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ABSTRACT: Diblock copolymer micelle nanolithography
(BCML) is a versatile and efficient method to cover large
surface areas with hexagonally ordered arrays of metal
nanoparticles, in which the nanoparticles are equally spaced.
However, this method falls short of providing a controlled
allocation of such regular nanoparticle arrays with specific
spacing into micropatterns. We present here a quick and high-
throughput method to generate quasi-hexagonal nanoparticle
structures with well-defined interparticle spacing on segments
of nanotopographic Si substrates. The topographic height of
these segments plays a dominant role in dictating the spacing

Substrate

55 78 100

Spin coating Interparticle spacing / nm

between the gold nanoparticles, as the nanoparticle arrangement is controlled by immersion forces and by their self-assembly
within the segments. Our novel strategy of employing a single-step BCML routine is a highly promising method for the
fabrication of regular gold nanopatterns in micropatterns for a wide range of applications.

1. INTRODUCTION

Block copolymer micelle nanolithography (BCML) has proven
versatile in generating quasi-hexagonally arranged patterns of
metal nanoparticles on a variety of surfaces, including silicon
and glass,l Teflon,” and even hydrogels.3 Such substrates are
employed in a large number of applications such as biomimetic
optics,” protein binding,” and controlled cell adhesion®™® to
name a few. In BCML, block copolymers that consist of two
blocks of polymers with different polarities, most commonly
polystyrene (PS) and poly-2-vinylpyridine (P2VP), are
dissolved in a solvent. Above the critical micellar concentration,
these block copolymers arrange into spherical micelles that can
be loaded with a metallic precursor.” By dip or spin coating the
micelle solution onto flat substrates, the loaded micelles self-
assemble into quasi-hexagonal patterns, and after removal of
the micellar polymer shell by plasma treatment, quasi-
hexagonally ordered arrays of metal nanoparticles remain on
the surface.'” The lateral spacing between the nanoparticles can
be varied by controlling the molecular weight of the diblock
copolymers, the polymer concentration, and the coating speed
during deposition of the micelle solution.'' For example,
increasing the rotational speed during spin coating reduces the
thickness of the micelle-containing liquid film on the surface
and results in a lower density of packed micelles, which leads to
larger interparticle spacing. The nanoparticle size itself is
controlled by the amount of metallic precursor and can
additionally be increased by electroless deposition."
Superposition of the quasi-hexagonal nanopattern generated
with BCML with an additional microstructure to form so-called
micronanostructures would be advantageous in many applica-
tions. Living cells, for example, have the remarkable ability to
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react on both biofunctionalized nanopatterns’ and micro-
structures.> Furthermore, other applications such as DNA
chips,"* nanowire fabrication,”” and optically active nano-
coatings’ would benefit from a controlled spacing of gold
nanoparticles on the microscale. So far, the combination of
BCML-fabricated nanopatterns and microstructures to form
micronanostructures includes conventional electron beam
lithography'® and photolithography'” top-down procedures.
The BCML-based micronanostructures created with these
techniques are typically restricted to microscale areas that
contain a specific spacing of gold nanoparticles separated by
uncoated areas.'® The fabrication of micronanostructures with
neighboring areas of different gold nanoparticle spacings would
be extremely time-consuming with this approach, as it requires
several coating and lithography steps.'” In addition, precise
alignment between the different lithography and BCML steps
would be a major hurdle. Altogether, the fabrication of
micronanostructures in a simple and high-throughput process
that generates neighboring arrays with different specific
interparticle spacings remains a significant challenge.

As BCML relies on the undisturbed self-assembly of micelles
on a smooth surface, it is well known that surface roughness
impairs the regular hexagonal structure of nanoparticle arrays
typically generated by BCML.”® Here we propose an easy and
straightforward method that explicitly makes use of this effect
by introducing sharp edges onto a Si surface in order to guide
the micelles into a certain microstructure. Most importantly, we
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use only a single BCML step to deposit gold nanoparticles on
substrates and yield neighboring microarrays of quasi-hexagonal
nanoparticle distributions that are significantly different in their
interparticle spacing.

