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There once lived a man who learned how to slay dragons

and gave all he possessed to mastering the art.

After three years he was fully prepared but, alas,

he found no opportunity to practise his skills.

— Zhuang Zhou, philosopher

As a result he began to teach how to slay dragons.

— René Thom, Fields medalist

For Faiz.





A B S T R A C T

The �rst part of the thesis contains pseudo-polynomial algorithms for integer
linear programs (ILP). When certain parameters of an ILP are �xed, that is,
they are treated as constants in the running time, it is possible to obtain
algorithms with a running time that is pseudo-polynomial in the entries of
the ILP’s matrix. We present a tight pseudo-polynomial running time for ILPs
with a constant number of constraints. Furthermore, we study an extension of
this model to MILPs (linear programs that contain both fractional and integer
variables). Then we move to n-fold ILPs, a class of ILPs with block structured
matrices. We present the �rst algorithm for n-folds, which is near-linear in
the dimensions of the ILP.

The second part is about scheduling in non-identical machine models, more
precisely, restricted allocation problems. Here a set of jobs has to be allocated
to a set of machines. However, every job has a subset of machines and may
only be assigned to a machine from this subset. We consider the objectives of
minimizing the makespan or maximizing the minimum load. We study the
integrality gap of a particularly strong linear programming relaxation, the
con�guration LP, for variations of this problem. The integrality gap can be
seen as a measure of strength of an LP relaxation. A local search technique
can be used to bound this value. However, the proofs are generally non-
constructive, i.e., they do not give an e�cient approximation algorithm right
away. We derive better upper bounds on the integrality gap of the problems
Restricted Assignment, Restricted Santa Claus, and Graph Balancing.
Furthermore, we give the �rst (constructive) quasi-polynomial time approxi-
mation algorithm for Restricted Assignment with an approximation ratio
strictly less than 2.
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Z U S A M M E N FA S S U N G

Der erste Teil der Thesis umfasst pseudopolynomielle Algorithmen für ganz-
zahlige lineare Programme (ILP). Wenn bestimmte Parameter eines ILPs
�xiert sind, d.h. sie werden in der Laufzeit als Konstanten betrachtet, dann
ist es möglich Algorithmen zu entwerfen, deren Laufzeit pseudopolynomiell
in dem größten absoluten Wert eines Eintrags der Matrix des ILPs ist. Ein
Ergebnis, das wir präsentieren, ist eine scharfe Schranke für die pseudopoly-
nomielle Laufzeit, die nötig ist um ein ILP mit konstant vielen Bedingungen
zu lösen. Danach befassen wir uns mit n-fold ILPs, eine Klasse von ILPs,
deren matrix eine Blockstruktur besitzt. Wir geben den ersten Algorithmus
für n-folds an, dessen Laufzeit gleichzeitig nahezu linear in der Dimension
des ILPs ist.

Der zweite Teil handelt von nicht-identischen (heterogenen) Maschinen
Modellen, genauer gesagt restricted allocation problems. Hier soll eine Menge
von Jobs auf eine Menge von Maschinen verteilt werden. Jeder Job darf
aber nur auf bestimmte Maschinen zugewiesen werden. Wir betrachten
als Zielfunktionen sowohl die Minimierung des Makespans als auch die
Maximierung der minimalen Last einer Maschine. Wir untersuchen den
integrality gap einer besonders starken LP Relaxierung, dem Kon�gurations
LP, für Variationen dieses Problems. Der integrality gap kann als Maß für
die Stärke einer LP Relaxierung gesehen werden. Über ein Argument mittels
einer lokalen Suche wird dieser Wert beschränkt. Jedoch sind die Beweise
typischerweise nicht konstruktiv, d.h. sie implizieren nicht direkt e�ziente
Approximationsalgorithmen. Wir beweisen neue obere Schranken an den
integrality gap für die Probleme Restricted Assignment, Restricted Santa
Claus und Graph Balancing. Desweiteren präsentieren wir den ersten
(konstruktiven) Quasipolynomialzeit Approximationsalgorithmus für das
Restricted Assignment Problem mit Approximationsrate echt kleiner als 2.
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1I N T R O D U C T I O N

The problems studied in theoretical computer science are often inspired by
practical applications. For instance, a frequent question for a researcher is how
to spend his travel budget. He can go to di�erent conferences, workshops,
or go to other universities in order to exchange ideas. Unfortunately, his
funding is limited and he cannot do all trips. A theoretician would forget
about the speci�cs of the trips—whether they are conferences or workshops;
whether he goes by train or aircraft. He would model them as simple items
with a cost, which is the price of the trip, and a value, which is a numerical
assessment of its importance. We assume for simplicity that money is the
only constraint and no two trips are in con�ict with each other. This leaves
the researcher with a very clean mathematical de�nition of the problem.

How can we solve such a problem? In Combinatorial Optimization for a
�xed input the number of candidates for a solution is usually �nite and can
be enumerated. For our travel budget problem, every solution has to be a
subset of items. This makes 2n candidates for n items. A simple algorithm
could enumerate them all, for each check if it �ts the budget, and take the
most valuable among them. This is not an e�cient algorithm. If checking
a candidate takes one millisecond, then for n = 50 items this would take
about 35 thousand years. But how can we formally distinguish e�cient from
ine�cient? Clearly, for an input with more items an algorithm will require
more time to �nd a solution than for fewer items. Hence, we measure the
running time of an algorithm with respect to the encoding length of the input,
i.e., how many bits it takes to encode the input. Although a controversial
topic, in theory the usual notion of e�cient is a polynomial running time.
This means the algorithm terminates in time |I |C where |I | is the encoding
size of the input and C is some constant. On the other hand, an exponential
running time, e.g., C |I |, is usually considered ine�cient. This renders the
enumeration algorithm above as ine�cient.

Many problems in Combinatorial Optimization behave similar to the one
above: A solution has polynomial size and can be checked e�ciently. This a
class is known as NP 1. It is not known whether all of them are in P, the class
of problems which can be solved e�ciently, that is, in polynomial time. While
for some problems e�cient algorithms were found, others (like the travel
budget problem) have turned out to be notoriously hard. This has led to the
widely believed P ,NP conjecture, which states that not all problems in NP
are solvable in polynomial time. The conjecture is one of the Millennium
Prize Problems, a list of arguably the most important open questions in math.

1 Technically this refers to the decision variant of the problems: Is there a solution of value at

least (or at most) T for a given T ?

1



2 introduction

Regardless how far science might be from answering this question, sur-
prisingly for some problems in NP we know that they cannot be solved in
polynomial time, if P ,NP holds. This is the class of NP-complete problems.
Although NP-complete problems might appear hopeless at �rst sight, they
do o�er intriguing research directions.

approximation algorithms. It is often possible to produce a good
solution—though not always optimal—in polynomial time. Perhaps some
selection of trips is not the best and the value is 10% below the optimal
selection, but this might still be acceptable. Let OPT(I) denote the optimal
value of instance I of some maximization problem, that is, we are looking for a
solution of maximal value. Let A(I) be the value of the solution an algorithm
A produces for instance I . We say, A is a c-approximation algorithm, if for all
instances I , A(I) ≥ 1/c ·OPT(I). Similarly, for a minimization problem, we
call it a c-approximation algorithm, ifA(I) ≤ c·OPT(I) for all I . Typically, we
are interested in c-approximation algorithms, where c is a constant. When a
problem admits such an algorithm, we usually want to determine the smallest
c for which there exists a polynomial time c-approximation.

parameterized and pseudo-polynomial algorithms. When a
certain parameter k in the input is small, it might be easier to solve a problem
optimally. In the travel budget problem one could for example consider the
case where only k di�erent costs appear, that is, many items have the same
costs. One may hope to �nd optimal algorithms for NP-complete problems
where the running time depends exponentially on some parameter, but not
on the total input size. For example, such a running time could look like |I |k
or even 2k · |I |. An algorithm with a running time of the latter type, where the
exponent of |I | is a constant independent of k, but an arbitrary function in
k is allowed as a multiplicative factor, is particularly favorable and is called
�xed-parameter tractable (FPT).

Another related term is pseudo-polynomial running time. Suppose in the
input is some natural number N—like the budget in our example. Then
encoding this number takes O(log(N )) bits. Therefore, a running time of
the form O(N ) could already be exponential in the input size. Like for a
parameter k, we sometimes allow algorithms that have a higher dependency
on some number. If it is polynomial in N , but not necessarily in log(N ), we
say the running times is pseudo-polynomial in N .

A particularly fascinating problem in Optimization is that of (integer) linear
programming, because it easily models a large number of problems. A linear
program consists of n positive real variables x = (x1, . . . ,xn)T and a linear
objective function c ∈ Rn. We are looking for a solution that maximizes
c1x1 + · · ·+ cnxn. We also allow m linear constraints of the form aj,1x1 +
· · ·+ aj,nxn = bj on the variables. They can also be written in matrix terms
as Ax = b, where A= (ai,j) ∈Rm×n and b ∈Rm. Although there are some
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other, mostly equivalent, variations, using for example inequalities instead
of equalities, we mostly study the standard form

max cT x

Ax = b

xi ≥ 0 ∀i ∈ {1, . . . ,n}

Linear programs (LPs) can be solved e�ciently both in theory using the
ellipsoid method and in practice using the simplex algorithm (see for ex-
ample [63]). Many real world problems can be modeled directly as a linear
program and therefore they can also be solved e�ciently. However, discrete
problems often need another feature, which is to be able to model integer
variables.

For example, the travel budget problem could be modeled with two vari-
ables xi , xi for each item i and one variable r that describes the remaining
budget. We write ci for the cost of item i and pi for its pro�t. By b we denote
the budget. Consider the system

max p1x1+ · · ·+pnxn
cix1+ · · ·cnxn+ r = b

xi + xi = 1 ∀i
xi ,xi ≥ 0 integer ∀i

r ≥ 0 integer .

This models the problem: For each item i when xi = 1, we select the item;
when xi = 1, we do not. The constraint xi + xi = 1 enforces that exactly
one of xi and xi is 1; the objective p1x1 + · · ·+ pnxn is exactly the pro�t
of the solution; and the constraint cix1 + · · ·cnxn+ r = b guarantees that
the budget su�ces. It is often impossible to cope with discrete problems like
this without using integer variables. Unfortunately, integer linear programs
(ILPs) are usually hard to solve. Its general form is NP-complete. Hence, we
will study parameterized algorithms for them.

Our �rst contribution is a pseudo-polynomial algorithm for ILPs with a
constant number of constraints. The running time improves on state-of-the-
art literature and interestingly we also show matching conditional lower
bounds on the running time.

Theorem 7. Let max{cT x : Ax = b,x ∈ Zn
≥0} be an ILP where A ∈ Zm×n

.

We can solve this ILP in time O(nm) +O(
√
m∆)2m · log(‖b‖∞), where ∆ is

the biggest absolute value of an entry in A.

We also study the setting where only feasibility is checked, i.e., there is no
objective, and show connections to the problem (min,+)-convolution and
to discrepancy theory. We will present these results in Chapter 2.

In Chapter 3 we extend the previous setting to a mixed integer linear

program (MILP). These are linear programs that contain both integer and
fractional variables. We consider linear programs with m integer variables
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x = (x1, . . . ,xm) and n fractional variables y = (y1, . . . ,yn). There are only r
constraints for the integer variables and the coe�cients are small, but the
number of constraints and coe�cients for the fractional variables can be large.
Let A ∈ Zr×m, B ∈ Zr×n, and C ∈ Zs×n; let c ∈ Rm, d ∈ Rn, and b ∈ Zr+s.
Furthermore, let ∆ be an upper bound on the entries inA. We study the linear
program

max cT x+ dT yA B

0 C


xy

= b

xi ≥ 0 integer ∀i ∈ {1, . . . ,m}
y ≥ 0 ∀i ∈ {1, . . . ,n}.

We show that for a �xed r this linear program is again solvable in pseudo-
polynomial time in ∆. To our best knowledge, we are the �rst to study MILPs
from this perspective.

Theorem 15. There is an algorithm that solves the MILP above in time

(r∆)O(r
2) · |I |O(1),

where |I | is its encoding length.

The running time of the algorithms above explodes when the number
of constraints on the integer variables increases. Next we will consider a
setting with many constraints on the integer variables, which we can still
solve e�ciently. In this setting the non-zero entries of the matrix have a nice
block structure. Consider a matrix of the form

A=



A1 A2 . . . An

B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . Bn


,

where A1, . . . ,An ∈Zr×t and B1, . . . ,Bn ∈Zs×t are each small matrices. We
call A an n-fold matrix. The n-fold integer programming problem is to �nd
the optimum for max{cT x : Ax = b,` ≤ x ≤ u}, where c,`,u ∈ Znt are
objective function and lower and upper bounds on the variables. If r and s
are constants, we can again solve the ILP in pseudo-polynomial time.

Theorem 23. The n-fold integer programming problem can be solved in time

(rs∆)O(r
2s+s2) ·L2 ·nt logO(1)(nt), where ∆ is the largest absolute value inA

and L is the binary encoding length of the largest integer in c,`,u,b.

There has been a long line of research on this problem, but we present the
�rst algorithm with a near-linear dependency on the number of variables nt.
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M1 M2 M3

J1
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J3
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J5

J6

Time
p5
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Figure 1: Makespan minimization

This concludes our work on integer programming. We proceed with schedul-
ing problems and move from parameterized algorithm to approximation
algorithms.

Let J = {J1, . . . , Jn} be a set of jobs. Each job Ji has a processing time
pj > 0. Moreover, letM= {M1, . . . ,Mm} be a set of machines. At each time
a machine can only process one job and when a job is started, it has to be
processed completely. A popular objective we consider is the makespan. This
is the time when all jobs are completed. Clearly, it does not make sense to
have idle times between any two jobs. Hence, it su�ces to �nd an allocation
σ : J →M and to minimize the maximum load, i.e.,

max
Mi∈M

∑
Jj∈J

σ (Jj )=Mi

pj .

See also Figure 1 for illustration. The problem above is called Scheduling
on Identical Machines. After preprocessing which includes the rounding
of the processing times (inducing a small error), this problem can be modeled
as an ILP with small entries and few constraints. Using our result from Chap-
ter 2, one can �nd a (1+ ε)-approximation for every ε > 0 in polynomial
time (PTAS). We give a detailed description of this procedure in said chapter.
As the name suggests, all machines in this problem behave identically. In
the remainder we study problems with non-identical machines. This usually
makes the problems much harder and indeed for all of the problems consid-
ered from here on there does not exist a PTAS unless P=NP. The method
we use is again a linear program, but this time one which we cannot solve
with integral variables. Instead, we study its continuous relaxation.

continuous relaxations and integrality gaps. For sake of
brevity, we focus on minimization objectives like the makespan. However,
the same approach works also for maximization. The continuous relaxation
is the linear program we get by omitting the integrality constraints of an ILP.
We let OPT(I) and OPT∗(I) denote the integral and fractional (continuous)
optimum of the linear program for an instance I . A powerful and widely
used approach is to construct an algorithm A that for some constant c > 1
always �nds an integral solution with valueA(I) ≤ c·OPT∗(I). This could for
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example be by solving the relaxation and (possibly in a non-trivial way) round
the variables to integers afterwards. UsingA, we easily get a c-approximation
algorithm. Since any integral solution is also a solution for the relaxation,
we have OPT∗(I) ≤OPT(I). Thus,

A(I) ≤ c ·OPT∗(I) ≤ c ·OPT(I).

The prospects of this approach heavily depend on the linear program used.
If for example there are instances I with OPT(I)/OPT∗(I) > c, then there
cannot be such an algorithm A (note that A(I) ≥ OPT(I)). We de�ne the
integrality gap of a linear programming relaxation as

sup
I

OPT(I)
OPT∗(I)

,

i.e., the worst case ratio between integral and continuous optimum. Gener-
ally, we are interested in linear programming relaxations that have a small
integrality gap. These are considered the strongest. In many cases there is an
approximation algorithm like Awhich implies a bound on the integrality gap.
Sometimes, however, we only have a non-constructive proof of an integrality
gap. This can be seen as a hint that an approximation algorithm is likely
to exist and that this particular linear program is useful. Another reason
why the integrality gap is relevant is that it yields an e�cient estimation
algorithm. When a continuous relaxation has an integrality gap of α and
the fractional optimum is OPT∗(I), then we know that the integral opti-
mum OPT(I) can be bounded by OPT∗(I) ≤OPT(I) ≤ αOPT∗(I). In other
words, if we can solve the relaxation, which is usually the case, then we have
a good estimation of OPT(I).

We will now introduce the Restricted Assignment problem and related
problems. It is a generalization of Scheduling on Identical Machines. The
di�erence is that not all jobs can be scheduled on every machine. A job Jj
has a set Γ (Jj) ⊆ M of machines on which it can be processed. All other
machines are forbidden for this particular job. Again, we are minimizing the
makespan. We consider a linear programming relaxation called con�guration
LP. A con�guration for a particular machine Mi and a makespan τ is a set of
jobs that may be processed in Mi and have a total volume less than τ . We
de�ne

C(Mi ,τ) =

S ⊆ J : Mi ∈ Γ (Jj) ∀Jj ∈ S and
∑
Jj∈S

pj ≤ τ

 .
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An ILP for Restricted Assignment can be constructed by assigning con-
�gurations to machines. Each machine has one con�guration and each job
must appear in one con�guration:∑

C∈C(Mi ,τ)

xi,C = 1 ∀Mi ∈M∑
Mi∈M

∑
C∈C(Mi ,τ)

Jj∈C

xi,C = 1 ∀Jj ∈ J

xi,C ≥ 0 integer ∀i ∈M,C ∈ C(Mi ,τ)

Here τ has to be minimized. It must be a constant, since the matrix of the
ILP depends on its value. Instead of using an objective in the ILP, we de�ne
the optimum to be the smallest τ for which it is feasible. There can be an
exponential number of con�gurations. Therefore also the size of the ILP can
be exponential. Nevertheless, a (1+ε)-approximate solution of its continuous
relaxation can be found in polynomial time for every ε > 0. There are simpler
ILP formulations for this problem, but the con�guration LP is the strongest
known.

We also study the closely related restricted Santa Claus problem, which
is like Restricted Assignment, but we are maximizing the minimum load
instead of minimizing the maximum. For this problem the con�guration LP
can be constructed analogously. The restricted Santa Claus problem is the
origin of a local search technique, which lets us bound the integrality gap
of the con�guration LP. This technique, however, does not easily lead to a
polynomial time algorithm. Hence, the bounds are usually non-constructive.
We start by giving an improvement of the technique for the restricted Santa
Claus problem in Chapter 5.

Theorem 28. The con�guration LP for restricted Santa Claus has an inte-

grality gap of at most 3+ 5/6 ≈ 3.8333 2
.

The previous best bound was 4. In the �rst part of Chapter 6 we give an
upper bound on the integrality gap of the con�guration LP for Restricted
Assignment.

Theorem 42. The con�guration LP for Restricted Assignment has an inte-

grality gap of at most 11/6 ≈ 1.8333.

This improves on a bound of 33/17 ≈ 1.9412. Like in the proof for re-
stricted Santa Claus we use a local search algorithm. This algorithm is guar-
anteed to �nd an integral solution with makespan no more than 11/6 ·OPT∗.
In particular, this implies the existence of such a solution. Unfortunately the
bound on the running time is exponential. Therefore, we do not get an e�-
cient approximation algorithm. In the remainder of the chapter, we explain
how to improve the running time to a quasi-polynomial one.

2 The same bound was found simultaneously and independently by Cheng and Mao [22]. Later
the same authors improved it to 3.808 [23].
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Theorem 50. We can �nd a (11/6+ε)-approximate solution for Restricted

Assignment in time nO(1/ε log(n))
for every ε > 0, where n= |J |+ |M|.

This is the �rst algorithm for the problem with an approximation rate better
than 2 and sub-exponential running time. It remains open, whether this is
also possible in polynomial time. A special case of Restricted Assignment
is called the Graph Balancing problem. This is the case where |Γ (j)| ≤ 2 for
all j ∈ J . Equivalently, we can consider a weighted undirected (multi-)graph
and ask for an orientation of the edges such that the maximum weighted
in-degree over all vertices is minimized. The state-of the-art for this problem
is a 1.75-approximation algorithm and this value is also the integrality gap
of the algorithm’s underlying LP relaxation. This relaxation is a simpler
formulation than the con�guration LP and it is well known that it cannot be
stronger. In Chapter 7 we show that the con�guration LP is in fact strictly
stronger than this LP.

Theorem 51. The con�guration LP for Graph Balancing has an integrality

gap of at most 1.749.

Although this is only a marginal improvement of 0.001, it breaks an
important barrier.



This chapter is about solving Integer

Linear Programs in pseudo-polynomial

time when the number of constraints is a

constant. A new algorithm and matching

conditional lower bounds are presented.

2P S E U D O - P O LY N O M I A L I N T E G E R P R O G R A M M I N G

Vectors v(1), . . . ,v(n) ∈Rm that sum up to 0 can be seen as a circle in Rm that
walks from 0 to v(1) to v(1)+ v(2), etc. until it reaches v(1)+ . . .+ v(n) = 0
again. The Steinitz Lemma [67] says that if each of the vectors is small with
respect to some norm, we can reorder them in a way that each point in the
circle is not far away from 0 w.r.t. the same norm.

Recently Eisenbrand and Weismantel found a beautiful application of this
lemma in the area of integer programming [30]. They looked at ILPs of the
form max{cT x : Ax = b,x ∈Zn

≥0}, where A ∈Zm×n,b ∈Zm and c ∈Zn and
obtained a pseudo-polynomial algorithm in ∆, the biggest absolute value of
an entry inA, whenm is treated as a constant. The running time they achieve
is n ·O(m∆)2m · ‖b‖21 for �nding the optimal solution and n ·O(m∆)m · ‖b‖1
for �nding only a feasible solution. This improves on a classic algorithm by
Papadimitriou [61], which has a running time of

O(n2m+2 · (m ·max{∆,‖b‖∞})(m+1)(2m+1)).

The basic idea in [30] is that a solution x∗ for the ILP above can be viewed
as a walk in Zm starting at 0 and ending at b. Every step is a column of the
matrix A: For every i ∈ {1, . . . ,n} we step x∗i times in the direction of Ai (see
upper picture in Figure 2). By applying the Steinitz Lemma they show that
there is an ordering of these steps such that the walk never strays o� far
from the direct line between 0 and b (see lower picture in Figure 2). They
construct a directed graph with one vertex for every integer point near the
line between 0 and b and create an edge from u to v, if v−u is a column in A.
The weight of the edge is the same as the c-value of the column. An optimal
solution to the ILP can now be obtained by �nding a longest path from 0 to
b. This can be done in the mentioned time, if one is careful with circles.

Our approach does not reduce to a longest path problem, but rather solves
the ILP in a divide and conquer fashion. We use the (weaker) assumption that
a walk from 0 to b visits a vector b′ near b/2 at some point. We guess this
vector and solve the problem with Ax = b′ and Ax = b − b′ independently.
Both results can be merged to a solution for Ax = b. In the sub-problems
the norm of b and the norm of the solution are roughly divided in half. We
use this idea in a dynamic program and speed up the process of merging
solutions using algorithms for convolution problems. This approach gives us

9
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b
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Figure 2: Steinitz Lemma in Integer Programming

better running times for both the problem of �nding optimal solutions and
for testing feasibility only. We complete our study by giving (almost) tight
conditional lower bounds on the running time in which such ILPs can be
solved.

Detailed description of results

In the running times we give, we frequently use logarithmic factors like
log(k) for some parameter k. To handle the values k ∈ {0,1} formally correct,
we would need to write log(k+ 1) + 1 instead of log(k) everywhere. This
is ignored for simplicity of notation.

optimal solutions for ilps. We show that a solution to

max{cT x : Ax = b,x ∈Zn
≥0}

can be found in time

O(H)2m · log(‖b‖∞) +O(nm) ≤O(
√
m∆)2m · log(‖b‖∞) +O(nm)

for a given upper bound H on the hereditary discrepancy1 of A. For the
most part, we will think of H as the general bound of 6

√
m∆ as given by

the Six Standard Deviations Theorem. If we have a vertex solution to the
fractional relaxation, we can even get to O(H)2m+O(nm). The running
time can be improved if there exists a truly sub-quadratic algorithm for
(min, +)-convolution (see Section 2.3 for details on the problem). However, it
has been conjectured that no such algorithm exists and this conjecture is the
base of several lower bounds in �ne-grained complexity [25, 55, 11]. We show
that for everym the running time above is essentially the best possible unless
the (min, +)-convolution conjecture is false. More formally, for everym there
exists no algorithm that solves ILP in time f (m)·(n2−δ+(∆+‖b‖∞)2m−δ) for
some δ > 0 and an arbitrary computable function f , unless there exists a truly
sub-quadratic algorithm for (min, +)-convolution. Indeed, this means there is
an equivalence between improving algorithms for (min, +)-convolution and

1 see Preliminaries for de�nition
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for ILPs of �xed number of constraints. It is notable that this also rules out
improvements when both ∆ and ‖b‖∞ are small. Our lower bound does leave
open some trade-o� between n and O(H)m like for example n ·O(H)m ·
log(‖b‖∞), which would be an interesting improvement for sparse instances,
i.e., when n� (2∆+1)m. A running time of nf (m) ·(∆+‖b‖∞)m−δ, however,
is not possible (see feasibility below).

feasibility of ilps. Testing only the feasibility of an ILP is easier than
�nding an optimal solution. It can be done in time

O(H)m · log(∆) · log(∆+ ‖b‖∞) +O(nm)
≤ O(

√
m∆)m · log(∆) · log(∆+ ‖b‖∞) +O(nm)

by solving a Boolean convolution problem that has a more e�cient algorithm
than the (min, +)-convolution problem that arises in the optimization version.
Under the Strong Exponential Time Hypothesis (SETH) this running time
is tight except for logarithmic factors. If this conjecture holds, there is no
nf (m) · (∆+ ‖b‖∞)m−δ time algorithm for any δ > 0 and any computable
function f .

Other related work

The case where the number of variables n is �xed and not m as here be-
haves somewhat di�erently. There is a 2O(n log(n)) · |I |O(1) time algorithm (|I |
being the encoding length of the input), whereas an algorithm of the kind
f (m) · |I |O(1) (or even |I |f (m)) is impossible for any computable function f ,
unless P=NP. This can be seen with a trivial reduction from Unbounded
Knapsack (where m= 1). The 2O(n log(n)) · |I |O(1) time algorithm is due to
Kannan [48] improving over a 2O(n

2) · |I |O(1) time algorithm by Lenstra [47].
It is a long open question whether 2O(n) · |I |O(1) is possible instead [30].

Another intriguing question is whether a similar running time as in this
work, e.g., (

√
m∆+

√
m‖b‖∞)O(m) · nO(1), is possible when upper bounds

on variables are added to the ILP. In [30] an algorithm for this extension is
given, but the exponent of ∆ is O(m2).

As for other lower bounds on pseudo-polynomial algorithms for inte-
ger programming, Fomin et al. [31] prove that the running time cannot be
no(m/ log(m)) · ‖b‖o(m)∞ unless the ETH (a weaker conjecture than the SETH)
fails. Their reduction implies that there is no algorithm with running time
no(m/ log(m)) · (∆+ ‖b‖∞)o(m), since in their construction the matrix A is
non-negative and therefore columns with entries larger than ‖b‖∞ can be
discarded; thus leading to ∆ ≤ ‖b‖∞. Very recently, Knop et al. [53] show that
under the ETH there is also no 2o(m log(m)) · (∆+ ‖b‖∞)o(m) time algorithm.
An interesting aspect of this function is that it matches the dependency in m
achieved here and in [30] up to a constant in the exponent. Our lower bound
di�ers substantially from the two above. We concentrate on the dependency
on ∆ and give a precise value of the constant in its exponent.
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2.1 preliminaries

We are assuming a word size of

O(m log(m∆) + log(‖b‖∞) + log(‖c‖∞))

in the word RAM model, that is to say, arithmetic operations on numbers of
this encoding size take constant time. When considering m to be a constant,
this makes perfect sense. Also, since we are going to use algorithms with
space roughly O(

√
m∆)m, it is only natural to assume that a single pointer

�ts into a word.
In the remainder of the chapter we will assume that A has no duplicate

columns. Note that we can completely ignore a column i, if there is another
identical column i′ with ci′ ≥ ci . This implies that in time O(nm) +O(∆)m
we can reduce to an instance without duplicate columns and, in particular,
with n ≤ (2∆+1)m. The running time can be achieved as follows. We create a
new matrix for the ILP with all (2∆+1)m possible columns (in lexicographic
order) and objective value ci = −∞ for all columns i. Now we iterate over
all n old columns and compute in time O(m) the index of the new column
corresponding to the same entries. We then replace its objective value with
the current one if this is bigger. In the upcoming running times we will omit
the additive term O(nm) and assume the duplicates are already eliminated
(O(∆)m is always dominated by actual algorithms running time).

Eisenbrand and Weismantel observed that using the Steinitz Lemma (with
`∞ norm) one can solve integer programs e�ciently, if all entries of the
matrix are small integers.

Theorem1 (Steinitz Lemma). Let ‖·‖ be a norm inRm
and v(1), . . . ,v(t) ∈Rm

such that ‖v(i)‖ ≤ ∆ for all i and v(1) + · · ·+ v(t) = 0. Then there exists a

permutation π ∈ St such that for all j ∈ {1, . . . , t}

‖
j∑
i=1

v(π(i))‖ ≤m∆.

The proof of the bound m∆ is due to Sevastyanov [65] (see also [30]
for a good overview). Our algorithmic results rely on a similar, but weaker
property. Roughly speaking, we only need that there is some j ≈ t/2 with
‖
∑j
i=1 v

(π(i))‖ being small. All other partial sums are insigni�cant. As it is a
weaker property, we can hope for better bounds than m∆.

The bounds we need come from discrepancy theory. Let us state some
useful de�nitions and results.

De�nition 1. For a matrix A ∈Rm×n
we de�ne its discrepancy as

disc(A) = min
z∈{0,1}n

∥∥∥∥∥∥A
(
z −

(1
2
, . . . ,

1
2

)T )∥∥∥∥∥∥∞ .

Discrepancy theory originates in the problem of coloring the elements of a
ground set with two colors such that a given family of subsets are all colored



2.1 preliminaries 13

evenly, i.e., the number of elements of each color is approximately the same.
WhenA is the incidence matrix of this family of sets, z in the de�nition above
gives a coloring and the `∞ norm its discrepancy. Discrepancy, however, is
also studied for arbitrary matrices. If A is the matrix of a linear program as
in our case, this de�nition corresponds to �nding an integral solution that
approximates x = (1/2, . . . ,1/2)T . Our algorithm is based on dividing a
solution into two similar parts. Therefore, discrepancy is a natural measure.
However, we need a de�nition that is stable under restricting to a subset of
the columns.

De�nition 2. We de�ne the hereditary discrepancy of a matrix A ∈Rm×n
as

herdisc(A) = max
I⊆{1,...,n}

disc(AI ),

where AI denotes the matrix A restricted to the columns I .

In the following lemma, we will pay a factor of 2 in the discrepancy in
order to get a balanced split of the `1 norm of the solutions.

Lemma 2. Let x ∈ Zn
≥0. Then there exists a vector z ∈ Zn

≥0 with zi ≤ xi for
all i and∥∥∥∥A(z − x2 )∥∥∥∥∞ ≤ herdisc(A).

Furthermore, if ‖x‖1 > 1, then there exists a vector z′ ∈ Zn
≥0 with z′i ≤ xi for

all i, 16 · ‖x‖1 ≤ ‖z
′‖1 ≤ 5

6 · ‖x‖1, and∥∥∥∥A(z′ − x2 )∥∥∥∥∞ ≤ 2 ·herdisc(A).

We remark the symmetry, i.e., when the lemma holds for z (z′), then the
same properties hold when substituting z for x − z (z′ for x − z′) as well.

Proof. Let x′i = bxi/2c and x′′ = dx1/2e − bxi/2c ∈ {0,1} for all i. Clearly,
xi = bxi/2c+dxi/2e= 2x′i+x

′′
i . Now apply the de�nition of disc(AI ) to x′′ ,

where I = supp(x′′) are the the indices i with x′′i = 1. This way we obtain
a vector z′′ ∈ {0,1}n with ‖A(z′′ − x′′/2)‖∞ ≤ disc(AI ) ≤ herdisc(A). We
now use z = x′ + z′′ to show the �rst part of the lemma. Then∥∥∥∥∥A(

z − x
2

)∥∥∥∥∥∞ =

∥∥∥∥∥∥A
(
(x′ + z′′)− 2x′ + x′′

2

)∥∥∥∥∥∥∞
=

∥∥∥∥∥∥A
(
z′′ − x

′′

2

)∥∥∥∥∥∥∞ ≤ herdisc(A).

Furthermore, for all i

0 ≤ x′i + z
′′
i︸ ︷︷ ︸

=zi

≤ x′i + x
′′
i ≤ 2x′i + x

′′
i = xi .

In order to control the `1 norm in the second part of the lemma, we �rst split x
into two non-empty y′,y′′ ∈Zn

≥0 with y′ + y′′ = x and b‖x‖1/2c= ‖y′‖1 ≤
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‖y′′‖1 = d‖x‖1/2e. Now apply the �rst part of the lemma to obtain z′ ≤ y′
and z′′ ≤ y′′ with ‖A(z′ − y′/2)‖∞ ≤ herdisc(A) and ‖A(z′′ − y′′/2)‖∞ ≤
herdisc(A). We can assume w.l.o.g. that ‖z′‖1 ≤ ‖y′‖1/2 ≤ ‖x‖1/4 and
‖z′′‖1 ≥ ‖y′′‖1/2 ≥ ‖x‖1/4, since otherwise we can swap them for y′ − z′
and y′′ − z′′ , respectively. We will use z = z′ + z′′ for the second part of the
lemma. As for the lower bound,

‖z‖1 ≥ ‖z′′‖1 ≥
‖x‖1
4

.

For the upper bound we �rst consider the case where ‖x‖1 ≤ 5 and note that
‖z′‖1 ≤ ‖y′‖1/2= ‖y′‖1 − ‖y′‖1/2 < ‖y′‖1. Thus,

‖z‖1 = ‖z′ + z′′‖1 ≤ ‖y′ + y′′‖1 − 1 ≤ ‖x‖1 −
1
5
‖x‖1 =

4
5
‖x‖1.

If ‖x‖1 ≥ 6,

‖z‖1 = ‖z′ + z′′‖1 ≤
‖x‖1
4

+ ‖y′′‖1 =
‖x‖1
4

+

⌈
‖x‖1
2

⌉
≤ ‖x‖1

2
+
‖x‖1
4

+
1
2
≤ 3

4
‖x‖1 +

1
12
‖x‖1 ≤

5
6
‖x‖1.

Finally, zi = z′i + z
′′
i ≤ y

′
i + y

′′
i = xi and∥∥∥∥∥A(

z − x
2

)∥∥∥∥∥∞ =

∥∥∥∥∥∥A
(
(z′ + z′′)−

y′ + y′′

2

)∥∥∥∥∥∥∞
≤

∥∥∥∥∥∥A
(
z′ −

y′

2

)∥∥∥∥∥∥∞+

∥∥∥∥∥∥A
(
z′′ −

y′′

2

)∥∥∥∥∥∥∞ ≤ 2 ·herdisc(A).

Since our algorithm’s running time will depend on herdisc(A), it will be
useful to state some bounds.

Theorem3 (Spencer’s Six Standard Deviations Su�ce [66]). For everymatrix

A with biggest absolute value of an entry ∆,

herdisc(A) ≤ 6
√
m ·∆.

There are matrices for which this bound is tight up to a constant factor. For
speci�c matrices it might be lower. The linear dependency on ∆, however, is
required for any matrix A.

Lemma 4. For every matrix A ∈Rm×n
with absolute value of an entry ≤ ∆,

herdisc(A) ≥ ∆

2
.

This can be seen by taking I = {i} in the de�nition of herdisc(A) with Ai
being a column with an entry of absolute value ∆. The dependency onm can
be lower for speci�c matrices. For example, matrices with a small `1 norms
in every column yield better bounds.
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Theorem 5 (Beck, Fiala [13]). For every matrixA ∈Rm×n
, where the `1 norm

of each column is at most t,

herdisc(A) < t.

Moving back to pseudo-polynomial integer programming, the �rst algo-
rithm by Papadimitriou relies on the following bound on the `1 norm of an
optimal solution.

Lemma 6 (Papadimitriou [61]). Letmax{cT x : Ax = b,x ∈Zn
≥0} be bounded

and feasible. Then there exists an optimal solution x∗ with

‖x∗‖1 ≤ n2(m(∆+ ‖b‖∞))2m+1 ≤ (m(∆+ ‖b‖∞))O(m)

In other words, ‖x∗‖1 ≤ 2K , where K =O(m log(m) +m log(∆+ ‖b‖∞)).

We also need this for our algorithm. A similar bound could also be obtained
via the Steinitz Lemma.

2.2 dynamic program

In this section we will show how to compute the best solution x∗ to an ILP
with the additional constraint ‖x∗‖1 ≤ (6/5)K . If the ILP is bounded, then
with K = O(m log(m) +m log(∆+ ‖b‖∞)) this is indeed the optimum to
the ILP (Lemma 6). In Section 2.2 we discuss how to cope with unbounded
ILPs.

Let H ≥ herdisc(A) be an upper bound on the hereditary discrepancy.
For every i = 0,1 . . . ,K and every b′ with ‖b′ − 2i−K · b‖∞ ≤ 4H we solve

max
{
cT x : Ax = b′,‖x‖1 ≤

(6
5

)i
,x ∈Zn

≥0

}
. (1)

We iteratively derive solutions for i using pairs of solutions for i − 1. Ulti-
mately, we will compute a solution for i = K and b′ = b.

If i = 0, then the solutions are trivial, since ‖x‖1 ≤ 1. This means they
correspond exactly to the columns of A. Fix some i > 0 and b′ and let x∗
be an optimal solution to (1). By Lemma 2 there exists a 0 ≤ z ≤ x∗ with
‖Az − b′/2‖∞ ≤ 2 ·herdisc(A) and

‖z‖1 ≤
5
6
‖x∗‖1 ≤

5
6
·
(6
5

)i
=

(6
5

)i−1
,

if ‖x∗‖1 > 1, or ‖z‖1 ≤ ‖x∗‖1 ≤ 1 ≤ (6/5)i−1, otherwise. The same holds for
x∗ − z. Therefore, z is an optimal solution to max{cT x : Ax = b′′,‖x‖1 ≤
(6/5)i−1,x ∈Zn

≥0} where b′′ = Az. Likewise, x∗ − z is an optimal solution
to max{cT x : Ax = b′ − b′′,‖x‖1 ≤ (6/5)i−1,x ∈Zn

≥0}. We claim that ‖b′′ −
2(i−1)−K · b‖∞ ≤ 4H and ‖(b′ − b′′)− 2(i−1)−K · b‖∞ ≤ 4H . This implies that
we can look up solutions for b′′ and b′ − b′′ in the dynamic table and their
sum is a solution for b′ . Clearly it is also optimal. We do not know b′′ , but
we can guess it: There are only (8H + 1)m candidates. To compute an entry,
we therefore enumerate all possible b′′ and take the two partial solutions (for
b′′ and b′ − b′′), where the sum of both values is maximized.
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proof of claim. We have that∥∥∥∥b′′ − 2(i−1)−Kb∥∥∥∥∞ =

∥∥∥∥∥Az − 1
2
b′ +

1
2
b′ − 2(i−1)−Kb

∥∥∥∥∥∞
≤

∥∥∥∥∥Az − 1
2
b′
∥∥∥∥∥∞+

∥∥∥∥∥12b′ − 2(i−1)−Kb
∥∥∥∥∥∞

≤ 2 ·herdisc(A) + 1
2

∥∥∥b′ − 2i−Kb∥∥∥∞ ≤ 4H .

