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Abstract

In times of a rapid development and growing market in robotics with special regard to humanoids,

high-tech protheses and the personalization of medicine, biomimicking natural materials like artificial

tissue are of central interest within research and industry. To fully understand the structure-function

relations within living systems, comprehensive knowledge about the smallest living block, the cell, and

its biomechanics are a central topic in world-wide research. However, there is so far no comprehensive

technique established that can measure 3D cell forces quantitatively e.g. during migration processes.

In this project, a novel surface-integrated mechano-optical microsensor system has been con-

ceptualized, designed, prototyped and tested, which allows for the record of pico- to micronewton

traction forces in three dimensions pseudo simultaneously including a continuous screening of the

sensor element condition during the measurement. Here, the displacement of a sensor element with

a well-defined structure is directly correlated to a distinct force by determining the element spring

constant for each spatial direction.

Within this prototyping, first adequate sensor elements were designed via topology optimization

and linear static finite element analysis. Here, a free-standing element consisting of four spring-arms

with three slopes, symmetrically arranged, attached to a frame and connected in the centre via a

centre plate showed the best performance for in-and out-of-plane displacements in the nanometer

range. These design results were fabricated by established micromachining processes of biocompat-

ible thin films of nickel-titanium (NiTi) and amorphous silicon (a-Si). A minimum sensor element

diameter of 45 μm at a device material thickness of 200 nm and a minimum feature size of 1 μm was

achieved. Furthermore, a plasma etching process was developed to fabricate fully biocompatible,

gold-coated polydimethylsiloxane (PDMS) structures in membranes. This sets the starting point

for the fabrication of attractive cost-efficient sensor arrays with easily tunable spring constants by

i



variation of the polymeric composition.

For future accurate and quantitative traction force measurements, atomic force microscopic can-

tilever based calibrations of the out-of-plane and in-plane sensor element spring constants were

established. For lateral spring constants, a diamagnetic levitation force calibrator (D-LFC) was used

for the first time as an adequate calibration method for sensor elements with a high accuracy of

1 %. The axial spring constant of the 45 μm sized a-Si sensor elements were determined to about

0.012 N/m and lateral to 4.66 N/m, while those of the NiTi elements with 170 μm edge length are

as low as 0.004 N/m out-of-plane and 0.087 N/m in-plane.

For the cost-efficient, simple, compact, comprehensively modifiable and sensitive mechano-optical

readout of the force induced sensor element displacements, a setting based on the combination of

digital holographic microscopy (DHM) and digital image correlation (DIC) was conceptualized and

tested. This readout system allows for displacement resolutions as small as 200 nm. Using the NiTi

sensor element, traction forces in the pico- to nanonewton range out-of-plane and in the nano-to

miconewton range in-plane can now be quantitatively sensed.

To control adhesion sites of the samples to the centre of the sensor elements, a technique has

been conceptualized and run based on the fusion of ink-jet printing with the established gold-nanodot

patterning method of diblock-copolymer micelle nanolithography. Here, fast, accurate, simultaneous

micro-and nanogold dot printings of smooth, sensitive device surfaces like the sensor elements with

user-defined microstructures including quasi hexagonal gold nanoparticle patterns were succesfully

achieved. By this method, the distinct adhesion and the control of the amount of adhesion sites for

future precise 3D cell force distribution measurements is ensured.
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Zusammenfassung

In Zeiten schneller Entwicklung und wachsender Märkte im Bereich der Robotik, mit einem beson-

deren Augenmerk auf humanoide Roboter, der high-tech Prothetik und der personalisierten Medizin

ist die Biomimetik natürlicher Materialien wie beispielsweise inform künstlicher Haut zentrales In-

teresse in Forschung und Industrie. Um die Struktur-Funktions-Beziehungen in lebenden Systemen

umfassend zu verstehen ist die umfangreiche Wissenserweiterung in Bezug auf den kleinsten lebenden

Baustein, die Zelle, und seine Biomechanik Gegenstand weltweit laufender Forschungsprojekte. Den-

noch gab es bis jetzt keine umfassende etablierte Methode, die 3D Zellkräfte zum Beispiel während

des Zellwanderungsprozesses quantitativ messen kann.

In diesem Projekt wurde ein neuartiges, oberflächen-integriertes, mechano-optisches Mikrosen-

sorsystem konzeptioniert, gestaltet, prototypisiert und getestet, das die Messung piko-bis mikro-

newton kleiner Zugkräfte gleichzeitig in drei Dimensionen ermöglicht. In diesem System wird die

Verschiebung eines Sensorelementes mit wohl definierter Struktur direkt mit einer bestimmten Kraft

korreliert, indem zuvor die Kraftkonstanten für jede Raumrichtung ermittelt werden. Der Zustand

der Sensorelemente wird während der Messung dabei kontinuierlich mit aufgenommen.

In dieser Erstentwicklung eines Systemmusters wurden zunächst geeignete Sensorelemente mittels

Topologieoptimierung und linear statischer Finite Elementanalyse konzipiert. Hier zeigten freiste-

hende Sensorelemente, die aus vier Federarmen mit jeweils drei Schlaufen aufgebaut, symmetrisch

angeordnet, in einem Rahmen angebracht und im Zentrum des Elementes mit einer Mittelplatte

verbunden sind, die besten Eigenschaften bei lateralen und axialen Verschiebungen im Nanometer-

bereich. Diese Designergebnisse wurden mittels etablierter Mikromaterialbearbeitungsprozesse aus

biokompatiblen Nickel-Titan (NiTi) und amorphen Silizium (a-Si)-Dünnschschichten hergestellt. Ein

minimaler Sensorelement Durchmesser von 45 μm bei einer Schichtdicke von 200 nm und einer Struk-
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turgröße von 1 μm wurde erreicht. Desweiteren wurde ein Prozess entwickelt, um vollständig biokom-

patible, Gold beschichtete Polydimethylsiloxan (PDMS) Mikrostrukturen in Membranen herzustellen.

Dies legt den Ausgangspunkt für die Herstellung attraktiver, günstiger Sensorelement-Arrays mit ein-

fach variierbaren Federkonstanten durch Variation der Polymerkomponenten.

Für zukünftige genaue und quantitative Zugkraftmessungen wurden Atomkraftmikroskopie-Cantile-

ver basierte Kalibrierungen der axialen und lateralen Sensorelement-Kraftkonsten etabliert. Zum

ersten Mal wurde dabei ein diamagnetischer Levitationskraftkalibrator (D-LFC) als geeignete Kalib-

rierungsmethode für die Sensorelemente genutzt, dessen Genauigkeit 1% beträgt. Die damit bes-

timmten Federkonsten des 45 μm kleinen a-Si Sensorleementes betragen 0,012 N/m aus der Ebene

und 4,66 N/m in der Ebene, während die Federkonstanten des 170 μm großen NiTi Sensorelemente

mit 0,004 N/m axial und 0,087 N/m lateral kleinstmöglich sind.

Für eine günstige, einfache, kompakte, umfassend veränderbare und empfindliche mechano-opti-

sche Datenauslesung wurde ein Aufbau konzeptioniert und getestet, der auf einer Kombination digi-

taler holografischer Mikroskopie (DHM) und digitaler Bildkorrelation (DIC) basiert. Diese Auslesemeth-

ode ermöglicht die kleinstmögliche Auflösung von Verschiebungen von 200 nm. Bei Einsatz der NiTi

Sensorelemente können so axiale Zugkräfte im Piko- und Nanometerbereich und lateral im Nano-

bis Mikronewton Bereich quantitativ gemessen werden.

Um die Adhäsionspunkte der Proben auf der Sensorelement-Mittelplatte zu kontrollieren wurde

schließlich eine Technik konzeptioniert und durchgeführt, in der Ink-Jet Drucken mit der etablierten

Methode der Diblock-Copolymer Mizellen Nanolithographie (BCML) kombiniert wurde. Damit

wurden schnel-le, genaue, simultane Mikro-und Nanogoldpunkt Drucke auf glatten, empfindlichen

Bauelementoberflächen wie den Sensorelementen mit Nutzer-definierten Mikrostrukturen realisiert,

die quasi hexagonale Gold Nanopartikel Muster enthalten. Durch diese Methode wird die gezielte Ad-

häsion und die Kontrolle der Anzahl von Adhäsionsstellen für zukünftige 3D Zellkraftverteilungsmes-

sungen ermöglicht.
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Résumé

A une époque de développement rapide et de croissance du marché dans les domaines de la robo-

tique et plus particulièrement des robots humanoïdes, des prothèses de haute technologie et de

la médecine personnalisée, la biomimétique des materieaux naturels comme par example la peau

artificielle présentent un intérêt central pour la recherche et l’industrie. Pour bien comprendre les

rélations structure-fonction dans les systèmes vivants, l‘élargissement significatif des connaissances

concernant des plus petites unités vivantes, les cellules, et leurs bioméchaniques sont les sujets des

recherches actuelles internationales. Cependant, il n’y a pas jusqu’ici de technique compréhensive qui

puisse mesurer simultanément les forces cellulaires en trois diréctions comme pendant les migrations

des cellules.

Au cours de ce projet, un noveau système à microcapteur mécano-optique intégré à la surface a

été conceptualisé, conçu et testé, ce qui permet l’enregistrement simultané des forces de traction de

pico- à nanonewton en trois diréctions et le dépistage continu de la condition de l’élément capteur

pendant les mesures. Dans ce système, le déplacement d’un élément capteur d’une strutcure bien

defénie est corrélé directement à une certaine force grâce à la détérmination des constantes de ressort

en trois diréctions pour l’élément capteur.

Dans ce procédé prototype, les éléments capteurs appropriés ont été conçus d’abord par une

fonction d’optimisation topologique et l’analyse par éléments finis linéaire-statique. Un élément

autoportant qui consiste en quatre bras de plume avec trois méandres, disposés symétriquement,

attachés à un cadre et connectés par un panneau central dans le centre de l’élément possède les

meilleures propriétés concernant les déplacements latéraux et axiaux à l’échelle nanométrique. Le

design de ces éléments a été fabriqué en utilisant les procédures établiées du microtraitement des

matériaux avec des couches minces de nickel-titane (NiTi) et de silicium amorphe (a-Si). Un diamètre
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minimum des éléments capteurs de 45 μm avec une épaisseur du matériau de 200 nm et une taille

structurelle de 1 μm a été réalisé. En outre, un procédé de gravure par plasma a été développé

pour fabriquer des structures de polydiméthylsiloxane (PDMS) biocompatibles et revêtus d’or dans

des membranes. Celui-ci marque le point initial de la fabrication des réseaux d’éléments capteurs

attractifs avec des constantes de ressort bien réglables par la variation des compositions de polymères.

Pour les mesures des forces de traction précises à l’avenir, les procédés de calibrage des constantes

de ressort axiales et latérales ont été établies en se basant sur les cantilevers de la microscopie à

force atomique. A cet égard, la méthode de calibrateur de forces de lévitation diamagnétique (D-

LFC) a été utilisée pour la première fois comme technique de calibrage appropriée pour les éléments

capteurs avec une précision de 1%. Les constantes de ressort des éléments capteurs a-Si était de

0,012 N/m pour des déplacements axiaux et de 4.66 N/m pour des déplacements latéraux, tandis

que le constante de ressort axial des éléments capteurs NiTi dťune longueur dťarête de 170 μm était

de 0,004 N/m et latéral de 0.087 N/m.

La construction qui se base sur la combination de la microscopie de holographie numérique (DHM)

et de la corrélation d’images digitales (DIC) a été conceptualisée et testée pour l’enregistrement

mécano-optique, rentable, simple, compact, trés modifiable et sensible des déplacements d’éléments

capteurs occasionnées par des forces de traction. Ce système d’enregistrement possède une capacité

de résolution des déplacements de 200 nm. En utilisant les éléments capteurs NiTi, des forces de

traction axiales du domaine du pico- à nanonewton et latérales du domaine du nano- à micronewton

sont quantitativement mesurables.

Pour le contrôle des sites d’adhésion des prélèvements au centre des éléments capteurs, on a

conceptualisé et testé une technique qui combine le jet d’encre avec la nanolithographie micelles des

copolymères dibloc (BCML). Des micro- et nanostructures rapides, personnalisées et précises ont été

réalisées simultanément avec succès sur des surfaces lisses des éléments sensibles avec des matrices

de 4 x 4 de microgouttes micellaires contenant des dessins quasi hexagonals des nanoparticules d‘or.

Cette méthode permettra l‘adhésion ciblée et le contrôle du nombre de sites d‘adhésion pour les

mesures futures en trois diménsions de la distribution des forces cellulaires.
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Preface

Ce qui était impossible hier, sera possible demain.

| Luise Weiss, French ’European politician of the first hour’ and Suffragette, 1893-1983 |

Since the publications by the Organisation for Economic Co-operation and Development (OECD)

in the 1970s, the intense work of researchers in different disciplines finding a common communication

base for scientific exchange and trouble shooting has grown importance. In those times, the problems

within the society should be solved by interdisciplinary science overcoming the scientific tradition of

disciplinarity summed up in the slogan:"Communities have problems, universities departments".1 A

new scientific trend was born, that today lead to large scale research programs funded by the Deutsche

Forschungsgesellschaft, or grants by the European Research Council that are popular methods to

settle pools for academic interdisciplinary work.

Moreover, the European Commission today defines the so-called "Great Challenges" of our Euro-

pean societies such as health, energy, climate and by this, strongly influence the scientific landscape.

To find solutions to those complex tasks, interdisciplinarity is therefore desired to flatten the most

suitable and efficient path.

The believe in this idea of interdisciplinarity "(...) as the most productive and interesting way to

advance knowledge" (Klein et al., 1990) and as a central instrument for an efficient solution to a

complex scientific problem by creating bridges between a diversity of different research fields2, already

1Arnold, V. Gaube, B. Wieser, Interdisziplinär forschen, 2014 in G. Dressel, W. Berger, K. Heimerl und V.
Winiwarter, Interdisziplinär und transdisziplinaär forschen. Praktiken und Methoden, transkript Verlag:
105-119, Bielefeld.

2J. T. Klein, Interdisciplinarity: history, theory, and practice, Wayne State Press, 1990, 331 pages
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influenced my personal studies during my school time. Here, I had to cope with natural scientific

questions that needed an interdisciplinary approach such as insights into chemical procedures like

the Mallet reaction where physics are needed to understand chemical processes. Over the years, my

interest in disciplines that follow ways over limits became more and more dominant. In consequence,

my decision was to first create and organize the intradisciplinary communication seminar "train your

brain" to overcome the communication borders of chemists from different disciplines during my

diploma time.

To further broaden my scientific horizons and deepen my understanding of scientific interconnec-

tions and differences in the scientific views on certain tasks, I additionally studied physics apart from

chemistry. Following the iridescent paths of great physico-chemists like Otto Hahn, my combina-

tion of disciplines was then concentrated to challenging, isolated fundamental research as a scientific

coworker in physical chemistry combining the fields of chemistry, physics and engineering tasks. Even

though the work offered me insight into a two-dimensional research direction, it poked my intention

for a more fruitful interference by off-topics or interdisciplinary cross relations.

Accompanying to my regular chemistry study time, I therefore studied the rather more theoretical

sports law, a very interdisciplinary and young research field combining sports science, the three

pillars of judiciary and social aspects. By this, it opened an entirely new view on interconnections

and the creation of interconnections in science to me. Regarding more applicative complex tasks

solved in groups, intense applicative team work as a designer, engineer and constructor in a formula

student team followed to construct a formula racecar, pointing out the challenges of communication

in interdisciplinary teams that have to find efficient, precise and reliable technical solutions under

high time pressure.

The acquired knowledge out of these projects was transferred to work as a spokesperson in an

interdisciplinary team for the research project "SFB677- Function by Switching" after having been an

active researcher in this project years before. Here, my team and I established a basis to communica-

tion between doctoral candidates of various disciplines like materials science, chemistry, pedagogics,

biology and physics as well as a sense of belonging of these young researchers to work more efficient

as a team.

Having experienced these different interdisciplinary surroundings, I strived the combination of
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research and application in an interdisciplinary challenging project that offered the chance of free

scientific work with a technical and socially relevant background.

The result of this pursuit has been finally found in the interdisciplinary subject materials science

and was distilled in the course of this PhD thesis. Here, the combination of the disciplines of physics,

biology, chemistry, optical engineering and materials science was intended to dare steps across limits

to create a novel technological approach to measure cell adhesion forces in 3D by means of light.

The challenge was the incorporation into this versatile thematic area and the productive and

efficient cooperation as well as communication with other scientists all over Germany from totally

different scientific fields. The success in these interdisciplinary tasks meant the success of this PhD

project:

A challenging, sometimes exhausting, but always exciting path close to the edge, partly passing

the limits supported by the unbreakable will to take the risk, contributing to something outstanding.

Hendrikje M. Neumann

Kiel, 28th of March 2019
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1 Introduction

In times of a rapid development and growing market in robotics [1] [2] with special regard to hu-

manoids, [3] high-tech protheses [4] [5] and the personalization of medicine, [6] [7] biomimicking natural

materials like artificial tissue are of central interest within research, [8] industry [9] and health care. [10]

To mimick the self healing mechanisms in tissue repair or wound healing requires profound knowl-

edge enhancements regarding the biochemistry of intra- and extracellular signaling, but also on

the biomechanical interaction between cells and their surrounding, [11] which is a central subject of

ongoing world-wide research. [12] [13] [14]

The macroscopically observable phenomena such as self-healing are caused by cells creating defined

forces to migrate, proliferate, adhere, divide or differentiate. The characterization and research of

forces opened the entirely new discipline of mechanobiology used as basis for pursuing biophysical and

bioengineering tasks. Today, the hot topic of cellular force sensing offers a broad and still growing

spectrum of methods and technologies to enlighten the precise understanding of the mechanical cell

behavior.

In the course of the introduction, the central interest of this PhD work is motivated introducing

the cell, cell adhesion with a special focus on mechanotransduction and established cell force sensing

methods. Finally, an overview on the central project tasks is given.

1.1 Cells

The smallest building blocks of all living organisms are cells that are distinguished between prokaryotic

and eukaryotic cells. [15] Prokaryotic cells are unicellular systems that consist of a capsule enclosing

a cell plasma membrane, DNA, ribosomes and cytoplasm, and move forward via a long tail the so-

called flagellum. They are found especially in bacteria and make the majority regarding the overall
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1 Introduction

amount of cells. [16] While eukaryotic cells are most relevant for animal organisms like human beings

and are of major relevance for this project regarding the future mimicking of phenomena like wound

healing processes.

A spread living eukaryotic cell of a rat embryonic connective tissue, which is surrounded by other

cells, is shown in figure 1.1 A. Here, the central difference to prokaryotic cells can be observed very

well, which is the nucleus embedded in the cell membrane that contains the entire genetic information.

Moreover, the diameter of eukaryotic cells is in average 100 times bigger than prokaryotes and range

between 1 to 100 μm. [17] Here, the diameter of an adhered cell of this cell type is about 150 to

200 μm. A schematic overview about the most important components of this cell is depicted in

figure 1.1 B. In general, the cell nucleus is embedded in the cytoplasm, which includes all material

inside the cell membrane and outside cell nucleus.

Figure 1.1: A Image of a rat embryotic fibroblast cell, which is adhered to a nickel-titanium surface.
B Schematic description of the cell shown in A. An eukaryotic cell consists of a cell
nucleus, which is embedded in the cytoplasm and stabilized by the cytoskeleton, which
consists of filaments such as microtubule and actin fibre. The entire cell is stabilized in
its shape by a cell membrane, which is covered by the glycocalix. Cell adhesion to the
extracellulaire matrix (ECM) is ensured by the interaction and corresponding proteins on
the surface of the ECM as shown in the inset box (modified from Albers et al., ref. [18]

and Selhuber, ref. [19]).

The component with highest volume within the cell is cytosol, a liquid to gelly material which

consists of organelles and inclusions like stored nutrients. There are different types of organelles such

as mitochondria, which are essential for cell energy supply, but also for signaling, cell differentiation,

cell growth or even cell death. [20] Cytosol therefore has multiple functions within cell processes such
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as signal transduction between the cell sites and the nucleus, [21] the control of the cell division

process via the so-called cytokinesis [22] or the transportation of the metabolites within the cell. [23]

The shape, the resistance against outer impacts and the migration of a cell is ensured by the

cytoskeleton, which is an interconnected network of different filaments based on three different

polymerized protein subunits and regulatory proteins. Its essential elements are: microtubuli, actin-

filaments and intermediate filaments. [24] Microtubuli are the stiffest protein filaments with an average

diameter of 20 to 30 nm growing around the centrosome, a small spherical element near the nucleus.

They create complex networks with tracks of the length of an entire animal cell and are able to

quickly rearrange, which is of central importance during mitosis. Here, the microtubuli generate a

DNA segregating motor called mitotic spindle that finds and aligns chromosomes.

Actin based filaments are less stiff than microtubuli and of about 6 nm diameter [25]. They can

transfer force via their fast growing end of the filament when pushing against the cell membrane,

which is important for the leading of a migrating cell [26] and responsible for muscle contractions,

cytokinesis, intracellular transport and cell mobility. [24]

Finally, the intermediate filaments are the least stiffest of all cytoskeletal filaments with a diameter

of 10 nm. [27] They act as integrating device for the cytoskeleton cytosol and as a mechanical stress

absorber.

The entire outer cell membrane surface is covered by the glycocalix, which consists of polysaccha-

rides covalently bond to the cell membrane proteins. Here, the composition of the polymeric matrix

makes cell recognition possible. So the organism is e.g. able to differentiate between healthy and

deseased cells or transplanted tissue. [28]

The cell properties vary between the different cell types according to their function. The above

presented fibroblast cells are large, flat, and spindle-shaped when they are elongated, have an oval, flat

nucleus, are very agile and can migrate in three dimensional surroundings. [29] For that reason, they

are perfectly adapted to the tissue and rapid tissue repair. A hot topic in skeletal tissue engineering

regarding muscle reconstruction after injuries is the comprehensive understanding of muscle cells.

They are found in muscle tissue, have a long tubular shape, are very smooth, consequently behave

as satellite cells and consist of contractile material. In that way, the cells can fastly move throughout

the tissue to support total muscle recovery from deseases or injuries, but also ensure the contraction
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1 Introduction

of the muscles in case of outer force impacts or self-driven movement. [30] [31]

Cell Adhesion The migration and tissue development are the results of defined cell-matrix and

cell-cell interactions on a molecular level. Here, cell receptors bind to the corresponding acceptors

at the extracellular matrix (ECM), in a first step. Then, adhesion clusters are generated by the

arrangement of various proteins to distinct binding sites called cell adhesion. The five relevant

groups of cell adhesion molecules (CAMs) in this process are: cadherins, immunoglobulins, mucins,

selectins and integrins. [18]

Integrins are a group of 24 different glycoproteins consisting of two non-covalent bound chains

and are composed by eighteen alpha and eight beta subunits (see inset box in figure 1.1 B). [18]

The beta subunit promotes the binding to actin filaments within the cell cortex. While the cells are

spreading or migrating, integrins cluster to so-called focal adhesion clusters to amplify the adhesion

effect. [18] Their adhesion force ranges between 500 pN and 100 nN. [32]

In consequence, integrins act as a transmembrane linker and cause the interaction between the

cellular cytoskeleton and the ECM as well as the cell regulation and signal transduction. [33]

Mechanotransduction In the 1990s, Wang et al. proved that integrins, and associated intracel-

lular proteins of focal adhesions, mediate the mechanical force transmission to the cytoskeleton. [34]

Furthermore, it could be shown that mechanical stimulation of cells by external forces cause an

increase in focal adhesion clusters. Hence, a mechanical signal is transferred into a biochemical

signal within the cell, which is the basis for macroscopically observable phenomena like wound or

fracture healing based on bone or connective tissue growth. [35] Here, the mechanical load cause the

production of new ECM. [36] This signal translation is known as mechanotransduction and essential

for senses and physiological processes in the body. [37] [38]

Experiments even indicated, that there is a direct correlation between the pertubation of mechan-

otransduction and pathologies ending up in various diseases like cancer or cardiovascular disor-

ders. [39] [40]

Regarding connective tissue cells, three different reactions to mechanical stress can be distin-

guished, which are: compression, e.g in cartilage, [35] tensile stress, [41] which occurs during the
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entire movement sequences within the various tendons, and shearing e.g. in blood vessels. [42]

With regard to focal adhesion clusters, there are various approaches to fully explain the cluster

growth due to mechanical stress. Geiger et al. offered an explanation via a mechanobiochemical

feedback loop, in which a force causes signaling within the hydrolase enzymes and the stimulation

of a force generation in the cytoskeleton. [43] De Rio et al. suggested that mechanical stretching

of focal adhesion clusters cause a conformational change within the integrin-fibronectin bond, a

glycoprotein directly connected to the integrins, and talin bonds, a high weight cytoskeletal protein,

which connects integrin to the cytoplasmic plaque. [44]

In conclusion, a comprehensive understanding of the processes in focal adhesion mechanotransduc-

tion, cell adhesion regulation as well as cell sensing are essential to mimic or optimize macroscopic

phenomena such as wound healing. For that reason, a variety of different techniques have been

developed by various research groups in the last years and hence, selected established methods are

presented in the following.

1.2 Cell Force Sensing

Due to the significant importance of cell force sensing, various traction force measurement methods

have been developed within the last decades summarized, described and compared in numerous review

articles. [45] [46] [47] [48] [49] [50] [51] Established techniques for force sensing are based on piezoelectric,

piezoresistive, capacitive, optical and microelectro-mechanical (MEMS) sensing systems with a broad

range of structural solutions as concisely compiled in figure 1.1. [52]

For a fast, short, but comprehensive overview on established techniques for cell force measurements

a modified and enhanced list based on the publication of Polachek et al. is given in table 1.1 to

1.3. It includes established methods and their corresponding force resolutions, dimensions to be

measurable, the number of measurable cells per experiment, the strengths and limitations for each

method. [48]

For the sake of comprehensibility and rigor, the terms sensor element, sensor and sensor system

will be used according to the definitions offered by Madou, in the following. [53] A sensor element is

defined as "a device that converts one form of energy into another [...]," (Madou, 2011). By
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Figure 1.2: A Cantilever based mechanical three dimensional sensor element for cell adhesion mea-
surements called μ-flower designed by Marelli et al. (reproduced from Ref. [54] with
permission from The Royal Society of Chemistry). B MEMS capacitive force sensor
with an injection pipette for biomechanical and cell force measurements developed by
Sun et al. (reproduced from Ref. [45], Biomedical Materials by IOP Publishing. Repro-
duced with permission of IOP Publishing in the format Thesis/Dissertation via Copyright
Clearance Center), C Silicon membrane shrinkage cell measurements by Burton et al.
(reprinted from ref. [55], page 80, with permission from c© 2001 Elsevier). D SEM images
of an adhered cell on a micropillar array by du Roure et al. (reproduced from ref. [56] with
permission from c© 2005 National Academy of Sciences). E Traction force microscopic
image by Legant et al. with computationally calculated shear and normal components
of bead displacements, which are color-coded by magnitude (reproduced from ref. [57]

with permission from c© (2012) National Academy of Sciences). F String-connected
micropillars for cell studies in an 3D environment by Klein et al. (reproduced by permis-
sion from John Wiley and Sons: Advanced Materials, Elastic Fully Three-dimensional
Microstructure Scaffolds for Cell Force Measurements, F. Klein, et al., c© 2010 WILEY-
VCH Verlag GmbH Co. KGaA, Weinheim). G Micromachined mechanical sensor for
in-plane cell traction force measurements by Galbraith et al. (reproduced from ref. [58]

with permission from c© 1997 National Academy of Sciences).
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this, a specific input is transferred into a measurable output such as radiation, chemical, mechan-

ical, magnetic or electric signals. A sensor is the combination of a sensor element or element array

with a physical packaging and external electrical or optical connections. Finally, the sensor system

then is the ensemble of the sensor element or array and the signal detection and processing system.

As indicated within table 1.1 to 1.3, all established sensor systems possess advantages and limi-

tations regarding their force range, their precision, their complexity, their stability or their spatial

resolution.

By means of tissue pillars, which are vertical cantilevers of known stiffness used to measure tissue

contractile forces by displacement analysis of the cantilever, micropillar arrays (see figure 1.2 D),

atomic force microscopy (AFM) or MEMS (see figure 1.2 B), a broad force range can be covered.

But, while tissue pillars just offer qualitative data in-plane, AFM results suffer from high standard

deviations due to the corresponding calibration methods, a high sensitivity against outer influences

like noise corrupting the quality of the force curves, are reduced to 1D to 2D measurements and just

measure overall global cell forces. Micropillar array based cell force sensing is an indirect measurement

method based on the deformation of pillars according to cellular force impact. For small deformations

below 200 nm reference measurements are needed and it is only suitable for in-plane force detection,

while the sensitivity to normal forces is very low. [59] [60]

MEMS, as those developed by Sun et al. (see figure 1.2 B), can e.g. sense mechanical impacts

like cell forces by small sensor deflections, which are first transduced into detectable capacitance

changes and afterwards converted into a voltage variation. [45] This type of force sensor systems

appear to be the best solution for convenient results as there is no optical setting needed and they

are stable against outer influences. However, the minimum structure size is limited due to the present

established microfabrication technologies and moreover, measurements with high precision are just

possible in two dimensions at once. For a three dimensional measurement solution, two physical

phenomena like piezoresistivety and capacity would need to be combined to realize a direct 3D force

information. However, this would lead to a more complex fabrication process and a bigger overall

size.

A promising two to three dimensional measurement technique is traction force microscopy (TFM)

based on the microscopic tracking of fluorescent particle displacements in polymeric substrates like
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polydimethylsiloxane (PDMS) and hydrogels. The method strongly depends on homogenous poly-

mer membranes with comparable Young’s moduli all over the substrate surface, which is a challenging

goal. To sense very small forces, extremely soft hydrogels have to be used. However, soft hydro-

gels change the cell behavior, which corrupts the force measurement results. Furthermore the data

processing is highly time- and cost-intense.

A recently published three dimensional approach developed by Kronenberg and Gather et al. is

elastic resonator interference stress microscopy (ERISM) allowing for force measurements in the

piconewton range. [109] [110] This method is based on interference measurements sensing the cell

force induced thickness changes of a coated ultrasoft siloxane membrane, the so-called cavity. Here,

every dark fringe of the interference pattern, which is a local minimum in the reflectance spectrum,

corresponds to a position where resonant modes of the cavity are created by the coupling of the

illuminating light. These minima are then used to calculate the cavity thickness. Based on stiffness

maps of the cavity surface, the thickness then is correlated to certain external forces. This technique

is extremely sensitive to thickness inhomogenities of the membrane, membrane reflection as well as

transmittance. Additionally, homogenous material behavior all over the surface is a challenging task

using polysiloxanes. Moreover, the cavity thickness has to be linked to a well-defined set of local

minima in the reflectance spectrum and correlated forces collected in special databases to ensure

precise force measurements. Besides a well-defined material property data set for the non-linear

simulations of polysiloxanes and intense image as well as algorithmic data processing are necessary.

Furthermore, biosensors cover a broad field of established cell force measurements in the piconew-

ton region where molecular recognition of a target analyte is converted into a measurable signal via a

transducer. The measureable forces are then single-molecular forces within a cell or between the cell

matrix surface and the substrate surfaces or another cell. [111] [112] Here, Förster resonance energy

transfer (FRET), photo-quenching, loss of fluorescence or changes in fluorophore emission properties

are used to record more insights into mechanotransduction on the molecular level inside and outside

cells in two and three dimensions. [105] [106] [112] [113] Apart from this broad range of available and

partly established techniques, there is currently no method available that offers the possibility of

measuring cell traction forces in three dimensions in the nanonewton force range at once, generating

reliable direct and quantitative data results as well as cost- and time-efficient settings all in one.
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1.3 Concept

In the course of this project, a novel approach to measure forces quantitatively in three dimensions

(3D) at once in the pico- to nanonewton range was persuaded. This setting shall allow for 3D cell

traction force sensing of focal adhesion clusters in future applications. By combination with atomic

force microscopy (AFM) which does not allow for local force sensing, the cells are stimulated exter-

nally in terms of mechanotransduction and additionally, global forces during cell rupture processes

can be recorded. The approach for this new tool is shown in figure 1.3. Here, the different measure-

ment steps (1.-4.) regarding an entire cell are presented in the left column and the corresponding

microscopic events for one cell binding site on one sensor element are shown in a zoom-in in the

right column.

First, a cell adheres to a force sensor element array. The array consists of a thin film of a

biocompatible material that is structured via micromachining and consists of a regular pattern of

sensor elements. Here, the cell only interconnects to the centre of each sensor element. On top of

the cell, a biofunctionalized cantilever of an AFM is adhered to this cell. The position of the centre

of the sensor element is recorded via an optical setup schematically depicted by a light source, a

read beam and a detector.

In the second step, the cantilever is retracted and by this, the cell is stretched and only keeps

contact to the sensor element contact plates. In consequence, the elements are displaced in- and

out-of-plane due to the cell traction forces. This displacement is detected via the optical readout.

In dependence on the strength of the interaction forces of the cell with each sensor element, the

cell loses its adhesion to the element centre plates when further retracted (see step 3.). Other

elements might be displaced out-of-plane (z-direction) or in-plane to a maximum. Finally, the cell

binding sites entirely rupture and all sensor elements jump back to their original position (see step

4.).

In this approach, the three dimensional element displacement is directly correlated to a distinct

force in x-, y-, and z-direction on one local point of the cell matrix surface.

By use of an element array, several matrix points are recorded regarding their local force develop-

ment and by this, the quantitative description of the cell force distribution during a rupture event
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can be recorded. At the same time, the AFM cantilever measures the global force development

during this rupture process. In consequence, a comprehensive data set of global and local cell forces

will be available by just one experiment.

The central challenges of this project were the development of surface-integrated sensor elements

based on established fabrication technologies for biocompatible materials that suite the dimensions

Figure 1.3: Schematic presentation of the concept for the mechano-optical readout in a combined
local and global cell traction force measurement. In the images on the left, the overall
process on top of the sensor array is shown, while on the right, the corresponding process
on one single sensor element is depicted in sideview.
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1 Introduction

of an adhered cell, so that a maximum of local cell force data can be recorded per experiment. Here,

the higher the density of sensor elements, the more comprehensive the depicted force distribution.

Furthermore, the finally chosen technology and material should not only offer minimum structure

dimensions, but most preferably also be cost-efficient and reproducible to fabricate affordable one-

way sensor element arrays for future customer applications.

Moreover, a suitable design of the sensor element structures was important to create comparable

force sensitivities in all three dimensions and support optical readout based on interference mea-

surements. The most complex part was the choice of an appropriate optical method to record the

deformations of the sensors in real time, in a way that even very small displacements down to the

nanometer range corresponding to cell forces in the nanonewton region were accessible in 3D. In this

product development, the setting should be preferably easy to handle and cost-efficient with regard

to future use by random customers. The overall list of design requirements is presented in chapter

2.

Based on the above described goals, five different sub-projects have been defined and lead in the

course of this central PhD project (see figure 1.4). These were:

1. Sensor Element Design and Optimization,

2. Sensor Element Fabrication and Characterization,

3. Sensor Element Calibration, the development of an approach for

4. Optical Readout and

5. Sensor Surface Functionalization.

The order of the different chapters was adapted to the different prototyping steps starting from

scratch with the computer added design and optimization of an appropriate sensor element. Based on

the definition of the sensor element design, the fabrication and characterization of the correspond-

ing sensor element arrays out of three different materials was established. Afterwards, the most

reliable calibration techniques chosen and used for these sensor arrays were tested and established.

The fourth chapter includes the central part of the sensor prototyping, which was the choice and

implementation of an appropriate three dimensional optical readout. The last sub-project consisted

of the development of a high-throughput functionalization of these free-standing elements by means

of ink-jet printing.
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Each chapter includes a theoretical background, materials and methods as well as the presentation

of the results and their discussion.

