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Simulations of ultrasound wave propagation inside biological tissues have a wide range of practical

applications. In previous studies, wave propagation equations in lossy biological media are solved

either with convolutions, which consume a large amount of memory, or with pseudo-spectral meth-

ods, which cannot handle complicated geometries effectively. The approach described in the paper

employed a fractional central difference method (FCD), combined with the immersed boundary

(IB) method for the finite-difference, time-domain simulation. The FCD method can solve the frac-

tional Laplace terms in Chen and Holm’s lossy-medium equations directly in the physical domain

without integral transforms. It also works naturally with the IB method, which enables a simple

Cartesian-type grid mesh to be used to solve problems with complicated geometries. The numerical

results agree very well with the analytical solutions for frequency power-law attenuation lossy

media. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5087826

[DKW] Pages: 589–596

I. INTRODUCTION

Ultrasound has been widely used as a diagnostic tool in

medical imaging for over 50 years. Its applications have

been extended to include destruction of kidney stones, kill-

ing malignant tissues, and cosmetic surgery (Duryea et al.,
2014; Maxwell et al., 2015). Focused ultrasound beams can

also be used to remove the brain tumors (Hill and ter Haar,

1995). A recent study shows that ultrasound techniques in

conjunction with microbubbles can be used to safely open

the blood–brain barrier (BBB) for brain drug delivery, which

is a new treatment in instance of stroke or Alzheimer’s dis-

ease (Konofagou, 2012; Wu et al., 2015). Therefore, using

ultrasound safely requires accurate planning, which moti-

vates accurate ultrasound simulation techniques.

Due to the effects caused by heterogeneous tissue media,

thermal conduction, viscous dissipation, and chemical relaxa-

tion processes, ultrasound propagation processes inside human

tissues or lossy media are much more complicated than those

in simple media such as air. A lossy medium is a medium in

which a significant amount of acoustic energy is absorbed per

unit distance traveled by a sound wave. Most biological tissues

can be considered lossy media. Sound attenuation is usually

used to quantify an energy loss in lossy media, which has also

been found following the power law in the frequency domain

as (Blackstock, 1985; Szabo, 1994)

a ¼ a0jxjy; (1)

where a is sound attenuation with a unit of Np/m, a0 is

absorption coefficient, x is angular frequency, and y is

power law exponent of the specific material with a value

between 0 to 2.

To simulate sound propagation inside lossy media, dif-

ferent numerical approaches have been proposed over the

past few decades. Classical thermo-viscous theory predicted

that the acoustic sound would attenuate inside lossy media

due to thermal conduction effects and viscous dissipation

(Morse and Ingard, 1968). But the theory can only predict

square-law attenuation (y ¼ 2). Sparrow and Raspet imple-

mented finite difference time domain method (FDTD) in 2D

axisymmetric domain with nonlinear effects where the

power attenuation law was not considered (Sparrow and

Raspet, 1991). Szabo (1994) proposed a time domain causal

convolution operator that account for both power law

absorption and dispersion ð1 < y < 2Þ. However, the imple-

mentation of convolution integration consumes extremely

large memory (Norton and Novarini, 2003), especially when

the computational domain is large. To improve the efficiency

of the calculation, a fractional Laplacian model replaced the

convolution model (Chen and Holm, 2003). Treeby and Cox

implemented this model with the pseudo-spectral method,

but theirs “k-space” method still needs to transform spatial

derivatives back to the frequency domain, which makes it

difficult to deal with complicated geometries (Treeby and

Cox, 2010).

