ (1− 2α) 1(u < 0)) |u|p , (3.1)

where 1(·) is the indicator function. Let ut = yt− ŷt denote the realized forecast error at time t.

Should the forecast be indeed optimal, no information available at the time of the forecast can
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reduce forecasting risk, and the so-called generalized forecast error

L′ (ut) = p (α− 1(ut < 0)) |ut|p−1 =: ũt(α)

is a martingale di�erence sequence, E ( ũt| ũt−1, . . .) = 0 (Granger, 1999; Patton and Timmer-

mann, 2007b). We sometimes write ũt(α) = ũt in the following, should dependence on α not be

of essence.

Elliott et al. (2005) exploit this martingale di�erence property to estimate the asymmetry

parameter α from a series of observed forecast errors ut, t = 1, . . . , T . Concretely, one employs

for given p (typically chosen as p = 1 or p = 2) a set of D instrument variables gathered in

the vector vt−1. The instruments may be, but are not restricted to, predictors from the original

forecasting model; they cannot improve the forecasts when these are optimal, so vt−1 must belong

to the information set at time t − 1 and E ( ũt| ũt−1, . . . ,vt−1, . . .) = 0 under rationality. This

implies D moment restrictions,

E (vt−1ũt(α)) = pE
(
vt−1 (α− 1(ut < 0)) |ut|p−1

)
= 0,

leading for the loss functions from (3.1) to the GMM estimator

α̂ =
ĥ′ Ŝ−1

(
1
T

∑T
t=2vt−11(ut < 0)|ut|p−1

)
ĥ′ Ŝ−1 ĥ

= α− 1

p

ĥ′ Ŝ−1
(

1
T

∑T
t=2 vt−1ũt

)
ĥ′ Ŝ−1ĥ

,

where

ĥ =
1

T

T∑
t=2

vt−1 |ut|p−1 and Ŝ =
1

T

T∑
t=2

vt−1v
′
t−1 (1 (ut < 0)− α̂)2 |ut|2p−2 .

The matrix Ŝ is nothing other than the scaled sample covariance matrix of the sample moment

conditions vt−1ũt (exploiting the zero expectation). Note that, for estimation, an iterative pro-

cedure is required since Ŝ depends on α via ũt = ũt(α). Under the assumptions of Elliott et al.

(2005), a limiting normal distribution holds for α̂ as T →∞,

√
T (α̂− α)

d→ N
(

0, plim V̂
)
,

where the standard error of α̂ is given by V̂ 1/2 = (ĥ′ Ŝ−1ĥ)−1/2, and the plim exists and is posi-

tive. Con�dence intervals with asymptotic coverage 1− γ are easily built as α̂± z1−γ/2 T
−1/2V̂ 1/2

with z1−γ/2 the 1 − γ/2 quantile of the standard normal distribution. Moreover, J-statistics are

available,

J· =
1

p2

(
1√
T

T∑
t=2

v′t−1ũt(·)

)
Ŝ−1

(
1√
T

T∑
t=2

vt−1ũt(·)

)
,

for which χ2 limiting distributions arise. Under stationarity assumptions, Jα̂ (which may be

interpreted as a rationality test) has a limiting null χ2 distribution with D−1 degrees of freedom

(so it requires the use of at least two instruments); if testing hypotheses of the type α = α0, Jα0
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has a limiting null χ2(D) distribution. Alternatively, null hypotheses on α can easily be checked

using the t-ratio T = (α̂ − α0)/V̂ 1/2.1 Note that, for one instrument only (D = 1), Jα0 is the

same as T 2. Conversely, con�dence intervals for α may be obtained by inverting the tests Jα0 .

The normal and χ2 distributions hinge on whether a central limit theorem may be applied to

the term 1√
T

∑T
t=2vt−1ũt. The summands vt−1ũt form by construction a martingale di�erence

sequence, but a �classical� central limit theorem does not apply when elements of vt−1 are highly

persistent (exhibit stochastic trends, e.g. random walks) and is thus nonstationary. We analyze

in the following the limiting distribution of Jα and T when some of the instruments are allowed

to be strongly persistent in the sense that they possess a generic stochastic trend.

3.2.2 Assumptions and main result

To cover the case of both stationary and persistent instruments, partition

vt−1 =
(
v′0,t−1, 1,v

′
1,t−1

)′
where the D1 persistent instruments v1,t satisfy the following technical requirement:

Assumption 3.1 Let NT be a diagonal matrix with NT,ii →∞, and assume that there exists a

continuous-time vector process X (s) such that the weak convergence N−1
T v1,[sT ] ⇒ X (s) holds

in a space of càdlàg functions endowed with a suitable norm.

The assumption allows e.g. for near-integrated modelling of predictors (see e.g. Campbell and

Yogo, 2006, and the references therein) but not exclusively. E.g. X(s) may be a (multivariate)

Ornstein-Uhlenbeck [OU] process with non-zero starting value, corresponding in discrete time

to a near-integrated process with initial condition drawn from the unconditional distribution (as

employed by Müller and Elliott, 2003). Also, X(s) may be a fractional Brownian motion (see

e.g. Maynard and Phillips, 2001, and the references therein). For the D0 stationary instruments

v0,t, we make

Assumption 3.2 Let
(
ũt,v

′
0,t−1

)′ ∈ RD0+1 be a zero-mean stationary, ergodic, uniformly L4+δ-

bounded sequence for some δ > 0, such that E ( ũt| ũt−1, . . . ,vt−1, . . .) = 0.

Theorem 27.14 in Davidson (1994) then implies

1√
T

[sT ]∑
t=2

(
ũt

v0,t−1ũt

)
⇒

(
W̃ (s)

W̄ (s)

)
,

with W̃ (s) and W̄ (s) Brownian motions. Take this to be joint with the weak convergence in

Assumption 3.1, and let

Cov

(
W̃ (1)

W̄ (1)

)
=

(
Var (ũt) E

(
v′0,t−1ũ

2
t

)
E
(
v0,t−1ũ

2
t

)
E
(
v0,t−1v

′
0,t−1ũ

2
t

) ) =

(
σ2
ũ γ ′0

γ0 Ω̄0

)
1When the purpose is testing rather than estimating, one may compute Ŝ under the null � i.e. replace
α̂ with α0 � to reduce computational requirements.
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for later reference; in case of conditional homoskedasticity of ũ, Ω̄0 = σ2
ũ Cov (v0,t−1) and γ0 = 0.

Having a constant in the vector of instruments is on the one hand common in practice; on

the other hand, the constant stands in for I(0) processes with nonzero mean since the purely

stochastic component would be dominated in the limit; see the proof of Proposition 3.1. Hence

requiring that v0,t−1 have zero mean does not imply any loss of generality, and one essentially

has what one may call weakly persistent instruments.2

Proposition 3.1 Under Assumptions 3.1 and 3.2, it holds as T →∞ that

√
T (α̂− α)⇒ 1

p

H ′S−1U

H ′S−1H
and T ⇒ 1

p

H ′S−1U√
H ′S−1H

where

H ≡


E
(
v0,t−1 |ut|p−1

)
E
(
|ut|p−1

)
E
(
|ut|p−1

) ´ 1
0 X (s) ds

 , U ≡

 W̄ (1)

W̃ (1)´ 1
0 X (s) dW̃ (s)


and

S ≡ 1

p2

 Ω̄0 γ0 γ0

´ 1
0 X

′ (s) ds

γ ′0 σ2
ũ σ2

ũ

´ 1
0 X

′ (s) ds´ 1
0 X (s) dsγ ′0 σ2

ũ

´ 1
0 X (s) ds σ2

ũ

´ 1
0 X (s)X ′ (s) ds

 .

Proof: See the Appendix.

Proposition 3.2 Under the assumptions of Proposition 3.1, it holds under the respective null

hypotheses that, as T →∞,

Jα0

d→ 1

p2
U ′S−1U and Jα̂

d→ 1

p2
U ′
(

S−1 − 1

H ′S−1H
S−1HH ′S−1

)
U .

Proof: Analogous to the proof of Proposition 3.1 and omitted.

3.2.3 Discussion

Above all, it should be emphasized that the estimator α̂ is still consistent; it is only the higher-

order properties that are a�ected by instrument persistence. Yet, in spite of the nonstandard

distribution of α̂, the GMM estimator is
√
T -consistent only, and not superconsistent as might

have been expected given stochastically trending instruments.

Given the presence of the Itô-type integral in U , Propositions 3.1 and 3.2 imply nonstandard

distributions in general, for both α̂ and the J -statistics. Take as an extreme example the case

2This terminology may con�ict with the persistence notion associated with long memory processes:
stationary long memory is allowed for v0,t, uniform L4+δ-boundedness provided. We stick to it,
though, since it complements strongly persistent processes which are not stationary or ergodic.
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where there is exactly one persistent instrument such that, under the null α = α0,

Jα0 ⇒

(´ 1
0 X (s) dW̃ (s)

)2

σ2
ũ

´ 1
0 X

2 (s) ds
,

which is not χ2 in general but has a structure akin to that of the Dickey-Fuller distribution.

The fact that the limiting distributions of the J - and T -statistics change if some instruments

are persistent has implications on the behavior of tests based on these statistics. Moreover, the

distributions derived above depend on the properties of the process X (s), so it is quite di�cult

to provide practitioners with correct critical values, as these would depend on the particular

data generating process [DGP]. In fact, it may well happen that the relevant characteristics

of X (s) cannot even be consistently estimated. This is for instance the case with the mean

reversion parameter of a near-integrated process (Phillips, 1987). (Note also that other types

of persistence than near-integration generate similar behavior, and distinguishing among them

� e.g. deciding between fractional integration and near integration � is di�cult; see Müller and

Watson, 2008.) In such situations, bootstrap schemes will fail too, as they cannot replicate the

correct limiting distributions in general when the distributions depend on parameters that cannot

be estimated consistently.

Yet standard limiting behavior may be recovered in particular cases. The �rst case is when

the instruments v1,t are �exogenous� in such a way that mixed Gaussianity of U is given:

Corollary 3.1 Let X be independent of (W̃ , W̄ ′)′. Then, Jα̂
d→ χ2

D−1, Jα0

d→ χ2
D, and

T d→ N (0, 1).

Proof: Obvious and omitted.

Moreover, if the forecast errors ful�l certain restrictions on the serial dependence of the con-

ditional higher-order moments, the following corollary shows that normality of T is recovered

even in cases where Corollary 3.1 does not apply.

Corollary 3.2 Let E( |ut|p−1
∣∣ ũt−1, . . . ,vt−1, . . .) = µp−1 and E

(
ũ2
t

∣∣ ũt−1, . . . ,vt−1, . . .
)

= σ2
ũ be

constant. Then, T d→ N (0, 1).

Proof: See the Appendix.

The corollary essentially requires constant conditional scale of ut. Also, the presence of a

constant instrument is paramount for the result; see the proof for details.

Finally, the constant alone also eliminates nonstandard distribution components from T . The
essential requirement is that only persistent instruments are employed in conjunction with a

constant:

Corollary 3.3 Let vt−1 =
(
1,v′1,t−1

)′
. Then, T d→ N (0, 1).

Proof: See Appendix.
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Corollaries 3.2 and 3.3 are particularly relevant for applied work under uncertain persistence of

the instruments, since they allow for standard inference as long as the nonconstant instruments

have the same kind of persistence, without having to specify whether the persistence is weak or

strong. This holds irrespective of any conditional heteroskedasticity present in the data.

In what concerns the J -statistics, the expressions in Proposition 3.2 do not appear to simplify

under the conditions of either Corollary 3.2 or 3.3.

3.2.4 Gauging the behavior under persistence

We now highlight the extent of the departures from standard asymptotics of J and T by means

of a Monte Carlo experiment. We combine the frameworks of Engle et al. (1987), Bollerslev

(1990) and Gospodinov (2009) to obtain the following DGP:[
st

ft

]
=

[
ft−1 + δ

√
h1,t

ft−1

]
+ Ω

1/2
t εt (3.2)

for t = 2, . . . , T and f0 = 0. We work with sample sizes T ∈ {100, 400, 1000}. Here, εt =

(ε1,t, ε1,t)
′ is an i.i.d. Gaussian process with zero mean and identity covariance matrix. Further-

more,

Ωt =

[√
h1,t 0

0
√
h2,t

][
1 ρ

ρ 1

][√
h1,t 0

0
√
h2,t

]
(3.3)

where hi,t = γ0,i + γ1,iε
2
i,t−1 for i = 1, 2. Consider now using ft−1 as a forecast for st.

(To �x ideas, st may denote the logarithm of the weekly spot rate of a given currency (relative

to USD, say) and ft may denote the corresponding forward rate formed at time t− 1 for time t.

Hence we adopt an ARCH in mean (ARCH-M) type speci�cation for the series of excess returns

st − ft−1. Following Engle et al. (1987), the speci�cation in (3.2) implies that the excess return

is proportional to the conditional standard deviation of the spot rate.3)

Now, the series ut = st−ft−1 is predictable in this framework due to the presence of the time-

varying component δ
√
h1,t, so using ft−1 as a forecast for st is irrational under MSE loss. The

ft−1 forecast may however be rational under a speci�c asymmetric loss function. By Theorem

1 in Patton and Timmermann (2007a), the optimal point forecast of st in this model is given

under the loss function in (3.1) by ft−1 + δ
√
h1,t +C

√
h1,t, where C is a constant that depends

only on the distribution of the idiosyncratic error and the loss function L. The optimal point

forecast will thus be zero if δ = −C. Under normality and given that δ = 0.5, we can then

select the asymmetry parameter α consistent with ut = st−1 − ft being unforecastable under

an asymmetric power loss function. This value is α ≈ 0.30854 for p = 1, and α ≈ 0.22066 for

p = 2.4

3See also Baillie and Bollerslev (2000) who show that in a consumption-based asset pricing model, the
discrepancy between the (expected) spot and forward rate is a function of the conditional variance
deviation of the spot rate.

4The constant C must satisfy E (L′ (ε1,t − C)) = 0; see Granger (1999); Patton and Timmermann
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The focus is on inference of the asymmetry parameter in this simpli�ed framework using the

test statistics Jα̂, Jα0 and T , based on forecast errors ut = st − ft−1. To estimate the loss

function parameter, we employ the GMM estimator described above and choose the instruments

as

(v0,t−1, 1, v1,t−1)′ = (ut−1, 1, ft−1)′ for t = 2, . . . , T.

The instrument ft−1 is highly persistent5 while the lagged forecast error ut−1 is stationary.

The ARCH parameters are given by γ0,2 = γ0,1 = 0.01, γ1,2 = 0, and δ = 0.5. A nonzero

correlation ρ translates in dependence between the innovations of the predictor and the forecast

errors ut, thus avoiding the conditions of Corollary 3.1, so we set the (constant) conditional

correlation ρ = 0.8; Table 3.1 in the following section indicates that such correlations are not

uncommon in real data. Furthermore, we consider the cases γ1,1 = 0.95 and γ1,1 = 0 separately.

The case γ1,1 = 0.95 exhibits conditional heteroskedasticity, while γ1,1 = 0 does not, so we expect

di�erent behavior of T according to Corollary 3.2. The J -statistics should behave di�erently

under stationary and persistent instruments, irrespective of conditional heteroskedasticity.

All simulations have been performed in R, version 3.5.1, using RStudio (1.1.453) and the

packages expm (0.999-2), ggplot2 (3.0.0) and readr (1.1.1). We draw 25,000 samples from the

above DGP and estimate the loss function parameter α̂ and the variance parameter V̂ . We

study three estimators: the �rst uses a constant and a lagged forward rate, the second resorts to

a constant and a lagged forecast error, while the third estimator uses all three instruments.

We report here results for the class of asymmetric linear loss functions, i.e. p = 1.

The behavior of the J -statistics is in line with the provided asymptotics. From Figure 3.1 we

learn that the three-instrument case (with both the stationary and the persistent instrument)

exhibits serious departures from the χ2 limit derived by Elliott et al. (2005) under stationar-

ity, leading to spurious rejections of the null. When leaving out the stationary instrument, the

distribution is still distorted, even if less so than for the case with three instruments. The χ2

distribution is only appropriate when no persistent instrument is used. Regarding the magnitude

of the distortions, there is no obvious di�erence between the cases without, and with, conditional

heteroskedasticity. Figure 3.2 plots the densities of the null distributions of the statistics Jα0 .

Again, the use of persistent instruments shifts the distribution to the right leading to overrejec-

tions if using χ2 critical values.6

The results for asymmetric quadratic losses, p = 2, are virtually the same for the J -statistics;
for the precise results, see the Appendix. The only di�erence appears to be the somewhat slower

convergence towards the respective limiting distribution; in any case, χ2 critical values should

(2007a). From this condition and the normality assumption, we obtain Φ(C) = α for p = 1 and

Φ (C)
(
E
(
ε1,t
∣∣ε1,t < C

)
/C − 1

)
= α/(1 − 2α) with E

(
ε1,t
∣∣ε1,t < C

)
= 1

Φ(C)

´ C
−∞ xφ (x) dx for p = 2,

where φ and Φ are the std. normal pdf and cdf.
5This is in line with empirical evidence for the forward rate; see e.g. Liu and Maynard (2005) or
Gospodinov (2009).

6Note that the plots seem to suggest a mismatch in the left tail between the simulated densities and
the χ2 distribution for the case of a stationary instrument as well, but this is an artifact of the kernel
density estimator used for smoothing, which su�ers from boundary bias at the origin.
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Figure 3.1: Densities of Jα̂ under asymmetric linear loss and various instrument choices
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Notes: The plots show the density of χ2 (solid grey) and kernel density estimates of the distribution of
Jα̂ when T = 100 (dashed black), T = 400 (dotted blue) and T = 1000 (dot-dashed red). The instrument
combinations are: a constant and a persistent instrument (left) and a constant a stationary instrument
(middle), where the plotted χ2 distribution has 1 d.o.f., as well as all three instruments (right), where
the plotted χ2 distribution has 2 d.o.f.. The DGP is given by (3.2) - (3.3) with δ = 0.5, ρ = 0.8,
γ0,1 = γ0,2 = 0.01, and γ1,2 = 0, with either conditional homoskedasticity of ũt (γ1,1 = 0, top), or
conditional heteroskedasticity (γ1,1 = 0.95, bottom).

not be used for testing with the J -statistics under instrument persistence.

Figure 3.3 plots the �nite-sample densities of T , together with the standard normal bench-

mark. We observe for p = 1 a remarkable robustness of the T -statistic to instrument persistence,

even when this is not expected (one instrument of each kind, conditional heteroskedasticity).

This is not the case for p = 2, however; see the Appendix. There, we note for the homoskedastic

case (γ1,1 = 0) that convergence to the standard normal appears to occur in all cases (even if at

a slightly lower pace for the case of three instruments). This is consistent with the statement of

Corollary 3.2. At the same time, under conditional heteroskedasticity, the use of three instru-

ments leads to larger departures from the standard normal, as expected from Proposition 3.1

in general. For the cases with two instruments, there is a small visible di�erence between the

conditionally homoskedastic and conditionally heteroskedastic cases; at the same time, it makes

no di�erence whether the non-constant instrument is stationary or not, as predicted by Corol-

lary 3.3. Also, even in the asymptotically normal cases, the approximation of the �nite-sample

distribution by the standard normal limit is not ideal.7 This e�ect is of similar magnitude as the

persistence-induced distortions.

7The observed skewness is partly due to the iterative nature of α̂; when testing, using the null value α0

reduces it.
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Figure 3.2: Densities of Jα0 under asymmetric linear loss and various instrument choices
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Notes: The plots show the density of χ2 (solid grey) and kernel density estimates of the distribution
of Jα0

when T = 100 (dashed black), T = 400 (dotted blue) and T = 1000 (dot-dashed red). The
instrument combinations are: a constant and a persistent instrument (left) and a constant a stationary
instrument (middle), where the plotted χ2 distribution has 2 d.o.f., as well as all three instruments (right),
where the plotted χ2 distribution has 3 d.o.f.. Top: conditional homoskedasticity, bottom: conditional
heteroskedasticity of ũt. See Fig. 3.1 for details.

Figure 3.3: Densities of T under asymmetric linear loss and various instrument choices
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Notes: The plots show the density of the standard normal distribution (solid grey) and kernel density
estimates of the distribution of T when T = 100 (dashed black), T = 400 (dotted blue) and T = 1000
(dot-dashed red). The used instrument combinations are: a constant and a persistent instrument (left)
and a constant and a stationary instrument (middle), as well as a constant, a persistent and a stationary
instrument (right). Top: conditional homoskedasticity, bottom: conditional heteroskedasticity of ũt. See
Fig. 3.1 for details.

3.2.5 Recommendations for practitioners

To sum up, the J -statistics are not reliable as soon as at least one instrument is persistent.

Unless this case can be excluded, it is not recommendable to rely on J -statistics for inference.
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The situation is more �nely nuanced for the T -statistic. For the case p = 2, some care needs

to be taken to ensure correctly-sized inference. First, practitioners could conduct a test of the

null hypothesis of constant conditional moments of ũt (e.g. in the spirit of Bierens, 1982, but a

parametric test for no ARCH e�ects might also be used) to be able to justify χ2 critical values via

Corollary 3.2. Alternatively, the set of instruments may be split to separate weakly from strongly

persistent instrument and run separate tests for the two sets of instruments. This would allow

to exploit Corollary 3.3 without worrying about the conditional homoskedasticity requirement.

For the case of linear asymmetric losses (i.e., p = 1), however, the T -statistic appears to be quite
robust to persistence, so the care taken for p = 2 is, by and large, unnecessary. In our replication

of the analysis of the loss preferences of the EU Commission, we take the T -ratio at face value

for p = 1, but otherwise distinguish between persistent and stationary instruments to prevent

spurious �ndings.

3.3 Re-assessing the EU Commission forecasts

This section reexamines the European Commission forecast data �rst analyzed by Christodoula-

kis and Mamatzakis (2009). They examine forecasts of �ve macroeconomic variables for 12

European Member States, namely in�ation, unemployment, government balance, investment

and current account, over the period 1970 � 2004. Each variable is predicted twice a year: in the

spring for the current year, and in the autumn for the upcoming year. The number of observa-

tions for each country varies from 35 to 18 depending on the year of entering the EU (e.g. 1986

for Spain and Portugal). For this replication study, we augment the initial data set with more

recent data, up to 2016,8 which yields an increased number of observations between 31 and 48

data points. In order to encompass time evolution of asymmetries, we perform the evaluation

for the original time span, for the full time span and for the last available 20 years only, i.e. 1997

� 2016.

Christodoulakis and Mamatzakis (2009) reported for the estimation under asymmetric linear

loss (p = 1) with D = 3 instruments: a constant, a lagged realization and a lagged forecast error.

The stationarity assumptions required by Elliott et al. (2005) may however be overly optimistic

for the data at hand. Table 3.1 gives the sums of estimated coe�cients of autoregressive [AR]

processes �tted to the realized values of the variables to be forecast, as well as correlation between

the AR residuals and the forecast errors (The model order p is selected individually using the

Akaike information criterion). Quite often, the cumulated AR coe�cients are seen to be close to,

or even above, unity.9 Moreover, the contemporaneous correlation between the forecast errors

and the innovations to the instruments is strongly positive: for the year-ahead forecasts, the

correlation ranges in a neighbourhood of 0.8, and is somewhat reduced, to about 0.5, for the

8The data were obtained from http://ec.europa.eu/economy_finance/db_indicators/

statistical_annex/index_en.htm.
9For Spanish in�ation we notice an extreme sum of about 3, which is explained by the speci�c pattern
of this series, with high levels of in�ation at the time Spain joined the European Community and
a dominating downward trend in the years to follow. Also, investment series have a pronounced
antipersistent behavior for some countries, e.g. for Belgium.
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Table 3.1: Instrument persistence: Stylized facts, 1970 � 2016.
In�ation Unemployment Gov. balance Investment Current account

Current Ahead Current Ahead Current Ahead Current Ahead Current Ahead

Belgium
Σ 0.781 0.793 0.778 0.747 0.284 0.795 -1.437 -0.833 0.564 0.621
r 0.292 0.771 0.336 0.183 0.573 0.782 0.237 0.561 0.585 0.364

Denmark
Σ 1.038 1.017 0.680 0.555 0.654 0.665 -1.026 -0.605 1.065 1.182
r 0.339 0.596 0.368 0.407 0.545 0.501 0.558 0.683 0.563 0.537

Germany
Σ 0.811 0.986 0.888 0.921 0.775 0.673 -0.092 -0.120 0.901 0.924
r 0.434 0.880 0.380 0.203 0.365 0.682 0.589 0.919 0.570 0.801

Greece
Σ 1.037 1.009 0.761 0.926 0.848 0.621 -0.323 0.435 0.774 0.381
r 0.358 0.437 0.212 0.538 0.423 0.597 0.350 0.519 0.596 0.547

Spain
Σ 2.968 3.411 0.835 0.778 � 0.736 0.361 -4.075 0.790 0.677
r 0.331 0.039 0.087 0.555 0.688 0.294 -0.130 0.147 0.309 0.668

France
Σ 0.989 0.948 0.910 0.915 0.240 0.724 -0.416 0.043 0.686 0.824
r 0.339 0.796 0.592 0.461 0.700 0.847 0.466 0.741 0.720 0.792

Ireland
Σ 1.044 0.964 0.893 0.909 0.793 0.729 -1.283 0.465 1.000 0.725
r 0.471 0.807 0.533 0.559 0.486 0.804 0.575 0.623 0.403 0.590

Italy
Σ 0.979 0.974 0.835 0.882 0.780 0.779 � � -0.061 0.440
r 0.332 0.662 0.534 0.505 -0.015 0.015 0.600 0.851 0.575 0.450

Luxembourg
Σ 0.754 0.890 0.987 0.950 0.666 0.652 � � 0.783 0.842
r 0.307 0.597 0.728 0.711 0.402 0.709 0.802 0.934 0.193 0.142

Netherlands
Σ 0.969 1.068 0.574 0.659 0.075 0.242 -1.195 � 0.979 0.847
r 0.392 0.474 0.417 0.266 0.346 0.656 0.585 0.760 0.554 0.787

Portugal
Σ 0.976 1.206 0.735 0.686 0.578 0.100 -0.691 -0.999 -0.063 0.703
r 0.367 0.335 0.151 0.335 0.072 0.594 0.119 0.150 0.415 0.380

UK
Σ 0.975 0.942 0.792 0.831 0.720 0.729 � 0.301 0.805 0.701
r 0.701 0.406 0.353 0.496 0.605 0.563 0.676 0.926 0.080 0.619

EU
Σ 1.008 1.005 0.911 0.894 0.726 0.610 -1.101 -0.043 0.578 0.539
r 0.577 0.808 0.464 0.397 0.715 0.863 0.287 0.874 0.511 0.662

Notes: Σ denotes the sums of OLS AR(p) coe�cient estimates; r denotes the contemporaneous corre-
lation between the AR(p) residuals and the forecast errors. The order p was selected via AIC. Missing
values indicate p = 0.

current-year forecasts.

