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Abstract

The objective of this work is the development of a motion planning and tracking control approach for elastic
structures. Motivated by the morphing wing concept of the field of aerospace engineering a so-called “smart
wingsail” defines the center of the presented research.
The motion planning and tracking control approach has to achieve different rest-to-rest motions of the wing-

sail’s transversal displacement. In contrast to existing wingsail designs, e.g., used in high class sailing events like
the Americas Cup, the presented “smart wingsail” provides an elastic deformation. The capability to achieve
such an elastic deformation leads to a smooth displacement profile which is beneficial considering the interaction
with the acting forces of the fluid. The smooth displacement profile decreases the amount of turbulent flows
compared to the currently used trimming designs by flaps which denotes a rigid body motion. In addition, the
complete profile of the structure can be adjusted, i.e., it offers the possibility to relive pressure of specific parts
of the sail to prevent structural damage. The resulting combination of wingsail and control concept can be used
in further works as a propulsion system which adjusts the sail to the current sailing and wind condition.
The design of the mechanical structure as well as the control concept of the wingsail relies on the results of

proof of concept studies. For this purpose, different systems of interconnected bending beams are considered
which emulates parts of the wingsail. In addition these bending beam systems are used for benchmark tests of
different control approaches.
The development of the model based control approaches requires an accurate system description. Therefore,

the modeling of the distributed parameter system with embedded piezoelectric actuators and partly embedded
sensors denotes a crucial part of this work. The modeling itself is done by an analytic energy based approach
for the beams’ systems, where for the wingsail the finite elements method is used due to the risen complexity
of the curved structure. The modeling process takes different damping effects into account and analyzes their
impact on the eigenvalue distribution of the system.
To achieve a precise description of the governing dynamics different parameter identification concepts are

discussed and applied. This leads to a precise but rather complex system description which covers the measured
behavior of the experimental setups. Considering the objective of a real time capable control approach the
complexity has to be reduced without a significant loss of accuracy.
For this purpose different model order reduction techniques are discussed and applied. The characteristics of

some of these techniques are used during the control design as design parameters. The resulting systems models
are the bases of the control designs.
Two different control concepts are presented and evaluated. At first the two-degrees-of-freedom control ap-

proach is introduced which combines a flatness-based feedforward control approach with a feedback controller.
The main part of the work is done by the feedforward controller which commands about 80 % of the control
input. In fact, the flatness-based feedforward control solves the motion planning problem and provides the refer-
ence as well as the input trajectories. The algorithm provides real time capability due to its low computational
effort which means that the trajectories can be calculated online without the need of offline pre-calculations. In
addition, the feedback control approach ensures that the desired reference trajectories of the motion planning
approach are reached.
On the other hand, the so-called model predictive control (MPC) approach is presented which is based on the

solution of an optimization problem. This optimization problem has to be solved in each time step considering
a finite prediction horizon. To achieve an implementation w.r.t. a real time control unit Hildreth’s quadratic
programming procedure as well as an downsampling by move blocking are considered.
Both concepts are evaluated by numeric analyses and by experiments considering the coupled beam structures

as well as the wingsail itself. These analyses display the open loop system behavior as a baseline at first.
Hereinafter, different control scenarios are considered. This includes transitions between different steady state
displacement profiles as well as the reaction of the open and closed loop system to external disturbances.
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Kurzfassung

Ziel dieser Arbeit ist die Entwicklung eines Regelungskonzeptes, welches die gezielte Verformung von elastischen
Strukturen mit eingebetteten Aktoren ermöglicht. Als Vorbild dient das Konzept der adaptiven Tragfläche, das
im Bereich der Luftfahrt seit Jahrzehnten diskutiert und in Spezialfällen auch verwendet wird.
Das betrachtete Regelungskonzept soll die transversale Auslenkung eines sogenannten elastischen Wingsails

regeln. Wingsails finden immer häufiger Anwendung im Bereich von Hochleistungs-Segelveranstaltungen. Hier-
bei nutzen die gegenwärtigen Konzepte verbaute Klappen um die übertragenden Kräfte im Segel zu regulieren
ähnlich wie bei Flugzeugtragflächen. Die verwendete Starrkörperdynamik führt allerdings zu lokalen turbulen-
ten Strömungen oder partiellen Strömungsabrissen und damit zu Leistungseinbußen. Das vorgestellte Konzept
basiert auf elastischen Verformungen der gesamten Segelfläche um diese turbulenten Strömungen zu reduzieren
oder gänzlich zu vermeiden.
Ziel der Regelung ist es, verschiedene Auslenkungsprofile mittels der eingebetteten Aktorik anzufahren um

das Segel an die vorherrschenden Windverhältnisse und Segelbedingungen anpassen zu können. Somit stellt das
entworfene Wingsail in Kombination mit der Regelung ein Antriebssystem für weitere Arbeiten im Bereich des
Segelsports oder des autonomen Segelns zur Verfügung.
Die Entwicklung der mechanischen Struktur und des Regelkonzeptes des Wingsails wird durch Vorstudien in

Form von verkoppelten Balkenstrukturen erst ermöglicht. Diese Balkenstrukturen bilden Teile des Wingsails ab
und dienen darüber hinaus als Benchmark Tests für verschiedenen Reglerentwürfe.
Die Verwendung der modellbasierten Reglerentwürfe setzt die mathematische Modellbeschreibung der ver-

schiedenen experimentellen Aufbauten voraus. Aus diesem Grund ist die mathematische Modellierung wichtiger
Bestandteil dieser Arbeit. Die Modellierung umfasst sowohl die mechanischen Strukturen mit ihren eingebet-
teten piezoelektrischen Aktoren als auch die Sensorik, die zum Teil ebenfalls in der Struktur eingebettet ist.
Hierbei werden zwei verschiedene Verfahren betrachtet.
Für die Balkensysteme wird ein analytischer energiebasierter Ansatz auf Grundlage des erweiterten Hamil-

tonischen Prinzips verwendet. Dabei werden verschiedene Dämpfungseffekte betrachtet und ihr Einfluss auf die
Eigenwertverteilung des verteilt-parametrischen Systems untersucht. Hingegen wird das Wingsail auf Grund
seiner deutlich komplexeren Struktur mit Hilfe der finiten Element Methode (FEM) modelliert.
Die resultierenden Modellbeschreibungen beruhen auf Materialparametern, die zum Großteil unbekannt sind.

Diese Parameter müssen in einem zweiten Schritt anhand vom statischen und dynamischen Verhalten der ex-
perimentellen Aufbauten identifiziert werden, um eine exakte Beschreibung dieser Vorgänge zu erhalten. Hierzu
werden zwei verschiedene Verfahren vorgestellt.
Die resultierenden Beschreibungen spiegeln die Messergebnisse mit einer sehr hohen Genauigkeit wider,

allerdings geht diese Genauigkeit mit einer erheblichen Komplexität der Modelle einher. Um die späteren modell-
basierten Regler auf Echtzeit-Steuergeräten implementieren zu können, muss die Komplexität durch sogenannte
Modell-Ordnungs-Reduktions-Techniken reduziert werden. Hierzu werden verschiedene Verfahren vorgestellt.
Dabei weisen einige dieser Verfahren Eigenschaften auf, die im späteren Reglerentwurf berücksichtigt werden
können, um so das Reglerergebnis weiter zu verbessern.
Für die Regelung der formveränderlichen Strukturen werden zwei grundlegende Konzepte vorgestellt. Zunächst

wird eine Zwei-Freihheits-Grade-Regelung bestehend aus einer flachheitsbasierten Vorsteuerung und verschiede-
nen Trajektorien-Folgeregelungen entwickelt. Hierbei stellt die Vorsteuerung den größten Teil der Stellgröße
zur Verfügung und bestimmt die notwendigen Trajektorien der Sollauslenkungen sowie der notwendigen Stell-
größen. Die Trajektorienfolgeregelung stellt ergänzend sicher, dass die gewünschten Trajektorien auch im Falle
von Parameterungenauigkeiten oder externen Störungen erreicht wird.
Das zweite Konzept ist durch das Konzept des modellprädiktiven Reglers beschrieben. Hierbei wird in jedem

Zeitschritt ein Optimierungsproblem gelöst, welches einen Prädiktionshorizont an zukünftigen Zeitschritten
berücksichtigt. Da dieses Verfahren rechenintensiv ist, wird für die Lösung des Optimierungsproblems die
sogenannte Hildreth’s quadratic programming procedure sowie ein Downsampling für die Berechnung verwendet.
Die Regler werden sowohl anhand von Simulationen als auch mit Hilfe von experimentellen Auswertungen

analysiert. Hierbei wird zunächst das jeweilige Verhalten des offenen Regelkreise in Form von Sprungantworten
untersucht, um im Anschluss das Verhalten des geschlossenen Regelkreises für verschiedenen Szenarien auszu-
werten.
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1. Introduction

Structures equipped with embedded actuators and sensors (so-called smart structures) provide the feature of
a controlled transient displacement. Such an adapting structure offers various opportunities for a large field
of applications, especially if combined with a feedforward and feedback control strategy allowing to achieve
resonant behavior or to reduce oscillation of a system [10, 78].
One example of use is given by the field of adaptive optics in which large telescopes uses deformable mirrors.

The objective of such a system is to adjust the shape of the mirror to adapt the optical characteristics. Such an
adaption can be used to cope with external atmospheric disturbances, see, e.g. [87]. In addition, the deformable
shape can be used to counterbalance vibrations induced by the movements of the telescope itself or by external
excitation like vibrations of the building induced by wind, see [15, 16]. The suppression or damping of such
vibrations requires a fast actuator concept which is the reason why piezoelectric actuators are commonly used
in this domain.
Another example is given by the interaction of a surface with an ambient fluid. An adjustment of the surface

may affects the acting forces. Due to this, such an adjustment comes into the focus of the field of locomotion.
Here, the main objective is defined as adapting a vehicle’s surface or structure to its current situation.
For automotive applications an adaptive spoiler offers the opportunity to adjust the traction of the vehicle.

Also other parts of a car can be used to adjust the traction or the drag of a vehicle. An overview of present
work in academia and industry focusing on the application of smart memory alloy actuation is provided by [54].
In addition, adapting structures are also discussed in the field of marine engineering. The Maritime Research

Institute Netherlands (MARIN) investigates the possibility of adapting bulbs for large vessels using numerical
analysis, see [110]. Furthermore, the concept of morphing hulls analyzed by [81] considers the objective to extend
the range and reduce the fuel consumption of an unmanned underwater vehicle. As stated by [81] the main idea
is motivated by the research in the field of the morphing aircraft.
The idea of a morphing aircraft focuses the adaption of structural aircraft elements to the current flight sit-

uation. For this purpose, the design of the wings remains in the center of research because the wings directly
affect the maneuverability and fuel consumption of the aircraft. Even small design changes may have a signif-
icant impact, e.g., the introduction of Boeing’s blended winglets instead of the classic wingtip reduces the fuel
consumption and CO2 emission about 4 %, see [36].
A static wing design is always a sub-optimal design, because each flight phase has its own requirements and

the static design represents only a compromise. E.g., during the start the generated lift should be maximized
while the drag should be minimized. Within the landing phase the generated drag of the wings is used to
decelerate the aircraft and after the touchdown the generated lift should be minimized to prevent the aircraft
from bouncing. Furthermore, during the coasting or cruising phase the fuel consumption and emissions denote
the center of attention of an airline, leading again to different requirements. This is why in the field of aerospace
engineering the morphing wing concept has been discussed, analyzed, tested and manufactured for a long time.
An overview of different concepts is provided by [11, 106] considering early designs like the aircraft of the Wright
brothers as well as modern unmanned aerial vehicle (UAV) concepts.
The classic fixed-wing concept of modern civil aircrafts also considers some kind of morphing structure elements

to control the acting forces via slats, flaps, ailerons, and multi-function spoiler. However, this kind of adaption
is performed by rigid body motions which leads to turbulent flows reducing the efficiency and maneuverability
of an aircraft.
The elastic morphing wing concept is an attempt to overcome this drawback by admitting elastic deformation

of the complete wing geometry or specific parts of the wing during the flight. Due to this, the smooth shape of
the wing is conserved which narrows the risk of turbulent flows. An overview of different elastic morphing wing
concepts for UAV’s is presented by [21], while [38] provides a detailed analysis considering the used concept of
the Hydra Technologies S4 UAV.
The elastic wing concept is not only limited to UAVs. The first elastic wing concept was developed in the year

1903 by the Wright brothers considering a wing warping method which changes the twist of the flexible wing,
see [11]. Due to the increased air speed and payload of modern aircraft, this lightweight and flexible wing design
is not feasible any more. Nevertheless, driven by the potential of an elastic deformation of the wing’s shape the
recent research is not limited to UAVs or ultralight aircrafts. Currently the U.S. Airforce and the NASA are
working on elastic deformable wing elements in term of the so-called “adaptive compliant trailing edge”, see [47].
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This project has passed flight tests using the so-called “White Knight Aircraft” as well as a modified Gulfstream
II, see [55]. In addition, other companies are working on different concepts of morphing aircrafts, e.g., Lockhead
Martin Corporation [51], Airbus SE [1] and Tamarack Aerospace Group Inc [108].
Considering civil aerospace engineering the elastic wing concept’s market launch will presumably take some

time, because these concepts affect safety critical systems. In particular, this means fundamental changes of
the primary (ailerons) or secondary (slats, flaps, and multifunction spoiler) flight controls. Development and
implementation of such safety critical components leads to special regulatory effects in terms of admission
processes for each national or international flight agencies (EASA, FAA, and others) which massively increase
the projects’ development phase.
However, inspired by the results of the elastic wing concept this work considers different control concepts

w.r.t. different elastic structures. The main objective is to develop and compare different control approaches
for a piezoelectric actuated wingsail, where the final evaluation considers experimental tests.
The wingsail displays one of many cross links between marine and aerospace engineering. In recent years

it has revolutionized high performance sailing. The sail itself defines a structure comparable to an aircraft
airfoil which replaces the classic cloth made sails. Such wingsail structures produce strong lifts leading to high
velocities of equipped yachts, e.g., Vestas Sailrocket 2 or competition boats like the AC72 and AC50 boat classes
of the Americas Cup 2013 and 2017, respectively. In these cases the lift generated by the wingsail is currently
controlled by flaps, which means a discrete rigid body motion leading to stall of the fluid and therefore to idle
energy of the wind.
Motivated by the idea of the adaptive wing this contribution focuses on an actively controlled adaptive and

elastic wingsail concept leading to an adjustment of the shape’s profile. The results can be used by further works
to actively interact with the attacking airflow depending on the sailing conditions. Besides a further increase
of lift, a complete elastic and controllable structure offers the opportunity to reduce stress in specific regions
during maneuvers to avoid structural damage of components like the sail itself or the mast.
Besides the wingsail structure itself this work considers two different setups of lightweight, elastic, and inter-

connected beam structures. These structures are used as pre-studies taking embedded actuators and sensors
into account and leading to the final wingsail design.
The origin of the presented systematic and model based motion planning as well as tracking control approach is

represented by the mathematical description of the governing dynamic and static effects in terms of the equations
of motion, which are introduced in Chapter 2. In fact, this section is split into two parts. The first one addresses
the interconnected beam structures which are used as pre-studies for the wingsail setup. Two different coupled
beam structures composed by carbon made beams equipped with embedded piezoelectric actuators. Therefore,
at first the analytical energy based modeling of the single beam’s transversal deflection is discussed considering
the extended Hamilton’s principle. The deduction of the stored energy is based on the Euler-Bernoulli beam
theory denoting a special case of the linear elasticity which belongs to the subject of continuum mechanics, see
[76, 23, 109]. In contrast to previous publications, e.g., [98, 9], this work considers different damping models. The
analysis is taking combinations of external damping [77] with Kelvin-Voigt, see [77, 78], and structural damping
[96, 24, 13] into account and comparing their effects to the eigenvalue distribution of the spatial varying and the
finite dimensional system. Due to this and for the sake of self-containedness and completeness the modeling of
the single beam is presented in Section 2.1.1.
Hereinafter the respective mechanical setups of the interconnected beam structures are introduced and their

spatial and time dependent equations of motion derived using the extended Hamilton’s principle. In addition
the different sensor concepts are introduced which are used to detect the displacement or the strain of the
affected beams. These measurements are later on used as input signal of a state space observer to determine the
displacement of the structure at arbitrary positions independent of the position at which the measurement was
taken. Furthermore, a finite dimensional approximation is determined considering Galerkin’s method. These
finite dimensional system descriptions state the origin of the motion planning and tracking control approach
used for the real time implementation.
Section 2.2 introduces the mechanical setup of the considered wingsail structure. This structure is charac-

terized by its curved geometry considering a thin but large sailing area which increases the complexity of the
modeling process. The modeling itself relies on the linear elasticity and the method of finite elements which
leads directly to a finite dimensional description of the equations of motion, see [120, 17]. Here, the acting
damping effects are modeled by the so-called Rayleigh damping, see [77, chap. 7] and [120, chap. 16]. Analog
to the interconnected beam structures the measurement concept is addressed as well.
These mathematical descriptions rely on the proper determination of the material parameters. Some of these

parameters can be measured or are provided by datasheets of the manufacturer. Taking the prototype charac-
teristic of the considered structures into account many parameters have to be determined by an identification
process. Chapter 3 presents the two used concepts. The first one relies on the physical understanding of the
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considered setup and can only be used efficiently for small systems. Therefore, this applies for the intercon-
nected beam structures which offer the possibility to detach elements and separately identify the associated
parameters. The second concept deals with the identification process of the elastic wingsail. For this purpose,
an adjoint based optimization process is introduced to increase the numerical efficiency which is necessary due
to the fact that the full order system description is used in the identification process. This method relies on
the sensitivity analysis [93], in which sensitivity functions (also called gradients of the objective function) are
derived by using the equations of motion and the variational calculus. This represents a common practice in the
field of aerospace engineering to optimize the airfoils’ profile, see [86, 107, 39]. In addition it is quite popular in
the field of seismology [111, 32, 72], medical engineering [30, 66] and flow control [43].
The resulting mathematical descriptions are capable of covering the measured behavior of the flexible struc-

tures. However, the finite dimensional systems are characterized by huge systems of ordinary differential equa-
tions (ODEs) leading to immense computational effort which is not feasible for real time applications. Therefore,
Chapter 4 introduces three different model order reduction (MOR) methods with the objective to reduce the
computational effort without a significant loss of accuracy w.r.t. the original system description. An overview as
well as detailed information about the main MOR methods are provided by [5]. The considered methods belong
to the group of singular value decomposition (SVD) based techniques. In particular, the model truncation [5],
the second order balanced truncation [22, 92], and the proper orthogonal decomposition (POD) [112, 113] are
introduced and applied.
Subsequently Chapter 5 introduces the considered motion planning and tracking control approaches to ac-

complish a desired rest-to-rest motion of the elastic structures’ displacement. For this purpose, two different
model based concepts are discussed and later on evaluated by simulation and tests on the experimental setups.
The first strategy is based on a systematic design of a two-degrees-of-freedom control approach composed

of a feedforward control, to solve the motion planning problem, and a feedback control to acquire robustness
against model uncertainties and external disturbances. The solution of the motion planning problem relies on
the concept of differential flatness, which is based on a parametrization of the system states and inputs by a
flat output and its derivatives’ is utilized. In recent years the original concept [34] was extended to linear and
nonlinear distributed parameter systems [61, 78, 97]. A flatness-based design systematic of the motion planning
problem yields by taking the properties of a Riesz spectral systems [79, 78] into account considering the spatially
distributed inputs. This systematic addresses late as well as early lumping approaches. It has been successfully
applied in recent works considering simple structures like single bending beams [99, 101] and plates [98]. In
this work the approach is extended and applied to complex structures in terms of the interconnected beams
and the wingsail structure. In general, this work is focused on the early lumping approach, see Section 5.1.
However, for the sake of completeness Appendix B takes the late lumping approach into account for the example
of a system of interconnected Euler-Bernoulli beams. The resulting feedforward control, see Section 5.1, is
amended by a feedback controller which ensures that the reference trajectory is reached. For this purpose,
different controllers are introduced and evaluated. The list of considered feedback controllers reads a simple
output feedback approach in terms of ID-T1 control, different state feedback controllers based on the Ackermann
and the linear quadratic regulator as well as extensions to ensure steady state accuracy, and a Lyapunov-based
control approach, see Section 5.3.
The second control strategy considers a model predictive control (MPC) approach, see Section 5.4. MPC

explicitly uses the mathematical model to predict the future dynamics of a system. In each sampling step
the optimal control input is determined by solving an optimization problem. The associated cost or objective
function consists of the predicted control error and the control input within the prediction horizon, see [20, 90].
Furthermore, the optimization process allows to consider further constraints [75, 114], e.g., limited actuator
behavior. Due to this, the motion planning process as well as the design of a feedforward control is included by
design. MPC is well studied for linear systems as well as for nonlinear systems [3, 42, 33, 2] and can be found
in a large field of applications, e.g., process and chemical industries. In general, MPC is applied to systems
characterized by slow dynamics. Due to this, the optimization problem can be solved within each sampling step
in real time. On the contrary the considered smart structures are characterized by fast oscillatory dynamics
which reduces the sample time of the real time process. To reduce the computational effort the optimization
problem is solved by using Hildreth’s quadratic programming procedure [114]. Furthermore, the degrees of
freedom of the optimization problem can be reduced by fixing the input variables over several time-steps [19,
68]. Such a move blocking method by downsampling is introduced so the MPC approach can be executed in
real-time with a sufficiently high sampling frequency to cover the dynamic of the system.
Both control strategies rely on the state information of a state observer. To improve the signal to noise ratio

a Kalman filter is used, see Section 5.2.
In addition to the presented control strategies there exist other control concepts which can be used to adjust

a desired shape, e.g., passivity based methods [64], H2 and H∞ control approaches [63]. In addition, for the
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attenuation of vibrations also fuzzy [71, 28] and back propagation neural network control approaches [88] have
been applied.
Chapter 6 evaluates the different control strategies considering transient simulations and full functionality

tests on the experimental setup. The experimental evaluation is taking a real time implementation of the
control approaches into account driven by a rapid prototyping system. At the beginning of this chapter, the
results of the interconnected beam structures are analyzed. As mentioned before these structures are proof of
concept studies as well as benchmark tests of the wingsail’s mechanical as well as control design. The results of
the wingsail structure are subsequently discussed in detail.
Finally, Chapter 7 concludes the result of this work and provides an outlook of further actions within the

smart wingsail project.
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2. Mathematical Modeling

The mathematical description of the governing dynamic and static effects of a considered process enables the
efficient development of control and observer concepts. In addition, such a description speeds up the complete
development process and reduces costs by the use of numeric simulations. Simulations can be used during the
complete development cycle, e.g., for proof of concept studies, the selection of actuators and sensors, software
in the loop tests, control design, and complete system tests.
Below, the mathematical modeling of the considered flexible structures is introduced. The objective of such

a model is to achieve a high fidelity system description enabling the design of model based control concepts.
Furthermore, it provides the opportunity to use simulations to verify these approaches before the experimental
test takes place.
The modeling of the considered beam structures uses the extended Hamilton’s principle which relies on the

analytically determined energy of the beams. For this purpose, the governing energies of a single Euler-Bernoulli
beam are derived using the basic concepts of continuum mechanics taking the constitutive equations into account
which describes the piezoelectric actuation. This states the origin of the modeling of the equations of motion of
the coupled beam structures serving as proof of concept as well as benchmark studies for the considered wingsail
structure and the associated control concepts.
Afterwards the equations of motion of the wingsail are introduced. Due to the complex structure and geometry

of the wingsail, this is done by making use of the finite element method (FEM).

2.1. Equations of Motion of Single Cantilever Beams and Coupled
Beams Structures

In the field of engineering it is common practice to approximate a complex process to obtain a simple but
sufficient description focusing on the core effects. Most of the time further analysis of the core effects results in
the solution of the original issue. This is why the classic beam theory remains a common tool for the domains
of mechanical and civil engineering even today. Many structures consist of assemblies of beams. Furthermore,
a large number of machine parts can be described by beams, like lever arms or shafts, wings, and fuselages.
Also the interaction between loads applied by moving objects on a structure or the damage of a structure can
be analyzed by beam theory [117, 119]. Even smaller structures like nanotubes [25] can be modeled using the
beam theory.
Here, the considered elastic and interconnected beam structures in terms of a vertical beam configuration and

delta beam configuration denote proof of concept studies for the subsequently analyzed wingsail structure, see
Section 2.2.
As mentioned before the objective of this section is the determination of the equations of motion for inter-

connected beam structure. The section is organized as follows. At first the commonly appearing energies of a
single beam are deduced on the basis of continuum mechanics considering the constitutive equations describing
the material properties including the piezoelectric actuation. Thereafter, the mechanical configuration of the
considered vertical and delta beam structure is presented. Based on the presented configurations the associated
equations of motion of the displacement are deduced using the extended Hamilton’s principle.

2.1.1. Modeling of an In-Domain Actuated Beam
In general, the determination of the energy stored in a single beam with embedded actuation can be found, e.g.,
in [98, 9]. However, for the sake of self-containedness and completeness it is presented below.
The governing effects which are responsible for the beam’s displacement are described by the concepts of

continuum mechanics which explain the deformation of a structure in response to forces and moments, see, e.g.,
[76, 23, 109]. In the following, the kinematics of a single beam with embedded actuation is deduced by the
assumption of the Euler-Bernoulli beam theory to provide a deeper understanding of the underlying physics.
Furthermore, the necessary constitutive equations are introduced. Also the acting dissipative effects namely
damping are discussed. Taking all of these information into account the governing energies of a single beam are
finally deduced.
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2.1.1.1. Kinematics of an Euler-Bernoulli Beam

The kinematics are introduced considering the Euler-Bernoulli beam theory and the underlying assumption.

Assumption 2.1 Taking Euler-Bernoulli beam theory into account the beam’s deformation is small compared to
its thickness. In addition, perpendicular plane sections w.r.t. the neutral axis (see dashed black line of Fig. 2.1)
in the undeformed state stay plane, undeformed, and perpendicular to the neutral axis during deformation.

Fig. 2.1 displays the schematic of a beam in its deformed and undeformed state. The governing kinematics
are deduced taking into account the depicted geometry and its changes caused by the acting external force or
bending moment.

Θ
∆s3

∆z1

χ

z3

z1
0

z3
0

z2
0

l(t, z1)

Figure 2.1.: Schematic of an undeformed and deformed beam (transversal displacement).

The transversal acting force or bending moment results in an out-of-plane or transversal displacement s̄3(t, z1) =
s3(t, z1) causing an additional small longitudinal displacement of the beam s̄1(t, z1). From Fig. 2.1 the longitu-
dinal displacement can be deduced as

s̄1(t, z1) = s1(t, z1)− l(t, z1). (2.1)

The longitudinal displacement is split into a translatory part denoted by s1(t, z1) and a rotatory part of the
cross section l(t, z1).
The supplementary displacement l(t, z1) can be determined considering the trigonometric relations depicted

in Fig. 2.1. In addition, Assumption 2.1 applies and results in the small angle approximation

sin(χ) =
l(t, z1)

z3
⇒ χ =

l(t, z1)

z3
⇒ l(t, z1) = z3χ. (2.2)

Furthermore, χ = Θ holds true, where Θ is defined as

tan(Θ) =
∆s3(t, z1)

∆z1
⇒ Θ =

∆s3(t, z1)

∆z1
= ∂z1s3(t, z1). (2.3)

This implies

l(t, z1) = z3∂z1s3(t, z1). (2.4)

As a consequence the components of the beam’s displacement vector are given by

s̄1(t, z1) = s1(t, z1)− z3∂z1s3(t, z1),

s̄2(t, z1) = 0,

s̄3(t, z1) = s3(t, z1),

(2.5)

2.1.1.2. Mechanical Constitutive Equation

The mechanical constitutive equation describes the relation between the strain and stress tensor ε(s), σ(s),
respectively. Considering [23] the symmetric strain tensor’s elements are defined as

εim = ∂zi s̄m(t, z1) =
1

2

(
∂zi s̄m(t, z1) + ∂zm s̄i(t, z

1)
)
∀ i,m ∈ {1, 2, 3}. (2.6)
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Taking the displacement vector of the beam (2.5) into account the non-zero elements of the strain tensor of the
beam are given by

ε11 = ∂z1s1(t, z1)− z3∂2
z1s3(t, z1), ε33 = ∂z3s3(t, z1) = 0. (2.7)

Hooke’s law [23, chap. 9],[111] provides the relation between the elements of the strain and stress tensor, usually
this is denoted considering Einstein’s summation convention

σim = Eimklεkl, (2.8)

with Eimkl denoting Young’s modulus also known as elastic modulus describing the material characteristics for
which the following assumption holds.

Assumption 2.2 All materials used for the construction of the beam are isotropic and homogeneous meaning
they act in the same manner in all directions and are characterized by a uniform distribution of density and
therefore mass. For Young’s modulus this means

Eimkl = Emikl, Eimkl = Eimlk.

In addition, considering Assumption 2.1 there is no lateral contraction acting which means that E1111 = E is
the only relevant element of the tensor leading to

σ11 = E
(
∂z1s1(t, z1)− z3∂2

z1s3(t, z1)
)
. (2.9)

2.1.1.3. Piezoelectric Constitutive Equations and Actuation Concepts

The second set of constitutive equations provides the relation between the electric field strength, electrical flux
density, the mechanical stress, and strain. This applies only in the spatial domain of the embedded piezoelectric
macro-fiber composite (MFC) patches, which are used as actuators for the interconnected beam and wingsail
structure. The MFC-patches consist of piezoceramic fibers aligned with the z1-axis which are embedded in an
epoxy carrier structure. Above and underneath of the embedded fibers are interdigitated electrode patterns
arranged perpendicular to the fibers, see Fig. 2.2. This structure exploits the indirect piezoelectric effect in
which voltage is converted to mechanical strain between the electrodes, which results into a bending moment
due to the geometry and the mounting, see [9].

z1

z3

z2

epoxy carrier
piezoceramic

fibre

+ +

− −

Figure 2.2.: Schematics of an MFC-actuator.

Taking [78, 10] into account the indirect and direct piezoelectric effect are represented by the electric consti-
tutive equations

σimak = Eimklak εkl,ak − aimk,akDk
ak ,

Eel
i,ak = −amki,akεmk,ak + βim,akD

m
ak ,

(2.10)

where amki,ak and βim,ak denote the piezoelectric material parameter and the dielectric constant, respectively. In
addition Eel

i,ak and Di
ak represent the electric field strength and the electric flux density in i ∈ {1, 2, 3} direction.

To distinguish between the material constants of the carbon made carrier and the MFC-actuators, the actuators’
parameters are marked by the index ak. Hereby k ∈ {1, . . . , p} denotes a counting index of the p single actuators
or patch pairs mounted on the beam. The counting starts at clamped position of the structure and ends at its
free tip.
Due to the considered kinematics (2.5), the Assumption 2.1 and the fact that the electric field can be approx-

imated by an exclusive homogeneous field component Eel
1,ak which leads to an exclusive field component of the

flux density D1
ak the electric constitutive equations simplify to

σ11
ak = E1111

ak ε11,ak − a11
1,akD

1
ak ,

Eel
1,ak = −a11

1,akε11,ak + β11,akD
1
ak .

(2.11)
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In fact, the MFC-actuators are controlled by the electric voltage UMFC
ak and describe the physical system input.

Hence, the flux density is substituted by the voltage

UMFC
ak =

0∫
es

Eel
i, dz1 = β11,akesD

1
ak ⇒ D1

ak =
UMFC
j,ak

β11,akes
, (2.12)

where es denotes the distance between two neighboring electrodes of an MFC-patch, see the magnifying glass of
Fig. 2.3.

Remark 2.1 The voltage range of the used MFC-patch is given by UMFC
ak ∈ [−500, 1500] V [105]. To obtain a

symmetric input range the constant supply voltage or bias U0 = 500 V is applied

UMFC
ak = U0 + Uak , (2.13)

leading to a symmetric voltage range Uak ∈ [−1000, 1000] V which is subsequently used as control input.

This work discusses two different actuation concepts considering MFC-patches. The construction designs are
presented by the schematics of Fig. 2.3. The single patch actuation concept is used in the surface interconnected
structure of beams forming a delta configuration, see Section 2.1.3. In addition, the pairwise actuation concept
applies in the pointwise interconnected structure of vertically aligned beams, see Section 2.1.2.4.
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single actuation concept

pairwise actuation concept
z1
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Figure 2.3.: Schematic of a single beam in a clamped-free configuration equipped considering single and pairwise
actuation by MFC-actuators.

In the pairwise actuation concept two MFC-patches are placed symmetrically on the carrier structure to
enhance the effect by an asymmetric voltage signal leading to an agonist-antagonist behavior like a pair of
muscles. In other words, the patch placed on the front is supplied by a positive voltage leading to an enlargement
of the MFC-patch, where the negative voltage of the MFC-patch on the back results in a shortening of the patch
or vice versa which doubles the acting bending moment.
It has to be mentioned that this kind of modeling of the piezoelectric actuation is based on the following

assumption.

Assumption 2.3 The MFC-patches act linearly, due to an integrated hysteresis and creeping compensation [62,
100] counterbalancing the intrinsic creeping behavior and hysteresis effects.

Fig. 2.4 displays the results of the compensation. The presented measurements are based on a single beam
using p = 1 MFC-patch pairs, see [94]. The left subplot illustrates the displacement of a single beam considering
an acting feedforward control. In the uncompensated case (blue curve) the displacement at the considered
points of interest su,3(t, z1

pi), here the beam’s tip, shows a large deviation compared to the desired displacement
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s∗3(t, z1
pi). This error is caused by the hysteresis corrupting the voltage to stress relation. Furthermore, this plots

illustrates the creeping effect in the uncompensated case. During the steady state which should be reached after
t = 3 s the measured displacement “creeps” from su,3(t, z1

pi) = 6×103 m to su,3(t, z1
pi) = 9×103 m. The behavior

considering a compensation sc,3(t, z1
pi) (green curve) displays a strong reduction of both effects. Nevertheless,

there are still some residual effects left which have to be addressed by a control approach.
The right subplot of Fig. 2.4 illustrates the hysteresis by comparing the applied voltage against the achieved

displacement. Here, the uncompensated mode su,3(z1
pi, Ua1) (blue curve) displays the characteristic hysteresis’

shape. In contrast the compensated behavior sc,3(z1
pi, Ua1) shows a nearly linear relation between voltage and

displacement. Concluding these experimental analysis Assumption 2.3 is valid.

su,3(t, z1) sc,3(t, z1) s∗3(t, z1)
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Figure 2.4.: Left: Illustration of the creeping and hysteresis’ compensation on the example of a feedforward
controled single beam, where s∗3(t, z1) denotes the reference trajectory.
Right: Illustration of the reduction of the hysteresis effect due to the applied compensation.
The uncompensated displacement is presented by su,3(t, z1), where sc,3(t, z1) denotes the voltage
dependent displacement considering compensation.

The following section determines the stored energy of the system considering single and pairwise actuation
concepts to provide a framework for the subsequent modeling of the interconnected beam structures.

2.1.1.4. Stored Energies and Virtual Work of the Non-conservative Forces

In this section the potential and kinetic energy as well as the work of the non-conservative forces of the single
beam are deduced. These terms are crucial to determine the equations of motion of the structures by applying
the extended Hamilton’s principle.
The energy terms as well as the virtual work rely on the spatial characteristics of the beam. Taking Assump-

tion 2.2 into account the beam’s components are made by isotropic and homogeneous materials. With this the
spatial characteristics have only to provide the longitudinal positions of the covered areas at which the MFC-
patches are mounted. This information enables the differentiation if only the material parameters of the carbon
made carrier apply or additionally the parameters of the actuator have to be considered. As a mathematical
description a notch function can be constructed by Heaviside functions h(z1)

Ωak(z1) = h(z1 − z1
ak)− h(z1 − z1

ak + lak), (2.14)

where lak denotes the length of the kth patch and z1
ak the associated mounting point, see Fig. 2.3. With this the

beam’s kinetic and potential energy as well as the virtual work of the non-conservative forces are determined.

Kinetic Energy In general, the kinetic energy is given by

Wkin =
1

2

∫
Ω

ρ(z1)∂ts̄
T∂ts̄ dΩ, (2.15)

where ρ(z1) denotes the spatially varying density per unit length and Ω reflects the spatial domain of the beam
or in other words its volume. Due to the fact, that the magnitude of the longitudinal displacement is negligible
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s1(t, z1) ≈ 0 the kinetic energy results in

Wkin =
1

2

∫
Ω

ρ(z1)
(
∂ts̄3(t, z1)

)2
dΩ =

1

2

∫
Ω

ρ(z1)
(
∂ts3(t, z1)

)2
dΩ. (2.16)

Taking the geometry of the beam into account considering single MFC-patch actuation marked by the super-
script s and evaluating the domain integral in z2- and z3-direction the kinetic energy results in

W s
kin =

1

2

l∫
0

µs(z1)
(
∂ts3(t, z1)

)2
dz1 with µs(z1) = ρA+

pj∑
k=1

ρakAakΩak(z1), (2.17)

where A = hw , Aak = hakwak denotes the cross section of the carrier and MFC-patches, respectively. In addition,
the densities are described by ρ and ρak .
The kinetic energy of the pairwise actuation concept is obtained similarly marked by the superscript p and is

given by

W p
kin =

1

2

l∫
0

µp(z1)
(
∂ts3(t, z1)

)2
dz1 with µp(z1) = ρA+

pj∑
k=1

2ρakAakΩak(z1). (2.18)

Potential Energy In general, the potential energy of the single beam with embedded actuation is given by

Wpot = Wg +Wst +Wel, (2.19)

with Wg, Wst, Wel denoting the energy terms introduced by gravity, strain, and electricity, respectively.
Taking the orientation of the considered beam structures into account gravity does not affect the structure

Wg = 0, because it only acts in z2 direction in which the beam provides the highest stiffness caused by its
geometry and mounting.
According to [78] the residual energy terms are defined as

Wst =

∫
Ω

3∑
i=1

3∑
m=1

σimεim dΩ, Wel =

∫
Ω

3∑
i=1

Eel
i,D

i dΩ. (2.20)

Considering the stress tensor (2.9) and the fact that the longitudinal displacement can be neglected the remaining
energy terms simplify to

Wst =

∫
Ω

E1111
(
z3∂2

z1s3(t, z1)
)2

dΩ, Wel =

pj∑
k=1

∫
Ω

2a11
1,akD

1
akz

3∂2
z1s3(t, z1) + β11,ak

(
D1

ak

)2
dΩ. (2.21)

The evaluation of Wst considering the beam’s geometry using the single MFC-patch actuation results in

W s
st =

1

2

l∫
0

Λs(z1)
(
∂2
z1s1(t, z1)

)2
dz1, with Λs(z1) = E1111I +

pj∑
k=1

E1111
ak IakΩak(z1), (2.22)

where I = wh3/12, Iak = wak [(h/2 + hak)3 − (h/2)3] describe the area momentum of inertia of the carrier and
the MFC-patches.
Evaluating the integral for the beam geometry actuated by pairwise MFC-patches leads to

W p
st =

1

2

l∫
0

Λp(z1)
(
∂2
z1s1(t, z1)

)2
dz1, with Λp(z1) = E1111I +

pj∑
k=1

2E1111
ak IakΩak(z1) (2.23)

Analog, the electrical energy is determined. Evaluating the volume integral taking the geometry of the beam
into account and substituting the flux density by the voltage considering (2.12) leads to the electric energy. In
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case of the single MFC-patch actuated beam the location of the patches, either on the front (z2
ak > 0) or the

back (z2
ak < 0) of the beam, affects the sign of the evaluation result

W s
el =

1

2

l∫
0

pj∑
k=1

sign(z2
ak)Γs

ak(z1)UMFC
ak (t)∂2

z1sj(t, z
1) dz1, with

Γs
ak(z1) =

Aaka
11
1,ak(h + hak)

2β11,akes
Ωak(z1).

(2.24)

Here, Aak = hakwak denotes the area of the cross section of the patch. The constant voltage bias U0, which is
part of the applied voltage UMFC

ak introduces a static tension on the carrier, which is discussed in Section 2.1.3.
The evaluation considering the beam’s geometry using the pairwise MFC-patches requires to distinguish

between different cases depending on the applied voltage. As mentioned before the MFC-patch pairs work as
one unique actuator. Therefore, two scenarios regarding the applied patch’s voltage signal mounted on the
beam’s front U f

ak and back Ub
ak can be considered

• symmetric actuation U f
ak = Ub

ak = U0 ± Uak ,

• asymmetric actuation U f
ak = U0 ± Uak , U

b
ak = U0 ∓ Uak .

The symmetric actuation leads to a longitudinal displacement, because both patches shrink or enlarge together.
However, the stiffness acting in the longitudinal direction which results from the beam’s geometry is high
so that the achieved displacement is hardly measurable. In contrast, the asymmetric actuation provides the
desired agonist-antagonist behavior leading to a bending moment aligned with the z2-axis causing the required
transversal displacement. Here, the constant bias U0 results in a negligible longitudinal displacement which can
be ignored s1(t, z1) ≈ 0, see (2.5).
Due to this, only the asymmetric actuation is considered leading to

W p
el =

1

2

l∫
0

pj∑
k=1

Γp
ak(z1)Uak(t)∂2

z1sj(t, z
1) dz1, Γp

ak(z1) =
Aaka

11
1,ak(h + hak)

β11,akes
Ωak(z1). (2.25)

Taking (2.19), (2.22) and (2.24) into account the potential energy of the beam equipped with single MFC-
patches results in

W s
pot =

1

2

l∫
0

Λs(z1)
(
∂2
z1s1(t, z1)

)2
dz1 +

1

2

l∫
0

pj∑
k=1

sign(z2
ak)Γs

ak(z1)UMFC
ak (t)∂2

z1sj(t, z
1) dz1. (2.26)

In contrast, the potential energy of the pairwise actuated beam follows from (2.19), (2.23) and (2.25) in form
of

W p
pot =

1

2

l∫
0

Λp(z1)
(
∂2
z1s3(t, z1)

)2
dz1 +

1

2

l∫
0

pj∑
k=1

Γp
ak(z1)Uak(t)∂2

z1s3(t, z1) dz1. (2.27)

Damping Models The mechatronic system is as usual affected by damping. These damping effects can be
interpreted as external and internal friction detracting or more precisely converting the energy of the system
leading to a dissipative behavior. Experimental analyses have shown that damping can only be described by a
combination of viscous or external damping [77] and an additional internal damping effect, e.g., Kelvin-Voigt
damping [77, 78] and structural damping [96, 24, 13].
Considering [77] the damping forces (sometimes referred to as virtual work) of the external damping acts

proportional to the transversal velocity

fv(t, z1) = γv(z1)∂ts3(t, z1), (2.28)

where

γv(z1) =

{
γvc (z1) +

∑pj
k=1 γ

v
ak(z1)Ωak(z1) single patch actuation

γvc (z1) +
∑pj
k=1 2γvak(z1)Ωak(z1) pairwise actuation

(2.29)
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defines the spatially varying viscous damping function considering the damping coefficients γvc (z1), γvak(z1) of
the carrier and MFC-patch, respectively.
The Kelvin-Voigt damping can be interpreted as spring damper system which appends the stress tensor [77,

78]

σim = Eimkl
(
εkl + γkv(z1)∂tεkl

)
= Eimkl

(
∂zk s̄l(t, z

1) + γkv(z1)∂t∂zk s̄l(t, z
1)
)
, (2.30)

with the spatially varying Kelvin-Voigt damping function

γkv(z1) =

{
γkvc (z1) +

∑pj
k=1 γ

kv
ak (z1)Ωak(z1) single patch actuation

γkvc (z1) +
∑pj
k=1 2γkvak (z1)Ωak(z1) pairwise actuation

(2.31)

considering the Kelvin-Voigt damping coefficients γkvc (z1), γkvak (z1) of the carrier and MFC-patch, respectively.
Taking Assumption 2.1 into account as well as the asymmetric actuation resulting in a translatory longitudinal

displacement s1(t, z1) ≈ 0 the stress tensor of the beam is given by

σ11 = −E
(
z3∂2

z1s3(t, z1) + γkv(z1)z3∂t∂
2
z1s3(t, z1)

)
. (2.32)

The associated force is

fkv(t, z1) = γkv(z1)z3∂t∂
2
z1s3(t, z1). (2.33)

In case of a system defined by a 3-d body described by linear elasticity the combination of viscous and Kelvin-
Voigt damping is a common choice, because the resulting damping force can be efficiently described especially
in the framework of FEM, see Section 2.2.2.
The virtual or damping force of the second internal damping model acts proportional to the strain velocity

∂t∂z1s3(t, z1), see, e.g., [96, 24, 13]

fsv(t, z1) = γsv(z1)∂t∂z1s3(t, z1), (2.34)

where γsv(z1) denotes the spatially varying structural damping function defined as

γsv(z1) =

{
γsvc (z1) +

∑pj
k=1 γ

sv
ak(z1)Ωak(z1) single patch actuation

γsvc (z1) +
∑pj
k=1 2γsvak(z1)Ωak(z1) pairwise actuation

(2.35)

with the associated damping coefficients γsvc (z1), γsvak(z1) of the carrier structure and the MFC-patch, respectively.
The sum of these forces states a holonomic (integrable) constraint of the mechanical system. Applying the

variational calculus, see, e.g., [91, chap. 4] considering the variational operator δ (related to the Gâteaux
derivative) often interpreted as virtual displacement in this context finally leads to the virtual work of non-
conservative forces

δWnc = −
l∫

0

(
γv(z1)∂ts3(t, z1)δs3(t, z1) + γkv(z1)∂t∂

2
z1s3(t, z1)δ∂2

z1s3(t, z1)

+ γsv(z1)∂t∂z1s3(t, z1)δ∂z1s3(t, z1)
)

dz1.

(2.36)

These energies are used in the following sections to determine the equations of motion of the interconnected
beam structures considering the extended Hamilton’s principle.

2.1.2. Modeling of a Pointwise Interconnected Beam Structure
As a proof of concept as well as a benchmark test for the model based control approach a pointwise interconnected
structure of vertical aligned beams is introduced.
Below, the mechanical configuration of the system is presented. Thereafter, the energies of the vertical beam

configuration are determined based on the previously discussed results of the single Euler-Bernoulli beam. Taking
the extended Hamilton’s principle into account the equations of motion are derived. Finally, a finite dimensional
description is provided by the use of the Galerkin approximation.
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2.1.2.1. Mechanical Configuration

In general, the vertical beam configuration is composed of r ∈ N carbon made beams clamped at z1 = 0 m
and free at z1 = lj . Each beam j is actuated by pj ∈ N MFC-patch pairs, where a patch pair consists of
two actuators symmetrically mounted at the longitudinal position z1

j,ak on the front and back of the associated
beam j, see pairwise actuation concept of Section 2.1.1.2 and Fig. 2.3. To provide a symmetric input range
Uj,ak ∈ [−1000, 1000] V a voltage bias U0 = 500 V is applied on both patches, see Remark 2.1. Furthermore
each beam is equipped with an additional tip mass mj at z1 = lj . These aluminum made tip masses are used to
connect neighboring beams with each other by a string modeled as spring characterized by the spring constant
ki,m with {i,m} = {{1, 2}, . . . , {r−1, r}}. As a visualization of the vertical beam configuration Fig. 2.5 displays
the schematics as well as a photo of the experimental setup. The experimental setup is based on r = 3 beams,
where the first and the last beam are equipped with one MFC-patch pair and the second beam is actuated by
two pairs. Table 2.1 lists the dimensions of the used beams and MFC-actuators (type Smart Materials GmbH
M 8528 P1 see [105]) as well as the longitudinal position zj,ak of the patch pairs on the beam surface and the
distance between neighboring electrodes es.

z1

z2

z3

zpm,7

zpi,4

l2

l2,a1

w1

z1,a1

w2,a2

k2,3

k1,2

MFC-actuators

carrier structure

strain gauges

tip mass

spring

Figure 2.5.: Left: Schematics of the system of pointwise connected and vertical aligned beams. The red dots
mark the points considered for the motion planning and tracking control approach (subsequently
called points of interest). Furthermore the purple rectangles mark the location of the strain gauges
used as measurement devices (subsequently called points of measurement), see also [58].
Right: Photo of the experimental setup, see also [58].

