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Abstract

Risk management approaches that do not incorporate randomly changing volatility
tend to under- or overestimate the risk depending on current market conditions. We
show how some popular stochastic volatility models in combination with the hyper-
bolic model introduced in Eberlein and Keller (1995) can be applied quite easily for
risk management purposes. Moreover, we compare their relative performance on the
basis of German stock index data.
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1 Introduction

Risk in the sense of the possibility of losses is an inherent ingredient of financial markets.
To measure and monitor risk as accurately as possible has become a competitive factor for
financial institutions. How can we quantify risk? Theoretically, there are a number of pos-
sibilities, such as standard deviation, quantiles, interquartile range, lower partial moments,
or shortfall measuresvalue-at-riskor VaR a quantile measure, has become the preferred
tool in the financial industry. Although it is a rather natural concept from a probabilistic
point of view, it became popular only as a consequence of the proposals of the Basel Com-
mittee on Banking Supervision for the internal model approach to manage market risk. The
VaR value of a portfolio depends on the underlying model which is used. Three basic ap-
proaches are currently applied in practice to measure market risk: historical simulation, the
variance-covariance approach and Monte Carlo simulation (cf. Jorion (1997)). Note that the
variance-covariance approach depends on the assumption of normality of returns.

The purpose of the present paper is to improve on these approaches. The method we
investigate is based on two pillars: thgperbolic modebnd stochastic volatility Hyper-
bolic distributions were introduced to finance in Eberlein and Keller (1995). These and the
wider class of generalized hyperbolic distributions constitute a very flexible family of dis-
tributions which is tailor-made for fitting empirical return data. In the same paper a new
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dynamic model, the hyperbolic model, was introduced. It is defined as the (ordinary) expo-
nential of theLévy processvhich is generated by any hyperbolic distribution. This model

is not of diffusion type because it is driven by a pure-jump Lévy process. Due to its greater
flexibility it improves considerably on the classical geometric Brownian motion. In a series
of papers (Eberlein et al. (1998), Keller (1997), Barndorff-Nielsen (1998), Eberlein (2001),
Eberlein and Prause (2002)) the initial model was pushed further. It can be handled now
on the level of generalized hyperbolic Lévy motions. We note that many of the standard
distributions used in statistics, such as Student t, Cauchy, variance gamma, normal inverse
Gaussian, and the normal distribution are either special or limiting cases of the underlying
class of distributions (cf. Eberlein and von Hammerstein (2002)).

The second pillar is to model volatility as a stochastic process. Volatility can be consid-
ered as the temperature of the market and as such it can change rapidly. Risk management
approaches which do not take these fluctuations into account tend to under- or overestimate
risk depending on the current market situation. Because of the strong empirical evidence for
stochastic volatility in financial time series, an impressive number of different approaches
has been studied in the literature. Let us just mention the variety of ARCH and GARCH
models introduced by Engle (1982) and Bollerslev (1986), the diffusion model of Hull and
White (1987), as well as the models investigated in Chesney and Scott (1989), Stein and
Stein (1991), Heston (1993), and Barndorff-Nielsen and Shephard (2001). The key idea
using stochastic volatility in risk management is to devolatilize the observed return series
and to revolatilize with an appropriate forecast value. This idea has been applied in several
papers (Hull and White (1998), Barone-Adesi et al. (1998, 1999), McNeil and Frey (2000),
and, more recently, Venter and de Jongh (2002), Guermat and Harris (2002)).

Since we have always a portfolio view — any portfolio as complex as it may be is consid-
ered as a security of its own — we study here a data set consisting of the daily closing DAX
values from 1992 to 1999. The DAX represents a portfolio of 30 German blue chip stocks
and reflects the behaviour of the German stock market. One of the reasons to consider this
time series is the availability of the volatility index VDAX, which will be considered as one
of the various models for volatility.

The paper is organized as follows: We start with an exploratory view on stock index data
in Section 2. This qualitative examination serves as a motivation for the stochastic volatility
models that are introduced in the subsequent section. Afterwards, we discuss how to es-
timate model parameters and in particular current volatility. Ideally, a stochastic volatility
model can be used to transform stock returns into independent, identically distributed (i.i.d.)
random variablesdevolatilizationor standardizatioijh This aspect is tested empirically in
Section 5. Subsequently, we investigate the performance of stochastic volatility models as
far as risk management is concerned. Note that for the sake of simplicity we restrict our-
selves to hyperbolic distributions. With some additional computational effort, generalized
hyperbolic distributions (cf. Eberlein and Prause (2002)) could be used along the same lines.
The results we obtained using the smaller class are already quite convincing. The statistics
and tests considered in Sections 5 and 6 include the autocorrelation of squared transformed



returns, the BDS test on independence, Kupiec’s test on the fraction of excessive losses, and
the Kuiper statistic to assess the accuracy of the predicted return distribution as a whole.
Further procedures that account for both the serial independence and the shape of the distri-
bution have been suggested e.g. by Christoffersen (1998) and Berkowitz (2001). Section 7
concludes.

