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Abstract—

In the framework of the More Electric Aircraft, the use

of isolated DC/DC power conversion for the electrical power

distribution system is one of the most investigated solutions.

If the DC/DC converter produces a variable common-mode

voltage, leakage current can flow in the inter-winding parasitic

capacitance of the high-frequency transformer, leading to

insulation deterioration and early failure. This paper proposes

to use modified H-bridge structures, already employed in the

photovoltaic system for DC/AC power converters, to enable

constant common-mode voltage for isolated DC/DC convert-

ers. The analysis shows that this solution can achieve the

same efficiency as the conventional one, while simulations and

experiments show a strong reduction of the common-mode

current flowing through the transformer. A reliability analysis

showed that the lifetime of the high-frequency transformer can

be extended with the proposed solution.

I. INTRODUCTION

The More Electric Aircraft initiative aims at increasing the

penetration of the electrical systems into the aircrafts, in order

to decrease the weight and increase the overall efficiency and

reliability. Already now, the newer aircrafts as the Boeing 787

and the Airbus A380, have an increased amount of electrical

systems, and the tendency seems to be growing. If more power

needs to be processed by electrical appliance, the need for

power electronics converters increases as well [1].

Several DC/DC converters with galvanic isolation that could

be interesting for the MEA were proposed. Among these,

the Series Resonant Converter [2] allows obtaining very high

efficiency at the price of a limited controllability, whereas the

phase-shift full-bridge converter [3] is a bi-directional power

converter with power control capabilities [4], [5]. The Dual

Active Bridge (DAB) converter has attracted the interest of

industry and academia because of the extended soft-switching

operation and good power control. Its application to the

aerospace field has already been proposed in several works

[6]–[9].

An important requirement, that is peculiar of the aircrafts,

is that the electrical equipment on-board should be grounded

for safety reasons. Hard-grounding of the power bus is one of

the possibilities to reduce the common-mode noise at the user

interface [10]. However, as a common power ground exists,

common-mode currents can flow between the converters, in a

similar fashion to what happens in the low-voltage grids with

the Terra-Terra (TT, doubly grounded) distribution system,

where each converter shares the same ground [11]. These

currents must be minimised as well, calling for low-common-

mode power converters.

Since efficiency is one of the major concerns in todays

converter design, different transformer structures and winding

techniques were proposed in the literature for high-frequency

transformers. The purpose is to limit the AC resistance of

the windings, which is principally due to skin and proximity

effects [12]–[14]. One of the most efficient solutions to limit

the proximity effect is to realize the transformer with an inter-

leaved primary and secondary structure. However, an extensive

interleaved structure increases the inter-winding capacitance

between the primary and the secondary of the transformer,

exacerbating the EMI problem and increasing the circulation

of common-mode currents. For a compact and very efficient

structure, such as planar transformer, the primary- and the

secondary-side inter-winding capacitances are very large due

to the large winding area and short face-face distance.

The voltage across the turns, subjected to PWM converters,

is not uniformly distributed. The high-frequency models of

the coils show that step voltage impulses distribute exponen-

tially among the turns and therefore the first ones, closer to

transformer terminals, are subjected to higher voltage peaks

[15]. If, for a winding design, the first turns are close to the

negative terminal of the transformer, a maximum differen-

tial voltage is seen between them and the voltage stress is

maximum. Furthermore, for aerospace applications subjected

to pressure variations in function of the flight altitude, the

Partial Discharge Inception Voltage (PDIV) decreases with

the pressure drop [16]. Reducing the common-mode voltage

variation between the transformer sides is a method to limit

the detrimental effects of common-mode currents and lifetime

degradation of the magnetics [17].

To reduce the common-mode voltage of power converters, in

the recent years, many modifications of the H-bridge topology

were proposed for DC/AC photovoltaic (PV) converters [11],

[18]. The basic idea is to decouple the DC input and the

AC output during the converter zero state; this can be done

with additional switches in the DC side (like the H5 or H6

solutions) or a bi-directional switch in the AC side (Highly

Efficient and Reliable Inverter Concept, HERIC). Marked

reduction of the common-mode voltage was demonstrated both

in academia and industry.

