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Abstract 

The Timed Up and Go (TUG) test is a clinical tool widely used to evaluate balance and mobility, e.g. in Parkinson’s 

disease (PD). This test includes a sequence of functional activities, namely: sit-to-stand, 3-meters walk, 180° turning, 

walk back, and turn-to-sit. The work introduces a new method to instrument the TUG test using a wearable inertial sen-

sor unit (DynaPort Hybrid, McRoberts B.V., NL) attached on the lower back of the person. It builds on Dynamic Time 

Warping (DTW) for detection and duration assessment of associated state transitions. An automatic assessment to sub-

stitute a manual evaluation with visual observation and a stopwatch is aimed at to gain objective information about the 

patients. The algorithm was tested on data of 10 healthy individuals and 20 patients with Parkinson's disease (10 pa-

tients for early and late disease phases respectively). The algorithm successfully extracted the time information of the 

sit-to-stand, turn and turn-to-sit transitions. 

 

1 Introduction 

Actually about five million people suffer from Parkin-

son’s disease (PD) worldwide, making it the second-most 

common neurodegenerative disease after Alzheimer’s 

disease [1,2]. Typical symptoms of PD are movement def-

icits such as tremor, rigidity, bradykinesia, and postural 

instability. These symptoms are mainly caused by the 

death of dopaminergic neurons in the midbrain [3].  

It is important to monitor the progression of PD to 

provide physicians and patients with timely feedback re-

garding the state and progress of the disease. Furthermore 

the effectiveness of therapeutic measures e.g. medication 

dosage can be better monitored and optimized. Observa-

tion of motor symptoms by the doctor and evaluation by 

use of diaries are subjective and not sensitive to subtle 

changes while the monitoring via camera systems is also 

expensive and time-consuming [4]. Assessment with 

small ambulatory inertial sensors including e.g. wireless 

transmission is unobtrusive and thus an attractive alterna-

tive to common observation methods [5].  

The main goal of the presented work is to evaluate the 

application of inertial sensors and corresponding algo-

rithms to automate the Timed Up and Go (TUG) test for 

differentiation between healthy individuals and patients 

with PD. The TUG test is one typical and popular disease 

assessment methodology [6] used to evaluate balance 

ability, fall risk, and mobility of a person with PD. During 

the test the person is asked to stand up from a chair and 

walk 3-meters distance at convenient speed, followed by a 

turn of 180°, walk back, and sit on the chair after another 

turn of 180° (see fig. 1). The timing information of each 

Fig. 1: Schematic representation of different transitions (1-6) 

during the Timed Up and Go test. (1) sit-to-stand, (2) walking, 

(3) first turning, (4) walking back, (5) second turning and (6) 

stand-to-sit. Modified from [8]. 

of the subphases taken from the test is clinically important 

to assess the rehabilitation process and the treatment for 

patients [4]. Using a stopwatch to measure this time in-

formation is difficult and consumes clinical resources 

when applied to a larger number of patients. Moreover, 

the accuracy especially in combination with a limited cli-

nicians’ experience is arguable. The result might not have 

the precision needed to objectively assess the effect of re-

habilitative intervention [4]. Hence, an inertial sensor unit 

is addressed in this work to improve the process of evalu-

ation and to get more accurate estimates.  

Recently several approaches have been proposed to 

automate the TUG test based on inertial sensors [4, 7-10]. 

For example, Salarian et al. [4] detected and separated 

transition components of the TUG test using accelerome-

ter and gyroscope sensors which were attached to the 

limbs as well as to the trunk. By using a trained statistical 

classifier he could show a significant difference between 

early PD patients and a control group, in contrast to the 

results obtained with a stopwatch and visual observations.  
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Yet another group employed a hidden Markov model 

(HMM) to recognize the different time phases of the TUG 

test [7]. The authors combined the HMM with different 

classifiers and compared their performances by analyzing 

the different phases of the TUG test.  