2 Exploratory analysis of stochastic volatility

It has often been reported that stock return volatility changes randomly over time. We want
to get a qualitative idea of these fluctuations before turning to particular models in the next
section. To this end, we take a look at daily stock index data, namedheJones Indus-

trial Averagefrom May 26, 1896 to January 4, 2001. B we denote the logarithm of the
index and byA X, := X, — X;_; the successive one-day returns. As a general starting point,
we assume that these are of the form

AXt = O'tALt,

where the variabler, > 0 stands for the randomly changing volatility, at@ L;);—1 >
denotes a sequence of identically distributed random variablesWaitfAL;) = 1 such
that AL, is independent of AL)s—1,.+—1,(0s)s=1,.+ In order to assess the unobservable
volatility fluctuations it is convenient to consider the logarithmic squared daily returns

Dy :=log(AX;)? =loga} + log(AL;)?.

Note that(log(AL;)?);=1 2, is a series of i.i.d. random variables. Hence, the time series
(Dy);=12... can be interpreted as a sigrilg 07),—1 o, . perturbed by an additive white noise
with meanE (log(AL;)?). Since we do not assume a particular model at this point, it makes
sense to estimate the unobservable quahiity? by applying a non-parametric smoother
777777777 28565 1S plotted for daily Dow Jones

data. The wavy white curve corresponds to a cubic smoothing spline where the smoothing
parameter is chosen by cross validation (cf. Hardle (1991), Chapters 3 and 5). Note that
this estimate ofog o7 is biased byE(log(AL)?), which equals e.g-1.27 in the case of
standard normally distributef Z,. The fluctuations of the white curve reflect the variability
of volatility over time. Large absolute price changes correspond to large values dhe
striped pattern for large negative valuedafin Figure 1 is caused by the fact that the index
moves on a discrete grid. Since it corresponds to tiny price changes, it is of no importance
for our purposes.

Let us take a closer look at the residuals by comparing them to a simulated sample
a standard normal distribution. One may observe two differences to Figure 2: Firstly, large
positive values ofog(AL;)? — E(log(AL;)?) occur much more frequently for real data than
in the normal sample. This corresponds to the well-known fact that stock return data exhibits
heavier tails than the normal distribution. Secondly, one can find some remaining clusters of
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Figure 1: Logarithmic squared daily returns and estimated logarithmic squared volatility

1900 1920 1940 1960 1980 2000

-10

0 5000 10000 15000 20000 25000

Figure 2: Logarithmic squared daily returns minus estimated logarithmic squared volatility
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Figure 3: Simulated residuals in the case of normal daily returns



extremely high values in Figure 2, which are absent in the simulated sample. They indicate
that there may be a very short-lived stochastic volatility component in the data in addition
to the comparatively slowly varying component that is detected by the smoothing spline.

3 Stochastic volatility models and risk management

The general model

We consider a univariatgrice processS = (.S;):>o, typically a stock price or stock index.
For simplicity, we suppose that this process is corrected for dividend payments etc., if there
are any. The process = (X;);>¢ is defined by

Sy = Sy exp(Xy). (3.1)

and is usually termed threturn proces®f S. We assume that the incrementsXofi.e. the
daily returnsAX; := X; — X;_4, are of the form

AXt = O'tALt (32)

where(AL,),—; 2. denotes a sequence of i.i.d. random variables drawn from an infinitely
divisible distribution andr denotes a randomly changing predictable process, which we call
volatility process

This general set-up may be interpreted as the restriction of the continuous-time model

dXt = O-tsty (33)

to discrete time, wheré denotes a process with stationary, independent increments starting
at 0 (aLévy processand the volatility process stays piecewise constant between integer
time points. Note that although we use a discrete-time framework, the question continuous-
time versus discrete-time is not an issue in this paper.

By volatility one usually refers to the standard deviation of the return series, or more
precisely, to the standard deviation given all past observations. We do not necessarily take
this point of view here. We call the processabove volatility, which may or may not be
directly observable from past return data. If one wants to refer to some standard deviation,
one should at least require théir(AL,) = 1. However, the statistical procedures below
get more transparent if we do not insist on this normalization. In order to obtain properly
standardized versions efand L, one simply has to multiply (and divideL) by the constant

v/ Var(ALy).

In detail, we discuss the following set-ups:

Modelling the stochastic volatility o

1. As a benchmark we consider deterministionstant volatilityo. This case is studied
extensively in the empirical and theoretical literature. One of our goals is to assess how
much accuracy is gained by turning to more complex models.
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2. The other extreme is to allow a basicadgbitrary stochastic volatility process.
However, in order for our estimation procedures to work, we have to assumec¢hahges
slowly over time as it is indicated by Figure 1. More precisely, we suppose that the persis-
tence of volatility changes is somewhat longer than the sampling interval of price data (i.e.
a day).

3. A very popular stochastic volatility model is tli@ARCH(1,1)-M proceséct. e.g.
Bollerslev et al. (1992), Shephard (1996), Gouriéroux (1997), Kallsen and Taqqu (1998),
Shiryaev (1999), Section 11.3). Here, we consider the particular case

ol =c+ao’ (AL, —m)* +bo? |, (3.4)

with parameterg; > 0,¢ > 0,a > 0,b > 0, m := E(AL;). The GARCH(1,1)-M model
has been applied extensively to financial time series. From a theoretical viewpoint, it means
that large volatility iscaused bypast returns of large absolute value.