In addition to the embedded actuation, the beams are equipped with embedded sensors. The schematics in
Fig. 2.5 visualizes these sensors as purple rectangles. The used sensors for the experimental setup are strain
gauges (type HBM 1-Ly48-6/350) mounted on the carrier structure like the MFC-patches by using epoxy resin.
Table 2.2 lists the sensor locations of the experimental setup as so-called points of measurement. The table also
contains the points of interest at which the transversal deflection should be controlled, see also the red dot in
the schematics of Fig. 2.5.
The notation is simplified to improve the readability. Variables and parameters associated with a specific

beam are marked by the index j ∈ {1, . . . , r}. The MFC-actuators are addressed by the indices j and ak,
where k ∈ {1, . . . , pj} denotes MFC-patch pair mounted the considered beam j, where the counting starts at
the clamping and ends at the free end. For simplification of the notation the direction tag of the independent
spatial coordinate is discarded, i.e., z = z1. Furthermore the notation of the beam’s deflection is simplified as
sj(t, z) = s3,j(t, z), where neglecting of the moving sense is justified by the fact that the actuation only results
in a transversal deflection (aligned with the z3 axis) as mentioned before. In addition to the assumptions of
Section 2.1.1 the considered length of all beams is identical lj = l .

2.1.2.2. Stored Energies and Virtual Work of the Non-conservative Forces

As mentioned before the determination of the equations of motion of the transversal displacement by the extended
Hamilton’s principle relies on the associated energies. The vertical beam configuration consists of Euler-Bernoulli
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Table 2.1.: Dimensions and actuator locations of the vertical beam configuration in mm for j ∈ {1, 2, 3} beams,
where the index a refers to the MFC-actuators, see also Fig. 2.5.

dimension
lj wj hj lj,ak wj,ak hj,ak es

400.0 55.0 0.8 85.0 25.0 0.3 0.5
MFC-actuator positions

with ak = a1 for j ∈ {1, 3}, ak ∈ {a1, a2} for j = 2
z1,a1 z2,a1 z2,a2 z3,a1
23.0 23.0 225.0 23.0

Table 2.2.: Positions of the points of interest and measurement of the vertical beam configuration in mm for
r = 3 beams.

points of interest and measurement
beam j = 1 beam j = 3

zpm,1 zpm,2 zpi,1 zpm,6 zpm,7 zpi,4
7.0 68.0 370.0 10.0 68.0 370.0

beam j = 2
zpm,3 zpm,4 zpm,5 zpi,2 zpi,3
10.0 68.0 268.0 200.0 370.0

beams, therefore the stored kinetic and potential energy as well as the work of the non-conservative forces are
based on the energies and forces of the single beam introduced in Section 2.1.1. However, the tip mass and the
connecting spring have to be considered as well.

Kinetic Energy The effect of the tip mass on the kinetic energy is given by the translational and rotatory
energy terms, i.e., the quadratic products of mass mj times velocity ∂tsj(l , t) and inertia Jj times angular
velocity ∂t∂zsj(l , t), where both velocity terms have to be evaluated at the position of the mass z = l . Hence
the kinetic energy results in

Wkin(t) =

r∑
j=1

(
W p

kin,j(t) +
mj

2

(
∂tsj(t, l )

)2
+
Jj
2

(
∂t∂zsj(t, l )

)2)
. (2.37)

According to (2.18) the kinetic energy term of the single beam considering pairwise actuation W p
kin,j(t) is given

by

W p
kin,j(t) =

1

2

l∫
0

µpj (z)
(
∂tsj(t, z)

)2
dz with µpj (z) = ρjAj +

pj∑
k=1

2ρj,akAj,akΩj,ak(z) (2.38)

where Aj = hw , Aj,ak = hakwak , ρ, and ρak denote the cross sections and densities of the carrier and MFC-
patches, respectively. Furthermore, Ωj,ak(z) describes the notch function (2.14) per beam, which provides the
spatial characteristic of the MFC-patches or in other words it adds the additional effects of the actuators within
their covered surface z ∈ [zj,ak , zj,ak + lak ].

Potential Energy Similar to the tip mass affecting the kinetic energy, the coupling springs at the beams’ tips
provide an additional term to the potential energy considering Hooke’s law. This term is defined by the quadratic
difference of the transversal deflection between neighboring beams multiplied with the associated spring constant
ki,m. Hence, the potential energy is given by

Wpot(t) =

r∑
j=1

W p
pot,j(t) +

r−1∑
j=1

kj,j+1

2

(
sj(t, l )− sj+1(t, l )

)2
. (2.39)

Taking (2.23), (2.25) and (2.27) into account the potential energy of a uncoupled single beam is defined by

W p
pot,j(t) =

1

2

l∫
0

Λp
j (z)

(
∂2
zsj(t, z)

)2
dz +

1

2

l∫
0

pj∑
k=1

Γp
j,ak(z)Uak(t)∂2

zsj(t, z) dz (2.40)
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with

Λp
j (z) = E1111

j Ij +

pj∑
k=1

2E1111
j,ak Ij,akΩj,ak(z), Γp

j,ak(z) =
Aj,aka

11
1,j,ak(hj + hj,ak)

β11,j,akes
Ωj,ak(z). (2.41)

These substitutions are derived under the assumption of an asymmetric voltage supply, the piezoelectric con-
stitutive law and the underlying geometry, see Section 2.1.1. Recall that herein E1111

j and E1111
j,ak denote

the elasticity modulus of the carrier structure and the MFC-patches and Ij = wjh3
j /12 as well as Ij,ak =

wj,ak [(hj/2 + hj,ak)3 − (hj/2)3] describe the area moment of inertia of the carrier and MFC-actuators. The
parameters a11

j,ak,1, βj,ak,11 and es represent the piezoelectric parameter, the dielectric constant of the kth MFC-
patch pair and the distance between neighboring electrodes on an MFC-patch.

Remark 2.2 Considering the mechanical setup of the vertical beam configuration, taking only the pairwise
actuation into account, the notation is therefore simplified as follows µj(z) = µp

j (z), Λj(z) = Λp
j (z), and

Γj,ak(z) = Γp
j,ak(z).

Damping Models For the vertical beam configuration the introduced damping models can be considered, see
Section 2.1.1. Taking (2.36) into account the work of the non-conservative forces is given by

δWnc(t) = −
r∑
j=1

l∫
0

(
γvj (z)∂tsj(t, z)δsj(t, z) + γkvj (z)∂t∂

2
zsj(t, z)δ∂2

zsj(t, z)

+ γsvj (z)∂t∂zsj(t, z)δ∂zsj(t, z)
)

dz.

(2.42)

Considering the pairwise actuation the damping functions of (2.29), (2.31) and (2.35) yield

γvj (z) = γvj,c(z) +

pj∑
k=1

2γvj,ak(z)Ωj,ak(z), (2.43)

γkvj (z) = γkvj,c(z) +

pj∑
k=1

2γkvj,ak(z)Ωj,ak(z), (2.44)

γsvj (z) = γsvj,c(z) +

pj∑
k=1

2γsvj,ak(z)Ωj,ak(z). (2.45)

As discussed in Section 2.1.1 the parameters γvj,c(z), γvj,ak(z), γkvj,c(z), γkvj,ak(z), γsvj,c(z), and γsvj,ak(z) denote the
viscous, Kelvin-Voigt, and structural damping coefficient of the of the carrier and MFC actuators, respectively.

2.1.2.3. Equations of Motion

The determination of the equations of motion governing the transversal deflection of the vertical beam con-
figuration’s relies on the so-called extended Hamilton’s principle. The extended Hamilton’s principle uses the
variational calculus to derive the dynamics of systems of particles, rigid bodies, and deformable or elastic solids.
It states a generalization of the principle of virtual displacements which can be used to model the static equi-
librium of solid structures.
Hamilton’s principle characterizes the considered system by its kinetic and potential energy Wpot(t), Wkin(t)

[91]. The extension of the principle also takes the dissipative effects in terms of the virtual work of non-
conservative forces δWnc(t) into account. The energies as well as the virtual work are based on either a finite
number of generalized coordinates for so-called discrete systems or for continuous systems by dependent variables
which are functions of the position or the displacement, see [91, 77, 102] for further details.
The main idea of the principle, see, e.g., [91, chap. 5], states that the true path s(t, z) of a material particle or

the displacement of a flexible structure within an admissible set of paths or trajectories results in an extremum
of the the functional

J(t) =

t1∫
t0

(
Wkin(t)−Wpot(t) +Wnc(t)

)
dt with t0 < t1, t0, t1 ∈ R. (2.46)
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An admissible path means a spatial and temporal displacement profile which can be reached and fulfills
additional conditions, e.g., a clamping condition or an initial velocity profile that is compatible with the geometry
and its boundary constraints.
The determination of the true path is done by identifying the extremum of the functional J(t). This can be

done by the Gâteaux derivative or first variation [91, chap. 4] which is given for an arbitrary function F (x) as

δF (x) = lim
χ→0

∂F (x+ χδx)

∂χ
=
∂F (x+ χδx)

∂χ

∣∣∣
χ=0

, (2.47)

where δ is also known as the variational operator. The extremum of a functional is reached, if δF (x) = 0 holds
true (necessary condition).
Considering the functional J(t) the Gâteaux derivative can be split

δJ(t) =

t1∫
t0

(
δWkin(t)− δWpot(t) + δWnc(t)

)
dt = 0, (2.48)

where the variation of the path at t = t2 and t = t1 is given by δs(t0, z) = δs(t1, z) = 0.
Below, the extended Hamilton’s principle is evaluated considering the vertical beam configuration. Therefore,

to enhance the readability the spatial and temporal arguments of the transversal displacement sj = sj(t, z) are
omitted as long as no special evaluation of the displacement is required.
At the beginning of the evaluation of the extended Hamilton’s principle the variation of the kinetic and

potential energy are required. Taking (2.37) to (2.40) into account they result in

δWkin(t) =

r∑
j=1

( l∫
0

µj(z)∂tsjδ∂tsj dz +mj∂tsj(t, l )δ∂tsj(t, l ) + Jj∂t∂zsj(t, l )δ∂t∂zsj(t, l )

)
, (2.49)

δWpot(t) =

r∑
j=1

( l∫
0

Λj(z)∂2
zsjδ∂

2
zsj dz +

l∫
0

pj∑
k=1

Γj,ak(z)Uak(t)δ∂2
zsj dz

)

+

r−1∑
j=1

kj,j+1

(
sj(t, l )− sj+1(t, l )

)
δ
(
sj(t, l )− sj+1(t, l )

)
.

(2.50)

Hence, considering (2.42) the first variation or Gâteaux derivative reads

δJ(t) =

t1∫
t0

r∑
j=1

( l∫
0

µj(z)∂tsjδ∂tsj − Λj(z)∂2
zsjδ∂

2
zsj −

pj∑
k=1

Γj,ak(z)Uak(t)δ∂2
zsj

− γvj (z)∂tsjδsj − γkvj (z)∂t∂
2
zsjδ∂

2
zsj − γsvj (z)∂t∂zsjδ∂zsj dz

+mj∂tsj(t, l )δ∂tsj(t, l ) + Jj∂t∂zsj(t, l )δ∂t∂zsj(t, l )

)

−
r−1∑
j=1

kj,j+1

(
sj(t, l )− sj+1(t, l )

)
δ
(
sj(t, l )− sj+1(t, l )

)
dt.

(2.51)

Applying partial integration to standardize the variational operator to δsj(t, z1), δsj(t, l ) and considering the
fundamental lemma of variational calculus [91, 77] leads to
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δJ(t) =

t1∫
t0

r∑
j=1

( l∫
0

{
− µj(z)∂2

t sj − ∂2
z

[
Λj(z)∂2

zsj
]
−

pj∑
k=1

∂2
z

[
Γj,ak(z)Uak(t)

]
− γvj (z)∂tsj − ∂2

z

[
γkvj (z)∂t∂

2
zsj
]

+ ∂z
(
γsvj (z)∂t∂zsj

)}
δsj dz

+

{
∂z
[
Λj(l )∂2

zsj(t, l )
]

+

pj∑
k=1

∂zΓj,ak(l )Uak(t) + ∂z
[
γkvj (l )∂t∂

2
zsj(t, l )

]
− γsvj (l )∂t∂zsj(t, l )−mj∂

2
t sj(t, l )

}
δsj(t, l )

+

{
− Λj(l )∂2

zsj(t, l )−
pj∑
k=1

Γj,ak(l )Uak(t)− γkvj (l )∂t∂
2
zsj(t, l )

− Jj∂2
t ∂zsj(t, l )

}
δ∂zsj(t, l )

)

−
r−1∑
j=1

kj,j+1

(
sj(t, l )− sj+1(t, l )

)
δ
(
sj(t, l )− sj+1(t, l )

)
dt.

(2.52)

The last summation term can be substituted by
r−1∑
j=1

kj,j+1

(
sj(l , t)− sj+1(l , t)

)
δ
(
sj(l , t)− sj+1(l , t)

)
=

r∑
j=1

k j(s)δsj(t, l ) (2.53)

with

k j
(
s(t, l )

)
=


kj,j+1

(
sj(t, l )− sj+1(t, l )

)
, j = 1

kj,j+1

(
sj(t, l )− sj+1(t, l )

)
−kj−1,j

(
sj−1(t, l )− sj(t, l )

), j ∈ {2, ..., r − 1}

−kr−1,r

(
sr−1(t, l )− sr(t, l )

)
, j = r,

, and s(t, l ) =

s1(t, l )
...

sr(t, l )

 (2.54)

Considering the extended Hamilton’s principle the true trajectory is found if δJ(t) = 0 holds true. Hence, the
equations of motion are obtained from (2.52) with (2.53) in terms of the partial differential equation (PDE) for
the jth beam

0 = µj(z)∂2
t sj + γvj (z)∂tsj − ∂z

[
γsvj (z)∂t∂zsj

]
+ ∂2

z

[
Λj(z)∂2

zsj + γkvj (z)∂t∂
2
zsj
]

+

pj∑
k=1

∂2
zΓj,ak(z)Uj,ak , (2.55a)

for z ∈ (0, l ) and t > 0. The geometric boundary conditions according to Fig. 2.5 read,

sj = 0, ∂zsj = 0, (2.55b)

for t > 0 at the clamped beam tip z = 0 and

mj∂
2
t sj + k j(s) = ∂z

[
Λj(z)∂2

zsj + γkvj (z)∂t∂
2
zsj
]
− γsvj (z)∂t∂zsj +

pj∑
k=1

∂zΓj,ak(l )Uak(t)

Jj∂
2
t ∂zsj = −Λj(z)∂2

zsj − γkvj (z)∂t∂
2
zsj −

pj∑
k=1

Γj,ak(l )Uak(t)

(2.55c)

at the free but coupled beam tip z = l .

Assumption 2.4 The terms in the free boundary conditions (2.55c) depending on Uak(t) describe the effect of
actuators extending the beam tip. Usually there are no MFC-actuators placed at the beam’s tips because this
position describes the lowest impact of the actuators on the transversal deflection taking their lever into account.
Therefore, it is assumed that no MFC-actuators is placed at a beam tip leading to

Γj,ak(l )Uak(t) = ∂z
(
Γj,ak(l )Uak(t)

)
= 0, ∀ j, k.

Hence, below the simplified boundary conditions are considered.
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The initial condition of the system at t = 0 can be chosen arbitrarily

sj = sj,0, ∂tsj = sj,1. (2.55d)

Subsequently, the in-domain measurement achieved by strain gauges has to be described in the same framework
as the equations of motion. These sensors provide the longitudinal strain averaged over the covered area which
can be described in terms of (2.6) as

εj,1(t, zpm,g) =
hj
2
∂2
zsj(t, zpm,g), (2.56)

where zpm,g with g ∈ {1, . . . , 7} denotes the longitudinal position of the strain gauges on the vertical beam
configuration as depicted in the schematics of Fig. 2.5, where the numeric values are given by Table 2.2.
Due to the spatial characteristics Ωj,ak(z) of the MFC-patches defined in (2.14) based on Heaviside functions,

for which the second spatial derivation is not defined, the system (2.55) has to be interpreted in a distributional
sense. This leads to the introduction of the weak formulation, see also [10, 115, 101]. In addition the weak form
is required by the Galerkin approximation which is used as finite dimensional approximation of the equations of
motion required for the implementation on a real time control device.
At this point all three damping models are considered. However, as mentioned in Remark 3.1 a combination of

external (viscous) and one of the internal damping models (Kelvin-Voigt or structural damping) is adequate to
describe the experimental measured dynamic, compare [56] and [58]. Taking experimental results into account
there is no significant distinction between these two damping setups. Nevertheless, there is a difference between
the setups w.r.t. the resulting infinite eigenvalue distribution, see Appendix B.2.

Remark 2.3 In addition, the inertia of the tip mass Jj is neglected since it does not show significant effect
either in the static or in the transient behavior of the experimental setup.

2.1.2.4. Finite Dimensional Approximation of the Equations of Motion of the Pointwise Interconnected
Beam Structure

As mentioned before the finite dimensional approximation is a necessary action enabling the implementation of
a controller on a real time control device which is not capable to project the infinite dimensional system. In
addition, the distributed parameters description of the equations of motion is often complex even for simple
geometries and therefore hard to solve, if at all possible.
The implementation of a control approach relies always on such an approximation. The literature [78] distin-

guishes between “early lumping” and “late lumping” approaches. An early lumping approach introduces at first
the finite dimensional approximation. Thereafter the control approach is designed taking the discretized system
description into account. Late lumping approaches on the other hand design the control algorithm based on the
infinite description and discretized the result for the implementation.
If the control design is based on the finite dimensional or early lumped system so-called “spillover effects” may

disturb the performance. Also if the design or the system description relies on parameters which are identified
considering experimental measurements spillover effects may occur, because most of the time the identification
compares a spatial discretized simulation with the experimental measurements. Spillover effects describe the
differences or errors made by the approximation of the PDE, e.g., eigenfrequencies which are not included in the
approximated ordinary differential equation (ODEs). This can cause problems if such a frequency is excited in
the experimental setup, because the control algorithm can not anticipate the resulting behavior. A late lumping
approach as presented in Appendix B.3 deals with the infinite system leading to an infinite control algorithm
which will be discretized immediately before the implementation.
However, the finite dimensional approximation is a necessary step and is described below. For the beam

structures the Galerkin approximation is used which is based on the weak formulation of (2.55).

Weak Formulation of the Equations of Motion The weak formulation also known as variational formulation of
the equations of motion (2.55) enables us to apply a Galerkin approximation. It is deduced by the multiplication
of the governing PDE (2.55a) with a test function φj(z) ∈ H2

0 (0, l ), where H2
0 (0, l ) = {φ ∈ H2(0, l )|φ(0) =

∂zφ(0) = 0} denotes a Hilbert space1.

1The space H2(0, l ) is a so-called Sobolev space and is defined as H2(0, l ) =
{
φ ∈ L2(0, l )| d

αφ
dzα

∈ L2(0, l ), α ∈ {0, 1, 2}
}
equipped

with the norm ‖φ‖H2 =
(∑
α

‖ dα

dzα
φ‖

2

L2

) 1
2 .
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This yields

µj(z)∂2
t sjφj(z) + γvj (z)∂tsjφj(z)− ∂z

[
γsvj (z)∂t∂zsj

]
φj(z)

+ ∂2
z

[
Λj(z)∂2

zsj + γkvj (z)∂t∂
2
zsj
]
φj(z) = −

pj∑
k=1

∂2
zΓj,ak(z)Uj,akφj(z).

(2.57)

For the vertical beam configuration the test function is chosen as an eigenfunction of the undamped system, see
Appendix B.2. The product allows us to apply an integration by parts to shift the two times spatial derivative
of Λj(z), γkvj (z), and Γj,ak(z) to φj(z) to the test function. Taking the boundary conditions (2.55b) and (2.55c)
into account this result in the weak form

〈µj(z)∂2
t sj , φj(z)〉 + 〈Λj(z)∂2

zsj , ∂
2
zφj(z)〉 + 〈γvj (z)∂tsj , φj(z)〉 + 〈γkvj (z)∂t∂

2
zsj , ∂

2
zφj(z)〉

+ 〈γsvj (z)∂t∂zsj , ∂zφj(z)〉 +mj∂
2
t sj(l )φj(l ) + k j(s)φj(l ) = −

pj∑
k=1

〈Γj,ak(z)Uj,ak , ∂
2
zφj(z)〉,

(2.58)

where 〈 · , · 〉 denotes the L2(0, l ) inner product.

Definition 2.1 Taking [17] into account the inner or scalar product of L2(0, l ) is defined as

〈a, b〉 = 〈a, b〉L2(0,l ) =

l∫
0

ab̄dz (2.59)

where b̄ denotes the complex conjugate of function b.

Galerkin Approximation Weighted residual and thus Galerkin’s method are based on the separation of the
temporal and spatial dependencies of the deflection sj(t, z), i.e.,

sj(t, z) ≈
Nj∑
i=1

qj,i(t)φj,i(z), (2.60)

which is why these belong to the class of series discretization methods, where remaining error is defined as
weighted residual, further details are provided by [77]. Here, {qj,i(t)}Nji=1 defines the set of finite (Nj ∈ N)
time dependent functions or coefficients often called generalized coordinates. In addition, {ψj,i}Nji=1 denotes an
arbitrary set of linear independent trail function of beam j ∈ {1, . . . , r} fulfilling the same boundary condition
as the original problem (2.55b) and (2.55c). Galerkin’s method assumes that the trail function and the test
function in the weak formulation are identical ψj,i = φj,i, see Appendix B.2.
Substituting this approximation into (2.58)

Nj∑
m=1

Nj∑
i=1

(
〈µj(z)φj,i(z), φj,m(z)〉∂2

t qj,i(t) + 〈Λj(z)∂2
zφj,i(z), ∂2

zφj,m(z)〉qj,i(t)

+ 〈γvj (z)φj,i(z), φj,m(z)〉∂tqj,i(t) + 〈γkvj (z)∂2
zφj,i(z), ∂2

zφj,m(z)〉∂tqj,i(t)
+ 〈γsvj (z)∂zφj,i(z), ∂zφj,m(z)〉∂tqj,i(t) +mjφj,i(l )∂2

t qj,i(t) + k̃ j,iq(t)φj,i(l )
)

= −
Nj∑
i=1

( pj∑
k=1

〈Γj,ak(z)Uj,ak , ∂
2
zφj,m(z)〉

)
(2.61)

with

k̃ j,iq(t) =


kj,j+1

(
φj,i(l )qj,i(t)− φj+1,i(l )qj+1,i(t)

)
, j = 1

kj,j+1

(
φj,i(l )qj,i(t)− φj+1,i(l )qj+1,i(t)

)
−kj−1,j

(
φj−1,i(l )qj−1,i(t)− φj,i(l )qj,i(t)

), j ∈ {2, ..., r − 1}

−kr−1,r

(
φj−1,i(l )qj−1,i(t)− φj,i(l )qj,i(t)

)
, j = r,

, (2.62)
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and q(t) = [q1,1(t) . . . q1,N (t) . . . qr,1(t) . . . qr,N (t)]T ∈ RrN the vector of generalized coordinates. The
evaluation of the arising integrals leads to the classic formulation of the equations of motion of a mechanic
multi-body system

M q̈(t) + Cq̇(t) +Kq(t) = Lu(t), (2.63)

with u(t) = [U1,a1(t) . . . U1,ap1 (t) . . . Ur,1(t) . . . Ur,apr (t)]T ∈ Rnu denotes the vector of generalized
inputs, where the number of inputs is defined by nu =

∑r
j=1 pj . The elements of the mass matrix M , the

damping matrix C, the stiffness matrix K, and the input matrix L are summarized in Appendix C.1.
By introducing the state vector x(t) = [qT (t) q̇T (t)]T ∈ R2rN system (2.63) can be rewritten as

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0, with (2.64)

A =

[
0 I

−M−1K −M−1C

]
, B =

[
0

M−1L

]
, (2.65)

where I ∈ RrN×rN denotes the identity matrix. In addition, the system is characterized by the two output
vectors

ypi(t) = Hpix(t), ypm(t) = Hpmx(t), (2.66)

where ypi ∈ Rnpi denotes the deflection at the points of interest of the structure zpi ∈ Rnpi stating the target
of the motion planning and tracking control approach. Subsequently ypm ∈ Rnpm denotes the measured strain
(2.56) at the points of measurement zpm ∈ Rnpm , see also Fig. 2.5 and Table 2.2. Taking (2.56) and (2.60) into
account the output matrices are given by

Hpi =

h
T
1,pi 0 0 0T

0
. . . 0

...
0 0 hTnpi,pi 0T

 , Hpm =

h
T
1,pm 0 0 0T

0
. . . 0

...
0 0 hTnpm,pm 0T

 , (2.67)

with npi =
∑r
j=1 nj,pi as well as npm =

∑r
j=1 nj,pm and

hTf,pi =
[
φj,1(zpi,f ) . . . φj,N (zpi,f )

]
, hTg,pm =

hj
2

[
∂2
zφj,1(zpm,g) . . . ∂2

zφj,N (zpm,g)
]
. (2.68)

2.1.3. Modeling of a Surface Interconnected Beam Structure
The surface interconnected beam structure is used as a proof of concept study of the actual wingsail structure
introduced in Section 2.2. The setup consists of two single beams touching each other at their free tip, therefore
they can be imagined as a segment of the wingsail. Considering the top view the structure forms a triangle, due
to this the structure is also referred to as delta beam configuration.
Below, the mechanical configuration of the system is introduced. Subsequently, the kinetic and potential

energy as well as the work of the non-conservative forces based on the results of the single Euler-Bernoulli
beam are determined. This states the origin for the spatial varying description taking the extended Hamilton’s
principle into account analog to Section 2.1.2.3, where for the delta beam configuration the coupling of the
beams has to be considered as an additional constraint. This touching constraint is addressed by the usage
of a Lagrange multiplier resulting in a system of differential algebraic equations (DAEs). Finally, Galerkin’s
approximation provides a finite dimensional description of the equations of motion.

2.1.3.1. Mechanical Configuration

As depicted in the schematics and the photo of the experimental setup in Fig. 2.6 the delta beam configuration
is composed of r = 2 carbon made beams. Both beams are clamped at z = 0 m and are free but interconnected
at z = l , where the same simplified notation is used as introduced in Section 2.1.2.1, i.e., z = z1 and sj(t, z) =
s3,j(t, z). The connection at the free tip is established by the considered pretension of the configuration and
ensured by an elastic clip allowing a longitudinal motion, i.e., the beams can slide along the respective contact
surface.
Furthermore both beams are equipped with one MFC-patch (type Smart Materials GmbH M 8528 P1 see

[105]) mounted on the inward side of the structure at z1,ak = z2,ak , see Fig. 2.6 and Table 2.3, facing each
other in accordance with the single actuation concept, see Fig. 2.3. To provide a symmetric input range Uj,ak ∈
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[−1000, 1000] V, see also Remark 2.1, the voltage bias U0 = 500 V is applied which leads to a static tension as
mentioned in Section 2.1.1.4. This effect is counter balanced by the previously discussed mechanical pretension.
The initial tension is introduced by the geometric setting of the beam structure ensuring an undeformed state
of the interconnected beams, if the voltage bias U0 is applied. Due to this so-called “neutral state”, the actual
acting voltage results in UMFC

ak = Uak . The common notation is further simplified by the fact that each beam is
only equipped with a single MFC-actuator (k = 1), therefore below it is sufficient to label actuator parameters
by the index a = ak.

l1

z1
2,a

z3
2

z1
2

z3
0

z1
0

z1
1

z3
1

2d
Θ2

0

Θ1
0

h2

h2,a

l1,a

clamping

MFC-actuator

carrier structure

elastic clip

Figure 2.6.: Top: Schematic of the system of surface connected and horizontal aligned beams. The red arrow
marks the point of interest of the motion planning and tracking control approach, see also [57].
Bottom: Photo of the experimental setup, see also [57].

Taking the identical geometry of both beams into account their length is given by l = lj , see Table 2.3. The
setup is further characterized by the constant lateral distance 2d between the clamping points. The beams’
orientation is given by the constant angular displacement Θ2

0 = −Θ1
0 = Θ around the z2-axis of the beam

fixed coordinate system compared to the inertial coordinate system, see Fig. 2.6. Hence, the position of an
arbitrary point on the inward surface of the carrier structure in the inertial coordinate system, or to be precise
its z3

0-coordinate, is determined by taking the Euler-Bernoulli beam assumptions introduced in Section 2.1.1
into account and neglecting the insignificant longitudinal deflection. This results in

p3
0,j(z1) = sΘ

(
(−1)j+1z − hj

2
∂zsj

)
+ cΘsj + (−1)jd, (2.69)

with cΘ = cos(Θ) and sΘ = sin(Θ). The transversal displacement of beam j is denoted by sj and hj describes
the height of the carrier layer. This formulation is used to define the touching constraint later on.
In the end, it has to be mentioned that the point of interest coincides with the point of measurement. Its

location is highlighted by the red arrow in the schematic of Fig. 2.6 and its precise longitudinal position is listed
in Table 2.3. As measurement device a laser sensor (Welotec GmbH type OWLF 4030 FA S1) based on the
triangulation principle is used.

2.1.3.2. Touching Constraint, Stored Energies, and Virtual Work of the Non-conservative Forces

As mentioned before, the extended Hamilton’s principle relies on the associated energies stating the basis of
the determination of the equations of motion of the transversal displacement. The delta beam configuration is
governed by an additional constraint defined by the touching of both beams at their tips. Such constraints can
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Table 2.3.: Dimensions and locations of the actuator, point of measurement and interest of the delta beam
configuration in mm, where j ∈ {1, 2} refers to the associated beam. Furthermore, the index a marks
characteristics of the MFC-actuators, see also Fig. 2.6.

dimension
lj wj hj lj,ak wj,ak hj,ak

420.0 69.0 0.98 85.0 25.0 0.3
es d Θ1

0 Θ2
0

0.5 25.0 −4.0◦ 4.0◦

MFC-actuator positions point of interest and measurement
z1,a z2,a zpi,j zpm,j
23.0 23.0 401 401

be included in the modeling process by the use of a so-called Lagrange multiplier. Below the touching constraint
as well as the energies of the interconnected beam system are introduced.
The touching constraint states that the transversal positions of the inward facing beams’ surfaces have to be

identical. Taking (2.69) into account the constraint is defined as

G(t) = p3
0,1(l )− p3

0,2(l ) = sΘ
hj
2

(
∂zs2(t, l )− ∂zs1(t, l )

)
+ cΘ

(
s1 − s2(t, l )

)
+ 2l sΘ − 2d = 0. (2.70)

By geometric construction of the setup the last term evaluates to 2l sΘ − 2d = 0 simplifying the constraint to

G(t) = sΘ
hj
2

(
∂zs2(t, l )− ∂zs1(t, l )

)
+ cΘ

(
s1(t, l )− s2(t, l )

)
= 0. (2.71)

The stored energies and the virtual work of non-conservative forces of the delta beam configuration are given
by the sum of the energies and virtual work of the single Euler-Bernoulli beam introduced in Section 2.1.1.
In contrast to the vertical beam configuration the single actuation concept has to considered resulting in a
dependency of the actuator placement mainly of the potential energy.

Kinetic Energy Considering (2.16) the kinetic energy of the delta beam configuration yields

Wkin(t) = W s
kin,1(t) +W s

kin,2(t) =
1

2

l∫
0

µs1(z)
(
∂ts1

)2
+ µs2(z)

(
∂ts2

)2
dz, (2.72)

with

µsj(z) = ρjAj + ρj,aAj,aΩj,a(z) (2.73)

where Aj = hw , Aj,ak = hakwak , ρ, and ρak denote the the cross sections and densities of the carrier and
MFC-patches, respectively. Furthermore, Ωj,ak(z) describes the notch function (2.14) per beam, which provides
the spatial characteristic of the MFC-patches or in other words it adds the additional effects of the actuators
within their covered surface z ∈ [zj,a, zj,a + la].

Potential Energy Taking (2.26) into account the potential energy of the delta beam configuration results in

Wpot(t) = W s
pot,1(t) +W s

pot,2(t) =
1

2

l∫
0

Λs
1(z)

(
∂2
zs1

)2
+ Λs

2(z)
(
∂2
zs2

)2
+ Γs

2(z)U2∂
2
zs2 − Γs

1(z)U1∂
2
zs1 dz (2.74)

with

Λs
j(z) = E1111

j Ij + E1111
j,a Ij,aΩj,a(z), Γs

j,a(z) =
Aj,aa

11
1,j,a(hj + hj,a)

2β11,j,aes
Ωj,a(z). (2.75)

Considering Section 2.1.1 these substitutions are derived under the assumption of an asymmetric voltage supply
taking the single actuation concept into account, the piezoelectric constitutive law and the underlying geometry.
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The elasticity modulus of the carrier structure and the MFC-patches are denoted by E1111
j and E1111

j,ak and
the area moment of inertia of the carrier and MFC-actuators are given by Ij = wjh3

j /12 as well as Ij,a =

wj,a[(hj/2 + hj,a)3 − (hj/2)3]. The parameters a11
j,a,1, βj,a,11 and es represent the piezoelectric parameter, the

dielectric constant of the MFC-patch and the distance between neighboring electrodes on an MFC-patch.

Remark 2.4 Considering the mechanical setup of the delta beam configuration taking only the single actuation
into account, the notation is therefore simplified as follows µj(z) = µs

j(z), Λj(z) = Λs
j(z), and Γj(z) = Γs

j,a(z).

Damping Models The virtual work of the non-conservative forces is provided by the sum of the virtual work
of the single beam, as introduced in Section 2.1.1. In contrast to the vertical beam configuration, for the delta
beam configuration only structural damping is considered as internal damping model. Hence, the work of the
non-conservative forces is given by the sum of discussed forces of single beams (2.36) with γkv(z) = 0, resulting
in

δWnc(t) = −
l∫

0

(
γv1 (z)∂ts1(t, z1)δs1(t, z1) + γv2 (z)∂ts2(t, z1)δs2(t, z1)

+ γsv1 (z)∂t∂zs1(t, z1)δ∂zs1(t, z1) + γsv2 (z)∂t∂zs2(t, z1)δ∂zs2(t, z1)
)

dz.

(2.76)

The damping functions are given by (see (2.29) and (2.35))

γvj (z) = γvj,c(z) + γvj,a(z)Ωj,a(z), (2.77)

γsvj (z) = γsvj,c(z) + γsvj,a(z)Ωj,a(z). (2.78)

The parameters γvc (z), γva (z), γsvc (z), and γsva (z) denote the viscous and structural damping coefficient of the of
the carrier and MFC actuators, respectively as discussed in Section 2.1.1.

2.1.3.3. Equations of Motion

Analog to the vertical beam configuration the extended Hamilton’s principle is applied to obtain the equations
of motion of the delta beam configuration. However, the process has to be extended to consider the touching
constraint (2.83) governing the dynamic of the structure. Equality constraints can be addressed in the framework
of Hamilton’s principle by so-called Lagrange multipliers p(t) [91]. In the context of physics the Lagrange
multiplier can be interpreted as a constraining force which ensures that the underlying constraint is fulfilled.
With this the extended functional reads

J(t) =

t1∫
t0

(
Wkin(t)−Wpot(t) +Wnc(t) + p(t)G(t)

)
dt (2.79)

with t0 < t1, t0, t1 ∈ R. To determine the equations of motion the Gâteaux derivative of J(t) is introduced

δJ(t) =

t1∫
t0

(
δWkin(t)− δWpot(t) + δWnc(t) + δp(t)G(t) + p(t)δG(t)

)
dt, (2.80)

with δs(t0, z) = δs(t1, z) = 0, where δ denotes the variational operator. As mentioned before the governing
equations of motion result from the extremum of the functional J(t).
For the evaluation of the extended Hamilton’s principle the variations of the energies (2.72) and (2.74) as well

as of the touching constraint (2.83) are required which are given by

δWkin(t) =

2∑
j=1

l∫
0

µj(z)∂tsjδ∂tsj dz, (2.81)

δWpot(t) =

2∑
j=1

l∫
0

Λj(z)∂2
zsjδ∂

2
zsj + (−1)jΓj,a(z)Uj(t)δ∂

2
zsj dz, (2.82)

δG(t) = sΘ
hj
2

(
δ∂zs2(t, l )− δ∂zs1(t, l )

)
+ cΘ

(
δs1(t, l )− δs2(t, l )

)
. (2.83)
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Hence, considering (2.76) δJ(t) evaluates to

δJ(t) =

t1∫
t0

2∑
j=1

( l∫
0

µj(z)∂tsjδ∂tsj − Λj(z)∂2
zsjδ∂

2
zsj − (−1)jΓj,a(z)Uj(t)δ∂

2
zsj

− γvj (z)∂tsjδsj − γsvj (z)∂t∂zsjδ∂zsj dz

)
+ δp(t)

(
sΘ

hj
2

(
∂zs2(t, l )− ∂zs1(t, l )

)
+ cΘ

(
s1(t, l )− s2(t, l )

))
+ p(t)

(
sΘ

hj
2

(
δ∂zs2(t, l )− δ∂zs1(t, l )

)
+ cΘ

(
δs1(t, l )− δs2(t, l )

))
dt.

(2.84)

Applying partial integration to standardize the variational operator to δsj(t, z1), δsj(t, l ) and considering the
fundamental lemma of variational calculus [91, 77] leads to

δJ(t) =

t1∫
t0

2∑
j=1

( l∫
0

{
− µj(z)∂2

t sj − ∂2
z

[
Λj(z)∂2

zsj
]
− (−1)j∂2

zΓj,a(z)Uj(t)

− γvj (z)∂tsj + ∂z
[
γsvj (z)∂t∂zsj

]}
δsj dz

+

{
∂z
[
Λj(l )∂2

zsj(t, l )
]

+ (−1)j∂zΓj,a(l )Uj(t)− γsvj (l )∂t∂zsj(t, l )

}
δsj(t, l )

−
{

Λj(l )∂2
zsj(t, l ) + (−1)jΓj,a(l )Uj(t)

}
δ∂zsj(t, l )

)

+ δp(t)
(

sΘ
hj
2

(
∂zs2(t, l )− ∂zs1(t, l )

)
+ cΘ

(
s1(t, l )− s2(t, l )

))
+ p(t)

(
sΘ

hj
2

(
δ∂zs2(t, l )− δ∂zs1(t, l )

)
+ cΘ

(
δs1(t, l )− δs2(t, l )

))
dt.

(2.85)

Considering the extended Hamilton’s principle the true trajectory is found if the necessary condition δJ(t) = 0
is fulfilled. Hence, the equations of motion can be read out or gathered from (2.85) leading to the PDE for the
jth beam

0 = −µj(z)∂2
t sj − γvj (z)∂tsj + ∂z

[
γsvj (z)∂t∂zsj

]
− ∂2

z

[
Λj(z)∂2

zsj
]
− (−1)j∂2

zΓj,a(z)Uj(t), (2.86a)

for z ∈ (0, l ) and t > 0. Taking the boundary conditions into account

sj = 0, ∂zsj = 0, (2.86b)

for t > 0 at the clamped beam tip z = 0 and

0 = ∂zΛj(z)∂2
zsj − γsvj (z)∂t∂zsj + (−1)j∂zΓj,a(l )Uj(t)δsj(t, l ) + (−1)j+1p(t)cΘ,

0 = −Λj(z)∂2
zsj − (−1)jΓj,a(l )Uj(t)δ∂zsj(t, l ) + (−1)jp(t)sΘ

hj
2

(2.86c)

at the free but coupled beam tip z = l . Since no MFC-actuator extends to the beam tips (see Assumption 2.4)
it follows that

Γj,a(l )Uj(t)δ∂zsj(t, l ) = ∂zΓj,a(l )Uj(t)δsj(t, l ) = 0, ∀j.

The term δp(t)G(t) has no direct effect in the functional because the touching constraint has to be fulfilled
at any time G(t) = 0. Even though the term can not be neglected at all, because the Lagrange multiplier or
constraining force p(t) states an essential part of the boundary conditions, ensuring that the touching constraint
(2.70) is fulfilled. In other words the constraint defines the origin of the determination of the constraining force
p(t), see Section 2.1.3.4. Hence, the equations of motion are given by a system of partial differential algebraic
equations (PDAEs).
As mentioned in the context of the vertical beam configuration introduced in Section 2.1.2 the second order

derivation of the spatial characteristics Ωj,a(z) of the MFC-patches defined in (2.14) requires an interpretation
of the system in a distributional sense, e.g., in terms of the weak formulation.
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2.1.3.4. Finite Dimensional Approximation of the Equations of Motion of the Surface Interconnected
Beam Structure

The applied strategy for the delta beam configuration is the same as for the vertical beam configuration, see
Section 2.1.2.4. However, due to the equations of motion based on PDAEs additional actions are necessary
compared to the previously discussed process. Nevertheless, the approach utilizes the weak formulation of the
equations of motion followed by the Galerkin approximation leading to a system of DAEs. Hereinafter, the
constraining force has to be determined and integrated in a ODEs system.

Weak Formulation of the Equations of Motion The arising differentiations in the equations of motion of the
spatial characteristics Ωj,a(z) in terms of the Heaviside function require to analyze the weak form of the equations
of motion (2.86). Therefore, an arbitrary test function φj(z) ∈ H2

0 (0, l ) is multiplied with the governing PDE
(2.86a) resulting in

µj(z)∂2
t sjφj(z) + γvj (z)∂tsjφj(z)− ∂z

[
γsvj (z)∂t∂zsj

]
φj(z)

+ ∂2
z

[
Λj(z)∂2

zsj
]
φj(z) = −(−1)j∂2

zΓj,a(z)Uj,akφj(z),
(2.87)

where H2
0 (0, l ) = {φ ∈ H2(0, l )|φ(0) = ∂zφ(0) = 0}.

Analog to the vertical beam configuration, the eigenfunctions of the undamped system (see Appendix B.2) are
chosen as test functions φ1(z) = φ2(z). The application of integration by parts shifts the two times derivative
of Λj(z) and Γj,ak(z) to φj(z) taking the boundary conditions (2.55c) and (2.86b) into account. This yields

〈µj(z)∂2
t sj , φj(z)〉 + 〈Λj(z)∂2

zsj , ∂
2
zφj(z)〉 + 〈γvj (z)∂tsj , φj(z)〉 + 〈γsvj (z)∂t∂zsj , ∂zφj(z)〉

+ (−1)j
(
cΘ − (hj/2)sΘ∂z1

)
p(t) = −(−1)j〈Γj,ak(z)Uj,ak , ∂

2
zφj(z)〉.

(2.88)

Galerkin Approximation Considering the weak formulation the Galerkin approximation introduced in Sec-
tion 2.1.2.4 is given by

sj(z, t) ≈
Nj∑
i=1

qj,i(t)ψj,i(z), (2.89)

where the test function of the weak form is chosen as trail function ψj,i = φj,i. In addition, as mentioned before
{qj,i(t)}Nji=1 defines the set of time dependent coefficients or generalized coordinates. Applying the Galerkin
approximation to the weak form (2.88)

Nj∑
m=1

Nj∑
i=1

(
〈µj(z)φj,i(z), φj,m(z)〉∂2

t qj,i(t) + 〈Λj(z)∂2
zφj,i(z), ∂2

zφj,m(z)〉qj,i(t)

+ 〈γvj (z)φj,i(z), φj,m(z)〉∂tqj,i(t) + 〈γsvj (z)∂zφj,i(z), ∂zφj,m(z)〉∂tqj,i(t)
)

= −
Nj∑
i=1

(
〈Γj,ak(z)Uj,ak , ∂

2
zφj,i(z)〉 + (−1)j

(
cΘφj,i(l )− (hj/2)sΘ∂z1φj,m(l )

)
p(t)

)
(2.90)

results in the required separation of the variables in time t and space z with qj = [qj,1(t) . . . qj,N (t)]T ∈ RN

the vector of generalized coordinates of the jth beam and the associated input signal Uj . This leads to

Mj q̈j(t) + Cj q̇j(t) +Kjqj(t) = −ljUj + f jp(t). (2.91)

The elements of the mass matrix Mj , the damping matrix Cj , the stiffness matrix Kj , the input vector lj , and
the constraining vector f j are summerized in Appendix C.2. The second part of the DAE system describing
the equations of motion is the algebraic touching constraints (2.83).
By differentiation of the underlying constraint the DAE system can be converted to an ODEs system [37]. In

this context the index of the DAE system is defined as the number of time derivatives of the constraint until
ṗ(t) appears. For this purpose, the Galerkin approximation has to be applied to the touching constraint

G(t) = gT1 q1 + gT2 q2. (2.92)
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Twofold time differentiation yields

∂2
tG(t) = gT1 q̈1(t) + gT2 q̈2(t). (2.93)

Solving (2.91) for the acceleration q̈j(t)

q̈j(t) = −M−1
j Cj q̇j(t)−M−1

j Kjqj(t)−M−1
j ljUj +M−1

j f jp(t). (2.94)

and substituting the result into (2.93) yields

∂2
tG(t) =− gT1 M−1

1 C1q̇1(t)− gT1 M−1
1 K1q1(t)− gT1 M−1

1 l1U1 (2.95)

− gT2 M−1
2 C2q̇2(t)− gT2 M−1

2 K2q2(t)− gT2 M−1
2 l2U2 + κpp(t). (2.96)

with κp = gT1 M
−1
1 f1 + gT2 M

−1
2 f2. Performing again a temporal differentiation and solving the result for ṗ(t)

leads to the desired ODE characterizing the constraining force

ṗ = cTp1 q̇1 − kTp1q1 − bp1U1 + bdp1U̇1 + cTp2 q̇2 − kTp2q2 − bp2U2 + bdp2U̇2 + ηpp, (2.97)

where the substitutions are described in Appendix C.2.
The conversion of the index 3 DAE system into an ODE system imposes three (artificial) zero eigenvalues

λz = 0. It has to be noted that the used high voltage amplifiers impose a prescribed voltage almost immediately
compared to the reaction time of the mechanical parts. Hence, U̇1 and U̇2 can be neglected in formulation
(2.97).
Reformulating (2.91) into a first order ODE system and adding (2.97) considering the discussed simplification,

yields

ẋj = xj+2, (2.98a)

ẋj+2 = −M−1
j Cjxj+2 −M−1

j Kjxj +M−1
j f

j
p−M−1

j ljuj , (2.98b)

ṗ = cTp1x3 − kTp1x1 − bp1u1 + cTp2x4 − kTp2x2 − bp2u2 + ηpp, (2.98c)

considering the state vector xT = [x1 x2 x3 x4] = [q1 q2 q̇1 q̇2] ∈ R4N and the input vector uT =
[U1 U2] ∈ R2. Introducing the matrix formulation of (2.98) leads to[

ẋ
ṗ

]
=

[
Ax αxp
αTpx ηp

] [
x
p

]
+

[
Bx
bTp

]
u. (2.99)

where x ∈ R4N and u ∈ R2 denote the state- and input vector, respectively. The definitions of the matrix
elements are listed in the Appendix C.2.

Remark 2.5 Beside the considered method to analyze DAE systems arising in multi-body dynamics several other
approaches exist, e.g., the Weierstraß canonical form [65], which is also suitable for over- and underdetermined
systems.

The fact that the touching constraint has to be fulfilled at any time leads to the following assumption.

Assumption 2.5 The constraining force p(t) acts instantaneous. Hence, ṗ(t) = 0 holds true which leads to

p = −α
T
px

ηp
x − b

T
p

ηp
u (2.100)

denoting the stationary description of the constraining force.

The substitution of the stationary force description into (2.99) yields

ẋ = Ax +Bu, with

A = Ax −
αxpα

T
px

ηp
, B = Bx −

αxpb
T
p

ηp
,

(2.101)

whereby the set of eigenvalues of the matrix A results in {λz, λk} ∈ C, k ∈ K = {2, · · · , 4N} with <{λk} < 0
together with the corresponding eigenvectors vz, vk.
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In addition the system is characterized by the two output vectors

ypi(t) = Hpix(t), ypm(t) = Hpmx(t), (2.102)

where ypi ∈ Rnpi denotes the deflection at the points of interest of the structure zpi ∈ Rnpi stating the target of
the motion planning and tracking control approach. Subsequently ypm ∈ Rnpm denotes the measured deflection
at the points of measurement zpm ∈ Rnpm considering the used laser sensors. For the delta beam configuration
the points of interest and points of measurement coincide and are located near the beams’ tips, see Fig. 2.5
and Table 2.2 for the precise location.
Hence, the output matrices yield

Hpi = Hpm =

[
hT1 0 0T

0 hT2 0T

]
, with hTj =

[
φj,1(zpi,j) . . . φj,N (zpi,j)

]
. (2.103)

2.2. Equations of Motion of the Elastic Wingsail
In general, the derivation process of the equations of motion of the wingsail displays similarities to the previously
discussed beam structures. However, the complexity of the structure mainly induced by the curvature of the
wingsail area requires a different approximation process. This is why instead of an analytic approach the finite
element method (FEM) is applied.
The section is organized as follows. At first the mechanical design of the considered wingsail structure is

discussed. Thereafter, the theory of linear elasticity is briefly reviewed which states the basis of the modeling
process and describes the underlying physical effects of the elastic deformation of the structure. The theory
of linear elasticity directly provides the equations of motion of a flexible structure considering different sets of
boundary conditions. Finally, the finite dimensional approximation of the PDE based description in terms of a
spatial discretization by the FEM is briefly discussed.

