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Abstract 25 

Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which 26 

decreases ventricular contractile function. Tissue engineering is a promising approach to 27 

regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be 28 

fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous 29 

polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires 30 

incorporated into biodegradable castor oil-based polyurethane were employed to make 31 

micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one 32 

day, and electrical stimulation was applied to improve cell communication and interaction 33 

in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and 34 

scanning electron microscopy, revealing that the combination of scaffold design and 35 

electrical stimulation significantly increased cell confluency of H9C2 cells on the 36 

scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial 37 

natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional 38 

genes of the myocardium, were up-regulated by the incorporation of gold 39 

nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical 40 

stimulation. 41 

 42 
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1. Introduction 46 

Cardiovascular diseases pose the highest risk of death in the world, according to the American 47 

Heart Association Statistics. Every 34 seconds one American dies by heart attack, stroke or other 48 

cardiovascular problems [1]. Currently, treatment options following a myocardial infarction (MI) 49 

and subsequent congestive heart failure are still limited. Pharmacological agents increase the 50 

blood flow but limit ventricular remodeling events and increase cardiac output [2]. Mechanical 51 

devices, such as the left ventricular assist device (LVAD), can only be applied to a limited group 52 

of patients [3]. The only successful treatment option for a severe MI to date is heart 53 

transplantation [4]; however, the lack of suitable donors significantly restricts this option.  54 

As cardiovascular diseases remain a major cause of morbidity and mortality, new strategies in 55 

cardiovascular treatments attract much attention. Among all cardiovascular diseases, MI is one of 56 

the key reasons for heart failure, resulting in heart dysfunction and progressive death of 57 

cardiomyocytes when normal heart function cannot be restored afterwards [5]. Cell therapy has 58 

so far shown only little improvement of cell retention and long-term survival [6].  Instead, 59 

biocompatible 3D scaffold materials might provide a feasible solution, as some structures may 60 

improve cell retention, survival and even cell differentiation [7, 8]. These kinds of scaffolds or 61 

patches can, in principle, be directly implanted on the infarcted tissue with or without cells after 62 

MI [9].  63 

Typically, tissue engineering for cardiovascular regeneration is based on producing biomimetic 64 

and biodegradable materials for scaffold fabrication [4] that ideally integrate signaling molecules 65 

and induce cell migration into the scaffolds [10, 11]. 66 

A material suitable for a tissue engineering-based approach to treat myocardial infarction should 67 

provide an environment that is predisposed to improve electromechanical coupling of the 68 
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cardiomyocytes with the host tissue [10, 12], as well as cardiomyocyte adhesion [9]. This 69 

adhesion is essential for the proliferation of cardiomyocytes and for ventricular function. 70 

Materials suitable for application in cardiac tissue engineering include natural polymers, such as 71 

decellularized myocardium [13], collagen [14], alginate [15], fibrin [16], as well as synthetic 72 

polymers such as polylactic acid (PLA), polyglycolic acid (PGA), their copolymers [17, 18], and 73 

polyurethane (PU) [19, 20]. 74 

Among the above-mentioned materials, PUs are considered a major class of applicable 75 

elastomers because of their good biocompatibility and biodegradability, their high flexibility, and 76 

their excellent mechanical properties [21, 22]. The stiffness of heart muscle varies from 10 kPa 77 

in the beginning of the diastole to 500 kPa at the end of the diastole, therefore an elastic material 78 

having a stiffness in this range would be required for cardiac engineering [23]. Such Young’s 79 

moduli are obtained with biodegradable PUs  [19, 24], which can be synthesized by using 80 

vegetable oils as polyol and aliphatic diisocyanate, resulting in typical degradation times of 81 

several months. Among different grades of PUs, castor oil-based PU shows no toxicity, is low in 82 

cost, and is available as a renewable agricultural resource [25-27]. This grade of biodegradable 83 

PUs has already been widely applied in biomedical engineering, including materials for 84 

peripheral nerve regeneration, cardiovascular implants, cartilage and meniscus regeneration 85 

substrates, cancellous bone substitutes, drug delivery carriers and skin regeneration sheets [28-86 

30]. 87 

Furthermore, tissue engineering applications require that cells are embedded into the material. 88 

Much progress has recently been made in order to fabricate porous polymer scaffolds, in 89 

particular by using salt leaching techniques [31-33]. The success of this method has been shown 90 
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for a variety of soft and hard polymers [34-37], and we have recently established this procedure 91 

for PU [38]. 92 

Although many PU-based materials have been developed for providing vascular grafts, only few 93 

PU scaffolds have so far been studied in the context of myocardial tissue engineering [39, 40], 94 

even though PU is easy to implant into muscle tissue, because it is stiffer than typical hydrogels. 95 

