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EXECUTIVE SUMMARY 

 

RISK PARAMETER CALCULATION  

USING PRINCIPAL COMPONENT ANALYSIS OF YIELD CURVES:  

THE CASE OF BORSA ISTANBUL FIXED INCOME MARKET 

 

Hayrettin Konuk 

 

 

Advisor: Asst. Prof. Dr. Levent Güntay 

 

 

OCTOBER , 2017, 23 pages 

 

 

 

To enable a trustworthy clearing operation, clearinghouses require conservative 

margins to avoid the risk of incurring a loss in case one counterparty defaults. When margin 

requirements for fixed income instruments are calculated, yield curves of each instrument 

are stressed using their first three principal components. All instruments in an account are 

then evaluated against each stressed yield curve and the margin requirement is calculated as 

the difference of the combined value of these instruments calculated with the worst of the 

stressed yield curves between their combined values calculated with related unstressed 

curves. The aim of this project is to construct a tool for applying principle component 

analysis (PCA) on daily zero coupon yield curve of Turkish Treasury Securities. The 

analysis employs a yield curve panel data set obtained consisting historical zero coupon yield 

curves. The data set includes interest rates of 60 different maturities varying between 

overnight and 15 years and 1250 daily observations between December 2010 and December 

2015. The result of this analysis provides a method that could be run at the end of each 

clearing day to determine the major components of the yield curve such as level/height, slope 

and curvature that describes at least 95% of the variation in interest changes and subject to 

stress shocks.  
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ÖZET 

 

RISK PARAMETER CALCULATION  

USING PRINCIPAL COMPONENT ANALYSIS OF YIELD CURVES:  

THE CASE OF BORSA ISTANBUL FIXED INCOME MARKET 

Hayrettin Konuk 

 

 

Tez Danışmanı: Yrd. Doç. Dr. Levent Güntay 

 

 

EKİM, 2017, 23 sayfa 

 

 

 

Takasın güvenli bir şekilde tamamlanmasının sağlanabilmesi için, takas kurumunun 

herhangi bir karşı tarafının temerrüdü halinde oluşacak zararlar nedeniyle maruz kalacağı 

riskleri karşılayabilmek için gerekli teminat tutarını makul bir muhafazakârlıkta temin 

ediyor olması gerekmektedir. Sabit getirili enstrümanların teminat gereksinimlerinin 

hesaplanmasında, her bir enstrümanın kendi fiyatına şok vermek yerine, her bir enstrümanın 

verim eğrisinin ilk üç temel bileşenine şok verilir. Bir hesapta bulunan tüm enstrümanlar şok 

verilmiş farklı verim eğrileri ile değerlenir ve şoklanmış verim eğrilerinin en kötülerinin 

ürettiği toplam değer ile şoklanmamış eğriler ile üretilmiş toplam portföy değeri arasındaki 

fark teminat gereksinimi olarak hesaplanır. Bu projenin amacı, Türk Hazine Tahvilleri’nden 

oluşan kuponsuz verim eğrileri üzerinde günlük keşifsel veri analizi akabinde temel 

bileşenler analizi yapacak bir araç üretmektir. Analizde, tarihsel kuponsuz verim 

eğrilerinden oluşmuş verim eğirisi panel veri seti kullanılmaktadır. Veri seti,  Aralık 2010 

ve Aralık 2015 arasındaki 1250 günlük gözlem için, gecelik ve 15 yıllık altmış farklı vade 

dilimine ait faizlerden oluşmaktadır.    Analiz sonucu ise her takas günü sonunda 

çalıştırılarak seviye, eğim ve büküm gibi verim eğrilerindeki getiri değişimlerinin en az 

%95’ini açıklayan, şok uygulanacak ilk üç temel bileşenin tespit edilmesini sağlayan bir 

metodoloji üretmektir.  

 

 

 

 

 

 

 

 

Anahtar Kelimeler:  keşifsel veri analizi, temel bileşenler analizi, verim eğrileri. 
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1. INTRODUCTION 

Takas Istanbul provides central counterparty clearinghouse (CCP) services for listed 

derivatives and cash equity markets of Borsa Istanbul. It will also be the CCP for Borsa 

Istanbul Fixed Income Market. Takas Istanbul is also planned to undertake the counterparty 

credit risk of market participants by requiring margin collateral from them. Each clearing 

member of a clearinghouse that has cleared its trades needs to pledge collateral, the size of 

which relates to the risk in its positions.  The main risk factors involved in the fixed income 

markets stem from the yield curve changes. Yield curves are sometimes modelled by the 

first three principle components that are closely associated with the level, slope and 

curvature of the yield curve.   

