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Abstract. This paper solves the mean�variance hedging problem in
Heston�s model with a stochastic opportunity set moving systematically
with the volatility of stock returns. We allow for correlation between
stock returns and their volatility (so-called leverage e¤ect).
Our contribution is threefold: using a new concept of opportunity-

neutral measure we present a simpli�ed strategy for computing a can-
didate solution in the correlated case. We then go on to show that this
candidate generates the true variance-optimal martingale measure; this
step seems to be partially missing in the literature. Finally, we derive
formulas for the hedging strategy and the hedging error.

1. Introduction

We examine a classical problem in mathematical �nance: how to opti-
mally hedge a given static position in a derivative asset H with pay-o¤ at
time T by dynamic trading in the underlying asset S if the hedger wishes to
minimize the expected squared hedging error. A crucial step on the way to
the optimal hedge is to derive the density process of the so-called variance-
optimal martingale measure (VOMM) or, more or less equivalently, the opti-
mal strategy of a pure investment problem with quadratic utility. We focus
on a model with stochastic volatility in which the investment opportunity
set changes with the volatility level and volatility itself is correlated with
the change in stock price.
In the case of zero correlation the problem at hand has been solved by

Heath et al. (2001), drawing on the results of Laurent and Pham (1999). In
principle, the VOMM in the correlated case has been explicitly determined
by Hobson (2004). Our contribution is threefold: using a new concept of
opportunity-neutral measure (cf. µCerný and Kallsen 2005, hereafter CK05)
we present a simpli�ed strategy for computing a candidate solution in the
correlated case. We then go on to show that this candidate is the true
VOMM. Finally, we derive formulas for the hedging strategy and the hedging
error, again based on CK05.
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The assumption of zero interest rates is standard in the literature and it
entails no loss of generality within the class of models with deterministic
interest rates; we shall therefore adopt it here. The task of the hedger is to
solve

inf
#
E
�
(x+ # � ST �H)2

�
;

where x is the initial endowment and # belongs to the set of admissible
strategies to be described in Section 2.1. Here # � ST stands for

R T
0 #tdSt.

Consider the following model for the stock price S and its volatility process
Y;

L(S) =
�
�Y 2

�
� I + Y �W; (1.1)

Y 2 = Y 20 +
�
�0 + �1Y

2
�
� I + �Y �

�
�W +

p
1� �2U

�
; (1.2)

where L denotes stochastic logarithm, W and U are independent Brownian
motions, It = t is the activity process and � > 0; �0 � �2=2; �1 < 0; �;�1 �
� � 1 are real constants. Translated into the dW=dt notation the model
reads

dSt
St

= �Y 2t dt+ YtdWt;

dY 2t =
�
�0 + �1Y

2
t

�
dt+ �Yt

�
�dWt +

p
1� �2dUt

�
:

The model is set up in such a way that the instantaneous Sharpe ratio equals
�Y and because Y is an autonomous di¤usion it follows that the opportunity
set is a deterministic function of Y . Conditions on �0 and �1 make sure that
the volatility process is strictly positive and has a steady state distribution
under P (cf. Cox et al. 1985).
We consider information �ltration generated by S, which in the present

model coincides with the �ltration generated by W and U . In particular,
the hedger can back out the current level of volatility from the quadratic
variation process of the stock price. In contrast, there is a growing literature
in which the volatility is �ltered from the stock price data, cf. Brigo and
Hanzon (1998) and Kim et al. (1998).

1.1. Computation and veri�cation. We make use of the structural re-
sults reported in CK05. There is an opportunity process L and a portfolio
process a (called an adjustment process) that solve the optimal investment
problem in the absence of the contingent claim. The opportunity process
has a natural interpretation in that L�1t �1 equals the square of the maximal
Sharpe ratio attainable by dynamic trading in asset S from t to maturity.
The opportunity set is deterministic when L is a deterministic process.
In general, process L de�nes the so-called opportunity-neutral measure (a

non-martingale equivalent measure) P ? which neutralizes the e¤ect of the
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stochastic opportunity set and leads to the variance-optimal measure Q? and
the optimal hedging coe¢ cients. More speci�cally, Q? can be computed as
the minimal martingale measure relative to P ?. The optimality condition
requires that the expected growth rate of L under measure P equals the
squared instantaneous Sharpe ratio of the risky asset(s) under P ?:
We guess a candidate opportunity process in the form

L = exp({0 + {1Y 2);

where {0 and {1 are deterministic functions of time to maturity. For this
functional form of L we write down the optimality criterion described above
which yields a Riccati equation for {1 and a �rst order linear equation for {0
that are readily solved. With P ? in hand we evaluate a candidate adjustment
process a as the myopic mean-variance stock portfolio weight under P ?;

a = bS?=cS = (�+ {1��) =St;

where bS? represents the drift of the stock price under measure P ? and
p
cS

represents its volatility under P (and hence also under P ?).
The computational procedure described above appears to be signi�cantly

shorter, more transparent and economically intuitive than the use of so-
called fundamental representation equations proposed in Biagini et al. (2000)
and Hobson (2004).
It remains to prove that the candidate adjustment process a corresponds

to an admissible trading strategy. To this end we �rst prove that LE(�a �
S) and L (E(�a � S))2 are martingales which means that the candidate
variance-optimal martingale measure Q?,

dQ?

dP
=
E(�a � S)T

L0
; (1.3)

is a martingale measure with square integrable density. This, however, does
not yet imply that Q? is the true VOMM! Merely, we have now constructed
an equivalent martingale measure required by Assumption 2.1 in CK05.
In the �nal step of the veri�cation (this step is left out in the theoreti-

cal characterization of Hobson 2004) we show that the process E(�a � S) is
generated by an admissible strategy. This is essentially equivalent to demon-
strating that E(�a �S) is a true martingale under all equivalent martingale
measures Q such that E