2.2.1. Mechanical Configuration
The considered wingsail is characterized by two unitary carbon sailing areas mounted on a narrowing mast of the
boat. The mast tapers linear from bottom to top. Its thickness at ground level is given by hm(0 m) = 0.05 m and
hm(1.77 m) = 0.025 m at the mast’s top. The opposite edge is characterized by the touching of both sailing areas
similar to the previously discussed delta beam configuration of Section 2.1.3. Moreover, the top and bottom
edges are free.
Fig. 2.7 illustrates the setting of the wingsail by a 3-d explosion drawing and a schematic of the side view

of the right structure providing the measurements and positions of the considered components. The numeric
values of these geometric measurements are summarized in Table 2.4. In addition Table 2.5 lists the location of
the points of measurement. For the wingsail structure the points of measurement are identical to the points of
interest.
Beside their mounting and geometry, the sailing areas are characterized by four carbon supply beams mounted

on the “inside” surfaces of the wingsail facing each other. The horizontal installation of the supply beams
strengthens the sail, where all beams are mounted flush with the mast as depicted in the schematics on the
right of Fig. 2.7. Furthermore, they end in a constant distance z1

f = 0.03 m to the touching edge. The resulting
non-strengthened area on the touching tip allows the gliding of the sailing areas on each other. Due to the
integrated supply beams the stiffness of the complete structure is partially increased. This increases the effect
and therefore the efficiency of the embedded MFC-actuators to the flexible and weakly damped structure. All
actuators are placed in a constant distance z1

m = 0.02 m to the mast, providing a lever capable to generate
significant deflections of the sail in z1-direction.
In contrast to Section 2.1, where the embedded MFC-actuators are modeled by two counter-rotating bending

moments, the induced deformation is modeled by two tractions f fΓ,ak(t, zak), f rΓ,ak(t, zak) per MFC-patch. The
modeling by forces is required by the used FEM software tools. The tractions act on the boundaries of the
MFC-patch which are aligned with the z3-axis. Both forces point either inwards of the concerning actuator or
outwards leading to the typical shorting / stretching of the MFC-actuator. Taking the mounting of the actuator
on the sail’s surface into account the actuator deformation results in a bending of the wingsail structure. The
tractions are defined as follows

f fΓ,ak(t, zak) = −f rΓ,ak(t, zak) = βUakn(zak), k ∈ {1, . . . , 4} (2.104)

with β denoting the conversion factor between the applied voltage and the generated force. In addition, n(zak)
defines the outward pointing normal vector of the associated boundary surface Γ of the kth MFC-actuator.
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Figure 2.7.: Left: Explosion drawing (generated with FreeCAD [35]) of the assembled wingsail consisting of the
sail areas (in gray), the supply beams (in green) and the embedded actuators (in blue), see also [59].
Right: Schematics of the right wingsail structure (side view) considering all elements, see also
[59]. The red points mark the considered points of interest of transversal deflection s1(t, zpi,f ) f ∈
[1, · · · , 4]. Table 2.5 lists the exact location. The numeric values of the depicted dimensions and
positions are listed in Table 2.4.

Table 2.4.: List of dimensions in mm of the components wingsail area, supply beam and actuator referred by
the indices ws, s and a, respectively.

lengths widths heights positions
lws,b 150.0

wws 1770.0 hws 0.20
z1
m 30.0

lws,t 420.0 z1
f 20.0

ls1 372.0 ws1 75.0 hs1 0.50 z2
s1 120.0

ls2 302.0 ws2 75.0 hs2 0.50 z2
s2 460.0

ls3 232.0 ws3 75.0 hs3 0.50 z2
s3 460.0

ls4 162.0 ws4 75.0 hs4 0.50 z2
s4 460.0

la 62.0 wa 64.0 ha 0.30

Table 2.5.: Location of the points of measurement which are identical to the points of interest zpm,g = zpi,g with
g ∈ [1, . . . , 4].

in mm zpm,1 zpm,2 zpm,3 zpm,4

z1 3.04 3.01 2.96 2.94
z2 -388.75 -364.43 -287.39 -236.02
z3 117.22 656.58 1195.95 1736.21
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Compared to the beam structures the mounted MFC-patches of the wingsail (type Smart Materials GmbH
M 8557 P1, see [105]) are larger and therefore more powerful. However, their electrical characteristics are
the same. The input voltage range is given by UMFC ∈ [−500, 1500] V. Analog to the beam structures a
linear behavior of the MFC-actuators is assumed, see Assumption 2.3. Also a constant bias U0 = 500 V (see
Remark 2.1) is applied to ensure a “neutral state” of the wingsail by counter balancing the initial mechanical
tension (pretension) introduced by the geometric setting of the voltage-free structure (analog to the delta beam
configuration, see Section 2.1.3.1)

U l
ak = U0 + Uak , U r

ak = U0 − Uak . (2.105)

The superscripts l and r denote the location of the single MFC-patches mounted either on the left or on right part
of the wingsail, respectively. Furthermore this leads to a symmetric input voltage range Uak ∈ [−1000, 1000] V.
As in the delta beam configuration the MFC-actuators of both sailing areas are asymmetrically exited resulting
in the desired agonist-antagonist behavior and also defines the system inputs in terms of the voltages Uak with
k ∈ {1, . . . , 4}.

Remark 2.6 The dimensions and positions listed in Table 2.4 are used in the design of the computer aided
design (CAD) model. However, the actual wingsail differs slightly from the CAD model due to the tolerances of
the manufacturing process. Especially the height or thickness of the carbon made components varies as a result
of the processing of the epoxy resin which is used in all carbon structures. Furthermore the thickness of the large
elements is difficult to measure precisely considering its magnitude of a few 100 µm. Hence, an uncertainty
remains which is further discussed in Section 3.2.2.3.

2.2.2. Theory of Linear Elasticity
The linear elasticity is a subclass of the classical theory of elasticity and belongs to the field of continuum me-
chanics. It deals with the deformable continua of so-called linear elastic solids and describes their displacements
subject to forces. Thereby, the term linear elastic solid refers to a solid body which deforms when a force is
applied but returns to its original shape if the force is removed [23, chap. 9]. The equations of motion of the
single Euler-Bernoulli beam as well as the systems of Euler-Bernoulli beams presented in Section 2.1 denote a
subset of this theory. In contrast to this spatially 1-d system the equations of motion of the wingsail deals with
3-d displacement field of the structure which requires a different notation. Due to this, the necessary equations
describing the deformation of the elastic wingsail structure are reintroduced in their tensor based representation.
These equations consider assumptions for the wingsail which does not holds true for each solid in general. A
detailed description of the linear elasticity is provided in textbooks, e.g., [23, 109].
The common equations of motion provided by the theory of linear elasticity (see [23, 109]) are given by

ρ∂2
t s(t, z)− fΩ(t, z)−∇ ·

(
σ(s)

)
= 0, t ∈ (0, T ], z ∈ Ω. (2.106a)

These consist of the product of the density ρ with the acceleration field ∂2
t s(t, z), the applied body force fΩ(z)

(e.g., gravity) which acts on the whole domain Ω, and the divergence of the stress tensor σ(s). Whereby, the
divergence operator of a continuously differentiable vector field is defined as

∇ ·
(
s(z)

)
=
[
∂z1 ∂z2 ∂z3

]
·
[
s1(z) s2(z) s3(z)

]
,

with · denoting an arbitrary tensor product, which leads to a tensor contraction.
In addition, the boundary and initial conditions are required to describe the temporal displacement of a solid.

For the wingsail structure the following conditions have to be considered

BC (clamped): s(t, z) = 0, z ∈ Γ1, t ≥ 0 (2.106b)
BC (actuation): σ(s) ·n(z) = fΓ(t, z), z ∈ Γ2, t ≥ 0, (2.106c)
BC (free): σ(s) ·n(z) = 0, z ∈ Γ3, t ≥ 0, (2.106d)
IC: s(t, z) = ∂ts(t, z) = 0, t = 0, (2.106e)

where fΓ(z) is defined as traction (also refereed to as surface force) acting on the boundary surface Γ2 and n(z)
describes the outward pointing normal vector of each boundary surface in Γ = Γ1 ∪ Γ2 ∪ Γ3 at a specific point
z .

Remark 2.7 Taking the wingsail geometry into account all surfaces of the sailing areas and the supply beams
connected to the mast define the clamped boundary surfaces Γ1. Such a boundary condition is often refereed to
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as Dirichlet condition. In addition, the surfaces on which the tractions f f
Γ,ak(t, zak), f r

Γ,ak(t, zak) act define the
actuated boundary surfaces Γ2 also known as Neumann or natural condition. Considering the wingsail structure
these are the surfaces of the MFC-actuators which are aligned with the z3-axis. Finally, all other surfaces denote
the set of free boundaries Γ3.

Furthermore, it has to be mentioned that the impact of gravity can be neglected due to the high amount of
stiffness of the structure in the z3-axis induced by the shape and clamping. Hence, the acting body forces yield
fΩ(z) = 0 N.
Recalling from Section 2.1.1 the stress tensor (2.106a) is given by the constitutive law (Hooke’s law) [23, chap.

9],[111] providing a relation between the stress and the strain

σ(s) = E · ε(s). (2.107)

Here, · denotes the tensor product of the 4th order elasticity tensor E with the symmetric second order strain
tensor

ε(s) =
1

2

(
∇s +

(
∇s
)T) (2.108)

with ∇ denoting the gradient of an continuous displacement field s. This is a compact notation of the commonly
used and previously discussed component form considering Einstein’s sum convention

σim = Eimklεkl.

Assuming isotropic and homogeneous material, Hookes’s law simplifies to

σ(s) = λTr
(
ε
)
I + 2µε, (2.109)

where I denotes the identity matrix (second order identity tensor), see Assumption 2.2 and [23, chap. 9]. The
stiffness of the considered material is specified by the Lamé parameters λ, µ. Both parameters can be determined
by Young’s modulus E and the Poisson’s ratio ν as follows [23, chap. 9]

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.110)

Considering the symmetric strain tensor ε(s) the stress tensor σ(s) can be reformulated as

σ(s) = λTr
(
∇s
)
I + µ

(
∇s +

(
∇s
)T)

. (2.111)

The formulation (2.106a) of the equations of motion describes an energy conserving system which is not
capable to cover the non-conservative dynamics of the wingsail. Therefore, the system has to be extended by a
damping function to achieve a realistic behavior. Commonly this is done by the usage of the so-called Rayleigh
damping. This damping model results in a spatially discretized formulation in a damping matrix, which is
proportional to the mass and stiffness matrix C = γvM + γkvK leading to a damping force fd = −C∂ts(z).
Considering [77, chap. 7] and [120, chap. 16] the mass proportional term represents viscous damping and the
stiffness proportional term depicts Kelvin-Voigt damping, with the corresponding damping parameter γv and
γkv, respectively. To achieve this damping effect in the continuous strong formulation the damping force is
introduced as a vector field

fd = −
(
γvρ∂ts − γkv∇ ·

(
σ(∂ts)

))
. (2.112)

Taking the FEM into account this formulation directly leads to the damping matrix of [77, chap. 7] without
further expensive computation by the sum of the already determined mass and stiffness matrix. Furthermore,
this formulation enables an operator based representation, which states the basis of the implementation in the
used FEM framework, see also Appendix A. This “external” damping force appears as a general force which
leads to the residual formulation of the damped linear elasticity equation and the related boundary as well as
initial conditions

PDE: ρ∂2
t s(t, z)− fΩ(t, z)−∇ ·

(
σ(s)

)
+ γvρ∂ts − γkv∇ ·

(
σ(∂ts)

)
= 0, (2.113a)

z ∈ Ω, t ∈ (0, T ],

BC (clamped): s(t, z) = 0, z ∈ Γ1, t ≥ 0 (2.113b)
BC (actuation): σ(s) ·n(z) = fΓ(t, z), z ∈ Γ2, t ≥ 0, (2.113c)
BC (free): σ(s) ·n(z) = 0, z ∈ Γ3, t ≥ 0, (2.113d)
IC: s(t, z) = ∂ts(t, z) = 0, t = 0. (2.113e)
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2.2.3. Finite Dimensional Approximation of the Equations of Motion Using the Finite
Element Method

Similar to the Galerkin approximation used for the beam models before, the FEM is introduced to obtain a
finite dimensional approximation of the infinite dimensional model. In fact, Galerkin’s approximation is part of
the presented FEM algorithm. Due to this the weak formulation of the associated equations of motion states
again the origin of the approximation. The main difference to the previous approach is displayed by the choice
of the trail and test function.
Below the divergence theorem (also known as Gauss’s theorem) or a multi-dimensional integration by parts

is recalled which is frequently used in the following subsections.

Definition 2.2 Taking an arbitrary vector u and tensor T into account the divergence theorem ([111], [49,
chap. 1, 8]) is defined as ∫

Ω

∇u : T dΩ =

∫
Γ

u · (n(z) ·T ) dΓ−
∫
Ω

u · (∇ ·
(
T
)
) dΩ, (2.114)

where : denotes the double tensor contraction h : k = trace(hT k) = trace(k hT ) [49, chap. 1].

2.2.3.1. Weak Formulation

The application of the FEM requires the weak form of the governing PDE and the related boundary condition.
As before, the weak form is constructed by the product of the PDE with an arbitrary vector of continuous test
functions φ. The test function has to fulfill the same boundary conditions as the original problem [120, chap.
3]. For the considered problem formulation this yields

T∫
0

∫
Ω

ρφ · ∂2
t s(t, z)− φ ·fΩ(t, z)− φ ·∇ ·

(
σ(s)

)
+ γvρφ · ∂ts − γkvφ ·∇ ·

(
σ(∂ts)

)
dΩ dt = 0. (2.115)

Applying the divergence theorem (2.114) results in

0 =

T∫
0

∫
Ω

ρφ · ∂2
t s(t, z)− φ ·fΩ(t, z) +∇φ : σ(s) + γvρφ · ∂ts + γkv∇φ : σ(∂ts) dΩ dt

−
T∫

0

∫
Γ

φ ·
(
n(z) ·σ(s)

)
+ γkvφ ·

(
n(z) ·σ(∂ts)

)
dΓ dt.

(2.116)

Considering the definition of the stress tensor (2.111) the time derivative yields

σ(∂ts) = ∂tσ(s). (2.117)

In view of the boundary condition (2.113b) to (2.113d) as well as the absence of body forces fΩ(t, z) = 0 N, the
weak form (2.116) can be simplified to

0 =

T∫
0

∫
Ω

ρφ · ∂2
t s(t, z) +∇φ : σ(s) + γvρφ · ∂ts + γkv∇φ : σ(∂ts) dΩ dt

−
T∫

0

∫
Γ2

φ ·fΓ(t, z) + γkvφ · ∂tfΓ(t, z) dΓ2 dt,

(2.118)

where the traction fΓ(t, z) denotes the control input.

2.2.3.2. Galerkin Approximation

The Galerkin approximation is applied by making use of

s(t, z) ≈ sh(t, z) =

N∑
i=1

φi(z)qi(t), (2.119)
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where sh ∈ Sh ⊂ H1
0 (Ω) denotes the approximated displacement field. Here, Sh defines a finite dimensional

space with the basis denoted as {φi(z)}Ni=1, also known as trail functions, where N = dim (Sh) which is later on
called the number of degrees of freedom (DoFs). The time dependent coefficient or generalized coordinates are
given by {qi(t)}Ni=1.
Until now only the notation changed slightly compared to the previously discussed approach. As mentioned

before the choice of the test and trail functions causes the major difference compared to the analytic modeling
process used for the beam structures. For the beam structures a set of eigenfunctions of the undamped single
beam is used fulfilling the same boundary condition as the original problem. This is not suitable any more, due
to the increased complexity of the structure. An analytic solution would require the application of the theory
of shells considering tapered shell elements of non trivial geometries.
This motivates the use of the FEM. The main idea of the FEM is the subdivision of a complex domain into

many simple geometries which can easily be described. With this and taking the Galerkin approximation into
account the original problem (2.113) described by the PDE and its boundary conditions can be reformulated
as a large system of ODEs which can be efficiently solved. Below, a brief introduction of the FEM is provided,
which is mainly based on [120] providing an engineering perspective and [17] focusing on the mathematical
background.

2.2.3.3. Spatial Discretization

The test and trail functions are defined by the spatial discretization which subdivides the complex domain into
small and simple subdomains the so-called finite elements.

Remark 2.8 Taking the exposition in [120] into account it is common practice to reduce the number of DoFs
by only considering one half of a symmetric domain. In other words, redundant information can be skipped, i.e.,
it is sufficient to consider only the right part of the wingsail structure for the finite element (FE) analysis.

The spatial discretization subdivides the complex structure into FEs characterized by a simple geometry. This
enables the description of the displacement of the complete domain by the superposition of the displacement of
single FEs which are easily determined compared to the original domain. Independent of the FE type each FE
can be characterized as follows.

Definition 2.3 The triple (K,Φ,N) denotes a FE if

• the finite domain K ⊆ Rn be a bounded and closed domain with nonempty interior and piecewise smooth
boundary,

• the shape functions Φ describe the finite dimensional space of function on K, and

• the nodal variables N = {N1, . . . , Nk} stating a basis of Φ′, where it is assumed for a FE (K,Φ,N) that
the nodal variables Ni lie in a dual space, e.g., a Sobolev space. Hence, a basis {φ1, . . . , φk} of Φ dual to
N
(
Ni(φm)

)
= δim is called nodal basis for Φ,

see [17, chap. 3.1].

In the definition above the symbol δim describes the Kronecker delta for which δim = 1, if and only if i = m else
δim = 0 holds true.
The FEs interact on their nodal variables with each other. Hence, the displacement at these position results

directly by the FE solution. To obtain the description of the whole displacement field shape functions {Φj}rj=1

are used, which approximate the displacement defined at the nodes within the FE domain {Kj}rj=1. A common
choice for shape functions are polynomials, where the order of the polynomial may affect the performance of
the approximation in terms of the discretization error [120, chap. 2]. In case of the equations of motion (2.113)
based on the theory of linear elasticity at least second order polynomials are recommended to cover the effects
of the stress tensor σ(s).
As a result the displacement within the jth FE can be determined by

sh,j(t) = Φj(z)qj(t), (2.120)

where qj(t) denotes the nodal values of the displacement. Furthermore, the shape function Φj(z) of the jth FE
is characterized by the conditions

• Φj(zj) = I if evaluated on the position zj of its FE nodal variables,
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• Φj(zm) = 0 if evaluated on the position zm of the nodal variables of another FE, and

• Φj(z) = 0 if evaluated outside the associated FE domain, i.e., z /∈ Kj .
Hence, the global approximation is given by the superposition of the shape function of each element

sh(t, z) =
[
Φ1(z) . . . Φr(z)

] q1(t)
...

qr(t)

 , (2.121)

where r denotes the number of considered FEs. Simultaneously the global approximation defines a mapping
between local and global coordinates. Further information about different types of FEs and their associated
shape functions are provided in [120, chap. 4] and [17, chap. 3].
As a result of (2.121), the local gradient of the m-d displacement field is given by

∇sh,j(t) = ∂zΦj(z)qj(t), with ∂zΦj(z) =

∂z1Φj,z1 0 0

0
. . . 0

0 0 ∂zmΦj,zm

 (2.122)

and the global gradient reads

∇sh(t, z) =
[
∂zΦ1(z) . . . ∂zΦr(z)

] q1(t)
...

qr(t)

 . (2.123)

This enables the determination of the strain and stress tensor defined by (2.108) and (2.109), see also [120, chap.
6].
The subdivision process of the domain, also known as meshing, is described in detail by [17, chap 3.3], where

the main facts can be summarized as follows.

Definition 2.4 A subdivision of a domain Ω is a finite collection of FE domains {Kj}rj=1 such that

• the intersection of two distinct interiors denotes the empty set K◦i ∩ K◦m = ∅ and

• the union of all boundaries results in the boundary of the domain K̄j = Ω̄.

Furthermore, it is import that the subdivision is characterized by some continuity properties which ensure that
the elements interact properly with each other. In case of a 2-d domain discretized by triangular FE this can be
assured by the definition of triangulation. This can analogously be formulated for higher dimensions and other
types of FE, i.e., tetrahedrons and hexagons based meshes or even mixed meshes which are frequently used on
3-d domains.

Definition 2.5 A subdivision of a polygonal domain Ω considering triangular FE is called a triangulation, if
no vertex of any triangle lies in the interior of an edge on another triangle also known as “hanging node”.

Normally the subdividing process is performed by a meshing software, e.g., Gmsh, T3D Mesh Generator, Trelis,
etc. providing the desired mesh. Depending on the software different types of FEs are supported. Furthermore
most of these tools assist the user by different modi like automatic meshing or component-wise meshing. They
also enable to choose between fine or a coarse meshes which directly effects the number of DoFs denoted by
the number of nodal variables, or in other words the number of nodes times their free moving (displacement)
directions. In addition these tools provide an automatic validation of the mesh to check if the resolution of the
spatial discretization is fine enough and no “hanging” nodes arise, see Definition 2.5.

2.2.3.4. Assembly of the Finite Dimensional System

The last step of the FEM is the so-called assembling, where the weak form of the equations of motion (2.118)
is evaluated taking the Galerkin approximation (2.119) into account. This yields the desired separation of the
variables in the time dependent coefficients and the previously discussed spatial dependent test and trail function
in terms of the FEs’ shape functions.
For linear elastic systems this results in the well known formulation

M q̈(t) + Cq̇(t) +Kq(t) = Lu(t), (2.124)
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where the construction of the mass, damping and stiffness matrix as well as the input vector based on the
shape functions {Φj}rj=1 are presented in Appendix C.3. In addition, q(t) ∈ RN denotes the vector of time
dependent coefficients of the DoFs, where N defines the total number of the considered DoFs. Furthermore,
u(t) = [Ua1(t) . . . Uap (t)] ∈ Rp describes the input vector of the system composed of the applied voltages
to MFC-actuators. The state vector x(t) = [qT (t) q̇T (t)]T ∈ R2N can be introduced to obtain a first order
system description

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0, with (2.125)

A =

[
0 I

−M−1K −M−1C

]
, B =

[
0

M−1L

]
, (2.126)

where I ∈ RN×N denotes the identity matrix. In addition, the system is characterized by the two output vectors

ypi(t) = Hpix(t), ypm(t) = Hpmx(t), (2.127)

where ypi ∈ Rnpi denotes the displacement at the points of interest of the structure zpi ∈ Rnpi which states the
target of the motion planning and tracking control approach. In addition, ypm ∈ Rnpm denotes the displacement
of the structure at the points of measurement.
In most practical applications the sensors only provided pointwise measurement information instead of the

complete displacement field of the structure modeled by the FEM. The considered laser sensors of the wingsail
setup provide only the displacement of the structure in one direction in terms of the distance between the
wingsail and the sensor (the line of sight). This characteristic can be addressed in the FEM framework by a
projection of the solution space or a Gauss function. However, considering the finite dimensional system it is
sufficient to evaluate the shape functions while neglecting the unmeasured dimensions. In case of the wingsail
structure the points of interest and measurement coincide, so the system output matrices yield

Hpi = Hpm =
[
hT 0T

]
, with hT =

[
φj,1(zpi) . . . φj,N (zpi)

]
. (2.128)

2.2.3.5. Tool Chain and Results for the Wingsail Structure

The mesh of the wingsail structure is generated by the meshing software Trelis and consists of 16545 tetrahedral
FEs resulting in a total number of N = 93255 DoFs. As mentioned above the shape functions used for problems
regarding linear elasticity should be polynomials of at least second order. Numeric experiments for the wingsail
with tetrahedral FEs show that polynomials of higher order (> 2) do not show significant improvements regarding
the displacement field solution. Hence, in this work quadratic polynomials are chosen as shape functions. Fig. 2.8
displays the resulting tetrahedral mesh of the wingsail structure.
Tetrahedral elements are considered due to the limitation of the used FE framework, where this decision

does not affect the resulting performance. The chosen framework is the Python and PETSc [8] based open
source project Firedrake [89, 50, 46], which denotes an extremely powerful and efficient tool especially due to
the implemented PETSc algorithms. Furthermore, this framework can be extended by the user code providing
the potential to write and include own functionalities. In contrast to other proprietary tools which only provide
the second order system matrices of the finite dimensional system (2.124) and classic tools of FE-analysis like
visualizations of different solution aspects, eigenvalue studies, etc., this denotes a great benefit. This potential
is used in the context of the parameter identification process in Section 3.2.

Remark 2.9 The ratio of the thickness and the area of the wingsail structure yields a challenging geometry for
the meshing process, due to the fact that the thickness limits the size of the FE domain of the used FEs. The
application of the theory of shells within the FE framework as presented in [59] using the FE software COMSOL
[26] reduces the necessary number DoFs to 8461 considering the same structure of the wingsail. However, due to
the previously discussed benefits of the used tool chain consisting of the FE framework Firedrake and the powerful
methods of model order reduction (discussed in Chapter 4) the larger tetrahedral mesh is used for the modeling
as well as for the control design.
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Figure 2.8.: Tetrahedral mesh of the wingsail structure generated by Trelis and visualized by ParaView [52, 7].
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3. Parameter Identification

The previously deduced mathematical models provide the basis for the control design. Additionally, they allow
to set up a simulation environment which can be used to validate different controllers or even different system
configurations in general. The equations of motion determined in Chapter 2 rely on the knowledge of geometric
and material parameters. While the dimensions can be measured exactly, it is hard or even impossible to
measure the material parameters which are not provided in a datasheet by the manufacturer.
In order to determine all necessary parameters, a systematic method is required which is given by the so-called

parameter identification also known as parameter estimation. The main objective is the fitting of the provided
mathematical model or more precisely its simulation results to the measured signals of the experimental setup.
This is done by adjusting the considered system parameters.
Considering the wide range of applications there is a variety of identification methods. In the following, two

methods and their results are presented. The first method relies on the physical understanding of the considered
setup and can only be used for small systems. It is used for the beam structures, which are characterized by
the need of identify only a small number of parameters. Furthermore, these interconnected beam structures
can be analyzed in an uncoupled state. This procedure splits the complex dynamic into several simpler pro-
cesses, reducing the cross coupling effects of the parameters. Secondly, an adjoint based optimization process
is introduced and used to identify the parameter of the wingsail. This method is capable of dealing with the
complex system of the wingsail with its high number of parameters to be identified. In addition, this method
can be efficiently implemented in the Python and PETSc based simulation environment enabling the benefits of
working directly with the full order system in a fast manner. The use of the full system description during the
identification process instead of a reduced model description preserve the physical meaning and effects of the
parameters which may be lost by the model reduction process. The adjoint method makes use of the sensitivity
analysis [93], where sensitivity functions (also called gradients of the objective function) are derived using the
equations of motion and the variational calculus. In this sense sensitivity functions describe the effect of a
parameter variation regarding the objective function which can be used to speed up the optimization process.

3.1. Manual Parameter Identification for the Beam Structures
The parameter identification for the presented beam structures relies on the physical understanding of the
system. Due to the construction, both structures can be split into independent beams. This procedure offers the
separation of the coupling effect from the single bending beam dynamics. The resulting single beam dynamics
is characterized by only nine parameters consisting of the density, the damping, and the stiffness of the carrier
structure and the MFC-actuators, as well as the tip mass and the conversion factor between voltage and bending
moment. In addition, these parameters do not display a strong interference with each other. Hence, the
introduced distributed parameter systems (equations of motion) of the vertical beam configuration (2.55) and
of the delta beam configuration (2.86) or rather their finite dimensional approximations (2.98) and (C.1) can be
analyzed manually.
For the vertical beam configuration, the separation means that the rubber band connecting neighboring beams

has to be detached from the experimental setup. To reflect this change in the equations of motion the associated
spring constants are set to ki,m = 0 N/m2. After the identification of the parameters of uncoupled beams the
coupling spring constant can be identified by comparing the static deflection of the coupled and uncoupled
configuration.
The uncoupling of the delta beam configuration means that only one beam is mounted when the measurement

of the single beams is taken. Setting the coupling vector αxp = 0 implies the decoupled behavior. For the
neglected constraining force no further identification steps are needed because it relies only on the geometric
constraint of the touching of the beam tips. Therefore, the coupling vector is composed of the material parameters
of both beams.
For the measurement a voltage step is used to reveal the full dynamics of the single beam which has to be

covered by the system model. The same step signal is used as input for the simulation. The fitting of the
resulting step responses is done by adjusting the material parameters:
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• The steady state deflection is given by the relation between Young’s modulus E1111
j , E1111

j,ak and the conver-
sion factor of the MFC-patches a11

j,ak,1/βj,ak,11. Hence, these parameters can be determined by adjusting
the parameters in the solution of the steady state equations, which can be computed without significant
effort.

• The densities of the beam and the MFC-patches as well as the tip mass of the beam (for the vertical
beam configuration) have a major impact on the frequency of the oscillation in the step response. The tip
mass can only be adjusted within a small range around the initial guess which is provided by a weighing
scale. This scale measurement differs slightly caused by the low weight of the aluminum of the tip mass
and the uncertainties of the mass of the covered carbon of the carrier. Nevertheless, the initial guess is
trustworthy and so only adjustments within a very small range are necessary, therefore the densities are
the main parameters considering the identification.

• The main effect of the damping models becomes visible on the amplitude of the oscillations. In addition
the Kelvin-Voigt as well as the structural damping have a minor effect on the frequency.

Taken into account these impacts on the static and dynamic behavior it is possible to tune the parameter for
only one beam at a time. Subsequently, a least squares objective function can be formulated and solved by
MATLAB ’s fmincon()-function. This optimization is very slow, therefore the manual tuning is necessary to
speed up the process and to bypass local minimums. The results of this mainly manual process and the previous
mentioned static comparison to determine the spring constants are listed in Table 3.1 for the vertical beam
configuration and in Table 3.2 for the delta beam configuration.

Table 3.1.: Set of identified system/material parameters of the vertical beam configuration with r = 3 beams
and up to pj = 2 equipped MFC-actuators per beam considering Remark 3.1.

beam j = 1 j = 2 j = 3

actuator k = 1 k = 1 k = 2 k = 1 unit
ρj 1.134 1.008 1.050 ×103 kg/m3

ρj,ak 4.932 5.711 ×103 kg/m3

E1111
j 2.406 ×1010 N/m2

E1111
j,ak 7.499 ×109 N/m2

γv(z1) 1.399 1.679 ×10−2 kg/sm

γvak(z1) 8.892 0.445 0.356 8.892 ×10−2 kg/sm

γkv(z1) 9.521 9.790 9.521 ×10−5 kgm3/s

γkvak (z1) 2.503 2.482 2.497 2.512 ×10−5 kgm3/s

γsv(z1) 1.000 ×10−3 kgm2/s

γsvak(z1) 1.000 0.800 1.200 ×10−3 kgm2/s

k1,2, k2,3 2.399 3.516 N/m2

mj 9.000 9.000 8.800 ×10−3 kg
a11j,ak,1
βj,ak,11

1.961 2.069 2.055 2.027 As/m2

Remark 3.1 It has to be mentioned that the combination of viscous and either Kelvin-Voigt or structural
damping is required to match the behavior observed in experiments. In the following, the combination of viscous
and structural damping is used.

As an example the measured step response and the simulation result for the identified parameters of the first
beam of the vertical beam configuration evaluated at the point of measurement is displayed in Fig. 3.1. The
comparison shows that the amplitudes of the oscillation in the beginning are slightly too high and decay too
fast in the end. However, this deviation is small and the overall matching between the measurement and the
simulation shows a nearly exact synchronization. The related voltage step u1(t) = 700 Vh(t− 0.5 s) is also used
as system excitation in the identification process.
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Table 3.2.: Set of identified system / material parameters of the delta beam configuration where j ∈ {1, 2} refers
to the beams and the index a marks the MFC-actuators.

beam j = 1 j = 2 unit
ρj 7.24 8.60 ×102 kg/m3

ρj,a 3.36 3.47 ×103 kg/m3

E1111
j 9.74 11.52 ×109 N/m2

E1111
j,a 8.84 9.67 ×109 N/m2

γv(z1) 3.50 3.50 ×10−4 kg/sm

γva (z1) 1.80 1.80 ×10−3 kg/sm

γsv(z1) 8.00 9.00 ×10−4 kgm2/s

γsva (z1) 7.60 7.60 ×10−3 kgm2/s
a11j,a,1
βj,a,11

2.54 2.54 ×100 As/m2
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Figure 3.1.: Comparison of the measurement of the first beam of the vertical beam configuration with the related
simulation results considering the identified parameters.

3.2. Parameter Identification for the Wingsail Structure Using the
Adjoint Method

The wingsail is more complex than the previously discussed beam structures. It is impossible to separate its
components for an independent identification. Therefore, the number of objective parameters and the associated
cross coupling effects can not be reduced. They can only be split based on their temporal impact. One set of
parameters affects only the transient behavior of the system. Hence, this set can only be identified considering
the temporal solution of the displacement field. The second set on the other hand displays its impact on the
steady state, so that it is sufficient to analyze the static displacement field reducing the computational effort.
Due to the high system order of N = 93255 DoFs resulting from the FE-approximation the computational effort
is much higher compared to the beam structures which deal with only up to 30 DoFs.
The main idea of the subsequent considered optimization based identification process is to reduce a quadratic

cost or objective function (least squares problem formulation). This can be done by determining the impact
of the desired parameters on the objective function. The impacts, also called gradients, can be deduced in
different ways. The simplest one is the so-called finite difference method, where the optimization first varies
the considered parameter, solves the system and evaluates the objective function. This is done in each iteration
for each parameter to determine their impacts and directions in which the parameters have to be changed.
Considering the equations of motion the stiffness and damping as well as the densities of each component of the
wingsail has to be identified which results in 30 objective parameters. Taking the finite difference method into
account this amount of parameters leads to a high computational effort which is too time consuming. However,
the gradients can also be determined analytically by the sensitivity analysis [93]. One way to do this is the
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so-called adjoint method, which applies the variational calculus to the equations of motion or in other words it
introduces a Lagrange multiplier. The method is distinguish in the continuous adjoint based method which is
based on the distributed parameter equations of motion and the discrete adjoint method relying on the spatial
discretization of the equations of motion.
In this work the continuous adjoint method is used. However, both approaches are widely used, e.g., they

are common in the field of aerospace engineering to optimize the profiles of airfoils, see, e.g., [86, 107] or [39].
Nearly at the same time the method became popular in the field of seismology [111, 32, 72], where it is used for
3-d analysis of the soil. It is also used in the field of medical engineering for tomography e.g. [30, 66] and flow
control [43].
The main advantage of the adjoint method is the analytical sensitivity function (gradient) which relies on the

solution of the adjoint state. Compared to the finite difference method, which requires at least one solution of
the equations of motion per objective parameter, the adjoint method only requires one solution of the equations
of motion and one of the adjoint equations independent of the number of objective parameters. This enables
the usage of the full order system during the identification process. Therefore, further errors introduced by a
reduced order model, which would blur the influence of the parameters (sensitivities), can be avoided.
In the following, the sensitivity functions are derived by the solution of the adjoint state of the equations of

the linear static and transient elasticity. Afterwards, the optimization schema is presented and in the end results
of a benchmark example (bending beam) as well as of the wingsail are presented.

3.2.1. Derivation of the Adjoint Equations and the Sensitivity Functions
For the case of linear elasticity, there are three classes of unknown material parameters

1. stiffness,

2. density,

3. and damping.

Additionally the input parameter of each MFC-actuator likewise affects the dynamics of the mechanical structure,
but only acts at a constant ratio with the stiffness parameters. Therefore, it is sufficient to predefine this
parameter set within a meaningful and physical parameter range and only identify the parameters affecting the
stiffness.
The remaining parameter classes can be split into two sets. The first one, containing the stiffness, affects the

solution of the steady state equations. The effect of the second set of parameters only appears in the dynamical
behavior of the structure. Due to this separation, the identification process can be split as well, providing the
benefit of reduced computational effort for the identification of the stiffness parameters by solving only the static
equation. Density and damping parameters can only be identified by a process solving the transient equations
of linear elasticity requiring a higher amount of computational time and storage.
In the following, the derivation of the static and transient sensitivity functions for the material parameters

are presented. These functions can be constructed by the related adjoint state, which has to be introduced first.

3.2.1.1. Identification Process of the Static Case - the Stiffness Parameters

The static displacement of a flexible structure can be described by the equations of elastostatics which deals
with the conditions of equilibrium of linear elasticity. It can be derived taking into account that all transient
processes have settled, i.e., ∂2

t s(t, z) = ∂ts(t, z) = 0, so that the equations of linear elasticity (2.106) simplify
to (see also [23, 109])

PDE: R(z) = −fΩ(z)−∇ ·
(
σ(s)

)
= 0, z ∈ Ω, (3.1a)

BC (clamped): s(z) = 0, z ∈ Γ1, (3.1b)
BC (actuation): σ(s) ·n(z) = fΓ(z), z ∈ Γ2, (3.1c)
BC (free): σ(s) ·n(z) = 0, z ∈ Γ3. (3.1d)

In the static case the objective parameters are the Lamé parameters and the quadratic objective function can
be defined as

J(λ, µ) =
α

2
‖s∗(z)− s(z , λ, µ)‖2L2 . (3.2)
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This function maps the quadratic deviation (multidimensional least squares) between a desired spatial displace-
ment profile s∗(z) and the actual profile s(z , λ, µ) depending on a specific set of Lamé parameters into a real
scalar cost in terms of the L2 norm of the deviation profile. For numerical reasons a weighting parameter α is
introduced.

Definition 3.1 The L2 norm of a vector-valued function u : Ω→ Rn is given by

‖u‖L2 =
(
〈u,u〉L2

) 1
2

=
(∫

Ω

uT ū dΩ
) 1

2

=
(∫

Ω

u ·u dΩ
) 1

2

, (3.3)

where 〈u,u〉L2 denotes the L2(Ω) inner or scalar product [17] with ū denoting the complex conjugate of u, see
also Definition 2.1. If Ω ∈ Rn holds true a vector field v : Ω→ Rn, like the displacement field, is represented by
a vector-valued function.

For the case of parameter identification the term “desired” means measured. In most practical applications
the measurement is only provided pointwise. Hence, the desired deflection profile reduces to measurement
information located at specific positions zpm on the domain. For the displacement field this means that only the
DoFs (nodes of the mesh) located at zpm,g provide the measured displacement. Regarding the used measurement
method, the profile information of a 3-d vector field reduces to a vector field of lower order, e.g., a stationary
laser measurement of a 3-d displacement field returns only a scalar value in terms of the distance between the
device and the structure (line of sight).
Such profiles can be constructed considering the product of the displacement fields with an approximation of

the Dirac function

spm(z , zpm, λ, µ) = s(z , λ, µ)γ(z , zpm), s∗pm(z , zpm) = s∗(z)γ(z , zpm). (3.4)

As a consequence, the modified objective function reads

Jpm(λ, µ) =
α

2
‖s∗pm − spm‖2L2 , (3.5)

where as approximation for the Dirac a Gauss function or a projection of the solution space can be used. In
fact, the implementation of this Dirac approximation defines a trail function which roughly speaking locates the
nearest vertices of the mesh to the points of measurement and and constrains the motion to a single dimension
only, see Fig. 3.2.

Figure 3.2.: Example of a desired / measured displacement profile s∗pm(zpm) of the wingsail structure using four
laser sensors.

To determine the sensitivity function the objective function is extended by the product of the adjoint state (or
Lagrange multiplier) p(z) and an auxiliary constraint. For the wingsail the constraint is given by the residual
R(z) (3.1a). As a result the so-called Lagrangian yields

L = Jpm −
∫
Ω

p ·R dΩ =
α

2

∫
Ω

(s∗pm − spm) · (s∗pm − spm) dΩ +

∫
Ω

p ·
(
∇ ·
(
σ(s)

)
+ fΩ

)
dΩ. (3.6)
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Applying the divergence theorem (2.114) with u = p and T = σ(s) and taking into account the boundary
conditions (3.1b) to (3.1d) results in

L =
α

2

∫
Ω

(s∗pm − spm) · (s∗pm − spm) dΩ +

∫
Γ

p(z) · (n(z) ·σ(s)) dΓ

−
∫
Ω

∇p(z) : σ(s) dΩ +

∫
Ω

p(z) ·fΩ(z) dΩ

=
α

2

∫
Ω

(s∗pm − spm) · (s∗pm − spm) dΩ +

∫
Γ2

p(z) ·fΓ(z) dΓ2

−
∫
Ω

∇p(z) : σ(s) dΩ +

∫
Ω

p(z) ·fΩ(z) dΩ.

(3.7)

To determine the static sensitivity functions the variation of the Lagrangian L(λ, µ, spm(z , zpm, λ, µ)) subject
to the Lamé parameters is introduced

δL =
∂L(λ + χδλ, µ + χδµ, spm(z , zpm, λ + χδλ, µ + χδµ))

∂χ

∣∣∣
χ=0

=α

∫
Ω

(
s∗pm − spm

)
·
(
− ∂spm(z , zpm, λ + χδλ, µ + χδµ)

∂χ

)
dΩ

∣∣∣∣
χ=0︸ ︷︷ ︸

A

−
∫
Ω

∇p(z) :
(
δλTr

(
∇s
)
I + δµ

(
∇s + (∇s)T

))
︸ ︷︷ ︸

see (2.108) and (2.109)

dΩ

−
∫
Ω

∇p(z) :
(
λTr

(
∇δs

)
I + µ

(
∇δs + (∇δs)T

))
dΩ

︸ ︷︷ ︸
B

.

(3.8)

Taking (3.4) into account A can be rewritten

A =α

∫
Ω

(
s∗pm − spm

)
·
(
− γ(z , zpm)

∂s(z , zpm, λ + χδλ, µ + χδµ)

∂χ

)
dΩ

∣∣∣∣
χ=0

=− α
∫
Ω

(
s∗pm − spm

)
γ(z , zpm) ·

(
∂s(z , zpm, λ + χδλ, µ + χδµ)

∂χ

)∣∣∣∣
χ=0︸ ︷︷ ︸

δs(z)

dΩ.
(3.9)

Considering the substitutions (3.4) the approximated Dirac function is used for s∗pm and spm. Therefore, the
second application of the Dirac has no effect due to its characteristic such that A simplifies to

A = −α
∫
Ω

(
s∗pm − spm

)
· δs(z) dΩ. (3.10)

In addition, reformulating B yields

B =

∫
Ω

∇p(z) : λTr
(
∇δs

)
I dΩ

︸ ︷︷ ︸
a

+

∫
Ω

∇p(z) : µ∇δs dΩ

︸ ︷︷ ︸
b

+

∫
Ω

∇p(z) : µ(∇δs)T dΩ

︸ ︷︷ ︸
c

. (3.11)

In the next step the variational operator δs has to be standardize to obtain the equation of the adjoint state,
its auxiliary conditions, and the sensitivity functions. Hence, partial integration is required using the divergence
theorem (2.114). In order to do this, the term B is split and the properties of the double contraction of two

49



second order tensors h : k = trace(hT k) = trace(k hT ) have to be considered, see Definition 2.2) . For term a
yields

a =

∫
Ω

λTr
(
∇δs

)(
I : ∇p(z)

)
dΩ =

∫
Ω

λTr
(
∇δs

)
Tr
(
I∇p(z)

)
dΩ =

∫
Ω

λ
(
∇δs : I

)
Tr
(
∇p(z)

)
dΩ. (3.12)

Applying (2.114) with u = δs and T = Tr
(
∇p(z)

)
I results in

a =λ

∫
Γ

δs · (n(z) ·Tr
(
∇p(z)

)
I) dΓ− λ

∫
Ω

δs ·
(
∇ ·
(
Tr
(
∇p(z)

)
I
))

dΩ. (3.13)

The terms b and c can be rewritten directly, taking (2.114) into account with u = δs and T = ∇p as well as
T = (∇p)T

b =µ

∫
Ω

∇δs : ∇p(z) dΩ = µ

∫
Γ

δs · (n(z) ·∇p) dΓ− µ
∫
Ω

δs · (∇ ·
(
∇p
)
) dΩ (3.14)

c =µ

∫
Ω

∇δs : (∇p(z))T dΩ = µ

∫
Γ

δs · (n(z) · (∇p)T ) dΓ− µ
∫
Ω

δs · (∇ ·
(
(∇p)T

)
) dΩ (3.15)

Reassembly of the individual parts provides

B =

∫
Γ

δs ·
(
n(z) ·

[
λITr

(
∇p(z)

)
+ µ

(
∇p(z) + (∇p(z))T

)])
dΓ

−
∫
Ω

δs ·
(
∇ ·
[
λITr

(
∇p(z)

)
+ µ

(
∇p(z) + (∇p(z))T

)])
dΩ

=

∫
Γ

δs ·
(
n(z) ·σ(p)

)
dΓ−

∫
Ω

δs ·
(
∇ ·σ(p)

)
dΩ.

(3.16)

In summary the variation of the Lagrangian is obtained as

δL =−
∫
Ω

α
(
s∗pm − spm

)
· δs dΩ−

∫
Ω

δs ·
(
∇ ·σ(p)

)
dΩ +

∫
Γ

δs ·
(
n(z) ·σ(p)

)
dΓ

−
∫
Ω

∇p(z) :
(
δλTr

(
∇s
)
I + δµ

(
∇s + (∇s)T

))
dΩ = 0.

(3.17)

The parameter set minimizing (3.5) subject to the constraint (3.1a) is found, when the necessary condition
δL = 0 is fulfilled. Considering the fundamental lemma of variational calculus [91, 77] the adjoint state equation
and its boundary conditions are given by

PDE: ∇ ·σ
(
p(z)

)
+ α

(
spm − s∗pm

)
= 0, z ∈ Ω, (3.18a)

BC (clamped): p(z) = 0, z ∈ Γ1, (3.18b)

BC (free): n(z) ·σ
(
p(z)

)
= 0, z ∈ Γ2 ∪ Γ3, (3.18c)

where the adjoint state’s clamping condition acting at Γ1 results directly from the Dirichlet boundary condition of
the original problem formulation (3.1b). The static sensitivity functions or gradients w.r.t. the Lamé parameters
follows as [

∂δλ δL
∂δµ δL

]
=

 −
∫
Ω

∇p(z) : Tr
(
∇s
)
I dΩ

−
∫
Ω

∇p(z) :
(
∇s + (∇s)T

)
dΩ

 . (3.19)

These functions provide the information of the influence of the Lamé parameters on the Lagrangian and therefore
on the objective function. Due to this, they can directly be used as gradients to minimize the objective function.
These gradients only require the solution of the displacement field s(z) and of the adjoint state p(z). The
solution of the adjoint state can be computed using the same FEM framework as is used for the displacement
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field. As a consequence the weak formulation of the adjoint state equation (3.18) is needed which can be derived
completely analogously to the weak formulation of the displacement field (2.118). Taking into account the
divergence theorem (2.114) as well as the boundary condition (3.18b) and (3.18c) the weak formulation results
in

0 =

∫
Ω

φ ·∇ ·σ
(
p(z)

)
+ αφ ·

(
spm − s∗pm

)
dΩ =

∫
Ω

−∇φ : σ
(
p(z)

)
+ αφ ·

(
spm − s∗pm

)
dΩ. (3.20)

Remark 3.2 As can be seen, the adjoint based gradients (3.19) only require the solution of the boundary value
problem consisting of elastostatic equations (3.1a) in terms of the displacement field s(z) and of the related
adjoint state p(z) governed by (3.18a). This requirement is independent of the number of objective parameters.
In other words the computational effort, which is mainly caused by the solution process of the boundary value
problem, stays the same. In contrast to the finite-difference (FD) method, which require one basic evaluation
of the linear elastostatic PDE and in addition per demanded parameter one (forward or backward FD) or more
(e.g., central FD) evaluations. As a consequence the usage of the adjoint based sensitivity function is beneficial
regarding computational effort especially for complex structures.