4. Diffusion-type volatility models have been studied thoroughly in connection with
option pricing and they attract increasing attention in the empirical literature (cf. e.g. Hull
and White (1987), Barndorff-Nielsen and Shephard (1998)). In this paper we consider the
particular case thdt; := log o follows ashifted Ornstein-Uhlenbeck process

dV, = —a(V; — V)dt + bdW,,
whereVj is drawn from the stationary distributiob(V/, %). Here,a > 0, b,V are param-
eters andl’ denotes a standard Wiener process that is independent of the Lévy pfocess
Viewed as a discrete-time procesk;);— 1 2. iS a stationary AR(1)-time series with mean
V.
Vi=pVig+ (1 —@)V+7e, €1,60,...~ N(0,1)iid, (3.5)

where the parameters are givendy e=%, v = b4/ % This follows from a comparison

of the covariance function of the two Gaussian processes (cf. Shiryaev (1999), 11.2b and
[11.3a). From a theoretical point of view, diffusion-type volatilities differ substantially from
ARCH-type models because volatility is driven bgeparaterandom process’.

5. In the previous section we observed that, in addition to a slowly varying stochastic
volatility, there seems to exist a very short-lived volatility component which is reflected
by clusters of excessively large positive residuals in Figure 2. Such clusters are typical of
ARCH(1)-models. In order to build a stochastic volatility model which incorporates both
the “slow” component visible in Figure 1 as well as the rapidly decaying clusters in Figure
2, we add an ARCH(1)-term to the above AR(1)-model. More specifically, we assume that

logo? = V; +log o7,
whereV is a AR(1)-time series as in Equation (3.5) andneets
2

ol =c+act (ALi_y —m)

with parameters, ¢, a, m := E(AL;). As above, we assume tHatand L are independent.
Note thatc could always be normalized to 1 by changiigs, accordingly. Sincen is
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a parameter of the distribution df; and o, affects only the very beginning of the time
series, the additional ARCH(1)-component yields essentially only one additional degree of
freedom. The degeneracy causedcldyas no effect on our risk management approach, so
we stick to the above notation. Of course, we could consider even more complex stochastic
volatility models. However, given the limitation of data we feel that we have reached a limit
at this point.

6. In an idealized Black-Scholes world, the volatility of the underlying coincides with
implied volatilities from options data. This relation ceases to hold in real markets where
the stock price is not given by a geometric Brownian motion. Implied volatility typically
changes across strike prices (smile effect) and time to maturity. Nevertheless, we may sus-
pect that there exists a close relationship between the current stock price valaiititihe
sense of Equation (3.2) and a reasonably standardized implied volatility (cf. Christensen and
Prabhala (1998)). Such a standardized volatility is available for German stock index data:
the volatility index VDAX. It is an average implied volatility drawn from the most liquid
segment of strikes with a time to maturity of 45 days. The constant 45 day time to maturity
is obtained via interpolation of the values observed at the market which are closest in time
to maturity. For a more detailed description of the VDAX see Deutsche Bérse (2002).

Consequently, we assume as a sixth model that the volatility given by the current
level of the VDAX. Note that we consider stock index data in this paper. If one is inter-
ested in particular stocks, one could use the corresponding stock option implied volatilities
instead.

The driving Lévy processLL

In principle, the stochastic volatility models above can be combined with any reasonable
process with stationary, independent increments. In this paper, we focus on two particular
cases. As a benchmark process we condtgdewnian motionor more precisely, a process
of the form

L =mt +vBy,

wherem € R, v € R, andB denotes standard Brownian motion. By multiplyimgindm
appropriately, one can always choase- 1. However, it will turn out to be convenient to
work with a generab.

It is well-known that empirical distributions from stock return data deviate substantially
from the normal distribution. Generalized hyperbolic distributions (cf. Eberlein (2001),
Eberlein and Prause (2002)) or certain subclasses such as the hyperbolic (cf. Eberlein and
Keller (1995), Eberlein et al. (1998)) or the normal inverse Gaussian (cf. Barndorff-Nielsen
(1998)) turned out to be tailor-made for financial time series. In this paper, we focus on the
class ofhyperbolic distributionsvhich is flexible enough to fit empirical data well. More
specifically, we assume thatis a Lévy process such that the density of the lavl pfs

\/052—52 _ 52 — )2 _
fapsp(@) = e~V 02+ (a—p)2+B(x—p)
(a5 (2) 200 K4 (8 /f?—ﬁ?)
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Here, K denotes the modified Bessel function of the third kind with index 1 (cf. Abramowitz
and Stegun (1968)) and> 0, § € (—«, «), § > 0, 1 € R the parameters. As in the Brow-
nian motion case we allow some degeneracy due to the fact that the vaviariée) is not
necessarily normalized to 1. Note that the normal distribulidp + 302, 02) occurs as a
limiting case if we lety, § — oo andd/a — o2 (cf. Eberlein and von Hammerstein (2002)).

Risk management

In risk management one is primarily interested in the distribution of future prices based
on past observations. Due to the predominant use of VaR-based regulations, quantiles cor-
responding to one- or ten-day horizons are of particular interest. To obtain a reasonable
forecast for the return distribution, we proceed as follows.

The series of pricesS;),—o1,2... iS transformed into a series dhily returnsby com-
puting AX; := log S; — log S;_1. Suppose that we are currently at timeln a first step,
we have to estimate the volatility, for s = 1,...,¢t. While this is trivial if we believe in
implied volatility and if the latter is available, appropriate estimation procedures have to be
performed in particular in GARCH- and exponential AR-type stochastic volatility models.
. for the estimated

-----

,,,,,

= &Xs g — 1....,¢ serves as an estimate for

,,,,, os !

..........

