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Introduction: Inertial measurement units (IMUs) positioned on various body locations 
allow detailed gait analysis even under unconstrained conditions. From a medical per-
spective, the assessment of vulnerable populations is of particular relevance, especially 
in the daily-life environment. Gait analysis algorithms need thorough validation, as many 
chronic diseases show specific and even unique gait patterns. The aim of this study 
was therefore to validate an acceleration-based step detection algorithm for patients 
with Parkinson’s disease (PD) and older adults in both a lab-based and home-like 
environment.

Methods: In this prospective observational study, data were captured from a single 
6-degrees of freedom IMU (APDM) (3DOF accelerometer and 3DOF gyroscope) worn on 
the lower back. Detection of heel strike (HS) and toe off (TO) on a treadmill was validated 
against an optoelectronic system (Vicon) (11 PD patients and 12 older adults). A second 
independent validation study in the home-like environment was performed against video 
observation (20 PD patients and 12 older adults) and included step counting during 
turning and non-turning, defined with a previously published algorithm.

Results: A continuous wavelet transform (cwt)-based algorithm was developed for step 
detection with very high agreement with the optoelectronic system. HS detection in 
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PD patients/older adults, respectively, reached 99/99% accuracy. Similar results were 
obtained for TO (99/100%). In HS detection, Bland–Altman plots showed a mean dif-
ference of 0.002 s [95% confidence interval (CI) −0.09 to 0.10] between the algorithm 
and the optoelectronic system. The Bland–Altman plot for TO detection showed mean 
differences of 0.00 s (95% CI −0.12 to 0.12). In the home-like assessment, the algorithm 
for detection of occurrence of steps during turning reached 90% (PD patients)/90%
(older adults) sensitivity, 83/88% specificity, and 88/89% accuracy. The detection of
steps during non-turning phases reached 91/91% sensitivity, 90/90% specificity, and 
91/91% accuracy.

Conclusion: This cwt-based algorithm for step detection measured at the lower back is 
in high agreement with the optoelectronic system in both PD patients and older adults. 
This approach and algorithm thus could provide a valuable tool for future research on 
home-based gait analysis in these vulnerable cohorts.

 
 

Keywords: accelerometer, gait analysis, home-like activities, older adults, Parkinson’s disease, turning

INtRodUCtIoN

Gait deficits are common in older adults (1) and Parkinson’s 
disease (PD) patients, even in early disease stages (2, 3). They are 
associated with an increased risk of falling and reduced quality 
of life (4, 5). Temporal step parameters are crucial in describing 
the quality of gait, e.g., to calculate the risk of future falls and 
response to treatment. Examples are variability of stride time and 
kinematics (6, 7), gait speed (8), and symmetry (9). Heel strike 
(HS) and toe off (TO) (10, 11) are critical events during a gait 
cycle because they define the beginning and the end of every 
stance and swing phase, respectively (12) and enable the calcula-
tion of all of the above parameters.

Several methods have been successfully utilized to extract 
time-related gait parameters, including optical systems (13, 14), 
instrumented walkways (12, 15), and treadmills (16). However, 
such equipment is expensive, restricted to specialized labora-
tories, and can thus not be applied in large populations and in 
home environments. This is a relevant drawback, as the home 
environment may be the most appropriate setting to capture and 
study gait related issues that are relevant to the patient’s daily 
functioning (17, 18), rather than constrained lab settings.

Wearable sensors, such as inertial measurement units (IMUs), 
are relatively cheap, light-weight, easy to use, and therefore a 
promising alternative approach for data collection in the home 
environment (19, 20). They are particularly useful for gait analysis, 
as shown in a relatively large number of studies, e.g., in healthy 
adults (21, 22) older adults (23), and patients with PD (24). 
However, for the use of such devices under medical conditions, 
a thorough validation of detection algorithms is necessary and 
must be performed in every single population presenting specific 
gait impairments (17). Furthermore, movement detection algo-
rithms should be able to differentiate between gait episodes, such 
as straight walking and turning. Parameters like the number of 
steps during turning might be robust indicators of gait impair-
ment in PD (25, 26). This differentiation could help detecting 
context-dependent gait deficits, as shown to occur in older adults 
with poor cognitive flexibility (27).