Finally, the results are compiled in chapter 7 giving an outlook on the next steps within this project

the final product maturity, possible improvements and future applications of the presented sensor

system prototype.

Figure 1.4: Sensor system prototyping was run implementing five different sub-projects, which are
presented within this thesis: Starting from I. the sensor element (SE) design and op-
timization (chapter 2), the chosen SE designs were then fabricated according to the
descriptions in II. SE Fabrication and Characterization (chapter 3). The fabricated SEs
were afterwards calibrated as presented in III. SE Calibration (chapter 4). The mechano-
optical readout system has been conceptualized and tested in sub-project IV. Optical
Readout (chapter 5) and finally, a possibility for a distinct adhesion control on the sensor
element array is presented in V. Sensor Surface Functionalization (chapter 6).
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2 SE Design and Optimization

The prototyping of a sensor from scratch according to well-defined micro-sensor features is a chal-

lenging and rather complex task. After the first step of having defined the sensor requirements

including aspects like a high mechanical sensitivity to forces in the pico- to nanonewton range or a

force readout to measure forces in three dimensions at once, additional tools are needed to define the

starting point to useful sensor shapes, but also to validate the most appropriate design for further

fabrication. For that purpose, the so-called finite element method and topology optimization have

been chosen within this project as well established theoretical methods in prototyping. These are

presented theoretically in the following chapter as well as the sensor requirement list. In this way,

the entire design and optimization procedure in this sensor system prototyping should to be reduced

to a minimum of material, time and cost.

In a next step, different sensor shapes according to the requirements list were developed and

analyzed by means of the simulation tools. Ten of the most promising designs are introduced and

discussed in this chapter, followed by a determination of the most sufficient sensor structure.

2.1 Finite Element Analysis

2.1.1 A mathematical insight

Finite Element Method (FEM) is a numerical simulation method based on the approximation of the

real complex solution by means of discretization via numerical model equations. The use of FEM to

analyze a phenomenon such as material deformations or heat transfer under defined boundary con-

ditions is then called finite element analysis (FEA). In the following, the fundamental mathematical

background is exemplified for a 1D problem by the so-called direct stiffness method based on the pub-
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2 SE Design and Optimization

lications of Logan et al. and Chen et al. [114] [115] This method is one of the structural analysis meth-

ods, also known as matrix stiffness method, and best suited for the algorithm-based computational

analysis of more complex problems. [116] A spring as shown in figure 2.1., with a length L in relaxed

Figure 2.1: Schematic presentation of the
elongation u2 (B) of a spring
with spring constant k, of length
L constrained in point 1 and ef-
fected by a force F in point 2 in
x-direction (A).

state and a spring constant k, is constrained in point

1, ends in point 2 and is displaced in x-direction by a

force F . The points are equal to so-called nodes which

are coordinate locations in space where the degrees

of freedom (DoFs) are defined. Here, the DoF is one

displacement u(x). The displacement function is then

defined as: [114] [115]

u(x) = a1 + a2 ∙x = [1x]




a1

a2



 (2.1)

The amount of coefficients ai depend on the

amount of DoFs. With u(x = 0) = u1 = a1 and

u(x = L) = u2 = a2 ∙L + a1 =⇒ a2=
u2−a1

L :

u(x) = u1 +
u2 − u1

L
x = (1 −

x

L
) ∙u1 +

x

L
∙u2 = [(1 −

x

L
) ∙

x

L
]




u1

u2



 (2.2)

Introducing the so-called interpolation functions Ni, which describe the variation of the displace-

ments over the element with N1=1- xL and N2 = x
L for this spring:

u(x) = [N2N1]




u1

u2



 (2.3)

Based on Hook’s Law:

F = k ∙ δ (2.4)

18



with: F =




F 1

F 2



 , F 1 = k ∙ (u1 − u2), F 2 = k ∙ (−u1 + u2) and δ = u2 − u1, it is: [114] [115]




F 1

F 2



 =




k −k

−k k








u1

u2



 (2.5)

Here: k equals E ∙A
L . The matrix includes the entire material and structure information by means

of the Young’s modulus E, the cross-sectional area A and the length of the spring. It is also known

as the local or element stiffness matrix k. Regarding this example, an analytical solution can be

found easily. But describing an entire, more complex object over all finite elements e, the global

stiffness matrix is then defined as:

K =
e∑

1

ke = [K] (2.6)

With: F =
∑e

1 F e = {F}, the master stiffness equation of structural analysis then is:

{F} = [K]{u} (2.7)

Based on equation 2.7, more dimensional and complex structural problems can be solved numeri-

cally by first defining the elements of the stiffness matrix. Then the structure is analyzed with regard

to the force effecting the structure or the displacement induced by the load. Here, different analysis

methods can be utilized such as linear static or dynamic analysis as presented in subchapter 2.1.2.

Within this work, pico- to nanonewton forces are assumed to induce small deformations of the

sensor elements. In this deformation range, the stress within the materials is assumed to remain in

the linear-elastic region, where stress is direct proportional to strain as presented exemplarily in figure

2.2. Here, a stress-strain-diagram of an arbitrary metal is presented with a linear region at low stress

values. Within this range, linear static analysis can be run, in which the amount of sensor element

deformation is direct proportional to the effecting force according to Hook’s Law. In this region,

the structure returns to its original shape after unloading. Furthermore, the boundary conditions

including the constraints as well as the magnitude and direction of the loading are time-independent.
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2 SE Design and Optimization

Figure 2.2: Exemplary schematic stress-strain diagram of an arbitrary metal. At low strains, stress
and strain are direct proportional defining elastic material behavior, which is well de-
scribed by linear static FEA procedures and were used within this project.

The forces develop slowly and gradually to their peak value and by this, induce negligible accel-

erations and velocities. So, inertial and damping properties are ignored. In this case, the structure’s

stiffness matrix is constant and therefore, the linear static simulations run very fast compared to

non-linear problems.

2.1.2 Practical insights and relevance

The first published structural analysis in the design of aircraft wings within the aerospace industry

in 1956 by Turner and Clough at Boeing set the beginning of a new era in industrial prototyping

and product development. Ten years after this publication, Clough’s terminology for their numeri-

cal simulation method was accepted among specialists and the finite element method (FEM) was

born. [117] [118] [119]

In 1969, Zimmer and his group at Daimler AG then set a milestone based on Turner’s and Clough’s

work using their self-written software ESEM (Elasto-static Element Method) for the first time to

design the entire bodywork and frame of a new car model (Mercedes-Benz 220D). In consequence of
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their success and the invention of the computer technology, fast growing and cost-effective industries

like the automotive sector soon integrated comparable simulation methods within their daily routines

to reduce design and service costs. [120]

Today, FEM is a well established tool not only in the everyday work of industrial product and

development engineers, but also in natural sciences, geophysics or medical technologies [121] in and

outside academia. [122]

The modern simulation procedures provide several significant benefits such as efficient and less

expensive design cycles, enhanced design and early evaluation of critical design parameters, anal-

ysis of arbitrary geometries, an increase in accuracy or the reduction of research and development

costs. [123] [124] [125]

Due to the broad range of applications, a diversity of different FEM programs were developed to

simulate phenomena like heat transfer in dynamics, velocities in flow analysis, buckling or bending in

stability analysis, sound propagation in acoustics or the field distribution in transistors in one, two or

three dimensions. In the course of this project, structural analysis were used to analyze linear static

deformation behavior of sensor elements in three dimensions. [125]

Currently, several dozens of open-source and licence-based FEM packages are available of which

NASTRAN R©, SolidWorks R©, ABAQUS R©, ANSYS R©, Pam-Crash R©, LS-DYNA R© and HyperWorks R©

are the most widespread once, especially in industry. [126] In the course of this work, the different

software suites were validated and compared regarding their prizing and solutions packages of which

HyperWorks R© was chosen due to its comprehensive range of applications and as it is a low-price

FEM full-package. This software offers the most powerful meshing tool HyperMesh R© on the current

pre-processor market (2019). Moreover, it includes different solvers i.e. OptiStruct R© for linear FEM

problems like in this project and Radioss R© as one of the fastest solvers for non-linear tasks that will

be solved in future projects for non-linear material behavior as for polymeric substrates.

The different analysis steps are summed up in figure 2 as exemplified for Altair HyperWorks R©.

The pre-processing starts with the importing or developing of a geometry of the prototype by use of

a computer aided design (CAD) software or in HyperMesh R© directly (figure 2.1, 1). Afterwards, the

dimensions are chosen accurately by the user as the solver code solves the problem dimensionless.

Then the analysis type such as static, dynamic, buckling, and the definition of the material parameters
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2 SE Design and Optimization

Figure 2.3: Schematic presentation of the different FEA process steps based on the software suite
HyperWorks R© and implemented for the exemplary sensor element structure investigated
within this thesis. 1 Design of the structure in a computer aided design software and
exported as a step (Standard for the Exchange of Product Data) file. 2 Import of the
design in a pre-processor to create a sufficient grid of nodes by meshing and definition
of the material properties, the analysis type as well as the dimension of the structure.
The zoom presents the mesh in more detail. 3 Definition of the boundary conditions:
the blue triangles (see zoom in) at the edges of the sensor element represent the con-
straints, while the white arrow marks the normal force of 5 nN affecting the central
node on the sensor contact plate. 4 Running of a linear static analysis by means of the
solver OptiStruct R©based on the material input data such as force, density, Poisson ratio,
Young’s modulus, etc. 5 Analysis of the simulation results by use of a post-processor
(here HyperView R©) in a three dimensional animation where the displacement is addi-
tionally outlined by a color height scale with red representing regions of high deformation
and blue showing regions of no deformation. To highlighten the out-of-plane displace-
ment, the original displacement is amplified by a factor of 500. 6 The FEM results are
then evaluated in macroscopic test settings and rerun in case of a variation between
theoretical and real data. Here, an axial atomic force spectroscopic setting is presented
testing the sensor element centre plate via a rectanguar cantilever in z-direction.

are chosen and the entire object is discretized into finite elements creating a grid, the so-called

mesh (figure 2.1, 2). An appropriate choice of the element type is of major importance for the

final quality of the mesh and the accuracy of the solver process. In general, the quality of a mesh

strongly depends on the task and the geometry to be simulated and includes several aspects like
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no or a minimum amount of distorted elements or sufficient element size and shape for the given

purpose. Within the FEM software, the interpolation error is correlated to the element-based mesh

quality metrics that analyzes the asymptotic behavior of bounds for minimum error. Hence, a

convergence of the finite element method is proved for each simulation. [127] In general, truss and

beam elements are used within 1D FEM problems, quadratic and triangular membranes, shells and

plates for two dimensions like thin film simulations, and solids like tetrahedral, brick or combined

shapes for simulations in three dimensions. In this project, the deformation of a sensor element thin

film was treated as a 2D problem using shell elements as the thickness of the element was much

smaller than its edge lengths.

On the contact points (1D), lines (2D) or areas (3D) of the elements, the software sets the nodes.

The type and the amount of DOFs per node depend on the analysis type and therefore can take a lot

of different forms. In a static analysis, for instance, the DOFs are displacements in three directions

while in fluid dynamics, it is pressure that effects in three directions and a time-component. Finally,

the boundary conditions are defined, setting the constraints of the geometry as well as the loads

such as forces that effect the geometry (figure 2.1, 3).

Having completed the pre-processing, the problem is then solved by the solver OptiStruct R© (figure

2.1, 4) and the results can be analyzed in post-processors like HyperView R© as contour plots, diagrams

or animations (figure 2.1, 5). After testing the results in real experiments (figure 2.1.6), this routine

might be repeated iteratively until the most sufficient prototype result is achieved (restart at a

modified version of figure 2.1, 1). Differences between the FEA and the experimental results can be

caused by various reasons like an unappropriate choice in software, in which the simulation algorithms

do not suite the numerical problem, an unsufficient abstraction of the problem itself or a wrong choice

in meshing parameters like boundary conditions, element size, type or shape, just to mention the

most relevant aspects. [128]

2.2 Topology Optimization

With the invention of the FEA, the design process was reduced to an iterative process of application

of design variables, simulation by given boundary conditions and analysis of the results based on the
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defined requirements. In the 1980s, this numerical procedure was mathematically enhanced by the

introduction of objective functions such as object weight or stiffness. By this, the so-called structural

optimization problem was defined as "the reverse problem of structural mechanics". Here, structural

variables are determined for a defined structural behavior instead of setting these parameters to

obtain a structural object response achieved by FEA. [129] [130]

Today, a variety of different optimization methods are known, of which three central optimization

types are representatively mentioned here: 1. Topography Optimization, which is the optimization of

the geometrical object surface to enhance the object reinforcement within the design space. 2. The

size optimization supports optimizing the properties of designable elements such as bars or plates for

two dimensional structures. And 3. the topology optimization, which is used to achieve an optimum

component geometry by optimizing the material distribution in a defined design space. [129] [130]

Within this project, the latter was used to determine the most appropriate sensor structure for

further analysis and optimization. For a deeper insight into this simulation process, the fundamental

mathematical background is therefore discussed in more detail based on the publications of Bendsøe

and Beckers. [129] [131] [132] [133]

2.2.1 Mathematical Fundamentals

Figure 2.4: Schematic presentation of the different process steps within the topology optimization
exemplified for a two-dimensional problem: a membrane that is constrained on all four
edges and with a force (blue arrow) affecting the membrane centre. 1 Definition of
the constraints (grey triangles) and loads (blue arrow) effecting the geometry, here: a
membrane. 2 Definition of the design space Ω (red area), 3 Optimization procedure
for maximum stiffness and minimum weight with presentation of the partial space Ωopt
with (grey stripes) and without material (white area).
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A design space Ω and its boundary conditions are defined for a membrane (grey square in figure

2.3.1) as shown in figure 2.3. By means of topology optimization, a subspace Ωopt of a certain

material distribution is achieved fulfilling the required criteria (see the red membrane in figure 2.3.

2.). To determine the filled (grey) and unfilled material (white) space (see figure 2.3. 3.), the design

space is then discretized by finite elements. Introducing the density function i(x), with x being the

spatial position of one point in the design space, the filled and unfilled areas are defined as: [129] [131]

i(x) =






0 , if x ε Ω/Ωopt

1 , if x ε Ωopt

(2.8)

with 0 for no material and 1 for space with material. The volume integral of the sub design space

Ωopt for any function g(x) can also be written as:

∫

Ωopt

g(x) dΩ =
∫

Ω

g(x) ∙ i(x) dΩ (2.9)

For a homogeneous, isotropic material, a linear elastic analysis type is supposed. In case of

single load effecting the design space, the standard approximation is the definition of the maximized

global stiffness of the structure. Based on the equivalence between a maximum global stiffness and

a minimum work of the external load, the so-called compliance function c(u) can be defined as

follows: [129] [131]

c(u) =
∫

Ωopt

fT ∙u dΩ +
∫

Γt

tT dΓt =
∫

Ω

fT ∙u ∙ i(x) dΩ +
∫

Γt

tT ∙u dΓt (2.10)

with f - loads, u - displacements that need to fullfill equilibrium, compatibility and constitutive

equations, t - boundary conditions, Γt - part of the boundary, where the boundary conditions are

imposed. The overall object volume for a homogeneous distribution of the boundary conditions
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imposed on the displacements is then defined by:

V =
∫

Ωopt

dΩ =
∫

Ω

i(x) dΩ (2.11)

To minimize the compliance c(u) in equation 2.3 and find the optimum volume, the problem is then

solved by discretization of the design space and an algorithm implemented iterative process following

the boundary conditions. Here, so-called Multiple Objective Optimization (MOO) algorithms such as

the well established Strength Pareto Evolutionary Algorithm (SPEA) are used, but differ between the

various FEM suites. [134] [135] The interested reader might consult further literature for more detailed

information that are not presented here for reasons of significance for this work.

In this project HyperWorks solidThinking Inspire R© 2017 was used for topology optimiziation. Here,

the object is meshed by a combination of HyperMesh R© and Simlab R© and analyzed by background

algorithms via the solver OptiStruct R©.

Based on the mathematical Ansatz of Bendsøe, the density function (see term 2.8) can have con-

tinuous values between 0 and 1, which includes not only a differentiation between material or no

material (see figure 2.4.3), but also average densities. These intermediate values cannot be real-

ized in actual fabrications and therefore need to be converted into discrete values. For this purpose,

so-called filters are used that include penalization factors to exclude values between 0 and 1. [136] [137]

2.2.2 Design Requirements

In the course of the prototyping, the development of the new sensor system is started by defining

the central requirements based on the field of its application as a biocompatible mechano-optical

pico-to nanonewton 3D force sensor system. These requirements are listed in the following table.

The second step is the design process, in which the suitable sensor element design is determined

regarding the proper choice of the device material, its dimensions, sensitivity and torsion stability

for precise optical readout. These aspects might interfere with other limitations for the entire sensor

system like finances or producability that were not predictable from the beginning. For a rapid

and comprehensive overview on the diverse project constraints, the following list includes all of the

requirements in the design, fabrication and handling of the novel sensor system.
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Requirements Ansatz

biocompatibility and high deformability chosen sensor materials with low Young’s

moduli:

• nickel-titanium (NiTi)

• amorphous silicon (a-Si)

• polydimethylsiloxane (PDMS)

surface-integrated device • flat 3D-deformable sensor design

• free-standing

sensitivity • comparable force sensitivity in x-, y- and z-

direction: measurement of normal and shear

forces at once

• force sensitive in a range of 500 pN to

50 nN

• thin film sensor fabrication

high spatial force-resolution (for cell testing) • compact sensor design,

• sensor miniaturization according to the

fabrication limits

• decoupling of the sensors by rigid frames

force distribution measurements arrangement of sensors in arrays

optical readout for 3D-measurements in

combination with AFM

• interference-based deformation measure-

ments

• high sensor surface reflectivity

• torsion-stable sensor design

• flexible installation setting: direct combi-

nation with AFM setup needs to be possible

easy to handle and cost-efficient setup for

high-throughput measurements

cost and handling analysis of interference

settings

control of the cell adhesion sites to the sensor

element surface

local biofunctionalization of the sensor ele-

ment contact plate based on a combination

of a block-copolymer gold-micelle solution

and a non-contact printing method 27



2 SE Design and Optimization

2.3 Nickel-titanium and a-Si based Sensor Elements

Simulations of different sensor element designs were carried out based on the material parameters

of nickel-titanium and amorphous silicon. The fundamentals of these two materials are therefore

briefly introduced within the following sections. More detailed information can be found in the cited

literature, when needed.

2.3.1 Fundamentals: Nickel-Titanium (NiTi)

With their comprehensive report and patent in 1965, Bühler et al. gave the initial point in the

application of Nickel-titanium (NiTi), a representative of alloys, later known as smart materials, pos-

sessing two special functional properties: the shape memory effect and superelasticity. [138] [139] The

shape memory effect describes the deformation of the alloy at low temperatures and the reversal

of this deformation to its original shape at high temperatures. The effect was first described by

Greninger and Mooradian in 1938 for Cu-based alloys and is caused by the unique crystallographic

transformation within the material. [140] [139] Regarding NiTi, the shape memory is observable for Ni

percentages between 49.3 to 51 at%. [141] [142] Here, the stretched monoclinic crystal B19’ structure

of the low temperature NiTi phase (martensite) is transformed via a temperature increase into a body

centered cubic symmetric B2, high temperature phase (austenite) and vice versa. [139] Superelasticity

or pseudoelasticity describes the recovery of materials after large stress above 8% and corresponding

stress-strain hysteresis in load-unload procedures. [143] This reversible elastic respons to mechanical

stress upon the austenite finish temperature and within a very small temperature range is caused by a

reversible phase transformation from austenite to martensite via stress induced boundary movements

within NiTi. Elongation of the tensile stress is achieved by the material deformation. When remov-

ing the stress, the corresponding strain returns to its initial value in the austenite phase. [144] [145]

Hence, the material can be loaded and unloaded periodically. Moreover, it is known for its corro-

sion resistance and fatigue properties [146] making it an interesting alloy for longterm applications

like actuators or cryo connectors and hydraulic couplings in aerospace applications, [147] [148] [149] [150],

but also as "[ ...] fasteners, electrical connectors, [...] sensors, release mechanisms, triggering de-

vices, fuel injection or ventilation control [...]," according to Bhaumik et al.. [139] In combination
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with its biocompatibility [151] and bioactivity [152] [153] as well as its good ductility of more than 20%

in the austenite phase and 50% in the martensite phase, [148] [139] NiTi has gained significant impor-

tance in the biomedical field. [147] [154] It is used for protheses like bone binding implants [152], [155] in

orthopaedics, [156] for medical instruments, [157] or endovascular stents, [158] [159] [160]

In this project, NiTi has been chosen due to its 1. superelastic behavior, 2. its low Young’s modu-

lus of 75 GPa for the austenite phase [161] [139], 3. its biocompatibility and 4. corrosion resistance

for future cell experiments as well as 5. the accessibility of established micromachining processes

for the fabrication of fully biocompatible microsensor elements with a high resistance against outer

mechanical impact and good material deformability.

2.3.2 Fundamentals: amorphous Silicon (a-Si)

Silicon is the second most abundant element on earth, which makes about 26 % of the earth’s crust in

weight, a tetravalent metalloid and semiconductor in its crystalline form. [162] In times of automation

and digitalization, this element and its modifications have gained central significance in every day life

in terms of transistors, [163] [164] microchips, [165] [166] solar cells [167] or materials for construction, [168]

automotive, [169] textile, [170] medical, [171] [172] coatings and color, [173] [174] paper, [175] rubber, [176]

cosmetics [177] or polymer industry. [178] [179]

In 1808, Louis Jacques Thénard and Joseph Louis Gay-Lussac (Paris) as well as Sir Humphry

Davy (London) first described the formation of brown silicon when heating potassium in dry "gaz

fluorique" (SiF4). [180] [181] By this, the non-crystalline form of silicon, amorphous silicon (a-Si), has

been synthesized for the first time. In this formation, the long-range interactions between silicon

atoms forming tetrahedral structures within the crystalline lattice of silicon are replaced by short

range interactions creating a random network of silicon atoms. Here, the fourfold coordination of

each atom is corrupted and hence, there are atoms with free valences, so-called dangling bonds,

which cause an anomalous electric behavior of the material. [182] [178]

Little is known about the mechanical properties of a-Si, but it is well-known for its biocompatiblity

and its manifacturability. Today, the fabrication of a-Si thin films is the most well developed of

the thin film technologies being on the market since the 1960s. These thin films are much more

uniform over large areas than mono- or polycrystalline silicon, can easily be fabricated in a variety
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of shapes and sizes and possess a higher resistance to heat and outer impacts than crystalline

silicon layers. By passivating a-Si with hydrogen to a-Si:H, the reduction of the electronic defect

density and hence, an improvement of its seminconductor properties due to the saturation of the

dangling bonds by hydrogen can be achieved. [183] [53] Due to 1. its electrical properties, 2. its

low-cost and simple thin film producability, 3. its environmentally friendly properties lacking heavy

metal doping like cadmium, as well as 4. the possibility of depositing large areas of ultrathin,

homogenous a-Si:H layers on inexpensive materials such as glass, stainless steel or plastic, [184] it is

major application is within the photovoltaic industry as solar cells [185] [53] in pocket calculators or

solar panels, [186] in microelectro-mechnical systems (MEMS), [187] as well as in thin-film-transistor

liquid-crystal display (TFT-LCD) technology. [188] [189] Due to its low temperature deposition, it can

be deposited on flexible substrates and in roll-to-roll manufacturing techniques, which makes it

an interesting candidate for wearable electronics and flexible solar panels. [190] Furthermore, a-Si is

sensitive to visible light within a wavelength range of 400 nm to 800 nm, for which reason it is used

within light sensors such as photodiodes. [191] [192] In the course of this project, amorphous silicon

has been chosen due to its biocompatibility, [193] its low Young’s modulus of 80 GPa [194] ranging in

the region of austenitic NiTi and its fabrication accessibility for homogenous thin films. [184]

2.3.3 Materials and Methods

The topology optimization was run in Altair SolidThinking Inspire R©. Due to the software based

lower limits regarding the object dimensions in μm range, a membrane of minimum edge length

1 x 1 mm and 4 μm thickness was first drawn based on the thickness to edge length ratio of the

real sensor and constrained on all four edges. A force of 1,25 μN was applied to the centre of the

membrane in x-,y-, and z-direction. The topology optimization of the membrane was then run to

create a design of minimum stiffness and 15% of the total membrane mass, by which the suitable

shape of the element was still distinguishable and physically reasonable. Based on the results of the

topology optimization, different sensor element designs were created with one, two, three and four

sensor arms and compared via finite element analysis. For better comparison, the sensor arm length

of each design was set to 20 μm.

FEM analysis was run in Altair HyperWorks R©. Due to the small sensor thickness compared to
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the sensor edge length and to reduce the computational time, the 3D CAD model of each sensor

was first reduced to a mid-surface 2D model. Within the pre-process, a finite element mesh was

generated automatically by use of the HyperWorks R© included preprocessor HyperMesh R© using a

mixed mesh type of squares and triangles. The mesh density was iteratively optimized to a minimum

of elements in order to ensure an accurate result and minimum computational time.

Each sensor model was constrained at its inner egdes of the frame. A force of 5 nN was applied

to the centre node of the sensor plate. Linear-static analysis based on an isotropic material behavior

was then run in x-, y- and z-direction using the solver OptiStruct R©. The material parameters and

values for Nickel-Titanium (Ni:51%, Ti:49%) and amorphous Silicon (a-Si) are listed in table 2.1.

Material Nickel-Titanium (austenite) [161] amorphous Silicon

Youngs Modulus / [MPa] 75 000 80 000 [194]

Poisson’s Ratio 0.3 0.22 [194]

Mass Density / [g/cm] 6.34 2.33 [195]

Thermal Expansion Coefficient / [K−1] 1.1 ∙ 10−5 0.42 ∙ 10−5 [196]

Device Thickness / [nm] 50, 100, 200, 300, 400 100, 200, 300, 400
Material Behavior isotropic isotropic

Table 2.1: FEM relevant material parameters of austenite nickel-titanium (NiTi) and amorphous
silicon (a-Si).

2.3.4 Results and Discussion

The results of the topology optimization for deformations of a membrane in x- (1), y- (2) and

z-direction are presented in figure 2.5.

The membrane was constrained on its edges as indicated by the red dots in figure 2.5.2. With

forces effecting the membrane centre in-plane (1, 2), material (blueish colored area) is needed along

the effective direction. Consequently, sensor element shapes similar to bending beams are most

suitable. Here, the centre of the element seems to be irrelevant with regard to the force transfer

and hence, is reduced to a string.

In figure 2.5.3., the most promising topology for an out-of-plane force application is shown. A

cross like shape with material enhancements in the transfer region between the frame and the sensor

element as well as in the sensor centre support the force transfer in z-direction. The wave-like edges
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Figure 2.5: The design starting point was a topology analysis of a membrane as shown in figure
2.2 affected by a force impacting the membrane centre in 1 x-, 2 y- and 3 z-direction.
The gray colored areas represent the constrained frame, while the blue parts show the
maintained device material for a structure with minimum mass.

of these designs are due to the algorithm implemented penalty factors creating the mathematically

most suitable design. In consequence, it is up to the engineer to translate this shape into a design

that can be fabricated easily. Each element is included in a grey frame, which was set at the beginning

of the optimization process and corresponds to the rigid frame as defined in the requirements list to

decouple the different sensor element in one array.

Comparing the topology of 1, 2, and 3, the combination of the sensor element shape for in-

plane deformations appear to be implemented in the third topology. In consequence, sensor designs

consisting of four sensor arms and a centered contact plate were taken as a basis for the most

suitable sensor element prototypes.

Regarding the development of a sensor element of high force sensitivities in all three-dimensions,

the stiffness of the sensor design has to be minimized additionally. Here, the Young’s modulus

of the material, the material thickness, the sensor arm design and the width of the sensor arm

were taken into consideration. The material could not be chosen randomly and just based on its

elasticity value, but its choice was as well related to its biocompatibility, the access to established

fabrication technologies and its producibility in micrometer dimensions. For that reason, the stiffness

of the sensor material could not be tuned and was set to 75 000MPa for austenite NiTi [161] and

80 000MPa [194] for a-Si.

On the other hand, the material thickness could be manipulated, but was determined by the need
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of an easy handling and stability against outer influences like mechanical impacts as well as the limits

of the fabrication procedure (see chapter 3). In general, the spring constant of the sensor element

is inversely proportional to the cube of the material thickness. Therefore, the thinner the sensor

element material is the higher the mechanical deformability. In figure 2.6, the dependence of the

out-of-plane deformation behavior of a NiTi cantilever on the material thickness h is exemplified for

six different h values. To evaluate the FEA results (see figure 2.6 B, dark blue line with dots) for

a thickness of 50 nm, 100 nm, 200 nm, 300 nm, 400 nm and 500 nm, an analytical calculation was

additionally run based on the model of the one-sided clamped cantilever for a constant force impact

F of 5 nN as shown in figure 2.6 A (turquoise line with squares).

The displacement s was then calculated by:

s =
l3

3EI
F (2.12)

with: I=Ah3

12 . As can be observed in figure 2.5 B, the analytical results overestimate the displacement

for each thickness compared to the results of the FEA by constantly 23 %. This is due to the

idealization within the beam theory, on the one hand and the discretization of the model by shells

within the FEM, on the other. [128]

Regarding the consistency of the result differences and since, the displacements are in the same

range, the FEA values are in good agreement with the analytical results and hence, the simulated data

are reliable. Regarding the FEM data, material thicknesses bigger than 200 nm allowed maximum

displacements in the lower nanometer region. So, 300 nm of NiTi cause an out-of-plane displacement

of about 30 nm, 400 nm of 13 nm and 500 nm of 6.7 nm. While smaller thicknesses than 200 nm

would allow for displacements in the upper nanometer and lower micrometer range, but would be

difficult to fabricate and handle without destruction. So for a 100 nm layer, the deformation range is

1μm and 6.6μm for 50 nm of NiTi. Due to the concept of an optical readout based on interference

measurements, resulting displacements in the upper nanometer region were preferred as the resolution

of the optical system would be limited by the wavelength that is used. Consequently, out-of-plane

movements down to 150 nm to 200 nm would be possible, if UV emitting light sources were chosen.

Displacements in the μm region could cause measurements out of focus,and hence, appropriate
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A B

Figure 2.6: A Meshed reference cantilever to evaluate the quality of the FEA result in comparison to
an analytical solution based on the model of an one-sided clamped bending beam. The
cantilever length l was set to 20 μm, the beam width b was 2 μm, the thickness h and
the load F was 5 nN. s indicates the displacement in z-direction. B FEA and analytical
results regarding the dependence of the sensor element deformability in z-direction on
the material thickness h for a cantilever design shown in A. Here, a thickness of 50 nm
leads to a maximum deformation of 6.6 μm, 100 nm to 820 nm and 200 nm to about
100 nm. In the inset box, a material thickness between 200 nm and 500 nm is shown
which result in displacements ≤ 40 nm.

optical auto-refocus procedures would be necessary. More detailed information is provided in

chapter 5. Based on these restrictions, an sensor element material thickness of 200 nm had been

selected. Therefore, the material thickness of all designs was set to 200 nm within this linear static

FEA of the different sensor element designs.

Another possibility to increase the deformability of the sensor is the reduction of the sensor arm

width as can be supposed by equation 2.12. Regarding FEA, there are no limitations, so very narrow

arms could be taken into consideration. However, the used fabrication processes (see chapter 3) did

not allow for smaller structures than 1 μm with a-Si and 2 μm for NiTi.

Finally, the design of the sensor arms has a strong impact on the stiffness of the sensor element:

The longer the arms, the higher the deformability. As the design had to be compact to ensure

maximum force resolution in all three dimensions and at the same time, and surface-integrated, the

arms of the final designs were meander springs. Here, the amount of coils within the meander control
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the lengthening of the sensor in the distinct direction.

In the following two tables, the ten most promising sensor element designs and their corresponding

linear static FEA results regarding their in-plane (x,y-direction) and out-of-plane (z-direction) dis-

placements in case of an applied external force of 5 nN to the sensor element centre plate (according

to figure 2.3) are presented for a-Si and NiTi. Additionally, the tilt of the central sensor element

plate has been simulated for each design to analyze the impact of an uncentered normal force of

5 nN applied to the edge of the sensor centre plate. For interference measurements, a tilt of the

sensor plate can cause interfering signals by additional interferences via scattered light, which would

finally reduce the precision of the measured forces. To reduce this effect, the design should be stable

against tilts or at least show only small displacements compared to the displacements in the main

directions. The sensor designs were later on fabricated in the course of four different evolutional

design and fabrication process optimized steps, which are listed for the sake of the data complete-

ness in the rightmost column of these tables. The designs are subdivided into four different groups:

sensor elements with one, two, three and four arms. The directions of the in-plane displacements are

indicated by the axis inscribed at the centre plate of each sensor design in the added FEA images.

Here, the images of the different sensor element designs include a color code, in which reddish areas

correspond to maximum displacements out-of-plane, while the blueish areas mark sensor element

parts, which are not displaced. The sensor element type designations are based on the initial let-

ters of significant design characteristics named in German, which were worked out and developed

throughout the years of this project and shall not be object of further detailed descriptions in the

interests of the readability. The initial letters of the most important designs are explicitly presented

towards the end of this chapter.

The first design group consists of sensor types named CWT and SES. CWT is a 2x2 arrangement

of classical rectangular shaped cantilevers of 2 μm width. The most straightforward shape of sensors

elements based on a rectangular design is used as a reference for comparison between an established

(CWT) and the newly developed designs. As supposed, there is a neglectable tilt and displacement

in the picometer range along the cantilever, and about 1.4 nm along the y-axis. A significant

displacement is achieved when deforming out-of-plane. Here, about 170 nm for NiTi sensor elements

and 150 nm for a-Si based devices are determined. These sensor features are not congruent with the
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sensor requirements regarding the needed minimum deformation behavior and comparable sensitivity

in all three dimensions, for which reason this design type is not suitable for the purposes of this work.

Regarding the overall results for all simulations, the determined displacements for a-Si sensor elements

are constantly lower within a range of 10% to the ones of NiTi due to the above listed material

parameters (see table 2.1) with the difference in Young’s Moduli, in particular. In consequence, the

simulation results for NiTi are analyzed and discussed in more detail, but are transferable to the

results for a-Si.

SES was the first sensor design approach based on previous work of Selhuber-Unkel et al. [197] [198]

It is an one-sided clamped spiral shaped sensor element, which possesses comparable deformation

behavior like CWT. In addition to these inappropriate features, the sensor element shows a strong

tilt of about 41 nm, which is 22% of its overall out-of-plane displacement and was therefore not

chosen for further investigations.

The second group of sensor types is consisting of ZFE, DSR and DSBE. The two sensor arms

are arranged along the y-axis and vary in their sensor arm design and centre plate. ZFE consists

of two meander like flat spirals with three coils each which are clamped to the frame and a small

centre plate of 9 μm diameter. Its in-plane displacement behavior is comparable to SES and in the

subnanometer range, while its out-of-plane deformability is less then one third of CWT and SES.

Furthermore, this design shows a tilt of 101 nm compared to displacements beyond 1 nm in-plane

and of about 47 nm out-of-plane. Hence, it is very vulnerable for tilts and has the highest sensitivity

of all designs regarding uncentered force transmissions.

DSR and DSBE are both designed based on two merging spirals connected by the centre plate. But

while DSBE is the first evolution step for that sensor type with a big centre plate of 12 μm diameter,

a sensor arm width of 2 μm in a rectangular frame, DSR is the optimized version of DSBE with a

decreased arm width of 3 μm, a small sensor plate of 7 μm and a circular frame shape. The circular

frame has been chosen due to the fabrication process requirements according to the producer of the

sensor element samples (Fraunhofer ISIT). Hence, all of the designs having an edged frame were

fabricated by wet chemistry processes within the first fabrication evolution steps (mask 1.0 to mask

3.0), while the circular frames correspond to sensor elements fabricated by dry-etching (mask.4.0),

where the etching processes is especially convenient for round shapes. The slight changes in sensor
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element design cause an improvement with regard to the sensor displacement of 15% in x-direction,

20% in y-direction and 10% from 118 to 130 nm in z-direction. The tilt could be reduced by 48%

from about 73 to 35 nm, but still is 27% of the maximum out-of-plane displacement. So, due

to the extensive tilt and a sensitivity variation by a factor of 350 between the in-plane and out-

of-plane displacements, the entire sensor type group is not satisfying the requested requirements.