An important goal for myocardial tissue engineering must be the fabrication of materials that 96 

allow for the synchronization of electrical signals, and thus enhance the contraction of 97 

cardiomyocytes in the scaffold material so that a homogeneous total contraction of the 98 

engineered patch is guaranteed. In the study presented here, we fabricated a biodegradable 99 

nanocomposite material by incorporating gold nanotubes/nanowires into PU scaffolds so that the 100 

wired material structure can mimic the electromechanical properties of the myocardium. 101 

To investigate the functionality of these materials as cardiac patches, H9C2 rat cardiomyocyte 102 

cells were seeded on different polyurethane-gold nanotube/nanowire (PU-GNT/NW) composites. 103 

Eventually, electrical stimulation was applied to the cell-scaffold constructs in order to enhance 104 

the functional performance of cardiac scaffolds and to improve cell morphology and alignment. 105 

We used fluorescence and scanning electron microscopy as well as gene expression analysis to 106 

investigate the behavior of cardiomyocyte cells on the scaffolds. We demonstrate that the 107 

adhesion and proliferation of cells significantly depends on the amount of incorporated 108 

GNT/NW, and that an optimum concentration of 50 ppm of GNT/NW can provide the best 109 

environment for cells to achieve native cardiomyocyte function. 110 

 111 

 112 

 113 
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2. Materials and methods 114 

2.1. Synthesis of polyurethane-GNT/NW composite scaffolds 115 

Polyurethane-GNT/NW composites were synthesized according to our previous work [38]. In 116 

brief, gold nanotubes/nanowires (GNT/NW) were made by using template-assisted 117 

electrodeposition and mixed with castor oil /polyethylene glycol-based polyurethane (PU). 118 

Concentrations of 50 and 100 ppm of GNT/NW were used to synthesize two different 119 

composites types. For fabrication of porous scaffolds, 355-600 µm sieved table salt was added to 120 

the PU-GNT/NW solution, then the mixture of PU-GNT/NW and salt was cast in a Teflon mold 121 

of 10 mm diameter and 4 mm thickness. Afterwards, all samples were dried at room temperature 122 

for 48 hours; then the porous scaffolds were placed in distilled deionized water (DDW) for 2 123 

more days to remove the salt. In the following, we refer to the scaffolds as PU-0 for pure PU 124 

scaffolds, PU-50 for scaffolds containing 50 ppm GNT/NW, and PU-100 for those containing 125 

100 ppm GNT/NW.   126 

2.2. Permeability 127 

As it is experimentally difficult to obtain 3D information about pore interconnectivity based on 128 

2D images, Li et al. [41] suggested a simple method of soaking the samples in an ink solution 129 

and then imaging the colored sample. Accordingly, our scaffolds were soaked in a solution of 130 

common blue writing ink for 24 hours and dried at room temperature. Then, a cross section of 131 

samples with a thickness of 1 mm was prepared by cutting with a surgical blade and then 132 

imaging the samples with a Nikon (TS100) inverted microscope (10X objective). This treatment 133 

provides information on the interconnectivity of pores as well as on their accessibility from 134 
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neighboring pores. Porosity was calculated by ImageJ [42] using a manually set intensity 135 

threshold. 136 

2.3. Cell culture and electrical stimulation 137 

H9C2 rat cardiomyocytes were purchased from the European Collection of Cell Cultures 138 

(ECACC, Germany) and maintained in Dulbecco's Modified Eagle's medium (DMEM, 139 

Biochrom, Germany), supplemented with 10% fetal bovine serum (FBS, Biochrom, Germany) 140 

and 1% penicillin and streptomycin (100 U/ml, Biochrom, Germany) at 37 ºC and 90% humidity. 141 

H9C2 is a subclone of the original clonal cell line derived from embryonic rat heart tissue. Cells 142 

were sub-cultured regularly and used up to passage 6. Prior to the experiments, PU scaffolds 143 

were sterilized using ethylene oxide gas and placed in 10 ml of sterilized phosphate buffered 144 

saline (PBS) for 2 hours. Cells (106) were seeded per cylindrical scaffold (diameter: 10 mm, 145 

thickness: 4 mm) and incubated overnight to allow cell attachment. On the following day, cells 146 

were stimulated using a function generator (Toellner, Germany) with a square pulse of 1 V/mm 147 

amplitude, pulse duration of 2 ms, at a frequency of 1 Hz for 15 minutes. This procedure was 148 

repeated on three consecutive days, once per day [43, 44]. Stainless steel 304 was used as the 149 

electrode material for electrical stimulation. Compared to titanium electrodes and titanium 150 

electrodes coated with titanium nitrate, the electrical field was stable in stainless steel 304 151 

electrodes over the whole time of stimulation [43]. The cell-scaffold constructs were left in the 152 

incubator for one more day. 153 



8 
 

2.4. Staining with Calcein and Hoechst 154 

Calcein was used for staining viable cells and Hoechst for staining cell nuclei. Five repeats of 155 

each scaffold group were stained with both Calcein AM and Hoechst after 1 day of cell culture 156 

before stimulation and another 5 repeats of each group were stained on the fourth day after cell 157 

seeding and electrical stimulation. For Calcein staining, the samples were rinsed once with 158 