The same holds for b′ − b′′ , since z and x∗ − z are interchangeable.

Naive running time

Note that in our use of the O-notation we can hide factors polynomial in m:
O(H)2m = O(H)2m · 2m. The dynamic table has (K + 1) ·O(H)m entries.
To compute an entry,O(n ·m) ≤O(∆)m ≤O(H)m operations are necessary
during initialization and O(H)m in the iterative calculations. This gives a
total running time of

O(H)2m · (K + 1) =O(H)2m · (m log(m) +m log(∆+ ‖b‖∞))
=O(H)2m · (log(∆+ ‖b‖∞)).

Unbounded solutions

In the previous dynamic program there is no mechanism for detecting when
the ILP is unbounded. To handle unbounded ILPs we follow the approach
from [30]. The ILP max{cT x : Ax = b,x ∈ Zn

≥0} is unbounded, if and only
if {x : Ax = b,x ∈ Zn

≥0} has a solution and max{cT x : Ax = 0,x ∈ Zn
≥0}

has a solution with positive objective value. After running the dynamic
program - thereby verifying that there exists any solution - we have to
check if the latter condition holds. We can simply run the algorithm again
on max{cT x : Ax = 0,x ∈ Zn

≥0} with K = O(m log(m) +m log(∆)). If it
returns a positive value, the ILP is unbounded. Let us argue why this is
enough. Suppose that max{cT x : Ax = 0,x ∈Zn

≥0} has a solution x∗ with a
positive objective value. Let N = ‖x∗‖1. The ILP max{cT x : Ax = 0,‖x‖1 ≤
N ,x ∈Zn

≥0} is clearly feasible and bounded. By Lemma 6 it has an optimal
solution (with positive objective value) with `1 norm at most 2K , where
K = O(m log(m) + m log(∆)). Hence, running the algorithm with this
choice of K su�ces to check if there is a positive solution.

2.3 improvements to the running time

Applying convolution

Can we speed up the computation of entries in the dynamic table? Let Di
be the set of vectors b′ with ‖b′ − 2i−K · b‖∞ ≤ 4H . Recall, the dynamic pro-
grams computes values for each element in D0,D1, . . . ,DK . More precisely,
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for the value of b′ ∈Di we consider vectors b′′ such that b′′,b′ − b′′ ∈Di−1
and take the maximum sum of the values for b′′,b′ − b′′ among all. First
consider only the case of m = 1. Here we have that b′ ∈ Di is equivalent
to −4H ≤ b′ − 2i−K · b ≤ 4H . This problem is well studied. It is a variant of
(min, +)-convolution.

(min, +)-convolution

input: r1, . . . ,rn and s1, . . . ,sn.

output: t1, . . . , tn, where tk =mini+j=k ri + sj .

(max, +)-convolution is the counterpart where the maximum is taken instead
of the minimum. The two problems are equivalent. Each of them can be
transformed to the other by negating the elements. (min, +)-convolution
admits a trivial O(n2) time algorithm and it has been conjectured that there
exists no truly sub-quadratic algorithm [25]. There does, however, exist an
O(n2/ log(n)) time algorithm [16], which we are going to use. In fact, there
is an even faster algorithm that runs in O(n2/2Ω(

√
log(n))) [21].

We will now create an instance of (max, +)-convolution for calculating Di
from Di−1. We �rst deal with the problem that 2i−1−kb might not be integral.
Let b0 = b2i−1−kbc denote the vector rounded down in every component.
Di−1 is completely covered by the points with distance 4H + 2 from b0.
Likewise, Di is covered by the points with distance 4H + 2 from 2b0.

We project a vector b′ ∈Di−1 to

fi−1(b
′) =

m∑
j=1

(16H + 11)j−1 (4H + 3+ b′j − b
0)︸                 ︷︷                 ︸

∈{1,...,8H+5}

. (2)

The value 16H + 11 is chosen, because it bigger than the sum of two values
of the form 4H + 3+ b′j − b

0. We de�ne fi(b′) for all b′ ∈ Di in the same
way, except we substitute b0 for 2b0. For all a,a′ ∈Di−1,b′ ∈Di , it holds that
fi−1(a)+fi−1(a

′) = fi(b
′), if and only if a+a′ = b′−(4H+3, . . . ,4H+3)T :

Proof⇒. Let fi−1(a) + fi−1(a′) = fi(b
′). Then, in particular,

fi−1(a) + fi−1(a
′) ≡ fi(b′) mod 16H + 11

Since all but the �rst element of the sum (2) are multiples of 16H + 11, i.e.,
they are equal 0 modulo 16H+11, we can omit them in the equation. Hence,

(4H + 3+ a1 − b01) + (4H + 3+ a′1 − b
0
1)

≡ (4H + 3+ b′1 − 2b
0
1) mod 16H + 11.

We even have equality (without modulo) here, because both sides are smaller
than 16m∆+ 11. Simplifying the equation gives a1+ a′1 = b′1 − (4H + 3).
Now consider again the equation fi−1(a) + fi−1(a

′) = fi(b
′). In the sums

leave out the �rst element. The equation still holds, since by the elaboration



18 pseudo-polynomial integer programming

above this changes the left and right hand-side by the same value. We can
now repeat the same argument to obtain a2+ a′2 = b′2 − (4H + 3) and the
same for all other dimensions.

Proof⇐. Let a+ a′ = b′ − (4H + 3, . . . ,4H + 3)T . Then for every j ,

(4H + 3+ aj − b0j ) + (4H + 3+ a′j − b
0
j ) = 4H + 3+ b′j − 2b

0
j .

It directly follows that fi−1(a) + fi−1(a′) = fi(b
′).

This means when we write the value of each b′′ ∈Di−1 to rj and sj , where
j = fi−1(b

′′) and every entry not used is set to −∞, the correct solutions will
be in t. More precisely, we can read the result for some b′ ∈Di at tj where
j = fi(b

′ + (4H + 3, . . . ,4H + 3)T ).
With an algorithm for (min, +)-convolution with running time T (n) we get

an algorithm with running time T (O(H)m) ·(m log(m)+m log(∆+‖b‖∞)).
Inserting T (n) = n2/ log(n) and using H ≥ ∆/2 we get:

Theorem 7. There exists an algorithm that �nds the optimum of max{cT x :
Ax = b,x ∈Zn

≥0}, in time O(H)2m · log(∆+ ‖b‖∞)/ log(∆).

Clearly, a sub-quadratic algorithm, where T (n) = n2−δ for some δ > 0,
would directly improve the exponent. Next, we will consider the problem of
only testing feasibility of an ILP. Since we only record whether or not there
exists a solution for a particular right-hand side, the convolution problem
reduces to the following.

Boolean convolution

input: r1, . . . ,rn ∈ {0,1} and s1, . . . ,sn ∈ {0,1}.

output: t1, . . . , tn ∈ {0,1}, where tk =
∨
i+j=k ri ∧ sj .

This problem can be solved very e�ciently via fast Fourier transform. We
compute the (+, ·)-convolution of the input. It is well known that this can
be done using FFT in time O(n log(n)). The (+, ·)-convolution of r and s
is the vector t, where tk =

∑
i+j=k ri · sj . To get the Boolean convolution

instead, we simply replace each tk > 0 by 1. Using T (n) =O(n log(n)) for
the convolution algorithm we obtain the following.

Theorem 8. There exists an algorithm that �nds an element in {x : Ax =

b,x ∈Zn
≥0}, if there is one, in time O(H)m · log(∆) · log(∆+ ‖b‖∞).

This can be seen from the calculation below. Note that we can scrape o�
factors polynomial in m and log(H) ≤O(m log(∆)):

O(H)m ·m log(H) · (m log(m) +m log(∆+ ‖b‖∞))
≤ O(H)m · log(∆) · log(∆+ ‖b‖∞))
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Use of proximity

Eisenbrand and Weismantel gave the following bound on the proximity
between continuous and integral solutions.

Theorem 9 ([30]). Letmax{cT x : Ax = b,x ∈Zn
≥0} be feasible and bounded.

Let x∗ be an optimal vertex solution of the fractional relaxation. Then there

exists an optimal solution z∗ with

‖z∗ − x∗‖1 ≤m(2m∆+ 1)m.

We brie�y explain, how they use this theorem to reduce the right-hand side
b at the expense of computing the optimum of the fractional relaxation: Note
that z∗i ≥ `i := max{0,dx∗i e −m(2m∆+ 1)m}. Since x∗ is a vertex solution,
it has at most m non-zero components. By setting y = x − ` we obtain the
equivalent ILP max{cT y : Ay = b − A`,y ∈ Zn

≥0}. Indeed, this ILP has a
bounded right-hand side:

‖b −A`‖∞ = ‖A(x∗ − `)‖∞ ≤ ∆m2(2m∆+ 1)m =O(m∆)m+1.

Here, we use that x∗ and ` di�er only in non-zero components of x∗ and
in those by at most m(2m∆+ 1)m. Like in earlier bounds, the O-notation
hides polynomial terms in m. Using the n ·O(m∆)2m · ‖b‖21 time algorithm
from [30], this gives a running time of n ·O(m∆)4m+2 + LP, where LP is
the time to solve the relaxation. The logarithmic dependence on ‖b‖∞ in our
new algorithm leads to a much smaller exponent: Using Theorem 7 and the
construction above, the ILP can be solved in time O(H)2m+LP. Feasibility
can be tested in time O(H)m · log2(∆) +LP using Theorem 8.

Special forms of matrices

Let ∆1, . . . ,∆m ≤ ∆ denote the largest absolute values of each row inA. When
some of these values are much smaller than ∆, the maximum among all, we
can do better thanO(

√
m∆)2m · log(‖b‖∞). An example for a heterogeneous

matrix is Unbounded Knapsack with cardinality constraints. More generally,
consider some scalars a1, . . . ,am > 0 that we pre-multiply each row with, i.e.,
de�ne A′ = diag(a1, . . . ,am) ·A, where

diag(a1, . . . ,am) =


a1 0

. . .

0 am

 .
We claim that in the dynamic program a table of size

∏m
k=1O(H

′/ak) su�ces,
where H ′ ≥ herdisc(A′). With ak = 1/∆k in the setting above, this gives∏m
k=1O(

√
m∆k). Clearly, the ILP max{cT x,Ax = b,x ∈Zn

≥0} is equivalent
to

max{cT x,A′x = b,x ∈Zn
≥0},
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where b′ = diag(a1, . . . ,am) · b. At �rst glance, our algorithm cannot be
applied to this problem, since the entries are not integral. However, in the
algorithm we only use the fact that the number of points Ax with x ∈Zn

≥0
close to some point b′′ , i.e., with ‖Ax − b′′‖∞ ≤ 4H , is small and can be
enumerated. The pointsA′xwith x ∈Zn

≥0 and ‖A′x−b′′‖∞ ≤ 4H ′ are exactly
those with |(Ax)k − b′′k /ak | ≤ 4H ′/ak for all k. These are

∏m
k=1O(H

′/ak)
many and they can be enumerated. This way, we get a running time of

m∏
k=1

O(H ′/ak)
2 · log(∆+ ‖b‖∞).

When the objective function has small, integral coe�cients, it can be more
e�cient to perform a binary search for the optimum and encode the objective
function as an additional constraint. We can bound the optimum by (m(∆+

‖b‖∞))O(m) ·‖c‖∞ using the bound on the `1 norm of the solution. Hence, the
binary search takes at mostO(m log(m)+m log(∆+‖b‖∞)+log(‖c‖∞)) ≤
O(m log(m+ ∆+ ‖c‖∞ + ‖b‖∞)) iterations. For a guess τ the following
feasibility ILP tests if there is a solution of value at least τ .

c1 . . . cn −1
0

A
...

0


x =


τ

b1
...

bn


x ∈Zn+1

≥0

We can solve the ILP above in time

T (
√
m+ 1‖c‖∞ ·

m∏
k=1

O(
√
m+ 1∆k)) · log(‖b‖∞+ τ)

≤ T (‖c‖∞ ·
m∏
k=1

O(
√
m∆k)) ·m log(m+∆+ ‖c‖∞+ ‖b‖∞),

where T (n) =O(n log(n)) is the running time of Boolean convolution. By
adding the time for the binary search and by hiding polynomials in m, we
get the total running time of

‖c‖∞ ·
m∏
k=1

[O(
√
m∆k)] · log(∆+ ‖c‖∞) · log2(∆+ ‖c‖∞+ ‖b‖∞).

2.4 lower bounds

Optimization problem

We use an equivalence between the problems Unbounded Knapsack and
(min, +)-convolution regarding sub-quadratic algorithms.
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Unbounded Knapsack

input: C ∈N, w1, . . . ,wn ∈N, and p1, . . . ,pn ∈N.

output: Multiplicities x1, . . . ,xn, such that
∑n
i=1 xi ·wi ≤ C and

∑n
i=1 xi ·

pi is maximized.

Note that when we instead require
∑n
i=1 xi ·wi = C in the problem above,

we can transform it to this form by adding an item of pro�t zero and weight
1.

Theorem 10 ([25]). For any δ > 0 there exists no O((n+ C)2−δ) time al-

gorithm for Unbounded Knapsack unless there exists a truly sub-quadratic

algorithm for (min, +)-convolution.

When using this theorem, we assume that the input already consists of the
at most C relevant items only, n ≤ C, andwi ≤ C for all i. This preprocessing
can be done in time O(n+C).

Theorem 11. For every �xed m there does not exist an algorithm that solves

ILPs with m constraints in time f (m) · (n2−δ + (∆+ ‖b‖∞)2m−δ) for some

δ > 0 and a computable function f , unless there exists a truly sub-quadratic

algorithm for (min, +)-convolution.

Proof. Let δ > 0 andm ∈N. Assume that there exists an algorithm that solves
ILPs of the form max{cT x : Ax = b,x ∈Zn

≥0} where A ∈Zm×n, b ∈Zm, and
c ∈ Zn in time f (m) · (n2−δ + (∆+ ‖b‖∞)2m−δ), where ∆ is the greatest
absolute value in A. We will show that this implies an O((n+C)2−δ′ ) time
algorithm for the Unbounded Knapsack Problem for some δ′ > 0. Let
(C, (wi)

n
i=1, (pi)

n
i=1) be an instance of this problem. Let us �rst observe that

the claim holds for m = 1. Clearly the Unbounded Knapsack Problem
(with equality) can be written as the following ILP (UKS1).

max
n∑
i=1

pi · xi

n∑
i=1

wi · xi = C

x ∈Zn
≥0

Since wi ≤ C for all i (otherwise the item can be discarded), we can solve
this ILP by assumption in time f (1) · (n2−δ + (2C)2−δ) ≤ O((n+C)2−δ).
Now consider the case where m > 1. We want to reduce ∆ by exploiting the
additional rows. Let ∆= bC1/mc+1 > C1/m. We write C in base-∆ notation,
i.e.,

C = C(0) +∆C(1) + · · ·+∆m−1C(m−1),
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where 0 ≤ C(k) < ∆ for all k. Likewise, write wi = w
(0)
i + ∆w

(1)
i + · · ·+

∆m−1w
(m−1)
i with 0 ≤ w(k)

i < ∆ for all k. We claim that (UKS1) is equivalent
to the following ILP (UKSm).

max
n∑
i=1

pi · xi

n∑
i=1

[w
(0)
i · xi ]−∆ · y1 = C(0) (3)

n∑
i=1

[w
(1)
i · xi ] + y1 −∆ · y2 = C(1) (4)

...
n∑
i=1

[w
(m−2)
i · xi ] + ym−2 −∆ · ym−1 = C(m−2) (5)

n∑
i=1

[w
(m−1)
i · xi ] + ym−1 = C(m−1) (6)

x ∈Zn
≥0

y ∈Zm
≥0

claim x ∈ (USK1) ⇒ x ∈ (USKm) . Let x be a solution to (UKS1).
Then for all 1 ≤ ` ≤m,

n∑
i=1

`−1∑
k=0

∆kw
(k)
i · xi ≡

n∑
i=1

wi · xi ≡ C ≡
`−1∑
k=0

∆kC(k) mod ∆`.

This is because all ∆`w(`)
i , . . . ,∆m−1w(m−1)

i and ∆`C(`), . . . ,∆m−1C(m−1) are
multiples of ∆` . It follows that there exists an y` ∈Z such that

n∑
i=1

`−1∑
k=0

[∆kw
(k)
i · xi ]−∆

` · y` =
`−1∑
k=0

∆kC(k).

Furthermore, y` is non-negative, because otherwise

`−1∑
k=0

∆kC(k) ≤
`−1∑
k=0

∆k(∆− 1) < ∆`−1(∆− 1)
∞∑
k=0

∆−k

= ∆`−1
∆− 1
1− 1

∆

= ∆` ≤ −∆`y` ≤
n∑
i=1

`−1∑
k=0

[∆kw
(k)
i · xi ]−∆

`y`.
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We choose y1, . . . ,ym exactly like this. The �rst constraint (3) follows directly.
Now let ` ∈ {2, . . . ,m}. By choice of y`−1 and y` we have that

n∑
i=1

[ `−1∑
k=0

∆kw
(k)
i −

`−2∑
k=0

∆kw
(k)
i

︸                           ︷︷                           ︸
=∆`−1w

(`−1)
i

·xi
]
+∆`−1 · y`−1 −∆` · y`

=
`−1∑
k=0

∆kC(k) −
`−2∑
k=0

∆kC(k)

︸                        ︷︷                        ︸
=∆`−1C(`−1)

. (7)

Dividing both sides by ∆`−1 we get every constraint (4) - (5) for the correct
choice of `. Finally, consider the special case of the last constraint (6). By
choice of ym we have that

n∑
i=1

m−1∑
k=0

∆kw
(k)
i︸       ︷︷       ︸

=wi

·xi −∆m · ym =
m−1∑
k=0

∆kC(k)

︸       ︷︷       ︸
=C

.

Thus, ym = 0 and (7) implies the last constraint (with ` =m).

claim x ∈ (USKm) ⇒ x ∈ (USK1). Let x1, . . . ,xn,y1, . . . ,ym−1 be a
solution to (UKSm) and set ym = 0. We show by induction that for all
` ∈ {1, . . . ,m}

n∑
i=1

`−1∑
k=0

∆kw
(k)
i · xi −∆

`y` =
`−1∑
k=0

∆kC(k).

With ` = m this implies the claim as ym = 0 by de�nition. For ` = 1 the
equation is exactly the �rst constraint (3). Now let ` > 1 and assume that the
equation above holds. We will show that it also holds for `+1. From (USKm)
we have

n∑
i=1

[w
(`)
i · xi ] + y` −∆ · y`+1 = C(`).

Multiplying each side by ∆` we get
n∑
i=1

[∆`w
(`)
i · xi ] +∆`y` −∆`+1 · y`+1 = ∆`C(`).

By adding and subtracting the same elements, it follows that

n∑
i=1

(∑̀
k=0

∆kw
(k)
i −

`−1∑
k=0

∆kw
(k)
i

)
· xi

+∆` · y` −∆`+1 · y`+1

=
∑̀
k=0

∆kC(k) −
`−1∑
k=0

∆kC(k).



24 pseudo-polynomial integer programming

By inserting the induction hypothesis we conclude

n∑
i=1

∑̀
k=0

[∆kw
(k)
i · xi ]−∆

`+1y`+1 =
∑̀
k=0

∆kC(k).

constructing and solving the ilp. The ILP (UKSm) can be con-
structed easily in O(Cm+ nm) ≤O((n+C)2−δ/m) operations (recall that
m is a constant). We obtain ∆= bC1/mc+1 by guessing: More precisely, we
iterate over all numbers ∆0 ≤ C and �nd the one where (∆0−1)m < C ≤ ∆m0 .
There are of course more e�cient, non-trivial ways to compute the rounded
m-th root. The base-∆ representation for w1, . . . ,wn and C can be computed
with O(m) operations for each of these numbers.

All entries of the matrix in (UKSm) and the right-hand side are bounded
by ∆=O(C1/m). Therefore, by assumption this ILP can be solved in time

f (m) · (n2−δ+O(C1/m)2m−δ)

≤ f (m) ·O(1)2m−δ · (n+C)2−δ/m = O((n+C)2−δ/m).

This would yield a truly sub-quadratic algorithm for the Unbounded Knap-
sack Problem.

Feasibility problem

We will show that our algorithm for solving feasibility of ILPs is optimal
(except for log factors). We use a recently discovered lower bound for k-SUM
based on the SETH.

k-SUM

input: T ∈N0 and Z1, . . . ,Zk ⊂N0 where |Z1|+ |Z2|+ · · ·+ |Zk |= n ∈
N.

output: z1 ∈ Z1,z2 ∈ Z2, . . . ,zk ∈ Zk such that z1+ z2+ · · ·+ zk = T .

Theorem 12 ([1]). If the SETH holds, then for every δ > 0 there exists a value

γ > 0 such that k-SUM cannot be solved in time O(T 1−δ ·nγk).

This implies that for every p ∈N there is no O(T 1−δ ·np) time algorithm
for k-SUM if k ≥ p/γ .

Theorem 13. If the SETH holds, for every �xed m there does not exist an

algorithm that solves feasibility of ILPs withm constraints in time nf (m) ·(∆+

‖b‖∞)m−δ.

Proof. Like in the previous reduction we start with the case of m = 1. For
higher values of m the result can be shown in the same way as before.

Suppose there exists an algorithm for solving feasibility of ILPs with one
constraint in time nf (1) ·(∆+‖b‖∞)1−δ for some δ > 0 and f (1) ∈N. Set k =
df (1)/γewithγ as in in Theorem 12 and consider an instance (T ,Z1, . . . ,Zk)
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of k-SUM. We will show that this can be solved in O(T 1−δ · nf (1)), which
contradicts the SETH. For every i ≤ k and every z ∈ Zi we use a binary
variable xi,z that describes whether z is used. We can easily model k-SUM as
the following ILP:

k∑
i=1

∑
z∈Zi

z · xi,z = T∑
z∈Zi

xi,z = 1 ∀i ∈ {1, . . . ,k}

xi,z ∈Z≥0 ∀i ∈ {1, . . . ,k},z ∈ Zi
However, since we want to reduce to an ILP with one constraint, we need
a slightly more sophisticated construction. We will show that the cardinal-
ity constraints can be encoded into the k-SUM instance by increasing the
numbers by a factor of 2O(k), which is in O(1) since k is some constant
depending on f (1) and γ only. We will use this to obtain an ILP with only
one constraint and values of size at most O(T ). A similar construction is
also used in [1].

Our goal is to construct an instance (T ′,Z ′k , . . . ,Z
′
k) such that for every x∗ it

holds that x∗ is a solution to the �rst ILP if and only if x∗ ∈ {x :
∑k
i=1

∑
z∈Z ′i z ·

xi,z = T ′,x ∈Zn
≥0} (∗). We will use one element to represent each element

in the original instance. Consider the binary representation of numbers in
Z ′1∪· · ·∪Z

′
k and of T ′ . The numbers in the new instance will consist of three

parts and dlog(k)e many 0s between them to prevent interference. For an
illustration of the construction see Figure 3. The dlog(k)e most signi�cant
bits ensure that exactly k elements are selected; the middle part are k bits that
ensure of every set Z ′i exactly one element is selected; the least signi�cant
dlog(T )e bits represent the original values of the elements. Set the values
in the �rst part of the numbers to 1 for all elements Z ′1 ∪ · · · ∪ Z

′
k and to

k in T ′ . Clearly this ensures that at most k elements are chosen. The sum
of at most k elements cannot be larger than k ≤ 2dlog(k)e times the biggest
element. This implies that the bu�ers of dlog(k)e zeroes cannot over�ow
and we can consider each of the three parts independently. It follows that
exactly k elements must be chosen by any feasible solution. The system
{x :

∑k
i=12

ixi = 2k+1 − 1,‖x‖1 = k,Zk
≥0} has exactly one solution and this

solution is (1,1, . . . ,1): Consider summing up k powers of 2 and envision
the binary representation of the partial sums. When we add some 2i to the
partial sum, the number of ones in the binary representation increases by
one, if the i’th bit of the current sum is zero. Otherwise, it does not increase.
However, since in the binary representation of the �nal sum there are k ones,
it has to increase in each addition. This means no power of two can be added
twice and therefore each has to be added exactly once.

It follows that the second part of the numbers enforces that of every Z ′i ex-
actly one element is chosen. We conclude that (∗) solves the initial k-SUM in-
stance. By assumption this can be done in time nf (1) ·(∆+‖b‖∞)1−δ = nf (1) ·
O(T ′)1−δ =O(nf (1) · T 1−δ). Here we use that T ′ ≤ 23log(k)+k+log(T )+4 =

O(k32kT ) =O(T ), since k is a constant.
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Z ′i 3 z
′ =

bin(1)︷    ︸︸    ︷
0 . . .0001
dlog(k)e

| 0 . . .0
dlog(k)e

|

bin(2i)︷        ︸︸        ︷
0 . . .010 . . .0

k

| 0 . . .0
dlog(k)e

|

bin(z)︷  ︸︸  ︷
0110 . . .
dlog(T )e

T ′ =

bin(k)︷    ︸︸    ︷
0 . . .1011
dlog(k)e

| 0 . . .0
dlog(k)e

|

bin(2k+1−1)︷          ︸︸          ︷
1111 . . .1111

k

| 0 . . .0
dlog(k)e

|

bin(T )︷  ︸︸  ︷
1011 . . .
dlog(T )e

Figure 3: Construction of Z ′i and T ′

Form > 1 we can use the same construction as in the reduction for the opti-
mization problem: Suppose there is an algorithm that �nds feasible solutions
to ILPs with m constraints in time nf (m) · (∆+ ‖b‖∞)m−δ. Choose γ such
that there is no algorithm for k-SUM with running time O(T 1−δ/m · nγk)
(under SETH). We set k = df (m)/γe. By splitting the one constraint of (∗)
into m constraints we can reduce the upper bound on elements from O(T )
to O(T 1/m). This means the assumed running time for solving ILPs can be
used to solve k-SUM in time

nf (m) ·O(T 1/m)m−δ ≤ nγkO(1)m−δT 1−δ/m =O(nγkT 1−δ/m).

2.5 applications

We describe the implications of our results on a couple of well-known prob-
lems, which can be formulated using ILPs with few constraints and small
entries. In particular, we give an example, where the reduction of the run-
ning time by a factor n improves on the state-of-the-art and one where the
logarithmic dependence on ‖b‖∞ proves useful.

Unbounded Knapsack and Unbounded Subset-Sum

Unbounded Knapsack with equality constraint is simply an ILP withm= 1
and positive entries and objective function:

max{
n∑
i=1

pi · xi :
n∑
i=1

wi · xi = C,x ∈Zn
≥0}

where pi ≥ 0 are called the pro�ts and wi ≥ 0 the weights of the items
1, . . . ,n. More common is to let C be only an upper bound on

∑n
i=1wi · xi ,

but that variant easily reduces to the problem above by adding a slack vari-
able. Unbounded Subset-Sum is the same problem without an objective
function, i.e., the problem of �nding a multiset of items whose weights sum
up to exactly C. We assume that no two items have the same weight. Oth-
erwise in time O(n+∆) we can remove all duplicates by keeping only the
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most valuable ones. The fractional solutions to both problems are of a very
simple structure: For Unbounded Knapsack choose only the item i of max-
imal e�ciency, that is pi/wi , and select it C/wi times. For Unbounded
Subset-Sum choose an arbitrary item. This gives algorithms with running
time O(∆2) and O(∆ log2(∆)) for Unbounded Knapsack and Unbounded
Subset-Sum, respectively, where ∆ is the maximum weight among all items
(using the results from Section 2.3). The previously best pseudo-polynomial
algorithms for Unbounded Knapsack, have running times O(nC) (stan-
dard dynamic programming; see e.g. [49]), O(n∆2) [30], or very recently
O(∆2 log(C)) [10]. We note that the algorithm from the last publication,
which was discovered independently and concurrently to our results, also
uses (min, +)-convolution. It could probably be improved to the same running
time as our general algorithm using the proximity ideas.

For Unbounded Subset-Sum the state-of-the-art is a O(C log(C)) time
algorithm [17]. Hence, our algorithm is preferable when ∆� C.

Scheduling on Identical Machines

The problem Scheduling on Identical Machines asks for the distribution
ofN jobs ontoM ≤N machines. Each job j has a processing time pj and the
objective is to minimize the makespan, i.e., the maximum sum of processing
times on a single machine. Since an exact solution cannot be computed unless
P=NP, we are satis�ed with a (1+ε)-approximation, where ε > 0 is part of
the input. We will outline how this problem can be solved using our algorithm.
More details on many of the techniques involved can be found in [37].

We consider here the variant, in which a makespan τ is given and we have
to �nd a schedule with makespan at most (1+ ε)τ or prove that there exists
no schedule with makespan at most τ . This su�ces by using a standard dual
approximation framework. It is easy to see that one can discard all jobs of
size at most ε · τ and add them greedily after a solution for the other jobs
is found. The big jobs can each be rounded to the next value of the form
ε·τ ·(1+ε)i for some i. This reduces the number of di�erent processing times
to O(1/ε log(1/ε)) many and increases the makespan by at most a factor
of 1+ε. We are now ready to write this problem as an ILP. A con�guration is
a way to use a machine. It describes how many jobs of each size are assigned
to this machine. Since we aim for a makespan of (1+ ε) · τ , the sum of
these sizes must not exceed this value. The con�guration ILP has a variable
for every valid con�guration and it describes how many machines use this
con�guration. Let C be the set of valid con�gurations and Ck the multiplicity
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of size k in a con�guration C ∈ C. The following ILP solves the rounded
instance. We note that there is no objective function in it.∑

C∈C
xC =M∑

C∈C
Ck · xC = Nk ∀k ∈ K

xC ∈Z≥0 ∀C ∈ C

Here K are the rounded sizes and Nk the number of jobs with rounded size
k ∈ K. The �rst constraint enforces that the correct number of machines is
used, the next |K| many enforce that for each size the correct number of jobs
is scheduled.

It is notable that this ILP has only few constraints (a constant for a �xed
choice of ε) and also the `1 norm of each column is small. More precisely,
it is at most 1/ε, since every size is at least ε · τ and therefore no more
than 1/ε jobs �t in one con�guration. The ILP can be solved with our
algorithm. By the Beck-Fiala Theorem (Theorem 5) H = 1/ε is an upper
bound on the hereditary discrepancy, ∆ ≤ 1/ε, m = O(1/ε log(1/ε)),
‖b‖∞ ≤ N , and n ≤ (1/ε)O(1/ε log(1/ε)). Including the rounding in time
O(N + 1/ε log(1/ε)) the running time for the ILP is

O(H)m log(∆) log(∆+ ‖b‖∞) +O(nm) +O(N +
1
ε
log(

1
ε
))

≤ 2O(1/ε log2(1/ε)) log(N ) +O(N +
1
ε
log(

1
ε
))

≤ 2O(1/ε log2(1/ε)) +O(N ).

The trick in the bound above is to distinguish between 2O(1/ε log2(1/ε)) ≤
log(N ) and 2O(1/ε log2(1/ε)) > log(N ). The same running time (except for
a higher constant in the exponent) could be obtained with [30]. However, in
order to avoid a multiplicative factor of N , one would have to solve the LP
relaxation �rst and then use proximity. Our approach gives an easier, purely
combinatorial algorithm. The crucial feature of our algorithm is the lower
dependence on ‖b‖∞.



In this chapter we extend the setting from the

previous chapter to Mixed Integer Linear

Programs. This is unpublished joint work with

José Verschae from a visit in Kiel.

3P S E U D O - P O LY N O M I A L M I L P

It is well known that linear programs can be solved e�ciently (in polynomial
time). Integer linear programs are NP-hard, but the algorithms by Lenstra [47]
and Kannan [48] can solve them in polynomial time, if the number of variables
is constant. Moreover, the intermediate is also solvable: Already in [47],
Lenstra pointed out that mixed integer linear programs, which contain both
integer and fractional variables, can also be solved in polynomial time if the
number of integer variables is a constant.

Theorem 14 ([47, 48]). An MILP with m integer variables can be solved in

time mO(m) · |I |O(1), where |I | is the encoding size of the MILP.

The previous chapter shows that integer linear programs with a constant
number of constraints can be solved in pseudo-polynomial time (regarding
the size of the entries in the matrix). This gives rise to a natural question: What
is the complexity of mixed integer linear programs where only a constant
number of constraints have non-zero entries in the integer variables. In
particular, is there a pseudo-polynomial algorithm in the size of the entries
of the integer variables? Formally, let A ∈ Zr×m, B ∈ Zr×n, and C ∈ Zs×n.
We are looking for a solution of the system

max cT x+ dT yA B

0 C


xy

= b (8)

x ∈Zm
≥0

y ∈Rn
≥0.

Furthermore, let ∆ be an upper bound on the absolute value of the entries of
A (not necessarily on B or C). In this chapter, we will prove the following.

Theorem 15. There is an algorithm that solves the system above in time

(r∆)O(r
2) · |I |O(1),

where |I | is the encoding length of the MILP (8).

We are not aware of directly comparable results from literature. We will
start by providing a simple algorithm using standard techniques and then
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give our improved algorithm. Throughout the chapter assume w.l.o.g. that
m ≤ (2∆+ 1)r . This is the maximum number of distinct columns of A and
when duplicate columns exist, the one with the lower objective value can be
ignored.

a simple algorithm. Let x,y be an optimal solution to the MILP (8).
Let b′ = Ax. Then clearly x is an optimal solution for the ILP

max cT z

Az = b′ (9)
z ∈Z≥0.

We will use a theorem that gives a bound on the smallest support (i.e., non-
zero components) of an optimal solution of this ILP.

Theorem 16 ([2]). Consider the ILP (9). If it is bounded and feasible, then

there exists an optimal solution x′ with support of cardinality at most

2r log(2
√
r∆) =O(r log(r∆)).

Let x′ as in the theorem. Then x′,y is still an optimal solution for (8).
Furthermore, we can guess the support of x′ in time

mO(r log(r∆)) ≤ ∆O(r
2 log(r∆)) = (r∆)O(r

2 log(∆)).

If we remove all integer variables outside the support of x′ , this does not a�ect
the optimum of the MILP. It remains to solve an MILP with onlyO(r log(r∆))
integer variables. This can be solved using Kannan’s algorithm in time

(r log(r∆))O(r log(r∆)) · |I |O(1).

Putting everything together this yields a total running time of

(r∆)O(r
2 log(∆)) · (r log(r∆))O(r log(r∆)) · |I |O(1)

≤ (r∆)O(r
2 log(∆)) · |I |O(1).

For a constant r , this is quasi-polynomial in ∆. In fact, both guessing the
support and solving the reduced MILP require super-polynomial time in ∆.

a more sophisticated guessing approach. Consider again the
ILP (9) and let x∗ be an optimal vertex solution for its continuous relaxation.
By Theorem 9 from the last chapter, we know that there exists an integer
optimal solution x′ with

‖x′ − x∗‖1 ≤ k,

where k = O(r∆)r . Since x∗ is a vertex solution, the size of its support is
bounded by r . Let x′′ ∈Zm

≥0 with x′′i =max{0,dx∗i−ke}. By triangle inequality
we get ‖x′ − x′′‖1 ≤ (r + 1)k and also x′ − x′′ is non-negative.
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Let b′′ = A(x′−x′′). Note that b′′ is integer-valued and ‖b′′‖∞ ≤ (r+1)k∆.
Furthermore, x′ − x′′ is a feasible solution of the ILP

max cT z

Az = b′′ (10)
z ∈Z≥0,

and x′′,y is a feasible solution of the MILP

max cT z+ dTwA B

0 C


 zw

= b − b′′ (11)

z ∈Zm
≥0

w ∈Rn
≥0.

It is easy to see that when we add solutions of (10) and (11) we get a solution
for the original MILP. If either x′−x′′ or x′′,y were not optimal solutions, then
x′,y would not be optimal for the original MILP, which it is. Our approach
now is to guess b′′ and solve (10) and (11) individually. Indeed, we have
reduced solving an MILP to solving an ILP and a very similar MILP. Did
we gain anything? Surprisingly, (11) is easier to solve. Recall, that x′′,y is
an optimal solution and the support of x′′ is at most r . This reduces the
running time of the previous approach to a pseudo-polynomial one. In time
((r+1)k∆)r = (r∆)O(r

2) we guess the value of b′′ ; in timeO(∆)r2 we guess
the correct support of x′′ ; and in time rO(r) · |I |O(1) we solve the reduced
MILP (11). This gives an overall running time of (r∆)O(r2) · |I |O(1).

concluding remarks. Interestingly, the best algorithm for ILPs with
a constant number of constraints, where in addition upper bounds on the
variables (not counted as constraints) are given, has a very similar running
time, i.e., also a quadratic dependence in the exponent [30]. For both this prob-
lem and the MILP problem it is unclear whether this quadratic dependency
is necessary or there exists an algorithm with a linear exponent. Another
question would be to unify both extensions, i.e., to get a pseudo-polynomial
algorithm for MILPs with upper bounds on the variables.

Our algorithm uses the heavy machinery of Kannan’s algorithm, which in
turn uses the Ellipsoid method. Is this necessary or is there a simpler way?
We argue that this complexity is justi�ed, since pseudo-polynomiality for
this MILP implies polynomiality for both linear programming and integer
programming with a constant number of variables. Clearly, setting m = 0
makes the problem a classical linear program. Hence, the algorithm should
be at least as complicated as an LP solver. Furthermore, by setting A to the
identity matrix, B to its negation, and the �rst r entries of b to 0 we can
reduce an arbitrary integer program with r variables (and matrix C) to this
MILP with ∆ = 1. Note that this construction enforces integrality on the
(fractional) variables y.





The previous chapters were restricted to

ILPs with a constant number of constraints

on integer variables. Here we give an

algorithm for many constraints, when the

matrix has a certain block structure.

4
n- F O L D I N T E G E R P R O G R A M M I N G

We consider n-fold ILPs, a class of ILPs that have many constraints and
variables and can still be solved in pseudo-polynomial time. The characteristic
feature of an n-fold ILP is the block structure of its matrixA. Non-zero entries
appear only in the �rst r rows ofA and in blocks of size s×t along the diagonal
underneath. More precisely, the constraint matrix in an n-fold ILP has the
form

A=



A1 A2 . . . An

B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . Bn


,

where A1, . . . ,An are r × t matrices and B1, . . . ,Bn are s× t matrices. In n-fold
ILPs we also allow upper and lower bounds on the variables. Throughout the
chapter we subdivide a solution x into bricks of length t and denote by x(i)
the i-th one. The corresponding columns in A will be called blocks.

