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ABSTRACT

Ballast fouling and ballast deterioration are significant maintenance concerns. Ballast fouling

occurs because of the wearing of the ballast against the tie and other ballast, along with

the intrusion of fines from the subgrade and deposition of coal dust or soil particles from

the surface. In this study, the assessment of mechanical properties of fouled ballast using

available geotechnical tests is discussed. These mechanical properties include subgrade

reaction modulus from static plate loading tests, dynamic deformation modulus from light

weight deflectometer (LWD) tests, and California bearing ratio (CBR) from dynamic cone

penetrometer (DCP) tests. The test results show similar trends for these mechanical properties,

which were determined by varying the fouling amount as well as the moisture content. The

mechanical properties first increased with the moisture content up to a certain value and then

decreased rapidly after a peak value. This article also discusses the correlations between these

mechanical properties developed from the tests.
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Introduction

Good ballast is characterized by strength, toughness, durability, stability, drainability, workability, avail-

ability, low cost, resistance to deformation, and overall economy (Hay 1982). A strong, well-drained

ballast layer is an important factor in the reliability and efficiency of rail track performance. The bearing

capacity of the ballast relies on frictional interlocking. The void spaces between these interlocking par-

ticles provide the pathways for drainage. Hard and durable ballast particles with angular shapes and a

rough surface texture can have high strength. The major benefits of the ballast are: (1) it can serve as good

drainage, and (2) it has suitable resilient properties for repeated load applications. Rail track ballast may

be fouled and degraded because of the intrusion of fine particles from the subgrade or environment as well

as particles produced within the layer because of particle breakage. This fouling can cause weak track

support and large permanent settlement, thus forcing the limitation of train speed or requiring
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maintenance actions to ensure a safe track condition. This article

discusses the evaluation of fouling on mechanical properties using

established geotechnical testing methods that are economical,

easy to operate, and do not require as much time on the track

as many other established methods.

The fine particles, including the broken ballast, the deposited

coal dust from the surface, and the migrated soil from the subgrade

soil, have the ability to retain moisture and reduce hydraulic con-

ductivity of ballast. These fine particles can be in a slurry form

when mixed with a sufficient amount of water, migrate throughout

the ballast layer, and fill voids within the ballast. Wallace (2003)

and Parsons et al. (2014) found that an increase in the percentage

of fines resulted in a decrease in hydraulic conductivity. The accu-

mulation of fine particles can hinder drainage and reduce stability

of ballast by loss of friction, subgrade attrition, and ballast deterio-

ration because of delay in dissipation of excess pore water pressure

(Indraratna et al. 2006) and create serviceability problems. Read

et al. (2010) found that external drainage at sites with fouling ap-

peared to be adequate to remove water from the right-of-way; how-

ever, the internal drainage of the ballast section with fouling was

inadequate to drain water laterally to the ditches. Furthermore, the

ballast particles could become rounded because of abrasion, which

reduced the interlocking strength of the ballast layer and resulted in

more track deflection, increased rail and tie bending stresses, and

compromised track stability.

Earlier researchers investigated the strength and deformation

characteristics of coal dust, plastic clay, and rock particle fouled

ballast through large direct shear tests and found that the clean bal-

last had higher shear strength than fouled ballast because of a de-

crease of the friction angle (Huang, Tutumluer, and Dombrow

2009; Parsons, Rahman, and Han 2012). Similar fouling composi-

tions were tested by Ebrahimi, Tinjum, and Edil (2014) using large

scale triaxial tests. They found that increased fouling and moisture

caused the accumulation of plastic strain in ballast was due to the

lack of contact between large ballast particles, because they were

separated by the fouling material. Huang, Tutumluer, and

Dombrow (2009) further found that the shear strength decreased

significantly for the case of wet coal-fouled samples as compared to

the mineral filler and plastic subgrade soil fouled samples. They

found that fouling could lead to track distresses while analyzing

the coal-fouled ballast by investigating discrete element modeling

(DEM) images (Huang and Tutumluer 2011).