-----

If @ denotes the distribution oA, according to the estimated parameters from the
previous step and &, is the predicted volatility for tomorrow, thep serves as a predicted
distribution ofA;f—jl, i.e. A — Q(o,114) is the forecast of the law of tomorrow’s return
AXii1.
rather than those of the hidden driving Lévy procedd.),_;
resulting bias would require further investigation. Moreover, we base the estimatiqn of
above only on the returns up to timalthough the data is available up to timeHowever,
we are not primarily trying to obtain, or AL, as precisely as possible. For prediction
purposes it is more important that the devolatilized returns are constructed in the same way
i.i.d. sequence.

In general, even the quite general model (3.2) provides just an approximation to real
data. Not only the current volatility but also the shape of the return distribution will change
as observation time increases. Therefore, we prefer to base the estimation of the hyperbolic
parameters typically on the previous 500 data points, which corresponds to approximately
two years.



4 Estimation of the volatility o

In this section, we show how to estimate the unobservable volatilityrhe subsections
correspond to the enumeration of stochastic volatility models above.

Constant volatility

Since a deterministic, constant scale parameter can always be incorporated in the Lévy pro-
cess, we need not perform any estimation and devolatilization at this stage. This shows why
it is convenient not to insist on a normalized variance for the Lévy pratess

Non-parametric volatility

Let us assume that the volatility process in Equation (3.2) is independdnt OFhis as-
sumption can be relaxed.) Passing to the logarithm simplyfies the estimation problem:

log(AX,)? = logo? + log(AL,)>.

As in Section 2 we interpret this as a sighal o7 and a noisélog(AL;)?);=1 »,.. Since our
problem is to estimate the hidden volatility sighal o7 from observations that are perturbed
by an additive white noiseg(AL;)?, it suggests itself to apply non-parametric smoothing
(cf. Hardle (1991)). For our study we useeving averagg.e. we let

~ 1
log 6?7 := Z Zlog(AXt_i)Q,

wherek denotes an appropriately chosen smoothing parameter. For the reasons explained
in the previous subsection, we work with a backward window even though a more balanced
window would improve the estimation. The smoothing paramktexr chosen by cross-
validation, i.e. one minimizes

1 T
Z log(AX,)? — (loga?)™")?,
=

whereT is the total number of data points afidg 7))~ := 1 S°F  log(AX,_;)? denotes
the moving average based on the sample with missing observation at.tideplied to
German stock index data, the optimal window length (within thg§et0, 15, ..., 75, 80})
turns out to be 40, which corresponds to approximately 2 trading months.

Note that the logarithmic squared volatility estimaigc? is biased by the expectation
of log(AL,;)*. E.g. we haveF (log(AL;)?) ~ —1.27 in the case of standard Brownian mo-
tion; for other Lévy processes we get different values. But since any multiplicative constant
can be put into the Lévy process, there is no need to compensate for this bias.

Finally, we address the question how to construct a one-period predictgy, forSince
we have not assumed any particular modeldoit seems most reasonable to choose the
previous valuer;.



GARCH(1,1)-M volatility

Parameter estimation in GARCH-type models is commonly performed by maximum likeli-
hood (ML) methods. Suppose thét, ) is the density ofA L,, whered denotes a possibly
multivariate unknown parameter. Similarly, let — I;(x, (xs)s=1. +-1,01,¢,a,b,m, V)

be the logarithm of the density & X; given (AX,...,AX; 1) = (z1,...,7,1) if the
parameters of the GARCH(1,1)-M model and of the Lévy processarea, b, m, . Then

the log-likelihood function given the data\ X, ..., AX7) = (z1,...,2zr) can be written

as

-----

Note thato, and A X, can be computed recursively froML,, ..., AL, if the parameters
o1,c,a,b,m are known. ConverselyL; ando; are deterministic functions ak X1, .. .,

—log 0y, Whereo, is determined recursively from Equations (3.4) and (3.2). Therefore, the
log-likelihood function given the data equals

T
Tt
(o1,¢,a,b,m,0) — tz;logf(;t,19> — log oy.

In our study we work with the S-PLUS software package S+GARCH, which is based on
the normal distribution. It estimates the unknown parameters using the BHHH algorithm (cf.
Martin et al. (1996)) and it also returns the corresponding values for the unobserved volatility
0. If we assume non-normal incrememftd.;, then this procedure does not correspond to
a ML estimator. Nevertheless, this quasi-likelihood approach still provides a consistent
estimator foroy, ¢, a,b, m as is shown in Gouriéroux (1997), Chapter 4. For this reason
and since GARCH routines for the normal distribution are widely implemented, we use the
above package also in the hyperbolic case.

To be more precise, we estimate the current volatlityy applying the above procedure
to the previous 500 data poinfsX;_ 499, ..., AX;. This ensures that the algorithm leading
to the estimated valug, is the same for any, relies on fairly actual data, but does not look
furtively into the future.

For risk management, we also need a prediction of the volatility for the subsequent
day given the previous data. Via Equations (3.2) and (3.4), such a prediction is immediately
obtained fromA X, and the estimated values fer, ¢, a, b, m.