Lately, n-fold ILPs received great attention [4, 29, 36, 51, 54] and were stud-
ied intensively due to two reasons. Firstly, many optimization problems are
expressible as n-fold ILPs [26, 33, 36, 51]. Secondly, n-fold ILPs indeed can be
solved much more e�ciently than arbitrary ILPs [29, 33, 54]. The previously
best algorithm has a running time of (rs∆)O(r2s+rs2)L ·(nt)2 log2(n ·t)+LP
and is due to Eisenbrand et al. [29]. Here LP is the running time required for
solving the corresponding LP relaxation. This augmentation algorithm is the
last one in a line of research, where local improvement/augmenting steps are
used to converge to an optimal solution. Clever insights about the structure
of the improving directions allow them to be computed fast. Nevertheless,
the dependence on n in the algorithm above is still high. Indeed, in practice a
quadratic running time is simply not suitable for large data sets [5, 27, 50]. For
example when analyzing big data, large real world graphs as in telecommuni-
cation networks or DNA strings in biology, the duration of the computation
would go far beyond the scope of an acceptable running time [5, 27, 50]. For
this reason even problems which have an algorithm of quadratic running
time are still studied from the viewpoint of approximation algorithms with
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the objective to obtain results in sub-quadratic time, even at the cost of a
worse quality [5, 27, 50]. Hence, it is an intriguing question, whether the
quadratic dependency on the number of variables, i.e., nt, can be eliminated.
In this chapter, we answer this question a�rmatively. The technical novelty
comes from a surprising area: We use a combinatorial structure called splitter,
which has been used to derandomize Color Coding algorithms. It allows us
to build a powerful data structure that is maintained during the local search
and from which we can derive an improving direction in logarithmic time.
Handling unbounded variables in an n-fold ILP is a non-trivial issue in the
previous algorithms from literature. They had to solve the corresponding LP
relaxation and use proximity results. Unfortunately, it is not known whether
linear programming can be solved in near-linear time in the number of vari-
ables. Hence, it is an obstacle for obtaining a near-linear running time. We
manage to circumvent the necessity of solving the LP by introducing arti�cial
bounds as a function of the �nite upper bounds and the right-hand side of
the n-fold ILP.

summary of results

• We present an algorithm, which solves n-fold ILPs in time

(rs∆)O(r
2s+s2)L ·nt log5(nt) +LP,

where LP is the time to solve the LP relaxation of the n-fold ILP. This
is the �rst algorithm with a near-linear dependence on the number
of variables. The crucial step is to speed up the computation of the
improving directions.

• We circumvent the need for solving the LP relaxation. This leads to a
purely combinatorial algorithm with running time

(rs∆)O(r
2s+s2)L2 ·nt log7(nt).

• In the running times above the dependence on the parameters, i.e.,
(rs∆)O(r

2s+s2), improves on the function (rs∆)O(r
2s+rs2) in the previ-

ous best algorithms.

outline of new techniqes. We will brie�y elaborate our main
technical novelty. Let x be some feasible, non-optimal solution for the n-fold
ILP. It is clear that when y∗ is an optimal solution for

max{cT y | Ay = 0,` − x ≤ y ≤ u − x,y ∈Znt},

then x+ y∗ is optimal for the initial n-fold ILP. In other words, y∗ is a par-
ticularly good improving step. A sensible approximation of y∗ is to consider
directions y of small size and multiplying them by some step length, i.e., �nd
some λ · y with ‖y‖1 ≤ k for a value k depending only on ∆,r, and s. This
implies that at most k of the n bricks are used for y. If we randomly color the
blocks with k2 colors, then with high probability at most one block of every
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color is used. This reduces the problem to choosing a solution of a single
brick for every color and to aggregate them. We add data structures for every
color to implement this e�ciently. There is of course a chance that the colors
do not split y perfectly. We handle this by using a deterministic structure of
multiple colorings (instead of one) such that it is guaranteed that at least one
of them has the desired property.

related work. The �rst XP-time algorithm for solving n-fold integer
programs is due to De Loera et al. [26] with a running time of ng(A)L. Here
g(A) denotes a so-called Graver complexity of the constraint matrix A and
L is the encoding length of the largest number in the input. This algorithm
already uses the idea of iterative converging to the optimal solution by �nd-
ing improving directions. Nevertheless, the Graver complexity appears to be
huge even for small n-fold integer linear programs and thus this algorithm
was of no practical use [33]. The exponent of this algorithm was then greatly
improved by Hemmecke et al. [33] to a constant factor yielding the �rst cubic
time algorithm for solving n-fold ILPs. More precisely, the running time
of their algorithm is ∆O(t(rs+st))L · (nt)3, i.e., FPT-time parameterized over
∆,r,s, and t. Lately, two more breakthroughs were obtained. One of the re-
sults is due to Koutecký et al. [54], who gave a strongly polynomial algorithm
with running time ∆O(r

2s+rs2)(nt)6 · log(nt) +LP. Here LP is the running
time for solving the corresponding LP relaxation, which is possible in strongly
polynomial time, since the entries of the matrix are bounded. Simultaneously,
Eisenbrand et al. reduced in [29] the running time from a cubic factor to a
quadratic one by introducing new proximity and sensitivity results. This leads
to an algorithm with running time (∆rs)O(r

2s+rs2)L · (nt)2 log2(nt) + LP.
Note that both results require only polynomial dependency on t.

As for applications, n-fold ILPs are broadly used to model various problems
such as string, �ow or scheduling problems. We refer to the works [26, 33,
34, 36, 52, 59] and the references therein for an overview.

structure of the chapter. In Section 4.1 we introduce the necessary
preliminaries. Section 4.2 gives the algorithm for e�ciently computing the
augmenting steps. This is then integrated into an algorithm for n-fold ILPs in
Section 4.3. At �rst we require �nite variable bounds and then discuss how
to eliminate this requirement using the solution of the LP relaxation. Finally,
in Section 4.4 we discuss how to handle in�nite variable bounds without the
LP relaxation and give new structural results.

4.1 preliminaries

In the following we introduce n-fold ILPs formally and state the main results
regarding them. Further we familiarize splitters, a technique known from
Color Coding.
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De�nition 3. Let n,r,s, t ∈ N. Furthermore let A1, . . . ,An be r × t integer
matrices and B1, . . . ,Bn be s × t integer matrices. Then the n-fold matrix A is

of following form:

A=



A1 A2 . . . An

B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . Bn


.

The matrixA is of dimension (r+n · s)×n · t. We will divideA into blocks of

size (r + n · s) × t. Similarly, the variables of a solution x are partitioned into

bricks of length t. This means each brick x(i) corresponds to the columns of one

submatrix Ai and therefore also Bi . Given c,`,u ∈ Zn·t
and b ∈ Zr+n·s

, the

corresponding n-fold Integer Linear Programming problem is de�ned by:

max {cT x | Ax = b,` ≤ x ≤ u, x ∈Zn·t}.

The main idea for the state-of-the-art algorithms relies on some insight
about the Graver basis of n-fold ILPs, which are special elements of the kern
of A. More formally, we introduce the following de�nitions:

De�nition 4. The kern of a matrix A is de�ned as the set of integral vectors

x ∈Z· with Ax = 0. We write kern(A) for them.

De�nition 5. A Graver basis element g is a minimal element of kern(A).
An element is minimal, if it is not the sum of two sign-compatible elements

u,v ∈ kern(A).

Here, sign-compatible means that ui · vi ≥ 0 for every i.

Theorem 17 ([24]). Let A ∈ Zn×m
and let x ∈ kern(A). Then there exist

2n − 1 Graver basis elements g1, . . . ,g2n−1, which are sign-compatible with x
such that

x =
∑2n−1

i=1
λigi

for some λ1, . . . ,λ2n−1 ∈Z≥0.

Many results for n-fold ILPs rely on the fact that the `1-norm of Graver
basis elements for n-fold matrices are small. The best bound known for the
`1-norm is due to Eisenbrand et al. [29].

Theorem 18 ([29]). The `1-norm of the Graver basis elements of an n-fold
matrix A is bounded by O(rs∆)rs.

Next, we will introduce a technique called splitters (see e.g. [57]), which
has its origins in the FPT community and was used to derandomize the Color
Coding technique [3]. So far it has not been used with n-fold ILPs. We refer
the reader to the outline of techniques in the introduction for the idea on
how we apply the splitters.
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De�nition 6. An (n,k,`) splitter is a family of hash functions F from the

numbers {1, . . . ,n} to {1, . . . ,`} such that for every S ⊆ {1, . . . ,n} with |S | = k,
there exists a function f ∈ F that splits S evenly, that is, for every j, j ′ ≤ ` we
have |f −1(j)∩ S | and |f −1(j ′)∩ S | di�er by at most 1.

If ` ≥ k, the above means that there is some hash function that has no
collisions when restricted to S . Interestingly, there exist splitters of very
small size.

Theorem 19 ([3, 58]). There is an (n,k,k2) splitter of size k6 log(k) log(n)
which is computable in time k6 log(k) ·n log(n).

We note that an alternative approach to the result above is to use FKS
hashing. Although it has an extra factor of log(n), it is particularly easy to
implement.

Theorem 20 (Corollary 2 and Lemma 2, [32]). De�ne for every pair of primes

p < q < k2 log(n) the hash function x 7→ 1+ (p · (x mod q) mod k2). This
is an (n,k,k2) splitter of size O(k4 log2(n)).

We remark that a hash function from {1, . . . ,n} to {1, . . . ,`} naturally cor-
responds to a partition of the set {1, . . . ,n} into exactly ` subsets.

4.2 efficient computation of improving directions

The backbone of our algorithm is the e�cient computation of augmenting
steps. The important aspect is the fact that we can update the augmenting
steps very e�ciently if the input changes only slightly. In other words, when-
ever we change the current solution by applying an augmenting step, we do
not have to recompute the next augmenting step from scratch. The augment-
ing steps depend on a partition of the bricks. In the following we de�ne the
notion of a best step based on a �xed partition. Later, we will independently
�nd steps for a number of partitions and take the best among them.

De�nition 7. Let P be a partition of the n bricks into the k2 disjoint sets

P1,P2, . . . ,Pk2 . Let u ∈ Znt
≥0 and ` ∈ Znt

≤0 be some upper and lower bounds on

the variables (not necessarily the same as in the n-fold ILP). A (P ,k)-best step
is an optimal solution of the system below. We slightly abuse notation by using

Pj or bricks Sj ∈ Pj for the indices of variables contained in them.

max cT x

Ax = 0∑
i∈Sj

|xi | ≤ k ∀j ∈ {1, . . . ,k2}

xi = 0 ∀j ∈ {1, . . . ,k2}, i ∈ Pj \ {Sj}

` ≤ x ≤ u
x ∈Znt

Sj ∈ Pj ∀j ∈ {1, . . . ,k2}.
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This means a (P ,k)-best step is an element of kern(A), which uses only
one brick of every Pj ∈ P . Within that brick the norm of the solution must
be at most k. Later, we will choose k as the upper bound for the `1-norm of a
Graver basis element, i.e., k =O(rs∆)rs.

Lemma 21. Consider the problem of �nding a (P ,k)-best step in an n-fold
matrix where the lower and upper bounds u,` can change. This problem can

be solved initially in time kO(r) ·∆O(r2+s2) ·nt and then in kO(r) ·∆O(r2+s2) ·
log(nt) update time whenever the bounds of a single variable change.

Proof. Let P be a partition of the bricks from matrix A into k2 disjoint sets
P1,P2, . . . ,Pk2 . Solving the (P ,k)-best step problem requires that from each
set Pj ∈ P we choose at most one brick and set this brick’s variables. All
variables in other bricks of Pj must be 0.

Let x be a (P ,k)-best step and let x(j) have the values of x in variables of Pj
and 0 in all other variables. Then by de�nition, ‖x(j)‖1 ≤ k. This implies that
the right-hand side regarding x(j), that is to say, Ax(j), is also small. Since
the absolute value of an entry inA is at most ∆, we have that ‖Ax(j)‖∞ ≤ k∆.
Let ai be the i-th row of A. If i > r , then aix(j) = 0. This is because Ax = 0
and ai has all its support either completely inside Pj or completely outside
Pj . Meaning, the value of Ax(j) is one of the (2k∆+ 1)r many values we
get by enumerating all possibilities for the �rst r rows. Furthermore, since
P has only k2 sets, the partial sum A(x(1) + · · ·+ x(j)) is always one of
(2k3∆+ 1)r = (k∆)O(r) many candidates.

Hence to �nd a (P ,k)-best step we can restrict our search to solutions
whose partial sums stay in this range. To do so, we set up a graph containing
k2+ 2 layers L0,L1, . . .Lk2 ,Lk2+1. An example is given in �gure 4. The �rst
layer L0 will consist of just one node marking the starting point with partial
sum zero. Similarly, the last layer Lk2+1 will just contain the target point also
having partial sum zero, since a (P ,k)-best step is an element of kern(A).
Each layer Lj with 1 ≤ j ≤ k2 will contain (2k3∆+ 1)r many nodes, each
representing one possible value of A(x(1) + · · ·x(j)). Two points v,w from
adjacent layers Lj−1, Lj will be connected if the di�erence of the correspond-
ing partial sums, namely w − v, can be obtained by a solution y of variables
from only one brick of Pj (with ‖y‖1 ≤ k). The weight of the edge will be the
largest gain for the objective function cT y over all possible bricks. Hence, it
could be necessary to compute and compare up to n values for each Pj and
each di�erence in the partial sums to insert one edge into the graph. Finally,
we just have to �nd the longest path in this graph as it corresponds to a
(P ,k)-best step. The out-degree of each node is bounded by (2k3∆+ 1)r

since at most this many nodes are reachable in the next layer. Therefore the
overall number of edges is bounded by

(k2+ 2) · (2k3∆+ 1)r · (2k3∆+ 1)r = (k∆)O(r).

Using the Bellman-Ford algorithm we can solve the Longest Path problem for
a graph withN vertices andM edges in timeO(N ·M) as the graph is directed
and acyclic. This gives a running time of (k∆)O(r) · (k∆)O(r) = (k∆)O(r) for



4.2 efficient computation of improving directions 39

solving the problem. Constructing the graph, however, requires solving a
number of IPs of the form

max c′T xAjBj
x =

b′0


‖x‖1 ≤ k
`′ ≤ x ≤ u′

x ∈Zt,

where b′ ∈ Zr is the corresponding right-hand side of the top rows and
`′,u′,c′ are the upper and lower bounds, and the objective of the block. This
is an IP with r + s+ 1 constraints, t variables, lower and upper bounds, and
entries of the matrix bounded by ∆ in absolute value. Using the algorithm by
Eisenbrand and Weismantel [30], solving one of them requires time

t ·O(r+ s+1)r+s+4 ·O(∆)(r+s+1)(r+s+4) · log2((r+ s+1)∆)+LP,

where LP is the time for solving the LP relaxation. This simpli�es to t ·
∆O(r

2+s2) + LP when we do not care about the constant in the exponent.
Note that strictly speaking the constraint ‖x‖1 ≤ k is not linear, but by
standard construction the ILP can easily be transformed into an equivalent
one replacing every variable xi with a composition x+i − x

−
i of two positive

variables. Then the `1-norm is simply the sum over all variables. This does
not a�ect the asymptotic running time.

Furthermore, a little thought allows us to reduce the dependency on t
to a logarithmic one: Since the number of constraints in the ILP above is
very small, there are only ∆O(r+s) many di�erent columns. Because of the
cardinality constraint ‖x‖1 ≤ k, we only have to consider 2k many variables
of each type of column, namely: The k many with u′i > 0 and maximal c′i and
the k many with `′i < 0 and minimal c′i .

If some solution uses a variable not in this set, then by pigeonhole principle
there is a variable with the same column values and a superior objective
value and which can be increased/decreased. We can reduce the variable
outside this set and increase the corresponding variable inside this set until
all variables outside the set are 0. We can use an appropriate data structure
(e.g. AVL trees) to maintain a set of all variables with u′i > 0 (`′i < 0) such
that we can �nd the k best among them in time O(k log(t)). Whenever the
bounds of some variable change, we might have to add or remove entries,
which also takes only logarithmic time. After initialization in time O(nt) (in
total for all bricks) solving such an IP can therefore be implemented in time

k log(t) + 2k∆O(r+s)∆O(r
2+s2) +LP

≤ k log(t)∆O(r
2+s2) + LP ≤ k log(t)∆O(r

2+s2).

The last inequality holds, because using Tardos’ algorithm [69] LPs can be
solved in time polynomial in the encoding size of the matrix, which can be
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L0 L1 L2 Lk2 Lk2+1

. . .

. . .

...
...

...

. . .

Figure 4: This �gure shows an example for a layered graph obtained while solving
the (P ,k)-best step problem. There are k2 + 2 layers, visually separated
by gray dashed lines. This includes one source layer L0, one target layer
Lk2+1 both with just a single node representing the zero sum. Further there
are k2 layers with (2k3∆+ 1)r nodes each, where in one layer the nodes
stand for all reachable partial sums. Two points v,w from adjacent layers
Lj−1, Lj will be connected if the di�erence of the corresponding partial
sums, namely w−v, can be obtained by a solution y of variables from only
one brick of Pj (with ‖y‖1 ≤ k). The weight of the edge will be the largest
gain for the objective function cT y over all possible bricks. For the sake of
clarity both the values of the nodes and the edges are not illustrated.

bounded by 2k∆O(r+s) · (r+ s) · log(∆). This is dominated by the other term.
The number of IPs to solve is at most n times the number of edges, since we
have to compare the values of up to n bricks. This gives a running time of

O(nt) + n · (k∆)O(r) · log(t) ·∆O(r
2+s2) ≤ nt · kO(r) ·∆O(r

2+s2)

for constructing the graph. To obtain the update time from the premise of
the theorem, it is perfectly �ne to solve the Longest Path problem again, but
we cannot construct the graph from scratch. However, in order to construct
the graph we still have to �nd the best value over all bricks for each edge.
Fortunately, if only a few bricks are updated (in their lower and upper bounds)
it is not necessary to recompute all values. Each edge corresponds to a
particular Pj ∈ P and a �xed right-hand side (a possible value of Ax(j)). We
require an appropriate data structure De for every edge e, which supports
fast computation of the operations FindMax, Insert, and Delete. Again,
an AVL tree computes each of these operations in time O(log(N )), where
N is the number of elements. In De we store pairs (v, i) where i is a brick
in Pj and v is the maximum gain of brick i for the right-hand side of e. The
pairs are stored in lexicographical order. Since there are at most n bricks in
Pj , the data structure will have at most n elements. Initially, we can build
De in time nt ·∆O(r2+s2) (this is replicated for each edge). Now consider a
change to the instance. Recall that we are looking at changes that a�ect only
a single brick, namely the upper and lower bounds within that brick change.
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We are going to update the data structure De (for each edge) to re�ect the
changes and we are going to recompute the edge value of each edge e using
De. Then we simply solve the Longest Path problem again. Let Pj ∈ P be
the set that contains the brick i that has changed in some variable. We only
have to consider edges from Lj−1 to Lj , since none of the other edges are
a�ected by the change. For a relevant edge e we compute the previous value
v and current value v′ that the brick i would produce (before and after the
bounds have changed). InDe we have to remove (v, i) and insert (v′, i). Both
operations need only O(log(n)) time. Then the running time to update De
for one edge is

k log(t) ·∆O(r
2+s2) +O(log(n)) ≤ k log(nt) ·∆O(r

2+s2).

In order to update the edge value of e using De, we simply have to �nd the
maximum element in De, which again takes time O(log(n)). To summarize,
the total time to update the (P ,k)-best step after a change to a single brick
consists of (1) updating each De, (2) �nding the maximum in each De, and
(3) solving the Longest Path problem. We conclude that the update time is

k log(nt) ·∆O(r
2+s2) · (k∆)O(r) + log(n) · (k∆)O(r) + (k∆)O(r)

≤ kO(r)∆O(r
2+s2) · log(nt).

4.3 the augmenting step algorithm

In this section we will assume that all lower and upper bounds are �nite
and give a complete algorithm for this case. Later, we will explain how
to cope with in�nite bounds. We start by showing how to converge to an
optimal solution when an initial feasible solution is given. To compute the
initial solution, we also apply this algorithm on a slightly modi�ed instance.
The approach resembles the procedure in previous literature, although we
apply the results from the previous section to speed up the computation of
augmenting steps.

Let x be a feasible solution for the n-fold ILP, in particular Ax = b. Let x∗
be an optimal one. Theorem 17 states that we can decompose the di�erence
vector x′ = x∗ − x into at most 2nt − 1 weighted Graver basis elements, that
is

x′ = x∗ − x =
∑2nt−1

j=1
λjgj .

For intuition, consider the following simple approach (this is similar to the
algorithm by Hemmecke et al. [33]). Suppose we are able to guess the best
vector λigi = argmaxj{cT (λjgj)} regarding the gain for the objective func-
tion. This pair of step length λi and Graver element gi is called the Graver
best step. Then we can augment the current solution x by adding λigi to it,
i.e., we set x← x+λigi . Feasibility follows because all gj are sign-compatible.
This procedure is repeated until no improving step is possible and therefore
x must be optimal. In each iteration this decreases the gap to the optimal
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solution by a factor of at least 1− 1/(2nt) by the pigeonhole principle. It
may be costly to guess the precise Graver best step, but for our purposes it
will su�ce to �nd an augmenting step that is approximately as good.

We will now describe how to guess λi . Since x+λigi is feasible, we have
that λigi ≤ u − x ≤ u − ` and λigi ≥ ` − x ≥ ` − u. Let (gi)j ∈ supp(gi)
be some non-zero variable. If (gi)j > 0, then λi ≤ (λigi)j ≤ uj − `j . Other-
wise, (gi)j < 0 and λi ≤ −(λigi)j ≤ −(`j − uj) = uj − `j . Hence, it su�ces
to check all values in the range {1, . . . ,Γ }, where Γ = maxj{uj − `j}. Pro-
ceeding like in [29], we lower the time a bit further by not taking every
value into consideration. Instead, we look at guesses of the form λ′ = 2k for
k ∈ {0, . . . ,blog(Γ )c}. Doing so we lose a factor of at most 2 regarding the
improvement of the objective function, since cT (λ′gi) > 0.5 · cT (λigi) when
taking λ′ = 2blog(λi)c > λi/2. Fix λ′ to the value above. Next we describe
how to compute an augmenting step that is at least as good as λ′gi . Note
that gi is a solution of

Ay = 0

‖y‖1 ≤ k

d` − x
λ′
e ≤ y ≤ bu − x

λ′
c,

where k = O(rs∆)rs is the bound on the norm of Graver elements from
Theorem 18. Suppose we have guessed some partition P = {P1, . . . ,Pk2} of
the bricks such that of each Pj only a single brick has non-zero variables in gi .
Clearly, the augmenting step λ′y∗, where y∗ is a (P ,k)-best step with bounds
` = d `−xλ′ e and u = bu−xλ′ cwould be at least as good as λ′gi . Indeed Lemma 21
explains how to compute such a (P ,k)-best step dynamically and when we
add λ′gi to x we only change the bounds of at most k3 many variables. Hence,
it is very e�cient to recompute (P ,k)-best steps until we have converged to
the optimal solution. However, valid choices of λ′ and P might be di�erent in
every iteration. Regarding λ′ , we simply compute (P ,k)-best steps for each
of the O(log(Γ )) many guesses and take the best among them. We proceed
similarly for P . We guess a small number of partitions and guarantee that
always at least one of them is valid. For this purpose we employ splitters.
More precisely, we compute a (n,k,k2) splitter of the n bricks. Since gi has
a norm bounded by k, it can also only use at most k bricks. Therefore the
splitter always contains a partition P = {P1, . . . ,Pk2} where gi only uses a
single brick in every Pj .

To recap, in every iteration we solve a (P ,k)-best step problem for every
guess λ′ and every partition P in the splitter and take the overall best solution
as an improving direction λ′y∗. Then we update our solution x by adding
λ′y∗ onto it. At most k2 many bricks change (and within each brick only k
variables can change) and therefore we can e�ciently recompute the (P ,k)-
best steps for every guess for the next iteration. This way we guarantee that
we improve the solution by a factor of at least 1−1/(4nt) in every iteration.

Recall that we still have to �nd an initial solution. This solution can indeed
be computed by using the augmenting step algorithm described above. To
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obtain an initial solution for our n-fold ILP, we construct a new n-fold ILP
which has a trivial feasible solution and whose optimal solution corresponds
to a feasible solution of the original problem.

First we extend our n-fold matrix A by adding (r + s)n new columns as
follows: After the �rst block (A1,B1,0, . . . ,0)T add r + s columns. The �rst
r ones will contain an r × r identity matrix we call Ir . This matrix Ir has
all ones in the diagonal. All other entries are zero. The next s columns will
contain an s × s identity matrix Is. This submatrix will start at row r + 1.
Again all other entries are zeros in these columns. After the next block we
again introduce r+ s new columns, the �rst r ones containing just zeros, the
next an Is matrix at the height of B2. We repeat this procedure of adding
r + s columns after each block, the �rst r having solely zero entries and the
next s containing Is at the height of Bi until our resulting matrix Ainit for
�nding the initial solution looks like the following:

Ainit =



A1 Ir 0 A2 0 0 . . . An 0 0

B1 0 Is 0 0 0 . . . 0 0 0

0 0 0 B2 0 Is . . . 0 0 0

0 0 0 0 0 0
. . . 0 0 0

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 Bn 0 Is


.

Due to our careful extension Ainit has again n-fold structure. For clarity
the relevant submatrices are framed in the matrix above. Remark that zero
entries inside of a block do not harm as solely the zeros outside of the blocks
are necessary for an n-fold structure. At �rst glance, it seems that for the
right-hand side b we now have a trivial solution consisting only of the new
columns. Keep in mind, however, that the old variables have upper and lower
bounds and that 0 might be outside these bounds. In order to handle this case
we subtract `, the lower bound, from all upper and lower bounds and set the
right-hand side to b′ = b −A`. We get an equivalent n-fold ILP where every
solution is shifted by `. Now we can �nd a feasible solution (for b′) using
solely the new variables by de�ning

y′ = (0, . . . ,0,b′1,b
′
2, . . .b

′
r+s,0, . . . ,0,

b′r+s+1, . . . ,b
′
r+2s,0, . . . ,0,b

′
r+ns−s,b

′
r+ns)

T

where each non-zero entry corresponds to the columns containing the subma-
trices Ir and Is respectively with a multiplicity of the remaining right-hand
side b′ . Next we introduce an objective function that penalizes using the new
columns by having non-zero entries c′i corresponding to the positions of the
new variables. We set

cinit = (0, . . .0,c′1, . . . c
′
r+s,0, . . .0,c

′
r+ns−s, . . . ,c

′
r+ns)

T ,
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where the zero entries correspond to old variables. The values c′i and the
lower and upper bounds for the new variables depend on the sign of the
right-hand side.

• If b′i ≥ 0, then set c′i = −1, the lower bound to 0, and the upper bound
to b′i . This way the variable can only be non-negative.

• If b′i < 0, set ci = 1, the lower bound to b′i and the upper bound to 0.
Hence this variable must be non-positive.

Clearly a solution has a value of 0, if and only if none of the new columns
are used and no solution of better value is possible. Hence, if we use our
augmenting step algorithm and solve this problem optimally, we either �nd
a solution with value 0 or one with a negative value. In the former, we
indeed have not taken any of the new columns into our solution, therefore
we can delete the new columns and obtain a solution for the original problem
(after adding ` to it). Otherwise, there is no feasible solution for the original
problem as we solved the problem optimal regarding the objective function.

Theorem 22. The dynamic augmenting step algorithm described above com-

putes an optimal solution for the n-fold Integer Linear Program problem in time

(rs∆)O(r
2s+s2) ·O(L2 ·nt log5(nt)) when �nite variable bounds are given for

each variable. Here L is the encoding length of the largest occurring number in

the input.

Proof. Due to Theorem 17 we know that the di�erence vector of an optimal
solution x∗ to our current solution x, i.e. x′ = x∗−x, can be decomposed into
2nt − 1 weighted Graver basis elements. Hence, if we adjust our solution x
with the Graver best step, we reduce the gap between the value of an optimal
solution and our current solution by a factor of at least 1− 1/(2nt) due to
the pigeonhole principle. Our algorithm �nds an augmenting step that is at
least half as good as the Graver best step. Therefore, the gap to the optimal
solution is still reduced by at least a factor of 1− 1/(4nt).

Regarding the running time we �rst have to compute the splitter. Theorem
19 says, that this can be done in time kO(1) ·n log(n) = (rs∆)O(rs) ·n log(n).
Next we have to try all values for the weight λ. Due to our step-length we
get O(log(Γ )) guesses. Recall that Γ denotes the largest di�erence between
an upper bound and the corresponding lower bound, i.e., Γ =maxj{uj − `j}.
Fixing one, we have to �nd the best improving direction regarding each of the
((rs∆)O(rs))O(1) log(n) = (rs∆)O(rs) log(n) partitions. In the �rst iteration
we have to set up the tables in time kO(r) · ∆O(r2+s2) · nt = (rs∆)O(r

2s) ·
∆O(r

2+s2) · nt by computing the gain for each possible summand for each
set and setting up the data structure. In each following iteration we update
each table and search for the optimum in time kO(r) ·∆O(r2+s2) · log(nt) =
(rs∆)O(r

2s) ·∆O(r2+s2) · log(nt). Now it remains to bound the number I of
iterations needed to converge to an optimal solution. To obtain such a bound
we calculate:

1 > (1− 1/(4nt))I |cT (x∗ − x)|.
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By reordering the term, we get

I <
− log(|cT (x∗ − x)|)
log(1− 1/(4nt))

.

As log(1+ x) = Θ(x), we can bound log(1 − 1/(4nt)) by Θ(−1/(4nt))
and thus

I < O(
− log(|cT (x∗ − x)|)
−1/(4nt)

) ≤O(4nt log(|cT (x∗ − x)|)).

As the maximal di�erence between the current solution x and an optimal
one x∗ can be at most the maximal value of c times the largest number in
between the bounds for each variable, we get |cT (x∗ − x)| ≤ ntmaxi |ci | · Γ
and thus

I < O(4nt log(|cT (x∗ − x)|))
≤O(nt log(ntmax

i
|ci | · Γ )) ≤O(nt log(ntΓ max

i
|ci |)).

Let L denote the encoding length of largest integer in the input. Clearly 2L

bounds the largest absolute value in c and thus we get

I < O(nt log(ntΓ max
i
|ci |)) =O(nt log(ntΓ 2L)).

Hence after this amount of steps by always improving the gain by a factor
of at least 1− 1/(4nt) we close the gap between the initial solution and an
optimal one. Given this, we can now bound the overall running time with:

(rs∆)O(rs) ·n log(n)︸                   ︷︷                   ︸
Splitter

+ (rs∆)O(rs) log(n)︸               ︷︷               ︸
Partitions

· (rs∆)O(r
2s) · (rs∆)O(r

2+s2) ·nt︸                                ︷︷                                ︸
First Iteration

+O(nt log(ntΓ 2L))︸                ︷︷                ︸
I

·O(log(Γ ))︸      ︷︷      ︸
λ Guesses

· (rs∆)O(rs) log(n)︸               ︷︷               ︸
Partitions

· (rs∆)O(r
2s) · (rs∆)O(r

2+s2) · log(nt))︸                                        ︷︷                                        ︸
Update Time

=O((nt log(ntΓ 2L)) ·O(log(Γ )) · (rs∆)O(r
2s+s2) · log2(nt)

= (rs∆)O(r
2s+s2) ·O(log2(Γ + 2L) ·nt log3(nt)).

Here Splitter denotes the time to compute the initial set P of partitions and
Partitions denotes the cardinality of P . First Iteration is the time to solve the
�rst iteration of the (P ,k)-best step problem. Further λGuesses is the number
of guesses we have to do to get the right weight and lastly Update Time is
the time needed to solve each following (P ,k)-best step including updating
the bounds and data structures.
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Note, that we still have to argue about �nding the initial solution, since in
the construction of the modi�ed n-fold ILP the parameters slightly change.
The length of a brick expand to t′ = t+r+s. This, however, can be hidden in
theO-Notation of (rs∆)O(r2s+s2). Further, Γ ′ , the biggest di�erence in upper
and lower bounds can change as we introduced new variables admitting new
bounds. The di�erence between the bounds of old variables does not change.
For the new variables, however, the di�erence can be as large as ‖b′‖∞. Thus
we bound this value by

‖b′‖∞ = ‖b−A`‖∞ ≤ ‖b‖∞+ ‖A`‖∞ ≤ ‖b‖∞+∆ · ‖`‖1 ≤O(∆ ·nt ·2L).

We conclude that the running time for �nding an initial solution (and also
the overall running time) is

(rs∆)O(r
2s+s2)O(log2(Γ ′ + 2L)nt log3(nt))

= (rs∆)O(r
2s+s2)O(log2(∆2Lnt)nt log3(nt))

= (rs∆)O(r
2s+s2) · L2nt log5(nt).

handling infinite bounds Remark, that if no �nite bounds are given
for all variables, we have to introduce some arti�cial bounds �rst. Here we can
proceed as in [29], where �rst the LP relaxation is solved to obtain an optimal
fractional solution z∗. Using the proximity results from [29], we know that an
optimal integral solution x∗ exists such that ‖x∗ − z∗‖1 ≤ nt(rs∆)O(rs). This
allows us to introduce arti�cial upper bounds for the unbounded variables.
Remark that this comes at the price of solving the corresponding relaxation
of the n-fold Integer Linear Program problem. However we also lessen the
dependency from L2 to L as the �nite upper and lower bounds can also be
bounded more strictly due to the same proximity result. This yields an overall
running time of (rs∆)O(r2s+s2)·L·nt log5(nt)+LP. Nevertheless, solving this
LP can be very costly, indeed it is not clear if a potential algorithm even runs
in time linear in n. Thus, it may even dominate the running time of solving
the n-fold ILP with �nite upper bounds. Fortunately we can circumvent the
necessity of solving the LP as we will describe in the following section using
new structural results.

Theorem 23. The dynamic augmenting step algorithm described above com-

putes an optimal solution for the n-fold Integer Linear Program problem in time

(rs∆)O(r
2s+s2) ·L ·nt log5(nt)+LP when some variables have in�nite upper

bounds. Here LP is the running time to solve the corresponding relaxation of

the n-fold ILP problem.

4.4 structural properties of solutions

In the following, we state that even with in�nite variable bounds in an n-fold
ILP there always exists a solution of small norm (if the n-fold ILP has a �nite
optimum). Therefore, we can apply the algorithm for �nite variable bounds
by replacing every in�nite one with this value.
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Lemma 24. If the n-fold ILP is feasible and y is some vector satisfying the vari-

able bounds, then there exists a feasible solution x with ‖x‖1 ≤ O(rs∆)rs+1 ·
(‖y‖1+ ‖b‖1)

Proof. We take the same construction as in the algorithm for �nding a feasible
solution in. Indeed, this construction was not setup for in�nite bounds, but we
consider the straight-forward adaption where in�nite bounds simply stay the
same. The useful property is that an optimal solution for this n-fold ILP is a
feasible solution for the original one. Recall, the construction has a right-hand
side b′ with ‖b′‖1 ≤ ‖Ay‖1+ ‖b‖1, the value of t becomes t′ = t+ r+ s, and
the objective function c′ consists only of the values {−1,0,1}. Moreover, there
is a feasible solution y with ‖y‖1 = ‖b′‖1. Let x∗ be an optimal solution for this
altered n-fold ILP that minimizes ‖x∗ − y‖1. We consider the decomposition
into Graver elements

∑2n(t+r+s)−1
i=1 λigi = x∗ − y. Then c′T gi > 0 or λi = 0

for all i, since otherwise x∗ − gi would be either a better solution than x∗ or
equally good, but closer. It follows that c′T gi ≥ 1 by discreteness of c. Also,
by Theorem 18, ‖gi‖1 ≤O(rs∆)rs. Recall that by construction c′T x∗ = 0 and
c′T y = −‖b′‖1, which implies

∑
i λi ≤ ‖b′‖1. Therefore,

‖x∗‖1 ≤ ‖y‖1+ ‖
∑
i

λigi‖1 ≤ ‖b′‖1+
∑
i

λi‖gi‖1

≤ ‖b′‖1 + ‖b′‖1 ·O(rs∆)rs ≤ (‖b‖1 + ‖y‖1) ·O(rs∆)rs+1.

Here we use that ‖b′‖1 ≤ ‖b‖1+ ‖Ay‖1 ≤ ‖b‖1+ (r + s)∆ · ‖y‖1.

Lemma 25. If the n-fold ILP is bounded and feasible, then there exists an

optimal solution x with ‖x‖1 ≤ (rs∆)O(rs) · (‖b‖1+ntζ), where ζ denotes the

largest absolute value among all �nite variable bounds.

Proof. Clearly there exists a (possibly infeasible) solution y satisfying the
bounds with ‖y‖1 ≤ ntζ. By the previous lemma we know that there is
a feasible solution y with ‖y‖1 ≤ (rs∆)O(rs) · (‖b‖1 + ntζ). Let x∗ be an
optimal solution of minimal norm. W.l.o.g. assume that x∗ − y has only non-
negative entries. If there is a negative entry, consider the equivalent n-fold
problem with the corresponding column inverted and its bounds inverted
and swapped.

We know that there is a decomposition of x∗ − y into weighted Graver
basis elements

∑2nt−1
i=1 λigi = x∗ − y. Since every gi is sign-compatible with

x∗−y, we have that all gi are non-negative as well. Furthermore, it holds that
cT gi > 0 or λi = 0 for every gi , since otherwise x∗−gi would be a solution of
smaller norm with an objective value that is not worse. Now suppose toward
contradiction that there is some gi where all variables in supp(gi) have
in�nite upper bounds. Then the n-fold ILP is clearly unbounded, since y+α·gi
is feasible for every α > 0 and in this way we can scale the objective value
beyond any bound. Thus, every Graver basis element adds at least the value
1 to some �nitely bounded variable. This implies that

∑
i λi ≤ ‖y‖1+ ntζ: If
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not, then by pigeonhole principle there is some �nitely bounded variable x∗j
with

x∗j = yj + (
∑
i

λigi)j > yj + ζ+ |yj | ≥ ζ.

Since x∗ is feasible, this cannot be the case. We conclude,

‖x∗‖1 ≤ ‖y‖1+
∑
i

λi‖gi‖1 ≤ ‖y‖1+O(rs∆)rs ·
∑
i

λi

≤O(rs∆)rs · (‖y‖1 + ntζ) ≤ (rs∆)O(rs) · (‖b‖1 + ntζ).