�
(dQ=dP )2

�
< 1: We use Novikov�s condition

combined with Hölder�s inequality to show that E
�
e((�+{1��)Y )

2�IT
�
< 1

is a su¢ cient condition for a to be admissible. We then apply the char-
acterization of regular a¢ ne processes provided in Du¢ e et al. (2003),

henceforth DFS03, to compute an upper bound of E
�
e((�+{1��)Y )

2�IT
�
and

hence characterize a subset of time horizons T for which a and L described
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above represent the true solution, and for which Q? computed in (1.3) is the
true VOMM.
Once we have the true opportunity and adjustment process, the rest of

our analysis is a straightforward application of results in CK05. The op-
timal hedge of the contingent claim H is given by the Föllmer�Schweizer
decomposition of H under measure P ? (cf. Lemma 4.8 in CK05). First
we compute the mean value process V as a conditional expectation of H
under the variance-optimal measure Q?, cf. CK05 (4.1). V happens to be a
deterministic function of 3 state variables, S; Y 2 and I. The optimal hedge
' = '(x;H) is then given by

'(x;H) = � + a(V � x� '(x;H) � S);
� := cV S=cS ;

where x is the initial capital, cV S represents the instantaneous covariance
between V and S and cS stands for the instantaneous variance of S. The
minimal squared hedging error equals

E
�
(x+ '(x;H) � ST �H)2

�
= L0(x� V0)2 + "20;

"20 := E
��
L
�
cV �

�
cV S

�2
=cS
��
� IT

�
;

where cV stands for the instantaneous variance of V , cf. CK05 Theorem
4.12.

1.2. Interpretation. By CK05, Lemmas 3.1 and 3.7, we have that

'S := '(1; 2) = aE(�a � S) = a(2� (1 + 'S � S)) (1.4)

is a mean-variance e¢ cient strategy for an agent wishing to maximize the
unconditional Sharpe ratio of her terminal wealth. The maximal squared
Sharpe ratio equals

SR2S = 1=L0 � 1 = e�{0(0)�{1(0)Y
2
0 � 1;

where {0;{1 are non-positive functions of time to maturity computed in Sec-
tion 3. Thus, in this model, higher volatility means more lucrative dynamic
stock investment opportunity.
The optimal stock trading strategy 'S can be interpreted as a solution

to quadratic utility maximization with bliss point at 2 and initial wealth
level at 1: At an intermediate point in time the distance of agent�s wealth
from the bliss point is 2� (1 + 'S � S) which is exactly equal to E(�a � S):
In view of (1.4) we observe that the agent becomes more risk averse as her
wealth approaches the bliss point. Vice versa, when the risky investment
performs poorly the gap between agent�s wealth and the bliss point widens
and the agent increases her risky position in direct proportion to the gap
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size. (The optimal dynamic investment clearly has an element of a doubling
strategy and this is why it is important to check admissibility of a candidate
solution for a). One can view (1.4) as a dynamic portfolio insurance strategy
(cf. Black and Jones 1987) in reverse, whereby the investor speci�es a �xed
ceiling rather than a �oor for wealth and uses a state-dependent multiplier
a.
We next examine the impact of the stochastic opportunity set on a. When

there is no correlation between stock returns and the volatility we have

a :=
bS?

cS
=
�

S
=
bS

cS
;

which interestingly means that the investor acts as if the opportunity set
were deterministic (or at least predictable, in the sense of L being a pre-
dictable process of �nite variation) even though this is clearly not the case
and P ? 6= P , cf. CK05 Proposition 3.28. Empirical research on equity data
�nds negative correlation (so called leverage e¤ect) implying that the opti-
mal value of a should be revised upwards by the factor {1��=S relative to
the uncorrelated case (cf. equation 3.3).
The mean value process is a su¢ ciently smooth function of three state

variables
Vt = f(T � t; Y 2t ; St):

It represents a price at which an agent holding dynamically e¢ cient portfolio
of equities would not wish to buy or sell the option. The optimal hedge
'(x;H) consists of two components � the pure hedge � and a feedback
element a(V � x � ' � S): The quantity (V � x � ' � S) represents the
shortfall of the hedging portfolio relative to the mean value of the derivative
asset. Since a is typically positive the optimal strategy tends to overhedge
when it is performing poorly and underhedge once it has accumulated a
hedging surplus.
The pure hedging coe¢ cient satis�es

�t =
cV St
cSt

=
@f

@x3
(T � t; Y 2t ; St) + ��

@f

@x2
(T � t; Y 2t ; St)=St:

The pure hedge therefore has two components: the standard delta hedge
using the representative agent price Vt; and a leverage component exploiting
the correlation of the representative agent price with the volatility process.
To appreciate the role of the minimal expected squared hedging error "20

suppose now that in addition to the optimal equity investment the agent is
able to sell (issue) an equity option with payo¤H at time T at initial price
C0 > V0 (when C0 < V0 it is optimal to buy the option). Suppose that the
initial option position is held to maturity and the agent does not trade in
any other options, but she is allowed to engage in additional stock trades
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for hedging purposes. We show in Lemma 5.3 that in order to maximize
her Sharpe ratio the agent should sell � = C0�V0

"20

1
1+SR2S;H

options and hedge

them optimally to maturity using the strategy

'H := '(�C0; �H) = �� + a(�V � �C0 � 'H � S): (1.5)

The unconditional maximal squared Sharpe ratio of the combined strategy
'S + 'H equals

SR2S;H := SR
2
S +

(C0 � V0)2

"20
;

which means that C0�V0"0
is an incremental Sharpe ratio generated by trading

in the option. Based on this observation we conclude that when "0 is very
high one may observe a signi�cant deviation of the market price C0 from the
representative agent price V0 which does not give rise to excessively attrac-
tive investment opportunities, beyond the ones that already existed in the
market before the option was introduced. One can invert the relationship
between the unconditional incremental Sharpe ratio and the selling (buy-
ing) price to compute unconditional good-deal price bounds (cf. µCerný and
Hodges 2002).