The scope of this paper is to investigate how these topolo-

gies, developed for non-isolated hard-switching DC/AC con-

verters, behave when applied to isolated soft-switching DC/DC

converters. Considering that the reflected secondary voltage at
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the primary side of the transformer is always lower than the

primary voltage, employing a low common-mode topology

as the primary side converter allows obtaining a constant

common-mode voltage across the transformer. Since this pa-

per focuses on the principle, only the H5, H6 and HERIC

topologies will be analyzed, but the analysis can be extended

to other topologies as well.

The paper is organized as follows. Section II describes

the common-mode issue on aircrafts, Section III presents

an analysis of the losses of the proposed power converter,

Sections IV and V present the simulations and the experiments,

Section VI discusses the reliability of the high-frequency

transformer with the proposed solution and section VII draws

the conclusions.

II. COMMON-MODE VOLTAGE GENERATION MECHANISM

IN THE DAB

The DAB, whose schematic is shown in Fig. 1, is composed

of two H-bridges driven by a PWM with 50 % duty-cycle. The

phase-shifting between the resulting square waves at primary

and secondary determines the power flow. The soft-switching

operation of the DAB is however limited by the voltage ratio

between the two ports and, in order to extend it, a dual-

phase-shift modulation can be applied [19]. In this case, an

additional phase-shift between the two legs of the primary or

secondary side is introduced, allowing for further optimization.

The dual-phase-shift technology is mature and well-accepted,

as confirmed by a thriving literature and by the acceptance

from industry. The soft-switching range extension and the

efficiency improvements in the case of variable voltage ratio

have already been demonstrated.

Fig. 1: Dual Active Bridge Converter.

Fig. 2 shows the idealized voltage waveforms for the dual-

phase-shift modulation. d represents the normalized phase-

shift of the secondary bridge, while the primary bridge is

modulated by a three-level modulation, where the two legs

have a normalized phase-shift of m/2. Two cases are possible,

i.e. if the commutation of the secondary bridge happens before

or after the commutation of the primary bridge.

A consequence of the dual-phase-shift modulation is a three-

level waveform applied to the transformer. The third level is

caused by the current free-wheeling on the upper or lower

devices of the H-bridge. This operation is known to cause

severe common-mode variations, that cause leakage current to

flow through the windings parasitic capacitance, Cp, in Fig.

1.

Fig. 2: Primary and secondary voltage waveforms for the DAB

converter with dual-phase-shift modulation. Case when d <
m/4 (a) and case when d > m/4 (b).

In fact, the inter-winding capacitance provides a low-

impedance path at high frequency between the primary and

secondary windings; as a result, it deteriorates the system EMI

performance [20]. Transformer shielding is a widely-adopted

common-mode noise reduction technique in isolated power

converters [21]. It limits the common-mode noise by reducing

the effective parasitic capacitances associated with the most

severe voltage pulsating nodes. However, inserting shielding

layers in a transformer introduces additional power loss, and

it is not practical in some applications like fully interleaved

transformer winding structure, since too many shielding layers

are needed.

Fig. 3 shows an equivalent schematic of the DAB, where the

H-bridge is modeled as a common-mode voltage source vcmi

and a differential mode voltage source vdi. For the power trans-

fer, only the differential mode voltage is relevant, however,

because of the parasitic capacitance Cp of the transformer,

common-mode current, icm = Cp

vcm
dt

, can flow through the
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common ground. Minimizing the high frequency common-

mode voltage variation over the transformer decreases the

common-mode current.

Fig. 3: Power electronics converters with a common ground

allow the circulation of common-mode currents through the

aircraft’s chassis. (a) equivalent circuit of the H bridge, (b)

equivalent circuit of the DAB converter.

III. LOSSES ANALYSIS

A theoretical analysis is carried out for the DAB operated

with the dual-phase-shift modulation.

Appendix I presents the equations that describe the behavior

of the inductor current during each phase for the two cases.