The light weight deflectometer (LWD) is a portable device

designed to rapidly measure the in situ elastic modulus of soil

and is based on measurement of the deflection created by drop-

ping a weight onto a circular plate in contact with the soil. The

LWD test was used to predict the subgrade modulus by correlat-

ing it with the resilient modulus (Mohammad et al. 2009) and as a

modulus-based quality control tool for establishing the target

modulus of granular subgrade (Mazari et al. 2016). The modulus

estimated by the LWD test is the dynamic deformation modulus

(Evd), which is determined by elastic theory based on the

assumption of a homogeneous, isotropic, and linearly elastic

half-space medium. The modulus of railroad ballast is influenced

by several parameters including stress history, load cycles and

stress level, load duration, frequency and load sequence, density,

grading, fines content and maximum grain size, aggregate type

and particle shape, and moisture content. Among these factors,

only the effects of stress and moisture content are consistent

(Lekarp, Isacsson, and Dawson 2000).

Railway track bed settlement is complex, as the properties of

subgrade soil underlying the track also affect the rate of settlement

and partial ballast degradation. The deformation (δ) created by

the applied drop weight force (F) through the circular plate of

radius (r) can be calculated using Eq 1 (Mooney and Miller 2009).

δ =
2Fð1 − νÞ

AGr
(1)

where G and ν are the shear modulus and Poisson’s ratio of

the soil, respectively, and A is the contact stress distribution

parameter. This relationship can be used to calculate G and then

the dynamic deformation modulus (Evd) by considering the peak

applied force (Fpeak) and its corresponding displacement (δpeak)

in measured time histories. The influence depth of LWD tests

was reported to range from 0.9 to 1.1 times the plate diameter

(Mooney and Miller 2009). The LWD test plate diameter varies

from 150–300 mm. A schematic diagram of LWD is shown

in Fig. 1.

FIG. 1 Schematic diagram of LWD (redrawn after Umashankar,
Hariprasad, and Kumar [2016]).

778 Geotechnical Testing Journal
 

Copyright by ASTM Int'l (all rights reserved); Fri Nov 22 09:41:32 EST 2019
Downloaded/printed by
Kansas University (Kansas University) pursuant to License Agreement. No further reproductions authorized.



The dynamic cone penetrometer (DCP) is a field tool used to

determine the resistance of soil or aggregate by driving a cone-

tipped steel rod with a calibrated sliding weight. The parameter

obtained by a DCP test is the dynamic cone penetration index

(DCPI), which is defined as the penetration per blow. A higher

DCPI indicates lower soil resistance. The DCPI (measured in

mm/blow) is correlated with the California bearing ratio (CBR)

as follows (Webster, Brown, and Porter 1994).

CBR =
292

ðDCPIÞ1.12 (2)

Salgado and Yoon (2003) found that the CBR of a soil in-

creased as its dry unit weight increased. In addition to the dry

unit weight, DCPI was a function of moisture content. If the

moisture content of a soil increased, the penetration index first

decreased and then increased for water contents above the opti-

mum moisture content (Harison 1987; Salgado and Yoon 2003).

Ayers, Thompson, and Uzarski (1989) developed a correlation

between DCPI and the shear strength of granular soil while

Chen et al. (2005) developed a correlation between DCPI and

the pavement layer moduli. A schematic diagram of DCP is

shown in Fig. 2.

In addition to LWD and DCP tests, static plate loading tests

have been conducted to evaluate the subgrade reaction of the

ballast. The slope of the load–displacement curve from a plate

loading test is the subgrade reaction modulus of the fouled ballast.

Elastic theory, as shown in Eq 3, can be used to predict the

settlement (s) of a rigid surface plate of diameter (D). In the

following equation, uniform pressure (p) is applied on a semi-

infinite isotropic soil characterized by Young’s modulus (Es)

and Poisson’s ratio (ν).

s =
π

4
Dpð1 − ν2Þ

Es
(3)

A schematic diagram of a plate loading test is shown in Fig. 3.

