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Relations of POD modes and Lyapunov exponents to the nonlinear
dynamic states in flow over oscillating tandem cylinders
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Nonlinear dynamic states of flow field are analyzed using the Proper Orthogonal Decomposition
(POD) to extract spatial coherent structures, and the temporal development of these spatial structures is
further investigated by looking into the largest Lyapunov exponents (LLEs) of the temporal coefficients
of the POD modes. Additionally, the LLE of vorticity history at a specific point in the wake is also
calculated to compare with the LLEs of the modes in the wake region. The flow field used for
the analysis is flow around a two-tandem cylinder system with the downstream cylinder oscillating
transversely. The numerical simulation is based on an immersed-boundary method for flow with the
Reynolds number 100. Three states of typical nonlinear responses of this system are analyzed: lock-
in, transitional, and quasiperiodic. The results reveal that the paired POD modes can appear in the
energetic modes, although this pattern fades in the transitional state. All the LLEs of the energetic
modes in the lock-in state are zero, which means that the energetic modes in the lock-in state are
stable. For the transitional state, after a long period of time, the LLESs of the first two energetic modes
are close to zero, while the others are positive, showing that only the first two modes are relatively
stable and that weak chaotic motions exist in the other modes. The LLEs of all the energetic modes
in the quasiperiodic state are no larger than zero after a long period of time, resulting in asymptotical
stableness of the energetic modes. Published by AIP Publishing. https://doi.org/10.1063/1.5060419

I. INTRODUCTION

A rising interest in flow around oscillating tandem cylin-
ders stems from the need to understand the complex spatio-
temporal structures and the dynamic behaviors exhibited by
this system. It is a complex, multi-variable dynamic system
because the center to center distance between the cylinders,
the oscillating motion, and the Reynolds number can influence
the dynamics and chaos level of this nonlinear flow system.!
Therefore, flow around two tandem cylinders can be a good
model for understanding the flow physics of other structures
because it contains non-linear states that are complicated.
Recently, Sumner” provided a review and claimed that the
topic of flow around two cylinders would continue to motivate
further research because of the complexity of involved fluid
dynamics.

This study is focused on flow around two-tandem cylin-
ders with the downstream cylinder oscillating transversely.
According to the findings by Yang and Zheng' who discov-
ered how the frequency and spacing influence the behaviors
of this multi-variable dynamic system, there exist three states
of nonlinear responses: lock-in, transitional, and quasiperi-
odic. In the present study, three cases representing these three
nonlinear states, respectively, are selected for analysis, and
these three states are further explored by the Proper Orthogo-
nal Decomposition (POD)? analysis and the largest Lyapunov
exponents (LLEs) of the POD mode coefficients. The POD
is a convenient tool to represent coherent motions* in the
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flow, and the behaviors of the POD time coefficients have not
been fully understood. The development of the LLEs in each
state is also analyzed. The scope of this study is to correlate
the POD spatial structures and their temporal development,
represented by the LLEs of the temporal coefficients, to the
non-linear dynamic states and chaos levels of the flow. In
addition, the correlation between the LLEs of the POD struc-
tures of the flow field and that of a variable (in this case,
the vorticity) at a particular point in the flow field are also
explored. While a particular flow system is studied in this
paper, the procedures presented here can be used to ana-
lyze the spatio-temporal development in a wider range of
nonlinear flow structures including three-dimensional flow
structures.

Flow passing through two identical stationary tandem
cylinders is a simper version of this system that is only
influenced by the Reynolds number and the center-to-center
distance between the two cylinders. Experiments®~’ and
numerical simulations®~!> have long been conducted. It was
found that there are three wake-vortex/cylinder interaction
regimes: vortex suppression, critical separation, and vortex
formation, by changing the center to center distance between
the two cylinders in both low Reynolds-number!® and high
Reynolds-number!'® flows. Xu and Zhou'” studied the dom-
inant vortex frequencies in the wake of two stationary tan-
dem cylinders, and the lock-in state was captured. Wang
et al.'' and Carmo et al.'® discussed the stabilities of flow
past two stationary cylinders with different center-to-center
distances.