In this work a method based on Dynamic Time Warp-

ing (DTW) is applied for time alignment of transition 

phases using a single 3-axis gyroscope mounted on the 

lower back of the person. Similar techniques were recent-

ly employed for scenarios of a general activity classifica-

tion [11, 12].  

2 Materials and Methods 

Ten PD patients (age range: 41-69 and average: 

58.8      , gender: 2 female and 8 male) at an early stage 

of the disease (Hoehn and Yahr score between 1 and 2), 

ten patients (age range: 60-77 and average: 66.2      , 

gender: 3 female and 7 male) in a slightly advanced stage 

(Hoehn and Yahr score between 2 and 3), and ten healthy 

individuals (age range: 51-76 and average: 63.2       , 

gender: 6 female and 4 male) were recruited from the uni-

versity hospital of Tuebingen for this study to perform the 

TUG test. The participants were asked to execute the test 

twice. The measurements were recorded with an inertial 

sensor unit placed on the lower back. The study was ap-

proved by the local ethical committee, and all participants 

gave written informed consent. 

The participants wore an inertial sensor unit 

(DynaPort Hybrid, McRoberts B.V., NL) [13]. This unit 

includes a 3-axis accelerometer (range:   2 g, resolution: 

1mg) and a 3-axis gyroscope (range:   100 deg/s, resolu-

tion: 0.0069 deg/s) with a sampling rate of 100 Hz. The 

data were stored on a Micro-SD card for further pro-

cessing. Within the presented work we used only the gy-

roscope signals. The algorithms were implemented and 

tested in MATLAB (version 7.10 (R2010a)). Before the 

analysis step were carried out, the signals were low-pass 

filtered using a non-causal moving average filter with a 

length of 31.  

Here we focus on the detection of the sit-to-stand, 

turning, and turn-to-sit transitions. Sit-to-stand transition 

was analyzed and detected with the signals from the gyro-

scope along the pitch axis, while the yaw angular rate sig-

nal was used for the turn transition. For the detection of 

the turn-to-sit transition both signals were evaluated. The 

start of the turn transition was detected by analyzing the 

yaw angular rate signal, while the end was recognized 

with the pitch axis signal. The reference data were ex-

tracted manually from the raw sensor signals by defining 

start and end points of every transition. 

Since the TUG test is performed by a series of known 

motion types in a sequential way, an algorithm which 

aligns signals with different lengths and contains time in-

formation can be applied. Here we propose to employ 

DTW for the time alignment between the measurements 

and a motion pattern with known phase time correspond-

ence. The DTW algorithm is chosen due to its well-

known efficiency and robustness in performing temporal 

fusion [15]. This algorithm finds an optimal alignment 

between two sequences   {          } of length   

and   {          } of length  . The test sequence is 

normalized to the template by upsetting and stretching the 

signal segments so that similar sensor observations (see 

fig. 2) occur as far as possible at the same place in both 

sequences. The algorithm finds the optimal alignment by 

building an  -by-  cost matrix where each element (   ) 
corresponds to the square of the pairwise Euclidean dis-

tance: 

 

 

between the two points in the X and Y sequences [16]. 

Each set of the matrix elements starting at upper left cor-

ner and ending in lower right corner, defines an alignment 

between X and Y sequence called a warping path. The 

optimal warping path      is the path where the total 

sum of the local distances along the path  (  ) is mini-

mal: 

    (   )          ∑  (  )
 
   . (2) 

 (   )  (     )
   (1) 

Fig. 2: Alignment of two time sequences. The Arrows mark 

aligned points of the two sequences. Taken from [14]. 

 
(a) Alignment of angular rate signals in yaw axis 
 

 
(b) Alignment of angular rate signals in pitch axis 

 

Fig. 3: Optimal warping path between a template (left) and a 

pattern (top) of (a) ang. rate signals in the yaw-axis and (b) 

ang.rate signals in the pitch-axis. Ang. Rate in deg/s (y-axis) 
over signal length in number of samples (x-axis). 
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Table 2: Time duration for the state transitions of the TUG-Test. S.D. – Standard Deviation 

Table 1: Algorithm absolute error deviations with respect to reference by detecting the start and end points of the state transitions.  