This paper presents an approach in which a simple struc-

tured Cartesian grid mesh can be used to solve ultrasound

propagation problem with any irregular geometry of lossy

media describable by the frequency power attenuation law,

Eq. (1). The finite-difference time-domain (FDTD) method

is coupled with the IB method to accommodate complicated

geometries (Xu et al., 2011; Ke and Zheng, 2015; Ke and

Zheng, 2016). The lossy medium is modeled with the Chena)Electronic mail: jjzhang@ku.edu
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and Holm’s equation (Chen and Holm, 2003). In order to

calculate the fractional Laplacian terms in the model, the

fractional central difference method (FCD) (Liu et al., 2015)

is used. The perfectly matched layer (PML) boundary is

used to mimic a free space condition (Hu, 1996; 2005). This

new approach, different from the “k-space” method, does

not need additional correction factors or integral transforms

and can accommodate complicated geometries with a simple

structured mesh.

The governing equations will be presented in Sec. II,

along with the detailed numerical method. Simulation exam-

ples of sound propagation inside a lossy medium are given

in Sec. III. After comparing the numerical simulation results

with the analytical power attenuation law, we will discuss

the results and offer the conclusion in Sec. IV. The order of

accuracy of the scheme is also evaluated and presented in

the Appendix.

II. NUMERICAL METHOD

A. Governing equations in lossy media

Two media are considered in this study: water and the

lossy-medium biological tissue. The linearized Euler equa-

tions for wave propagation in water are

@u

@t
þ u0 � rð Þuþ u � rð Þu0 ¼ �

1

q0

rpþ p

q2
0c0

2
rp0;

(2)

@p

@t
þ u0 � rð Þpþ u � rð Þp0 ¼ �q0c0

2 r � uð Þ þ fp; (3)

where u0; p0; and q0 are time averaged velocity, pressure,

and density of water. u, p, and q are their corresponding

acoustic fluctuations, c0 is the speed of sound in water, and

fp is the fictitious term for implementing the immersed-

boundary (IB) method, which will be explained later. In

water, if there is no background flow and the background

pressure is a constant value, Eqs. (2) and (3) become

@u

@t
¼ � 1

q0

rp; (4)

@p

@t
¼ �qoc2

0r � u: (5)

In lossy media, conservation of mass is expressed as

@q
@t
¼ �q1r � u; (6)

where q1 is the density of the lossy medium. Conservation of

momentum is still in the form of Eq. (4). The relation

between acoustic pressure and acoustic density in the lossy

medium is derived by Treeby and Cox (2010) based on Chen

and Holm’s equation as

p ¼ c2
1 1� s

@

@t
�r2ð Þ y=2�1ð Þ � g �r2ð Þ yþ1ð Þ=2�1

� �
q;

(7)

where c1 is the speed of sound in the lossy medium, and s
and g are proportionality coefficients. Substituting Eq. (6)

into Eq. (7) gives the acoustic pressure propagation equation

in the lossy medium as

@p

@t
¼ �q1c2

1r � uþ sc2
1 �r2ð Þy=2

p

þ gq1c2
1 �r2ð Þ yþ1ð Þ=2�1 r � uð Þ: (8)

The proportionality coefficients, s and g, follow the relations

s ¼ �2a0cy�1
1 ; (9)

g ¼ 2a0cy
1 tanðpy=2Þ; (10)

where the coefficients are chosen as y ¼ 1:9, a0 ¼ 2:9858

�10�10 dB Hz�y m�1, c1 ¼ 2000 m/s, q1 ¼ 1500 kg/m3 to

simulate a relatively hard tissue. The corresponding propor-

tionality coefficients based on Eqs. (9) and (10) are

s ¼ �5:58494� 10�7dB� s�my�2;

g ¼ �0:00018 dB my�1:

B. Computation of fractional derivatives

Consider the Riesz fractional derivatives equal to the frac-

tional Laplacian operator (Yang et al., 2010) given below,

� �r2ð Þy=2
f ¼ @yf

@jxjy þ
@yf

@jzjy : (11)

The fractional central difference (FCD) method (Liu et al.,
2015; Qin et al., 2018) can be used to numerically approximate

the Riesz fractional derivatives in Eq. (11). For a continuous

function f ðx; zÞ, each term in Eq. (11) can be expressed as

@yfi;j

@jxjy ¼ �
1

Dxy

Xi�w jð Þ

q¼i�e jð Þ
xqfi�q; j;