DMEM and incubated with a 1 µg/ml solution of Calcein (BD Bioscience, Germany) in DMEM 159 

for 10 minutes at 37ºC. Afterwards, the samples were washed with DMEM twice, stained with 160 

10 µg/ml Hoechst 32258 (Invitrogen, Germany) in PBS and incubated for 20 minutes at 37 ºC. 161 

Then, the samples were washed extensively with PBS and imaged using an Olympus BX43 162 

fluorescence microscope (Olympus, Japan) with a 10X objective. Cell confluency was measured 163 

as the ratio of the area stained with Calcein to the whole surface of a scaffold in 2D images using 164 

ImageJ [42]. This test was performed in two independent experiments and at least 5 images were 165 

taken in each experiment. 166 

2.5. Gene expression 167 

Cells were lysed in TriSure (Bioline, Luckenwalde, Germany) and RNA extraction was 168 

performed according to the manufacturer's protocol. In order to obtain enough RNA, cells grown 169 

on 3 scaffolds were pooled. After RNA extraction, aliquots of 200 ng total RNA from each group 170 

were reverse transcribed into cDNA, using a cDNA synthesis kit (AmpTec, Hamburg, Germany) 171 

and the provided oligo dT-V primer. Subsequently the cDNAs were purified utilizing the spin 172 

columns and buffers provided with the cDNA synthesis kit. Gene expression was analyzed by 173 

qRT-PCR using a Rotorgene 3000 (Corbett, LTF, Wasserburg, Germany). For each qRT-PCR 174 

analysis, 2.5 µl of the above-mentioned cDNA (=10 ng total RNA) was used; total reaction 175 
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volume was 25 µl each and cycling conditions were as follows: 10 min initial denaturation at 176 

95°C followed by 45 cycles of 20 s denaturation at 95°C, 20 s annealing, for details see table 1, 177 

and 20 s elongation at 72°C. At the end of the cycling program a melt curve analysis was 178 

performed starting at the actual annealing temperature.  All samples were run in duplicates. 179 

Gene-specific primers were obtained from TibMolBiol (Berlin, Germany). Primers for atrial 180 

naturiuretic factor (ANF), Connexin 43 (Con43), Cardiac troponin I (cTnl; Tro I), cardiac 181 

Troponin T type 2 (Tnnt2; Tro II), NK2 homeobox 5 (Nkx2.5), Myocyte enhancer factor 2C 182 

(Mef2c) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were designed using the 183 

web-based “Primer 3” program. Primers for ß-cardiac myosin heavy chain (β-MHC), natriuretic 184 

peptide B (NPPB) and GATA binding protein 4 (GATA 4) were published previously [45, 46]; 185 

as were the primers for Beta-2-microtubulin (B2M), TATA box binding protein (TBP) [47] and 186 

those for 18S ribosomal protein mRNA (18sr RNA) [48]. The SYBR Green based qPCR mix 187 

was purchased from Peqlab (Erlangen, Germany). Threshold levels for Ct-determination were 188 

chosen manually. Primer sequences and annealing temperatures are provided in table 1. 189 

2.6.  Scanning Electron Microscopy 190 

The morphology of the porous Polyurethane-GNT/NW nanocomposites was studied by field 191 

emission scanning electron microscopy (FESEM; Philips S-4160). 192 

For observation of cell-scaffold constructs, the samples were fixed in 3% glutaraldehyde (Sigma-193 

Aldrich, Germany) solution in PBS, and then dehydrated with a graded ethanol (Walter CMP, 194 

Germany) series (30%, 50%, 70%, 80%, 90%, 96%), 20 minutes each. Dehydration was finished 195 

with 100% ethanol overnight. The samples were sectioned with the thickness of 7 µm from the 196 

top side, further dehydrated using a critical point dryer (CPD 030, Balzers, Switzerland), and 197 
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coated with gold (Ion Tech Ltd., Teddington, U.K.) before SEM imaging (XL 20, Philips, The 198 

Netherlands).  199 
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Table 1. Primer sequences and annealing temperatures for qRT-PCR analysis of the 200 

housekeeping and target genes. 201 

Gene symbol and 
accession number  

Gene name Primer sequence [5’--3’] Annealing 
temperature 
[°C] 

ANF 
NM_012612.2 

Atrial Naturiuretic factor forward: atcaccaagggcttcttcct 
reverse:  ccaggtggtctagcaggttc 