While margining fixed income instruments, instead of stressing each instrument’s 

individual price, yield curves are stressed using their first three principal components. All 

instruments in an account are then evaluated against each stressed yield curve and the margin 

requirement is given as the combined value of these instruments calculated with the worst 

outcomes of the stressed yield curves.  

A counterpary could be monitoring the explanatory power of these 3 principal 

components on a daily basis. On a monthly basis it could evaluate and, if needed, update 

each yield curve’s first three principal components together with a risk parameter that 

decides how much of a principal component will be used to simulate the stressed curves.  

As a result, the objective of this project is to construct a methodology that determines 

and updates the principle components at the end of each day. We also plan to verify whether 

the explanatory power of the first 3 principal components explain the majority of the 

variation in the yield curve.   

This study is organized as follows. Section 2 reviews the related literature regarding 

principal component analysis of yield curves, second subsection includes a very short brief 

on the term structure of interest rates and yield curves, and third subsection reviews the 

principle component analysis. Section 3 describes the data source, structure, preparation and 

exploratory data analysis. And Section 4 provides the application of principle component 

analysis (PCA, henceforth). First sub-section of Section 4 presents the empirical results of 

the principal component analysis of the historical yield curve data and the second sub-section 

of section 4 is the interpretation of the results. Section 5 concludes. 
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2. LITERATURE REVIEW  

2.1. Literature 

The main center of the works that have been processed until these days mainly focus 

on the structure of interest rates (Litterman and Scheinkman, 1991; Dai and Singleton, 2000). 

Cochrane and Piazzesi (2005) support the literature by arguing that the structure of interest 

rates demonstrate that a linear combination of the forward rates is the base factor for figuring 

out the excess returns on bonds in all maturities. To develop an outline that can be used as a 

method to develop a base scenario of an extensive historical term structure variation, many 

scholars attempted to gather movements in principal components. Stress scenarios put 

forward by Lorethan (1997) and Rodrigues (1997) are  examples of these efforts.  

Jamshidian and Zhu (1997) pioneered the Principal Component Analysis in 

analyzing fixed income scenarios. They aim to get a discrete approximation of the portfolio 

value distributions. On the other hand, Loretan (1997) and Frye (1997) concentrate on the 

Principal Component Analysis in the context of a VaR methodology. These two scholars 

mainly figure out the VaR of a fixed income portfolio. Explanation of principal component 

based scenarios is the main step in the calculation. In this step they define separate “stress” 

in each of the directions constituted by the principal components s and “combined” stress as 

linear combinations of the PCs. A small set of large prefixed stress factors are used in these 

studies. One of them is using the 2.33 times the PCA standard deviation which corresponds 

to the ninety-ninth percentile VaR. 

Abdymomunov and Gerlach (2014) emphasize some limitations of the PCA method. 

These limitations mainly appear in stress testing interest rate exposures. The main argument 

is that PCA creates economically unreasonable scenarios. 

Before PCA is applied to financial series,  itis a reasonable process to understand 

whether PCA is in fact a meaningful procedure given the distributional properties of the 

data.. Controlling whether the data is stationarity is required to be aware of the presence of 

stochastic trends. Different studies point out that interest rates could be non-stationary 

whereas first differencing usually achieves stationarity (Niffiker et. al, 2000. Lardic et al., 

2003). Lardic et al. (2003) also highlight that the original variables should be centered and 

variance-reduced and they amount to using the correlation matrix of the changes. Moreover, 

more precise results could be obtained if daily data could be employed for the analysis. 
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2.2. Term Structure, Yield and Yield Curve Models 

The term structure of interest rates is one of the most commonly used method of 

pricing bonds. The term structure of interest rates explains the relationship between the 

yields and maturities of a group of bonds with the same credit rating.  Mainly, the term 

structure refers to risk-free Treasury securities but it can also be referred to riskier securities. 

The term structure of interest rates is also called the “yield curve”. Normally plotted on a 

graph as a curve showing representations of various bond yields for progressively longer 

maturities is the main property of the term structure that gives this synonym to it. Generally 

it is presumed that the bond is a zero-coupon bond security with a no-call provision. An 

example of the term structure of interest rates and the corresponding yield curve plot - based 

on our calculations- is provided in Table 1 and Figure 1: 

 

MATURITY YIELD 
OverNight 
(O/N) 12.11% 

2 year 11.76% 

4 years 11.59% 

6 years 11.46% 

8 years 11.35% 

10 years 11.21% 

12 years 11.14% 

14 years 11.06% 
Table 1: Interest Rates per Maturities 

 

We can observe changes in the shape and level of the yield curve over time. When 

economic activity is expected to accelerate in the future, the yield curve tends to become 

steeper.  If the economy is expected to slow down in the future, the yield curve tends to 

become flatter, since future rates are expected to be lower than they are now. The yield to 

maturity (YTM) means the equality of the rate of interest at which the market price of a bond 

between the present values of its expected future cash flows.   