We �rst replicate the study of Christodoulakis and Mamatzakis (2009). We use the dataset

and the Matlab estimation routine of Christodoulakis and Mamatzakis.10 The results of the

replication are given in Tables 3.2 � 3.6 of the Appendix (where we also report values for the

T -statistic testing the null α = 0.5 as it is robust). Our computations lead to somewhat di�erent

�gures. In particular, the three Jα0 statistics are di�erent by about 5 to 10% for most variables

and both the current-year and the year-ahead forecasts. For government balance, some of the

point estimates are also di�erent, although the di�erences do not change the overall picture. As

a robustness check, we conducted this replication in R, obtaining the same numbers as in Tables

3.2 � 3.6. The di�erences are likely due to di�erent Matlab versions. We used Matlab 6.1, as

later versions did not run the codes without modi�cations, but it is not clear which version was

used in the original study. It should be noted at this point, that certain cases display convergence

problems when D = 3. In particular, estimation for in�ation, unemployment and government

balance sometimes yields values of α /∈ (0, 1) or fails to converge all together due to singularity

of Ŝ.

We now focus on the time evolution of the estimates and report outcomes for the three di�erent

periods we consider. We use several sets of instruments: additionally to the original set of D = 3

10The data from the original study, as well as the codes, were kindly provided by the authors on http:

//qed.econ.queensu.ca/jae/2009-v24.4/christodoulakis-mamatzakis/.
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Figure 3.4: Asymmetry estimates for the EU�12 Member States over di�erent time spans,
linear asymmetric loss and D = 3 instruments (current year forecasts)
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Notes: The �gure shows α estimates with error bars (±2 standard errors). The estimation was conducted
using three instruments: a constant, a lagged forecast error and a lagged realization; p = 1.

instruments, we resort to two sets of D = 2 instruments: constant and lagged realization, as

well as constant and lagged forecast error. A nice side e�ect of using D = 2 instruments is that

singularity issues seem to be alleviated; the main reason to conduct the estimation with D = 2

is that we may argue a) that the estimates resorting to a constant and the lagged realization

(which tends to be persistent) lead to a robust T -statistic, while b) the estimates building on a

constant and the lagged forecast error likely ful�ll stationarity assumptions and therefore deliver

interpretable results for the J -statistics. Also, to ensure numerical convergence of the estimator,

we use a di�erent starting value for iterative calculation of the matrix Ŝ: Christodoulakis and

Mamatzakis (2009), following Elliott et al. (2005), start their iterations by choosing the identity

matrix; we calculate the starting value by plugging in α = 0.5, which improves the convergence

behavior of the estimation procedure.

Figures 3.4 � 3.5 give point estimates α̂ together with con�dence intervals based on standard

normality of the T -ratio for the current year forecasts.

The results for the J -statistic Jα̂ testing for rationality under possible loss asymmetry are

only given in Figure 3.5, which builds on stationary instruments and thus allow for χ2 inference

following Elliott et al. (2005). Nicely con�rming Corollary 3.3, the results for the case D = 2 with

the nonstationary instrument only are almost identical to those for D = 2 using the stationary

instrument, so we only report them in the Appendix.

Although the results are mostly similar for the three sets, we do notice that there are some

distinctions between Figure 3.4 and Figures 3.5 and 3.11. In particular for the current account,

the estimator with D = 3 delivers estimates that may be seen as a bit too extreme. Given that

robustness is not given for D = 3, one should prefer the latter. The analogous �ndings for the

year ahead forecasts are given in Figures 3.6 � 3.7.
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Figure 3.5: Asymmetry estimates for the EU�12 Member States over di�erent time spans,
linear asymmetric loss and D = 2 instruments (current year forecasts)
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Notes: The �gure shows α estimates with error bars (±2 standard errors). The estimation was conducted
using two instruments: a constant and a lagged forecast error; p = 1. Asterisks represent signi�cance at
5% level.

Figure 3.6: Asymmetry estimates for the EU�12 Member States over di�erent time spans,
linear asymmetric loss and D = 3 instruments (year ahead forecasts)
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Notes: The �gure shows α estimates with error bars (±2 standard errors). The estimation was conducted
using three instruments: a constant, a lagged forecast error and a lagged realization; p = 1. Missing bars
indicate failed convergence of the estimation algorithm.
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To interpret the results, we follow Christodoulakis and Mamatzakis (2009). They observe

optimistic tendencies in year-ahead forecasts of the EU Commission and more prudent ones for

the current year forecasts. This is re�ected in the signi�cant di�erences from 0.5 of the estimated

α. We resort to T -statistics rather than J -statistics to assess signi�cance, as the J -statistics
are not robust to persistence. Generally, a value above 0.5 represents a higher preference of the

forecaster for over-prediction, since negative forecast errors are deemed more costly. Whether

it can be interpreted as a prudent attitude, depends on the variable in question. For instance,

variables such as in�ation and unemployment a pessimistic forecaster would have a tendency to

over-forecast, expecting a worse outcome than the one actually occurring. The same holds for

government balance that yields negative values in case of a de�cit. Here, underestimating the

de�cit is more costly in case of a prudent strategy. As for investment and current account, the

picture is reversed. Optimism corresponds to higher values of α, i.e. over-prediction. Rationality

is discussed only in the case where the set of instruments contains a constant and a lagged forecast

error (see Figures 3.5 and 3.7); in other cases we cannot rely on the Jα̂ statistic to distinguish

between asymmetry and irrationality.

Forecasts appear to have di�erent properties in time. For both year-ahead and current-year

in�ation forecasts the hypothesis of rationality can be rejected in the �rst two samples (original

and augmented). We observe no signi�cant deviations from symmetry for year-ahead forecasts in

the last twenty years, though. For the current year we detect optimistic preferences for Belgium,

Greece, Italy and Portugal. Similarly, the hypothesis of rationality can be rejected for current-

year as well as year-ahead unemployment forecasts in the �rst two samples. As for the last

sample, we only �nd evidence of prudence for Ireland, Italy and Netherlands in the current year,

and Germany and Italy in the year ahead (Figures 3.5 and 3.7).

For government balance we observe no deviations from rationality. For the current year there

appears to be an optimistic tendency for Germany and Luxembourg. Forecasts for Belgium,

Greece, Netherlands and Portugal are signi�cantly optimistic in the beginning with a tendency

towards symmetry in the last twenty years. As for the year-ahead forecasts, preferences for

Luxembourg remain overall optimistic, but for Belgium, Ireland and Germany they shift to

optimism in the last sample. For Portugal, however, there is a shift is from optimism to symmetry

over time.

Investment was highlighted by Christodoulakis and Mamatzakis (2009) as being forecast overly

optimistic. Here we don't see any deviations from rationality, but results for some countries

exhibit strong asymmetric preferences. In particular for the current-year forecasts, cases of

Greece, UK, Portugal and the EU average show optimistic tendencies, while Netherlands and

Denmark deliver evidence for a more prudent forecast strategy. The year-ahead results reveal

optimistic preferences for Italy and Portugal, and pessimistic ones for the Netherlands.

For the current account we see rejection of rationality in the original sample for both forecast

horizons. Otherwise the evidence from the augmented sample and the last twenty years supports

rational and symmetric preferences of the Commission with few minor exceptions. The notable

ones are France and Italy for which the forecasts are more optimistic, and Germany, with a

tendency towards prudence.
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Figure 3.7: Asymmetry estimates for the EU�12 Member States over di�erent time spans,
linear asymmetric loss and D = 2 instruments (year ahead forecasts)
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Notes: The �gure shows α estimates with error bars (±2 standard errors). The estimation was conducted
using two instruments: a constant and a lagged forecast error; p = 1. Asterisks represent signi�cance at
5% level. Missing bars indicate failed convergence of the estimation algorithm.

Finally, the results for p = 2 are qualitatively very similar (see Appendix, Figures 3.13 �

3.14) and we do not discuss them in detail. (We only provide results for D = 2 with stationary

instruments and therefore robust J -statistics to save space.)

3.4 Summary

The note replicated and extended the study of Christodoulakis and Mamatzakis (2009) on the loss

preferences of EU commission forecasts for several member states and key economic indicators.

To this end, we investigate the distribution of the estimator of the asymmetry parameter in the

GMM framework of Elliott et al. (2005). We focus on the empirically relevant case when some

of the instruments are persistent. In theoretical derivations and Monte Carlo experiments, we

found that J -statistics tend to overreject their respective null hypotheses whenever at least one

instrument is persistent. For the T -statistic, we provide theoretical arguments that robustness

to instrument persistence is given in several practically relevant cases; moreover, Monte Carlo

evidence for the case of the asymmetric linear loss suggests that the T -statistic is not really

a�ected by persistence when p = 1, even in theoretically not so clear cut situations. All in all,

we recommend the use of the T -statistic for inference and for all types of instruments. The use

of J -statistics for inference is however only recommended after persistent instruments have been

eliminated from the set of instruments.

We then �nd that the original conclusions of Christodoulakis and Mamatzakis (2009) are

largely con�rmed for the extended data. However, the departures from symmetry appear to

have somewhat decreased compared to the original (shorter) data set, and rationality is rejected
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less often, such that EU commission forecasts could be seen as increasedly reliable.
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Appendix

Proofs

Before proving the main result, we state and prove a useful lemma.

Lemma 3.1 For any strictly stationary ergodic process zt, uniformly L1+δ-bounded for some

δ > 0 and any and vt strongly persistent in the sense of Assumption 3.1, it holds that

1

TnT

T∑
t=2

vt−1zt
d→ E (zt)

ˆ 1

0
X (s) ds.

Note that the lemma, applied elementwise, implies under the assumptions of Proposition 3.1 that

1. 1
T N−1

T

∑T
t=2 v1,t−1 |ut|p−1 d→ E

(
|ut|p−1

) ´ 1
0 X (s) ds

2. 1
T N−1

T

∑
v0,t−1v

′
1,t−1ũ

2
t

p→ γ0

´ 1
0 X

′ (s) ds

3. 1
T N−1

T

∑T
t=2 v1,t−1ũ

2
t
d→ σ2

ũ

´ 1
0 X (s) ds

4. 1
T N−1

T

(∑T
t=2 v1,t−1v

′
1,t−1ũ

2
t

)
N−1
T

d→ σ2
ũ

´ 1
0 X (s)X ′ (s) ds.

Proof of Lemma 3.1

Write
1

TnT

T−1∑
t=1

vtzt =
1

TnT

T−1∑
t=1

vt (zt − E (zt)) + E (zt)
1

TnT

T−1∑
t=1

vt.

Should the �rst term vanish as T → ∞, the desired result follows directly from Assumption

?? with the continuous mapping theorem. Let then z̃t = zt − E (zt) and note that, since zt
is ergodic, E (z̃t|z̃t−m, z̃t−m−1, . . .)

p→ 0 as m → ∞. Furthermore, since z̃t is uniformly L1+δ-

bounded for some δ > 0, it is uniformly integrable and thus E (|E (z̃t|z̃t−m, z̃t−m−1, . . .)|) →
0. Then, Theorem 3.3 of Hansen (1992) applies, such that, as required,

∣∣∣ 1
TnT

∑T−1
t=1 vtz̃t

∣∣∣ ≤
sups∈[0,1]

∣∣∣ 1
T

∑[sT ]
t=1

vt
nT
z̃t

∣∣∣ p→ 0.

Proof of Proposition 3.1

It holds that
√
T (α̂− α) = 1

p

ĥ′Ŝ−1
(

1√
T

∑T
t=2vt−1ũt

)
ĥ′Ŝ−1ĥ

and tα̂ = 1
p

ĥ′Ŝ−1
(

1√
T

∑T
t=2vt−1ũt

)
√
ĥ′Ŝ−1ĥ

. We have,

regularity conditions assumed, that

D−1
T ĥ⇒


E
(
v0,t−1 |ut|p−1

)
E
(
|ut|p−1

)
E
(
|ut|p−1

) ´ 1
0 X (s) ds

 := H with DT =

 I 0 0

0 1 0

0 0 NT

 .
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Since Ŝ = 1
p2

1
T

∑T
t=2vt−1v

′
t−1ũ

2
t , we also have that

D−1
T ŜD−1

T ⇒
1

p2


Ω̄0 γ0 γ0

´ 1
0 X

′ (s) ds

γ ′0 σ2
ũ σ2

ũ

´ 1
0 X

′ (s) ds(´ 1
0 X (s) ds

)
γ ′0 σ2

ũ

´ 1
0 X (s) ds σ2

ũ

´ 1
0 X (s)X ′ (s) ds

 .

Finally,

D−1
T

1√
T

T∑
t=2

vt−1ũt ⇒

 W̄ (1)

W̃ (1)´ 1
0 X (s) dW̃ (s)

 ,

see Hansen (1992, Theorem 2.1), and the result follows with the continuous mapping theorem.

Proof of Corollary 3.2

From the assumptions of the corollary it follows that E
(
v0,t−1

∣∣ut ∣∣p−1
)

= 0 just like γ0 and,

with E
(
ũ2
t

)
= σ2

ũ, Ω̄0 = σ2
ũ E
(
v0,t−1v

′
0,t−1

)
one obtains

HS−1 ≡ E
(
|ut|p−1

)(
0′, 1,

ˆ 1

0
X ′ (s) ds

)
p2

(
1
σ2
ũ

E
(
v0,t−1v

′
0,t−1

)−1
0′

0 Q−1

)

≡ p2 E
(
|ut|p−1

)(
0′,

(
1,

ˆ 1

0
X ′ (s) ds

)
Q−1

)

with Q = σ2
ũ

(
1

´ 1
0 X

′ (s) ds´ 1
0 X (s) ds

´ 1
0 X (s)X ′ (s) ds

)
. Now,

(
1,
´ 1

0 X
′ (s) ds

)′
is the �rst column

of σ−2
ũ Q so its transpose, postmultiplied with the inverse of Q, gives σ−2

ũ (1,0′)′ where there are

exactly as many zeros as elements of v1,t. Hence

H ′S−1U =
E
(
|ut|p−1

)
p2σũ

W̃ (1) .

The same reasoning indicates that

H ′S−1H = p2

(
E
(
|ut|p−1

))2

σ2
ũ

such that T ⇒ N (0, 1) whenever ũt has constant conditional scale in the sense that the condi-

tional expectation of the relevant powers of |ũt| are constant.

To understand why the result hinges on the presence of the constant instrument, consider the

simple bivariate case with one weakly and one strongly persistent instrument; let also the weakly
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persistent instrument have non-zero mean. Then

H ′S−1 ≡
(

E
(
v0,t−1

∣∣ut ∣∣p−1
)

; E
(∣∣ut ∣∣p−1

) ´ 1
0 X (s) ds

)
×p2

(
ω̄0 γ0

´ 1
0 X (s) ds

γ0

´ 1
0 X (s) ds σ2

ũ

´ 1
0 X

2 (s) ds

)−1

while

U ≡

( ´ 1
0 dW̄ (s)´ 1

0 X (s) dW̃ (s)

)
.

The coe�cient of
´ 1

0 X (s) dW̃ (s) in H ′S−1U should be zero for normality to be recovered in

general. Some algebra indicates this to be the case when

−E
(
v0,t−1

∣∣ut ∣∣p−1
)
γ0

ˆ 1

0
X (s) ds+ E

(∣∣ut ∣∣p−1
)ˆ 1

0
X (s) ds ω̄0 = 0,

or
E
(
v0,t−1 |ut|p−1

)
E
(
|ut|p−1

) =
E
(
v2

0,t−1ũ
2
t

)
E
(
v0,t−1ũ2

t

) .
For constant conditional scale this reduces to E

(
v2

0,t−1

)
= E (v0,t−1)2 and the weakly persistent

instrument is constant w.p. 1.

Proof of Corollary 3.3

The result follows by noting that, without stationary instruments v0,t−1, H is proportional to

the �rst row of S, such that H ′S−1 is proportional to the �rst row of the identity matrix, which

then cancels out all nonstandard terms in T and the result follows.
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Additional simulations: quadratic asymmetric loss

Figure 3.8: Densities of Jα̂ under asymmetric quadratic loss and various instrument
choices
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Notes: The �gures show the density of the χ2 (solid grey) and the kernel density estimates of the
distribution of Jα̂ when T = 100 (dashed black), T = 400 (dotted blue) and T = 1000 (dot-dashed red).
The used instrument combinations are: a constant and a persistent instrument (left) and a constant
a stationary instrument (middle), where the plotted χ2 distribution has 1 d.o.f., as well as all three
instruments (right), where the plotted χ2 distribution has 2 d.o.f.. The underlying DGP is given by (3.2)
- (3.3) with δ = 0.5, ρ = 0.8, γ0,1 = γ0,2 = 0.01, and γ1,2 = 0, exhibiting conditional homoskedasticity
(γ1,1 = 0, top) or conditional heteroskedasticity (γ1,1 = 0.95, bottom).

Figure 3.9: Densities of Jα0 under asymmetric quadratic loss and various instrument sets
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Notes: The �gures show the density of the χ2 (solid grey) and the kernel density estimates of the
distribution of Jα0 when T = 100 (dashed black), T = 400 (dotted blue) and T = 1000 (dot-dashed red).
The used instrument combinations are: a constant and a persistent instrument (left) and a constant
a stationary instrument (middle), where the plotted χ2 distribution has 2 d.o.f., as well as all three
instruments (right), where the plotted χ2 distribution has 3 d.o.f.. See Figure 3.8 for the DGP.
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Figure 3.10: Densities of T under asymmetric quadratic loss and various instrument
choices
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Notes: The �gures show the density of the standard normal distribution (solid grey) and the kernel
density estimates of the distribution of T when T = 100 (dashed black), T = 400 (dotted blue) and T =
1000 (dot-dashed red). The used instrument combinations are: a constant and a persistent instrument
(left) and a constant and a stationary instrument (middle), as well as a constant, a persistent and a
stationary instrument (right). See Figure 3.8 for the DGP.
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Replication study: EU Commission forecast data 1970 � 2004

Tables 3.2 � 3.6 below replicate Tables I � V from Christodoulakis and Mamatzakis (2009)

using the data and Matlab codes provided by the authors. In addition, we included a

column with the T statistic for the null α = 0.5 in each table.

Table 3.2: In�ation under asymmetric linear loss function
Current year Year ahead

α̂ SE T Jα̂ Jα=0.2 Jα=0.5 Jα=0.8

Bel. 0.42 0.08 −0.92 1.17 6.02 1.82 12.31
Den. 0.42 0.09 −0.93 0.33 5.10 1.10 10.63
Ger. 0.49 0.08 −0.17 0.25 7.97 0.27 9.60
Gr. 0.47 0.10 −0.30 3.59 5.97 3.68 6.32
Sp. 0.23 0.10 −2.74 3.48 3.36 5.23 8.57
Fr. 0.43 0.08 −0.89 0.64 6.15 1.32 11.65
Ire. 0.56 0.09 0.70 3.41 10.66 3.98 6.78
Ital. 0.27 0.08 −3.05 3.32 3.54 8.80 17.11
Lux. 0.48 0.08 −0.25 5.62 8.92 5.70 11.24
Neth. 0.48 0.08 −0.21 3.49 8.66 3.52 10.31
Port. 0.02 0.03 −14.53 2.75 6.48 8.34 11.80
UK 0.59 0.09 1.01 1.48 11.12 2.02 5.11
EU 0.48 0.08 −0.21 3.53 8.62 3.63 10.51

α̂ SE T Jα̂ Jα=0.2 Jα=0.5 Jα=0.8

0.59 0.08 1.11 6.32 14.46 8.06 7.81
0.41 0.09 −0.96 3.40 6.88 3.36 10.87
0.68 0.08 2.19 5.61 15.41 8.36 6.25
0.36 0.10 −1.42 0.65 2.48 2.36 10.01
0.03 0.04 −12.08 3.75 6.89 7.34 11.00
0.42 0.08 −0.93 4.26 8.10 4.31 12.12
0.69 0.08 2.24 4.43 15.09 8.74 4.77
0.20 0.07 −4.27 0.06 0.07 11.79 23.24
− ∞ − − 23.19 30.30 32.45
0.54 0.09 0.45 4.00 10.90 4.00 8.85
0.33 0.11 −1.52 1.26 2.63 2.12 7.97
0.62 0.09 1.39 2.79 12.53 4.46 5.01
0.36 0.08 −1.67 6.08 7.73 6.56 13.70

Notes: Estimates are based on three instruments (D = 3): a constant, a lagged forecast error and a lagged
realization. Jα̂ ∼ χ2(2) and Jα|H0

∼ χ2(3), see Christodoulakis and Mamatzakis (2009), p. 589.

Table 3.3: Unemployment under asymmetric linear loss function
Current year Year ahead

α̂ SE T Jα̂ Jα=0.2 Jα=0.5 Jα=0.8

Bel. 0.19 0.07 −4.59 11.79 11.55 12.7 13.94
Den. 0.44 0.09 −0.67 2.9 6.85 2.91 9.56
Ger. 0.31 0.08 −2.47 8.42 8.6 7.69 13.79
Gr. 0.58 0.1 0.74 1.61 7.52 2.16 4.31
Sp. 0.78 0.1 2.93 1.96 9.51 5.58 1.85
Fr. 0.38 0.08 −1.43 4.4 6.21 5.24 12.91
Ire. 0.6 0.09 1.14 3.02 11.39 3.55 5.74
Ital. 0.49 0.08 −0.17 0.16 8.39 0.18 9.14
Lux. 0.48 0.09 −0.19 0.1 6.88 0.15 7.71
Neth. 0.58 0.08 1.01 2.66 12.35 3.17 6.37
Port. 0.85 0.08 4.18 3.3 9.28 4.81 3.23
UK 0.69 0.08 2.36 1.39 15.08 4.72 2.51
EU 0.43 0.08 −0.83 6.71 9.12 6.33 11.12

α̂ SE T Jα̂ Jα=0.2 Jα=0.5 Jα=0.8

0.56 0.09 0.67 12.18 11.57 12.19 10.53
0.45 0.09 −0.58 5.49 8.03 5.36 9.63
0.52 0.09 0.22 3.16 9.41 3.05 8.23
0.45 0.11 −0.44 0.27 4.04 0.43 6.79
0.54 0.12 0.33 2.17 5.21 2.26 3.59
0.45 0.09 −0.59 1.82 7.08 1.98 10.04
0.89 0.06 6.64 7.22 15.31 8.63 7.77
0.48 0.09 −0.21 2.83 8.37 2.75 9.03
0.27 0.08 −2.68 5.15 4.75 10.07 14.19
0.6 0.09 1.14 3.65 11.93 4.09 6.23
0.89 0.08 5.09 5.28 7.03 4.42 5.3
0.66 0.09 1.84 5.58 12.05 6.76 5.84
0.47 0.09 −0.33 7.87 10.14 7.47 9.73

Notes: Estimates are based on three instruments (D = 3): a constant, a lagged forecast error and a lagged
realization. Jα̂ ∼ χ2(2) and Jα|H0

∼ χ2(3), see Christodoulakis and Mamatzakis (2009), p. 590.
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Table 3.4: Government balance under asymmetric linear loss function
Current year Year ahead

α̂ SE T Jα̂ Jα=0.2 Jα=0.5 Jα=0.8

Bel. 0.22 0.07 −3.83 6.59 7.08 5.4 15.48
Den. 0.63 0.09 1.41 3.96 9.95 5.32 4.92
Ger. 0.02 0.02 −22.39 5.61 19.53 22.3 25.52
Gr. 0 0.01 −64.6 4.98 12.34 11.02 12.94
Sp. 0.44 0.12 −0.48 0.17 3.55 0.37 5.26
Fr. 0.45 0.08 −0.55 1.15 7.1 1.4 11.1
Ire. 0.25 0.08 −3.11 4.88 4.76 7.39 14.3
Ital. 0.45 0.08 −0.63 3.27 7.59 3.33 11.18
Lux. 0.12 0.06 −6.46 1.89 2.62 13.09 20.88
Neth. 0.3 0.08 −2.59 1.27 2.4 5.76 17.5
Port. 0.19 0.09 −3.29 0.85 0.82 5.5 10.71
UK 0.44 0.09 −0.62 1.99 6.5 2.3 9.67
EU 0.42 0.08 −0.94 1.64 5.99 2.37 12.31

α̂ SE T Jα̂ Jα=0.2 Jα=0.5 Jα=0.8

0.55 0.09 0.56 1.14 10.19 1.49 6.96
0.60 0.09 1.05 5.92 10.76 7.64 6.16
0.46 0.09 −0.47 4.5 8.23 4.49 10.69
0.65 0.1 1.52 4.53 9.24 6.25 4.57
0.47 0.12 −0.25 0.37 3.78 0.41 4.43
0.39 0.08 −1.3 3.17 5.87 3.91 12.75
0.39 0.09 −1.27 1.69 4.43 2.87 11.7
0.53 0.09 0.37 1.32 10.22 1.44 7.34
0.24 0.08 −3.23 1.86 2.03 6.7 15.88
0.33 0.08 −2.14 2.46 3.83 5.23 15.29
0.25 0.11 −2.37 3.49 3.3 3.78 7.23
0.55 0.09 0.51 4.22 9.59 4.28 7.14
0.59 0.08 1.11 0.95 12.01 1.95 5.37

Notes: Estimates are based on three instruments (D = 3): a constant, a lagged forecast error and a lagged
realization. Jα̂ ∼ χ2(2) and Jα|H0

∼ χ2(3), see Christodoulakis and Mamatzakis (2009), p. 591.