64 

GAPDH 
NM 017008 

Glyceraldehyde-3-phos-
phate dehydrogenase 

forward: ggcattgctctcaatgacaa 
reverse: tgtgagggagatgctcagtg 

60 

β-MHC 
X15939.1 

ß-cardiac myosin heavy 
chain 

forward: gagtggacgtttattgacttcgg 
reverse: gcctttctttgctttgccttt 

64 

NPPB 
NM_031545                 

Natriuretic peptide B forward: cagctctcaaaggaccaagg 
reverse: cggtctatcttctgcccaaa 

64 

GATA4 
NM_144730.1 

GATA binding protein 4 forward: gtgccaactgccagactacc 
reverse: agccttgtggggagagcttc 

62 

B2M 
NM_012512.2 

Beta-2-microtubulin forward: ccgtgatctttctggtgctt 
reverse: atttgaggtgggtggaactg 

60 

TBP 
NM_001004198.1 

TATA box binding protein forward: ttctgggaaaatggtgtgc 
reverse: cccaccatgttctggatctt 

60 

18sr RNA 
NM_078617.3 

18S ribosomal protein 
mRNA 

forward: accgcggttctattttgttg 
reverse: ctgatcgtcttcgaacctcc 

60 

Con43 
AH003191.2 

Connexin 43 forward: tgaaagagaggtgcccagaca 
reverse: cgtgagagatggggaaggact 

60 

cTnl (Tro I) 
M57679.1 

Cardiac troponin I  forward: gccctcaaactttttctttcgg 
reverse: ctgatgctgcagattgcgaag 

60 

Tnnt2 (Tro II) 
NM_012676.1 

Troponin T type 2 (cardiac) forward: caaggaacagagctttgtcgaa 
reverse: cacaacctagaggccgagaagt 

60 

Nkx2.5 
NM_053651.1 

NK2 homeobox 5  forward: cgcccttctcagtcaaagac 
reverse: gaaagcaggagagcacttgg 

62 

Mef2c 
XM_006231731.2 

Myocyte enhancer factor 2C  forward: ttgccttccctgttcatacc 
reverse: ggcaaaccatctgaagcaat 

60 

2.7. Statistical analysis 202 

Cell confluency is presented as mean value ± standard deviation. Differences between groups 203 

were analyzed by analysis of variance (ANOVA) followed by Tukey’s multiple comparison test. 204 
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For gene expression analysis, the results are presented as mean value ± standard deviation. qRT-205 

PCR data were analyzed according to the ∆∆Ct method [30] using the mean Ct value of the 206 

housekeeping genes. Fold changes of expression levels were calculated as described previously 207 

[30] and the obtained values were used for statistical analysis. 208 

3. Results 209 

3.1.  Permeability of the scaffolds 210 

An essential prerequisite for a cardiac patch material is to ensure porosity above the percolation 211 

threshold, so that the cells can grow deeply into the scaffold without undergoing hypoxia-212 

induced cell death. In figure 1, we present images of scaffold cross-sections after incubation in 213 

ink. Our results show that all imaged scaffolds were homogeneously colored by the ink, 214 

regardless of their GNT/NW content. This confirmed that the pores were almost uniformly 215 

distributed and interconnected. Colored pores were found to be accessible either directly or via 216 

adjacent pores. The porosities of the scaffolds were above 90% in all samples. By increasing the 217 

amount of gold content in the polymer solution during polymerization, the interconnectivity of 218 

the pores was improved, presumably due to the presence of chloroform in the gold-containing 219 

samples, which leads to the activation of a solvent casting mechanism in addition to salt 220 

leaching. Furthermore, we observed that PU-100, having the highest gold content and smallest 221 

polymer concentration, was the most uniform in pore size and distribution and had the largest 222 

pores (Fig. 1 c). SEM images of scaffolds also confirmed the largest pores in PU-100 (Fig. 1 d) 223 

compared to PU-0 or PU-50 (Fig. 1 e-f) 224 



13 
 

3.2.  Cell adhesion and growth on scaffolds 225 

Cells of the myocardium need to adhere and proliferate on the material patch in order to form a 226 

functional cell network before the scaffold material is degraded. To compare how cell adhesion 227 

and growth are influenced by the different scaffold types and by additional electrical stimulation, 228 

we investigated the morphology of H9C2 cells stained with Calcein (cell body) and Hoechst 229 

(nucleus) on different scaffolds with and without electrical stimulation in figure 2. Figures 2a-c 230 

clearly show that cells after 1 day of incubation spread best on PU-50 compared to PU-0 or PU-231 

100, and they are more homogeneously distributed within the scaffolds than cells on the other 232 

two scaffold types (PU-0 and PU-100). In particular, on the PU-100 scaffold H9C2 cells 233 

preferred to attach to each other and formed large clumps rather than spreading on the sample. 234 

On samples that had undergone electrical stimulation, the results were distinctly different: 235 

whereas cell spreading was not significantly influenced by electrical stimulation on PU-0 236 

scaffolds, it was significantly enhanced on the gold-containing PU-50 and PU-100 scaffolds. 237 