3.2.1.2. Identification Process of the Transient Case - the Density and Damping Parameters

In the transient scenario the dynamics of the system are described by (2.113) to improve the readability the
PDE, its boundary and initial conditions are recapitulated

PDE: R(t, z) = ρ∂2
t s(t, z)− fΩ(t, z)−∇ ·

(
σ(s)

)
+ γvρ∂ts − γkv∇ ·

(
σ(∂ts)

)
= 0, (3.21a)

z ∈ Ω, t ∈ (0, T ],

BC (clamped): s(t, z) = 0, z ∈ Γ1, t ≥ 0, (3.21b)
BC (actuation): σ(s) ·n(z) = fΓ(t, z), z ∈ Γ2, t ≥ 0, (3.21c)
BC (free): σ(s) ·n(z) = 0, z ∈ Γ3, t ≥ 0, (3.21d)
IC: s(t, z) = ∂ts(t, z) = 0, t = 0. (3.21e)

Similar to the static case a quadratic objective function is constructed to estimate the density ρ and the damping
parameters γv, γkv. In particular

J(ρ, γv, γkv) =

T∫
0

1

2
α(t)‖s∗(t, z)− s(t, z , ρ, γv, γkv)‖2L2 dt (3.22)

is considered, where the weighting term α(t) may change over time. This feature allows more flexibility during
the identification process and is discussed in Section 3.2.2 in greater detail.
In the case of a pointwise measurement the objective has to be reformulated as discussed previously

Jpm(ρ, γv, γkv) =

T∫
0

1

2
α(t)‖s∗pm − spm‖2L2 dt, (3.23)

with

spm(t, z , zpm, ρ, γ
v, γkv) = s(t, z , ρ, γv, γkv)γ(z , zpm), s∗pm(t, z , zpm) = s∗(z)γ(z , zpm). (3.24)

The time dependent weighting term α(t) provides the opportunity to increase the impact of the deviation during
the optimization process at crucial instants of time.
As in the static case, the Lagrangian has to be defined to derive the transient adjoint based sensitivity functions

L = Jpm(ρ, γv, γkv)−
T∫

0

∫
Ω

p(t, z) ·R(t, z) dΩ dt

=

T∫
0

∫
Ω

1

2
α(t)(s∗pm − spm) · (s∗pm − spm) dΩ dt

+

T∫
0

∫
Ω

p ·
(
− ρ∂2

t s + fΩ +∇ ·
(
σ(s)

)
− γvρ∂ts + γkv∇ ·

(
σ(∂ts)

))
dΩ dt.

(3.25)
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Applying the divergence theorem (2.114) with u = p, T = σ(s) and u = p, T = σ(∂ts) and taking the boundary
conditions (3.21b) to (3.21d) into account results in

L =

T∫
0

∫
Ω

1

2
α(t)(s∗pm − spm) · (s∗pm − spm) dΩ dt+

T∫
0

∫
Ω

p ·
(
− ρ∂2

t s + fΩ − γvρ∂ts
)

dΩ dt

−
T∫

0

∫
Ω

∇p : σ(s) + γkv∇p : σ(∂ts) dΩ dt+

T∫
0

∫
Γ2

p ·fΓ dΓ2 dt

+

T∫
0

∫
Γ

γkv∇ ·
(
p
)

: σ(∂ts) dΓ dt

(3.26)

The first variation of L can be computed as

δL =
∂L(ρ + χδρ, γv + χδγv, γkv + χδγkv, spm(t, z , zpm, ρ + χδρ, γv + χδγv, γkv + χδγkv))

∂χ

∣∣∣
χ=0

,

considering (3.24). Similar to the static part the parameter set minimizing (3.23) subject to the constraint
(3.21a) is found, when the necessary condition δL = 0 is fulfilled. Its evaluation results in

δL =

T∫
0

∫
Ω

α(t)
(
s∗pm − spm

)
·
(
− ∂spm(t, z , zpm, λ + χδλ, µ + χδµ)

∂χ

)
dΩ dt

∣∣∣∣
χ=0︸ ︷︷ ︸

A

−
T∫

0

∫
Ω

p · ∂2
t sδρ dΩ dt−

T∫
0

∫
Ω

ρp · δ∂2
t s dΩ dt−

T∫
0

∫
Ω

ρp · ∂tsδγ
v dΩ dt

−
T∫

0

∫
Ω

γvp · ∂tsδρ dΩ dt−
T∫

0

∫
Ω

γvρp · δ∂ts dΩ dt

−
T∫

0

∫
Ω

∇p :
(
λTr

(
∇∂ts

)
I + µ

(
∇∂ts +

(
∇∂ts

)T))
δγkv dΩ dt

−
T∫

0

∫
Ω

∇p :
(
λTr

(
∇δs

)
I + µ

(
∇δs +

(
∇δs

)T))
dΩ dt

−
T∫

0

∫
Ω

γkv∇p :
(
λTr

(
∇δ∂ts

)
I + µ

(
∇δ∂ts +

(
∇δ∂ts

)T))
dΩ dt

+

T∫
0

∫
Γ

p ·
(
n ·σ(∂ts)

)
δγkv dΓ dt+

T∫
0

∫
Γ

γkvp ·
(
n ·σ(δ∂ts)

)
dΓ dt = 0.

(3.27)

As in the static case the term A is reformulated considering (3.24)

A =

T∫
0

∫
Ω

α(t)
(
s∗pm − spm

)
·
(
− γ(z , zpm)

∂s(t, z , zpm, λ + χδλ, µ + χδµ)

∂χ

)
dΩ dt

∣∣∣∣
χ=0

=−
T∫

0

∫
Ω

α(t)
(
s∗pm − spm

)
γ(z , zpm) ·

(
∂s(t, z , zpm, λ + χδλ, µ + χδµ)

∂χ

)∣∣∣∣
χ=0︸ ︷︷ ︸

δs(z)

dΩ dt.

(3.28)
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Recalling that the approximated Dirac function is already used for s∗pm and spm, see (3.24), and a second
application has no effect A simplifies to

A =−
T∫

0

∫
Ω

α(t)
(
s∗pm − spm

)
δs dΩ dt. (3.29)

In addition, the variational operators have to be standardized. This is accomplished by the multiple usage of
partial integration. Initially, the divergence theorem (2.114) is applied upon five terms. Here, u = ∇p is fix,
where T alters in each application T = I, T = ∇δs, T =

(
∇δs

)T , T = ∇δ∂ts and T =
(
∇δ∂ts

)T , resulting in

δL =−
T∫

0

∫
Ω

α(t)
(
s∗pm − spm

)
· δs dΩ dt−

T∫
0

∫
Ω

p · ∂2
t sδρ dΩ dt−

T∫
0

∫
Ω

ρp · δ∂2
t s dΩ dt

−
T∫

0

∫
Ω

ρp · ∂tsδγ
v dΩ dt−

T∫
0

∫
Ω

γvp · ∂tsδρ dΩ dt−
T∫

0

∫
Ω

γvρp · δ∂ts dΩ dt

−
T∫

0

∫
Ω

∇p :
(
λTr

(
∇∂ts

)
I + µ

(
∇∂ts +

(
∇∂ts

)T))
δγkv dΩ dt

+

T∫
0

∫
Ω

∇ ·
(
σ(p)

)
· δs dΩ dt+

T∫
0

∫
Ω

γkv∇ ·
(
σ(p)

)
· δ∂ts dΩ dt

−
T∫

0

∫
Γ

(
n ·σ(p)

)
· δs dΓ dt−

T∫
0

∫
Γ

γkv
(
n ·σ(p)

)
· δ∂ts dΓ dt

+

T∫
0

∫
Γ

p ·
(
n ·σ(∂ts)

)
δγkv dΓ dt+

T∫
0

∫
Γ

γkvp ·
(
n ·σ(δ∂ts)

)
dΓ dt = 0.

(3.30)

To reduce the complexity the kernels of two boundary integrals terms can be eliminated by the choice n ·σ(p) = 0
as the first boundary condition of the transient adjoint. Introducing this into the variational from of the
Lagrangian reduces the effort of the next step. Furthermore, to simplify the notation the term in front of δγkv
can be rewritten as σ(∂ts) using (2.111).
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A standardized variational operator is received by three temporal partial integrations leading to

δL =−
T∫

0

∫
Ω

α(t)
(
s∗pm − spm

)
· δs dΩ dt−

T∫
0

∫
Ω

p · ∂2
t sδρ dΩ dt−

T∫
0

∫
Ω

ρ∂2
t p · δs dΩ dt

−
[ ∫

Ω

ρp · δ∂ts dΩ

]T
0

+

[ ∫
Ω

ρ∂tp · δs dΩ

]T
0

−
T∫

0

∫
Ω

ρp · ∂tsδγ
v dΩ dt

−
T∫

0

∫
Ω

γvp · ∂tsδρ dΩ dt+

T∫
0

∫
Ω

γvρ∂tp · δs dΩ dt−
[ ∫

Ω

γvρpδs dΩ

]T
0

+

T∫
0

∫
Ω

∇p : σ(∂ts)δγkv dΩ dt+

T∫
0

∫
Ω

∇ ·
(
σ(p)

)
· δs dΩ dt−

T∫
0

∫
Ω

γkv∇ ·
(
σ(∂tp)

)
· δs dΩ dt

+

[ ∫
Ω

∇ ·
(
σ(∂tp)

)
· δs dΩ

]T
0

−
T∫

0

∫
Γ

∂tp ·
(
n ·σ(s)

)
δγkv dΓ dt

−
T∫

0

∫
Γ

γkv∂tp ·
(
n ·σ(δs)

)
dΓ dt+

[ ∫
Γ

p ·
(
n ·σ(s)

)
δγkv dΓ

]T
0

+

[ ∫
Γ

γkvp ·
(
n ·σ(δs)

)
dΓ

]T
0

= 0.

(3.31)

At first, the analysis is focused on the integration concerning the boundaries and taking the boundary condition
of the displacement field (3.1b) to (3.1d) into account which yields

B =−
T∫

0

∫
Γ

∂tp ·
(
n ·σ(s)

)
δγkv dΓ dt−

T∫
0

∫
Γ

γkv∂tp ·
(
n ·σ(δs)

)
dΓ dt

+

[ ∫
Γ

p ·
(
n ·σ(s)

)
δγkv dΓ

]T
0

+

[ ∫
Γ

γkvp ·
(
n ·σ(δs)

)
dΓ

]T
0

=−
T∫

0

∫
Γ2

∂tp ·fΓδγ
kv dΓ2 dt−

T∫
0

∫
Γ

γkv∂tp ·
(
n ·σ(δs)

)
dΓ dt

+

[ ∫
Γ2

p ·fΓδγ
kv dΓ2

]T
0

+

[ ∫
Γ

γkvp ·
(
n ·σ(δs)

)
dΓ

]T
0

.

The variation of the displacement field at the boundary surface Γ1 vanishes (δs = 0) because the field has to
satisfy its boundary conditions, see [91, chap. 4]. The actuated and free Neumann boundary condition leads to

σ(δs) ·n(z) = δfΓ(t, z), z ∈ Γ2, t ≥ 0, σ(δs) ·n(z) = 0, z ∈ Γ3, t ≥ 0.

The applied traction (surface force) is assumed to be constant, which means that the variation of the traction
vanishes δfΓ(t, z) = 0.
Temporal partial integration of the remaining integral of B leads to

B =

T∫
0

∫
Γ2

p∂tfΓδγ
kv dΓ2 dt.

During the identification process the same constant traction function is used as in the measurement scenario,
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so that B = 0 holds. Hence, the variation of the Lagrangian simplifies to

δL =−
T∫

0

∫
Ω

α(t)
(
s∗pm − spm

)
· δs dΩ dt−

T∫
0

∫
Ω

p · ∂2
t sδρ dΩ dt−

T∫
0

∫
Ω

ρ∂2
t p · δs dΩ dt

−
[ ∫

Ω

ρp · δ∂ts dΩ

]T
0

+

[ ∫
Ω

ρ∂tp · δs dΩ

]T
0

−
T∫

0

∫
Ω

ρp · ∂tsδγ
v dΩ dt

−
T∫

0

∫
Ω

γvp · ∂tsδρ dΩ dt+

T∫
0

∫
Ω

γvρ∂tp · δs dΩ dt−
[ ∫

Ω

γvρpδs dΩ

]T
0

+

T∫
0

∫
Ω

∇p : σ(∂ts)δγkv dΩ dt+

T∫
0

∫
Ω

∇ ·
(
σ(p)

)
· δs dΩ dt−

T∫
0

∫
Ω

γkv∇ ·
(
σ(∂tp)

)
· δs dΩ dt

+

[ ∫
Ω

∇ ·
(
σ(∂tp)

)
· δs dΩ

]T
0

= 0.

(3.32)

As in the static case, the adjoint state as well as the sensitivity functions are given, if the necessary condition
δL = 0 is fulfilled. Taking the initial condition of the displacement field (2.113e) into account and considering the
fundamental lemma of variational calculus [91, 77] the adjoint state equation, boundary and terminal conditions
are given by

PDE: −α(t)
(
s∗pm − spm

)
− ρ∂2

t p+∇ ·
(
σ(p)

)
+ γvρ∂tp − γkv∇ ·

(
σ(∂tp)

)
= 0 (3.33a)

z ∈ Ω, t ∈ (0, T ], (3.33b)
BC (clamped): p(t, z) = 0, z ∈ Γ1, t ≥ 0, (3.33c)
BC (free): σ(p) ·n(z) = 0, z ∈ Γ2 ∪ Γ3, t ≥ 0, (3.33d)
TC: p(t, z) = ∂tp(z) = 0, t = T. (3.33e)

The sensitivity functions or gradients w.r.t. density and damping parameters follows as

 ∂δρδL
∂δγvδL
∂δγkvδL

 =


−

T∫
0

∫
Ω

p∂2
t s + γvp∂ts dΩ dt

−
T∫
0

∫
Ω

ρp∂ts dΩ dt

−
T∫
0

∫
Ω

∇p : σ(∂ts) dΩ dt


. (3.34)

These functions provide information about the influence of the density and damping parameters on the La-
grangian and therefore on the objective function. To determine these sensitivity functions only the solutions of
the displacement field s(t, z) and of the adjoint state p(t, z) are required. The solution of the adjoint state can
be computed using the same FEM framework as is used for the displacement field. As a consequence the weak
formulation of the adjoint state equation (3.33) is needed which can be derived analog to the weak formulation
of the displacement field (2.118). Taking into account the divergence theorem (2.114) as well as the boundary
condition (3.33c) and (3.33d) the weak formulation results in

0 =

∫
Ω

−α(t)φ ·
(
s∗pm − spm

)
− ρφ · ∂2

t p+ φ ·∇ ·
(
σ(p)

)
+ γvφ · ρ∂tp− γkvφ ·∇ ·

(
σ(∂tp)

)
dΩ

=

∫
Ω

−α(t)φ ·
(
s∗pm − spm

)
− ρφ · ∂2

t p−∇φ : σ(p) + γvφ · ρ∂tp+ γkv∇φ : σ(∂tp) dΩ.

(3.35)

Remark 3.3 It can be seen that the advantage of the adjoint based sensitivity function considering the static
part regarding computational effort still holds, see Remark 3.2. In fact the advantage increases, due to the fact
that each gradient evaluation requires the complete time solution including the evaluation of the PDEs in each
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time step, which significantly increases the computational effort. The adjoint based sensitivity functions only
require the temporal solution of the displacement field and of the adjoint state instead of the multiple temporal
solutions needed by the finite difference method. Furthermore, the impact increases even more caused by the
rising of the number of objective parameters per domain.

3.2.2. Results of the Adjoint Based Parameter Identification
Below, the applied optimization scheme is briefly discussed and the results of the parameter identification process
are presented. At first, a simple model is designed to validate the process itself through simulations. Secondly the
parameter identification process of the wingsail using pointwise laser measurements is presented, whereby special
usage of the weighting term α(t) is discussed. The resulting material parameters as well as the displacement
field are presented and analyzed.

3.2.2.1. Optimization Scheme

Conveying an insight of the complete identification process, the process flow is briefly discussed. Fig. 3.3 displays
the process schematic in a condensed form.
Based on the governing mathematical problem description and an initial guess of the parameters of interest

θ0 a numerical solution s0 is computed. This step will be referred to as “forward solve”, because for the general
case s0(t) is solved forward in time. Starting the actual optimization cycle, the objective function J has to be
evaluated. This requires the solution si of the current iteration step i as well as the desired solution (measured
data) s∗. In the next step the numerical solution of the sensitivity functions (gradients) of the parameters of
interest ∂δθδL has to be computed. As mentioned before, this can be done efficiently by using the adjoint state
pi. Hence, the solution of the adjoint state is computed, which has to be done “backward” in time considering
the general time dependent case w.r.t. the terminal condition of the adjoint state (3.33e). In the last step of
the cycle, the optimization routine receives the numeric values of the function and the gradients. The selected
algorithm computes the new set of parameters θi+1 and starts the process once more or terminates the process
based on its absolute and relative convergence tolerance εa, εr. Depending on the choice of the used optimization
algorithm additional constraints can be included, e.g., bounded parameters.

initial guess
p.: θ0

forward solve
r.: θi
p.: si

objective function
r.: α, si, s∗,

p.: J

backward solve

r.: α, si, s∗

p.: p, ∂δθδL

optimization

r.:J , ∂δθδL
p.: θi+1

check convergence

||∂δθδL|| ≤ εa
or

||∂δθδL||/|J | ≤ εr

final parameters

p.: θf = θi

false

r.: requires
p.: provides true

Figure 3.3.: Schematics of the parameter identification process.

3.2.2.2. Proof of Concept Study

To validate the introduced adjoint based parameter identification method, a 3-d cantilever beam is considered
as a proof of concept study. The beam is modeled by the equations of linear elasticity. The beam is clamped
s(t, z) = 0 at z1 = 0 m and free σ(s) ·n(z) = 0 on all other boundaries. Its displacement and velocity
at t = 0 s are set to s(t, z) = ∂ts(t, z) = 0. The only acting force is given by the body force fΩ(t, z) =
[0.0 9.81 0.0]Th(t) × 10−3 N, with h(t) denoting the Heaviside function. Table 3.3 displays the length l ,
width w , and thickness or height h as well as the chosen set of material parameters. It has to be mentioned that
non-physical parameters are used for this concept validation.
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Table 3.3.: Geometric dimensions and choosen set of material parameters.
dimension in m material parameters
l w h λ∗ µ∗ ρ∗ γv∗ γkv∗

0.40 0.10 0.01 1.00 N/m2 0.20 N/m2 1.00 kg/m3 0.10 1/s 0.10 s

The simulation is implemented in the open source FE framework Firedrake [89, 50] based on Python and
PETSc [8]. The mesh of the beam is generated by tetrahedral finite elements considering second order continuous
Galerkin shape functions, see Section 2.2.3.3. This leads to a small system described by 6765 DoFs. Fig. 3.4
displays the mesh and the resulting steady state displacement field of the selected scenario.

Figure 3.4.: Static solution of the 3-d displacement field of the considered beam scenario (colorized surface plot)
compared with the not actuated profile (blue grid).

For the optimization PETSc provides the so-called toolkit for advanced optimization (tao) [83] containing
different optimization routines. As depicted in Fig. 3.3 tao obtains the numeric values of the objective function
J and the sensitivity functions (gradients) ∂δθiδL and determines the new parameter set θi+1. This is done
by the bound-constrained limited-memory variable-metric method (BLMVM ) (see [83]) considering the Moré-
Thuente line search method [82].
For the validation the “measured” data s∗ is generated by a forward solve of the displacement field, which

takes place before the actual identification process starts. The selected parameters used in this numerical
solution display the optimal parameter set and are listed in Table 3.3. Due to the split identification process,
the parameter set of interest also splits up. For the static case θ∗s = [λ∗ µ∗]T has to be identified and for the
transient case θ∗t = [ρ∗ γv∗ γkv∗]T is required.
The validation of the beam’s parameters considers two separate scenarios. At first, it is assumed that the

complete displacement field is known (implying measurability) and can be used for the parameter identification.
This scenario will be abbreviated as “full profile information”. The second scenario considers a pointwise mea-
surement at eight locations on the beam surface and will be referred as “pointwise information” below. These
measurements provide only displacement information in z2- and / or z3-direction. Table 3.4 lists the locations
of the points of measurements and Fig. 3.5 visualizes the resulting measured displacement field spm(zpm).

Table 3.4.: Location of the points of measurement.
in m zpm,1 zpm,2 zpm,3 zpm,4 zpm,5 zpm,6 zpm,7 zpm,8
z1 0.40 0.30 0.40 0.30 0.40 0.30 0.40 0.30
z2 0.00 0.00 0.10 0.10 0.00 0.00 0.10 0.10
z3 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00

Static Case – “Full Profile Information” The process starts with an initial guess using a erroneous parameter
set, where each parameter is adulterated by the constant factor θ = 100.0θ∗. Table 3.5 lists the results from
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Figure 3.5.: Solution of the pointwise 3-d displacement field of the considered beam scenario (front view).

every 5th iteration i of the identification process. In addition, the value of the objective function J(λi, µi), taken
into account a global weighting term α = 1.0 × 107, the values of the parameter related sensitivity functions
(gradients) and errors are presented. In particular, the weighting term is used to normalize the value of the
objective function to increase the efficiency of the optimization method provided by tao. Good results were
accomplished if the initial value of the objective function is within the range [0.1, 10].
The parameter errors of each iteration i are defined as

λ̃i = λ∗ − λi, µ̃i = µ∗ − µi, (3.36)

where the superscript ∗ declares the optimal parameter as discussed before and listed in Table 3.3.
During the identification process the objective function displays a monotonically decreasing behavior, see

Table 3.5, where the gradients are characterized by an overall decreasing trend but sometimes rise for a short
period. This effect is related to the interaction of the parameters among themselves, meaning that the improve-
ment of the objective by the adjustment of one parameter may lead to a stronger impact of the other parameters.
The more parameters are considered in the process, the stronger and more frequent this effect becomes. In this
example the effect is marginal.
The complete optimization process takes only i = 26 iterations and the converged parameter set is nearly

equal to the optimal set with errors less than 3.83 × 10−8. This result is generated considering tao’s default
convergence tolerances εa = εr = 1× 10−8.

Table 3.5.: Optimization results of the static beam converged within i = 26 iterations. The final parameter set
yields λ26 = 1.00000003832 N/m2 and µ26 = 0.199999999509 N/m2 .

i J(λi, µi) λ̃i [N/m2] ∂δλi
δL µ̃i [N/m2] ∂δµi

δL

0 +2.56 · 100 −9.90 · 101 +3.08 · 10−5 −1.98 · 101 +2.44 · 10−3

5 +1.67 · 10−3 −5.92 · 100 −3.98 · 10−6 +1.58 · 10−2 −4.43 · 10−1

10 +1.17 · 10−4 −1.08 · 100 −9.72 · 10−5 +7.71 · 10−3 −7.23 · 10−2

15 +7.57 · 10−6 −2.71 · 10−1 +4.52 · 10−6 +2.83 · 10−3 −5.84 · 10−3

25 +7.55 · 10−17 −7.72 · 10−7 −6.03 · 10−10 +1.03 · 10−8 −6.04 · 10−8

26 +3.90 · 10−20 −3.83 · 10−8 −6.26 · 10−12 +4.91 · 10−10 −7.89 · 10−10

Static Case – “Pointwise Information” In this scenario the initial guess uses a erroneous parameter set,
where each parameter is adulterated by the constant factor θ = 10.0θ∗. Analog to the “full profile information”
scenario Table 3.5 lists the results from every 5th iteration i of the identification process. It presents the objective
function Jpm(λi, µi), considering a global weighting term α = 1.0 × 109. The numeric value of the weighting
term is increased compared to the “full profile information” scenario. This is done to compensate the decreased
numeric value of the objective function which relies only on the eight measurement points containing only
displacement information in z2- and z3-direction. Furthermore, the values of the parameter related sensitivity
functions (gradients) and errors (3.36) are shown. The resulting parameter set λ24 = 1.00000138941 N/m2,
µ24 = 0.199999983725 N/m2 reached in i = 24 iterations displays a high accuracy.
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Comparable results can be achieved by discarding the displacement information in z3-direction. Such a setup
results in a parameter set of λ242 = 1.0032518623 N/m2, µ242 = 0.199959266788 N/m2 within i = 242 iterations.
The reduced accuracy and the increased number of iterations can be interpreted by the physical meaning of the
parameter set. The Lamé parameters are composed of Young’s modulus and the Poisson ratio or in other words
they correlate with the longitudinal and lateral strain. Therefore, the difficulty of the identification rises by
omitting the lateral displacement information (z3-direction). Nevertheless, the identification process provides a
sufficiently accurate parameter set with a relative error of less than 0.36 % compared to an initial error of 990 %.

Table 3.6.: Optimization results of the static beam converged within i = 24 iterations. The final parameter set
yields λ24 = 1.00000138941 N/m2 and µ24 = 0.199999983725 N/m2 .

i Jpm(λi, µi) λ̃i [N/m2] ∂δλi
δL µ̃i [N/m2] ∂δµi

δL

0 +2.15 · 10−1 −9.00 · 100 +9.68 · 10−4 −1.80 · 100 +7.71 · 10−2

5 +9.67 · 10−5 −4.96 · 100 +1.88 · 10−5 +1.38 · 10−2 −7.90 · 10−2

10 +7.74 · 10−6 −9.30 · 10−1 −2.23 · 10−5 +6.91 · 10−3 −1.70 · 10−2

15 +4.44 · 10−7 −1.76 · 10−1 −5.18 · 10−5 +2.08 · 10−3 −6.65 · 10−3

20 +7.53 · 10−10 −8.47 · 10−3 −1.09 · 10−6 +1.09 · 10−4 −1.33 · 10−4

24 +3.02 · 10−17 −1.39 · 10−6 +1.70 · 10−10 +1.63 · 10−8 +7.18 · 10−9

Transient Case – “Full Profile Information” The temporal solution of the beam displacement field s(t, z) is
computed with a Newmark solver, see Appendix A.3 and [84], considering a fixed sample time ts = 50.0×10−3 s
for the time interval t ∈ [0, 1.0] s. Analog to the static case, Table 3.7 presents the results from every 5th
iteration, where the parameter errors of each optimization iteration i are defined as

ρ̃i = ρ∗ − ρi, γ̃vi = γv∗ − γvi , γ̃kvi = γkv
∗ − γkvi . (3.37)

As before the optimal parameters, denoted by ∗, are listed in Table 3.3, where the set of the initial guess is
adulterated by θ0 = 100.0θ∗

Table 3.7.: Optimization results of the transient beam converged within i = 16 iterations. The final parameter
set yields ρ16 = 1.00000000103 kg/m3, γv16 = 0.0999999957185 1/s and γkv16 = 0.100000000232 s.

i J(ρi, γ
v
i , γ

kv
i ) ρ̃i [kg/m3] ∂δρi

δL γ̃v
i [1/s] ∂δγv

i
δL γ̃kv

i [s] ∂
δγkv
i
δL

0 +4.84 · 100 −9.90 · 101 +2.43 · 10−4 −9.90 · 100 +2.04 · 10−3 −9.90 · 100 +3.11 · 10−5

5 +6.50 · 10−3 +7.64 · 10−2 −6.97 · 10−2 −3.39 · 10−1 −1.70 · 10−2 +8.50 · 10−2 −1.85 · 10−1

10 +3.94 · 10−8 +3.52 · 10−4 −4.25 · 10−4 −1.09 · 10−3 −7.73 · 10−5 −7.60 · 10−5 +1.80 · 10−4

15 +1.87 · 10−15 +9.93 · 10−8 −1.04 · 10−7 −3.31 · 10−7 −1.98 · 10−8 +6.17 · 10−9 +6.00 · 10−9

16 +2.12 · 10−19 −1.03 · 10−9 −6.72 · 10−10 +4.28 · 10−9 −2.67 · 10−10 −2.32 · 10−10 −1.22 · 10−10

To improve the results of the line search the weighting term is chosen as α(t) = 1 × 1010, so that the
initial objective function value lays in the vicinity of 1. Furthermore the convergence tolerances are set to
εa = 1× 10−8, εr = 1× 10−8.
Fig. 3.6 shows the displacement over time of the beam tip s(t, zpm,1). The gray line denotes the optimal

movement based on the “measured” data. The dashed lines display the displacement corresponding to the
parameter sets of the current iteration i. Within seven iterations the optimal displacement over time seems
to be reached. Considering the numerics there are still slightly differences. The objective function results in
J(ρ7, γ

v
7 , γ

kv
7 ) ≈ 2.22 × 10−4, which can be further improved compared to the value of the 16th iteration of

J(ρ16, γ
v
16, γ

kv
16 ) ≈ 2.12 × 10−19. Also the absolute errors in the 7th iteration are ρ̃ = 2.01 × 10−2 kg/m3, γ̃v =

1.76× 10−1 1/s and γ̃kv = 1.59× 10−2 s, which is still high compared with the nearly perfect result of the 16th
iteration.

Transient Case – “Pointwise Information” Like in the “full profile information” scenario the parameters of the
initial guess are adulterated by θ0 = 10.0θ∗. Furthermore the same settings are chosen, only the weighting term
is set to α(t) = 1×1014. As before only eight measurement points are used, where the displacement information
is restricted to the z2-direction.
Table 3.8 displays every 5th iteration result of the identification process in terms of the objective function

Jpm(ρi, γ
v
i , γ

kv
i ), the sensitivity functions (gradients) and the parameter errors defined by (3.37). The result
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Figure 3.6.: Beam tip’s z2 displacement over time si(t, zpm,1) with zpm,1 = [0.40 0.00 0.01]T m during
the optimization process. The gray line marks the trajectory of the solution considering the correct
parameter set and index i denotes current iteration of the optimization.

display a comparable behavior to the “full profile information” scenario. Convergence is reached within i = 25
iterations but it has to be kept in mind that the initial error is about a factor 10 smaller as in the “full profile
information” scenario. Nevertheless, this initial error is large and the adjoint based identification still shows a
good performance even if only pointwise measurement data is available.

Table 3.8.: Optimization results of the transient beam converged within i = 25 iterations. The final parameter
set yields ρ25 = 1.00000000007 kg/m3, γv25 = 0.0999999998925 1/s and γkv25 = 0.100000000038 s.

i Jpm(ρi, γ
v
i , γ

kv
i ) ρ̃i [kg/m3] ∂δρi

δL γ̃v
i [1/s] ∂δγv

i
δL γ̃kv

i [s] ∂
δγkv
i
δL

0 +2.75 · 101 −9.00 · 100 +1.66 · 100 −9.00 · 10−1 +3.78 · 100 −9.00 · 10−1 −1.95 · 10−1

5 +3.42 · 10−1 −7.03 · 10−2 +9.48 · 100 −5.49 · 10−2 +2.87 · 100 −7.44 · 10−1 +1.23 · 100

10 +4.15 · 10−3 −1.34 · 10−2 +2.25 · 100 +4.68 · 10−3 +5.96 · 10−1 −2.60 · 10−2 +5.97 · 10−2

15 +3.53 · 10−5 −6.45 · 10−3 +1.30 · 10−2 +2.46 · 10−2 −6.92 · 10−3 −9.18 · 10−4 −6.76 · 10−3

20 +2.24 · 10−8 +8.02 · 10−5 −3.29 · 10−3 −2.20 · 10−4 −8.01 · 10−4 +1.00 · 10−4 −6.35 · 10−4

25 +5.59 · 10−20 −7.10 · 10−11 +9.53 · 10−9 +1.08 · 10−10 +2.41 · 10−9 −3.80 · 10−11 −5.01 · 10−10

Fig. 3.7 displays the transient behavior during the iterations i. Like before, the temporal displacement
depicted over the different iterations of the beam tip displays a behaviour converging quickly towards the
optimal trajectory shown in gray. Iteration i = 9 already presents a feasible solution, althought the objective
function provides a high value of Jpm(ρ9, γ

v
9 , γ

kv
9 ) = 2.04× 10−2 compared to the final iteration. The parameter

errors are given by ρ̃9 = −1.00× 10−3 , γ̃v9 = 3.178× 10−2 and γ̃kv9 = 9.99× 10−2.
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Figure 3.7.: Beam tip’s z2 displacement over time si(t, zpm,1) with zpm,1 = [0.40 0.00 0.01]T m during the
optimization process. The gray line marks the trajectory of the optimal solution and index i denotes
current iteration of the optimization.

Concluding the results of beam structure the adjoint based parameter identification overall displays a good
performance on the simple test case in both scenarios. It nearly reaches the optimal parameter values.
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3.2.2.3. Parameter Identification of the Wingsail Structure

Below, the same procedure is used for the wingsail structure. The Lamé parameters are identified in the static
case. Furthermore the densities and damping parameters are estimated using the transient case. In addition an
analysis of the deviation between the experimental setup and the underlying CAD-model is provided.

Identification Setup Section 2.2.1 states that the wingsail is composed by two unitary parts. Hence, all
parameters of the left and right side are identical. In this case it is adequate to identify only one side of the
structure. However, during the construction and the first practical tests deviations between the experimental
setup and the underlying CAD-model were noticed, which are discussed and analyzed below.
The main deviation is based on the geometric measures and the curvature of the sailing area itself. It reveals

that the sailing area of the prototype is shorter compared to the underlying CAD model in the z2-direction
(width of the sail). The resulting error of the curvature can be fixed by the mounting of the supply beams, but
the shortage of the structure leads to a gap of approximately 0.01 m between both sail areas on the free tip. To
accomplish the touching behavior especially in the case of pretensioned actuators (2.105) the tips have to be
elastically clamped to each other by rubber bands, see the magnifying glass of Fig. 3.8.

elastic
clamping

Figure 3.8.: Experimental setup of the wingsail structure including installed elastic clamping.

In addition, it can not be guaranteed that the material parameters of both parts are identical, due to the
mounting process of the structure elements. The mounting is done by applying a mixture of epoxy resin and
hardener on the surfaces which should be connected. This process has to be performed two times for each
wingsail part to connect the sailing area with the supply beams and the supply beams with the actuators. As
a result both parts can differ among themselves. The main effect for this deviation is given by the needed
preparation time. The viscosity of the mixture is crucial regarding the amount of remaining epoxy glue on the
resulting structure affecting its thickness, stiffness, damping, and density.
Considering these deviations, material parameters of the wingsail parts can not be identified separately in

general. Furthermore the question arises, if the deviation between both parts among themselves leads to problems
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in the FE-analysis. Due to the fact, that for the FE-analysis symmetric parts of a structure where neglected to
reduce the number of DoFs, see Section 2.2.3 and Section 2.2.1.
Therefore, the open loop behavior of the transversal displacement of the unilateral wingsail and the coupled

sails has to be analyzed. If both dynamics display a similar behavior it can be assumed that the additional
clamping only introduces symmetric pretensions to both parts. Hence, the reduced FE-analysis stays valid.
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Figure 3.9.: Comparison between the step responses of the unilateral wingsail (right wingsail part only) and the
coupled wingsail considering the input signals (3.38).

Fig. 3.10 displays the step response of the unilateral wingsail s1
u(t, zpi,f ) and of the coupled wingsail s1

c(t, zpi,f )
subject to the input signals

uu(t) = uc(t) =
[
−700− 700− 700− 700

]
h(t− 0.5 s) (3.38)

with h(t) denoting the Heaviside function. These transversal deflections are measured by laser sensors (Welotec
GmbH type OWLF 4030 FA S1) based on the triangulation principle. The measurements are taken on the points
of interest at the end of the supply beams numbered from bottom to top, see Fig. 2.7. It has to be mentioned,
that the signals are filtered by a first order low pass filter characterized by a cutoff frequency fc = 100 Hz to
reduce the noise.
Both measurements display a similar dynamical behavior. The frequency and the phase of the oscillation as

well as the decaying process are nearly identical. Only the steady states differ from each other. Hence, it can
be deduced that the pretension introduced by the coupling mainly effects the stiffness of the structure. This
effect is symmetric which justifies the negligence of the left part of the wingsail structure in the FE-analysis.
For the parameter identification this means that the material parameters of the right wingsail have to cover the
additional effect of the elastic coupling. The resulting mathematical model is used as base for the controller
design.

Static Case The objective parameters of the identification process in the static case are the Lamé parameters
sets λ and µ. These sets contain the single parameters of the sailing areas, the four supply beams and the
actuators marked by the indices ws, s, and a, respectively

λ =
[
λws λs1 . . . λs4 λa

]T
, µ =

[
µws µs1 . . . µs4 µa

]T
. (3.39)
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Each side of the wingsail is equipped with four MFC-actuators placed on the supply beams.

Assumption 3.1 To reduce the number of desired parameters it is assumed that the material parameters of
the MFC-actuators are equal. The actuators this assumption is justified, due to the marginal manufacturing
tolerances of the patches. However, the mounting of the actuators is done with the previously explained epoxy
resin resulting in the discussed potential uncertainties. The crucial preparation time of the MFC-actuators’
mounting is much shorter compared to those of the mounting of the supply beams. This means that the viscosity
of the epoxy mixture changes only slightly during the preparation phase, so that the uncertainties are reduced to
a minimum.

The static displacement is determined by a product of the Lamé parameters and the acting force. For the wingsail
the acting force is the traction defined as f fΓ,ak(t, zak) = −f rΓ,ak(t, zak) = βUakn(zak) (see also (2.104)), where
the conversion factor β is not exactly known. To identify the Lamé parameters and the conversion factor, two
identification processes with different measurements are necessary. At first, an exactly known force has to be
applied on a precise location on the wingsail surface. Hence, the identification can be concentrated on the Lamé
parameters using the known force as input. In a second process, the MFC-actuators can be used as excitation
of the structure, so that the conversion factor can be estimated.
Here the practical issue arises to apply an exactly known force to a precise location on the surface. Further-

more, the magnitude of this force has to be small due to the reaction of the lightweight wingsail structure. The
force could be applied by an electric driven pulse hammer neglecting the friction of the rotating mounting of the
hammer. However, this procedure would require a FE-analysis dealing with solid structure interaction, because
the impact of the pulse hammer can not be modeled as simple force. Due to the fact, that the contact area of
the lightweight structure and the hammer as well as the applied force varies over time.
To avoid these additional effort the conversion factor is chosen as β = 5.0 × 103 N/V. Hence, the Lamé

parameters fall into the expected parameter range.

Remark 3.4 It has to be mentioned that due to the specification of the conversion factor β the resulting identified
parameters are non-physical. This means that the mathematical model and its material parameters match the
measurements although they are unrelated to the physical parameters. In fact, it is impossible to find a physical
set of parameters for the underlying model, due to the previously discussed uncertainties. At least since the
introduced elastic clamping with rubber bands the Lamé parameters have to cover additional effects and therefore
are non-physical.

Addressing the geometry of the wingsail (the magnitude of deflection declines significantly from bottom to
top) the objective function (3.5) is adjusted to ensure an equal weighting of all measurements

Jpm(λi,µi) = α
1

2

∫
Ω

‖s̃relpm(i)‖2L2 dΩ, (3.40)

where s̃relpi (i) denotes the projection of the relative error displacement field in the static case and is defined as

s̃relpm(i) =

npm∑
g=1

s̃relpm,g(i)γ(z , zpm), with s̃relpm,g(i) =
s∗,1(zpm,g)− s1(zpm,g,θi)

s∗,1(zpm,g)
. (3.41)

The measured deflection in z1-direction on the points of measurement at t = 4 s is given by s∗,1(zpm,g). In
addition, the solution of static displacement profile evaluated on the same points is given by s1(zpi,g,θi) and
depends on the parameter set θi = [λTi µTi ]T , where i displays the number of iterations. Recalling from
Section 2.2.1 (see Table 2.5) that the points of measurement of the wingsail are identical to the points of interest
so that s̃relpm,g(i) = s̃relpi,f (i) holds for the error.
The results of the parameter identification considering the adjusted objective function are given in Tables 3.9

and 3.10 taking a weighting parameter α = 1 × 1013 into account. Both tables display the results of one
optimization.
In addition to the numeric results Fig. 3.10 displays the decay of the function values (on the left) and the

decay of the single relative errors (on the right). During the optimization the objective function displays a fast
monotonically decreasing behavior starting at Jpm(λ0,µ0) = 15840.42 and resulting in Jpm(λ23,µ23) = 15.47
as convergence is reached.
Moreover, all single relative errors tend towards zero starting with high values s̃relpi,1(0) = 33.19 %, s̃relpi,2(0) =

42.62 %, s̃relpi,3(0) = 21.29 %, and s̃relpi,4(0) = −14.14 %. The final errors remaining after convergence is reached
are s̃relpi,1(23) = 0.86 %, s̃relpi,2(23) = −1.18 %, s̃relpi,3(23) = 0.52 % and s̃relpi,4(23) = −1.91 % which corresponds
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Table 3.9.: Optimization results of λ =
[
λws λs1 . . . λs4 λa

]T
of the static wingsail identification after

i = 23 iterations (see Table 3.10 for the associated results of µ).
i Jpm(λi,µi)

λws,i
[N/m2]

λs1,i
[N/m2]

λs2,i
[N/m2]

λs3,i
[N/m2]

λs4,i
[N/m2]

λa,i
[N/m2]

0 1.58 · 104 1.07 · 101 2.55 · 101 2.55 · 101 2.60 · 101 1.11 · 102 2.07 · 100

5 1.01 · 103 1.21 · 101 2.56 · 101 2.56 · 101 2.61 · 101 1.11 · 102 3.03 · 100

10 3.76 · 102 1.12 · 101 2.57 · 101 2.56 · 101 2.61 · 101 1.11 · 102 3.19 · 100

15 2.73 · 102 1.12 · 101 2.57 · 101 2.58 · 101 2.62 · 101 1.11 · 102 3.73 · 100

20 2.59 · 101 1.15 · 101 2.57 · 101 2.80 · 101 2.57 · 101 1.10 · 102 7.46 · 100

23 1.55 · 101 1.16 · 101 2.57 · 101 2.83 · 101 2.56 · 101 1.10 · 102 7.90 · 100

Table 3.10.: Optimization results of µ =
[
µws µs1 . . . µs4 µa

]T
of the static wingsail identification con-

verged after i = 23 iterations (see Table 3.9 for the associated results of λ).
i Jpm(λi,µi)

µws,i
[N/m2]

µs1,i
[N/m2]

µs2,i
[N/m2]

µs3,i
[N/m2]

µs4,i
[N/m2]

µa,i
[N/m2]

0 1.58 · 104 2.19 · 101 1.54 · 10−1 2.30 · 10−1 4.65 · 100 3.04 · 102 9.05 · 100

5 1.01 · 103 2.66 · 101 2.86 · 100 3.42 · 100 5.80 · 100 3.04 · 102 1.17 · 101

10 3.76 · 102 2.22 · 101 1.49 · 10−3 2.29 · 101 6.03 · 100 3.03 · 102 1.26 · 101

15 2.73 · 102 2.05 · 101 5.93 · 10−3 2.43 · 101 8.88 · 100 3.03 · 102 1.45 · 101

20 2.59 · 101 1.45 · 101 3.54 · 10−2 3.90 · 101 1.23 · 101 3.01 · 102 2.59 · 101

23 1.55 · 101 1.38 · 101 3.93 · 10−2 4.06 · 101 1.24 · 101 3.01 · 102 2.72 · 101

to the absolute errors s̃abspi,1(23) = 0.074 × 10−3 m, s̃abspi,2(23) = −0.069 × 10−3 m, s̃abspi,3(23) = 0.019 × 10−3 m,

and s̃abspi,4(23) = −0.033 × 10−3 m. The values of these absolute errors already fall into the range of the lasers’
measurement noise. For this reason no further optimization processes are started and the identification process
of the Lamé parameters is completed.
Overall the mathematical model for the resulting parameters matches the measurements. Furthermore, most

of the values of the material parameter lay in the expected range. Table 3.11 provides the stiffness parameters
in terms of Young’s modulus E and Poisson’s ratio ν considering the conversion (2.110) to provide a better
comparability with the parameters of the beam structures, see Section 3.1. Tables 3.10 and 3.11 show that
parameters of the first supply beam unexpectedly differ from the others. This is most likely caused by the
deviation between the original CAD-file and the experimental setup which is the basis of the mesh used in the
FE-analysis. Nevertheless, the result fits the measurement nearly perfectly so that it will be used in the next
steps.

Table 3.11.: Stiffness parameters in terms of Young’s modulus E c and Poisson’s ratio ν c, where the index
c = {ws, s1, . . . , s4, a} denotes the related part of the wingsail.

Part ws s1 s2 s3 s4 a

Ec [N/m2] 33.873× 109 0.118× 109 97.805× 109 33.265× 109 682.091× 109 60.484× 109

νc 0.2282 0.4992 0.2053 0.3366 0.1337 0.1126
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Figure 3.10.: Left: Behavior of the objective function Jpm(λi,µi) during the optimization. Convergence is
reached within i = 23 iteration, see also Tables 3.9 and 3.10.
Right: Associated behavior of the relative static errors s̃relpi,f (i) during the optimization.

Transient Case Considering the identified stiffness parameters only the densities ρ and the viscous γv as
well as the Kelvin-Voigt damping parameters γkv have to be estimated. As before each part of the wingsail is
characterized by its own parameter set except for the MFC-actuators, see Assumption 3.1. Hence, the objective
parameter sets are defined by

ρ =
[
ρws ρs1 . . . ρs4 ρa

]
, γv =

[
γvws γvs1 . . . γvs4 γva

]
, γkv =

[
γkvws γkvs1 . . . γkvs4 γkva

]
. (3.42)

The identification problem becomes more complex due to the fact that the number of desired parameters rise
to 18 and that the problem is defined in a time span t ∈ [0, T ] taking into account the objective function (3.23).
This is not a problem if the initial parameter guess is close to the ideal parameters. However, if the initial guess
is not close enough, the following issues may appear:

• The number of desired parameters increases the cross coupling effect, especially by the combination of the
densities and the Kelvin-Voigt damping. Both parameters affect the frequency of the oscillation of the
transversal deflection resulting from the voltage step. This impact to the simulated dynamic can result in
a kind of limit cycle.

• The considered time span also affects the optimization result. The temporal integration of the objective
function shows a “low pass” behavior if the time span is not properly chosen, i.e., there is a local minimum
for the optimization on the temporal averaged value most likely coinciding with the steady state. In this
case the resulting parameters leads to an PT1-behavior neglecting the oscillation at the beginning of the
measurement.

• In addition, the previously discussed geometric weighting can not be used in the transient case due to the
signal to noise ratio for the deflections which corrupts the relative error (3.41). Therefore, the optimization
prioritizes the lower points of interest due to the larger magnitudes of their deflections.

If the initial guess is not close to the ideal parameter set a solution the wingsail is given by an iterative
identification process. This means that the process is separated into the identification of the densities and the
damping. This provides the opportunity to adjust the temporal weighting function α(t) as well as the considered
time span (mainly the final time T ) in the context of the objective parameter set.
In the following, the main idea of the time dependent weighting function and the separated or iterative

identification process is explained. For a better understanding Fig. 3.11 illustrates the weighting. The main
effect of the densities emerges in the frequency of the oscillation. Therefore, the weighting of the temporal
region around the pivot points of the measurement signal has to be increased (green areas). Caused by the
resulting increased error the optimization tries to fit the slope as well as the pivot points and leads to the correct
frequency. To accelerate the optimization and to decrease the “low pass” behavior the considered final time is
set to Tρ , see Fig. 3.11.
In a second run both types of damping parameters have to be optimized. The main effect of the damping

becomes clearly visible by the amplitude of the oscillation. Although the Kelvin-Voigt damping affects the
frequency its impact is much smaller compared to the density. Hence, the weighting around the minima (yellow
areas) and maxima (red areas) is increased. The chosen time span is also larger compared to the densities
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Tγ > Tρ . A “low pass” effect caused by the time dependent objective function has not to be concerned,
due to the fact that a large error around the extreme points causes a high value of the objective function.

Tρ Tγ
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Figure 3.11.: Illustration the time dependent weighting of the objective function Jpm(α(t),ρ,γv,γkv) by taking
the example of the deflection of the first points of interest. The colored areas mark the time
spans in which the weighting term α(t) is increased subject to the identification of the different
parameters (green for the density, yellow and red for the damping parameters).