Table 3.5: Investment under asymmetric linear loss function
Current year Year ahead

α̂ SE T Jα̂ Jα=0.2 Jα=0.5 Jα=0.8

Bel. 0.58 0.08 0.9 0.84 12.26 1.49 5.94
Den. 0.24 0.08 −3.38 2.98 3.4 6.14 16.33
Ger. 0.56 0.08 0.72 5.03 11.57 5.09 8.58
Gr. 0.62 0.1 1.21 1.25 8.69 2.22 3.56
Sp. 0.14 0.08 −4.38 6.22 5.95 4.15 6.73
Fr. 0.64 0.08 1.78 1.85 14.44 4.04 4.6
Ire. 0.34 0.08 −1.93 4.83 5.5 6.38 12.58
Ital. 0.6 0.08 1.24 0.44 13.53 1.74 4.75
Lux. 0.39 0.09 −1.18 0.24 3.46 1.46 10.96
Neth. 0.39 0.08 −1.28 0.95 4.78 2.4 13.54
Port. 0.56 0.12 0.5 0.38 5.25 0.5 3.57
UK 0.66 0.09 1.88 1.44 13.79 3.58 3.42
EU 0.66 0.08 2.06 0.81 16.13 3.85 3.18

α̂ SE T Jα̂ Jα=0.2 Jα=0.5 Jα=0.8

0.5 0.09 0 1.65 8.43 1.61 9.2
0.42 0.09 −0.84 1.79 5.69 2.06 10.28
0.64 0.08 1.74 3 13.99 3.92 5.46
0.64 0.1 1.42 0.62 9.38 2.02 2.33
0.62 0.12 1.02 2.24 6.28 3.03 2.77
0.58 0.08 0.91 4.02 11.14 4.07 7.52
0.5 0.09 0 2.59 7.55 2.51 8.22
0.59 0.08 1.08 0.51 11.97 1.64 5.24
0.48 0.1 −0.22 1.65 6.63 2.31 8.49
0.09 0.05 −8.33 4.8 5.96 13.09 21.91
0.76 0.1 2.46 1.67 8.27 4.23 3.26
0.64 0.09 1.66 1.2 12.18 3.16 3.47
0.57 0.08 0.83 2.78 10.94 3.12 6.92

Notes: Estimates are based on three instruments (D = 3): a constant, a lagged forecast error and a lagged
realization. Jα̂ ∼ χ2(2) and Jα|H0

∼ χ2(3), see Christodoulakis and Mamatzakis (2009), p. 592.

Table 3.6: Current account under asymmetric linear loss function
Current year Year ahead

α̂ SE T Jα̂ Jα=0.2 Jα=0.5 Jα=0.8

Bel. 0.48 0.09 −0.25 4.93 10.34 5.41 9.69
Den. 0.5 0.09 0 0.76 8.28 0.77 7.82
Ger. 0.36 0.08 −1.64 0.11 3.2 2.41 14.26
Gr. 0.73 0.1 2.39 4.38 9.47 4.95 4.35
Sp. 0.92 0.06 6.75 5.46 7.95 4.85 5.83
Fr. 0.45 0.09 −0.55 0.85 6.87 1.06 9.93
Ire. 0.34 0.08 −1.91 4.7 5.77 5.7 12.22
Ital. 0.69 0.08 2.36 2.03 15.1 5.37 3.3
Lux. 0.45 0.1 −0.53 3.42 10.26 3.78 7.96
Neth. 0.4 0.09 −1.14 3.63 6.82 5.14 12.29
Port. 0.5 0.12 0 3.79 4.96 3.75 4.81
UK 0.41 0.09 −1.03 1.72 5.44 2.13 11.18
EU 0.41 0.09 −1.02 2.25 5.89 2.77 11.8

α̂ SE T Jα̂ Jα=0.2 Jα=0.5 Jα=0.8

0.52 0.09 0.29 6.44 9.89 6.39 9.1
0.43 0.09 −0.8 1.24 5.46 1.54 10.24
0.41 0.09 −1.04 2.46 5.97 3.01 11.88
0.61 0.1 1.03 1.64 8.56 2.97 6.25
0.41 0.12 −0.72 5.6 5.97 8.37 8.36
0.64 0.08 1.7 4.19 13.16 4.66 6.15
0.46 0.09 −0.4 1.35 6.8 1.4 8.59
0.67 0.08 2.06 3.19 14.35 4.54 4.75
0.43 0.1 −0.64 4.32 5.97 4.39 7.85
0.55 0.09 0.57 11.41 11.99 11.65 10.26
0.7 0.11 1.79 2.23 7.38 3.9 2.22
0.25 0.08 −3.18 1.06 1.45 6.7 16.83
0.2 0.07 −4.37 10.72 10.68 15.5 14.84

Notes: Estimates are based on three instruments (D = 3): a constant, a lagged forecast error and a lagged
realization. Jα̂ ∼ χ2(2) and Jα|H0

∼ χ2(3), see Christodoulakis and Mamatzakis (2009), p. 592.
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Figure 3.11: Asymmetry estimates for the EU�12 Member States over di�erent time spans,
linear asymmetric loss and D = 2 instruments (current year forecasts)
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Notes: The �gure shows α estimates with error bars (±2 standard errors). The estimation was conducted
using two instruments: a constant and a lagged realization; p = 1.

Figure 3.12: Asymmetry estimates for the EU�12 Member States over di�erent time spans,
linear asymmetric loss and D = 2 instruments (year ahead forecasts)
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Notes: The �gure shows α estimates with error bars (±2 standard errors). The estimation was conducted
using two instruments: a constant and a lagged realization; p = 1. Missing bars indicate failed convergence
of the estimation algorithm.
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Figure 3.13: Asymmetry estimates for the EU�12 Member States over di�erent time spans,
asymmetric quadratic loss and D = 2 instruments (current year forecasts)
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Notes: The �gure shows α estimates with error bars (±2 standard errors). The estimation was conducted
using two instruments: a constant and a lagged forecast error; p = 2. Asterisks represent signi�cance at
5% level.

Figure 3.14: Asymmetry estimates for the EU�12 Member States over di�erent time spans,
asymmetric quadratic loss and D = 2 instruments (year ahead forecasts)
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Notes: The �gure shows α estimates with error bars (±2 standard errors). The estimation was conducted
using two instruments: a constant and a lagged forecast error; p = 2. Asterisks represent signi�cance at
5% level.
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Chapter 4

Asymmetric-Loss-Based Evaluation

of Daily Value-at-Risk Models

4.1 Motivation

Foreseeing and quantifying market risk has always been important, even more so in light

of the recent global �nancial instability and its aftermath. Value-at-risk (VaR) is de�ned

as a potential loss of a portfolio that can occur with a �xed probability on a given day in

the future. It has received a lot of attention in the literature due to its interpretability and

convenient mathematical properties. VaR is widely used by risk managers, �nancial and

non-�nancial institutions, and is suggested by The Basel Committee on Banking Super-

vision as a guideline for satisfying market risk capital requirements. It is conventionally

de�ned as the negative of the 100%τ quantile of the conditional distribution of a daily

log return rt,

VaRτ
t = − sup (r|P (rt ≤ r) ≤ τ). (4.1)

The di�culty of accurately modelling value-at-risk lies in its latent nature. The preci-

sion of a VaR forecast cannot be established by observing its realized values; assessing the

quality of a forecast is demanding, but there is, however, a variety of methods to choose

from. Nieto and Ruiz (2016) provide an extensive summary of existing modelling meth-

ods and their comparison techniques. The authors distinguish between one and two-step

procedures: the former yields a direct forecast of the τ quantile, while the latter estimates

conditional mean and variance, �rst, and combines it with a distributional assumption to

obtain the forecast. The most popular examples of the one-step approach are historical

simulation (see e.g. Dowd, 2007), extreme value theory (see e.g. Embrechts et al., 2013)

and conditional autoregressive value-at-risk (Engle and Manganelli, 2004). The two-step

approach relies heavily on a conditional volatility forecast. However, predicting volatil-

ity and value-at-risk are two completely di�erent objectives, meaning, a sound volatility
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forecast does not automatically lead to a good VaR forecast (e.g. Bams et al., 2017).

There has been a growing interest in employing information beyond the return series

in the VaR forecasting literature. Giot and Laurent (2004) include realized volatility into

the information set used for capturing value-at-risk. Later, in their review, Kuester et al.

(2006) mentioned the importance of realized volatility models for VaR prediction. Since

then multiple applications of realized measures in VaR modelling have been considered

in the literature (see e.g. Louzis et al., 2014; Haugom et al., 2016; Wong et al., 2016). In

particular, �ike² and Baruník (2014) utilize heterogeneous autoregression (HAR) model

of Corsi (2009) in a quantile autoregression framework. The authors argue that realized

measures, as well as certain exogenous regressors (e.g. option implied volatility), possess

substantial predictive power when it comes to forecasting value-at-risk. In addition, they

augment the well-known CAViaR model of Engle and Manganelli (2004) with realized

and implied volatility and call it realized CAViaR. This idea of extending the CAViaR

model has been realized in a few other studies. Rubia and Sanchis-Marco (2013) examine

the in�uence of information beyond historical returns on the forecasts of VaR. They

adapt CAViaR methodology of Engle and Manganelli (2004) and enrich their models

with trading activity and market liquidity variables. They �nd that including data related

to trading volume signi�cantly enhances the out-of-sample performance of VaR models.

Furthermore, Jeon and Taylor (2013) use implied volatility indices as external regressors

in order to include market expectations. They �nd that combining time series information

delivered by CAViaR models with the information on implied volatility yields a superior

value-at-risk forecast. Bams et al. (2017) also examine the role of implied volatility in

predicting value-at-risk, but do not detect any signi�cant improvement.

The main goal of this paper is to provide a �exible, computationally e�ective and data-

driven model for daily VaR forecasting. Here, the focus is mainly on 1% and 5% quantiles

of the conditional return distribution. For that purpose, a linear quantile autoregression

with various realized measures is estimated. In that way, a direct quantile forecast can be

obtained by relying solely on the quantile loss function. The main contributions of this

paper are the following. First, this combination of weakly exogenous predictors, such as

daily trading volume, day of the week and implied volatility, has not yet been employed

in predictive models. Second, as opposed to the majority of VaR studies, a larger number

of return series, of both stock indices and single stocks, is used. Third, the forecasting

performance of suggested models is compared to popular benchmarks, such as GARCH,

apARCH, CAViaR and GAS models, using three types of criteria. The latter enables the

models to be scored and shows the suggested quantile autoregressions to deliver the best

performance overall.

The paper is structured as follows. The model setup and properties are presented in

Section 4.2. Then, the model validation methods are reviewed in Section 4.3. Section 4.4
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is devoted to empirical analysis and its results. Finally, Section 4.5 concludes.

4.2 Model setup

This section introduces the theoretical framework and model setup. The focus lies on the

so-called one-step approaches that are based on the quantile autoregression by Koenker

and Xiao (2006). The idea is to hereby avoid any dependence of the forecast procedure

on the optimality of the volatility forecast and only rely on a loss function appropriate

for value-at-risk. The quantile regression framework allows for regressors that are based

on historical returns, as well as on information regarding market characteristics.

4.2.1 Heterogeneous quantile autoregression

Assume conditional τ -quantile of the future returns distribution to be a linear function

of variables based on past quadratic variation and external predictors,

Qτ (rt+1|Ft) = β0(τ) + βv(τ)′vt + βz(τ)′zt, τ ∈ (0, 1), (4.2)

where vt collects various realized measures, zt is a vector of external regressors and β·(τ)

are the autoregression coe�cients to be estimated. The estimation is performed using

quantile regression methodology of Koenker and Bassett (1978). The parameter estimator

is given by

β̂(τ) = argminβ∈Rd
{ T∑

t=1

ρτ (rt+1 − β0(τ)− βv(τ)′vt − βz(τ)′zt)
}
,

where ρτ (u) = u(τ − 1(u < 0)) is the quantile loss function with 1(·) being a common

indicator function.1

Given the relation between the conditional quantile of a daily return and its conditional

standard deviation (assuming a zero mean),

Qτ (rt+1|Ft) = σt+1F
−1
ε (τ),

where σt+1 is the day ahead volatility and F−
1

ε is the inverse cdf of the innovations, it is

convenient to use the heterogeneous autoregressive (HAR) model of Corsi (2009) for the

linear dependence of the value-at-risk on the past volatility. The HAR model captures the

persistent nature of volatility in a simple manner, which is easily adapted to a quantile

regression (see e.g Haugom et al. (2016); �ike² and Baruník (2014)). There are various

1This optimization problem doesn't have a closed-form solution and requires a linear programming
algorithm, which is provided by Koenker (2012).
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proxies for daily volatility that have been discussed in the VaR literature: from simple

squared returns to realized measures computed with high frequency intraday data. In

this paper the following realized measures are used: realized variance (Andersen and

Bollerslev, 1998), bipower variation (Barndor�-Nielsen and Shephard, 2004, 2006) and

median realized variance (Andersen et al., 2012).

4.2.2 Realized measures

Realized measures are computed from high frequency intraday returns. They aim to

consistently estimate and predict quadratic variation that consists of two main compo-

nents: (continuous) integrated variance and (discrete) jump variation, RVt = RCt +RJt.

Lately, it has become common practice to estimate these components separately. It has

been well documented that these two sources of variation a�ect volatility quite di�erently

(e.g. Corsi, Pirino, and Reno, 2010; Andersen, Bollerslev, and Diebold, 2007; Giot and

Laurent, 2007; Busch, Christensen, and Nielsen, 2011).

The realized measures chosen for this paper are asymptotically equivalent in the absence

of jumps. Notably, realized variance is not jump-robust, while median realized variance

and bipower variation are. All three measures can be used to construct a simple HAR-like

model for value-at-risk:

VaRτ
t+1 = βτ,0 + β(d)

τ RM
(d)
t + β(w)

τ RM
(w)
t + β(m)

τ RM
(m)
t + βz(τ)′zt (4.3)

where RM (·)
t represent a daily, weekly and monthly realized measure component according

to the HAR-RV model of Corsi (2009). The components are de�ned as RM (d)
t = RMt,

RM
(w)
t = (RMt + . . .+RMt−4)/5 and RM (m)

t = (RMt + . . .+RMt−21)/22 2.

These realized measures and many more are freely available to researchers at the Oxford-

Man Institute's realized library (Heber et al., 2009).3 The library contains volatility

estimators for a variety of stock indices. However, if one wishes to analyze single stocks,

as is done here in Section 4.4, high frequency intraday data required for computation of

the realized measures might be hard to come by. To circumvent this issue the measures

of a particular stock index can be used in Equation (4.3) as proxies for market volatility.

This has shown to be an appropriate action (see Section 4.4.2 for results).

It is important to note at this point that estimation of the original HAR model is

sometimes performed in logs. However, motivated by the linear relationship between

quantiles and volatility, the quantile regression is estimated here using levels of the realized

2The model can be constructed using RM
(·)
t or

√
RM

(·)
t . Due to linear relationship between quantiles

and standard deviations, I decided to specify the VaR model in terms of square roots (see Corsi et al.
(2012))

3The mathematical de�nitions of the realized measures are included in the Appendix.
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measures, but estimation with their logs is performed as a robustness check.

4.2.3 Additional predictors

In addition to HAR components, the role of several observables in VaR forecasting, such as

implied volatility, downward semivariance, trading volume and day of the week, is exam-

ined. Giot and Laurent (2007) documented high explanatory power of implied volatility

when forecasting realized volatility. Bams et al. (2017), �ike² and Baruník (2014) and

Jeon and Taylor (2013) used implied volatility in building VaR forecasts. The evidence,

however, is mixed. Most stock market indices have corresponding implied volatility in-

dices (e.g. VDAX for DAX, V2TX for EUROSTOXX 50, VFTSE for FTSE 100, and

VXD for Dow Jones). Implied volatility re�ects rational expectations on future volatility

of the market. The indices are usually annualized, so they are divided
√

252 to obtain

daily implied volatility as in Jeon and Taylor (2013) (also see Busch et al., 2011).

Similarly to the CAViaR framework and various other volatility models (see e.g. Engle

and Manganelli, 2004; Martens et al., 2009; Wong et al., 2016), some functions of a lagged

return are included. It is a standard practice to include the absolute value of the lagged

return, but sometimes the e�ect of a negative return is di�erent from the e�ect of a

positive one of the same magnitude. This asymmetry can be captured by including a sign

e�ect variable. At last, an interaction e�ect of the sign and the magnitude is included.

This asymmetry may, however, be captured in a di�erent way. There has been some

evidence in favour of realized downward semivariance (Barndor�-Nielsen et al., 2008). It

is de�ned as a sum of squared negative intraday returns,

RS−t =
M−1∑
j=1

(rt,j)
21(rt,j < 0), t = 1, . . . , T,

and is said to be more informative than its positive counterpart, realized upside semi-

variance (�ike² and Baruník, 2014; Patton and Sheppard, 2015). This measure re�ects

an asymmetric e�ect of past negative returns in a more sophisticated manner than the

sign-magnitude interaction. It is possible that including the downward semivariance will

substantially dampen the e�ect of the sign variable. Nevertheless, if this realized measure

is unavailable, the asymmetry has to be accounted for.

As mentioned above, Rubia and Sanchis-Marco (2013) examine roles of market activity

and liquidity variables in VaR forecasting. They use CAViaR setting, extend it, and �nd

robust evidence for including volume-related variables into the relevant information set.

Finally, there is a distinct U�shape of the average volatility through the week with its

lowest point on Wednesdays (see Andersen and Bollerslev, 1998; Martens et al., 2009).

Also, volatility appears to be higher on days when macroeconomic news announcements
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are made, which mostly happens on Fridays (see Andersen et al., 2003, 2007; Martens

et al., 2009). For these reasons, variables for Wednesday and Friday e�ects are included

in the quantile autoregression.

4.2.4 Model speci�cations

To sum up, a full set of additional predictors includes daily trading volume, implied

volatility, dummy variables for Wednesday and Friday, realized downward semivariance,

absolute value of a lagged return, its sign and an interaction of the latter two. The full

QREG-RM model is then given by:

Qτ (rt+1|Ft) = βτ,0 + β(d)
τ RM

(d)
t + β(w)

τ RM
(w)
t + β(m)

τ RM
(m)
t

+ βτ,1RS
−
t + βτ,2IVt + βτ,3|rt|+ βτ,4I(rt < 0) (4.4)

+ βτ,5|rt|I(rt < 0) + βτ,6V olt + βτ,7Wed+ βτ,8Fr.

Depending on the availability of information and di�erent realized measures I distin-

guish between fourteen speci�cations of the quantile autoregression. The �rst six models,

QREG-RM, represent quantile HAR regressions with a full set of additional predictors.

Here the HAR components are composed using realized volatility, bipower variation and

median realized volatility, �rst in levels, then in logs. Secondly, in order to check the e�ect

of exogenous predictors, the HARQ (see Haugom et al., 2016) models are examined, also

with levels and logs. Finally, if high frequency data is unavailable no realized measures can

be computed, additional speci�cations, QREG-IV1 and QREG-IV2, are introduced where

the load is carried by the lagged return, external predictors and log implied volatility. The

goal here is to compare the explanatory power of realized measures, exogenous predictors

and a combination of the two. Table 4.1 summarizes all speci�cations of interest.

In the following section, the model evaluation criteria and backtesting procedures used

in this analysis are discussed. These procedures help assess the performance of the com-

peting models from both a statistical and a regulatory point of view.
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Table 4.1: Model speci�cations
Model → QREG HARQ

Regressor ↓ RV BV MedRV logRV logBV logMedRV IV1 IV2 RV BV MedRV logRV logBV logMedRV

RVd * log * log
RVw * log * log
RVm * log * log

BVd * log * log
BVw * log * log
BVm * log * log

MedRVd * log * log
MedRVw * log * log
MedRVm * log * log

RS− * * * log log log
IV * * * log log log log log
|rt| * * * * * * *
1(rt < 0) * * * * * * * *
|rt|1(rt < 0) * * * * * * *

r2t *

Volume×10−8 * * * * * * * *
Wednesday * * * * * * * *
Friday * * * * * * * *

4.3 Comparing model performances

Since the variety of models to choose from is large, one needs a comprehensive strategy and

criteria to select the most suitable ones for a given purpose. This purpose can be rooted

in achieving statistical accuracy, e.g. minimizing a loss function, or meeting regulatory

requirements, e.g. good backtesting results. It has been mentioned that standard statisti-

cal procedures for VaR backtesting often fail to discriminate between di�erent forecasting

strategies, especially when performed on data from calm periods (Dan�elsson, 2002; Lau-

rent, 2017). In most of the value-at-risk literature, a comparison of models is performed

on a few index and stock time series with only two to three tests to evaluate the results.

Arguably, this is not su�cient to �nd a robust model and make practical suggestions. For

that reason the evaluation is conducted in three stages: model con�dence set procedure,

lowest average loss, and �ve backtesting procedures. The models are then ranked by their

performance in all three stages.

4.3.1 Statistical criteria

First, the model con�dence set (MCS) procedure of Hansen et al. (2011) is applied to a

representative cross section of value-at-risk. It has been recently used for comparing VaR

models by Bernardi and Catania (2016)4. The MCS approach consists of a sequence of

tests that allows constructing a so-called superior set of models (SSM). The null hypothesis

of this test sequence is the equal predictive ability (EPA) of models in question. The

principle is similar to the test of Diebold and Mariano (1995), although it can be used

to compare more than two models at once. The MCS procedure is very �exible in terms

of selection criteria. A test statistic is constructed from a series of losses produced by

4The authors provide an R package for the MCS procedure (see Bernardi and Catania, 2018)
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each model and a preselected loss function. In that way models of di�erent classes can be

simultaneously compared to one another. For the purpose of VaR forecasting, it is best

to consider the asymmetric loss function of González-Rivera et al. (2004), de�ned as

L(rt, V̂aR
τ

t ) = (τ − dτt )(rt − V̂aR
τ

t ), t = T + 1, . . . , T +H, (4.5)

where V̂aR
τ

t is the predicted value-at-risk, dτt = 1(rt < V̂aR
τ

t ) is a violation variable.

Note, that the subsample [T + 1, T +H] corresponds to the validation sample of length H

with T being the number of observations used to estimate the models. The asymmetric

loss function of González-Rivera et al. (2004) is an appropriate choice for assessing VaR

models, since it penalizes downward deviations from τ -level quantile more heavily.

As for any test, a signi�cance level α should be �xed for the MCS procedure. It follows,

then, the �nal SSM can contain models inferior to others. In the best case scenario, the

SSM contains only one model, which, however, rarely happens. Otherwise, all remaining

models posses equal predictive accuracy, and the selection process requires more criteria

to discriminate further5. Conveniently, the MCS procedure also ranks the models in the

SSM by the minimum average loss according to (4.5). While there can only be one model

with the minimum loss in a bunch, this is a much more helpful step in decision making.

4.3.2 Regulatory criteria

Since value-at-risk is an unobservable quantity, predicted values cannot be compared to

its realizations. The Basel accords suggest backtesting the series of predicted values

and require it to be performed on at least 250 one-step-ahead VaR forecasts. Many

well-known tests are based on a binary hit variable, It(τ) = I(rt < −VaRτ
t ), e.g. the

unconditional coverage test (UC) of Kupiec (1995) and the conditional coverage test (CC)

of Christo�ersen (1998). It is, however, well documented, that these tests su�er from a

substantial lack of power in �nite samples (see e.g. Gaglianone et al., 2011; Nieto and

Ruiz, 2016). The dynamic quantile test (DQ) of Engle and Manganelli (2004) links the

series of violations to the lagged hits, and it is said to be the best procedure for the 1%

VaR (Berkowitz et al., 2011). All of the above mentioned backtests have been thoroughly

discussed in the literature, so I refrain from further details on this account.

Another interesting and comprehensive approach was suggested by Dumitrescu et al.

(2012) that has not yet received much attention. They argue that linear regression, as

in DQ, is not a suitable tool for a binary dependent variable such as VaR violation.

The authors propose several speci�cations of a dynamic binary test. In this setup the

5For further details see Hansen et al. (2011)
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conditional probability of a violation is assumed to be dependent on some index πt:

P (It(τ)|Ft−1) = E[It(τ)|Ft−1] = F (πt), (4.6)

πt = c+

q1∑
j=1

ρjπt−j +

q2∑
j=1

δjIt−j(τ) +

q3∑
j=1

φjl(yt−j, φ) +

q4∑
j=1

γjl(yt−j, φ)It−j, (4.7)

where F (·) denotes a cdf, l(·) a function of lagged observables, and yt is a vector of

explanatory variables, e.g. lagged returns (Dumitrescu et al., 2012). In their paper, the

authors propose seven versions of the dynamic binary model, from which I choose two,

namely the least and the most restrictive ones:

DB1 : πt = c+ ρ1πt−1, (4.8)

DB7 : πt = c+ ρ1πt−1 + δ1It−1(τ) + φ1V aRt−1 + γ1V art−1It−1. (4.9)

The �rst speci�cation is a simple AR(1) representation and the last one re�ects an asym-

metric e�ect lagged VaR values can have on the index πt. In terms of estimation, con-

strained maximum likelihood can be applied to obtain estimates for θ = (ρ′, γ′, φ′, δ′).