The algorithm development for IMUs is under constant 
improvement. Various step detection algorithms have been 
proposed, but their validation is limited to laboratory settings, 
and an extrapolation of the results to home-like environments is 
often lacking. Measurements in the laboratory are very controlled 
and do not necessarily correspond to real-world applications. 
Therefore, assessments in home-like environments are of crucial 
importance and a challenge when detecting gait impairments 
based on laboratory algorithms. Based on the lack of home-like 
validated algorithms, this paper presents a detection algorithm 
for HS and TO for home-like environments. The algorithm is 
first validated against an optoelectronic system during treadmill 
walking, in PD patients and older adults and second validated in 
an unconstrained environment using video footage. To the best of 
our knowledge, this is the first step detection algorithm using data 
obtained from an IMU at the lower back with very good accuracy, 
demonstrated across these divergent conditions in two different 
vulnerable populations and during different movement episodes.

Methods

study Participants and settings
Lab-Based Assessment
We performed the lab-based sub-study at the Robert Bosch 
Hospital, Stuttgart, Germany. It was approved by the ethics com-
mittee of the Medical Faculty at the University of Tübingen (pro-
tocol number 602/2012BO1). All participants provided written 
informed consent before they were included in the study. Patients 
were recruited from the outpatient clinic of the Neurology depart-
ment at the University Hospital of Tübingen, Germany and were 
diagnosed by movement disorder specialists (Karin Srulijes and 
Walter Maetzler). Controls were recruited with the support of 
the office of Sport and Exercise and the Bosch BKK health insur-
ance (Stuttgart, Germany). Exclusion criteria for both groups 
were inability to walk without walking aids for at least 20 m and  
the existence of additional neurological disorders. The analyses 
presented here are part of a larger study that focused on gait and 
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tABLe 1 | Demographic and clinical data of the training and test groups.

Pd patients older adults

LAB AssessMeNt

training cohort 1
N (females) 3 (2) 2 (1)
Age (years) 72.3 (4.7) 71.0 (2.8)
MDS-UPDRS III (0–132) 26 (15) 2 (2)
H&Y (0–5) 2 (1) 0 (0)
LED (mg) 640 (353) 0 (0)

test cohort 1
N (females) 11 (5) 12 (4)
Age (years) 74.7 (7.2) 70.8 (3.0)
MDS-UPDRS III (0–132) 39 (9) 1 (2)
H&Y (0–5) 3 (1) 0 (0)
LED (mg) 540 (298) 0 (0)

hoMe-LIKe AssessMeNt

training cohort 2
N (females) 4 (2) 2 (1)
Age (years) 69.3 (3.6) 63.0 (17.0)
MDS-UPDRS III (0–132) 20 (8) 1 (0)
H&Y (0–5) 2 (1) 0 (0)
LED (mg) 683 (735) 0 (0)

test cohort 2
N (females) 21 (11) 12 (6)
Age (years) 66.4 (9.0) 58.4 (8.9)
MDS-UPDRS III (0–132) 32 (12) 2 (4)
H&Y (0–5) 3 (1) 0 (0)
LED (mg) 841 (604) 0 (0)

Data are shown as mean ± SD, except gender.
H&Y, Hoehn and Yahr; LED, Levodopa equivalent dose; PD, Parkinson’s disease; MDS-
UPDRS III, motor part of the revised Unified PD Rating scale.

FIGURe 1 | Experimental setting of the lab assessment showing the inertial measurement unit (IMU) position on the lower back, and the heel and toe markers to 
identify heel strike and toe off using the optoelectronic motion capture system.
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eye movement interaction (28). The training group for the devel-
opment of the algorithm consisted of three PD patients and two 
older adults who were randomly chosen from the dataset. The 
remaining participants (11 PD patients and 12 older adults) of 

the treadmill assessment were assigned to the test group. Table 1 
provides demographic and clinical data of the two groups.