Depending on the topology chosen (H4, H6 or HERIC), the

conduction and switching losses will concern different devices.

In order to correctly estimate the semiconductors losses, the

modulation strategies will be analyzed in the following. Figure

4 shows the schematic of the transformerless topologies under

investigation.

Fig. 5 shows a typical case of the dual-phase-shift modula-

tion as well as the commutation signals of the H6 and HERIC

converters. H5 behaves very similarly to H6, except for the

fact that only the high-side free-wheeling is present.

Fig. 5a shows the commutation sequence for the H6 mod-

ulation. The topology and the current flow are exemplified

above the commutation signals. Assuming a positive current

direction, at t = Ts

2
−

mTs

4
, the DC decoupling device s5

turns off with hard-switching, while s4 turns off at zero

current. At t = Ts

2
+ mTs

4
, switch s1 turns off with hard-

switching. With this choice, one commutation affects s5 and

another commutation affects s1. If s5 was switched off after

s4, no switching losses would occur in the decoupling devices.

Choosing which device to switch off earlier allows choosing

which device will experience the switching loss.

Fig. 5b shows a possible sequence to commutate the HERIC

converter. The basic idea would be to switch off s1 and s4 at

t = Ts

2
−

mTs

4
and then to switch on simultaneously s5 and s6

after a dead-time to avoid the leg short-circuit. This choice,

however, would imply a bipolar waveform at the output of

the bridge and more switching losses. If the devices s5 and

s6 can be gated independently, shortly before t = Ts

2
−

mTs

4
,

s6 is switched on (the diode in parallel to s5 prevents the leg

short-circuit), so that when s1 and s4 are switched off (hard-

switching), the current flows through s6 and the diode of s5.

In the same way, at t = Ts

2
+ mTs

4
switching off s5 and s6

(hard-switching), the diodes s2 and s3 carry the current. The

devices can be then switched on at zero voltage.

The losses of the various topologies were calculated for

different values of the phase-shift and of the voltage ratio

only for the primary side converter, since the behavior of

the secondary side is not affected. The simplification to use

m = 1− nV2

V 1
to guarantee the volt-second balance at primary

and secondary sides is done. More complex choices of m
can be performed, and they do not affect the equations in

Appendix I. Fig. 6 shows switching and conduction losses for

the system operating with V1 = 270 V, V2= 28 V for unity

voltage ratio, fs = 24 kHz. The selection of the inductance is

an important parameter and determines the overall reactive

current circulation. To be consistent with the simulations

and the experiments, a value of 160 uH was chosen. The

thermal characteristics of the SiC MOSFET C2M0040120D by

Wolfspeed were taken from the data-sheet of the component.

The full-bridge (H4) converter is added for reference.

The loss calculation takes into account the resistive behavior

of the MOSFETS, and it is performed by calculating the RMS

current through the individual switches and the typical value

of the on-state resistance. It is assumed that, during the reverse

conduction stage, the MOSFET is still gated, so the current is

flowing through the channel. The body-diode of the device is

carrying the current only during the dead-times. This choice

leads to an underestimation of the conduction losses, especially

at low current, since the on-state voltage of the SiC diode is

much higher than the channel conduction.

The switching losses are calculated from the off energy

taken from the data-sheet (the on-energy is neglected, since

it is assumed that the converter operates under soft-switching

condition) and are linearly scaled depending on the switching

current and voltage.

From the analysis it can be seen that there are points of

operation where the switching losses of the bridge devices (for

H6) or the AC devices (for HERIC) are very low, because of

the particular shape of the current. With a particular choice

of the modulation, the switching losses for the DC devices of

the H6 could be also set to zero.

Fig. 7 shows the overall losses for the H6 and HERIC

topology (H4 losses are theoretically the same as HERIC),

showing that H6 is always less efficient than HERIC, however

the difference is lower at lower voltage ratios, because of the

lower conduction losses of the DC devices. Nevertheless, the
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(a) H5 Topology. (b) H6 Topology. (c) HERIC Topology.

Fig. 4: H-bridge topologies with reduced common-mode voltage.