Then one can test the assumption of conditional temporal independence of violations

with the null hypothesis

H0 : ρ = 0, δ = 0, φ = 0, γ = 0 and c = F−1(τ).

Under the null hypothesis the percentage of violations is equal to τ on average, and the

violations are uninformative. If the null is rejected, the model delivering the corresponding

VaR forecast can be improved, since the hit sequence contains omitted information6.

In the backtesting stage of model validation �ve backtests are used: unconditional

coverage test, conditional coverage test, dynamic quantile test and two speci�cations of

dynamic binary test mentioned above. A model is considered admissible if none of the �ve

null hypotheses is rejected at 10% signi�cance level. The results of my extensive empirical

analysis of model performance are presented in the following section.

4.4 Empirical analysis

In order to encompass all the information obtained from the model con�dence set and

backtesting procedures a rather simple additive scoring system is used. Starting with the

MCS, each model receives a score of one each time it is included in the superior set of

models. An additional score of one is awarded to the model with the lowest average loss.

6The Matlab code for estimation and testing is available on
http://www.runmycode.org/companion/view/35
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At last, if a model passes all of the �ve backtests, its score is, again, increased by one.

This scoring is conducted for a variety of cases depending on quantile levels and validation

sample sizes. Additionally, there are two major datasets: an index dataset containing four

international stock indices, and a stock dataset with sixteen di�erent stocks7. In most

of the VaR forecasting studies, the model comparison is performed on a small number

of return series. A substantially larger data pool should help make a more meaningful

statement.

4.4.1 Data

The index dataset contains four stock indices over a time period between 2006 and 2017:

DAX 30, Dow Jones, FTSE 100 and EUROSTOXX 50. The set contains between 2760

and 2717 observations. The stocks dataset consists of sixteen di�erent stock returns from

several countries and industries. The descriptive statistics for both datasets are presented

in Tables 4.2 and 4.3.

−5

0

5

10

2008 2010 2012 2014 2016 2018
Date

R
et

ur
ns

 in
 %

DAX November 24, 2006 − December 5, 2017

10

20

30

40

50

2008 2010 2012 2014 2016 2018
Date

VDAX November 24, 2006 − December 5, 2017

0

1

2

3

4

5

2008 2010 2012 2014 2016 2018
Date

V
ol

um
e 

×
 1

0−
8

DAX Volume

0.00

0.02

0.04

0.06

0.08

2008 2010 2012 2014 2016 2018
Date

 

RV
BV
MedRV

Realized measures

Note: The dashed blue lines in the upper left plot represent subsamples reserved for backtesting,
H ∈ {250, 500, 1000} .

Figure 4.1: DAX 30, daily returns and related series

7Stock data, option implied volatility and daily trading volume are obtained from Thomson Reuters

Datastream
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Figure 4.2: Dow Jones, daily returns and related series

Table 4.2: Descriptive statistics of the index data (in percentage points)

AR(1) coef. (Std. err.) ¯̂ε σ̂2 ξ̂ κ̂ pLB 1% 5% N obs.

DAX 0.027 (0.035) 0 1.465 0.092 10.215 0.001 −3.469 −1.939 2759
Dow Jones −0.026 (0.033) 0 1.275 −0.105 14.020 0.000 −3.489 −1.797 2760
FTSE 100 0.012 (0.028) 0 0.777 −0.077 8.823 0.000 −2.504 −1.483 2760
EUROSTOXX 50 −0.001 (0.023) 0 1.508 −0.377 10.257 0.023 −3.583 −1.885 2717

Note: AR(1) coe�cient is estimated by OLS, HAC robust standard errors in parentheses; ¯̂ε is

the sample mean of OLS residuals, σ̂2 the sample variance, ξ̂ the sample skewness, κ̂ the sample
kurtosis. pLB are the p-values of the Ljung-Box test for 20 lags. 1% and 5% represent empirical
quantiles.

Figures 4.1�4.4 show series from the index dataset. Daily returns are depicted in the

upper left panel with blue lines marking beginnings of di�erent validation periods reserved

for backtesting, H ∈ {250, 500, 1000}. The upper right plots show corresponding implied

volatility indices. The lower left and right graphs are daily trading volume and realized

measures, respectively. All return series were �ltered using an AR(1) model, which is a

standard practice (see e.g. Kuester et al., 2006 and references therein). The corresponding

demeaned returns exhibit high kurtosis and mostly negative skewness.
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Figure 4.3: FTSE 100, daily returns and related series

The realized measures discussed in Section 4.2.2 are taken from Oxford-Man Insti-

tute's realized library (Heber et al., 2009). The library contains several realized measures

computed for di�erent stock indices. In general, it is not easy to obtain high frequency

intraday return data for single stocks. Hence, the single stocks I picked are included in the

calculation of the four indices from the index set. The purpose of this is to use the HAR

components of the indices as market volatility proxies in the single stock regressions.

As it is obvious from Figures 4.1�4.4, trading volume and realized measures series are

not always well-behaved, and it is possible that, besides additional information, they will

introduce undesired noise into VaR forecasts. It might be a good idea to �lter out some

of that noise before using these variables in quantile autoregression, but this is beyond

the scope of this paper.
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Figure 4.4: EUROSTOXX 50, daily returns and related series

Table 4.3: Descriptive statistics of the stocks data (in percentage points)
Index Company Tick Industry AR(1) (Std. err.) σ̂2 ξ̂ κ̂ pLB 1% 5%

DAX

Bayer BAYN Pharma -0.060 (0.025) 3.43 0.648 17.22 0.026 -4.98 -2.78
BMW BMW Manufac. 0.041 (0.025) 4.36 0.082 7.35 0.003 -5.49 -3.27
Deutsche Telekom DTE Commun. -0.023 (0.023) 2.49 0.173 11.12 0.000 -4.04 -2.36
SAP SAP Software 0.033 (0.035) 2.28 -0.591 16.12 0.004 -4.25 -2.25

DJI

Apple AAPL Info tech. -0.001 (0.022) 4.10 -0.429 10.22 0.002 -5.91 -3.03
IBM IBM Info tech. -0.011 (0.027) 1.92 -0.133 8.97 0.021 -4.43 -2.11
Microsoft MSFT Info tech. -0.058 (0.029) 2.95 0.165 12.77 0.000 -4.76 -2.53
P�zer PFE Pharma -0.058 (0.029) 1.91 -0.040 9.30 0.000 -3.75 -2.13
Exxon Mobil XOM Oil & gas -0.135 (0.035) 2.31 -0.273 17.24 0.000 -4.34 -2.24

FTSE
100

BP BP Oil & gas -0.029 (0.025) 3.69 -0.504 14.31 0.000 -5.45 -2.89
Halma HLMA Electronics -0.061 (0.023) 2.54 0.101 6.11 0.004 -4.11 -2.52
Marks & Spencer MKS Retail 0.026 (0.025) 3.85 -1.473 25.45 0.008 -4.79 -2.86
Unilever ULVR Pers. goods -0.040 (0.027) 1.92 0.295 9.49 0.282 -3.64 -2.01
Vodafone VOD Commun. -0.065 (0.028) 3.11 -0.390 10.73 0.000 -5.26 -2.60

EURO
STOXX

50

Airbus AIR Aerospace -0.010 (0.026) 5.10 -1.047 17.77 0.001 -5.82 -3.59
Nokia NOKIA Technology -0.001 (0.021) 6.70 -0.265 16.22 0.042 -7.65 -3.63
Sano� SAN Pharma -0.061 (0.029) 2.41 -0.256 9.50 0.040 -4.27 -2.44
TOTAL S.A. FP Oil & gas -0.055 (0.025) 2.70 0.178 9.96 0.000 -4.44 -2.48

Note: The number of observations are 2686 for DAX stocks, 2759 for DJI stocks, 2699 for FTSE 100
stocks, and 2680 for EUROSTOXX 50 stocks. AR(1) coe�cient is estimated by OLS, HAC robust
standard errors in parentheses; sample mean of OLS residuals ¯̂ε is approx. zero for all assets, σ̂2 is the
sample variance, ξ̂ is the sample skewness, κ̂ is the sample kurtosis. pLB are the p-values of the Ljung-Box
test for 20 lags. 1% and 5% represent empirical quantiles.
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4.4.2 Results

In order to perform a more accurate model comparison, value-at-risk is forecast by means

of few other well-established models. First, three speci�cations of CAViaR of Engle and

Manganelli (2004) are used, namely the symmetric absolute value (SAV), asymmetric

slope (ASlope) and integrated GARCH (iGARCH). This class of models represents a one-

step semi-parametric approach where the conditional quantile is also modelled directly.

Second, GARCH of Bollerslev (1986) and apARCH of Ding et al. (1993) with skew-normal

and skew-t distributed innovations are considered. Here, the quantile forecast relies on

a conditional volatility forecast and a distributional assumption. Both of these model

classes have been analyzed in the literature in detail and shown quite successful with the

task (Nieto and Ruiz, 2016). Finally, there is a relatively new class of parametric models,

generalized autoregressive score models (GAS) of Creal et al. (2013). GAS models are

rather competitive when it comes to VaR forecasts (Ardia et al., 2019; Bernardi and

Catania, 2016). Here, three speci�cations of the GAS are employed: normal, Student t

and skew-t.

The results of model performances for the index data are summarized in Table 4.4 and

the detailed results on backtesting and MCS procedure can be found in Tables 4.20�4.43

of the Appendix. The estimation results of the quantile autoregressions are presented in

Tables 4.12�4.19 (see the Appendix). For the stocks data the results are presented in

Tables 4.5 � 4.10 for di�erent quantiles and validation sample sizes, and the overall model

scores for the stock data are presented in Table 4.11. In each case, the inclusion of a

model in the SSM is represented by a light-blue cell, which assigns a score of one to this

model.8 A dark-blue cell indicates a model with the lowest average loss. Number one in

a light-blue cell means that the model passed all validation tests; number one in a dark-

blue cell corresponds to the model with the lowest loss, but not all passed backtesting

procedures. Finally, number two in a dark-blue cell indicates a model with both lowest

loss and backtesting success.

First, I will discuss the results for the index data (Table 4.4). It is evident that the

MCS procedure keeps almost all of the QREG-RM models in the superior set in every

case. For DAX, QREG models with log bipower variation and median realized variance,

both in logs and levels, appear to be the better choices when the sample is small. For

H = 1000, however, skew-normal apARCH is a more suitable alternative.

For the Dow Jones the MCS procedure appears to be rather discriminative, but the

QREG models in levels keep their seat at the table. Here, bipower variation, realized

volatility and median realized variance contain the highest predictive power.

For FTSE 100, QREG models with implied volatility perform rather well for the 5%

quantile, but so do the QREG-RMmodels. The latter tend to do better for the 1% quantile
8Here I refrain from adding a number one to a coloured cell for visual purposes
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in logs. The competitors deliver inconsistent results, and no pattern is recognizable.

Finally, for EUROSTOXX 50, QREG models only manage to remain in the SSM but

fail to score otherwise. The best alternatives here are HARQ-BV, apARCH, GARCH and

GAS with Student t innovations.

Looking at overall scores, QREG models with median realized variance, both in logs

and levels, and bipower variation are the best choices for this dataset, especially for the

shorter validation periods.

As for single stocks dataset, the results are rather diverse for di�erent periods and

quantiles. In terms of MCS, QREG model consistently remain in the SSM with only a

few exceptions. Score-wise, quantile regressions perform better for the 5% quantile and

smaller sample sizes. For the 1% VaR, apARCH and GAS models appear to be more

successful. CAViaR models become competitive only for H = 1000 and perform poorly

otherwise. The same holds for GARCH models. The worst performing model overall is

GAS with Student t innovations.

Looking at the overall scores in Table 4.11, it is evident that extending a models in-

formation set beyond past returns can be bene�cial. Still, the HARQ model is rather

successful on its own but holds the same score as asymmetric slope CAViaR. There is

a de�nite trade-o� between the amount of predictive information and the complexity of

the model. Involving weakly exogenous regressors and applying a �exible semiparametric

model has shown robustness so far. However, there is a de�nite need for further analysis,

and clearer patterns have to be revealed.

4.5 Summary

In this paper, I compare a class of predictive quantile autoregressions with exogenous

explanatory variables to a number of return-based models for VaR forecasting. I focus on

modelling 1% and 5% conditional quantiles of a large set of stock and index returns. I pro-

pose a simple ranking system of forecasting performances based on the model con�dence

set procedure, lowest average loss criterion and a battery of backtests. The models with

the best overall performance are heterogeneous quantile autoregression with bipower vari-

ation and median realized measures and additional exogenous regressors, such as implied

volatility, downward semivariance, daily trading volume, day-of-the-week e�ect and vari-

ous transformations of lagged returns. The estimation process is performed by means of

quantile regression and is shown to be fast and quite simple. These models work better in

smaller samples and are competitive against apARCH, GAS and CAViaR in larger ones.

The analysis is performed on recent stock market data with a calm validation period,

which normally complicates discrimination among di�erent forecasting methods. While

the role of additional information, i.e. market characteristics, liquidity variables, cannot
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be discounted, there is de�nitely a need for further research on relationships between

value-at-risk and possible predictive regressors.
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Table 4.4: Model selection and backtesting results for stock indices.
DAX Dow Jones FTSE 100 EUROSTOXX 50

0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05
Model

250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000

Total

Score

QREG-RV 1 1 1 1 1 1 1 1 1 33
QREG-BV 1 1 2 1 2 1 2 1 1 1 36

QREG-MedRV 1 1 2 1 1 1 1 1 1 1 1 1 37

QREG-logRV 1 1 2 1 1 1 1 31
QREG-logBV 2 1 1 1 1 1 1 30
QREG-logMedRV 1 2 1 1 2 2 1 1 2 36

HARQ-RV 1 1 1 1 1 1 1 1 25
HARQ-BV 1 1 1 1 1 1 1 2 2 1 1 1 34
HARQ-MedRV 1 1 1 1 1 1 1 1 1 27
HARQ-logRV 1 1 1 1 1 25
HARQ-logBV 1 1 1 1 1 25
HARQ-logMedRV 1 1 1 22

QREG-IV 2 1 24
QREG-logIV 1 1 1 23

CAViaR-SAV 1 1 1 1 1 1 14
CAViaR-ASlope 1 1 1 1 1 2 19
CAViaR-iGARCH 1 1 1 1 1 1 1 1 17

GARCH-SN 1 1 1 1 1 1 1 1 1 1 1 28
GARCH-ST 1 1 1 1 1 1 1 1 1 1 24

apARCH-SN 1 1 2 2 1 1 1 1 1 1 1 1 32
apARCH-ST 1 1 1 1 1 1 1 1 1 1 1 2 30

GAS-N 1 1 1 1 1 1 1 1 23
GAS-t 1 1 1 1 1 1 1 1 1 1 1 1 31
GAS-ST 1 7

Note: The table summarizes the results for model con�dence set procedure and backtesting for the stock index data. The
forecasting of value-at-risk was performed for three rolling-window lengths, {250, 500, 1000}, and two quantile levels, 1% and
5%. Light blue cells mark the models included in the SSM and dark blue cells mark the models with the lowest average loss.
A value of one represents a model passing all the backtests. A score of one is always added for a model with a lowest average
loss.
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Table 4.5: Model selection and backtesting results for stock returns, τ = 0.01 and H = 250.
DAX Dow Jones FTSE 100 EUROSTOXX 50

Model
BMW DTE SAP BAYN AAPL IBM MSFT PFE XOM BP HLMA MKS ULVR VOD AIR NOKIA SAN FP

Score

QREG-RV 1 1 1 2 1 1 1 1 1 1 2 25
QREG-BV 1 1 1 1 1 1 1 1 1 2 1 1 1 28
QREG-MedRV 2 1 1 1 1 1 1 1 1 1 1 1 2 29

QREG-logRV 1 1 1 1 1 1 23
QREG-logBV 1 1 1 1 1 1 1 1 1 27
QREG-logMedRV 1 1 1 1 1 1 1 1 1 27

HARQ-RV 1 1 1 1 2 1 1 1 1 21
HARQ-BV 1 1 1 1 1 1 1 1 1 19
HARQ-MedRV 1 2 1 1 1 1 1 1 18
HARQ-logRV 1 1 1 1 1 21
HARQ-logBV 1 1 2 1 21
HARQ-logMedRV 1 1 1 1 1 19

QREG-IV 1 1 1 1 2 1 1 22
QREG-logIV 1 1 2 1 1 1 1 1 2 26

CAViaR-SAV 1 1 1 1 1 1 1 17
CAViaR-ASlope 1 1 1 1 1 1 1 1 19
CAViaR-iGARCH 1 1 1 1 1 12

GARCH-SN 1 1 1 1 1 1 1 1 1 1 26
GARCH-ST 1 1 1 1 1 1 1 1 1 1 21

apARCH-SN 1 2 1 1 1 1 1 1 1 1 1 1 1 30

apARCH-ST 1 1 1 1 1 2 1 1 2 22

GAS-N 1 1 1 1 1 15
GAS-t 1 1 1 1 1 1 1 1 1 1 2 30

GAS-ST 1 1 1 1 1 1 1 1 17

Note: The table summarizes the results for model con�dence set procedure and backtesting for the stocks data. The
forecasting of value-at-risk was performed for a rolling-window length of 250 and a quantile level of 1%. Light blue cells mark
the models included in the SSM and dark blue cells mark the models with the lowest average loss. A value of one represents
a model passing all the backtests. A score of one is always added for a model with a lowest average loss.
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Table 4.6: Model selection and backtesting results for stock returns, τ = 0.05 and H = 250.
DAX Dow Jones FTSE 100 EUROSTOXX 50

Model
BMW DTE SAP BAYN AAPL IBM MSFT PFE XOM BP HLMA MKS ULVR VOD AIR NOKIA SAN FP

Score

QREG-RV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 32

QREG-BV 1 1 1 1 1 1 1 1 1 1 1 2 1 1 33

QREG-MedRV 1 1 1 1 1 1 1 1 1 1 1 28
QREG-logRV 2 1 2 1 1 25
QREG-logBV 1 1 1 1 1 23
QREG-logMedRV 1 1 1 1 1 1 1 25

HARQ-RV 1 1 1 1 2 2 1 1 1 1 28
HARQ-BV 1 1 1 1 1 1 1 1 2 1 29

HARQ-MedRV 1 1 1 1 2 1 1 1 1 27
HARQ-logRV 1 1 2 1 1 1 1 26
HARQ-logBV 1 1 1 2 1 24
HARQ-logMedRV 1 1 1 20

QREG-IV 1 2 1 1 1 1 22
QREG-logIV 1 1 1 1 1 1 21

CAViaR-SAV 1 1 1 1 1 1 1 25
CAViaR-ASlope 1 1 1 1 1 1 1 1 25
CAViaR-iGARCH 1 1 1 15

GARCH-SN 1 1 9
GARCH-ST 1 1 1 18

apARCH-SN 1 1 1 1 13
apARCH-ST 1 1 1 1 1 1 20

GAS-N 1 9
GAS-t 1 1 1 1 1 1 1 23
GAS-ST 1 1 1 1 13

Note: The table summarizes the results for model con�dence set procedure and backtesting for the stocks data. The
forecasting of value-at-risk was performed for a rolling-window length of 250 and a quantile level of 5%. Light blue cells mark
the models included in the SSM and dark blue cells mark the models with the lowest average loss. A value of one represents
a model passing all the backtests. A score of one is always added for a model with a lowest average loss.
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Table 4.7: Model selection and backtesting results for stock returns, τ = 0.01 and H = 500.
DAX Dow Jones FTSE 100 EUROSTOXX 50

BMW DTE SAP BAYN AAPL IBM MSFT PFE XOM BP HLMA MKS ULVR VOD AIR NOKIA SAN FP
Score

QREG-RV 1 1 1 1 1 1 1 1 1 27
QREG-BV 1 1 1 2 1 1 1 1 1 2 1 31
QREG-MedRV 1 1 1 1 1 1 1 1 1 1 1 29
QREG-logRV 1 1 1 1 1 1 23
QREG-logBV 1 1 1 1 1 1 1 24
QREG-logMedRV 1 1 1 1 1 1 1 24

HARQ-RV 1 1 1 1 1 1 2 1 1 1 1 1 30

HARQ-BV 1 1 1 1 1 2 2 1 1 1 1 30

HARQ-MedRV 1 1 2 1 1 1 1 2 1 1 1 1 32

HARQ-logRV 1 2 1 1 1 1 1 25
HARQ-logBV 2 1 2 1 1 1 1 27
HARQ-logMedRV 1 1 1 1 1 1 1 1 26

QREG-IV 1 1 1 1 1 1 1 24
QREG-logIV 1 1 1 1 2 1 24

CAViaR-SAV 1 1 1 1 1 1 1 1 2 1 1 28
CAViaR-ASlope 1 1 1 1 1 1 1 1 1 1 1 26
CAViaR-iGARCH 1 1 1 1 1 1 1 1 23

GARCH-SN 1 1 1 1 1 1 1 1 1 1 1 29
GARCH-ST 1 1 1 1 1 1 1 1 1 1 1 27

apARCH-SN 1 1 1 1 1 1 1 1 1 1 1 1 30

apARCH-ST 1 1 1 1 1 1 1 1 1 1 28

GAS-N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 33

GAS-t 1 1 1 1 1 1 1 1 1 27
GAS-ST 1 1 1 1 1 1 1 1 1 1 26

Note: The table summarizes the results for model con�dence set procedure and backtesting for the stocks data. The
forecasting of value-at-risk was performed for a rolling-window length of 500 and a quantile level of 1%. Light blue cells mark
the models included in the SSM and dark blue cells mark the models with the lowest average loss. A value of one represents
a model passing all the backtests. A score of one is always added for a model with a lowest average loss.
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Table 4.8: Model selection and backtesting results for stock returns, τ = 0.05 and H = 500.
DAX Dow Jones FTSE 100 EUROSTOXX 50

Model
BMW DTE SAP BAYN AAPL IBM MSFT PFE XOM BP HLMA MKS ULVR VOD AIR NOKIA SAN FP

Score

QREG-rv 1 1 1 2 1 1 1 1 1 1 1 1 31

QREG-bv 1 1 1 1 2 1 1 1 2 1 2 1 1 34

QREG-mrv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 35

QREG-lrv 1 1 1 1 1 23
QREG-lbv 1 1 1 1 1 22
QREG-lmrv 1 1 1 1 1 23

HARQ-RV 1 1 1 1 1 1 1 1 1 1 26
HARQ-BV 1 1 1 1 2 2 1 1 1 1 1 31

HARQ-MedRV 1 1 1 1 1 1 1 1 1 1 1 29
HARQ-logRV 1 1 1 1 1 1 1 25
HARQ-logBV 1 1 1 1 1 1 1 2 1 27
HARQ-logMedRV 1 2 1 1 1 1 25

QREG-IV 1 2 1 1 1 24
QREG-logIV 1 1 2 1 1 24

CAViaR-SAV 1 1 1 1 1 1 1 1 1 1 1 28
CAViaR-ASlope 1 1 1 1 1 1 1 2 1 1 29
CAViaR-iGARCH 1 1 1 1 1 1 1 1 24

GARCH-SN 1 1 1 1 1 1 18
GARCH-ST 1 1 1 1 1 1 1 2 1 1 27

apARCH-SN 1 1 1 17
apARCH-ST 1 1 1 1 1 1 1 1 1 25

GAS-N 10
GAS-t 1 1 1 1 1 1 1 22
GAS-ST 1 1 10

Note: The table summarizes the results for model con�dence set procedure and backtesting for the stocks data. The
forecasting of value-at-risk was performed for a rolling-window length of 500 and a quantile level of 5%. Light blue cells mark
the models included in the SSM and dark blue cells mark the models with the lowest average loss. A value of one represents
a model passing all the backtests. A score of one is always added for a model with a lowest average loss.
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Table 4.9: Model selection and backtesting results for stock returns, τ = 0.01 and H = 1000.
DAX Dow Jones FTSE 100 EUROSTOXX 50

Model
BMW DTE SAP BAYN AAPL IBM MSFT PFE XOM BP HLMA MKS ULVR VOD AIR NOKIA SAN FP

Score

QREG-RV 1 1 1 1 22
QREG-BV 1 1 1 1 1 1 24
QREG-MedRV 1 1 1 1 1 1 1 25
QREG-logRV 18
QREG-logBV 1 1 20
QREG-logMedRV 1 1 19

HARQ-RV 1 2 1 1 1 1 1 1 27
HARQ-BV 1 2 1 1 1 1 1 1 1 1 29

HARQ-MedRV 1 1 1 1 1 1 1 25
HARQ-logRV 1 1 1 1 21
HARQ-logBV 1 1 2 1 1 23
HARQ-logMedRV 1 1 1 1 22

QREG-IV 1 1 1 1 2 1 25
QREG-logIV 2 1 2 1 1 1 26

CAViaR-SAV 1 1 1 1 1 1 1 1 1 1 1 28
CAViaR-ASlope 1 1 1 1 1 1 1 1 2 1 1 1 1 2 34

CAViaR-iGARCH 1 1 1 1 1 1 1 1 1 25

GARCH-SN 1 1 1 1 2 1 1 25
GARCH-ST 1 1 1 1 1 1 1 1 1 1 1 2 30

apARCH-SN 1 1 1 1 1 1 24
apARCH-ST 1 2 1 1 1 1 1 1 1 1 26

GAS-N 1 1 1 1 1 1 1 1 1 1 1 28
GAS-t 1 1 1 1 1 22
GAS-ST 1 1 1 1 1 1 1 1 21

Note: The table summarizes the results for model con�dence set procedure and backtesting for the stocks data. The
forecasting of value-at-risk was performed for a rolling-window length of 1000 and a quantile level of 1%. Light blue cells
mark the models included in the SSM and dark blue cells mark the models with the lowest average loss. A value of one
represents a model passing all the backtests. A score of one is always added for a model with a lowest average loss.
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Table 4.10: Model selection and backtesting results for stock returns, τ = 0.05 and H = 1000.
DAX Dow Jones FTSE 100 EUROSTOXX 50

Model
BMW DTE SAP BAYN AAPL IBM MSFT PFE XOM BP HLMA MKS ULVR VOD AIR NOKIA SAN FP

Score

QREG-RV 1 1 1 1 1 1 1 23
QREG-BV 2 1 1 2 1 1 1 27

QREG-MedRV 1 1 1 1 1 1 1 25
QREG-logRV 1 18
QREG-logBV 1 19
QREG-logMedRV 1 1 20

HARQ-RV 1 1 1 1 22
HARQ-BV 1 1 1 1 1 1 24
HARQ-MedRV 1 1 1 1 22
HARQ-logRV 1 1 19
HARQ-logBV 1 1 1 20
HARQ-logMedRV 1 1 1 20

QREG-IV 1 1 1 1 21
QREG-logIV 1 18

CAViaR-SAV 1 1 1 1 1 1 2 1 27

CAViaR-ASlope 1 1 2 1 1 2 1 1 2 29

CAViaR-iGARCH 1 1 1 1 1 1 22

GARCH-SN 1 1 1 1 1 1 1 22
GARCH-ST 1 1 1 1 1 2 1 1 1 1 28

apARCH-SN 1 1 1 1 1 1 23
apARCH-ST 1 1 1 1 1 1 1 1 1 1 1 29

GAS-N 1 16
GAS-t 1 1 1 1 1 1 1 23
GAS-ST 8

Note: The table summarizes the results for model con�dence set procedure and backtesting for the stocks data. The
forecasting of value-at-risk was performed for a rolling-window length of 1000 and a quantile level of 5%. Light blue cells
mark the models included in the SSM and dark blue cells mark the models with the lowest average loss. A value of one
represents a model passing all the backtests. A score of one is always added for a model with a lowest average loss.
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Table 4.11: Overall model scores for stock returns data.