2. MATERIALS AND METHODS

2.1. Nanotopographies. Microstructures were generated on
single-side-polished, p-doped, 4 in. Si wafers (resistivity 1—30 Q
cm) with a nominal thickness of 525 + 25 um (Siegert Wafer,
Germany) using photolithography followed by wet etching.”' The
wafers were coated with a 1500 nm =+ 5% thermally grown oxide layer.
First, the Si wafers were ultrasonically cleaned for S min in acetone
(>99.7%, Ph.Eur., extra pure, Carl Roth, Germany) and then sonicated
again in isopropanol (Rotipuran >99.8%, p.a, ACS, ISO, Carl Roth,
Germany) for another S min to remove the acetone before they were
blown dry with N,. Prior to applying the photoresist, wafers were
treated with HMDS (hexamethyldisilazane), which helps to promote
the adhesion of the resist. Afterward, a positive photoresist (AZ1518,
Microchemicals, Germany) was spin coated (OPTI spin ST22P, Solar-
Semi, Germany) onto the wafers at 4000 rpm, resulting in a resist layer
thickness of 1.8 ym. The wafers were then taken to the mask aligner
(MicroTec MA 6/BA 6, Siiss, Germany) and illuminated with UV
light through a chromium photomask (Compugraphics Jena,
Germany) consisting of S-um-wide stripes with a S ym gap between
adjacent stripes. After developing with AZ 726 MIF (Microchemicals,
Germany), wafers were etched for 40 s with ammonium fluoride
(ammonium fluoride etching mixture, semiconductor grade Puranal,
Sigma-Aldrich, Germany) to create S-ym-wide, 60-nm-deep stripelike
grooves in the silicon dioxide layer. Eventually, the rest of the
photoresist on the wafers was stripped off through ultrasonic cleaning
for 5 min in acetone and then another 5 min in isopropanol, and
ultimately the wafers were blown dry with N, (Figure 1A).

To generate the quadruple pattern, a second set of stripes was
etched into the wafers by repeating the photolithography and etching
steps with the photomask rotated by 90°. This procedure results in a
checkerboard structure with segments of different heights (Figure 1B).
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Figure 1. (A) Generation of nanotopographic Si substrates with a
quadruple structure by photolithography and wet etching. (B) AFM
surface scan of the patterned substrate showing S ym X S pum
segments with height differences of 60 nm between adjacent segments.
(C) Schematic illustration of the BCML procedure. A micelle solution
is transferred onto the Si wafer in a spin coater, and micelles self-
assemble on a planar substrate into a quasi-hexagonal structure. Plasma
treatment removes the polymer micelles, leaving only metallic gold
nanoparticles on the substrate. (D) SEM image of the nanostructured
nanotopography.
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2.2. Block Copolymer Micelle Nanolithography (BCML). The
microstructured samples were patterned with gold particles using
block copolymer micelle nanolithography. Poly(styrene-b-2-vinyl-
pyridine) (PS(110000)-block-P2VP(52000), 4 mg/mL, Polymer
Source, Canada) was dissolved in toluene (p.A., Merck, Germany)
and loaded with tetrachlorogold(III) acid trihydrate (Aldrich,
Germany) in a molecular ratio of 0.4. The Si microstructures were
cleaned in an acetone ultrasonic bath for S min followed by a S min
ultrasonication in isopropanol. A droplet of 20 uL of the gold-loaded
polymer solution was spin coated onto the microstructured Si
substrate at 1000, 5000, and 7000 rpm (WS-650Mz-23NPP, Laurell,
USA). To remove the micellar polymer, the spin-coated, dry substrates
were exposed to plasma using a mixture of hydrogen and argon gas
(10% hydrogen, 90% argon) in a plasma etcher (TePla 100 plasma
system, PVA, Germany) at 0.4 mbar and 300 W for 1 h. In order to
further homogenize the micelle distribution, on specific samples
ultraszc;und annealing was carried out for 30 s as described by Williges
et al.

2.3. Scanning Electron Microscopy (SEM) and Image
Analysis. Prior to SEM imaging, the samples were coated with a
thin layer of graphite using a sputter coater (BAL-TEC SCD 050,
Capovani Brothers Inc,, USA). SEM (Supra SSVP, Zeiss, Germany)
imaging was carried out at S kV using both in-lens and secondary
electron detectors at a working distance of 3 mm. The interparticle
spacing was on the one hand calculated using a custom-written Matlab
routine (Matlab, Mathworks, USA), which first determined the particle
density and then, assuming a perfect hexagonal particle distribution,
calculated the corresponding nanoparticle spacing. On the other hand,
for a more accurate measurement of interparticle spacing variations as
well as for calculating the 6-fold bond orientational order parameter of
the nanopattern, a nearest-neighbor detection algorithm was employed
in Image].”>** Both analysis methods were performed on multiple
individual areas (1 ym X 1 ym) of the same segment. Heatmaps were
generated using the pcolormat function in Matlab.**

2.4. Atomic Force Microscopy (AFM) Imaging and Image
Processing. Atomic force microscopy (AFM) topographic imaging
was employed to measure the step height of Si microstructures and to
determine the topography after spin coating with micelle solution.
Imaging was performed on a JPK NanoWizard 3 (JPK Instruments
AG) operated in ac mode using ACTA cantilevers (spring constant
~40 N/m, resonance frequency ~300 kHz; Applied NanoStructures
Inc.) for uncoated Si microstructures and MSNL-F (spring constant
~0.6 N/m, resonance frequency ~100 kHz, Bruker AFM Probes) for
micelle-coated samples at scan rates of 1—2.5 Hz. Image processing
and cross-sectional analysis were done in Gwyddion 2.37 (Gwyddion
— free SPM, sourceforge.net).