This observation is even more pronounced in the quantitative analysis of confluency (Figure 3).  238 
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 239 

Fig. 1. (a)-(c) Light microscopy image demonstrating the permeability of ink into the pores. (a) 240 

PU-0, (b) PU-50, and (c) PU-100. The pores are interconnected and almost uniform in size 241 

throughout the cross-section of the scaffold materials. SEM images show the structure of pores 242 

in different samples of (d) PU-0, (e) PU-50, and (f) PU-100. PU-100 showed the most 243 

interconnected and the largest pores compared to PU-0 or PU-50. 244 

Furthermore, we checked if cell alignment after electrical stimulation was enhanced which 245 

would mimic the natural response of cells to electromechanical coupling in the heart. The 246 

representative images in Fig. 2 clearly show that the cells were aligned only in gold-containing 247 

scaffolds, whereas no alignment was observed in PU-0. Furthermore, no significant differences 248 

in cell alignment were observed when cells were seeded on PU-50 and PU-100 scaffolds. 249 
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 250 

Fig. 2. Staining of H9C2 cells nuclei (Hoechst, blue) and cytoplasm (Calcein, green) before (a, b, 251 

c; cells cultured 1 day) and after (d, e, f; cells cultured 4 days) electrical stimulation on PU-0 (a, 252 

d), PU-50 (b, e) and PU-100 (c, f). Scale bar is 50 µm. Arrows indicate the direction of cell 253 

alignment.  254 

Figure 3 summarizes our results for H9C2 cell confluency on scaffolds before and after 255 

stimulation. Confluency increased by 39% and 14% after stimulation for PU-50 and PU-100 256 

scaffolds, respectively. However, at the same time cell confluency was not significantly 257 

influenced by electrical stimulation in the samples without gold (PU-0). When the samples were 258 

incorporated with gold, a significant increase was found between PU-0 and PU-50 after 259 

stimulation. An even more marked increase was found for PU-50 before and after stimulation, 260 

however for PU-100, no significant difference was found.  261 
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 262 

Fig. 3. Cell confluency on scaffolds before (a, c, e) and after (b, d, f) electrical stimulation. 263 

ANOVA analysis was used for evaluating data significance (*p < 0.05, **p < 0.01). 264 

3.3.  Gene expression 265 

In order to investigate if the incorporation of gold into porous PU scaffolds in combination with 266 

electrical stimulation can facilitate the function of H9C2 cardiomyocyte on the scaffolds 267 

similarly to native myocardium, we investigated the expression of several relevant genes using 268 

qRT-PCR analysis. To this end, we evaluated gene expression levels of different cardiac 269 

transcription factors (GATA4, NPPB, ANF, and β-MHC) as well as gene expression levels of 270 

Con43, cTnl (Tro I), Tnnt2 (Tro II), Nkx2.5 and Mef2c in the H9C2 cardiomyocytes on different 271 

scaffolds and as a function of electrical stimulation. The expression levels of the housekeeping 272 

genes GAPDH, B2M, TBP and 18sr RNA were also examined. Expression levels of GAPDH, 273 

B2M, TBP and 18sr RNA were not significantly affected by any of the treatments (fold changes 274 
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<2; data not shown) and were therefore used to normalize gene expression levels of the genes of 275 

interest, namely GATA4, NPPB, ANF, β-MHC, Con43, cTnl (Tro I), Tnnt2 (Tro II), Nkx2.5 and 276 

Mef2c.  277 

Figure 4 shows ANF, NPPB, Tnnt2 (Tro II), Nkx2.5 and Mef2c gene expression in H9C2 278 

cardiomyocytes. In Fig. 4a and c, ∆ct values obtained in cells grown on normal culture dishes (as 279 

control group) were set as “1” and fold changes obtained in cells grown on PU-0, PU-50, PU-100 280 

were calculated as described elsewhere [30]. Similarly in Fig. 4b and d, values obtained from 281 

cells grown on pure PU-0 scaffolds alone were set as “1” and fold changes obtained in cells 282 

grown on PU-50 or PU-100 were calculated as described elsewhere [30]. Dotted lines indicate 2-283 

fold changes of gene expression as described previously and ± 2-fold changes in gene expression 284 

levels are considered statistically significant [30]. 285 

Compared to tissue culture plastic surfaces, all our PU samples showed, regardless of their 286 

GNT/NW content, upregulated gene expression of some cardiac transcription factors in H9C2 287 

cells. ANF, NPPB, Tnnt2 (Tro II), Nkx2.5 and Mef2c expression levels were already increased 288 

when H9C2 cells were grown on pure PU-0 scaffolds (3.26±0.22 fold (ANF), 111.3±4.82 fold 289 