Upward and downward movements in the yield curve in different periods of time are 

the precursor of profits and losses for most financial institutions. The traditional “full 

models” of yield curves, treat every point of the curve as a random variable in its own right. 

On the other hand, in order to evaluate their resilience to yield curve movements, most firms 

Figure 1: Treasury Zero Coupon Yield Curve on 17.12.2015 
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are on the side of “component models”. Polynomials, variance matching and principle 

components are the result of decomposing a whole model into components and it can be 

found various ways to apply decomposition process. 

2.3 Principle Component Analysis on Yield Curves 

The yield curve on a particular date describes variations in interest rates as a function 

of the term to which a deposit is committed. Due to this, movements in the yield curve from 

one period to the next are important drivers of profits and losses of the financial institutions. 

Principal component analysis is the simplest one among the many orthogonalization 

techniques. These techniques turn a set of correlated variables into a set of uncorrelated 

variables. For financial risk management applications, principal component analysis is in 

demand at the highest rate.  Independent from the high or low correlation, PCA can be used 

for each and every set of stationary time series. However, the best result can be taken from 

the highly correlated systems. A set of zero coupon returns of different maturities can be an 

example of this. 

2.3.1. Principal Component Analysis 

Principal component analysis (PCA) is a well-known statistical technique and also 

called a useful machine learning technique that has found application in fields such as face 

recognition and image compression, and is a common technique for finding patterns in data 

of high dimension (Smith, 2002). Other popular applications of PCA include exploratory 

data analyses and de-noising of signals in stock market trading, and the analysis genome 

data and gene expression levels in the field of bioinformatics (Raschka, 2015). 

PCA is an unsupervised method. So, class labels are not taken into consideration 

while identifying underlying dimensions that shows the correlations between a set of factors 

such as “Years to Maturities”. This information ensures a new smaller set of uncorrelated 

factors to replace the original set of correlated factors as the extracted features in subsequent 

multivariate analysis.  

Each principal component is the eigenvector of the covariance/correlation matrix of 

the input factors with the largest eigenvalue that maximizes the variance. Here the aim is 

maximizing the variance with the minimum number of components. Accordingly, PCA 

brings feature extraction and dimension reduction together in just one step. 
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In machine learning, source of the complexity and time consumption with the data 

size constitute is number of the input dimensions. For the sake of memory usage and 

computation, reducing dimension can be applied as an efficient way (Alpaydın, 2010).  

In the light of the facts referred above, it’s an extremely powerful machine learning 

tool for reducing the dimensions of large, highly correlated systems. For instance, in order 

to get a close range approximation to the changes in each rate in a system of sixty different 

interest rates, only three principal components are sufficient. Moreover, due to the diagonal 

covariance matrix, the principal components are not correlated. Hence, determining only 

three variances instead of thousands of different variances and covariances is the main task. 

As a result, it is understood evidently that PCA is a computationally efficient method. 

Studies often summarize term structures (yield curves) by a small set of linear 

combinations of yields, so our analysis doesn’t require the information about the class labels. 

Due to this reasons, researchers don’t prefer a supervised dimension reduction technique 

such as Linear Discriminant Analysis or a nonlinear dimension reduction technique such as 

Kernel Principal Component Analysis for yield curve/term structure analysis. 

2.3.2. Methodology of Principle Component Analysis 

Principal Component Analysis (PCA) is a well-known statistical method from 

multivariate analysis used in managing and explaining interest rate risk. Principle 

components are defined by explaining the largest proportion of the overall variance of a 

dataset without any overlap. Another definition for them can be (uncorrelated) axes creating 

a new coordinate system. The new axes are called as loadings. If an axis has more 

explanatory power for the dataset, the value of the corresponding weight will be larger. 

While component matrix demonstrates the linear correlations between the original 

fields in the rows, it shows the derived components in the columns. The correlations among 

the components and the original inputs are called loadings; they are typically used for the 

interpretation and labeling of the derived components (Tsiptsis and Chorianopoulos, 2009). 

To eliminate the complexity of a dataset, selecting the highest weights PCs can be a 

solution. By this means the original dataset can be transformed into new axes. These new 

coordinates are called as scores. The original dataset creates three outputs: the loadings, their 

associated weights and their scores. The structural changes of dataset and also its potential 

dislocations are emphasized here.  
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The eigenvalue is a measure of the variance that each component accounts for. To 

decide on which components are kept the eigenvalue criterion is the most widely used 

criterion. The main argument is that a component should be considered insignificant if it 

does worse than a single field. There is one unit of standardized variance in each single field. 