In sensor group three, sensor elements 3-FS, 3-FL and 3-AR were tested via FEA. The first two

designs are just different in the diameter of their centre plates and consist of three meander springs

with one coil, uniformly connected to the centre plate. Here, the reduction of the plate diameter

from 16μm to 10μm induces a tilt reduction by a factor of 10−4. In general, this design can be

fabricated with very small edge lengths (about 35 μm). However, the in-plane displacement is in the

lower picometer region, which corresponds to a high lateral spring constant of this design and the

sensitivity in z-direction is about 1000 times higher than in x- and y-direction. Therefore, these two

designs were not favorized for this project. To increase the elasticity of the sensor, two coils were

added to each spring to create 3-AR. This design is already established in micromedical devices [199]

and provides insights into the impact of more coils to a three-armed design. The sensor arms were

regularly arranged around the centre plate. Additionally, a circular frame has been introduced here,

which is beneficial in the fabrication processes presented in chapter 3. This design modification was

accompanied with a deformation increase in-plane by a factor of 64 from 22 pm to 1.5 nm, while

in z-direction an increase of 70 nm to a maximum deformation of 90 nm were achieved. However,

this improvement included an increase of the centre plate tilt to 24 nm, which again is 27% of the

out-of-plane deformation. Due to this instability and although the sensitivity in all three directions

is adequate for the envisaged applications, this design was also discarded for this project.

Finally, sensor group four included design type 4-AP ("4-Arm Primitiv"), 4-FE ("4-Feder Eckig")and

4-FR ("4-Feder Rund"). 4-AP is the prototype of this group, directly extracted from the results of

the topology optimization. It consists of four cantilever-like arms arranged symmetrically in a 90

degree angle one to another and fixed to the centre plate. This shape should be rather stiff, as there

are no springs or meanders implemented. Indeed, the results of the FEA support this assumption and

therefore, this design is the stiffest design solution within this analysis. By in-plane displacements of

2 pm, out-of-plane displacements of 8 nm and a tilt of 3 nm, neither the amount of displacement,
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nor the sensitivity distribution or tilt to out-of-plane displacement ratio are in any way fullfilling the

defined requirements. In consequence, once again additional coils were induced in the sensor arm

design. As an overall compact sensor design should ensure a maximum force resolution, the amount

of coils per arm were increased to two in the first step. This caused a doubling of the tilt and the

displacement in z-direction as well as an increase of the in-plane displacement by a factor of 100.

As the tilt to z-displacement ratio is 38% and the in-plane displacement is in subnanometer region,

more coils had to be added.

By this, the final sensor type 4-FR was designed consisting of four meander springs with three

coils in a symmetric arrangement around the centre plate within a circular frame. The in-plane

displacements are in the lower nanometer range, the out-of-plane deformation is 43 nm, i.e. fourty

times higher than in-plane and the design is stable with regard to tilts by uncentered force applica-

tions, which is 6% of the out-of-plane displacement. Hence, this design shows the most comparable

and highest sensitivity in-and out-of-plane as well as high stability regarding force impacts beyond

the centre of the sensor element plate in comparison to the nine other presented design concepts.

Moreover, this design can be manufactured due to its structure dimensions and the diameter of the

inner frame edge can be kept as low as 45 μm to support the need of a minimum sized, compact

sensor design.

Considering the defined requirements (see subchapter 2.2.2), the sensor element design 4-FR and

4-FE were in consequence succesfully designed, defined and determined for this project purpose and

were therefore set as basis for the following fabrication, characterization, calibration and readout

procedures, which are presented in the next chapters 3 to 6.
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The fabrication of the designs presented in chapter 2 is the limiting prototyping step regarding the

miniaturization of the sensor elements. Due to the low diameter of a spread cell of up to 200 μm,

the sensor diameter should be in the lower micrometer region to create a maximum sensor density.

Well established processing techniques in this size range are bulk and surface micromachining as

part of microsystem technologies. As the producible structure size varies for each material in a

given fabrication procedure, the most suitable processing technologies have to be chosen to generate

minimum dimensions for stable structures.

To analyze mechanotransduction and traction force distributions of cells properly, the device mate-

rial has to be well chosen. Here, biocompatibility is of major importance for a universal measurement

result. Representatives of three different material types were used to fabricate the novel sensor de-

vice based on their biocompatible and mechanical properties as well as their processability. These

were: 1. nickel-titanium (NiTi) as a representative of superelastic metallic alloys and smart materials

(see section 2.3.1), 2. amorphous silicon (a-Si), a semiconductor material, which is well estab-

lished regarding its processability and use for micromechanical systems (see section 2.3.2) and 3.

polydimethylsiloxane (PDMS) belonging to the group of polymers and frequently used in biological

experiments (see section 3.5.3).

In this chapter, a short theoretical insight into micromachining and the utilized characterization

technologies, which were laser scanning microscopy and biocompatibility testing are presented. The

different fabrication techniques and steps apart from material description for NiTi based sensors, a-Si

sensor elements and the process development for the PDMS based sensor membranes are separately

presented in subsections 3.5.1 to 3.5.3.
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3.1 Bulk and Surface Micromachining

In times of a fast-growing semiconductor industry facing mega trends like autonomous driving and

mobile infotainment, the miniaturization of devices such as sensors, actuators or microchips with

cheap production steps and high output is of central industrial interest. [200] Here, microsystem

technology (MST) has gained profound importance since its development in the 1950s. [201] It is syn-

onymously known as microfabrication, micromachining or micro electromechanical systems (MEMS)

technology and sums up all fabrication methods of devices with one or more dimensions in the micron

range. [202] Throughout the years, further disciplines like biology, medicine or chemistry developed

an increasing interest in MST and in consequence, today disposes of a variety of different methods

and settings. [203]

Two fundamental processes in MST are bulk and surface micromachining are shortly presented

and compared in the following. [204] [205]

The principle of bulk micromachining is subtractive and based on the etching into or the removal

of parts of a substrate to define structures. [199] The wafer thickness therefore defines the device

height and for that reason, this method is especially used for fabricating thick films. The lateral

structural dimensions that can be fabricated by this technique range from 3 to 5 mm, the vertical

from 100 to 500 μm. The corresponding substrates can be processed from top and bottom side. [206]

Regarding the etching procedures, two general types of etching can be distinguished: wet (liq-

uid phase) and dry (plasma) etching. [207] Wet etching in bulks is used to etch sacrificial layers

between two structural layers to release a structure. For this purpose, etchants like ethylene di-

amine pyrocathechol (EDP), tetramethyl ammonum hydroxide (TMAH), sodium hydroxide (NaOH)

or hydrazine are used. The corresponding etchant is chosen regarding safety aspects, process com-

patibility, material to be etched and the corresponding etch rate, etch ratio between the different

crystal planes, costs and target surface roughness.

On the other hand, dry etching is mainly chosen to structure layers with higher resolution than

for wet etching. Here, the substrates are etched via:

1. vapour etchants such as sulphur hexafluoride (SF6), oxygene, tetrafluormethane or hydrogen

bromide in a plasma environment via chemical reactions with the substrate,

42



2. a bombardment with high energy particles based on physical removal by momentum transfer

or 3. a combination of 1 and 2. [208] [209]

In general, this etching method is more 1. expensive than wet etching due to the equipment

needed, 2. takes more space within the laboratory and 3. although just small amounts of etchants

are required for each process, the vapours or etching products can be very harmful for which reason

filters and neutralization procedures are necessary.

Both etching types can create so-called isotropic and anisotropic etching profiles as presented in

figure 3.1. Isotropic etching profiles (see figure 3.1.A) show a concave shape of the sacrificial layer

and an underetching of the structural layer, which is therefore not supported anymore. This is due

to a non-directed etching process, in which the type of etchant and the material to be processed

Figure 3.1: Schematic presentation of cross sectional etching profiles: A In isotropic etching, the
sacrificial layer is etched in all directions at once creating a concave profile shape. By
this, the structural layer is underetched and not supported anymore. B The anisotropic
etching profile shows side-walls at an angle to the substrate surface, which can also be
vertical. One preferred etching direction can be observed, which can depend on the
crystal orientation of the sacrificial layer.

influence the etching rate. In anisotropic etching processes (see figure 3.1 B), the sacrificial layer

is etched along a certain direction and in crystalline materials, this direction depends on the crystal

(plane) orientation. In that way, vertical side-walls or walls at an angle are created. As the etching

rate of the different planes vary, it is possible to control the etching shape to v-shaped trenches or

pyramidal holes. [207]

Surface micromachining is based on a layer by layer technique on one surface of a substrate. Here,

the surface properties in the plane are defined by dry etching, whilst wet etching of the sacrificial layer

is for undercutting. The deposition processes limits the maximum height of the surface machined
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devices and is therefore especially used for thin film fabrication. In general, surface micromachining

offers high resolution with smaller feature sizes than by bulk micromachining. In dependence of the

chosen processing technologies and materials, the minimum achievable feature sizes are smaller than

100 nm. [210] [211] Within this project, a lateral structure size of 2 μm for wet etching processes and

of 1 μm for dry etching were achieved (see subsections 3.5.2 NiTi based sensor elements and 3.5.2

a-Si sensor elements).

One disadvantage of surface micromachining is the sticking of suspended structures or stiction due

to capillary forces in wet processes for releasing structural elements from a substrate. [199] [205] [212]

Moreover, the different batches in production lines can have different mechanical and electrical prop-

erties. Hence, the reproducibility of the samples is not given and needs to be controlled constantly.

In the course of this project, reactive ion etching as one representative for dry etching processes

will be introduced in more detail in the next paragraph.

3.2 Reactive Ion Etching

Reactive Ion etching (RIE) is a representative of dry etching technologies based on glow discharge

apart from plasma etching (PE), high plasma density (HPD) such as sputter etching and combines

physical and chemical etching processes. [199] [213]Here, a radio frequency (RF signal) is applied be-

tween two electrodes and vertical to the sample surface stimulating the oscillation of free electrons.

These excited electrons collide with the chosen gaseous etchant producing a plasma. The electrons

collide with further etchant molecules and highly reactive ions, neutral reactive radicals as well as

inert ions are generated that bombard the surface of the sample to be etched. Basis for this is the

acceleration of the ions by an acceleration voltage towards the sample surface. By this and the ion

kinetic energy, the chemical bonds of the surface atoms are loosened or entirely damaged, initiating

an improved reaction of the reactive ion gas and the substrate surface. In consequence, cavities and

trenches are etched into the sample surface. Throughout the procedure, ions collide with the bottom

of these trenches and far less with the side walls. In consequence, the RIE process is anisotropic,

but can also be run for isotropic etching. This anisotropy can technically be optimized by back-side

cooling of the sample down to -120◦C inhibiting side reactions. The reaction products are in general
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directly removed by evacuation in high vacuum.

The etching characteristics of RIE processes - including etch rates, etch profiles, homogeneity or

selectivity - can be controlled easily compared to wet etching methods by RF, the applied voltage,

the gaseous etchants and its density as well as the corresponding chamber pressure. By this, even

structure sizes below 100 nm can still be well fabricated. [213] For that reason, RIE today is a well-

established etching technology in micro- and nanosystem technology for anisotropic processing of

silicon, organic and inorganic dielectrics, metallic buffer layers, or polymers for electronic and opto-

electronic applications. [213] [214]

In the mid 1990s, the so-called Bosch process was first used for the development of the deep

reactive ion etching (DRIE) process to overcome the limitations of RIE in high-aspect ratio micro-

machining. [199]

3.3 Confocal 3D Scanning Microscopy

In 1957, Marvin Minsky, a cognitive scientist and one of the epinomes of the artifical intelligence,

patented his optical measurement principle following his goal to record 3D images of nerve cells in

unstained preparations of living brains as a "wiring diagram". [215] This patent marks the starting

point of confocal scanning microscopy, a milestone in optical microscopy. [216] [217] [218] [219] It took

another thirty years and the invention of the computer and the laser till the first commercial confocal

laser scanning microscope (CLSM) was launched in 1987 by Bio-Rad. [220]

Conventional widefield microscopy suffers from scattered light outside the focus plane that cause a

significant blur. In confocal microscopy, spatial filtering is used to block light outside the focus plane

and by this, high quality images with high signal-to-noise ratios and contrast can be recorded. [219]

The resolution of confocal microscopy is based on its capacity to distinguish between two points in

close proximity in axial and lateral direction during the scanning process. For a simple mathematical

description of the axial and lateral resolution, the Rayleigh criterion finally leads to: [221] [222] [223]

Lateral resolution =
0.51 ∙λ
NA

(3.1)
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Axial resolution =
0.88 ∙λ

n −
√

n2 − NA2
(3.2)

with: λ - wavelength of the illuminating source, NA - numerical aperture of the objective lens

and n - refractive index of the immersion liquid. These equations just slightly differ from those

of conventional microscopy (see [222]). The significant gain in resolution in confocal measurements

is based on the direct proportionality of the resolution to the wavelength of the light source and

not to the wavelength of the reflected or emitted light like in conventional microscopy. Hence, the

shorter the chosen illuminating wavelength, the higher the resolution. Using light in the UV range,

resolutions in the lower nanometer range can be achieved. [215]

The principle of a confocal microscope is presented in figure 3.2. A point light created via a pinhole

hits a dichromatic mirror and is then deflected on the objective lens. For better understanding, the

light cone here is represented by three bundles of rays of the same beam cone in brownish, violet and

greenish color. They pass the lens and are focused on the sample surface. Here, they hit different

focal planes (1, 2, 3) in dependence of their focal length. The greenish ray is reflected from the 2nd

plane of the surface, while the violet and brownish rays are reflected from a higher that is to say

lower plane. The reflected light then passes the lens and the dichroic mirror. Just reflected rays from

one focal plane, here the greenish bundle of rays, can pass the second pinhole and are recorded on

a light detector. The detector needs to be both sensitive to low light intensities and also to possess

a high spatial resolution. For that purpose, complementary-metal-oxide-semiconductor (CMOS) or

charge-coupled device (CCD) chips are today used as fast area detectors in confocal microscopy. [224]

In case of fluorescent samples, the incoming light excites the sample surface and the fluorescence

is then selected by a combination of a pinhole and a filter before being detected. One specific

feature of confocal microscopy is the possibility of a stepwise scanning of the different focal planes

by relatively moving either the sample towards the objective or the lens towards the sample. By a

software based z-stacking of the images, a three dimensional surface mapping is carried out and the

topography of the sample can be analyzed regarding roughness or line profiles. [222]

There are various methods for the object-to-image transformation. One technique used within
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Figure 3.2: Schematic presentation of the beam path within a confocal microscope: Light emitted
by a xenon lamp (white light confocal microscopy) or a laser (CLSM) passes through a
pinhole and is collimated by a lens. For better understanding, three arbitrary bundles of
rays (in brownish, violet and greenish color) of the same beam cone are presented. The
rays are deflected via a dichromatic mirror on the objective through which the light is
focused on the sample surface. The bundles of rays are slightly different focused and
hit different focal planes of the surface. If fluorescence can be stimulated in the sample
by means of the chosen light source, light is emitted that passes the objective lens and
the dichroic mirror. In case of non-fluorescent samples, the light is just reflected by the
surface. Depending on the focal plane, the rays are afterwards blocked by a pinhole
after passing a tubus lens. In case of fluorescence measurements, an additional filter is
installed. Here, only rays from one focal plane (here, plane 2) pass the second pinhole
and are then detected by a light detector such as a CMOS chip.

CLSM is a point-wise scanning of the surface and a point-to-point recording, which is a time

intense process. The spinning disk confocal microscopy is based on a disk implemented between the

objective and dichromatic mirror, consisting of spirals of pinholes like the common Nipkow disk. [225]

Here, the disk rotates at high speed and the object is scanned within one round in real time. By the

disk spinning, a static image of the surface can be realized. In line scanning confocal microscopy,

the sample surface is excited and detected in all points in an one-dimensional line, which is especially
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used in medical applications and in vivo experiments. [226] [227]

Another differentiation of types of confocal microscopy is based on the chosen light source. White

light that is e.g. emitted by a xenon lamp, is used for confocal white light microscopy (CWLM),

which is used for highly reflective surfaces like metals. Due to the broad spectrum of wavelengths,

the overall resolution of the CWLM is limited to the micrometer range. In general, this method is

used in industrial quality control like in the marine, automotive or aviation industry as well as in

industrial and scientific materials testing. [228] [229]

In confocal fluorecscence microscopy (CFM) and CLSM, coherent light i.e. a laser is used as

an illuminating source. [230] For CFM, the specimen itself is fluorescent or marked by fluorescent

particles before being scanned. This is very useful in cell experiments, wherefore this technique

is the most used in dermatology to analyze ex vivo and in vitro samples, [231] in neuroscience and

physiology to image neuronal cells, [232] such as in biology and biomedical sciences to image fixed or

living tissues and cell cultures. [233] [215] For non-fluorescent surfaces, CLSM is used to characterize

materials like polymers, ceramics, wood, bones, teeth and any other solid or liquid materials [234] and

was combined with methods like Raman to e.g. analyze the morphology of polymeric multiphase

solid-state samples [235] or the distribution of glassfibers in polymeric composites. [236]

Due to its high resolution, a pseudo-infinite depth-of-field imaging, the possibility to measure in air

without additional coatings, or other sample preparations, and to record 3D images, laser scanning

confocal microscopy is a powerful tool for quantitative and qualitative measurements and therefore,

an adequate alternative to scanning electron microscopy. [237] [238] [239] Furthermore, it is serving as

a fast, non-tactile optical 3D method for topography analysis overcoming the problems of tactile

methods like conventional profilometry or atomic force microscopy, where sensitive samples surfaces

can be damaged or scanning procedures are highly time intense. [237] In consequence, the popularity

of confocal microscopy has increased dramatically since its first use in the quality control business of

the silicon chip industry. Within this time, the equipments have been improved significantly according

to Paddock et al. regarding 1. bright and stable laser light sources, 2. efficiently reflecting mirrors

and more precise filters, 3. improved methods of scanning and electronics for data capture, 4. high

quantum efficiency low noise photodetectors, 5. improved methods of specimen preparation, 6. fast

computers with image processing capabilities, 7. elegant software solutions for analyzing the images
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and 8. high-resolution digital displays and color printers. [215]

Today, it is a widespread technique covering a spectrum from all disciplines in life sciences to

physical sciences and gaining importance in materials science. [237] [222] [223] [221] [240]

Within this project, the sensor element array topography could not be characterized via a tactile

method due to their sensitivity to external forces and impacts. For that reason, CLSM has been

chosen to characterize the sensor elements in three dimensions with regard to their degree of release

after fabrication.

3.4 Biocompatibility

One of the central requirements of this project was the fabrication of biocompatible sensor elements

to ensure the viability and adhesion of cells on the surface of this novel device. For that reason, the

devices were tested regarding their biocompatibility in this work. In the following, some insights into

biocompatibility and biocompatibility testing are given.

In 1986, biocompatibility was first defined more precisely by Williams as "the ability of a material to

perform with an appropriate host response in a specific application". [241] [242] However, the science

of biomaterials has changed throughout the years, which is why Williams gave a more clinical

definition in 2008. Here, the requirement of biocompatibility is "that the material shall do no

harm to those tissues [the tissues of the human body; the author], achieved through chemical and

biological inertness". [243] In 2013, Ratner supposed a new definition of biocompatibility in a rather

bio-engineering context as "[...] the ability of materials to locally trigger and guide normal wound

healing, reconstruction, and tissue integration." [244] [245] In consequence, all other materials that

were succesfully used in vivo so far should be defined as "bio-tolerable".

These rather philosophical examples of attempts at the definition of biocompatibility outline the

importance of a rather practicable standardized approach, which is today realized via the qualification

of biocompatibility by ISO standard 10993. Here, standard biocompatible testing requirements are

defined in twenty different sections regarding the biological safety or risk of medical materials. [246]

Standardized tests for toxic effects like systematic toxicity, cytotoxicity, gen toxicity, carcinogenity,

sensitization, reproductive toxicity as well as chemical, physical and mechanical characterization and
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validation techniques are described.

One of the cytotoxicity tests according to ISO 10993-5 is the MTT (3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyl tetrazolium bromide) assay test, [247] [248] which was used in this project to bio-

charaterize the fabricated sensor element plates. In general, cells are cultured with the extraction of

the sample to be characterized. Then, the yellow cell membrane active MTT dye is added as a salt,

which is reduced by vital cells to blue-violet formazan crystals. These are not membrane active and

are collected in proliferating cells. The reaction is induced by mitochondrial dehydrogenises of the

living cells. The incubation time of the cell toxic MTT assay is rather long (4h). After lyses of the

cells and dissolution of the crystals, the concentration of the dye can be detected via colorimetry

and is then compared to a control sample. By this, the optical density value can be adapted to the

amount of vital cells and so, defines the cell viability for this test sample.

3.5 Fabrication of NiTi, a-Si and PDMS sensor element arrays

Based on their biocompatible and mechanical behavior, NiTi, a-Si and PDMS were chosen as sensor

materials. In this section, the general materials and methods for the characterization of all materials,

are generated followed by a presentation of the fabrication processes and the corresponding materials

and methods for NiTi and a-Si sensors as well as the process development of the PDMS sensor

membrane fabrication are outlined.

3.5.1 NiTi Sensor Elements

3.5.1.1 Materials and Methods

Patterned NiTi thin films on borosilicate glass wafer Patterned NiTi thin film samples were

fabricated in a cooperation with Aquandas R© GmbH based on a well-established process developed

by Dr.-Ing. R. Lima de Miranda et al. [159] [160] according to my masks designed in CAD. A schematic

overview of the different fabrication steps is given in figure 3.3. A 4 μm thick film of copper (Cu)

was sputtered on 2” borosilicate wafers (SCHOTT BORO-FLOAT R© 33 Borosilicatglas) of 100 μm

and 400 μm thickness. Then, a 200 nm thick film of NiTi was deposited by means of magnetron

sputtering with an Alcatel 450 sputtering device (figure 3.1.1).

50



Figure 3.3: Schematic presentation of the fabrication steps to produce NiTi MEMS Structures on
glass: 1 Sputtering of 4 μm of copper and 200 nm of NiTi on a borosilicate glass wafer.
2 Spin coating of photo resist on the NiTi layer. 3 and 4 Photolithographic processing:
Aligning of the chromium mask on the wafer and structuring of the photoresist by UV
treatment. 5Wet etching of the NiTi thin film. 6 After Isotropic etching of the sacrificial
copper layer and removing of the photoresist, the released sensor element structure is
achieved. For better insight into the structure, a free cross section is shown.

Sputtering was carried out at a base pressure below 1 ∙ 10−7mbar, an Argon flow of 20 sccm

and a sputtering pressure of 2 ∙ 10−3 mbar. The magnetron sputtered films had a composition of

Ni50.8Ti49.2 atom-%. The NiTi patterning was attained by spin-coating of positive photoresist

(figure 3.1.2), aligning of a chromium coated sodalime mask (bvm.maskshop A. + V. Mulch GbR)

on the sample (figure 3.1.3), followed by UV-treatment on a mask aligner (SUSS MicroTec MJB4)

(figure 3.1.4) and wet etching (figure 3.1.5). Afterwards, the sacrificial Cu layer was isotropically

wet etched to generate free-standing NiTi structures and the photoresist was dissolved in acetone

(figure 3.1.6). Finally, the wafers were temperature treated at 650◦C to transform amorphous NiTi
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to its austenitic state.

Free-standing NiTi films Free-standing NiTi structures on thick film frames were fabricated

in a cooperation with Acquandas R© GmbH according to my masks designed in CAD. A detailed

description of the fabrication process was published by Lima de Miranda et al. [160] and is shown

schematically in figure 3.4.

Figure 3.4: Fabrication scheme of the sensor elements in a 50 μm thick NiTi foil: 1 Sputtering of
4 μm of copper and 200 nm of NiTi on a silicon wafer. Step 2 to 5 are in accordance
with the processing steps shown in figure 3.3; here a cross section of the isotropically
etched element is shown. 6 Deposition of a 50 μm thick NiTi layer on.7 By wet etching
of the sacrificial layer, the patterned NiTi foil is lifted off the Si substrate.
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The deposition of thin films was carried out as described in the previous paragraph. A sacrificial

layer of Cu was pre-sputtered on a silicon substrate (see figure 3.2.1-3.2.5). Afterwards, a 50 μm

thick film of NiTi was deposited on top of the structured NiTi thin film (figure 3.2.6). Finally,

the copper layer is entirely wet etched. By this procedure, 1 x 1 mm sized NiTi foils with 200 nm

thick sensors were fabricated (figure 3.2.7) and fixed in a home-built aluminium frame for further

characterization and testing.

Confocal 3D Laser-Scanning Microscopy Surface topography was determined by confocal 3D-

laser-scanning microscopy (KEYENCE R© VK-250X) using 5x, 10x, 20x, 50x (50x Plan Apo Epi,

Nikon R©) and 150x (150x CF Plan, WD 0.2, NikonTM) objectives in dependence of the sensor size.

According to Keyence the following in-plane and out-of plane resolutions could be achieved:

Objective x-y Resolution / [μm] z Resolution / [nm]

CF IC EPI Plan 10x 1.318 0.5
CF IC EPI Plan 20x 0.659 0.5
CF IC EPI Plan Apo 50x 0.264 0.5
CF IC EPI Plan Apo 150x 0.088 0.5

For each sensor design and sensor material, white light images were first recorded. Afterwards,

the setup was switched to confocal mode and the scan range between the upper and lower focus was

defined automatically. The scan was then run in surface topography mode with maximum resolution

and minimum step size. The images were finally processed using the KEYENCE R© MultiFileanalyzer

software. The image tilt was corrected automatically for each 3D image.

Scanning Electron Microscopy (SEM) SEM (Supra 55VP, Zeiss R©, Germany and SEM with

FIB, FEI R© Dualbeam Helios NanoLab) imaging was carried out at 5 kV using the in-lens detector at a

working distance of 5 mm. The deformation behavior of the amorphous silicon sensor structures was

shown by attacking the sensor centre plate with a tungsten needle of a micromanipulator (Kleindiek R©

MM3E). The deformation process was recorded in movie mode implemented in the SEM software.

MTT testing Material cytotoxicity was tested for NiTi sensor systems on a 50.8 mm in diamater

borosilicate glass substrate and 50 x 50 mm2 sensor plate of a 200 nm thick a-Si device layer according
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to the ISO 10993 norm. First, each sample was autoclaved for 1,5 h at 135◦C. In correspondance

to the sample surface, the NiTi sample was incubated in 3 mL that is to say the a-Si sample in

2.2 mL of Dulbeccos Modified Eagles Medium (DMEM supplemented with 10% FBS and 1%

Penilicin; Biochrom R© , Berlin, Germany) at 37◦C and 5%- CO2 for 72 h. 10 000 cells were cultured

in a 96 well-plate with 100 μL DMEM for 24 h each sample. The medium was then exchanged

by 100 μL of extraction medium. DMEM was added to produce concentrations of 0%, 16%,

32%, 64% and 100% extract and incubated for another 24h at 37◦C and 5%- CO2. 50 μL of

(3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT, Sigma Aldrich R©, Darmstadt,

Germany) were added to each well plate in order to mark the vital cells. After 2 h of incubation, the

absorbance of the solutions was measured with a micro-platereader (μQuant Biotek R© Instruments

GmbH, Winooski, USA) at 570 nm. DMEM containing isopropanole was used as positive control

and fresh, untreated medium as negative. The test results were normalized to the absorbance of the

control samples.
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5.1.1.2 Results and Discussion

The fabricated patterned NiTi thin films on borosilicate glass wafers are presented in figure 3.5 A.

Four highly-reflective NiTi squares with four different designs are shown, of which the upper right

square contains 340 sensor elements of type 4-FR, which is analyzed in the following. In figure 3.5

B and C, the smallest designed elements considering the fabrication limits have an edge length of

135 μm (B) that is to say 170 μm (C). The sensor arm springs of B are sticking together. Obviously,

the distance of 1 μm was not sufficient in this case. In C, the spring slopes of the sensor arms had

a distance of 2.5 μm. By this, the overall size of the sensor element is bigger than B, but the

manufacturable minimum size limit of this processing technique.

Figure 3.5: White light microscope images of the bulk micromachining process fabrication results
of a 200 nm thick NiTi film on a 4 μm thick Cu layer and a 400 μm glass substrate. A
White light microscope image of the four different NiTi sensor design boxes. In the upper
right box, 5x5 sensor arrays of 4-FR sensor elements and single elements in different size
are contained that are shown in B and C in more detail. B The sensor arm springs of a
4-FR sensor element with an edge length of 135 μm are not developed, while in C the
same sensor type with an edge length of 170 μm is fully developed.

To control whether the highly sensitive structures are entirely released without damaging them,

CLSM was carried out. In figure 3.6, the results of CLSM are exemplarily shown for the designs

presented above in figure 3.5 B and C. In the laser microscope top-view images 3.6 B and C, excerpts

of the sensor element arrays indicating six different element areas of interest by colored fields (green,

red and yellow) are presented. Here, FL stands for left-sided sensor element frame, SAL for left

sensor arm spring, CP for centre plate of the element, and FR and SAR for right frame
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Figure 3.6: CLSM results of the processed NiTi samples shown in figure 3.5 B and C. B and
C Laser microscope images of array parts of the sensor elements. The marked color
regions represent areas of interest, with: FL - Frame, left side, SAL - Sensor arm, left
side, CP - Centre plate of the sensor element, SAR - Sensor arm, right side and FR

- Frame, right side. B1 and C1 Isometric presentation of the 3D CLSM records. The
surface topography is color-coded.Therefore, red areas represent higher regions, while
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dark blue areas are bottom parts. The vectors indicate the path of the profiles
shown in the following. Here, the sensor elements of B2 are on the same height
level like the frame (both are green colored), while in C2, the frame is the highest
area of the array and the sensors (blue colored) are attached to the substrate surface.
B2 Line Profile of the sensor element array surface along the red vector.
The prominent columns of 4.7 and 5.2 μm correspond to sensor arms that are
deformed out of plane. C2 Line surface profile along the white vector in C1. Here,
the prominent columns represent the frame parts. The alternating structures between
the frame columns correspond to the sensor arm spring coils, that can be identified
more precisely in C3. In B3 and C3, the line profile along the black (B3) that is to
say the red C3 vector of a single sensor element is presented including the correspon-
ding areas of interest (compare B and C).

and spring sensor arm. The elements of the arrays are homogenous, indicating a well reproducible

process. In (B1) and (C1), isometric illustrations of the confocal records give an overview on the

surface topographies. Based on a color-coding, the red areas represent elevations, while blue areas

indicate valleys. In B1, the frame and the sensor elements have a greenish color and in consequence,

have the same height level. The outer parts of the sensor arms are The outer parts of the sensor

element arms are yellow to red, which is due to a tilt of the arms out-of-plane. In contrast, the area

of the frame is red and the sensor elements are blue in figure C1. Here, the structures are sticking

to the substrate surface.

To further clarify the condition of release of these elements, line profiles were recorded along the

vectors as marked in B1 and C1. The profile along the red vector is shown in B2 and gives an

overview on the general height levels in a row of sensor elements. Here, the columns of 4.7 to 5.2 μm

height are tilted SAs as already described above, while areas of about 4 μm height correspond to

the frame and the centre plate CP. This is outlined in more detail in the profil B3 for a single

element along the black vector. The dominant out-of-plane tilt of the SAs of up to 6 μm is caused

by internal stress due to the sticked meander structures. Buckling due to material stress is a well

known challenge in micromachining. [199] This problem has been solved for the second sensor element

as shown in C2 and C3. Here, the alternating small structures between the frame column of 4 μm

height and the sensor centre plate correspond to the five sensor arm slopes. The spikes that can be

observed at the edges of the coils are known phenomenons within CLSM and caused by interferences
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along sharp edges. [249] These spikes are in general smoothed by adequate software filters causing a

slight change in height resolution. To keep the highest possible resolution in z-direction, the author

forwent these filters. [250] The sticking of the sensor element to the substrate surface is another well-

known phenomenon in micromaching and is caused by capillary forces. [199] In figure 3.7, the process

of releasing a NiTi sensor element is exemplarily shown in sideview. The sacrificial Cu layer is wet

etched (see figure 3.1 B). By the evaporation of the etching liquid and the corresponding interaction

of the fluid and the sensor element surface, the centre plate of the sensor is gradually lowered (see

figure 3.1 C). Finally, a thin fluid film is left possessing two menisci caused by capillary forces bet-

Figure 3.7: Sideview of the stiction process after wet etching the sacrificial Cu layer of a NiTi sensor
element. A NiTi sensor element on Cu layer before wet etching. B The sacrificial layer
is isotropically wet etched by a well-chosen solvent that interacts with the NiTi contact
plate. C The evaporation of the solvent during the drying procedure has started and
causes a lowering of the interacting contact plate. D Progressive evaporation of the
fluid leads to the formation of a liquid meniscus between the substrate surface and the
bottom part of the centre plate. The dominating capillary forces induce an additional
approach of the centre plate to the substrate surface. E The fluid is entirely evaporated
and by this, the contact plate of the sensor element sticks to the glass substrate.

ween the solids and the fluid. This additionally approaches the centre plate to the substrate surface

(see figure 3.1 D). The above described interactions and the entire evaporation of the liquid cause a

sticking of the sensor to the substrate (see figure 3.7 E), which causes a function failing of the sensor
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Figure 3.8: Fabrication result of NiTi sensor ele-
ments in 10x10 mm NiTi foils (A) of
50 μm thickness. B Laser microscopic
image of 4-FR sensor as already pre-
sented in figure 3.5 C. Sensor elements
of 170 μm edge length were the only
fully developed structures that were
stable against impacts by handling.

element. When controlling sensor elements of

bigger size or other sensor samples, the same

result has been observed. To overcome these

capillary forces, the sacrificial layer thickness

could have been theoretically increased. By this

means, the maximum elongation of the sensor

arm springs due to capillary forces during the

evaporation process needs to be overcome by

its restoring force. This would lead to Cu layer

thicknesses higher than 10 μm. However, the

thicker the buffer layer the bigger the size of a

producible sensor element considering the wet

chemistry fabrication process. In consequence,

a different fabrication technique was then applied.

10 x 10 mm free NiTi foils of 50 μm thickness including 200 nm thick sensor element arrays were

fabricated as described above. The fabrication results are shown in figure 3.8 A. In contrast to

the element arrays on a glass substrate, the release of the sensor elements was directly ensured by

the lift off process at the end of the fabrication procedure. However, these membrane like foils

(see figure 3.8 A) had to be handled sensitively as slight impacts caused the destruction of sensor

elements bigger than 170 μm (see figure 3.8 B). Moreover, internal stresses within the membrane

caused torsions of the sensor elements which were higher the bigger the sensor element size. In

figure 3.9, SEM images of the same sensor as presented in figure 3.8 indicate a slight torsion within

the element, which is due to stress within the foil and the less rigid frame compared to the fully

fixed frame structure of the glass substrate based sensor array approach. These sensor elements were

used throughout the mechanical characterization of 4-FR NiTi elements and proved to be longterm

resistant to outer impacts in the everyday laboratory routine. To achieve smaller NiTi element

sizes for future applications, the fabrication could be changed to a gas phase etching process,

which is e.g. based on a CO/NH3 plasma treatment of the structural NiTi layer. [251] Besides the
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Figure 3.9: SEM images of one 170 μm sized 4-FR sensor
element from top- (A) and sideview (B). The
whole in the middle of the sensor element cen-
tre plate has been shot via an ion beam and
was needed for further mechanical testing as
presented in chapter 4.

characterization of the mechanical be-

havior of the sensor element arrays, the

used samples needed to be biocompat-

ible.