Volatility of exponential AR(1)-type

Following Harvey et al. (1994), we apply a quasi-maximum likelihood method to estimate
the parameters. The asymptotic and finite-sample properties of the corresponding estimator
are studied in Ruiz (1994). For an overview of many alternative approaches to parameter
estimation in this stochastic volatility model cf. Andersen et al. (1999).
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Denote byy; — 1;(yi, (Ys)s=1...:-1, V, ¥, 7, ¥) the logarithm of the density dbg (A X;)?
given the datdlog(AX;)?, ... log(AX; 1)?) = (y1,...,y:.1) if the underlying unknown
parameters ar, ¢, v for the AR(1) model and (possibly multivariate) for the Lévy pro-
cessL. Then the log-likelihood function given the datlag(AX,)?, ..., log(AX7)?) =
(y1,-..,yr) can be written as

SO ’7; th Y, ys s=1,..., t—lav7 %%19)

In general itis hard to determidgy,, (ys)s=1..+1, V., ¢,7, 9) explicitly. A convenient way

out has been proposed in Nelson (1988) and Harvey et al. (1994): Let us (wrongly) assume
thatlog(AL;)? is normally distributed with mean 0 and variartceNote that by multiply-

ing L with an appropriate constant, we may suppose Habg(AL;)?) = 0. Therefore,

the simplifying assumption concerns only the shape of the distribution. $inge; - .

is a Gaussian time series which is independent of the Gaussian GegieSL;)?)i=12..,

we have that the random variableg(AX)?, ..., log(AX;)? are jointly normal as well.

This implies that the conditional law dfg(A X;)? given(log(AX)?, ..., log(AX; 1)?) =

(y1,- .-, y—1) is normal. Sincéog(AX;)? =V, + log(AL;)?, we have that

E(Vwm?)(IOg(AXt)2 (log(AX1)?,..., 1og(AX, 1)) = (1, -, 1)) = ‘7tlt71,
Var(i%vﬁ) (log(AXt)2 l..) = Vtjt—1 + 0,

Wheref/m_l = Ew .0 Vil ...) denotes the Kalman-Bucy filter amg; , := Vary . 4
(V4] ...) its prediction error variance. Based on the normal assumption, they meet the recur-
sive equations
‘Z—Hhﬁ = 90‘7t|t—1 +(1-p)V+ QSOUL(% - ‘71&|t—1>
+ Vgje—1
‘P%z:?\t—l

2 2
Vet = P V-1 + 7" — 0+,
te—1

with ‘71|0 = V anduvyy = 1112 (cf. Shiryaev (1995), Theorem VI.7.1 or Harvey (1989),
Section 3.2). In particular, the prediction error variance does not depend on the observations
(cf. Shiryaev (1995), Corollary VI.7.1).

Together, we have that the log-likelihood given the datg(A X )?, .. ., log(AXr)?) =

(y1,--.,yr) equals

i 1 (Y — ‘Z|t—l)2
s — = 1 9 3 A AR U
(V,p,7,0) 5 E (og( T(Vgje—1 +0)) + a8 )

t=1

..........

the maximum of this funct|on as a quasi-maximum likelihood estlmaton,op, v, 6. For
a more thorough account of Kalman filtering and parameter estimation cf. Harvey (1989),
Shiryaev (1995).
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V © y 0
True parametef -10.42| 0.986| 0.120| 4.88
Median -10.41| 0.980| 0.130| 4.86
First quartile | -10.61| 0.969| 0.104| 4.70
Third quartile | -10.23| 0.987| 0.159| 5.02

Table 1: Results from 1000 simulations with normally distribuited AL,)?

v © y 0
True parametef -10.42| 0.986| 0.120| 4.93
Median -10.40| 0.980| 0.130| 4.87
First quartile | -10.58| 0.967| 0.102| 4.61
Third quartile | -10.23| 0.987| 0.164| 5.17

Table 2: Results from 1000 simulations with normally distributeb;

If we believe in an AR(1)-stochastic volatility, we need a lot of data for parameter esti-
mation because the hidden AR(1) process is perturbed by heavy white noise which carries
no information (cf. Figure 1). In our study we use a 3.5 year interval prior to the period
that is considered for backtesting. More precisely, we base the estimation on German stock
index (DAX) data in the period from July 1, 1988 to December 30, 1991 (868 trading days).
In contrast to the GARCH case before, the estimated parameters are kept fixed.

For risk management, we need an estimate of the current volatjlity ez": for the
backtesting period. This is obtained by applying a Kalman filter to the corresponding data,
i.e. we uses " with

Vo = B(Vi|(log(AX))?,. .. log(AX,)?) = (51, .. m1))
- Utfe—1 o
= Viper + ——— (v — Vi
tjt—1 + Va1 +9(yt He—1)

(cf. Harvey (1989), Section 3.2). We also need one-period predictions; for= e3Vi+1

given the data up té. These are provided bg/%‘/twt, whereXZH‘t denotes once more the
Kalman filter based on the normal assumption with parameters estimated from the initial 3.5
year interval.

To assess the reliability of the estimation, we run two simulation studies. Firstly, we
consider normally distributethg(AL;)?, in which case the above procedure corresponds
to a real maximum likelihood estimation. In a second study, we assume\ihais nor-
mally distributed with mean 0, which makes more sense and corresponds to model (3.2) for
Brownian motionL. The parameters for the simulation are taken from an estimation on the
above-mentioned 3.5-year interval of DAX data (868 observations). The results from 1000
simulations can be found in Tables 1 and 2.
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Composite volatility

Statistically well-founded estimation in this complex model is beyond the scope of this pa-
per. Therefore we suggest the following simple procedure: Guided by Figures 1 and 2 we
expect the AR(1) term to be the dominating component. In a first step, we determine its pa-
rameters/, ¢, v, 6 as if no ARCH(1) component were present (cf. the previous subsection).
We estimate the volatilitiesz"* as before by Kalman filtering and compute the correspond-
ing partially devolatilized returnA L, := g)‘gj . Secondly, we estimate the ARCH(1) param-

eters as explained above, but now from the time sénes ), »__ instead ofl A X)i—

and under the restrictiolh= 0 in Equation (3.4). Both the parameters of the AR(1) and the