So the components with eigenvalues below 1 are not extracted. Extraction of the components 

are realized according to descending order of importance. In other words, the largest part of 

the variance is on the first one of the original fields. Extraction stops at component which 

has an eigenvalue below the threshold of 1 (Credit Suisse, 2012). 

Briefly, PCA analyzes the covariance matrix of the dataset in order to capture as 

much variance as possible, with the fewest PCs possible. Axes created after this procedure 

namely the loadings will each have a certain length and an orientation. Respectively the 

eigenvectors and eigenvalues of the diagonalized correlation matrix of the database have 

found out this. The standard deviation of the scores is called as the eigenvalue. Eigenvectors 

on the other hand stand for the loadings. If the vector is longer meaning that the eigenvalue 

is larger, it will have more information and the associated PC will play a more important 

role. 

Spectral decomposition of a covariance matrix or a correlation matrix is the main 

base of PCA. If PCA is carried out on a correlation matrix, correlations of returns are the 

only factors that affect the results. However if the input to PCA is a covariance matrix, the 

volatility of the returns as well as the correlations of returns will shape the results. No general 

relationship is discovered between the principal components of a covariance matrix and 

those of its correlation matrix (Alexander, 2008). 

Especially the “Finance” literature uses the correlation matrix rather than the 

covariance matrix. However, the eigen decomposition of the covariance matrix (if the input 

data was standardized) yields the same results as an eigen decomposition on the correlation 

matrix, since the correlation matrix can be understood as the normalized covariance matrix 

(Raschka, 2015).  

Also the principal components are orthogonal, and therefore addictive and 

statistically independent. For the risk management purposes, additivity is important. Because 

it allows evaluation of the impact of even one unit of added parallel shift risk to an existing 

position. Since it allows the factors to be managed separately, say to hedge a parallel shift 



 7 

without having to think about its effect on the other factors as discussed in Niffikeer et al. 

(2000), statistical independence is also important. 

2.3.3. Steps of a PCA Process 

Step 1: Centre and standardize data (normalizing) 

Step 2: Calculation of the covariance matrix Σ 

Step 3: Finding the Matrix P such that PΣP’ is a diagonal matrix 

Step 4: Selection of the eigenvectors (=meaningful components) 

Step 5: Creation of the reconstructed variables (multiplication of each PC 

coefficient vector by the corresponding score + add back in the mean of the data) 

Step 6: Comparison of the old and the new datasets 

2.3.4. Interpretation of the First Three Components 

As discussed in Alexander (2009) in a perfectly correlated system of returns on 

financial assets or changes in interest rates the elements of the first eigenvector are equal. If 

it is needed to say in more clear way, the more highly correlated the system the more similar 

the values of the elements of the first eigenvector. Hence, the first principal component 

captures a common trend in assets or interest rates. This means that when the first principal 

component changes but the other components are fixed in a specific time, then the returns 

(or changes in interest rates) all move by roughly the same amount. That is why the first 

component is generally called as the trend component. 

If the system has no natural ordering then it is not possible to talk about intuitive 

interpretation of the second and higher order principal components. But if the system is 

ordered, such as a set of interest rate changes of different maturities or a set of returns on 

futures of different maturities, a change in slope of the term structure is captivated by the 

second principal component. Then the elements of the second eigenvector are decreasing (or 

increasing) in magnitude, so that when the second principal component alters while the other 

components fixed then the returns (or changes in interest rates) move up at one end of the 

term structure and down at the other end. That is why the second component is also called 

as the tilt component.  

Likewise, the elements of the third eigenvector are usually decreasing (or increasing) 

and then increasing (or decreasing) in magnitude. Thus if the third principal component 

changes when the other components are fixed, then the returns (or changes in interest rates) 
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move up (or down) at both ends of the term structure and down (or up) in the middle. That 

is why the third component is called as the curvature or convexity component. Higher order 

principal components have similar movement analysis described by cubic polynomials 

(fourth component), quartic polynomials (fifth component) and so on. 

Also estimates of principal components based on historical data can be quite unstable. 

Some simple rules of thumb – such as taking moving averages of our principal components 

– is a method to reduce instability. Using too many principal components also have some 

serious consequences in applying them. Sometimes the aim is just to add principal 

components representing stable relationships to get a more accurate forecast. However, this 

addition can take the process to a point where additional principal components merely lead 

to the model tracking noise and weaken the forecasting ability of our model. 

 

 

3. EXPLORATORY DATA ANALYSIS OF TURKISH TREASURY 

YIELD CURVE 

Before applying the PCA analysis, in this section we first define and inspect the yield 

curve over a period time and make qualitative observations. 