Regarding the biocompatibility of the

NiTi foils, the viability of cells on this

material has already been shown else-

where. [154] [252]

On the contrary, the glass substrate

based sensor element arrays were not

characterized with regard to their cell

viability before. In consequence, an MTT test based on ISO10993-5 was carried out. The result is

presented in figure 3.10. Here, samples of pure DMEM were used as control samples with a viability of

the cells of 100 %. Samples with a concentration of the pure NiTi array extraction of 16 % and 32 %

show a viability above 100 %. In consequence, this environment has a proliferative effect on the cells.

With regard to higher extraction concentrations of 64 % and 100 %, the viability drops to 80 % that

to say 50 %. Here, the last NiTi sample is categorized as cell toxic according to ISO 10993-5:2018,

in which all samples with cell viabilities below 70 % are defined as non-biocompatible. [246]

The reason for these results is the remaining copper layer between the NiTi device layer and the

glass substrate. In general, copper is a heavy metal, which has an antibacterial effect and is toxic in

high concentrations. However, it is an important trace element and hence is an essential component

within various enzymes. Human beings therefore need a daily dosis of up to 1.5 mg. [253] Obviously,

the concentration limit of copper ions was exceeded in the last extraction, for which reason the cell

viability was reduced and the material behaved toxic. Within the MTT test, the DMEM was exposed

to the sensor element wafer for 24h according to the ISO standard. In first real time experiments

for 3D cell traction force testing, the overall exposure of the cells to this extraction is a few hours
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Figure 3.10: MTT test1 result for NiTi sensor element arrays fabricated on glass substrates with
a sacrificial copper layer. Pure DMEM was set as a control with a cell viability of
100 %. Concentrations of the NiTi array liquid extraction of 16 % and 32 % have
a proliferative effect on the cells, wherefor the viability is higher than in the positive
control sample. Extraction concentrations of 64 % correspond to viabilities of about
80 %. On the contrary, 100 % of the extraction cause the death of 50 % of the cells.
For shorter exposure times than 24h, as set in this project, the cells survive. The
toxicity of the samples at high extractions concentrations are due to Cu ions dissolved
by the buffer solution over time. The error bars correspond to standard deviations for
five measurements per concentration, which are: for the control, for 16 %, for 32 %,
for 64 % and for 100 %. Hence, the deviations are neglectable.

only. So, the cell viability throughout the experiment is given although the sensor plate would not

be classified as biocompatible according to the ISO norm.

As a result, NiTi foil based sensor elements are suitable regarding the defined requirements (see

section 2.2.2) and were chosen for further experiments.

1The MTT test was kindly introduced and supported by M.Sc. Mohammadreza Taale (working group of Prof.
Selhuber-Unkel, Department of Biocompatbile Nanomaterials/ Christian-Albrechts University of Kiel).
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3.5.2 a-Si Sensor Arrays

To reduce the overall sensor size and produce arrays of elements which are mechanically decoupled

by means of rigid frame structures, a-Si based sensor elements were fabricated by dry etching sur-

face micromachining on glass substrates. The established fabrication procedure and the results are

presented in the following as well as the results of cell shearing tests on the sensor element surface

and biocompatibility testing.

3.5.2.1 Materials and Methods

a-Si Surface Micromachining Amorphous Silicon sensor arrays were kindly fabricated in a co-

operation by the group of Prof.Dr. B. Wagner at Fraunhofer ISIT Itzehoe according to my masks

designed in CAD. The process flow is shown in fig. 3.11.

Here, 400 μm thick 8 ” borosilicate glass wafers were coated with 20 nm of aluminum to protect

the backside glass surface from etching by hydrogen fluoride (HF). 4 μm of silicon dioxide were

then deposited by plasma-enhanced physical vapor deposition, followed by thin layers of amorphous

silicon with 100 nm, 200 nm, 300 nm and 400 nm thickness (figure 3.11.1). The wafers were spin

coated with photoresist and then patterned by UV-lithography (figure 3.11.2-4). 50 x 50 mm plates

of sensor arrays were then cutted with a wafer dicing saw for better handling. Afterwards, the a-Si

layer was structured by dry etching with HF. The photoresist was ashed (Gasonics R© L3510) and the

aluminum was wet etched. Free-standing a-Si structures were created by gas-phase etching of the

sacrificial silicon dioxide layer by hydrofluoric acid with treatment times of 750 s, 1000 s and 1250 s.

Characterization The a-Si sensor arrays were characterized according to the methods used for

NiTi (see subsection 3.5.1 Materials and Methods).

Cell shearing Rat embryonic fibroblast wild type 52 cells (ref52 wt) were first transferred to phos-

phate buffered saline (PBS, Sigma-Aldrich R©, P5493) and washed for three times. A 50 x 50 mm2

sensor plate with a 200 nm thick a-Si layer was washed with ethanol for three times, then with PBS

and a frame of biocompatible glue was set around one sensor square. The cells were then pipetted

on the sensor surface and incubated in DMEM R© (supplemented with 10% FBS and 1% Penilicin;
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Figure 3.11: Schematic illustration of the surface micromachining process to fabricate a-Si sensor
elements: 1 Vapour deposition of an aluminium thin layer on the backside of the
400 μm thick glass wafer to protect the glass against the dry etching process. On the
front-side, a 4 μm thick sacrificial silicon dioxide layer and a 200 nm thin a-Si layer were
deposited by means of PECVD. 2 Spin coating of photoesist on top of the device layer.
3 and 4 UV lithographical patterning of the photoresist. 5 Dry etching of the a-Si
layer by SF6. 6 Removal of the aluminium protection layer by wet etching. 7 Release
of the a-Si structure by gasphase etching of the sacrificial layer by HF. To indicate the
isotropic etching of the buffer layer, a cross sectional illustration of the released sensor
structure has been chosen.

Biochrom R©, Berlin, Germany) at 37◦C and 5% CO2 for 24 h. Afterwards, the sensor plate was in-

stalled on an inverted microscope (Olympus R© IX 81, Shinjuku, Japan) and 4-FR a-Si sensor elements

(sensor diameter: 45 μm, sensor thickness: 200 nm) were set in focus using a 40x magnification
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objective (Olympus R© LCAch Nm 40x/0.55 PHP). A glass microneedle was positioned via a microma-

nipulator as shown in figure 5.3 B. Here, the micrometer z-translational stage (1) (PI R© M501.1PD:

δ(z) = 12.50 mm, resolution: 0.024 μm; controller C-863 Mercury Servo Controller) and the x-, y-,

z-piezo nanopositioner (2) (PI R© 517.3CL: δ(x,y)max = 100 μm; δ(z) = 20 μm, resolution: x,y: 1 nm,

z: 0.1 nm and controller E-517) were electronically driven by the PI software. By this, the needle

was injected in a cell adhered on top of the sensor structure without harming the nucleus. Then,

the needle was first translated in 5 μm steps to 50 μm in-plane displacement from the starting point

and then moved out-of-plane in 5 μm steps, while the deformation process was recorded via the

microscope software.

3.5.2.2 Results and Discussion

Four different a-Si structural layers were deposited and patterned to find the most suitable layer

thickness regarding 1. minimum layer thickness for maximum deformability, 2. release of the struc-

tures overcoming the problem of surface sticking and 3. minimum under-etching of the frame to

ensure a well-defined deformation behavior.

CLSM images of the fabrication results for 100 nm, 200 nm, 300 nm and 400 nm thick layers after

1000 s of gas phase etching as well as line profiles along the indicated black vectors are shown in

figure 3.11. For better comparison 4-FR sensor elements (shown in A to D) of the same edge length

of 45 μm and a sensor arm width of 1 μm have been chosen. All structures are well developed. The

difference in material surface color is caused by the difference of the a-Si layer thickness ranging in

nanometer region.

In A1 to D1, surface topographies in isometric view of the corresponding sensor element arrays

are presented. Here, the arrays of 200 nm, 300 nm and 400 nm thickness possess a homogenous

topography without material elevations. For 100 nm thick layers, dark red columns between the

different sensors are observable. Out-of-plane material deformations are caused by under-etching

and stress within the a-Si layer along the sensor arm axis.

To validate the topography of the sensors more precisely, line profiles are presented in A2 to D2.

As already introduced for the profiles of NiTi sensor arrays, the broad columns represent the frame

structures between the sensor elements. The thinner column in the middle of the frame structures
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Figure 3.12: A to D: CLSM images of 4-FR sensor elements with a diameter of 45 μm after an
etching treatment of 1000 s and different layer thicknesses: A 100 nm, B 200 nm, C
300 nm, D 400 nm. All structures are well developed. The difference in color is due
to the change of the structural layer thickness. A1 to D1 Surface topographies of the
corresponding sensor element arrays. In A1, red colored columns along the axis of the
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element sensor arms indicate out-of-plane deformations of the 100 nm thick struc-
tural layer due to structural stress within the elements. The topography of B1
to D1 appears to be in one plane indicated by a homogenous reddish color. A2
to D2 Line profiles along the indicated black vectors. Here, the broad columns
correspond to the frame structure, the thin columns in the middle between of
two frame structures are the sensor contact plates and the alternating structures
between the frame and the centre plate represent the sensor arm spring coils.
In A2, the difference between the frame height (4.1 μm) and the centre plates
(3.5 μm) are caused by a slacking of the element due to its dead weight. Eleva-
tions of up to 4.7 μm are caused by internal stress of the element, which causes an
out-of-plane deformations of the sensor arm root at the frame. Slight deformations
can be observed for 400 nm thick layers (D2).

corresponds to the element centre plate and the alternating structures between the frame columns

and the centre plate are the sensor arm spring coils. For 100 nm thick structures, the lowest regions

are the centre plates with a height of 3.5 μm. The alternating columns representing the sensor

arms increase gradually in height from the centre plate to the frame from 3.5 μm to 4.1 μm. The

highest points are 4.6 to 4.7 μm and correspond to an out-of-plane deformation of the sensor arm

root at the frame due to the dead weight based slack of the element structure. A comparable

slacking can also be observed for 200 nm thick a-Si sensor elements with a variation of the centre

plate height and the frame structures of about 600 nm. However, no elevations or under-etching are

observable. Regarding 300 nm thick layers, the overall frame height is 4.3 μm. The height of the

sensor centre plate varies between 4.3 and 3.7 μm and the sensor arm spring coils even show a strong

bending out-of-plane of up to 4.8 μm. In comparison to the out-of-plane deformations of 100 nm

thick structures, there is no homogenous increase in hight from the centre plate to the frame. So

obviously, there is internal stress within the structures wherefore, they are slightly tilted. Finally, a

height difference of only 200 nm maximum between the element centre and the frame is observable

in case of 400 nm thick a-Si layers. These structures are not tilted and slightly slack, but they are

stiffer than the 200 nm thick elements. Hence, layers of 200 nm thickness were chosen for further

experiments. The optimum release of the structures is based on an adequate etching time. For this

reason, 200 nm thick a-Si samples were also etched for 750 s and 1250 s.

The results are shown in figure 3.13. In general, the etching result after an HF treatment for 750 s
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is comparable to the results of a treatment for 1000 s. The elements slack wherefore the frame height

and the centre plate differ by up to 800 nm. Moreover, the sensor arms springs slopes cannot be

distinguished and single peaks are only observable. Hence, the etching time was not sufficient to

remove the supporting material entirely.

Figure 3.13: CLSM images of 45 μm sized 4-FR sensor element arrays of 200 nm thickness after
HF gas phase treatment for E 750 s and F 1250 s. E1 to F1: Surface topography
of the two samples. After 750 s E1, the structures are already under-etched and the
sensor arms are slightly deformed out-of-plane as can be seen by the reddish color of
the element roots. In F1, the sensors stick to the substrate surface. E2 to F2: Line
profiles of the two sensor arrays along the indicated black vector.

So, the structures appeared to have left-over silicon dioxide that sticks between the coils. After

1250 s of HF treatment, the structures were under-etched as can be seen by the red-colored elevated

frame material along the prolonged sensor-arm axis as already observed for 100 nm thick layers (see

figure 3.12 A).

The frame columns have a height of 4.2 μm, while the centre plate is at around 0.28 μm. The

sensor arms cannot be properly detected, which might be due to the grained silicon dioxide buffer

layer that was left over on the substrate surface. With regard to the topography record (F1) and
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the line profile (F2), all of the elements stick to the substrate surface. Based on these results, an

a-Si layer of 200 nm thickness that was treated with HF for 1000 s has been chosen.

To find the minimum producible sensor element size, different element sizes were fabricated as

shown in figure 3.14. Here, the 4-FR sensor element type 1 differs from the 4-FR sensor element

type 2 by the distance between the spring coils. In design 1A, the distance is 500 nm and in 2A, it

is 1 μm, for which reason design 1A is 24 % smaller than 2A.

However, the spring coils of 1A stick to each other as already observed in the fabrication of

the small NiTi sensor elements and hence, this sensor element was ignored within the following

experiments. Elements of type 1 with a diameter of 38 μm to 114 μm (see 1B to 1E) are well

developed. Here, SEM images 1A and 1E indicate strong loading effects on the surface as indicated

by the blurred black parts within the images even after intense optimization of the SEM setting

parameters and deposition of additional 10 nm of gold coating.

This is due to the silicon dioxide sacrificial layer which left grains after etching as seen as white

deposit between the a-Si structures in all images. Regarding 4-FR type 2 sensor elements, all sizes

ranging from 45 μm (2a) to 136 μm (2E) could be fabricated. As a result, 200 nm thick a-Si sensor

element arrays, which were HF treated for 1000 s with an edge length of 45 μm and a minimum

sensor arm width of 1 μm were the most promising sensor elements used within further experiments.

Compared to the well-known superelastic behavior of austenitic NiTi regarding deformations in

the micrometer region, little was known about the mechanical behavior of a-Si structures in this

layer thickness region and the deformation in the micrometer range. Hence, the centre plate of the

above defined 4-FR a-Si sensor elements was micromanipulated by a tungsten needle in an SEM

surrounding as shown in figure 3.15. First, the tip was approached to the left edge of the centre

plate (0 s), then the element was carefully displaced in z-direction (5 s and 14 s) to a first maximum

deformation of about 6 μm (22 s). The sensor was afterwards retracted to its original position (25 s

and 28 s). At 40 s, the tip was lifted by about 5 μm and the a-Si element was displaced out-of-plane.

Finally, the element was displaced for a second time in z-direction by a maximum displacement of

about 20 μm (65 s), followed by an entire relaxation to its original position at 80 s. By this, it was

shown that an a-Si structure of 200 nm thickness can be repeatedly displaced up to 200 % of their

sensor arm length without being damaged and hence possess a well-suited elastic behavior for the

68



Figure 3.14: SEM images of 200 nm thick 4-FR sensor elements of different size (A-E): 1A The
element has a diameter of 38 μm and a sensor arm width of 1 μm. The distance
between the spring coils was set to 500 nm. However, the coils are sticking together.

69



3 SE Fabrication and Characterization

The diameter in a row of sensor type 1 are: 1B - 57 μm, 1C - 76 μm, 1D - 95 μm,
1E - 114 μm. 2A Sensor element with a diameter of 45 μm, a sensor arm width
of 1 μm and a distance between the spring slopes of 1 μm: this is the minimum
sized a-Si sensor element of type 4-FR, which was used throughout this project.
The diameters of the other elements of type 2 are: 2B - 68 μm, 2C - 91 μm, 2D -
113 μm , 2E - 136 μm.

purpose of this project (see section 2.2.2, chapter 2). Due to the change from a wet chemistry

based process to a dry etching fabrication, the sensor element size could be reduced by 70% to a more

compact size. As shown in figure 3.16, the smallest 4-FR element in 50 μm thick NiTi foil (A-A2)

has an edge length of 170 μm and a theoretical spring constant based on FEA of 0.066 N/m. The

size optimized 4-FE NiTi based design (B-B2) fabricated on a glass substrate has an edge length of

only 70 μm, with a theoretical spring constant of 0.25 N/m.

However, this design suffers from sticking to the glass substrate as described above. The com-

pact 4-FR design fabricated by dry etching surface micromachining of a-Si (C-C2) has a minimum

element size of 45 μm at a theoretical spring constant of 0.15 N/m. In figure 3.16 A2 to C2, the

corresponding 5x5 sensor element arrays are compared regarding their overall size that range from

890 μm for the NiTi based structures A2 to an optimum of 265 μm for the a-Si sensor elements.

In consequence, A is the ultimate sensor element regarding the geometrical project requirements of

solid state based element structures.

Regarding the biological suitability of the 4-FR a-Si sensor element array, its biocompatibility was

tested by an MTT test as described in section 3.5.1.1. The results of the test are presented in figure

3.17. The control is again pure DMEM, in which a cell viability of 100 % was observed. Extractions

of the solution that was exposed to the a-Si surface for 24h were diluted to concentrations of 16 %,

32 % and 64 % . Here, the cell viability is higher the higher the extraction concentration and vary

between 80 % and 100 % considering the standard deviations. Pure extractions even seem to support

cell proliferation, for which reason the cell viability is higher for extraction concentrations of 100 %

than for the positive control samples. When considering the standard deviation, the viability of the
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Figure 3.15: SEM images recorded in a time laps during the displacement of a 45 μm sized 4-
FR sensor element via a tungsten tip. Here, the sensor contact plate was carefully
displaced and relaxed twice. 0 s Approach of the tungsten tip to the centre plate:
starting point. 5 s-25 s first displacement of the sensor plate of up to 12 μm. 28 s
Gradual relaxation of the sensor to its original position. 40 s Slight displacement of
the element in z-direction up to 5 μm. 43 s-65 s Second displacement in z-direction
of about 20 μm. Here, the left sensor arm is elongated by 200 % of its original length.
71 s and 80 s Relaxation of the sensor element to its starting point. The sensor element
was mechanically displaced repeatedly without any damage.
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Figure 3.16: Overview on the size reduction of the 4-FR sensor element by means of different fabri-
cation processes: A to C FEA images of the sensor elements and their the out-of-plane
displacement in case of an effective force of 5 nN . For better clarity, the display of
the displacement has been enhanced by a factor of 1000. Based on FEA, the spring
constant of A is 0.0065 N/m at an edge length of 170 μm, of B about 0.25 N/m
at an edge length of 67 μm and of C 0.15 N/m at an edge length of 45 μm. In
A1 to C1, white light microscope images of the corresponding fabrication products
are shown. A1 200 nm thick NiTi structure in a 50 μm thick NiTi foil fabricated by
wet chemistry micromachining. B1 Size optimized NiTi element 4-FE with two spring
slopes fabricated on a 400 μm glass substrate by wet chemistry processes. C1 Smallest
a-Si sensor element structure fabricated by gas phase etching surface micromachining.
A2 to C2: Comparison of the overall sensor element array size for design A to C with
A2: 890 μm array length, B2 375 μm length and C2 265 μm overall array length.
The total array size was reduced by over 70 % from design A to design C.
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control sample and the pure extraction are the same. As has been shown elsewhere, [254] [255]

silicon and silicon dioxide particles support the growth and development of plants and are in vitro

biocompatible and non-toxic according to ISO10993-5. In consequence, the sensor elements also

proofed to be most promising with regard to their fulfillment of the biological project requirement.

Figure 3.17: MTT test2 result for a-Si sensor element arrays fabricated on glass substrates with
a sacrificial silicon dioxide layer. DMEM was set as a positive control with a cell
viability of 100 %. Concentrations of the a-Si array liquid extraction of 16 %, 32 %
and 64 % range from 85 % to 95 % viability of the cells. Here, the viability increases
with increasing extraction concentrations. Extraction concentrations of 100 % appear
to have a proliferative effect on the cells, for which reason the viability is higher than
within the control sample. The error bars correspond to standard deviations for five
measurements per concentration.

Cell shearing was carried out as shown in figure 3.18. For this purpose, rat embryo fibroblast ref52

cells were incubated for 24h on the a-Si array surface. The adhered cell (indicated by the greenish

area 2) was then sheared by means of a glass microneedle (1), which was carefully inserted into the

cell matrix without harming the cell nucleus. From this starting point, the microneedle was driven

stepwise via a piezo driven translational stage along the y-axis to its maximum travel path position.

Within the image, the corresponding displacements of the sensor contact plate are indicated in the

blue boxes on the top left of each image.
2The MTT test was kindly run by our technical assistant A. Duttmann (working group of Prof. Selhuber-Unkel,
Department of Biocompatbile Nanomaterials/ Christian-Albrechts University of Kiel).
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Figure 3.18: Cell shearing3 of a 45 μm sized 4-FR a-Si sensor element of 200 nm thickness via a
cell (greenish area 2 indictated in the first image) that was manipulated by a glass
microneedle (1). The displacements of the centre plate from its original position are
inscribed in the blue boxes on the top left of each image. (0 μm) The microneedle was
inserted into an adhered cell that was positioned in the middle of the sensor element.
(1.1 μm) The microneedle was moved along the z-axis indicated by the blue arrow.
This movement induced a displacement of the sensor centre plate of 1.1 μm. By
further movement of the microneedle, the plate was gradually displaced up to 3.0 μm.
At 2.9 μm, a strong bending of the bottom cell matrix can be observed. Here, the cell
is still adhered to one of the sensor arm spring coils, but de-attached on all other parts of
this region. The orange lines are extensions of the spring coils to indicate the change of
spring deformation from 9◦ to 15◦ opening of the spring legs. At 3.0 μm displacement,
the cell ruptured from this spring coil and the spring relaxes to its initial position.
Here, the microneedle is driven to the maximum travel position of the translational
stage (50 μm). Finally, the a-Si sensor element is relocated to its original position
(0 μm).

3The cell shearing test was kindly introduced to me and supported by M.Sc. Steven Huth (working group of
Prof. Selhuber-Unkel, Department of Biocompatbile Nanomaterials/ Christian-Albrechts University of Kiel).
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At a displacement of the centre plate of 2.9 μm, the bottom part of the cell matrix possesses a

strong bending due to its adhesion to the sensor arm spring coil, which is ruptured in the following

displacement step as can be seen in the next image (3.0 μm). Here, the spring coil has been

relaxed to its original position without an additional force impact by cell traction forces. Finally,

the microneedle is driven back to its starting point and the sensor element plate is relocated to

its original position (0 μm). In consequence, cells adhere perfectly to this sensor element surface.

Furthermore, the elasticitiy of this sensor element suits the cell shearing forces, wherefore microscopic

displacements can be observed. Additionally, the element is usable in liquid surrounding without

being damaged. As cell traction forces shall be measured by the displacement of the sensor element

plate, cells shall only adhere to the contact plate. For this reason, the cell adhesion sites need to

be controlled by biologically inert coating of the frame and the sensor arms in future experiments

as already mentioned in the project requirement list (see section 2.2.2, chapter 2). An appropriate

solution strategy for this purpose is presented in chapter 6.

Based on the results of the fabrication and characterization of the NiTi and a-Si based sensor

element arrays, the 45 μm sized 4-FR a-Si sensor element of 200 nm thickness has shown to be

the most promising solid-state sensor element. Its major advantages are 1. its comparably small

geometrical dimensions of 45 μm in diameter and 1 μm thick sensor arm width (see figure 3.1.2 and

3.16), 2. its producible free-standing structures (see figure 3.12 and 3.15 ), 3. its biocomaptibility

(see figure 3.17), 4. its mechanical compatibility and stability to liquid environments (see figure 3.15

and 3.18), 5. its suitable surface topography for good cell adhesion (see figure 3.18), 6. its elasticity

and mechanical deformability with displacements of the spring coils of up to 200% of their original

length (see figure 3.1.5).

The fabrication based on surface micromaching of a-Si is nevertheless rather time- and cost-

intensive, wherefore an additional approach was taken into consideration, which is presented in the

following section.
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3.5.3 Process Development of PDMS based Sensor Elements

The above presented fabrication processes and used materials turned out to be time- and cost

intense, while being limited in their mechanical properties due to their composition and minimum

geometrical dimensions. When it comes to optimizations such as 1. the reduction of the overall

sensor element array fabrication and material costs and time, 2. cheap one-way sensor elements for

cell biological experiments, 3. a low Young’s modulus for maximum sensitivity to weak forces down

to the lower pN region and 4. a tunable Young’s modulus to broaden the measurable force range by

slight modifications of the same basis material, a different biocompatible material is needed.

A well established material is polydimethylsiloxane (PDMS), which was used in this project to

develop a fabrication process for PDMS based sensor elements.

PDMS is a silicon based non-toxic, biocompatible, cost effective and chemically inert cross-linked

polymer [256] of tunable elasticity, [257] [258] which has a wide range of applications due to its properties.

Consequently, it is used as food additive in the conservation of vegetables or marmelades, [259] as

antifoaming agent in drugs or drug delivery, [260] [261] in cosmectics, as well as basis material for

contact lenses, [262] microfluidics [263] and biomedically used microelectromechanical devices. [264]

In the following, the different process steps of the developed fabrication procedure for PDMS

based thin structured membranes as well as the characterization of each intermediate product are

presented and shortly discussed.

3.5.3.1 Materials and Methods

PDMS Frame Fabrication SYLGARD R©-184 base monomer and curing agent (SYLGARD R©-184,

Dow Corning, Midland, MI) were stirred at wt(monomer):wt(curing agent) = 10:1 in an IKA tube

(IKA R© VE ST-20 tube with stirring device, Staufen, Germany) for 15 min. After degassing of the

prepolymer in high-vacuum, PDMS was poured in self-designed and workshop-built teflon molds (see

fig. 3.19 IV.A, white box on the left side), degassed once again in high-vacuum, cured for 24 h at

65 ◦C and finally demolded for further use.
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PDMS Sensor Fabrication The microfabrication of PDMS MEMS structures has been developed

based on a process published by Chen et al. in 2012. [265] The process flow is presented in figure

3.19.

First, 25 x 25mm2 poly-silicon wafer plates (nominal thickness: 525 ± 25 μm, Siegert R© Wafer,

Germany) were cleaned in acetone (<99.7 %, Ph.Eur., extra pure, Carl Roth, Germany) in an

ultrasonic bath at 25 ◦C for 15min. The N2 dried plates were then spin-coated (OPTI spin ST22P,

Solar-Semi, Germany) with protective resin of about 2 μm thickness (AZ 520D, AZ Electronic

Materials R©, Branchburg, NJ; level 1: t = 20 s, 3000 rpm, ramp of 120 rpm/s; level 2: t = 30 s,

3000 rpm, ramp of 120s) to facilitate subsequent release of patterned PDMS at the end of the

fabrication process and to reduce the preparation time compared to a pre-silanization of the surface

(see figure 3.19.1). Afterwards, the resin was baked for 5 min at 120 ◦C. To exclude air within

the protective coating, the small plates were evacuated for 15 min in high vacuum. Meanwhile,

a mixture of SYLGARD R©-184 base monomer and curing agent (SYLGARD R©-184, Dow Corning,

Midland, MI) were stirred at wt(monomer):wt(curing agent) = 10:1 in an IKA tube (IKA R© VE ST-

20 tube with stirring device, Staufen, Germany) for 15 min. The PDMS was then evacuated in

high-vacuum until the polymer was degassed. The small silicon plates were spin-coated with PDMS

prepolymer based on an established PDMS spin-coating program (level 1: t = 30 s, 1200 rpm, ramp

of 90 rpm/s; level 2: t = 60 s, 5000 rpm ramp of 480s, level 3: t = 0 s, 80 rpm, ramp of 60 rpm/s)

in order to generate 10 μm thick layers.4 Afterwards, they were evacuated for 30 min in high vacuum

and baked at 125 ◦C for 20 min. To avoid crack formation due to different thermal coefficients of

the protective resin and PDMS, all heating and cooling processes were gently run (see figure 3.19.1).

According to Chen et al., the polymeric surface was first O2 plasma treated (SENTECH R© SI 100,

Berlin, Germany; t = 300 s, 25 Watt, 8 cm3) and afterwards coated with a 10 nm thin gold layer

by vapor deposition in ultra-high vacuum (customized Amocon R© FT&T GmbH photovoltaic setup,

Burghausen, Germany) (see figure 3.19.2). This coating was used to ensure homogenous coating

of the PDMS surface with photoresist in the next process step and to generate an appropriate

reflectivity of the sensor element for optical readout.

4HBL-PDMS spin-coating program written by M.Sc. Henrik Block (working group of Prof. Dr. M. Gerken,
Institute for Electrical Engineering, Faculty of Engineering, Christian-Albrechts-University of Kiel).
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Figure 3.19: Process flow to fabricate structured PDMS membranes. In step 1 to 6, the process is
exemplarily shown in more detail for one sensor element. 1 Spin-coating of protective
resin and 10 μm of PDMS on a silicon wafer. 2 After curing, the PDMS layer is plasma
treated to improve the PDMS coating properties and coated with a 10 nm thick gold
layer via vapour deposition. 3 and 4 Spin-coating of a 8 μm thick positive photoresist
layer, soft baking at 110 ◦C and structuring by UV treatment through a chromium
mask. 5 Reactive Ion Etching of the PDMS sample for anisotropic etching results. 6
and 7 Removal of photoresist, glueing of the PDMS frames to the PDMS membranes
and curing at 65 ◦C for 24 h. Here, one PDMS square with about 300 4-FR sensor
elements is illustrated. 8 Removal of the PDMS membranes from the silicon substrate
by insertion of the samples in warm DMSO till the protective resin is dissolved.
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Positive photoresist (AZ9260, AZ Electronic Materials R©, Branchburg, NJ) was spin-coated uni-

formly on the samples (level 1: t = 30 s, 1200 rpm, ramp of 120 rpm/s; level 2: t = 30 s, 2400 rpm,

ramp of 240 s, level 3: t = 0 s, 2400 rpm, ramp of 800 rpm/s) layers of about 8 μm thickness

were generated.4 After soft-baking at 110 ◦C for 165 s, the small plates were transferred to the

mask aligner (Suess MicroTec R© MA 6/BA 6, Garching, Germany) and structured by UV treatment

through a chromium photomask (Compugraphics R© Jena, Germany) (see figure 3.19 3). To avoid

sticking of the PDMS surface to the chromium mask, the illumination was run in non contact mode

for 59 s with a gap between the samples and the chromium mask of 5 μm. The photoresist was

then developed using AZ400k (1:4 dilution, AZ Electronic Materials R©, Branchburg, NJ) (see figure

3.19.4) and PDMS was processed with RIE (SENTECH PTSA-ICP Plasma Etch System SI 500

RIE R©, Berlin, Germany) using a gas mixture of 75,00 ccm SF6 and 25,00 ccm of O2 for 1200 s (see

figure 3.19.5).

After that, the PDMS frames were glued via prepolymer PDMS to the different sensor boxes

and cured for 24 h at 65 ◦C in a drying cabinet as presented in fig. 3.10. IV.A and B (see figure

3.19.7). Finally, the remaining photoresist and the protective resin were removed with heated DMSO

(80 ◦C)(see figure 3.19.8). By this, the PDMS sensor membranes were lifted off the silicon substrate

and dried by N2 gas before characterization.

3.5.3.2 Results and Discussion

The PDMS based structured membranes were fabricated in an eight step process as shown in

figure 3.19. The intermediate products are presented and characterized in the following.

First, the cleaned silicon wafers were coated with a protective resin. Chen et al. used a silanization

process to increase the sticking of the PDMS to the silicon wafer surface in order to generate an

homogenous PDMS layer. Unfortunately, the detachment of the PDMS layer from the silicon surface

is not possible for lower layer thickness without damaging the membrane, when using this surface

treatment. Consequently, a different method was needed, which finally lead to the use of the low

cost protective resin AZ 520D that is stable to a lot of different solvents, but can be removed by

warm dimethyl sulfoxide (DMSO). [266] [267] By this, the membrane does not need to be peeled and
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mechanically deformed later on, but is detached without stress by a layer remover. A 15 μm thick

PDMS layer was then spin coated. Here, the layer thickness can be controlled by the spin speed

and the viscosity of the PDMS. [265] As was shown by Thangawng et al., adding defined amounts of

hexane to PDMS allows for layer thicknesses down to 70 nm. [268] By this means, the elasticity of the

PDMS structures can be manipulated for future applications. To increase the sticking property of

the PDMS layer, the surface was plasma treated to generate a rougher surface and hence, a bigger

contact surface. [269] [270] Afterwards, the sample was coated with a 10 nm thin gold layer.

Figure 3.20: First and second fabrication step: I.A 3x3 silicon platelets fixed in a sample holder after
vapour deposition of a 10 nm thick gold layer on top of the protective resist, a 15 μm
thick PDMS layer. To improve the bonding between the gold layer and the PDMS
surface, the PDMS was plasma treated before coating. I.B Isometric CLSM image of
a PDMS surface after gold coating in 50x magnification. The average roughness of
the surface was 30 nm.

This layer was used to increase the homogenous coating of the PDMS layer with positive photore-

sist, which was not possible by simple O2 plasma treatment. Moreover, a permanently high-reflective

surface is needed for the optical readout. For that reason, the metallic layer needed to be inert,

available, cost-effective and processable within vapour deposition or sputtering. This made gold

the most suitable material for these purposes. Vapour deposition has been chosen, as sputtering

would have caused harm on the PDMS surface by pollutant particles or crack generation without

extensive process parameter adaptations. [271] The exemplary surface topography of a gold coated

PDMS sample is shown in figure 3.20 I.B. Here, the average layer roughness is 30 nm and by this,

about ten times rougher than the surface of a silicon wafer. Then, positive photoresist was ho-
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Figure 3.21: Third and fourth fabrication step: II.A Gold coated PDMS sample after spin coating of
positive photoresist. Due to the additional gold layer, the generation of a homogenous
photoresist layer with an average roughness of about 0.35 μm was ensured. II.B Six
samples arranged for RIE processing after soft baking and patterning of the photoresist
by UV treatment through a chromium mask. II.C Laser microscope images of the
patterned photoresist: the sensor element structure on the left side has an edge length
of 1.0 mm, while the edge length of the sensor on the right side is 170 μm. II.D Line
profile along the blue vector indicated in the big sensor element shown in II.E. Here,
the height of the photoresist is 7.4 to 7.7 μm within the area of the frame and 8.5 μm
on the middle of the centre plate. The alternating structures between the frame and
the centre plate correspond to the sensor arm spring coil and are well-developed.
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mogenously spin coated on top of the gold layer as shown in figure 3.21 II.A and UV treated

through a chromium mask. Four 10 x 10 mm squares of sensor elements were depicted in photoresist

on each sample as presented in figure 3.21 II.B. The patterning results in the resist are shown in

II.C. The maximum sized element of 1 mm edge length (figure II.C, left image) and a sensor element

structure of 170 μm edge length (figure II.C, right image) are well developed. The second element

was the smallest possible structure. Sensor element sizes below this edge length could not be

prepared. This might be due to the non-contact mode during the UV treatment, wherefore there

was a gap between the chromium mask and the PDMS surface. In consequence, contact of the

PDMS surface and the mask would be needed during the UV treatment, which was not possible due

to the sticky behavior of the PDMS surface and its high sensitivity to external impacts. As a result,

the overall resolution was lower than 2 μm. [199] In II.D and II.E, the line profile along the indicated

green arrow and the 3D surface topography of the 1 mm sized element are presented. The frame

columns have a height of about 7.5 μm, while the centre plate is of 8.5 μm height. This variation in

height of the photoresist indicates unevenesses within the PDMS, on the one hand, and fluctuations

of the resist layer thickness, on the other hand. The alternating structures between the centre plate

and the frame correspond to the sensor arm springs, which are well-defined. The spikes at the edges

of the coils are well-known artifacts within CLSM and caused by additional interferences by sharp

edges as also observed for the NiTi sensor elements. [249]

The gold coated PDMS was then structured via a combination of inductively coupled plasma

(ICP) and reactive ion etching (RIE) according to Chen et al. and Green. [265] [272] So, the gold layer

is a stop layer with regard to RIE treatment with SF6. [199] Hence, the ICP process is needed to first

etch the gold surface and afterwards, the PDMS layer can be etched via RIE.