Model
τ = 0.01 τ = 0.05

Total score
250 500 1000 250 500 1000

QREG-RV 25 27 22 32 31 23 160
QREG-BV 28 31 24 33 34 27 177

QREG-MedRV 29 29 25 28 35 25 171

QREG-logRV 23 23 18 25 23 18 130
QREG-logBV 27 24 20 23 22 19 135
QREG-logMedRV 27 24 19 25 23 20 138

HARQ-RV 21 30 27 28 26 22 154
HARQ-BV 19 30 29 29 31 24 162

HARQ-MedRV 18 32 25 27 29 22 153
HARQ-logRV 21 25 21 26 25 19 137
HARQ-logBV 21 27 23 24 27 20 142
HARQ-logMedRV 19 26 22 20 25 20 132

QREG-IV 22 24 25 22 24 21 138
QREG-logIV 26 24 26 21 24 18 139

CAViaR-SAV 17 28 28 25 28 27 153
CAViaR-ASlope 19 26 34 25 29 29 162

CAViaR-iGARCH 12 23 25 15 24 22 121

GARCH-SN 26 29 25 9 18 22 129
GARCH-ST 21 27 30 18 27 28 151

apARCH-SN 30 30 24 13 17 23 137
apARCH-ST 22 28 26 20 25 29 150

GAS-N 15 33 28 9 10 16 111
GAS-t 30 27 22 23 22 23 147
GAS-ST 17 26 21 13 10 8 95
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Appendix

4.5.1 Realized measures de�nitions

Assuming the log price variable p(t) is driven by the stochastic process:

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dg(t), t ≥ 0, (4.10)

where the mean µ(t) is continuous and locally bounded, volatility σ(t) is positive and

cádlág, and W (t) is standard Brownian motion. The last term represents a discrete jump

component of the process with dq(t) = 1 when a jump occurs (and being zero otherwise)

and κ(t) the corresponding size of the jump. The common goal in practice is to estimate

and predict the quadratic variation on a daily time scale:

σ̃2(t) =

ˆ t+1

t

σ2(s)ds+
∑

t≤mj≤t+1

κ2(mj).

The �rst term of this decomposition is the so-called integrated variance, while the second

one is the jump variation.

Given a sample of size T (M + 1) of T days with M + 1 intraday observations each, one

can de�ne intraday returns as

rt,j = pt,j − pt,j−1, j = 1, . . . ,M, t = 1, . . . , T. (4.11)

This data can be used to compute various realized measures with di�erent properties.

Daily realized volatility, �rst introduced by Andersen and Bollerslev (1998), is de�ned as

a sum of squared intraday returns,

RVt =
M∑
j=1

r2
t,j, t = 1, . . . , T.

In order to separate the continuous and the jump components of quadratic variation,

Barndor�-Nielsen and Shephard (2004, 2006) introduced bipower variation,

BVt = µ−2
1

M

M − (k + 1)

M∑
j=k+2

|rt,j||rt,j−k−1| t = 1, . . . , T,

where µ1 =
√

2/π. This measure is a consistent estimate of the integrated volatility and

can be used to tease out the jump component.

Finally, integrated volatility can also be consistently estimated by the median realized
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volatility of Andersen et al. (2012):

MedRVt =
π

6− 4
√

3 + π

( M

M − 2

)M−3∑
j=0

med
(
|rt,j||rt,j+1||rt,j+2|

)2

, t = 1, . . . , T.
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Table 4.12: Quantile regression estimation results for DAX, full sample, τ = 1%.
QREG HARQ

RV BV MedRV logRV logBV logMedRV IV1 IV2 RV BV MedRV logRV logBV logMedRV

Intercept -0.0060* -0.0043 -0.0072* -0.0987* -0.1029* -0.1072* -0.0066* -0.0058* -0.0066* -0.0052* -0.0068* -0.1307* -0.1303* -0.1343*
RVd -4.5889* -0.0111 -0.9680* -0.0097*
RVw -0.4020 -0.0057* -0.3713 -0.0129*
RVm -0.1658 -0.0056* -0.6612* 0.0006
BVd -2.1755* -0.0022 -1.5464* -0.0094*
BVw -0.3260 -0.0065* 0.0083 -0.0133*
BVm -0.4509* -0.0057 -0.7898* 0.0011
MedRVd -4.7243* 0.0003 -1.0738* -0.0138*
MedRVw -0.3732 -0.0057* -0.2125 -0.0083
MedRVm -0.3296 -0.0058* -0.8101* 0.0001
r2t−1 0.1900*
I(rt−1 < 0) 0.0004 0.0003 0.0004 -0.0002 0.0014 0.0008 0.0018 0.0013
|rt−1| 0.8129* 0.2487* 0.8400* 0.2184* 0.1302* 0.1393* 0.1920*
|rt−1|I(rt−1 < 0) -1.1433* -0.4152* -1.1454* 0.0049 -0.2567 -0.1011 -0.3288
RS− 4.8860* 1.4766* 4.9743* -0.3114 -0.0032 -0.0067*
IV -0.0007 -0.0015 0.0005 -0.0019 -0.0015 -0.0025 -0.0242* -0.0243*
Volume×10−8 -0.0054* -0.0036* -0.0048* -0.0086* -0.0083* -0.0074* -0.0128* -0.0133*
Wednesday 0.0023 0.0028 0.0029 0.0004 0.0000 0.0001 0.0004 0.0002
Friday 0.0024* 0.0031* 0.0029* 0.0039* 0.0038* 0.0045* 0.0039* 0.0035

Note: The table summarizes estimated coe�cients of the quantile regression speci�cations. Signi�cance at 10% is marked
by an asterisk.
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Table 4.13: Quantile regression estimation results for DAX, full sample, τ = 5%

QREG HARQ

RV BV MedRV logRV logBV logMedRV IV1 IV2 RV BV MedRV logRV logBV logMedRV

Intercept 0.0010 -0.0006 -0.0007 -0.0785* -0.0814* -0.0861* -0.0020 -0.0023 -0.0026* -0.0027* -0.0020 -0.0947* -0.0951* -0.0981
RVd 0.1146 0.0047 -0.7662* -0.0077*
RVw -0.7504* -0.0038 -0.4681 -0.0023
RVm -0.3165 -0.0053* -0.3548 -0.0063*
BVd -0.9605 -0.0010 -0.8816* -0.0087*
BVw -0.4563 -0.0026* -0.2628 -0.0008
BVm -0.4434 -0.0060 -0.5126 -0.0066*
MedRVd -0.1026 -0.0017 -0.7305* -0.0086
MedRVw -0.8468* -0.0037 -0.5678 -0.0019
MedRVm -0.3532 -0.0056* -0.4369 -0.0060
r2t−1 0.0441
1(rt−1 < 0) -0.0021 -0.0022 -0.0018 -0.0008 -0.0007 -0.0012 -0.0019 -0.0022
|rt−1| 0.0387 0.1849 0.0936 0.0175 0.1534 0.1248 -0.0115
|rt−1|1(rt−1 < 0) 0.0755 -0.0926 -0.0010 -0.0093 -0.1541 -0.1272 -0.1324
RS− -0.9092 0.1514 -0.7775 -0.0088* -0.0042 -0.0036
IV -0.0002 0.0006 0.0010 -0.0029 -0.0032 -0.0020 -0.0204* -0.0196
Volume×10−8 -0.0022* -0.0018 -0.0013 -0.0037* -0.0031* -0.0027* -0.0062* -0.0055
Wednesday 0.0002 0.0013 0.0010 0.0005 0.0004 0.0004 -0.0011 -0.0001
Friday -0.0006 -0.0005 -0.0009 0.0006 0.0006 0.0004 -0.0003 -0.0002

Notes: The table summarizes estimated coe�cients of the quantile regression speci�cations. Signi�cance at 10% is marked
by an asterisk.
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Table 4.14: Quantile regression estimation results for Dow Jones, full sample, τ = 1%

QREG HARQ

RV BV MedRV logRV logBV logMedRV IV1 IV2 RV BV MedRV logRV logBV logMedRV

Intercept 0.0091* 0.0097* 0.0106* 0.0237* 0.0113 0.0159 -0.0174* -0.0190* -0.0037* -0.0038* -0.0049* -0.1228* -0.1263* -0.1293*
RVd -0.5606 0.0014 -0.9058* -0.0087*
RVw 0.2209 -0.0026 -1.8229* -0.0125*
RVm 0.8195* 0.0098* 0.2903* 0.0015
BVd -0.4029 -0.0013 -1.3870* -0.0092*
BVw 0.2074 -0.0018 -1.7921* -0.0129*
BVm 0.7402* 0.0063* 0.3321 0.0022
MedRVd -0.1506 0.0006 -1.0718* -0.0115*
MedRVw 0.0492 -0.0025 -1.8996* -0.0111*
MedRVm 0.9099* 0.0066* 0.3950* 0.0022
r2t−1 -0.0025
1(rt−1 < 0) -0.0025 -0.0005 -0.0012 -0.0006 -0.0009 -0.0007 -0.0007 -0.0011
|rt−1| 0.2474* 0.2492* 0.2392* 0.0241 0.1137 0.1337 0.1221
|rt−1|1(rt−1 < 0) 0.1733 -0.1514 -0.0309 0.0715 0.0197 0.0098 0.1266
RS− 0.7787 0.8192* 0.6616 -0.0004 0.0022 0.0014
IV -0.0362* -0.0355* -0.0365* -0.0410* -0.0380* -0.0392* -0.0336* -0.0348*
Volume×10−8 0.0015* 0.0007 0.0007 -0.0013* -0.0014* -0.0018* -0.0013 -0.0008
Wednesday 0.0009 0.0015* 0.0008 0.0004 0.0009 0.0010 0.0011 0.0011
Friday 0.0017* 0.0020* 0.0018* 0.0002 0.0011 0.0009 0.0016* 0.0013

Notes: The table summarizes estimated coe�cients of the quantile regression speci�cations. Signi�cance at 10% is marked
by an asterisk.
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Table 4.15: Quantile regression estimation results for Dow Jones, full sample, τ = 5%

QREG HARQ

RV BV MedRV logRV logBV logMedRV IV1 IV2 RV BV MedRV logRV logBV logMedRV

Intercept 0.0125* 0.0129* 0.0139* 0.0271* 0.0194* 0.0272* -0.0125* -0.0131* -0.0016 -0.0013 -0.0011 -0.0894* -0.1002* -0.1028*
RVd -0.2772* 0.0009 -0.6373* -0.0072*
RVw 0.0995 0.0002 -0.8489* -0.0050*
RVm 1.0762* 0.0077* -0.1931 -0.0025
BVd -0.0874 -0.0012 -0.7240* -0.0092*
BVw -0.1329 -0.0010 -0.8388* -0.0039*
BVm 1.3927* 0.0076* -0.4516 -0.0031
MedRVd -0.1749 -0.0011 -0.5037* -0.0082*
MedRVw -0.1528 -0.0002 -1.2798* -0.0075*
MedRVm 1.4493* 0.0079* -0.2521 -0.0011
r2t−1 0.0983*
1(rt−1 < 0) -0.0013* -0.0014* -0.0015* 0.0002 -0.0001 -0.0002 0.0000 0.2047*
|rt−1| 0.2640* 0.2230* 0.2769* 0.2138 0.2880* 0.2629* -0.0005
|rt−1|1(rt−1 < 0) 0.1221 0.1832* 0.0716 -0.1289 -0.2155 -0.1945 -0.1461
RS− 0.2486 0.0615 0.2872 -0.0005 0.0010 0.0011
IV -0.0340* -0.0338* -0.0346* -0.0373* -0.0346* -0.0360* -0.0264* -0.0275*
Volume×10−8 0.0008* 0.0006* 0.0004* -0.0002 -0.0005* -0.0006* -0.0004* -0.0005*
Wednesday -0.0001 0.0000 -0.0002 -0.0001 -0.0004 -0.0006 0.0000 0.0004
Friday -0.0004 -0.0002 -0.0006 -0.0002 -0.0005 -0.0005 0.0000 0.0001

Notes: The table summarizes estimated coe�cients of the quantile regression speci�cations. Signi�cance at 10% is marked
by an asterisk.
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Table 4.16: Quantile regression estimation results for FTSE 100, full sample, τ = 1%

QREG HARQ

RV BV MedRV logRV logBV logMedRV IV1 IV2 RV BV MedRV logRV logBV logMedRV

Intercept 0.0004 -0.0001 0.0013 -0.0263* -0.0259* -0.0186* -0.0161* -0.0168* -0.0058* -0.0057* -0.0053* -0.1093* -0.1063* -0.1079*
RVd 0.4609 -0.0004 -1.2301* -0.0098*
RVw -0.6798 -0.0079* -1.0584* -0.0109*
RVm 0.7741 0.0114* 0.3444 0.0032
BVd -1.9137 -0.0102* -1.4147* -0.0081*
BVw -0.4244 -0.0071* -0.9049* -0.0100*
BVm 0.6803 0.0106* 0.2848 0.0012
MedRVd -0.4058 -0.0166* -1.3094* -0.0125*
MedRVw -0.3967 0.0017 -0.6435 -0.0006
MedRVm 0.7228 0.0067* -0.1820 -0.0038
r2t−1 0.2369*
1(rt−1 < 0) 0.0009 0.0004 0.0003 0.0002 -0.0009 -0.0027* -0.0005 -0.0003
|rt−1| 0.2225 0.3973 0.2571 0.2620* 0.2823* 0.1859* 0.1743
|rt−1|1(rt−1 < 0) -0.1689 -0.5611 -0.1581 -0.3795* -0.4073* -0.2219 -0.4418
RS− -1.8694 1.8554 -0.8493 -0.0041 0.0051* 0.0077*
IV -0.0149* -0.0181* -0.0169* -0.0213* -0.0212* -0.0224* -0.0231* -0.0239*
Volume×10−8 0.0000 0.0002 0.0001 0.0000 0.0000 0.0001 -0.0003* -0.0002*
Wednesday 0.0014 0.0008 0.0007 -0.0002 -0.0005 -0.0016* -0.0011 -0.0005
Friday 0.0007 0.0001 0.0010 0.0004 0.0004 0.0006 0.0011 0.0009

Notes: The table summarizes estimated coe�cients of the quantile regression speci�cations. Signi�cance at 10% is marked
by an asterisk.
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Table 4.17: Quantile regression estimation results for FTSE 100, full sample, τ = 5%

QREG HARQ

RV BV MedRV logRV logBV logMedRV IV1 IV2 RV BV MedRV logRV logBV logMedRV

Intercept 0.0020 0.0016 0.0017 -0.0078 -0.0037 -0.0057 -0.0095* -0.0096* -0.0013 -0.0013 -0.0014 -0.0754* -0.0753* -0.0748*
RVd -2.4995* -0.0009 -0.7839* -0.0059*
RVw -0.2791 -0.0005 -0.7680* -0.0059*
RVm 0.9712* 0.0046* -0.0571 -0.0006
BVd -1.5446* -0.0058* -0.8040* -0.0056*
BVw -0.3362 -0.0004 -0.9315* -0.0060*
BVm 1.0080* 0.0051* 0.0649 -0.0008
MedRVd -2.6128* -0.0124* -0.8569* -0.0080*
MedRVw -0.2101 0.0016 -0.8253* -0.0011
MedRVm 0.8023* 0.0047* -0.0124 -0.0028
r2t−1 -0.0414
1(rt−1 < 0) -0.0008 -0.0005 -0.0005 -0.0008 -0.0017* -0.0019* -0.0023* -0.0021*
|rt−1| 0.4122* 0.3532* 0.4324* 0.0638 0.0633 0.1706* -0.0471
|rt−1|1(rt−1 < 0) -0.5665* -0.4060* -0.5685* 0.0364 -0.0070 -0.0412 0.0531
RS− 2.8029* 1.5180* 2.8865* -0.0023 0.0024 0.0069*
IV -0.0140* -0.0141* -0.0126* -0.0165* -0.0161* -0.0167* -0.0140* -0.0140*
Volume×10−8 -0.0001 -0.0001* -0.0001 -0.0001 -0.0001 -0.0002* -0.0002* -0.0002*
Wednesday 0.0003 0.0005 0.0002 0.0008 0.0009 0.0002 0.0013 0.0012
Friday 0.0000 0.0003 -0.0001 0.0003 0.0003 0.0008 0.0007 0.0006

Notes: The table summarizes estimated coe�cients of the quantile regression speci�cations. Signi�cance at 10% is marked
by an asterisk.
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Table 4.18: Quantile regression estimation results for EUROSTOXX 50, full sample, τ = 1%

QREG HARQ

RV BV MedRV logRV logBV logMedRV IV1 IV2 RV BV MedRV logRV logBV logMedRV

Intercept -0.0009 -0.0018 -0.0011 -0.1149* -0.1007* -0.1075* -0.0730* -0.0712* -0.0016 0.0009 -0.0022 -0.1523* -0.1481* -0.1495*
RVd -3.0618 -0.0150* -1.3219* -0.0093*
RVw -1.0558* -0.0136* -0.9344* -0.0125*
RVm 0.4449 0.0053 -0.3418 -0.0046
BVd -2.0132* 0.0057 -1.2760* -0.0077*
BVw -1.2499* -0.0118* -1.4639* -0.0168*
BVm 0.5194 0.0075* -0.3055 -0.0006
MedRVd -3.2700* -0.0033 -1.2457* -0.0083*
MedRVw -1.2667* -0.0118* -1.3140* -0.0168*
MedRVm 0.4927 0.0072* -0.1761 0.0001
r2t−1 -0.1001
1(rt−1 < 0) -0.0005 0.0015 -0.0008 -0.0017 -0.0013 -0.0012 -0.0020 -0.0025
|rt−1| 0.4220 0.2219 0.4594 0.3161 -0.0096 0.0955 -0.2463
|rt−1|1(rt−1 < 0) -0.7281* -0.6382 -0.8210* -0.3555 0.1438 0.0097 0.2496
RS− 3.1747 1.5570* 3.3907 0.0094 -0.0083 -0.0015
IV -0.0611* -0.0449* -0.0531* -0.0174* -0.0262* -0.0228* -0.0339 -0.0331*
Volume×10−8 0.0046* 0.0019 0.0042* 0.0021 0.0013 0.0032* -0.0022 -0.0014
Wednesday 0.0016 0.0023 0.0016 -0.0025* -0.0015 -0.0022 -0.0009 -0.0013
Friday 0.0013 0.0003 0.0019* 0.0007 -0.0017 0.0004 0.0001 0.0002

Notes: The table summarizes estimated coe�cients of the quantile regression speci�cations. Signi�cance at 10% is marked
by an asterisk.
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Table 4.19: Quantile regression estimation results for EUROSTOXX 50, full sample, τ = 5%

QREG HARQ

RV BV MedRV logRV logBV logMedRV IV1 IV2 RV BV MedRV logRV logBV logMedRV

Intercept 0.0029* 0.0023 0.0026 -0.0779* -0.0815* -0.0787* -0.0466* -0.0489* -0.0016 -0.0006 -0.0019 -0.1114* -0.1106* -0.1099*
RVd -0.8507 -0.0015 -0.5104* -0.0057*
RVw -0.4782 -0.0053* -0.6003 -0.0057*
RVm -0.0177 -0.0041* -0.4578 -0.0084*
BVd -0.8097* -0.0009 -0.4965* -0.0064*
BVw -0.9600* -0.0052* -0.8994* -0.0046
BVm -0.0630 -0.0034 -0.4415 -0.0084*
MedRVd -0.7258 -0.0050 -0.4615* -0.0071*
MedRVw -0.8559* -0.0052* -0.8744* -0.0036
MedRVm -0.1280 -0.0028 -0.3936 -0.0081*
r2t−1 0.1600*
1(rt−1 < 0) -0.0020* -0.0016 -0.0026* -0.0010 -0.0010 -0.0013 -0.0004 -0.0004
|rt−1| 0.2735* 0.2701* 0.2372* 0.2513 0.2549 0.2485* 0.2324
|rt−1|1(rt−1 < 0) -0.2434 -0.3141 -0.2012 -0.3660* -0.0007 -0.3841* -0.3194
RS− 0.8746 0.4256 0.7008 0.0010 -0.3212 0.0030
IV -0.0440* -0.0213 -0.0282* -0.0110* -0.0107* -0.0095* -0.0214* -0.0224*
Volume×10−8 -0.0027 -0.0013 -0.0028* -0.0018 -0.0016 -0.0009 -0.0014 -0.0016
Wednesday 0.0016* 0.0012* 0.0013* 0.0015* 0.0015* 0.0013 0.0015 0.0019*
Friday -0.0016 -0.0003 -0.0014 -0.0013 -0.0011 -0.0014 -0.0010 -0.0003

Notes: The table summarizes estimated coe�cients of the quantile regression speci�cations. Signi�cance at 10% is marked
by an asterisk.
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The following Tables 4.20 � 4.43 contain the models included in the SSM, their corre-

sponding average loss values and p-values of the backtests. UC stands for unconditional

coverage test; CC for conditional coverage; DQ for dynamic quantile test with three lags;

DB1 and DB7 represent two speci�cations of the dynamic binary test described in Section

4.3.2. The tables represent the results for the index dataset.9

Table 4.20: MCS and backtesting results for
DAX 30, τ = 1%, H = 250

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 1.986 0.278 0.553 0.987 0.563 0.763
QREG-BV 1.937 0.278 0.553 0.992 0.563 0.763
QREG-MedRV 2.003 0.278 0.553 0.991 0.563 0.762
QREG-logRV 1.819 0.380 0.638 0.587 0.657 0.841
QREG-logBV 1.809 0.742 0.932 1.000 0.945 0.989
QREG-logMedRV 1.897 0.380 0.638 0.530 0.657 0.183

HARQ-BV 1.978 0.278 0.553 0.994 0.563 0.764
HARQ-logRV 2.040 0.162 0.339 0.000 0.357 0.024
HARQ-logBV 1.972 0.380 0.638 0.000 0.657 0.692
HARQ-logMedRV 1.959 0.380 0.638 0.000 0.657 0.010

QREG-IV 2.236 0.025 0.081 0.928 0.657 0.010

GARCH-SN 2.053 0.278 0.553 0.992 0.563 0.763

apARCH-SN 1.896 0.278 0.553 0.996 0.563 0.765

GAS-ST 2.033 0.278 0.553 0.994 0.563 0.764

Table 4.21: MCS and backtesting results for
DAX 30, τ = 5%, H = 250

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 6.387 0.037 0.097 0.359 0.119 0.233
QREG-BV 6.423 0.037 0.097 0.476 0.119 0.234
QREG-MedRV 6.336 0.083 0.181 0.451 0.231 0.402
QREG-logRV 6.575 0.669 0.396 0.076 0.844 0.187
QREG-logBV 6.473 0.669 0.886 0.365 0.844 0.173
QREG-logMedRV 6.524 0.079 0.191 0.008 0.181 0.007

HARQ-RV 6.502 0.083 0.181 0.669 0.231 0.401
HARQ-BV 6.499 0.083 0.181 0.636 0.231 0.403
HARQ-MedRV 6.492 0.453 0.530 0.911 0.746 0.900
HARQ-logRV 6.829 0.329 0.621 0.017 0.555 0.042
HARQ-logBV 6.651 0.215 0.457 0.025 0.406 0.052
HARQ-logMedRV 6.523 0.329 0.621 0.143 0.555 0.045

QREG-IV 7.343 0.004 0.016 0.540 0.018 0.046
QREG-logIV 7.331 0.000 0.001 0.246 0.001 0.003

CAViaR-ASlope 6.747 0.001 0.004 0.030 0.005 0.014

GARCH-SN 6.735 0.037 0.097 0.803 0.119 0.234
GARCH-ST 6.581 0.083 0.181 0.865 0.231 0.401

apARCH-SN 6.486 0.083 0.181 0.558 0.231 0.106
apARCH-ST 6.548 0.083 0.181 0.564 0.231 0.004