ARCH(1) component are estimated from a 3.5 year interval prlor to the backtesting period.
Given the parameters, we obtain estimated volatilitiés andat and corresponding de-

volatilized residuals\ L, := AL — IAVX’ for the backtesting period. For risk management

ot e2 o'f

we also need a prediction of the volatility, ; = e%VtH’&tH based on the data up to time
It is obtained by multiplying the one-step predictions from the AR(1) part and the ARCH(1)
component, respectively.

goee

Implied volatility

If we assume that stock volatility coincides with the implied volatility index VDAX, we
clearly choose the VDAX itself as estimatér As for slowly fluctuating volatility, we do
not claim any particular model for the dynamicsoof Therefore, we také; also as a one-
period predictor fow ;.

5 Are the devolatilized residuals independent?

In the previous section we discussed a number of methods to devolatilize observed stock
index returns. For application in risk management one would like these devolatilized re-
turns(AEt)t:m,m to be independent, identically distributed (i.i.d.) random variables. We
want to investigate to what extent this is justified. As mentioned in the introduction, the
procedures below are performed on German stock index data (daily closing DAX values)
from January 2, 1992 to June 29, 1999 (1875 observations). The DAX is a performance
index that is adjusted for dividend payments. As one of the so-called stylized facts it has
been repeatedly observed that squared stock returns are positively autocorrelated and hence
not independent. In Figure 4, we plot the empirical autocorrelation function of the squared
devolatilized returnﬁAZf)tZl ,,,,, + corresponding to the various models from Section 3. The
dotted lines represent pointwise asymptotic 95% confidence bounds under the assumption
that the serie(sAfQ)tzl ,,,,, ris i.i.d. One can observe that any of the five non-trivial methods
reduces the autocorrelation of squared returns substantially. A closer look reveals that the
GARCH approach yields the best results, whereas nonparametric volatility performs not as
well as the other models.
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volatility model | BDS statistic| p-value | iid hypothesis
constant 15.20 0.00% rejected
nonparametric 5.98 0.00% rejected
GARCH -0.78 43.47%]| notrejected
exponential AR 2.66 0.79% rejected
composite 0.54 58.58%| not rejected
implied 1.41 15.75%/| not rejected

Table 3: BDS test on independent devolatilized returns

A formal test for the i.i.d. property of a time seri&s, . . ., Y7, the so-calleBDS-test
goes back to Brock et al. (1987). It reacts sensitively to accumulations of similar values
anywhere in the time series. For fixed parameters N, ¢ > 0 theBDS statistids defined
as .
WmT(g) — \/Tcm,T(g) — (CLT(E))
7 Om,7(€)

whereT,,, := T —m + 1, moreoverl.(s,t) := 1. qg(maxic(o,..m—1} |Yiti — Yetil),

-----

Y

2
Cm7T(€) = Z 18($7t)m
l§t<S§Tm
(and accordingly for 1 instead at),
Kp(e) = Z 2(1:(t, s)1e(s, ) + 1(t, r)1c(ry s) + 1c(s, t)1.(E, 7))

T (T — 1)(T0, — 2) ’

1<t<s<r<Tm

U?n,T(g) = 4<KT<€)m + QWi KT(Zf)m_jCLT(S)Qj

+ (m — 1)2Cp(e)*™ — mQKT(e)CLT(s)Qm_Z).

Under the null hypothesis this statistic is asymptotically standard normally distributed. Fol-
lowing rules of thumb based on simulations in Brock et al. (1991), we choose the parameters

.....

-----

and implied volatility the null hypothesis is not rejected. Once more, one can observe that
the assumption of constant volatility produces inacceptable results.

In risk management applications we do not want to rely too heavily on the assumption
that devolatilized residuals are identically distributed. Therefore we base parameter estima-
tion for the corresponding hyperbolic (resp. normal) distribution only on the previous 500
data points. This compromises between stationarity of devolatilized returns and disposing of
enough data for parameter estimation. From Figure 5 one can get an impression how much

15



constant volatility implied volatility

AR

0 20 40 60
0 02 04 06

Figure 5: Sequential estimation of hyperbolic densities from devolatilized returns

the shape of the estimated hyperbolic distribution changes through time. It depicts the time-
varying shape of the fitted hyperbolic distributions for constant and implied volatility. The
graphs for the other volatility models resemble the plot for implied volatility. One clearly
sees that devolatilization enhances the stationarity of the fitted hyperbolic distribution.

6 Backtesting

How well do stochastic volatility models perform in risk management applications? Any
of the approaches in Section 3 provides a forecast of tomorrow’s return distribution given
the past return date\ X, . .., AX;). We will now assess the quality of this prediction in a
number of ways, considering again the DAX data. Since the first 500 data points are only
used for parameter estimation, the backtesting procedures are run on the remaining 1375
observations.