H6 topology presents the important advantage to have two

additional switches in series, making it more resilient in the

case of a spurious turn-on or device failure. The short-circuit

failure is considered to be the most severe, since it must be

detected very fast and the current must be interrupted before

the converter is destroyed due to DC link short-circuit. A

failure in the decoupling devices deteriorates the common-

mode performance but keeps the converter operational and

the presence of four devices in series increases the chance

to interrupt the short-circuit current in the case of a failure in

one of the H-bridge devices. This is particularly relevant for

aircraft applications, where the components are more exposed

to cosmic rays. A charged particle hitting the semiconductor

junction can generate enough energy to cause a spurious turn-

on or to damage the device. In this context, having a topology

that increases the fault handling in case of a short-circuited

devices can be the main criterion.

IV. SIMULATION RESULTS

Simulations were carried on with Simulink/PLECS soft-

ware, with the same parameters as the losses analysis. The

goal is to highlight the operation of the reduced common-mode

architectures. The H4 will be compared against the HERIC,

and the results for different parameters are shown in Fig. 8

and Fig. 9. In Fig. 8 the condition is close to the theoretical

minimum losses for the AC switch of the HERIC converter,

as can be seen, iL
(

Ts

2
−

mTs

4

)

is close to zero. It is also

evident that the common-mode voltage offered by the HERIC

solution is constant. Fig. 9 shows a condition where the H-

bridge is operated very close to a square wave, even for the

H4 converter, the amplitude of the pulses of the common-

mode voltage is small. In this condition, because of the almost

trapezoidal current of the inductor, the switching losses of the

AC switches and of the H-bridge are almost equal.

The losses in all the components of the converter are ana-

lyzed to show how they are distributed and which efficiencies

could be achieved. For the low-voltage stage, the Silicon

MOSFETs IRFP4368PbF are considered. The parameters of

the transformer regarding the copper and core losses are taken

from the data-sheet of the manufacturer A value of 0.05 Ohm

is considered for the external inductor. It is assumed that the

copper losses of the transformer are equally shared between

primary and secondary windings (primary winding resistance

0.075 Ohm) and that the core losses are constant at 5 W.

Fig. 10 shows the loss breakdown at the different operating

points. At low power, the core losses are quite significant. The

trend that can be observed is that the losses in the magnetic

components and the LV stage contribute to the majority of the

losses when the power is increased.

This would lead to an efficiency higher than 97 % in some

operating points.

V. EXPERIMENTAL RESULTS

In order to test the capability of the reduced common-mode

topology to improve the DAB converter with dual-phase-shift

modulation, a prototype of a DAB for aerospace applications

[6] was modified with a bi-directional switch to re-configure

it as a HERIC converter, see Fig. 11. The devices chosen

for the prototype are the same as the ones considered in the

simulation results, for the tests, a reduced power up to 650 W

was considered.

E-core shape (shell type) or U-core shape (core type) could

be adopted for the design. On the one hand, the core type

has a better window utilization, reaching higher isolation

requirements and reducing the partial discharge issues. On

the other hand, the shell type can reach very small leakage

inductance, which is very advantageous for the efficiency point

of view. Note that Litz wires were used to reduce the skin

effect.

For the prototype transformer implementation, the core type

was selected, where the U-core (UI 93/104/30) was used.

The choice of the U-core is preferred for application with

high insulation voltage and low parasitic capacitance, for the

low-common-mode converter of this paper an E-shape foil

transformer would be preferred . The choice of the U-core is

for the sake of simplicity, because the design and optimization

of a high-efficiency transformer is outside the scope of this

work. The transformer has a leakage inductance of 10 µH
(seen by the primary side), an external inductance of 150 uH

was added. The transformer turns ratio is nDAB = 0.1037 and

the switching frequency is 24 kHz, to be consistent with the

analysis.

Fig. 12 shows the steady-state waveforms of the HERIC

converter under different voltage transfer ration (output 28
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Fig. 5: Commutation sequence for the H6 (a) and HERIC (b)

converters.