(NPPB),   3.27±0.22 (Mef2c), 27.76±2.29 (Nkx2.5) and 6.49±1.29 [Tnnt2 (Tro II)]) compared to 290 

cells grown in normal culture dishes. Growing the cells on PU-50 resulted in a distinct increase 291 

of ANF, NPPB and Nkx2.5 expression levels, which were 15.6±0.73, 560.76±3.58 and 292 

79.34±1.76 times higher, respectively, than those detected in cells grown in normal culture 293 

dishes. Gene expression levels of Mef2c and Tnnt2 were only marginally increased when cells 294 

were grown on PU-50 (3.31±0.22 for Mef2c and 7.82±0.16 for Tnnt2). Expression changes of 295 

the cells growing on PU-100 were as follows: 8.2±0.49 fold increase of ANF- and 240.1±5.44 296 

fold increase of NPPB-expression, when compared to the levels detected in cells grown in 297 
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normal culture dishes (Fig. 4a); Mef2c gene expression was only 1.62±0.11 times higher when 298 

cells were grown on PU-100, similarly Nkx2.5 was only 31.94±1.19 times higher when 299 

compared to cells grown in normal culture dishes and Tnnt2 gene expression levels were 300 

10.41±1.16 higher (Fig. 4c). Interestingly, the fold changes in ANF- and NPPB-expression, when 301 

compared to levels detected in cells grown on PU-0 were rather similar: 4.78±0.23 and 302 

4.94±0.31 in ANF- and NPPB-expression, respectively, in cells grown on PU-50 and 2.52±0.11 303 

and 2.12±0.09ANF- and NPPB-expression, respectively, in cells grown on PU-100 (Fig. 4b). 304 

This, however, was not the case for Mef2c, Nkx2.5 and Tnnt2 leading for Mef2c gene expression 305 

a 2.01±0.26 fold decrease when grown on PU-100 and a 2.86±0.26 fold increase when grown on 306 

PU-50, while all other conditions were not significantly influenced, and Tnnt2 expression was 307 

not at all affected when compared to PU-0 scaffolds (Fig. 4d). GATA 4, Con43 and cTnl (Tro I) 308 

expression was not affected by any of the different scaffolds, and β-MHC expression could not 309 

be detected in these cells, but was detectable in cDNA synthesized from total RNA of normal rat 310 

embryonic tissue (Rat RNA: 17-19 days; amsbio biotechnology, Abingdon, United Kingdom), 311 

which was used as a positive amplification control (data not shown). 312 
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 313 

Fig. 4. Fold change in (a, b) ANF, NPPB; and (c, d) Mef2C, Nkx2.5 and Tnnt2 gene expression 314 

in H9C2 cardiomyocytes. ∆ct values obtained in cells grown on (a, c) normal culture dishes 315 

(control) and (b, d) on pure PU, were set as “1”. Dotted lines indicate a 2-fold change of gene 316 
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expression and gene expression changes above such a 2-fold change were considered statistically 317 

significant. 318 

3.4.  Scanning Electron Microscopy 319 

SEM images of H9C2 cells on different samples after 3 days of electrical stimulation are shown 320 

in figure 5. The images clearly support our findings from the cell staining experiments, as more 321 

cells are adhering to the PU-50 scaffold than to the other scaffolds. Furthermore, cells adhering 322 

to PU-100 had a morphology similar to cardiomyocytes in native tissue. The results are in 323 

agreement with our results on cell confluency, as there are more cells adhering to PU-50 than to 324 

the other scaffolds. In general, imaging cells inside porous scaffolds was very challenging due to 325 

the spatial conformation of pores, in which the cells can hide behind the pore walls (Fig. 5d). 326 

These results prove that our nanocomposite scaffolds indeed support cell attachment much better 327 

compared to gold-free PU-0 scaffolds. This is probably due to a larger number of interconnected 328 

pores in the gold-containing samples, providing higher probabilities for cells to grow through the 329 

scaffold pores, thus improving cell adhesion and proliferation.     330 

4. Discussion  331 

In the work presented here, we investigated a novel method using the combined effect of a 332 

polyurethane-gold nanotube/nanowire composite material and electrical stimulation of 333 

cardiomyocyte cells. This specific composite material of nano-sized gold incorporated into a 334 

porous biodegradable polyurethane matrix was chosen in order to improve the transmission and 335 

synchronization of electrical signals in the material and thus increase the natural functionality of 336 

cardiomyocytes. The feasibility of this approach of incorporating gold nanoparticles into scaffold 337 



21 
 

materials for applications such as cardiac patches has recently been shown for an alginate matrix 338 