This yields an alternative approach to solving the LP relaxation, because
now we can simply replace all in�nite bounds with ±(rs∆)O(rs) ·nt ·2L. Then
we can apply the algorithm that works only on �nite variable bounds. The
new encoding length L′ of the largest integer in the input can be bounded by

L′ ≤ log((rs∆)O(rs) · 2L ·nt) ≤O(rs · log(rs∆) ·L · log(nt)).

This way we obtain the following.

Theorem 26. We can compute an optimal solution for an n-fold ILP in time

(rs∆)O(r
2s+s2) ·L2 ·nt log7(nt).

In a similar way, we can derive the following bound on the sensitivity
of an n-fold ILP. This bound is not needed in our algorithm, but may be of
independent interest, since it implies small sensitivity for problems that can
be expressed as n-fold ILPs.

Theorem 27. Let x be an optimal solution of an n-fold ILP with right-hand

side b, in particular,Ax = b. If the right hand side changes to b′ and the n-fold
ILP still has a �nite optimum, then there exists an optimal solution x′ for b′

(Ax′ = b′) with ‖x − x′‖1 ≤O(rs∆)rs · ‖b − b′‖1.

It is notable that this bound does not depend on n. This is in contrast to
the known bounds for the distance between LP and ILP solutions of an n-fold
ILP [29].

Proof. Consider the matrix Ainit from the construction used for �nding an
initial solution, that is, identity matrices are added after every block. As
opposed to the proof of Lemma 24, we leave everything except for the matrix
the same. In particular, we do not change the value in the objective function c
and new columns get a value of 0. As the right-hand side of the n-fold ILP we
use b′ . For some solution x, we write xold and xnew for the vector restricted
to the old variables (with all others 0) and the variables added in the matrix
Ainit, respectively. This means x = xold + xnew.

Let x be an optimal solution with Ainit · xnew = b′ − b and x′ one with
Ainit ·x′new = 0. Here we assume that x′ is chosen so as to minimize ‖x−x′‖1.
Those solutions naturally correspond to solutions of the original n-fold ILP
with right-hand side b = b′ − (Ainit · xnew) and b′ = b′ − Ainit · x′new. Let
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∑2n(t+r+s)−1
i=1 λigi = x′ − x be the decomposition into Graver basis elements.

Suppose toward contradiction there is some gi where all of supp(gi) are old
variables. If cT gi > 0, then x is not optimal, because x+ gi is feasible and
has a better objective value. If on the other hand cT gi ≤ 0, then x′ − gi is a
solution of at least the same value as x′ and thus ‖x − x′‖1 is not minimal.
Indeed, this means ‖(gi)new‖1 ≥ 1 for all gi . In other words, each graver
element contains a non-zero new variable. Recall that Ainit is the identity
matrix when restricted to the new variables (plus some zero columns). Due
to the sign-compatibility we get∑

i

λi ≤ ‖(
∑
i

λigi)new‖1 = ‖Ainit · (
∑
i

λigi)new‖1

= ‖Ainit · (x′ − x)new‖1 = ‖b − b′‖1.

We conclude,

‖x − x′‖1 = ‖
∑
i

λigi‖1 ≤O(rs∆)rs ·
∑
i

λi ≤O(rs∆)rs · ‖b − b′‖1.

Proof. The di�erence vector b∗ = b′−b will have all entries equal zero except
one with value 1. The position will either correspond to the A1 blocks or to
one of the A2 blocks. Now extent the n-fold A as follows: Add one column
after each brick. Each of the new columns will solely consist of zero entries,
except of one column j = b∗. This column will be placed either after the �rst
brick, if the 1 entry corresponds to the A1 block or after the corresponding
A2 block. Clearly this new matrix A∗ is an n-fold. Further a solution x∗ for
A∗x∗ = b′ clearly matches all entries of x for the corresponding columns and
set the position j to 1, the remaining new columns equal zero.

The next step is to bound the distance of a solution x′ to x using x∗.
Therefore look at the vector x∗−x′ = x′∗. The vector x′∗ clearly is an element
of the kern of A∗. Thus is can be decomposed into its Graver basis elements
g1, . . . ,gk with each Graver element being bounded by O((rs∆)rs). Each of
the elements are sign-compatible, w.l.o.g. assume all entries are positive. Then
clearly only one element gz contains a 1 in the jth column. For this circle gz
set the one entry to zero, such that we obtain a new vector g∗z . This is clearly
not an element of the kern of A∗ anymore, since A∗g∗z = (0 . . .010 . . .0)T ,
where the non zero entry appears in the jth place. Hence we can simply add
g∗z to our solution x, such that A(x+ g∗z) = A(x′) = b′ . Indeed to legitimate
add these vectors, we �rst have to drop all additional columns of g∗z , which
where all zero and thus did not in�uence the right-hand side. Since gz is a
Graver basis element and g∗z is obtained from it by just setting one entry
to zero, we can bound g∗z with O((rs∆)rs). Hence there exists a solution x′
close to x.

Indeed we also have to prove the optimality of this solution x′ . Therefore
look at the remaining Graver basis elements g1, . . . ,gk without gz. If a cycle
is of positive gain regarding the objective function c, then is could have been
added to x and x was thus not an optimal solution. On the other hand if
the gain is negative, then we could have subtracted it from x′ and thus x′
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would not have been optimal. Hence the gain for each Graver basis equals
zero and thus does not contribute to a more optimal solution. Hence x+ g∗z
is optimal.



5T H E S A N TA C L A U S P R O B L E M

The following problem is notable for its

in�uencial proof technique that has inspired

also the work in the later chapters.

A generalization of the problem we consider goes back to Bansal and Srivi-
denko [12]. In the Santa Claus problem there are players P and resources
R. Every resource j has a value vij ≥ 0 for player i. The goal is to �nd an
allocation σ :R→P such that mini∈P

∑
j∈σ−1(i) vij is maximized.

In the restricted variant, we consider only values vij ∈ {0,vj} where vj > 0
is a value depending only on the resource. This can also be seen as each
player desiring a subset R(i) of resources which have a value of vj for him,
whereas other resources cannot be assigned to him.

For the restricted Santa Claus problem there is a strong LP relaxation, the
con�guration LP. The proof that this has a small integrality gap (see [8]) is not
trivial. It works by de�ning an exponential time local search algorithm which
is guaranteed to return an integral solution of value not much less than the
fractional optimum. This technique has since been used in other problems,
like the minimization of the makespan [68, 41]. Signi�cant research has also
gone into making the proof constructive [62, 7, 40]. Yet, no improvement
of the bound of 4 on the integrality gap has been found. We show that the
original analysis is not tight and can be improved to 3+ 5/6 ≈ 3.8333 1.
Although the proof of the integrality gap is not constructive, it does allow
to estimate the optimum up to a factor of 3.8334 in polynomial time by
solving the con�guration LP. Furthermore, this provides strong evidence for
the existence of a constructive algorithm with approximation ratio better
than 4.

Theorem 28. The integrality gap of the con�guration LP for the restricted

Santa Claus problem is at most 3+ 5/6.

configuration lp. The con�guration LP is an exponential size LP
relaxation for the Santa Claus problem, but its solution can be approximated
in polynomial time within a ratio of (1+ ε) for every ε > 0 [12]. For every
player i and every τ ≥ 0 let

C(i,τ) =
{
S ⊆R(i) :

∑
j∈S

vj ≥ τ
}
.

1 The same bound was found simultaneously and independently by Cheng and Mao [22]. Later
the same authors improved it to 3.808 [23].
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These are the con�gurations for player i and value τ . They are a selection of
resources that have value at least τ and are desired by player i. The optimum
OPT∗ of the con�guration LP is the highest τ such that the following linear
program is feasible.

Primal of the con�guration LP for restricted Santa Claus∑
C∈C(i,τ)

xi,C ≥ 1 ∀i ∈ P

∑
i∈P

∑
C∈C(i,τ):j∈C

xi,C ≤ 1 ∀j ∈ R

xi,C ≥ 0

This linear program assigns at least one con�guration to every player and
makes sure that no resource is taken more than once. We will also consider
the dual of this LP, which is constructed after adding the neglectable objective
function min(0, . . . ,0) · x:

Dual of the con�guration LP for restricted Santa Claus

max
∑
i∈P

yi −
∑
j∈R

zj∑
j∈C

zj ≥ yi ∀i ∈ P ,C ∈ C(i,τ)

yi ,zj ≥ 0

From duality we can derive the following condition.

Lemma 29. Let y ∈ RP≥0 and z ∈ RR≥0 such that

∑
i∈P yi >

∑
j∈R zj and for

every i ∈ P and C ∈ C(i,τ) it holds that
∑
j∈C zj ≥ yi , then OPT∗ < τ .

It is easy to see that if such a solution y,z exists, then every component
can be scaled by a constant to obtain a feasible solution greater than any
given value. Hence, the dual must be unbounded and therefore the primal
must be infeasible.

notation and preprocessing. We denote by α = 3+5/6 the bound
on integrality we want to prove. We write v(S) =

∑
j∈S vj for some set of

resources S ⊆ R and use this notation also for other variables indexed by
resources.

We model our problem as a hypergraph matching problem: There are
vertices for all players and all resources and the hyperedgesH each consist of
exactly one player i and a set of resources C ⊆R(i) where v(C) ≥OPT∗/α.
However, we restrict H to edges that are minimal, that is to say, v(C′) <
OPT∗/α for all C′ ( C. Clearly, a matching (a set of non-overlapping edges)
such that every player is in one matching edge corresponds to a solution of
value OPT∗/α. For a set of edges F we write FP as the set of players in these
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edges and FR as the resources in the edges. Moreover, for a single edge e we
simplify the notation to eR and eP for {e}R and {e}P .

We reduce our problem to extending an existing matching: The algorithm
takes an (incomplete) matching M and a player i0, which is not in M . Then
it extends the matching to also cover i0. Starting with the empty matching
and calling the algorithm for each player yields the desired matching. No
state except for the matching is saved between the iterations.

5.1 algorithm

We consider the local search algorithm from [8]. It is the same algorithm
with a slightly di�erent presentation that is inspired by [62].

Two types of edges play a crucial role in the algorithm: A sequence of
edges eA1 , . . . ,e

A
` ∈ H \M (the addable edges) and sets BM(eA1 ), BM(eA2 ),

. . . , BM(eA` ) ⊆M (the blocking edges for each addable edge). Note that the
order of the addable edges is important. An addable edge is an edge that
the algorithm hopes to add to M — either to cover the new player i0 or
to free a player of a blocking edge. A blocking edge is an edge in M that
con�icts with an addable edge, i.e., that overlaps with an addable edge on
the resource part. For each addable edge eAk we de�ne the blocking edges
BM(eAk ) as {e′ ∈M : e′R ∩ (e

A
k )R , ∅}. We write BM(A) for

⋃
e∈ABM(e) for

a set of addable edges A.
The algorithm (see Alg. 1) runs a main loop until the matching has been

extended. In each iteration it �rst adds a new addable edge that does not
overlap in resources with any existing addable or blocking edge, but contains
a player that is either i0 or the player in an existing blocking edge. Then it
consecutively swaps addable edges that are not blocked for the blocking edge
they are supposed to free. Also, all the addable and blocking edges added at
a later time are removed, since they might be obsolete now.

5.2 analysis

We start by mentioning some basic properties of the algorithm.

Fact 30. The swap in the inner loop does not create new blocking edges and

removes a blocking edge from eAk .

We refer to the edges eAk ,e
′ , and eA` as in algorithm. The addable edges

do not overlap on the resource part. Since eA` was an addable edge and is
turned into a matching edge, it cannot become a blocking edge of an existing
addable edge. e′ was a blocking edge of eAk , but is removed from the matching.
Hence, it is no longer a blocking edge.

Fact 31. The blocking edges BM(eAk ) for every addable edge eAk are pairwise

disjoint.

Let k < k′ and consider the blocking edges BM(eAk ) and BM(eAk′ ). After eAk
is added, the algorithm never adds a new blocking edge to it (see previous
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Input :Partial matching M and unmatched player i0
Result: Partial matching M ′ with M ′P =MP ∪ {i0}
`← 0 ;
loop

A← {eA1 , . . . ,e
A
` } ; // initially empty

`← `+ 1 ;
let eA` ∈ H\M with (eA` )R ∩ (A∪BM(A))R = ∅ and
(eA` )P ∈ BM(A)P ∪ {i0} ;

// the existence of eA` is proved in Lemma 35
while BM(eA` ) = ∅ do

if there is k < ` and e′ ∈ BM(eAk ) with e
′
P = (eA` )P then

// e′ and eAk are unambiguous, since M is a matching
M←M \ {e′} ∪ {eA` } ; // swap e′ for eA`
delete eAk+1, . . . ,e

A
` ;

`← k ;
else

M←M ∪ {eA` } ; // (eA` )P = i0, see Fact 32
returnM ;

Algorithm 1: Local search for restricted Santa Claus

fact). Thus, the blocking edges in BM(eAk ) already existed when eAk′ was added.
However, eAk′ was chosen such that its resources are disjoint from existing
blocking edges. Therefore, no blocking edge can be in both BM(eAk ) and
BM(eAk′ ).

Fact 32. For every addable edge eAk , (e
A
k )P is either i0 or the player in a block-

ing edge in BM(eAk′ ) for some k′ < k.

When the addable edge is added, this is true by de�nition. We only have to
look at the case, where (eAk )P is the player in a blocking edge in BM(eAk′ ) and
this blocking edge is removed by the swap operation. In this case, however,
every addable edge after eAk′ , in particular, eAk , is deleted.

Fact 33. At the beginning of each iteration of the main loop, the blocking edges

BM(eAk ) for each addable edge eAk are non-empty.

We suppose that at the beginning of one iteration this is true and argue
that it is also true in the next iteration. After adding eA` , this is the only
addable edge that might have no blocking edges. If so, it is deleted in the
inner loop (or the algorithm terminates). This removes a blocking edge from
one addable edge, which is the new last edge eA` . If it has no blocking edges,
it is again deleted. This is repeated until the last edge has a blocking edge.
Only then the next iteration of the main loop starts.

Lemma 34 ([8]). The algorithm terminates after at most 2|P |−1 many itera-

tions of the main loop.
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Proof. Consider the signature vector

s(A) = (|BM(eA1 )|, |BM(eA2 )|, . . . , |BM(eA` )|,∞).

This vector decreases lexicographically after every iteration of the main
loop: If the inner loop is never executed, the �rst components, i.e., |BM(eA1 )|
through |BM(eA` )| remain the same. However, we replace the (` + 1)’th
component ∞ by some �nite value |BM(eA`+1)|, where eA`+1 is the newly
selected addable edge. Hence, we can assume w.l.o.g. that the inner while
loop is executed at least once. Let `′ be the number of addable edges after
the last execution of the inner loop. Then |B(eA`′ )| has decreased by the swap
operation (see Fact 30). It follows that the signature vectors in each iteration
of the main loop are pairwise di�erent.

The number of possible signature vectors can easily be bounded by (|P |+
1)|P |+1: All BM(eAk ) are pairwise disjoint, non-empty, and their cardinalities
sum to up at most |M | ≤ |P |. Hence, the length of s(A) is at most |P |+ 1
and each component has one of |P |+ 1 many values (including∞). A clever
idea from [8] even gives a bound of 2|P |−1: We have that

∑`
k=1 |BM(eAk )|=

|BM(A)| ≤ |M | ≤ |P | and |BM(eAk )| ≥ 1 for all k. There is an bijection between
signature vectors and possibilities of placing separators on a line of |P |
elements. |BM(eAk )| is the number of elements between the (k − 1)-th and
k-th separator. The number of possibilities of placing separators between the
|P | elements is the number of subsets of |P | − 1 elements, i.e. 2|P |−1.

Clearly the inner loop also terminates after �nitely many iterations, since
in each iteration ` is decreased.

Lemma 35. An edge eA` as selected in the beginning of the main loop always

exists.

Proof. In the proof we use the constant β = 1+ 8/15 ≈ 1.53333, that has
been chosen so as to minimize α. Consider the beginning of an iteration of
the main loop. Let A= {eA1 , . . . ,e

A
` } and assume toward contradiction that no

edge e ∈ H\M exists with eR∩(A∪BM(A))R = ∅ and eP ∈ BM(A)P ∪{i0}.
In the remainder of the proof we will write B instead of BM(A) and B(e)
instead of BM(e), since M and A are constant throughout the proof. De�ne

yi =

1 if i ∈ BP ∪ {i0},

0 otherwise.

zj =


1 if vj ≥OPT∗/α and j ∈ AR ∪BR,

min{1/3,β · vj/OPT∗} if vj <OPT∗/α and j ∈ AR ∪BR,

0 otherwise.

We refer to the resources j where vj ≥OPT∗/α as fat resources and to others
as thin resources. Note that by the minimality property of edges inH, each
edge containing a fat resource does not contain any other resources. We
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call these the fat edges. Likewise, edges that contain only thin resources are
referred to as thin edges.

This de�nition of the variables di�ers from the previous one (e.g. [62])
that can be used to show a bound of 4. The essential di�erence is that we
are capping thin edge values at 1/3. The previous de�nition uses the same
values except for zj = 4/3·vj/OPT ∗ for thin edges j ∈ AR∪BR (in addition,
all variables are scaled by 3/4, which has no e�ect). We make use of our new
choice of values is the distinction, whether all resources in an edge are
relatively large or there is also a very small one. This is found near the end
of the proof for Claim 37.

Claim 36. (y,z) is a feasible solution for the dual of the con�guration LP with
τ = OPT∗.

Claim 37. (y,z) has a negative objective value, i.e.,
∑
j∈R zj <

∑
i∈P yi .

By Lemma 29 this implies that the con�guration LP is infeasible for OPT∗.
A contradiction.

Proof of Claim 36. Let i ∈ P and C ∈ C(i,OPT∗). We need to show that
yi ≤ z(C). If yi = 0, this is trivial. Hence, assume that yi = 1 and thus
i ∈ BP ∪ {i0}. If C contains a fat resource j , then zj = 1, since otherwise the
hyperedge consisting of j and i could be added to the addable edges. The
inequation again follows easily. We can therefore focus on the case where C
consists solely of thin resources and yi = 1.

Since no addable edge for i remains, v(C \ (AR ∪BR)) < OPT∗/α. Let
S ⊆ C be the resources j ∈ C which have zj = 1/3.

case 1: |S |= 3. Then z(C) ≥ z(S) ≥ 3 · 1/3= 1.

case 2: |S | ≤ 2. De�ne C′ := (C ∩ (AR ∪BR)) \ S . Then

v(C′) > v(C)− v(C \ (AR∪BR))− v(S) ≥OPT∗ −OPT∗/α − v(S).

Therefore,

z(C) ≥ 1/3·|S |+β/OPT∗·v(C′) > 1/3|S |+β(1−1/α−v(S)/OPT∗)

≥ 1/3|S |+ β(1− (|S |+ 1)/α) =: (∗).

Since β/α = 0.4 > 1/3, the coe�cient of |S | in (∗) is negative and thus we
can substitute |S | for its upper bound, i.e., 2. By inserting the values of α and
β we get,

(∗) ≥ 2/3+ β(1− 3/α) = 1.

Proof of Claim 37. We write in the following Ff (Ft) for the fat edges (thin
edges, respectively) in a set of edges F. First note that every fat resource e
with positive z value must be in a fat blocking edge: By de�nition we have
e ∈ AR ∪BR. If e is in AR, then by minimality property of edges there is an
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addable edge containing solely e. Since every addable edge has a blocking
edge, e must also be in BR. Therefore∑

j∈Rf
zj ≤ |Bf |.

Now consider thin addable edges. Since every addable edge is blocked, we
have |B(e)| ≥ 1 for every e ∈ At . We now proceed to show that for every
e ∈ At

z(eR ∪B(e)R) ≤ |B(e)|.

Note that for every thin resource j , we have zj ≤ β/OPT∗ ·vj . By the minimal-
ity property of edges in H, it holds that v(eR) ≤ 2OPT∗/α (each element
in eR has value at most OPT∗/α). Also v(e′R \ eR) ≤ OPT∗/α for each
e′ ∈ B(e), since the intersection of eR and e′R is non-empty. If |B(e)| ≥ 2, this
implies

z(eR ∪B(e)R) ≤ β/OPT∗ · (v(eR) + v(B(e)R \ eR))
≤ β · (2/α+ |B(e)| · 1/α) ≤ |B(e)| · β · 2/α = 0.8 · |B(e)| < |B(e)|.

Assume in the following that |B(e)|= 1. Let vmin be the value of the smallest
element in eR ∪ B(e)R. Then v(eR ∪ B(e)R) ≤ 2OPT∗/α + vmin: If the
smallest element is in eR, then

v(eR∪B(e)R) ≤OPT∗/α+ vmin︸             ︷︷             ︸
≥v(eR)

+v(B(e)R \eR) ≤ 2OPT∗/α+vmin.

The same argument (swapping the role of e and B(e)) holds, if the smallest
element is in B(e). Therefore, if |B(e)|= 1 and vmin ≤ 1/2 ·OPT∗/α,

z(eR ∪B(e)R) ≤ β · (2/α+ vmin) ≤ β · 5/2 · 1/α = 1= |B(e)|.

If |B(e)| = 1 and vmin > 1/2 ·OPT∗/α, then B(e)R \ eR,B(e)R ∩ eR, and
eR\B(e)R have at least one element and by the minimality property of edges
at most one element. Since the z value of each thin edge is at most 1/3,

z(eR ∪B(e)R) = z(eR \B(e)R) + z(eR ∩B(e)R) + z(B(e)R \ eR)
≤ 3 · 1/3 = 1 = |B(e)|.

We conclude that∑
i∈P

yi = |Bf |+ |Bt |+ 1 > |Bf |+
∑
e∈At
|B(e)|

≥
∑
j∈Rf

zj +
∑
e∈At

z(eR ∪B(e)R) =
∑
j∈R

zj .





The problem in this chapter is closely related to the

one from the previous chapter. In particular, it is

about balancing loads. Here, the objective is to

minimize the maximum instead of maximizing

the minimum.

6T H E R E S T R I C T E D A S S I G N M E N T P R O B L E M

This chapter is about a special case of the problem Scheduling on Unre-
lated Machines, where the goal is to compute an allocation σ : J →M of
the jobs J to the machinesM. On machine i the job j has a processing time
(size) pij . We want to minimize the makespan, which is the maximum load
maxi∈M

∑
j∈σ−1(i) pij . The classical 2-approximation by Lenstra et al. [56] is

still the algorithm of choice for this problem. They also show that no approxi-
mation ratio better than 3/2 can be found in polynomial time unless P=NP.
Schuurman and Woeginger [64] name it as one of the most important open
questions in scheduling to close this gap.

While the general problem remains unclear, there has been progress on a
special case called Restricted Assignment. Here each job j has a process-
ing time pj , which is independent from the machines, and a set of feasible
machines Γ (j). This means j can only be assigned to one of the machines in
Γ (j). Note that this is equivalent to the previous problem when pij ∈ {pj ,∞}.
The lower bound of 3/2 holds also in the restricted case and even if given
quasi-polynomial running time no better approximation ratio can be ob-
tained, unless DTIME(2polylog(n)) =NP, which would contradict popular
conjectures such as the Exponential Time Hypothesis.

In a seminal work, Svensson [68] proved that the con�guration LP, a
natural linear programming relaxation, has an integrality gap of at most
33/17. By approximating the optimum of the con�guration LP this yields an
(33/17+ ε)-estimation algorithm. However, this proof is non-constructive
and no polynomial algorithm is known that can produce a solution of this
quality.

For instances with only two processing times additional progress has been
made. Chakrabarty et al. gave a polynomial (2−δ)-approximation for a very
small δ [19]. Annamalai improved this with a (17/9+ε)-approximation for
every ε > 0 [6]. For this special case it was also shown that the integrality
gap is at most 5/3 [38].

In [68] and [38] the critical idea is to design a local search algorithm,
which is then shown to produce good solutions. However, the algorithm
has a potentially high running time; hence it could only be used to prove
the existence of a good solution. This is very similar to the Santa Claus
problem from the previous chapter. There, a quasi-polynomial variant by
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Polácek et al. [62] and a polynomial variant by Annamalai et al. [7] were
later discovered.

In this chapter, we start with a simple quasi-polynomial time (2+ ε)-
approximation in order to introduce some ideas. We then present a simpler
variant of Svensson’s non-constructive algorithm, which in addition achieves
a better approximation ratio; thereby we improve the bound on the integrality
gap of the con�guration LP. Finally, we combine both approaches in a very
sophisticated (11/6+ ε)-approximation algorithm that terminates in quasi-
polynomial time. This leads to the �rst better-than-2 approximation algorithm
for Restricted Assignment, which does not need exponential running time.
The algorithm is purely combinatorial and uses the con�guration-LP only
in the analysis. The last algorithm implies the results of the previous two.
Nevertheless, they are signi�cantly less complex and already demonstrate
many of the key techniques used in the last algorithm.

comparison to related algorithms. In Svensson’s algorithm [68]
and ours, jobs are moved until the desired allocation is found. The presen-
tations of the algorithms di�er signi�cantly, but on a high level Svensson’s
algorithm is closely related to the second (exponential time) algorithm we
give. Considering simpli�ed instances with only jobs of two sizes, both al-
gorithms and their analysis are essentially the same. Our exponential time
algorithm is a cleaner adaption to general instances, which is much less
technical and has an better approximation ratio.

The approach for obtaining a quasi-polynomial running time resembles
that of [62], where it was done for the restricted Santa Claus problem. In
the Restricted Assignment problem, however, this turns out to be signi�-
cantly more challenging. The basic idea in both algorithms is to reduce the
search depth to a logarithmic value. A fundamental structure in both cases
are chains of big jobs or resources. Big jobs have a size greater than 1/2
times the optimal makespan. Informally, a chain of big jobs is a sequence
j1, i1, j2, i2, j3, i3 . . . , where j1 is a big job allowed to be placed on i1; j2 is a
big job currently assigned to i1, which is also allowed on i2; j3 is a big job
currently assigned to i2, but also allowed on i3; etc. A similar situation can
arise in the restricted Santa Claus problem, except that big resources (the
counter-part to jobs) have a size at least the desired solution value. It turns
out that these chains play a critical role and in the Santa Claus problem they
have a very simple structure. This is because on a player (the counter-part to
a machine) which has one big resource we do not place any other resources.
In the Restricted Assignment case it is necessary to place also other jobs on
machines that have big jobs. This means that the simple operation of moving
every job of a chain to the next machine works well in the Santa Claus
case, but in the Restricted Assignment case this can result in bad machines
(machines that have too much load), if we are not careful. Perhaps this is
also a reason why at this time there is no polynomial time better-than-2
approximation algorithm known for Restricted Assignment and the only
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progress in this direction is in the case where we have only one big job size.
Note that in this case, chains are again simple.

notation. For a set of jobs A ⊆ J , we write p(A) in place of
∑
j∈Apj .

For other variables indexed by jobs, we may do the same. An allocation is a
function σ : J →M, where σ (j) ∈ Γ (j) for all j ∈ J . We write σ−1(i) for
the set of all jobs j which have σ (j) = i.

configuration lp. Similar to the Santa Claus problem from the pre-
vious chapter, a con�guration LP with an exponential size can be constructed,
which can be solved approximately in polynomial time with a rate of (1+ ε)
for every ε > 0 [12]. For every machine i and every τ ≥ 0 let

C(i,τ) = {S ⊆ J : p(S) ≤ τ and for all j ∈ S, i ∈ Γ (j)}.

These are the con�gurations for machine i and makespan τ . They are a set
of jobs that have volume at most τ and can run on machine i. The optimum
OPT∗ of the con�guration LP is the lowest τ such that the following linear
program is feasible.

Primal of the con�guration LP for Restricted Assignment∑
C∈C(i,τ)

xi,C ≤ 1 ∀i ∈M

∑
i∈M

∑
C∈C(i,τ):j∈C

xi,C ≥ 1 ∀j ∈ J

xi,C ≥ 0

This linear program assigns at least one con�guration to every machine and
makes sure that every job is assigned at least once. We will also construct
the dual after adding the objective max (0, . . . ,0) · x to the con�guration LP:

Dual of the con�guration LP for Restricted Assignment

min
∑
i∈M

yi −
∑
j∈J

zj∑
j∈C

zj ≤ yi ∀i ∈M,C ∈ C(i,τ)

yi ,zj ≥ 0

Recall, the value τ is a constant in the LP and, if the con�guration LP is
infeasible with τ , this means OPT∗ > τ . Furthermore, we can derive the
following condition from duality.

Lemma 38. Let y ∈ RM≥0 and z ∈ R
J
≥0 such that

∑
i∈M yi <

∑
j∈J zj and for

every i ∈M and C ∈ C(i,τ) it holds that
∑
j∈C zj ≤ yi , then OPT∗ > τ .

It is easy to see that if such a solution y,z exists, then every component
can be scaled by a constant to obtain a feasible solution lower than any given
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value. Hence, the dual must be unbounded and therefore the primal must be
infeasible.

6.1 simple algorithm

In this section we present a quasi-polynomial time (2+ ε)-approximation
algorithm. It should be noted that there do exist clean and simple polynomial
time 2-approximation algorithms for this problem and even for the general
problem of scheduling on unrelated machines. The purpose of this section
is merely to introduce some concepts and how they can be used to get a
quasi-polynomial running time. We use a dual approximation framework
where we perform a binary search over variable τ ∈ [pmax, n · pmax], where
pmax =maxj∈J pj . In each iteration we either prove that OPT∗ > τ or �nd
an allocation with makespan at most (1+ ε)τ . We stop the binary search
once upper and lower bound di�er by less than a factor of (1+ε). This gives
a (1+ ε)2-approximation in log1+ε(n) = O(1/ε · log(n)) iterations of the
binary search. By scaling down ε we can get a (1+ ε)-approximation in the
same asymptotic time. The algorithmic idea for the inner method is basically
a breadth-�rst search:

Let σ : J →M be an arbitrary allocation. We use layers L0, . . . ,L` , which
are disjoint sets of machines. We write L≤k for the union over all machines
in L0, . . . ,Lk . Further, let J̃ (L≤k ,σ ) denote the set of jobs j with σ (j) ∈ L≤k .
We call a machine i good, if p(σ−1(i)) ≤ 2+ ε, and bad, otherwise. The
algorithm (see Alg. 2) initializes L0 as the bad machines. Then the subsequent
layers Lk+1 are created as the union over all Γ (j) \L≤k where j ∈ J̃ (L≤k ,σ ).
If there is a machine with a load at most (1+ ε)τ in some layer, we move a
job from a lower layer to this layer and then start from the beginning.

running time. We consider two consecutive iterations right before
some job is moved and the layers are deleted. Let σ and σ ′ be the allocations
at the earlier and at the later iteration. Likewise, let L≤` and L′≤`′ be the layers.
We show that the vector

(b′, |J̃ (L′≤0,σ )|, . . . , |J̃ (L
′
≤`′ ,σ )|,−1)

is lexicographically smaller than

(b, |J̃ (L≤0,σ )|, . . . , |J̃ (L≤`,σ )|,−1),

where b′ and b are the number of bad machines for σ ′ and σ . Since the
number of layers is at most log1+ε(|M|) = O(1/ε · log(|M|)) and each
component is bounded by |J |, the overall running time is |J |O(1/ε·log(|M|)).
For the lexicographic decrease, notice that the algorithm moves a job j to a
machine i only when p(σ−1(i)) ≤ (1+ ε)τ . Hence, after adding j , the load
on i is p(σ−1(i))+pj ≤ (1+ε)τ+τ ≤ (2+ε)τ . Thus, the algorithm never
turns a good machine into a bad machine and b′ ≤ b. If b′ < b we are done.
Otherwise, b′ = b and since no jobs were moved to or from L≤`−1, L′≤k = L≤k
and J̃ (L′≤k ,σ

′) = J̃ (L≤k ,σ ) for all k ≤min{` −1,`′}. If `′ ≤ ` −1, then the
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Input : Instance (J ,M, (Γj)j∈J , (pj)j∈J )
Result: Schedule σ : J →M with makespan ≤ (2+ ε)τ

or "err", if τ <OPT∗.
let σ be an arbitrary allocation ;
`← 0 ;
let L0 be the set of bad machines ;
while L0 , ∅ do

let L`+1 be the union over all Γ (j) \L≤` for j ∈ J̃ (L≤i ,σ ) ;
if there is an i ∈ L`+1 with p(σ

−1(i)) ≤ (1+ ε)τ then
�nd a job j with σ (j) ∈ L≤` and i ∈ Γ (j);
σ (j)← i;
delete L0, . . . ,L`+1;
`← 0;
let L0 be the new set of bad machines ;

else
`← `+ 1;
if ` ≥ log1+ε(|M|) then

return "err" ;
Algorithm 2: Quasi-polynomial (2+ ε)-approximation algorithm

`′ + 1-th component will be −1 and therefore smaller than |J̃ (L≤`′+1,σ )|.
Otherwise, the `-th component will be smaller because we moved one job
away from L≤` .

correctness. We have to verify that if the algorithm returns "err", then
OPT∗ > τ . We will do so using Lemma 38. Assume that ` ≥ log1+ε(|M|) and
let σ and L≤` be the current allocation and layer structure. For every i ∈ Lk
de�ne

yi = (1+ ε)1−k .

Furthermore, de�ne yi = (1+ ε)− log1+ε(|M|), if i < L≤` . For jobs j ∈ J set

zj = (1+ ε)−k · pj/τ ,

where k is minimal with j ∈ J̃ (L≤k ,σ ) and zj = 0 if there is no such k. We
need to show that

∑
j∈J zj >

∑
i∈M yi and for all i ∈ M and C ∈ C(i,τ) it

holds that z(C) ≤ yi . For the former, we argue

∑
j∈J

zj =
∑
i∈M

z(σ−1(i)) =
∑̀
k=0

∑
i∈Lk

(1+ ε)−k
p(σ−1(i))

τ

> (2+ ε)|L0|+
∑̀
k=1

(1+ ε)−k(1+ ε)|Lk | ≥ 1+
∑̀
k=0

(1+ ε)1−k |Lk |

= |M| · (1+ ε)− log1+ε(|M|) +
∑̀
k=0

(1+ ε)1−k |Lk | ≥
∑
i∈M

yi .
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For the latter condition, �rst consider a machine i ∈ Lk andC ∈ C(i,τ). There
can be no job j ∈ C with j ∈ J̃ (L≤k−2,σ ), since otherwise i would be in an
earlier layer. Therefore, zj ≤ (1+ ε)−(k−1)pj for all j ∈ C. Thus,

z(C) ≤ (1+ ε)1−k
p(C)

τ
≤ (1+ ε)1−k = yi .

Now let i ∈M\L≤` and let C ∈ C(i,τ). No job in C can be in J̃ (L≤`−1,σ ).
This means, zj ≤ (1+ ε)−`pj for all j ∈ C and

z(C) ≤ (1+ ε)−`
p(C)

τ
≤ (1+ ε)− log1+ε(|M|) = yi .

Using the lemma this implies that OPT∗ > τ .

6.2 non-constructive integrality gap bound

In this section, we give an approximation algorithm with ratio 11/6. The
algorithm is similar to the previous one, but it adds only single moves, instead
of a whole layers of reachable machines. This leads to an exponential running
time bound. Hence, the algorithm in this section only gives a non-constructive
bound on the integrality gap of the con�guration LP.

6.2.1 Algorithm

Given an allocation σ : J → M, we call a machine i bad, if p(σ−1(i)) >
11/6 · τ . A machine is good, if it is not bad. We de�ne big jobs to be those
j ∈ J that have pj > 1/2 · τ and small jobs all others.

As the previous one, this algorithm starts with an arbitrary allocation and
moves jobs until all machines are good, or it can prove that the con�guration
LP is infeasible w.r.t. τ . During this process, a machine that is already good
will never be made bad.

The central data structure of the algorithm is an ordered list of pending
moves P = (P1,P2, . . . ,P`). Here, every component Pk = (j, i), j ∈ J and
i ∈ Γ (j), stands for a move the algorithm wants to perform. It will not perform
the move, if this would create a bad machine, i.e., p(σ−1(i))+ pj > 11/6 · τ .
If it does not create a bad machine, we say that the move (j, i) is valid. For
every 0 ≤ k ≤ ` de�ne L≤k := (L1, . . . ,Lk), the �rst k elements of L (with
L≤0 being the empty list).

Depending on the current allocation σ and list of pending moves P≤` , we
de�ne a binary relation R(P≤`,σ ) ⊆ J ×M. For a pair (j, i) ∈ R(P≤`,σ )
we say machine i repels j w.r.t. P≤` . This does not mention σ and therefore
slightly abuses notation, but during the lifetime of P≤` the allocation σ does
not change and is always clear from the context.

The de�nition of repelled jobs is given later. The algorithm will only add a
new move (j, i) to the current list P , if j is repelled by its current machine
and not repelled by the target i w.r.t. P (see Algorithm 3).
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In the algorithm we use a lexicographic order (pj , j, i) of the moves (j, i).
Here, we assume that there is an arbitrary order on jobs and machines, which
is consistent throughout the iterations.

Input : Instance (J ,M, (Γj)j∈J , (pj)j∈J ) of Restricted
Assignment, τ ≥OPT

Result: Schedule σ : J →M with makespan ≤ 11/6 · τ .
let σ be an arbitrary allocation ;
`← 0 ; // number of pending moves
while there is a bad machine do

choose a move (j, i) < P≤` , j ∈ J and i ∈ Γ (j), where j is repelled
by σ (j) and not repelled by i w.r.t. P≤` and (pj , j, i) is
lexicographically minimal among all candidates;
P`+1← (j, i);
` = `+ 1;
if p(σ−1(i) + pj ≤ 11/6 · τ then

σ (j)← i ;
delete P1, . . . ,P` ;
`← 0;

Algorithm 3: Algorithm for Restricted Assignment

repelled jobs. We de�ne the repelled jobs of each machine inductively
w.r.t. P≤k , k = 0,1, . . . ,`.

(initialization) If k = 0, let every bad machine i repel every job j w.r.t.
P≤k .

(monotonicity) If i repels j w.r.t. L≤k , then let i repel j also w.r.t. P≤k+1.

The remaining rules regard k > 0 and we let (jk , ik) := Pk , i.e., the last move
added. In order to make space for jk , the machine ik should repel jobs.

(small-all) If jk is small, let ik repel all jobs.

In the case that jk is big, we need to be more careful. It helps to imagine that
the algorithm is a lazy one: It repels jobs only if it is really necessary.

For i ∈M let Si(P≤k−1,σ ) be those small jobs j which have σ (j) = i and
which are repelled by all other potential machines, i.e., Γ (j) \ {i}, w.r.t. P≤k−1.
The intuition behind Si(P≤k−1,σ ) is that we do not expect that i can get rid
of any of these jobs.

Next, de�ne a threshold W0 as the minimum W ≥ 0 such that the small
jobs in Sik (P≤k−1,σ ) and all big jobs below this threshold are already too
large to move jk , i.e.,

p(Sik (L≤k−1,σ ))+ p({j ∈ σ
−1(ik) : 1/2 < pj ≤W })+ pjk > 11/6 · τ .