Three different sensor elements of 1 mm size fabricated on two different samples were characterized

after ICP-RIE by CLSM as presented in figure 3.22. During the RIE process, parts of the photoresist

were entirely removed from the gold layer as can be noticed by the bright areas in image III.A-III.C

showing the pure gold layer. The brownish parts belong to layer areas still coated with photoresist.

All structures are well developed, but appear to have much rougher surfaces compared to the samples

before ICP-RIE treatment. When looking at the corresponding isometric 3D topographies in III.D

to III.F, the average roughness varies between 0.74 μm and 1.84 μm, which is due to the variation
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Figure 3.22: Fiffth fabrication step: III.B and III.C Laser microscopic images of the same sized 4-FR
sensor element on two different samples. The brownish parts are areas of processed
photoresist, the bright areas correspond to areas of varnish-free gold areas. The element
structures are well developed. III.D to III.E Isometric 3D CLSM images of the surface
topography of three 4-Fr sensor elements of two different samples. The structures are
all well defined, the surface is rough ranging between 0.74 to 1.84 μm of average
roughness. In III.G to III.K, the corresponding line profiles along the white arrows
indicated within the surface topography images are presented. Here, strong fluctuations
due to the increased surface roughness are observable. The frames and the centre plates
have a height of 23 to 31 μm. In III.G, the photoresist is partly removed, for which
reason the frame height changes from 23 to 18 μm. In III.G, the alternating structures
of the spring slopes can still be well observed. Overall, the membrane was etched by
about 15 μm.
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Figure 3.23: Sixth to eigth fabrication step: IV.A PDMS frame after moulding in a teflon mold
(white box), heat treatment for 24 h at 65◦C and unmoulding of the transparent
10x10x5 mm boxes.. IV.B PDMS frames glued to PDMS sensor membranes after
RIE process before detachment from the Si substrate. IV.C Detachment of the final
product (bottom left) from the Si wafer in warm DMSO. IV.D Sensor boxes: Struc-
tured and Au coated PDMS membranes lying on their PDMS frames.

in photoresist thickness as shown above. This roughness is also observable in the line profiles

III.G to III.K, where there are fluctuations of up to 5 μm along areas of one level. Here, the broad

columns represent the frame structures, that have a height of about 23 to 26 μm, just like the

centre plate and the spring slopes. These roughnesses are due to the remaining photoresist and the

necessary long ICP-RIE treatment of the PDMS surface. The significant increase of the polymeric

surface roughness by plasma treatment has also been observed by others such as by Cvelbar et al.

This group plasma treated a graphite/polymer composite and by this, generated an increase of the

surface roughness of up to 15 times to four to five micrometers. [273]

In III.H, a smaller structure is included within the line profile at a length of 0 μm to 250 μm,

which is shown at the bottom left side in image III.B. This structure has an edge length of 500 μm,
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Figure 3.24: Final fabrication products: V.A 4-FR sensor element with an edge length of 1.0 mm.
The structure is well defined; the dark arc within the structure indicates a deformation
of the sensor membrane, which can also be observed within the 3D CLSM image as
yellow area in V.A1. The roughness of the gold surface of the frame is about 2.3 μm.
In V.A2, the line profile along the grey arrow is presented. The overall structure
height of the final product is 12 μm. The overall material thickness is 20 μm. The
curved profile btwenn a length of 750 to 1250 μm is due to the membrane deformation.
V.B-V.B2: Control sample to validate the structured PDMS layer and the etched
membrane thickness by means of a damaged sensor element. Here, the membrane is
partly ruptured after the lift off process and unsensitive handling. In V.B2, the line
profile of this sample is shown. The overall height of the frames and the centre plate
of this sample are 15 μm. The spring slopes are well-developed, but vary in height
between 9 μm to 15 μm.
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and the sensor arm spring slopes are not fully developed. In consequence, the contact plate was

processed with a final height of 21 μm, but there are no alternating structures observable between

the frame and the centre plate. In consequence, the dimensions of this element were not resolvable.

To generate free-hanging membranes, that can be handled without damaging the thin PDMS

structures, 10 x10 mm sized frames of PDMS were glued via PDMS to the sensor layer surface

as presented in figure 3.23. First, the frames were fabricated by means of teflon molds (IV.A)

and afterwards fixed to the undetached structured PDMS membranes (IV.B). The PDMS glue

was cured for 24 h and the final product was then detached from the substrate by removing the

protective layer in a bath of warm DMSO (IV.C). The cleansed sample was characterized by CLSM

as shown in figure 3.24. Here, a 1 mm sized 4-FR sensor element is presented in figure V.A having a

homogenous gold coating and a well-developed meander structure. The cracks within the frame are

well-known within PDMS micromaching. On the one hand, PDMS is sensitive to plasma treatment

and shows crack propagation during this process. On the other hand, PDMS and gold have different

material expansion coefficients. This causes crack propagations during heat treatment within the

curing processes and during solvent treatments. Due to these cracks, the average surface roughness

is about 2.3 μm. In accordance to the line profile (V.A2), the structure height after anisotropic

etching is about 12 μm. The parabolic course of the line profile between a length of 750 to 1250 μm

is due to a deformation within the membrane.

To validate the overall thickness of the etched and un-etched PDMS layer, a scrap product was

used (see V.B). Due to the relative measurements of the structure height via CLSM, the absolute

membrane thickness can only be measured by the determination of the distance between the upper

membrane surface lying in contact on the reference surface and a reference background, which is set

to zero height. In this case, the background corresponds to the sample plate surface positioned on

the CLSM. The membrane needs to be damaged to observe the plate surface like the one presented

in V.B, where the white areas correspond to holes in the membrane through which the plate surface

is observable.

The line profile along the white arrow indicated in image V.B1 was determined (see V.B2). The

frame columns on the right and the left side of the profile have an absolute height of about 15 μm.

The fluctuating peaks between these two columns correspond to the sensor element arms and the
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centre plate at a length of around 650 μm. The etched membrane thickness can be determined to

Figure 3.25: Reflectivitity testing of the
sensor surface: a laser
pointer (1) was pointed at
the surface of the gold
coated PDMS membrane
(2). The light is reflected
from the sensor membrane
surface to point (3).

about 3 μm. For future application, the PDMS sensor

boxes (see figure 3.23 IV.D) can be varied in height by

choice of appropriate frame molds. Furthermore, ad-

ditional surface functionalizations of the PDMS on the

top of the membranes can be run to control the cell

adhesion sites as described above.

The backside is gold coated, which is used for fur-

ther optical readout (see chapter 5). In figure 3.25, the

reflectivity of this surface is shown. Here, the general

reflectance was first tested by use of a red-light emitting

laser pointer (1), which was directed to the backside of

the PDMS sensor membrane (2). The intense red dot

at the wall (3) corresponds to the reflected laser light

and roughly outlines the adequate reflectance for the

purpose of this project.

3.5.4 Conclusion

Three different material fabrications were presented by which means biocompatible NiTi , a-Si and

PDMS sensor element arrays were fabricated.

The established process based on wet chemistry surface micromachining of superelastic NiTi

allowed for fabricating functional 4-FR sensor elements of 170 μm edge length in a 50 μm thick NiTi

foil. The achieved lateral resolution was 2 μm. By dry etching surface micromachining of a-Si on

a 400 μm glass substrate, the overall edge length could be reduced by over 70 % to 45 μm due to

a minimum lateral resolution of 1 μm. The release of the elements was made sure by a sacrificial

silicon dioxide layer.

Besides these solid-state based sensor structures, a first approach for the fabrication of soft material

based elements was developed to reduce material and fabrication costs compared to NiTi and a-Si
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processes. The procedure is based on dry etching bulk micromachining of 15 μm thick PDMS layers,

whereby structures of 1 mm edge length could be fabricated in high quality. The structures are

supported by a 3 μm thick PDMS membrane. Based on this first fabrication process attempt, future

sensor structures can be reduced to gold coated circles on a thin PDMS membrane instead of the

meander based sensor element structures, as the supporting sensor arm springs of the 4-FE design

can be replaced by the thin film PDMS membranes. By this, the overall dimension of one PDMS

sensor element can be optimized to a few micrometers in diameter of the gold circles.

Furthermore, the use of cross-linked PDMS opens the possibility of tuning the elasticity of

the sensor elements by changing the material monomers and cross-linkers as already shown else-

where. [257] [258]
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To improve the sensor performance, the structurally induced deviations from sensor to sensor resulting

in individual response in sensor output need to be removed by means of calibration. Here, the

structural errors are the difference between the expected and the real measured result such as force

or voltage, which repeatedly appear for each measurement. To record reliable and quantitative data

of high precision, it is therefore of central importance to find an appropriate calibration method for

a distinct sensor application. [274]

In the following chapter, a short insight into established calibration techniques for mechanical

force sensors as well as the theoretical background of atomic force microscopic (AFM) calibrations

are presented. Moreover, the calibration of the above discussed, fully functional NiTi and a-Si sensor

elements is described regarding their lateral (in-plane) and axial (out-of-plane) spring constants.

Finally, the results of these calibration methods are presented in comparison to the expected FEA

results.

4.1 Calibration Techniques

The calibration of the sensor elements is of crucial importance for the precision of the cell traction

force data. The higher the lack of precision of this calibration method, the higher the error of the

3D force data.

In this project, a suitable parameter to determine the traction forces based on the sensor element

deformation is the spring constant of the sensor element for each direction in space. Here, the

actual spring constant for each element needs to be determined by a well-defined, non-destructive,

reproducible and mechanical method that suits the geometrical dimensions and material proper-
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ties. Different potential methods were taken into consideration such as vibrometer measurements,

indentation and atomic force microscopy (AFM).

Nano-and pico-indentation are today well established techniques in material testing that are based

on the early work of Friedrich Mohs in the 19th century. [275] He defined a scale, the Mohs scale, of

ten materials with a certain hardness, which were used to validate the hardness of random materials

based on their indentation and scratch behavior.

This method was optimized throughout the years and today, indentation is used to measure

material properties down to Å resolution. [276] Here, a calibrated tip such as the well established

Berkovich tip, a three-sided pyramidal diamond indenter with a tip diameter of down to an atom,

approaches the surface of the sample. When the indenter is in contact, the force is increased linearly

and the tip indents in the sample surface. After a user-defined dwell time, the indenter is entirely

retracted. During this procedure, load-displacement curves are recorded parallel to the contact area

of the indented tip. The curves are then basis to the determination of mechanical properties such

as hardness, elastic modulus or plastic flow properties. [277]

Ying et al. used a commercial indenter to calibrate the out-of-plane spring constants of rectangular

cantilevers. [278] Here, low loads were used, for which reason the diamond tip just deformed the

cantilever, but did not indent into the AFM cantilever surface. In that way, the slope of the load-

displacement curves corresponds to the spring constant of the cantilever. The uncertainty of the

spring constant with this method was determined to less than 10 %.

For that reason, 4-FE NiTi sensor elements (see chapter 2, table 2.2) were tested via nano-and

picoindentation by Hysitron/ Bruker in vacuum, in the course of this project. However, the spring

constants were too low for nanoindentation suffering from a high noise-level within this method. In

picoindentation, the elements were too compliant especially in-plane, so that forces could not exactly

be resolved for one element, but was a combination of elements of one array. Hence, this method

was not suitable for this project, too.

Another well established technique for the determination of the spring constants and resonance

frequency are vibrometer measurements. [279] [280] Here, a laser beam is directed to the back of

the cantilever, passing an interferometric system and the vibrational fourier transformed spectrum

is measured. The spectrum is then analyzed regarding the resonance frequency and hence, the
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stiffness of the cantilever. The accuracy and precision of this technique is limited by the size and

shape of most cantilevers with an uncertainty that ranges in ±5 %. [279] However, this method is

just suitable for the calibration of out-of-plane spring constants, on the one hand. And on the other

hand, the dimensions of the sensor element arrays fabricated within this project were not suitable to

commercially available settings without further severe modifications that could have caused damage

of the array plates.

A very powerful and well established analytical method working in small scales and with low loads

is atomic force microscopy (AFM). In the course of this project, AFM has proven to be the only

possible and currently available method to determine the axial and lateral spring constants of the

fabricated sensor elements. For that reason, this method will be presented in more detail in the

following.

4.2 AFM

Since its introduction by Binnig, Quate and Gerber in 1986, AFM has grown to a universal tool to

image surfaces down to the atomic scale or measuring interacting forces down to sub nanonewton

range for versatile analysis in physics, chemistry, biology or engineering. [281] [282] [283] [284] [285]

In general, it consists of three components: 1. a laser diode beam, 2. a cantilever, with or without

a tip at the end, which is fixed on a glass block and movable via a piezoelectric stage and 3. a

position sensitive quadrupole photodiode (PSPD). The laser beam is reflected from the back end of

the cantilever to the PSPD. A voltage signal is detected depending on the deflection of the cantilever

or rather the corresponding position of the reflected laser beam on the PSPD. At the beginning of

each experiment, the beam is adjusted on an unbent cantilever with 0 V detected by the PSPD.

Two types of AFM Measurements are distinguished: 1. imaging and 2. spectroscopy. In imaging

measurements of sample surfaces, the cantilever is deflected by means of unevennesses on the surface,

while in spectroscopy, forces between the cantilever and the sample are recorded by force cruves. In

both cases, the cantilever is deflected and the beam spot moves on the PSPD. Hence, the voltage

signal changes depending on the cantilever deflection. When the spring constant and the sensitivity

of the cantilever are known, the electrical signal can directly be correlated with a certain height
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(imaging) that is to say a force (spectroscopy).

The accuracy of these measured results strongly depends on the precision of the calibration method

of the cantilever spring constant. Various statical and dynamical techniques for the determination

of the out-of-plane (kz) and in-plane (kx,y) spring constants were published within the last decades,

well described and compared by Palacio et al in 2010. [286] In the course of this project, the lateral and

axial calibration methods presented in the following sections were first used to calibrate the spring

constants of rectangular reference cantilevers. In a second step, the sensor elements described in

chapter 3 were calibrated by use of the calibrated reference cantilevers.

4.2.1 Axial Force Measurements

Regarding nominal spring constants, Senden et al. developed the method of an inverted loaded

cantilever, in which a particle is glued to the cantilever end and the resulting deflection of the

inverted cantilever is measured. [287] A major drawback is the possibility of braking the cantilever, on

the one hand and on the other hand, the cantilever is modified by this procedure. The dynamical

pendant of this method was published by Cleveland et al. in 1993. [288] Here, several particles are

attached to the cantilever end and set into motion to determine its resonance frequency. In addition

to the difficulties described by Senden et al., the method by Cleveland suffers from an uncertainty

of the particle positions and sizes on the lever, which cause significant errors.

A rather exotic technique was developed by Butt et al., [289] in which a cantilever tip is pushed

against a pendulum and the spring constant is then calculated based on the resulting displacements

of the pendulum and the tip. However, there is a high risk of damaging the cantilever by this method

and moreover, a suitable pendulum setup as well as its additional calibration is needed. For that

reason, this technique has never grown importance.

A more well established and frequency based method was introduced by Sader in 1995 for rect-

angular cantilevers. [290] [291] In this dynamic calibration procedure, the cantilever is tuned measuring

the resonance frequency and the quality factor in vacuum. Knowing the cantilever thickness, den-

sity and mass, the spring constant can than be determined. Although this technique is comparably

simple, it has to be corrected for liquid environments by considering the Reynolds number as well

as the hydrodynamic equation and it suffers from inaccuracies of the geometrical dimensions of the
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cantilever.

Today, the most widespread method is the thermal noise method first published by Hutter and

Bechhoefer. [292] It is based on the approximation of a cantilever as an ideal spring that follows the

equipartition theorem. In consequence, the nominal spring constant is direct proportional to the

temperature and the thermal fluctuations are measured to determine the axial spring constant. By

means of additional correction factors, the non-harmonic behavior of the cantilever is taken into

consideration. In general, this rather simple technique is very accurate for soft cantilevers with an

uncertainty ranging between 5 to 10 %. [293] Hence, it was applied in the course of this project to

calibrate the reference cantilever used for further calibration of the sensor elements.

Then, the axial spring constant calibration of the sensor elements was run by a classical static

calibration method based on the work of Ruan et al. [294] Here, a calibrated reference cantilever is

approached to the surface of the sample and afterwards, the probe or the cantilever is moved, so

the deflection of the reference cantilever can be detected. A schematic setting for this calibration is

Figure 4.1: Schematic presentation of the axial calibration of the sensor element spring constant (A)
by AFM measurements. The deflection of the cantilever is sensed by a photodiode laser
beam. The displacement of the laser spot on a position-sensitive photodiode (PSPD)
corresponds to a change in voltage, which is proportional to a force. The resulting
AFM measurement is shown in A1. Here, the approach of the cantilever to the sample
surface is described by the green curve. At 0.12 μm (piezo position), the cantilever jumps
into contact with the sensor element surface and is afterwards slightly deflected with
further approach of the cantilever towards the sensor element plate. When retracting the
cantilever, the sensor-cantilever interaction causes an intense deflection of the cantilever.
Consequently, the jump out of contact here is reached at a piezo position of 0.38 μm.
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presented in figure 4.1 A. Here, a reference cantilever with a tip radius of 10 nm is approached

to the centre plate of one 4-FR sensor element with a diameter of 5 μm (see figure 4.1, A) within

a 5 x 5 sensor array and its deflection is recorded. The resulting raw data are shown in figure 4.1

A1. The approach of the cantilever is depicted as a green curve. At a piezo position of 0.12 μm,

the cantilever jumps into contact with the sensor element surface. In general, this jump depends on

the surface properties of the sample. In this case, the sensor element is free-standing and very soft,

wherefore the interactions between the element surface and the cantilever right before the jump into

contact can cause an out-of-plane deformation of the element towards the cantilever tip. Hence, the

overall deflection of the cantilever in case of the jump into contact appears to be small. Afterwards,

the vertical deflection of the reference cantilever increases just slightly. Then, the cantilever is

retracted. Due to the high deformability of the sensor element based on its nanometer thickness

and low Young’s modulus, the interaction between the cantilever and sensor element seem to be

stronger than the restoring moment of the sensor element. Hence, the contact between the lever

and the element remains up to a piezo position of 375 nm before the cantilever jumps back to its

original position.

The lateral spring constant kz of each sensor element can than easily be determined via the slope of

the curve. Here, the positioning of the tip on top of the element centre plate is of central importance

regarding the uncertainty of the calibration which was estimated to about 8 to 9 % by Clifford et

al. [295] Besides of the fact that the AFM based calibration method is the only available method,

the major benefit of this method is its simplicity and simple implementation within the AFM. As a

result, this technique is conform with the project aspiration of easy handling, low complexity and

cost-efficiency.

4.2.2 Lateral Force Measurements

The determination of the lateral spring constant has grown importance with an increasing interest

in molecular level surface frictional behavior for soft and hard material surfaces. Hence, a diver-

sity of techniques were developed to calibrate the levers for advanced friction force measurements,

summarized and compared in different review articles. [296] [286] [297]

Regarding dynamical methods for in-plane spring constant calibrations, Green et al. published
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two approaches, which are based on the procedures by Sader, Senden and Cleveland et al. for axial

spring constants. [298] The first attempt is based on particles that are glued to the cantilever and

its resonance frequency is recorded. In the second one, the resonance frequency, quality factor and

the dimensions of the cantilever are measured. Besides of the disadvantages already mentioned for

the Senden and Cleveland method, the major drawback of these methods is that the lateral spring

constant is indirectly determined via the torsional spring constants, wherefore the results suffer from

uncertainties.

Static calibration methods are e.g. based on 1. Lorentz force measurements introduced by Jeon et

al., [299] 2. the use of electrical nanobalance platforms by Cumpson et al., [300] 3. twist measurements

of the cantilever when deflected perpendicular by a reference cantilever with a spherical tip used by

Ecke et al., [301] 4. angular deflection measurements of the cantilever when attached to a lever with

a sphere and fibre glass by Feiler et al., [302] 5. hysteresis measurements of compliance and tilts

of a cantilever with a spherical tip by Stiernstedt et al. [303]and 6. scanning of a micropippette by

Anderson et al. [304] or rather via an edge by Gao et al. [305]

Two of the more well established techniques are first, the axial sliding method developed by Ruan

and Bhushan. [294] Here, the precise cantilever length and tip height are needed to calculate the

spring constant based on the recorded height changes of the piezo during the sliding process of

the cantilever over a rigid surface. The second very well-known and widespread technique was first

introduced by Ogletree et al. using a wedge as a standard made of SrTiO3 or Si. [306] So, the

cantilever is scanned over the standard that possesses two well-defined slopes. By knowing one

angle of the wedge and the normal force, the friction force and in-plane spring constant can than be

determined. A variation of this method was offered by Varenberg et al. [307] and Wang et al. [308] [297]

using a grating instead of a wedge. By this, the friction can be measured on a flat surface for tips

with a large radius. However, this method lacks in accuracy due to the dependence on a well-shaped

standard, an adequate computational method and pull-off forces during the scanning process that

influence the friction force results. In consequence, inaccuracies as high as 10 to 20 % are most

probable for optimized settings. [309]

In 2006, Li et al. published a direct calibration method at small length scales based on a diamag-

netic levitation spring. [310] The accuracy of this method was reported to be as good as 0.1 % and was
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proofed to offer significant advantages compared to the well established wedge technique. [286] [311]

Consequently, this technique has been chosen for the calibration of the lateral spring constants of

the sensor element.

A schematic illustration of the used diamagnetic lateral force calibrator (D-LFC) according to Li

et al. is shown in figure 4.2 A in side- (top) and top-view (bottom). Here, a rigid mica platelet

is glued to a pyrolytic graphite plate (PGP), which is a sheet of parallel graphite layers. The PGP

of mass m is positioned on the top of four NdFeB magnets. In general, the PG is a representative

of diamagnetic materials with a strong anisotropic susceptibility, for which reason the out-of-plane

susceptibility is much higher than in-plane. This anisotropic behavior is the reason why the gravity

force is balanced in the magnetic field of the NdFeB magnetic cubes and the PG floats several

millimeters above the magnets. By this, a levitation spring (LS) system is created which has a very

Figure 4.2: Schematic presentation of the D-LFC setting to calibrate the pyrolytic graphite plate
(A) (modified from Q. Li et al, Lateral force calibration of an atomic force microscope
with a diamagnetic levitation spring system, Review of Scientific Instruments 77, 065105
(2006) with the permission of AIP Publishing). A pyrolytic graphite sheet is glued on a
mica sheet and positioned on a four-pole magnetic field. The space between the graphite
plate (PGP) and the magnets behaves as a diamagnetic leviation spring. A1 Setting
of A within the calibration setup for the levitation spring with a mass m of 31.4 mg.
A laser diode beam is directed on one edge of the quadratic plate and reflected to a
position-sensitive photodiode. A2 Damped oscillation of the graphite plate moved in
direction of the white arrow. Here the frequency of the graphite plate was determined
to about 5 Hz.
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small spring constant kLS . To calibrate kLS , the PGP is first weighed and then tuned in a la-

ser-displacement-tracer (see figure 4.2 A1). Here, a laser diode beam is directed to one edge of

the PGP (red light coming from left). Then, the platelet is displaced along the white arrow and

set into oscillation. During this damped motion, the part of the laser beam blocked by the PGP

changes, which is recorded by a position-sensitive photodiode (PSPD) via the change in intensity.

The resulting time-displacement diagram is shown in figure 4.2 A2. Fourier transformation finally

leads to the resonance frequency νLS of the spring, which is about 5Hz in this example. Based on

the definition of the angular frequency ωLS = νLS
2π , the spring constant kLS can then be determined

by kLS = ω2
LS ∙m (here, it is 19.4 nN/mm). Afterwards, the sensitivity of the cantilever for further

characterization of the sensor elements is calibrated as presented schematically in figure 4.3 B. The

cantilever tip is positioned in the centre of the PGP at a constant normal load and the AFM is run

in scanning mode along the same scan line. The real setting is shown in figure 4.3 B1 indicating

the magnets, the levitating spring and the AFM head hosting the cantilever. As presented in figure

Figure 4.3: Lateral calibration procedure of the reference cantilever in sideview. B Schematic illus-
tration of the setting according to Li et al. (see figure 4.2 A). A cantilever with an AFM
tip is positioned on the centre of the calibrated PGP. A laser diode beam is directed on
top of the cantilever and its movement is registered via a position-sensitive quadrupole
photodiode (PSPD). The cantilever is moved in scan mode, so that the PGP is laterally
displaced in x,y direction from its original position. B1 Real setting in sideview including
the AFM head with a laserdiode on top of the calibration setting. In the inset box, the
magnets, the levitating PGP and the cantilever chip are shown (image modified from L.
Wiegleb, Kalibration eines Rasterkraftmikroskops für Reibungsmessnungen, Bachelorar-
beit, TU München, Zentralinstitut für Medizintechnik, July, the 11th, 2011 with kind
permission of Prof. Hugel). B2 Resulting scan curves over 20 scans in plane. Here, the
out-of-plane resonance frequency fz, the sensitivity out-of-plane (z) as well as in-plane
(x,y) and the crosstalk in-plane for the reference cantilever are presented. Here, the
lateral signal corresponds to the PSPD signal.
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4.3 B2, the PSPD signal is recorded depending on the scan range, which corresponds to the lateral

displacement of the cantilever. Here, 20 scans were run for a more precise result. This displacement

is the sum of the displacement of the levitation spring and of the tip. The displacement of the tip is

based on its twist, which is in the range of a few nanometer, while the spring displacement ΔxLS is

in the order of several micrometer. Hence, the tip displacement is negligible. The lateral force can

then be calculated by fLF = kLS ∙ΔxLS .

During this procedure, the friction between the tip and the PGP surface needs to be ensured by

the correct choice of the scan distance which corresponds to a linear ratio between the PSPD signal

and the displacement. Sliding would cause a severe corruption of the calibration results.

The lateral sensitivity is finally determined by the spring constant and the inverse slope of the scan

line:

sensitivitylateral = kLS ∙ slope−1 (4.1)

The lateral crosstalk of this setting caused by a a deformation out-of-plane during the bending

process is small compared to its sensitivities as shown in in figure 4.3 B2 and hence can also be

neglected.

Finally, the reference cantilever is used to determine the spring constants of the sensor elements

by displacing the centre plate at a constant normal force based on the known sensitivity of the

cantilever. The exact procedures are presented in the following.

4.3 Materials and Methods

4.3.1 Axial Spring Constant Calibration

Axial force constant measurements were carried out by means of AFM force spectroscopy (NanoWiz-

ard 3, JPK R© Instruments AG, Berlin, Deutschland) using a gold-coated cantilever with tetrahedral tip

(NT-MDT, CSG 11, k= 0.0143 N/m, sensitivity= 71.59 nm/V). To ensure maximum accuracy, the

cantilever was calibrated four times based on the JPK software implemented thermal noise method

and the average value of the spring constant and the sensitivity were used within the following force

spectroscopic measurements.
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Three 4-armed free-standing 4-FE NiTi sensors of the same size (see chapter 2: 170 μm edge

length, 200 nm thickness, fabricated by AQUANDAS R©, Kiel) as well as three of the smallest (4-FR-

1B, 4-FR-2A, DSR-4A, 3-AR-5A) and the biggest (4-FR-1E, 4-FR-2E, DSR-4E, 3-AR-5E) sensors of

each a-Si sensor design were analyzed after approaching the cantilever to the surface of each sensor

centre. Here, a setpoint of 5 nN has been chosen, for better comparison between the different sensor

designs and the FEA results, and 20 force curves were recorded for every sensor. Using the JPK

postprocessing software, the force constants were determined by a software implemented sample-to-

tip correction, fitting a linear fit to each retract curve and averaging the resulting force constants

for each sensor design and material. The averaged results for each sensor element design and size

are listed in table 4.1 and 4.2.

4.3.2 Lateral Spring Constant Calibration

The calibration of the reference cantilever by D-LFC and of the sensor elements was performed by

me in the course of a cooperation with kind support by MSc Sofia Brander, MSc Joanna Urban and

Dr. Doreen Schütze in he laboratories of the group of Prof.Dr. Hugel at the Institute for Physical

Chemistry (University of Freiburg).

D-LFC was used to calibrate the lateral force constant of the reference cantilevers for further cal-

ibration of the sensor elements listed above. First, a square-shaped graphite platelet was weighed

(m=16.1 mg) and positioned on the centre of four cubic NdFeB magnets as shown in figure 4.2 A.

The setting of the calibration of the diamagnetic levitation spring is shown in figure 4.4. The laser

beam was adjusted to one edge of the platelet, so the shadow of the platelet was set to the middle

of the photodiode. After starting the self-written D-LFC LabView program, the graphite sheet was

set into oscillation manually and the damped oscillations were recorded directly by the software. By

means of an FFT and Gaussian fit run in IGOR 6.36, the force constants and resonance frequen-

cies of the graphite platelet were determined and averaged to: kgraphite=0.03 ± 0.007 N/m and

fgraphite=4.94 ±0.057 Hz.

The magnetic unit and the graphite platelet were transferred to the AFM (Asylum Research R©,

MFP, Great Britain). To calibrate the reference cantilever (μ-Mash, HQ:NSC36/AL BS, Bul-

garia), the axial spring constant was first determined as described in the previous paragraph:
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kcantilever,axial=1.58± 0.007 N/m and sensitivity cantilever,axial=78.50 nm/V. Then, the cantilever was

approached to the graphite surface as shown in figure 4.3 B and a scan in contact mode was

performed for a series of 68 lines. Based on the scan results and the D-LFC software, the lat-

eral sensitivity of the cantilever was determined to: sensitivity cantilever,lateral= 1.15± 0.0056 mN/V

(crosstalkcantilever=8.13 ∙ 10-12N/V). In the following, the D-LFC calibration unit was exchanged by

the sensor plates and the sensitivity was set in the calibration software. Here, the three representa-

tives of the same sensor element types as for the axial spring constant determinations were analyzed.

The cantilever was approached to the sensor centre plate and the lateral displacement of the sensors

was initialized by scans in contact mode. The resulting voltage-to-displacement curves were then

analyzed in Origin R© to determine the average lateral spring constants for each sensor element type.

Figure 4.4: Picture of the real laser-displacement-tracer setting used for the calibration of the py-
rolytic graphite plate (PGP) with all components as indicated. A red laser diode beam
(600 nm) is directed on one edge of the levitation load cell, which blocks the beam until
its set into oscillation. The alternating intensity of the beam is then recorded via the
position sensitive photodiode (PSPD), converted into an electrical signal that was ampli-
fied by an amplifier circuit before being recorded by a LabView based computer software.
The correct positioning of the D-LFC setting towards the laser beam is ensured by a
y,z- translational stage (image modified from L. Wiegleb, Kalibration eines Rasterkraft-
mikroskops für Reibungsmessnungen, Bachelorarbeit, TU München, Zentralinstitut für
Medizintechnik, July, the 11th, 2011 with kind permission of Prof. Hugel).
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4.4 Results and Discussion

Three different sensor elements of each of the nine designs (see table 4.1) were calibrated out-

of-plane by the axial cantilever to element and in-plane by the D-LFC method. Two exemplary,

processed AFM results for axial spring constant calibrations of the two sensor element types 4-FE

and 4-FR are presented in figure 4.5. In figure 4.5 A, the AFM cantilever deflection-distance curves

of the membrane based 4-FE NiTi sensor element with an edge length of 170 μm are shown. As

described above, the high elasticity of the element causes a small jump into contact at about 5 nm

as seen in the approach curve and higher deflection values at small distances when retracting the

cantilever due to deformations of the sensor element out-of-plane. After a travel path of the piezo

of 450 nm, the cantilever loses contact to the element centre plate and jumps back to its original

position. With regard to sensor element 4-FR with an edge length of 45 μm, the same observation

like for element type 4-FE are made. In addition, there are vibrations in the curves, which could be

caused by stresses within the material. Another, more suitable reason is the similarity of the spring

constants between the reference cantilever and the sensor element. To determine the stiffness of

the sensor elements, a slope was plotted to the linear region of the retraction curves (red line). By

considering the spring constant of the reference cantilever with a spring constant of 0.0149 N/m,

the spring constant of the sensor element could be determined to 0.012 N/m. In consequence, the

reference cantilever experiences a higher counterforce than by sensor element type 4-FE, which has

spring constant of 0.004±0.0004 N/m.

The slopes of the AFM curves for element type 4-FR are three times higher than for 4-FE. A

difference in stiffness has already been observed within the FEA results with numerically determined

axial spring constants of 0.098 N/M for element type 4-FR and 0.0065 N/m vor 4-FE. This is caused

by the sensor element design.

Lateral spring constants were determined via the D-LFC method. Here, the calibrated cantilever is

approached to the middle of the sensor element centre plate and then run in scan mode to displace

the the sensor element from its origin in a defined scan range. The procedure is exemplarily shown in

figure 4.6 for a 4-FE NiTi sensor element. The cantilever is moved along the blue arrow by 700 nm

(figure 4.5 A). This movement can directly be observed via the deformation of the upper spring
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Figure 4.5: Exemplary processed AFM curves to calibrate the spring constant of: AMembrane based
NiTi 4-FE sensor element with an edge length of 170 μm and B an a-Si 4-FR sensor
structure with an edge length of 45 μm. Both curves show a small jump into contact
(see inset boxes) due to the deformability of the elements out-of-plane. The slope of the
retract curve (blue line) for 4-FE is three times higher than for 4-FR, which is directly
proportional to its spring constant. Note the difference of the scales for A and B.

arm as marked by the opening tilt between the two orange lines lengthening the two spring slopes.

The result of 20 scans is presented in figure 4.6 A2. The scans are entirely reproducible, wherefore
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the slopes of the different scans are nearly the same. The slope is directly proportional to the spring

constant considering the spring constant of the cantilever. Here, kx,y is 0.087±0.0008 N/m, which

corresponds to an uncertainty of 0.9 % based on the fitting analysis of the scan results. Due to

the imprecision in the determination of the spring constant of the levitation spring of 0.007 N/m,

of the sensitivity of the reference cantilever of 5.6 ∙ 10−6 N/V and of the fitting deviation for the

determination of the sensor element spring constant, the overall Gaussian distribution width Δkx

is 1.04 ∙ 10−6 N/m, which is 0.001 %. However, this method is based on the assumption that the

scan range or rather the cantilever displacement in-plane is several orders higher than the tilt of the

cantilever during the scan process according to Li et al.

Within these experiments, the scan range had to be reduced to displacements below 1 μm to

ensure the friction between the cantilever and the sensor element surface, while avoiding sliding.

Hence, all data were analyzed regarding the influence of a cantilever tilt that was determined by

scanning the cantilever on a rigid surface.

Figure 4.6: Determination of the lateral spring constant of a 4-SE sensor element by lateral displace-
ment of the centre plate via a rectangular cantilever with a tip. The displacement was
700 nm along the blue arrow as indicated in image A. The displacement of the sensor
element can be observed via the upper spring as marked by the blue circle. Here, the
opening angle (see two orange lines) was increased from a parallel positioning to about
5 degree (see A1). In A2, the result over 20 scans is presented. Via the slope of the
scan lines, the lateral spring constant could be calculated to 0.087 N/m. The standard
deviation of 0.0008 N/m just reflects the error caused by the fitting analysis over 20
scans.

To find the maximum possible tilt, a high force and small scan range between 10 and 50 nm was

chosen in the software, so the cantilever was tilted and not moved. The tilt was then extracted via
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the slope of the scan results and the corresponding voltage range. In this experiment, the slope is

3.43 mV/nm and the voltage range is 17,5 mV. Hence, the tilt was 5.10 nm. Based on the results,

all displacement signals were corrected by the corresponding tilt and a final average deviation of

the spring constant of about 1 % caused by the tilt has been determined. So in general, an overall

inaccuracy of 1.001 % has to be considered for all results in this calibration method before the

determination of the final spring constant of the sensor elements by the fitting procedure.