3.1. Data  

The source of the data is Bloomberg. Our analysis is built on the data set consisting 

historical zero coupon yield curves including interest rates belongs to 60 different maturities 

between overnight and 15 years for at least a 5 year look back period between December 

2010 and December 2015 of 1250 daily observations.  

Before applying the PCA on the interest rate data, initially the missing values filled 

by linear interpolation and we provide an exploratory data analysis. Afterwards, daily 

differences (in basis points) of the historical yields on each maturity ladder are calculated 

and these returns are scaled for normalizing.  
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3.2. Preprocessing and Exploratory Data Analysis  

Before exploring the data, missing values filled by linear interpolation. Afterwards, 

in Figure 2 we plot the line graph of each column that represents the yield to maturities of 

each days on maturity ladders for presenting the historical volatility of 60 different ladders.  

 

 

 

 

 

 

      Figure 2 : Historical interest rate levels of each maturity ladder 

In Figure 2 each line represents interest rate levels of each different maturity ladder 

-starting from O/N to 15 years- time series data in our observation period. Dark bold black 

line represents the level of O/N rates looks more volatile than the others. Following this 

presentation, we transpose the data matrix to draw the line graph of each historical yield 

curves. 

 

 

 

 

 

 

 

      Figure 3: Yield Curves 

The  yield curve paths in Figure 3 show that first, Yield Curves are generally moving 

together in successive days. Second, risk free rates are very volatile for short maturities that 

we’ll also see from the following graph. Third, although the short rates are differentiated in 
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a wide range, yield ranges are shrinking at longer maturities; such as overnight (O/N) yields 

are fluctuating between 3% and 13.6% range while the yields are fluctuating between 7% 

and 11.5% range at the 15-year maturity, in our period of observation. 

 

  Figure 4: Box-Whisker Plot Graph of interest rate levels of different maturities 

Box-and-whisker plot graphs in Figure 4 are created for monitoring both rate level and 

dispersion during the period of observation. In a box and whiskers plot, the center line in the 

box is the median, the edges of the box are the lower and upper quartiles (25th and 75th 

percentile), whilst the whiskers highlight the last data point within a distance of 1.5 x (upper 

– lower quartile) from the lower and upper quartiles. Values outside the whiskers are plotted 

separately as dots and suspected to be outliers. 

Also we can see the descriptive statistics of the different maturities form the below 

Table 2 that confirms our interpretations above such as the volatility of O/N rates with its 

standard deviation value of 2.585 % which is higher than the other maturities. 

 

 

ON 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
count 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250
mean 9.26 9.60 9.48 9.53 9.58 9.64 9.68 9.72 9.74 9.76 9.78 9.72 9.63 9.56 9.54 9.57
std 2.59 1.78 1.55 1.41 1.30 1.23 1.18 1.15 1.11 1.10 1.08 1.03 0.97 0.95 0.96 0.99
min 3.04 5.39 5.71 6.29 6.64 6.82 7.01 7.17 7.22 7.24 7.24 7.23 7.20 7.16 7.12 7.10
25% 6.94 8.29 8.38 8.62 8.82 8.96 9.03 9.04 9.04 9.06 9.06 9.09 9.09 9.06 9.02 9.01
50% 9.08 9.80 9.78 9.71 9.69 9.66 9.73 9.80 9.84 9.88 9.92 9.88 9.75 9.66 9.66 9.70
75% 11.85 10.88 10.33 10.40 10.49 10.57 10.62 10.66 10.67 10.68 10.66 10.56 10.45 10.37 10.35 10.39
max 13.60 13.28 12.88 12.70 12.55 12.52 12.50 12.48 12.42 12.36 12.34 11.97 11.50 11.27 11.27 11.45

Descriptive Statistics of Interest Rates Per Maturities

Table 2: Descriptive Statistics of Interest Rate Levels at Different Maturities 
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In addition to the descriptive statistics above, we can investigate the correlations of 

interest rate levels of different maturity ladders with each other.  

 
Table 3: Correlation Matrix of Interest Rate Levels at Different Maturities 

 

4. PRINCIPLE COMPONENT ANALYSIS 

From a risk management perspective, when we are dealing with interest rates, we 

should take into consideration the interest rate level changes.  