[49]. Such alginate matrices have a very low elastic modulus of only a few kPa and are 339 

viscoelastic [50]. 340 

 341 

Fig. 5. SEM images of cells on (a) PU-0, (b) PU-50, and (c) PU-100 on day 4 after electrical 342 

stimulation. (d) A single cell cultured on PU-100 hiding behind the pore walls, a single 343 

cardiomyocyte cell cultured on glass slide is shown in the inset. Cells spread better on those 344 

samples containing gold and the best cell spreading is obtained on PU-100. Arrows point at 345 

single cells.  346 



22 
 

An ideal material for cardiac tissue engineering would, however, be purely elastic in order to 347 

mimic the complicated mechanical properties of native heart tissue without tearing during 348 

systolic pressure or prohibiting contractile force. The compressive modulus of native heart tissue 349 

has been reported to be 425 kPa at the systole [49]. We have recently shown that PU-GNT/NW 350 

composites can provide the mechanical properties required for this purpose, i.e. elasticity can be 351 

tuned between 200 kPa and 240 kPa [38]. Incorporation of gold nanoparticles in PU substrates 352 

changed the physicochemical properties of PU and improved fibroblast cell attachment [51], and 353 

gold in the form of nanowires allowed the formation of conductive bridges between pores and 354 

enhanced cell communication [38, 49]. Addition of GNT/NW caused the formation of hydrogen 355 

bonding with the polyurethane matrix and improved the thermomechanical properties of 356 

nanocomposites. Higher crosslink density and better cell attachment and proliferation were 357 

reported in polyurethane containing 50 ppm GNT/NW [38]. Additionally, PU and PU 358 

composites showed controllable degradation properties using different polyols during the 359 

synthesis process [21, 22]. The polymeric matrix in PU-GNT/NW composites can therefore be 360 

replaced by extracellular matrix (ECM) due to the controlled degradation of PU [52, 53]. After 361 

degradation of the scaffold matrix, the gold nanoparticles would remain in the cardiac muscle 362 

ECM, which should not harm the cardiac tissue as the gold concentration is comparably low, 363 

thus cytotoxicity should be negligible [54]. Additionally, the concentration of gold in most 3D 364 

structures varies from 0.0001 % wt. to 15 % wt.  and the low concentration of ppm has been 365 

shown to affect the cellular activity [55]. 366 

Since intact myocardium tissue contains a high density of cardiomyocytes and is known for 367 

heavy oxygen consumption, pore interconnectivity and pore uniformity are essential properties 368 

of any tissue engineered cardiac patch material, as they guarantee nutrition and oxygen 369 
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exchange. Both are, for example, necessary to  facilitate cell migration [56]. Additionally, the 370 

size and orientation of pores has been reported to affect cell alignment [57]. We used 355-600 371 

µm sieved table salt in scaffold fabrication by a porogen-leaching method so that a microscopic, 372 

interconnected, and homogeneous pore structure was formed (Fig. 1). Nutrients should therefore 373 

easily be transported deeply into the scaffolds.  374 

In addition to the relevance of material selection for cardiac tissue engineering, signaling factors 375 

also play a major role for engineering a functional tissue patch. Proper signaling might be 376 

induced by mechanical stimulation or electrical stimulation, similar to the conditions found in 377 

intact myocardium. A recent study has shown that in heart mimicking constructs, applying only 378 

mechanical stimulation was not a proper signaling factor to keep cardiomyocytes functional [58]. 379 

Instead, it has been suggested that an excitation-contraction coupling in cell-scaffold constructs 380 

is required for the proper function of cardiomyocyte tissue. This can be achieved by electrical 381 

stimulation just as in native heart, where the mechanical stretch of the myocardium is induced by 382 

electrical signals [58]. Other studies have already shown that even small physiological fields (75-383 

100 mV/mm) can stimulate the orientation, elongation and also migration of endothelial cells 384 

[12]. 385 

In this study, we investigated the orientation and adhesion of cardiomyocyte cells on different 386 

PU scaffolds after 3 days of consecutive electrical stimulation (Fig. 2). Only on gold-containing 387 

scaffolds cells had changed their alignment after four days. Before stimulation, no significant 388 

difference of cell morphology was found, whether gold had been incorporated in the scaffolds or 389 

not. Furthermore, cell proliferation was not enhanced as a result of gold incorporation. On PU-0, 390 

no cell alignment was observed even after electrical stimulation; on both PU-50 and PU-100, 391 

cells were aligned on day 4 after electrical stimulation. It is interesting that after stimulation, PU-392 
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50, not PU-100, showed the greatest amount of cells, although cells showed on PU-100 a 393 

morphology that was most similar to their natural morphology. 394 

In our experiments, the alignment of cells was rearranged towards the direction of the applied 395 

electrical field. A similar cell alignment improvement was reported by Au et al. [59] for 396 

fibroblasts and cardiomyocytes. Furthermore, the cells were re-oriented due to electrical 397 

stimulation only on PU-GNT/NW composites (Fig. 2). Particularly for endothelial cells, it is 398 

well-known that electrical stimulation can change cell elongation, alignment, and migration [10]. 399 

Here, we made use of this effect in order to electrically polarize the cardiomyocytes seeded on 400 