GAS-N 6.926 0.004 0.016 0.539 0.018 0.046
GAS-t 6.617 0.453 0.530 0.678 0.746 0.225

Table 4.22: MCS and backtesting results for
DAX 30, τ = 1%, H = 500

Model Loss×104 UC CC DQ DB1 DB7

QREG-logRV 2.305 0.641 0.869 0.944 0.895 0.396
QREG-logBV 2.286 0.331 0.613 0.974 0.628 0.814
QREG-MedRV 2.381 0.028 0.090 0.864 0.092 0.190
QREG-RV 2.397 0.028 0.090 0.864 0.092 0.190
QREG-BV 2.418 0.028 0.090 0.862 0.092 0.189
QREG-logMedRV 2.266 0.641 0.869 0.957 0.895 0.377

HARQ-BV 2.394 0.028 0.090 0.860 0.092 0.189
HARQ-MedRV 2.411 0.028 0.090 0.858 0.092 0.189
HARQ-logRV 2.621 0.397 0.632 0.000 0.680 0.035
HARQ-logBV 2.508 0.663 0.845 0.001 0.893 0.006
HARQ-logMedRV 2.471 1.000 0.951 0.001 0.990 0.028

GARCH-SN 2.544 0.331 0.613 0.997 0.628 0.818

apARCH-SN 2.454 0.331 0.613 0.127 0.628 0.817

GAS-t 2.733 0.641 0.869 0.998 0.895 0.971
GAS-N 2.856 0.641 0.869 0.998 0.895 0.731

Table 4.23: MCS and backtesting results for
DAX 30, τ = 5%, H = 500

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 8.592 0.027 0.055 0.559 0.090 0.184
QREG-BV 8.593 0.027 0.055 0.561 0.090 0.184
QREG-MedRV 8.589 0.131 0.163 0.831 0.323 0.518
QREG-logRV 8.817 0.838 0.234 0.077 0.949 0.075
QREG-logBV 8.799 0.838 0.926 0.285 0.949 0.059
QREG-logMedRV 8.827 0.685 0.842 0.371 0.922 0.198

HARQ-RV 8.784 0.027 0.055 0.585 0.090 0.183
HARQ-BV 8.706 0.027 0.055 0.585 0.090 0.184
HARQ-MedRV 8.712 0.027 0.055 0.596 0.090 0.184
HARQ-logRV 9.045 0.836 0.967 0.115 0.937 0.063
HARQ-logBV 8.955 1.000 0.970 0.067 0.949 0.047
HARQ-logMedRV 8.894 0.836 0.967 0.302 0.885 0.221

CAViaR-ASlope 9.074 0.007 0.018 0.282 0.027 0.066

GARCH-SN 9.034 0.082 0.121 0.476 0.147 0.277
GARCH-ST 8.941 0.199 0.207 0.545 0.323 0.518

apARCH-SN 8.871 0.082 0.121 0.490 0.147 0.193
apARCH-ST 8.879 0.131 0.163 0.627 0.224 0.391

GAS-t 9.406 0.836 0.967 0.576 0.885 0.542

9Similar tables for the stocks dataset can be provided upon request.
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Table 4.24: MCS and backtesting results for
DAX 30, τ = 1%, H = 1000

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 3.013 0.139 0.157 0.002 0.325 0.516
QREG-BV 2.998 0.231 0.399 0.084 0.475 0.681
QREG-MedRV 2.989 0.079 0.112 0.085 0.208 0.367
QREG-logRV 3.069 0.043 0.012 0.000 0.124 0.025
QREG-logBV 3.111 0.079 0.016 0.000 0.208 0.016
QREG-logMedRV 2.966 0.079 0.016 0.000 0.208 0.005

HARQ-RV 2.820 0.314 0.573 0.850 0.603 0.798
HARQ-BV 2.819 0.314 0.573 0.849 0.603 0.798
HARQ-MedRV 2.846 0.314 0.573 0.835 0.603 0.797
HARQ-logRV 3.012 0.510 0.755 0.308 0.803 0.370
HARQ-logBV 2.962 0.510 0.755 0.460 0.803 0.523
HARQ-logMedRV 2.983 0.754 0.258 0.023 0.939 0.121

QREG-IV 3.324 0.005 0.013 0.000 0.019 0.016
QREG-logIV 3.397 0.000 0.002 0.000 0.002 0.002

CAViaR-SAV 2.914 0.510 0.117 0.092 0.803 0.932
CAViaR-ASlope 2.859 0.030 0.094 0.690 0.096 0.196
CAViaR-iGARCH 3.035 0.510 0.117 0.092 0.803 0.932

GARCH-SN 2.967 0.538 0.263 0.382 0.812 0.935
GARCH-ST 2.956 0.746 0.875 0.900 0.943 0.989

apARCH-SN 2.791 0.510 0.755 0.100 0.803 0.516
apARCH-ST 2.880 0.510 0.755 0.091 0.803 0.456

GAS-N 3.000 0.538 0.715 0.978 0.812 0.932
GAS-t 3.085 0.079 0.112 0.138 0.208 0.130

Table 4.25: MCS and backtesting results for
DAX 30, τ = 5%, H = 1000

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 10.751 0.885 0.368 0.727 0.936 0.985
QREG-BV 10.728 1.000 0.333 0.656 0.950 0.991
QREG-MedRV 10.796 0.666 0.189 0.310 0.854 0.941
QREG-logRV 10.699 0.159 0.086 0.003 0.338 0.027
QREG-logBV 10.775 0.475 0.209 0.033 0.720 0.145
QREG-logMedRV 10.770 0.320 0.208 0.008 0.562 0.032

HARQ-RV 10.560 0.461 0.132 0.537 0.739 0.879
HARQ-BV 10.572 0.461 0.329 0.827 0.739 0.887
HARQ-MedRV 10.599 0.660 0.208 0.643 0.873 0.942
HARQ-logRV 10.643 0.773 0.173 0.065 0.903 0.039
HARQ-logBV 10.595 0.885 0.154 0.053 0.936 0.045
HARQ-logMedRV 10.672 0.257 0.092 0.012 0.483 0.005

QREG-IV 11.432 0.093 0.032 0.000 0.220 0.000
QREG-logIV 11.455 0.051 0.055 0.000 0.135 0.000

CAViaR-SAV 10.662 0.178 0.254 0.765 0.399 0.606
CAViaR-ASlope 10.527 0.033 0.042 0.395 0.103 0.206
CAViaR-iGARCH 10.781 0.375 0.263 0.335 0.657 0.836

GARCH-SN 10.693 0.885 0.154 0.266 0.936 0.971
GARCH-ST 10.707 0.475 0.209 0.468 0.720 0.857

apARCH-SN 10.403 0.375 0.511 0.840 0.657 0.397
apARCH-ST 10.439 0.770 0.862 0.966 0.918 0.785

GAS-N 10.825 0.557 0.702 0.739 0.812 0.912
GAS-t 11.022 0.204 0.428 0.112 0.407 0.017

Table 4.26: MCS and backtesting results for
Dow Jones, τ = 1%, H = 250

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 1.059 0.742 0.932 1.000 0.945 0.009
QREG-BV 1.039 0.742 0.932 1.000 0.945 0.979
QREG-MedRV 1.044 0.758 0.919 0.998 0.936 0.073
QREG-logRV 1.800 0.005 0.010 0.000 0.019 0.000
QREG-logBV 1.842 0.005 0.016 0.000 0.019 0.000
QREG-logMedRV 1.711 0.019 0.025 0.000 0.059 0.000

HARQ-RV 1.364 0.278 0.553 0.996 0.563 0.765
HARQ-logRV 2.333 0.000 0.000 0.000 0.000 0.000
HARQ-logBV 1.873 0.001 0.004 0.000 0.005 0.000
HARQ-logMedRV 1.784 0.162 0.339 0.099 0.357 0.102

QREG-IV 1.709 0.000 0.000 0.000 0.000 0.000
QREG-logIV 1.716 0.000 0.000 0.000 0.000 0.000

GARCH-SN 1.420 0.758 0.919 0.932 0.936 0.981

apARCH-SN 1.209 0.742 0.932 1.000 0.945 0.990
apARCH-ST 1.294 0.742 0.932 1.000 0.945 0.990

GAS-N 1.599 0.758 0.919 0.888 0.936 0.979
GAS-t 1.765 0.380 0.638 0.636 0.657 0.049
GAS-ST 1.946 0.758 0.919 0.857 0.936 0.056

Table 4.27: MCS and backtesting results for
Dow Jones, τ = 5%, H = 250

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 3.441 0.215 0.005 0.000 0.406 0.000
QREG-BV 3.399 0.215 0.032 0.001 0.406 0.000
QREG-MedRV 3.462 0.024 0.001 0.000 0.064 0.000

QREG-IV 4.275 0.000 0.000 0.000 0.009 0.000
QREG-logIV 4.514 0.000 0.000 0.000 0.000 0.000
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Table 4.28: MCS and backtesting results for
Dow Jones, τ = 1%, H = 500

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 1.452 0.397 0.149 0.039 0.680 0.276
QREG-BV 1.437 0.397 0.149 0.039 0.680 0.285
QREG-MedRV 1.443 0.215 0.113 0.003 0.448 0.029
QREG-logRV 1.665 0.215 0.407 0.000 0.448 0.003
QREG-logBV 1.698 0.106 0.230 0.000 0.260 0.002
QREG-logMedRV 1.686 0.215 0.128 0.000 0.448 0.000

HARQ-RV 1.989 0.331 0.613 0.997 0.628 0.817
HARQ-BV 2.059 0.641 0.869 1.000 0.895 0.973
HARQ-MedRV 2.025 0.331 0.613 0.996 0.628 0.817
HARQ-logRV 2.549 0.000 0.000 0.000 0.000 0.000
HARQ-logBV 2.467 0.008 0.021 0.000 0.027 0.000

QREG-IV 1.661 0.048 0.115 0.000 0.134 0.000
QREG-logIV 1.662 0.008 0.016 0.000 0.027 0.000

CAViaR-SAV 2.207 0.125 0.306 0.963 0.313 0.506
CAViaR-ASlope 2.180 0.125 0.306 0.966 0.313 0.507
CAViaR-iGARCH 2.237 0.125 0.306 0.962 0.313 0.506

GARCH-SN 2.119 1.000 0.951 0.943 0.990 0.170
GARCH-ST 2.208 1.000 0.951 0.936 0.990 0.180

apARCH-SN 2.056 0.641 0.869 0.998 0.895 0.972
apARCH-ST 2.162 0.641 0.869 0.997 0.895 0.971

GAS-N 2.412 1.000 0.951 0.986 0.989 0.056
GAS-t 2.433 0.397 0.632 0.591 0.680 0.015
GAS-ST 2.583 0.663 0.845 0.906 0.893 0.045

Table 4.29: MCS and backtesting results for
Dow Jones, τ = 5%, H = 500

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 4.989 0.168 0.001 0.000 0.345 0.006
QREG-BV 5.010 0.117 0.001 0.000 0.259 0.001
QREG-MedRV 5.007 0.052 0.000 0.000 0.132 0.000
QREG-logRV 5.539 0.530 0.000 0.000 0.799 0.003
QREG-logBV 5.462 0.546 0.000 0.000 0.771 0.000
QREG-logMedRV 5.527 0.235 0.000 0.000 0.445 0.000

QREG-IV 5.374 0.003 0.000 0.000 0.009 0.000
QREG-logIV 5.574 0.000 0.000 0.000 0.002 0.000

Table 4.30: MCS and backtesting results for
Dow Jones, τ = 1%, H = 1000

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 1.621 0.538 0.715 0.980 0.812 0.921
QREG-BV 1.604 0.139 0.157 0.278 0.325 0.521
QREG-MedRV 1.627 0.362 0.556 0.214 0.646 0.290
QREG-logRV 1.747 0.139 0.020 0.000 0.325 0.001
QREG-logBV 1.733 0.005 0.000 0.000 0.019 0.000
QREG-logMedRV 1.746 0.005 0.014 0.000 0.019 0.000

HARQ-RV 2.298 0.538 0.263 0.059 0.812 0.932
HARQ-BV 2.270 0.754 0.258 0.039 0.939 0.986
HARQ-MedRV 2.273 0.754 0.258 0.038 0.939 0.986

QREG-IV 1.716 0.000 0.000 0.000 0.000 0.000
QREG-logIV 1.717 0.001 0.004 0.000 0.004 0.000

GARCH-SN 2.352 0.139 0.020 0.000 0.325 0.061

apARCH-SN 2.141 0.314 0.573 0.987 0.603 0.789

Table 4.31: MCS and backtesting results for
Dow Jones, τ = 5%, H = 1000

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 6.094 0.009 0.000 0 0.028 0.000
QREG-BV 5.985 0.009 0.001 0 0.028 0.000
QREG-MedRV 5.815 0.069 0.001 0 0.173 0.000
QREG-logRV 6.172 0.122 0.000 0 0.275 0.000
QREG-logMedRV 6.229 0.003 0.000 0 0.010 0.000
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Table 4.32: MCS and backtesting results for
FTSE 100, τ = 1%, H = 250

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 1.324 0.278 0.553 0.954 0.563 0.753
QREG-MedRV 1.312 0.278 0.553 0.957 0.563 0.759
QREG-logRV 1.227 0.380 0.638 1.000 0.936 0.987
QREG-logBV 1.288 0.380 0.638 0.780 0.657 0.836
QREG-logMedRV 1.327 0.019 0.052 0.053 0.157 0.292

HARQ-BV 1.494 0.278 0.553 0.997 0.563 0.765
HARQ-logRV 1.572 0.380 0.638 0.432 0.657 0.820
HARQ-logBV 1.511 0.758 0.919 0.919 0.936 0.981
HARQ-logMedRV 1.697 0.380 0.638 0.109 0.657 0.323

QREG-IV 1.372 0.005 0.010 0.000 0.059 0.010
QREG-logIv 1.362 0.162 0.078 0.000 0.357 0.543

CAViaR-iGARCH 1.543 0.278 0.553 0.995 0.563 0.765

GARCH-SN 1.519 0.758 0.919 0.613 0.936 0.008
GARCH-ST 1.522 0.742 0.932 0.955 0.945 0.984

apARCH-SN 1.471 0.380 0.638 0.444 0.657 0.104
apARCH-ST 1.551 0.742 0.932 0.939 0.945 0.981

GAS-N 1.609 0.758 0.919 0.672 0.936 0.006
GAS-t 1.687 0.380 0.638 0.268 0.657 0.044
GAS-ST 1.774 0.380 0.638 0.545 0.657 0.011

Table 4.33: MCS and backtesting results for
FTSE 100, τ = 5%, H = 250

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 4.931 0.286 0.342 0.710 0.387 0.057
QREG-BV 4.832 0.453 0.530 0.895 0.569 0.129
QREG-MedRV 4.933 0.286 0.342 0.699 0.387 0.095
QREG-logRV 5.013 0.669 0.422 0.475 0.931 0.152
QREG-logBV 5.086 0.329 0.406 0.138 0.709 0.149
QREG-logMedRV 4.969 0.669 0.422 0.381 0.931 0.141

HARQ-RV 4.886 0.083 0.181 0.530 0.119 0.038
HARQ-BV 4.871 0.163 0.290 0.649 0.231 0.007
HARQ-MedRV 4.868 0.163 0.290 0.711 0.231 0.161
HARQ-logRV 4.859 0.453 0.496 0.821 0.569 0.426
HARQ-logBV 4.820 0.453 0.496 0.812 0.569 0.059
HARQ-logMedRV 4.936 0.163 0.290 0.577 0.387 0.209

QREG-IV 4.838 0.215 0.344 0.375 0.555 0.059
QREG-logIV 4.838 0.481 0.776 0.557 0.844 0.260

GARCH-ST 5.058 0.163 0.290 0.640 0.231 0.029

apARCH-SN 5.139 0.163 0.290 0.483 0.231 0.007
apARCH-ST 5.126 0.163 0.290 0.473 0.231 0.010

GAS-t 5.251 0.884 0.539 0.543 0.882 0.103

Table 4.34: MCS and backtesting results for
FTSE 100, τ = 1%, H = 500

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 1.873 1.000 0.951 0.859 0.990 0.063
QREG-BV 1.756 0.641 0.869 0.934 0.895 0.075
QREG-MedRV 1.870 1.000 0.951 0.898 0.990 0.134
QREG-logRV 1.795 0.215 0.407 0.901 0.448 0.201
QREG-logBV 1.801 0.048 0.115 0.326 0.134 0.259
QREG-logMedRV 1.701 0.397 0.632 0.653 0.680 0.853

HARQ-RV 1.761 0.028 0.090 0.860 0.092 0.189
HARQ-BV 1.752 0.028 0.090 0.857 0.092 0.189
HARQ-MedRV 1.768 0.028 0.090 0.857 0.092 0.189
HARQ-logRV 1.851 0.641 0.869 0.704 0.895 0.040
HARQ-logBV 1.843 0.641 0.869 0.651 0.895 0.043
HARQ-logMedRV 1.897 1.000 0.951 0.216 0.990 0.011

QREG-IV 1.759 0.020 0.033 0.014 0.063 0.136
QREG-logIV 1.731 0.048 0.059 0.049 0.134 0.260

CAViaR-ASlope 1.848 0.125 0.306 0.970 0.313 0.508
CAViaR-iGARCH 1.904 0.125 0.306 0.960 0.313 0.507

GARCH-SN 1.857 0.663 0.845 0.999 0.893 0.972
GARCH-ST 1.862 0.331 0.613 0.997 0.628 0.818

apARCH-SN 8.952 0.000 0.000 0.000 0.000 0.000
apARCH-ST 1.872 0.641 0.869 1.000 0.895 0.973

GAS-N 2.037 0.663 0.845 0.995 0.893 0.529
GAS-t 1.974 0.397 0.632 0.935 0.680 0.353
GAS-ST 2.255 0.215 0.407 0.621 0.448 0.079

Table 4.35: MCS and backtesting results for
FTSE 100, τ = 5%, H = 500

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 6.470 0.836 0.967 0.982 0.937 0.986
QREG-BV 6.392 0.685 0.833 0.912 0.860 0.959
QREG-MedRV 6.403 0.530 0.513 0.867 0.799 0.915
QREG-logRV 6.516 0.546 0.784 0.924 0.771 0.906
QREG-logBV 6.632 0.319 0.415 0.322 0.554 0.432
QREG-logMedRV 6.355 0.838 0.842 0.981 0.922 0.804

HARQ-RV 6.276 0.049 0.084 0.672 0.147 0.279
HARQ-BV 6.283 0.049 0.084 0.662 0.147 0.273
HARQ-MedRV 6.277 0.049 0.084 0.672 0.147 0.279
HARQ-logRV 6.333 0.131 0.163 0.688 0.323 0.325
HARQ-logBV 6.388 0.131 0.163 0.730 0.323 0.506
HARQ-logMedRV 6.289 0.027 0.055 0.571 0.090 0.179

QREG-IV 6.242 0.423 0.605 0.909 0.666 0.840
QREG-logIV 6.252 0.423 0.703 0.928 0.666 0.829

apARCH-ST 6.693 0.288 0.247 0.861 0.564 0.736
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Table 4.36: MCS and backtesting results for
FTSE 100, τ = 1%, H = 1000

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 2.306 0.139 0.157 0.355 0.325 0.503
QREG-BV 2.297 0.079 0.166 0.291 0.208 0.369
QREG-MedRV 2.277 0.139 0.266 0.735 0.325 0.499
QREG-logRV 2.125 0.079 0.166 0.275 0.208 0.369
QREG-logBV 2.061 0.139 0.157 0.073 0.325 0.518
QREG-logMedRV 1.894 0.231 0.399 0.839 0.475 0.682

HARQ-RV 1.994 0.746 0.875 0.999 0.943 0.990
HARQ-BV 2.027 1.000 0.904 0.999 0.990 0.999
HARQ-MedRV 2.030 0.538 0.263 0.396 0.812 0.933
HARQ-logRV 2.118 0.754 0.258 0.002 0.939 0.000
HARQ-logBV 2.127 0.754 0.258 0.022 0.939 0.007
HARQ-logMedRV 2.018 0.231 0.204 0.001 0.475 0.001

QREG-IV 2.010 0.011 0.006 0.000 0.038 0.087
QREG-logIV 2.047 0.005 0.003 0.000 0.019 0.046

CAViaR-SAV 2.072 0.362 0.556 0.959 0.646 0.831
CAViaR-ASlope 1.988 0.170 0.376 0.964 0.392 0.598
CAViaR-iGARCH 2.041 1.000 0.226 0.271 0.990 0.999

GARCH-SN 2.171 0.005 0.003 0.000 0.019 0.047
GARCH-ST 2.070 0.231 0.204 0.402 0.475 0.685

apARCH-SN 4.755 0.000 0.000 0.000 0.000 0.000
apARCH-ST 2.013 1.000 0.904 0.997 0.990 0.997

GAS-N 2.235 0.043 0.096 0.348 0.124 0.238
GAS-t 2.288 0.005 0.013 0.024 0.019 0.007
GAS-ST 2.483 0.022 0.053 0.070 0.070 0.031

Table 4.37: MCS and backtesting results for
FTSE 100, τ = 5%, H = 1000

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 7.016 0.257 0.355 0.208 0.483 0.693
QREG-BV 6.966 0.393 0.691 0.863 0.642 0.817
QREG-MedRV 7.021 0.257 0.494 0.955 0.483 0.692
QREG-logRV 7.113 0.159 0.349 0.476 0.338 0.199
QREG-logBV 7.118 0.204 0.428 0.439 0.407 0.371
QREG-logMedRV 6.944 0.204 0.428 0.889 0.407 0.595

HARQ-RV 7.097 0.660 0.789 0.698 0.873 0.965
HARQ-BV 7.153 0.660 0.789 0.751 0.873 0.952
HARQ-MedRV 7.117 0.233 0.483 0.882 0.483 0.692
HARQ-logRV 7.182 0.566 0.693 0.674 0.792 0.367
HARQ-logBV 7.192 0.885 0.688 0.606 0.936 0.300
HARQ-logMedRV 7.075 0.557 0.399 0.808 0.812 0.224

QREG-IV 7.005 0.204 0.428 0.562 0.407 0.614
QREG-logIV 7.011 0.257 0.494 0.873 0.483 0.691

CAViaR-SAV 7.455 0.022 0.057 0.486 0.073 0.154
CAViaR-ASlope 7.387 0.022 0.057 0.476 0.073 0.155

GARCH-SN 7.462 1.000 0.949 0.507 0.950 0.049
GARCH-ST 7.444 1.000 0.949 0.515 0.950 0.054

apARCH-SN 10.300 0.000 0.000 0.000 0.000 0.000
apARCH-ST 7.353 0.557 0.838 0.807 0.812 0.889

GAS-N 7.501 0.660 0.789 0.648 0.873 0.056
GAS-t 7.627 0.320 0.603 0.223 0.562 0.003

Table 4.38: MCS and backtesting results for
EUROSTOXX 50, τ = 1%, H =
250

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 2.100 0.742 0.932 0.971 0.945 0.989
QREG-BV 1.967 0.742 0.932 0.914 0.945 0.987
QREG-MedRV 2.053 0.742 0.932 0.988 0.945 0.989
QREG-logRV 2.755 0.000 0.000 0.000 0.000 0.000
QREG-logBV 2.851 0.001 0.004 0.000 0.005 0.000
QREG-logMedRV 3.016 0.001 0.004 0.000 0.005 0.000

HARQ-BV 1.638 0.278 0.553 0.976 0.563 0.765
HARQ-MedRV 1.731 0.025 0.081 0.928 0.084 0.175
HARQ-logRV 2.158 0.162 0.339 0.000 0.357 0.013
HARQ-logBV 2.313 0.005 0.016 0.000 0.019 0.000
HARQ-logMedRV 2.182 0.380 0.638 0.000 0.657 0.045

QREG-IV 2.477 0.000 0.001 0.000 0.001 0.000
QREG-logIV 2.735 0.000 0.001 0.000 0.001 0.000

CAViaR-ASlope 1.829 0.278 0.553 0.996 0.563 0.765

GARCH-SN 1.950 0.278 0.553 0.990 0.563 0.763

apARCH-SN 1.819 0.278 0.553 0.996 0.563 0.765

GAS-t 1.986 0.278 0.553 0.991 0.563 0.763

Table 4.39: MCS and backtesting results for
EUROSTOXX 50, τ = 5%, H =
250

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 6.573 0.037 0.097 0.512 0.119 0.234
QREG-BV 6.272 0.037 0.097 0.741 0.119 0.232
QREG-MedRV 6.463 0.083 0.181 0.602 0.231 0.394
QREG-logRV 7.183 0.133 0.080 0.000 0.279 0.003
QREG-logBV 7.217 0.079 0.044 0.000 0.181 0.001
QREG-logMedRV 7.436 0.044 0.114 0.000 0.111 0.001

HARQ-RV 6.329 0.014 0.043 0.669 0.052 0.115
HARQ-BV 6.126 0.083 0.181 0.894 0.231 0.397
HARQ-MedRV 6.184 0.014 0.043 0.688 0.052 0.114
HARQ-logRV 6.777 0.006 0.019 0.000 0.018 0.000
HARQ-logBV 6.929 0.012 0.032 0.000 0.035 0.000
HARQ-logMedRV 7.017 0.012 0.044 0.000 0.035 0.000

QREG-IV 7.202 0.215 0.133 0.000 0.406 0.005
QREG-logIV 7.181 0.215 0.133 0.000 0.406 0.005

GARCH-ST 6.489 0.037 0.097 0.744 0.119 0.229

apARCH-ST 6.332 0.014 0.043 0.689 0.052 0.114

GAS-t 6.630 0.083 0.181 0.812 0.231 0.092

99



Chapter 4 Asymmetric-Loss-Based Evaluation of Daily Value-at-Risk Models

Table 4.40: MCS and backtesting results for
EUROSTOXX 50, τ = 1%, H =
500

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 3.973 0.663 0.142 0.000 0.893 0.690
QREG-BV 4.181 0.663 0.142 0.000 0.893 0.733
QREG-MedRV 4.012 0.663 0.142 0.000 0.893 0.664
QREG-logRV 4.140 0.000 0.001 0.000 0.001 0.000
QREG-logBV 3.960 0.001 0.003 0.000 0.004 0.000
QREG-logMedRV 3.961 0.003 0.007 0.000 0.010 0.000