V (a) and 25V (b)), showing the excellent agreement with

the simulations. Fig. 13 shows the output voltages of the H-

bridge legs referred to the negative power supply and the

common-mode voltage when the HERIC switch is disabled

(a) and enabled (b). As expected, the common-mode voltage is

basically flat. Differently from the simulations, where the de-

vices performed ideal commutations and presented no parasitic

elements, in the experiments a small common-mode voltage

variation happens. This phenomenon is the same behavior of

a bipolar H-bridge performing non-ideal commutations in a

PV inverter: a small common-mode current flows [11]. This

problem can be addressed via a careful optimization of the

circuit layout and the equalization of the pulse times. In

fact, when the signal is transmitted via optic fibers, different

propagation times in the turn-on/off of the optic fiber cause

a small mismatch of the gate signal. Although it generates

common-mode current (and EMI), it does not generate high

dv/dt common-mode variations that deteriorate the insulation.

Fig. 14 shows the current of a 1 nF capacitor (Cp in Fig.

3b) connected between primary and secondary side of the

transformer recorded with the oscilloscope Lecroy HDO6054.

Fig. 14a shows the DAB solution (rms value 160 mA) and Fig.

14b shows the HERIC solution (rms value 72 mA). Although

the chosen value may seem high for conventional transformer

(where the capacitance is kept in the range 100-500 pF), some

very optimized foil transformer can have much higher value,

like 3.8 nF like in [22].

Due to limitations of the power circuit used to implement

the bidirectional switch, the switches s5 and s6 have to be

gated simultaneously, causing a bi-polar voltage at the primary

side. This is acceptable, since the target of the demonstrator

is not to achieve a high efficiency but to show the potential

common-mode reduction of the modified DAB. The efficiency

of the converter, normalized to the reference power 650 W, is

shown in Fig. 15, where several cases are analyzed. The DAB

operating with single-phase-shift with m = 0 shows overall

very good performance, reaching a peak efficiency of 95.5 %

and it is used as benchmark. For the sake of completeness, it is

worth noting that the optimized commutation sequence implies

changing the turn on/off instants of the devices depending on

the expected current polarity. For hard-switching PV converter,

the switching frequency is rather low (in the order of 10

kHz) and the current is at the same frequency of the grid.

In these conditions, realizing the optimized strategy presents

no difficulties. For soft-switching applications, the current

changes polarity at each PWM period, meaning that the turn

on/off instants must be re-calculated twice each period. Con-

sidering that the switching frequency of a DC/DC converter

is normally higher than the one of a grid-connected converter,

this means that the duty cycle calculation must be performed

in the range of 50-100 kHz, implying in a more difficult

programming of the microcontroller (multiple interrupts) or

the use of dedicated devices (FPGA, CPLD, System on Chip)

for the implementation of the modulator.

If the voltage ratio is changed but the DAB is still modulated

with the single-phase-shift control, the efficiency is seriously

deteriorated, especially at lower output power, because of the

increased reactive power circulation. As already demonstrated

in literature, the simple dual-phase-shift control by employing

m = 0.1 allows improving the efficiency, reaching the values

of the single-phase-shift control under unity transfer ratio.

The HERIC solution, as expected because of the gate driving

limitation, implies additional switching losses, because the

impossibility to realize the optimize switching strategy. Nev-
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Fig. 6: Switching and conduction losses for the different topologies divided among the switches.

ertheless, the efficiency at lower power is almost unaffected,

while for higher power a maximum difference of 0.9 % was

noticed.

The discrepancy between the experiments and the theo-

retical efficiency calculation is due to multiple causes. The

first one is the body-diode conduction loss during the dead-

time (1 us for the primary side and 2 us for the secondary

side), that increases the on-state semiconductor losses. The

LV MOSFETS gate resistance was chosen to be 10 Ohm,

greater than the 2.7 Ohm used for the tests performed in the

data-sheet, this accounts for an increased switching losses in

the secondary bridge. When d < m/4, the secondary bridge

theoretically commutates at zero current. Difference in the

parameters could, however, shift this point, causing the loss of

soft-switching in the secondary bridge. A modification of the

dual-phase-shift modulation that forces the secondary current

to be greater than zero could be implemented to solve this

drawback.