1.3. Organization. In Section 2 we de�ne the admissible trading strate-
gies. In Section 3 we compute the candidate adjustment and opportu-
nity processes and characterize a time horizon ~T such that the candidate
processes represent the true solution for all T < ~T . In Section 4 we give
an explicit formula for the mean value process and the pure hedge. Section
5 concludes by giving an explicit formula for the unconditional expected
squared hedging error and the incremental Sharpe ratio of an optimally
hedged position.

2. Preliminaries

2.1. Trading strategies and martingale measures. We work on a �l-
tered probability space (
;FT ;F =(Ft)t2[0;T ]; P ) where T is a �xed time
horizon. The �ltration F is generated by two uncorrelated Brownian mo-
tions U and W which drive the stock price and its volatility as shown in
equations (1.1) and (1.2).

De�nition 2.1 (Delbaen and Schachermayer 1996). Semimartingale S is
locally in L2(P ) if there is a localizing sequence of stopping times fUngn2N
such that

supfE
�
S2�
�
: � � Un stopping timeg <1

for any n 2 N.
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Remark 2.2. Every continuous semimartingale is locally in L2(P ) since we
may take

Un := inff� : S2� � ng
as the sequence of localizing times.

De�nition 2.3. Consider a price process S locally in L2(P ) with the corre-
sponding localizing sequence fUngn2N. A trading strategy # is called simple
if it is a linear combination of strategies Y 1]]�1;�2]] where �1 � �2 are stopping
times dominated by Un for some n 2 N and Y is a bounded F�1-measurable
random variable. We denote by � the set of all simple trading strategies.

De�nition 2.4. A trading strategy # 2 L(S) is called admissible if there is
a sequence f#(n)gn2N of simple strategies such that

#(n) � St �! # � St in probability for any t 2 [0; T ]; and
#(n) � ST �! # � ST in L2(P ):

We denote the set of all admissible strategies by �.

Remark 2.5. The set � does not depend on the choice of the localizing
sequence fUngn2N in De�nition 2.3 (cf. CK05, Remark 2.8).

The following lemma shows admissible strategies are economically indis-
tinguishable from simple strategies.

Lemma 2.6. We have

K2 := f# � ST : # 2 �g = f# � ST : # 2 �g;

where f:g denotes closure in L2(P ).

Proof. See CK05, Corollary 2.9. �

We now state a result on the duality between admissible strategies and a
suitably chosen class of martingale measures for continuous semimartingales.

De�nition 2.7. Denote byMe
2 the subset of equivalent martingale measures

with square integrable density, i.e.

Me
2 :=

�
Q � P : dQ=dP 2 L2(P ); S is a Q-local martingale

	
:

Theorem 2.8. Let S be a continuous semimartingale and suppose S admits
an equivalent martingale measure with square integrable density. Then the
following assertions are equivalent:

(1) # 2 �
(2) # 2 L(S), # � ST 2 L2(P ) and # � S is a Q-martingale for every

Q 2Me
2.
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Proof. (1))(2): This is shown in CK05, Corollary 2.5.
(2))(1): By Delbaen and Schachermayer (1996), Theorems 1.2 and 2.2,

we have # �ST 2 K2. Since martingales are determined by their �nal value,
the claim follows. �

Theorem 2.8 shows that for continuous processes � coincides with the
class of trading strategies used in Gourieroux et al. (1998). For a general
result on the duality between the admissible strategies and (signed) martin-
gale measures we refer the reader to CK05, Lemma 2.4.

2.2. Semimartingale characteristics. All processes in this paper are con-
tinuous semimartingales. For any Rn-valued process X we write X =

X0 + BX +MX for the canonical decomposition of X into a predictable
process of �nite variation and a local martingale under measure P; and sim-
ilarly X = X0 +B

X? +MX? for the decomposition under P ?. We set

CXij :=


MXi ;MXj

�
= hXi; Xji = [Xi; Xj ];

where X1; : : : ; Xn denote the components of X. For processes with jumps
the three quantities above will generally be di¤erent. By Jacod and Shiryaev
(2003), II.2.9 there is an increasing predictable process A, a Rn-valued pre-
dictable process bX and Rn�n-valued predictable process cX whose values
are non-negative symmetric matrices such that

BX = bX �A; CX = cX �A:

We write interchangeably cXiXj := cXij ; c
Xi := cXii .