All participants were equipped with 15 reflective markers 
[head (front, top, and back), trunk (jugulum, seventh cervical 
vertebra, and fifth lumbar vertebra), right/left arms, and right/
left heel and toe; the “gold standard system”]. A six-camera Vicon 
T10 system (Vicon© Motion Systems Ltd., UK) (28) collected 
gait information from the reflective markers. The participants 
were also equipped with the Dynaport® Hybrid, sample rate 100 
samples/s, 3DOF accelerometer (range ±2 g), and 3DOF gyro-
scope (range ±100°/s) (McRoberts BV, Netherlands) at the lower 
back (the “experimental system”).

During the 120s assessment, all participants walked on a 
treadmill (h/p/cosmos venus, h/p/cosmos sports medical GmbH, 
Germany) at their preferred speed. PD patients were tested ON 
medication. Manual markers set with the Dynaport® Hybrid 
system at the beginning and the end of each 120s test period 
allowed post  hoc synchronization of the gold standard and the 
experimental system. The comparison regarding the detection of 
step events from both systems was evaluated by one independ-
ent clinical observer (Morad Elshehabi). Figure  1 illustrates 
the experimental setting that was used in the lab assessment to 
provide a reliable HS and TO event detection. Treadmill walk-
ing guarantees regular straight walking, and the accuracy of the 
developed algorithm can be evaluated before being applied to 
more complex movements.

Home-Like Assessment
We performed the home-like sub-study at the University of 
Tübingen, Germany. This sub-study was approved by the ethics 
committee of the Medical Faculty at the University of Tübingen 
(protocol number 399/2012BO2). The study population con-
sisted of a training group of 4 PD patients and 2 older adults, 
and a test group of 20 PD patients and 12 older adults. Four PD 
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FIGURe 2 | Heel strike (HS) and toe off (TO) detection using continuous wavelet transform (cwt) algorithm. IMU, inertial measurement unit; LPF, low-pass filter.
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patients with challenging symptom constellations (e.g., tremor 
and dyskinesia) were chosen by Walter Maetzler, to increase 
specificity of the algorithm. Two older adults were randomly 
chosen from the database. The remaining participants of the 
home-like assessment were assigned to the test group. Patients 
were recruited from the inpatient and outpatient clinics of the 
Neurology department, University Hospital of Tübingen, and 
were diagnosed by a movement disorder specialist (Walter 
Maetzler). Exclusion criteria were deep brain stimulation, Hoehn 
and Yahr score >3 and Mini Mental State Examination score 
<24. Table 1 provides demographic and clinical parameters of 
the groups.

All participants were equipped with the OPAL system, sample 
rate 128 samples/s, 3DOF accelerometer (range ±16 g) and 3DOF 
gyroscope (range ±2,000°/s) (APDM, Inc., Portland, OR, USA). 
Data obtained from the IMU at the lower back were used for this 
analysis.

During the 180min (for PD patients) and 90min (for older 
adults) assessment, all participants were asked to perform daily-
life activities such as moving around the labs and corridors, walk-
ing backwards, climbing stairs, performing transfers (sit-to-stand 
and stand-to-sit movements), making coffee, brushing teeth, and 
ironing clothes without any further restriction. During the whole 
process, one of the authors (Tanja Heger) followed the participant 
with a hand-held camera (Sony, resolution 1,920 × 1,080 pixels, 
frame rate 50 samples/s). Videos were evaluated by two clinical 
observers (Linda Haertner and Morad Elshehabi), to identify 
gait bouts, to label turning, and to count the number of steps per 
bout (29). We discarded those periods in which the feet of the 
participant were out of sight of the camera (7% of the total time 
of assessment).

Algorithm development and structure 
(training Groups)
The algorithm was based on the continuous wavelet transform 
(cwt) approach. This was justified by previous studies that have 
shown very good results when extracting HS and TO events in 
healthy adults and PD patients under constrained condition 
(12, 30). From the lab-based assessment, HS and TO events 
were extracted from the anterior–posterior (AP) acceleration 
of the IMU and compared to the spatial signal of the heel and 
the toe markers of the Vicon system. From the unconstrained 

home-like assessment, we extracted only HS information, as the 
gold standard used in this study does not allow differentiating 
between HS and TO. Figure 2 provides the general structure of 
the algorithm.