Fig. 3.12 illustrates the result of the presented iterated identification. The blue line displays the measurement
of the displacement at the points of interest of the wingsail actuated by a voltage step of 700Vof all actuators at
t = 0.0 s. The simulation result of the initial guess is depicted by the green line. Compared to the measurement
it can be clearly seen that this setting suffers from a high damping behavior. Also the frequency does not match,
e.g., at the first point of interest at t = 0.3 s and on the third point of interest. The red line shows the result of the
first identification focused on the densities which fixes the frequencies as discussed before. In addition the yellow
line displays the result of the second identification process taking the damping parameters into account. The
oscillation of the first two points of interest display a good result. Likewise the third point of interest displays
an acceptable match. Only the last point which refers to the top of the wingsail seems to be characterized by
too high damping parameters. Nevertheless, the final result displays a good performance and will be used for
the further motion planning process and the control design.
Table 3.12 lists the related material parameters of the wingsail structure. As mentioned before, these are

non-physical parameters (see Remark 3.4) which only cover the measured dynamic but are not related to the
expected value range. Especially the density of the supply beams attract attention due to their high magnitudes
stating that the carbon composite material is denser than steel. This huge difference can be explained by the
assumed thickness of the structure elements. As mentioned in Remark 2.6 and in the beginning of Section 3.2.2.3
the thickness of the structure elements is only a few 100µm. Due to these small heights, even small deviations
have a large impact to the volume. Considering the discussed deviation the decision was made to deal with
non-physical parameter sets instead of rebuilding the complete prototype without any guarantee that these
uncertainties will not appear again. Therefore, the parameter, especially the densities, cover these deviations.
Instead of “adjusting” the related volume the numeric value of the density is used to match the measurements.
Although, in the end it is essential that the mathematical model matches the measurement, which is proven by
Fig. 3.12.

Table 3.12.: Densities ρc and viscous as well as Kelvin-Voigt damping parameters γvc , γkvc of the wingsail struc-
ture, where the index c = {ws, s1, . . . , s4, a} denotes the related part of the wingsail.

Part ws s1 s2 s3 s4 a

ρc [kg/m3] 5.547× 103 61.894× 103 161.423× 103 533.515× 103 153.463× 103 192.069× 103

γv
c [1/s] 4.572 0.201 0.846 5.647 21.475 18.241

γkv
c [s] 2.013× 10−3 649.057× 10−3 99.303× 10−3 26.178× 10−3 0.5215× 10−3 11.683× 10−3
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Figure 3.12.: Illustration of the optimization process compared to the measured deflection on the points of
interest.
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4. Model Order Reduction

For the purpose of simulation and control design an accurate mathematical description is required, though most
of the time the accuracy goes hand in hand with the system’s dimension and therefore the computational effort
and the demanded storage space. As a result, the computation time increases so simulations get time consuming,
especially if the process has to buffer its information. However, considering an online application in terms of
the implementation of a control approach on a real time control device this increase of computational time may
exceed the prescribed sample time. Therefore, reducing the computational effort is crucial and the reason for
using the model order reduction (MOR) methods. The principle objective of MOR methods is to reduce the
effort but to preserve as much accuracy as possible or required.
In general, most of the MOR methods can be assigned to one of the following groups

• singular value decomposition (SVD) based methods,

• Krylov based methods,

• or a combination of both.

An overview as well as detailed information about these different groups and the related methods are given in
[5]. Subsequently, the following MOR methods

1. modal truncation,

2. second order balanced truncation,

3. and proper orthogonal decomposition (POD)

are introduced and discussed. All presented methods belong to the group of SVD based techniques. Each
method is characterized by its pros and cons, which are discussed with regard to their considered application.
The related numerical results are presented in Chapter 6.
As basis for the MOR the abstract full order model is either described by the second order equations of motion

M q̈(t) + Cq̇(t) +Kq(t) = Lu(t), t > 0, q(0) = q0, (4.1a)
ypi(t) = Ppiq(t), ypm(t) = Ppmq(t), t ≥ 0 (4.1b)

or the first order system description

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0, (4.2a)
ypi(t) = Hpix(t), ypm(t) = Hpmx(t), t ≥ 0, with (4.2b)

A =

[
0 I

−M−1K −M−1C

]
, B =

[
0

M−1L

]
, (4.2c)

considering the state vector x(t) = [qT (t) q̇T (t)]T ∈ R2N , where N denotes the number of DoFs of the related
second order system. Details are provided by (2.64) to (2.67) for the vertical beam configuration, (2.101)
to (2.103) for the delta beam configuration, and (2.125) to (2.128) for the wingsail structure.

4.1. Modal Truncation
Modal truncation is a well studied MOR method especially in the field of mechanics. In the following, the main
concept is discussed in view of its application to the presented flexible structures. Further details and varieties
are provided in [5, chap. 9.2].
In general, modal truncation uses projection matrices based on the eigenvectors of the system matrix A of

(4.2c) to generate a reduced order system. Considering the solution of the left and right eigenvalue problem

WTA = A∆W
T , AV = V A∆, (4.3)
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yields the eigenvalues λi, i ∈ 1, . . . , 2N and the associated matrices of left and right eigenvectors W =
[w1 . . . w2N ], V = [v1 . . . v2N ] , respectively. The matrix A∆ denotes the sorted diagonal matrix
A∆ = diag{λ1, . . . , λ2N} which displays the Jordan matrix. In addition, according to the applied damping
model the eigenvalues occur in complex conjugated pairs with <{λi} < 0. The related frequency of such a pair
is the so-called eigenfrequency or resonance frequency of the associated eigenmode. The higher the frequency the
higher the damping effect becomes in a Kelvin-Voigt or structurally damped mechanical system. At a specific
eigenfrequency the damping becomes overcritical and the associated eigenmode as well as all following eigen-
modes become insignificant [120, chap 16]. The results of the asymptotic eigenvalue distribution of the vertical
beam configuration supports this statement, see Appendix B.2. In other words the first eigenmodes contain the
most of the system energy and are important for an accurate but reduced description.
Here, the MOR comes into play by truncating the eigenmodes and only considering the first Nr < N modes

of the system. Hence, only the eigenvalues λl within the index set l ∈ L = {1, . . . , 2Nr} are considered with
the reduced eigenvector matrices Wr =

[
w1 . . . w2Nr

]
∈ R2N×2Nr , Vr =

[
v1 . . . v2Nr

]
∈ R2N×2Nr . The

reduced modal system state is given by zr = V †r x ∈ R2Nr where the full state can be constructed by x = Vrzr.

Remark 4.1 To simplify the notation the reduced modal state zr is referred to as z. This also applies to the
associated system matrices, i.e., A∆ = A∆,r.

The reduced right eigenvector matrix Vr and its pseudoinverse V †r are used as projection matrices, where the
pseudoinverse can also be interpreted as a scaling of the eigenvector matrices for which V †r Vr = I ∈ RNr×Nr

holds. The pseudoinverse is determined by expanding the right eigenvalue problem by Wr leading to

WT
r AVr = WT

r VrA∆ ⇒ A∆ =
(
WT

r Vr
)−1

WT
r AVr = V †r AVr, with V †r =

(
WT

r Vr
)−1

WT
r . (4.4)

As long as the left and right eigenvectors are perfectly knownWT
r Vr = I holds true so the pseudoinverse matrix is

given by V †r = WT
r . However, for an ill-conditioned matrix A, e.g., in case of the wingsail, the inverse

(
WT

r Vr
)−1

compensates the numeric artifacts of the eigenvector determination and ensures that V †r Vr = I holds true.
Considering the projection x = Vrz the system (4.2) reduces to

ż(t) =A∆z(t) +B∆u(t), t > 0, z(0) = z0,

ypi(t) =H∆,piz(t), ypm(t) = H∆,pmz(t), t ≥ 0,
(4.5)

with A∆ = V †r AVr, B∆ = V †r B∆ and H∆,pi|pm = Hpi|pmVr. In particular, the projected system matrix by
construction results in A∆ = diag{λl}nr

l=1. This modal system description is also the basis of the flatness-based
feedforward controls approach introduced in Section 5.1.
Modal truncation is used in an numeric pre-study of the wingsail structure [59, 116]. On the basis of the

geometry presented by the CAD design of Fig. 2.7 the FEM model is developed using the proprietary FEM
software COMSOL [26]. The complete structure is described by triangular finite shell elements with N = 11688
DoFs. Modal truncation leads to a reduced system described by 2Nr = 68 states (z(t) ∈ R2Nr) fulfilling the
requirements of the feedforward control design.
Modal truncation is also used in a related project, where the flexible structure is an artificial fishtail modeled

by the Firedrake framework [104, 103]. Here the original second order system is described by N = 779232 DoFs.
Due to modal truncation the system can be reduced to 2Nr = 10 states (z(t) ∈ R2Nr). This reduced order
system provides a high accuracy which is validated in simulations and therefore satisfies the requirements of the
feedforward control approach.
In a way, the modeling of the beam structures also displays a kind of a modal truncation through the use of the

finite dimensional Galerkin approximation. The resulting approximation of the Fourier series (2.60) and (2.89)
considers only a finite number of eigenfunctions of an undamped Euler-Bernoulli beam. Therefore, it performs
a truncation of higher modes of the infinite dimensional system. The results are discussed in Section 6.2.
In conclusion, it has to be mentioned that the modal truncation presents a stable MOR method. It can

be used as long as at least a sufficient large number of eigenvalues and its left and right eigenvectors can be
computed within a feasible tolerance. For the special case of a symmetric first order system (4.2) it is sufficient
to determine only the right eigenvectors because vl = wl holds true which reduces the computational effort of
the method itself. Nevertheless, depending on the problem formulation there are more powerful MOR methods.

4.2. Second Order Balanced Truncation
The methods of this group are also based on projections but are based on a balanced form of the associated
controllability and observability Gramians of the system [5, chap. 7.2].
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Addressing the special structure of the input and system matrix (4.2) arising from the second order system
(4.1a), the so-called second order balanced truncation is used to preserve the physical meaning of the reduced
representation [22, 92]. At first, like in the general approach, the controllability and the observability Gramian
have to be determined by solving the associated Lyapunov equations

AWc +WcA
T = −BBT , ATWo +WoA = −HTH, (4.6)

where the output matrix is chosen as H = I to later enable the state observer design. Secondly, both symmetric
and positive definite Gramians are partitioned into pairs of block matrices

Wc =

[
Wc,p Wc,12

Wc,21 Wc,v

]
, Wo =

[
Wo,p Wo,12

Wo,21 Wo,v

]
, (4.7)

whereby the second index p or v denotes the connection of the controllability and observability Gramian to
the position or the velocity, respectively. This procedure is necessary to preserve the second order structure in
the reduced system providing an interpretation in a physical manner. As long as both Gramians are regular
the system is controllable and observable, i.e., there exists a matrix T, that transforms the system into a
balanced form where W̃c,p = W̃o,p and W̃c,v = W̃o,v holds true [92]. The construction of T requires at first the
decomposition of the sub-Gramians by the Cholesky factorization

Wc,p = Pc,pPTc,p, Wc,v = Pc,vPTc,v, Wo,p = Po,pPTo,p, Wo,v = Po,vPTo,v. (4.8)

The associated lower triangular matrices are multiplied and a singular value decomposition [85, Theorem 8.34]
is applied so that

PTo,pPc,p = UpΣpV
T
p , PTo,vPc,v = UvΣvV

T
v . (4.9)

This decomposition provides directly the Hankel singular values ζp|v,i in terms of the elements of the diagonal
matrix Σp|v associated to the position or the velocity. With these preparations the transformation matrix and
its inverse are given by

T =

[
Tp 0
0 Tv

]
, T −1 =

[
T −1
p 0
0 T −1

v

]
(4.10)

with

Tp = Pc,pVpΣ
− 1

2
p ,

Tv = Pc,vVvΣ
− 1

2
v ,

T −1
p = Σ

− 1
2

p UTp PTo,p,

T −1
v = Σ

− 1
2

v UTv PTo,v.
(4.11)

The reduction is achieved by considering only the Nr position and velocity states with the highest associated
Hankel singular values from ζp|v,1 to ζp|v,Nr and neglecting all other states. This can be done by partitioning of
the transformation sub-matrices

Tp|v =
[
Tp|v,1 Tp|v,2

]
, T −1

p|v =

[
T −1
p|v,1
T −1
p|v,2

]
, (4.12)

where T̃p|v = Tp|v,1 ∈ RN×Nr and T̃ −1
p|v = T −1

p|v,1 ∈ RNr×N are chosen. Introducing T̃ = diag{T̃p, T̃v} and

T̃ −1 = diag{T̃ −1
p , T̃ −1

v } the reduced order system is obtained as

ẋr(t) = Arxr(t) +Bru(t), t > 0, xr(0) = xr,0,

ypi(t) = Hr,pixr(t), ypm(t) = Hr,pmxr(t), t ≥ 0,
(4.13)

with the reduced state given by xr = T̃ −1x ∈ R2Nr and the associated system matrices

Ar = T̃ −1AT̃ , Br = T̃ −1B, Hr,pi|pm = Hpi|pmT̃ . (4.14)

As mentioned in Section 4.1 the application of a damping model leads to pairs of complex conjugate eigenvalues
of the full system λi ∈ C with i = {1, . . . , 2N} and <(λi) < 0. As stated in [92, Corollary 3.2] the applied second
order balance truncation preserves the stability in the case of a symmetric second order system (4.1a) with a
positive definite mass matrix M , damping matrix C, and stiffness matrix K as it is given here.
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To summerize, second order balanced truncation is a powerfull MOR method if the Gramians of the system
can be determined. This imposes a restriction in particular for large scale systems with many DoFs. The Hankel
singular values offer a measure of the impact of the states regarding the system’s observability and controllability.
Thereby the Hankel singular values provide the relative amount of energy of the reduced system compared to
the energy of the full system by

ε(Nr) =

Nr∑
m=1

(
ζp,m + ζv,m

)
N∑
i=1

(
ζp,i + ζv,i

) . (4.15)

This can be used by the design of the state observer and controller.
The quality of the resulting reduced order system is evaluated in Section 6.1.1.1 considering the vertical beam

configuration.

4.3. Proper Orthogonal Decomposition (POD)
The last presented method is the proper orthogonal decomposition (POD) also referred to as principal component
analysis (PCA). This technique applies projection matrices based on simulated or sometimes measured data,
so-called snapshots. The derivation of these matrices is based on the solution of a constrained optimization
problem applying a Lagrangian framework, which results in an eigenvalue problem for the taken snapshots.
Below, a brief derivation is presented to convey an understanding for the principal concept. Further details
about the POD method are provided by [112, 113].
The main idea is to find a proper orthonormal basis (POD basis) capable to approximate the snapshots and

therefore the behavior of the considered system. The snapshots are solutions of the considered problem, e.g., the
displacement profile y = q ∈ RN for t ∈ [0, T ]. It is crucial that these snapshots cover the dominating dynamics
of the system. Hence, ns snapshots within the time span [0, T ] are taken and stored in the data matrix

Y =
[
y

1
. . . y

ns

]
∈ RN×ns , (4.16)

where most of the time N > ns holds true. The basis is spanned by {ψi}li, where the rank of the basis is given
by l ≤ min(N,ns).
Taking [113] into account the first order necessary optimality conditions are strongly related to the SVD of

the data matrix. The SVD states that the rectangular data matrix Y can be described in the form

Y = ΨΣΦT with Σ =

[
D 0
0 0

]
, (4.17)

where D = diag(σ1 ≥ . . . ≥ σd) ∈ Rd×d is a matrix of positive real numbers also known as singular values of Y .
In addition, Ψ and Φ denote the orthogonal matrices given by

Ψ =
[
ψ1 . . . ψN

]
∈ RN×N , Φ =

[
φ1 . . . φN

]
∈ Rns×ns . (4.18)

The first d columns of the orthogonal matrices satisfy

Y φi = σiψi, Y Tψi = σiφi, with i = 1, . . . , d. (4.19)

In other words they define the eigenvectors of Y Y T and Y TY , respectively. The associated eigenvalues are given
by λi = σ2

i > 0.
Taking the special form of Σ into account (4.17) can be rewritten as

Y = ΨdDΦTd , with Ψ =

[
Ψd Ψα

Ψβ Ψγ

]
, Φ =

[
Φd Φα
Φβ Φγ

]
, (4.20)

where Ψd ∈ RN×d and Ψd ∈ Rns×d are chosen. This formulation omits the zero singular values which have no
effect on Y . Hence, considering [113] the mth snapshot y

m
is given by

y
m

=

d∑
i=1

[DΦTd ]i,mψi =

d∑
i=1

[

Y︷ ︸︸ ︷
ΨT
d ΨdDΦTd︸ ︷︷ ︸
I

]i,mψi =

d∑
i=1

[ΨT
d Y ]i,mψi

=

d∑
i=1

(
ψTi y

m

)
ψi =

d∑
i=1

〈y
m
,ψi〉RNψi, ∀ m = 1, . . . , ns

(4.21)
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where 〈 · , · 〉RN denotes the scalar product in RN . According to the SVD each snapshot can be displayed by d
basis vectors.
The objective of POD is to reduce the number of considered basis vectors to express the essential information

of the snapshots with a minimum of basis vectors. For POD this can be formulated as an iterative optimization
problem. In the first step, the maximum of possible information from the data matrix should be gathered by a
single normalized vector

max
ψ1

ns∑
m=1

(〈y
m
,ψ1〉RN )2, (4.22a)

considering the constraint

‖ψ1‖2RN = 1. (4.22b)

To solve this problem the associated Lagrangian L with the Lagrange multiplier λ1 ∈ R is formulated

L(ψ1, λ1) =

ns∑
m=1

(〈y
m
,ψ1〉RN )2 + λ1(1− ‖ψ1‖2RN ). (4.23)

Considering [113] the necessary optimality condition ∂ψ1
L = 0 results in

∂ψ1
L =∂ψ1

(
ns∑
m=1

( N∑
k=1

Yk,mψ1

)2

+ λ1(1− ‖ψ1‖2RN )

)
= 2

ns∑
m=1

( N∑
k=1

Yk,mψ1

)
Yk,m + 2λ1ψ1

)
=2
(
Y Y Tψ1 − λ1ψ1

)
= 0,

(4.24)

which can be reformulated as the eigenvalue problem

Y Y Tψ1 = λ1ψ1, (4.25)

where the symmetric matrix Y Y T ∈ RN×N is positive semi-definite. The non-negative eigenvalues are denoted
as λi with i ∈ 1, . . . , N . To check if a maximum is reached the sufficient optimality condition is used

∂2
ψ1

L = Y Y T − λ1I = 0. (4.26)

The basis can be extended to improve the performance by the previously mentioned iterative process. Therefore,
an extended optimization problem can be stated

max
ψ1,...,ψNr

Nr∑
i=1

ns∑
m=1

(〈y
m
,ψi〉RN )2, (4.27)

where Nr ∈ {1, . . . , d} denotes the number of considered POD bases or in other words the number of reduced
states. In addition, the constraint is extended to

〈ψi,ψm〉RN = δim 1 ≤ i,m ≤ Nr, (4.28)

demanding that the eigenvectors or bases {ψi}Nr
i=1 are pairwise orthonormal. The symbol δim denotes the

Kronecker delta for which δim = 1 if and only if i = m else δim = 0 holds true.
This optimization leads to the eigenvalue problem

Y Y Tψi = λiψi, i = 1, . . . , Nr, (4.29)

where only the first Nr ≤ d ≤ N are considered revealing a truncation like in the other presented MOR methods.
Taking [43, Sec. 5.2.1] into account the decay rate of the eigenvalues can be interpreted as a measure of the
snapshots where a slow decay rate indicates a bad choice of snapshots.
For practical reasons, it is common to reformulate the eigenvalue problem (4.29), where the eigenvalues and

eigenvectors of Y Y T ∈ RN×N have to be calculated leading to a significant effort for a numerical solver depending
on the size of the data set. Instead the method of snapshots [113, chap. 2] states that

Y TY φi = λiφi, i = 1, . . . , Nr, (4.30)
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can be solved taking the relation

ψi =
1√
λi
Y φi, i = 1, . . . , Nr (4.31)

into account. This reduces the effort, due to the fact that the eigenvalue problem of Y TY ∈ Rns×ns is considered
where usually ns < N holds true.
Similar to the balanced truncation (4.15) POD provides a relative measure of the considered energy of the

reduced system compared to the energy of the full system

ε =

Nr∑
m=1

λm

N∑
i=1

λi

, (4.32)

where the denominator is also given by
N∑
i=1

λi = trace(Y Y T ) = trace(Y TY ).

One last modification is introduced in order to deal with heterogeneous local distributions meaning meshes
consisting of FE characterized by significantly varying volumes. Such distributions usually emerge in meshes of
complex structures. The inner product of (4.21) is substituted by the weighted inner product

〈y
m
,ψi〉W = 〈W y

m
,ψi〉RN = 〈y

m
,Wψi〉RN (4.33)

considering the symmetric and positive definite weighting matrix W , see also [113, chap. 3]. Analog to the
unweighted case the solution of the constraint optimization results in the eigenvalue problem

Ȳ T Ȳ φ̄i = λiφ̄i, i = 1, . . . , Nr, (4.34)

with Ȳ = W
1
2Y . The relation between the unweighted and weighted basis is given by

ψi = W
1
2 ψ̄i =

1√
λi
Y φ̄i. (4.35)

For systems generated by the FEM a suitable choice of the weighting matrix is usually the special kind of mass
matrix, where the densities of all components are set to ρ = 1. The resulting matrix can be interpreted as a
weighting of the geometry or the mesh.
The resulting basis vectors Ψ̄ = [ψ̄1 . . . ψ̄Nr

] are used as the projection matrix leading to q(t) = Ψ̄qr(t).
Hence, the reduced second order system is given by

Mrq̈r(t) + Crq̇r(t) +Krqr(t) = Lru(t), with t > 0, qr(0) = Ψ̄q0 (4.36)

where the reduced matrices are given by

Mr = Ψ̄TMΨ̄, Cr = Ψ̄TCΨ̄, Kr = Ψ̄TKΨ̄, Lr = Ψ̄TL. (4.37)

The corresponding first order system reads

ẋ(t) = Arx(t) +Bru(t), t > 0, xr(0) =
[
qTr (0) q̇Tr (0)

]T ∈ R2Nr , (4.38)

ypi(t) = Hr,pix(t), ypm(t) = Hr,pmx(t), t ≥ 0, with (4.39)

Ar =

[
0 I

−M−1
r Kr −M−1

r Cr

]
, Br =

[
0

M−1
r Lr

]
, Hr,pi|pm = Hpi|pmΨ̄. (4.40)

The implementation of the POD method for the wingsail structure is done by the MOR-projector [4] which
is a part of the Firedrake FEM framework. The MOR-projector is a shared work of J. Andrej, D. Siebelts and
the author. The presented wingsail setup is used as a test case for this project. The result of this POD method
are displayed in Section 6.3.1.1.
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5. Motion Planning and Control Design

The control of flexible structures often aims to deflect the initial shape of the considered structure to a desired
displacement profile. Such a transition has to be planed subject to the constraints of the elastic structure. This
is done by the so-called motion planning. In this work, the motion planning problem is given by a rest-to-rest
motion which realize a smooth transition between an initial and a final displacement profile within a finite time
of the previously discussed interconnected beam structures and the wingsail.
To achieve such a rest-to-rest motion two different control designs are introduced. At first the so-called

two-degrees-of-freedom control approach is taken into account. Fig. 5.1 displays the associated control scheme
composed by a feedforward control Σ∗ and a feedback controller Σfb. The flatness-based feedforward control
solves the motion planning problem, where the design is focused to avoid or at least reduce oscillations of light
weight and weakly damped structures. In addition, the feedforward control contributes the main amount to the
input signal u(t) and provides the desired reference trajectories of the system states x∗r (t) and outputs y∗pi(t)
for the subsequent feedback control. The present states and outputs at the points of interest are estimated by a
state observer Σob. Due to the measuring noise of the laser sensors or the strain gauges, a Kalman filter is used
to improve the signal to noise ratio of the measured outputs ypm(t) and to estimate the system states x̂r(t) and
the deflections on the points of interest ŷpi(t). The feedback control ensures that the dynamic of the tracking
error (x̃c or ỹpi) is stabilized, where different control approaches are introduced, starting with classic output
and state feedback controls and ending with a Lyapunov-based approach.

Σ∗

Σfb

u∗

uc

u

ypm

x∗|y∗pi

x̃c|ỹpi
−

x̂r|ŷpi

Hpi

Hpm

x ypi
Σ

Σob

Figure 5.1.: Block diagram of the two-degrees-of-freedom control scheme, composed of a flatness-based trajectory
generation and feedforward control Σ∗, an output or state feedback controller Σfb, and a state
observer Σob.

Secondly, the model predictive control (MPC) concept is introduced as an alternative control approach. The
main idea of the concept is based on an optimization on a prediction horizon of the system’s trajectories. The
control input is determined by minimization of a cost functional. The first time step of the predicted input
minimizing the cost functional yields the actual control input. This procedure is applied in each subsequent
time step. Furthermore, the optimization process allows us to consider additional constraints, e.g., limited
actuator behavior.
In order to introduce the control approaches in a general manner the following system description is applied

as origin

Σ :

{
ẋr(t) = Arxr(t) +Bru(t), t > 0, xr(0) = xr,0 ∈ R2Nr ,

ypi|pm(t) = Hr,pi|pmxr(t), t ≥ 0.
(5.1)

The chapter is organized as follows. At first, the design elements of the two-degrees-of-freedom control
approach are discussed starting with the flatness-based motion planning and feedforward control is introduced.
Afterwards, the state estimation and the different feedback control approaches are discussed. Secondly, the
MPC approach is introduced. The performance of the presented control approaches are discussed in Chapter 6
by numeric as well as experimental results considering the setups of the interconnected beam structures and the
wingsail.
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5.1. Flatness-Based Motion Planning and Feedforward Control
As mentioned before, the objective of the motion planning process in this work is the design of a transition
between an initial and a desired displacement profile of the elastic structures. Therefore the process has to
consider the equations of motion of the considered structure as well as additional constraints. For the considered
weakly damped structures a design constraint is given by the requirement to accomplish the desired rest-to-rest
motion within a finite time T . Furthermore, oscillations should be reduced to a minimum.
For this purpose, a flatness-based approach is chosen that enables us to systematically solve the motion

planning problem. This approach exploits the spectral representation of the system to determine the so-called
flat output. This flat output denotes an auxiliary variable on which the control law and the desired reference
trajectories are based. The sections below introduce the complete approach where further details are provided
by [78].

5.1.1. Spectral Representation
The spectral system representation (also known as modal representation) defines the basis of the considered
flatness-based motion planning and feedforward control approach. In general, the spectral representation is
obtained by the similarity transformation xr(t) = V z(t) with V = [v1, . . . ,v2Nr ] the matrix of eigenvectors of
Ar. Hence, (5.1) reduces to

ż(t) =A∆z(t) +B∆u(t), t > 0, z(0) = z0,

ypi(t) =H∆,piz(t), ypm(t) = H∆,pmz(t), t ≥ 0,
(5.2)

with A∆ = V −1AV = diag{λr,1, . . . , λr,2Nr}, B∆ = V −1Br and H∆,pi|pm = Hr,pi|pmV . Note that the transfor-
mation relies on the quadratic eigenvector matrix V ∈ R2Nr×2Nr of the reduced order system matrix Ar meaning
that the inverse can determined with little effort due to the fact that the number of second order states of the
reduced order system is small compared to the number of the original system Nr < N . Hence, the lth element
of z is governed by

żl(t) = λr,lzl(t) + bT∆,lu(t), l ∈ L (5.3)

for L = {1, . . . , 2Nr} and bT∆,l denoting the lth row of the transformed input matrix B∆ = V −1Br.
If the underlying system is build considering modal truncation, see Section 4.1, then it is already described

in its spectral form and the previous step can be omitted.

5.1.2. Construction of a Flat Output
The flat output is the core of the motion planning and feedforward control approach. Below, the derivation for
the finite dimensional case is introduced and Appendix B.3 describes an infinite dimensional approach for the
special case of spatial constant parameters considering a vertical beam configuration.
To construct the flat output the Laplace transformation is applied to the spectral state representation (5.3)

ẑl(s) =
1

s− λl
bT∆,lû(s) = − 1

λl

1

1− s
λl

bT∆,lû(s), (5.4)

with ẑ(s) z(t) and û(s) u(t). Extending the term 1/(1− s
λl

) by unity yields

ẑl(s) = − 1

λl

|L|∏
i=1,i6=l

(1− s
λi

)

|L|∏
i=1

(1− s
λi

)

bT∆,lû(s), (5.5)

where |L| = 2Nr denotes the number of considered states. The substitution

û(s) =

|L|∏
i=1

(
1− s

λi

)
ξ̂(s) = D̂u(s)ξ̂(s) (5.6a)
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leads to

ẑl(s) = − 1

λl

|L|∏
i=1,
i 6=l

(
1− s

λi

)
bT∆,lξ̂(s) = − 1

λl
D̂
l

z(s)bT∆,lξ̂(s). (5.6b)

Hence, (5.6) states an input and state parameterization in terms of ξ̂(s) in the operator domain. Reformulating
the state and input operators into a polynomial formulation results in

D̂u(s) =

|L|∑
i=1

cui s
i, D̂

l

z(s) =

|L−1|∑
i=1

cz,li si. (5.7)

Recalling that the operator s represents the time differentiation in the time domain leads to

û(s) =

|L|∑
i=1

cui s
iξ̂(s) u(t) =

|L|∑
i=1

cui ξ
(i)(t) (5.8a)

ẑl(s) =

|L−1|∑
i=1

cz,li siξ̂(s) zl(t) =

|L−1|∑
i=1

cz,li b
T
∆,lξ

(i)(t). (5.8b)

Similarly xr(t) can be computed by making use of ξ(t) and its derivatives, so that ξ(t) denotes a flat output for
(5.1).

5.1.3. Motion Planning and Feedforward Control
The objective of motion planning is to design a desired rest-to-rest motion of the structure within a finite time
span t ∈ [0, T ] starting at an arbitrary initial steady state deflection. Therefore, the flat input parametrization
is used to set up an appropriate feedforward control, where the state parametrization can be used to determine
the reference trajectory of the transient displacement profile. For these purposes, the series expansions of D̂

l

z(s)

and D̂u(s) require that the flat output fulfills ξ(t) ∈ C |L|(R). This requirement can be satisfied by the usage
of Fourier series, polynomials or splines. Subsequently, a locally non-analytic smooth function Θg,T (t) of a
particular Gevrey class is used (see also Definition B.1), that is defined by

Θg,T (t) =



0 , t ≤ 0

1 , t ≥ T
t∫

0

θg,T (τ)dτ

T∫
0

θg,T (τ)dτ

, t ∈ (0, T )

, (5.9)

where θg,T (t) = 0 for t /∈ (0, T ) and θg,T (t) = exp(−([1− t
T ] tT )−g) for t ∈ (0, T ) holds true. The desired flat

output is build by

ξ∗(t) = ξ∗0 +
(
ξ∗T − ξ∗0

)
Θg,T (t) (5.10)

with ξ∗0 and ξ∗T defining the start and end value of the flat output, respectively. In the next step, these values
have to be determined w.r.t. y∗pi(0), y∗pi(T ) the desired initial and final deflections of the points of interest,
respectively. Thereby, the start and end profile can be determined by defining the desired defection at the
points of interest of the structure taking the steady state equation of the system into account which considers
the geometric constraints.
In steady state the input parametrization (5.8a) reduces to ust = ξst, hence the solution of the steady state

equation of (4.13) leads to

xr,st = −A−1
r Brust = −A−1

r Brξst, with

ypi,st = Hr,pixr,st ⇒ ξst =

{ (
−Hr,piA

−1
r Br

)−1
y

pi,st
npi = nu(

−Hr,piA
−1
r Br

)†
y

pi,st
npi 6= nu

,
(5.11)
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where Hr,piA
−1
r Br ∈ Rnpi×nu . Inserting the desired values y∗pi(t) at t = 0 and t = T provides directly the

start and end value of the flat output ξ∗0, ξ
∗
T , respectively. The substitution of (5.10) into (5.8) enables the

determination of the reference trajectory considering xr(t) = V z(t). As a result, the input parametrization (5.8a)
defines the feedforward control law and the state parameterization (5.8b) provides the associated transient state
trajectory.
This systematic approach enables the precalculation of the state and input trajectories. Hence, additional

requirements of the experimental setup such as input saturations, restricted areas / deflections, etc. can be
considered and included by an iterative process. Moreover, the approach is computationally efficient enabling
the implementation in a real time process even for short sample times. In addition, it can be directly used in a
time discrete setup.
Chapter 6 presents experimental and numeric results as well as the specific values of the design parameters

of the flatness-based motion planning and feedforward control subject to the different elastic structures.

5.2. State Estimation
As mentioned before, the feedforward control provides the desired reference trajectories and the associated input
trajectories of the system based on its mathematical description. This is an open loop process which does not
use any measured signals. As a result, it can not react on unexpected events like disturbances or deviations
between the experimental setup and the system description. Therefore, a feedback control is required ensuring
that the given reference trajectory is reached. To close the control loop by a feedback controller some kind of
measured signals have to be feedback to determine the tracking or control error. Depending on the control plant
and the type of controller it can be hard or even impossible to measure the necessary signals required for the
control error. E.g., the vertical beam configuration setup uses strain gauges to measure the strain on the beams
at the points of measurement ypm(t), but the objective of the control is the deflection at the points of interest
ypi(t). Another example is the usage of a state controller which requires the actual system states that are not
completely measurable. To overcome this issue a so-called state observer can be used, which uses measurements
to estimate the system states and reconstructs the control output on the basis of system description.
In the experimental setups considered in this work laser sensors or strain gauges are used to detect the

displacement or the strain at specific points of measurement of the structure. Both measurement types provide
electrical signals affected by measurement noise. To reduce the effect of noise and addressing the time discrete
implementation on the real time control device the discrete Kalman filter is used.
Therefore, the discrete system description based on the reduced order system (5.1) is introduced

xk = Adxk−1 +Bduk−1 + wk−1, k > 1, xr(0) = x0,

ypi,k = H∆,pixk, ypm,k = H∆,pmxk + vk,
(5.12)

with xk = xr(ktd), uk = u(ktd) and ypi|pm,k = ypi|pm(ktd), where td denotes the sample time. In addition,
the system is extended by wk−1 ∼ N (0, Qo) and vk ∼ N (0, Ro) describing the process and measurement noise,
respectively. Both are assumed to be white noise processes with expected value of 0 and covariance matrices
Qo and Ro. These matrices will be used later on as tuning factors. The discrete system and input matrix can
be determined as [6]

Ad = exp(Artd), Bd =

ktd∫
(k−1)td

exp
(
Ar(ktd − τ)

)
Br dτ, Hd,pi|pm = Hr,pi|pm. (5.13)

The equations of the Kalman filter can be split into the extrapolation phase

x̂−k = Adx̂k−1 +Bduk−1, P−k = AdPk−1A
T
d +Qo (5.14a)

and the update or innovation phase [40, 70]

x̂k = x̂−k + Lk(ypm,k −Hd,pmx̂
−
k ),

Lk = P−k H
T
r,pm(Hr,pmP

−
k H

T
r,pm +Ro)−1,

Pk = (I − LkHr,pm)P−k ,

(5.14b)

where Pk denotes the error covariance matrix with the expected initial value of P0 = E(x̃o,0x̃
T
o,0) considering

the observer error x̃o,k = xk − x̂k. In case of a stable observer error dynamics the error covariance approaches
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a steady state limk→∞ P−k = P, which is provided by the solution of the algebraic Riccati equation. Hence, the
Kalman gain becomes constant and reads

L = PHT
r,pm(Hr,pmPH

T
r,pi +Ro)−1. (5.14c)

With this the update phase simplifies to

x̂k = x̂−k + L(ypm,k−1 −Hr,pmx̂k−1). (5.14d)

As mentioned before, for the practical implementation the covariance matrices are used as tuning factors. For
the measurement noise the structure of the covariance matrix is chosen as a weighted identity matrix

Ro = roI ∈ Rnpm×npm . (5.15)

It is assumed that the measurement noise is uncorrelated leading to the diagonal structure. The homogeneous
weighting ro of the different measurement signals is justified by the fact, that the same measurement devices
are used, i.e., either laser sensors or strain gauges.
The choice of the elements and the structure of the process noise covariance matrix varies depending on the

system and the applied MOR method. All presented designs assume uncorrelated process noise signals which
leads to a diagonal structure of the covariance matrix. However, the weighting of the states differs. Each
variation applies a partitioning of the matrix regarding the physical association of the elements to the position
(or to be specific the displacement) or the velocity indicated by the indices p and v. This distinction is used
later on for the choice of the weighting.

• Taking the full order system of the beam structures or the reduced order system considering modal trun-
cation into account the partitioning of the covariance matrix is done per beam marked by the index
j = {1, . . . , r}

Qo = qo,tdiag{qo,p,1, qo,v,1, . . . , qo,p,r, qo,v,r},
qTo,p|v,j = qo,p|v

[
qso,p|v,j qso,p|v,j + 2

qeo,p|v,j−q
s
o,p|v,j

Nj−1 qso,p|v,j + 3
qeo,p|v,j−q

s
o,p|v,j

Nj−1 . . . qeo,p|v,j

]
∈ RNj

(5.16a)

with qo,t as unified weight, qo,p|v,j as an additional weighting of the position and velocity. The elements
of qo,p|v,j are determined by the linear interpolation between the start and end values qso,p|v,j , q

e
o,p|v,j ,

respectively. Considering the characteristics of the modal truncation for mechanical systems it can be
stated that the main amount of system energy is stored in the first few modes. As a result, these modes have
a stronger impact and are more trustworthy compared to the higher modes which leads to qso,p|v,j > qeo,p|v,j .

• If the governing reduced order model is build by second order balanced truncation the Hankel singular
values ζp|v,k provide information about the observability of each state k ∈ K = [1, . . . , Nr]. They depict
a kind of natural weighting reducing the complexity of possible combinations of the elements of Qo as
follows

Qo = qo,tdiag{qo,p, qo,v}, qTo,p|v = qo,p|v
[
ζp|v,1 . . . ζp|v,Nr

]
. (5.16b)

In this case, the weighting of the position and velocity is given by the fractions

qo,p =
qo,p,a∑Nr
k=1 ζp,k

and qo,v =
qo,v,a∑Nr
k=1 ζv,k

considering an additional weighting of the position and velocity qo,p|v,a.

• The simplest separation of position and velocity is given by a reduced system based on POD. Due to the
second order structure, the first set of system states from 1 to Nr is related to the position or displacement
and the second part from Nr + 1 to 2Nr is associated with the velocity. The weighting can be introduced
as

Qo = qo,tdiag{qo,p, qo,v},
qTo,p|v,j = qo,p|v

[
qso,p|v,j qso,p|v,j + 2

qeo,p|v,j−q
s
o,p|v,j

Nj−1 qso,p|v,j + 3
qeo,p|v,j−q

s
o,p|v,j

Nj−1 . . . qeo,p|v,j

]
∈ RNj

(5.16c)

As before the elements of qo,p|v are formed by the linear interpolation between the start and end values
qso,p|v, q

e
o,p|v, respectively. Analog to modal truncation the POD method sorts its bases according to their

impact from high to low leading to the design choice qso,p|v > qeo,p|v.

The numeric values are determined during hardware-in-the-loops tests and are presented in Chapter 6 con-
sidering the different experimental setups and used MOR methods.
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5.3. Feedback Control Design
The experimental setup is affected by unknown disturbances and model uncertainties which influence the per-
formance of the feedforward control approach. To decrease the resulting deviations the feedforward control
approach is amended by a feedback controller ensuring that the desired reference trajectory y∗pi(t) is reached
which completes the two-degrees-of-freedom control strategy introduced by Fig. 5.1. Below different classic
feedback control approaches are introduced, where the considered design parameters as well as the associated
simulation and experimental results are presented in Chapter 6.

5.3.1. Output Feedback Control Approach
Motivated by the results of [80] for the input-output stabilization of a single cantilever beam, an ID-T1 control
approach is proposed in terms of the transfer function

ĝtr(s) =
kI
s

+
kDs

sTidt + 1
. (5.17)

Here, kI denotes the gain of the integrator part, kD specifies the gain of the differentiator with realization term
and 1/Tidt defines the cutoff frequency of the associated low pass filter. The design parameter can be chosen in
the continuous time implementation of the controller which can easily be transformed into the required time
discrete realization [73] considering

ĝtr(z) =
kItd

2

z + 1

z − 1
+

kD
Tidt

z − 1

z − exp ( td
Tidt

)
. (5.18)

The feedback controller reduces the output error ỹk = y∗pi,k − ŷpi,k taking the estimated output of the Kalman
filter into account. The transition performance is achieved by the feedforward control with the feedback part
addressing model errors, parameter uncertainties or external disturbances.

5.3.2. State Feedback Control Approach
Subsequently, two kind of state feedback controllers are designed namely a controller based on the Ackermann
formula and the linear quadratic regulator (LQR). In general, both controllers work in the same manner and
therefore generate the same dynamical behavior. The major difference is the tuning of the controllers. Due
to this difference, the Ackermann controller or the LQR provide may provide an advantage for implementation
depending on the different systems and used MOR concepts. At the end of this section both controllers are
extended to accomplish stationary accuracy.

5.3.2.1. Ackermann State Feedback Controller

The control law of the Ackermann controller is given by

uc,k = Kax̃c,k, Ka ∈ Rnu×2Nr (5.19)

where x̃c,k = x∗k − x̂k is the control error and Ka denotes the feedback gain. The desired reference trajectory
of the states x∗k is given by the flatness-based feedforward control relying on the system description (5.1) which
is discretized for the implementation on a real time system, see (5.12). The associated control input of the
feedforward control is u∗k, see Section 5.1. Hence, the input as well as the state trajectories fulfill as a result of
their construction the time discrete system description (5.12). Therefore, the error dynamic is given by

x̃c,k = Adx̃c,k−1 +Bduc,k−1. (5.20)

The main idea of the feedback gain Ka is to place the eigenvalues of the control error dynamic matrix Ad,cl at
desired location λd,cl,l = λ∗d,cl,l, l ∈ L, where the closed loop dynamics is given by

x̃c,k = Adx̃c,k−1 +Bduc,k−1 =
(
Ad +BdKa

)
x̃c,k−1 = Ad,clx̃c,k−1. (5.21)

Taking the characteristic of the considered weakly damped structures into account the main objective for the
feedback controller is to reduce emerging oscillations. This can be done by shifting the continuous eigenvalues
λl of the original system A by a constant

λ∗cl,l =

{
λl − λ+

sh ∀ l = 2i
λl − λ−sh ∀ l = 2i+ 1

, with i = [1, . . . , Nr], λ±sh = λsh,re ± jλsh,im. (5.22)
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and transform the resulting eigenvalues into their time discrete representation

λ∗d,cl,l = exp(λ∗cl,ltd) with l ∈ L = [1, . . . , 2N ]. (5.23)

The constant shifting, especially of the real part λsh,re > 0, introduces an additional damping which affects
mainly the significant eigenvalues characterized by a low magnitude, leading to the desired behavior. The
feedback gain matrix can be determined using Ackermann’s formula

Ka = −wT
(
poI + p1Ad + . . .+ p2N−1A

2N−1
d +A2N

d
)
, wT =

[
0 0 . . . 1

]
S−1(Ad, Bd) (5.24)

where pi denote the coefficients of the characteristic polynomial of the desired eigenvalues and S(Ad, Bd) =
[Bd AdBd A2

dBd . . . A2N−1
d Bd] is the Kalman’s controlability matrix. The actual determination of the

feedback gain matrix uses the place() function of MATLAB which is based on the algorithms described by [60,
67] to improve the numerical robustness.
The control law of a state controller (5.19) applies the system states to calculate the necessary input signal.

Most of the time the state information is not measured and has to be estimated by an observer like the presented
Kalman filter. Considering the statement of the separation theorem, see, e.g., [73, chap. 8] the controller can
be designed independent of the observer, as long the observer error x̃o,k declines fast enough.

5.3.2.2. Linear Quadratic Regulator

As an alternative approach the LQR is introduced to ensure that the desired trajectory x∗k is reached. The
associated control law is given by

uc,k = Klqx̃c,k, Klq ∈ Rnu×2Nr . (5.25)

Different to the eigenvalue placement in (5.19) the LQR approach minimizes a quadratic cost function [18] in
terms of the the tracking error x̃c,k = x∗k − x̂k for an infinite horizon, i.e.,

J(x̃c,k,uc,k) =

∞∑
k=1

(
x̃Tc,kQcx̃c,k + uTc,kRcuc,k

)
. (5.26)

The positive definite matrix Rc and positive semi-definite matrix Qc can be interpreted as weighting matrices
for the input as well as for the error state. The cost function has to be minimized subject to the system (5.1).
The solution of this optimization problem leads to a time dependent feedback gain matrix. Analog to the

optimal observer, the feedback gain of the LQR for k →∞ simplifies to

Klq = (BTd SBd +Rc)
−1BdSAd (5.27)

where S = limk→∞ Sk is given by the solution of the algebraic Riccati equation.
Similar to the observer design the second order representation allows the differentiation between position and

velocity associated states. Furthermore, the characteristics of the different systems and used MOR methods can
be exploited for the choice of the weighting matrices Rc and Qc. The weighting structure of the control inputs
can be used uniformly in terms of

Rc = rcI ∈ Rnu×nu . (5.28)

Similar to the observer design the weighting of the state errors depends on the used MOR method and is chosen
as follows:

• In case of the full order system of the beam structures or a reduced order system considering modal
truncation the partitioning of covariance matrix is done per beam as before and marked by the index
j = {1, . . . , r}

Qc = qc,tdiag{qc,p,1, qc,v,1, . . . , qc,p,r, qc,v,r},
qTc,p|v,j = qc,p|v

[
qsc,p|v,j qsc,p|v,j + 2

qec,p|v,j−q
s
c,p|v,j

Nj−1 qsc,p|v,j + 3
qec,p|v,j−q

s
c,p|v,j

Nj−1 . . . qec,p|v,j

]
∈ RNj

(5.29a)

with qc,t as unified weight, qc,p|v,j as an additional weighting of the position and velocity states. The
elements of qc,p|v,j are determined by the linear interpolation between the start and end values qsc,p|v,j ,
qec,p|v,j , respectively. Similar to the observer design the lower modes are more important considering the
stored energy which means a higher impact so qsc,p|v,j > qec,p|v,j is chosen.
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• If second order balanced truncation is used to determine the reduced order model the Hankel singular
values ζp|v,k, k ∈ K = [1, . . . , Nr] can be used. They depict, similar to the observer design, a kind of
natural weighting reducing the complexity of possible combinations of the elements of Qc as follows

Qc = qc,tdiag{qc,p, qc,v}, qTc,p|v = qc,p|v
[
ζp|v,1 . . . ζp|v,Nr

]
. (5.29b)

For the LQR approach the weighting of the position and velocity states are given by the fractions

qc,p =
qc,p,a∑Nr
k=1 ζp,k

and qc,v =
qc,v,a∑Nr
k=1 ζv,k

considering an additional weighting of the position and velocity qc,p|v,a.

• The POD method offers the simplest separation of position and velocity of the reduced order system. The
first set of the reduced system states from 1 to Nr is related to the position or displacement and the second
part from Nr + 1 to 2Nr are associated with the the velocity. Similar to the observer design, the structure
of weighting is chosen as

Qc = qc,tdiag{qc,p, qc,v},
qTc,p|v,j = qc,p|v

[
qsc,p|v,j qsc,p|v,j + 2

qec,p|v,j−q
s
c,p|v,j

Nj−1 qsc,p|v,j + 3
qec,p|v,j−q

s
c,p|v,j

Nj−1 . . . qec,p|v,j

]
∈ RNj

(5.29c)

As before the elements of qc,p|v are formed by the linear interpolation between the start and end values
qsc,p|v, q

e
c,p|v, respectively.

The numeric values of the design parameters are determined by hardware-in-the-loops tests and are presented
in Chapter 6.

5.3.2.3. Extended State Feedback Control Approaches

The dynamic behavior of the state feedback approaches satisfies the requirements, i.e., the oscillation caused
by the model uncertainties are quickly attenuated, but a small static error remains, mainly induced by the
remaining hysteresis and creeping behavior of the actuators, which is not completely compensated as discussed
in Section 2.1.1.3. Hence, the state feedback approaches are extended by PI-controllers

uc,a,k = Kax̃c,k + ka

∫
Hd,piz̃c,k dt (5.30)

uc,lq,k = Klqx̃c,k + klq

∫
Hd,piz̃c,k dt (5.31)

with klq, ka the gain of the integrated displacement error at the points of interest. Here, the previously discussed
state feedback controllers provide the favored fast decaying error dynamics, where the second part of the control
law leads to the required stationary accuracy. The tuning of both parts can be done independently from each
other and is determined during hardware-in-the-loops tests. The chosen numeric values of the gains as well as
the design parameters are presented in Chapter 6, where the control laws (5.30) and (5.31) will be referred to
as extended Ackermann and extended LQ controller, respectively.