 

 

 
 

 

 

 

 

 

 

      Figure 5: Daily interest rate level changes per maturity ladders  

 

ON 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ON 1.00 0.89 0.82 0.77 0.72 0.68 0.64 0.61 0.58 0.56 0.54 0.52 0.50 0.49 0.50 0.52

1 0.89 1.00 0.98 0.95 0.92 0.88 0.85 0.81 0.78 0.76 0.74 0.73 0.71 0.70 0.71 0.73
2 0.82 0.98 1.00 0.99 0.97 0.95 0.92 0.90 0.88 0.86 0.84 0.83 0.81 0.80 0.81 0.82
3 0.77 0.95 0.99 1.00 0.99 0.98 0.96 0.94 0.92 0.90 0.89 0.88 0.86 0.85 0.86 0.87
4 0.72 0.92 0.97 0.99 1.00 0.99 0.98 0.97 0.96 0.94 0.93 0.92 0.91 0.90 0.90 0.91
5 0.68 0.88 0.95 0.98 0.99 1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.93 0.94
6 0.64 0.85 0.92 0.96 0.98 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.95 0.95 0.96
7 0.61 0.81 0.90 0.94 0.97 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.96 0.96 0.97
8 0.58 0.78 0.88 0.92 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.97 0.98
9 0.56 0.76 0.86 0.90 0.94 0.97 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.97 0.98

10 0.54 0.74 0.84 0.89 0.93 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.98 0.97 0.97 0.98
11 0.52 0.73 0.83 0.88 0.92 0.95 0.97 0.98 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99
12 0.50 0.71 0.81 0.86 0.91 0.94 0.96 0.97 0.98 0.98 0.98 0.99 1.00 1.00 1.00 1.00
13 0.49 0.70 0.80 0.85 0.90 0.93 0.95 0.96 0.96 0.97 0.97 0.99 1.00 1.00 1.00 1.00
14 0.50 0.71 0.81 0.86 0.90 0.93 0.95 0.96 0.97 0.97 0.97 0.99 1.00 1.00 1.00 1.00
15 0.52 0.73 0.82 0.87 0.91 0.94 0.96 0.97 0.98 0.98 0.98 0.99 1.00 1.00 1.00 1.00

Correlation Matrix of Maturity Based Interest Rates
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In this study, mean of the daily interest rate level differences -in basis points- is 

subtracted from the daily interest level differences for each maturity ladder and afterwards 

each observation is divided by the standard deviation of each maturity ladder for normalizing 

the observation data. Following this short preprocessing, principle component analysis 

(PCA) is applied1 and below the empirical results are obtained. 

  

4.1. Results of Principle Component Analysis on Yield Curves 

We applied the principal component analysis initially for the first ten components and 

receive the below results. According to the results of the analysis, the first three components 

explain 95.88% (equals to the sum of variance explained by three components; that is 

86.01%, 7.02% and 2.85% respectively) of the total variance in daily yield curve changes. 

  

 

     Table 4: Importance of Principle Components              Figure 6: Explained cumulative variance ratio 

Pursuant to the Kaiser’s criterion, we should only retain principal components for which 

the variance is above 1 when principal component analysis was applied to standardized data 

and due to the variances that we obtain, we should take into consideration the first four 

principal components. However, our approach in this study is similar to the treatment of 

confidence interval in value at risk calculations which we generally assume 95% is 

sufficient. Hence, the first three components are sufficient to explain the 95.6% of the total 

variance. 

 

                                                 

1 We used the scikit-learn library of Python for carrying on the PCA analysis. 
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4.2. Interpretation of the Results 

As it can be seen from the results, we achieve more than 95% explanation level with 

the first three principal components of the yield curve.  

 

 

  

Factor loadings of first principle component, which explains the 86% of the total 

variance, always represents positive coefficients for all of the maturity ladders, and also very 

volatile until to 2 year maturity and flattens at the following years. It causes rising interest 

rates at each maturity ladder.  The factor loadings of second principle component represents 

positive coefficients on the short end while it represents negative coefficients on the long 

end following a decreasing coefficients. These two loadings represent the level and the slope 

of the yield curve with the third factor loading which represents the curvature effect. And 

these representations also show the characteristics of the yield curve that can be seen on the 

sample yield curve at the Figure 1.  

 

 

                                      Table 5: Factor Loadings of First Three PCs 

Since each principal component is a linear combination of the variables, total sum of 

the multiplication of each PC’s loadings (for each maturity point) with their own standard 

deviation provides us the yield curve changes for each PC and each historical day. 

According to figures that we obtain from our analysis, factor loading of first principle 

component for 2 years of maturity is 0.124 and this implies that a unit change in PC 1 causes 

O/N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PC - 1 0.005 0.114 0.124 0.130 0.134 0.136 0.136 0.136 0.135 0.135 0.134 0.134 0.130 0.126 0.127 0.130
PC - 2 0.158 0.235 0.185 0.144 0.098 0.054 0.025 0.002 -0.018 -0.035 -0.048 -0.098 -0.141 -0.155 -0.152 -0.138
PC - 3 -0.224 -0.057 -0.019 0.019 0.050 0.073 0.088 0.098 0.107 0.111 0.109 -0.007 -0.128 -0.172 -0.159 -0.112

First Three Factor Loadings per Maturities

Figure 7: Factor Loading Graphs of First Three Components 
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a 0.124 basis point increase in 2-years rate. If the 2-year rate is 10%, then it will become 

10.01% due to a unit change. For the three factors, it causes a 0.29 (0.124+0.185-

0.019=0.290) basis point change for a unit change in 2-year rate and 10% will become 

10.03%.  