This optimal alignment path can be calculated using 

dynamic programming techniques [16]. The phase time 

information is mapped by the backtracking through the 

obtained optimal path. Fig. 3 shows the optimal paths (red 

lines) through the n-by-m cost matrix for the angular rate 

signals in yaw (a) and pitch (b) axis for one of our meas-

urements.  

3 Results 

The optimal path through the cost matrix was calcu-

lated for all 60 measurements. The cost matrices and the 

paths for a representative assessment are shown in fig. 3. 

For an accurate evaluation of the algorithm’s perfor-

mance, the output of the DTW was compared to reference 

data (table 1). The control group completed the TUG test 

slightly faster than the early PD group: 9.88 s   1.78 s vs. 

10.67 s   1.9 s (reference measurements), 10.05 s   1.75 

s vs. 10.76 s   1.76 s (DTW algorithm). The advanced 

PD group needed more time for performing the TUG test, 

than both other cohorts: 12.19 s   2.67 s (reference meas-

urements) and 12.03 s   2.61 s evaluated with the algo-

rithm. 

The state transitions sit-to-stand, turning and turn-to-

sit were all detected automatically by the algorithm. The 

results for the mean duration of the transitions are sum-

marized in table 2. Clearly, the accuracy of the DTW 

strongly depends on the template selection. Here, for each 

group a different template was chosen by an explicit 

search process. With a larger measurement set available, 

one of the automatic template selection methods will be 

adopted or automatic reference template design methods 

will be employed [15]. 

Table 1 shows the mean and maximum absolute errors 

when detecting start and end times of the transitions. The 

results for the sit-to-stand transitions were not estimated 

because it was difficult to define a reference on the raw 

data for the start time of the stand-to-sit transition. There-

fore, the start of the second turn and the end of the stand-  

to-sit transition were detected so that both transitions 

could be combined into a single turn-to-sit transition. 

The walking phase could be evaluated by measuring 

the period from the end of the sit-to-stand phase to the be-

ginning of the (first) turn, and from the end of the turning 

to the start of the second turning. This indirect evaluation 

is not very representative as it is not possible to distin-

guish between walking and probable standing phases be-

fore or after the walking phase. 

The significant difference between the groups was 

checked using the Wilcoxon rank sum test. The p-values 

are shown in table 3. 

4 Discussion 

The main attention was set to present a novel tech-

nique for obtaining the time duration of state transitions. 

The results in table 2 confirm that the algorithm achieves 

a reasonably good performance when compared to the 

provided reference data. Differences detected between 

controls and early PD patients, and between these two 

groups and advanced PD patients further argue for the 

ecological validity of the algorithm which, however, 

needs certainly further evaluation.  

Only the deviation between the algorithm output and 

the reference for the sit-to-stand transition among the 

healthy control group indicates that the algorithm needs 

further improvement. Although the algorithm showed 

small mean errors in detecting the start and end points of 

the state transitions, some outliers can still be found (see 

entries for max errors in table 1.).  
However, mentioned differences might at least partly 

be explained by a non-negligible error being present in 

the reference data due to manual extraction of the refer-

ence timing from raw signals without direct visual feed-

back for the presented measurement set, and not by a bias 

of the algorithm per se.  
In contrast to Salarian et al. [4], our results for the du-

ration of the transitions, of both the reference and algo-

rithm output, show no significant difference between the 

healthy control and early PD group (table 3). The compar-

ison of the group with the patients in an advanced state of 

the disease (LTPD) with the control or the early PD 

(STPD) group confirmed significant differences in the sit- 

to-stand and turning transitions. This confirms the princi-

ple relevance for clinical use of this algorithm. The sit-to-

stand duration from the reference data for the control vs.  