5.3.3. Lyapunov-Based Control Approach
This controller design is motivated by the results of [98]. The main idea of this approach is to passivate the
tracking error dynamics by introducing artificial damping. This can be achieved by a Lyapunov-based control
approach which belongs to the late lumping approaches relying on the infinite dimensional equations of motion.
Below, this control approach is developed for the vertical beam configuration.
The main objective is to reduce the continuous displacement profile error s̃j(t, z) = s∗j (t, z) − sj(z, t) using

the control signals of all actuators U c
j,ak = Uj,ak − U∗j,ak taking j ∈ {1, . . . , r} beams equipped with pj MFC-

actuators into account. The continuous control signal can be discretized afterwards considering the zero-order-
hold method and therefore be implemented in the real time framework. Here, s∗j (t, z) denotes the desired
trajectory of the displacement profile and U∗j,ak is the associated control input generated by the flatness-based
feedforward controls relying on the infinite dimensional equations of motion (2.55), see Appendix B.3 or the
finite dimensional description considering Galerkin’s approximation, see Section 5.1. Hence, s∗j (t, z) fulfills (2.55)
as a result of its construction, where in the finite dimensional approach a small approximation error appears.
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The distributed parameter system description of the error dynamics is given by

0 = µj(z)∂2
t s̃j + γvj (z)∂ts̃j − ∂z

[
γsvj (z)∂t∂z s̃j

]
+ ∂2

z

[
Λj(z)∂2

z s̃j + γkvj (z)∂t∂
2
z s̃j
]

+

pj∑
k=1

∂2
zΓj,ak(z)U c

j,ak , (5.32a)

for z ∈ (0, l ) and t > 0 considering the equations of motion (2.55). At the boundaries the displacement error
fulfills

s̃j = 0, ∂z s̃j = 0, (5.32b)

for z = 0, t > 0 and

mj∂
2
t s̃j + k j(s̃) = ∂z

[
Λj(z)∂2

z s̃j + γkvj (z)∂t∂
2
z s̃j
]
− γsvj (z)∂t∂z s̃j

Jj∂
2
t ∂z s̃j = −Λj(z)∂2

z s̃j − γkvj (z)∂t∂
2
z s̃j

(5.32c)

at the free but coupled end z = l . The initial error at t = 0 is assumed as

s̃j = s̃j,0, ∂ts̃j = s̃j,1. (5.32d)

As a first attempt for the Lyapunov functional the total energy of the error system is chosen. Therefore, the
state space X̃e =

(
(H2

0 (0, l ))r × (L2(0, l ))r ×Rr ×Rr ×Rr−1
)
with the Hilbert space H2

0 (0, l ) = {f ∈ H2(0, l ) :
f(0) = ∂zf(0) = 0} and the inner product

〈φ,ψ〉X̃e =

r∑
j=1

( l∫
0

Λj(z)∂2
zφ1,j∂2

zψ1,j + µj(z)φ2,jψ2,j dz

+
mj

2
φ3,jψ3,j +

Jj
2
φ4,jψ4,j

)
+

r−1∑
j=1

kj,j+1

2
φ5,jψ5,j

(5.33)

is introduced. The associated norm is defined by ||φ||2 = 〈φ,φ〉X ∀ φ = [φT1 φT2 φT3 φT4 φT5 ]T , ψ =

[ψT1 ψT2 ψT3 ψT4 ψT5 ]T ∈ X. The state vector is given by x̃e = [x̃e1 x̃e2 x̃e3 x̃e4 x̃e5]T with

x̃e1(t) =
[
s̃1(· , t) . . . s̃r(· , t)

]T
, x̃e2(t) =

[
∂ts̃1(· , t) . . . ∂ts̃r(· , t)

]T
,

x̃e3(t) =
[
∂ts̃1(l , t) . . . ∂ts̃r(l , t)

]T
, x̃e4(t) =

[
∂t∂z s̃1(l , t) . . . ∂t∂z s̃r(l , t)

]T
,

x̃e5(t) =
[
s̃1(l , t)− s̃2(l , t) . . . s̃r−1(l , t)− s̃r(l , t)

]T
.

(5.34)

The total energy is given by

V = 〈x̃e(t), x̃e(t)〉X̃e =
1

2

r∑
j=1

( l∫
0

Λj(z)
(
∂2
z s̃j
)2

+ µj(z)
(
∂ts̃j

)2
dz +

mj

2

(
∂ts̃j(l , t)

)2
+
Jj
2

(
∂t∂z s̃j(l , t)

)2)
+

r−1∑
j=1

kj,j+1

2

(
s̃j(l , t)− s̃j+1(l , t)

)2
.

(5.35)

For any x̃e(t) ∈ X̃e the functional is positive definite, i.e., V > 0 and is hence a valid Lyapunov functional
candidate.
The rate of change of V along a solution trajectory of (5.32) yields

V̇ =

r∑
j=1

( l∫
0

Λj(z)∂2
z s̃j∂t∂

2
z s̃j + µj(z)∂ts̃j∂

2
t s̃j dz +

mj

2
∂ts̃j(l , t)∂2

t s̃j(l , t)

+
Jj
2
∂t∂z s̃j(l , t)∂2

t ∂z s̃j(l , t)
)

+

r−1∑
j=1

kj,j+1

2

(
∂ts̃j(l , t)− ∂ts̃j+1(l , t)

)(
s̃j(l , t)− s̃j+1(l , t)

)
.

(5.36)

82



Solving (5.32a) for µj(z)∂2
t s̃j , i.e.,

µj(z)∂2
t s̃j = −γvj (z)∂ts̃j + ∂z

[
γsvj (z)∂t∂z s̃j

]
− ∂2

z

[
Λj(z)∂2

z s̃j + γkvj (z)∂t∂
2
z s̃j
]
−

pj∑
k=1

∂2
zΓj,ak(z)U c

j,ak . (5.37)

and substitution into (5.36) provides

V̇ =

r∑
j=1

( l∫
0

Λj(z)∂2
z s̃j∂t∂

2
z s̃j − γvj (z)∂ts̃j∂ts̃j + ∂z

[
γsvj (z)∂t∂z s̃j

]
∂ts̃j

− ∂2
z

[
Λj(z)∂2

z s̃j + γkvj (z)∂t∂
2
z s̃j
]
∂ts̃j −

pj∑
k=1

∂2
zΓj,ak(z)U c

j,ak∂ts̃j dz

+
mj

2
∂ts̃j(l , t)∂2

t s̃j(l , t) +
Jj
2
∂t∂z s̃j(l , t)∂2

t ∂z s̃j(l , t)
)

+

r−1∑
j=1

kj,j+1

2

(
∂ts̃j(l , t)− ∂ts̃j+1(l , t)

)(
s̃j(l , t)− s̃j+1(l , t)

)
.

(5.38)

Applying partial integration leads to

V̇ =

r∑
j=1

( l∫
0

−γvj (z)
(
∂ts̃j

)2 − γsvj (z)
(
∂t∂z s̃j

)2
− γkvj (z)

(
∂t∂

2
z s̃j
)2

+

pj∑
k=1

∂zΓj,ak(z)U c
j,ak∂t∂z s̃j dz

+
[
∂2
z

[
Λj(z)∂2

z s̃j + γkvj (z)∂t∂
2
z s̃j
]
∂t∂z s̃j − ∂z

[
Λj(z)∂2

z s̃j + γkvj (z)∂t∂
2
z s̃j
]
∂ts̃j

+ γsvj (z)∂t∂z s̃j∂ts̃j −
pj∑
k=1

∂zΓj,ak(z)U c
j,ak∂ts̃j

]l

0

+
mj

2
∂ts̃j(l , t)∂2

t s̃j(l , t) +
Jj
2
∂t∂z s̃j(l , t)∂2

t ∂z s̃j(l , t)
)

+

r−1∑
j=1

kj,j+1

2

(
∂ts̃j(l , t)− ∂ts̃j+1(l , t)

)(
s̃j(l , t)− s̃j+1(l , t)

)
.

(5.39)

Considering (2.54) the coupling terms can be reformulated as follows

r∑
j=1

k j(s̃)∂ts̃j(l , t) = k1,2

(
s̃1 − s̃2

)
∂ts̃1(l , t) + k2,3

(
s̃2 − s̃3

)
∂ts̃2(l , t)− k1,2

(
s̃1 − s̃2

)
∂ts̃2(l , t)

+ . . .+ kr−1,r

(
s̃r−1 − s̃r

)
∂ts̃r−1(l , t)− kr−2,r−1

(
s̃r−2 − s̃r−1

)
∂ts̃r−1(l , t)

− kr−1,r

(
s̃r−1 − s̃r

)
s̃r(l , t)

=

r−1∑
j=1

kj,j+1

2

(
∂ts̃j(l , t)− ∂ts̃j+1(l , t)

)(
s̃j(l , t)− s̃j+1(l , t)

)
.

(5.40)

As a result (5.39) can be simplified taking the boundary condition (5.32b) and (5.32c) into account

V̇ =

r∑
j=1

l∫
0

−γvj (z)
(
∂ts̃j

)2 − γsvj (z)
(
∂t∂z s̃j

)2 − γkvj (z)
(
∂t∂

2
z s̃j
)2

+

pj∑
k=1

∂zΓj,ak(z)U c
j,ak∂t∂z s̃j dz −

pj∑
k=1

∂zΓj,ak(l )U c
j,ak∂ts̃j ,

(5.41)
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where the last sum always vanishes unless one MFC-actuator pair is placed at the beam’s tip. Due to the fact,
that γvj (z), γkvj (z), γsvj (z) ≥ 0 the following upper bound is introduced

V̇ ≤
r∑
j=1

l∫
0

pj∑
k=1

∂zΓj,ak(z)U c
j,ak∂t∂z s̃j dz. (5.42)

To obtain V̇ ≤ 0 it has to be ensured that

r∑
j=1

l∫
0

pj∑
k=1

∂zΓj,ak(z)U c
j,ak∂t∂z s̃j dz ≤ 0 (5.43)

holds true. This can be achieved by the choice

U c
j,ak = −klyj,ak

l∫
0

∂zΓj,ak(z)∂t∂z s̃j dz

= −klyj,ak
Aj,aka

11
j,ak,1(hj + hj,ak)

2βj,ak,11es

(
∂t∂z s̃j(zj,ak + lj,ak)− ∂t∂z s̃j(zj,ak)

) (5.44)

with the second line following form the determination of the the notch function Ωj,ak(z) (2.14) in terms of the
Heaviside function. As a result the control law ensures that V is a Lyapunov functional as long as klyj,ak > 0
which means that the error dynamic is asymptotically stable. Alternative the stabilization of the tracking error
can be shown by use of semigroup and contraction theory, see [98].
Analog to the extended state feedback control approaches, see Section 5.3.2.3, the Lyapunov-based control

approach is also extended by a PI-controller. This variation of the control law will be referred to as extended
Lyapunov-based controller.
The numeric value of of the gain klyj,ak is determined during hardware-in-the-loops test and is presented in

Section 6.1.

5.4. Model Predictive Control
As an alternative control approach to the previously discussed two-degrees-of-freedom control approach the
so-called model predictive control (MPC) approach is introduced. This approach unites the feedforward and
the tracking control. The main idea of the concept is based on a prediction of the system’s trajectories within
a specific temporal horizon. The control input is determined taking a minimization of a cost functional into
account, which consists of the predicted control error and the control input within the prediction horizon. The
first time step of the resulting predicted input which minimizes the cost functional yields the actual control
input. This procedure is applied in each time step.
The MPC concept allows to consider constraints imposed on the system, so the motion planning process as

well as the design of a feedforward control can be omitted. Therefore, this approach provides a high level of
usability. A rest-to-rest motion can be achieved by a simple reference trajectory in form of a step function.
In the following subsections, this control approach is developed for the vertical beam configuration based on

[94, 95]. At first the basic concept is discussed considering an unconstrained problem formulation. Afterwards,
the constraint case is introduced also addressing the real time capability of the concept by the applied Hil-
dreth’s quadratic programming procedure. In the end, the computational cost is discussed and further reduced
considering the concept of move blocking by downsampling.

5.4.1. Basic Concept
The previously discussed two-degrees-of-freedom control approach the MPC concept also relies on the time-
discrete state space formulation

xk = Adxk−1 +Bduk−1, k > 1, x0 = xr(0),

ypi,k = H∆,pixk, ypm,k = H∆,pmxk,
(5.45)

with xk = xr(ktd), uk = u(ktd) and ypi|pm,k = ypi|pm(ktd), where td denotes the sample time.
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Below the system description is extended to introduce a new input vector in terms of the slew rate of the
voltage signal ∆uk = uk − uk−1. This reformulation based on the difference ∆xk = xk − xk−1 provides the
opportunity to consider constraints of the MFC-actuators’ voltage slew rates in the control design. Furthermore,
the extension of the state vector by the output vector xe,k = [∆xTk yTpi,k]T implies an integral action in the
feedback loop which leads to stationary accuracy taking constant disturbances into account, see [114]. Hence,
the augmented system is given by

xe,k = Aexe,k−1 +Br∆uk−1, k > 1, xe,0 = xe(0)

yk = Hexe,k,
(5.46)

where it is assumed that the system is stationary at k = 0 leading to xe,0 = [0T yT0 ]T . The associated
augmented system matrices are given by

Ae =

[
Ad 0

H∆,piAd I

]
, Be =

[
Bd

H∆,piBd

]
, He =

[
0 I

]
, (5.47)

where I is the identity matrix.
As mentioned above the MPC approach in predicts each time step the outputs and associated the inputs over

the so-called prediction horizon h. The predicted outputs are given by

Yk =
[
yTk+1|k yTk+2|k . . . yTk+h|k

]T
(5.48)

with

yk+i|k = HeA
i
exe,k−1 +

i−1∑
m=0

HeA
i−m−1
e Be∆uk+m (5.49)

and i ∈ {1, . . . , h}. Reformulating the predicted output considering the notation of [20] yields

Yk = Fxe,k + Φ∆U , (5.50)

where

∆U =
[
∆uTk ∆uTk+1 . . . ∆uTk+h−1

]T (5.51)

denotes the associated input trajectory determined at time step k considering the prediction horizon h. In
addition, the matrices F and Φ are given by

F =


HeA

1
e

HeA
2
e

...
HeA

h
e

 , Φ =


HeBe 0 . . . 0
HeA

1
eBe HeBe · · · 0
...

...
. . .

...
HeA

h−1
e Be HeA

h−2
e Be . . . HeBe

 . (5.52)

The calculation of the predicted trajectory in (5.50) requires information of the complete state vector xe,k at
each time step k. Since the state vector xe,k is not measurable a Kalman filter, as introduced in Section 5.2, is
used which provides the observed state vector x̂e,k.
The objective of the control approach is the adjustment of the predicted trajectory Yk to remain as close as

possible to the desired reference trajectory Y ∗k within the prediction horizon. Considering the reference signal

Y ∗k =
[
y∗k+1

T y∗k+2
T . . . y∗k+h

T
]T
, (5.53)

where in case of the vertical beam configuration y∗k+1 denotes the displacement at the points of interest.
The optimal input trajectory ∆U follows by minimizing the error defined by the difference of the reference

signal Y ∗k and the predicted output signal Yk. Furthermore, the control effort is included in the optimization
process by considering the cost functional

J = (Y ∗k − Yk)TQc(Y
∗
k − Yk) + ∆UTRc∆U , (5.54)

where Qc ∈ Rnpi×npi and Rc ∈ Rnu×nu are the symmetric and positive definite output and input weighting
matrices, respectively. Here, npi and nu denote the number of points of interest as well as the number of system
inputs. Compared to the LQR approach (5.26) this formulation shows some similarities.
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The evaluation of the cost function considering the predicted output trajectory (5.50) results in

J =
(
Y ∗k −F x̂e,k

)T
Qc
(
Y ∗k −F x̂e,k

)
− 2∆UTΦTQc

(
Y ∗k −F x̂e,k

)
+ ∆UT

(
ΦTQcΦ +Rc

)
∆U . (5.55)

Taking this formulation into account the decision variable ∆U occurs only in a quadratic and a linear term.
These are the terms which affect the solution of the optimization process. Therefore all other terms can be
neglected leading to a condensed formulation of the cost functional

J∗ =
1

2
∆UTHJ∆U + ∆UTfJ , with HJ = (ΦTQcΦ +Rc), fJ = −ΦTQc(Y

∗
k −F x̂e,k). (5.56)

The minimization of the cost functional leads to the control input trajectory considering the prediction horizon
h, where only the first predicted step is implemented.

5.4.2. Constrained Model Predictive Control
Each physical actuator is characterized by outputs constraints, i.e., saturations of the generated forces or the
associated slew rates. Some of these constraints are based on physical limitations others are introduced by safety
concepts which protect the system, the user or the environment against damage. Taking the vertical beam
configuration into account constraints imposed by the MFC-actuators are defined by the limited symmetric
voltage range (±1000 V) and by a safety algorithm which limits the associated slew rates ∆u . Such limitation
can be described by

u ≤ uk ≤ u , ∆u ≤ ∆uk ≤ ∆u , (5.57)

where the bounds of the input variables u,u ∈ Rnu and the bounds of the associated slew rates ∆u,∆u ∈ Rnu
satisfy u < u and ∆u < ∆u , respectively.
Such constraints can easily be integrated in the optimization problem of the MPC approach which determines

the future input trajectory considering the prediction horizon h. Hence, each element of the predicted input
trajectory ∆U has to fulfill the inequalities (5.57) at any discrete time step.
The formulation of the augmented system (5.46) enables directly the implementation of slew rates constraint.

In order to impose the input constraints, the input variable uk has to be expressed by the decision variable ∆uk
leading to

uk+i = uk−1 +

i∑
m=0

∆uk+m (5.58)

with i ∈ {0, 1, . . . , h− 1}. With this, the input constraints within the prediction horizon read

U ≤ C1uk−1 + C2∆U ≤ U (5.59)

where C1 is a (hnu)×nu matrix, consisting of h identity matrices I ∈ Rnu×nu and C2 is a lower triangular matrix
with identity matrices I ∈ Rnu×nu as its non-null block entries. The vectors of the time-invariant boundaries
over the prediction horizon are given by

U = [uT , . . . ,uT ]T , U = [uT , . . . ,uT ]T (5.60)

with U ,U ∈ Rhnu .
The constraints on the slew rates of the elements of the predicted input trajectory ∆U are given by the

inequality

∆U ≤ ∆U ≤ ∆U (5.61)

with the vectors of the time-invariant boundaries over the prediction horizon

∆U = [∆uT , . . . ,∆uT ]T , ∆U = [∆uT , . . . ,∆uT ]T , (5.62)

where ∆U ,∆U ∈ Rhnu . Both types of constraints can be combined as follows

Ac∆U ≤ bc, with Ac =


C2

−C2

I
−I

 , bc =


U − C1uk−1

−U + C1uk−1

∆U
−∆U

 (5.63)
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with Ac ∈ R4hnu×hnu and bc ∈ R4hnu .
The constrained optimization problem follows as

min
∆U

J(∆U) = min
∆U

1

2
∆UTHJ∆U + ∆UTfJ (5.64a)

subject to

Ac∆U ≤ bc (5.64b)

The constraints can either be active, i.e., aTc,i∆U = bTc,i, or inactive, i.e., aTc,i∆U < bTc,i. There, the index i
denotes the considered constraint, i.e., the ith row of Ac and the ith element of bc, respectively. The active
inequality constraints are assembled in the set

Sieq(∆U) =
{
i ∈ {1, . . . , 4hnu} : aTc,i∆U = bTc,i

}
. (5.65)

The active inequality constraints are included into the optimization problem by using the Lagrange multiplier
p. The modified cost function reads

J†(∆U) =
1

2
∆UTHJ∆U + ∆UTfJ + pT (Ac∆U − bc) . (5.66)

The Karush-Kuhn-Tucker (KKT) [12] first order necessary optimality conditions for the optimization problem
are given by

HJ∆U + fJ +ATc p = 0, (5.67a)

pT (Ac∆U − bc) = 0, (5.67b)
p ≥ 0, (5.67c)

where (5.67a) describes the first derivative of J†(∆U) w.r.t. ∆U . The conditions (5.67b) and (5.67c) correspond
to the complementary slackness conditions.
The solution of the optimization problem is not affected by the inactive constraints. Hence, they can be

neglected in the optimization problem. Furthermore, active inequality constraints are replaced by equality
constraints as long as they are active

HJ∆U + fJ +
∑
i∈Sieq

ac,ipi = 0, (5.68a)

aTc,i∆U − bTc,i = 0, (5.68b)

pi ≥ 0, i ∈ Sieq. (5.68c)

For the purpose of solving the constrained optimization problem a primal-dual-method is used, in which the
Lagrange multipliers are determined in a dual optimization problem. By the knowledge of the Lagrange multiplier
the set of active inequality constraints is known and the solution of (5.68) follows straightforward.
According to [114], the primal problem is described by

max
p≥0

(
min
∆U

J†
)

= max
p≥0

(
min
∆U

(1

2
∆UTHJ∆U + ∆UTfJ + pT (Ac∆U − bc)

))
. (5.69)

The minimization w.r.t. ∆U is unconstrained which means the optimal solution results in

min
∆U

J† ⇒ ∆U = −H−1
J

(
fJ +ATc p

)
(5.70)

taking (5.67a) into account. Substituting this result into (5.69) defines the dual problem which can be reformu-
lated as a minimization problem taking HJ = HTJ into account

min
p≥0

(1

2
pTPp+ pTr +

1

2
fJ

TH−1
J fJ

)
with P = AcH−1

J ATc , r = bc +AcH−1
J fJ . (5.71)

The quadratic problem (5.71) is solved by using Hildreth’s quadratic programming procedure [114]. This al-
gorithm determines the Lagrange multiplier iteratively. In the ith iteration the mth element of the Lagrange
multiplier pim is obtained by

pim = max
(
0, µim

)
with µim = − 1

Pmm

(
rm +

m−1∑
l=1

Pmlpil +

h∑
l=m+1

Pmlpi−1
l

)
. (5.72)
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Here, Pml denotes the element of themth row and lth column of the matrix P and rm describes themth element of
the vector r. The optimal solution of the dual problem in terms of the maximum ensures non negative Lagrange
multiplier elements, as it is required by (5.67c). The algorithm is initialized with p0 = 0 and calculates all
Lagrange multipliers pim with m ∈ {1, 2, . . . , h} for the i-th iteration. The algorithm’s termination conditions
are defined by the absolute error of two successive iterations results of the Lagrange multipliers(

pi − pi−1
)T (

pi − pi−1
)
< ε = 10−8 (5.73a)

and by the number of iteration i limited to maximum value

i ≥ imax = 10. (5.73b)

If one of these conditions is fulfilled the algorithm stops.
Hildreth’s quadratic programming procedure is based on an element-by-element search and does not require

any matrix inversion. Due to this, the computational complexity is low and the limitation of the maximum
number of iteration (5.73b) enables the execution within a real time framework. In case of a termination of
the optimization process before convergence is reached (5.73b) the obtained non-optimal solution can be used
for further calculations so that the algorithms continues without interruption. Taking [114] into account the
algorithm will provide near-optimal solutions and recovers automatically from ill-conditioned problems in the
online execution.
In general, Hildreth’s quadratic programming procedure has been shown to converge to a set of Lagrange

multipliers p∗, where p∗ contains either zero or positive values and therefore determines the set of active
inequality constraints [114]. The optimal solution for the Lagrange multiplier p∗ fulfills the complementary
slackness condition, see (5.67b) and (5.67c). Therefore, the optimal solution ∆U is obtained by the substitution
p = p∗ in (5.70), which yields

∆U = −H−1
J

(
fJ +ATc p∗

)
. (5.74)

The first element of the predicted input trajectory is implemented, i.e.,

∆uk =
[
I 0

]
∆U , (5.75)

where the dimension of the identity matrix is defined by the number of inputs I ∈ Rnu×nu . The optimization is
repeated in each sampling step with the updated measurements and estimated states provided by the Kalman
filter.

5.4.3. Move Blocking by Downsampling
Although Hildreth’s quadratic programming procedure reduces the computation effort the MPC approach has
to deal with a weakly damped structures. This type of system is characterized by high eigenfrequencies which
requires small sample times to cover the dynamics. Simultaneously the objective of a large rest-to-rest motion
leads to large prediction horizons. Hence, the computational effort is still high. This is why, a move blocking
method by downsampling is introduced to improve the real time capability.
The main idea is a simple downsampling of the prediction horizon, i.e., only every νth element of the originally

predicted time span is calculated, where the prediction horizon h is an integer multiple of ν. Hence, the input
variables are only determined every νth time step and stay fixed in between which is typical for move blocking.
With this procedure the start and end of the predicted time span remain untouched, where the time used for
the determination of the control input is enlarged by the factor ν. The downsampled predicted input trajectory
is given by

∆U =
[
∆uTk ∆uTk+ν . . . ∆uTk+h−ν+1

]T (5.76)

and the downsampled predicted output trajectory is obtained as

Yk = F x̂e,k + Φ∆U (5.77)

with

FT =
[
HeAe HeA

ν
e . . . HeA

h−ν+1
e

]
, Φ =


HeBe 0 . . . 0
HeA

ν
eBe HeBe . . . 0
...

...
. . .

...
HeA

h−ν
e Be HeA

h−ν−1
e Be . . . HeBe

 . (5.78)

The reference signal Y ∗k and the maximal and minimal values of the amplitude and the change of the input
variable, U , U , ∆U and ∆U , respectively are modified in the same way.
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6. Results

The previously discussed control approaches are evaluated below in terms of transient simulations as well as
by the full integration within experimental setups. At the beginning, the results of the interconnected beam
structures are summarized. These structures are proof of concept studies as well as benchmark tests for the
wingsail’s mechanical and control design, whose results are subsequently discussed in detail.

6.1. Pointwise Interconnected Beam Structure
Below the simulation as well as experimental results of the two vertical beam configuration are presented. At first
the results of the triple beam setup are analyzed. The considered control concept is the two-degrees-of-freedom
control approach. This model based control approach considers a reduced order system description which relies
on the second order balanced truncation approach. Secondly, the results of the MPC approach are presented
for the double beam setup.
Both subsections provide a brief repetition concerning the associated experimental setup. The used MOR

method as well as the control approach including the observer design are presented providing all necessary
design parameters. Finally, the simulations and experimental results are illustrated and discussed.

6.1.1. Triple Beam Configuration
As presented in Section 2.1.2 the experimental setup is based on r = 3 vertically aligned carbon beams. All
beams are equipped with aluminum made tip masses which are used as mounting point for the elastic strings
connecting the neighboring beams. In addition, the beams are equipped with voltage controlled embedded
MFC-patches displaying the system’s actuators. Furthermore, two kinds of sensors are used, the embedded
strain gauges and external laser sensors, see Fig. 2.5 for the schematic of the vertical beam configuration and
Table 2.2 for the precise locations of the points of interest and measurement. The laser sensors are placed at the
points of interest to evaluate the performance of the reconstructed displacement of the observer. The observer
uses the measurements of the strain gauges as input which are gathered at the points of measurement. All
control approaches rely on the states or outputs provided by the observer in terms of the Kalman filter.

6.1.1.1. Evaluation of the Model Order Reduction

The finite dimensional system description of the triple beam configuration is driven by a set of Nj = 10 test
and trail functions per beam, see (2.60). The resulting first order system is characterized by 2N = 2rNj = 60
states.
To reduce the computational effort, especially in view of the real time capability, a MOR method in terms of

the second order balanced truncation is applied, see Section 4.2. Table 6.1 lists the associated Hankel singular
values of the full system. In addition, Table 6.2 compares the relative amount of considered energy of the reduced
system with the energy of the full system ε, see also (4.15), for different choices of the number of reduced second
order states Nj,r.
To evaluate the accuracy of different reduced order systems w.r.t. the full order system the simulation results

are compared considering a stepwise actuation

u(t) =
[
670 670 670 670

]T
V h(t− 0.1s). (6.1)

Fig. 6.1 displays the resulting transversal deflections at the points of interest ypi(t) of the full order system
Nj = 10 and of three different reduced order systems. The reduced system based on Nj,r = 3 second order
states (green line) clearly shows a huge systematic error compared to the full order system (blue line). In
contrast, the reduced systems based on Nj,r = 4 and Nj,r = 5 second order states (red and orange line) seems
to completely cover the behavior of the full order system.
For a further analysis Fig. 6.2 depicts the temporal difference between the full order and the reduced order

system defined by the error

ỹrpi,f (t) = ypi,f,N (t)− ypi,f,Nj,r(t). (6.2)

89



Table 6.1.: Hankel singular values scaled by 100 used for the construction of weighting matrices of the state
observer (5.29b) and state controller (5.29b).

i ζp,i ζv,i i ζp,i ζv,i i ζp,i ζv,i

1 1.378349 1.378050 11 0.678621 0.678329 21 0.088991 0.088978
2 1.313073 1.312782 12 0.633459 0.633265 22 0.085209 0.085194
3 1.243174 1.242712 13 0.608382 0.608198 23 0.073384 0.073367
4 1.162754 1.162673 14 0.562492 0.562289 24 0.068237 0.068226
5 1.073687 1.073562 15 0.437648 0.437561 25 0.066446 0.066442
6 0.909155 0.909010 16 0.360763 0.360802 26 0.064682 0.064663
7 0.862658 0.862642 17 0.353424 0.353462 27 0.024695 0.024694
8 0.824224 0.824044 18 0.336417 0.336344 28 0.020243 0.020222
9 0.784702 0.784433 19 0.247365 0.247317 29 0.018217 0.018190
10 0.730939 0.730647 20 0.147528 0.147498 30 0.011651 0.011617

Table 6.2.: Comparison of the relative amount of considered energy of the reduced system for different number
of reduced second order states Nj,r.
Nj,r 2 3 4 5 6 7 8 9
ε 0.39727 0.56584 0.71494 0.82021 0.89900 0.94292 0.9734 0.99457

Here, three reduced systems defined by Nj,r = 4, Nj,r = 5, and Nj,r = 6 second order states are analyzed. These
systems cover 71.5 %, 82.0 %, and 89.9 % of the energy w.r.t. the full order system, respectively see Table 6.2.
Considering Fig. 6.2, it strikes that the first system Nj,r = 4 (blue line) displays significant high errors at

both points of interest of the second beam (ỹrpi,2, ỹ
r
pi,3). In contrast, the error magnitudes of the reduced

systems defined by Nj,r = 5 and Nj,r = 6 are in the same range for the first three points of interest. Due to
the small difference between these systems the reduced system with Nj,r = 5 second order states is chosen as
basis for the control design process. Hence, the first order system is characterized by 2Nr = 2rNj,r = 30 states.
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Figure 6.1.: Comparison of the displacements at the points of interest ypi,f (t) with f = {1, . . . , 4} of the full
order system (Nj = 10) with the reduced order systems (Nj,r = {3, 4, 5}) for the stepwise input
signal (6.9).
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ỹ
r p
i,
1
(t
)
[m

]

0.0 0.5 1.0 1.5 2.0
−1.0

−0.5

0.0

· 10−4

t [s]

ỹ
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Figure 6.2.: Comparison of the errors (6.2) introduced by the second order balanced truncation method consid-
ering the reduced order systems based on Nj,r = {4, 5, 6} second order system states per beam.
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6.1.1.2. Evaluation of the Open and Closed Loop System

The simulations and experimental results of the triple beam configuration are analyzed below. These results are
organized as follows, At first the results of the open loop behavior are discussed considering the experimental
step response. In addition, a comparison between simulation results of a rest-to-rest motion achieved by the
flatness-based feedforward controls and a simple voltage ramp are analyzed. Secondly, the experimental results
of the two-degrees-of-freedom control approach stay in the focus of the analysis.

Step Response To illustrate the open loop dynamics of the interconnected structure Fig. 6.3 displays the
response of the transversal deflection of the points of interest ypi,i = s(zpi,i, t) with i ∈ {1, 3, 4} for a voltage
step

u(t) =
[
817 −770 −807 781

]T
V h(t− 1 s). (6.3)

These voltage values correspond to a steady state deflection of ypi =
[
−8 1 4 −6

]T × 10−3m, where the
second beam deflects in the opposite direction as the first and third beam. The applied voltage step leads to rather
large oscillations of all three beams with amplitudes between [4, 6]×10−3m. Due to the beam configuration, the
second beam endures the highest relative overshoot of 150 % w.r.t. the steady state values. The settling time of
the oscillations is about 18 s. It has to be pointed out that this steady state denotes a challenging configuration,
due to the opposite displacements of the coupled beams. Therefore, it is later on used to evaluate the closed
loop behavior.
In addition, Fig. 6.3 provides a comparison between the laser measurements yol,L (blue line) and the observed

output ŷol (green line). The laser measurement directly captures the transversal displacement near the beams’
tip zpi,i with i ∈ {1, 3, 4}, see Fig. 2.5 and Table 2.2. To reduce the measurement noise these signals are filtered
by a first order low pass filter characterized by the cutoff frequency fc = 100 Hz.
The observer in terms of a Kalman filter, see Section 5.2, is driven by the measurements of the embedded

strain gauges located at zpm,m 6= zpi,i ∀i,m and determines the transversal displacement at all points of interest
zpi,i with i ∈ {1, . . . , 4}. The necessary design parameters of the Kalman filter introduced in (5.15) and (5.29b)
are summarized in Table 6.3. In addition, the weighting vectors qTc,p and qTc,p (5.15) and (5.29b) are given by
the Hankel singular values of Table 6.1.
For the implementation of the voltage step and the recording of measurements a dSPACE MicroLabBox [31]

is used with the sample time td = 2× 10−4 s.
As it can be seen, the observed output coincides with the laser measurements, which indicates a good perfor-

mance of the observer and the underlying MOR with Nj,r = 5. This is crucial for the implementation of the
presented state feedback controller.

Remark 6.1 To improve the comparability between the results recorded at the experimental setup the output
of the Kalman filter is presented instead of the laser measurements due to the enhanced signal to noise ratio.
Subsequently, these signals are denoted as observed displacements.

Table 6.3.: Design parameters of the applied Kalman Filter introduced in (5.15) and (5.29b) considering r = 3
beams j = {1, . . . , r}, Nj = 5 reduced second order system states per beam and npm = 7 points of
measurement using the installed strain gauges (type HBM 1-Ly48-6/350).

ro qo,t qo,p,c qo,v,c

2.0× 101 5.0× 101 5.0× 103 1.0× 101
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Figure 6.3.: Step response for the voltage step (6.3). The laser measurements yol,L are filtered using a first
order low pass filter characterized by the cutoff frequency fc = 100 Hz. Note that no laser sensor is
mounted at the second point of interest, therefore the associated displacement can only be observed.
The observed displacements at the points of interest are determined by a Kalman filter which relies
only on the seven embedded strain gauges.
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Comparison Between the Numeric Results of the Feedforward Control and a Simple Voltage Ramp As
a first numeric evaluation of the motion planning and the flatness-based feedforward control introduced by
Section 5.1 a rest-to-rest motion is considered. This scenario starts at t = 0 s in the undeformed state y∗pi(0 s) =

[0 0 0 0]T × 10−3 m and ends at t = 1.1 s with the desired transversal deflection at the points of interest
y∗pi(1.1 s) = [20 7 22 21]× 10−3 m which corresponds to 90 % of the maximal displacement. The associated
steady state input signals are given by uff(0 s) = [0 0 0 0] V and uff(1.1 s) = [874.9 874.0 950.3 890.6] V.
Table 6.4 lists the necessary parameter of the used flatness-based feedforward controls (5.8a) taking (5.10) into
account.
Fig. 6.1 displays the simulation results of the transversal deflection yff(t) and its associated voltages uff(t)

(blue lines). Due to the fact that in the simulation all material parameters are known and no disturbances are
considered, the result completely coincides with the reference trajectory y∗pi(t). The considered scenario provides
the highest displacements because all actuators deflect in the same direction. Furthermore, it minimizes the
coupling effect which is proportional to the difference of the tips’ displacement of neighboring beams.
As a comparison approach the result of a simple voltage ramp which connects the same steady state inputs

within the same time span

ura(t) =



[
0 0 0 0

]
V 0 s ≤ t < 0.1 s

t−0.1 s
0.7 s

[
874.9 874.0 950.3 890.6

]
V 0.1 s ≤ t < 0.8 s[

874.9 874.0 950.3 890.6
]

V 0.8 s ≤ t

(6.4)

is presented (green line). The resulting displacement shows an oscillation characterized by amplitudes of
4× 10−3 m which corresponds to a relative overshoot of 20 %. Furthermore it depicts a large settling time
of about 16 s.
Concluding the comparison the flatness-based feedforward control displays the expected behavior of a fast

and oscillation free rest-to-rest motion. This result can only be achieved because all material parameters are
known within the simulation environment. Taking an experimental setup into account parameter uncertainties
and disturbance lead to deviations and small oscillation in the open loop. In contrast, a comparable voltage
ramp is not able to achieve a similar performance on the weakly damped system.
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Figure 6.4.: Comparison of the simulation results of the transversal displacement at the points of interest ypi,f (t)
with f ∈ {1, . . . , 4} considering the presented flatness-based feedforward controls approach (yff, u∗)
see (5.8a) taking (5.10) into account with a ramp shaped voltage input (yra, ura), see (6.4).
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Experimental Results of the Two-Degrees-of-Freedom Control Approach Below, the performance of the
flatness-based feedforward controls and of the two-degrees-of-freedom control approach are analyzed taking the
implementation on the experimental setup into account using a dSPACE MicroLabBox [31] with a given sample
time td = 2× 10−4 s.
The performance is analyzed by two different scenarios.

1. At first, the control performance is evaluated for a rest-to-rest motion scenario. For this, three transitions
between different steady states displacements are considered, see Fig. 6.5. At the beginning of the scenario,
the system stays in the undeformed state y∗pi(0 s) = [0 0 0 0]T × 10−3 m. After t = 1.9 s the steady
state y∗pi(1.9 s) = [−8 1 4 −6]T × 10−3m should be reached which depicts the identical transversal
displacement as is imposed in the step response, see Fig. 6.3. The second transition starts at t = 6 s,
where the desired steady state y∗pi(6.9 s) = −y∗pi(1.9 s) = [8 −1 −4 6]T × 10−3m should be reached at
t = 6.9 s. This transition describes a rest-to-rest motion connecting the positive and negative transversal
displacement of the beams which correspond to 80 % of the maximal reachable steady state displacement.
Finally, the last transition leads the system back into the undeformed state y∗pi(11.9 s) = [0 0 0 0]T ×
10−3 m.

2. Thereafter, the system behavior and the control performance are evaluated taking a disturbance introduced
by a pulse hammer into account while the system stays in the undeformed state y∗pi(t) = [0 0 0 0]T ×
10−3 m. This scenario is referred to as disturbance rejection.

Figure 6.5.: Schematic visualization (front view) of the desired steady state displacement profiles of the designed
scenario, see Figs. 6.6 and 6.8, chronologically sorted from left to right.

In both scenarios the two-degrees-of-freedom control approach is considered which is based on the flatness-
based feedforward control (5.8a) with different feedback control approaches. For the rest-to-rest motion the
results of the feedforward control are compared with the results of the tracking controller based on the ID-T1,
the linear quadratic (LQR), the extended LQR, the Lyapunov-based feedback control approach and its extension.
Due to the fact, that the Ackermann state feedback controller and its extension achieve similar performances
compared to the LQ feedback controller the analysis concentrates only on the LQR approach.
The analysis of the disturbance rejection, in which a pulse hammer is used to disturb the beam structure,

is focused on the result of the open loop system, the ID-T1 control, the extended LQR and the extended
Lyapunov-based control approach. The associated design parameters are identical for both scenarios and are
listed in Table 6.4.

Rest-to-Rest-Motion Scenario The evaluation of the rest-to-rest motion is split in two parts. At first, the
results of the feedforward control and the two-degrees-of-freedom controls which do not ensure steady state
accuracy are considered. Hereinafter, the ID-T1, extended LQ and the extended Lyapunov-based two-degrees-
of-freedom control approach are considered.

Remark 6.2 To improve the readability of the achieved transversal deflections considering all points of interest
and the associated input signals, they are placed on double pages.

Fig. 6.6 shows the transversal deflection at points of interest of the feedforward control ŷff (green line), where the
reference trajectory y∗ is depicted by the blue line. Compared to the step response, see Fig. 6.3, the feedforward
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Table 6.4.: Design parameters of the considered two-degrees-of-freedom control approaches considering the
flatness-based feedforward control (5.8a) taking (5.10) into account as well as the ID-T1 (5.18),
the LQR (5.29b), the extended LQR (5.31), and the Lyapunov-based feedback control approach
(5.44).

feedforward control ID-T1 control
T g kI kD 1/Tidt

0.9× 100 1.1× 100 1.7× 101 5.5× 106 150 Hz

LQR
rc qc,t qc,p qc,v

1.0× 10−2 2.0× 102 1.0× 101 1.0× 10−3

extended LQR Lyapunov
ka klq klyj,ak

2.0× 101 2.0× 101 5.5× 106

control results in a far smaller oscillation at all four points of interest, although the steady voltage after the
first transition is identical to the stepwise voltage signal (6.3). Considering the second point of interest f = 2
the oscillation does not decay completely during the steady state phase of the scenario. However, the largest
relative overshooting considering the points of interest is given by an amplitude of 10 %, which is caused by the
remaining uncertainties of the material parameters. The remaining steady state deviation can be neglected as
long as no external disturbance is applied. In addition Fig. 6.7 displays the feedforward control signal u∗.

Remark 6.3 The proposed flatness-based motion planning and feedforward control approach is capable to al-
most completely achieve the desired rest-to-rest motion without the need to perform intensive computations or
optimization. The approach is real time capable and implemented in the real time processing unit for each
experimental setup. This implementation allows to adjust the motion planning online.

The two-degrees-of-freedom control approach based on the LQ feedback control displays a significant im-
provement especially during and right after the transition phases, see the red lines of Fig. 6.6. The remaining
oscillations of the displacement ŷlq decays within t = 1.5 s. Considering Fig. 6.7 the applied voltages ulq differ
only slightly from the voltages of the feedforward controller.
In contrast, the application of the Lyapunov-based feedback controller ŷly (orange line) displays only small

performance improvements within the transition phases compared to the result of the feedforward control ap-
proach. The settling time is given by about 4.2 s. However, the steady state deviation is larger compared to the
open loop especially for the second point of interest located behind the second beam’s first MFC-actuator.
Concluding the evaluation of this first set of control approaches, the two-degrees-of-freedom control approach

based on the LQ feedback controller displays the best performance regarding dynamic and control error defined
by

ỹ(t) = y∗(t)− ŷ(t). (6.5)

The results of the second set of feedback controllers which ensure steady state accuracy are shown by Fig. 6.8,
while Fig. 6.9 depicts the associated voltages, and Fig. 6.10 displays the corresponding control error (6.5).
Taking the application of the ID-T1 ŷidt and extended LQ feedback controller ŷex-lq (green and red line,

respectively) into account it can be seen that both controllers achieve a nearly identical dynamic. During
the transition phases the associated control errors ỹidt and ỹex-lq results in a maximum of about 0.5× 10−3 m,
although this transition connects the maximal positive and negative deflection. These absolute errors correspond
to a relative error of about 16 % w.r.t. the desired steady state. It seems that the ID-T1 control achieves slightly
better results in the second transition, where the extended LQR displays an improved performance within the
first transition. However, in the end the performance deviation is marginal, which is why the associated input
signals uidt and uex-lq display only small deviations, see Fig. 6.9.
In contrast, the performance of the extended Lyapunov-based feedback controller’s displayed by its displace-

ment yex-ly is weak compared to the previously discussed controllers. The extension provides the desired steady
state accuracy but no significant improvement of the transients.
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ŷly

1 1.25 1.5 1.75 2
−8

−6

−4

−2

0
· 10−3

6 6.25 6.5 6.75 7

−5

0

5

· 10−3

Figure 6.6.: Experimental results of the observed transversal displacement at the points of interest ŷpi,f (t) with
f ∈ {1, . . . , 4} of the reference trajectory y∗, the flatness-based feedforward control ŷff, and the two-
degrees-of-freedom control approach based on the LQ and the Lyapunov-based controller denoted
as ŷlq and ŷly, respectively, for the rest-to-rest motion scenario.
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Figure 6.7.: Input signals of the MFC-actuators k ∈ {1, . . . , 4} of the feedforward controls u∗ and the two-
degrees-of-freedom control approach based on the LQ and the Lyapunov-based control approaches
denoted as ulq and uly, respectively, for the rest-to-rest motion scenario.

99



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−10

−5

0

5

10
· 10−3

t [s]

y
p
i,
1
(t
)
[m

]

y∗
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ŷex-lq
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ŷex-ly

1 1.25 1.5 1.75 2
0

0.5

1

· 10−3

6 6.25 6.5 6.75 7

−1

0

1

· 10−3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

−4

−2

0

2

4

· 10−3

t [s]

y
p
i,
3
(t
)
[m

]

y∗
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Figure 6.8.: Experimental results of the observed transversal displacement at the points of interest ŷpi,f (t) with
f ∈ {1, . . . , 4} of the reference trajectory y∗ and the two-degrees-of-freedom control approach based
on the ID-T1, the extended LQ, and the extended Lyapunov-based controller denoted as ŷidt, ŷex-lq,
and ŷex-ly, respectively, for the rest-to-rest motion scenario.
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Figure 6.9.: Input signals of the MFC-actuators k ∈ {1, . . . , 4} of the two-degrees-of-freedom control approach
based on the ID-T1, the extended LQ, and the Lyapunov-based controller denoted as uidt, uex-lq,
and uex-ly, respectively, for the rest-to-rest motion scenario.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

−1.00

−0.50

0.00

0.50

· 10−3

t [s]

ỹ
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Figure 6.10.: Control errors (6.5) of the feedforward controls ỹff and the two-degrees-of-freedom control approach
based on the ID-T1, the extended LQ, and the Lyapunov-based controller denoted as ỹidt, ỹex-lq,
and ỹex-ly, respectively, for the rest-to-rest motion scenario.
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Disturbance Rejection Scenario The evaluation of this scenario concentrates only on the system’s response
to an external disturbance introduced by a pulse hammer of the open loop (yol, uol), the ID-T1 (yidt, uidt), the
extended LQ (yex-lq, uex-lq), and the extended Lyapunov-based based feedback controllers (yex-ly, uex-ly).
Fig. 6.11 displays the observed transversal deflections under disturbances. At t = 0.5 s a pulse hammer applied

to the second beam excites the complete structure. The weakly damped system reacts in the open loop (blue
line) with an oscillation characterized by amplitudes of 0.03 m and a decay time of about 25 s.
The application of the Lyapunov-based based controller reduces the decay time to 20 s by introducing a

damping effect which can be seen by the frequency of the oscillation compared to the open loop. Comparing
the four points of interest it appears that the controller also synchronizes the displacement of all beams. In
addition, the amplitudes of the oscillation are slightly damped (orange line). The associated voltages are depicted
in Fig. 6.12.
In contrast, the extended LQR approach results in a decay time of about 4 s (red line). Furthermore, the

amplitudes of the oscillation are reduced significantly after the first period.
The best performance is achieved by the ID-T1 controller (green) slightly improving the results of the LQR.

After the first oscillation’s period the error amplitude is reduced by approximately the factor 2. Comparing
the applied voltages of the ID-T1 and LQ controller it appears that this slight performance improvement comes
with a much higher energy consumption. In general, the ID-T1 controller reacts faster and with higher voltages.
Furthermore, it appears that the LQR uses the first MFC-patch pair to control the deflections at the points of
interest, especially of the second beam. In contrast, the ID-T1 approach seems to focus on the second patch
pair, which provides a shorter lever. This is why the ID-T1 control requires higher amplitudes to control the
second beam.
Concluding the evaluation of both scenarios, the two-degrees-of-freedom control approaches based on the

ID-T1 and the extended LQ are characterized by a fast dynamic, a strong damping of the remaining oscillations
as well as steady state accuracy considering short sampling times. Due to the comparable performance the
slightly lower energy consumption of the LQR should be preferred. Nevertheless, the motion planning and
control concept displays remarkable results and ensures that the desired shape is reached.
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Figure 6.11.: Experimental results of the observed transversal displacement at the points of interest ŷpi,f (t) with
f ∈ {1, . . . , 4} of the open loop system ŷol and the two-degrees-of-freedom control approach based
on the ID-T1, the extended LQ, and the extended Lyapunov-based controller denoted as ŷidt,
ŷex-lq, and ŷex-ly, respectively, considering the disturbance rejection scenario. The disturbance is
introduced by a pulse hammer applied at t = 0.5 s to the second beam.