HARQ-RV 3.594 0.331 0.613 0.988 0.628 0.817
HARQ-BV 3.502 0.641 0.869 0.998 0.895 0.974
HARQ-MedRV 3.608 0.331 0.613 0.991 0.628 0.816
HARQ-logRV 3.751 0.106 0.230 0.000 0.260 0.002
HARQ-logBV 3.846 0.003 0.007 0.000 0.010 0.000
HARQ-logMedRV 3.724 0.106 0.230 0.000 0.260 0.003

QREG-IV 3.810 0.003 0.008 0.000 0.010 0.000
QREG-logIV 3.967 0.000 0.001 0.000 0.001 0.000

CAViaR-SAV 3.542 0.641 0.869 0.999 0.895 0.973
CAViaR-ASlope 3.681 0.641 0.869 1.000 0.895 0.974
CAViaR-iGARCH 3.639 0.641 0.869 0.999 0.895 0.974

GARCH-SN 3.618 1.000 0.951 1.000 0.990 0.999
GARCH-ST 3.645 0.331 0.613 0.995 0.628 0.817

apARCH-SN 3.783 0.641 0.869 1.000 0.895 0.974
apARCH-ST 3.826 0.641 0.869 1.000 0.895 0.974

GAS-N 4.127 0.663 0.845 0.999 0.893 0.973
GAS-t 3.747 0.397 0.632 0.967 0.680 0.803
GAS-ST 4.179 0.397 0.632 0.984 0.680 0.856

Table 4.41: MCS and backtesting results for
EUROSTOXX 50, τ = 5%, H =
500

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 10.442 0.007 0.016 0.001 0.027 0.017
QREG-BV 10.405 0.082 0.193 0.005 0.224 0.171
QREG-MedRV 10.409 0.007 0.016 0.001 0.027 0.018
QREG-logRV 10.710 0.838 0.234 0.048 0.922 0.053
QREG-logBV 10.691 0.319 0.089 0.012 0.554 0.001
QREG-logMedRV 10.739 0.423 0.605 0.025 0.666 0.013

HARQ-RV 10.363 0.027 0.055 0.478 0.090 0.109
HARQ-BV 10.129 0.027 0.055 0.596 0.090 0.185
HARQ-MedRV 10.211 0.082 0.121 0.681 0.224 0.323
HARQ-logRV 10.765 0.117 0.249 0.000 0.259 0.000
HARQ-logBV 10.737 0.013 0.010 0.000 0.039 0.000
HARQ-logMedRV 10.709 0.013 0.010 0.000 0.039 0.000

QREG-IV 10.557 0.838 0.234 0.126 0.922 0.005
QREG-logIV 10.581 0.838 0.234 0.083 0.922 0.002

GARCH-SN 10.720 0.082 0.121 0.448 0.224 0.294
GARCH-ST 10.662 0.131 0.163 0.534 0.323 0.407

apARCH-ST 10.423 0.003 0.009 0.370 0.013 0.035

GAS-N 12.320 0.027 0.055 0.279 0.090 0.185
GAS-t 11.037 0.199 0.207 0.647 0.438 0.648

Table 4.42: MCS and backtesting results for
EUROSTOXX 50, τ = 1%, H =
1000

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 4.184 0.022 0.046 0.000 0.070 0.149
QREG-BV 4.021 0.011 0.026 0.000 0.038 0.086
QREG-MedRV 4.053 0.043 0.074 0.000 0.124 0.132
QREG-logRV 3.696 0.000 0.001 0.000 0.001 0.000
QREG-logBV 3.748 0.000 0.002 0.000 0.002 0.001
QREG-logMedRV 3.721 0.043 0.074 0.000 0.124 0.081

HARQ-RV 3.607 0.139 0.266 0.662 0.325 0.517
HARQ-BV 3.577 0.362 0.556 0.935 0.646 0.829
HARQ-MedRV 3.662 0.079 0.166 0.321 0.208 0.368
HARQ-logRV 3.562 0.139 0.266 0.003 0.325 0.007
HARQ-logBV 3.468 0.362 0.556 0.117 0.646 0.335
HARQ-logMedRV 3.487 0.538 0.715 0.412 0.812 0.041

QREG-IV 3.394 0.002 0.007 0.000 0.009 0.001
QREG-logIV 3.508 0.022 0.046 0.000 0.070 0.039

CAViaR-SAV 3.384 0.746 0.875 0.999 0.943 0.989
CAViaR-ASlope 3.368 0.754 0.842 0.994 0.939 0.988
CAViaR-iGARCH 3.433 0.754 0.842 0.997 0.939 0.989

GARCH-SN 3.504 0.079 0.166 0.568 0.208 0.369
GARCH-ST 3.429 1.000 0.904 0.997 0.990 0.999

apARCH-SN 3.433 0.754 0.842 0.996 0.939 0.988
apARCH-ST 3.456 0.746 0.875 0.985 0.943 0.986

GAS-N 3.735 0.362 0.556 0.941 0.646 0.827
GAS-t 3.630 0.139 0.266 0.308 0.325 0.522

Table 4.43: MCS and backtesting results for
EUROSTOXX 50, τ = 5%, H =
1000

Model Loss×104 UC CC DQ DB1 DB7

QREG-RV 11.591 0.666 0.709 0.025 0.854 0.952
QREG-BV 11.766 0.885 0.368 0.009 0.936 0.975
QREG-MedRV 11.525 0.557 0.399 0.023 0.812 0.932
QREG-logRV 11.592 0.666 0.189 0.001 0.854 0.201
QREG-logBV 11.530 0.773 0.395 0.004 0.903 0.198
QREG-logMedRV 11.566 1.000 0.333 0.005 0.950 0.234

HARQ-RV 11.581 0.178 0.036 0.084 0.399 0.587
HARQ-BV 11.461 0.375 0.100 0.025 0.657 0.829
HARQ-MedRV 11.501 0.233 0.153 0.026 0.483 0.685
HARQ-logRV 11.672 0.884 0.293 0.041 0.944 0.054
HARQ-logBV 11.623 1.000 0.133 0.000 0.950 0.058
HARQ-logMedRV 11.575 1.000 0.333 0.000 0.950 0.029

QREG-IV 11.359 0.773 0.708 0.005 0.903 0.559
QREG-logIV 11.477 0.566 0.422 0.003 0.792 0.441

CAViaR-SAV 11.534 0.178 0.339 0.885 0.400 0.603
CAViaR-ASlope 11.343 0.033 0.086 0.424 0.103 0.205
CAViaR-iGARCH 11.586 0.178 0.339 0.832 0.400 0.600

GARCH-SN 11.569 0.884 0.951 0.999 0.944 0.989
GARCH-ST 11.562 0.666 0.709 0.550 0.854 0.955

apARCH-SN 11.299 0.299 0.418 0.730 0.570 0.557
apARCH-ST 11.270 0.375 0.511 0.825 0.657 0.657

GAS-N 12.046 0.299 0.579 0.820 0.570 0.626
GAS-t 11.785 0.566 0.847 0.823 0.792 0.289

100



Chapter 5

Bias Corrections for Exponentially

Transformed Forecasts: Are they

worth the e�ort?

Coauthored by : Matei Demetrescu and Vasyl Golosnoy

5.1 Motivation

Taking logs is widely used in applied (time series) econometrics to linearize relations or to stabilize

variances. It has become a standard transformation for time series in numerous economic and

�nancial applications; see among others Andersen et al. (2011), Bauer and Vorkink (2011),

Hautsch (2012), Lütkepohl and Xu (2012), Golosnoy et al. (2012), Mayr and Ulbricht (2015),

Brechmann et al. (2018), or Gribisch (2018). In fact, models in logs often turn out to be better

suited for both estimation and forecasting. Then, the forecast in logs should be transformed back

in order to predict the original variable of interest. Such reverse exponential transformations,

however, introduce a point forecast bias into the procedure, as already emphasized by Granger

and Newbold (1976).

The practically relevant question is how to deal with such bias in �nite samples for various types

of distributions for log-model errors. Of course, ignoring the bias and simply transforming the

forecast in logs through the exponential function is one possible course of action, even if a naïve

one, since ignoring the bias may lead to substantial losses in forecasting precision (cf. Lütkepohl

and Xu, 2012; Proietti and Lütkepohl, 2013). At the other end of the spectrum of possibilities,

one �nds numerical bootstrap-based corrections (cf. Thombs and Schucany, 1990) � which are,

however, computationally demanding and not always easy to implement. As for interval forecasts,

note that the required quantiles remain unbiased after any monotone transformation, so that bias

correction in point forecasts is indeed the essential problem to be resolved.

In this paper we compare several bias correction procedures which are of most practical ap-

plicability (cf. Stock and Watson, 2012, p. 314�315). Concretely, we consider a popular method

that exploits the residual variance for the bias correction, as well as one that relies on computing
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the sample mean of exponentially transformed log-model residuals. Whereas the variance-based

correction is optimal for normally distributed innovations, the mean-based correction only re-

quires the existence of the relevant expectation. We additionally examine a semiparametric

approach based on estimation of the model in logs under the Linex loss (Varian, 1975), which we

show to provide asymptotically unbiased forecasts of the original (untransformed) series so that

no correction is necessary in this case. The Linex-based approach exploits a non-linear estima-

tion procedure that could, however, cause losses in estimation e�ciency compared to maximum

likelihood estimation; such e�ciency losses may seriously impact the behavior in �nite samples.

We study settings with autoregressive (AR) data generating processes in logs with model

errors following di�erent types of distributions. The interest lies here in making a one step

ahead forecast of the original variable, but our analysis could easily be applied for the task

of predicting at longer horizons. We compare the e�ectiveness of the above-mentioned bias

correction methods with those for the naïve approach without any adjustment. The forecasting

performance of di�erent correction methods has been already studied for several settings, e.g. for a

family of data generating processes with Markov switching (cf. Patton and Timmermann, 2007b).

We extend this strand of literature by speci�cally focusing on error distributions that exhibit

deviations from normality which are of high empirical relevance. In particular, we study the e�ect

of skew-normal (Azzalini, 1985), mixture normal (Everitt and Hand, 1981; McLachlan and Peel,

2004), contaminated normal (Seidel, 2011) as well as t-distributed innovations (cf. Tarami and

Pourahmadi, 2003). Since we investigate several AR and ARMA models with di�erent degrees

of persistence, our setup covers a broad class of practically important situations.

We �nd, �rst, that the variance-based correction appears to be the preferable approach in

smaller samples, even for various deviations from normality; the expectation-based correction of

the residual exponent is a close competitor. Second, despite being attractive from a theoretical

point of view, the Linex-based approach requiring no speci�c correction shows losses in estimation

e�ciency. It appears to be dominated by two above-mentioned alternatives in terms of the

considered forecasting loss functions; but, as the estimation error diminishes with increasing

sample size, the Linex-based approach becomes competitive. Third, a naïve prediction without

bias correction is found to be suitable for highly persistent AR processes in logs with the AR(1)

coe�cient ≥ 0.9. This perhaps surprising �nding could be explained by di�culties with variance

estimation for bias correction factors when the process gets closer to the unit root.

Our paper is focused on taking logs which is the most frequently used in practice non-linear

transformation. A more general Box-Cox transformation may be of empirical importance as well,

see e.g. Taylor (2017) and the literature cited therein. The price to pay in this more �exible

case is, however, that one cannot easily obtain corrections for the induced prediction bias. We

address the bias correction for the Box-Cox procedure in Appendix B, where we show that it

is not a trivial task at all, so that one should rely on some type of bootstrap-based corrections

there.

Summarizing, the variance-based correction performs well for di�erent cases when the nor-

mality assumption is violated, but the Linex-based method providing unbiased forecast or even

naïve no-correction approach may outperform the variance-based method for persistent series
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and larger samples. These �ndings are supported by the empirical results of using a log het-

erogenous autoregressive (HAR) model (Corsi et al., 2012) for the purpose of predicting daily

realized volatility for highly liquid U.S. stocks.

The remainder of the paper is structured as follows. In section 5.2 we discuss the necessity of

making a bias correction, give a summary of established methods suitable for this purpose, and

discuss the approach based on estimation under Linex loss. The extensive simulation study cov-

ering various types of linear processes and error distributions is presented in section 5.3, whereas

section 5.4 contrasts the behavior of the di�erent bias corrections in an empirical application.

The �nal section 5 concludes the paper, while the Appendix collects some technical arguments.

5.2 Problem Setting and Bias Correction Techniques

5.2.1 The model

Let the strictly positive original untransformed process of interest be given as yt and assume that

its log-transformation xt = log(yt) follows a stationary AR(p) process with iid innovations εt:

yt = exp(xt), ρ(L)xt = µ+ εt, εt ∼ iid (0, σ2), (5.1)

where ρ(L) = 1−
∑p

j=1 ρjL
j is an invertible lag polynomial of order p. This setting could be di-

rectly generalized for ARMA(p,q) time series models, since linear processes may be approximated

by means of AR(p) processes with a su�ciently large order p; see Berk (1974); Bhansali (1978).

We investigate both AR(1) and ARMA(1,1) settings in the Monte Carlo simulation study in

section 3.

We are interested in one step ahead mean squared error (MSE) optimal forecasts of yT+1 given

yT , yT−1, . . ., and hence search for the conditional expectation of the examined series:

yT (1) = E[yT+1|FT ], FT = σ{yT , yT−1, . . . , y1} = σ{xT , xT−1, . . . , x1}

with σ{a1, a2, . . .} denoting the σ-algebra generated by a1, a2 etc. Denote by xT (1) = E[xT+1|FT ]

the one step head MSE-optimal forecast of the log series xt so that it holds xT (1) = µ + (1 −
ρ(L))xT+1.

Note that E[yT+1] must be �nite, otherwise no MSE-optimal forecast exists. We therefore

require that the distribution of εt has thin tails. We take εt to have thin tails if E[|εt|k] ≤ Cak for
some C > 0, a > 1 and all k ∈ R+, which implies e.g. that E[exp(εt)] <∞. Moreover, given the

stable �nite-order autoregressive model assumed, an application of the Minkowski's inequality

shows the moments of xt to satisfy the same conditions as those of εt, hence, xt has thin tails as

well.

The representation (5.1) in logs is often quite useful for modelling and estimation purposes.

In this paper, however, our interest is to make the out-of-sample one step ahead MSE-optimal
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forecast yT (1) = E[exp(xT+1)|FT ] of the original variable yT+1 which is then given as

yT (1) = exp
(

E[xT+1|FT ]
)

E
[

exp(εT+1)
]

= exp
(
xT (1)

)
E
[

exp(εT+1)
]
, (5.2)

because of the representation

xT+1 = µ+

p∑
j=1

ρjxT+1−j + εT+1 = xT (1) + εT+1 with E(εT+1) = 0.

As in general E[exp(εT+1)] > 1 due to Jensen's inequality, a naïve (uncorrected) forecast is

yT (1) = exp
(
xT (1)

)
. (5.3)

Clearly, the naïve forecast in (5.3) is not MSE-optimal and has a downward bias given by

E
[
yT (1)− yT+1|FT

]
= exp

(
xT (1)

)(
1− E[exp(εT+1)]

)
.

The magnitude of the bias depends on the unknown distribution of the shocks εt, but also on

the conditional expectation of xt. In practice, one should estimate these forecast functions by

plugging in consistent estimators µ̂ and ρ̂j , leading to x̂T (1), so that the issue of forecasting bias

could be addressed subsequently. The sample x1, ..., xT is used in order to estimate the model

parameters in Equation (5.1) and any of the bias correction terms.

To summarize, the MSE of the forecast yT (1) has three main sources: the bias, the volatility of

shocks, and the model estimation error. Note that the estimation error could play a substantial

role, since it is not negligible in smaller samples. Hence, lack of e�ciency in parameter estimation

may become an issue when the sample is not large enough. E.g. for Gaussian errors εt, a least

squares (LS) estimation is maximum likelihood (ML) and, thus, asymptotically e�cient, while

estimation under the Linex loss could be advantageous under skewed error distributions as it may

be approximately proportional to the logarithm of the errors' density for a suitable skewness.

5.2.2 Variance-based bias corrections

When the model innovations εt are iid normally distributed, the optimal forecast yT (1) can be

obtained as an explicit function of the error variance (Granger and Newbold, 1976):

yT (1) = E[yT+1|FT ] = exp
(
xT (1)

)
E
[

exp(εT+1)
]

= exp
(
xT (1)

)
· exp

(1

2
σ2
)
.

Then a feasible variance-corrected forecast is given by

ŷT (1) = exp
(
x̂T (1)

)
exp

(1

2
σ̂2
)
, (5.4)

where σ̂2 denotes a consistent estimator of the error variance σ2 and x̂T (1) the estimated forecast

from the log model in (5.1). For large T , where estimation noise is negligible, this correction
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is exact for normally distributed model innovations. Pronounced empirical deviations from nor-

mality are rather frequent in practice, however. For this reason we now examine bias corrections

which place fewer restrictions on the distribution of εt.

5.2.3 Mean-based bias correction

One could estimate the expectation E
[

exp(εT+1)
]
in (5.2) directly from the sample, e.g. as the

sample average of transformed residuals,

Ê
[

exp(εT+1)
]

=
1

T

T∑
t=1

exp(ε̂t), (5.5)

where ε̂t are the in-sample model residuals. Since we assumed thin-tailed innovations, the ex-

pectation is �nite. The mean-corrected forecast would then be

ŷT (1) = exp
(
x̂T (1)

)
· Ê
[

exp(εT+1)
]
. (5.6)

Of course, more robust estimates of the central tendency (e.g., median or truncated mean) could

be applied here as well. In practice we resort to residuals to compute an estimate of E[exp(εT+1)]

so that estimation error plays a role in this step as well.

5.2.4 Forecasts based on the Linex loss

The considered above variance-based and mean-based bias corrections are two step procedures,

as in the �rst step one should estimate the AR model in (5.1) and in the second step compute

the bias correction factor. We now consider a distribution-free approach which enables unbiased

forecasts in a single step for exponentially transformed values.

To obtain such a single step forecast let

mt+1 = log E [yt+1|Ft] ,

such that exp(mt+1) = E [yt+1|Ft] = E [exp(xt+1)|Ft], or, equivalently,

E
[
ext+1−mt+1 − 1

∣∣xt, xt−1, . . .
]

= 0. (5.7)

Note that this equality holds irrespectively of the distribution of forecast errors.

Then, rather than predicting xT+1 and correcting the bias introduced by a non-linear transfor-

mation of xT (1), the idea is to estimate the conditional quantity mT+1 by directly imposing the

moment condition (5.7). The latter is simply a transformed version of the required MSE-optimal

forecast for yt, as we have emt+1 = E [yt+1|Ft] for all t by de�nition.

Note that since the forecast mT+1 is not the conditional expectation of xT+1 given FT , it
delivers a biased prediction of log-transformed variables xT+1. However, this bias in the log

series forecasts is such that the exponent transformation to the original variable of interest yT+1
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provides an unbiased forecast. This is di�erent from conventional procedures with �rst doing

unbiased forecasts for log series and then making some bias corrections in order to predict original

variables in an unbiased manner.

The generalized method of moments (GMM) estimation is a natural choice to impose the

condition (5.7); for our case a particular selection of instruments leads to the following estimator

with a nice interpretation. Namely, we obtain from (5.1) that

mt+1 = µ+

p∑
j=1

ρj xt+1−j + log
(

E
[

exp(εT+1)
])

:= µ̃+

p∑
j=1

ρj xt+1−j ,

and consider for θ = (µ̃, ρ1, . . . , ρp)
′ the vector of moment conditions

E

[(
ext+1−mt+1 − 1

) ∂mt+1

∂θ

]
= 0.

For L(u) = eu − u− 1, these are the �rst-order conditions for the optimization problem

min
θ

E
[
L
(
xt+1 −mt+1 (θ)

)]
,

where L(u) is recognized to be the linear-exponential (Linex) loss function introduced by Varian

(1975) with parameters a1 = a2 = 1 in La1,a2(u) = ea1u − a2u− 1.1

Hence, we may estimate the model in logs under the Linex loss instead of using least squares

by minimizing the average empirical loss

θ̂ = arg min
T∑

t=p+1

L
(
xt+1 −mt+1 (θ)

)
,

and by computing

ŷT (1) = exp (m̂T+1) = exp
(
mT+1(θ̂)

)
.

We establish consistency of this forecasting procedure � in the sense that ŷT (1) converges to the

conditional expectation of yT+1 � by means of standard extremum estimator theory; the details

are provided in the Appendix. In particular, we show in Appendix A the Linex-based estimators

of ρ1, . . . , ρp to be consistent; note that the intercept estimated via Linex is asymptotically biased,

as it to converges a.s. to µ̃ where µ̃ 6= µ in general. Fortunately, as argued above, this feature

delivers the desired E [exp (xT+1)] in the limit, particularly because of the asymptotic bias of µ̂.

This guarantees the MSE-optimality of the forecasts for yt for large T values. Additionally, in

Appendix B we discuss the application of bias corrections for the non-linear Box-Cox procedure

which is a generalization of the log transformation.

1The existence of the expectation E[La1,a2 ] is easy to establish given the thin tails of xt and the linear-
exponential shape of La1,a2 .
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5.3 Monte Carlo analysis

We now examine how the shape of the error distribution a�ects the MSE of the forecasts under

consideration in �nite samples. In order to contrast various bias corrections, we concentrate

both on a simple AR(1) as well as on a more sophisticated ARMA(1,1) processes for the log-

transformed values because of their immense practical importance. The stationary AR(1) model

is given as

xt = µ+ ρxt−1 + εt, εt ∼ iid(0, 1/4), |ρ| < 1,

and we experiment with ρ ∈ {0.2, 0.5, 0.9}. We set error variance equal to 1/4 to be in line with

our empirical study; see Table 5.1.

Additionally, we specify the stationary ARMA(1,1) model by

xt = µ+ ρxt−1 + φεt−1 + εt, εt ∼ iid(0, 1/4),

where we use the values ρ = 0.8 and φ = −0.5. This choice of ARMA(1,1) parameters leads to an

autocorrelation function similar to that of the HAR model of Corsi (2009) which is investigated

in the empirical study in section 5. For both AR(1) and ARMA(1,1) we set µ = 0 without loss

of generality but estimate it from the data.

We are interested in forecasting yT+1 = exp(xT+1) given the information set FT . In case

of normally distributed innovations εt the variance-based bias correction would be optimal. In

the following analysis we investigate di�erent types of innovation distributions and compare

forecasting losses from the competing bias correction methods.

With all simulations are performed in R (R-Core-Team, 2014), the estimation of these models

in logs is conducted based on samples of size T ∈ {200, 500, 1000} with 104 Monte Carlo repli-

cations. We have also conducted some simulations with 105 repetitions, however, the form and,

apparently, non-smoothness of the resulting curves remain essentially the same. A possible rea-

son for this behavior is a rather high variance of the observed MSE of forecasts of exponentially

transformed series.

5.3.1 Distribution of innovations

We consider four di�erent types of deviations from normality that are next discussed as Cases

I�IV. In Case I with skew-normal innovations we assume εt to follow a standardized skew normal

distribution (SND) which is of vast importance in the current literature (Bondon, 2009; Shara�

and Nematollahi, 2016). A SND-distributed random variable ut is characterized (Azzalini, 1985)

by three parameters (ξ, ω, β) such that its mean and variance are given with the parameter

δ = β/
√

1 + β2 as

E[ut] = ξ + ω · δ
√

2/π, and Var[ut] = ω2(1− 2δ2/π).
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We set ξ = 0, ω = 1 and compute the innovations calibrated to zero mean and variance equal

1/4 for various values of the skewness parameter β:

εt =
ut − E[ut]

2
√

Var[ut]
.

In Case II we assume that εt follows a symmetric normal mixture distribution (NMD). This

is an another popular deviation from normality (cf. McLachlan and Peel, 2004). NMD random

variables ut are given as

ut ∼

N (0, σ2
1), if Bt = 1, i.e. with probability π,

N (0, σ2
2), if Bt = 0, i.e. with probability 1− π,

with an iid mixture variable Bt drawn from the Bernoulli distribution with the success probability

π ∈ (0, 1). Thus, the mixture distribution is characterized by three parameters (σ2
1, σ

2
2, π) with

the variance Var[ut] = πσ2
1 + (1 − π)σ2

2. We set the mixture probability π = 1/2, σ2
1 = 1 and

vary only the second variance σ2
2. We model innovations as

εt =
ut

2
√
πσ2

1 + (1− π)σ2
2

.

Note that the benchmark case of standard normal distribution is implicitly included in Case I

with β = 0.

In Case III we assume the innovations to follow a contaminated normal distribution which

allows for higher kurtosis values (cf. Seidel, 2011). This case is rather similar to the previous

Case II speci�cation. The di�erence lies in the mixture probability that is now set to π = 0.95

and the second variance is of larger magnitude. We, again, use innovations εt calibrated to zero

mean and variance of 1/4 for model estimation and evaluation.

Next, in Case IV we assume ut follows a central t-distribution with v ∈ [5, 30] degrees of

freedom. The adjusted errors εt are obtained by εt = ut · 0.5 (v/(v − 2))−1/2. This choice is

motivated as a robustness check, since the t-distribution has fat tails, and therefore yt would not

have a �nite expectation.

Finally, we investigate Cases I, II, and IV for the ARMA(1,1) model with ρ = 0.8 and φ = −0.5

for di�erent sample sizes T , whereas Case III is omitted as the results there are very similar to

those in Case II.

5.3.2 Methods for bias correction

The following methods are considered for making one step ahead forecasts of yT+1.