Because of the legal obligation to use VaR-based risk management, quantiles are of
particular interest. In our study, we consider the 97.5% and 99% levels of one-day value-
at-risk corresponding to an investment in the DAX. Ideallyfieguency of excessive losses
(FOEL), i.e. the fraction of days where the loss exceeds the predicted VaR level, should be
close to 2.5% resp. 1%. Following Kupiec (1995), we apply a likelihood ratio FE3E(
tes) at a level of 5% to examine whether the observed frequency deviates substantially from
the predicted level. Under the null hypothesis, any observation has a chance of 2.5% resp.
1% of being an excessive loss, independently of the earlier observations. Therefore, the
excessive losses are ideally distributed as the 1's in a Bernoulli sequence. In particular, the
number of excessive losses follows a binomial distribution with paramétarslp,, where
T = 1375 denotes the total number of days in the backtesting periodlang, is the
predicted level of VaR (i.e. 97.5% or 99%). Define

R(f,T,po) := —2log((1 —pO)T_fp(];) + 2log (( — %)T_f<%>f),

wheref is the number of days in the sample where the loss exceeds the corresponding pre-
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95%
volatility VaR FOEL Ccé)r:::Jdnednsce R | p-value VaR level
level hypothesis

around

FOEL
constant 97.5%| 4.7%]| [3.6%, 5.9%]|| 22.27| 0.00%| rejected
nonparametric | 97.5%| 3.4% | [2.4%, 4.3%]| 3.65| 5.60% /| not rejected
GARCH 97.5%| 3.5%/| [2.5%, 4.5%]|| 4.94| 2.62%| rejected
exponential AR|| 97.5%| 4.1% | [3.0%, 5.1%)]| 11.76| 0.06% | rejected
composite 97.5%| 4.0% | [3.0%, 5.0%]| 10.77| 0.10%| rejected
implied 97.5%| 2.9%| [2.0%, 3.8%]|| 0.90| 34.34%/| not rejected
constant 99% | 3.1%| [2.2%, 4.1%]| 40.19| 0.00%/| rejected
nonparametric | 99% | 2.2%| [1.4%, 3.0%]| 14.50| 0.01%| rejected
GARCH 99% | 2.3%]| [1.5%, 3.0%]|| 16.12| 0.01%| rejected
exponential AR|| 99% | 2.4%/| [1.6%, 3.2%)]| 19.55| 0.00% | rejected
composite 99% | 2.3%| [1.5%, 3.1%]|| 17.81| 0.00%/| rejected
implied 99% | 1.6%/| [0.9%, 2.3%]|| 4.23| 3.97%| rejected

Table 4: FOEL test if devolatilized returns are assumed to be normally distributed

95%
volatility VaR FOEL C(z)rgijdnednsce R | p-value VaR level
level hypothesis

around

FOEL
constant 97.5%| 3.9% | [2.8%, 4.9%]| 8.90| 0.28%]| rejected
nonparametric | 97.5%| 2.6% | [1.7%, 3.4%]| 0.01| 91.43%/| not rejected
GARCH 97.5%| 2.7% /| [1.8%, 3.6%]| 0.20| 65.42%/| not rejected
exponential AR|| 97.5%| 3.0% | [2.1%, 3.9%]| 1.23| 26.65%/ not rejected
composite 97.5%| 2.8% | [2.0%, 3.7%]| 0.61| 43.40%/| not rejected
implied 97.5%| 2.2% | [1.4%, 3.0%]|| 0.60| 44.00%| not rejected
constant 99% | 2.2%/| [1.4%, 3.0%]|| 14.50| 0.01%/| rejected
nonparametric || 99% | 1.5%/| [0.8%, 2.1%]| 2.52| 11.27%| not rejected
GARCH 99% | 1.2%]| [0.7%, 1.8%]|| 0.72| 39.56%/| not rejected
exponential AR|| 99% | 1.6% | [0.9%, 2.3%]| 4.23| 3.97%| rejected
composite 99% | 1.8% | [1.1%, 2.5%]| 7.49| 0.62%/| rejected
implied 99% | 1.0% | [0.4%, 1.5%]|| 0.04 | 83.75%/| not rejected

Table 5: FOEL test if devolatilized returns are assumed to be hyperbolically distributed
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Figure 6: 99% VaR predictions and actually occured losses
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normal devolatilized returns
volatility model | Kuiper statistic| p-value | null hypothesis

constant 0.0563 0.50% rejected
nonparametric 0.0744 0.00% rejected
GARCH 0.0468 5.11%| notrejected
exponential AR 0.0479 4.06% rejected
composite 0.0486 3.45% rejected
implied 0.0563 0.47% rejected

hyperbolic devolatilized returns
volatility model | Kuiper statistic| p-value | null hypothesis

constant 0.0670 0.02% rejected

nonparametric 0.0285 74.14%| not rejected
GARCH 0.0318 55.81%| not rejected
exponential AR 0.0405 17.24%| not rejected
composite 0.0362 32.96%| not rejected
implied 0.0290 71.70%| not rejected

Table 6: Kuiper test of the predicted return distribution

dicted quantile. Under the null hypothesis, this statistic is asymptotigaily)-distributed.

Tables 4 and 5 summarize the results for the stochastic volatility models from Section 3
combined with the normal resp. hyperbolic distribution for devolatilized returns. If we relax
the null hypothesis by assuming that the number of excessive losses has a binomial dis-
tribution with unknown parameter (instead ofp,), then it makes sense to compute 95%
confidence intervals fgr. These are provided in Tables 4 and 5 as well. Ideally, the jgvel

(i.e. 2.5% or 1%) should belong to this interval.