Furthermore, de�ne W0 =∞ if no such W exists. In order to make (jk , ik)
valid, it is necessary (although not always su�cient) to remove one of the
big jobs with size at most W0. Hence, we de�ne,
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(big-all) if jk is big and W0 =∞, then let ik repel all jobs w.r.t P≤k and

(big-big) if jk is big and W0 < ∞, then let ik repel Sik (L≤k−1,σ ) and all
jobs j with 1/2 < pj ≤W0.

Note that repelling Sik (P≤k−1,σ ) seems unnecessary, since those jobs do not
have any machine to go to. However, this de�nition simpli�es the analy-
sis. It is also notable that the special case where W0 = 0 is equivalent to
p(Sik (L),σ )+pjk > 11/6 ·τ and here the algorithm gives up making (jk , ik)
valid. Finally, we want to highlight the following counter-intuitive (but inten-
tional) aspect of the algorithm. It might happen that some job of size greater
than W0 is moved to ik , but has to be moved again later in order to make
(jk , ik) valid.

6.2.2 Analysis

Lemma 39. If the con�guration LP is feasible for τ and there is a badmachine,

the algorithm always �nds a move to execute.

Proof. Suppose toward contradiction, there is a bad machine, no move in
P≤` is valid and no move can be added to P≤` . We will construct values
(zj)j∈J , (yi)i∈M with the properties as in Lemma 38 and thereby show that
the con�guration LP is infeasible. During this proof, σ and P≤` are constant
and refer to the state at which the algorithm is stuck. We omit P≤` when we
say i repels j .

Let J̃i denote all jobs j ∈ σ−1(i) that are repelled by i. We write J̃ =⋃
i∈M J̃i . For every j ∈ J let

zj =

min
{pj
τ ,

5
6

}
if j ∈ J̃ and

zj = 0 otherwise.

Let yi := 1 if i ∈M repels all jobs and yi = z(σ−1(i)) otherwise.
Let i ∈M and C ∈ C(i,τ). We need to show that z(C) ≤ yi . If yi = 1 this

follows immediately, because z(C) ≤ p(C)/τ ≤ 1. We assume w.l.o.g. that
i does not repel all jobs and thus yi = z(σ−1(i)). In particular, i does not
repel small jobs that are on other machines. This means that zj = 0 for every
small job j ∈ C \ σ−1(j). Otherwise, (j, i) could be added to P≤` . If there are
no big jobs in C, we therefore get z(C) ≤ z(σ−1(i)) = yi . Clearly, there can
be at most one big job jB ∈ C, since such a job has pjB > 1/2 ·τ and C cannot
have a load greater than τ . If zjB = 0 or σ (jB) = i the argument above still
holds.

We recap: The only interesting case is when yi = z(σ−1(i)), there is
exactly one big job jB ∈ C \ σ−1(i), and zjB =min{pjB/τ ,5/6}.

case 1: i repels jB . Since i is not the target of a small job move and it
is good (otherwise it would repel all jobs), there must be a big job move that
causes i to repel jB. In other words, there is a move (jk , i) = Pk such that
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jB ≤W0, where W0 is as in the de�nition of repelled jobs for P≤k . Recall that
W0 <∞ is the minimal W with

p(Si(P≤k−1,σ )) + p({j ∈ σ−1(i) : 1/2 < pj ≤W }) + pjk > 11/6 · τ .

Since W0 ≥ pjB and it is minimal, there must be a big job j ′B ∈ σ−1(i) with
pj ′B =W0 ≥ pjB and j ′B is also repelled by i (because pj ′B ≤W0). We get

z(C) ≤ z(C \ {jB}) + zjB ≤ z(σ
−1(i) \ {j ′B}) + zj ′B = z(σ−1(i)) = yi .

case 2: i does not repel jB . Since (jB, i) cannot be added to P , it must
already be in P . Let Pk = (jB, i) and W0 as in the de�nition of repelled edges
w.r.t. P≤k . Then

p(Si(P≤k−1,σ )) + p({j ∈ σ−1(i) : 1/2 < pj ≤W0}) + pjB > 11/6 · τ .

If W0 ≥ 5/6, then there is some j ′B ∈ σ−1(i) with pj ′B =W0 ≥ 5/6. Similar
to the previous case, it follows that

z(C) ≤ z(C \ {jB}) + zjB ≤ z(σ
−1(i) \ {j ′B}) + 5/6= z(σ−1(i)) = yi .

If W0 ≤ 5/6, then all of the considered jobs have zj = pj/τ , i.e.,

yi = z(σ−1(i))

≥ z(Si(P≤k−1,σ )) + z({j ∈ σ−1(i) : 1/2 < pj ≤W0})
= p(Si(P≤k−1,σ ))/τ + p({j ∈ σ−1(i) : 1/2 < pj ≤W0})/τ
> 11/6− pjB/τ ≥ 5/6+ (τ − pjB)/τ ≥ z(C).

The last inequality holds, because the zjB is at most 5/6 and the volume
of the small jobs in C (in particular, their value) is at most (τ − pjB)/τ . It
remains to show that

∑
j∈J zj >

∑
i∈M yi . We prove that, with amortization,

good machines satisfy z(σ−1(i)) ≥ yi and on bad machines strict inequality
holds. Let i be a bad machine. Then i repels all jobs (in particular, those in
σ−1(i)). Hence,

z(σ−1(i)) ≥ 5/6 · p(σ−1(i))/τ > 55/36 > 1= yi .

For good machines that do not repel all jobs, equality holds by de�nition. We
will partition those good machines that do repel all jobs into those i ∈ M
which have (jS , i) ∈ P≤` for a small job jS and those that do not.

Fact 40. At least half of the machines i that repel all jobs are target of a small

job, i.e., (jS , i) ∈ P≤` for some small job jS .

We argue that whenever a move (jB, i) = Pk of a big job jB is added, it is
not valid, and W0 =∞ in the de�nition of repelled jobs w.r.t. P≤k , then there
is some small job move (jS , i′) that can be added to P . Since the algorithm
prefers small job moves over big ones, the next move after Pk will necessarily
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be a small job move. Since no two small job moves can be added for the same
target, the fact follows. If W0 =∞, this means that

p(Si(L≤k−1,σ )) + p({j ∈ σ−1(i) : pj > 1/2}) + pjB ≤ 11/6 · τ .

Since the move (jB, i) is not valid, however, we also have that

p(σ−1(i)) + pjB > 11/6 · τ .

This implies that there must be a small job jS ∈ σ−1(i) \ Si(L≤k−1σ ). In
particular, there exists some i′ ∈ Γ (jS) \ {i} by which jS is not repelled. It
is also not repelled by i′ w.r.t. P≤k , since Pk only adds repelled jobs for i.
Therefore, (jS , i′) is a candidate for the next move to be added after P≤k . This
concludes the proof for the fact.

Let i be a machine that repels all jobs, but is not target of a small job. Then
there is a big job jB with (jB, i) ∈ P≤` and this move is not valid. Either there
is a job j ∈ σ−1(i) with zj = 5/6 or zj = pj/τ for all j ∈ σ−1(i). Thus,

z(σ−1(i)) ≥min
{
5
6
,
p(σ−1(i))

τ

}
≥min

{
5
6
,
11/6− pjB

τ

}
≥ 5

6
= yi −

1
6
.

Next, let i be a machine such that there exists a small job jS with (jS , i) ∈ P≤` .
This move is also not valid. In the following, we distinguish between the
cases where σ−1(i) has no job j with zj = 5/6, one such job, or at least two.
Note that all jobs have pj ≤ τ .

z(σ−1(i)) ≥min
{
p(σ−1(i))

τ
,
p(σ−1(i))− τ

τ
+

5
6
,
10
6

}
≥min

{11
6
−
pjS
τ
− 1+ 5

6
,
10
6

}
≥ 7

6
= yi +

1
6
.

Because of Fact 40, we can amortize and get∑
j∈J

zj =
∑
i∈M

z(σ−1(i)) >
∑
i∈M

yi .

Lemma 41. The algorithm terminates.

Proof. Consider two consecutive iterations of the main loop right before
a move is executed and the list of moves P is deleted. Let σ , P≤` be the
allocation and list of pending moves in the former iteration and σ ′ , P ′≤`′ in
the latter. Let b and b′ be the number of bad machines in σ and σ ′ . Recall,
R(P≤k ,σ ) ⊆ J ×M is the set of all i, j where j is repelled by i w.r.t. P≤k .
Further, let J̃ (P≤k ,σ ) denote all jobs j that are repelled by σ (j) w.r.t. P≤k .
For each pre�x of P (and of P ′) we de�ne a potential function

Φ(P≤k ,σ ) = (pjk , jk , ik , |J ×M|− |R(P≤k ,σ )|, |J̃ (P≤k ,σ )|)
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We claim that the vector

(b′, |J̃ (P ′≤0,σ
′)|,Φ(P ′≤0,σ

′), . . . ,Φ(P ′≤`′ ,σ
′),−1)

is lexicographically smaller than

(b, |J̃ (P≤0,σ )|,Φ(P≤0,σ ), . . . ,Φ(P≤`,σ ),−1).

Note that the length of the vector is bounded by 5·|M|·|J |+3, since no move
appears twice in the list and every component can have at most |J | · |M|+1
di�erent values. Thus, the number of possible vectors is �nite and hence the
algorithm terminates.

Recall that the algorithm never turns a good machine bad, which means
b′ ≤ b. If b′ < b, we are done. Likewise, if b = b′ and some job is moved from
a bad machine to a good machine, then |J̃ (P ′≤0,σ ′)| < |J̃ (P≤0,σ )| and again
the �rst vector is lexicographically smaller. We can therefore focus on the
case b′ = b, J̃ (P ′≤0,σ ′) = J̃ (P≤0,σ ), and σ (j) = σ ′(j) for all j ∈ J̃ (P≤0,σ ).
The rest of the argument is by induction. Let k ≤min{` − 1,`′} and assume
that

1. P ′≤k−1 = P≤k−1,

2. R(P ′≤k−1,σ
′) = R(P≤k−1,σ ).

3. J̃ (P ′≤k−1,σ
′) = J̃ (P≤k−1,σ ); σ ′(j) = σ (j) for all j ∈ J̃ (P≤k−1,σ ),

We will show that Φ(L′≤k) ≤ Φ(L≤k) (lexicographically) and if equality holds,
then (1), (2), and (3) also hold for k. This implies the lexicographical decrease:
If `′ < ` it follows easily. This is because the pre�x of the �rst vector ending
in Φ(P ′≤`′ ) is lexicographically not bigger than the pre�x of the second vector
ending in Φ(P≤`′ ). Furthermore, the next component is −1 in the �rst vector,
but something non-negative in the other. Now consider the case `′ ≥ `.
Let (j`, i`) = P` be the move that was executed. Then σ ′(j`) = i` , σ (j`).
Furthermore, j` is repelled by σ (j`) w.r.t. L≤`−1. Hence, (2) cannot hold with
k − 1= ` − 1 and thus we cannot have Φ(L′≤k) = Φ(L≤k) for all k.

The approach for the induction is to show that if Φ(L′≤k ,σ
′) is not smaller

than Φ(L≤k ,σ ), (jk , ik) = Pk also has to be selected as P ′k . In that case, no
job can have been moved to ik , if it is repelled by ik w.r.t. L≤k . From the way
they are chosen, this implies the jobs which ik repels as a consequence of Pk
are also repelled in the rules for P ′k . If they do not increase, the number of
jobs j with σ (j) that are repelled by ik cannot increase. Let us now formalize
this argument.

Notice that (j`, i`) = P` is the move that was executed, i.e., σ ′(j`) = i` and
by construction of P≤` , j` is not repelled by i` w.r.t. P≤`−1 (in particular, not
w.r.t. P≤k (∗)). Let (jk , ik) = Pk . By (1) we have that (jk , ik) < P≤k−1 = P ′≤k−1.
Since jk is repelled by σ (jk) w.r.t. L≤k , by (2) we have that σ ′(jk) = σ (jk).
By (3) it is not repelled by ik w.r.t. L′≤k−1. Therefore, (jk , ik) is was a candidate
for P ′k . Either this or a move (j, i), where (pj , j, i) is lexicographically smaller
than (pjk , jk , ik) is chosen. In the latter case we have Φ(L′≤k) < Φ(L≤k).
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Hence, assume that P ′k = (jk , ik). This means (1) holds for k. Note that since
(2) and (3) hold for k − 1, we only have to check the consequences of P ′k and
Pk . In other words, we have to check whether the rules for move P ′k imply
the same repelled jobs as Pk and whether some job repelled due to this rule
has been moved.

If jk is small, then ik repels all jobs w.r.t. L′≤k and L≤k and therefore (3) also
holds for k. Job j` cannot have been moved to ik (see (∗)). If it was moved
away from ik , then J̃ (P ′≤k ,σ

′) ( J̃ (P≤k−1,σ ). Otherwise, equality holds and
no job was moved in this set, i.e., (2) holds for k.

Now assume jk is big. First, we argue that S ′ik (L
′
≤k−1,σ

′) = Sik (L≤k−1,σ ).
Recall, Sik (L≤k−1,σ ) are the small jobs j with σ (j) = ik and j is repelled by
all machines in Γ (j) \ {ik} w.r.t. L≤k . Let j ∈ S ′ik (L

′
≤k−1,σ

′). Assume toward
contradiction that σ (j) , ik = σ ′(j). Then j = j` and ik = i` . However,
σ (j`) does not repel j` w.r.t. P≤k−1. Otherwise (j`, i`) would have been cho-
sen instead of (jk , ik) as Pk . By (3) σ (j`) also does not repel j` w.r.t. P ′≤k−1.
Hence, j < S ′ik (L

′
≤k−1,σ

′), a contradiction. Consequently, σ (j) = ik . By (3)
it follows that j ∈ Sik (L≤k−1,σ ). Let j ∈ Sik (L≤k−1,σ ). Since it is repelled by
all potential machines w.r.t. P≤k−1, there cannot be a move for j in a later
layer. In particular j` cannot be j . This means σ ′(j) = σ (j) = ik and by (3)
j ∈ Sik (L≤k−1). We conclude that Sik (L≤k−1) = S ′ik (L

′
≤k−1). Let W0 be the

minimal the minimal W ≥ 0 with

p(Sik (L≤k−1,σ ))︸              ︷︷              ︸
=p(S ′ik

(L′≤k−1,σ
′))

+p({j ∈ σ−1(i) : 1/2 < pj ≤W }) + pjk > 11/6 · τ ,

or∞ if no such W exists. Since all jobs j with 1/2 < pj ≤W0 are repelled
by ik w.r.t. P≤k , it follows by (∗) that

p({j ∈ σ ′−1(i) : 1/2 < pj ≤W }) ≤ p({j ∈ σ−1(i) : 1/2 < pj ≤W })

It follows that W ′0, the minimal W ≥ 0 with

p(S ′ik (L
′
≤k−1,σ

′))+ p({j ∈ σ ′−1(i) : 1/2 < pj ≤W })+ pjk > 11/6 · τ ,

is at least as big as W0. In particular, if W0 =∞, then ik repels all jobs w.r.t.
P≤k and w.r.t. P ′≤k . Otherwise, by de�nition ik repels all jobs in Si(L≤k−1,σ )
and all jobs j with 1/2 < pj ≤ W0 w.r.t. L≤k . By W ′0 ≥ W0 these jobs are
also repelled by ik w.r.t. L′≤k . Hence R(P ′≤k ,σ

′) ⊇ R(P≤k ,σ ). If equality holds
then because of (∗), J̃ (P ′≤k ,σ

′) ⊇ J̃ (P≤k ,σ ). If equality also holds here, then
none of these jobs are moved and (1), (2), and (3) hold. If equality does not
hold at some point, Φ(L′≤k−1,σ

′) < Φ(L≤k−1,σ ).

Theorem 42. The integrality gap of the con�guration LP for Restricted As-

signment is at most 11/6.

6.3 qasi-polynomial time algorithm

The previous running time bound is clearly exponential. In this section, we
will improve the running time to nO(1/ε·log(n)) for an approximation rate of
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11/6+ 2ε, where n= |M|+ |J | and ε > 0 can be chosen arbitrarily. Note
that by scaling ε, the coe�cient of 2 can be removed.

6.3.1 Algorithm

Our approach for turning the running time quasi-polynomial is to combine
the two algorithms presented in the previous sections. Instead of adding only
one candidate move at a time like in the exponential time algorithm, we
add them all. The set of these moves is called a layer. After a layer is added,
re-evaluate the repelled jobs and again construct a layer of all sensible moves.
This simple approach described has some major issues that we have to handle
carefully using more sophisticated techniques as described in the following.
First, however, we make some technical preparations. We will call a machine
i bad, if p(σ−1(i)) > (11/6+ 2ε)τ and good, otherwise. As before, we call
jobs j small, if pj ≤ 1/2 ·τ and big otherwise. Further, we distinguish big jobs
into medium, which have pj ≤ 5/6 · τ , and huge, which have pj > 5/6 · τ .
Unlike in the previous algorithms we establish the invariant that at all times
the current allocation assigns at most one huge job to each machine. An
initial allocation that satis�es this can easily be found via bipartite matching
with the huge jobs on one side and the machines on the other. It is maintained
by the following de�nition of a valid huge job move.

De�nition 8 (Valid huge move). Let j ∈ J , i ∈ Γ (j)\{σ (j)}with pj > 5/6·τ .
(j, i) is a valid move, if p(σ−1(i))+pj ≤ (11/6+2ε)τ and there is no huge

job in σ−1(i).

For the remaining jobs we de�ne the moves as follows.

De�nition 9 (Valid non-huge move). Let j ∈ J , i ∈ Γ (j) \ {σ (j)} with pj ≤
5/6 · τ . (j, i) is a valid move, if

1. p(σ−1(i)) + pj ≤ (11/6+ 2ε)τ and σ−1(i) contains no huge job, or

2. p({j ′ ∈ σ−1(i) : pj ≤ 5/6·τ})+pj ≤ (5/6+2ε)τ and σ−1(i) contains
one huge job.

Each valid move (j, i) satis�es p(σ−1(i)) + pj ≤ (11/6+ 2ε)τ , i.e., each
good machine stays good. (2) needs further elaboration. One could falsely
assume that this establishes an invariant which says the non-huge load is at
most (5/6+2ε) ·τ on a machine with a huge job. This would be a marvelous
invariant, if it could be guaranteed. However, a valid huge move can break
this property. Therefore, (2) only gives something weaker. It’s purpose is that
when a machine has a huge job and a low non-huge load, then it will stay
this way for as long as the huge job remains on the machine. This is to keep
edges in the leap graph intact, a technique that will be elaborated later.

layers. We will operate in layers L1, . . . ,L` like in the �rst algorithm.
These, however, will not only contain machines, but also �ne grained moves
like in the second algorithm. Again, we de�ne a binary relation R(L≤k ,σ ) ⊆
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can move here . . .

. . .

Figure 5: Example for linear number of layers

J ×M, which states that i repels j w.r.t. L≤k , if (j, i) ∈ R(L≤k ,σ ). In the
previous algorithms, the local search is mostly stateless, i.e., it searches for
an improvement of σ without remembering anything from the past. Here
we make a small exception. We maintain an order π on J ×M. When the
algorithm adds certain critical moves, they are moved to the front of π. This
will hint at the algorithm to do the same in the next iteration. It helps to
argue about the running time, since the layers created this way are more
consistent throughout the iterations. Finally, layers come in di�erent forms.
They can be leap layers, critical layers, small layers, or non-critical layers.
This will become more clear in the actual description of the algorithm.

leaps. A straight-forward example shows that if we are using only simple
moves like in the previous two algorithms, the number of layers needs to
grow linearly. This would be a problem for obtaining a quasi-polynomial
running time.

In the example (see Figure 5) the leftmost machine has two jobs j1, j ′1 of
size τ assigned to it, which make the machine bad. The jobs each have a
chain of machines connected to it: j1 can go to a machine i1 ∈ Γ (j1). On i1
there is another job j2 of size τ which can go to a machine i2 ∈ Γ (j2), etc. At
some point this chain ends with an empty machine. The same construction is
made for j ′1. In order to make the bad machine good, either the top chain of
jobs or the bottom chain has to be traversed. Hence, it seems like the number
of layers would be roughly half the jobs or machines. It turns out that this
problem only occurs with huge jobs and we will carefully circumvent it.

The leap technique is intended for moving such a chain of huge jobs
at once. For an easy description we construct a directed bipartite graph
G(σ ) = (V ,E(σ )) where V = B∪M, i.e., the vertices are big jobs B and
the machines. There is an edge (jB, i) ∈ E(σ ) if i ∈ Γ (jB) \ {σ (jB)} and

p({j ∈ σ−1(i) : pj ≤ 5/6}) + pjB ≤ (11/6+ 2ε)τ ,

i.e., if there is no huge job in σ−1(i) the move (jB, i) is valid. Furthermore,
we let (i, jH ) ∈ E(σ ), if jH is huge and i = σ (jH ).

Suppose that there is some path j1, i1, j2, i2, . . . , jk , ik in G, where no huge
job is assigned to ik . Then we can move j1 to i1, j2 from i1 to i2, j3 from i2
to i3, etc. We will call this a leap.
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The general theme for using this graph is the following. A big job jB is
repelled by σ (jB). Then all machines that are reachable by some path from
jB should repel their huge jobs as well. When one of them is removed, we
can instantly free i from jB. This way we are not going to put all moves of
the path sequentially into the layers and avoid making it unnecessarily long.

De�nition 10 (Valid leap). Let j1, i1, . . . , jr , ir be a path in the leap graph. It

is called valid leap, if (jr , ir) is a valid move.

By de�nition of the leap graph and the fact that every machine has at most
one huge job, for a valid leap the following moves are all valid if executed in
reverse order, i.e., (jr , ir), (jr−1, ir−1), . . . , (j1, i1).

Finally, we de�ne a graph G(L≤k ,σ ) which has all edges from G(σ ) of the
form (i, jH ), but only the edges (jB, i) where i does not repel jB w.r.t. L≤k .
The de�nition of repelled edges will be given later.

description of the algorithm. We are now ready to state the
algorithm (see Alg. 4). It starts with an allocation σ with the property that
each machine has at most one huge job assigned to it. The allocation of
huge jobs can be found using bipartite matching and the remaining jobs are
assigned arbitrarily. We initialize π as an arbitrary permutation of J ×M.
Until all machines are good the algorithm searches for valid moves or leaps
that improve σ . For this purpose we build layers. The layers are alternating
between leap layers, critical layers, small layers, and non-critical layers: Layer
L4k+1 is always a leap layer; L4k+2 is a critical layer; L4k+3 is a small layer;
L4k+3 is a non-critical layer. A leap-layer L`+1 consists of the machines that
are reachable in the leap graph G(L≤`,σ ) by a job that is repelled by its
current machine w.r.t. L≤` . For the critical layer L`+2 and non-critical layer
L`+4, we select all (jB, i) where jB is a big job repelled by σ (jB), but not
by i w.r.t. L≤`+1. A subset of these is taken in L`+2. We will de�ne below
precisely how they are chosen, but they depend on π giving priority to the
moves in the front. After they are selected, the critical moves are pushed to
the front of π. All moves (jS , i), where jS is repelled by σ (jS), but not by i
w.r.t. L≤`+2 are put in L`+3. Finally, the previously considered big job moves
(jB, i) which were not taken in L`+2 and where i still does not repel jB (now
w.r.t. L≤`+3) are taken in the non-critical layer L`+4. If at any point a valid
leap or move is found, it is executed and the structure of layers is reset. Note
that the meaning of the continue statement in the pseudo-code is to jump to
the next iteration of the while loop.

repelled jobs. We de�ne the repelled jobs of each machine inductively
w.r.t. L≤k , k = 0,1, . . . ,`.

(initialization) Let the bad machine repel every job w.r.t. L≤0.

(monotonicity) If i repels j w.r.t. L≤k , then let i repel j also w.r.t. L≤k+1.

The remaining rules regard k > 0 and we de�ne repelled jobs for a layer Lk .
A layer Lk may be a leap layer, a critical layer, a small layer, or a non-critical
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Input : Instance (J ,M, (Γj)j∈J , (pj)j∈J )
Result: Schedule σ : J →M with makespan ≤ (11/6+ 2ε)τ

or "err", if τ <OPT∗.
let σ be an allocation with at most one huge job on each machine ;
let π be an arbitrary order on J ×M ;
`← 0 ;
while there is a bad machine do

if ` ≥ 4dlog1+ε(4|M|)e=O(1/ε · log(|M|)) then
return "err" ;

let LLnew be the set of machines reachable in the leap graph
G(L≤`,σ ) by a big job j repelled by σ (j) w.r.t. L≤` ;
L`+1← (LLnew,leap);
if there is a machine i in L`+1 with no huge job in σ−1(i) then

let j1, i1, . . . , jr , ir = i be a path in G(L≤`,σ ), where j1 is
repelled by σ−1(jr) w.r.t. L≤` ;
σ (jr)← ir , . . . ,σ (j1)← i1;
delete L1,L2, . . . ,L`+1 ; `← 0 ; continue;

let LBnew be the set of all (jB, i), jB ∈ J big and i ∈ Γ (jB), with jB
repelled by σ (jB) and not by i w.r.t. L≤`+1 ;
LCnew← CriticalMoves(LBnew,σ ,L≤`+1,π) ;
L`+2← (LCnew,critical) ;
move LCnew to the front of π (keeping their pairwise order) ;
if there exists a valid move (j, i) in L`+2 then

σ (j)← i ;
delete L1,L2, . . . ,L`+2 ; `← 0 ; continue;

let LSnew be the set of all (jS , i), jS ∈ J small and i ∈ Γ (jS), with
jS repelled by σ (jS) and not by i w.r.t. L≤`+2 ;
L`+3← (LSnew,small) ;
if there exists a valid move (j, i) in L`+3 then

σ (j)← i ;
delete L1,L2, . . . ,L`+3 ; `← 0 ; continue;

let LNCnew be the set of all (j, i) ∈ LBnew \LCnew where i does not
repel j w.r.t. L≤`+3 ;
L`+4← (LNCnew,non-critical) ;
if there exists a valid move (j, i) in L`+4 then

σ (j)← i ;
delete L1,L2, . . . ,L`+4 ; `← 0 ; continue;

`← `+ 4;
return σ ;

Algorithm 4: Constructive algorithm for Restricted Assignment
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layer. In the �rst case, Lk contains a set of machines reachable in the leap
graph. We de�ne:

(leap) If Lk is a leap layer, let every machine i in Lk repel all big jobs that
are adjacent to i in the leap graphG(σ )—that is, all huge jobs in σ−1(i)
and all big jobs jB with i ∈ Γ (jB) and

p({j ′ ∈ σ−1(i) : pj ′ ≤ 5/6}) + pjB ≤ (11/6+ ε)τ .

(critical) If Lk is a critical layer, for every move (j, i) in Lk let i repel all
jobs.

(small) If Lk is a small layer, for every move (j, i) in Lk let i repel all jobs.

Now assume that Lk is a non-critical-layer and consider a move (j, i) in Lk .
In the non-critical case the algorithm is lazy: It repels jobs only if it is really
necessary. We �rst identify a set of small jobs that is unlikely to be moved. For
i ∈M de�ne Si(L≤k−1,σ ) to be the small jobs j ∈ σ−1(i) which are repelled
by all machines in Γ (j) \ {i}.

Next, de�ne a threshold W0 as the minimum W ≥ 0 such that the small
jobs in Si(L≤k−1,σ ) and all big jobs below this threshold are already too
large to add j , i.e.,

p
({
j ′ ∈ σ−1(i) :

1
2
< pj ′ ≤W

})
+p(Si(L≤k−1,σ ))+pj >

(11
6

+ 2ε
)
τ .

It will follow from the selection of critical moves that such a W0 always
exists and, moreover, W0 ≤ 5/6. When none of the jobs in Si(L≤k−1,σ ) can
be removed, it is necessary (although not always su�cient) to remove one
of the big jobs with size at most W0 in order to make (j, i) valid. Hence, we
de�ne,

(non-critical) if Lk is a non-critical layer then for every move (j, i) let
i repel all jobs j with 1/2 < pj ≤W0 (where W0 is de�ned as above)
and all jobs in Si(L≤k−1,σ ).

It is notable that the corner case where W0 = 0 is equivalent to

p(Si(L≤k−1,σ )) + pj > (11/6+ 2ε)τ

and here the algorithm gives up making (j, i) valid. In particular, no additional
big jobs will be repelled.

Finally, we want to highlight the following counter-intuitive (but inten-
tional) aspect of the algorithm. It might happen that some job of size greater
than W0 is moved to i, only to be removed again in a later iteration, when
W0 has increased.
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can move here

...
...

Big jobs repelled
by their machines

Figure 6: Bottleneck for small jobs

critical move selection. Suppose we are given some layers L≤`+1
and big job moves (j, i) ∈ LBnew where j is repelled by σ (j) w.r.t. L≤`+1, but
not by i. Which of these moves should be critical? Recall that for critical
moves (j, i) the target machine i always repels all jobs. As in the exponential
time algorithm, we later need to amortize these moves with small job moves.
Hence, we should select critical moves in a way that they produce many
small job moves.

In the following letM denote the set of machines that repel all jobs w.r.t.
L≤`+1. As a prime example of a situation we want to avoid, consider the
following: There are a lot of critical moves (j, i) where pj = 1, but on i there
is a load of small jobs with volume slightly above (11/6+2ε)τ−pj = (5/6+
2ε)τ � τ . Moreover, these small jobs jS cannot go anywhere (meaning later
layers will not have moves for them), because all their potential machines are
inM, i.e., Γ (jS)\{i} ⊆M. Hence, there will not be any machines to amortize
this low load. We should consider small jobs like this as blocked volume and
when there is too much blocked volume on i, a move (j, i) should not be
critical. However, it is not enough to consider small jobs that have nowhere
to go. It might also be that a lot of small jobs have only very few machines to
go to. In the example above, imagine that all the small jobs share only one
machine i′ <M to which they could go (see Figure 6). Then the average load
is still very low. This is also something we want to avoid.

So how do we avoid these situations? We select the critical edges se-
quentially (see Algorithm 5). For the already added critical moves (j, i), we
consider all machines reachable by a small job on i can go to as blocked as
well, i.e., we add them toM. We add (j, i) to the critical moves only when
the blocked small jobs (as described above) and the medium jobs on i have a
volume that allows j to be added to i, if there were no other jobs.

6.3.2 Analysis

Lemma 43. If the con�guration LP is feasible for τ and there remains a bad

machine, then within the �rst ` ≤ 4dlog1+ε(4|M|)e layers there will be a valid
leap or move.
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Input :Moves LBnew, schedule σ , Layers L≤`+1, and order π
Result: Critical moves C ⊆ LBnew
C←∅ ;
letM be the set of the machines that repel all jobs w.r.t. L≤`+1;
for (j, i) ∈ LBnew ordered by π do

Small← p({j ′ ∈ σ−1(i) : pj ′ ≤ 1/2 and Γ (j ′) \ {i} ⊆M} ;
Med← p({j ′ ∈ σ−1(i) : 1/2 < pj ′ ≤ 5/6}) ;
if i <M and Small+Med+ pj ≤ 11/6+ 3ε then

C← C ∪ {(j, i)} ;
M←M∪{i};
for j ′ ∈ σ−1(i) small do
M←M∪ Γ (j ′);

return C ;
Algorithm 5: Selection of critical moves

Proof. Suppose toward contradiction, there are bad machines, no move in L≤`
is valid, and ` = 4dlog1+ε(4|M|)e. We will construct values (zj)j∈J , (yi)i∈M
with the properties as in Lemma 38 and thereby show that the con�guration
LP is infeasible. Throughout the proof the allocation σ refers to the allocation
in the iteration where no move or leap is found.

First, we de�ne values z(k)j ,y(k)i for all pre�xes of the layers ending in a
leap layer, i.e., for each L≤4k+1 with 0 ≤ k < `/4. Furthermore, for technical
reasons we de�ne the values z(−1)j ,y(−1)i as well as y(`/4)

i . Then zj , yi will be
set as a positive linear combination of these values.

Let J̃ (L≤4k+1) denote all jobs j that are repelled by σ (j) w.r.t. L≤4k+1.
For every 0 ≤ k < `/4 and j ∈ J let

z
(k)
j =

min
{pj
τ ,

5
6

}
if j ∈ J̃ (L≤4k+1),

0 otherwise.

Moreover, let y(k)i := 1+ ε, if i repels all jobs w.r.t. L≤4k+1 and y(k)i :=

z(k)(σ−1(i)), otherwise. Finally, de�ne the corner cases y(−1)i = 0, z(−1)j = 0,

and y(`/4)
i := 1+ ε for all i, j .

Notice that z(−1)j ≤ z(0)j ≤ · · · ≤ z
(`/4)
j for all j (and the same holds for all

y
(k)
i ). We set

z
(≤k)
j =

k∑
k′=−1

1
(1+ ε)k′

· z(k
′)

j ,

y
(≤k)
i =

k∑
k′=−1

1
(1+ ε)−k′

· y(k
′)

i .

The coe�cients decrease exponentially with the layer number. As we will
see, this makes to the last values negligibly small (as in the �rst algorithm).
Finally, set zj = z

(≤`/4−1)
j and yi = y

(≤`/4)
i .
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Claim 44. Let −1 ≤ k < `/4, i ∈M and C ∈ C(i,τ). Then

z(≤k)(C) ≤ y(≤k+1)
i .

In particular, this implies z(C) = z(≤`/4−1) ≤ y(≤`/4)
i = yi for all i,C.

Claim 45.∑
j∈J

zj >
∑
i∈M

yi .

Together the claims imply τ <OPT∗, a contradiction.

Before we prove the claims, we will state the following auxiliary lemmata.

Lemma 46. In an iteration where no valid move or leap is found consider the

set LBnew selected in the algorithm after a leap layer L`+1 is created and let

(jB, i) ∈ LBnew. Then

p
({
j ∈ σ−1(i) : pj ≤

5
6

})
+ pjB >

(11
6

+ 2ε
)
τ .

Proof. Suppose toward contradiction that this does not hold. Then (jB, i) is
in the leap graph G(σ ). It is also in G(L≤`,σ ), since i does not repel jB w.r.t.
L≤`+1. Otherwise, (jB, i) would not be in LBnew. Obviously i is reachable by
jB in G(L≤`,σ ). We argue that i is reachable by some big job repelled by
its current machine w.r.t. L≤` . This implies that i repels jB w.r.t. L≤`+1 by
de�nition of repelled edges for a leap layer. This is a contradiction, since
(jB, i) could not be in LBnew then. We know that σ (jB) repels jB w.r.t. L≤`+1.
If it repels jB already w.r.t. L≤` , this follows trivially. Otherwise, jB is repelled
by i because of the (leap) rule in the de�nition of repelled edges for L`+1.
This can only be when i ∈ L`+1, which means it is reachable by some big job
repelled by its machine w.r.t. L≤` .

Lemma 47. In an iteration where no valid move or leap is found consider the

set LBnew selected in the algorithm after a leap layer L`+1 is created and let

(jB, i) ∈ LBnew. Then

p
({
j ∈ σ−1(i) :

1
2
< pj ≤

5
6

})
+p(Si(L≤`+3,σ ))+pjB >

(11
6

+ 2ε
)
τ ,

This lemma implies that the threshold W0 chosen in the de�nition of
repelled edges always exists and W0 ≤ 5/6.

Proof. When (jB, i) is a critical moves in L`+2 or when (jS , i) ∈ L`+3 for
some small job jS , this is follows easily from the previous lemma, since
Si(L≤`+3,σ ) contains all small jobs in σ−1(i). Each other move (jB, i) would
have been selected as a critical move, if this inequality did not hold: Consider
the setM in the selection of critical moves at the time (jB, i) is considered.
The algorithm adds (jB, i) to the critical moves, if i <M and

p
({
j ∈ σ−1(i) :

1
2
< pj ≤

5
6

})
+p(S ′i (M,σ ))+pjB ≤

(11
6

+ 2ε
)
τ , (12)
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where S ′i (M,σ ) is the set of small jobs jS ∈ σ−1(i) with Γ (jS) \ {i} ⊆ M.
Recall that all machines inM either repel all jobs w.r.t. L≤`+1 or they are
reachable by a small job on a machine that is target of a critical move. The
latter kind must repel all jobs w.r.t. L≤`+3, because it is target of a small job
move in L`+3. Thus, S ′i (M,σ ) ⊆ Si(L≤`+3,σ ) and (12) is satis�ed. Further-
more, i <M, since i does not repel all jobs w.r.t. L≤`+1 and we assumed that
there is no small job jS with (jS , i) ∈ L`+3. Thus, (jB, i) would have been
selected as a critical move.

Proof of Claim 44. We argue inductively. The basis of the induction is trivial,
since z(≤−1)(C) = 0 ≤ y(≤0)i . Suppose that k ≥ 0 and for all k′ < k,

z(≤k
′)(C) ≤ y(≤k

′+1)
i

If y(k+1)
i ≥ 1+ ε then immediately

z(≤k)(C) = z(≤k−1)(C)+(1+ε)−kz(k)(C) ≤ y(≤k)i +(1+ε)−k
p(C)

τ

≤ y(≤k)i + (1+ ε)−(k+1)y
(k+1)
i = y

(≤k+1)
i .

We can therefore assume w.l.o.g. that y(k+1)
i = z(k+1)(σ−1(i)). Thus, k <

`/4 and i does not repel all jobs w.r.t. L≤4(k+1)+1. Since by de�nition of
repelled jobs, a machine that repels any small job from another machine
always repels all jobs, we know that i does not repel small jobs that are on
other machines w.r.t. L≤4(k+1)+1. Hence, for all small jobs jS ∈ C \ σ−1(i) it
holds that z(k)jS = 0: If this was not true, σ (jS) would repel jS w.r.t. L4k+1,
in which case (jS , i) would have been added to L4k+3 and i would repel all
jobs, which is not true.

Consider the cases of big jobs in C. If there is none, then obviously every
jobs in C \σ−1(i) is small. Let k′ ≤ k. Then for all j ∈ C \σ−1(i) it holds that
z
(k′)
j ≤ z(k)j = 0. Consequently, z(k′)(C) ≤ z(k′)(σ−1(i)) = y

(k′)
i . Hence,

z(≤k)(C) ≤ z(≤k)(σ−1(i)) = y
(≤k)
i ≤ y(≤k+1))i .

Clearly, there can be at most one big job jB ∈ C, since such a job has pjB >
1/2 ·τ and C cannot have a volume greater than τ . If z(k)jB = 0 or jB ∈ σ−1(i),
the argument above still works.