 

 

 

 Control Group Early PD Group  Long Time PD Group  

Activity Mean (s) Max (s.) Mean (s) Max (s) Mean (s) Max (s) 

Start Sit-to-Stand 0.06 0.22 0.06 0.19 0.32 0.52 

End Sit-to-Stand 0.25 0.90 0.19 0.81 0.21 0.74 

Start Turn 0.34 1.43 0.31 0.94 0.28 0.71 

End Turn 0.15 0.49 0.17 0.41 0.14 0.44 

Start Turn-to-Sit 0.14 0.70 0.14 0.49  0.27 0.85 

End Turn-to-Sit 0.40 0.95 0.38 0.81 0.27 0.73 

 Control Group Early PD Group Long Time PD Group 

 Reference (s) Algorithm (s)  Reference (s)  Algorithm (s)  Reference (s) Algorithm (s) 

Activity Mean S.D. Mean  S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Sit-to-Stand 1.62 0.42 1.34 0.40 1.45 0.30 1.27 0.21 1.87 0.44 1.81 0.39 

First Turn 1.91 0.36 1.97 0.55 2.07 0.31 1.89 0.35 2.54 0.57 2.69 0.62 

Turn-to-Sit 3.63 0.85 3.96 0.95 3.80 0.99 3.83 0.85 4.20 1.03 4.12 1.10 
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 Table 3: Comparison of the state transition durations between the control, long time PD (LTPD) and the short time PD (STPD) 

group for the algorithm (alg.) and reference (ref.) outputs. The values marked in bold were significantly different (p < 0.05). 

 Rank sum p-values 

 Control vs. LTPD Control vs. STPD STPD vs. LTPD 

Sit-to-stand (alg.) 0.0012 0.8392 0.000015 

Sit-to-stand (ref.) 0.0601 0.2974 0.0015 

Turning (alg.) 0.0003 0.9784 0.000026 

Turning (ref.) 0.0004 0.1297 0.0033 

Turn-to-sit (alg.) 0.5608 0.5883 0.4093 

Turn-to-sit (ref.) 0.0834 0.4818 0.2035 

 
the LTPD group showed in contrast to the algorithm out-

put no significant difference. Again we may speculate that 

the manual referencing of the transitions from the raw 

signals was not accurate enough.  

The turn-to-sit transition showed also no significant 

difference between all groups. This indicates that com-

bined timing information can be not accurate enough for 

reliable group separation. Analysis of the single transi-

tions will be considered within future work.  

A temporal signal fusion can also be achieved by al-

ternative mathematical frameworks such as HMMs. How-

ever, according to [15], the DTW has some advantages 

compared to alternative frameworks. It is numerically 

more efficient, accurate and requires very few tuning. 

Moreover, differently from HMM-based methods, the 

DTW shows higher robustness and can be designed 

avoiding explicit training phases. Note that the latter often 

requires a significant number of labeled experimental data 

which may be simply not available. Similarly to HMM, 

the DTW approach can be easily extended for advanced 

multidimensional features and augmented with feature 

dimensionality reduction methods. A clear disadvantage 

of DTW is that the framework is not suitable for arbitrary 

(or unknown) sequence of known motion patterns and is, 

in general, less powerful when compared to advanced 

versions of HMMs. 

5 Conclusions and Future Work 

 If an exact chronology of the state sequences is 

known, the DTW can be efficiently applied for time 

alignment between pattern and test measurement. The 

method can be seen as a promising alternative to monitor 

the progress of PD when applied for the TUG test. 

Our next steps will focus on improving the accuracy 

of temporal estimation of the start and end points of the 

state transitions. Some performance improvement is also 

expected when employing a multiple template approach 

or an implicit template construction as suggested in [15]. 

We are also working on an automated template selection 

criterion to find the best template, which can be used for 

all groups. Moreover, the validation of the algorithm per-

formance should be augmented with video for reference 

timing extraction. 
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