Test Materials

In this study, the ballast was obtained during an undercutting ac-

tion from the Burlington Northern and Santa Fe (BNSF) track in

Gardner, Kansas. It was composed of heterogeneous igneous rock

particles. The ballast was washed over a commercially available

wire screen (1.8 m by 1.2 m) with an opening size of 5.8 mm

to remove the finer particles. The clean ballast had a bulk specific

gravity of 2.69 and water absorption of 0.7 %. The gradation of the

clean ballast is presented in Fig. 4b. The maximum particle size,

the mean particle size (d50), the coefficient of curvature, and the

coefficient of uniformity of the clean ballast were 50 mm, 28 mm,

1.25, and 2.77, respectively.

The subgrade soil, the track dust, and the coal dust were three

fouling agents added to the clean ballast to make fouled ballast.

The subgrade soil was a clayey soil excavated near the geotech-

nical laboratory at the University of Kansas. The track dust was an

actual fouling material and collected as the residue of the ballast

after washing. The track dust consisted primarily of crushed bal-

last particles, although some clay particles from the subgrade were

included. The coal dust was subbituminous coal, originating from

Wyoming’s Powder River basin. Basic engineering properties of

FIG. 2 Schematic diagram of DCP (redrawn after Herrick and Jones
[2002]).

FIG. 3 Schematic diagram of plate loading test.

NEUPANE ET AL. ON BALLAST PROPERTIES 779
 

Copyright by ASTM Int'l (all rights reserved); Fri Nov 22 09:41:32 EST 2019
Downloaded/printed by
Kansas University (Kansas University) pursuant to License Agreement. No further reproductions authorized.



these fouling agents are presented in Table 1. Fig. 4a presents the

particle size distributions of these fouling agents while Fig. 4b

presents the particle size distributions of clean and fouled ballast

for different percentages of the fouling agents.

Sample Preparation and Test Setup

For each type of fouled ballast, samples were prepared with mois-

ture contents ranging from as low as 2 % up to the field capacity of

the fouled ballast, which is defined as the water content held in the

soil after excess water drains away naturally. Table 2 contains a

summary of the specimens prepared for this study.

The fouled ballast was placed into a test box 810 mm long by

810 mm wide and 560 mm thick in four layers. Fifty drops with a

manual hammer of 12.7 kg were applied on each soil layer with an

average fall height of 460 mm. Fig. 5 shows the locations of the

LWD, the DCP, and the static plate loading tests within the test box.

A ZFG 3000 (Zorn Instruments GmbH & Co. KG, Stendal,

Germany) light weight deflectometer (LWD)was used to determine

the dynamic deformation modulus of the ballast. A 150-mm diam-

eter base plate was used because of the limited space of the test box.

The dynamic deformation modulus was measured at Locations E,

F, G, and H, as shown in Fig. 5. The LWD test procedure included

three seating drops followed by three test drops, in accordance with

the test manual recommendation (Zorn Instruments 2011). The

average modulus from these three test drops was reported as

the dynamic deformation modulus of the ballast.

California bearing ratios (CBRs) of the ballast were estimated

using the DCPIs for four locations: K, L, M, and N as shown in

Fig. 5 according to Eq 2. The DCP test was performed to an aver-

age depth of 460 mm. Penetration obstruction occurred at several

DCP test locations. These obstructed test locations were aban-

doned, and the tests were repeated at nearby locations.

A small plate loading system was used for the plate loading

test. The system had a 150-mm-diameter air cylinder with a

FIG. 4 Particle size distributions: (a) fouling agents and (b) clean and
fouled ballast.
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TABLE 1 Basic engineering properties of the fouling agents.

S.N. Descriptions of Properties Units Subgrade Soil Track Dust Coal Dust

1 Fine content (<75 micron) % 95.1 14.5 10.5

2 Maximum particle size mm 0.15 5.8 4.75

3 Average particle size (d50) mm 0.048 0.4 0.3

4 Coefficient of curvature (Cc) – 0.56 2.21 1.99

5 Coefficient of uniformity (Cu) – 9.29 13.70 12.13

6 Specific gravity (G) – 2.66 2.70 1.30

7 Optimum moisture content % 19.3 11.3 29.3

8 Maximum dry density kg/m3 1,621 1,940 932

9 Plastic limit % 21 14 59

10 Liquid limit % 43 31 85

TABLE 2 Prepared specimen composition.