Extraction of HS and TO from the Vicon System
HS and TO were extracted from the active Vicon markers from the 
left heel, right heel, left toe, and right toe. Details are provided in 
the legend of Figure 3. The bottom of the (left/right) heel marker 
curves, reflecting HS, and the top of the (left/right) toe marker 
curves, reflecting TO, were detected with the findpeaks Matlab 
function (Matlab R2015b).

Extraction of HS and TO from IMU
The algorithm for HS and TO detection from IMU data is illus-
trated in Figure 3 (12). The AP acceleration was preprocessed 
by linear de-trending and low-pass filtering at 10  Hz with a 
second-order Butterworth filter. The preprocessed signal was 
integrated (with cumtrapz) and differentiated by cwt (with the 
cwt Matlab function), using an estimated wavelet scale and 
Gaussian first-order (gaus1) wavelet.

The algorithm for wavelet scale estimation was based on the 
method by Abry (31). The most dominant frequency from the 
spectrum of the AP acceleration signal was selected and con-
verted to the scale:

 
a F

F
c

a
=

⋅∆
,
 

where a is the scale, Fc is the center frequency (Hz) of the 
wavelet, Fa is the most dominant frequency (Hz) (pseudo-
frequency corresponding to the scale), and Δ is the sampling 
period (s).

Figure 3 illustrates results of HS and TO detection based on 
the Vicon and the IMU system. The local minima of the differen-
tiated signal (first-order differentiated signal) were the detected 
HS points (with the findpeaks function). The first-order differ-
entiated signal was differentiated again by similarly using cwt 
with estimated scale and Gaussian second-order (gaus2) wavelet, 
yielding a second-order differentiated signal. The local maxima 
of the latter signal were defined as TO (findpeaks function). The 
condition for the local extremes to be considered as HS/TO was 
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FIGURe 3 | (A) Heel strike (HS) and toe off (TO) were detected from the anterior–posterior (AP) coordinates of the heel and toe markers (gold standard). (B) Event 
detection from both feet, from AP acceleration (dashed line), its first-order differential continuous wavelet transform (dcwt) (dotted line, dcwt1) and its second-order 
dcwt (solid line, dcwt2). Black stars indicate HS, and black circles indicate TO. Dashed and solid vertical lines enable the comparison of the two methods to detect 
HS and TO, showing an overall good correspondence between them.
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as follows: magnitude >40% of the mean of all peaks detected by 
the findpeaks function.

Adaptation of the cwt to the Steps  
in the Home-Like Assessment
The IMU dataset for home-like assessment was split into two 
datasets, to evaluate step occurrence (1) during turning periods 
and (2) during non-turning periods. For the definition of turning 
periods, an algorithm recently published by our group was used 
(29). In brief, a change of the yaw angle (i.e., around the vertical 
axis) with a magnitude >90° and a duration between 0.5 and 10 s 
was defined as a turn.

As the shape of the integrated AP acceleration of usual steps 
differed slightly between the lab-based study and the home-like 
assessment (Figure 3), we adapted the wavelets in the home-
like assessment as follows: We used a gaus2 wavelet for step 
detection during turning periods and a Daubechies second-
order (db2) wavelet for step detection during non-turning 
periods. Forty percent of the mean of all peaks detected by 
the findpeaks function served again as the threshold for step 
definition.

statistical Analysis
Analyses were performed with JMP 11.1.1 software. Mean and 
standard deviation (SD) were used to present demographic and 
clinical data of the groups.

For comparison of HS and TO detection, contingency tables 
were designed and χ2 tests conducted to test the relationship 
between methods and groups. Following the χ2 tests, the likeli-
hood ratio (LR) was calculated to measure the association 
between the two methods.

As the dataset does not allow extracting “true negative steps,” 
we present total numbers of steps detected by the methods and 
accuracy values. True positive HS and TO from IMU were defined 
as <0.3 s difference relative to the respective Vicon event. Bland–
Altman plots were created to evaluate the difference between the 
HS/TO events from the IMU and the HS/TO events from the 
gold standard.