104



0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

−0.2

0

0.2

· 103

t [s]

u
1
[V

]
uol uidt uex-lq uex-ly

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

−0.2

0

0.2

0.4
· 103

t [s]

u
2
[V

]

uol uidt uex-lq uex-ly

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

−0.2

0

0.2

· 103

t [s]

u
3
[V

]

uol uidt uex-lq uex-ly

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

−0.2

0

0.2
· 103

t [s]

u
4
[V

]

uol uidt uex-lq uex-ly

Figure 6.12.: Input signals of the MFC-actuators k ∈ {1, . . . , 4} of the two-degrees-of-freedom control approach
based on the ID-T1, the extended LQ, and the Lyapunov-based controller denoted as uidt, uex-lq,
and uex-ly, respectively, considering the disturbance rejection scenario. The disturbance is intro-
duced by a pulse hammer applied at t = 0.5 s to the second beam.
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6.1.2. Double Beam Configuration
As mentioned before the double beam setup denotes a subset of the previously discussed triple beam configuration
which is reduced by the second beam. Hence, the double beam setup is based on r = 2 vertical aligned carbon
beams coupled with each other by a rubber band mounted at their tip masses. Both beams are equipped
with voltage controlled embedded MFC-patches serving as actuators. In contrast to the triple beam setup only
the external laser sensors are used as measurement devices and also as input for the Kalman filter. The laser
sensors are placed at the points of interest near the beams’ tips so that the points of measurement coincide
with the points of interest, see Fig. 2.5 for the schematics of the vertical beam configuration and Table 2.2 for
the precise locations. Below, the results of the MPC approach of Section 5.4 are discussed, see also [94, 95]. It
has to be mentioned that due to its computational effort the MPC approach is restricted to the double beam
setup. Therefore no direct comparison with the two-degrees-of-freedom control approach is provided to avoid
redundant information. However, [56] presents results of the two-degrees-of-freedom control approach based on
ID-T1 feedback controls considering a comparable scenario.

6.1.2.1. Evaluation of the Model Order Reduction

Analog to the triple beam setup, the finite dimensional system description of the double beam is based on a set
of Nj = 10 test and trail functions per beam, see (2.60). The resulting first order system is characterized by
2N = 2rNj = 40 states.
Again, the second order balanced truncation is applied as MOR method, see Section 4.2, to reduce the

computational effort. In contrast to the triple beam the output matrix is given by Hpm = Hpi due to the use
of the laser sensors. This directly affects the observability Gramian Wo and leads to the fast decaying Hankel
singular values listed in Table 6.5. The relative amount of energy ε(Nj,r) (4.15) w.r.t. different choices of the
number of reduced second order states Nj,r is listed in Table 6.6. Compared with the triple beam results in
Table 6.2 the relative amount of energy is significantly higher, where the major difference between both setups
is given by the method of measurement. The used laser measurement directly provides the desired deflection,
where the embedded strain gauges which are used in the triple beam setup only measure the strain at the points
of measurement.

Table 6.5.: Hankel singular values.
i ζp,i ζv,i i ζp,i ζv,i i ζp,i ζv,i

1 3.25×10−4 3.25×10−4 8 7.66×10−7 5.30×10−7 15 3.69×10−8 2.69×10−8

2 3.25×10−4 3.25×10−4 9 5.45×10−7 3.89×10−7 16 3.69×10−8 2.69×10−8

3 1.06×10−5 4.86×10−6 10 5.45×10−7 3.89×10−7 17 1.61×10−8 8.26×10−9

4 1.06×10−5 4.86×10−6 11 3.03×10−7 1.88×10−7 18 1.61×10−8 8.26×10−9

5 3.25×10−6 9.63×10−7 12 3.03×10−7 1.88×10−7 19 8.63×10−9 1.35×10−9

6 3.25×10−6 9.63×10−7 13 1.38×10−7 7.42×10−8 20 8.63×10−9 1.35×10−9

7 7.66×10−7 5.30×10−7 14 1.38×10−7 7.42×10−8

Table 6.6.: Comparison of the relative amount of considered energy of the reduced system for different numbers
of reduced second order states Nj,r.

Nj,r 1 2 3 4 5 6 7
ε 0.9663 0.9892 0.9955 0.9974 0.9988 0.9995 0.9999

To evaluate the accuracy of different reduced order systems and the full order system the simulation results
are compared considering a stepwise actuation

u(t) =
[
600 −600

]T
V h(t− 0.1s). (6.6)

Fig. 6.13 displays the resulting transversal deflections at the points of interest ypi(t) of the full order system
Nj = 10 (blue line) and the reduced order systems considering Nj,r = 1 second order states (green line). The
considered reduced order system covers 96.9 % of the full order system’s total energy. Hence, nearly no deviation
between the simulation results is detected.
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In addition, the observed displacements using a Kalman filter based on the reduced order system with the
covariance matrices Ro = diag{1×10−2, 1×10−2} and Qo = diag{1×107, 1×107} using the laser measurements
of the experimental setup are depicted by yol (red line). The simulation results match the experimental results
quite well. There is only a small deviation in the amplitude of both displacements and in the frequency of the
second beam.
Analog to the triple beam, the system response displays the characteristic behavior of a weakly damped

structure. The amplitudes are about two times those of the steady state displacement and the decay time is
about 25 s.

Nj Nj,r = 1 yol
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Figure 6.13.: Comparison of the simulated displacements at the points of interest ypi,f (t) with f = {1, . . . , 4}
of the full order system (Nj = 10), the reduced order systems (Nj,r = 1), and the observed
displacements recorded at the experimental setup yol taking the stepwise input signal (6.6) into
account.

6.1.2.2. Evaluation of Model Predictive Control Approach

Below the results of the MPC approach are discussed. These results are based on the common weighting matrices
Rc = 1×10−9I and Qc = I, see Section 5.4. Furthermore, the simulation as well as the real time implementation
consider a fixed sample time of td = 3× 10−3s.
Fig. 6.14 displays on the left side the simulation and experimental results of the MPC approach in terms of

the transversal displacement taking into account a stepwise reference signal

y∗(t) =
[
0.01 −0.01

]T
m h(t− 0.5 s) (6.7)

depicted as blue line. In addition the right side displays the associated control input signals.
At first the results of the constrained MPC approach ŷMPC are displayed (green line). This approach uses a

prediction horizon of h = 200 time steps leading to a prediction time of 0.6 s. The considered constraints are
given by the limitation of the actuators in terms of the absolute voltages u = −u = [1000 1000]T V and the
associated slew rates ∆u = −∆u = [120 120]T V as introduced by (5.57).
The resulting simulated displacement reaches the reference within 0.3 s with a small overshoot of about 8 %.

The low magnitudes of the elements of the input weighting matrix Rc leads to a small impact or penalty within
the cost function. Therefore, the resulting input signals are characterized by high absolute voltages and also
high slew rates, see uMPC on the right side of Fig. 6.14, where the constraints are fulfilled at all times.
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The high and fast changing voltages as reaction to the step of the reference signal point out why the prediction
horizon is crucial. The controller has to compensate the system response to the fast changes to prevent oscillation
of the weakly damped system. Therefore, the prediction horizon has to be chosen long enough to consider the
compensation of the fast reaction.
However, the full simulation of the presented approach with a prediction horizon of h = 200 time steps takes

about 74.586 s on a PC equipped with an Intel i5 and 16GB ram. A real time implementation is not feasible.
To reduce the computational cost the prediction horizon can be shortened, but this would lead to a significant
decrease in control performance, as previously discussed and verified by experiments. This is why the move
blocking by downsampling is introduced.
The simulation results of the move blocking approach considering a downsampling factor ν = 10 are displayed

by the red lines. In contrast to the original MPC approach, the closed loop behavior in terms of the displacement
yMPC,ds takes about 0.5 s to reach the desired steady state, where the overshooting is further reduced. This
temporal deflection profile is caused by smoother input signals yMPC,ds. However, the downsampling approach
significantly reduces the computational effort leading to a total simulation time of 0.5181 s on the same hardware
as before.
Therefore, the MPC approach considering move blocking by downsampling is tested on the experimental setup

driven by a dSPACE DS1103. The resulting displacement ŷMPC,exp and associated input signal uMPC,exp are
depicted by the orange lines in Fig. 6.13. Comparing the results, the observed displacements nearly match with
the simulation. Only in the end an oscillation with low amplitudes can be seen. Due to this, the steady state
is reached after about 1.0 s. This deviation is caused by the existing uncertainties, e.g., remaining creeping and
hysteresis effects of the actuators, or the nonlinear behavior of the connecting rubber band which is modeled as
a spring. Especially the higher voltages during the steady state indicates that the controller has to compensate
a constant disturbance.

y∗ yMPC, uMPC yMPC,ds, uMPC,ds ŷMPC,exp, uMPC,exp
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Figure 6.14.: Comparison of the transversal displacement at the points of interest ŷpi,f (t) with f ∈ {1, . . . , 2}
of the simulation results of the original MPC (yMPC, uMPC), the move blocking by downsampling
(yMPC,ds, uMPC,ds), and experimental results (ŷMPC,exp, uMPC,exp) of the move blocking approach,
respectively.

Analog to the triple beam setup, the closed loop behavior is evaluated taking an external disturbance into ac-
count. Fig. 6.15 displays the resulting displacement after the disturbance is manually applied at t = 0.4 s.
The resulting oscillation is attenuated by the MPC in less than 2 s, which displays a good performance.
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Figure 6.15.: Experimental results of the observed transversal displacement at the points of interest ŷpi,f (t) with
f ∈ {1, . . . , 2} of the MPC approach using move blocking by downsampling considering an external
disturbance.

In general, the MPC approach displays an overall good control performance considering the double beam
setup. Nevertheless, this control concept is not further investigated in view of the wingsail project, due to its
computational cost. This decision is based on two reasons.
At first, the question appears if the MPC approach is capable to deal with larger structures, e.g., the triple

beam setup whose reduced system is described by 30 states and the embedded measurement concept. In contrast,
the smaller double beam setup can be described by four states and already requires an enlarged sample time
td = 3 × 10−3 s instead of td = 0.2 × 10−3 s and downsampling. A further decreasing of the prediction time is
not feasible on a weakly damped structure as previously discussed. Compared to the double and triple beam the
wingsail setup’s geometry provides a higher amount of stiffness, so that the horizon should be shortened which
is in contrast to the higher system dimension requiring larger evaluation times. However, the higher systems
dimension requires larger evaluation times compared to the double beam.
Furthermore, the vision of the wingsail project is the design of an autonomous sailing yacht, which means the

presented motion planning and tracking control approach is only one part of the full system and is not allowed to
consume the complete computational power for itself. Considering the double beam setup the implementation
of the MPC is done on a dSPACE DS1103. This system denotes a powerful rapid prototyping environment
which can not be implemented on the model yacht due to a lack of space and capacity of payload in terms of
weight. Therefore, all control algorithms have to run on an embedded real time controller like the stm32 family.
Such a system is lightweight and small, but it does not provide a comparable amount of computational power.
However, the development in this area is high, so maybe the computational power will rise in the next years but
on the other hand a rising amount of computational power most of the time goes hand in hand with a higher
consumption of electric energy. For an autonomous vehicle, this means that the requirement of the battery
capacity rises which leads to an increase of weight and / or space.
Due to this reasons and the fact that the MPC approach provides a comparable performance compared to

the two-degrees-of-freedom control approach, the MPC approach is not further investigated.

6.2. Surface Interconnected Structure of Beams
As presented in Section 2.1.3 the experimental setup is based on r = 2 horizontal aligned carbon beams which
touch each other at their free tip. This is why this delta beam configuration can be imagined as a segment of the
wingsail. In addition, both beams are equipped with voltage controlled embedded MFC-patches displaying the
system’s actuators mounted on the inward facing surface of the beams. Analog to the double beam configuration,
the delta beam configuration uses external laser sensors, see Fig. 2.6 and Table 2.3 for the precise location of
the points of interest and the placement of the actuators. These measurements provide the input information of
the Kalman filter, on which all control approaches rely in terms of the observed states or the observed outputs.
Table 6.7 lists the considered design parameters of the Kalman filter.

109



Table 6.7.: Design parameters of the applied Kalman filter according to (5.15) and (5.16a) considering r = 2
beams j = {1, 2} touching each other at the tip. The second order system is based on Nj = 10
second order system states per beam and npm = 1 point of measurement using a laser sensor (Welotec
GmbH type OWLF 4030 FA S1).
ro qo,t qo,p,j qo,v,j qso,p,j qeo,p,j qso,v,j qeo,v,j

2.0× 102 1.0× 103 5.0× 100 1.5× 102 8.0× 100 1.0× 100 2.0× 100 1.0× 100

6.2.1. Evaluation of System Behavior Considering the Touching Constraint
To analyze the introduced model description, see Section 2.1.3 a series of voltage steps

u(t) =

[
u1(t)
u2(t)

]
, with u1(t) = 920 V

(
h(t− 1 s)− h(t− 13 s)

)
,

u2(t) = −920 V
(
h(t− 7 s) + h(t− 13 s)

)
,

(6.8)

is applied in the simulation environment. Fig. 6.16 presents the results of the simulation considering the input
signal (6.8).
This scenario considers a single actuation of the first beam at t = 1 s. If the touching constraint is fulfilled both

beams have to move, where their tips have to display the same transversal deflection at all times ytip,1 = ytip,2 ∀ t
due to the Lagrange multiplier p(t) which can be interpreted as constraining force. At t = 7 s the second beam
is actuated which should result in a larger amplitude of the displacement due to the agonist-antagonist behavior
of the setup’s actuator configuration. Finally, at t = 13 s both voltages are reduced to zero simultaneously, as
depicted by the third subplot of Fig. 6.16.
The first subplot of Fig. 6.16 displays the transversal displacements ytip,j of the first (j = 1 depicted by the blue

line) and second beam tip (j = 2 depicted by the green line). The results show that both deflections completely
coincide. Hence, the touching constraint is fulfilled at all times. In addition, the resulting displacement is
characterized by strong oscillations. However, in contrast to the vertical beam configuration their decay time is
reduced to about 5 s due to the increased stiffness of the delta beam configuration.
The second subplot displays the Lagrange multiplier. It is noticeable that the Lagrange multiplier reacts with

highly frequent oscillations at each voltage step considering amplitudes of at least a factor four of the following
steady state. These oscillations decay within 1 s. After the first voltage step the multiplier remains at a steady
state of about 0.0356 which can be interpreted as constraining force acting at the beam tips. This force ensures
that both tips stay together. The first voltage step is applied only at the first beam which hence deflects.
However, the actuators of second beam are not excited, this beam deflects only due to the constraining force
acting at the beam’s tip.
After a second voltage step the steady state of the constraining force’s shrinks to 0.0047. This force results

from the fact that without the touching constraint both beams would show a slightly other displacement.
Concluding the simulation result the introduced system description displays the expected behavior. Therefore,
the two-degrees-of-freedom control approach is designed based on this description and evaluated below of the
experimental setup.
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Figure 6.16.: Simulation result for the beams’ tip displacement (ytip,j(t) = sj(t, l ) ∀ j ∈ {1, 2}) considering the
input signal u(t) =

[
u1(t) u2(t)

]T given by (6.8).
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6.2.2. Experimental Evaluation of the Open and Closed Loop System
To illustrate the open loop dynamics and to evaluate the designed Kalman filter, the same voltage signal (6.8)
as used in the simulation is applied at the experimental setup. Fig. 6.17 displays the resulting transversal
displacement measured by the laser sensor yol,L (blue line) and observed by the Kalman filter ŷol (green line)
at the point of measurement located near the tip of the first beam. Note that in the following analysis only the
deflection at the point of measurement is displayed. This location is identical to the first point of interest. In
addition, the second point of interest yields the same deflection, due to the symmetric geometry of the delta
beam configuration. To improve the comparability of the signals the measurement noise of the laser sensor are
reduced by a first order low pass filter characterized by the cutoff frequency fc = 100 Hz. However, the observer
uses the original data of the laser measurement. For the implementation and recording of the measurements a
dSPACE DS1103 considering a sample time td = 2× 10−4 s is used.
The resulting displacement shows a similar behavior compared to the simulation results. The small deviation

is caused by model uncertainties and the neglected friction which applies on the beams’ tips, where both beams
slide on each others surfaces. Due to the friction, the decay time of the oscillation varies. This is why the
friction depends on the beams’ displacement or to be more precise the contact area on which both beams slide
on depends on the displacement.
Comparing the actual measurement with the result of the observer reveals a good performance which fits

the requirements of the feedback controller. Only small deviations between the laser measurements and the
observer of less than 0.5 % are noticed. These errors result from remaining hysteresis and creeping effects, see
Section 2.1.1.3.
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Figure 6.17.: System response to the applied input signals uj (6.8). Comparison of the laser measurements yol,L
and the observed displacement using a Kalman filter ŷol at the point of measurement. The laser
measurements are processed by a first order low pass filter characterized by a cutoff frequency
fc = 100 Hz to reduce the measurement noise.
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Analog to the triple beam configuration a rest-to-rest motion scenario is considered to evaluate the performance
of the feedforward control and the two-degrees-of-freedom control approach. For this, three transitions between
different steady state displacements are considered, see Fig. 6.18. At the beginning of the scenario, the system
stays in the undeformed state y∗pi(0 s) = [0 0]T × 10−3 m. After t = 1.5 s the steady state y∗pi(1.5 s) =

[−17 −17]T × 10−3m should be reached. The second transition starts at t = 6 s, where the desired steady
state y∗pi(6.5 s) = −y∗pi(1.9 s) = [17 17]T × 10−3m should be reached at t = 6.5 s. This transition describes a
rest-to-rest motion connecting the positive and negative transversal displacement of the beams which correspond
to 93.7 % of the maximal reachable steady state displacement. Finally, the last transition leads the system back
into the undeformed state y∗pi(11.5 s) = [0 0]T × 10−3 m.

Figure 6.18.: Schematic visualization (top view) of the desired steady state displacement profiles of the designed
rest-to-rest motion scenario chronologically sorted from left to right.

The focus of the evaluation is the control performance of the flatness-based motion planning and feedforward
control as well as the two-degrees-of-freedom control approach based on an ID-T1 and an extended Ackermann
state feedback controller. The design parameters of these control approaches are listed in Table 6.8.

Table 6.8.: Design parameters of the considered two-degrees-of-freedom control approaches considering the
flatness-based feedforward control (5.8a) taking (5.10) into account as well as the ID-T1 (5.18),
and an extended Ackermann state feedback controller (5.22) and (5.30).

feedforward control ID-T1 control
T g kI kD 1/Tidt

5.0× 10−1 9.0× 10−1 1.4× 101 2.0× 106 150 Hz

extended Ackermann
λsh,re λsh,im ka

1.6× 100 1.5× 100 1.7× 101

The first subplot of Fig. 6.19 displays the transversal displacement achieved for the rest-to-rest motion scenario,
where the second subplot shows the control error defined by (6.5). The last two subplots display the associated
input signals of the corresponding control approaches.
Comparing the reference trajectory y∗ (blue line) with the result of the feedforward controls (green line)

displays a feasible performance. The first transition is achieved without any oscillation. However, it takes about
t = 3.6 s until the desired steady state is reached, see also the associated error ỹff. The second and last transitions
are characterized by small oscillations which decay fast compared to the step response, see Fig. 6.17. Here, the
control error ỹff reveals that the feedforward control is not capable to achieve steady state accuracy, especially
the second steady state shows a deviation of about 0.5× 10−3 m.
To overcome this issue, the two-degrees-of-freedom control approaches are introduced considering an ID-T1

(red line) and an extended Ackermann state feedback controller (orange). Both concepts result in a similar
behavior and achieve steady state accuracy, where the ID-T1 controller displays a slightly better performance.
This slightly improved performance is characterized by a shorter decay time within the second transition and
smaller voltage amplitudes.
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Figure 6.19.: Experimental results of the observed transversal displacement at the first point of interest
ŷpm,1(t) = ŷpi,1(t) of the reference trajectory y∗, the flatness-based feedforward control ŷff, and
the two-degrees-of-freedom control approach based on the ID-T1 and the extended Ackermann
controller ŷidt and ŷex-ack, respectively, for the rest-to-rest motion scenario. The corresponding
control errors and control inputs are depicted as well.
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6.3. Wingsail Structure
The evaluation of the wingsail structure is split into two parts. At first, the results of the MOR method
and of the flatness-based feedforward control are analyzed in numerical studies for different sets of design
parameters. Afterwards, the feedforward control and the two-degrees-of-freedom control approach are tested on
the experimental setup.

6.3.1. Simulation Results
The main objective of these numeric studies is to analyze and configure the MOR method leading to a proper
reduced order system which fits the requirements of a real time implementation. Furthermore, a set of design
parameters of the flatness-based feedforward control has to be determined in terms of the parameter of the
Gevrey function T and g.

6.3.1.1. Validation of the Reduced Order Model

The finite dimensional system description of the wingsail structure introduced in Section 2.2 is characterized by
N = 93255 DoFs, see Section 2.2.3.5. Hence, the first order system description results in 2N = 186510 states.
To reduce the computational effort, especially in view of the real time capability, the POD is applied as MOR

method, see Section 4.3. It is also possible to reduce the system order through the use of the modal truncation
method as discussed by [59], see Section 4.1. Also the second order balanced truncation could be used, see
Section 4.2. However, the POD method offers the best performance w.r.t. the system description. The modal
truncation requires more reduced order states to cover the system behavior with the same accuracy as the POD
approach, see [59]. In addition, the second order balanced truncation is based on the Gramians of the system.
Considering the system of the wingsail structure the Gramians are difficult to determine due to the dimension
of the system and the fact that the system matrices are ill-conditioned due to the characteristic eigenvalue
distribution of a weakly damped and thin structure.
Below, three different choices of the number of POD bases Nr = {1, 5, 10} are analyzed, where the number of

basis coincides with the number of second order system states of the reduced system. As mentioned before, the
implementation of the POD method in the Firedrake framework is done by the MOR-projector [4].
To evaluate the accuracy of the resulting reduced order systems compared to the full order system the stepwise

actuation

u(t) = −
[
700 700 700 700

]T
V h(t− 0.1s) (6.9)

is applied. Fig. 6.20 displays the resulting transversal displacement at the points of interest ypi,f (t) = s1(t, zpi,f )
with f ∈ {1, . . . , 4} of the full order system N = 93255 and three different reduced order systems. The reduced
system based on Nr = 1 second order states (green line) clearly shows a significant systematic error compared
to the full order system (blue line). In contrast, the reduced systems based on Nr = 5 and Nr = 10 second order
states (red and orange line, respectively) seem to completely cover the behavior of the full order system, except
for the small deviation at the 4th point of interest.
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Figure 6.20.: Comparison of the step response of the full order system (N = 93255 DoFs) with the reduced order
systems considering Nr = {1, 5, 10} POD bases.

Considering the time dependent displacement at the points of interest Nr = 5 seems to provide a good trade-
off between accuracy and computational effort. However, this conclusion is only based on a pointwise analysis,
so it is possible that the reduced model only displays a good behavior on these specific locations. Therefore, a
performance measure is required, which considers the full displacement profile according to the used function
space of the FEM implementation. Such a measure is given by the H1 error norm [17] between the displacement
profile of the full order system sN (t, z) and the recovered (or projected) profile sNr(t, z) based on the reduced
order simulation∥∥sN (t, z)− sNr(t, z)

∥∥
H1 =

(∥∥sN (t, z)− sNr(t, z)
∥∥2

L2 +
∥∥∇ ·

(
sN (t, z)

)
−∇ ·

(
sNr(t, z)

)∥∥2

L2

) 1
2

. (6.10)

Fig. 6.21 depicts the temporal behavior of the norm. As seen before the increasing number of considered POD
bases from Nr = 1 to Nr = 5 improves the performance substantially. However, the comparison of higher values
leads to a similar performance, because the error caused by the MOR approaches is provoked by the numerical
approximation of the spatial and temporal integrations. In summary, the norm supports the conclusion of a
good trade-off between accuracy and computational effort. Therefore, the number of considered POD bases is
set to Nr = 5, where the resulting reduced order system defines the origin of the flatness-based feedforward
control design which is analyzed below.
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Figure 6.21.: Validation of MOR’s performance by the comparison of the H1 error norm (6.10) over time con-
sidering different numbers of POD bases Nr = {1, 5, 10, 20}.

6.3.1.2. Evaluation of the Flatness-Based Feedforward Control

Below, different configurations of the feedforward controls are analyzed, see Table 6.9. For this purpose, a
rest-to-rest motion scenario is considered connecting the undeformed state y∗pi = [0 0 0 0]T × 10−3 m with
a deflected state y∗pi = −[7.6 4.9 3.5 2.2]T × 10−3 which denotes about 80 % of the maximally reachable
displacement.

Table 6.9.: Analyzed configuration sets of feedforward control design parameters.

param.
config. S1 S2 S3 S4

T 0.5 s 0.6 s 0.6 s 0.7 s
g 0.5 0.7 0.5 0.5

Fig. 6.22 shows the simulation results of the feedforward control approach for the different parameter sets.
The flatness-based feedforward controller design is based on the reduced order system. The resulting reference
trajectories are displayed on the right side of Fig. 6.22 by the solid lines. In addition, the left side displays the
associated input signals. The resulting displacements (dashed lines) are determined by the application of the
input signals designed on the reduced system to the full order system.
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Figure 6.22.: Left: Transversal displacements over time at the points of interest. The dashed lines display the
simulation results considering the full order system and the solid lines depict the pre-calculated
reference trajectories taking the flatness-based feedforward control approach into account with the
parameter sets listed by Table 6.9 based on the reduced order system.
Right: The associated input signals are shown, where the red areas mark the input’s saturations
at the experimental setup.
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The difference between the actual displacement and the reference trajectory is marginal. The only exception is
the second point of interest considering the S2 configuration which means that the accuracy of the reduced order
system matches the requirements of the feedforward control design. This result supports the previous choice
regarding the number of considered POD bases. In addition, each configuration reaches the desired steady state
within its expected finite transition time T .
However, the different choices of T and g affect the transition phase. Taking the voltage signals into account

the S1 and S2 configurations enter the area of saturation, this is why both configurations are excluded for the
real time implementation. The remaining results based on the S3 and S4 parameter sets stay in the feasible
area and are further investigated for their energy consumption.
For this purpose, the electric work of the feedforward control is analyzed. The electric work is defined as the

integral of electric power Pelec over time

Welec =

t2∫
t1

Pelec dt =

t2∫
t1

U(t)I(t) dt, (6.11)

where U(t) and I(t) denote the applied voltage and electric current, respectively, see [102]. The current can be
reformulated as I(t) = U(t)

Z considering the constant impedance Z = R+ jX composed of the resistance R and
the reactance X of the circuit leading to

Welec =

t2∫
t1

U2(t)

Z
dt. (6.12)

For the experimental setup of the wingsail the impedance is based on the resistance of the wires connecting the
voltage amplifiers and the MFC-patches, the soldering joints as well as the capacities of the patches itself. The
exact values of the single impedances are unknown and have to be measured by using special measuring circuits.
Nevertheless, to answer the question which setting of the feedforward controls consumes the most energy a
proportional measure to the electric work can be used neglecting the specific value of the impedance. Taking
the experimental setup into account this measure yields

W∼elec =

4∑
k=1

t∫
0

U2
ak(τ) dτ. (6.13)

Below, this proportional measure is referred to as the consumed energy. Fig. 6.23 displays the temporal behavior
taking the different feedforward control parameterizations listed in Table 6.9 into account. In general, the
comparison reveals that the fastest configuration requires the highest amount of energy as expected. However,
in particular there are some deviations from this expectation. The input trajectory of the S2 configuration
consumes more energy than the S1 configuration, although the S1 configuration is about 0.1 s faster. Here, the
higher value of g of the S2 configuration results in higher amplitudes of the voltage signal, see right side of
Fig. 6.22, which in total leads to a higher energy consumption.
Focusing on the results of the S3 and S4 parameter sets, which lead to feasible voltage trajectories, reveals a

higher energy consumption of the S3 configuration. In contrast, the temporal improvements within the transient
phase are marginal. This is why the S4 configuration is used for the experimental evaluation.
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Figure 6.23.: Comparison of the energy consumption of the different parameter settings, see Table 6.9, of the
feedforward controls input trajectories depicted by Fig. 6.22.

6.3.2. Experimental Results
Below the experimental results are discussed. At first the step response of the open loop system is analyzed.
Secondly, the performance of the flatness-based feedforward control and the two-degrees-of-freedom control
approach are evaluated taking three different scenarios into account. Analog to the triple beam configuration,
the results of the LQ and the Ackermann state feedback controllers display a similar behavior. This is why the
Ackermann state feedback controller is neglected in the following discussion. Hence, the considered feedback
controllers are the ID-T1, the LQ and the extended LQ based approaches, where the necessary design parameters
are listed in Table 6.10.

6.3.2.1. Step Response

To illustrate the open loop dynamic of the wingsail Fig. 6.24 displays the transversal deflection at the points of
interest ypi,i with i ∈ {1, . . . , 4} for a voltage step

u(t) = −
[
700 700 700 700

]T
V h(t− 0.5 s). (6.14)

These voltage values correspond to a steady state deflection of y∗pi = −[7.0 4.5 3.4 2.2]T × 10−3 which
is similar to the simulation results for the evaluation of the feedforward controller, see Section 6.3.1.2. The
frequency of the resulting oscillation depends on the distance between the point of measurement and the mast,
leading to the statement that the shorter the distance gets the higher the frequency becomes. In fact, it is not
the distance between the mast and the point of measurement it is the length of the segment which affects the
eigenfrequency similar to a cantilever beam.
The oscillation’s decay time at the different points of measurement varies depending on to the frequencies.

Due to the stiffness of the flexible structure, the steady state is reached after three oscillation periods. At the
first point of measurement (g = 1) located near the bottom of the sail the steady state is reached after about
1.2 s. Considering the last point of measurement (g = 4) located near the top the decay time is given by about
0.1 s. The oscillations are further characterized by an overshooting which is within a range of 200 % to 10 %
from bottom to top.
In addition, Fig. 6.24 provides a comparison between the laser measurements yol,L (blue line) and the observed

output ŷol (green line). The laser measurement directly captures the transversal displacement at the points of
interest zpi,f = zpm,g with f, g ∈ {1, . . . , 4}, see Fig. 2.7 and Table 2.5. To reduce noise these signals passed
through a first order low pass filter characterized by a cutoff frequency of fc = 100 Hz. The observer in terms
of a Kalman filter, see Section 5.2, uses the previously discussed reduced order system based on Nr = 5 POD
bases. Its design parameters are listed in Table 6.11. The implementation and recording of measurements is
done considering a dSPACE MicroLabBox [31] with an fixed sample time td = 2× 10−4 s.
In general, the observer displays a good performance w.r.t. to the dynamics of the system and only the last

point of interest displays larger deviations. This can be explained by the deviation between the experimental
setup and the CAD design which states the origin of the mathematical description as discussed in the beginning of
Section 3.2.2.3. Nevertheless, the resulting accuracy of the observed outputs and states matches the requirements
of a closed loop control design. Furthermore, the observed states enable an offline post process which reconstructs
the complete displacement field of the wingsail.
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Table 6.10.: Design parameters of the considered two-degrees-of-freedom control approaches considering the
flatness-based feedforward control (5.8a) taking (5.10) into account as well as the ID-T1(5.18), the
LQR (5.29c), and and the extended LQR feedback controller (5.31). For each feedback controller two
parameter sets are provided, the default configuration is used within rest-to-rest motion scenarios
and the second one deals with the disturbance rejection scenario (dist. rejc. scenario).

feedforward control
T g

7.0× 10−1 5.0× 10−1

ID-T1 control – default configuration ID-T1 control – dist. rejc. scenario
kI kD 1/Tidt kI kD 1/Tidt

1.8× 101 2.0× 106 150 Hz 1.8× 101 8.0× 106 150 Hz

LQR – default configuration
rc qc,t qc,p qc,v

1.0× 10−3 1.0× 106 1.0× 101 2.0× 10−1

qsc,p|vp qec,p|vp qsc,p|vv qec,p|vv

1.0× 100 4.0× 100 1.0× 100 4.0× 100

LQR – dist. rejc. scenario
rc qc,t qc,p qc,v

1.0× 10−3 1.0× 107 1.0× 101 6.0× 10−1

qsc,p|vp qec,p|vp qsc,p|vv qec,p|vv

1.0× 100 4.0× 100 1.0× 100 4.0× 100

extended LQR – default configuration extended LQR – dist. rejc. scenario
klq klq

2.0× 101 2.0× 101

Table 6.11.: Design parameters of the applied Kalman Filter according to (5.15) and (5.29b) considering Nr = 5
reduced second order system states provided by the POD method and npm = 4 points of measure-
ment using the installed laser sensor (Welotec GmbH type OWLF 4030 FA S1).
ro qo,t qo,p,j qo,v,j qso,p qeo,p qso,v qeo,v

5.0× 102 1.0× 100 5.0× 102 5.0× 104 2.0× 100 1.0× 100 2.0× 100 1.0× 100
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Figure 6.24.: Step response for the voltage step (6.14). The laser measurements yol,L consider a first order low
pass filter characterized by a cutoff frequency of fc = 100 Hz. The observed deflections of the points
of interest are determined by a Kalman filter with the used design parameters listed in Table 6.11.
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6.3.2.2. Feedforward and Two-Degrees-of-Freedom Control Approach

Below, three different experimental scenarios are discussed and analyzed. To improve the readability each
scenario arranges the figures of the displacements at the points of interest and the associated voltages on a
double page.

Uniform Displacement Scenario The first scenario considers a rest-to-rest motion based on three transitions
between different steady state displacements, see Fig. 6.31.
At the beginning of the scenario, the system is situated in the undeformed state y∗pi(0 s) = [0 0 0 0]T ×

10−3 m. After t = 1.7 s the steady state y∗pi(1.7 s) = −[8.4 5.4 3.9 2.4]T × 10−3m should be reached consid-
ering a steady input signal of u∗(t) = −[787 818 801 788]T V.
The second transition starts at t = 6 s, where the desired steady state y∗pi(6.7 s) = −y∗pi(1.7 s) should be

reached at t = 6.7 s. This transition describes a rest-to-rest motion connecting the positive and negative
transversal displacement of the wingsail which correspond to 80 % of the maximally reachable steady state
displacement. Finally, the last transition results in the undeformed state y∗pi(11.7 s) = y∗pi(0 s).

t < 1.0 s 1.7 s ≤ t < 6.0 s 6.7 s ≤ t < 11.0 s

Figure 6.25.: Visualization of the desired steady state displacement profiles of the uniform displacement scenario
scaled by a factor 10. All graphics are generated using ParaView [52, 7].

On the following two pages, the results of the flatness-based feedforward control are compared with a simple
voltage ramp which connects the same steady state voltages as introduced in the scenario description. Below
these figures the results are discussed. Thereafter, the two-degrees-of-freedom control approaches considering
an ID-T1, LQ, and extended LQ based feedback controller are analyzed.
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Figure 6.26.: Experimental results of the observed transversal displacement at the points of interest ŷpi,f (t) with
f ∈ {1, . . . , 4} of the reference trajectory y∗, the flatness-based feedforward control ŷff, and the
results of a ramp shaped voltage input ŷra considering the uniform displacement scenario.
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Figure 6.27.: Input signals of the MFC-actuators k ∈ {1, . . . , 4} of the flatness-based feedforward control u∗ and
the voltage ramp ura considering the uniform displacement scenario.
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The reference trajectory y∗ at the points of interest of the flatness-based motion planning approach (blue line
of Fig. 6.26) displays the previously discussed transitions considering the finite transition time T = 0.7 s. To
reach the desired steady state within the given time interval the motion planning approach induces an overshoot
of about 15 % at the “small” first and of about 30 % at the “large” second transition.
Due to the numeric studies and the acquired design parameter set the associated input signal u∗ stays within

the feasible range of the actuators, see the blue lines of Fig. 6.27. The resulting displacement trajectories of
the feedforward controller ŷff (Fig. 6.26 green lines) display a good fit with the reference trajectory during the
transition phase. Only in the end of the transition a small deviation leads to a short oscillation for the first
two points of interest. However, instead of the desired 0.7 s the steady state is reached after 1.0 s. The 3rd and
4th point of interest are not affected due to the stiffness and damping effect which rises from bottom to top of
the structure, see the discussion in the beginning of Section 3.2.2. In addition, it appears that the small steady
state error of about 1 × 10−3 m is caused by the remaining uncertainties. In contrast, the open loop response
ŷra of the considered voltage ramp (red lines) leads to stronger oscillations. The amplitudes of these unintend
oscillations are comparable with the result of the feedforward control. Nevertheless, the decay time rises to 1.5 s.
Compared to the results of the triple beam configuration for which the deviation between the flatness-based

feedforward control and the applied ramp shaped voltage signal are rather large, see Fig. 6.4, the wingsail displays
only moderate deviations. This is caused by the different characteristics of the structures, where the wingsail is
characterized by an increased stiffness and damping which is introduced by its geometric configuration.

126



Below the results of the two-degrees-of-freedom control approaches are presented based on an ID-T1, a LQR,
and an extended LQR feedback controller, ŷidt, ŷlq, and ŷex-lq, respectively. The considered reference trajectory
y∗ at the points of interest is identical to the previous comparison, see the blue lines of Fig. 6.28. Hence, the
associated input signals u∗ (blue lines of Fig. 6.29) are also identical.
In fact, the resulting dynamic of the feedforward control displays a good performance, so the main focus of

the two-degrees-of-freedom control approach is the reduction of the remaining steady state deviation. Here, the
LQR reduces the steady state error about a factor two. In contrast, the ID-T1 as well as the extended LQ
feedback controller guarantee steady state accuracy taking constant disturbances or uncertainties into account.
Comparing the resulting trajectories of the displacement, all three approaches display similar behavior. The
actual deviations appear through the analysis of the input signals, see Fig. 6.29, and the resulting control errors
ỹf (t) with f ∈ {1, . . . , 4} defined by (6.5), see Fig. 6.30.
The comparison of the voltage signals results in the observation, that the ID-T1 controller in terms of the input

signal uidt consumes more energy than the other approaches, especially at the first two MFC-actuators which are
used to reduce the error that appears at the first two points of interest. Nevertheless, this deviation is marginal.
The comparison of the control errors reveals the control performance at a glance. The error accomplished by
the feedforward control ỹff (blue line) is reduced significantly by each of the considered two-degrees-of-freedom
control approaches.
In general, the transition phases display the largest errors, as expected. Considering the magnified areas

displaying the transversal displacement during the transition phases, see Fig. 6.28, leads to the impression that
these errors occur because the results of the closed loop behavior are always ahead of the reference trajectory.
Actually, the same behavior can be seen considering the open loop behavior, see the magnified areas of Fig. 6.29
and ỹff (Fig. 6.30 blue lines). This indicates that the deviation of the results compared to the reference trajec-
tory is caused by the feedforward control, most certainly due to remaining uncertainties. However, the error
quickly decays and the magnitudes of the error are moderate. Furthermore, the two-degrees-of-freedom control
approaches display a slight improvement.
During the steady state phases the main impact of the feedback controllers can be seen. Especially the ID-T1

and the extended LQ feedback controller achieve a remarkable performance leading to steady state accuracy.
This is why both approaches are further analyzed in second rest-to-rest motion scenario.
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ŷex-lq

1 1.25 1.5 1.75
−8

−6

−4

−2

0
· 10−3

6 6.25 6.5 6.75

−5

0

5

· 10−3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

−5

0

5

· 10−3

t [s]

y
p
i,
3
(t
)
[m

]

y∗
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Figure 6.28.: Experimental results of the observed transversal displacement at the points of interest ŷpi,f (t) with
f ∈ {1, . . . , 4} of the reference trajectory y∗ and the two-degrees-of-freedom control approach based
on the ID-T1, LQ, and extended LQ controller denoted as ŷidt, ŷlq, and ŷex-lq, respectively, for the
uniform displacement scenario.
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Figure 6.29.: Input signals of the MFC-actuators k ∈ {1, . . . , 4} of the flatness-based feedforward control u∗ and
the two-degrees-of-freedom control approach based on the ID-T1, LQ, and extended LQ controller
denoted as uidt, uex-lq, and ulq, respectively, for the uniform displacement scenario.
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Figure 6.30.: Control errors ỹf (t) with f ∈ {1, . . . , 4}, see (6.5), of the flatness-based feedforward control ỹff and
the two-degrees-of-freedom control approach based on the ID-T1, the LQ, and the extended LQ
controller denoted as ỹidt, ỹlq, and ỹex-lq, respectively, for the uniform displacement scenario.

130



Diametrical Displacement Scenario This scenario also considers a rest-to-rest motion based on three tran-
sitions between different steady state displacements, see Fig. 6.31. The choice of the desired steady state is
motivated by the sailing sport, where the top of the sail should be deflected opposite to the bottom. The
resulting shape should reduce the pressure at the top of the sail preventing the serious damage of the wingsail
and mast during strong winds.
At the beginning of the scenario, the system is situated in the undeformed state y∗pi(0 s) = [0 0 0 0]T ×

10−3 m. After t = 1.7 s the steady state y∗pi(1.7 s) = [−7.9 −2.1 2.2 2.4]T × 10−3m should be reached
considering a steady input signal of u∗(t) = −[787 818 801 788]T V.
The second transition starts at t = 6 s, where the desired steady state y∗pi(6.7 s) = −y∗pi(1.7 s) should be

reached at t = 6.7 s. Finally, the last transition results in the undeformed state y∗pi(11.7 s) = y∗pi(0 s).

t < 1.0 s 1.7 s ≤ t < 6.0 s 6.7 s ≤ t < 11.0 s

Figure 6.31.: Visualization of the desired steady state displacement profiles of the diametrical displacement
scenario scaled by a factor 10. All graphics are generated using ParaView [52, 7].

Fig. 6.32 displays the resulting displacements at the points of interest. The reference trajectories y∗ (blue
lines) depict the previously discussed scenario. As in the uniform displacement scenario, the flatness-based
feedforward control ŷff (green line) displays a good performance and follows the reference signal. Nevertheless,
the displacements at the first two points of interest display significant steady states errors of about 8 %, see also
the control error depicted by Fig. 6.34. In addition, the result of the feedforward controls is again ahead of the
reference trajectory during the transition phases caused by parameter uncertainties, see the magnified areas of
Fig. 6.32.
The two-degrees-of-freedom control approaches based on the ID-T1 and the extended LQ feedback controller

rapidly reduce the errors during the steady state ỹidt and ỹex-lq, respectively, see Fig. 6.34 and Fig. 6.32 (red
and orange lines). The resulting control performance of both feedback controllers is nearly identical, where the
extended LQ feedback controller displays marginal improvements considering the noise of the control errors. In
addition, both approaches lead to a reduction of the voltages compared to the feedforward control, see Fig. 6.33.
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Figure 6.32.: Experimental results of the observed transversal displacement at the points of interest ŷpi,f (t)
with f ∈ {1, . . . , 4} of the reference trajectory y∗, the flatness-based feedforward control ŷff and
two-degrees-of-freedom control approach based on the ID-T1 and extended LQ controller denoted
as ŷidt and ŷex-lq, respectively, for the diametrical displacement scenario.
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Figure 6.33.: Input signals of the MFC-actuators k ∈ {1, . . . , 4} of the flatness-based feedforward control ŷff
and the two-degrees-of-freedom control approach based on the ID-T1 and extended LQ controller
denoted as uidt and uex-lq, respectively, for the diametrical displacement scenario.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

−0.50

0.00

0.50
· 10−3

t [s]

ỹ
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Figure 6.34.: Control errors ỹf (t) with f ∈ {1, . . . , 4}, see (6.5), of the flatness-based feedforward control, and the
two-degrees-of-freedom control approach based on the ID-T1 and extended LQ controller denoted
as ỹidt and ỹex-lq respectively considering the diametrical displacement scenario.
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Disturbance Rejection Scenario The last scenario considers an external disturbance applied by a pulse ham-
mer, which hits the wingsail structure between the first and the second supply beam at t = 0.5 s. Fig. 6.35
displays the observed transversal displacement at the points of interest of the open loop system ŷol and the
feedback controllers in terms of the ID-T1, the LQ, and the extended LQ approach denoted as ŷidt, ŷlq, and
ŷex-lq, respectively. In addition, Fig. 6.36 shows the associated input signals.
The response of the open loop system (blue lines) is characterized by an oscillation which decays after 2 s.

Taking the feedback controllers into account this decay time is reduced to 1 s. Furthermore, all approaches
damp the amplitude of the oscillation except for the 4th point of interest. At this position the state controller
approaches (red and orange lines) enhance the amplitudes during the first oscillation’s period. However, the
second period already displays smaller displacements as in the reactions of the open loop and the ID-T1control.
Overall, the control performance of all approaches is comparable.
Taking the resulting input signals of the control approaches into account a similar behavior appears, where

the ID-T1 feedback controller displays a lower energy consumption. Considering the input signals of ID-T1

control uidt the voltage signal of the second MFC-actuator stands out due to a bias of about 70 V in the second
steady state. This bias is an artifact of the hysteresis and creep compensation, which becomes compensated by
the controller mainly by its integral part. In addition, the extended LQR also shows such a bias at the second
point of interest.

Concluding the results of the disturbance rejection and the rest-to-rest motion scenarios the flatness-based
feedforward control display a good performance which is even improved by the two-degrees-of-freedom control
concepts, especially by the ID-T1 and the extended LQ feedback controllers. Due to the introduced MOR by the
POD method, the full order system description could be reduced to a manageable system without a significant
loss of accuracy enabling the design of the previously discussed model based control approaches. Furthermore,
this procedure enables the implementation within a real time environment.
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ŷol
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Figure 6.35.: Experimental results of the observed transversal displacement at the points of interest ŷpi,f (t)
with f ∈ {1, . . . , 4} of the reference trajectory y∗ and the two-degrees-of-freedom control approach
based on the ID-T1, LQ, and extended LQ controller denoted as ŷidt, ŷlq, and ŷex-lq, respectively,
considering the disturbance rejection scenario. The disturbance is introduced by a pulse hammer
at t = 0.5 s.
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Figure 6.36.: Input signals of the MFC-actuators k ∈ {1, . . . , 4} of the flatness-based feedforward control u∗ and
the two-degrees-of-freedom control approach based on the ID-T1, LQ, and extended LQ controller
denoted as uidt, uex-lq, and ulq, respectively, considering the disturbance rejection scenario. The
disturbance is introduced by a pulse hammer at t = 0.5 s.
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7. Conclusion

The present work is dedicated to the motion planning and tracking control approach of elastic smart structures.
Different control approaches are introduced and numerically as well as experimentally evaluated. For this
purpose a so-called wingsail structure is designed considering embedded piezoelectric actuators. In addition,
two weakly damped and coupled beam structures are considered which are used as proof of concept study of the
wingsail design as well as benchmark tests for the control approaches. The results of the work are summarized
below. Furthermore, an outlook on future activities of the wingsail project is provided.

7.1. Summary
This work considers two different model based control approaches to achieve a desired rest-to-rest motion of the
transversal displacement of the wingsail and the interconnected beam strutures. The origin of both approaches
is the mathematical description of the governing static and dynamic effects in terms of the equations of motion,
which are introduced in Chapter 2. In fact two modeling methods are used to determine the system description
of the coupled beams as well as the wingsail.
The beams structures are composed by carbon made beams equipped with embedded actuators and partially

with embedded sensors. The modeling takes an analytical energy based method into account which applies
the extended Hamilton’s principle. For this purpose, the equations of motion of the transversal deflection of
single beams are deduced at first by using the Euler-Bernoulli beam theory which denotes a special case of the
linear elasticity. The resulting model considers different combinations of external, Kelvin-Voigt and structural
damping. An analysis of the effect of these combinations regarding the eigenvalue distribution of the spatially
varying parameter system is provided by Appendix B.2.
Subsequently, the mechanical setup of the interconnected beam structures is introduced and their spatial and

time dependent equations of motion derived by the extended Hamilton’s principle. In addition the different
sensor concepts are discussed and modeled as well. The resulting description is important for the design of
a state observer which is used later on. Finally a finite dimensional approximation is determined considering
Galerkin’s method. This defines the basis for the model based control approaches which are experimentally
evaluated considering a real time implementation.
The modeling of the wingsail’s displacement makes use of the FEM based on the linear elasticity. This method

is used to handle the complexity of the curved structure. It directly yields a finite dimensional description due to
the use of Galerkin’s method. In contrast to the interconnected beam structures the modeling process considers
the so-called Rayleigh damping which denotes a combination of external and Kelvin-Voigt damping. In addition,
the sensor concept is discussed.