In this paper the activity process A can be chosen such that At = It := t

and we adopt this convention henceforth. Thus in this paper bX refers to
the drift and

p
cX to the volatility when X is a univariate process. For

example, for X = (Y 2; S) in (1.1) and (1.2) we have 
bY

2

bS

!
=

�
�0 + �1Y

2

�SY 2

�
; (2.1) 

cY
2

cY
2S

cSY
2

cS

!
=

�
�2Y 2 ��SY 2

��SY 2 S2Y 2

�
: (2.2)

Let f : Rn ! R be in C2 and denote by fi :=
@f
@xi
; fij :=

@2f
@xi@xj

its
derivatives. Consider an Rn-valued semimartingale X. Then f(X) is a
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semimartingale and the Itô formula in our notation reads

bf(X) =

nX
i=1

fi(X)b
X
i +

1

2

nX
i;j=1

fij(X)c
X
ij ;

cf(X) =

nX
i;j=1

fi(X)fj(X)c
X
ij ;

cf(X)Xi =
nX
j=1

fj(X)c
X
ij :

For a univariate process N its stochastic exponential is given by E(N) =
eN�

1
2
hNi: Conversely, for a positive process L its stochastic logarithm equals

L(L) = lnL� lnL0 + 1
2 hlnLi : In terms of characteristics

bE(N) = E(N)bN ; cE(N) = (E(N))2 cN ;
bL(L) = L�1bL; cL(L) = L�2cL:

Suppose E(� �MX) is a martingale and de�ne a new measure,

dP ? := E(� �MX)TdP: (2.3)

Girsanov theorem (cf. Jacod and Shiryaev 2003, III.3.11 and Kallsen 2006,
Proposition 2.6) then yields characteristics bX? and cX? under P ? as follows

bX? = bX + cX�|; (2.4)

cX? = cX : (2.5)

3. The Merton problem

In this section we identify the opportunity process L and the adjustment
process a which characterize the dynamically optimal portfolio in the under-
lying asset and the bank account, as discussed in Section 1.2. This type of
dynamically optimal asset allocation is generically referred to as the Merton
problem.

De�nition 3.1. We say that L is a candidate opportunity process if

(1) L is a (0; 1]-valued continuous semimartingale,
(2) LT = 1;
(3) For K := L(L) we have

bK =
�
bS + cKS

�2
=cS : (3.1)

In such case we call a =
�
bS + cKS

�
=cS the candidate adjustment process

corresponding to L.
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Proposition 3.2. Set

A = ��2; B = �1 � 2���; C =
1

2
�2
�
1� 2�2

�
; F = �0;

y0 = w0 = 0;

and for functions w; y and parameter �? of Lemma 6.1 set

{1(t) := w(T � t);
{0(t) := y(T � t);
T ? := �?:

De�ne

Lt = exp({0(t) + Y 2t {1(t)); (3.2)

at = (�+ ��{1(t)) =St: (3.3)

Then L is a candidate opportunity process and a is the corresponding can-
didate adjustment process for T < T ?.

Proof. The proof proceeds in two steps, i) computation and ii) veri�cation.
i) Consider L in the form (3.2) for as yet unknown functions of calendar

time {0 and {1; and de�ne K := L(L). The Itô formula yields

K := L(L) =
�
{00 + Y 2{01 +

1

2
�2Y 2{21

�
� I + {1 � Y 2

=

�
{00 + Y 2{01 +

1

2
�2Y 2{21 +

�
�0 + �1Y

2
�
{1
�
� I

+({1�Y ) �
�
�W +

p
1� �2U

�
;

which in terms of characteristics means

bK = L�1bL = {00 + Y 2{01 +
1

2
�2Y 2{21 +

�
�0 + �1Y

2
�
{1; (3.4)

cK = L�2cL = (�Y {1)2 ;

cKS = �
p
cKcS = ��SY 2{1; (3.5)

cKY
2
=

p
cKcY 2 = (�Y )2 {1:

Substitute from (2.1), (2.2), (3.4) and (3.5) into the local optimality condi-
tion (3.1). On collecting powers of Y we obtain

�{00(t) = �0{1(t);

�{01(t) = ��2 + (�1 � 2���){1(t) +
1

2
�2
�
1� 2�2

�
{21(t);

with terminal conditions {0(T ) = {1(T ) = 0 implied from LT = 1: The
solution for {0;{1 is obtained from Lemma 6.1 in the manner indicated
above.
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ii) We have {0(t) � 0;{1(t) � 0, for all t 2 [0; T ]; T < T ? hence L 2
(0; 1]: Since {0 and {1 are continuous and of �nite variation L in (3.2) is a
continuous semimartingale. By construction of {0;{1 equation (3.1) holds.
Therefore L is a candidate opportunity process and

a =
bS + cKS

cS
= (�+ ��{1) =St (3.6)

is the corresponding candidate adjustment process. �

The process

Z :=
L

L0
exp

�
�bK � I

�
= E

�
MK

�
= E

�
({1�Y ) �

�
�W +

p
1� �2U

��
is a bounded positive martingale and by virtue of Girsanov�s theorem

W ? := � ({1��Y ) � I +W; (3.7)

U? := �
�
{1�

p
1� �2Y

�
� I + U; (3.8)

are Brownian motions under P ? with dP ?=dP = ZT . In view of (1.1), (1.2),
(3.7) and (3.8) the P ?-dynamics of S and Y read

L(S) = (�+ {1��)Y 2 � I + Y �W ?; (3.9)

Y 2 = Y 20 +
�
�0 + �

?
1Y

2
�
� I + �Y �

�
�W ? +

p
1� �2U?

�
; (3.10)

�?1 := �1 + �
2{1 (3.11)

and we have

a = bS?=cS = (�+ {1��) =S:

To be fully in the setup of CK05 we have to verify that the price process
S admits an equivalent martingale measure with square integrable density.
The following lemma shows that the candidate variance-optimal measure
(see equation 1.3) has the desired property.

Lemma 3.3. For a, L and T < T ? in Proposition 3.2 de�ne Ẑ := LE (�a � S) =L0;
then

(1) the local martingale Ẑ is a martingale,
(2) the measure Q?, dQ? = ẐTdP; is an equivalent martingale measure,
(3) the local martingale L (E (�a � S))2 =L0 is a martingale and therefore

Q? 2Me
2.