In the following table 4.1, the results for nine sensor elements regarding the experimentally de-

termined lateral and axial spring constants kx and kz as well as the corresponding FEA results are

summarized. Each of the experimental results corresponds to the average over three different sensor

elements of the same type with twenty scans on each element. The deviation just includes the

standard deviation due to the fitting procedure to calculate the spring constant.

In first part of table 4.1, the smallest and biggest fully producible a-Si based 4-FE sensor elements

are summarized (see figure 3.14 as well). The lateral spring constant of the 4-FR-1B element is in

the order of the theoretically simulated results with 1.95 N/m. While for 4-FR-1E, kx is 28.9 N/m

and by this, varies by a factor of about 5 compared to the FEA results. As already described in

chapter 3, this sensor element design suffered from a lack of space between the spring arm slopes,

wherefore residues of the sacrificial Si layer remained between the slopes and hence, the movability

of the sensor in-plane appears to be rather arbitrary. The axial spring constant was again in good

agreement with the theoretically expected value of 0.048 (experimental) to 0.017 N/m (FEA).

On the opposite, the experimentally determined value of kx of the smallest favoured design 4-FR-2A

is in very good agreement with the simulated data of about 4.7 to 4.9 N/m, while the experimentally

determined value of kz proves to be in the same magnitude like the corresponding FEA results. For

the bigger design version 4-FR-2E, the in-plane spring constant was found to be slightly higher than

for 4-FR-2A as supposed by the FEA data. The experimentally determined axial spring constant is

the same like for the smaller 4-FR design 2A, although it should be about ten times lower according

to the simulation results. Hence, these elements seem to be modified in their mechanical behavior

by residues of the sacrificial layer just like the 4-FR-1E sensor elements.

In the second part of table 4.1, three more sensor element types and their corresponding lateral

and axial stiffness are presented. The design types DSR and 3-AR are representatives of two and
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three armed sensor element types that were chosen to analyze the strength or weaknesses of the

mechanical calibration methods for sensor types that possess a lower symmetry than the four armed

designs, which are fully symmetrical. Regarding the smaller element type DSR-4A with a diameter of

15 μm the in-plane spring constant is in good agreement with the FEA data, but the axial stiffness

is ten times lower than expected with 0.016 N/m instead of 0.13 N/m. The same result can be

found for the three times bigger design DSR-4E, whose in-plane spring constant is about ten times

higher than for DSR-4A with 6.64 N/m and differs from the theoretical result by a factor of 1.3.

However, the out-of-plane stiffness is about double the amount that was expected via FEA with

0.021 N/m instead of 0.009 N/m. These deviations between FEA simulation and experiment are

even more obvious for the three armed design 3-AR. For 3-AR-5A with a diameter of about 30 μm,

kx is 0.26 N/m instead of the FEA based result of 3.52 N/m. This might be most possibly due to a

slight difference in the displacement direction caused by the setting. Especially for the small designs,

it was a challenging task to accurately position the sensor element along the x, y-axis as indicated in

table 4.1 for design 4-FR-1B. Consequently, the lower symmetric design is strongly prone for small

variations of in-plane deformation directions. The out-of-plane spring constant is five times smaller

than expected. For 3-AR-5E, the theoretical and experimental lateral spring constant match, while

the axial spring constant is twice as high as the value predicted by FEA. As the out-of-plane spring

constants are in the same range, it appears to be highly probable that here again, residues of the

sacrificial layer are left that strongly influence the mechanical element behavior in this direction.

Finally, the above mentioned NiTi design 4-FE was calibrated. In this case, all spring constants are

in very good agreement with the theoretically predicted data. So, the lateral spring constant was de-

termined to 0.087 N/m instead of the expected value of 0.054 N/m, while of out-of-plane the lowest

spring constant was sensed with 0.004 N/m compared to a theoretical constant of 0.0065 N/m.

Overall, these results point out that the theoretical assumption of a linear elastic behavior of the

elements in this displacement range is suitable. In consequence, the FEA results proved to be reliable.

Furthermore, the in-plane calibration via a reference cantilever is suitable for fully symmetric designs,

but would need to be optimized for less symmetric designs like shown for the three armed 3-AR

element type. Regarding the axial spring constant determination, the choice of a suitable reference

cantilever is fundamental to the reliability of the spring constant determination. This method holds
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some inaccuracies by the exact positioning of the reference cantilever or a high difference in spring

constants between the cantilever and the sensor element. Here, especially the remaining grinds of

the sacrificial layer caused the biggest influence in an accurate determination of kz. Nevertheless,

the AFM based calibration technique is the simplest on the calibration market and currently the

only possible method for the calibration of the sensor elements. For future applications, the sensor

elements should be implemented in a surrounding which is compatible to commercial vibrometer

settings to calculate the spring constants via non-contact methods such as thermal noise.

Within this thesis, the D-LFC based calibration method was for the first time successfully used to

calibrate MEMS like structures. The results are most promising with a captivating precision of about

1 % for the determination of the reference cantilever spring constant. Regarding a future application

of the sensor system conceptualized within this project, the overall effort for this three step lateral

calibration of the sensor elements is however high and also depends on the accuracy of additional

calibration settings like the laser-displacement-tracer setting.

In the future, another simple method for the determination of the spring constants that was not

available in the course of this thesis might be useful. This method was first published by Dziekonski

et al. in 2017. Since 2018, it is a patented, commercially available, precise and direct method based

on MEMS micro-force sensors used for the determination of in-plane spring constants, which has an

inaccuracy of about 2 %. [312] [313] By this, the overall calibration time and effort could be reduced

significantly for future high-throughput measurements.
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The concept of the cell force sensing method based on the sensor elements fabricated, characterized

and calibrated as described in chapters 2 to 4 uses the three dimensional displacement detection of

the element centre plate to sense the cell traction forces. In this project part of the microsensor

system prototyping, an optical readout approach has been conceptualized and realized for optical

non-contact displacement sensing in three dimensions. The displacement is measured via changes

in light properties, recorded as electrical signals, digitally processed to then directly be correlated to

the effecting cell force via the determined spring constant of the sensor element. Here, a minimum

traction force resolution out-of-plane of down to 0.8 nN and in-plane of 17 nN were succesfully

determined within the applied settings.

To determine the most suitable methods that are both 1. sensitive to forces in the nanonewton

range i.e. nanometer displacements, 2. cost-efficient, 3. cell compatible, 4. easy in handling and

5. usable to measure forces in three dimensions, different techniques were taken into consideration.

Their fulfillment of the above listed requirements are analyzed and the most important methods are

summarized within this chapter.

The theoretical background regarding the chosen methods is furthermore presented, followed by

the materials and settings that were used and the final data for optical displacement detections in

x-, y- and z-direction are analyzed and discussed.
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5.1 Optical Methods for Displacement Sensing

Ever since the application of LiDAR (light detection and ranging) during the Apollo 13 mission in

the 1970s, the accuracy [314] and power of non-contact optical sensing methods has been shown

and established in a wide field of different everyday applications such as in 1. agriculture for plant

growth and structure development analysis, [315] 2. geophysics for the determination of topographies

and geo-spatial information [316], 3. urban traffic for parking assistance [317] and velocity control of

vehicles as well as 4. the alternative energy industry for the control of wind turbines [318] or 5. the

fast growing market of autonomous cars for obstacle detection. [319]

Besides of the rather long distance laser time-of-flight measurement technique in LiDAR ranging

between 0.2 to several hundreds of meters, [316] there is a number of additional methods that are

applied for shorter distances and precise displacement measurements, which are presented in several

reviews and are selectively and shortly introduced within this chapter. [320] [316] [321] [322] [323]

In general, optical displacement sensors are systems that sense the distance change between a

fixed sensor part and a moving object or between a fixed and a movable part of the same sensor via

a change in transmission, diffraction, scattering, reflection or absorption of a light beam. [321] By this,

further information like displacements can be determined. In the majority of optical displacement

sensors, a displaced sensor part is compared to a reference position detecting the variation of reflection

or transmission. Established techniques for distance and displacement sensing are: intensity-based

sensors, triangulation, time-of-flight sensors, confocal methods and interferometry. [322] The most

important techniques are summarized in table 5.1. regarding their resolution, accuracy, handling and

price region.

Intensity-based sensors were one of the first types of contact-free distance measurement methods

and are rather simple and cheap. [322] Here, a point light source illuminates the object and the light

intensity of the reflected light is then detected as a function of the distance between the object

and the detector. The light source and the detector are mostly fibre-optic based cost-efficient

components. [324] In some settings, the transmission is measured instead of the reflection intensity.

Today, very high resolutions of down to 0.01 μm for shiny objects can be measured, but intensity

changes caused by outer impacts are also detected as displacements, wherefore this method is very
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inaccurate. [325] [321]

Table 5.1: Overview on established non-contact optical displacement measurement methods, their
corresponding sensitivities, resolution, a rating of the setting, the dimensions that can be
recorded simultaneously and the price region based on the cited literature. The techniques
listed beyond the double line are relevant for this work.

Method Resolution Accuracy Dimension Handling Price Literature

Confocal Laser
Scanning Micros-
copy (CLSM)

lower nm re-
gion

high 3D

simple,
software
needed,
time-inten-
se

high
[220] [219] [215]

[237] [238] [239]

Triangulation several μm high
1D, 2D,
3D

fast, simple
low
cost

[326] [327] [328]

Intensity-Based > 0.001 μm
very inaccu-
rate

1D simple cheap [329] [330] [325]

Time-of-Flight 0.1 x<400 m high 2D, 3D
simple
(commer-
cial)

high [320] [331] [332]

Displacement
Measuring Inter-
ferometry

pm to 1 m high
1D, 2D,
3D

complex high [333] [334]

DHM

experimental:
nm range
(commercial:
> 150 pm)

experimental:
> 5 nm
(commercial:
> 300 pm)

3D

simple,
intense
compu-
tational
processing

low [335] [336] [337]

IC
nm range
(sub-pixel)

nm 2D, 3D

very simple,
easy imple-
mentation
in various
settings

low
[338] [339] [340]

[341]

Triangulation is a technique first used by the Greek mathematician Thales in 600 BC to calculate

the height of pyramides and the distance to ships on the ocean. [342] In this method, a laser spot

is directed on the sample surface and the scattered light is then focused on a position sensitive

detector (PSD). The known angle of incidence of the incoming beam, the angle of reflection or

rather the collection angle on the PSD and a baseline, which is the distance between the incoming
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beam and the focus of the scattered light, define a triangle. Finally, the coordinate of a certain

point on the sample surface can be calculated. The displacement of this point is correlated to a

change in the collecting angle equivalently detected via a shift on the PSD, wherefore this method

is also suitable for dynamic 3D measurements. [316] [321] [322] Commercial settings allow for distance

measurements between 100 mm to 1 m. [343] The resolution is depending on the laser beam size, the

pixel size of the PSD as well as the distance to the sample and can be as high as a few micrometer.

The handling is simple although sensitive to the setting parameters and the commercial settings are

low-cost. [327] [322]

Time-of-flight (tof) sensors are based on the emission of electromagnetic waves like light or

acoustic waves to an object and measuring the entire travel time of the wave during this procedure.

The distance is then determined by the one-way time-of-flight and the speed of light or rather the

speed of sound. [320] Current tof sensors use pulsed laser sources. To measure distances below 50 m,

the temporal pulse shape is measured to determine the pulse shift of the incoming and returned laser

pulses. This principle is e.g. used within radar and LiDAR sensors and allow for dynamic distance

measurements between 0.1 m and several hundreds of meters. [316] [344]

Confocal sensing was already describes in detail in section 3.3 (chapter 3). In general, the con-

focal setups offer high resolution in the nanometer range in all three spatial directions. Commercial

setups are easy to use and offer powerful image processing software tools to increase the precision

of the recorded data. Due to the scanning procedure that is used to reconstruct three dimensional

sample information via z stacking, and due to their processing time of at least a minute at a given

resolution for confocal white light microscopy and laser scanning microscopy, this 3D method is

suitable especially for static measurements. However, the sensitivity of the microsensor elements

developed in the course of this project and their displacement range in the nanometer region during

cell traction force sensing and their displacements need to be recorded dynamically, wherefore the

above described methods are not suitable.

In contrast, laser interferometry is the most powerful static and dynamic principle to determine

displacements in the sub-micron region. In literature, a variety of different techniques are known to

measure distances and displacements interferometrically. [345]

The most well-known prototype of displacement measuring interferometers is the Michelson inter-
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ferometer. Here, a coherent light beam partly passes through a beam splitter, while the other part

is reflected by 90◦. [346] [347]

Both beams encounter on the reflective surfaces of two mirrors and are reflected back to the

beam splitter, where the beams are superimposed in time and space. By installing one of the two

mirrors on a translational stage, one beam path length can be varied against the other. By this,

the phases of the two electromagnetic waves are delayed against each other: If they are in phase,

the amplitudes of the waves sum and constructive interference can be observed. If they are out of

phase, then destructive interference cause the extinguishing of the two waves. These constructive

and destructive interferences can be observed as fringes with high intensity (in phase) or as dark

spots (out of phase). By measuring the intensity changes, even very small optical and geometrical

path differences of the waves can be determined. The path difference in z-direction then corresponds

to half of the wavelength λ multiplied with the amount of occuring interference fringes N:

Δz =
λ

2
∙N (5.1)

The resolution of the Michelson interferometer therefore is directly proportional to half of the

wavelength of the laser. Today, subnanometer accuracies can be obtained using digital data process-

ing and acusto-optical light modulators. [348] However, these interferometers are cost-intensive and

sensitive towards outer impacts like temperature changes which influence the behavior of the optical

components, vibrations as well as pressure dependence of the medium. [346] [347]

In the course of the years, a diversity of other interferometric techniques that shall be just named

here has been developed such as multiple wavelength and scanning interferometry, [349] [350] optical

coherence tomography, [351] [352] speckle interferometry [353] or self-mixing interferometry. [354]

However, these interferometric settings are both very complex, highly interference-prone, too cost-

intensive, suffer from a lack of resolution and sensitivity to sub-micron displacements or do not open

the possibility for three dimensional displacement measurements.

A comparably simple setting based on the Michelson interferometric approach that offers the

possibility of sub-second fast, highly precise measurements of 3D geometries and displacements at

low costs was found to be digital holography that will be presented in the following.
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5.2 Digital Holography

In 1948, Dennis Gabor developed a method to record the entire field information consisting of

amplitude and phase or electron microscopy at once, for which he received the Nobel Prize in

1971. [355] This new principle of microscopy in terms of light today is known as holography, in which

the object beam wavefront first interferes with the reference beam wavefront creating an interference

pattern based on Fresnel diffraction, which is recorded on a photosensitive film. [356] The setting here

is comparable to the Michelson interferometer. In a second step, the so-called hologram is read

by illuminating it with the initial reference wavefront and by this, a three dimensional image of the

object is reconstructed. [357]

A major drawback of this technique was the time-consuming processing of the holograms recorded

analogously on photographic films or holography plates, wherefore holography stayed an inconvenient

method for most applications for several years. With the development of the first laser as a highly

coherent light source in the 1950s [358] and the production of chips and photosensitive sensors like

the charge coupled device (CCD) in the late 1960s, [359] holography experienced a scientific boost.

In 1967, Goodman et al. exchanged the photographic film by a CCD camera and used digital

filters to extract the complex information of amplitude and phase digitally for reconstruction of the

image instead of using a reference beam. [360] In 1994, Schnars et al. were able for the first time

to directly record digital holograms via a CCD sensor. [361] From now on, it was possible to directly

compare two or more wavefronts that were recorded at different times and meant the starting point

for today’s digital holography - a fast, scanning-free 3D microscopic imaging method suitable for

non-fluorescent, label-free samples. With the upcoming mass production of high-resolution CCD and

Complementary Metal Oxide Semiconductor (CMOS) sensors, a diversity of different digital recon-

struction methods were developed. [362] [363] [364] [365] [366] Nowadays, hologram reconstruction can be

run in real time due to constantly improved, powerful image processing algorithms in Graphics Pro-

cessing Units (GPU). [367] [368] [369] Hence, digital holography has developed to a distinct, independent

category in modern optics [370] and became an important tool in a variety of scientific and industrial

fields such as in biomedical and live cell imaging [371] [372] [373] [374] [375] [376] [357] [377], fluid mechan-

ics [378] [379] [380] [381], information security in optical data transmission [382], mechanical vibration anal-
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ysis [383] [384] [385], shape of MEMS [386] [387] [388] [389] [337] or displacement measurements. [390] [391] [392]

Due to its compact design, stability even in case of long working distances and high resolution,

Pedrini et al. recently implemented digital holography for long-term erosion measurements within

the International Thermonuclear Experimental Reactor (ITER) in southern France. [393]

Figure 5.1: Schematic beam path in an off-axis digital holography microscope (DHM). The setting
was used for recording out-of–plane as well as in-plane displacements by blocking the
reference beam. The laser light first passes through an iris to eliminate scattered light
and further shape the laser beam. The beam is then splitted into an objective and a
reference beam via a beam splitter (BS1). The objective beam is then focused on the
sample surface via the objective lens. The reflected light passes through the objective
lens once again, is then redirected via a second beam splitter (BS2) and a mirror (M4) to
a camera. The reference beam is set to a spatial and temporal overlap with the objective
beam via mirrors M1 and M2 positioned on a translational stage. The reference beam
is then launched with an angle to the objective beam directed on the camera via mirror
M3.

Here, the working distance between the inner reactor surface and the DHM objective is more

than 13 m and the researchers were able to ensure a depth accuracy of ± 10 μm. Hence, the DHM

has the potential for high stability at variable working distances with high accuracies, which is of

significance for future applications of the setting conceptualized in the course of this work. In general,
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the lateral resolution of DHM is comparable to this of light microscopy, but the axial resolution in

experimental settings was reported to be down to 5 nm. [336] [394] Current commercially available, but

expensive settings with very powerful algorithms in the reconstruction process allow for resolutions

in the subnanometer range with an accuracy of about 150 pm. [335]

A schematic illustration of a digital holography microscopic setup is presented in figure 5.1. A

coherent laser beam is divided via a beam splitter (BS1) into an objective and a reference beam.

The objective beam is focused via an objective lens with a well chosen numerical aperture (NA)

on the reflective sample surface. The reflected light is focused by the lens and redirected via a

semitransparent mirror (BS2) and the mirror M4 to the CCD camera. The reference beam is

overlapped in time and space via a mirror M3 with the objective beam on the camera chip surface.

To ensure temporal overlap, the reference wavefront can be delayed via a translational stage (TS).

Due to the entrance angle between the reference and the objective beam, this setting is a so-called

off-axis digital holography microscope (DHM), which was first proposed by Leith and Upatnieks in

1962. [395] It overcomes the general problems of in-line holography settings of an overlap between the

real image, a twin, virtual image, which corresponds to the reconstruction of an object field behind

the detector film, and the zero order diffraction distribution. By spatial modulations like adding

so-called carrier frequencies, these two images and the zero order diffraction can be separated in

space. [396] As the mathematical analysis of the holograms via algorithms is fundamental for digital

holography, the most important equations are introduced in the following, which are basis for writing

suitable algorithms. These equations are not discussed in all detail and not wished to be understood

by the reader in detail, but used to outline the complexity of the processes solved in the background

throughout all digital holography measurements.

The recorded hologram is digitally reconstructed as presented exemplarily for a NiTi 4-FE sensor

element in figure 5.2. First, the object is focused (figure 5.2.1). Then, the object and the reference

beam are overlapped in space and time till optimized to maximum contrast within the interference

pattern as shown within the inset box in figure 5.2.2. The intensity of the interference pattern

I(x, y) can then be described as: [397]

I(x, y) = |R(x, y)|2 + |O(x, y)|2 + O∗(x, y) ∙R(x, y) + O(x, y) ∙R∗(x, y) (5.2)
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Here, O(x, y) and R(x, y) describe the optical fields of the object beam (O) and the reference

beam (R). The terms |R(x, y)|2 and |O(x, y)|2 are autocorrelations and correspond to the zero

order distribution with the highest spatial frequencies of the object. The holographic interferogram,

which consists of N x N real pixels, is transferred to the spatial-frequency domain using a fast Fourier

transform.

Figure 5.2: Image recording and processing procedure in digital holography. 1 Laser light image of
a 4-FE NiTi sensor element 2 Holographic interferogram of the 4-FE sensor element
with optimized contrast of the interfering objective and reference beam. 3 Fourier
transformed image extracted via digital processing containing the real and virtual image
of the sensor element as well as the zero order diffraction in the centre of the image.
Each part of the image contains all information of the objective like phase or intensity. 4
Choice of region of interest (ROI) for further processing. 5 Phase angles for the chosen
ROI image. 6 Reconstruction of the real space of the phase angle image. 7 Phase
difference image calculated by the difference between an original image and a second
image after slight displacement of the sensor element in z-direction. 8 3D reconstructed
image of the displaced sensor element after phase correcting the phase difference image
via an unwrapping algorithm. To reduce computational time, the bottom spring has
been excluded from analysis as it does not influence the overall displacement result.

By this, the hologram is set to the complex space with a N x N complex matrix. O∗(x, y) ∙R(x, y)

then contains all information about the real image, while O(x, y) ∙R∗(x, y) describes the virtual

image. The functions marked with an asterisk are complex conjugate values of the object and
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reference optical fields. These two terms are half the amount of the zero order distribution, which

disturbs a proper reconstruction and therefore needs to be excluded in further processing. In figure

5.2.3, the spatial separation of the real image (upper right spot), the zero order diffraction (bright

spot in the centre of the image) and the virtual image are observable. For further analysis and

optimization of the reconstruction process, the real image is then cropped via a spatial filter choosing

the region of interest (ROI).

The hologram is directly proportional to the intensity of the interference pattern, with h(x, y) =

α ∙ I(x, y). For its reconstruction, its amplitude h(x,y) has to be multiplied with the complex ampli-

tude of the reference wavefront:

h(x, y) ∙R(x, y) = R(x, y) ∙α ∙ |R(x, y)|2 + R(x, y) ∙α ∙ |O(x, y)|2

+α ∙O∗(x, y) ∙R2(x, y) + α ∙O(x, y) ∙ |R(x, y)|2
(5.3)

The first term is the attenuated reference wave front, the second a cloud surrounding the wavefront,

which both together describe the zeroth order diffraction The third term corresponds to the conjugate

image of the original wavefront defined as the real image. The last term describes the virtual image.

The reconstruction then corresponds to a propagation of h(x, y) ∙R(x, y) from the holographic to

the image plane. [386] The reconstructed wavefront in the image plane E(ξ, η) with distance r to the

holographic plane is then determined by the Sommerfeld-Rayleigh diffraction equation: [361]

E(ξ, η) =
exp( j2πr

λ )

jλr
exp(

jπ(ξ2 + η2)
λr

×
∫∫

h(x, y) ∙R(x, y) ∙ exp(
jπ(x2 + y2

λr
)

×exp(−
2jπ(xξ + yη)

λr
)dxdy

(5.4)

x, y are spatial coordinates in the hologram, j is the fringe number, ξ and η are the corresponding

coordinates in the reconstruction plane. Here, the Fresnel approximation is used, in which λ is

expected to be several magnitudes smaller than the physical dimensions, with: z3 >> 1
8κ [(x− ξ)2 +

(y − η)2]2. The distance is therefore defined as:

r =
√

z2 + (x − ξ)2 + (y − η)2

= z[1 +
1
2
(
x − ξ

z
)2 +

1
2
(
y − η

z
)2]

(5.5)
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By substitution of μ = η/(dλ) and ν = ξ/(dλ) and use of the spatial Fourier transform FT

definition, equation 5.4 finally is: [386]

E(ξ, η) =
exp( j2πr

λ )

jλr
exp(jπλr(ν2 + μ2)) × FT{h(x, y) ∙R(x, y) ∙ exp(

jπ(x2 + y2

λr
)} (5.6)

In digital holography, the hologram is recorded on a CCD chip, consisting of an N xM matrix of

pixels, which have pitches of Δx and Δy. These pitches are recording intervals on the image plane

and define the resolution of the reconstructed hologram. With x = n ∙Δx and y = m ∙Δy, the

sensed intensity then is defined as:: [386]

I(n ∙Δx, m ∙Δy) = I(x, y)rect(
x

NΔx
,

y

MΔy
) ×

N∑

n=1

M∑

m=1

δ(x − n ∙Δx, y − m ∙Δy) (5.7)

with: rect(x, y) - function that is a constant amplitude value, if the point defined by x,y is

inside the hologram and zero on all other points of the image, NΔx × MΔy - area of the recorded

hologram, n, m - integers, δ(x, y) - two dimensional Dirac delta function. The intensity based record

of the hologram and the digital multiplication of intensity of the hologram and the reference wavefront

finally leads to a diffraction field in the image plane by which the intensity and the phase distribution

of the reconstructed real image can be determined. Here, the spatial Fourier transformation algorithm

is replaced by a discrete Fourier transformation via a fast Fourier algorithm: [386]

E(m, n) =
exp( j2πr

λ )

jλr
exp(

jπλr

N ∙M
(

n2

Δx2
+

m2

Δy2
))

×
N−1∑

k=0

M−1∑

l=0

h(k ∙Δx, l ∙Δy) ∙R(Δx, l ∙Δy)

× exp(
jπ(k2 ∙Δx2 + l2 ∙Δy2

λr
exp(−2jπ(

kn

N
+

lm

M
))

=
exp( j2πr

λ )

jπr
exp(

jπλr

N ∙M
(

n2

Δx2
+

m2

Δy2
))

×DF{h(k, l) ∙R(k, l) ∙ exp(
jπ

λr
(k2 ∙Δx2 + l2 ∙ y2)}

(5.8)

with: k, l - discrete sample indexes within the frequency and time domain.
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The fast Fourier algorithm is basis to current digital holography algorithms. This algorithm then

creates a digital real image consisting of an N x M matrix that contains n, m elements and step

sizes in ξ, ν direction that are defined as: [386]

Δξ = dλ
N ∙Δx and Δν = dλ

M ∙Δy .

The extracted phase as well as the corresponding reconstruction of the real image considering the

reference beam are presented in figure 5.2.5 and 5.2.6. For deformation analysis, a reference hologram

of the sensor element was recorded without any displacement. Then the element is displaced out-of

plane and a second hologram is recorded. Both interference patterns are then digitally reconstructed

independently. The extracted phases of the two waves are then subtracted, which results in the

so-called phase-difference which is shown in figure 5.2.7. The displacement d of a single point of

the sensor element can be determined via: [398]

dS = λN =
λΔδ

2π
(5.9)

with: S - sensitivity vector, which depends on the geometry of the setup, N - order of interference,

Δδ - phase difference, which is caused by the difference in beam path length due to the deformation.

To extract the displacement information for the entire reconstructed real image (see figure 5.2.8)

via the phase difference, so-called phase unwrapping algorithms are used within digital holography.

In general, a central problem in digital data processing and interferometric setups is the restriction of

the acquisition systems like Fourier transformations to measurements of 2π-modulo. These modulo

are called phase principle values or wrapped phases, which restrict the phase to a range of ±π

radiants, and cause a misinterpretation of the physical properties like the quantitative displacement

information. Due to its high relevance for precise data analysis via accurate reconstruction, a broad

spectrum of various unwrapping algorithms have been developed, which are e.g. presented in the

book of Ghiglia et al. [399] and there is further development still in progress. [400] [401] [402] [403] [404] In

the course of this project, a modified, meanwhile established and competitive open-source algorithm

for digital holography called PUMA (phase unwrapping-max-flow/min-cut) developed by Goncalo

Valadao and José Bioucas-Dias has been applied. [405] To optimize the PU process, a mask is first

designed to block unwanted interference patterns outside the region of interest. Then, PUMA
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was applied. This exact algorithmic solver is based on the so-called minimum LP norm class of

phase unwrapping tasks, in which iterative binary optimizations are exchanged by clique potentials

and graph cuts using efficient max-flow/min-cut algorithms, which are well-known in combinatorial

optimizations. For further information see [406] [407]. Having applied this reconstruction procedure,

the displacement can then be depicted in pseudo 3D plots of the unwrapped phase image (figure

5.2.8), in which yellow areas represent element parts that are displaced out-of plane, while blueish

areas are non-deformed parts.

The nano-meter resolution of the DHM setting is restricted to out-of-plane displacement mea-

surements, while in-plane measurements needed a different setup that is directly compatible with

the DHM setting for simultaneous x,y,z-measurements. In consequence, more complex settings like

the combination of digital holographic and speckle interferometry published by Pedrini et al. in

2011 for lateral displacement measurements in the nano-newton region were not suitable. [337] Here,

the only compatible, fast and easy to handle solution is the use of image correlation based on a

time-dependend image-to-image comparison during in-plane displacements, which is presented in

the following.

5.3 Digital Image Correlation

In 1957, Gilbert Hobrough set the starting point for digital image correlation (DIC) by analog compari-

son of photographs for mapping of features of the same object from different points of view. [408] In the

course of the upcoming development of robotics and artificial intelligence as well as the digitalization

of the photography and data processing in the 1960s and 1970s, vision-based algorithms and stereo-

vision techniques underwent an explosive growth that paved the way for an increasing and broad

interest in image correlation processes. [409] Due to its simple implementation and use, this technique

today is widespread within nano- and micro-mechanical testing in the fields of science, engineering

and industry such as automotive, [410] [411] aerospace, [412] [413] [414] government and military, [415] [416]

bio- [417] [418] [419] [420] and solid mechanics [421] [422] [423] [424] [425] or electronics. [426] [427] [428]

In general, DIC is a non-contact image based measurement method that can be run in static and

dynamic mode and includes three central process steps: 1. the acquisition of grey value images of a
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sample, 2. the digital image storage and 3. the numerical analysis of the images to extract shape,

motion or deformations via powerful algorithms. [429] For displacement and deformation measure-

ments, the movement of the naturally or artificially patterned sample surfaces is first tracked. Here,

the starting point with zero displacement is set as the reference image. To maintain high accuracy,

the sample surface needs to be flat and kept in the same plane parallel to the CCD detector surface.

The principle of DIC is schematically depicted in figure 5.3. The reference image is subdivided

into discretized elements, so-called subsets of the image, and the centre points O(x0, y0) of each

subset are defined. The position of the subset centre points in the pattern of the displaced sample

are then compared to those of the reference image. This procedure is called cross-correlation. [430]

The displacement of this centre point is then analyzed by a similarity degree between the reference

and the displaced sample image. Here, the cross correlation coefficient maximum is determined via

a equation of the type: [338] [430]

S(x, y, ξ, ν,
ϕξ

ϕx
,
ϕξ

ϕy
,
ϕν

ϕx
,
ϕν

ϕy
)] =

∑∑
F (x, y)G(x∗, y∗) (5.10)

S(x,y) is the so-called correlation coefficient. F(x,y) then is the function of gray level values at the

spatial coordinates P(x,y) in the reference image and G(x*,y*) is the corresponding function of gray

level values at point P*(x*,y*) of the displaced object image. The coordinates of the displaced

sample image for an in-plane displacement parallel to the CCD sensor surface can be defined as: [338]

x∗ = x + ξ +
ϕξ

ϕx
Δx +

ϕξ

ϕy
Δy

y∗ = y + ν +
ϕν

ϕx
Δx +

ϕν

ϕy
Δy

(5.11)

Here, ξ corresponds to the displacements of the subset centres O(x,y) to O*(x*,y*) in x direction,

and ν to corresponding displacements in y direction. Δx and Δy are distances from point P(x,y) to

the subset centre. Finally, the parameters ξ, ν, ϕξ
ϕx , ϕξ

ϕy , ϕν
ϕx , ϕν

ϕy are determined via image correlation

to find the minimum correlation coefficient S, which then also determines the displacement in x and

y direction. For template matching applications, in which a small part of an image shall be found

based on a predefined template image - as used within this project -, the cross correlation cannot
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Figure 5.3: Schematic illustration of a lateral displacement measurement by DIC along the x- and
y-axis. A Reference image without any displacement of the sensor element centre plate.
The green box corresponds to a chosen landmark, which is subdivided in subsets as
shown in A1. Each subset contains a centre point O(x0,y0) (yellow dots in the centre of
the subset boxes), in which gray value functions are defined representative by a random
P(xi, yi) (see A2). Within the correlation procedure, the gray value functions of P(xi,
yi) are correlated with the gray value functions of P*(xi*, yi*) after the displacement of
the sensor element to find the minimum correlation coefficient S and by this, determine
the x-displacement ξ and the y-displacement ν of the subset centres (see B2). B, B1
Image after x- and y-displacement of the centre plate.

be applied properly. Here, disturbed images contain e.g. bright spots, which are directly cross

correlated with the reference image instead of the chosen area of interest. In this case, normalized

cross correlation is used, in which the global and local intensities within the images are normalized

in the frequency domain before correlation. The normalized cross correlation function then is: [430]
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S(x, y, ξ, ν,
ϕξ

ϕx
,
ϕξ

ϕy
,
ϕν

ϕx
,
ϕν

ϕy
)] =

∑∑
[

F (x, y)G(x∗, y∗)
√∑∑

F (x, y)2
√∑∑

G(x∗, y∗)2
] (5.12)

and basis of the used open-source image correlation software. A detailed description of this proce-

dure was published by Lewis et al. and shall not be presented in more detail here. [339]

Due to the discretized nature of digital sensor surfaces, which are subdivided into pixels, no gray

level information is available between the pixels. If the coordinates x, y, x*, y* of the pixel centers

could be determined only, the displacement values therefore would depend on the gray value of an

entire pixel. Here, the signal within one pixel is created by the integration of spatial continuous

signals of the entire pixel area. [431]

This is directly run by the imaging sensor, for which reason this integration process cannot be ma-

nipulated from the outside. By this, the resolution of this method would be then also limited by

the amount of pixels. To overcome this limitation, the reconstruction of the continuous signal is

realized via the spatially discrete image. Here, algorithms have been developed to approximate the

gray values between the pixels, which is realized by interpolations such as the so-called bilinear in-

terpolation, bicubic spline interpolation as supposed by Bruck et al. [338] or similarity interpolations

applied by Debrella-Gilo et al. [431] According to Pan et al., the errors of the setting or rather the

accuracy of this displacement measurement method is limited by various parameters such as:

1. a lack of contrast between the background and the sample that is to say the speckle pattern by

which the accuracy of the algorithm is reduced, 2. lacking parallelism between the CCD sensor sur-

face and the sample surface, 3. disturbances by noises during the acquisition and digitization process,

4. distortions of the image by lens distortions, 5. the subset size chosen by the user, which needs to

contain a sufficiently distinctive intensity pattern, 6. an adequate correlation criterion and 7. the type

of sub-pixel interpolation. [430]

Applying an optimized setting, sub-pixel image correlations in combination with short wavelengths

and optimum magnification, today allow for resolutions down to the nanometer range. [430] [432] [341]

In the course of this work, an open-source ImageJ plugin published by Tseng et al. [418] [433] was ap-

plied, which is based on the normalized cross correlation of a template matching procedure described

124



by Lewis et al., [339] which allows for sub-pixel resolved displacement determinations.

5.4 Materials and Methods

In-plane (x, y) and out-of-plane (z) sensor displacements were measured by a combination of digital

holography and image correlation. These methods were carried out on the same homebuilt off-axis

digital holography microscope (DHM) with kind introduction into the field of DHM, providing and

supervision by Dr. Pedrini in the working group of Prof. Dr. Osten at the Institute for Technical Optics

at the University of Stuttgart. The setup was modified by me in accordance to the requirements

of this project by conceptualization, building and pre-testing of a micromanipulator setting for the

mechanical manipulation of the microsensor elements in the laboratories of our working group in Kiel

and precise implementation of the setting into the DHM/DIC setup in the laboratories of Stuttgart.

All measurements were run and analyzed by me. The setting and the real course of the beam path

are shown in figure 5.3 A.