We recap: The crucial case is when y(k+1)
i = z(k+1)(σ−1(i)), there is

exactly one big job jB ∈ C \ σ−1(i), and z(k)jB =min{pjB/τ ,5/6}. Let k′ ≤ k

be minimal with z(k
′)

jB
=min{pjB/τ ,5/6}. In particular, z(−1)jB

= z
(0)
jB

= · · ·=

z
(k′−1)
jB

= 0.

case 1: i repels jB w.r.t. L≤4k′+1 . This can either be because of a leap
layer or a move layer in L≤4k′+1. In the former case, there has to be a huge
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job in jH ∈ σ−1(i) which i repels w.r.t. L≤4k′+1. Otherwise, there would be a
valid path. Thus, for all k′′ ≥ k′ it holds that z(k

′′)
jH

= 5/6 ≥ z(k
′′)

jB
and

z(k
′′)(C) = z

(k′′)
jB

+ z(k
′′)(C \ {jB}) ≤ z

(k′′)
jH

+ z(k
′′)(σ−1(i) \ {jH })

≤ z(k
′′)(σ−1(i)) ≤ y(k

′′)
i .

Furthermore, for all k′′ < k′ ,

z(k
′′)(C) = z(k

′′)(C \ {jB}) ≤ z(k
′′)(σ−1(i)) ≤ y(k

′′)
i .

Hence, z(≤k)(C) ≤ y(≤k)i ≤ y(≤k+1)
i .

Now consider the case in which there is some move (jk′ , i) which causes i
to repel jB is w.r.t. L≤4k′+1. The move (jk′ , i) must be in a non-critical layer
L4k′′+4, where k′′ < k′ , since i does not repel all jobs w.r.t. L≤4k′+1. Let W0
as in the de�nition of repelled jobs in consequence of (jk′ , i) and let

R= {j ∈ σ−1(i) : 1/2 < pj ≤W0} ∪ Si(L≤4(k′′−1)+3,σ ),

The edges repelled by i because of (jk′ , i) are exactly Si(L≤4k′′+3,σ ) and
all those j with 1/2 < pj ≤W0. Hence, pjB ≤W0. Recall that W0 is chosen
minimal with p(R) + pjk′ > (11/6+ 2ε)τ . There must be a job j ′B ∈ σ−1(i)
with pj ′B =W0, since otherwise W0 would not be minimal. Thus, for all k′′′

it holds that z(k
′′′)

j ′B
≥ z(k

′′′)
jB

and

z(k
′′′)(C) = z

(k′′′)
jB

+z(k
′′′)(C\{jB}) ≤ z

(k′′′)
j ′B

+z(k
′′′)(σ−1(i)\{j ′B}) ≤ y

(k′′′)
i .

It follows conveniently that z(≤k)(C) ≤ y(≤k)i ≤ y(≤k+1)
i .

case 2: i does not repel jB w.r.t. L≤4k′+1 . Since z(k
′)

jB
> 0, jB is re-

pelled by σ (jB) w.r.t. L≤4k′+1. Machine i does not repel all jobs w.r.t. L≤4k′+1,
which implies there is no move with target i in L4k′+2 or L4k′+3. Hence,
(jB, i) must be a move in layer L4k′+4. Let

R= {j ∈ σ−1(i) : 1/2 < pj ≤W0} ∪ Si(L≤4k′+1,σ ),

where W0 is as in the de�nition of repelled jobs in consequence of (jB, i).
Then

p(R) + pjB >
(11
6

+ 2ε
)
τ ≥ p(C) +

(5
6
+ 2ε

)
τ .
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Furthermore, all jobs in R are repelled by i w.r.t. L≤4k′+4 and therefore
in J̃ (L≤4(k′+1)+1). Since for all j ′ ∈ R it holds that pj ′ ≤ W0 ≤ 5/6 (see
Lemma 47), it follows that z(k

′′+1)
j ′ = pj ′/τ for all k′′ ≥ k′ . Thus,

z(k
′′)(C) = z

(k′′)
jB

+ z(k
′′)(C \ {jB})

≤ z(k
′′)

jB
+ (p(C)− pjB)/τ

< z
(k′′)
jB

+ (p(R)− (5/6+ 2ε)τ)/τ

= z
(k′′)
jB

+ p(R)/τ − 5/6− 2ε

≤ (1− ε)p(R)/τ

≤ (1− ε)z(k
′′+1)(σ−1(i)) ≤

z(k
′′+1)(σ−1(i))

1+ ε
.

Here we use that i is a good machine and therefore p(R) ≤ p(σ−1(i)) ≤
(11/6+ 2ε)τ < 2τ . We conclude,

z(≤k)(C) = z(≤k
′−1)(C) +

k∑
k′′=k′

(1+ ε)−k
′′
z(k

′′)(C)

≤ y(≤k
′)

i +
k∑

k′′=k′

(1+ ε)−k
′′ z(k

′′+1)(σ−1(i))

1+ ε

≤ y(≤k
′)

i +
k∑

k′′=k′

(1+ ε)−(k
′′+1)y

(k′′+1)
i = y

(≤k+1)
i .

Proof of Claim 45. Let i be a bad machine. Then i repels all jobs (in particular
those in σ−1(i)) w.r.t. L≤0. Hence, for every 0 ≤ k < `/4 and j ∈ σ−1(i),
z
(k)
j =min{5/6,pj/τ} ≥ 5/6 · pj/τ Thus,

z(k)(σ−1(i)) ≥ 5
6
p(σ−1(i))/τ >

5
6

(11
6

+ 2ε
)
>
55
36

+ ε > 1+ ε+
1
2
.

This implies

yi =
`/4∑
k=0

(1+ ε)−ky(k)i =
`/4−1∑
k=0

[(1+ ε)−k(1+ ε)] + (1+ ε)−(`/4−1)

<
`/4−1∑
k=0

[(1+ε)−k ·z(k)(σ−1(i))]+(1+ε)−(`/4−1)− 1
2

`/4−1∑
k=0

(1+ε)−k

≤ z(σ−1(i)) − 1
2
.

In the last inequation, we use the last two elements of the sum
∑`/4−1
k=0 (1+

ε)−k to compensate for (1+ ε)−(`/4−1). The inequation shows that yi is
much smaller than z(σ−1(i)). If for all good machines i and layers k we had
y
(k)
i = z(k)(σ−1(i)) (which is the case when i does not repel all jobs w.r.t.
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L≤k), the proof would be easy:
∑
j∈J z

(≤`/4−1)
j =

∑
i∈M z

(≤`/4−1)(σ−1(i))

would be larger than 1/2+
∑
i∈M y

(≤`/4−1)
i . The former is exactly

∑
j∈J zj

and the latter is

1/2+
∑
i∈M

yi −
∑
i∈M

(1+ ε)−`/4y
(`/4)
i <

∑
i∈M

yi .

Here we use that the decrease in the coe�cient makes y(`/4)
i neglectable,

which we will explain in detail as we go through the actual proof.
Of course, there can be machines that repel all jobs and are set to y(k)i =

1+ ε. We have to make sure that they do not have a negative e�ect. Let Bk
be the machines i with (jB, i) in the k-th critical layer for some jB, i.e., in
L4k+1. Let Ak be the machines i with (jS , i) in the k-th small layer for some
jS , i.e., in L4k+3.

Let k < `/4 and i ∈ Bk . i repels all jobs w.r.t. L≤4(k+1)+1. Thus, σ−1(i) ⊆
J̃ (L≤4(k+1)+1). Let (jB, i) as above. This move is not valid. Either there is a
job j ∈ σ−1(i) with z(k+1)

j = 5/6 or z(k+1)
j = pj/τ for all j ∈ σ−1(i). Thus,

z(k+1)(σ−1(i)) ≥min{5/6, p(σ−1(i))/τ}
≥min{5/6, 11/6+ 2ε − pjB/τ} ≥ 5/6 ≥ 1+ ε − ε − 1/6

= y
(k+1)
i − ε − 1/6.

Next, let i ∈ Ak . Then there is a move (jS , i) ∈ L≤4k+1 with jS small. Of
course, this move is not valid either. In the following, we distinguish between
the cases where σ−1(i) has no huge job or one huge job.

z(k+1)(σ−1(i)) ≥min{p(σ−1(i))/τ , (p(σ−1(i))− τ)/τ + 5/6}

≥ 8/6+ 2ε − 1+ 5/6=
7
6
+ 2ε ≥ y(k+1)

i + 1/6+ 2ε.

The bounds above show that machines in Ak have z(k+1)(σ−1(i)) above
y
(k+1)
i and machines in Bk below. In order to amortize the machines, we

have to proof a bounded ratio between them: We argue that for every k < `/4,
|Ak | ≥ |Bk |. Notice that Bk∪̇Ak are exactly the machines that are added toM
in the selection of critical moves for L4k+2. Hence, it su�ces to show that
at most half of them are target of critical big job moves. Consider a critical
move (jB, i) for a big job jB that is added in the critical move selection. By
Lemma 46

p
({
j ∈ σ−1(i) : pj ≤

5
6

})
+ pjB >

(11
6

+ 2ε
)
τ .

Because the move (jB, i) is selected as a critical move, it holds that

p
({
j ∈ σ−1(i) :

1
2
< pj ≤

5
6

})
+ p(S ′i (M,σ )) + pjB ≤

(11
6

+ 2ε
)
τ ,

where S ′i (M,σ ) are the small jobs jS ∈ σ−1(i) with Γ (jS) \ {i} ⊆M withM
as at the time before (jB, i) is selected. Consequently, there is a small job jS ∈
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σ−1(i)\S ′i (M,σ ). It follows that there exists a machine i′ ∈ Γ (jS)\(M∪{i}).
The algorithm adds i and i′ toM. In other words, whenever the algorithm
adds a machine i to Bk , it adds at least one machine i′ to Ak . It follows that∑

j∈J
zj =

`/4−1∑
k=0

∑
i∈M

(1+ ε)−kz(k)(σ−1(i))

>
`/4−1∑
k=0

(1+ ε)−k
[(1

6
+ ε

)
(|Ak | − |Bk |)︸       ︷︷       ︸

≥0

+
∑
i∈M

y
(k)
i

]
+

1
2

≥
∑
i∈M

yi +
1
2
−
∑
i∈M

(1+ ε)−`/4y
(`/4)
i︸                          ︷︷                          ︸

≥0

≥
∑
i∈M

yi

In the last inequality we use that by choice of `, (1+ ε)`/4 ≤ 4|M|, which
implies∑

i∈M
(1+ ε)−`/4y

(`/4)
i ≤ 2|M|(1+ ε)−`/4 ≤ 1

2
.

Lemma 48. The algorithm terminates in time nO(1/ε log(n))
, where n= |J |+

|M|.

Proof. We are looking at the states of two consecutive iterations right before
a move or leap is performed. Let σ be the schedule in the former iteration and
σ ′ in the latter. Likewise, de�ne layers L≤` and L′≤`′ right before they collapse.
Let J̃ (L≤k ,σ ) be the jobs j repelled by σ (j) w.r.t. L≤k . Recall, R(L≤k ,σ ) is
the set of all (j, i) ∈ J ×M where i repels j w.r.t. L≤k .

We de�ne a potential function Φ for each of the layers. Set

Φ(L≤k ,σ ) =



|R(L≤k ,σ )| if Lk is a leap layer,

(|Lk |, |J | − |J̃ (L≤k ,σ )|) if Lk is a critical layer,

|J | − |J̃ (L≤k ,σ )| if Lk is a small layer,

(|R(L≤k ,σ )|, |J | − |J̃ (L≤k ,σ )|) if Lk is a non-critical layer.

Claim 49. The vector

(g ′, |J | − |J̃ (L′≤0,σ
′)|,Φ(L′≤1,σ

′), . . . ,Φ(L′≤`′ ,σ
′),∞)

is lexicographically bigger than

(g, |J | − |J̃ (L≤0,σ )|,Φ(L≤1,σ ), . . . ,Φ(L≤`,σ ),∞)

Since the number of layers is at most O(1/ε log(n)) and components can
have only O(n3) di�erent values, the number of vectors is is bounded by
nO(1/ε log(n)). Since for every move or leap it decreases lexicographically, the
lemma follows easily from the claim.
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Proof of Claim 49. If the number of good machines increases, the claim fol-
lows immediately. If it does not, but a job is moved from a bad machine to a
good one, then J̃ ′(L′≤0,σ ′) ( J̃ (L≤0,σ ), i.e., the claim follows again. Hence,
assume neither case is true. Let 1 ≤ k ≤min{` − 1,`′} and:

1. L≤k−1 = L′≤k−1;

2. J̃ (L≤k−1) = J̃ ′(L′≤k−1) and σ (j) = σ ′(j) for all j ∈ J̃ (L≤k−1);

3. R(L′≤k−1,σ
′) = R(L≤k ,σ ).

We will prove: Φ(L′≤k) ≥ Φ(L≤k) and if equality holds, (1), (2) and (3) also
hold for k. This implies the claim by induction: If `′ < `, then the pre�x of
the �rst vector ending in Φ(L′≤`′ ,σ ) is lexicographically not smaller than
the pre�x of the second one ending in Φ(L≤`′ ,σ ). Furthermore, the next
component in the �rst vector is ∞, whereas it is something �nite in the
second. If `′ ≥ `, then we notice that (2) cannot hold for k − 1= ` − 1. This
is because some leap or move in L` was executed and therefore a job j that
is repelled by σ (j) w.r.t. L≤`−1 was moved.

case 1: Lk is a leap layer. We argue that every machine i reachable in
the leap graph G(L≤k−1,σ ) by a job big job j0 repelled by σ (j0) w.r.t. L≤k−1
is also reachable by j0 in the leap graph G(L′≤k−1,σ

′). Because of (2), this
means that the set of reachable machines in σ by any such job, which is
exactly Lk , is a subset of L′k . It su�ces to show that every edge reachable
by j0 in G(L≤k−1,σ ) is also in the leap graph G(L′≤k−1,σ

′). Because of (3) it
su�ces to show that it is in G(σ ′). An edge in the leap graph can be one of
two kinds. It can be from a machine to a huge job, i.e., (i, jH ), which exists
because σ (jH ) = i. We argue that jH was not not moved, which means
σ ′(jH ) = σ (jH ) = i and therefore the edge is also inG(σ ′). Suppose toward
contradiction that a move (jH , i′) was executed. Then there is no huge job
in σ−1(i′) and p(σ−1(i′)) + pjH ≤ (11/6+ 2ε) · τ . Therefore i′ would also
be reachable by j0 in G(σ ). Hence, the algorithm would execute a leap in
Lk , which it did not, since ` > k. Similarly, if jH was moved as part of a leap,
then all machines in this leap would be reachable already in Lk and there
would have been a valid leap already.

Now consider an edge of the form (jB, i). If i had no huge job in σ−1(i),
then again, there would have been a valid leap in Lk , which cannot be. The
edge (jB, i) exists in the leap graph of σ because i ∈ Γ (jB) \ {σ (jB)} and

p({j ∈ σ−1(i) : pj ≤ 5/6}) + pjB ≤ (11/6+ 2ε)τ .

It could only be removed, if jB was moved to i—this cannot be the case for
the same reason as above—or some job j ′ with pj ′ ≤ 5/6 is moved to i. By
de�nition of a valid non-huge move, however, this means that

(11/6+ 2ε)τ ≥ p({j ∈ σ−1(i) : pj ≤ 5/6}) + pj ′ + 1

≥ p({j ∈ σ−1(i)∪ {pj ′ }︸          ︷︷          ︸
=σ ′−1(i)

: pj ≤ 5/6}) + pjB .
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Therefore, (jB, i) is also in G(σ ′). We conclude, all reachable machines in
Lk are also in L′k , i.e., L′k ⊇ Lk . By the arguments above, every job adjacent
to a machine in Lk in G(L≤k−1,σ ) is also adjacent to this machine in L′k in
G(L′≤k−1,σ

′). Thus, R(L′≤k ,σ
′) ⊇ R(L≤k ,σ ). If equality does not hold, then

Φ(L′≤k ,σ
′) > Φ(L≤k ,σ ). Otherwise, (3) holds for k. (1) must also hold for k,

because L′k ) Lk was true, then the additional machine would repel at least
one additional job (its huge job). Finally, (2) holds, because no huge job on a
reachable machine was moved as elaborated above.

case 2: Lk is a critical layer. We show that every critical move
in Lk is also in L′k . By induction hypothesis, we know that the moves (j, i),
i ∈ Γ (j), where j is a big job repelled by σ (j) = σ ′(j), but not by i, w.r.t.
L≤k−1 and w.r.t. L′≤k−1 are the same. Therefore, the sets LBnew from which
the critical moves are selected are the same in both cases. Recall that critical
moves are added greedily in the order of π′ (π). In π′ the moves LBnew are
ordered in a way that �rst the moves from Lk appear (in the order of π) and
then all others. This is because in the main algorithm when Lk was created,
all (j, i) ∈ Lk were moved to the front of π. We just have to understand that
none of LBnew \ Lk were moved to the front at a later time. This is because
there is no way that a move, which is not selected as critical, can be selected
in a later layer.

Let (j1, i1), . . . , (jr−1, ir−1) be the �rst r − 1 critical moves selected in Lk .
Furthermore, let Mr−1 and M′r−1 be as in the algorithm before the r-th
critical move was added. Note that before the �rst critical move was added,
by (3) it holds thatM′0 =M0, since these are the machines that repel all
jobs w.r.t. L≤k−1. We assume for induction that M′r−1 ⊆ Mr−1 and that
(j1, i1), . . . , (jr−1, ir−1) were also added to L′k . Because no move or leap in
L≤k−1 was executed and ir repels all jobs w.r.t. L≤k , we know that σ ′−1(ir) ⊆
σ−1(ir). In particular, every medium job in σ ′−1(ir) was already in σ−1(ir).
Moreover, every small job jS ∈ σ ′−1(ir) with Γ (jS) \ {ir} ⊆ M

′
r−1 ⊆ Mr−1

was also in σ−1(ir) . Hence, the condition for adding (jr , ir) to L′k holds,
since it did for Lk . Finally,M′r is the union ofM′r−1, {i}, and Γ (jS) for every
small jS ∈ σ ′−1(ir). This is a subset ofMr−1, {i}, and Γ (jS) for every small
jS ∈ σ−1(ir) ⊆ σ ′−1(ir), which isMr .

If L′k ) Lk , nothing has to be shown, since Φ(L′≤k) > Φ(L≤k). Otherwise,
L′k = Lk and therefore (3) follows for k directly. If some job was moved away
from a machine of a critical move, then again Φ(L′≤k) > Φ(L≤k). Otherwise,
(2) follows for k.

case 3: Lk is a small layer. As in the previous case, we have that
Lk = L′k , i.e., (1) holds also for k. (3) also holds for k, since in the rules of a
small layer, every target of a move repels every job. This is the same in L′≤k
and L≤k . If some job was moved away from a target machine of a move in
Lk , then J̃ (L′≤k) ( J̃ (L≤k) and therefore Φ(L′≤k) > Φ(L≤k). Otherwise, (2)
follows for k as well.
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case 4: Lk is a non-critical-layer. By the arguments in Case 2
we know that the previous critical moves and the moves they are chosen
from are the same and therefore also for the non-critical moves L′k = Lk . Let
(j, i) ∈ Lk . We argue that

Si(L≤k−1,σ ) = Si(L
′
≤k−1,σ

′).

Let jS ∈ Si(L≤k−1,σ ). Then there cannot be a move (jS , i′) in some higher
layer than Lk−1. This is because jS is repelled by all i′ ∈ Γ (jS) \ {σ (jS)} w.r.t.
Lk−1. Hence, σ ′(jS) = σ (jS) = i. With (3) it follows that jS ∈ Si(L′≤k−1,σ

′).
Now let jS ∈ Si(L′≤k−1,σ

′). If σ (jS) = σ ′(jS) = i, then as above with (3) it
follows that jS ∈ Si(L≤k−1,σ ). Now assume toward contradiction σ (jS) , i.
By (2), jS is not repelled by σ (jS) w.r.t. L≤k−1; By (3) this means that jS
is also not repelled by σ (jS) , i w.r.t. L′≤k−1. Hence, jS < Si(L′≤k−1,σ

′), a
contradiction. Let W0 be the minimal W ≥ 0 such that

p
({
j ′ ∈ σ−1(i) :

1
2
< pj ′ ≤W

})
+p(Si(L≤k−1,σ ))+pj >

(11
6

+ 2ε
)
τ .

Since i repels all jobs j ′ with 1/2 < pj ′ ≤W w.r.t. L≤k , we get{
j ′ ∈ σ

′−1(i) :
1
2
< pj ′ ≤W

}
⊆

{
j ′ ∈ σ−1(i) :

1
2
< pj ′ ≤W

}
.

This implies that W ′0, the minimal W ≥ 0 with

p
({
j ′ ∈ σ ′−1(i) :

1
2
< pj ′ ≤W

})
+p(Si(L

′
≤k−1,σ

′))+pj >
(11
6

+ 3ε
)
τ .

is at least as big as W0, i.e., W ′0 ≥W0. This means all jobs repelled by i w.r.t.
L≤k are also repelled w.r.t. L′≤k , which implies R(L′≤k ,σ

′) ⊇ R(L≤k ,σ ). If
equality does not hold, thenΦ(L′≤k ,σ

′) > Φ(L≤k ,σ ). Otherwise (3) is ful�lled
for k. If one of the jobs repelled by i is moved, then J̃ (L′≤k−1) ( J̃ (L≤k−1).
Otherwise, equality holds and (2) follows for k.

Theorem 50. We can �nd a (11/6+ε)-approximate solution for Restricted

Assignment in time nO(1/ε log(n))
for every ε > 0, where n= |J |+ |M|.



The problem from the previous chapter has

an intriguing special case where each job

is allowed on two machines. This has a

natural interpretation as a graph problem

and will be studied in this chapter.

7
T H E G R A P H B A L A N C I N G P R O B L E M

In this chapter we consider weighted, undirected multigraphs that may
contain loops. We write such a multigraph as G = (V ,E,r,w), where V
is the set of vertices, E is the set of edge identities, and r is a function
E→ {{u,v} : u,v ∈ V } that de�nes the endpoints for every edge. Note that
in the de�nition above we allow u = v, which describes a loop. E is often
de�ned as a set of vertex pairs. We use the function r instead, since it avoids
some issues due to multigraphs. The weight function w : E→R>0 assigns
positive weights to the edges. In the Graph Balancing problem we want to
compute an orientation of the edges, i.e., one of the ways to turn the graph
into a directed graph. The goal is to minimize the maximum weighted in-
degree over all vertices, that is maxv∈V

∑
e∈δ−(v)w(e), where δ−(v) are the

incoming edges of vertex v in the resulting digraph. Apart from being an ar-
guably natural problem, Graph Balancing has been of particular interest to
the scheduling community. It is one of the simplest special cases of makespan
minimization on unrelated machines for which an inapproximability bound
of 1.5− ε is known, which is already the best that is known in the general
problem. In the interpretation as a scheduling problem, machines correspond
to vertices and jobs to edges, i.e., each job has only two potential machines
to which it can be assigned. The problem was introduced by Ebenlendr,
Krčál, and Sgall [28] and they gave a polynomial time 1.75-approximation
for it. Indepenently and under a di�erent name, Asahiro et al. [9] studied
the problem and showed that no (1.5− ε)-approximation is possible unless
P=NP. The algorithm by Ebenlendr et al. rounds the solution of a partic-
ular linear programming formulation. This appears to be the best one can
hope for using their techniques, since the ratio between integral optimum
and fractional optimum of the LP, the integrality gap, can be arbitrarily
close to 1.75 [28]. Using a completely di�erent approach to [28], Huang and
Ott developed a purely combinatorial algorithm for the problem [35]. With
5/3+ 4/21 ≈ 1.857, however, their approximation ratio is inferior to the
original algorithm. Another algorithm for Graph Balancing, developed by
Wang and Sitters [71], achieves an approximation ratio of 11/6 ≈ 1.833, i.e.,
also worse than the original, but notable for being simpler. For the special
case of only two di�erent edge weights, three independent groups found a
tight 1.5-approximation [20, 35, 60].

A good candidate for a stronger linear program to that from [28] is the
con�guration LP studied in the previous two chapters. It was introduced

87
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by Bansal and Sviridenko for the more general problem Scheduling on
Unrelated Machines and the closely related Santa Claus problem [12]. It
is easy to show that this LP is at least as strong as the LP from [28] (see the
same paper), i.e., the integrality gap must be at most 1.75 as well. The best
lower bound known is 1.5 (see for instance [38], this holds even for the case
of Graph Balancing). In recent literature, the con�guration LP has enabled
breakthroughs in the restricted variants for both of the problems above [8,
68]. The restricted variant of Scheduling on Unrelated Machines (also
known as Restricted Assignment) can be seen as Graph Balancing with
hyperedges. In particular, it contains the Graph Balancing problem as a
special case. In this setting, the con�guration LP was shown �rst to have
an integrality gap of at most 33/17 ≈ 1.941 [68], which was improved to
11/6 ≈ 1.833 by us [41] (see previous chapter). In this chapter, we present a
sophisticated local search algorithm for Graph Balancing and obtain the
following result.

Theorem 51. The integrality gap of the con�guration LP is at most 1.749 for

Graph Balancing.

In other words, it is stronger than the LP from [28]. This non-constructive
proof is by a local search algorithm that is not known to terminate in poly-
nomial time. Although this does not give a polynomial time approximation
algorithm, it is strong evidence that such an algorithm can be developed using
the con�guration LP. Furthermore, the optimal solution can be estimated in
polynomial time within a factor of 1.749+ε for any ε > 0 by approximating
the con�guration LP. We emphasize that the purpose of this theorem is to
show a separation between the con�guration LP and the previously used LP
relaxation. The constants in the proof are not optimized. We chose to keep the
case analysis (which is already di�cult) and constants as simple as possible
instead of improving the third decimal place. Our work in [44] indicates
that earlier bounds on the integrality gap of the con�guration LP in related
problems disregard many constraints enforced on small edges/jobs, but that
without them the LP might be much weaker. More precisely, these proofs
used only properties that are already enforced by a weaker con�guration LP
that allows small edges/jobs to appear fractionally in a con�guration. This
weaker LP, however, has an integrality gap strictly higher than 1.5, whereas
for the con�guration LP it is still open whether 1.5 is the correct answer. The
backbone of our new proof is the utilization of these small edge constraints
(see end of Section 7.1). This may be relevant to other related local search
based proofs as well.

other related work. The problem of minimizing the maximum out-
degree is equivalent to the maximum in-degree. The very similar problem
of maximizing the minimum in- or out-degree has been settled by Wiese
and Verschae [70]. They gave a 2-approximation and this is the best possible
assuming P ,NP. Surprisingly, this holds even in the unrelated case when
the value of an edge may be di�erent on each end. They do not use the
con�guration LP, but it is easy to also get a bound of 2 on its integrality
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gap using their ideas. For the restricted case (a special case of the unrelated
one) this bound of 2 was already proven by [18]. We are not aware of any
evidence that Graph Balancing is easier on simple weighted graphs (without
multiedges and loops). The same reduction for the state-of-the-art lower
bound holds even in that case. A number of recent publications deal with
the important question on how related local search algorithms can be turned
into e�cient algorithms [6, 7, 40, 62].

notation. For some v ∈ V we will denote by δ(v) the incident edges,
i.e. those e ∈ E with v ∈ r(e). When a particular orientation is clear from
the context, we will write δ−(v) for the incoming edges and δ+(v) for the
outgoing edges of a vertex. For some F ⊆ E we will denote by δF(v) the
incident edges of v restricted to F and δ−F(v), δ

+
F (v) accordingly. For some

e ∈ E we will describe by t(e) ∈ r(e) the vertex it is oriented towards and
by s(e) ∈ r(e) the vertex it is leaving. For a loop e, i.e., r(e) = {v} for some
v ∈ V , it always holds that t(e) = s(e). For a subset of edges S ⊆ E we will
write w(S) for

∑
e∈Sw(e) and similar for other functions over the edges.

lp relaxations. The following linear programs have no objective func-
tions. Instead they parameterized by τ , the makespan. The optimum is the
lowest τ for which it is feasible. This will be denoted by OPT∗ (referring to
the con�guration LP in the rest of the chapter). First we look at the assign-
ment LP by Lenstra, Shmoys, and Tardos [56]. It has a variable xe,v for every
vertex v and incident edge e ∈ δ(v), which indicates whether e is oriented
towards v.

The assignment LP.

∑
e∈δ(v)

w(e) · xe,v ≤ τ ∀v ∈ V ,

∑
v∈r(e)

xe,v = 1 ∀e ∈ E,

xe,v ∈ [0,1]

The �rst constraint ensures that no vertex has more than weight τ of edges
oriented towards it. The second one describes that each edge is oriented
towards one vertex. The assignment LP has an integrality gap of 2. Let B
denote the big edges e, which have w(e) > 0.5 · τ . It is clear that an integral
orientation can assign at most one such edge to each vertex. Ebenlendr et
al. [28] show that adding the constraint

∑
e∈δB(v) xe,v ≤ 1 ∀v ∈ V improves

the integrality gap to 1.75. They also give other LP relaxations, but show
that none of them have an integrality gap strictly better than 1.75.

Now we will introduce the con�guration LP. A con�guration is a subset
of edges that can be oriented towards a particular vertex without exceeding
a particular makespan τ . Formally, we de�ne the con�gurations of a vertex
v and a makespan τ as C(v,τ) := {C ⊆ δ(v) : w(C) ≤ τ}. The con�guration
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LP now assigns fractions of con�gurations to each machine.

Primal of the con�guration LP.

∑
v∈V

∑
C∈C(v,τ)

xv,C ≤ 1 ∀v ∈ V

∑
v∈r(e)

∑
C∈C(v,τ):e∈C

xv,C ≥ 1 ∀e ∈ E

xv,C ≥ 0

We are particularly interested in the dual of the con�guration LP (which is
constructed after adding the objective function max (0, . . . ,0) · x).

Dual of the con�guration LP.

min
∑
v∈V

yv −
∑
e∈E

ze

s.t.
∑
e∈C

ze ≤ yv ∀v ∈ V ,C ∈ C(v,τ)

y,z ≥ 0

Although the con�guration LP has exponential size, a (1+ε)-approximation
can be computed in polynomial time for every ε > 0 [12]. Note that τ is
considered a constant in both the primal and the dual. A common idea for
proving τ is lower than the optimum is to show that the dual is unbounded
for τ (instead of directly showing that the primal is infeasible for τ).

Lemma 52. If there exists y : V →R≥0, and z : E→R≥0 with
∑
e∈C z(e) ≤

y(v) for all v ∈ V ,C ∈ C(v,τ) and
∑
v∈V y(v) <

∑
e∈E z(e), then τ <OPT∗.

This holds because y,z is a feasible solution with negative objective value
for the dual and so are the same values scaled by any α > 0. This way an
arbitrarily low objective value can be obtained. Lemma 52 can be seen as
a generalization of a space argument: Consider y(v) = τ and z(e) = w(e).
Then for all v ∈ V ,C ∈ C(v,τ),

∑
e∈C z(e) =

∑
e∈Cw(e) ≤ τ = y(v). Thus,

by the Lemma we have that |V |·τ =
∑
v∈V y(v) <

∑
e∈E z(e) = w(E) implies

τ <OPT∗.

7.1 informal overview

Before we give a formal de�nition of the local search algorithm, we devote
this section to giving intuition. We start with very easy algorithms and give
challenging instances that motivate the more advanced ideas.

As a toy algorithm consider the following: Start with an arbitrary orienta-
tion and repeat until all vertices are good. Good means the weighted in-degree
of the vertex is at most the desired value, e.g., 1.749 ·OPT∗. Whenever there
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is an edge oriented towards a bad vertex such that its other vertex is good
and would remain good even if the edge was �ipped (this is called a valid
�ip), �ip this edge. In the following example, both LP and integral optimum
are 1. Suppose the algorithm tries to obtain a solution of makespan 2 − ε
with ε > 0.

u v w
1

1 1

u is bad, v and w are good. However, the algorithm cannot �ip one of the
edges between u and v, because this would make v bad. It will not �ip the
edge between v and w, because v is already good. Hence, the algorithm fails.
Obviously, in this example we should �ip the edge between v and w and
then �x u. Let us try to integrate this in the algorithm. We introduce the
concept of pending �ips. When the algorithm wants to �ip an edge, but it
cannot, because this would make a vertex bad, we add this edge to a list of
pending �ips. These will be executed once the �ip is valid. In the example
above, the algorithm could add the edges between u and v to the pending
�ips, but would not change their orientation, yet. For a pending �ip e let
us call s(e) the prospect vertex and t(e) the current vertex. As seen in the
example above a sensible local search algorithm should try to move edges
away from pending �ips’ prospect vertices as well (in addition to the bad
vertices).

We now state the second toy algorithm. Initialize the pending �ips as an
empty list. Repeat the following until all vertices are good. Let U be the set
of vertices that are either bad or prospect vertices of pending �ips. Find an
edge from V /U to U and add it to the pending �ips. As long as there is a
valid pending �ip, (1) execute it and (2) delete all pending �ips added after it.
(2) is to ensure obsolete pending �ips are removed. Without it there can be
situations where a pending �ip has its current vertex in V \U , because the
pending �ip that initially led us to adding it has been executed. This algorithm
always succeeds for makespan 1.75 in the special case where weights are in
(0,0.5]∪ {1} and OPT∗ = 1. We will quickly go over the arguments, since
it gives a good idea on how to use the dual of the con�guration LP. At this
point we will only argue that the algorithm does not get stuck. Normally, we
would also have to prove that it terminates (we omit this for sake of brevity).
Suppose toward contradiction that the algorithm gets stuck, i.e., there is no
valid pending �ip and there are no edges from V /U to U . Let F be the big
edges e with t(e) ∈U . We set

z(e) =

w(e) if t(e) ∈U ,

0 otherwise.
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y(v) =


w(δ−(v)) + 1

4 |δ
+
F (v)| −

1
4 |δ
−
F(v)| if v ∈U is good,

w(δ−(v)) + 1
4 |δ

+
F (v)| −

1
4 |δ
−
F(v)| − 0.1 if v ∈U is bad,

1
4 |δ

+
F (v)| −

1
4 |δ
−
F(v)| if v ∈ V \U .

What is left to do is to check that for these values the premise of Lemma 52 is
ful�lled. Let v ∈ V and C ∈ C(v,1). Recall that by de�nition, C ⊆ δ(v) and
w(C) ≤ 1. We have to verify that z(C) ≤ y(v).

Case 1: v ∈ V \U . Since the algorithm is stuck, there is no edge e ∈ δ+(v)
with t(e) ∈U . Hence, z(e) = 0 for all e ∈ δ(v) and z(C) = 0. By de�nition
of F we have that δ−F(v) = ∅. Thus, y(v) ≥ 0= z(C).

Case 2: v ∈U . If v is bad, then w(δ−(v)) > 1.75 and

y(v) ≥ w(δ−F(v))−
1
4
|δ−F(v)| − 0.1 ≥

3
4
|δ−F(v)| − 0.1 ≥ 1.4 > z(C),

if |δ−F(v)| ≥ 2. Otherwise, |δ−F(v)| ≤ 1 and thus,

y(v) ≥ w(δ−(v))− 1
4
|δ−F(v)| − 0.1 > 1.75− 1

4
− 0.1 ≥ 1.4 > z(C).

If v ∈ U is good, then it is the prospect vertex of some pending �ip e. An
invariant of the algorithm is that all pending �ips have their current vertex
in U . In particular, z(e) = w(e). Furthermore, e is not a valid �ip. Thus,
w(δ−(v)) + w(e) > 1.75. Also note that |δ−F(v)| ≤ 1, since v is good. If
w(e) ≤ 0.5, then

y(v) ≥ w(δ−(v))− 1
4
|δ−F(v)| > 1.75−w(e)− 1

4
≥ 1 ≥ z(C).

If w(e) = 1, then e ∈ δ+F (v). Hence, if |δ−F(v)|= 0,

y(v) ≥ w(δ−(v))+ 1
4
|δ+F (v)|−

1
4
|δ−F(v)| ≥ 1.75−w(e)+ 1

4
≥ 1 ≥ z(C).

If on the other hand |δ−F(v)|= 1,

y(v) ≥ w(δ−F(v)) +
1
4
|δ+F (v)| −

1
4
|δ−F(v)| ≥ 1+

1
4
− 1
4
≥ 1 ≥ z(C).

The second condition of Lemma 52 is that z(E) > y(V ). This holds because

z(E) =
∑
v∈U

w(δ−(v)) =
∑
v∈U

w(δ−(v))+
1
4

∑
v∈V

[|δ+F (v)|−|δ
−
F(v)|] > y(V ).

The strict inequality follows from the fact that there is at least one bad vertex.
In the general case this algorithm does not get better than 2 as can be seen
in the example below. In a similar, but more complicated way one can also
show that in the special case with weights in (0,0.5]∪ {1}, the algorithm
does not succeed for 1.75− ε, where ε > 0 is arbitrary. In other words, the
analysis for 1.75 is tight.
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u

w0w1

. . .
w1/ε−1w1/ε

v0v1

. . .
v1/ε−1v1/ε

1− ε
1− ε1− ε

ε
ε

ε

1− ε

1− ε1− ε

ε
ε

ε

The LP and integral optima are again 1. Suppose the algorithm tries to �nd a
solution with makespan 2−3ε. The only bad vertex is u. Hence, the algorithm
will add the (1− ε)-edges to the pending �ips one after another. However,
at the time it reaches v1/ε or w1/ε it will get stuck, since there is a load of
1/ε × ε on them. The way to �x this is to allow edges (in this case those of
weight ε) to also be �ipped towards vertices in U , i.e., vertices where we
wanted to reduce the load. We cannot simply allow arbitrary �ips back and
forth between U , because we have to take care that the algorithm eventually
terminates. This is where the concept of vertices repelling edges comes in:
Depending on the current orientation of the edges and the list of pending
�ips we will de�ne a binary relation between vertices and edges. The exact
de�nition has to be chosen carefully. For a pair (v,e) of this relation we write
vertex v repels edge e. When a vertex repels an edge, it means it is undesirable
that the edge is oriented towards this vertex. When it does not repel the edge,
we do not care. This will be used in the algorithm when adding pending �ips:
An edge e may only be added to the pending �ips, when it is repelled by its
current vertex and not repelled by its prospect vertex.

In the earlier toy algorithms a vertex either repels all edges (when it
is in U ) or none (when it is not in U ). By adding a �ne-grained strategy
of repelled edges, we gain much more �exibility. A strategy that appears
particularly simple and powerful is the following. (1) We let bad vertices
repel all edges. Moreover, (2) for every pending �ip e with prospect vertex v
we �nd maximum threshold W such that all edges in δ−(v) with weight at
leastW are already enough to prevent the �ip from being executed, i.e., their
total weight is greater than 1+R−w(e). We let v repel all edges of weight
at least min{w(e),W }.