Proof. One can write

Ẑ = E(K � a � S � a � hK;Si) = E(MK � a �MS + (bK � a(bS + cKS)) � I)
= E(MK � a �MS);
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the last equality a consequence of the local optimality criterion (3.1). Thus
Ẑ is a local martingale and by Section 5 in Hobson (2004) also a true mar-
tingale. Let bSQ?denote the drift of S under measure Q

?, then by Girsanov�s
theorem (2.3, 2.4),

bSQ? = bS + cKS � acS = 0;

where the �nal equality follows from the de�nition of a, equation (3.6).
Consequently, Q? is an equivalent martingale measure and E(�a � S) is a
local Q?-martingale. It follows (cf. Jacod and Shiryaev 2003, III.3.8) that
ẐE(�a � S) = L (E (�a � S))2 =L0 is a local martingale and by Section 5 in
Hobson (2004) it is a true martingale. �

Remark 3.4. Under conditions (1)-(3) in Lemma 3.3 Hobson (2004) con-
jectures that Q? is the true VOMM. The validity of such a statement is not
obvious in general (cf. µCerný and Kallsen 2006). While the conjecture that
Q? is the VOMM for any T < T ? may be true in the present model we are
not aware of any proof to that e¤ect. In general, to conclude that the can-
didate measure Q? is the true VOMM one has to show that E (�a � S) is a
Q-martingale for all Q 2Me

2. In the sequel we are able to prove that Q
? is

the true VOMM for su¢ ciently small T .

Proposition 3.5. Take T < T ? in the notation of Proposition 3.2. If

E
�
eha�SiT

�
<1

then L and a in Proposition 3.2 are the true opportunity process and adjust-
ment process, respectively, in the sense of CK05, De�nitions 3.3 and 3.8.
Consequently, Q? de�ned in Lemma 3.3 (2) is the VOMM.

Proof. Step 1: We show that E
��
�a1]]�;T ]]

�
� S
�
L is of class (D) for any

stopping time � . Fix a stopping time � and set N := K � a �S�hK; a � Si.
Lemma 3.3 shows that Ẑ = E (�a � S)L=L0 = E (N) is a positive martin-
gale. Then

Ẑ=Ẑ� = E(N)=E(N � ) = E(N �N � )

is a positive local martingale and therefore a supermartingale. Since

E
��
Ẑ=Ẑ�

�
T

�
= E

�
E
�
ẐT =Ẑ� jF�

��
= E

�
E
�
ẐT jF�

�
=Ẑ�

�
= E(Ẑ�=Ẑ� ) = 1 = (Ẑ=Ẑ

� )0

Ẑ=Ẑ� is actually a true martingale and hence of class (D). Since L is bounded

E
��
�a1]]�;T ]]

�
� S
�
L = L� Ẑ=Ẑ�

is of class (D) as well.
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Step 2: We show that � := a1]]�;T ]]E
��
�a1]]�;T ]]

�
� S
�
is an admissible

trading strategy for any stopping time � . Consider a measure Q 2Me
2. By

Hölder�s inequality and hypothesis we have

EQ
�
e
1
2

D�
a1
]]�;T ]]

�
�S
E
T

�
�
r
E
�
(dQ=dP )2

�
E
�
eha�SiT

�
<1;

whereby Novikov condition implies that E
�
�
�
a1]]�;T ]]

�
� S
�
is aQ-martingale

for any Q 2 Me
2. Noting that 1 � � � S = E

��
�a1]]�;T ]]

�
� S
�
we conclude

that EQ (� � ST ) = 0 for all Q 2Me
2. By virtue of Lemma 3.3 (1,3) we have

E((� � ST )2) = E

�
E

��
1� E

��
�a1]]�;T ]]

�
� S
�
T

�2����F���
= E

 
E

 �
1� E (�a � S)TE (�a � S)�

�2�����F�
!!

= E(1� L� ) < 1;

implying � � ST 2 L2(P ). Theorem 2.8 yields � 2 �.
Step 3: We have shown in Proposition 3.2 that conditions 1, 2 and 3

of CK05, Theorem 3.25 are satis�ed. Steps 1 and 2 of this proof show
that condition 4 (CK05, equations 3.33, 3.34) is satis�ed, too. Hence a
and L represent the true adjustment and opportunity process, respectively.
Proposition 3.13 in CK05 implies that Ẑ is the density of the variance-
optimal martingale measure. �

Proposition 3.6. Consider the function {1 and the parameter T ? de�ned
in Proposition 3.2. For T < T ? de�ne

�(T ) := max
t2[0;T ]

(�+ ��{1(t))2 : (3.12)

Set A = �(T ); B = �1; C = 1
2�

2 and for the corresponding parameter
�? 2 R+ [ f1g de�ned in Lemma 6.1 set

~T (�(T )) := �?.

(1) If ~T (�(T )) > T then a; L in Proposition 3.2 represent the true ad-
justment and opportunity process, respectively.

(2) The condition
~T (�(T )) > T

is always satis�ed for small enough T > 0.