The non-optimized layout is anyway responsible for in-

crease turn-off losses because of the voltage overshoot during

the commutation process. The capacitor losses are neglected,

and they can be relevant especially for the LV side, where the

current is higher. The high current ripple in the capacitors

is a well-known drawback of the DAB converter. Finally,
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Fig. 7: Overall losses for the primary side comparison for the

different topologies.

additional resistive losses in the LV side are present because of

the cabling and of the PCB. As typical of HV/LV applications,

most of the losses are focused on the LV-stage, improvement

in terms of layout and of the LV capacitor banks are envisaged

to reach high efficiency. The usage of LV GaN semiconductors

can also be improved to boost significantly the efficiency.

VI. EFFECTS OF COMMON-MODE VOLTAGE ON THE

TRANSFORMER LIFETIME

In this section, the impact on the transformer lifetime due

to the common-mode voltage reduction is evaluated based on

existing lifetime models. It has been empirically observed that,

over a restricted time scale the lifetime t of many dielectrics

subjected to high field E varies according to the so called,

inverse power law:

t = CE−n (1)

where C and n are adjustable parameters varying with the

experimental conditions. In this original form the lifetime of

dielectrics seems to be not correlated with the frequency of

the applied voltage. Nevertheless, it has also been observed

and verified in real applications that transformers or electri-

cal motors subject to high-frequency supply voltage present

shorter lifetimes, thus a more comprehensive formulation of

the law is given in (2).

t = CE−nf−x (2)

where x is a constant and it is speculated that the failure

mechanism does not change with frequency [23]. The expres-

sion can be also given by

LE

L0

=

(

E

E0

)

−n

·

(

f

f0

)

−x

(3)

where E0 and f0 are the values of electrical stress amplitude

and frequency below which electrical aging can be neglected

and failure is the consequence of aging produced by the other

stresses; L0 is life for E = E0 and f = f0, whereas LE is the
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Fig. 8: Simulation results: d = 0.1, m = 0.45.

lifetime under the actual conditions. Considering the separated

action of the differential and the common-mode voltages, the

lifetime can be estimated considering a multi-stress model as

in [24]. When simultaneous stress are applied, they normally

produce a degradation effect which is far greater than the one

obtained by the sum of the single aging rates, but slightly lower

than the one derived by a simple multiplicative law. The total

lifetime, valid for N simultaneously applied stresses, can be

given in (4)

L

L0

=
L1

L0

L2

L0

...
LN

L0

G(S1, S2, ...SN ) (4)

where L is the multi stress lifetime, L1 . . . LN are single-

stress lives for stress S1, . . . SN , respectively, L0 is the

reference life in the absence of any stress producing aging,

and G(S1, S2, ...SN ) is the correction function. Considering

the action of the differential common-mode voltage, the law

in (4) can be written as in (5)

L

L0

=
LEd

L0

LEcm

L0

G(Ed, Ecm) (5)

according to the compatibility conditions L/L0 = LEd/L0,

for Ecm = E0 (LEcm = L0) and L/L0 = Lcm/L0, for Ed =
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Fig. 9: Simulation results: d = 0.1, m = 0.05.

E0, (LEd = L0); thus, G = 1 in both cases. The simplest

expression for G(Ed, Ecm) which satisfy the above conditions

is

G(Ed, Ecm) =

(

Ed

E0

)b(1− E0

Ecm
)

(6)

where b is a constant that depends on the application.

Considering a conventional H4 topology, when the converter

operates, both differential and common-mode voltage can be

measured at the inverter output. Therefore, the lifetime will

depend on the joint action of Ed and Ecm. Considering Ed

and Ecm of equal values in amplitude and frequency and

combining (3), (5), (6), the expression for L/L0 is given in

(7).