3. RESULTS AND DISCUSSION

The experimental heart of our method is a Si substrate with a
microscopic quadruple surface pattern of 5 ym X S ym square
segments. The surface was patterned using photolithography
and wet etching (Figure 1A). Specifically, a 4 in. Si wafer was
coated with a photoresist and irradiated with UV light through
a mask consisting of stripes of 5 ym width at intervals of S pm.
Wet etching yielded a surface topography exhibiting stripes 5
um wide and 60 nm deep. After stripping off the resist, the
wafer was again coated with a photoresist and irradiated for a
second time through the mask, which had been rotated 90°.
The final etching procedure resulted in a multileveled
checkerboard topography of S um X S um segments in a
quadruple pattern with a height difference of 60 nm between
adjacent segments (Figure 1B). To introduce nanostructuring
onto the micropatterned substrates, block copolymer micelle
nanolithography was employed using a gold-carrying micelle
solution that was deposited by spin coating (Figure 1C).
During plasma treatment with a mixture of hydrogen and argon
gases, the polymer matrix of the micelle shell was removed,
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leaving elementary gold nanoparticles on the surface of the Si
substrate. Figure 1D shows a scanning electron microscopy
(SEM) image of a plasma-etched substrate that has a gold
nanopattern on the nanotopographic Si substrate.

Figure 2A presents a representative magnified SEM image of
the center of a quadruple segment pattern with a nanoparticle
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Figure 2. (A) SEM image of a gold-nanoparticle-decorated quadruple
structure revealing variations in interparticle spacing between the
different segments of the quadruple. (B) Interparticle spacing of
nanoparticles on segments of different height, averaged from four
quadruple structures. Clearly, the interparticle spacing is controlled by
the segment height. The interparticle spacing was calculated from
particle densities, assuming a hexagonal particle arrangement. Error
bars denote the standard deviation. Inset: Color code of segments
within a quadruple structure.

coating. The four areas of the quadruple are referred to as a, bl,
b2, and ¢ depending on the thickness of their silicon dioxide
layer, with segment a being the highest, segment c being the
lowest, and segments bl and b2 being identical at an
intermediate value. The image reveals visible differences in
the interparticle spacing from one segment to the next. For
detailed analysis, 1 ym X 1 gm spots on segments of different
topographical height were examined, and the average
interparticle spacing was calculated. Figure 2B shows the
averaged interparticle spacings for a nanotopographic substrate
spin coated at 1000 rpm, as determined with our particle-
density-based algorithm. The topographically highest segment a
exhibits a significantly larger average interparticle spacing than
the lowest segment c, with a difference in interparticle spacing
of more than 20 nm. On the other hand, segments bl and b2
have a similar intermediate interparticle spacing. The nearest-
neighbor analysis of interparticle spacing yielded comparable
results [(a) 84.1 + 9.9 nm, (b1) 71.8 + 9.5 nm, (b2) 71.4 + 9.5
nm, (c) 63.0 + 10.0 nm)], where the standard deviation is a
measure of the variation in spacing of individual nanoparticles.

To explain the observed dependence of interparticle spacing
on the topographical height of a segment, we also investigated
the distribution of micelles on the substrate before plasma
etching. At the end of the spin coating process, a monolayer of
micelle solution uniformly covers the substrate and a significant
difference in micelle coating density is present among the four
segments (Figure 3A). Segment a is depleted in micelles at the
edges bordering lower segments bl and b2, which have the
same topographical height; segments bl and b2 are in turn
depleted in micelles toward segment ¢, which is the lowest
segment. We further analyzed height profiles of these AFM
images (Figure 3B), shown as arrows in Figure 3A. These
profiles prove that there is a monolayer of micelles in the center
of each segment, as the height difference between the lowest
and the highest segment is identical to the height difference of
segments in the underlying Si microstructure. Furthermore, it
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Figure 3. (A) AFM image showing the distribution of micelles after
the spin coating procedure. Depletion in nanoparticles at the edge of
the highest square and the enrichment of nanoparticles at the edges of
lower squares are clearly visible. (B) Height profiles for lines 1, 2, and
3 shown in A revealing the stacking of micelles at the edges of lower
segments. These data also prove that indeed monolayers of micelles
are adsorbed on all four segments. (C) Average of interparticle spacing
along a 1 ym broad stripe at the edge of different segments (x/y refers
to the 1 ym broad stripe on segment x that is adjacent to segment y).
The data quantify the enrichment and depletion of nanoparticles on
the lower and higher segments, respectively. Furthermore, the data are
consistent, as segments bl and b2 have identical heights and lead to
identical interparticle spacings. (D) Sketch of the proposed
mechanism for micelle enrichment in the lower segments, caused by
a flow of micelles toward the lower segments of the quadruple
structure during solvent drying.