Proof. 1) i) We have

E(eha�SiT ) = E
�
e((�+��{1)Y )

2�IT
�
� E

�
e�(T )(Y

2�IT )
�
;

with �(T ) de�ned in (3.12).
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ii) On de�ning R := Y 2 � I DFS03 (see Theorem 3.2 in Kallsen (2006) for
details) yields that (Y 2; R; lnS) is conservative regular a¢ ne and therefore
for Re z � 0 we have

E
�
ezRt

�
= eu0(t)+u1(t)Y

2
0 +u2(t)R0+u3(t) lnS0 ;

where the complex functions u0; u1; u2; u3 satisfy the following system of
Riccati equations,

u00 = �0u1; u
0
2 = u03 = 0;

u01 = �1u1 + u2 + (�� 1=2)u3 +
1

2

�
�2u21 + 2��u1u3 + u

2
3

�
;

u0(0) = u1(0) = u3(0) = 0; u2(0) = z:

This implies

u3 = 0;

u2 = z;

u01 = z + �1u1 +
1

2
�2u21:

iii) Fix � > 0 and t < ~T (�). By continuity and monotonicity of ~T (cf.
Lemma 6.2) we have t < ~T (� + ") for all " > 0 su¢ ciently small. We
now show that for all su¢ ciently small " > 0 functions u0(t) and u1(t)

(considered as functions of z) possess analytic extension on the strip z 2
(�1; �+")� i(�"; "): For A = z;B = �1; and C = �2=2 function g in Lemma
6.1 does not attain the value 0 on [�1; �+ "]. Hence for all su¢ ciently small
" > 0 function g in Lemma 6.1 is bounded away from 0 on [�1; �+"]�i[�"; "]:
It follows that both u0(t) and u1(t) are analytic on (�1; � + ")� i (�"; ") :
iv) By iii) and Lemma A.4 in DFS03 E

�
exp

�
�(T )Y 2 � IT

��
< 1 for

~T (�(T )) > T .
2) Since {1 is a continuous function and {1(T ) = 0 there is " > 0 such

that for all T < " we have 0 < �(T ) < �2 + 1. Furthermore inff ~T (�) : 0 �
� � �2 + 1g =: � > 0 because ~T is a positive function and continuous when
not equal to +1: Consequently for T < min("; �) we have

~T (�(T )) > T:

�

4. Optimal hedging

From now on �x a time horizon T > 0 such that ~T (�(T )) > T: Existence
of such a time horizon is guaranteed by Proposition 3.6. Furthermore, we
need to make sure that the contingent claim H has a �nite second moment
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under P . For technical reasons (cf. Proposition 4.1) we restrict our at-
tention to bounded contingent claims such as European put options. This
automatically guarantees H 2 L2(P ).
The optimal hedge is given by the Föllmer�Schweizer decomposition of H

under measure P ?as follows. By Lemma 3.23 in CK05 the variance-optimal
measure Q? coincides with the minimal measure relative to P ? (see also
equation 3.9)

dQ?

dP ?
= E

�
�a �MS?

�
T
= E (�(aS) � (Y �W ?))T

= E (� ((�+ {1��)Y ) �W ?)T :

By virtue of Girsanov�s theorem

Ŵ ? := ((�+ {1��)Y ) � I +W ?;

Û? := U?

are uncorrelated Brownian motions under Q? and therefore the Q?-dynamics
of S and Y read

L(S) = Y � Ŵ ?;

Y 2 = Y 20 +
�
�0 + �̂

?

1Y
2
�
� I + �Y �

�
�Ŵ ? +

p
1� �2Û?

�
;

�̂
?

1 := �?1 � �� (�+ {1��) = �1 � ���+ {1�2
�
1� �2

�
:

De�ne the mean value process V

Vt := EQ
?
(HjFt) :

Proposition 4.1. If the contingent claim H is given by g(Y 2T ; ST ) where g
is a bounded continuous function then Vt = f(T � t; Y 2t ; St) for f 2 C1;2;2
and f is the unique classical solution of the PDE

0 = �f1 +
�
�0 + �̂

?

1y
�
f2 +

1

2
y
�
�2f22 + 2��sf23 + s

2f33
�
;

f(0; y; s) = g(y; s);

with fi := @f=@xi; fij := @2f= (@xi@xj) :

Proof. The proof is given in Heath and Schweizer (2000), Section 2.1 for
� = 0: The reasoning for � 6= 0 is identical, since in either case Q? is
equivalent to P and �̂

?

1 is continuously di¤erentiable in time regardless of
the value of �. �
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Proposition 4.1 together with Proposition 4.7 in CK05 and Itô�s formula
yield an explicit expression for the pure hedge �

�t := cSVt =cSt =
f2(T � t; Y 2t ; St)cY

2S
t + f3(T � t; Y 2t ; St)cSt
cSt

= f3(T � t; Y 2t ; St) + ��f2(T � t; Y 2t ; St)=St; (4.1)

where fi(x1; x2; : : : ; xn) := @f=@xi.

Remark 4.2. It is possible to provide a more explicit expressions for V
and � subject to technical conditions whose veri�cation we defer to future
research. (Y 2; lnS) form a time-inhomogeneous conservative regular a¢ ne
process under Q?, and one can use the characterization of Filipovíc (2005)
to evaluate their joint characteristic function. For Re z = 0 we have

EQ
?
�
ez lnST jFt

�
= ev0(t;z)+v1(t;z)Y

2
t +z lnSt ;

where both vi are functions of t and z solving

� @

@t
v0(t; z) = �0v1(t; z)

� @

@t
v1(t; z) =

1

2

�
z2 � z

�
+ v1(t; z)

�
�1 � �� (�� z) + �2

�
1� �2

�
{1(t)

�
+
1

2
�2v21(t; z);

v0(T; z) = v1(T; z) = 0:

These Riccati equations are time-dependent and can only be solved numer-
ically. If the Q?-characteristic function possesses analytic extension for
Re z > 0 and subject to further technicalities one obtains

Vt = EQ
?