These system descriptions denote only the qualitative mathematical structures. To achieve a system descrip-
tion which truly describes the measured dynamics the knowledge of the material parameters is crucial. Due to
the prototype characteristic of the experimental setups, only the parameters of the actuators and sensors are
provided by datasheets. In addition, a small subset of parameters can be measured directly. However, most of
the parameters have to be determined by an identification process. Chapter 3 presents two concepts which are
applied for the beam structures as well as for the wingsail.
The first one relies on the physical understanding of the considered setup and can only be used efficiently for

small systems. Therefore, the parameters of the coupled beam structure are identified by this concept. Due to
their configuration both structures provide the possibility to detach elements whose parameters can be identified
separately which reduces the cross effects.
The second concept is used to identify the material parameters of the wingsail. Here, an adjoint based

optimization process is introduced to increase the numerical efficiency. Due to the fact that the full order
system description is used in the identification process this improvement of the numerical efficiency is inevitable.
The method relies on the sensitivity analysis, in which sensitivity functions (also called gradients of the objective
function) are derived by the usage of the equations of motion and the variational calculus.

The resulting mathematical descriptions cover the measured behavior of the flexible structures. However,
the finite dimensional systems are characterized by high dimensional systems of ODEs leading to a significant
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computational effort. To satisfy the real time requirements of the control concept the computational effort has
to be reduced. This is done by the application of MOR techniques introduced in Chapter 4 which focuses on
the group of SVD based methods. In fact this work considers the following methods: The model truncation, the
second order balanced truncation, and the POD.

Chapter 5 presents the two considered control strategies to accomplish a desired rest-to-rest motion of the
elastic structures.
The first strategy is based on a systematic design of a two-degrees-of-freedom control approach composed by a

flatness-based feedforward control, to systematically solve the motion planning problem, and a feedback control
to acquire robustness against model uncertainties and external disturbances. The systematic flatness-based
design of the motion planning uses the properties of a Riesz spectral system and addresses early as well as late
lumping approaches. Amending the resulting feedforward control by a feedback controller which ensures that the
reference trajectory is reached yields the two-degrees-of-freedom control approach. To analyze the impact of the
feedback control different controllers are introduced and evaluated. The list of considered feedback controllers
includes an output feedback approach in terms of ID-T1 control, different state feedback controllers based on
the Ackermann and the linear quadratic regulator as well as extensions to ensure steady state accuracy, and a
Lyapunov-based control approach.
As an alternative approach the so-called MPC approach is introduced. MPC explicitly uses the mathematical

model to predict the future dynamics of a system. It determines the optimal control input in each sample step
by solving an optimization problem on the prediction horizon. The associated cost or objective function consists
of the predicted control error and the control input within the prediction horizon. This procedure offers the
possibility to introduce further constraints such as physical limitations of the actuators. In general, the MPC
approach is applied to systems characterized by slow dynamics. Due to this, the optimization problem can be
solved within each sampling step in real time. On the contrary the considered smart structures are characterized
by fast oscillatory dynamics which reduces the sample time of the real time process. To reduce the computational
effort the optimization problem is solved by using Hildreth’s quadratic programming procedure. Furthermore,
the degrees of freedom of the optimization problem can be reduced by fixing the input variables over several
time-steps. Such a move blocking method by downsampling is introduced so that the MPC approach can be
executed in real-time with a sufficiently high sampling frequency to cover the dynamic of the system.
Both control strategies rely on the state information of a state observer. To improve the signal to noise ratio

a Kalman filter is used.

The evaluation of both control strategies is presented in Chapter 6. Both approaches display a good con-
trol performance considering the experimental setup of the vertical beam configuration. However, due to the
computational effort the MPC approach is restricted to a double beam configuration which denotes a subset of
the triple beam configuration on which the two-degrees-of-freedom control approach is tested. Due to this and
the fact that the computational effort results in a higher energy consumption which is counterproductive on a
autonomous vehicle with limited payload, the MPC approach is not further investigated.
The analysis of the different feedback controllers of the two-degrees-of-freedom control approach points out

that the use of the ID-T1 and an extended state space control approach lead to the best performance. Both
concepts further improve the already remarkable performance of the flatness-based feedforward control, enabling
fast transitions between different steady state displacement profiles for the coupled beams as well as for the
wingsail structure. The characteristic strong oscillations of the weakly damped systems, which appear in the
step response or a ramp shaped excitation, are reduced to a minimum, where the feedback controllers lead to a
fast decay of the remaining small oscillations.

7.2. Outlook
Considering the motion planning and tracking control approach in general an optimization based motion planning
and feedforward control may result in a similar performance as the flatness-based approach but provides the
opportunity to consider additional constraints like the limitations of the actuators. In contrast to the presented
MPC approach, which solves the motion planning problem for the whole prediction horizon in each sample step,
the optimization based feedforward control can be calculated offline or within a second thread. To reduce the
computational effort the adjoint based method could be considered as well.

Related to the wingsail project different actions could be considered in further research.
First of all, the displacement range of the wingsail can be enhanced by the usage of a combined actuation

concept composed of the embedded MFC-actuators and winches. The fast MFC-actuators are able to deal
the vibrations or remaining oscillations, whereas the winches increase the displacement range and are able to
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deal with strong constant disturbances. The current experimental setup is already equipped with the necessary
clamping anchors.
Furthermore, the strain gauges should be implemented to avoid the auxiliary laser measurement. The exper-

imental setup is already equipped with the strain gauges, the necessary wiring, and measurement amplifiers.
However, the system model has to be extended to consider the strain gauge measurements.
In general, this work states the origin for further work in the field of autonomous sailing. For this purpose, a

superposed controller has to be designed which determines the necessary maneuvers and displacement profiles of
the wingsail considering the current sailing and wind conditions. This denotes the basis of the main algorithm
of an autonomous sailing yacht which deals with the guidance, path control and navigation relying on the
propulsion system “smart wingsail”.
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A. Numerical Solver

A numerical solution method is required to compute the time dependent displacement field s(t, z). For this
propose, three implicit solvers are used. Two solvers directly rely on the backward differentiation formulas
(BDF) and the third one is based on an approximation by means of the Taylor series.
Classically, such solvers are used for systems of first order ODEs or second order equations of motion in terms

of mass, damping, stiffness and input matrices. However, these solvers can also be implemented in the FEM
framework Firedrake to deal with the corresponding operators.
In the following, the used solvers are introduced and briefly discussed towards their use task within the

Firedrake framework.

A.1. BDF-1 Solver
On the basis of the the weak form (2.118) of the linear elasticity

0 =

T∫
0

∫
Ω

ρφ · ∂2
t s(t, z) +∇φ : σ(s) + γvρφ · ∂ts + γkv∇φ : σ(∂ts) dΩ dt

−
T∫

0

∫
Γ2

φ ·fΓ(t, z) + γkvφ · ∂tfΓ(t, z) dΓ2 dt,

the operator formulation can be written as

T∫
0

M
(
∂2
t s
)

+ C (∂ts) + K (s)−L (fΩ,fΓ) dt = 0, (A.1)

with

M
(
∂2
t s
)

=

∫
Ω

ρφ · ∂2
t s(t, z) dΩ, C (∂ts) =

∫
Ω

γvρφ · ∂ts + γkv∇φ ·σ(∂ts) dΩ,

K (s) =

∫
Ω

∇φ ·σ(s) dΩ, L (fΩ,fΓ) =

∫
Ω

φ ·fΩ(t, z) dΩ +

∫
Γ2

φ ·fΓ(t, z) + φ · ∂tfΓ(t, z) dΓ2

(A.2)

denoting the mass, damping, stiffness and forcing operator, respectively. Introducing the time discrete displace-
ment, velocity and accelaration field as well as the discrete time force operator

sk = s(tk, z), vk = ∂ts(t, z)
∣∣
t=tk

, ak = ∂2
t s(t, z)

∣∣
t=tk

, fΩ,k = fΩ(tk, z), fΓ,k = fΓ(tk, z), (A.3)

where tk denotes the discrete time considering a fixed sample time period dt.
Applying the first order backward differentiation formula (BDF-1), e.g., see [48], the velocity and the dis-

placement field of the subsequent time step are given by

vk+1 = vk + dtak+1, sk+1 = sk + dtvk+1 = sk + dtvk + dt2ak+1. (A.4)

Introducing this substitution into (A.1) yields

0 = M (ak+1) + C (vk+1) + K (sk+1)−L (fΩ,k+1,fΓ,k+1)

= M (ak+1) + C (vk + dtak+1) + K
(
sk + dtvk + dt2ak+1

)
−L (fΩ,k+1,fΓ,k+1).

(A.5)

Solving this equation for ak+1 provides the new displacement field taken into account (A.4). This requires that
for the first step the initial values at k = 0 of sk, vk as well as the current forces fΩ,k+1 and fΓ,k+1 have to be
known.
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It is also possible and in some communities even common to substitute the highest derivations in (A.3). The
resulting residuum provides the same numerical solutions.
The residuum formulation provided by (A.5) is easy to implement and to solve in Firedrake. This method

is feasible for simple structure such as the beam structure of Section 3.2.2.2 or problems in heat conduction.
However, on the wingsail structure numerical tests have revealed that the use of BDF-1 is not sufficient to
achieve the required accuracy. To overcome this drawback the following solver methods are introduced.

A.2. BDF-2 Solver
One option to improve the performance is to consider more steps of previous data. Instead of (A.4) the following
assumption which is based on the Lagrange interpolation polynominal [48] is used to determine the field evolution

vk+2 =
4

3
vk+1 −

1

3
vk +

2

3
dtak+2,

sk+2 =
4

3
sk+1 −

1

3
sk +

2

3
dtvk+2 =

4

3
sk+1 −

1

3
sk −

2

9
dtvk +

8

9
dtvk+1 +

4

9
dt2ak+2.

(A.6)

Analog to the BDF-1 method, this substitution is introduced into (A.1) which leads to

0 = M (ak+2) + C (vk+2) + K (sk+2)−L (fΩ,k+2,fΓ,k+2)

= M (ak+2) + C

(
4

3
vk+1 −

1

3
vk +

2

3
dtak+2

)
+ K

(
4

3
sk+1 −

1

3
sk −

2

9
dtvk +

8

9
dtvk+1 +

4

9
dt2ak+2

)
−L (fΩ,k+2,fΓ,k+2).

(A.7)

Solving for ak+2 yields the desired solution of the displacement field taking (A.6) into account. Due to the usage
of the previous time steps, the initial conditions has to be extended. This can be done by one BDF-1 step for
k = 1 to generate the required second initial condition based on the original one at k = 0. Also this procedure
ensures that the considered first step is a valid profile.
Compared to the time solver based on BDF-1, this method displays an improvement in accuracy. Also the

complexity and the computational effort stays low, but one issue remains. Both BDF based solvers can not
guarantee energy conservation. In other words, both solver may introduce numerical damping to the system,
which compromises the results. To overcome this issue the Newmark solver is introduced in the next subsection.

A.3. Newmark Solver
The main benefit of the Newmark solver [84] is the energy conservation characteristics. The method was
developed by Newmark in the field of civil engineering and is designed for second order systems particularly. It
relies directly on an approximation by means of the Taylor series, omitting derivatives higher than third order

sk+1 = sk + dtvk +
1

2
dt2ak +

1

6
dt3s

(3)
k = sk + dtvk +

1

2
dt2ak + βdt3s

(3)
k ,

vk+1 = vk + dtak +
1

2
dt2s

(3)
k = vk + dtak + γdt2s

(3)
k .

(A.8)

Assuming that the third time derivative can be determined by

s
(3)
k =

1

dt

(
ak+1 − ak

)
. (A.9)

leads to

sk+1 = sk + dtvk +
(1

2
− β

)
dt2ak + βdt2ak+1,

vk+1 = vk +
(
1− γ

)
dtak + γdtak+1.

(A.10)

There are different parameter choices. The evaluation of the Taylor series leads to β = 1
6 , γ = 1

2 , which is
also referred to as linear acceleration in the literature. Another common choice is β = 1

4 , γ = 1
2 also known

as average acceleration. This choice guarantees energy conservation according to [84]. Furthermore, Newmark
states that conditional stability is assured for β ≥ γ

2 ≥ 1
4 .
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To determine the solution of the displacement field

M (ak+1) + C (vk + (1− γ)dtak + γdtak+1) +

K
(
sk + dtvk + (0.5− β)dt2ak + βdt2ak+1

)
−L (fΩ,k+1,fΓ,k+1) = 0

(A.11)

has to be solved for ak+1. After that, the displacement field is given by (A.10).
For the Firedrake implementation β = 1

4 and γ = 1
2 are chosen. The resulting temporal solution displays the

required accuracy and is not affected by numerical damping, neither on the simple beam structure nor on the
wingsail structure.
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B. Motion Planning and Flatness-Based
Feedforward Control in the Infinite
Dimensional Case

Section 5.1 presents a flatness-based feedforward control approach for a spatially discretized system which
denotes the general description for a practical implementation. Nevertheless, it is also possible to design the
presented approach for the infinite dimensional case which is derived below, see also [78]. For this purpose, the
vertical beam configuration is used to present the methodology taking the following assumptions into account.

Assumption B.1 As a theoretical special case all beams of the structure are assumed to be identical and equipped
with one MFC-patch pair. Furthermore, all parameters are constant, i.e., mj = m, µj(z) = µ, Λj(z) = Λ,
γv

(z)(z
1) = γv, γsv

(z)(z
1) = γsv, γkv

(z)(z
1) = γkv and Γj,ak(z) = Γj(z).

Due to this, the equations of motion of the vertical beam configuration (2.55) reduce to the equations of motion
of a system of classical Euler-Bernoulli-beams, which are elastically coupled at their free ends. The resulting
equations are presented below.

B.1. Abstract Formulation of the Equations of Motion of a Beam
Structure with Constant Parameters

Let X =
(
(H2

0 (0, l ))r × (L2(0, l ))r × Rr
)
denote the state space considering r Euler-Bernoulli beams of length

l , where H2
0 (0, l ) = {f ∈ H2(0, l ) : f(0) = ∂zf(0) = 0} denotes a Hilbert space with inner product

〈φ,ψ〉X =
r∑
j=1

{ l∫
0

(
Λ∂2

zφ1,j∂2
zψ1,j + µφ2,jψ2,j

)
dz +mφ3,jψ3,j

}
. (B.1)

The associated norm is defined by ||φ||2 = 〈φ,φ〉X ∀ φ =
[
φT1 φT2 φT3

]T
, ψ = [ψT1 ψT2 ψT3 ]T ∈ X. The

state vector is given by x = [x1 x2 x3]T with

x1(t) =
[
s1(· , t) . . . sr(· , t)

]T
,

x2(t) =
[
∂ts1(· , t) . . . ∂tsr(· , t)

]T
,

x3(t) =
[
∂ts1(l , t) . . . ∂tsr(l , t)

]T
.

(B.2)

This choice leads to the abstract initial value problem

ẋ = A(K)x +Bu, t > 0, x(0) = x0 ∈ D(A) (B.3a)

where u(t) = [U1 . . . Ur]
T denotes the input vector. The abstract operators are given by

A(K)x =

 x2

− 1
µ

(
Λ∂4

zx1 + γvx2 − γsv∂2
zx2 + γkv∂4

zx2

)
1
m

(
Λ∂3

zx1 − γsv∂zx2 + γkv∂3
zx2 − kjx1

)∣∣
z=l

 , B =

 0 . . . 0
∂2
zΓ(z) . . . ∂2

zΓ(z)
0 . . . 0

 (B.3b)

where for the domain holds

D(A(K)) =
{
x ∈ (H4(0, l ))r × (H2

0 (0, l))r × Rr : (Λ∂4
zx1 + γkv∂4

zx2 − γsv∂2
zx2) ∈ (L2(0, l ))r,

x1(0) = ∂zx1

∣∣
z=0

= 0, Λ∂2
zx1 + γkv∂2

zx2

∣∣
z=l = 0, x3 = x2(l )

}
.

(B.3c)

144



The coupling matrix K is derived from (2.54) and appears as a symmetric matrix K = KT of the form

K =


k1,2 −k1,2 0 · · · 0 0
−k1,2 k1,2 + k2,3 −k2,3 · · · 0 0

...
...

...
0 · · · 0 −kr−1,r kr−1,r

 (B.3d)

Taking the specific structure of K into account caused by the coupling of adjacent beams, the coupling matrix
displays one zero eigenvalues. Therefore, there exists a regular transformation matrix V , which transforms K
into a diagonal form K̄ = V −1KV . Applying this transformation to the state vector

x 7→ Vx, V =
[
V 0 0
0 V 0
0 0 V

]
(B.4)

results in the decoupled system description

ẋ = Ax + BU , t > 0, x(0) = x0 ∈ D(A), (B.5)

where A = A(K̄), B = V−1B and x0 7→ Vx0 for D(A) = D(A) holds true. The decoupling of the system
operator A is obtained by shifting the coupling into the new input operator B. In this representation every
beam is actuated by multiple MFC-patch pairs. This leads to the fact, that the existence and the uniqueness
can be proved by the analysis of a single beam, see, e.g., [10, 74].

B.2. Distribution of Eigenvalues
Before the actual flatness-based feedforward control is derived, the eigenvalue distribution of the vertical beam
configuration is determined considering its asymptotic behavior. The distribution will be used later on to analyze
the convergence of the flat parameterization.
Taking the decoupling of the beam structure by (B.4) into account the eigenvalue analysis for the decoupled

abstract system (B.5) is sufficient.

Remark B.1 As mentioned before, see Remark 3.1, a single damping model is not capable to describe the
dynamics observed at the experimental setup. Hence, two combinations of damping models are taken into account,
the combination of viscous and structural damping γkv = 0 as well as the combination of viscous and Kelvin-Voigt
damping γsv = 0.

For this purpose, the following analysis focuses on these two cases: At first the combination of viscous and
secondly structural damping and after that the combination of viscous and Kelvin-Voigt damping are addressed.
Considering [96, 24, 13, 29] the eigenvalues of the damped system are related to the undamped system. Therefore,
the determination of the eigenvalue distribution begins with the examination of the distribution of the undamped
system.

B.2.1. Undamped Case
The undamped (γv = γsv = γkv = 0) system description is defined as

ẋ = Aux + BU , t > 0, x(0) = x0 ∈ D(Au) (B.6a)

where the operator of the undamped system is given by

Aux =

 0 I 0
−T 0 0(

Λ
mj
∂3
z +

kj
mj

)∣∣∣
z=l

0 0

x, (B.6b)

with T = (Λ/µ)∂4
z and I denoting the identity matrix. For the domain holds

D(A(K)) =
{
x ∈ (H4(0, l ))r × (H2

0 (0, l))r × Rr : Λ∂4
zx1 ∈ (L2(0, l ))r,

x1(0) = ∂zx1

∣∣
z=0

= 0, Λ∂2
zx1

∣∣
z=l = 0, x3 = x2(l )

}
.

(B.6c)

The evaluation of the eigenvalue problem AuΦu = λuΦu is split into two parts. The first leads to −TΦu,1 =
λuΦu,2 = λ2

uΦu,1, in which λu denotes the eigenvalues of the operator of the undamped system and ω = −λ2
u
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denotes the eigenvalues of the operator T . For the associated eigenvector Φu(z) ∈ D(A(K)) holds true. The
second part yields Λ

mj
∂3
zΦu

∣∣
z=l +

kj
mj

Φu(l ) = λuΦu,3 = λuΦu,2(l ) = λ2
uΦu,1(l ).

Below the simplified notation Φu( · ) = Φu,1( · ) is used. The evaluation of the eigenvalue problem leads to

∂4
zΦu − κ4Φu = 0, with − κ4 =

µλ2
u

Λ
, (B.7a)

taking the boundaries for (0, l ) into account

Φu = ∂zΦu
∣∣
z=0

= 0, Λ∂2
zΦu

∣∣
z=l = 0, ∂3

zΦu
∣∣
z=l + ηΦu(l ) = 0, with η =

kj
Λ

+
mjκ

4

µ
. (B.7b)

The exponential approach in its trigonometric formulation

Φu(z) = a1 sin(κz) + a2 cos(κz) + a3 sinh(κz) + a4 cosh(κz) (B.8)

is used as solution ansatz. Applying this approach to the boundary conditions (B.7b) results in the characteristic
equation

0 = 2κ3
(

cos(κl ) + sech(κl )
)
− 2η

(
sin(κl ) + cos(κl ) tanh(κl )

)
, (B.9)

where κ = 0 only results in the trivial solution. Taking the properties of limκ→±∞ sech(κl ) = 0 and
limκ→±∞ tanh(κl ) = ±1 into account the characteristic equation simplifies for κl � 1 to

2(η + κ3 − η tan(κl )) = 0. (B.10)

The substitution for η considering (B.7b) and the reformulation of the approximation results in

tan(κl ) = 1 +
Λµκ3

kjµ+ Λmjκ4
. (B.11)

Hence, for κ→∞ the asymptotics of the eigenvalues is given by the zeros of tan(κl )− 1 = 0 leading to

κ =
π

l

(1

4
+ k
)
⇒ −λ2

u = ω =
Λπ4

µl 4

(1

4
+ k
)4

, (B.12)

with k ∈ N. Therefore, the asymptotic eigenvalue distribution of the operator Au of the coupled and undamped
system results in

λ±u = ±j

√
Λπ4

µl 4

(1

4
+ k
)4

. (B.13)

As mentioned before the eigenvalues of the damped system are related to the undamped system. The referred
literature [96, 24, 13] provides analyses for a single bending beam affected by distinct damping models like
viscous, structural and Kelvin-Voigt damping. Below, the discussed combinations of these damping models are
considered for the system of the coupled Euler-Bernoulli beams.
For a complete description of the eigenfunctions of the undamped beam Φu(z) the coefficients a1, a2, a3, and

a4 have to be determined. To do this the boundary conditions have to be taken into account providing a system
of equations which leads to the relations

a1 = −a3, a2 = −a4, a2 = χa1

with χ =
− sin(κl )− sinh(κl )

cos(κl ) + cosh(κl )
=
− sin

(
π
(

1
4 + k

))
− sinh

(
π
(

1
4 + k

))
cos
(
π
(

1
4 + k

))
+ cosh

(
π
(

1
4 + k

)) .
(B.14)

Due to this, the eigenfunction results in

Φu(z, k) = a1

(
sin(κz) + cos(κz) + χ sinh(κz)− χ cosh(κz)

)
, (B.15)
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considering that χ depends on k, see (B.14). The determination of a1 requires an additional condition. For this
purpose it is chosen that the orthogonal eigenvectors

Φu(z, k) =
[
φT1 φT2 φT3

]T ∈ C3r with

φT1 =
[
Φu,1(z, k) . . . Φu,r(z, k)

]T
,

φT2 =
[
λu,kΦu,1(z, k) . . . λu,kΦu,r(z, k)

]T
,

φT3 =
[
λu,kΦu,1(l , k) . . . λu,kΦu,r(l , k)

]T
,

(B.16)

should be normalized

〈Φu(z, i),Φu(z, k)〉X =
r∑
j=1

{ l∫
0

(
Λ∂2

zΦu,j(z, i)∂2
zΦu,j(z, k) + µλu,iΦuj(z, i)λu,kΦu,j(z, k)

)
dz

+mλu,iΦu,j(l , i)λu,kΦu,j(l , k)
}
≡ δik,

(B.17)

where δik describes the Kronecker delta. The solution of the integral can be solved for a1(κ) using a computer
algebra system. However, the resulting solution is not presented here due to the length of the expression.

B.2.2. Combination of Viscous and Structural Damping
The case of combined viscous and structural damping (γkv = 0) is addressed by

ẋ = Asvx + BU , t > 0, x(0) = x0 ∈ D(Asv) (B.18a)

Taking the system operator into account

Asvx =

 0 I 0
−T −2γ̄v + 2γ̄svT

1⁄2 0(
Λ
mj
∂3
z +

kj
mj

)∣∣∣
z=l

− 2µγ̄sv

mj

√
Λ
µ∂z

∣∣∣
z=l

0

x, (B.18b)

with γ̄v = γv

2µ , γ̄
sv = γsv

2µ

√
µ/Λ and T 1⁄2 =

√
Λ/µ ∂2

z . Furthermore, for the domain holds

D(Asv) =
{
x ∈ (H4(0, l ))r × (H2

0 (0, l))r × Rr : (Λ∂4
zx1 − 2γ̄sv

√
µΛ∂2

zx2) ∈ (L2(0, l ))r,

x1(0) = ∂zx1

∣∣
z=0

= 0, Λ∂2
zx1

∣∣
z=l = 0, x3 = x2(l )

}
.

(B.18c)

The evaluation of the eigenvalue problem leads to

−TΦsv +
(
2γ̄svT

1⁄2 − 2γ̄v
)
λsvΦsv = λ2

svΦsv. (B.19)

According to [29, 24] the eigenvalue problem of the operator can be split into TΦsv = ωΦsv and T
1⁄2Φsv =

±√ωΦsv, in which two branches of eigenvalues of the operator T 1⁄2 exist. Choosing the negative branch leads
to the expected stable behavior. Applying this to (B.19) results in

ωΦsv +
(
2γ̄v + 2γ̄sv

√
ω
)
λsvΦsv + λ2

svΦsv = 0 ⇒ λ±sv = −
(
γ̄v + γ̄sv

√
ω
)
± j

√
ω −

(
γ̄v + γ̄sv

√
ω
)2
. (B.20)

B.2.3. Combination of Viscous and Kelvin-Voigt Damping
The asymptotic eigenvalue distribution for the system of combined viscous and Kelvin-Voigt damping (γsv = 0)
is analogously determined. The system is given by

ẋ = Akvx + BU , t > 0, x(0) = x0 ∈ D(Akv), (B.21a)

considering the system operator

Akvx =

 0 I 0
−T −2γ̄v + 2γ̄kvT 0(

Λ
mj
∂3
z +

kj
mj

)∣∣∣
z=l

− 2Λγ̄kv

mj
∂3
z

∣∣∣
z=l

0

x, (B.21b)
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with γ̄kv = γkv

2Λ . The domain is defined by

D(Akv) =
{
x ∈ (H4(0, l ))r × (H2

0 (0, l))r × Rr : (Λ∂4
zx1 + 2γ̄kvΛ∂4

zx2) ∈ (L2(0, l ))r,

x1(0) = ∂zx1

∣∣
z=0

= 0, Λ∂2
zx1 + γkv∂2

zx2

∣∣
z=l = 0, x3 = x2(l )

}
.

(B.21c)

The characteristic equation of the eigenvalue problem results in

−TΦkv −
(
2γ̄vΦkv + 2γ̄kvTΦkv

)
λkv = λ2

kvΦkv. (B.22)

By applying TΦkv = ωΦkv one obtains the asymptotic distribution of eigenvalues for the combined viscous and
Kelvin-Voigt damping, see also [56], in the form

ωΦkv +
(
2γ̄vΦkv + 2γ̄kvωΦkv

)
λkv + λ2

kvΦkv = 0 ⇒ λ±kv = −
(
γ̄v + γ̄kvω

)
± j

√
ω −

(
γ̄v + γ̄kvω

)2
. (B.23)

B.2.4. Comparison of the Asymptotic and Numeric Eigenvalue Distribution
Fig. B.1 compares the asymptotic and numeric distribution of eigenvalues for both cases of combined damping.
The viscous and structural damping is displayed on the left, where on the right the results of the viscous and
Kelvin-Voigt damping is displayed. As can be seen both cases show a consensus between the asymptotic and
the numeric distribution, which validates the asymptotic eigenvalue distributions. The numeric calculation of
eigenvalues is based on a finite dimensional Galerkin approximation considering Nj = 2000 test functions per
beam, see (2.60). The considered geometric dimensions and material parameters of the three carriers used in
the numeric and the asymptotic eigenvalue analysis are listed in Tables 2.1 and 3.1. These also denote the
parameters of the actual experimental setup.

asymptotic numeric

−1 −0.8 −0.6 −0.4 −0.2 0

· 103
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0
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sv
)
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· 106

−600

0

600

<(λkv)

=(
λ

k
v
)

0−500−1,000

−400

0

400

Figure B.1.: Comparison of asymptotic and numeric eigenvalue distribution of the vertical beam configuration
considering the combined damping model of viscous and structural damping on the left and viscous
and Kelvin-Voigt damping on the right.

B.3. Systematic Design of a Flat Output
For the differential parametrization of the system states and inputs an auxiliary operand, the so-called flat output,
is necessary. This operand can be obtained by taking the spectral representation of the operator A = A(K̄)
into account, assuming that A is a Riesz operator [41, 27, 45]. In this case the set of eigenvectors {φl}l∈L of A
and the set of eigenvectors {ψl}l∈L of the adjoint operator A∗ form a bi-orthonomal Riesz-basis, where L is a
countable infinite index set. As mentioned before the considered damping results in disjunct eigenvalues so that
the operator can be formulated as

Ax =
∑
l∈L

λl〈x,ψl〉Xφl. (B.24)
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The resolvent of A is given by

R(s,A)x =
∑
l∈L

1

s− λl
〈x,ψl〉Xφl. (B.25)

Assumption B.2 In the following it is supposed, that the system is approximately controllable, which means
for a Riesz-system of the form (B.5) that

rank
[
〈bT1 ,ψl〉 . . . 〈bTr ,ψl〉

]
= 1 ∀ l ∈ L, (B.26)

must apply, with bTk denoting the kth column of B [27].

In the undamped case γv = γsv = γkv = 0 and the case of viscous damping γv 6= 0 the proof that A is a Riesz
operator is given by the results of a single bending beam, see [44], due to the decoupled system and the distinct
eigenvalues. Analogously the proof for the case of a viscous and / or structural damped system can be done,
due to the distinct eigenvalue distribution, see Appendix B.2.2. The combination of damping models including
the Kelvin-Voigt γkv 6= 0 leads to an accumulation point of the distribution of the eigenvalues, which leads to a
analysis of the spectrum of A. Such kind of analyses can be found in [45, 53] or for the case of spatial varying
parameters in [118].
Applying the Laplace-transformation to (B.5), considering (B.24) and (B.25), yields

x̂(s) =
∑
l∈L

1

s− λl
〈Bû(s),ψl〉Xφl

with s ∈ ρ(A), <{s} > supl <{λl} and ρ(A) denoting the resolvent set of A. A systematic design approach for
the flat output is given by [78] considering the extension of the term 1/(s− λl), i.e.,

x̂(s) = −
∑
l∈L

1

λl

1

1− s
λl

〈Bû(s),ψl〉Xφl = −
∑
l∈L

1

λl

∏
i,i 6=l

(
1− s

λi

)
∏
i

(
1− s

λi

) 〈Bû(s),ψl〉Xφl. (B.27)

Substitution of the auxiliary operand ξ̂(s) by means of

û(s) = D̂u(s)ξ̂(s), D̂u(s) =
∏
i

(
1− s

λi

)
(B.28a)

yields

x̂(s) = −
∑
l∈L

1

λl
D̂x(s)〈Bξ̂(s),ψl〉Xφl with D̂x(s) =

∏
i,i 6=l

(
1− s

λi

)
. (B.28b)

Due to this, the desired parametrization of state x̂(s) and input û(s) can be formally obtained by the flat output
ξ̂(s).
The consideration of the distinct damping models, see Remark B.1, leads to distinct index sets L. In the case

of viscous and structural damping γkv = 0 all eigenvalues are distinct so that the set L contains no accumulation
point. Hence, all series and products are evaluated by the countable infinite number of eigenvalues of operator A.
For this purpose the Hadamard factorization theorem states that the infinite series D̂x(s) and D̂u(s) correspond
to factorizations of entire functions [14], provided that the set of zeros {λi}i of D̂x(s) and D̂u(s) is described by
genus gs = 0, see also [56]. Here, the genus is defined as the least positive integer gs for which the series∑

i

|λi|gs+1 (B.29)

converges [14, 69]. However, if gs 6= 0 holds true the series D̂x(s) and D̂u(s) has to be replaced by corresponding
Weierstraß products, e.g., [79, 78, 101, 56]. Such an entire function defined by the finite order ρ and finite type
τ can be expanded to a MacLaurin series in s, which converges ∀s ∈ C. Hence, the operators D̂x(s) and D̂u(s)
result in

D̂x(s) =
∑
i∈N0

cxi s
i Dx(∂t) =

∑
i∈N0

cxi ∂
i
t ,

D̂u(s) =
∑
i∈N0

cui s
i Du(∂t) =

∑
i∈N0

cui ∂
i
t

(B.30)
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with N0 := N∪{0} and recalling that the operator s represents the time derivative. Taking (B.28a) and (B.28b)
into account yields

x(t) = −
∑
l∈N0

1

λl

∑
i∈N0

cxi 〈B∂itξ(t),ψl〉Xφl, (B.31)

u(t) =
∑
i∈N0

cui ∂
i
tξ(t). (B.32)

Accordingly the associated trajectory for the flat output ξ(t) has to be a smooth function. Furthermore, the
choice of this function must ensure convergence of the parametrization.
In the case of viscous and Kelvin-Voigt damping γsv = 0 the distribution of eigenvalues displays an accu-

mulation point. Due to this, the operators D̂x(s) and D̂u(s) can not be reformulated as a factorization of an
entire function. Unless the following approximation is introduced, where the complete spectrum is split into two
infinite subsets. The first subset Σ− contains the set of eigenvalues tending to −∞ and the second subset Σ+

the set of eigenvalues, which tend to the accumulation point, see Fig. B.1. The considered index set is defined as
L = Σ−∪Σ+

0 with the finite set Σ+
0 ⊂ Σ+. This definition enables us to apply the previously discussed approach

taking the entire function theory into account considering only Σ−. The resulting approximation error can be
assumed negligible if a sufficiently large number of eigenvalues in Σ+

0 is considered.

B.4. Convergence Analysis
Below, the convergence of the presented flatness-based parameterization is analyzed. A general convergence
analysis of spatial varying parameter systems described by Riesz-operators is given by [78]. This analysis
restricts the choice of trajectory functions of the flat output to the class of so-called Gevrey functions.

Definition B.1 The function ξ is in the Gevrey class GM,α(Ω) of order α in Ω ⊂ R if ξ ∈ C∞(Ω) and if two
positive constants M and α exist so that

sup
t∈Ω′

∣∣∣∂ltξ∣∣∣ ≤M l+1(l!)α , l ∈ N ∪ {0}

for all closed subsets Ω′ of Ω.

Remark B.2 Taking Assumption B.2 (approximate controllability) into account [78] reveals convergent behavior
of the time dependent input parameterization (B.32), if Du(∂t) is an entire function of order ρ and finite type
τ provided that ξp ∈ GM,α(R), where p = 1, · · · ,∑r

j pj and α ≤ 1/ρ.

For this reason the analysis is focused on the type and order of Du(∂t), which are evaluated by the asymptotic
distribution of eigenvalues of the two considered damping cases (B.20) and (B.23).
As a consequence of the Weierstrass Theorem every entire function can be expressed by an infinite product [14,

Chap. 2], [69, Chap. 4]. Furthermore, the order ρ of such a canonical product correlates with the convergence
exponent of the set of zeros {λi} [14, Theorem 2.6.5], [69, Theorem 3]. Hence, the convergence exponent ρ1 of
the sequence (λi)i∈N, λi ∈ C with λi 6= 0 and limi→∞ λi =∞ is defined as ρ1 = inf(θ) with θ > 0 for which the
series

∑
i |λi|−θ converges. Alternatively (see [14, Theorem 2.5.8] or [69, Chap. 3.2]) the convergence exponent

can be determined by

ρ1 = lim
r→∞

sup
log(n(r ))

log(r )
, (B.33)

where n(r ) = {λi, i ∈ N : |λi| ≤ r} denotes the counting function depending on the radius in the complex
domain r . For i � 1 the counting function can be determined by the asymptotic distribution of eigenvalues
of Appendix B.2. Taking the case study of Remark B.1 into account the convergence exponent is determined
for the combination of viscous and structural damping and for the case of viscous and Kelvin-Voigt damping,
respectively.

B.4.1. Counting Number for Combined Viscous and Structural Damping
Reformulating the asymptotic distribution of eigenvalues (B.20) results in

ω =± 2
√
−2γ̄sv2 γ̄vλ3

sv + (γ̄sv4 − γ̄sv2)λ4
sv − 2γ̄vλsv + (2γ̄sv

2 − 1)λ2
sv, (B.34)
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applying (B.12) for ω and solving for ksv = k leads to

ksv(λsv) =− 1

4
+

l
π

(µ
Λ

(
− 2γ̄vλsv + (2γ̄sv

2 − 1)λ2
sv ± 2

√
−2γ̄sv2 γ̄vλ3

sv + (γ̄sv4 − γ̄sv2)λ4
sv
))1/4

, (B.35)

which directly provides the counting function nsv(r ) = ksv(r ) with γ̄v = γv

2µ and γ̄sv = γsv

2µ

√
µ/Λ. Considering

(B.33) the convergence exponent results in ρ1,sv = 1/2 .

B.4.2. Counting Number for Combined Viscous and Kelvin-Voigt Damping
Analogously for the second case the reformulation of (B.23) yields

ω =
−2γ̄vλkv − λ2

kv
1 + 2γ̄kvλkv

, (B.36)

substituting (B.12) for ω and solving the result for kkv = k leads to

kkv(λkv) =− 1

4
+

l
π

(2γ̄vλkv − λ2
kv

1 + 2γ̄kvλkv

µ

Λ

)1/4

, (B.37)

which can be treated directly as counting function nkv(r ) = kkv(r ) with γ̄kv = γkv

2Λ . Hence, the convergence
exponent follows from (B.33) to ρ1,kv = 1/4 considering the complete spectrum of eigenvalues. If only the
reduced set of eigenvalues L = Σ− ∪ Σ+

0 is considered neglecting the accumulation point, the convergence
exponent results in ρ1,kv = 1/2.

B.4.3. Final Results of the Convergence Analysis
The finite type τ of D̂u(s) for both damping combinations can be determined regarding [14, 69] by the limit

τ = lim
r→∞

sup
log max|s|=r |D̂u(s)|

rρ
. (B.38)

Considering the asymptotic distribution of eigenvalues (B.20) and (B.23) of both cases max|s|=r |D̂u(s)| can be
determined by

max
|s|=r
|D̂u(s)| =

∏
l

(
1 +

r
λ+
sv|kv

)(
1 +

r
λ−sv|kv

)
=
∏
l

(
1 +

r 2

λ+
sv|kvλ

−
sv|kv

)
. (B.39)

For the viscous and structural damping this leads to

max
|s|=r
|D̂u(s)| =

∏
l

(
1 +

256l 4µr (2γ̄v + r )

Λπ4(1 + 4l)4
−

32γ̄sv l 4
√

(1+4l)4Λ
l 4µ µrπ2

Λπ4(1 + 4l)4

)
. (B.40)

Here, two cases
√

(1 + 4l)4 = ±(1 + 4l)2 has to be analyzed. Both solutions converge to τ ≈ 0.55 leading to
a convergent behavior of the parameterization D̂u(s) using a Gevrey function with order α < 2. Similarly the
convergence of D̂x(s) can be analyzed.
For the case of combined viscous and Kelvin-Voigt damping (B.39) results in

max
|s|=r
|D̂u(s)| =

∏
l

(
1 + 2γkvr +

256l 4µr (2γv + r )

Λπ4(1 + 4l)4

)
. (B.41)

Considering the reduced set L = Σ− ∪Σ+
0 the limit converges to τ ≈ 0.55. Using the complete set including the

accumulation point the type becomes τ =∞ suggesting a divergent behavior of the parameterization D̂u(s).
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C. Second Order System Matrices

Below, the system matrices obtained form the approximations of the equations of motion of the presented beam
structures are summarized.

C.1. Pointwise Interconnected Beam Structure
Subsequently the structures and elements of the mass, damping, stiffness, and input matrix introduced in
Section 2.1.2.4 by (2.63) are summarized. The structures of the matrices are given by

M = diag{M1,c +M1,a +M1,m, . . . ,Mr,c +Mr,a +Mr,m},
C = diag{Cj,c + Cj,a, . . . , Cr,c + Cr,a},

K = diag{Kj,c +Kj,a, . . . ,Kr,c +Kr,a}+


Ksp,mid,1 −Ksp,post,1 0 0
−Ksp,pre,2 Ksp,mid,2 −Ksp,post,2 0

0
. . . . . . . . .

0 −Ksp,pre,j−1 Ksp,mid,j−1 −Ksp,post,j−1

0 0 −Ksp,pre,r Ksp,mid,r

 ,
L =

l1,1 0 0

0
. . . 0

0 0 lr,pr

 ,
(C.1)

where the second index characterizes the component of the structure, c denotes the carrier structure, a designates
the actuator, and m indicates the tip mass. The elements are determined by the evaluation of the integrals
over the beam’s length or the evaluation of products of test functions at specific locations of (2.61) taking
Definition 2.1 into account. Therefore, for the structure composed of j ∈ {1, . . . , r} beams equipped with
k ∈ 1, . . . , pj MFC-actuators this leads to

[Mj,c]i,m = ρjAj

l∫
0

φj,iφj,m dz, [Mj,a]i,m =

pj∑
k

(
ρj,akAj,ak

zj,ak
+la∫

zj,ak

φj,iφj,m dz
)
,

[Mj,mj ]i,m = mjφj,i(l )φj,m(l ),

(C.2)

[Cj,c]i,m =

l∫
0

γsvc (z1)∂zφj,i∂zφj,m + γvc (z1)φj,iφj,m dz,

[Cj,a]i,m =

pj∑
k

( zj,ak
+la∫

zj,ak

γsvak(z1)∂zφj,i∂zφj,m + γvak(z1)φj,iφj,m dz
)
,

(C.3)

[Kj,c]i,m = E1111
j Ij

l∫
0

∂2
zφj,i∂

2
zφj,m dz, [Kj,a]i,m =

pj∑
k

(
E1111
j,ak Ij,ak

zj,ak
+la∫

zj,ak

∂2
zφj,i∂

2
zφj,mdz

)
,

[Ksp,pre,j ]i,m = kj−1,jφj−1,i(lj−1)φj,m(lj), [Ksp,mid,j ]i,m = (kj−1,j + kj,j+1)φj,i(lj)φj,m(lj),
[Ksp,post,j ]i,m = kj,j+1φj+1,i(lj+1)φj,m(lj).

(C.4)

Here, {{φj,i}rj}
Nj
i denotes the finite set of test functions chosen as the first Nj eigenfunctions of the undamped

beam (B.15). In addition, for the spring constant of the first and the last beam holds k0,1 = kr,r+1 = 0.
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Analog, the elements of the input vectors follow as

[lj,ak ]i = −Γj,ak

zj,ak
+la∫

zj,ak

∂2
zφj,i dz. (C.5)

C.2. Surface Interconnected Beam Structure
Subsequently the elements of the mass, damping and the stiffness matrix introduced in Section 2.1.3.4 by (2.91)
are summarized. The structure of the matrices is given by

Mj = Mj,c +Mj,a, Cj = Cj,c + Cj,a, Kj = Kj,c +Kj,a, (C.6)

where the second index characterizes the component of the structure, c denotes the carrier structure and a
denotes the MFC-actuator. The elements are determined by the evaluation of the integrals over the beam’s
length or the evaluation of products of test functions at specific locations, see (2.90) considering Definition 2.1.
Hence, for the structure composed by j ∈ {1, 2} beams yields

[Mj,c]i,m = ρjAj

l∫
0

φj,iφj,m dz, [Mj,a]i,m = ρj,aAj,a

zj,ak
+la∫

zj,ak

φj,iφj,m dz, (C.7)

[Cj,c]i,m =

l∫
0

γsvj ∂zφj,i∂zφj,m + γvj φj,iφj,m dz, [Cj,a]i,m =

zj,ak
+la∫

zj,ak

γsvj,a∂zφj,i∂zφj,m + γvj,aφj,iφj,m dz, (C.8)

[Kj,c]i,m = E1111
j Ij

l∫
0

∂2
zφj,i∂

2
zφj,m dz, [Kj,a]i,m = E1111

j,ak Ij,ak

zj,ak
+la∫

zj,ak

∂2
zφj,i∂

2
zφj,mdz. (C.9)

The elements of the second order input vector of the system lj and the constraining vector which induces the
constraining forces f j can be displayed as

[lj ]m = (−1)jΓj,ak(z1)

zj,ak
+la∫

zj,ak

∂2
zφj,m dz, (C.10)

[f j ]m = (−1)j+1
(
cΘφj,m(l ) + (hj/2)sΘ∂z1φj,m(l )

)
. (C.11)

The substitutions of (2.95) result in

cTpj = κ−1
p g

T
j M

−1
j

(
Kj − CjM−1

j CjM
−1
j

)
, kTpj = κ−1

p g
T
j M

−1
j CjM

−1
j Kj ,

bpj = κ−1
p g

T
j M

−1
j CjM

−1
j lj , bdpj = κ−1

p g
T
j M

−1
j lj ,

ηp = κ−1
p

(
gT1 M

−1
1 C1M

−1
1 f1 + gT2 M

−1
2 C2M

−1
2 f2

)
,

(C.12)

with κp = gT1 M
−1
1 f1 + gT2 M

−1
2 f2.

The matrix elements of (2.99) are given by

Ax =

[
0 I

−AMK −AMC

]
, with

AMK = diag{M−1
1 K1,M

−1
2 K2} AMC = diag{M−1

1 C1,M
−1
2 C2},

(C.13)

Bx =
[
b1,x b2,x

]
, with

bT1,x =
[
0 0 −M−1

1 l1 0
]
, bT2,x =

[
0 0 0 −M−1

2 l2
]
,

(C.14)

αTxp =
[
0 0 M−1

1 f1 M−1
2 f2

]
, (C.15)

αTpx =
[
−kTp1 −kTp2 cTp1 cTp2

]
, (C.16)

bTp =
[
−bp1 −bp2

]
, (C.17)

where I denotes the identity matrix.
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C.3. Wingsail
Subsequently the mass, stiffness and input matrix of the finite dimensional description of the equations of motion
(2.124) are introduced considering [120, chap. 16]

M =
∑
i=1

Mi =
∑
i=1

∫
Ωi

ρiΦi(z)TΦi(z) dΩi, (C.18)

K =
∑
i=1

Ki =
∑
i=1

∫
Ωi

λiTr
(
∂zΦ1(z)

)
I + µ

(
∂zΦ1(z) +

(
∂zΦ1(z)

)T)
dΩi, (C.19)

L =

∫
Γ2,f

β∂zΦ1(z) dΓ2,f −
∫

Γ2,r

β∂zΦ1(z) dΓ2,r, (C.20)

where the considered domains of the wingsail structure are the sailing area, the four supply beams as well as the
four MFC-patches i ∈ {ws, s1, . . . , s4, a}, respectively. Furthermore, Γ2,f, Γ2,r denote the actuated boundaries,
which means the front and the rear surface of the voltage actuated MFC-actuators. It has to be mentioned that
the temporal differentiation of the force which acts in the weak form (2.118) is assumed to be zero ∂tfΓ(t, z) = 0.
This assumption is based on the previously discussed reaction time of the mechanical and the electric part of
the structure.
As discussed in Section 2.2.2 the damping matrix results in

C =
∑
i=1

(
γviMi + γkvi Ki

)
, (C.21)

due to the beneficial characteristic of the considered Rayleigh damping (2.112), see also [77, chap. 7] and [120,
chap. 16].
Finally, it has to be mentioned that the Dirichlet boundary condition describing the clamping of the wingsail

at the mast has to be included. For this purpose different methods exist to properly include the Dirichlet
condition like Nitsche’s method and the penalized Robin boundary condition. However, in case of the used
FE framework Firedrake a gradient-based nonlinear solver is used to consider the Dirichlet conditions. Further
information is provided in [46].
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List of Abbreviations

BC boundary conditions
BDF backward differentiation formulas

BLMVM bound-constrained limited-memory variable-metric method
CAD computer aided design
DAE differential algebraic equations
DoF degrees of freedom
FD finite-difference
FE finite element

FEM finite element method
IC initial condition

KKT Karush-Kuhn-Tucker
LQR linear quadratic regulator
MFC macro-fiber composite
MOR model order reduction
MPC model predictive control
ODE ordinary differential equations
PCA principal component analysis
PDE partial differential equation
POD proper orthogonal decomposition
UAV unmanned aerial vehicle
SVD singular value decomposition
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results (proof of concept), 56
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