@yfi;j
@jzjy ¼ �

1

Dzy

Xj�s ið Þ

q¼j�n ið Þ
xqfi; j�q; (12)

where the weight function xq is

xq ¼
�1ð ÞqC yþ 1ð Þ

C
y

2
� qþ 1

� �
C

y

2
þ qþ 1

� � ; q¼ 0;71; 72;… :

(13)

The fractional derivative terms in Eq. (8) are approximated

with the summation of the weighted pressure or velocity gra-

dients in space using Eq. (12). Comparing this method with

the convolution method used in Norton and Novarini (2003),

the memory requirement is reduced significantly.

For an irregularly shaped lossy medium, the number of

computational grid cells are different in the x- and z-directions.

Therefore, it is necessary to identify the range of the lossy

medium in each direction. A horizontal line crosses the bound-

aries in Fig. 1 can have two intersections at the left and right

590 J. Acoust. Soc. Am. 145 (1), January 2019 Zhang et al.



boundaries of the geometry. Those intersection points are not

necessarily located on the boundaries because of the Cartesian

grid mesh used in the simulation. Therefore, they are approxi-

mated with the closest grids, eðjÞ and wðjÞ, near the boundaries.

Similar approximation is needed along a vertical line as shown

in Fig. 1. When the IB method is implemented, those boundary

grids, eðjÞ;wðjÞ; nðiÞ; and sðiÞ, are flagged and stored at the

beginning of the computation, as demonstrated in Fig. 1. This

makes the implementation of FCD method very simple and

efficient.

C. Immersed-boundary method

The fp in Eq. (3) is the fictitious term in the immersed-

boundary method, which is used to represent the material

change between water and the lossy medium. The existence

of the boundaries of the lossy medium is represented by

switching the fictitious force in the equation. The computa-

tion can be performed as if there are no boundaries. In Eq.

(3), the fictitious force term for the immersed-boundary

method implementation is expressed as

fp ¼
0; outside the lossy meidum;

qoc2
0r � u� q1c2

1r � uþ sc2
1ð�r2Þy=2pþ gq1c2

1ð�r2Þðyþ1Þ=2�1ðr � uÞ; inside the lossy medium:

(
(14)

The acoustic pressure outside the lossy medium is modeled

with original pressure equation, Eq. (5), as the linearized

Euler equation with fp ¼ 0. The convection terms are

neglected assuming the background flow speed is low. The

pressure inside the lossy medium is modeled with Treeby

and Cox’s equation as fp ¼ qoc2
0r � u� q1c2

1r � u
þsc2

1ð�r2Þy=2pþ gq1c2
1ð�r2Þðyþ1Þ=2�1ðr � uÞ. This is con-

structed so that when substituting fp back to Eq. (3), the lossy

medium model equation, Eq. (8), is resumed. Therefore, by

switching the fictitious force term, the same computational

solver can be used simultaneously for both materials.

Moreover, with this method, a Cartesian grid mesh, regard-

less of the complicated object boundaries in the simulation

domain, can be used to solve for the acoustic field.

To absorb numerical reflections by computational

domain boundaries, the PML boundary (Hu, 1996; 2005)

methods are used on the outside boundaries of the domain.

The PML boundary condition has been successfully imple-

mented and verified in our previous work (Zheng and Li,

2008; Ke and Zheng, 2015; Ke and Zheng, 2016) for the

FDTD simulation.