Out-of–plane Displacement measurements: DHM The setup was positioned vibration damped

on an optical table (Microplan R© Schwingungstechnik, Saarbrücken, Germany). All optical com-

ponents were screwed to a home-built optical plate and implemented in an optical cage system

(Thorlabs R©) for maximum vibration-free stability. Based on pre-tests in the laboratories in Stuttgart

run by me, the setting described in the following was optimized to a compact design at lowest possi-

ble costs, minimum installation height in order to reduce external vibrational movements influencing

the DHM measurements, but guarantee optimum sample adjustment. The DHM setting is shown in

figure 5.3 A. A continuous wave LED laser beam (1) (λ = 405 nm, 20 mW, short coherence length:

1 m) was focused by a convex thin lens 3 on a beamsplitter (BS1, 4), and thus, divided into an

object beam (OJ) and a reference beam (REF). The object beam passed this BS1 and a second

BS2 (9) before being focused on the sample surface (10) by an objective (10) (20 x, Nikon R© LU

Plan FLUO, 0.45 Apertur, WD 4.5). The scattered light then passed the objective and was reflected

by the beam splitter to the CCD chip of the fast camera (13) (SVS-VISTEK R©, Evo2050MFHCPC,

2/3” sensor size, 1600 x 1200 pixel, 106 fps,). The reference beam was diffracted by 90◦ by BS1 to
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Figure 5.4: A DHM setting and its different components: 1 Continuous laser light source with a
short coherence length, 2 iris, 3 lens, 4 prism to split the laser beam into the reference
(Ref) and the objective (OJ) beam, 5 lens to collimate the objective lens, 6 mirror
on a translational stage for adaptation to the beam path length of the objective beam.
7,8 mirrors to direct the reference beam to the CCD camera and spatially overlap
the reference beam with the objective beam under a defined angle, 9 second prism,
10 objective lens with an adapter, 11 sample holder with fixed sensor array sample,
12 electrically driven micromanipulator, 13 SVS Vistek CCD camera, 14 computer to
control the camera program. For lateral displacement measurements, the same setting
was used by blocking the reference beam after prism 4. B Detailed CAD image of the
manipulator unit shown in A(12) (from bottom to top): 12.1 micrometer z-translational
stage, 12.2. adapter plate, 12.3 x-, y-, z-piezo nano-positioner, 12.4 mechanical micro-
translational stage, 12.5 home-built belt-drive to adjust the adjust tungsten tip position
in z-direction, 12.6 tungsten needle with a tip diameter of 2 μm (see also inset box), 11
Stainless steel posts to ensure assembly space for the tungsten needle unit. 11.1 plastic
sample holder that is fixed via screws after adjustment (see A 11 as well).1

111, 11.1, 12.5, 12.4, 12.3, 12.2 reproduced from B. Neumann, Project Work, Workshop of the Faculty of
Engineering, CAU, 2017 with kind permission of B. Neumann.
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a mirror on a mechanically translational stage (6). Here, it was reflected and optically guided

to the camera sensor. Reference and object beam were spatially overlapped on the sensor chip via

mirrors (7 and 8). For a better alignment and ensured stability against outer impacts, components

1, 2, 3, 5 and 10 were installed in a vertical axis cage system. The sensor signal was recorded by

an ITO-written LabView program. To ensure a corresponding beam path lengths of the object and

the reference beam, the path of the reference beam was adjusted via the translational stage to a

maximum contrast within the interference fringes recorded by the camera (see figure 5.2.2).

For positioning of the sample, a home-build micromanipulator setting shown in figure 5.3 B was

conceptualized, optimized, tested in the labories in Kiel and implemented into the DHM setting by

me in the course of this sub-project. The positioning unit consisted of a micrometer z-translational

stage (12.1) (PI R© M501.1PD: δ(z) = 12.50 mm, resolution: 0.024 μm; controller C-863 Mercury

Servo Controller), an x-, y-, z-piezo nanopositioner (12.3) (PI R© 517.3CL: δ(x,y)max = 100 μm;

δ(z) = 20 μm, resolution: x,y: 1 nm, z: 0.1 nm and controller E-517), a sample holder (11, 11.1) and

a manipulator unit (12.4-12.6). This unit consisted of a mechanical micro-translational stage (12.4)

(THORLABS R© 1/2" (12mm) Dovetail Translation Stage) screwed in the centre of the positioning

unit and was mechanically driven by a home-built belt-drive (12.5). A tungsten needle (12.6)

(American Probe & Technologies, 71T Tungsten Wire Probe, r = 2 μm, length: 1") was fixed on

top of the stage and used to deform the tested sensor structures in x-,y-, and z-direction. The

entire positioning unit could be moved in x- and y-direction by a lockable microscope co-axial object

table (Olympus) for a simple and precise lateral first positioning of the needle relative to the DHM

objective.

Before starting a measurement, the sample was clamped to the sample holder on the positioning

unit and the tungsten tip adjusted and approached to the sensor centre plate. Here, NiTi sen-

sor structures (170 μm edge length, 200 nm thickness, fabricated by ACQUANDAS R©, Kiel) were

analyzed. The contrast of the resulting interference fringes was optimized by adjusting the beam

paths via the mirror (6) on the translational stage. Then the software was started. Different sen-

sor deformations in the nanometer up to the micrometer range were adjusted via the manipulator

(12) and holograms were then recorded. Based on a standard MATLAB program provided by the

working group of Prof. Dr. Osten, the holographic interference images were first transformed into
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their undiffracted reconstruction waves. Then the digital holograms were generated and numerically

reconstructed by a fast Fourier transformation. A non-commercial, free, state-of-the-art phase un-

wrapping algorithm called PUMA (pase unwrapping-max-flow analysis) developed by G. Valadao and

J. Bioucas-Dias [407] and modified by Pedrini et al., was partly rewritten and adapted to the require-

ments of these measurements in our working group in Kiel by MSc Huth and me, three-dimensional

images of the temporal sensor deformation were then reconstructed. Finally, the set position and

each measured position were compared as displacement profiles via Origin R©.

In-plane Displacement measurements: DIC In-plane deformations were recorded by blocking

the reference beam within the DHM setup after the first prism. The sensor centre plate was manip-

ulated like described in the previous paragraph, but deformed in-plane by running the x-, that is to

say y-piezo of the nanopositioner. The images were stored via the MATLAB software and the defor-

mation analyzed by an sub-pixel image correlation algorithm developed by Tseng et al. [418] [433] [434]

implemented in the non-commercial open-source software Fuji R©.

5.5 Results and Discussion

DHM and DIC were initially tested for the first time in combination with the fabricated sensor

elements to validate the suitability of these precise, but simple and low-cost methods for future 3D

traction force sensing.

The applied settings were based on a pre-installed already published setup by Prof. Osten et

al. that was used with additional modifications regarding the additionally needed equipment for

sensor manipulation to ensure minimum possible sources of error within the arrangement of the

components and the data processing. To validate the sensitivity of these settings, DHM and DIC

were run separately.

5.5.1 DHM

In Figure 5.5, the results of the out-of-plane displacement recording for a NiTi 4-FE sensor element

(see figure 5.5A) are exemplarily presented. As described in section 5.4, the axial deformation was
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Figure 5.5: A Laser-light microscopic image of the 4-FE NiTi sensor, BMask design used to mask the
background noise during phase unwrapping, C1-K1 Wrapped difference phase images
after reconstruction of the sensor element at a deformation in z direction of: C1 4 nm, D1
20 nm, E1 100 nm, F1 200 nm, G1 400 nm, H1 1μm, K1 5μm, L1 10μm, M1 20μm.
C2-M2 corresponding pseudo 3D images after phase unwrapping.

simulated by use of a tungsten tip that was positioned under the sensor element, while the

DHM recorded from top view. The tip was moved in defined steps from 0 nm to 20 μm via a

micromanipulator setup and interference patterns were then recorded via the CCD camera. By

means of the reconstruction algorithm, the phase information was extracted and by subtraction of
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the reference (see figure 5.5 C1) and the displaced sensor element images, the phase difference

images (see figure 5.5 D1 to K1) were calculated.

The alternating black and white stripes are the above described interference fringes that contain

all information about the axial displacement. Due to the noise in the background, a mask is needed

to run the phase unwrapping algorithm for the displacement extraction accurately. To reduce the

computational time, but keep the interference information, the template must consist of a closed path

along the silhouette of the sensor element including the sensor centre plate. As a result, a template

shown in figure 5.5 B has been used, in which the element was reduced to three spring arms and

the centre plate and used to mask all phase difference images. By means of the phase unwrapping

algorithm PUMA and additional processing in MATLAB, pseudo 3D displacement images could be

extracted as presented in figures 5.5 C2 to K2. Here, the color coding indicates the topography of

the sensor element surface and its deformation, in which blue is a non-deformed part of the sensor

or even a material free area within the surface (dark blue), while yellow areas represent out-of-plane

displaced element parts. The color coding is a relative topography illustration with its own scaling

for each image.

In figure C2, the sensor element was slightly deformed by 1 nm. The DHM is not sensitive

for accurate deformation measurements in this scale range due to its limitation via the chosen

wavelength, which was 400 nm. However, a phase difference image could be reconstructed due

to slight differences between the reference phase image and the second image. According to the

regularity of the green surface color of the frame and the element structure, the sensor is not deformed

axially. In D2, the element is displaced by 20 nm, which corresponds to a traction force of 3.2 pN

when considering the spring constant of this element of 0.004 N/m. Here, a displacement was sensed

obviously, in which the right spring slope is deformed by 5 nm and the upper spring arm shows some

tilt. This deformation region is still outside the resolution limits of this DHM setting wherefore the

displacement value is not reliable. The presented deformations can be caused via a misinterpretation

of the interference pattern within the phase unwrapping algorithm, and slight vibrational disturbances

within the element.This inaccuracy is also contained in E2, with a displacement of 100 nm. However,

a change within the element surface is observable, in which the upper spring arm is displaced slightly

out-of-plane, while the right spring slope is still deformed the same way like in D2. This spring slope

130



is not of further interest as its not manipulated and not relevant for future readout processes. In

F2, an out-of-plane displacement of 200 nm is depicted, which would correspond to a traction force

of 0.8 nN. Here, the upper spring arm is displaced instead of the element centre plate, which is due

to a slight mechanical offset of the tungsten tip, when manually adjusting the tip position via the

mechanical microscopic table. This was not directly observable via the microscope or the recorded

holograms. The phase unwrapping algorithm was implemented independently and was not available

at the time of the measurements. However, the proof of the sensitivity of the DHM is not influenced

by this offset. In future applications, a tip based mechanical manipulation will be exchanged by

the impact of an axial cell traction force. The positioning of this force impact will be controlled

chemically as described in the following chapter 6.

In figures G2 to M2, high displacements of 1 μm, 5 μm, 10 μm and 20 μm are presented to

analyze the sensitivity with regard to strong out-of-plane deformations that correspond to traction

forces of 4 nN, 20 nN, 40 nN and 80 nN, respectively. The height development of the impact area of

the upper spring arm can be well observed. Regarding the extensive displacements of 10 and 20 μm,

the entire sensor element and the frame experience an increasing displacement. Consequently, the

calibrated spring constant of this NiTi 4-FE sensor element would not be usable anymore as it just

includes the mechanical behavior of the element itself, while the frame was set to be rigid during

calibration. Hence, these displacements can be well observed via DHM, but will not be of further

relevance for future traction force sensing.

The accurate analysis of the axial displacement was ensured by topographic line profiles extracted

via MATLAB along a pre-defined vector. The line profiles along the vector marked in the used mask

shown in figure 5.6 C for sixteen different out-of-plane displacement of the NiTi 4-FE element, are

summarized in figure 5.6 A. Here, six pillars are observable: the broad pillar on the left corresponds

to the cross section of the upper frame, the four lean pillars are the slopes of the upper sensor

element spring arm, in which the fourth slope was directly displaced by the tungsten tip. The sixth

broad pillar corresponds to the element sensor plate. Regarding the frame, a curved surface can be

observed at 20 μm due to the displacement of the entire sensor element including the frame. The

surface of the centre plate and partly of the fourth slope boast reproducible surface noise, which

is due to some external noise influencing the image reconstruction. This phenomenon could be
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smoothed via filters

Figure 5.6: A and B Line profiles extracted from the different displacement pseudo 3D images pre-
sented in figure 5.6 along the orange arrow inscribed in the 3D plot in C or 4-FE NiTi
sensor element. A Line profiles in the range of 0 nm to 20 μm along the vector marked
in C. The left pillar corresponds to the cross section of the upper frame, the four thin
pillars represent the four slopes of the upper spring arm and the right broad pillar shows
the displacement of the sensor element centre plate. As the element is manipulated off-
centre via the fourth slope, the centre plate has a sloping right edge. B Blowup of the
displacement profiles shown in A in the range of 200 nm to 2 μm. D Direct comparison
of the manually set displacements (set point) and the corresponding experimentally de-
termined displacement data (DIC) plotted as blue triangles. In case of a direct matching
between these two data sets, a linear fit with a slope of 1 would be identified, which is
the case regarding this setting. Hence, a good quality of the experimentally determined
displacement data between 200 nm and 20 μm could be shown.

in future applications. The increasing negative slope on the right side of the sensor centre plate line
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profiles is due to the increase of the plate tilt at higher displacements. In consequence, inaccuracies

in the determination of the sensed force due to slight tilts of the centre plate can directly be recorded

and corrected via this axial force sensing method. However, this correction would only be needed for

non-centered and very high out-of-plane displacements, which will not be the case in this future sensor

application. With regard to the fourth pillar, the measured axial displacement and the displacement

set mechanically via the micromanipulator as listed on the left side are in good agreement. In

figure 5.6 B, an inset of the fourth pillar is shown containing displacement measurements between

200 nm and 2 μm. Here, the measured out-of-plane displacements are slightly higher by about 10 %

than the expected values, which can have several reasons as already described within the general

information about DHM in section 5.2. Noise could have occured during the measurement due to the

arrangement of the optical components and the sensitivity of the sensor elements to small impacts.

This slightly changes the interference information due to vibrations of the sensor element. This could

then cause changes in the phase reconstruction. Moreover, the phase unwrapping algorithm might

need more detailed adaptation to this task for future tests like the definition of the masked area.

However, the results are promising with regard to the reached resolution and accuracy based on a

simple, low-cost and just slightly modified DHM, which was originally optimized for the characteri-

zation of MEMS surface topographies. By use of the 4-FE NiTi sensor element , which has a lateral

spring constant of 0.087 N/M and an axial spring constant of 0.004 N/m, traction forces down to

800 pN and up to 20 nN can be sensed limited considering the lateral resolution of the DHM of

200 nm. This force range of the sensor system is in the range of cell adhesion forces exerted by focal

adhesion clusters.

By using shorter wavelengths, adapting the optical components to a more compact design and

realizing an even more vibration-free setting by installing the off-axis DHM from a vertical to a

horizontal arrangement on an optic table, the resolution can even be increased below 10 nm as

already shown by Pedrini et al. [337] Due to the dimensions of the necessary external mechanical

manipulator, which was used for the manipulation of the sensor elements, the more compact setting

developed by Pedrini et al. could unfortunately not be taken into consideration in the course of

this project. Consequently, a next step for further experiments would be the very cost-intensive

miniaturization of the three axis micromanipulator with smaller components for installation within a
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more compact DHM setting.

5.5.2 DIC

In-plane displacements were recorded with the same setup like for DHM by blocking the reference

beam. Lateral displacements between 0 nm and 20 μm were again realized via the micromanipulator

and recorded for further cross correlation of the reference and images of the displaced sensor element

centre plates.

To verify the resolution of this setting by excluding incertainties like possible vibrations of the

sensor, first the lateral displacement in (+x)-direction was just simulated by in-plane translation via

the piezo nano-positioner without the tungsten tip of the micromanipulator.

In figure 5.7 B, the experimentally determined displacements (bright blue bars) and the corre-

sponding displacements (dark blue bars) set via the manipulator for a 4-FE PDMS sensor element

(see figure 5.7 A) are plotted.

Here, every experimental data point corresponds to an average over three different measurements

for the same displacement values. The standard deviation for each data point within the three

experiments is indicated by the orange bars and ranges randomly between 4 nm and up to 18 nm.

Consequently, the overall percentage error for small displacements is comparably high than for dis-

placements above 200 nm. When comparing the matching between the set and the experimentally

determined values, the values are in good agreement with each other for displacements between

200 nm (step No 28) and 20 μm (step No 50), with a percentage deviation between 0.05 % (for

20 μm) and 7 % (200 nm). Here again, the deviation is the higher, the smaller the displacement.

For lateral displacements beyond 200 nm, the percentage deviation in comparison to the set dis-

placement values varies between 10 % and over 100 %, the smaller the in-plane displacement. For

set displacements smaller than 18 nm, the experimental data are even negative, indicating that there

is a misinterpretation of the algorithm showing drifts in (-x)-direction.

This might be due to difficulties in the analysis of the gray values for such small displacements

based on a pixel size of the CCD camera and magnification via the objective that do not support

displacement resolutions in this range. Hence, this simple, low-cost setting in combination with the

algorithm developed by Tseng et al. is just sensitive for displacements above 200 nm.
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Figure 5.7: Comparison of the in-plane displacement set manually along the x-axis via the piezo-
electric nano-positioner (dark blue bars) and the experimental displacement values de-
termined via normalized cross correlation (bright blue bars) for A) a 4-FE PDMS sensor
element. The blue inset box in A shows the chosen template area for normalized cross
correlation of the images. B The experimental data correspond to the average over three
independent displacement measurements, in which the orange brackets present the stan-
dard deviation within these measurements. As can be seen within the inset box in B, the
two data sets are in good agreement up to step No 28, which corresponds to a in-plane
displacement of 200 nm. Beyond 200 nm, the experimental data vary clearly from the
manually set displacements and differ by more than 100 %. Hence, the limitation of the
resolution of this setting and the chosen algorithm is 200 nm.

To validate the resolution in combination with a free-standing sensor element, type NiTi 4-FE

sensor elements, which were also used for DHM, were displaced in-plane along the x-axis by means

of the tungsten tip based manipulator. The results are presented in figure 5.8. The chosen template

image for image correlation is indicated in the laser microscopic images of the sensor elements A

and B via the blue box. To outline the differences in measurement results, a properly working sensor

element A and a slightly defect element with strong in-plane deformations and a ruptured sensor

arm B were installed. In figure A1, the experimentally determined lateral displacement (blue bars)

is compared to the manually set displacement values (green bars). Displacements in the range of

900 nm to 20 μm are in good agreement with the set points. Here, the experimental and the
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Figure 5.8: Comparison of the accuracy regarding in-plane displacement sensing via of a fully work-
ing NiTi sensor element type 4-FE (A) and a defect sensor element of the same type (B).
A1 Experimentally determined displacements via image correlation (bright blue bars) are
compared with the manually set lateral displacements by means of the nano-positioner
(dark blue bars) for the fully working sensor element. Good agreement between the ex-
perimental and theoretical set points are given for displacements in the range of 700 nm
and 20 μm. Beyond 600 nm, the error increases to at least 100 %. B1 Corresponding
diagram for a defect sensor element of the same sensor element type. Here, the ex-
perimental data deviate by more than 60 % for displacements smaller than 1 μm. In
consequence, defect elements can be detected easily via this method.
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theoretical values vary by 0.2 % to 8 %. Regarding values beyond 900 nm, the deviation increases

dramatically with decreasing displacement as can be observed in the blue inset box for displacements

between 1 nm and 800 nm. Here, the error increases to at least 100 % for displacements smaller

than 600 nm. For set displacements below 100 nm and beyond the limit of resolution of the setting,

the values turn even to negative displacements as already observed for the PDMS sensor element.

As the method was entirely transferred from the first experiment with the PDMS sensor element to

the free-standing NiTi element, the decrease in resolution is due to changes in the mechanical and

optical properties and behavior of the NiTi structures. First, the NiTi surface is smoother than the

gold-coated PDMS surface wherefore bright spots can be observed in the microscopic image that

might influence the matching procedure within the correlation process. Second and more important,

the NiTi elements are very sensitive to outer impacts like noises, which is why slight vibrations after

displacement and during the image recording can cause disturbances or rather imaging errors during

the data processing via correlation.

An additional source for misrepresentations is the determination of the exact object dimensions

in combination with the corresponding number of pixels regarding the defined template image di-

mension. The factor is relevant for the translation of the pixel-to-pixel displacement into a spatial

displacement. Here, 60 nm correspond to one pixel. In consequence, the resolution can be optimized

by a CCD sensor chip with a high pixel density.

For optimum matching of the images or more specifically maximum correlation results, a high

contrast regarding the analyzed structure is needed. This is ensured by high reflectivity of the sensor

element, maximum absorbance of the background and by this, a clear definition of a sharp edge

between the element and the background. Further optimization is in accordance to the parameters

described in section 5.3.

Consistent observations are possible for the defect sensor element as shown in figure 5.8 B1.

At first glance, a good matching is found for values between 2 μm and 20 μm. However, the

experimental and theoretical data for this displacement range already differ by 4 % to 10 %. The

error for displacements below 2 μm are at least 200 % as can be seen within the blue inset box in

B2. In consequence, a defect sensor element can clearly be identified in future applications.

Finally, DIC has shown to be a suitable, simple, low-cost and comparably precise technique for
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lateral displacement measurements. Here, the setting allowed for measurements down to 200 nm.

With regard to the determined lateral spring constant of 0.087 N/m for a 4-FE sensor element with

an edge length of 170 μm, lateral traction forces down to 17 nN can be sensed.

To improve the overall resolution of this DIC setting, three major components can be optimized,

which are image acquisition, image analysis, and the interference pattern of the image. Regarding,

image acquisition CCD chips with smaller pixels and hence, a higher pixel density can be used.

Furthermore, the entire measurement is highly sensitive to vibrations and outer impacts on the

sensor elements wherefore a strong vibrational damping needs to be ensured in future applications.

Hence, the entire setup design needs to be arranged more compact as already mentioned for DHM.

The high sensitivity of DIC to slight ouf-of-plane displacements can be overcome via a telecentric

imaging system as described by Sutton et al. [435] [436] With respect to the image analysis, the results

are dependent on a fully suitable and rigid correlation algorithm, which needs to be verified in

more detail. Considering the current development of new, more powerful algorithms, an increase in

accuracy and resolution to even lower forces will be supported. [437] Finally, the interference pattern

that is recorded can be optimized via adequate algorithms before the correlation procedure is run

as shown by Bomarito et al. [438] In consequence, the above presented data outline the suitability of

this method for the analysis of lateral displacements in order to measure lateral cell traction forces

in the nano-newton range and can be optimized via various parameters to open a resolution down

to piconewton scale.

5.6 Conclusion

In the course of this sub-project, measurements with a modified, simple, low-cost combined DHM/DIC

setting to record in- and out-of-plane displacements of a sensor element proved the suitability of

these methods for cell traction force sensing. Hence, in- and out-of-plane displacement measurements

down to 200 nm offer an axial force resolution of 800 pN via DHM and 17 nN for in-plane traction

force determinations sensed by a 4-FE sensor element. By this, the force range of confocal clusters is

succesfully reached as targeted within this project. So far, the modified setting was still highly sensi-

tive to outer impacts and vibrations, which is why the deviation between the experimental data and
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the set displacement points was at least 7 to 10 % for higher displacements up to 20 μm and more

than 40 % for displacements smaller than 200 nm (DHM) and 600 nm (DIC). A first improvement

is the modification to more compact setup design with shorter beam paths, directly installed on an

optical table instead of the top-vied setting used within this project. Further optimizations for future

applications to improve the resolution in all three spatial directions have been described in detail for

DHM and DIC above. In this testing, the in-and out-of-plane measurements were run separately and

static to validate the resolution limits. For future measurements, a fast-rotating optical chopper will

be installed in the path of the reference beam that triggers the CCD camera. By means of rotating

frequencies up 100 kHz for commercially available low-cost choppers, the reference beam is shortly

blocked and DHM and DIC can be run pseudo simultaneously. The application of high-resolution

fast CCD cameras then allow for continuous records for dynamic displacement measurements.

However, this combined technique offers a broad range of sensitivity modifications via various hard-

ware and software components while being cost-effective and simple both in setup and handling

wherefore it is most promising for future applications in 3D low-force traction sensing.
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6 Surface Functionalization

The precise measurement of defined cell traction forces is influenced by the sensor element surface

and requires both, the biocompatibility of the sensor material and the control of adhesion sites on the

sensor element centre plate. Regarding the chosen biocompatible element materials, PDMS shows

appropriate cell adhesion properties, [439] while the spreading of cells on structured NiTi was proved

to be adequate [154] and pronounced on silicon and amorphous silicon surfaces. [440] Hence, a surface

functionalization is needed by which cell adhesion can be controlled with respect to the amount of

adhesion sides in the nanometer range, the density of these nano-functionalizations and the adhesion

position on the sensitive, free-standing sensor element in the micrometer region. Several techniques

of surface micro-and nanopatterning are already established. However, these methods are both cost-

and time-intense or cannot be used for spatially restricted or non-contact patterning. In this chapter,

a non-contact method is presented that was conceptualized and tested for the first time in the course

of this project to generate locally defined micro-and nanostructures within a few seconds by means

of inkjet printing. This will allow for high-throughput user defined surface micropatternings including

quasi-hexagonal arranged gold nanodot structures that can be further biologically functionalized for

cell testing. The results and modified images presented in this chapter are part of the paper "High-

throughput micro-nanostructuring by microdroplet inkjet printing" written by Selhuber-Unkel and

me and published in the Beilstein Journal of Nanotechnology in 2018. [441]
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6 Surface Functionalization

6.1 Surface Micro-Nanopatterning Methods

As already shown in various previous studies, cells are able to sense the physical and biochemical

properties of their nanoscopic and microscopic surrounding with high sensitivity. [442] Hence, changes

in cellular adhesion, migration, actin organization, force generation or differentiation behavior can

be observed as a result of changes in substrate stiffness [74] [443] [444] [445] and the response of adhered

cells is controllable by a distinct choice of adhesion ligand distributions and grouping in micro- and

nanostructures. [446] [447] [433] [448]

The substrate surface modifications and corresponding effects on cell behavior are highly relevant

e.g. in the fields of 1. implants to improve the physiological compatibility for bone healing, [449] 2.

biosensors to introduce functional or organic groups, enhance the hydrophilicity and bioactivity by at-

taching biomolecules or adding ligands, [450] 3. tissue engineering applications and mechanobiological

investigations for mimicking the extracellular matrix, [442] or 4. biomaterials, in general. [451]

Due to the versatile importance of micro-and nanopatterns, various methods were developed to

design distinct structures on soft and solid substrate surfaces within the last years, such as pho-

tolithography based mask designs, [452] soft lithography based on contact ink printing via elastomeric

micro-stamps, [453] the more space selective micro-contact printing method, [454] dip pen lithography,

in which an ink loaded AFM cantilever tip is applied to create defined nanopatterns via contacting

the substrate surface, [455] or the mask-less, non-contact methods electron beam, for high-resolution

patternings, and focused electron beam induced deposition (FEBID), in which even three dimen-

sional nano-structures can be designed. [456] However, these techniques are either highly time-and

cost-intense as they have to be run in clean room atmosphere or under vacuum like the lithography

and electron beam based methods, just allow for very small patterns beyond 50 nm (electron beam

and FEBID), or work only in contact mode (dip pen lithography, soft lithography, photolithography

based masks).

Another well established bottom-up method is block-copolymer micelle nanolithography (BCML)

first suggested by Spatz et al. [457] to produce periodic and aperiodic nanoparticle arrays. Here,

polymeric, glass or silicon surfaces are nanopatterned via a micelle solution, in which amphiphilic

block-copolymer consisting of polystyrene and polyvinylpyridine based ligands with adjustable length
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are loaded with gold nanodots and dissolved in toluene based solvents. When coating a substrate

surface via dip coating [19] or spin coating [103] of the BCM solution, the micelles self-assemble via

microphase segregation during the evaporation process in quasi hexagonal patterned monolayers on

the surface. After plasma treatment, a pattern of gold nanodots with distinct inter-particle distances

remains. The distance between the nanoparticles can be controlled via the molecular weight that is

to say the length of the micellar ligands, the BCM concentration and the spinning or dipping speed

during the coating procedure. [458] [459] For biological testing and further control of the cell adhesion

binding sites linked to the pattern, the inter-particle space is passivated by polyethylenglycole (PEG),

while the gold nanodots are functionalized via pentapeptides consisting of arginine (R), glycine (G)

and asparagine (D) sequences. These RGD based peptides are then bond via thiol linkers to the

gold nanodot surface. For more detailed information, please also see [460] [446]regular pmicropatterns

of 4x 4 dro [19] [461] [39] [462] [103].

Using BCML, Spatz et al. were able to show that cell adhesion on nanopatterned surfaces with an

inter-particle distance above 73 nm decreases drastically due to a reduced formation of actin stress

fibers and focal adhesion. [446] A major drawback of this method is its lack in spatial selectivity, for

which reason coating of the entire substrate surface is only possible, while micropatterns are not

feasible.

Hence, there was no no cost-and time-efficient established non-contact method available to micro-

and nanopattern a defined area of a sample surface with quasi-hexagonal nanodot patterns at once.

A solution approach was successfully been tested in the course of this project. Here, BCML was

combined with the well-established and fast technique of inkjet printing to overcome the restriction

to a comprehensive nanopatterning, which will be presented in the following section.
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6 Surface Functionalization

6.2 Ink-jet Printing

Ink-jet technology summarizes all methods where liquid is pumped through a nozzle on a substrate

in a defined structure to create patterns or graphics. [463] The starting point of this con-contact

printing method was set by William Thomson in 1858 by the invention and construction of the

so-called Siphon recorder, an electromechanical receiver for submarine telegraphy, already working

like a rudimentary continuous ink-jet printer. [464] It took another 100 years of intense research

work by various scientists until Elmquist of the Siemens-Elema company patented the first practical

continuous ink-jet device in 1951. [465] With ongoing developments like the invention of piezoelectric

nozzles by IBM in the 1970s [466], the first drop-on-demand (DOD) ink-jet setups allowed for drop-

wise printing processes and should prevail throughout the years on the world market due to their

high speed application and very high reliability. [467] Today, ink-jet printing is not only an established

printing method for everyday media reproduction, but the most versatile and reproducible dispensing

technique in a broad spectrum of fields like rapid prototyping [468] or surface functionalizations.

In general, DOD ink-jet printers expell a few μm sized droplets of fL to μL volumes of liquid

ink on material surfaces via a nozzle one at a time while it is moved in two dimensions with a

defined distance to the substrate surface. [469] Based on 1. a short pressure impulse generated by

a heater, which evaporates the ink, or 2. volume changes of piezo-crystals in a chamber that is

attached to the nozzle, the droplet then takes a ballistic trajectory to the substrate surface. By

this, a pattern of droplets is created on the substrate depicting the desired printing object. [469] The

droplet size is manipulable via the nozzle opening diameter, the impulse, which defines the velocity

of the droplet and the nozzle opening time as well as the viscosity and chemical properties of the ink

and typically ranges between 10 to 100 μm in diameter. [470] [471] Finally, the dried droplet diameter

on the substrate surface depends on the droplet volume, its impact velocity, and its general spreading

behavior with regard to the chemical and physical substrate surface properties like roughness and

wettability. [472] [473]

Based on this comprehensive amount of variable parameters and operating principle, besides its

cost-efficient setting, ink-jet printing offers several advantages over other more complex or multi-step,

established methods like lithography and electron beam processes. First, it can be performed contact-
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free and under ambient conditions, which makes it most attractive to biological applications. [463]

Hence, it used in tissue engineering in the field of bio-printing to directly imprint live cells containing

ink, [474] proteins, [475] or bacterial colonies. [476] Second, multiple liquids are printable at once by use

of multiple printer heads and nozzles. Furthermore, it proved to be a highly position accurate method

by which means defined structures can be printed on computer-defined positions. These features

and the contact-less mode even open the possibility of three dimensional prints via layer-by-layer

material deposition. [469] Last but not least, precise high-throughput patterning over large surface

areas are possible by means of robotic automation. [463]

Besides the use of biological inks, metallic, semiconducting, or insulating material can be printed

via precursor stabilized inorganic nanoparticle inks. These inks are increasingly used in the field of

general functional nanostructures [477] and printable microelectronics [478] [479] [480] such as the low-

cost, high-throughput fabrication solutions for protein immunosensor devices used for the detection

of clinically relevant proteins , [481] [482] gas sensors, [483] MEMS [469], bus lines, [480] conductors, [484]

electrodes. [485] thin film transistors [486] or solar cells. [487] [488] Hence, inorganic printed electronics

is a research field of tremendous commercial potential and progress. [489]

Regarding conductive inks, metallic nanoparticles based on copper, gold, palladium or silver are

well understood and widely used. [489] Here, gold-nanodot solutions are most interesting to fabricate

inert electronic structures on various material substrates like glass, [490] silicone, [480] plastic [491] [481]

or paper [492] due to their high stability against outer influences like water or air.

Based on the above described features and advantages of ink-jet printing, a micellar solution

of dissolved gold salt was prepared to produce microstructures consisting of mono-layers of quasi-

hexagonal particle patterns by combination of this solution with a highly-accurate commercial ink-jet

printing system.
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6.3 Materials and Methods

6.3.1 Gold-nanodot Inkjet Printing

Block-copolymer micelle solution (BCM) Gold nanoparticle solutions for further ink-jet printing

were prepared by dissolving poly(styrene-b-2-vinylpyridine) (PS(79000)- P2VP(36500), 4 mg/mL,

Polymer Source, Canada) in o-xylene (p.A., Merck R©, Germany) and loading with hydrogen tetra-

chloroaurate(III) (Sigma Aldrich, Germany) in a molecular ratio of 0.4. After cleaning of the sub-

strates in an acetone ultrasonic bath for 15 min and drying, the reference sample was prepared by

spin-coated of 20 μL of the gold-loaded BCM solution on the poly-silicon substrate at 7000 rpm

(WS-650Mz-23NPP, Laurell, USA). Afterwards, inkjet printing was run with the same BCM solution.

Finally, the dried substrates were plasma treated by a mixture of hydrogen and argon gas (10 %

hydrogen, 90 % argon) in a plasma etcher (TePla 100 plasma system, PVA, Germany) at 0.4 mbar

and 300 W for 1 h to remove the micellar ligands.

Inkjet printing Ink-jet printing was carried out kindly supported and supervised by MSc Mar-

jan Goudari in the working group of Prof. Dr. Al-Shamery at the Institute for Physical Chemistry

(Carl-von-Ossetzky University of Oldenburg) at their ink-jet printer setup in their laboratories. Mi-

cropatterns of the BCM solution were created by means of a commercial piezoelectric, laboratory

scale inkjet printer (Dimatix R© Materials Printer DMP-2850). Eight piezo-electric driven orifices were

embedded in a row with the removable printer head (DMC-11600), which all had a channel-type

connection to the refillable cartridge ink storage unit. The entire cartridge was composed of epoxy,

polypropylene, silicone and silicon dioxide based components and hence, chemically resistant. By

means of a glass-based syring, a volume of 4 mL BCM solution was transferred into the polypropylene

bag of the cartridge storage unit. Then, the cartridge was installed in the printer head and a first

cleaning cycle was run before the first print to ensure optimum printing results. Here, the jetting

part of the cartridge was brought into contact for a few seconds with a cleaning pad for blotting,

purging and jetting, which was repeated after each printing process. The substrates were positioned

on the in-plane moveable sample plate, which included equally distanced, small holes to create local

vacuum for optimum sample fixation throughout the printing procedure. BCM droplets were then
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generated by automatically apply electric impulses to the jetting module of the printer head. The

nozzle voltage and opening frequency was then iteratively tuned until

optimum sized droplets at regular dropping rates and maximum homogenous micro-patterns were

achieved. Regarding the different substrates, nozzle voltages between 16 to 20 V and frequencies

between 6 to 12 kHZ were applied The droplet size was set to a minimum of 10 μm within the

printer software. Then, automated micro-patterns of 4 x 4 BCM droplets were printed on:

1. a poly-silicon wafer, 2. amorphous silicon thin films of 200 nm and 400 nm thickness deposited

on glass wafers kindly prepared by Fraunhofer ISIT, Itzehoe, 3. 200 nm thin nickel-titanium films

sputtered on 4 μm thick copper layer and a glass substrate, 4. as well as a 50 μm thick free-standing

NiTi foil, both kindly fabricated by Acquandas R©, Kiel.