PU-GNT/NW scaffolds to provide a better microenvironment for their adhesion, elongation and 401 

function.  402 

It has previously been reported that a square, biphasic electrical pulse of 2 ms duration provided 403 

cell coupling similar to that present in in vivo environments after 8 days of stimulation [58] and a 404 

small electrical field of 200 mV/mm caused a fully-oriented cell network [12]. Despite all of 405 

these electrical stimulations, Tandon et al. [44] showed that the alignment of cardiomyocyte cells 406 

was only affected by surface topography and not by applying an electrical field; however, our 407 

result demonstrated that electrical stimulation indeed facilitates the behavior of only those cell-408 

scaffold constructs that contained gold.  409 

The morphology and distribution of cells investigated by SEM confirmed the essential role of 410 

pore size and distribution in the scaffolds (Fig. 5). We observed a marked difference in terms of 411 

both cell number and cell morphology between pure PU and PU-GNT/NW composites. In PU-412 

GNT/NW composites, where chloroform had been used during fabrication, the pores were bigger 413 

and more interconnected (Fig. 1). Therefore, more cells could migrate into the scaffold and could 414 

easily be observed. However, we found that cells on PU-100 were closer to their native 415 
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morphology. This is consistent with our previous result that 50 ppm gold provides optimum 416 

adhesion conditions for mesenchymal cell attachment [38], presumably by changes in surface 417 

energy in response to the incorporation of gold. Other studies have shown that an optimum 418 

amount of gold (43-50 ppm) caused a microphase separation in the chemical composition of PU, 419 

hence improving hydrophilicity [55]. Gold nanoparticles in a concentration of 43.5 ppm in 420 

polyurethane matrix have been shown to cause minimum inflammatory response in vitro and in 421 

vivo, and improve biocompatibility [51]. Our study shown here suggests that the PU-50 scaffolds 422 

provide optimum conditions for a cardiac tissue engineering material.  423 

Our gene expression analysis of specific markers in myocardium tissue clearly showed changes 424 

in the expression levels of functional cardiac genes, clarifying the role of gold nanoparticle 425 

incorporation into PU and the importance of electrical stimulation. Five different specific genes 426 

were investigated (Fig. 4). The expression of both ANF and NPPB was significantly up-427 

regulated (Fig. 4a); the highest up-regulation level was determined on PU-50. The ANF gene is 428 

highly expressed by cardiomyocytes when arteriosclerosis has occurred and a decrease has been 429 

reported during maturation of ventricular cells [40]. ANF is particularly a marker of 430 

cardiomyocyte differentiation [60, 61]. Therefore, the marked increase of this gene’s expression 431 

in PU-50 and PU-100 found here is assumed to be a positive response to atrial stretch due to the 432 

electrical stimulation. Therefore, we conclude that PU-GNT/NW scaffolds can accelerate 433 

cardiomyocyte response to the stresses induced by electrical stimulation, decreasing the progress 434 

of cardiac hypertrophy. NPPB marks any overstretching in myocardial tissue and acts similar to 435 

ANF, but with lower affinity. As it has been shown that in native heart, mechanical stretch is 436 

initiated by electrical signals [58], increases in the expression levels of these genes reflect the 437 

overstretching of the cell-scaffold constructs, particularly in the PU-50 samples (Fig. 4a). 438 
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Similarly, incorporation of gold induced in our studies a significant increase in gene expression 439 

level of the early cardiac transcription factors Nkx2.5 and Mef2c (Fig. 4c). Mef2c play a role in 440 

myogenesis, maintaining the differentiated state of muscle cells. Nkx2.5 also functions in heart 441 

formation and development [5, 15]. This implies that 50 ppm of GNT/NW is an optimum 442 

concentration for stimulating the expression levels of important cardiac differentiation markers 443 

and of myogenesis. 444 

5. Conclusions  445 

In this study we investigated different properties of cardiomyocytes on porous nanocomposite 446 

scaffolds formed by a biodegradable polyurethane matrix with incorporated gold nanoparticles 447 

(PU-GNT/NW). Cardiomyocyte adhesion and proliferation were strongly increased in response 448 

to electrical stimulation on PU-GNT/NW composites within 4 days. After 4 days of incubation 449 

and electrical stimulation on the scaffolds, cardiomyocytes on PU-GNT/NW samples showed a 450 

more native morphology and enhanced proliferation compared to gold-free PU-0. Only small 451 

differences in cell behavior were observed between PU-50 and PU-100, where particularly PU-452 

50 induced optimum cell distribution and spreading, as well as the largest up-regulated 453 

expression levels of genes relevant to cardiac differentiation and hypertrophy. Taken together, 454 

our data suggest that nanocomposites made from porous and biodegradable polyurethane 455 

scaffolds with an optimized content (50 ppm) of gold nanowires/nanotubes in combination with 456 

electrical stimulation are promising materials for future applications in cardiac tissue 457 

engineering. 458 

 459 
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