III. NUMERICAL SIMULATION AND RESULTS
DISCUSSION

A. Ultrasound propagation in the lossy medium and
water

Our first simulation is for acoustic propagation in the

lossy medium only. A simulation for ultrasound propagation

in water is also conducted as a reference. The size of the

computational domain is 0.06 m� 0.06 m. A uniform

Cartesian-type mesh with the grid size of Dx ¼ Dz ¼ 2:5
�10�5 m ensures at least 20 grid points are used per wave-

length for ultrasound frequencies up to 1.5 MHz. The speeds

of sound of water and the lossy medium are set to 1500 and

2000 m/s, respectively. The density of water and lossy

medium are set to 1000 and 1500 kg/m3. The Courant-

Friedrichs-Lewy (CFL) number is chosen to be 0.3 to satisfy

a stable computation. It should be noted that if we reorganize

Eq. (8) by moving the convection term to the left hand side,

the left hand side is still in the form of Euler equation. The

two fractional Laplacian terms on the right hand side of

equation are calculated as the summation of a series, which

is not part of the finite difference scheme. Therefore, the

original stability criteria of the scheme in Zheng and Li

(2008) should still apply.

The plane wave is set along the left boundary as

pðtÞ ¼ cos ð2pf0tÞ 1� cos ð2pf1tÞ½ �; (15)

where f0 is the center frequency chosen as f0 ¼ 1:3 MHz,

and f1 is 0.2 MHz that dominates the plane wave bandwidth.

Only one period (based on f1) of the signal is used in the sim-

ulation. The top and bottom boundary conditions are set to

be symmetric. The right boundary is rigid. To prevent the

influence of reflection waves from the right boundary, we

ended the simulation at 30 ls, before the waves reach the

right boundary so that no reflections occur. The indices,

eðjÞ;wðjÞ; nðiÞ; and sðiÞ, indicate the grid points on the left,
FIG. 1. (Color online) Grid mesh around an irregular-shaped lossy medium

in the Cartesian coordinates surrounded by water.
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right, top, and bottom boundaries of the computational

domain, respectively. Four receivers are placed along the

centerline of z ¼ 0:03 m, at x ¼ 0:005, 0.015, 0.025, and

0.035 m to record the acoustic pressure histories in these

locations. It should also be noted that we used this 1D prob-

lem to perform 2D simulation, for the purpose to verify the

implementation of PMLs in the z-direction for preparing for

the following IB method study. It is evident that the imple-

mentation of PMLs was successful. More details on the

PML implementation can be found in (Zhang et al., 2016).

Figure 2 shows acoustic pressure contours at simulation

time t ¼ 22:5 ls. The plane wave in lossy medium travels

further than that in water at this moment. However, the pres-

sure magnitude in water is much higher at this moment,

which can also be observed from receiver pressure histories

in Fig. 3. The phase shift in Fig. 3 between solid and dashed

lines can be explained by the speed of sound difference in

the two media. Pressure histories of the four receiver loca-

tions in water show almost the same magnitude, while the

pressure magnitude is gradually decreasing along the wave

propagation direction in the lossy medium. The phenomenon

agrees with the definition of lossy medium that the acoustic

energy is absorbed with the distance travelled in the medium.

B. Comparison with the analytical solution

To quantitatively verify the simulation results, a com-

parison with the frequency-domain power attenuation law is

conducted. The analytical solution of attenuation in the lossy

medium is described in Eq. (1). To obtain the attenuation

from the time-domain numerical calculation, the pressure

histories recorded in Sec. III A are used. After applying the

Fourier transform, the power spectrum density (PSD) can be

used to calculate the sound attenuation (SA) in the frequency

domain as

SA ¼ �20 log10

PSDlossy

PSDwater
: (16)

FIG. 2. (Color online) Pressure contours for plane wave propagation at

t ¼ 22:5 ls in (a) the lossy medium, (b) water.

FIG. 3. (Color online) Four receiver

readings in two simulations, solid line:

lossy medium simulation, dashed line:

water simulation.
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FIG. 4. (Color online) Simulated attenuation curves (symbols) compared with

analytical solutions (lines) when a0 ¼ 2:9858� 10�10 dB Hz�y m�1 (equiva-

lent to a0 ¼ 0:75 dB MHz�y cm�1) with different power law exponents.
FIG. 5. (Color online) Numerical simulation setup for a ring-shaped complex

geometry, with the blue area representing water, the grey area in the middle repre-

senting the lossy material, and the white area representing the PML boundaries.