L

L0

=

(

Ed · Ecm

E2

0

)

−n

·

(

fd · fcm
f2

0

)

−x

·

(

Ed

E0

)b(1− E0

Ecm
)

(7)

In case of HERIC solution, the action of Ecm can be

neglected as the aging depends only by the differential field.

L

L0

=

(

Ed

E0

)

−n

·

(

fd
f0

)

−x

(8)
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Fig. 10: Loss breakdown for the different solutions when m =

0.1 and V2 = 25 V.

Fig. 11: Picture of the experimental prototype.

Considering for n, x and b the values in [25] it is possible

to compare the lifetime improvement estimation of the trans-

former in case of a constant common-mode voltage during

converter operation. From Fig. 16, for a electrical stress with

amplitude from E0 to twice E0 and frequency from f0 to

2f0, the lifetime improvement of the transformer, due to the

adoption of HERIC topology instead conventional H4, reaches

a peak of 25% and it is well above 10% for the whole

considered interval.

Since the lifetime estimation is strictly dependent on the n
and x parameters in (5), a sensitivity analysis is performed.

Fig. 17 shows the results in case of Ecm/E0 = Ed/E0 = 1.3
and f/f0 = 1.3, fair values for wide-bandgap device appli-

cations. The improvement in the transformer lifetime remains

high also in case of a large variation of n and x.

VII. CONCLUSION

This paper proposes to use a H-bridge modified as done

in PV inverters to implement a Dual Active Bridge with
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Fig. 12: Operation of the DAB with HERIC topology under

single (a) and dual (b) phase-shift modulation. Primary voltage

(400 V/div), secondary voltage (50 V/div) and inductor current

(5 A/div)).

low common-mode voltage characteristics. This is particularly

interesting for aerospace application, where the chassis of the

aircraft constitutes a common return path that allows common-

mode current to flow. This is advantageous for the reliability

of the insulation and for the possibility to employ transformers

with high parasitic capacitance but better magnetic coupling

and, as a consequence, higher transformer efficiency. HERIC,

H5 and H6, already proposed for photovoltaic DC/AC invert-

ers, are hereby analyzed for the application of soft-switching

DC/DC converters. Theoretical analysis shows how the HERIC

topology allows for constant common-mode behavior without

additional losses for the converter. The theoretical analysis of

the commutations also highlights that the different devices ex-

perience different switching losses depending on the operating

point. This means that an optimization algorithm can be run

to minimize the switching losses on the H-bridge or in the

decoupling devices at selected operating points. Reliability

analysis based on a partial discharge model for the high-

frequency transformer showed a potential gain of maximum

25% in the reliability, when adopting a low-common-mode

topology. Experiments on a mixed SiC/Si DAB showed an

overall good efficiency and confirmed the common-mode

Fig. 13: Common-mode performance for the DAB (a) and

HERIC (b) topology. H-bridge output voltages (400 V/div)

and common-mode voltage (200 V/div).
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Fig. 14: Comparison of recorded data of the capacitor current

for DAB and HERIC topologies with Cp = 1 nF.

current reduction in the case of the HERIC-based DAB.

APPENDIX I: DAB EQUATIONS

Equations (10)-(14) describe the behavior of the inductor

current iL like in Fig. 2a. Equation (15) and (16) are the

current values at the time of switching of the primary bridge.

Equations (17)-(21) are relative to Fig. 2b.

iL(t) =
nV2

LlkTs

t+ iL(0) 0 < t <
mTs

4
(9)
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Fig. 16: Lifetime of the transformer in case of H4 converter

(a), HERIC converter (b), and lifetime improvement due to the

constant common-mode voltage of HERIC converter respect

H4 (c). The graph shows L/L0 in variation of the applied

electrical stress amplitude and frequency and with n = 3 x =
1 and b = 0.1.
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Fig. 17: Lifetime in case of H4 converter (a), HERIC con-

verter (b), and lifetime improvement due to the constant

common-mode voltage of HERIC converter respect H4 (c).

The grafts show L/L0 in variation of n and x parameters

with Ecm/E0 = Ed/E0 = 1.3 and f/f0 = 1.3.
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