Talb2
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shows that micelles are loosely packed on segment a, whereas
micelles are densely packed on segment c. The observations are
consistent with our interparticle spacing analysis of plasma-
etched substrates in Figure 2. We also observe the stacking of
micelles at the upward edges of the nanotopography. We
suggest the arrangement of micelles to be the result of two
types of forces that take effect as the solution starts to
evaporate: steric interactions and immersion forces, which
include drag forces due to the receding liquid surface, friction,
convection, interparticle interaction, and capillary forces.”>*
During evaporation, micelles near the edge of neighboring
segments experience these immersion forces (mainly capillary
and drag forces) that sweep them downward to a lower
segment (Figure 3D). This results in an accumulation of larger
numbers of micelles in lower segments, effectively causing
higher particle densities and hence smaller interparticle spacing.
It also leads to less ordered structures at the edges. As the
solvent continues to evaporate, the edges of the nano-
topographies act as pinpoints for menisci and capillary effects
create a flux of micelle solution toward the walls. This leads to
the piling up of micelles at the boundaries of lower segments
compared to higher neighboring squares (Figure 3D). The
graph in Figure 3C shows results from a detailed analysis of this
edge effect. Our data clearly show that a depletion of
nanoparticles on a topographically higher segment leads to an
enrichment of nanoparticles on the adjacent lower segment.
Moreover, our study demonstrates a clear correlation
between the organization and spacing of nanoparticles on the
one hand and the spin coating speed used during preparation
on the other hand. Figure 4 shows that an increase in spin
coating speed induces an increase in interparticle spacing, in
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Figure 4. Heat maps showing how nanoparticle spacing is controlled
by the nanotopography and by the spin coating speed. Increasing the
spin coating speed causes an overall increase in interparticle spacing. A
spin coating speed of 1000 rpm leads to an almost homogeneous
distribution of interparticle spacing within each segment (A). In
contrast, for S000 rpm (B) and 7000 rpm (C) spin coating speeds the
edge of the nanotopography dominates the regular self-assembly of the
nanoparticles within the segments. A strong enrichment of particles
and thus a smaller spacing are observed at the edges of lower
segments. SEM images of samples prepared with different spin coating
speeds are provided in Figure S1 of the Supporting Information.

agreement with previously published studies.'’ The interpar-
ticle spacing appears to be almost homogeneous throughout
each segment at a spin coating speed of 1000 rpm (Figure 4A).
However, at higher RPM a significant accumulation of particles
appears near the edges of lower segments of the quadruple
(Figure 4B,C), and despite this accumulation, the difference in
interparticle spacing between the centers of the segments is
minor (Figure 4C). Likewise, the disorder in pattern
hexagonality is restricted to a few hundred nanometers near
the edges (Figure S3, Supporting Information). This illustrates
the importance of selecting the optimum spin coating speed in
this method. That is to say, low spin coating speeds yield larger
interparticle spacing differences between the centers of different
segments (here >20 nm between segments a and c for 1000
rpm, Figures 2B and 4A) as well as a more homogeneous
particles distribution over the entire segment compared to
higher speeds. Additionally, we were able to improve the
nanoparticle distribution at the segment edges through
ultrasound annealing, which followed the spin coating step
(Figure S2, Supporting Information).

The nanopatterns generated with our method have the same
chemical contrast as conventional nanoparticle arrays generated
with BCML on flat substrates, hence standard protocols for the
coupling of functional molecules can be used.””” BCML can be
applied to many different substrate types.””**’ Also, the
etching of regular nanotopographies has become a routine
technique,” allowing straightforward transfer of our surface-
coating strategy to substrates other than SiO, wafers.

4. CONCLUSIONS

We present a novel self-assembly fabrication method for quasi-
hexagonal patterns of gold nanoparticles with well-defined
interparticle spacing on microstructured substrates using
diblock copolymer micelle nanolithography. The driving force
for the observed topographic height-dependent interparticle
spacing is attributed to immersion forces and steric interactions
acting on the micelles during the evaporation of the solvent.
Whereas it is known that nanoparticle structures on surfaces
can be altered by surface topography,’"*” the precise structure
generated with such methods is difficult to control. On the
contrary, our method combines the intriguing structural
features of BCML with nanotopography-controlled arrange-
ment, leading to hexagonally ordered micronanostructures by
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pure self-assembly. Hence, our strategy provides a high-
throughput method to control the density and spacing of
nanoparticles in micrometer-sized segments.
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SEM images of nanoparticle patterns prepared at
different spin coating speeds. Order parameter of quasi-
hexagonal micronanostructures. SEM image showing the
arrangement of nanoparticles on a micronanostructure.
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