On the whole, the normal distribution fails to provide acceptable results, especially on
the 99% level. Combined with the hyperbolic distribution, the devolatilization methods
produce mostly reasonable results — in particular compared to constant volatility. Among the
stochastic volatility models , the implied, GARCH, and nonparametric approaches perform
better than exponential AR and composite volatility.

Let us examine more closely how the predicted value-at-risk evolves through time. Fig-
ures 6 and 7 show the predicted VaR, the actual losses (if a loss occured at all), and the times
of excessive losses for the 99% level of daily VaR. Because of its superiority, we focus on
the hyperbolic case. Note that the VaR changes substantially even in the case of constant
volatility, which seems to contradict the underlying assumption of i.i.d. returns. This phe-
nomenon stems from the fact that the estimation of the Lévy process parameters is based
only on the previous 500 data points. Without this precaution, the constant volatility model
would fail even more severely. On the other hand, this effect will be less pronounced in
calmer periods.

So far, we have concentrated on particular extreme quantiles although the risk model
predicts the entire P&L distribution. It is possible to test this distribution as a whole. The
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normal devolatilized returns
volatility model | BDS statistic| p-value| iid hypothesis

constant 3.87 0.01% rejected

nonparametric 1.23 21.99%| notrejected
GARCH -1.24 21.67%| notrejected
exponential AR -0.42 67.58%| notrejected
composite -1.79 7.29%/| not rejected
implied —0.82 41.48%| not rejected

hyperbolic devolatilized returns
volatility model | BDS statistic| p-value| iid hypothesis

constant 3.69 0.02% rejected
nonparametric 0.33 73.81%| not rejected
GARCH —-1.70 8.88%/| not rejected
exponential AR —0.84 40.00%| not rejected
composite -2.19 2.88% rejected
implied —-1.14 25.40%| not rejected

Table 7: BDS test on independent transformed returns

..........

predicted return distribution function for dayased on the observations up to time 1.
Under the null hypothesis thdf, coincides with the law ofA X; given the past observa-
tions, we have thatl;);—; . r is an i.i.d. sequence of random variables that are uniformly
distributed on[0, 1]. Following Crncovic and Drachman (1996), we compute Klugper
statisticto test this hypothesis. It is defined as

K = Fm - - Fem 3

;g[gff]( emp(2) — ) + J?[%,’ﬁ(x p(2))

where F,,, denotes the empirical distribution function @f;).—
Kuiper testbased on this statistic is given asymptotically by

r. Thep-value of the

.....

VT

(cf. Press et al. (1992), Stephens (1970)). Similarly as the Kolmogorov-Smirnov test, this
test assesses whether the empirical distribution function deviates significantly from a given
(here: uniform) law. We use the Kuiper test because it is more sensitive to the tails that are
particularly important for risk management. The test results on a 5% level can be found in
Table 6. As for the FOEL test, constant volatility and the normal distribution are mostly
rejected, whereas any of the real stochastic volatility models seems to perform well in con-
junction with the hyperbolic distribution.

So far we have focused on the distribution of returns. But note that the transformed
returns(U;).—1 ... r are also independent under the null hypothesis. We use the BDS statistic

- . 24
2) (457X — 1) exp(—2j7)°) with ) := (\/T +0.155 + O—)K
j=1

.....
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normal hyperbolic

volatility model || excessive losses zone || excessive losses zone
constant 43 red 30 red

nonparametric 30 red 20 yellow
GARCH 31 red 17 green
exponential AR 33 red 22 yellow
composite 32 red 25 yellow
implied 22 yellow 13 green

Table 8: Classification according to the Basel rules

to test this hypothesis (cf. Section 5). The results of the BDS test at a level of 5% are listed
in Table 7. Apart from constant volatility, only the composite model fails in conjunction
with hyperbolic returns.

For a financial institution the ultimate touchstone of a model is its approval by the su-
pervising authorities. On the other hand approval is not the only point. According to the
traffic light concept of the Basel Committee on Banking Supervision, internal models are
classified. This classification into the green, yellow, or red zone depends on how often the
actual losses exceed the daily VaR predictions on the 99% level over a pefiottarding
days. Depending on this classification, the necessary capital reserves are asSigesd.
means that the minimum factor of 3 is applied to the VaR vajeowresults in a higher
(add-or) factor between 3 and 4, where@sl normally means rejection of the model. Our
backtesting period covefs = 1375 trading days, which exceeds the 250 days that are typi-
cally used in practice. The results of a hypothetical classification are listed in Table 8. Once
more, the combination of stochastic volatility with hyperbolic devolatilized returns yields
the most reliable setup. Among the various models, implied and GARCH volatility perform
superior to the other devolatilization approaches.

7 Conclusion

Our study shows that randomly fluctuating volatility can and should be considered for risk
management in practice. By applying adequate (quasi-)likelihood resp. non-parametric
methods or by using implied volatility from option data, only moderate computing power is
needed to predict the short-term risk profile according to a number of models. It turns out
that both stochastic volatility and more flexible return distributions have to be taken into ac-
count in order to produce accurate predictions. Neglecting one of the two factors leads to a
substantial loss of precision. Among the stochastic volatility models, GARCH and implied
volatility seem to perform better than the nonparametric, exponential AR, or the composite
approach. In spite of erratic market movements in the backtesting period, the models under
consideration produced excellent forecasts in combination with the hyperbolic distribution.
The availability of option prices, the computational effort, and the day-to-day variability of
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value-at-risk predictions may ultimately decide which devolatilization procedure to choose.
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