Type Sample number and condition

Clean Ballast One sample

Subgrade soil fouled ballast Samples with 10 %, 20 %, 30 %, and 40 %

fouling by weight

Track dust fouled ballast Samples with 10 %, 20 %, 30 %, and 40 %

fouling by weight

Coal dust fouled ballast Samples with 10 %, 20 %, and 30 % fouling

by weight
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maximum pressure of 830 kPa and a loading plate with a diameter

of 150 mm. The test was stopped before it reached the maximum

pressure if the displacement exceeded 10 mm because of the limit-

ing capacity of the air cylinder.

Test Results and Analysis

CLEAN BALLAST SAMPLES

The average dry density of the clean ballast was 1,762 kg/m3
, and

its corresponding void ratio was 0.54. The average CBR of the

clean ballast was 11.9 % while the dynamic deformation modulus

(Evd) and the subgrade reaction modulus (k) of the clean ballast

samples were 17.3 MPa and 89.7 MPa/m, respectively.

FOULED BALLAST SAMPLES

The average maximum dry densities of the fouled ballast samples

varied significantly depending on the amount of fouling. For the

track dust fouled ballast, the average dry density was as low as

1,954 kg/m3 at 10 % fouling and increased to a peak value of

2,114 kg/m3 for 30 % fouling by weight. Similarly, the average

maximum dry densities for the coal dust fouled ballast and the

subgrade soil fouled ballast were 1,922 kg/m3 and 2,050 kg/m3

for 10 % fouling and 20 % fouling by weight, respectively. The

test results of the mechanical properties are discussed below.

CBR

Fig. 6 shows the CBR results obtained from the DCP tests of the

fouled ballast samples at different moisture contents. The CBR val-

ues varied only slightly for low moisture contents (up to 5–6 %)

for all types of fouled ballast at all fouling percentages. When

the moisture contents exceeded a certain value, the CBR de-

creased dramatically. This value was between 5 and 6 % and re-

ferred to as the “optimum moisture content of fouled ballast”

(OMCFB). The highest measured CBR value of the subgrade soil

fouled ballast was at 20 % fouling by weight, while the highest

CBR values for the track dust fouled ballast and the coal dust

fouled ballast were at 30 % and 10 % fouling by weight, respec-

tively. These results were consistent with the maximum dry den-

sities of the fouled ballast samples because both results reached

their maximum values at 10, 20, and 30 % for coal dust, subgrade,

and fouled ballast, respectively. The CBR values for the subgrade

soil, track dust, and coal dust fouled ballast at the moisture con-

tents lower than the OMCFB were 9 to 11.8, 10.3 to 13, and 8.6 to

9.6, respectively. All track dust fouled ballast samples possessed

relatively high strengths up to the OMCFB as compared to the

samples fouled with the corresponding percentage of subgrade

soil or coal dust. The CBR value of the coal dust fouled ballast

did not decrease with increasing moisture content above the

OMCFB as quickly as the other two types of fouled ballast.

Fig. 6 shows that the fouled ballast lost a substantial percent-

age of its shear strength when the moisture content exceeded the

OMCFB. The rate of strength loss was highest for the track dust

fouled ballast, followed by the subgrade soil fouled ballast and

then the coal dust fouled ballast. Because of the lower OMCFB

value of the track dust fouled ballast, the track dust fouled ballast

experienced earlier loss of strength with increasing moisture con-

tent as compared with the other fouling agents.

Dynamic Deformation Modulus

Fig. 7 shows the relationship between the moisture content and dy-

namic deformation modulus. The maximum dynamic deformation

FIG. 5

Test locations for LWD, DCP, and plate loading tests
(dimensions in mm).
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moduli at various percentages of fouling for the subgrade soil, track

dust, and coal dust fouled ballasts occurred at moisture contents

consistent with the OMCFB values (5–7 %) for various samples.