The plane-wave source is located on the left boundary from z¼ 0.025 to 0.035 m.

FIG. 6. (Color online) Pressure contours of single-source ultrasound propagation at different moments: (a) t¼ 12.5ls, (b) t¼ 20 ls, (c) t¼ 27.5ls, (d) t¼ 32.5ls.

J. Acoust. Soc. Am. 145 (1), January 2019 Zhang et al. 593



By averaging the sound attenuation over the wave propaga-

tion distance d, the normalized sound attenuation a from the

numerical simulation is calculated as

an ¼
SA

100d
: (17)

It should be noted that the unit of a in Eq. (1) is Np/m. A

unit conversion from Np to dB is necessary to compare with

the SA obtained from Eq. (16). The comparison of sound

attenuation values between the numerical solutions and the

analytical solutions for different power law exponents, y, are

plotted in Fig. 4. All simulation results show near-perfect

agreement with the analytical solutions.

C. Simulation of ultrasound propagation in a
complicated geometry

The successful verification of the FCD in the lossy

medium simulation enables further implementation for

simulating wave propagation with more complicated geome-

tries. A piece of ring-shaped lossy medium, which is intended

to represent a bone-type biological material, is placed in the

middle of the computational domain. The inner diameter of the

ring is 0.05 m and the outer diameter is 0.015 m. The ultra-

sound source is placed on the left boundary from z¼ 0.025 to

0.035 m to represent an ultrasound transducer. The total simu-

lation time is 38 ls, which allows the incident ultrasound

waves to fully pass through the ring-shaped lossy medium.

The detailed simulation setup is shown in Fig. 5. The

areas in blue, grey, and white indicate water, lossy medium,

and PML, respectively. The simulation domain is surrounded

by PMLs with a thickness of 0.01 m to eliminate reflection

waves from the computational boundaries. The dashed line

on the left is to indicate that the area on the left side of the

line will be switched into a PML once the wave has fully

passed through. The medium interfaces, represented by the

two concentric circles in the domain, are not aligned with

the Cartesian grid mesh. Therefore, the immersed-boundary

FIG. 7. (Color online) Pressure contours of multiple-source ultrasound propagation at different moments: (a) t¼ 12.5 ls, (b) t¼ 17.5 ls, (c) t¼ 22.5 ls, (d)

t¼ 27.5 ls.
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method is used to accommodate the cut-through Cartesian

grid mesh between the interfaces of water and the lossy

medium. The closest node points are used as the boundary

points in the case of cut-through.

Figure 6 presents acoustic pressure contours recorded at

four different time moments. Reflected waves can always be

found at the interface, which are formed by the material dif-

ference of the two media and the geometrical shapes of the

interfaces. For example, when waves propagate from the

lossy medium to water in Fig. 6(b) and from water to lossy

medium in Fig. 6(c), the two plots clearly capture the back-

ward wave reflections. When the waves leave the lossy

medium in Fig. 6(d), they are much weaker than the incident

waves in Fig. 6(a), which shows the combined effects of

wave reflection and dissipation due to the lossy medium.

To illustrate the capability of the simulation, a multiple-

source simulation is conducted. The same type of plane

waves are specified on top, bottom, left, and right bound-

aries. Pressure contours at different simulation moments can

be found in Fig. 7. The wave patterns are more complicated

due to interactions of multiple incoming waves with the

ring-shaped lossy medium. Comparing Fig. 6(c) with Fig.

7(d), which are at the same moment, the effect of multiple

incident sources can be observed clearly.