After drying of the droplets, all substrates were plasma treated as described above.

6.3.2 Characterization

Scanning electron microscopy (SEM) and image analysis To characterize the quality of the

printing results, SEM (Supra 55VP, Zeiss R©, Germany) images were recorded via an in-lens detector

at a gun voltage of 5 kV and at a working distance of 5 mm. All SEM images were further processed

by means of ImageJ. Here, the nanodots were highlighted in each image and then automatically set

as maxima. Afterwards, each image was transferred to a binary image to analyze the coordinates

of all nanoparticles by means of the particle analyzer implemented in ImageJ. Finally, the inter-

particle distances of the nanodots was auotomatically determined for all images via an open-source

nearest-neighbor distance (NND) algorithm written by Mao. [493]

Atomic force microscopy (AFM) imaging and image processing Atomic force microscopy

(AFM) surface scanning was applied to determine the average roughness of the different sample sur-

faces. Here, a commercial JPK NanoWizard R© 3 (JPK Instruments AG) AFM head in combination

with an inverse microscope was used in oscillating mode using ACTA cantilevers (kz = 40 N/m, reso-

nance frequency = 300 kHz; Applied NanoStructuresInc.). Afterwards, the images were all processed

via the JPK SPM Data Processing software and hence, the average roughness was automatically

determined within the scanning area.
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6 Surface Functionalization

6.4 Results and Discussion

The o-xylene based BCM solution was first spin-coated on a cleaned 10 x 10 mm poly-silicon wafer

to validate the quality of the solution as well as the range of expectable inter-particle distances and

define a reference sample for further comparison.

According to pertinent publications, [460] [446] [19] [461] [39] [103] a regular pattern of 5 nm sized gold

Figure 6.1: Scanning electron microscopic
image of an inset of a nano-
patterned poly-silicon wafer sur-
face. Quasi hexagonal patterns
of gold-nanodots (see imprinted
yellow hexagon) with a mean
inter-particle distance of about
33 nm have been created by spin-
coating and subsequent plasma
etching. (modified from H. Neu-
mann et al., Beilstein J. Nan-
otechnol., 2018, 9, 2372-2380.)

particles defining slightly distorted hexagonal

structures was created as shown in figure 6.1 A.The

mean inter-particle distance of the nano-particles

within these quasi hexagonal patterns were deter-

mined to 32.6 ± 3.2 nm based on the analysis of

about thirty SEM images.

To micro-pattern the four different substrates via

printing, a volume of 4 mL of this BCM solution was

then transferred to the cartridge storage unit of the

Fuji Dimatix ink-jet printer head as schematically pre-

sented in figure 6.2 A. By iterative optimization of

the voltage and opening time of one nozzle of the

cartridge head, homogenous droplets of about 10 pL

of BCM were applied to the different sample sur-

faces. Optimum sample positioning was ensured by a

movable translational sample plate. Patterns of 4 x 4

droplets were created by automatic movement of the

printer head in accordance to the software template

designed before the experiment. The droplet size was set to a minimum of 10 μm and the droplet-

to-droplet distance to 200 μm. Regular micropatterns were obtained as shown in the upper SEM

image of figure 6.2 B. Each droplet contained the diluted micelles, which formed self-assembled

monolayers on the substrate surfaces. After plasma treatment to etch the organic micellar ligands,

patterns of gold-nanodots remained. In the bottom right image in figure 6.2 B, the resulting quasi
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hexagonal nanopattern on smooth poly-silicon is shown. To evaluate the homogenity of the droplet

size on the different substrate material surfaces, the droplet diameter for up to 50 droplets pe mate-

rial was determined. In figure 6.3, SEM images of representative droplets printed on: A poly silicon

(poly-Si), B amorphous silicon of 400 nm

Figure 6.2: Schematic presentation of the Fuji Dimatix DMP-2800 ink-jet printer: (A) 4 mL of
the o-xylene based BCM solution was filled in the cartridge storage unit and applied
to the different substrates through piezo-driven nozzles installed in the cartridge head.
By variation of the nozzle voltage and opening times, the droplet size was controlled.
Regarding possible in-plane misalignment of the samples, the exact positioning of the
sample with regard to the nozzles could be controlled via the translational sample plate.
By in-plane movement of the head, user-defined 4 x 4 patterns of single droplets were
created as shown in B. Here, the micelles formed quasi hexagonal micelle arrangements
as depicted in the drawn inset, which were then plasma treated. By this, the organic
ligand spacers were etched and the gold-nanodot pattern remained. (modified from H.
Neumann et al., Beilstein J. Nanotechnol., 2018, 9, 2372-2380.)

thickness sputtered on a 400 μm thick glass wafer (a-Si 400), C amorphous silicon of 200 nm

thickness sputtered on a 400 μm thick glass wafer (a-Si 200) D a free-standing nickel-titanium foil

of 50 μm thickness and E a nickel-titanium (NiTi) thin film layer of 200 nm thickness sputtered on a

4 μm copper buffer layer deposited on a 400 μm thick glass wafer are presented. All of the droplets
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6 Surface Functionalization

Figure 6.3: Scanning electron microscopic images of a single representative BCM droplet on each
of the different device materials surfaces (A to E) and the corresponding nano-dot
distributions in the droplet centre for each material (A1 to E1) after plasma treatment.
The substrates are: A poly-crystalline silicon (poly-Si) B amorphous silicon of 400 nm
thickness sputtered on a 400 μm thick glass wafer (a-Si 400) C amorphous silicon of
200 nm thickness sputtered on a 400 μm thick glass wafer (a-Si 200) D a free-standing
nickel-titanium foil of 50 μm thickness, E a nickel-titanium (NiTi) thin film layer of
200 nm thickness sputtered on a 4 μm copper buffer layer deposited on a 400 μm thick
glass wafer.(modified from H. Neumann et al., Beilstein J. Nanotechnol., 2018, 9, 2372-
2380.)
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possess a more or less intense outer hem, which is a well-known phenomenon within ink-jet printing

of nanoparticle solutions named coffee ring effect, which was first explained in 1997 by Deegan et

al. [494] [495] Here, the evaporation process within the droplet causes an internal flow, which radially

develops in the droplet center toward the outer contact line. Due to this convective flow, the micellar

particles are transported to the outer contact line and begin to agglomerate, which finally ends in

the formation of a ring. [496] [497] The characteristics of the ring such as the ring thickness depend on

the outward flow, which can be manipulated by the evaporation rate of the solvent on the respective

material surface as well as on the spreading behavior of the solvent on this substrate. [472] Within

the printing of microelectronics, this phenomenon is tried to be excluded to ensure homogenous

printing results. For this, two parameters can be used. First, the pinning of the contact line must

be eliminated, which is e.g. realized by electrowetting via the insertion of an additional electrode

during the printing process. [498] [499] Second, the evaporation at the outer contact line needs to be

reduced. For this, the evaporation in the centre of the droplet needs to be increased, which is e.g.

possible in a closed environment, in which there is a hole directly above the droplet apex that shifts

the evaporation rate of the droplet centre towards the contact line. [472] Moreover, a gradient along

the interface between the droplet surface and the vapor can be used to equalize the inner and outer

convective flow, which is possible by adding surfactants. [500] [501] Finally, the convective flow can be

overcome by minimum times of evaporation, which is possible for droplets of diameters < 10 μm as

proved by Shen et al in 2010. [502]

Due to the sensitivity of the micelles especially with regard to concentration changes within the

solution, manipulation like adding of surfactants and electrowetting could not be applied. The two

other approaches based on convective flow equalization via evaporation shifting through a hole above

the droplet centre or minimum droplet size could not be realized by means of the commercial setting

used in this project. This could be can be implemented in future studies. Moreover, the use of other

gold-nanoparticle based inks as suggested by Wu et al., [486] Cui et al., [478] Määtänen et al., [492]

Anto et al., [503] Jensen et al., [481], Hu et al. [483] or Chung et al. [504] are useful for multilayer gold

depositions in order to generate homogenously covering micro-structures, but do not support the

assembly of gold nanodots with distinct interparticle distances within monolayers, for which reason

the used ink is the only possible solution to micro-and nanopattern the substrate surfaces at once.
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Within this project, the droplet diameter and the coffee ring properties on silicon based substrates

vary from those on NiTi based sample surfaces. Hence, the droplet diameter on poly-Si and both

a-Si samples ranges between 76 μm for poly-Si and 84 μm for a-Si 400 showing a slight outer contact

line. The droplets on the NiTi foil and a 200 nm thin film are 10 μm - regarding the NiTi foil - to

20 μm -

Figure 6.4: Distribution of the outer droplet diameter for each device material shown as boxplot
based on about 50 droplets per substrate. For better understanding of the structure of
a box plot, the different components are marked for the distribution of the 200 nm thin
film of NiTi sputtered on copper: 1 lower extreme, 2 lower whisker, 3 lower quantile, 4
median, 5 upper quartile, 6 upper whisker, 7 upper extreme, 8 mean value.
The average droplet diameters on poly-Si, a-Si 200 and a-Si 400 are comparable and
range at about 80 μm. In difference, the NiTi based samples allow for droplet diameters
around 60 μm, but possess a very broad distribution between 45 and 88 μm of droplet
diameter. (modified from H. Neumann et al., Beilstein J. Nanotechnol., 2018, 9, 2372-
2380.)

with respect to the NiTi thin film - smaller than those on the silicon based surfaces and additionally,

possess a prominent coffee ring. When analyzing the outer droplet diameters statistically over up to

50 droplet measurements per material, this difference is even more distinct as can be seen in figure
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6.4. Here, the size distribution is summarized by means of boxplots for each sample material. For

better understanding, the structure of one plot is exemplarily marked for the boxplot of the 200 nm

thin NiTi film. 1 and 7 indicate the lower (1) and upper (7) extreme, which mark droplet diameter

values, which are by 1.5 ∙ IQR lower (1) or higher than the diameter value at the lower (3) that is to

say the upper (5) quartile. In symmetric distributions like Gaussian distributions this corresponds to

0.35 % of the data. The quartiles describe the droplet diameter at which 25 % (3) that is to say 75 %

(5) of all datasets are included. Hence, the lower quartile depicts the middle diameter between the

smallest diameter and the median of the dataset, while the upper quartile corresponds to the average

diameter value between the highest and the median value. The range between 3 and 5 is called

interquartile range (IQR) or box, which consequently summarizes 50 % of all measurements. Within

the box, the median (4) represents the middle value of the considered datasets, while 8 corresponds

to the average value over all diameters. The connecting lines 2 and 6 are so-called whiskers, in which

range 24.65 % of all data with diameteres lower (2) than for the lower quartile or rather bigger (6)

than the upper quartile are included. The size of the box or more specifically the entire boxplot

contains the information about the width of the diameter distribution for each material. Hence, the

IQR of the outer droplet diameter for poly-Si, a-Si 400 and a-Si 200 are comparably tight, for which

reason 50 % of the considered datasets range between 77 and 81 μm for poly-Si, 80 and 86 μm for

a-Si 400 and 76 to 80 μm for a-Si 200. In consequence, the mean droplet diameter for silicon based

substrates here varies between 78 μm for a-Si 200 and 84 μm for a-Si 400. With regard to datasets

with diameters above or below these values, a-Si 400 has a prominent lower whisker with a lower

extremum at 71 μm, in which range the diameter distribution of poly-Si and a-Si 200 are covered.

In result, the droplet sizes of these three sample materials are in the same region and relatively

homogenous. In contrast, the droplet diameter distribution on NiTi based substrate surfaces show a

very broad and asymmetric distribution. By this, 50 % of the measured data range between 50 and

70 μm on 50 μm thick NiTi foils and 57 to 69 μm on NiTi thin film. The median values are here

54 μm on the foil and 65 μm on the 200 nm NiTi thin layer. With regard to the whiskers, the NiTi

foil substrate data are skewed to the right in direction of the diameter data of the thin film sample,

while this sample possess a symmetric distribution in this range. Overall, 99 % of the measurements

result in droplet diameters between 46 and 82 μm for the NiTi foil, and even broader between 42
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and 88 μm on the NiTi thin film, which results in a size variation of about 40 μm under the same

conditions as for the fabrication of the a-Si samples with a maximum diameter range between 71

and 89 μm. Obviously, additional effects besides the evaporation time and wetting behavior of the

surfaces influence the droplet shape on the NiTi substrates.

This observation regarding e.g. evaporation time, surface and wetting behaviour, can also be

transferred to the nanometer scale as shown in figure 6.4 A1 to E1. Here, insets to the SEM images

of the corresponding droplet centre of each substrate shown in A to E present the resulting nanodot

pattern. For more precise insights in the quality and homogenity of these patterns, boxplots were

additionally compiled for each substrate to summarize the inter-particle distance distribution based

on the analysis of up to 35 images per substrate material with an overall amount of 60,000 scored

particles. The analysis was run via an open source nearest neighbor distance (NND) algorithm

written by Mao. [493]

On poly-Si, an almost regular pattern of quasi hexagonal arranged gold nano-particles is observable,

which is in good agreement with the pattern of the reference sample shown in figure 6.1. However,

the distribution of inter-particle distances is broad compared to the spin-coated reference sample.

Hence, 99 % of the NND data for spin-coated poly-Si range between 27 to 36 nm at an average

NND of 33 nm ± 3 nm. The distribution is slightly left skewed to higher inter-particle distances.,

but in general comparably tight. For ink-jet printed BCM coating on poly-Si, 99 % of the NND data

are distributed between 26 to 57 nm and 50 % within the range of 28 to 44 nm, while the average

NND is 38 ± 11 nm. In comparison, the majority of the data are slightly shifted by about 5 nm

to bigger inter-particle distances compared to spin coating results. In contrast to the controllable

rotation speed during the spin coating process, the NND of ink-jet nano-coating is only controlled

via the convective flow within the droplet during evaporation. This phenomenon hence causes the

comparably broad NND distribution.

With an average NND of 37 ± 4 nm for a-Si 400 and 42 ± 6 nm for a-Si 200, the inter-particle

distances on amorphous silicon are in the same region like these on poly-crystalline silicon. However,

the distributions are notably tighter by over 10 nm than for poly-Si, for which reason 99 % of the

NND measurements range between 29 and 45 nm for a-Si 400 and 31 to 52 nm for a-Si 200. Although

these distributions are leaner than for poly-Si, the SEM image insets B1 and C1 in figure 6.3 reveal
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a gold nanodot distribution that does not contain any kind of regular pattern like on poly.-Si. This

is even more obvious, when analyzing the nanodot arrangement on the NiTi based substrates shown

in figure 6.3 D1 and E1. The gold particles create small islands of grouped or even agglomerated

nanodots on the NiTi foil surface (D1), wherefore very small inter-particle distances can be found

Figure 6.5: Boxplot chart of the the average inter-particle distances for each device material. The
inter-particle spacing was determined via the open-source nearest-neighbor distance
(NND) algorithm written by Mao. Here, a poly-silicon substrate spin-coated with the
same BCM solution was set as the reference sample poly-Si(ref), which presents the
tightest NND distribution compared to the samples functionalized via ink-jet printing.
In total, up to 35 images per substrate and the inter-particle distance over 60 000 nan-
odots were analyzed for the determination of each box. (modified from H. Neumann et
al., Beilstein J. Nanotechnol., 2018, 9, 2372-2380.)

within the islands, while there are also areas without any gold nanodots. On the 200 nm thin NiTi

layer (E1), this appears to be more dominant as the gold nano-dots assemble very lean along the

trenches within the substrate surface. For NiTi foils, a meaningful distribution of NND could not be

determined as the inter-particle distances were partly not measurable due to local agglomerations.
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6 Surface Functionalization

Regarding, the NND boxplot for gold nanoparticles on the NiTi thin film (see figure 6.5, bright blue

boxplot on the right), a broad distribution, which is slightly left skewed to higher NND values is

observable. Here, 99 % of all measurements along the trench lines vary over 25 nm between 13 to

38 nm inter-particle distances. These observations again confirm the results already stated for the

micro-droplet size distribution, in which not only the evaporation process seem to be responsible

for the size and inter-particle distance distributions, but also the substrate surface topography.

Therefore, atomic force microscopic surface scans were run, which are presented in figure 6.6.

Here, 10 x 10 μm sized topographies of the five different substrates namely: A poly-Si, B a-Si

400, C a-Si 200, D 50 μm thick NiTi foil and E a 200 nm thin NitTi layer deposited on a 4 μm

copper buffer layer and a glass wafer are shown. For better overview, magnified records depicting

1 x 1 μm of each substrate surface are presented within the corresponding inset boxes. According

to each color scale bar, dark red regions correspond to flat areas, while yellow to white regions

illustrate elevations. Based on the AFM topography scans, the average surface roughnesses were

then determined automatically via the processing software. As supposed, poly-Si possesses a very

smooth surface of 48 pm roughness, while the amorphous silicon surfaces are 0.85 nm for a-Si 400 and

1.23 nm for a-Si 200. These values range in comparable roughness regions, which is in accordance

to the similarities within the mean values for the droplet diameter and inter-particle distances of

these three silicon based surfaces. In contrast, the NiTi foil shows an average roughness of 2.35 nm,

which is twice that of a-Si 200 and additionally, boasts surface waviness as can be seen in the inset

box of figure D. These topographic particularities are caused during the fabrication process.

The NiTi thin film has the highest roughness with about 8 nm, consisting of islands of NiTi

separated by trenches. These materials textures are created by thermal cracks of the copper buffer

layer during the fabrication procedure. In accordance with the broad distributions of the outer

droplet diamater and the NND, on the one hand, and the smaller mean values compared to the a-Si

samples, on the other hand, the droplet diameter and the NND seem to be the smaller the rougher

the substrate surface. This was also found by Chen et al. investigating the evaporation behavior of

droplets on superhydrophic surfaces of different roughness. [505] The spreading of the droplet seems

to be limited by energetical effects, which were presented by Kadem et al., in which the micelles

particularly preferred to concentrate in lower surface regions. [506]
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Figure 6.6: Atomic force microscopic scans to determine the topographic quality and roughness of
the different sample surfaces, which were: A poly silicon (poly-Si) B amorphous silicon
of 400 nm thickness sputtered on a 400 μm thick glass wafer (a-Si 400) C amorphous
silicon of 200 nm thickness sputtered on a 400 μm thick glass wafer (a-Si 200) D a
free-standing nickel-titanium foil of 50 μm thickness, E a nickel-titanium (NiTi) thin
film layer of 200 nm thickness sputtered on a 4 μm copper buffer layer deposited on a
400 μm thick glass wafer. The inset boxes show enlarged areas of a 1 x 1 μm sample
surface area. The average roughnesses Ra was automatically determined by the JPK
processing software for the depicted surface area. Here, poly-Si is the smoothest sample,
while the sputtered NiTi on Cu possesses the roughest sample surface. The bright spots
on the surface of the free-standing NiTi foil correspond to dirt due to the long-term
storage before imaging and were not included on the roughness determination.
(modified from H. Neumann et al., Beilstein J. Nanotechnol., 2018, 9, 2372-2380.) 157



6 Surface Functionalization

6.5 Conclusion and Outlook

In the course of this subproject, ink-jet printing has been successfully combined for the first time with

BCML to micro- and nanopattern different substrate surfaces simultaneously within about 16 s per

4 x 4 droplet matrix. By this, quasi hexagonal patterns with gold inter-particle distances of about

38 nm can be achieved on very smooth surfaces with lower picometer surface roughness in high-

throughput and without additional sample preparations, which are in good agreement with patterns

fabricated via the established spin-coating process. Hence, a simple and fast method has been tested,

which can be used for the locally selective surface nanopatterning via automated printing processes

and additionally opens the possibility of user-defined contact-less surface micro-patternings of any

programmable shape.

Figure 6.7: A SEM images of a surface treated spring arm of a 4-FE NiTi sensor element after
ink-jet printing of the BCM solution and plasma etching. On the edges, a continuous
hem of agglomerated gold is created, while groups of gold nanodots are formed within
the functionalized area. As already shown in figure 6.3 D1, the particles tend to arrange
in dependence of the surface topography and roughness. Hence, paths of gold nanodots
are observable when imaging the surface at higher magnification as presented in figure
B.

In general, the droplet size and inter-particle distance depends on the evaporation rate of the

droplet and the surface roughness, for which reason the rougher the surface, the smaller the droplet

diameter and the NND along the material texture structures. For future applications, this non-

contact printing method shall be used for the locally defined surface treatment of the sensitive

free-standing sensor element centre plates. Here, the gold nano-dots will be used to control the

158



cell adhesion sites via additional biological functionalization by RGD-thiol-based linkers bond to the

nanodots as described in section 6.1.

The result of the first trials is presented in figure 6.7 for an untreated 200 nm thin NiTi 4-FE

sensor element. Here, a BCM droplet was exemplarily printed on one sensor element arm spring.

As can be seen, the droplet spreaded properly along the structure and a well-defined coffee ring

was generated along the edges of the spring arm. Within the droplet area, single gold nanodots

as well as their agglomerations are observable. Within the magnified SEM image in figure 6.7 B,

nano-particle paths along the trenches within the material surfaces are visible, according to the

observations described above. Here, the NND again is in the region of 30 nm, which is a suitable

inter-particle distance for proper cell adhesion. Here, a next step would be the locally targeted

coating of smoother free-standing sensor element centre plates like those made of a-Si.
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7 Conclusion and Outlook

In the course of this project, the prototyping of a novel 3D mechano-optical microsensor system to

measure traction forces in the pN to nN region in three dimensions at once was successfully designed,

fabricated, planned, characterized and tested from scratch.

First, a suitable design for a surface-integrated microsensor element was determined by means of

topology optimization and FEA fulfilling a list of defined requirements (see chapter 2). Here, the

element design 4-FR showed the most promising overall results regarding: comparable sensitivities

in-plane and out-of-plane, stability regarding uncentered force impact, producibility and compact

design as well as minimum producible sensor element dimensions.

The sensor element arrays where then fabricated using suitable materials, which have low Young’s

moduli, are fully biocompatible and can be fabricated by well-established micromachining processes.

In consequence, NiTi, a-Si and PDMS were chosen, characterized and tested regarding their bio-

compatibility where needed (see chapter 3). NiTi foils of 50 μm and structures of 200 nm thickness

were prepared via photolithography and wet etching and offered good mechanical and biocompatible

properties. However, they were limited regarding their producible minimum element edge length of

170 μm at a feature size of 2 μm and are sensitive to outer impacts.

Hence, a-Si elements were fabricated via dry etching on glass substrates. Minimum feature sizes

of 1 μm were achieved with sensor element diameters of down to 45 μm. The elements showed

adequate mechanical deformation properties, an easy handling and stability against outer impacts

as well as biocompatibility. By a size reduction of the sensor arrays of 70 % compared to NiTi

arrays, these sensor elements meet the central aspects defined within the sensor requirements list

(see section 2.2.2.) best and are therefore the most promising for regular future application in 3D

cell traction force measurements.

161



7 Conclusion and Outlook

According to the International Roadmap of Systems and Devices (IRDS) forecasting the im-

provements in CMOS and electronics miniaturization, the producible device feature sizes shall be

significantly reduced within the next 10 years. [507] This might allow for the further reduction of the

overall sensor element array size in future applications.

Moreover, a process has successfully been developed to produce thin membrane based gold coated

PDMS sensor arrays to reduce overall product costs, on the one hand. On the other hand, the

material opens the possibility of tuneable spring constants by variable material elasticities controlled

via the cross-linking within the polymer. Hereby, the PDMS elements can be adapted to various

application requirements and broaden the field of sensor element force sensing applications. In this

project, first well-defined structures were achieved by ICP-RIE, in which an edge length of 1 mm was

reproducibly fabricated.

To ensure a high accuracy of the sensor elements regarding low force sensing, calibration methods

had to be conceptualized to determine the lateral and axial spring constants for each sensor element

considering the element size, the accuracy of established calibration techniques and the complexity

of the handling (see chapter 4). Here, the cantilever to cantilever method has been chosen for

out-of-plane calibrations due to its easy handling, simple implementation in the AFM setting and

suitability to the geometrical dimensions of the sensor elements and arrays. Regarding the favoured

a-Si sensor element design 4-FR and NiTi 4-FE type, the results were in good agreement with

the theoretical determined values via linear elastic FEA. Hence, the smallest 4-FR element with

a diameter of 45 μm has an out-of-plane spring constant of 0.012±0.001 N/m and the four times

bigger NiTi 4-FE element with an edge length of 170 μm has a lower constant of 0.004±0.0004 N/m.

In this thesis, the diamagnetic lateral force calibrator (D-LFC) method developed by Li et al. has

succesfully been used for the first time to calibrate MEMS sensor structures (cooperation work with

the working group of Prof.Dr. Hugel/ University of Freiburg). With an accuracy of about 1 %, a

high precision of the calibration procedure for the reference cantilever can be ensured. The spring

constants were again in very good agreement with the simulated data. Here, the lateral spring

constant of the 4-FR a-Si element could be determined to 4.66±0.022 N/m and of the 4-FE NiTi

element to 0.087±0.008 N/m.

Based on the developed sensor elements and their properties, a combination of digital holography
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and digital image correlation has been applied for the first time in first measurements to record in-

(DIC) and out-of-plane (DHM) displacements as small as 200 nm for traction force sensing within

the sub-project for the development of a suitable optical readout system (see chapter 5). Using the

before fabricated NiTi 4-FE sensor element, traction forces as low as 800 pN up to 20 nN (± 10 %)

out-of-plane and between 17 nN (± 40 %) and 0.8 μN (± 2 %) in-plane can be resolved via this

simple, cost-efficient, easy manageable, and comprehensively modifiable setup. In consequence, the

target force range of this sensor system has successfully been reached for future adhesion force

sensing via this combined DHM/DIC detection method.

To ensure the control of cell adhesion binding sites on the sensor element for future applications,

a method has been conceptualized to functionalize the sensitive sensor element centre plates in

the course of the sub-project. Here, simultaneous micro- and nanopatterning of different substrate

surfaces by combining ink-jet printing with the established gold-nanodot patterning method of BCML

has been succesfully tested, for the first time (see chapter 6). By means of the highly accurate

technology of ink-jet printing, user-defined micropatterns of 4 x 4 droplets with a dried droplet

diameter of about 80 μm for silicon based and about 60 μm for NiTi based surfaces will allow

for variable micro-shapes in future applications. On smooth surfaces, quasi hexagonal patterns of

gold nano-particles with inter-particle distances of about 30 nm are printable within one second

and are in very good qualitative agreement with nanopatternings created via the established spin-

coating method. By this, a contact-less, easy, fast, high-throughput, cost-efficient and reproducible

technique is available, which can be used to print variable and user-defined micropatterns that are

nanopatterned at the same time.

Based on the conceptualization, design, fabrication and setting up of this novel 3D adhesion force

microsensor system and the proof of its principle by first measurement results in the course of this

project work, the entire sensor setting can now be optimized within ongoing projects for future

routine measurements as a commercial add-on application.
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7 Conclusion and Outlook

In the following, the different future optimization steps for a preparation of the setup to its final

market maturity are described that define six different work packages:

1. Timing of DHM and DIC and compact setup design

The technical improvement of the DHM and DIC coupling by introduction of a chopper within

the reference beam path triggering a fast camera and finding the correct timing between the com-

ponents (see figure 7.1 A). By this, the sensor displacement in lateral and axial direction shall be

recorded with a slight time shift nearly simultaneously and at a chopper rotation high frequency.

In consequence, more information about the deformation during the cell rupture procedure can be

monitored. Additionally, the resolution could be improved by testing other laser sources of shorter

wavelengths and an adequate choice of corresponding optical components. Furthermore, the entire

setting will be reduced in size for a more compact, less vibration sensitive design. Here, optical

components of minimum possible dimensions will be chosen.

2. Opimization of the digital data processing

In DHM and DIC well established algorithms were used for the data processing. The results of

this processes depend on the suitability of the algorithms concerning the stated physical problem.

As there is a fast development regarding new, more powerful algorithms, first, a general analysis of

the most sufficient algorithm type should be run, followed by the testing of different new algorithms

to finally adapt these algorithms to the setting or the development self-written algorithms to create

maximum data precision and high resolutions. Moreover, a program needs to be developed to

automate the image data processing and direct presentation of the correlated 3D forces. By this,

the analysis and process time is reduced and the simplicity of the data handling for the end user is

increased.

3. Multisensor element readout

Within this project, the 3D displacement optical readout was realized for one sensor element.

For simultaneous force distribution measurements, the developed technique needs to be transferred

to an entire sensor element array. Here, microlens arrays that are used in laser collimators and are

already of central interest in modern 3D imaging systems, [508] could replace the single objective lens.

By this, each sensor element of the array has a corresponding microlens. Here, a suitable compact

readout solution for multiple DHM and DIC processes would be the bottleneck of this project.
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4. PDMS sensor miniaturization

To miniaturize the PDMS structures for future applications and by this, increase the force resolu-

tion of this sensor system for future force distribution measurements, the membrane should be first

optimized regarding its thickness for optimum handling and mechanical properties such as stability

against outer impacts or deformability. As Moreover, the sensor element structure could be reduced

from the presented meander based designs with a centre plate to simple gold or silicon circular plates

printed or sputtered in arrays on the bottom side of the PDMS membrane. To control the adhesion

sites, gold nanodots could be printed on the top side by inkjet printing, in case of high densities

of cell binding sites on PDMS or by FEBID, if even just a few nanodots should be positioned on

PDMS. Hence, the force induced displacement of the gold circles could be recorded via the optical

readout in case of a force impact. Furthermore, this solution offers not only a comparably cheap

material and fabrication process, but also the tuning of the membrane elasticity, which was already

shown by Palchenko et al. [258] In consequence, the measurable force range could be enhanced and

adapted to particular scientific matters apart from cell testing.

To design these PDMS based membranes more precisely, FEA simulations would be needed. For

that reason, accurate material parameters are indispensable including precise stress-strain-data and

load-displacement curves for different PDMS Young’s moduli that are currently not available in

literature. Hence, first discussions were already lead concerning suitable uniaxial and biaxial testing

settings with experts in the field of mechanical engineering. This sub-project would contribute to a

more comprehensive insight into the mechanical properties of stiffness tunable PDMS.

5. DHM/DIC microsensor system for testing in liquids

The DHM/DIC microsensor system needs to be optimized for measurements in solution. Here, the

optical components might need to be adopted to different parameters like a different refractive index

of the medium. Next, more cell force measurements of well-known cell types like REF52 fibroblast

cells need to be run to verify the reproducability of the measurements. Here, calibration routines

might be defined and afterwards, the application can be extended to characterize biomimetic mate-

rial and biomaterial for the validation of their adhesion behavior and adhesion forces compared to

cells.
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7 Conclusion and Outlook

Figure 7.1: Schematic overview on a combination of an off-axis DHM (A) as described in chapter
5 with an commercial AFM in use of an inverted Olympus microscope IX81 (B): BS1
and BS2 Beam splitter, M1-M6 Dichroic mirrors, C1 optical cubic. The reference and
object beams are coupled to the inverted microscope via an additionally installed optical
cube to record the displacement of the sensor elements positioned on the sample holder
of the microscope. The AFM head is used to record the global forces during the cell
rupture process, while the sensor elements allow for the determination of the local force
distribution during this cell rupturing.
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6. Coupling of the DHM/DIC microsensor system with an AFM

The AFM-DHM/DIC setting presented in figure 7.1. is a new approach, combining AFM spec-

troscopy with dynamic DHM and DIC to be able to measure global forces (AFM) and 3D local

forces (DHM/DIC) in real-time. Here, a 365 nm laser beam is adjusted via an external beamsplitter

(BS2) on a microsope inherent UV compatible cube (C1) and focused via an objective on the sensor

array. The reflected light again passes the reflective cube C1, then a beam splitter BS2 to finally

be recorded on the CCD camera. The reference beam is reflected by the dichroic mirrors M2 to

M5 and finally overlapped with the object beam by mirror M6 on the fast CCD camera. To record

in-plane deformation by image correlation at once, an optical chopper will be used to trigger the fast

camera and block the reference beam for recording of an interference-free image. By means of a

set time delay, DHM images and simple laser microscopic images can then be recorded in real-time

and afterwards analyzed via a combined software. The cell test is started by adhesion of the cell to

the biofunctionalized sensor surface on bottom and the functionalized AFM canilever on top of the

cell matrix. To record the force development during the cell rupture process, the cantilever is then

retracted as already described in chapter 3 and the corresponding 3D displacement of the sensor

elements is recorded on bottom of the sample.

The group of Mohanty et al. developed a comparable setting to image fluorescent polystyrene

microspheres, two-photon polymerized microstructures and red blood cells from top and bottom at

once. [509] In contrast, they analyzed the samples using a 670 nm laser diode and therefore had a low

maximum resolution of 335 nm. The setting was optimized for static fluoresence measurements. So,

the AFM was not used in spectroscopy mode, but imaged the top of the samples in scanning mode.

Furthermore, a significant time shift between the AFM image scan and the DHM measurements

disturbed the measurement, on the one hand. On the other hand, the movement of the AFM

cantilever and light reflection of the AFM laser caused pertubations within the DHM fringes.

Commercially available high-resolution DHM settings provided by Lyncée Tec were used by research

groups in combination with fluorescence microscopes for 3D imaging of cells. [510] [511] [512] However,

the settings are cost-intensive and not simply modifiable by the user for 3D force displacement

measurements like home-built DHM/DIC settings. [513] [335] For that reason, my attempt would be

different from techniques already known in literature.
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7 Conclusion and Outlook

Overall, the challenging realization of this 3D adhesion force sensing setting and its proof of

principle for forces as low as piconewton in the course of this project now is the initial point for

a compact powerful force sensing system. Based on further comprehensive, versatile hardware and

software development with final market maturity, it could then be used as add-on application in

different imaging settings for biomedical, medical, biological or material development applications.
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In	 $mes	 of	 humanoids	 and	 new	 demanding	 protheses	 technologies,	 self-healing	
materials	 mimicking	 the	 human	 $ssue	 are	 of	 growing	 scien$fic,	 medical	 and	
industrial	interest.	Here,	recent	studies	showed	that	a	comprehensive	understanding	
of	$ssue	cell	mechanical	behavior	and	intercellular	forces	is	needed.		

In	 consequence,	 recording	quan$ta$ve	cell	 trac$on	 forces	at	different	posi$ons	of	
the	 cell	 surface	 in	 three	dimensions	 at	 once	 is	 the	ul$mate	 goal	 to	 gain	 a	 deeper	
understanding	of	the	force	distribu$on	during	a	cell	rupture	process.	Here,	methods	
based	on	established	techniques	did	not	offer	comprehensive	solu$ons	so	far.		

In	this	monograph,	a	novel	surface-integrated	op$cal	microsensor	system	is	presen-
ted	 that	 has	 been	 developed	 within	 the	 course	 of	 this	 project.	 It	 allows	 for	 3D	
measurements	 of	 cell	 forces	 in	 the	 pico-	 to	 nanonewton	 range	 by	 combining	 the	
op$cal	methods	of	image	correla$on	with	digital	holography.		
The	 reader	 is	 introduced	 and	 lead	 through	 the	 six	 different	 sub-projects	 of	 this	
prototyping:	

• Sensor	Element	Design	and	Op$miza$on	
• Sensor	Element	Fabrica$on	

• Sensor	Element	Characteriza$on	
• Sensor	Element	Calibra$on	

• Op$cal	Readout	and		
• Sensor	Material	Surface	Micro-and	NanopaQerning		
that	 were	 autonomously	 developed,	 conceptualized	 and	 run	 within	 this	 work	 in	
interac$on	with	scien$fic	partners	all		over	Germany.	

This	project	was		part	of	the	grant	CellInspired	funded	by	the	ERC.
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