The moisture content corresponding to the maximum dynamic de-

formation modulus depended on the amount of fouling present in

the ballast and varied from 5 % to 7 % for the subgrade soil fouled

ballast, 4.3 % to 5.7 % for the track dust fouled ballast, and 5.3 % to

6.5 % for the coal dust fouled ballast. Fig.7 shows that the moduli of

the ballast decreased when the moisture content was higher than

the OMCFB values.

The dynamic deformation modulus of the clean ballast was

not sensitive to moisture because it contained no fine particles.

This modulus was relatively low (approximately 17.2 MPa) as

compared with the maximum dynamic deformation modulus

of the subgrade soil fouled ballast (29.6 MPa), the track dust

fouled ballast (30.5 MPa), and the coal dust fouled ballast

(21.6 MPa). The track dust fouled ballast had the highest dynamic

FIG. 6 (a) Moisture content versus CBR for the ballast fouled by
subgrade soil, (b) moisture content versus CBR for the ballast
fouled by track dust and (c) moisture content versus CBR for
the ballast fouled by coal dust.
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FIG. 7 (a) Dynamic deformation modulus versus moisture content for
the ballast fouled by subgrade soil, (b) dynamic deformation
modulus versus moisture content for the ballast fouled by track
dust, and (c) dynamic deformation modulus versus moisture
content for the ballast fouled by coal dust.
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deformation modulus compared with the other two types of foul-

ing. However, the modulus of the track dust fouled ballast de-

creased more quickly with increasing moisture content above

the OMCFB than the moduli for the subgrade soil fouled ballast

and the coal dust fouled ballast. The trend of the dynamic defor-

mation modulus with increasing moisture content was similar

to that for the CBR when the moisture content was higher than

OMCFB. Unlike the CBR, however, the dynamic deformation

modulus of the fouled ballast decreased with the decrease of mois-

ture content when the moisture content was lower than OMCFB.

Subgrade Reaction Modulus

The applied pressure versus settlement curves obtained from lab-

oratory plate loading tests were plotted to estimate the subgrade

reaction modulus. The representative plots of applied pressure

versus settlement for ballast samples with 10 % fouling with sub-

grade soil, track dust, and coal dust are presented in Fig. 8a, b, and

c, respectively. The slopes of the initial pressure–displacement

curves were determined by drawing a “best-fit” straight line that

passed through the origin. The slopes of these lines are the re-

ported subgrade reaction moduli of the test samples.

Fig. 9 presents the subgrade reaction modulus versus mois-

ture content curves for different percentages and types of fouling.

The test results showed that the subgrade reaction modulus

peaked at approximately the OMCFB values. The shapes of the

subgrade reaction modulus–moisture content curves are similar

to those of the dynamic deformation modulus and moisture con-

tent curves as shown in Fig. 7.

The subgrade reaction modulus of the track dust fouled bal-

last was higher than the moduli for the subgrade soil fouled ballast

and the coal dust fouled ballast. The moisture content corre-

sponding to the maximum subgrade reaction modulus was lowest

for the track dust fouled ballast and was highest for the subgrade

soil fouled ballast for the same percentage of fouling. The trend of

the subgrade reaction modulus with moisture content for the

fouled ballast was similar to that of the dynamic deformation

modulus.

Correlation of Mechanical Properties

Fig. 10a shows the correlation between the dynamic deformation

modulus and the subgrade reaction modulus. The R2 values for

the subgrade soil, track dust, and coal dust fouled ballast were

0.87, 0.74, and 0.82, respectively, which show reasonable corre-

lation between these two properties.

Fig. 10b shows the correlation between the dynamic deforma-

tion modulus and CBR. This correlation is not as strong as that

between the subgrade reaction modulus and the dynamic defor-

mation modulus, as demonstrated by the R2 values (i.e., 0.54 for

the subgrade soil fouled ballast, 0.55 for the track dust fouled bal-

last, and 0.63 for the coal dust fouled ballast).