1. Naïve forecast ignoring bias corrections ŷT (1) = exp(x̂T (1)).

2. Variance-based correction with ŷT (1) = exp(x̂T (1)) exp
(

1
2 σ̂

2
)
, where the variance σ2 is

estimated from sample residuals ε̂T , ..., ε̂1 as σ̂2 = (1/T )
∑T

t=1 ε̂
2
t .
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3. Mean-based bias correction with ŷT (1) = exp(x̂T (1)) · (1/T )
∑T

t=1 exp(ε̂t).

4. Linex-based forecast with ŷT (1) = exp(m̂T+1).

5. A simple average of the mean-based and variance-based forecasts.

6. Untransformed forecasts as in Mayr and Ulbricht (2015): i.e. �tting either AR(1) or

ARMA(1,1) models directly to the untransformed variables yt.

The plug-in estimates for the autoregressive parameters were obtained by means of OLS. As for

the estimation of the Linex-based forecast function, we make use of a Newton-Raphson non-

linear optimization algorithm (see e.g. Hamilton, 1994, p. 138) having as starting values the

OLS estimates obtained for the other three corrections.

For the AR(1) model, we plot in Figures 5.1-5.3 corresponding to Cases I, II, IV the log

MSE di�erences of naïve, mean-based, average, Linex-based, and untransformed forecasts to

the baseline variance-based forecast correction which is optimal in case of normal innovations.

Moreover, in Figure 5.4 we show the log MSE di�erences for the ARMA(1,1) model. As the

results for Case III are very similar to those for Case II, we decide to skip the Case III plots due

to space considerations. For better visualization, we do not show the method which is completely

dominated by the variance-based correction in any of the plots.

5.3.3 Monte Carlo results

For all cases we consider both small samples with T = 200 and large samples with T = 1000.

The results for Case I with skew-normal distribution of innovations is shown in Figure 5.1, where

we plot the log MSE di�erences depending on the value of the skewness parameter β. The

obtained evidence is quite similar for all T = 200 and T = 1000, but it varies with respect to the

autocorrelation parameter value ρ.

For weak and medium autocorrelations ρ = 0.2 and ρ = 0.5, the Linex-based correction is the

best for a pronounced negative skewness with parameter values β < −2. It is closely followed by

mean-based and average-based corrections. For positive skewness, however, the variance-based

correction appears to be mostly appropriate. This may be explained by how the parameters

are estimated: for negative skewness, the Linex loss function mimics the negative log-density of

innovations and, hence, the estimation under Linex is more e�cient than OLS. Both na�ve and

untransformed forecasts are much worse than the other procedures.

For strong autocorrelation ρ = 0.9 the mean-, variance-, and average-based forecasts are close

to each other. The Linex is slightly better for negative and slightly worse for positive skewness

values. For T = 200 the na�ve forecast is to some extent worse than the alternatives, however,

it appears to be the worst for large sample size T = 1000. Again, this is most likely due to the

nature of the estimation error.

The log di�erences of MSEs in Case II with normal mixture are presented in Figures 5.2 for

di�erent values of σ2
2. For AR(1) parameters ρ = 0.2 and ρ = 0.5 the variance correction method

appears to be the best one for T = 200, whereas for T = 1000 the mean- and average-based
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corrections are quite close to it. The Linex-based forecast is dominated for T = 200 but gets close

to the variance-based alternative for T = 1000. Again, the naïve uncorrected forecast appears

to be reasonable for strong autocorrelation ρ = 0.9. The results for Case III with contaminated

distribution are quantitatively similar to those for Case II so that we do not show them here.
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Figure 5.1: Log MSE ratios for Case I
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Figure 5.2: Log MSE ratios for Case II
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Figure 5.3: Log MSE ratios for Case IV
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Next, in Case IV with t-distributed innovations shown in Figure 5.3 we observe that the

variance-based and mean-based forecasts are the best for ρ = 0.2 and ρ = 0.5. As the Linex-

based MSE appears to be numerically unstable, we do not recommend it for correction in case

of t-distributed innovations and do not report Linex-based results for Case IV. As earlier, the

advantages of the naïve forecast decrease with the increase of the sample size T , but for ρ = 0.9

and T = 200 the naïve uncorrected forecast should be used.

The log MSE ratios are shown in Figure 5.4 for the ARMA(1,1) model speci�cation. The

graphs in the top line correspond to Case I, in the medium line to Case II, and in the bottom

line to Case IV, respectively. For Case I, the Linex-based correction is to use for negative skewness

and to avoid for positive skewness values. In Cases II and IV, the Linex is dominated by variance-

based corrections. The naïve and untransformed forecasts are worse than variance-based for all

settings, whereas the mean-based and average corrections are mostly close to the variance-based

benchmark. Thus, the results for AR(1) and ARMA(1,1) models are quite similar.

Finally, for Case IV with t-distributed innovations for the small estimation window T = 200

we investigate the performance of naïve forecasts with respect to the AR(1) coe�cient ρ. The

corresponding plots for ρ ∈ {0.75, 0.8, 0.85, 0.9, 0.95, 0.98} are shown in Figure 5.5. As one could

observe, the naïve uncorrected forecast is very close to the variance-based correction for ρ = 0.9,

and gets much better for ρ = 0.95 and ρ = 0.98. Hence, we conclude that more persistent in the

time series behavior speaks for a possible usage of naïve predictors.

Hence, our major �ndings for weak and medium autocorrelation coe�cients ρ ∈ {0.2, 0.5}
are as follows. In Case I negative skewness β is in favor of the Linex-based method, whereas

for positive β values this method becomes unstable and variance-based correction is preferable.

In Cases II and III variance-based correction is slightly better than mean-based correction in

case of normal mixture distribution. Case IV: variance correction is suitable for t-distributed

innovations. However, higher values of the autoregressive parameter |ρ| lead to more instability

for all studied bias correction methods, so that for e.g. ρ ≥ 0.9 and T = 200 no bias correction

appears to be preferable.
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Figure 5.4: Log MSE ratios for ARMA(1,1)
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5.4 Empirical Illustration

The availability of intraday data allows us to estimate the true daily volatility σ2
t consistently

by its realized measure yt (cf. Andersen et al., 2007) which serves as the time series of interest

{yt} in our study. We focus on the autoregressive model for realized volatility in logs in order to

make forecasts of yt+1 conditional on the information set Ft. For this purpose we contrast naïve
uncorrected forecasts with those from the variance-based, mean-based, the average of variance-

and mean-based, as well as Linex-based methods for the bias correction with the purpose of one

step ahead prediction of daily realized volatility.

5.4.1 HAR model for daily realized volatility

The heterogenous autoregressive (HAR) model of Corsi (2009) appears to be rather successful for

modelling and forecasting daily realized volatility. In order to assess the complex autoregressive

structure of the process {yt}, we exploit the HAR model which includes daily, weekly, monthly,

and quarterly components (cf. Andersen et al., 2011):

yt+1 = α0 + α1yt + α2y
(w)
t + α3y

(m)
t + α4y

(q)
t + εt+1, (5.8)

with y
(w)
t = (1/5) ·

∑4
i=0 yt−i, y

(m)
t = (1/22) ·

∑21
i=0 yt−i, and y

(q)
t = (1/65) ·

∑64
i=0 yt−i. Here

the lag orders 5, 22, and 65 are the average number of weekly, monthly, and quarterly trading

days, respectively.The HAR model (5.8) for daily volatility predictions based directly on the

non-transformed realized volatility measures stands for the untransformed approach.

A considerable disadvantage of the speci�cation in (5.8) is that the symmetry assumption for

the distribution of εt is obviously violated due to pronounced impact discrepancies of positive

and negative volatility shocks (cf. Tsay, 2010). For this reason a log transformation xt = log yt

is commonly applied for the purpose of modelling (Andersen et al., 2007), since it levels out the

asymmetries in the innovations. Then the corresponding HAR model in logs (cf. Corsi et al.,

2012, Golosnoy et al., 2014) is:

xt+1 = β0 + β1xt + β2x
(w)
t + β3x

(m)
t + β4x

(q)
t + εt+1, (5.9)

where x(·)
t is de�ned analogously to y(·)

t .

As it holds exp[E(xt+1|Ft)] 6= E[exp(xt+1)|Ft], one requires a bias correction for the volatility

forecasts. Hence, we estimate the model in (5.9) and make a forecast of yt+1 given the infor-

mation set Ft by applying various types of bias corrections. Note that the non-normality of the

innovations εt+1 in log volatility processes is well-documented (cf. Lanne, 2006).

5.4.2 Data and descriptive statistics

We investigate daily realized volatilities for S&P500 index and three highly liquid US stocks,

namely American Express, Exxon Mobil, and Microsoft which represent di�erent sectors of
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Figure 5.5: Log MSE ratios for AR(1) with Student-t innovations and T = 200 and in-
creasing persistence.
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the US economy. The realized volatility series of S&P500 is obtained from the Oxford Man

Library whereas the daily volatility series for individual stocks are computed from 1 minute in-

traday returns taken from QuantQuote.com as realized kernel measures with the Parzen kernel

(Barndor�-Nielsen et al., 2011).

Our time series cover the period ranging from December 31, 2001 until December 31, 2014

which results in 3255 daily realized variances for each asset. The considered time series are

depicted in Figure 5.6 such that both calm and turmoil periods on U.S. �nancial markets are

observed during the investigated period.

In order to investigate the properties of residuals from the log-HAR model in (5.9), we �rst

estimate this model by the OLS based on the full-sample information. The parameter estimates

are given in Table 5.1 where we also provide the estimates of the residual variance, skewness,

and kurtosis. All regressor coe�cients are signi�cantly larger than zero supporting the selected

HAR speci�cation. The estimated models for all considered series show no unit root behavior

as
∑4

i=1 β̂i < 1. The R2 measures for all assets are quite high, between 0.6 and 0.8. For all

four series the residuals appear to be right-skewed and exhibit kurtosis around four, i.e. the

excess kurtosis around one. The autocorrelation functions (ACFs) for the original data and the

residuals from the untransformed HAR models are shown in Figure 5.7, whereas the ACFs for

the log-transformed data and the residuals from the log HAR model in Figure 5.8.

The hyperbolic decay of the ACF is observed for both original (untransformed) data and for

the log-transformed series. The remaining residual autocorrelation is more pronounced for the

untransformed HAR in Figure 5.7 than for the log HAR in Figure 5.8. This evidence could be

seen as a support of modelling log realized measures by the HAR speci�cations. To summarize,

these HAR models appear to provide a reasonable time series speci�cations for the log realized

volatilities.

5.4.3 Comparison of bias correction methods

For making one step ahead volatility predictions, the log-HAR model in (5.9) is re-estimated

based on the moving window of size T ∈ {200, 500, 750, 1000} days. We set variance-based

correction as a benchmark and compare it to the naïve, mean-based and Linex-based methods.

Additionally, we consider the average of the mean- and variance-based forecasts as well as the

untransformed forecasts from the model without logs in (5.8). The corresponding logs of MSE

ratios for all assets � i.e., MSE increase in % compared to the variance-based corrections � are

presented in Table 5.2.
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Figure 5.6: Realized kernel time series.

2002 2004 2006 2008 2010 2012 2014

S&P 500

2002 2004 2006 2008 2010 2012 2014

American Express

2002 2004 2006 2008 2010 2012 2014

Exxon Mobil

2002 2004 2006 2008 2010 2012 2014

Microsoft

Table 5.1: Parameter estimates (st. errors) and descriptive statistics of residuals for the
full sample log-HAR model in (5.9).

Company β0 β(d) β(w) β(m) β(q) R2 σ̂2 ξ̂ κ̂

S&P 500
−0.325 0.452 0.378 0.050 0.087 0.74 0.302 0.202 3.996
(0.114) (0.017) (0.028) (0.037) (0.029)

American Express
0.003 0.407 0.372 0.068 0.136 0.80 0.298 0.197 4.046

(0.010) (0.017) (0.029) (0.041) (0.031)

Microsoft
0.004 0.372 0.356 0.068 0.164 0.62 0.306 0.130 4.145

(0.010) (0.017) (0.031) (0.045) (0.037)

Exxon Mobil
0.001 0.437 0.400 0.013 0.107 0.68 0.246 0.237 4.229

(0.009) (0.017) (0.028) (0.037) (0.030)

The major �ndings for MSE are summarized as follows. The untransformed forecast is the

worst one for all constellations. For T = 200, the naïve approach leads to the smallest MSE for

single stocks, whereas the Linex correction is the best for the index S&P500. However, both naïve

and Linex approaches get worse than the variance-based correction for larger values of estimation

window T . The mean-based approach is slightly worse than the variance-based correction as well

as the average of mean-based and variance-based approaches.
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Figure 5.7: ACF of the data and corresponding HAR residuals.
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Figure 5.8: ACF of the data in logs and corresponding HAR residuals.
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Table 5.2: Log of MSE ratios for the log-HAR model forecasts

S&P 500

T naïve/var mean/var Linex/var Avg/var UT/var
200 −0.025 0.004 −0.033 0.002 0.441
500 0.008 0.003 0.009 0.001 0.457
750 0.017 0.002 0.021 0.001 0.467
1000 0.025 0 0.024 0 0.463

American Express

T naïve/var mean/var Linex/var Avg/var UT/var
200 −0.034 0.002 −0.032 0.001 0.303
500 0.001 0.002 0.092 0.001 0.318
750 0.001 0.003 0 0.001 0.318
1000 0.011 0.003 0.01 0.002 0.323

Exxon Mobil

T naïve/var mean/var Linex/var Avg/var UT/var
200 −0.038 0.004 −0.012 0.002 0.599
500 0.017 0.001 0.017 0 0.601
750 0.029 0 0.031 0 0.579
1000 0.037 −0.001 0.037 −0.001 0.553

Microsoft

T naïve/var mean/var Linex/var Avg/var UT/var
200 −0.025 0.009 −0.024 0.004 0.028
500 0.034 0.001 0.054 0.001 0.071
750 0.039 0.001 0.035 0.001 0.074
1000 0.047 0.001 0.049 0 0.062

Notes: MSE increase in % compared to variance-based corrections for one day ahead volatility forecasts
from the log-HAR model in (5.9) estimated based on moving windows of size T .

Note that although the numerical di�erences in the MSE in Table 5.2 are not so large, looking

for the best point volatility forecast is still of much economic relevance. E.g., since volatility

prediction is of importance for pricing derivative �nancial instruments, such as European and

American options (cf. Tsay, 2010), even a small improvement of daily volatility forecasts could

lead to substantial economic gains or losses. However, trying to use our approach in order to

construct a pro�table trading strategy clearly remains beyond the scope of our paper.

To assess the statistical signi�cance of our results, we consider the popular Diebold-Mariano

tests for equal predictive accuracy in order to compare the competing correction approaches. We

compare the approaches under consideration pairwise and report in Table 5.3 the rejects of the

benchmark in columns by `+' and the non-reject by `�' at the 5% signi�cance level.

The forecasts from the untransformed model (UT) are statistically rejected in all settings.

For the small estimation window T = 200, the Linex is signi�cantly the best approach for

the index S&P500 whereas the naïve forecast is the best for all three stocks. The variance-

based correction appears to be statistically the best approach for almost all settings for T ∈
{500, 750, 1000}, with the exception of three cases where the Linex and mean-based forecasts are

better. Summarizing our evidence, for small estimation windows one should rely on the Linex

or even on naïve predictions, while for larger windows the variance-based correction is mostly

appropriate.
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5.5 Summary

Making forecasts with an autoregressive model for log-transformed variables is a convenient

option in numerous applications. A reverse transformation in order to get the forecast of the

original variable, would, however, introduce a bias that should be accounted for. For normally

distributed innovations in the log-autoregressive models, the variance-based correction appears

to be optimal. The alternative mean-based and Linex-based correction approaches require no

distributional assumptions.

In this paper we investigate a �nite sample MSE forecasting performances of several bias

correction methods. Namely, we contrast a naïve no-correction approach, the variance-based

correction with the mean-based and Linex-based corrections under empirically relevant deviations

from normality of the error distribution.

We �nd that the sample size and the degree of autoregressive persistence are of most impor-

tance for the choice of the optimal correction strategy. For large samples where the estimation

risk gets negligible, the Linex-based correction shows decent performance, however, in �nite sam-

ples it is subject to numerical instabilities. The variance-based correction seems to be the best

approach in �nite samples, closely followed by the mean-based correction. The untransformed

forecasts appear to be not reasonable when the model in logs is the correct one. Finally, in

case of small samples and highly persistent autoregression, no correction at all appears to be a

reasonable alternative.
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Table 5.3: Diebold-Mariano test results for daily realized volatilities of S&P 500, American Express, Exxon, and Microsoft.

benchmark−→ Naïve Variance Corrected Mean Corrected Linex Average Untransformed
window size 200 500 750 1000 200 500 750 1000 200 500 750 1000 200 500 750 1000 200 500 750 1000 200 500 750 1000
competitor ↓ S&P 500

Naïve − + + + − + + + + − − + − + + + − − − −
Var + − − − − − − − + − − − − − − − − − − −
Mean + − − − + + + + + − − − + + + + − − − −
Linex − + + − − + + + − + + + − + + + − − − −
Avg + − − − + + + + − − − − + − − − − − − −
UT + + + + + + + + + + + + + + + + + + + +

competitor ↓ American Express

Naïve − + + + − − − + − − + + − − − + − − − −
Var + − − − − − − − + − − − − − − − − − − −
Mean + − + − + + + + + − + − + + + + − − − −
Linex + + − − − + − + − + − + − + − − − − − −
Avg + − − − + + + + − − − − + − + − − − − −
UT + + + + + + + + + + + + + + + + + + + +

competitor ↓ Exxon Mobil

Naïve − + + + − + + + − + − + − + + + − − − −
Var + − − − − − + + + − − − − − + + − − − −
Mean + − − − + + − − + − − − + + − − − − − −
Linex + − + − − + + + − + + + − + + + − − − −
Avg + − − − + + − − − − + + + − − − − − − −
UT + + + + + + + + + + + + + + + + + + + +

competitor ↓ Microsoft

Naïve − + + + − + + + − − + − − + + + − − − −
Var + − − − − − − − + − − − − − − − − − − −
Mean + − − − + + + + + − − − + + + + − − − −
Linex + + − + − + + + − + + + − + + + − − − −
Avg + − − − + + + + − − − − + − − − − − − −
UT + + + + + + + + + + + + + + + + + + + +

Notes: Columns represent benchmark models with rolling window sizes, t ∈ {200, 500, 750, 1000}; rows represent competitors. Under H0 benchmark and
competitor have equal predictive accuracy; under the alternative, benchmark is more accurate. Rejection at 5% level in favor of benchmark is shown by `+';

not rejecting by `�'.
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Appendix

Consistency of Linex-based approach for log-transformation

We take the optimization to be conducted over a compact subset Θ of the parameter space

guaranteeing stable autoregressions. Then, given the fact that the innovations εt are iid, the

process xt (which has a causal moving average representation in terms of εt with absolutely

summable coe�cients) exists a.s., and (xt, εt)
′ is a jointly strictly stationary and ergodic process.

De�ne now

b = arg min
b∗

E [L (εt − b∗)] ,

i.e. the M-measure of location of εt under L. Recall that εt (and thus xt) have thin tails, and

the above expectation is therefore �nite given the linear-exponential behavior of L.
Note that b = log (E [exp (εt)]), which is seen to be true since b must satisfy the f.o.c.

E
[
L′ (εt − b)

]
= 0,

i.e. E [exp (εt − b)− 1] = 0 or E [exp (εt)] = exp (b) as required.

Now, the empirical loss to be minimized is

1

T

T∑
t=p+1

L

yt − µ∗ − p∑
j=1

ρ∗jxt−j

 =
1

T

T∑
t=p+1

L

εt − b− (µ∗ − (µ+ b))−
p∑
j=1

(
ρ∗j − ρj

)
xt−j

 .

Since b is such that the expected loss of L (εt − b) is smallest, minimizing the empirical loss will

result in estimators consistent for µ+ b = µ̃ and ρj as we show below.

Since L is a strictly convex function of its argument, it follows that

E [L(·)] = E

L
εt − b− (µ∗ − (µ+ b))−

p∑
j=1

(
ρ∗j − ρj

)
xt−j


is a strictly convex function of θ∗. Note also that any linear combination of εt and (lags of) xt
must have thin tails, as an application of the Minkowski's inequality shows, therefore the above

expectation is �nite and the ergodic theorem indicates that

1

T

T∑
t=p+1

L

yt − µ∗ − p∑
j=1

ρ∗jxt−j

 a.s.−→ E [L(·)]

pointwise in θ∗. Compactness of Θ and convexity of allow us to use Thm. 10.8 in Rockafellar

(1970) to conclude that pointwise a.s. convergence implies uniform convergence,

sup
θ∗∈Θ

∣∣∣∣∣∣ 1

T

T∑
t=p+1

L

yt − µ∗ − p∑
j=1

ρ∗jxt−j

− E [L(·)]

∣∣∣∣∣∣ a.s.−→ 0;
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furthermore, e.g. Thm. 4.1.1 in Amemiya (1985) indicates that

arg min
θ∗

1

T

T∑
t=p+1

L

yt − µ∗ − p∑
j=1

ρ∗jxt−j

 a.s.−→ arg min
θ∗

E [L(·)] .

Given that E [L (εt − b∗)] is minimized at b∗ = b, it follows that E [L(·)] is minimized at µ̃ and ρj
as required. �

Box-Cox transformation

Here we discuss the possibility of implementing the forecast bias correction methodologies for a

Box-Cox (BC) transformation given as

BC (y) =
yλ − 1

λ
for y ≥ 0, λ 6= 0,

where the log transformation is obtained as the limit for λ → 0. First note that a simple

multiplicative decomposition of the optimal forecast like in Equation (5.2) is not available for

any λ ∈ (0, 1).

Under the simplifying assumption that the distribution of xt = BCλ(yt) is approximately

normal (which could reasonably be made for 0 < λ� 1), it can be shown that (cf. Freeman and

Modarres, 2006, Lemma 1)

E [yT+1|FT ] ≈ (λE [xT+1|FT ] + 1)1/λ +
∑
k≥1

σ2k

2kk!
(λE [xT+1|FT ] + 1)1/λ−2k

2k−1∏
j=0

(1− jλ)

 .

For the special case of 1/λ ∈ N it simpli�es to

E [yT+1|FT ] ≈
1/λ∑
i=0

(
1/λ

i

)
λi (λE [xT+1|FT ] + 1)1/λ−i E

[
εiT+1

]
,

which is hardly tractable in practice, even if one would truncate the sum on the right hand side

for computational reasons. For this reason in case of BC-transformed series we would recommend

to rely on bootstrap-based bias correction methods.

Still, one may obtain an analog to the Linex-based correction when λ� 1: write

yT+1(1) = E
[
(λxT+1 + 1)1/λ |FT

]
;

if requiring the point forecast of xT+1, mT+1, to be transformed back for forecasting yT+1 using

the inverse of the BC transformation, we arrive like for the case λ = 0 at the moment condition

E

[(
λxT+1 + 1

λmT+1 + 1

)1/λ

− 1

∣∣∣∣∣FT
]

= 0.
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This is a legitimate GMM condition, which we may employ for estimating any parameters of

the model for mt+1 the same way as in the case of the log transformation, but optimization is

numerically more demanding than for the Linex loss. For λ� 1, we may write approximately

E

[(
λxt+1 + 1

λmt+1 + 1

)1/λ

− 1

∣∣∣∣∣FT
]
≈ E

[
(1 + λ (xt+1 −mt+1))(λ+1)/λ − 1|FT

]
= 0

which may again be written as an extremum estimator minimizing the observed loss under the

loss function

Lλ(u) =
1

λ+ 1
(1 + λu)(λ+1)/λ − u− 1

λ+ 1
.

This loss has the advantage of being in di�erence form, and is therefore less di�cult numerically.

Furthermore, Lλ converges to the Linex function for λ→ 0 and is actually the squared-error loss

function for λ = 1.
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Concluding Remarks

This thesis o�ers various contributions to the existing literature on asymmetric loss functions in

time series econometrics. First, we provide a theoretical basis for modelling and forecasting long

autoregressions under a generalized asymmetric loss, when the latter is given exogenously. We

support our �ndings with extensive statistical simulations and elaborate proofs. Additionally,

we derive a Wold-type decomposition of the linear process into a regular and a predictable

component. Here, an investigation of data generating processes exhibiting structural breaks is

of further interest.

Second, we reverse the problem and perform inference on the parameters characterizing the

loss function itself. To this end, we reexamine the forecast preferences of the European Com-

mission. We replicate and extend the study of Christodoulakis and Mamatzakis (2009), where

we provide a more robust inference methodology, as well as expand the dataset. We �nd that

the authors' �ndings remain mostly con�rmed, but observe more of a symmetric tendency in

the EU Commission preferences. The next step in this analysis is to perform a rolling-window

estimation in order to uncover dynamic changes in the asymmetries during calm and tumultuous

economic periods.

Third, I combine existing model validation methods in order to provide a thorough routine for

selecting the best performing model for value-at-risk forecasting. Here, I propose an extension of

quantile autoregressions based on HAR model of Corsi (2009) and additional weakly exogenous

regressors that have proven valid in related literature. These models show excellent and robust

results on a large variety of data, which, to my knowledge has not yet been done to such an

extent. Additionally, I propose a simple scoring system that has shown helpful in picking the

best model according to the relevant criteria. Also, it is intriguing to investigate the lower tail

of the conditional distribution of returns beyond the customary quantiles of 5% and 1% in terms

of their dependence on external information.

Finally, we examine bias correction techniques for the reverse transformation of log trans-

formed time series. We compare four correction methods, namely, a no-correction naïve method,

variance- and mean-based approaches, and obtaining a forecast through a Linex loss function,

in simulations as well as empirically. The simulation part has its main focus on deviations from

normality in the data generating processes. We �nd that the variance-based correction approach

is the best in �nite samples when the persistence of the underlying series is rather moderate. On
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the other hand, when the process is highly persistent, no correction at all is the reasonable ap-

proach. These �ndings may show useful for practitioners in cases when the normality assumption

is unreliable.
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