Now the third toy algorithm is to repeat the following until all vertices
are good. Find an edge e that is repelled by t(e), but not by s(e) and add it
to the list of pending �ips. As long as there is a valid pending �ip, execute
it and delete all pending �ips added after it. This algorithm succeeds in the
previous example. It will add the (1− ε)-edges to the pending �ips, but the
vertices u,v1, . . . ,v1/ε−1,w1, . . . ,w1/ε−1 repel only the (1−ε)-edges and not
the ε-edges. Once the pending �ips reach w1/ε or v1/ε, these vertices will
repel the ε-edges and start �ipping them. Finally, there will be enough space
on w1/ε or v1/ε and the 1− ε edges can be �ipped one after another.
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For the special case described earlier (where w(e) ∈ (0,0.5] ∪ {1}) this
is very close to the algorithm that gives us the bound of 1.74. However, to
make the analysis work, we add a couple of tweaks. One of them is the idea
of critical vertices. When the threshold of repelled edges, i.e., min{w(e),W },
reaches a low value, e.g., 0.26, we make the vertex repel all edges. We call
such a vertex a critical vertex. This tweak (together with some technicalities)
allows us to argue that at least half of the critical vertices are prospect vertices
of pending �ips for tiny edges. This is helpful, since (unless the pending �ip is
valid) such prospect vertices have a lot of weight oriented towards them and
this makes it easier to argue that the con�guration LP also cannot distribute
this weight very well; thereby reaching a contradiction.

An important novelty in this work compared to earlier local search algo-
rithms is that we are able to repel only a subset of edges small/tiny edges.
In the Restricted Assignment proofs [68, 41] it is always the case that
a machine (vertex) repels all small/tiny jobs (edges) or none. To utilize the
�exibility in the small/tiny edges we scale the z values of tiny edges up by a
factor β > 1. It is not obvious at all that this works out and the proof is quite
tricky.

In a sense, we push the threshold for repelling all edges down to some
value less than 0.5 (see description of critical vertices above). A logical
conclusion to draw would be that pushing it down even more (or removing it
completely) should give an even better algorithm. This would bring us back to
toy algorithm 3. In fact, we are not aware of bad instances. It is an intriguing
question whether this can also be proved that this simple algorithm is good.

7.2 graph balancing in a special case

To introduce our techniques, we �rst consider a simpli�ed case wherew(e) ∈
(0,0.5]∪ {1} for each e ∈ E and the con�guration LP is feasible for 1. We
will show that there exists an orientation with maximum weighted in-degree
1+R where R= 0.74.

De�nition 11 (Tiny, small, big edges). We call an edge e tiny, ifw(e) ≤ 1−R;
small, if 1−R < w(e) ≤ 1/2; and big, if w(e) = 1. We will write for the tiny,

small, and big edges T ⊆ E,S ⊆ E, and B ⊆ E, respectively.

De�nition 12 (Good and bad vertices). For a given orientation, we call a

vertex v good, if w(δ−(v)) ≤ 1+R. A vertex is bad, if it is not good.

The local search algorithm starts with an arbitrary orientation and �ips
edges until all vertices are good. During this process, a vertex that is already
good will never be made bad. It is then proved that (1) the algorithm termi-
nates and (2) when it cannot �nd a useful edge to �ip, the con�guration LP
also cannot distribute the edges well, i.e., OPT∗ > 1, a contradiction.



7.2 graph balancing in a special case 95

7.2.1 Algorithm

The central data structure we use is an ordered list of pending �ips P =

(eP1 ,e
P
2 , . . . ,e

P
` ). Here, every component ePk , stands for an edge the algorithm

wants to �ip. If P is clear from the context, we simply write �ip when we
speak of a pending �ip ePk . A tiny �ip is a �ip where ePk is tiny. In the same
way we de�ne small and big �ips. The prospect vertex of a �ip ePk is the vertex
s(ePk ) to which we want to orient it. The algorithm will not perform the �ip,
if this would create a bad vertex, i.e., w(δ−(s(ePk ))) +w(ePk ) > 1+R. If it
does not create a bad vertex, we say that the �ip ePk is a valid �ip. For every
0 ≤ k ≤ ` de�ne P≤k := (eP1 , . . . ,e

P
k ), i.e., the �rst k elements of P (with P≤0

being the empty list).
At each point during the execution of the algorithm, the vertices repel

certain edges. This can be thought of as a binary relation between vertices
and their incident edges, i.e., a subset of {(v,e) : v ∈ r(e)}, and this relation
changes dynamically as the current orientation or P change. The de�nition
of which vertices repel which edges is given later. The algorithm will only
add a new pending �ip e to P , if e is repelled by the vertex it is oriented
towards and not repelled by the other.

Input :Weighted multigraph G = (V ,E,r,w) with OPT∗ = 1 and
w(e) ∈ (0,0.5]∪ {1} for all e ∈ E

Result: Orientation s, t : E→ V with maximum weighted in-degree
1+R

let s, t : E→ V map arbitrary source and target vertices to each edge ;
// i.e., {s(e), t(e)}= r(e) for all e ∈ E
`← 0 ; // number of pending edges P to �ip
while there is a bad vertex do

if there exists a valid �ip e ∈ P then
let 0 ≤ k ≤ ` be minimal such that e is repelled by t(e) w.r.t.
P≤k ;

exchange s(e) and t(e) ;
delete Pk+1, . . . ,P` ; `← k ;

else
choose an edge e ∈ E \ P with w(e) minimal and

e is repelled by t(e) and not repelled by s(e) w.r.t. P ;
P`+1← e; ` = `+ 1; // Append e to P

Algorithm 6: Local search algorithm for simpli�ed Graph Balancing

repelled edges. Consider the current list of ` pending �ips P≤` . The
repelled edges are de�ned inductively. For some k ≤ ` we will now de�ne
the repelled edges w.r.t. P≤k .

(initialization) If k = 0, let every bad vertex v repel every edge in δ(v).
Furthermore, let every vertex v repel every loop e where {v}= r(e).



96 the graph balancing problem

(monotonicity) If k > 0 and v repels e w.r.t. P≤k−1, then let v repel e
w.r.t. P≤k .

The rule on loops is only for a technical reasons. Loops will never appear
in the list of pending �ips. The remaining rules regard k > 0 and the last
pending �ip in P≤k , ePk . The algorithm should reduce the load on s(ePk ) to
make it valid.

Which edges exactly does the prospect vertex of ePk , i.e., s(ePk ), repel? First,
we de�ne Ẽ(P≤k−1) ⊆ E where e ∈ Ẽ(P≤k−1) if and only if e is repelled by
s(e) w.r.t. P≤k−1. We will omit P≤k−1 when it is clear from the context. Ẽ are
edges that we do not expect to be able to �ip: Recall that when an edge e
is repelled by s(e), it cannot be added to P . Moreover, for every W de�ne
E≥W = {e ∈ E : w(e) ≥W }. We are interested in values W such that

w(δ−
Ẽ∪E≥W

(s(ePk ))) +w(e
P
k ) > 1+R. (13)

Let W0 ∈ (0,w(ePk )] be maximal such that (13) holds. To be well-de�ned,
we set W0 = 0, if no such W exists. In that case, however, it holds that
w(δ−(s(ePk )))+w(e

P
k ) ≤ 1+R. This means that ePk is valid and the algorithm

will remove it from the list immediately. Hence, the case is not particularly
interesting. We de�ne the following edges to be repelled by s(ePk ):

(uncritical) If W0 > 1−R, let s(ePk ) repel every edge in δẼ∪E≥W0
(s(ePk )).

(critical) If W0 ≤ 1−R, let s(ePk ) repel every edge in δ(s(ePk )).

Note that in the cases above there is not a restriction to incoming edges like
in (13).

Fact 53. s(ePk ) repels e
P
k w.r.t. P≤k .

This is because of W0 ≤ w(ePk ) in the rules for P≤k . An important observa-
tion is that repelled edges are stable under the following operation.

Fact 54. Let e < P≤k be an edge that is not repelled by any vertex w.r.t. P≤k−1,
and possibly by t(e) (but not s(e)) w.r.t. P≤k . If the orientation of e changes
and this does not a�ect the sets of good and bad vertices, the edges repelled by

some vertex w.r.t. P≤k will still be repelled after the change.

Proof. We �rst argue that the repelled edges w.r.t. P≤k′ , k′ = 0, . . . ,k−1 have
not changed. This argument is by induction. Since the good and bad vertices
do not change, the edges repelled w.r.t. P≤0 do not change. Let k′ ∈ {1, . . . ,k−1}
and assume that the edges repelled w.r.t. k′ − 1 have not changed. Moreover,
let W0 be as in the de�nition of repelled edges w.r.t. P≤k′ before the change.
We have to understand that e is not and was not in δ−

Ẽ∪E≥W0
(s(ePk′ )) (with

Ẽ = Ẽ(P≤k′−1)). This means that �ipping it does not a�ect the choice of W0
and, in particular, not the repelled edges. Let v and v′ denote the vertex e is
oriented towards before the �ip and after the �ip, respectively. Since e was
not repelled by v and v′ w.r.t. P≤k′ , it holds that v,v′ , s(ePk ) or w(e) <W0:
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s(ePk ) repelled all edges greater or equal W0 in both the case (uncritial) and
(critical), but e was not repelled by v or v′ .

Therefore e < δ−E≥W0
(s(ePk′ )) before and after the change. Moreover, since

e was not repelled by any vertex w.r.t. P≤k′−1 (and by induction hypothesis,
it still is not), it follows that e < Ẽ(P≤k′−1). By this induction we have that
edges repelled w.r.t. P≤k−1 have not changed and by the same argument as
before, e is not in δ−

Ẽ∪E≥W0
(s(ePk )) after the change. This means W0 has not

increased and edges repelled w.r.t. P≤k are still repelled. It could be that W0
decreases, if e was in δ−

Ẽ∪E≥W0
(s(ePk )) before the �ip. This would mean that

the number of edges repelled by s(ePk ) increases.

We note that W0 (in the de�nition of P≤k) is either equal to w(ePk ) or it is
the maximal value for which (13) holds. Furthermore,

Fact 55. Let W0 be as in the de�nition of repelled edges w.r.t. P≤k . If W0 <
w(ePk ), then there is an edge of weight exactlyW0 in δ

−(s(ePk )). Furthermore,

it is not a loop and it is not repelled by its other vertex, i.e., not s(ePk ), w.r.t. P≤k .

Proof. We prove this for P≤k−1. Since the change from P≤k−1 to P≤k only
a�ects s(ePk ), this su�ces. All edges that are repelled by their other vertex
w.r.t. P≤k−1 (in particular, loops) are in Ẽ. Recall that w(δ−

Ẽ∪E≥W0
(s(ePk )) +

w(ePk ) > 1+R. Assume toward contradiction there is no edge of weight W0
in δ−(s(ePk )), which is not in Ẽ. This means there is some ε > 0 such that
δ−
Ẽ∪E≥W0+ε

(s(ePk )) = δ−
Ẽ∪E≥W0

(s(ePk )). Hence, W0 is not maximal.

7.2.2 Analysis

The following analysis holds for the values R = 0.74 and β = 1.1. β is a
central parameter in the proof. These can be slightly improved, but we refrain
from this for the sake of simplicity. The proof consists of two parts. We need
to show that the algorithm terminates and that there is always either a valid
�ip in P or some edge can be added to P .

Lemma 56. The algorithm terminates after �nitely many iterations of the

main loop.

Proof. We consider the potential function

s(P ) = (g, |Ẽ(P≤0)|, . . . , |Ẽ(P≤`)|,−1),

where g is the number of good vertices. We will argue that this vector in-
creases lexicographically after every iteration of the main loop. Intuitively
|Ẽ(P≤k)|, k ≤ `, is an measure for progress. When an edge e is repelled by a
vertex v, then we want that s(e) = v. |Ẽ(P≤k)| counts exactly these situations.
Since ` is bounded by |E|, there can be at most |V | · |E|O(|E|) possible values
for the vector. Thus, the algorithm must terminate after at most this many
iterations. In an iteration either a new �ip is added to P or a �ip is executed.
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If a �ip e is added as the (` + 1)-th element of P , then clearly Ẽ(P≤i)
does not change for i ≤ `. Furthermore, the last component of the vector is
replaced by some non-negative value.

Now consider a �ip e ∈ P that is executed. If this �ip turns a bad vertex
good, we are done. Hence, assume otherwise and let v and v′ be the vertex it
was previously and the one it is now oriented towards. Furthermore, let `′
be the length of P after the �ip. Recall that `′ was chosen such that before
the �ip is executed v repels e w.r.t. P≤`′ , but not w.r.t. P≤k for any k ≤ `′ − 1.
Also, e is not repelled by v′ w.r.t. P≤k for any k ≤ `′ or else the �ip would not
have been added to P in the �rst place. By Fact 54 this means that repelled
edges w.r.t. P≤k , k ≤ `′ , are still repelled after the �ip. Because of this and
because the only edge that changed direction, e, is not in Ẽ(P≤k) for any
k ≤ `′ , |Ẽ(P≤k)| has not decreased. Finally, e has not been in Ẽ(P≤`′ ) before
the �ip, but now is. Thus, the �rst `′ − 1 components of the vector have not
decreased and the `′-th one has increased.

Lemma 57. If there at least one bad vertex remaining, then there is either a

valid �ip in P or a �ip that can be added to P .

Proof. We assume toward contradiction that there exists a bad vertex, no
valid pending �ip and no edge that can be added to P . We will show that this
implies OPT∗ > 1.

Like above we denote by Ẽ = Ẽ(P ) those edges e that are repelled by s(e).
In particular, if an edge e is in P or repelled by t(e) it must also be in Ẽ: If
such an edge is in P , this follows from Fact 53. Otherwise, such an edge must
be repelled also by s(e) or else it could be added to P . For every e ∈ E \ Ẽ,
set z(e) = 0. For every e ∈ Ẽ, set

z(e) =


1 if w(e) = 1,

w(e) if 1−R < w(e) ≤ 1/2, and

βw(e) if w(e) ≤ 1−R.

In general, we would like to set each y(v) to z(δ−(v)) (or equivalently,
z(δ−

Ẽ
(v))). However, there are two kinds of amortization between vertices

that we include in the values of y.
As can be seen in the de�nition of repelled edges, a vertex v repels either

edges with weight at least a certain threshold W > 1−R and edges in δ−(v)
that are repelled by their other vertex; or they repel all edges. We will call
vertices of the latter kind critical. In other words, a vertex v is critical, if in the
inductive de�nition of repelled edges at some point v = s(ePk ) and the rule
(critical) applies. There might be a coincidence where only rule (uncritical)
applies for v, but this already covers all edges in δ−(v). This is not a critical
vertex. We note that every vertex that is prospect vertex of a tiny �ip ePk
must be critical: In the inductive de�nition when considering ePk we have
that W0 ≤ w(ePk ) ≤ 1−R by de�nition.

critical vertex amortization. If v is a good vertex and critical, but
is not a prospect vertex of a tiny �ip, set av := β − 1. If v is a good
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vertex and prospect vertex of tiny �ip (in particular, v is critical), set
av := −(β − 1). Otherwise, set av = 0.

big edge amortization. Let F ⊆ P denote the set of big �ips. Then in
particular F ⊆ Ẽ (Fact 53). We de�ne for all v ∈ V , bv := (|δ+F (v)| −
|δ−F(v)|) · (1−R).

We conclude the de�nition of y by setting y(v) = z(δ−(v)) + av + bv for
all good vertices v and y(v) = z(δ−(v)) + av + bv −µ for all bad vertices v,
where µ= 0.01.

Claim 58. It holds that
∑
v∈V y(v) <

∑
e∈E z(e).

Claim 59. y(v),z(e) ≥ 0 f.a. v ∈ V ,e ∈ E and f.a. v ∈ V , C ∈ C(v,1),∑
e∈C z(e) ≤ y(v).

By Lemma 52 this implies that OPT∗ > 1.

Proof of Claim 58. First we note that∑
v∈V

bv = (1−R) (
∑
v∈V
|δ+F (v)| −

∑
v∈V
|δ−F(v)|)︸                           ︷︷                           ︸

=0

= 0.

Moreover, we have that
∑
v∈V av ≤ 0: This is because at least half of all good

vertices that are critical are prospect vertices of tiny �ips. The proof for this
is omitted due to space constraints. We conclude,∑

e∈E
z(e) ≥

∑
v∈V

∑
e∈δ−(v)

z(e) +
∑
v∈V

[bv + av ] >
∑
v∈V

y(v),

where the strict inequality holds because there exists at least one bad vertex.

Proof of Claim 59. Let v ∈ V and C ∈ C(v,1). We need to show that z(C) ≤
y(v). Obviously the z values are non-negative. By showing the inequality
above, we also get that the y values are non-negative. First, we will state
some auxiliary facts.

Fact 60. For every edge �ip e ∈ P , we have w(δ−
Ẽ
(s(e))) +w(e) > 1+R.

This is due to the fact that e is not a valid �ip and by de�nition of repelled
edges.

Fact 61. If v is a good vertex and not prospect vertex of a tiny pending �ip,

then y(v) ≥ z(C)+w(δ−
Ẽ
(v))−1+bv . In other words, it is su�cient to show

that w(δ−
Ẽ
(v)) + bv ≥ 1.

If v is critical, then y(v) = z(δ−(v)) + β − 1+ bv ≥ w(δ−Ẽ(v)) + z(C)−
1+ bv . If v is uncritical, all edges e ∈ C with z(e) > w(e) must be in δ−(v).
Otherwise, the �ip e could be added to P . Therefore,

y(v) = z(δ−(v))+av+bv ≥ z(δ−Ẽ(v))−w(δ
−
Ẽ
(v))+w(δ−

Ẽ
(v))+bv

≥ z(C̃)−w(C̃) +w(δ−
Ẽ
(v)) + bv ≥ z(C) +w(δ−Ẽ(v))− 1+ bv .
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Fact 62. For every vertex v it holds that (1) v repels no edges, (2) v repels all

edges (critical), or (3) there exists a threshold W > 1 − R such that v repels

edges e ∈ δ−(v) if w(e) ≥ W or they are also repelled by s(e). Furthermore,

in (3) we have thatW =mine∈δ+P (v)w(e) orW <mine∈δ+P (v)w(e) andW ∈
{w(e) : e ∈ δ−

Ẽ
(v)} (see Fact 55).

case 1: v is a bad vertex. If |δ−F(v)| ≥ 2,

y(v) ≥ z(δ−(v))− |δ−F(v)| · (1−R)−µ
≥ |δ−F(v)| · (1− (1−R)) −µ ≥ 2R−µ ≥ β ≥ z(C).

Otherwise, |δ−F(v)| ≤ 1 and therefore

y(v) ≥ z(δ−(v))− 1+R−µ ≥ w(δ−(v))− 1+R−µ
> 1+R− 1+R− µ = 2R− µ ≥ β ≥ z(C).

Here we use thatw(δ−(v)) > 1+R by the de�nition of a bad vertex. Assume
for the remainder that v is a good vertex, in particular that |δ−F(v)| ≤ 1.

case 2: v is good and prospect vertex of a tiny flip. Using
Fact 60 we get w(δ−

Ẽ
(v)) > 1+ R − (1 − R) = 2R. Since z(e) ≥ w(e) for

all e ∈ Ẽ, we also have z(δ−(v)) ≥ 2R. Moreover, since the vertex is good,
|δ−F(v)| ≤ 1 and consequently bv ≥ −(1−R). We conclude

y(v) ≥ z(δ−(v))− (β − 1)− (1−R) ≥ 2R− (β − 1)− (1−R)
= β + 3R− 2β︸  ︷︷  ︸

≥0

≥ z(C).

case 3: v is good, not prospect vertex of a tiny flip, but
prospect vertex of a small flip. If |δ−F(v)|= 0, again with Fact 60
we obtain

w(δ−
Ẽ
(v)) + bv ≥ 1+R− 0.5+ 0 > 1.

This su�ces because of Fact 61. Moreover, if |δ−F(v)|= 1 and δ−
Ẽ
(v) contains

a small edge, it holds that

w(δ−
Ẽ
(v)) + bv ≥ w(δ−F(v)) + (1−R) + bv

≥ 1+ (1−R) − (1−R) = 1.

Here we use that the small edge must have a size of at least 1−R. The case
that remains is where δ−

Ẽ
(v) contains one edge from F and tiny edges. Since

the overal weight of δ−
Ẽ
(v) is at least 1+R−0.5, the weight of tiny edges is

at least R−0.5. Thus, the z-value of the tiny edges is at least β(R−0.5). If v
is critical,

y(v) ≥ z(δ−(v))− (1−R) + (β − 1)
≥ 1+ β(R− 0.5)− (1−R)︸                   ︷︷                   ︸

≥0

+(β − 1) ≥ z(C).
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Notice that β(R−0.5) ≥ 1−R by choice ofR and β. Assume for the remainder
of this case that v is uncritical. If C contains a big edge, this must be the only
element in C. Therefore,

y(v) ≥ z(δ−(v))− (1−R) ≥ 1+ β(R− 0.5)− (1−R) ≥ 1= z(C).

Consider the case where C ∩ Ẽ contains at most one small edge and no big
edge. Since v is uncritical, all tiny edges in C with positive z value must also
be in δ−(v). Therefore, z(C) ≤ 0.5+ z(δ−T (v)). Thus,

y(v) ≥ z(δ−(v))− (1−R) ≥ 1+ z(δ−T (v))− (1−R)
> 0.5+ z(δ−T (v)) ≥ z(C).

In the �nal case C ∩ Ẽ contains k ∈ {2,3} small edges. We let s denote the
weight of the smallest edge with a pending �ip whose prospect vertex is v.
Since v is not critical and there is no small edge in δ−(v), v repels exactly
those edges with weight at least s. This means the small edges in C ∩ Ẽ
must be of weight at least s: Otherwise, they could be added as pending �ips.
Therefore,

y(v) ≥ z(δ−(v))− (1−R) ≥ z(δ−F(v)) + z(δ
−
T (v))− (1−R)

≥ 1+ β(w(δ−
Ẽ
(v))−w(δ−F(v)))− (1−R) = R+ β(w(δ−

Ẽ
(v))− 1)

≥ R+ β(R − s).

Note that s ≤ 1/k and, by choice of β, k − β(k − 1) ≥ 0. It follows that

z(C) ≤ ks+ β(1− ks)

≤ y(v)+ks−R+β(1−R−(k−1)s) ≤ y(v)+k1
k
−R+β

(
1−R− k − 1

k

)
= y(v) + 1−R+ β

(1
k
−R

)
≤ y(v) + 1−R+ β(0.5−R) ≤ y(v).

case 4: v is good and not prospect vertex of a small/tiny flip.
If |δ+F (v)| = 0, then v does not repel any edges. In particular, δ−F(v) = ∅
and every e ∈ δ(v) with z(e) > 0 must be in δ−(v). Therefore, z(C) ≤
z(δ−(v)) ≤ y(v). We assume in the remainder that |δ+F (v)|= 1.

If |δ−F(v)|= 1, we getw(δ−
Ẽ
(v))+bv ≥ 1+0. Otherwise, it must hold that

|δ−F(v)|= 0 and w(δ−
Ẽ
(v)) + bv ≥ R+ (1−R) = 1.

Proof of Claim 58. First we note that∑
v∈V

bv = (1−R) (
∑
v∈V
|δ+F (v)| −

∑
v∈V
|δ−F(v)|)︸                           ︷︷                           ︸

=0

= 0.

Moreover, we have that
∑
v∈V av ≤ 0: This is because at least half of all good

vertices that are critical are prospect vertices of tiny �ips. When a vertex v is
critical but not prospect vertex of a tiny �ip, there must be a non-tiny �ip
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ePk with s(ePk ) = v such that in the de�nition of repelled edges for P≤k we
have W0 ≤ 1−R. By Fact 55 there exists an edge of weight W0 (hence, tiny)
in δ−(v) which is not repelled by its other vertex v′ , v w.r.t. P≤k . We argue
later that this edge has already been in δ−(v) when the list of pending �ips
has consisted only of the k �ips in P≤k . Since a tiny �ip will always be added
before the next non-tiny �ip (edges of minimal weight are chosen), we know
that ePk+1 must be a tiny �ip and s(ePk+1) is the prospect vertex of a tiny �ip.
Also note that no vertex can be prospect vertex of two tiny �ips, since after
adding one such �ip the vertex repels all edges.

The reason why the edge has already been in δ−(s(ePk )) is the following.
When an edge e is �ipped towards v = s(ePk ) and it is repelled by v w.r.t. P≤k ,
then e must have been a �ip in P earlier in the list than ePk . This means that at
least ePk , . . . ,e

P
` are removed from P . Because ePk is still in P , we can therefore

assume that this has not happened. If W0 in the de�nition of the repelled
edges w.r.t. P≤k has not decreased since the last time the list consisted only
of P≤k , we are done, since this would mean the edge of weight W0 has been
repelled by v all this time and could not have been added to δ−(v). This is
indeed the case. W0 can only decrease when an edge from δ−

Ẽ∪E≥W0
(v) is

�ipped. This, on the other hand, causes at least ePk+1, . . . ,e
P
` to be removed

from P . This �nished the proof of
∑
v∈V av ≤ 0. We conclude,∑

e∈E
z(e) ≥

∑
v∈V

∑
e∈δ−(v)

z(e) +
∑
v∈V

[bv + av ]︸        ︷︷        ︸
≤0

>
∑
v∈V

y(v),

where the strict inequality holds because of the de�nition of y(v) and because
there exists at least one bad vertex.

7.3 graph balancing in the general case

We can still assume w.l.o.g. that OPT∗ = 1 and therefore w(e) ∈ (0,1] for
every e ∈ E. If this does not hold, we can simply scale every edge weight by
1/OPT∗. We extend the de�nition of tiny, small, and big edges, but this time
we set the threshold for tiny edges slightly higher than in the simple variant:

De�nition 13 (Tiny, small, big edges). We call an edge e tiny, ifw(e) ≤ 1/3;
small, if 1/3 < w(e) ≤ 1/2; and big, ifw(e) > 1/2. We will write for the tiny,

small, and big edges T ⊆ E,S ⊆ E, and B ⊆ E, respectively.

At �rst glance one might think that the algorithm and analysis for the
simple case easily extends to the general case. However, there are serious
issues to resolve. We will start by giving an informal overview of the issues
arising from di�erent big edge sizes. Suppose we leave the algorithm as
it is and try to get a contradiction via the dual of the con�guration LP. A
straight-forward choice of the edge variables would be

z(e) =

w(e) if e is big or small and

βw(e) if e is tiny.
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v1 v2 v3 v4
1 0.85 0.9

Figure 7: Path of di�erent big edge weights

This immediately fails: Consider some path of edges that have di�erent big
sizes, see e.g. Figure 7. With y(v3) = z(δ−(v3)) = 0.85 the con�guration
consisting only of the 0.9-edge would be too large for v3. Within such a
path it seems that all big edges must have the same z-value. Also, it is easy
to see that the analysis in the simple case breaks when choosing a value
signi�cantly smaller than 1. Hence, another sensible choice of edge variables
would be

z(e) =


1 if e is big,

w(e) if e is small, and

βw(e) if e is tiny.

Unfortunately, this also fails. Consider a vertex v that has two incoming
big edges eB and eB′ , eB with weight w(eB) = 0.5+ ε and eB′ with weight
w(eB′ ) = 1. Suppose this vertex is prospect vertex of a small edge �ip eS of
sizew(eS) = 0.5−ε. Then there is a con�guration of value 1.5−ε consisting
of eB and eS . This is too big for v, since y(v) = z(δ−(v))− 2(1−R) = 2R.
It seems like we need some trade-o� between the cases. When a situation
occurs where a big edge is compatible with a small edge, we would like to
fall back to the �rst choice of the variables (at least for this particular edge).
In the upcoming proof we introduce an edge set Q that corresponds to these
problematic big edges. The precise choice of the variables is highly non-
trivial and in order to make it work, we also construct a more sophisticated
algorithm.

As before the algorithm maintains a list P of pending �ips P1, . . . ,P` . Unlike
before, however, This list contains two di�erent types of �ips. A pending
�ip Pk may be regular or raw. We write Pk = (ePk ,reg) and Pk = (ePk ,raw),
respectively. In the simple case, each edge could only appear once in P . This
is slightly relaxed here. An edge e may appear once as a raw pending �ip
(e,raw) and later again as a regular pending �ip (e,reg). Regular pending
�ips behave similarly to the pending �ips in the simple variant. Raw pending
�ips are used in some cases when we want to repel only big edges on the
prospect vertex, although by the behavior of regular �ips non-big edges could
also be repelled. As indicated in the example above, it is sometimes very
helpful, if a big edge cannot be combined with non-big edges. Indeed, when
we can avoid that a vertex repels small edges, then this means we do not
have to worry about such combinations.

repelled edges. The repelled edges are again de�ned inductively for
P≤0, P≤1,. . .Consider the list of ` pending �ips P = P≤` and some k ≤ `.
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(initialization) If k = 0, let every bad vertex v repel every edge e ∈ δ(v)
w.r.t. P≤k = P≤0. Furthermore, let every vertex v repel every loop from
δ(v), i.e., every e ∈ E with {v}= r(e).

(monotonicity) If k > 0 and v repels e w.r.t. P≤k−1, then let v also repel
e w.r.t. P≤k .

The remaining rules regard k > 0 and ePk , the last pending �ip in P≤k , and we
distinguish between raw and regular pending �ips.

(raw) If Pk = (ePk ,raw), then let s(ePk ) repel all big edges in δ(v) and edges
in δ(v) of weight at least w(ePk ).

From here on we will consider the case where Pk = (ePk ,reg). Let Ẽ =

Ẽ(P≤k−1) denote all edges e that are repelled by s(e)w.r.t. P≤k−1. Furthermore,
we de�ne E≥W = {e ∈ E : w(e) ≥ W }. Let W0 denote the maximal W ∈
(0,w(ePk )] with

w(δ−
Ẽ∪E≥W

(s(ePk ))) +w(e
P
k ) > 1+R. (14)

For technical reasons we de�ne W0 = 0 if no such W exists (this is an
uninteresting corner case where w(δ−(s(ePk ))) +w(e

P
k ) ≤ 1+R).

(uncritical) If Pk = (ePk ,reg) and W0 > 1/3, then let s(ePk ) repel all
edges in δẼ∪E≥W0

(s(ePk )).

(critical) If Pk = (ePk ,reg) and W0 ≤ 1/3, then let s(ePk ) repel all edges
in δ(s(ePk )).

Next we will derive similar facts as we did for the simple case before.

Fact 63. Let ePk be a pending �ip. Then s(ePk ) repels e
P
k w.r.t. P≤k .

If Pk = (ePk ,raw), this is by rule (raw). Otherwise, it follows from W0 ≤
w(ePk ).

Fact 64. Let e < P≤k be an edge that is not repelled by any vertex w.r.t. P≤k−1,
and possibly by t(e) (but not s(e)) w.r.t. P≤k . If the orientation of e changes
and this does not a�ect the sets of good and bad vertices, the edges repelled by

some vertex w.r.t. P≤k will still be repelled after the change.

The proof is very similar to the one in the simple case.

Proof. We �rst argue that the repelled edges w.r.t. P≤k′ , k′ = 0, . . . ,k − 1
have not changed. This argument is by induction. Since the good and bad
vertices do not change, the edges repelled w.r.t. P≤0 do not change. Let
k′ ∈ {1, . . . ,k − 1} and assume that the edges repelled w.r.t. k′ − 1 have not
changed. If Pk′ = (ePk′ ,raw), it is trivial that repelled edges w.r.t. P≤k′ have not
changed. Hence, assume that Pk′ = (ePk′ ,reg). Let W0 be as in the de�nition
of repelled edges w.r.t. P≤k′ before the change. We have to understand that
e is not and was not in δ−

Ẽ∪E≥W0
(s(ePk′ )) (with Ẽ = Ẽ(P≤k′−1)). This means

that �ipping it does not a�ect the choice of W0 and, in particular, not the
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repelled edges. Let v and v′ denote the vertex e is oriented towards before
the �ip and after the �ip, respectively. Since e was not repelled by v and v′
w.r.t. P≤k′ , it holds that v,v′ , s(ePk ) or w(e) <W0: s(ePk ) repelled all edges
greater or equal W0 in both the case (uncritial) and (critical), but e was not
repelled by v or v′ .

Therefore e < δ−E≥W0
(s(ePk′ )) before and after the change. Moreover, since

e was not repelled by any vertex w.r.t. P≤k′−1 (and by induction hypothesis,
it still is not), it follows that e < Ẽ(P≤k′−1). By this induction we have that
edges repelled w.r.t. P≤k−1 have not changed and by the same argument as
before, e is not in δ−

Ẽ∪E≥W0
(s(ePk )) after the change. This means W0 has not

increased and edges repelled w.r.t. P≤k are still repelled. It could be that W0
decreases, if e was in δ−

Ẽ∪E≥W0
(s(ePk )) before the �ip. This would mean that

the number of edges repelled by s(ePk ) increases.

We note that W0 (in the de�nition of P≤k) is either equal to w(ePk ) or it is
the maximal value for which (14) holds. Furthermore,

Fact 65. Let Pk = (ePk ,reg) be a regular pending �ip and letW0 be as in the

de�nition of repelled edges w.r.t. P≤k . If W0 < w(e
P
k ), then there is an edge

of weight exactly W0 in δ−(s(ePk )). Furthermore, it is not a loop and it is not

repelled by its other vertex, i.e., not s(ePk ), w.r.t. P≤k .

Proof. We prove this for P≤k−1. Since the change from P≤k−1 to P≤k only
a�ects s(ePk ), this su�ces. All edges that are repelled by their other vertex
w.r.t. P≤k−1 (in particular, loops) are in Ẽ. Recall that w(δ−

Ẽ∪E≥W0
(s(ePk )) +

w(ePk ) > 1+R. Assume toward contradiction there is no edge of weight W0
in δ−(s(ePk )), which is not in Ẽ. This means there is some ε > 0 such that
δ−
Ẽ∪E≥W0+ε

(s(ePk )) = δ−
Ẽ∪E≥W0

(s(ePk )). Hence, W0 is not maximal.

7.3.1 Algorithm

The general structure of the algorithm (see Alg. 7) is the same as in the
simpli�ed case. The di�erence are the conditions on when an regular pending
�ips can be added to P and the role of the set Q. Raw pending �ips are added
to P by the same rule as before: They must be repelled by the vertex they
are currently oriented towards and must not be repelled by the other. The
interesting novelty is when to add regular pending �ips. Tiny edges will be
added as soon as possible and there is no further condition. Small edges are
added when either there is only one (or no) big edge oriented towards the
prospect vertex or when the small edge �ts into a con�guration with one of
the big edges on the vertex. Finally, big edges are added as regular �ips only
when there are less than 2 big edges on the prospect vertex. Moreover, either
the edge must be in Q or none of the following holds:

1. The big edge on the prospect vertex is bigger than R;

2. The big edge on the prospect vertex is not in Ẽ (which means it can be
added as a pending �ip later);



106 the graph balancing problem

Input :Weighted multigraph G = (V ,E,r,w) with OPT∗ = 1
Result: Orientation s, t : E→ V with maximum weighted in-degree

1+R
let s, t : E→ V map source and target vertices to each edge, i.e.,
{s(e), t(e)}= r(e) for all e ∈ E, such that there are at most two big
edges oriented towards each vertex ;
`← 0 ; // number of pending edges P to �ip
while there exists a bad vertex do

if there exists a valid regular �ip (e,reg) ∈ P then
let k be minimal such that e is repelled by t(e) w.r.t. P≤k ;
exchange s(e) and t(e) ;
P ← P≤k ; `← k ; // Forget pending �ips Pk+1, . . . ,P`
Q`←∅ ;

else
for e ∈ E in non-decreasing order of w(e) do

if IsRawAddable(e,P≤`,Q≤`) then
P`+1← (e,raw) ; Q`+1←∅ ; `← `+ 1 ; // Append e

to P
break;

else if IsRegularAddable(e,P≤`,Q≤`) then
P`+1← (e,reg) ; Q`+1←∅ ; `← `+ 1 ; // Append e

to P
break;

loop
if there exists an (e,raw) ∈ P with e <Q≤` and
1/2 < w(e) ≤ 0.6 such that t(e) repels an outgoing, non-loop

edge e′ with w(e) +w(e′) ≤ 1 then
// e is not too big and interferes with other edges
Q`←Q` ∪ {e} ;

else
break;

Algorithm 7: Local search algorithm for general Graph Balancing
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Function IsRawAddable(e,P ,Q)
returnTrue if e is repelled by t(e) and not repelled by s(e) w.r.t. P ,

False otherwise ;
Function IsRegularAddable(e,P ,Q)

if (e,reg) ∈ P or (e,raw) < P then return False;
if e is tiny then

return True ;
else if e is small then

return


True if |δ−B(s(e))| ≤ 1,

True if w(e) +w(eB) ≤ 1 for some eB ∈ δ−B(s(e)),

False otherwise ;
else if e is big then

Let F denote all big edges e ∈ P such that there is no smaller
�ip e′ ∈ P towards s(e), i.e., w(e′) < w(e) and s(e′) = s(e) ;

// Maintain invariant of |δ−B(s(e))| ≤ 2
if |δ−B(s(e))|= 2 then return False;
// From here on |δ−B(s(e))| ≤ 1
return

True if e ∈Q,

True if w(δ−B(s(e)) ≤ R, δ−B(s(e)) ⊆ Ẽ, and δ−F(s(e)) ⊆Q,

False otherwise ;
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3. The big edge on the prospect vertex is not in Q and is the smallest
pending �ip towards its other vertex.

For intuition, these 3 cases should identify paths of big edges as described
in the beginning of the section, i.e., these edges will each get a z-value of 1.
Inside such paths we would like the big edges to be only raw pending �ips.
Case 2 is only a temporary state. It is not clear, yet, how the big edge on the
prospect vertex behaves. Case 1 says that when the next edge is bigger than
R, then this should be a path of big edges and we do not want to add the
regular pending �ip. Case 3 deals with big edges smaller than R. This has
to do with the edge set Q. Let us discuss the idea behind Q. Q is a subset of
big raw pending �ips. These edges are identi�ed as big edges that should not
be part of such a path of big edges. In particular, edges in Q may be added
as a regular �ip and for the condition of adding other big edges as regular
pending �ips, we ignore edges in Q. Edges are added to Q when a situation
occurs where a non-big edge is compatible with this edge.

Note that when raw pending �ips are added again as regular pending �ips
we no longer require that the edge is not repelled by the prospect vertex. It is
su�cient that this was true when it was previously added as a raw pending
�ip. By Fact 63 this would not hold anyway.

7.3.2 Framework for analysis

The analysis shares the same basic structure with the simple case.

Lemma 66. The algorithm terminates after �nitely many iterations of the

main loop.

Lemma 67. If there at least one bad vertex remaining, then there is either a

valid regular �ip in P or a �ip that can be added to P .

We also have to show that there exists an initial orientation of edges such
that every vertex gets at most two big edges. In fact, we could also easily do
it with one edge, but this invariant appears to be hard to maintain during a
local search. For at most two edges, take the solution x of the con�guration
LP and orient every edge e towards the vertex in r(e) = {u,v} that the
solution prefers, i.e., towards u if

∑
C∈C(u,1):e∈C xu,C ≥

∑
C∈C(v,1):e∈C xv,C

and towards v otherwise. This is already a 2-approximation, because∑
C∈C(u,1):e∈C

xu,C ≥ 0.5,

if u gets edge e. Every vertex v has
∑
C∈C(v,1) xv,C ≤ 1 and a con�guration can

only contain one big edge. Therefore no more than 2 edges can be oriented
towards each vertex.