Fig. 10c shows the correlation between the CBR and the sub-

grade reaction modulus. The R2 values were 0.67 for the subgrade

soil fouled ballast, 0.46 for the track dust fouled ballast, and 0.69

for the coal dust fouled ballast.

Discussion

LWD and DCP tests are in situ tests that can be conducted quickly

and used to assess the strength and modulus of the ballast. Based

FIG. 8 Applied pressure versus settlement of plate loading tests for
the ballast fouled by 10 % of (a) subgrade soil, (b) track dust,
and (c) coal dust.
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on the results presented in this article, the mechanical properties

were affected by both fouling and moisture; however, moisture

content had a greater effect. In addition to reducing the strength

of the ballast, fouling minimized the permeability of the ballast,

thus reducing its drainage capacity, and promoted higher water

content because of higher fine contents. For the clean or lightly

fouled ballast (fouling content≤ 10 %), the ballast could not hold

much moisture because the field capacity of the ballast was quite

low. This is particularly true for the ballast dust and the subgrade

soil fouling agents, as shown in Figs. 6, 7, and 9. However, coal dust

occupied a much larger volume in the fouled ballast for a given

weight because it had a much lower specific gravity. The data

in these figures also indicate that poor ballast performance requires

substantial amounts of water and fouling agent in the ballast.

FIG. 10 (a) Correlation of dynamic deformation and subgrade
reaction moduli, (b) correlation of dynamic deformation
modulus and CBR, and (c) correlation of subgrade reaction
modulus and CBR.
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FIG. 9 (a) Subgrade reaction modulus versus moisture content for the
ballast fouled by subgrade soil, (b) subgrade reaction modulus
versus moisture content for the ballast fouled by track dust,
and (c) subgrade reaction modulus versus moisture content
for the ballast fouled by coal dust.
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Conclusions

LWD, DCP, and static plate loading tests were conducted in this

study to investigate the effects of fouling type and content and

moisture content on the mechanical properties of ballast. The

mechanical properties include the CBR, the dynamic deformation

modulus, and the subgrade reaction modulus of the ballast. The

following conclusions can be made from this study:

1. The highest CBR values were found at 20 % fouling con-
tent by weight in the subgrade soil fouled ballast, 30 %
fouling content by weight in the track dust fouled ballast,
and 10 % fouling content by weight in the coal dust fouled
ballast at their corresponding optimum moisture contents
(OMCFB). The CBR values decreased significantly when
the moisture content exceeded the OMCFB, which was
about 5–6 % for all types and contents of fouling. The
track dust fouled ballast lost its mechanical properties
more quickly as the moisture content increased above
the OMCFB as compared with other two types of fouling
agents. The coal dust fouled ballast had a smaller CBR
value as compared with the subgrade soil fouled ballast
and the track dust fouled ballast.

2. The dynamic deformation modulus and the subgrade re-
action modulus also had OMCFB values. These OMCFB

values varied slightly with the fouling content. The high
dynamic deformation modulus of the track dust fouled
ballast occurred within a narrower range of moisture con-
tent as compared with the subgrade soil fouled ballast and
the coal dust fouled ballast. The track dust fouled ballast
had the highest maximum dynamic deformation modulus,
followed by the subgrade soil fouled ballast and the coal
dust fouled ballast for the same fouling content by weight.
For the same fouling content by weight, the track dust
fouled ballast had the highest subgrade reaction modulus
at OMCFB, followed by the subgrade soil fouled ballast,
and then the coal dust fouled ballast; the maximum per-
centage difference of the peak modulus values among
these materials was 25 %. These peak values were within
a fairly narrow range (540–675 MPa/m). The subgrade re-
action moduli and dynamic deformation moduli had good
correlation for all types of fouling agents. The correlation
between the CBR and the subgrade reaction modulus or
dynamic deformation modulus was present, but not as
strong, when compared with the above correlations.
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