For the analysis of the home-like assessment, intraclass cor-
relation (ICC) was used to test the agreement of the step detec-
tion between the clinical observers. The ICC shows how likely a 
step was detected by the first clinical observer and also detected 
by the second clinical observer. We then calculated Cohen’s 
kappa, true positive, true negative, false positive, and false nega-
tive steps during turning and non-turning episodes (including 
straight walking, shuffling and walking backward episodes), 
respectively, from the IMU dataset based on the contingency 
tables. Cohen’s kappa yields the level of agreement between the 
steps detected by the algorithm and the steps detected by the 
clinical observers. In this dataset, we defined true negative steps 
as being below the step detection threshold (≤40%) introduced 
in the Section “Algorithm Development and Structure (Training 
Groups).”
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FIGURe 4 | (A) Bland–Altman plot illustrating the agreement for time of heel strike detection between the algorithm and the gold standard. The continuous line is the 
mean, and dashed lines are the 95% confidence intervals (CIs) of step observation difference (in seconds). (B) Bland–Altman plot illustrating the agreement for time 
of toe off detection between the algorithm and the gold standard. The continuous line represents the mean, and dashed lines are the 95% CI of step observation 
difference (in seconds). IMU, inertial measurement unit.
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ResULts

Validation
In the lab assessment, for the whole group (which is presented here 
because no relevant differences occurred between the investigated 
groups; data available on request), the total number of HS/TO 
detected by Vicon was 2,730/2,739; by the IMU it was 2,729/2,732. 
Based on the 0.3s threshold, 9 HS/5 TO were considered false 
positives, and 10/12 false negatives. Accordingly, accuracies for 

HS/TO detection were 99/99% for all participants, 99/99% for 
PD patients, and 99/100% for older adults. LR calculated from χ2 
was 0.8 and 0.83 for HS and TO, respectively. Bland–Altman plots 
showed a mean difference between IMU and Vicon of 0.00 s (95% 
CI, −0.09 to 0.10) for HS detection, and of 0.00 s (95% CI, −0.12 
to 0.12 s) for TO detection (Figure 4).

In the home-like assessment, the ICC for step detection 
between clinical observers was 96%. During turning episodes, the 
total number of steps detected by clinical observers was 4,831; 
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tABLe 2 | Validation values for steps detection in the home-like assessment.

Cohorts Cohen’s 
kappa 

(%)

Acc 
(%)

sens 
(%)

spec 
(%)

NPV 
(%)

PPV 
(%)

steps 
detected by 
algorithm

steps 
detected 
by clinical 
observers

true 
positive 
steps

False 
positive 
steps

False 
negative 

steps

true 
negative 

steps

turning episodes
Overall cohort 73 88 90 85 78 94 5,020 4,831 4,517 314 503 1,730
PD patients 70 88 90 83 75 94 3,618 3,484 3,257 227 361 1,083
Controls 77 89 90 88 82 94 1,402 1,347 1,260 87 142 647

Non-turning episodes
Overall cohort 72 91 91 90 69 98 21,313 19,885 19,429 456 1,884 4,096
PD patients 71 91 91 90 67 98 15,522 14,493 14,181 312 1,341 2,738
Controls 74 91 91 90 71 97 5,791 5,392 5,248 144 543 1,358

Acc, accuracy; NPV, negative predictive value; PD, Parkinson’s disease; PPV, positive predictive value; Sens, sensitivity; Spec, specificity.
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the IMU detected 5,020 steps. During non-turning episodes, the 
total number of steps detected by clinical observers was 19,885, 
and from IMU data it was 21,313. During turning episodes, we 
obtained accuracies for step detection by IMU of 88% for PD 
patients and 89% for older adults. The corresponding accuracy 
values for non-turning episodes were 91 and 91%, respectively. 
Table 2 provides detailed information about the validation values 
for these analyses.

dIsCUssIoN

We present in this paper an algorithm for step detection during 
non-turning walking episodes on a treadmill and during turning 
and non-turning walking episodes in a home-like assessment, 
using a single IMU worn at the lower back. The algorithm was 
tested in PD patients and older adults and yielded very good 
accuracy. It might thus provide a valuable tool for future daily-
life-like assessments of gait in these cohorts.