�Z �+i1

��i1
�(z)ez lnST dz

����Ft� = Z �+i1

��i1
�(z)ev0(t;z)+v1(t;z)Y

2
t +z lnStdz;

(4.2)
where � 2 R is a suitably chosen constant and �(z) are the Fourier coe¢ -
cients of the contingent claim (cf. µCerný 2006, Hubalek et al. 2006),

H =

Z �+i1

��i1
�(z)ez lnST dz:

For example, a European put option with strike ek yields �(z) = ek(1�z)

2�iz(z�1) ; �

< 0.
Subject to additional conditions one can di¤erentiate under the integral

sign in (4.2) and from (4.1) obtain

�t = S�1t

Z �+i1

��i1
(z + ��v1(t; z))�(z)e

v0(t;z)+v1(t;z)Y 2t +z lnStdz: (4.3)
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5. Hedging error

Proposition 4.1 and the Itô formula yield


t := cVt �
�
cSVt

�2
cSt

=
�
f2(T � t; Y 2t ; St)

�2
�2Y 2t

�
1� �2

�
:

By Theorem 3.22 in CK05 the minimal squared hedging error with initial
capital V0 satis�es

"20 := E
�
(V0 + '(V0;H) � ST �H)2

�
= E ((L
) � IT )

= �2
�
1� �2

�
E

�Z T

0
e{0(t)+{1(t)Y

2
t Y 2t

�
f2(T � t; Y 2t ; St)

�2
dt

�
:

Remark 5.1. Subject to technical conditions one can use the Fourier expres-
sion for the mean value process (4.2) together with the �extended� Fourier
transform of Du¢ e et al. (2000) to write

"20 = E ((L
) � IT ) = E

�Z T

0

tLtdt

�
=

�
1� �2

�
�2
Z T

0
dte{0(t)

Z
G2

2Y
i=1

�
dziv1(t; zi)�(zi)e

u0(t;zi)
�

�� (t;{1(t) + v1(t; z1) + v1(t; z2); z1 + z2) (5.1)

where � is computed in Appendix B. We leave the detailed analysis of the
technical conditions required to make (5.1) rigorous to future research.

We conclude this section by linking the hedging error "20 to option prices
and performance measures.

De�nition 5.2. We call

SRS;H := sup

(
E(# � ST + � (C0 �H))p
Var(# � ST + � (C0 �H))

: # 2 �; � 2 R
)

(5.2)

the maximal unconditional Sharpe ratio, where we set 00 := 0.

Lemma 5.3. The maximal unconditional Sharpe ratio is given by

SR2S;H =
1

L0
� 1 + (C0 � V0)

2

�20
; (5.3)

with convention 0=0 = 0.

Proof. De�ne X := # � ST + � (C0 �H). Easily,

SR2(X) :=
(E(X))2

Var(X)
=

1

inf�2RfE ((1� �X)2)g
�1 = sup

�2R

�
1

E ((1� �X)2) � 1
�
:
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Then

SR2S;H = sup
#2�;�2R

fSR2(X)g = sup
�2R;#2�;�2R

�
1

E ((1� �X)2) � 1
�

=
1

inf#2�;�2RfE ((1�X)2)g
� 1

=
1

inf�2R
�
inf#2�fE ((1�X)2)g

	 � 1
=

1

inf�2R
�
L0(1� �(C0 � V0))2 + �2�20

	 � 1;
where the last equality follows from CK05 Theorem 4.12 with contingent
claim 1 � �(H � C0). By CK05 Theorem 4.10 with contingent claim 1 �
�(H�C0) the optimal investment cum hedging strategy is given by 'S+'H
(see equations 1.4 and 1.5). Straightforward calculations yield the optimal
number of shares and the maximal Sharpe ratio,

� =
C0 � V0
�20

1

1 + SR2S;H
;

SR2S;H = 1=L0 � 1 + (C0 � V0)2=�20:

�

6. Appendix A

Lemma 6.1. Consider the following system of ordinary di¤erential equa-
tions for � � 0; A;B;C; F;w0; y0 2 C

w0(�) = A+Bw(�) + Cw2(�); (6.1)

w(0) = w0; (6.2)

y0(�) = Fw(�); (6.3)

y(0) = y0: (6.4)

De�ne

ŵ0 := B=2 + Cw0;

D :=
p
B2 � 4AC;

by taking the principal value of the square root with branch cut along the
negative real line. Let

�? := inff� � 0 : w(�) unbounded on [0; �)g:

Then w; y given below represent a solution of (6.1)-(6.4) on [0; �?). Where
w; y might be multivalued we take the unique version continuous in � on
[0; �?) and satisfying the initial conditions.
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(1) For C = 0; D 6= 0

w = w0 +

�
A

B
+ w0

��
eB� � 1

�
;

y = y0 + F

�
w0� +

�
A

B
+ w0

��
eB� � 1
B

� �
��

;

�? = +1:

(2) For C = 0; D = 0

w = w0 +A�;

y = y0 + F

�
w0� +

A

2
�2
�
;

�? = +1:

(3) For C 6= 0; D = 0

w = C�1
�

ŵ0
1� ŵ0�

� B

2

�
;

y = y0 � F
�
1

C
ln (1� ŵ0�) +

B�

2C

�
;

�? = +1 for Im (ŵ0) 6= 0; or ŵ0 � 0;
�? = 1=ŵ0 for ŵ0 > 0:

(4) For C 6= 0; D 6= 0

w = � B

2C
+

D

2C

(ŵ0 +D=2) e
�D�=2 + (ŵ0 �D=2) eD�=2

(ŵ0 +D=2) e�D�=2 � (ŵ0 �D=2) eD�=2
;

y = y0 + F

 
� B

2C
� � 1

C
ln

 
(ŵ0 +D=2) e

�D�=2 � (ŵ0 �D=2) eD�=2
D

!!
;

�? = inff� � 0 : (ŵ0 +D=2) e�D�=2 � (ŵ0 �D=2) eD�=2 = 0g:

Furthermore, for B;C;w0 and � �xed the functions

f(A) := D
(ŵ0 +D=2) e

�D�=2 + (ŵ0 �D=2) eD�=2

(ŵ0 +D=2) e�D�=2 � (ŵ0 �D=2) eD�=2
;

g(A) :=
(ŵ0 +D=2) e

�D�=2 � (ŵ0 �D=2) eD�=2
D

;

are complex di¤erentiable on the set fA 2 C : � < �?g.