Fact 68. At every time during the execution of the algorithm |δ−B(v)| ≤ 2 for

all v ∈ V .
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Proof of Lemma 66. Let ` be the length of P . We de�ne a potential function
s(P ) as

s(P ) = (g, |Ẽ(P≤0)|, |Ẽ(P≤1)|, . . . , |Ẽ(P≤`)|,−1),

where g denotes the number of good vertices. Like in the simple case, we will
argue that this vector increases lexicographically after every iteration of the
main loop. Since the number of possible vectors is �nite, so is the running
time. If a pending �ip is added, the increase is obvious. Now consider the
case where a pending �ip e ∈ P is executed. The number of good vertices
does not decrease, since the algorithm only executes valid �ips. If the number
of good vertices increases, we are done. Hence, assume otherwise. Let v be
the vertex e was oriented to before the �ip and v′ the vertex afterwards. We
denote by ` the length of P before the �ip was executed and by `′ the length
afterwards. Recall that `′ was chosen such that e is repelled by v w.r.t. P≤`′ ,
but not w.r.t. P≤`′−1. Let Pk be the raw pending �ip for e. Then k ≥ `′ + 1,
since otherwise `′ would not be minimal. Furthermore, e was not repelled
by v′ w.r.t. P≤k−1 (in particular, not w.r.t. P≤`′ ) when Pk was added. Indeed, e
is still not repelled by v′ w.r.t. P≤`′ , since any change to the repelled edges
would trigger the removal of all pending �ips P`′+1,P`′+2, . . . However, Pk is
still in the list.

We conclude that the premise of Fact 64 is ful�lled and therefore edges
that were repelled w.r.t. P≤k (before the �ip of e) for any k ≤ `′ are still and,
in particular, |Ẽ(P≤k)| has not decreased. Finally, |Ẽ(P≤`′ )| has increased: e
itself was not in that set, since it is not repelled by v′ . After the �ip we have
s(e) = v and since e is repelled by v, it is now in this set.

Proof of Lemma 67. We assume the contrary and show that OPT∗ > 1. This
proof is by demonstrating the dual of the con�guration LP is unbounded.
For this purpose, in the following we will de�ne a solution z,y for the dual.
Throughout the proof we will use the parameter β = 1.03. As before let
Ẽ ⊆ E denote all edges e that are repelled by s(e). This includes all edges
that are repelled by t(e), since otherwise e could be added to P or it is in
P and then e ∈ Ẽ follows from Fact 63. We let Q be the edges in Q≤` at the
time the algorithm gets stuck. Furthermore, de�ne F as the set of big edges
e ∈ P such that there is no e′ ∈ δ+P (s(e)) withw(e′) < w(e). LetH denote all
edges with weight greater than R which are not in F. For clarity a glossary
of important symbols is provided in Table 1. The relations between the edge
sets are illustrated in Figure 8.

We de�ne critical vertex as in the simple case: Observe that by de�nition
of repelled edges, a vertex v repels either

• only big edges; or

• edges with weight at least a certain threshold W > 1/3 and edges
from δ−

Ẽ
(v); or

• all edges.
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V All vertices.

E All edges.

Ẽ Edges e that are repelled by s(e) (in particular, those that
are repelled by t(e)).

P Pending �ips.

T Tiny edges, i.e., all edges e ∈ E with w(e) ≤ 1/3.

S Small edges, i.e., all edges e ∈ E with 1/3 < w(e) ≤ 1/2.

B Big edges, i.e., all edges e ∈ E with 1/2 < w(e).

F Big edges in P such that there is no smaller pending �ip
towards the same vertex.

Q Big edges e ∈ P with 0.5 < w(e) ≤ 0.6 such that t(e)
repels a non-loop edge e′ with w(e) +w(e′) ≤ 1.

H Very big edges e ∈ E \F (with w(e) > R).

Table 1: Glossary of important symbols

E

Ẽ

P

QF

H

B

Figure 8: Inclusion relations of edge sets (omitting S and T ). Dashed lines are only
for readability
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We call vertices of the last kind critical. For every e ∈ E \ Ẽ, set z(e) = 0. For
every e ∈ Ẽ, set

z(e) =



1 if 1/2 < w(e) and e ∈ F \Q,

min{w(e),R} if 1/2 < w(e) and e < F \Q,

w(e) if 1/3 < w(e) ≤ 1/2, and

βw(e) if w(e) ≤ 1/3.

On average, we want to set each y(v) to z(δ−(v)) = z(δ−
Ẽ
(v)). However,

there are two kinds of amortization between vertices.

critical amortization. If v is good and critical, but is not a prospect
vertex of a tiny �ip, set av := β − 1. If v is is good and prospect vertex
of tiny �ip (in particular, critical), set av := −(β − 1). Otherwise, set
av = 0.

big amortization. Set

bv := (|δ+F (v)|−|δ
−
F(v)|)·(1−R)−

∑
e∈δ+F∩Q(v)

[R−w(e)]+
∑

e∈δ−F∩Q(v)

[R−w(e)].

Finally, de�ne y(v) = z(δ−(v)) + av + bv if v is a good vertex and y(v) =
z(δ−(v)) + av + bv −µ otherwise. Here µ= 0.01 is some su�ciently small
constant. By the almost identical argument as in the simple case (which we
will repeat for completeness) we get the following.

Claim 69.
∑
e∈E z(e) >

∑
v∈V y(v) .

It remains to show that for each v ∈ V and C ∈ C(v,1) it holds that
y(v) ≥ z(C). This proof is much more complicated than in the simple case
and for that purpose it is divided into two cases.

Claim 70. Let v ∈ V with |δ−B(v)| ≤ 1. Let C ∈ C(v,1). Then y(v) ≥ z(C).

Claim 71. Let v ∈ V with |δ−B(v)|= 2. Let C ∈ C(v,1). Then y(v) ≥ z(C).

Together, these claims and Corollary 68 ful�ll the premise of Lemma 52
and therefore imply that the con�guration LP is not feasible for OPT∗ = 1, a
contradiction.
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Proof of Claim 69. First we note that∑
v∈V

bv = (1−R) (
∑
v∈V
|δ+F (v)| −

∑
v∈V
|δ−F(v)|)︸                           ︷︷                           ︸

=0

+R · (
∑
v∈V
|δ−F∩Q(v)| −

∑
v∈V
|δ+F∩Q(v)|)︸                                 ︷︷                                 ︸

=0

+
∑
v∈V

w(δ+F∩Q(v))−
∑
v∈V

w(δ−F∩Q(v)|)︸                                       ︷︷                                       ︸
=0

= 0

Moreover, we have that
∑
v∈V av ≤ 0: This is because at least half of all good

vertices that are critical are prospect vertices of tiny �ips. When a vertex
v is critical but not prospect vertex of a tiny �ip, there must be a regular
non-tiny �ip (ePk ,reg) with s(ePk ) = v such that in the de�nition of repelled
edges for P≤k we have W0 ≤ 1/3. By Fact 65 there exists an edge of weight
W0 (hence, tiny) in δ−(v) which is not repelled by its other vertex v′ , v
w.r.t. P≤k . We argue later that this edge has already been in δ−(v) when the
list of pending �ips has consisted only of the k �ips in P≤k . Since a tiny �ip
will always be added before the next non-tiny regular �ip (edges of minimal
weight are chosen), we know that the next pending �ip ePk+1 must be a tiny
�ip and s(ePk+1) is the prospect vertex of a tiny �ip. Also, this will become
prospect vertex of a regular tiny �ip before the next non-tiny pending �ip
can be added. Note that no vertex can be prospect vertex of two regular tiny
�ips and therefore the ratio holds.

The reason why the edge has already been in δ−(s(ePk )) is the following.
When an edge e is �ipped towards v = s(ePk ) and it is repelled by v w.r.t. P≤k ,
then e must have been a �ip in P earlier in the list than ePk . This means that at
least ePk , . . . ,e

P
` are removed from P . Because ePk is still in P , we can therefore

assume that this has not happened. If W0 in the de�nition of the repelled
edges w.r.t. P≤k has not decreased since the last time the list consisted only
of P≤k , we are done, since this would mean the edge of weight W0 has been
repelled by v all this time and could not have been added to δ−(v). This is
indeed the case. W0 can only decrease when an edge from δ−

Ẽ∪E≥W0
(v) is

�ipped. This, on the other hand, causes at least ePk+1, . . . ,e
P
` to be removed

from P . This �nished the proof of
∑
v∈V av ≤ 0. We conclude,∑

e∈E
z(e) ≥

∑
v∈V

∑
e∈δ−(v)

z(e) +
∑
v∈V

[bv + av ]︸        ︷︷        ︸
≤0

>
∑
v∈V

y(v),

where the strict inequality holds because of the de�nition of y(v) and because
there exists at least one bad vertex.

Before we prove the other two claims, let us recall a fact from the simple
version that still holds in a slightly modi�ed variant.



7.3 graph balancing in the general case 113

Fact 72. Let (ePk ,reg) be a regular pending �ip. Then

w(δ−
Ẽ
(s(ePk ))) +w(e

P
k ) > 1+R.

This fact follows directly from the de�nition of repelled edges and because
there is no valid �ip. The next three facts are related to the set Q or regular
pending �ips. They state invariants that one would also intuitively expect,
since they correspond to the requirements for adding edges toQ or as regular
�ips.

Fact 73. Let (ePk ,raw) be a big raw pending �ip (w(ePk ) > 0.5). Then ePk ∈Q,

if and only if w(ePk ) ≤ 0.6 and there is a non-loop edge e′ ∈ δ+
Ẽ
(t(ePk )) with

w(ePk ) +w(e
′) ≤ 1.

Proof. If w(ePk ) ≤ 0.6 and there is a non-loop edge e′ ∈ δ+
Ẽ
(t(ePk )) with

w(ePk )+w(e
′) ≤ 1, but ePk <Q, then by de�nition of the algorithm ePk would

have been added to Q in the last iteration of the main loop. A contradiction.
Suppose that ePk ∈ Qk′ . When it was added to Qk′ there was such a non-

loop edge e′ ∈ δ+(t(ePk )) that was repelled by t(ePk ) w.r.t. P≤k′ . If this edge
was �ipped (and therefore removed from δ+(t(ePk )), then Qk′ would have
been deleted, which did not happen. What is left to show is that e′ is still
repelled by s(ePk ). If e′ is not repelled by s(ePk ) w.r.t. P≤k′ anymore, there
would have to be some edge e′′ that was removed from δ−(s(ePk )) and which
was also repelled by s(ePk ) w.r.t. P≤k′ . Then, however, Qk′ would have been
removed.

Fact 74. Let e ∈ E be big, i.e., w(e) > 0.5, and Pk = (e,raw) a raw pending

�ip for e. Then (e,reg) ∈ P , if and only if |δ−B(s(e))| ≤ 1 and (a) e ∈Q, or (b)

w(δ−B(s(e))) ≤ R and δ−F(s(e)) ⊆Q.

Proof. If |δ−B(v)| ≤ 1 and (a), but (e,reg) < P , then this is a regular �ip that
can be added to P , which contradicts the assumption that the algorithm is
stuck. A small twist has to be considered, if |δ−B(v)| ≤ 1 and (b), but (e,reg) <
P : Then the �ip can only be added, if δ−B(s(e)) ⊆ Ẽ. Fortunately, this is the
case. Because of the raw pending �ip, all edges in δ−B(s(e)) are repelled by
s(e) and Ẽ contains all edges e′ that are repelled by t(e′) (not only those
repelled by s(e′), as elaborated earlier). Note that during execution of the
algorithm (when it is not stuck) this is not a tautology.

Now suppose that the pending �ip Pk′ = (e,reg) exists (k′ > k). We will
check that the conditions hold. We do know that |δ−B(v)| ≤ 1 and (a) or (b)
at the time Pk′ was added. First, consider the case where (a) was true. Since
Q≤k′−1 ⊆ Q≤` = Q, we have (a) is still true. Since Pk′ was added, no big
edges can have been �ipped towards s(e), because they are repelled by s(e).
Therefore, |δ−B(v)| ≤ 1 still holds. Next, assume (b) was true when Pk′ was
added. As before, |δ−B(v)| ≤ 1 holds. For the same reason, w(δ−B(v)) ≤ R
must still be true. Finally, consider the condition δ−F(s(e)) ⊆ Q. Assume
that δ−F(s(e)) , ∅ and let {eF} = δ−F(s(e)). This edge has already been in
δ−(s(e)) when Pk′ was added (see above). It also must have been in P already,
because otherwise e′ ∈ B \ Ẽ, and Pk′ cannot be added when such an edge
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exists. Furthermore, e′ ∈ F has been true, since if it is not in F, then there
would have been a smaller �ip towards s(e′) and this would remain true. e′ ,
however, is in F and thus, it has been in F when Pk′ was added. By condition
of adding Pk′ this means e′ has been in Q and therefore still is. We conclude,
δ−F(s(e)) = {e

′} ⊆Q.

Fact 75. Let e ∈ E be small, i.e., 1/3 < w(e) ≤ 1/2. Let Pk = (e,raw) be a

raw pending �ip. Then (e,reg) ∈ P , if and only if |δ−B(s(e))| ≤ 1 or there exists
eB ∈ δ−B(s(e)) with w(e) +w(eB) ≤ 1.

Proof. Clearly, if |δ−B(s(e))| ≤ 1 or there is some eB ∈ δ−B(s(e)) with w(e) +
w(eB) ≤ 1, but (e,reg) < P , then this pending �ip could be added, which
contradicts the assumption that the algorithm is stuck.

Now suppose that Pk′ = (e,reg) is a regular pending �ip for e. As long as
Pk′ remains in P , no big edge can be �ipped towards s(e), since they are all
repelled by s(e). If |δ−B(s(e))| ≤ 1 at the time Pk′ was added, then this is still
true. Otherwise, there was a big edge eB ∈ δ−B(s(e)) with w(e) +w(eB) ≤ 1
at that time. If it is still in δ−(s(e)), then we are done. If, on the other hand,
it was �ipped then at most one big edge remains that is oriented towards
s(e), i.e., |δ−B(s(e))| ≤ 1.

7.3.3 Proof of Claim 70

Recall, this claim is the inequality z(C) ≤ y(v) for the case of |δ−B(v)| ≤ 1.

Case 1: v is a bad vertex.

Note that no pending �ip can go towards a bad vertex, hence δ+F (v) = ∅. This
implies that if C contains any edge from F, it must be in δ−(v). Therefore,
z(C) ≤ z(δ−F(v))−w(δ

−
F(v)) + β. Thus,

y(v) = z(δ−(v)) + bv −µ
≥ z(δ−F(v))−w(δ

−
F(v)) +w(δ

−
Ẽ
(v))− (1−R)−µ

> z(δ−F(v))−w(δ
−
F(v)) + 1+R− 1+R−µ

≥ z(δ−F(v))−w(δ
−
F(v)) + β ≥ z(C).

For the �rst inequality we distinguish between |δ−H (v)|= 0 and |δ−H (v)|= 1.
In the former, we have that bv ≥ −(1−R) and z(e) ≥ w(e) for all e ∈ δ−

Ẽ
(v).

In the latter, we have that bv = 0 and z(δ−H (v)) ≥ w(δ
−
H (v))− (1−R) (and

z(e) ≥ w(e) for all e ∈ δ−
Ẽ\H (v)). For the second to last inequality, we use

that w(δ−
Ẽ
(v)) = w(δ−(v)) > 1+R by the de�nition of a bad vertex.

Case 2: v is good and prospect vertex of a tiny �ip.

Since v is prospect vertex of a smaller �ip than any big edge, δ+F (v) = ∅
and therefore again z(C) ≤ z(δ−F(v))−w(δ

−
F(v)) + β. Moreover, since v is
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prospect vertex of a tiny �ip, i.e., of an edge of weight at most 1/3, it must
be that w(δ−

Ẽ
(v)) > 1+R− 1/3= R+ 2/3. Thus,

y(v) = z(δ−(v)) + bv − (β − 1)
≥ z(δ−F(v))−w(δ

−
F(v)) +w(δ

−
Ẽ
(v))− (1−R)− (β − 1)

≥ z(δ−F(v))−w(δ
−
F(v)) + 2R+ 2/3− β

≥ z(δ−F(v))−w(δ
−
F(v)) + β ≥ z(C).

For the �rst inequality, we argue in the same way as in the previous case.

Case 3: v is good, not prospect vertex of a tiny �ip, but prospect vertex of a

small �ip.

Like in the last case we have δ+F (v) = ∅. Let eS be the smallest edge with a
pending �ip towards v. If |δ−Q(v)|= 1, then

y(v) ≥ w(δ−
Ẽ
(v))− (1− 2R+w(δ−Q(v)))︸                    ︷︷                    ︸

=bv

> 1+R−w(eS)− (1.6− 2R) ≥ 3R− 1.1 ≥ β ≥ z(C).

We can therefore assume that |δ−Q(v)|= 0. If in addition |δ−
(F\Q)∪H (v)|= 0

holds, then

y(v) ≥ z(δ−(v)) ≥ 1+R−w(eS) ≥ 1+R− 0.5 ≥ β ≥ z(C).

In the remainder of Case 3, assume that |δ−
(F\Q)∪H (v)|= 1. In particular, if

there is an edge from F in C or δ−(v), then it is not in Q and therefore has a
z-value of 1. Moreover, z(δ−B(v)) + bv = R by a simple case distinction.

case 3.1: v is critical. If C ∩F , ∅, then

y(v) ≥ z(δ−(v)) + bv + (β − 1)
≥ z(δ−F(v))−w(δ

−
F(v)) + 1+R−w(eS)− (1−R) + (β − 1)

≥ z(δ−F(v))−w(δ
−
F(v)) + 2R− 1.5+ β

≥ z(δ−F(v))−w(δ
−
F(v)) + 0.5+ 0.5β ≥ z(C).

If C ∩F = ∅, and δ−
Ẽ
(v) contains a small edge,

y(v) = z(δ−(v)) + bv + (β − 1)
≥ z(δ−B(v)) + bv︸           ︷︷           ︸

=R

+z(δ−
Ẽ\B(v))︸       ︷︷       ︸

>1/3>1−R

+(β − 1) ≥ β ≥ z(C).

If C ∩F = ∅, and δ−
Ẽ
(v) contains no small edge,

y(v) = z(δ−(v))+bv+(β−1) ≥ z(δ−B(v))+bv+z(δ
−
Ẽ\B(v))+(β−1)

≥ R+ β(R− 0.5) + β − 1 ≥ β ≥ z(C).
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case 3.2: v is uncritical and δ−
Ẽ
(v) contains a small edge.

Note that C ∩ T ∩ Ẽ ⊆ δ−(v) and, in particular, z(C ∩ T ) ≤ z(δ−T (v)), since
otherwise there would be a tiny �ip that can be added to P . If C contains no
small edge from Ẽ or C ∩F = ∅, then

y(v) ≥ z(δ−B(v)) + z(δ
−
T (v)) + 1/3+ bv ≥ 1+ z(δ−T (v)) ≥ z(C).

Now assume that C contains δ−F(v) , ∅ and a small edge e ∈ Ẽ. If δ−
Ẽ
(v)

contains exactly one small edge e′ and w(e′) ≤ w(e),

y(v) ≥ z(δ−F(v)) + β(w(δ
−
Ẽ
(v))−w(e′)−w(δ−F(v)))

+w(e′)− (1−R)
≥ 1+ β(1+R− 0.5−w(e′)−w(δ−F(v))) +w(e

′)− β(R− 0.5)
= 1+ β(1−w(e′)−w(δ−F(v))) +w(e

′)

≥ 1+ β(1−w(e)−w(δ−F(v))) +w(e) ≥ z(C).

If δ−
Ẽ
(v) contains exactly one small edge e′ and w(e′) > w(e), then since e is

repelled, it must that w(e) ≥ w(eS). Thus,

y(v) ≥ z(δ−F(v)) + β(w(δ
−
Ẽ
(v))−w(e′)−w(δ−F(v)))

+w(e′)− (1−R)
≥ 1+ β(1+R−w(eS)−w(e′)−w(δ−F(v)))
+w(e′)− β(R− 0.5)

= 1+ β(1.5−w(eS)−w(e′)−w(δ−F(v))) +w(e
′)

≥ 1+ β(1−w(eS)−w(δ−F(v))) + 0.5

≥ 1+ β(1−w(e)−w(δ−F(v))) +w(e) ≥ z(C).

If δ−
Ẽ
(v) contains at least two small edges and one of them is e,

y(v) ≥ 1+z(δ−T (v))+w(e)+1/3−(1−R) ≥ 1+w(e)+z(δ−T (v)) ≥ z(C).

If δ−(v) contains at least two small edges and none of them is e, then e ∈
δ+
Ẽ
(v). Furthermore,w(e)+w(δ−F(v)) ≤ 1. Ifw(δ−F(v)) ≤ 0.6, then the edge

would be in Q, which is not the case. This implies that w(δ−F(v)) > 0.6 and
therefore w(e) < 0.4. Thus,

y(v) ≥ 1+ z(δ−T (v)) + 2/3− (1−R) ≥ 1+ 0.4+ z(δ−T (v)) ≥ z(C).

case 3.3: v is not critical and δ−
Ẽ
(v) contains no small edge.

If C ∩F , ∅, then

y(v) ≥ z(δ−(v))− (1−R)
≥ z(δ−F(v)) + β(1+R− 0.5−w(δ

−
F(v))− (1−R)

≥ 1+ β(1−w(δ−F(v)) ≥ z(C).

We now assume that C contains no edge from F. If C contains exactly one
edge that is small or big (not from F),

y(v) ≥ z(δ−B(v)) + z(δ
−
T (v)) + bv = R+ z(δ−T (v)) ≥ z(C).
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If C contains a big edge eB < F and a small edge e ∈ Ẽ, then w(e) ≥ w(eS),
since otherwise e would not be repelled and can be added to P . Thus,

y(v) ≥ z(δ−B(v)) + z(δ
−
T (v)) + bv

≥ R+ β(1+R−w(δ−B(v))−w(eS)
≥ R+ β(R−w(e)) = R+ β(0.5−w(e)) + β(R− 0.5)︸      ︷︷      ︸

≥(1−R)

≥ 1+ β(1−w(eB)−w(e)) ≥ z(C).

What is left to resolve is when C ∩ Ẽ contains 2 small edges (in particular,
no big edges). Then these edges must be of size at least w(eS) (again, they
could be added to P , otherwise). Therefore,

y(v) ≥ z(δ−B(v)) + z(δ
−
Ẽ\B(v)) + bv ≥ R+ β(w(δ−

Ẽ
(v))−w(δ−B(v)))

≥ R+ β(w(δ−
Ẽ
(v)) − 1) ≥ R+ β(R−w(eS)).

It follows that

z(C) ≤ 2w(eS) + β(1− 2w(eS))
≤ y(v) + 2w(eS)−R+ β(1−R−w(eS))
≤ y(v) + 2 · 0.5−R+ β(1−R− 0.5)
= y(v) + 1−R+ β(0.5−R) ≤ y(v).

Case 4: v is good and not prospect vertex of a small/tiny �ip.

Since there can be only one big pending �ip towards v and there is no small
or tiny �ip, we have that δ+F (v) = δ+P (v). If |δ+F (v)| = |δ

+
P (v)| = 0, then

v does not repel any edges. In particular, δ−F(v) = ∅ and therefore bv = 0.
Moreover, every e ∈ δ(v) with z(e) > 0 must be in δ−(v). This implies
z(C) ≤ z(δ−(v)) ≤ y(v). We assume in the remainder that |δ+F (v)| = 1
(note that |δ+F (v)| ≤ 1 always holds).

case 4.1: |δ+Q(v)|= 0. If |δ−
(F\Q)∪H (v)|= 1, then by Fact 74 there is no

regular pending �ip towards v Hence, v repels only big edges and

y(v) ≥ z(δ−F(v)) + z(δ
−
Ẽ\F(v)) + bv

≥

1+ z(δ
−
Ẽ\B(v)) + 0 ≥ z(C) if |δ−F\Q(v)|= 1,

R+ z(δ−
Ẽ\B(v)) + (1−R) ≥ z(C) if |δ−H (v)|= 1.

Assume now that δ−
(F\Q)∪H (v) = ∅. We will argue that also δ−Q∩F(v) = ∅:

Suppose toward contradiction there is an edge eQ ∈ δ−F∩Q(v). Let k be the
index at which eQ was added to Q, that is to say, eQ ∈ Qk . Since then P≤k
has not changed or else Qk would have been deleted. Also, eQ was already
in δ−(v), because eQ is a �ip in P≤k and if the orientation had changed, Qk
again would have been deleted. Because eQ was added to Qk , there was an
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outgoing non-loop edge e′ ∈ δ(v) with w(e′)+w(eQ) ≤ 1 that was repelled
by v. Since the edge δ+F\Q(v) is the only pending �ip towards v, it must be
a regular pending �ip Pk′ = (eF ,reg) with k′ ≤ k. However, at the point of
time when Pk′ was added, eQ was not in Q, yet, so it was either not yet in P
and therefore in B \ Ẽ or it was in P and therefore also in F. Either way, the
regular �ip Pk′ would not have been added, since δ−B(v) * Ẽ or δ−F(v) *Q at
that time. A contradiction.

Together we get |δ−F∪H (v)|= 0 and bv = 1−R. Furthermore, by Fact 74 it
must be that δ+F (v) is a regular pending �ip towards v. If v is not critical,

y(v) ≥ z(δ−(v))−w(δ−
Ẽ
(v)) +w(δ−

Ẽ
(v)) + (1−R)

≥ z(δ−(v))−w(δ−
Ẽ
(v)) + 1+R−w(δ+F (v)) + (1−R)

= z(δ−(v))−w(δ−
Ẽ
(v)) + z(δ+F (v)) + (1−w(δ+F (v))) ≥ z(C).

If v is critical,

y(v) ≥ 1+R−w(δ+F (v)) + (1−R) + (β − 1)
≥ β+ z(δ+F (v)) −w(δ

+
F (v)) ≥ z(C).

case 4.2: |δ+Q(v)| = 1. δ+Q(v) must be a regular �ip by Fact 74. Also,
bv ≥ −(1−R) · |δ−F(v)|+ (1− 2R+w(δ+Q(v))). The two cases |δ−H (v)|= 0
and |δ−H (v)|= 1 work nearly the same way, but for clarity �rst assume that
|δ−H (v)| = 0. This means that all edges e ∈ δ−

Ẽ
(v) have z(e) ≥ w(e). If v is

not critical, we argue that

y(v) ≥ z(δ−(v))−w(δ−
Ẽ
(v))

+ 1+R−w(δ+Q(v))− (1−R) + (1− 2R+w(δ−Q(v)))

= z(δ−(v))−w(δ−
Ẽ
(v)) + 1 ≥ z(C).

Here we use that when z(e) > w(e) then either e is tiny and therefore must
be in δ−(v) or else the �ip e could be added to P or e is in F \Q and therefore
also in δ−(v). On the other hand, if v is critical, then

y(v) ≥ z(δ−F(v))−w(δ
−
F(v)) + 1+R−w(δ+Q(v))

− (1−R) + (1− 2R+w(δ−Q(v))) + (β − 1)

= z(δ−F(v))−w(δ
−
F(v)) + β ≥ z(C).

Now assume that |δ−H (v)|= 1. In particular, |δ−F(v)|= 0. If v is not critical,
then

y(v) ≥ z(δ−T (v))−w(δ
−
Ẽ∩T (v))

+w(δ−
Ẽ
(v))− (1−R) · |δ−H (v)|+ (1− 2R+w(δ−Q(v)))

≥ z(δ−T (v))−w(δ
−
Ẽ∩T (v))

+ 1+R−w(δ+Q(v)) + (w(δ−Q(v))−R)

= z(δ−T (v))−w(δ
−
Ẽ∩T (v)) + 1 ≥ z(C).
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Finally, if v is critical, then

y(v) ≥ w(δ−
Ẽ
(v))− (1−R) · |δ−H (v)|+(1−2R+w(δ−Q(v)))+(β−1)

≥ 1+R−w(δ+Q(v)) + (w(δ−Q(v))−R) + (β − 1) = β ≥ z(C).

7.3.4 Proof of Claim 71

Recall, this claim is the inequality z(C) ≤ y(v) for the case of |δ−B(v)|= 2.

Case 1: v is a bad vertex

Note that no pending �ip can go towards a bad vertex, hence by de�nition of
F ⊆ P it holds that δ+F (v) = ∅ and therefore z(C) ≤ z(δ−F(v))−w(δ

−
F(v))+β.

Moreover, all edges e ∈ δ−E\H (v) have z(e) ≥ w(e). Thus,

y(v) ≥ z(δ−(v)) + bv −µ
≥ z(δ−F(v))−w(δ

−
F(v)) +w(δ

−
Ẽ
(v))

−|δ−H (v)| · (1−R)︸               ︷︷               ︸
≤z(δ−H (v))−w(δ

−
H (v))

−|δ−B\H (v)| · (1−R)︸                  ︷︷                  ︸
≤bv

−µ

> z(δ−F(v))−w(δ
−
F(v)) + 1+R− 2 · (1−R)−µ︸                     ︷︷                     ︸

≥β

≥ z(C).

Case 2: v is good and prospect vertex of a tiny �ip

Note that by de�nition of F, δ+F (v) must be empty. Let eT be the tiny edge
with a �ip towards v. For all e ∈ δ−F\Q(v) we have w(e) > 0.6 or w(e) >
1−w(eT ) ≥ R > 0.6 (otherwise e would be in Q by Fact 73). We will make
frequent use of the inequality w(δ−

Ẽ
(v)) > 1+R−w(eT ) ≥ R+ 2/3.

case 2.1: |δ−
(F\Q)∪H (v)|= 0. Note that

bv ≥ −
∑

e∈δ−F∩Q(v)

[1− 2R+w(e)] ≥ 2 · (2R− 1.6).

Thus,

y(v) ≥ w(δ−
Ẽ
(v))−(β−1)+4R−3.2 > R+2/3−β+4R−2.2 ≥ β ≥ z(C).
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case 2.2: |δ−
(F\Q)∪H (v)|= 1. Then

y(v) ≥ z(δ−F(v))−w(δ
−
F(v)) +w(δ

−
Ẽ
(v))

−|δ−H (v)| · (1−R)︸               ︷︷               ︸
≤z(δ−H (v))−w(δ

−
H (v))

−|δ−F\Q(v)| · (1−R)− (1.6− 2R)︸                                   ︷︷                                   ︸
≤bv

−(β − 1)

≥ z(δ−F(v))−w(δ
−
F(v)) +R+

2
3
− (1−R)− 0.6+ 2R− β

= z(δ−F(v))−w(δ
−
F(v)) + 4R+

2
3
− 1.6− β

≥ z(δ−F(v))−w(δ
−
F(v)) + β ≥ z(C).

case 2.3: |δ−
(F\Q)∪H (v ) | = 2 . Here we use that z(C) ≤ β, if C ∩ (F \

Q) = ∅ and z(C) ≤ 1+ β(1−w(C ∩ (F \Q))) ≤ 1+ 0.4β, otherwise. This
gives

y(v) ≥ |δ−F\Q(v)|·1+|δ
−
H (v)|·R−|δ

−
F\Q(v)|·(1−R)−(β−1) = 2R+1−β

≥max{β,0.4β + 1} ≥ z(C).

Case 3: v is good, prospect vertex of a small �ip, but not of a tiny �ip

Note that by de�nition of F, δ+F (v) must be empty. Let eS be the smallest
edge with a �ip towards v.

First, let us handle the case, where eS is only a raw pending �ip, i.e.,
(eS ,raw) ∈ P , but (eS ,reg) < P . This is exactly the case when for both
eB ∈ δ−B(v) it holds that w(eB) +w(eS) > 1 (Fact 75). This implies that v
only repels big edges and edges of weight greater than w(eS). Moreover,
δ−Q(v) = ∅ and therefore

y(v) ≥
∑

e∈δ−F (v)

[1− (1−R)] +
∑

e∈δ−B\F(v)

w(e) + z(δ−
Ẽ\B(v))

≥ 1+ z(δ−
Ẽ\B(v)) ≥ z(C).

We can therefore assume what (eS ,reg) ∈ P .

case 3.1: |δ−
(F\Q)∪H (v)|= 0. We bound bv by

bv ≥ −
∑
e∈F∩Q

[1+ 2R−w(e)] ≥ 4R− 3.2.

Thus,

y(v) ≥ w(δ−
Ẽ
(v)) + 4R− 3.2 ≥ 1+R− 0.5+ 4R− 3.2 ≥ β ≥ z(C).

case 3.2: |δ−
(F\Q)∪H (v)|= 1 and v is uncritical. Note that if δ−F∩Q(v) =

∅, then

z(δ−B(v)) + bv ≥ R+ 0.5 ≥ 3R− 1.
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On the other hand, when |δ−F∩Q(v)|= 1, then

z(δ−B(v))+bv ≥ R+w(δ
−
F∩Q(v))− (1−2R+w(δ

−
F∩Q(v))) = 3R−1.

If C does not contain an edge from F \Q,

y(v) ≥ 3R− 1 ≥ β ≥ z(C).

Assume in the remainder of Case 3.2 that C contains an edge from δ−F\Q(v) ,

∅. If C contains no small edge from Ẽ \ δ−(v)

y(v) ≥ z(δ−B(v)) + z(δ
−
Ẽ\B(v)) + bv ≥ 3R− 1+ z(δ−

Ẽ\B(v)) ≥ z(C).

Assume now that C contain δ−F\Q(v) and a small edge e ∈ Ẽ \ δ−(v). This
implies w(δ−F\Q(v)) > 0.6, since w(δ−F\Q(v)) +w(e) ≤ w(C) ≤ 1 and the
edge would be in Q otherwise. If δ−

Ẽ
(v) contains a small edge,

y(v) ≥ z(δ−B(v))+z(δ
−
Ẽ\B(v))+bv ≥ 3R−1+1/3 ≥ 1+β(1−0.6) ≥ z(C).

Assume now δ−
Ẽ
(v) contains no small edge. Then w(e) ≥ w(eS) or else

the edge would not be repelled by v. This implies w(eS) ≤ w(e) ≤ 1 −
w(δ−F\Q(v)) < 0.4. If |δ−F∩Q(v)|= 1,

y(v) ≥ z(δ−(v)) + bv
≥ z(δ−B(v)) + β(w(δ

−
Ẽ
(v))−w(δ−B(v))) + bv

≥ 3R− 1+ β(1+R−w(eS)−w(δ−B(v)))
= 3R− 1+ β(1−w(eS)−w(δ−F\Q(v))) + β(R−w(δ

−
F∩Q(v)))

≥ 3R− 1+ β(R− 0.6)︸                  ︷︷                  ︸
≥1.4≥z(δ−F\Q(v))+z(e)

+β(1−w(e)−w(δ−F\Q(v))) ≥ z(C).

If |δ−F∩Q(v)|= 0,

y(v) ≥ z(δ−(v)) + bv ≥ z(δ−B(v)) + β(w(δ
−
Ẽ
(v))−w(δ−B(v))) + bv

≥ R+w(δ−B\F(v)) + β(1+R−w(eS)−w(δ
−
B(v)))

= R+w(δ−B\F(v)) + β(R−w(δ
−
B\F(v)))

+ β(1−w(eS)−w(δ−F(v)))
≥ R+R+ β(R−R)︸                ︷︷                ︸

≥1.4

+β(1−w(e)−w(δ−F(v))) ≥ z(C).

Here we use that w(δ−B\F(v)) ≤ R, since it is not in H .

case 3.3: |δ−
(F\Q)∪H (v)| = 1, |δ−F∩Q(v)| = 0 and v is critical. If C

contains δ−F\Q(v) , ∅,

y(v) ≥ z(δ−F(v))−w(δ
−
F(v)) + 1+R−w(eS)− (1−R) + (β − 1)

≥ z(δ−F(v))−w(δ
−
F(v)) + 2R− 1.5+ β

≥ z(δ−F(v))−w(δ
−
F(v)) + 0.5+ 0.5β ≥ z(C).
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If C ∩F = ∅,

y(v) ≥ R+w(δ−B\(F∪H)(v)) + (β − 1) ≥ R+ β − 0.5 ≥ β ≥ z(C),

since there must be a second big edge on v.

case 3.4: |δ−
(F\Q)∪H (v ) | = 1 , |δ−F∩Q (v ) | = 1 and v is critical.

Since eS is a regular pending �ip, there must be an edge eB ∈ δ−B(v) with
w(eS)+w(eB) ≤ 1. This implies w(eS)+w(δ−F∩Q(v)) ≤ 1: If eB ∈ δ−F\Q(v),
it must be thatw(eB) > 0.6. Therefore,w(eS)+w(δ−F∩Q(v)) ≤ w(eS)+0.6 <
w(eS) +w(eB) ≤ 1. If C contains δ−F\Q(v) , ∅,

y(v) ≥ z(δ−F(v))−w(δ
−
F(v)) + 1+R−w(eS)− (1−R)

− (1− 2R+w(δ−F∩Q(v))) + (β − 1)

≥ z(δ−F(v))−w(δ
−
F(v)) + 4R− 2+ β

− (w(δ−F∩Q(v)) +w(eS))

≥ z(δ−F(v))−w(δ
−
F(v)) + 4R− 3+ β

≥ z(δ−F(v))−w(δ
−
F(v)) + 0.5+ 0.5β ≥ z(C).

If C ∩ (F \Q) = ∅,

y(v) ≥ R+w(δ−F∩Q(v))− (1− 2R+w(δ−F∩Q(v))) + (β − 1)

≥ 3R− 2+ β ≥ β ≥ z(C).

case 3.5: |δ−
(F\Q)∪H (v)|= 2 and |δ−F∩Q(v)|= 0. Let eB ∈ δ−B(v) be the

smaller of the two big edges. Since eS is a regular pending �ip, w(eS) +
w(eB) ≤ 1. Therefore w(eB) ≤ 2/3 and eB cannot be in H . Since it is then in
F \Q, it must be greater than 0.6. In particular, all edges in δ−B(v) are greater
than 0.6. If C does not contain an edge from F \Q, then y(v) ≥ 2R ≥ β ≥
z(C). Otherwise, y(v) ≥ 2R ≥ 1+ 0.4β ≥ z(C).

Case 4: v is good and is not prospect vertex of a small/tiny �ip

Note that |δ+F (v)| ≤ 1. If |δ+F (v)|= 0, then v does not repel any edges. Thus,
bv = 0 and for every e ∈ δ(v)with z(e) > 0 it holds that e ∈ δ−(v). Therefore,
z(C) ≤ z(δ−(v)) = y(v). Assume now |δ+F (v)|= 1. v repels only big edges,
since it cannot be prospect vertex of a regular �ip. Thus, δ−Q(v) = ∅ and

y(v) ≥ R · |δ−F∪H (v)|+ 0.5 · |δ−B\(F∪H)(v)|+ z(δ
−
Ẽ\B(v))

≥ 1+ z(δ−
Ẽ\B(v)) ≥ z(C).
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