IV. CONCLUSION

When sinusoidal waves propagate into a lossy medium,

they experience dissipation caused by viscosity, heat conduc-

tivity, and relaxation process. Therefore, incident acoustic

waves are attenuated by those processes, which results in a

power-law attenuation in the frequency domain. This phenom-

enon can be modeled and numerically simulated with the

FDTD method. When solving for fractional Laplacian deriva-

tives in the lossy medium acoustic propagation equations, the

FCD method is employed (Liu et al., 2015; Qin et al., 2018).

The procedure, which is based on a relatively simple algorithm

does not require large memory involve integral transform. The

implementation of the FCD combining with the IB method

maintains the second-order spatial accuracy.

The numerical simulation results show a gradually reduc-

ing pressure level along the wave propagation direction in the

lossy medium and agree with the analytical solution of a power

attenuation law. The implementation of the immersed-

boundary method enables ultrasound propagation around irreg-

ular geometries to be simulated with a simple structured

Cartesian mesh. Moreover, this method can be used to solve

multi-media, multi-source problems. Since the mesh is already

designed to resolve very high frequency signals (over 1 MHz)

for ultrasound propagation problems, the density of the mesh

usually enables accurate interpolation near the boundary of the

medium geometry unless there are extremely small local fea-

tures. For very small local geometrical features, we can

increase the local mesh resolution to increase the accuracy of

the immersed-boundary method. This capability for handling

complex geometries with multiple material interfaces over-

comes the limitation of the previous work in the area of lossy

medium simulation. Furthermore, with the same approach, the

method can be readily extended to simulate 3D problems.
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APPENDIX: NUMERICAL SCHEME ORDER OF
ACCURACY VALIDATION

While a second-order accurate scheme is used in the

simulation for both time and space (Zheng and Li, 2008), the

approximation of boundary treatments used in the FCD and

IB methods can possibly introduce additional errors in spa-

tial discretization. Therefore, it is necessary to re-evaluate

the order of spatial accuracy after implementation of the IB

and FCD.

Three cases are tested here, with the water-only simula-

tion as a baseline. The lossy-medium simulation is con-

ducted to investigate the accuracy of the FCD method. Then,

the simulation with the ring-shaped lossy medium is used to

investigate the accuracy of the implementation of the IB

method combining with the FCD method. Four levels of grid

sizes are used in each simulation case, namely, coarse,

medium, fine, and finest. The grid size h of each level is

5� 10�5, 2:5� 10�5, 1:25� 10�5; and 0:625� 10�5 m,

respectively. A very small time-step, Dt ¼ 1:25� 10�9 s, is

used to ensure the stability of the simulation. The simulation

results at the moment of t ¼ 7:5 ls, which is when the

wave front has fully passed the center of the domain, are

used. All the nodal point pressure values along the centerline

z ¼ 0:015 m are used to calculate the L2-norm of the acoustic

pressure. The L2-norm error is calculated as

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXIMAX

i¼1

pi � prefið Þ2

IMAX

vuuuut
: (A1)

Since the exact solution is not available, the finest grid solu-

tion at h ¼ 0:625� 10�5 m is used as the reference.

Table I gives the L2-norm errors of the different grid res-

olutions in the three cases. The observed order is computed

using P ¼ logðL2h=L20:5h Þ= log 2. The L2-norm curve of

TABLE I. L2-norm pressure errors and observed orders of accuracy for water-only, lossy medium only, and ring-shaped lossy medium cases.

Simulation material L2-norm at grid size (m) L2-norm at grid size (m) L2-norm at grid size (m) L2-norm at grid size (m) Observed order

5� 10�5 2:5� 10�5 1:25� 10�5 0:625� 10�5 (P)

Water only 2.4760E-01 5.9700E-02 1.1900E-02 2.19

lossy medium only (y¼ 1.9) 5.5500E-02 1.6300E-02 4.6000E-03 1.79

ring-shaped lossy medium 9.5852E-03 2.3772E-03 4.8398E-04 2.15
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