Proof. Straightforward calculations show that (1)-(4) solve the Riccati equa-
tions (6.1)-(6.4). The complex function f(A) is di¤erentiable everywhere
apart possibly from the branch cut on the set

D2 = B2 � 4AC 2 R�:



20 ALE� µCERNÝ AND JAN KALLSEN

However, since

h(D) := D
(ŵ0 +D=2) e

�D�=2 + (ŵ0 �D=2) eD�=2

(ŵ0 +D=2) e�D�=2 � (ŵ0 �D=2) eD�=2
= h(�D)

it follows that f(A) is continuous and di¤erentiable also at D2 2 R�, and
in particular at D = 0 where it has a removable singularity. The same
argument applies to g(A): �

Lemma 6.2. Consider the setup of Lemma 6.1 with A;B;C 2 R; w0 = 0:
For B;C;w0 �xed de�ne the function ~T : R! R+[f1g by setting ~T (A) :=
�?. Then

(1) For C = 0 we have ~T (A) = +1;
(2) For C 6= 0 ~T is continuous on R, that is there is A? 2 R such that

~T (A) < 1 for AC > A?C;

lim
AC&A?C

~T (A) = 1;

~T (A) = 1 for AC � A?C:

Speci�cally,
(a) For B � 0 we have A?C = B2=4 and

~T (A) =
2 arctan

�p
4AC �B2=B

�
p
4AC �B2

for AC > B2=4;

(b) For B > 0 we have A? = 0 and

~T (A) =

8>><>>:
1p

B2�4AC ln
�
B+

p
B2�4AC

B�
p
B2�4AC

�
for B2=4 > AC > 0

2=B for B2=4 = AC
2 arctan(

p
4AC�B2=B)p

4AC�B2 for AC > B2=4

.

(3) ~T is di¤erentiable on R in all points where it is �nite valued and

C ~T 0(A) < 0 for ~T (A) <1:

Proof. Items (1) and (2) follow from Lemma 6.1 by direct calculation. An-
other calculation shows that the real function ~T is continuous at A = B2

4C and
di¤erentiable there when �nite-valued. We now examine the monotonicity
of ~T . For B > 0 and x := D=B 2 (0; 1] we have

C ~T 0(A) = � 2C
2

B2D

�
x�2 ln

1� x
1 + x

+
2

x(1� x2)

�
= � 2C

2

B2D
x�2

Z x

0

�
2z

1� z2

�2
dz < 0,

since for g(z) := ln 1�z1+z +
2z
1�z2 we have g(0) = 0 and g

0(z) =
�

2z
1�z2

�2
.
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For B2 � 4AC < 0; B 6= 0 we obtain for x := 1
B

p
4AC �B2

C ~T 0(A) =
2C2

B2
p
4AC �B2

�
�2 arctanx

x2
+

2

x (1 + x2)

�
= � 2C2

(4AC �B2)3=2

Z x

0

�
2z

1 + z2

�2
dz < 0;

since for g(z) := �2 arctanx+ 2x
1+x2

we have g(0) = 0 and g0(z) =
�

2z
1+z2

�2
.
�

7. Appendix B

De�ne z = (z1; z2); then DFS03 (see Theorem 3.2 in Kallsen (2006) for
details) yields that (Y 2; lnS) is conservative regular a¢ ne and therefore for
Re z1 � 0;Re z2 = 0 we have

 (z; t) = E
�
ez1Y

2
t +z2 lnSt

�
= ev0(t;z)+v1(t;z)Y

2
0 +v2(t;z) lnS0 ;

where v0; v1; v2 solve the following system of Riccati equations,

@v2(t; z)

@t
= 0; (7.1)

@v0(t; z)

@t
= �0v1(t; z); (7.2)

@v1(t; z)

@t
=

1

2
z22 + z2

�
�� 1

2

�
+ (��z2 + �1) v1(t; z) +

1

2
�2v21(t; z);(7.3)

v0(0; z) = 0; v1(0; z) = z1; v2(0; z) = z2: (7.4)

Set A = 1
2z
2
2 + z2

�
�� 1

2

�
, B = ��z2+ �1; C =

1
2�

2; F = �0 and take w; y as
in Lemma 6.1 with w0 = z1; y0 = 0. Then the system (7.1-7.4) is solved by
v0 = y; v1 = w; v2 = z2.
Under technical conditions (cf. Du¢ e et al. 2000) one has

�(t; z) := E
�
Y 2t e

z1Y 2t +z2 lnSt
�
= E

�
@

@z1
ez1Y

2
t +z2 lnSt

�
=

@

@z1
E
�
ez1Y

2
t +z2 lnSt

�
=
@ (t; z)

@z1

= ev0(t;z)+v1(t;z)Y
2
0 +z2 lnS0

�
@

@z1
v0(t; z) + Y

2
0

@

@z1
v1(t; z)

�
:
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