However, according to characteristics of the historical yield curves, we obtain the 

variances for each principal components. So instead of the unit changes we can apply the 

standard deviations of each principal component for determining the change in the interest 

rates. Thus the parallel shift factor (PC-1) changes the 2-year rate by 1 basis points (7.24 x 

0.124 = 0.9); the slope factor (PC-2) changes the 2-year rate by 0.4 basis points ( 2.07 x 

0.185 = 0.38) and the curvature factor(PC-3) changes the 2-year rate by -0.03 basis points ( 

1.32 x -0.019 = -0.03). And also if we multiply the sum of these level changes (1.26) with 

±2.33 standard deviation which corresponds to the 1st and 99th percentiles of the normal 

distribution, we can obtain the Value at Risk as the ±2.93 basis points ((0.9+0.38-0.03) x 

(±2.33)) within the 99% significance level and we can assume that 10% 2-year rate will 

increase to %10.29 as the interest rate risk. 

 

5. CONCLUSION 

In this study we apply the Principal Components Analysis (PCA) to determine the 

factors that are main reasons for changes in the risk free term structure. PCA quantifies the 

movements of the yield curve in terms of three main factors: level, slope, and curvature. This 

study shows that the first three principal components explain 95.8% of the total variance of 

the changes in Turkish Treasury zero coupon interest rates. This result is in line with the 

results of studies from the fixed income markets of other countries. Also this study shows 

that the historical volatility of the term structure represents a ±2.93 basis point change with 

a 99% significance level in 2-year rate which is indicative for Turkish fixed income market.   

Since the first three principle components are sufficient for explaining the variance 

of interest rate changes; risk management become a matter of managing exposure to these 

factors. So, for Takas Istanbul as the CCP of fixed income market in Turkey, it will be 

sufficient to give stress shocks on to the first three principle components determined in this 

study for calculating the risk per maturity as the base for margin requirements for its 

members. 
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APPENDIX 

PYTHON SCRIPT 

Created on Tue Sep 05 21:45:30 2017 

@author: hkonuk 

""" 

import numpy as np 

from sklearn.decomposition import PCA 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.preprocessing import scale 

#import matplotlib.ticker as ticker 

import numpy as np 

#from matplotlib.ticker import MultipleLocator, FormatStrFormatter 

import matplotlib as mpl 

#matplotlib inline 

 

#Importing the historical yield curve dataset 

df=pd.read_excel('C:/Users/hkonuk/Documents/termpdata.xlsx','verim') 

 

# Checking how many observation do we have for each row 

print df.count() 

# Filling NAs by linear interpolation 

yields=df.interpolate() 

# Checking how many observation do we have after changing NAs by interpolation 

print yields.count() 

 

# Plotting the line graph of each column that represents  

# the yield to maturity of related days to maturity ladder  

# for presenting the historical volatility of 60 diffrent ladder.   

yields.plot(legend=None, title='Historical Volatility of Maturity Ladders') 

plt.xlabel('Years') 
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plt.ylabel('Yields (%)') 

#plt.style.use('grayscale') 

mpl.rc("figure", facecolor="white") 

 

# Transposing the matrix to draw the line graph of each yield curve 

yield_curves=yields.transpose() 

yield_curves.plot(legend=False, title='Historical Yield Curves') 

plt.xlabel('Years to Maturities') 

plt.ylabel('Yields(%)') 

plt.style.use('grayscale') 

#mpl.rc("figure", facecolor="white") 

 

# Creating box-and-whisker plots graph for monitoring  

# both rate level and dispersion during the period of observation.  

sf=pd.read_excel('C:/Users/hkonuk/Documents/termpdata_short.xlsx','verim') 

syields=sf.interpolate() 

color = dict(boxes='DarkGreen', whiskers='DarkOrange', medians='DarkBlue', 

caps='Gray') 

ax = syields.plot(kind='box', color=(0.5,0.5,0.5), sym='r+',title='Whisker Plot 

Diagram of Interest Rates per Maturities') 

plt.xlabel('Years to Maturities') 

plt.ylabel('Yields (%)') 

plt.style.use('grayscale') 

#mpl.rc("figure", facecolor="white") 

 