One of the major advantages of the algorithm is the considera-
tion of steps during turning. Assessment of steps during turn-
ing episodes is frequently omitted in current research (12, 23). 
Although the accuracy values for step detection during turning 
were slightly lower than during straight walking episodes (88% 
compared to 91%), results are still promising and indicate the 
suitability of the algorithm for gait assessment in daily-life condi-
tions. Moreover, the algorithm showed high accuracy during 
non-turning episodes, which included stepping on the spot and 
walking backwards.

This algorithm is reliable in both, lab assessments and 
home environment, with the adaptation of the used wavelet 
types. We think that such adaptation of algorithms can 
substantially increase their validity, and even might be 
promising when used at an individual level. Such approaches 
have already been introduced in commercially available step 
detection systems used in the health and fitness sector, and 
validated for questionnaire-based assessment in diseases such 
as cerebral palsy (32, 33). Previous studies demonstrated the 
frequent challenge to compare results from the lab versus the 
home environments, as the patients behave differently and 
show more complex movements in the home environment  
(18, 34–36). The reliability of the current algorithm in home-like 

environment indicates its applicability in future assessments 
of PD patients and older adults in more natural unobtrusive 
surroundings.

The higher accuracy of the algorithm in the lab assessment 
versus the home-like environment might not only be due to 
more regular and “simpler” stepping patterns on the treadmill 
compared to free living-like movements, but also to the higher 
accuracy of the gold standard in the lab assessment [Vicon 
(37, 38) versus video observation, visual classification of a step 
belonging to a turn or non-turn episode]. Assessment based 
on clinical observers bears several limitations, e.g., that clini-
cal observers can inaccurately define a step as part of a turning 
episode (39).

Our algorithm showed comparable validity in our average 
moderately affected PD patients and in older adults. This 
finding implies that motor impairments, in particular gait 
deficits, do not limit the reliability of our algorithm given that 
individuals can walk without aid. This aspect may be essential 
to the applicability of the algorithms in different healthy and 
pathological conditions. Previous algorithms used the vertical 
acceleration for step detection (12, 30). However, we opted 
to applying the AP acceleration, which is also an established 
method, already used in previous studies (23, 40, 41). The 
vertical acceleration may have better accuracy, but it yielded 
a more complex pattern in our training dataset in particular 
in the home-like environment data, which reduced the signal’s 
regular consistency (40).

The following limitations should be considered in future 
studies and algorithm development. In the home-like assess-
ment, the gold standard (videotaping) allowed only the 
validation of step occurrence, but not of HS and TO. Therefore, 
it was not possible to validate qualitative step parameters  
(for example, step time, stance time, and swing time), although 
the algorithm provides these data. Based on the very good 
results from the treadmill evaluation, we are optimistic that 
HS and TO parameters extracted from the algorithm in the 
home-like assessment would also be valid. This hypothesis 
has to be evaluated in future studies using, e.g., instrumented 
shoes and insoles. Instrumented shoes with feet IMUs (23) and 
instrumented insoles (42) provide HS and TO event detection 
and can be used in home-like conditions (23, 42). Another 
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limitation is the choice of wavelet types and thresholds for 
step detection. We made these choices of the wavelet types and 
threshold based on visual inspection of the AP acceleration in the 
training groups. It is still possible that other wavelet shapes and 
threshold values yield even better accuracy in these populations 
and activities. Furthermore, it is worth noting that the error of 
0.1 s in HS and TO detection was not negligible if we want to 
estimate stride time variability. Although some variation may 
be explained by physiological differences (e.g., feet and lower 
back may not always be synchronized), further efforts should 
be undertaken to reduce this variation and increase the sample 
size to improve the statistical power and reduce the error of 
such outliers. Moreover, the sample size could be expanded in 
future studies to test the validity of the algorithm in a bigger 
cohort.

This study presents and validates an algorithm for step detec-
tion during treadmill walking, during turning and non-turning 
walking episodes based on data extracted from an IMU at the 
lower back, for PD patients and older adults. The algorithm was 
tested with different validation methods: optical markers and 
videotaping. While the results are promising, future work has 
to investigate the validity of the algorithm in different disease 
phases of PD including the prodromal phase and potentially also 
phases in which patients use walking aids.
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