#Sample Yield Curve from 17.12.2015 

mf=pd.read_excel('C:/Users/hkonuk/Documents/getiri_tablo.xlsx','mercan') 

mf.plot(legend=None, title='Yield Curve Sample') 

plt.xlabel('Years to Maturity') 

plt.ylabel('Yields %') 

mpl.rc("figure", facecolor="white")  
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#Summarize the descriptive statistics of interest rates belong to each maturity 

ladder(column) 

yields_stat=yields.describe() 

print yields_stat 

#Calculate correlation of interest rates between each maturity ladder(column) with 

eachother 

yields_cor=yields.corr(method='pearson') 

#Plotting a heatmap reflecting the correlations. 

plt.matshow(yields.corr()) 

 

 

# APPLYING PCA TO DAILY INTEREST RATE LEVEL DIFFERENCES  

# Taking diffrences of each row to get the  

#historical daily interest rate differences of each maturity ladder(column) 

yc_fark = np.diff(yields, axis=0) 

plt.plot(yc_fark) 

plt.title('Daily Interest Rate Level Changes') # per Maturity Ladders') 

plt.style.use('grayscale') 

plt.xlim((0,1250)) 

plt.xlabel('Observation Days') 

plt.ylabel('Interest Rate Level Changes') 

#Scaling the values (normalizing: subtracting mean of each series and divide them 

by their own std dev.) 

y_c_fark = scale(yc_fark) 

 

#Fitting processed data onto PCA model and deriving the first 10 PCs by 

transforming the processed data. 

#Create a PCA model with two principal components 

pca = PCA(n_components=10) 

pca.fit(y_c_fark) 
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#Get the components from transforming the original data. 

scores = pca.fit_transform(y_c_fark) 

#pc_y_c = pca.transform(y_c_fark) 

# Reconstruct from the 10 dimensional scores  

reconstruct = pca.inverse_transform(scores) 

#The residual is the amount not explained by the first two components 

residual=y_c_fark-reconstruct 

 

#Extracting the factor loading vectors for the first three components  

F_PC_l = pca.components_[0] 

plt.plot(F_PC_l) 

plt.title('Factor Loadings of PC-1') # per Maturity Ladders') 

plt.style.use('grayscale') 

plt.xlabel('Maturity Ladders') 

plt.ylabel('Standardised Interest Rate Level Changes') 

#print first_pc_loadings 

S_PC_l = pca.components_[1] 

plt.plot(S_PC_l) 

plt.title('Factor Loadings of PC-2') # per Maturity Ladders') 

plt.style.use('grayscale') 

plt.xlabel('Maturity Ladders') 

plt.ylabel('Standardised Interest Rate Level Changes') 

#print second_pc_loadings 

T_PC_l = pca.components_[2]  

plt.plot(T_PC_l) 

plt.title('Factor Loadings of PC-3') # per Maturity Ladders') 

plt.style.use('grayscale') 

plt.xlabel('Maturity Ladders') 

plt.ylabel('Standardised Interest Rate Level Changes') 

#print third_pc_loadings 
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#The amount of variance that each PC explains   

var_ycf= pca.explained_variance_ratio_ 

print('explained variance ratio (daily differences- first ten components): %s' 

      % str(var_ycf)) 

#Cumulative Variance explained 

cumvar_ycf=np.cumsum(np.round(pca.explained_variance_ratio_, 

decimals=4)*100) 

print('explained cumulative variance ratio (daily differences- first ten components): 

%s' 

      % str(cumvar_ycf)) 

 

#Plotting the explained cumulative variance ratio 

plt.plot(cumvar_ycf)  

plt.title('Cumulative Proportion of Variance Explained') # per Maturity Ladders') 

plt.style.use('grayscale') 

plt.xlabel('Principle Components') 

plt.ylabel('Cumulative Variance Explanation Ratio') 

#Creating a function that calculates the main results of PCA on the same table. 

def pca_summary(pca, y_c_fark, out=True): 

    names = ["PC"+str(i) for i in range(1, len(pca.explained_variance_ratio_)+1)] 

    a = list(np.std(pca.transform(y_c_fark), axis=0)) 

    b = list(pca.explained_variance_ratio_) 

    c = [np.sum(pca.explained_variance_ratio_[:i]) for i in range(1, 

len(pca.explained_variance_ratio_)+1)] 

    columns = pd.MultiIndex.from_tuples([("sdev", "Standard deviation"), 

("varprop", "Proportion of Variance"), ("cumprop", "Cumulative Proportion")]) 

    summary = pd.DataFrame(zip(a, b, c), index=names, columns=columns) 

    if out: 

        print("Importance of components:") 

        print(summary) 

    return summary 

summary = pca_summary(pca, y_c_fark) 
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