There is an ample amount of literature concerning oscil-
lating cylinders in the tandem arrangement. Tanida et al.'®

Published by AIP Publishing.
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explored the two-tandem cylinder system by experiments and
found that oscillation of the cylinder may become unstable
when the cylinder motion and the vortex shedding are synchro-
nized. Based on the finite element method, Li et al.'8 studied
an oscillating cylinder in uniform flow and in the wake of an
upstream stationary cylinder. In their study, the lock-in and
quasiperiodic response states were found and no clear chaotic
behavior was detected in these states. Following the experi-
mental observation by Mahir and Rockwell,!” Papaioannou
et al.” investigated the flow past two-tandem cylinders oscil-
lating under the same frequency and amplitude with either the
same or opposite phases. Peaks at the oscillating frequency
(f¢) and its harmonics were found in the lock-in and transi-
tional states, while in the quasiperiodic state, three dominant
peaksatf.,f /2, and 3f ./4 were observed. After that, three dis-
tinguishable nonlinear states were found by Yang and Zheng:!
lock-in, transitional, and quasiperiodic, with different spac-
ing, frequency, and amplitude conditions. Dominant peaks at
fe and its harmonics were shown in the lock-in state. Peaks
at the vortex shedding frequency of the system, f,, and the
oscillating frequency, f., were both found in the transitional
and quasiperiodic states. Bao et al.?! studied flow around an
oscillating upstream cylinder in tandem with a stationary cylin-
der by the Boltzmann method. The lock-in and quasiperiodic
states were also found in their work.

There have been few efforts exploring the coherent
structures, such as the POD modes of vorticity or veloc-
ity, which contain dominant physical structures of the sys-
tem.?>?3 In addition, the temporal development of the coherent
structures, which shows the dynamic development of the
system, has not been fully investigated. Important questions
regarding a nonlinear flow system are yet to be answered,
including what the energetic structures are and how these
structures are developing in time (stably or unstably), what
levels of chaotic motion these coherent structures contain, and
how the nonlinear states observed relate to the spatio-temporal
behaviors of the flow structures. This study is intended to
use the tandem-cylinder system as an example to answer
these questions. In this study, it is justifiable to use Takens’>*
time-delay theory to calculate the LLE of each of the time
coefficients corresponding to each of the POD modes. This
is because Takens’ theory can be applied to the time series
data to investigate its temporal development, assuming that
the time-delayed coordinates construct a state space which
is metrically equivalent to contain the original attractor. The
method by Rosenstein® is implemented to calculate LLEs
that can extend the embedding dimension to below Tak-
ens’ requirement of greater than two times of the flow
dimension.

In the present study, the simulation of flow around a
two-tandem-cylinder system is carried out by an improved
immersed-boundary method implemented with the porous-
medium type model.’® The spatial coherent structures are
extracted by the POD method. This method was proposed
independently by several researchers’’>® and introduced in
fluid dynamics by Holmes.?® It has been used to analyze
flows of grooved channels and circular cylinders,*” turbulent
flows,313 and reacting flows.>> The POD analysis expands
the unsteady flow solution into a series summation of each
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spatial-only POD mode with a temporal coefficient. Thus,
the spatial coherent flow structures are represented by the
POD modes, while the time evolutions of these structures
are represented by their corresponding temporal coefficients.
To understand the dynamic behavior of each coherent struc-
ture, the largest Lyapunov exponent (LLE) is calculated for
the time coefficient of each mode. A system containing at
least one positive Lyapunov exponent is identified to be
unstable or chaotic.>>*% Based on the Lyapunov-exponent
analysis, Huang et al.’® studied the unsteady flow separa-
tion control. Guha and Udwadia®’ analyzed the nonlinear
dynamics of wave interactions in multilayered flows. The cur-
rent study is to use numerical simulation results to perform
the POD and LLE analyses, for investigating the temporal
behaviors of the POD coherent structures and correlating
them with the nonlinear states of the two-tandem-cylinder
system.

It has been brought to our attention that a relatively new
POD method, named the spectral POD method, has been pro-
posed by Towne et al.’® However, the regular POD method
in this study is still popular and widely used nowadays. The
method presented in the current paper can analyze the dynamic
behavior of the energy-ordered decomposed modes by the reg-
ular POD method, which is useful for detecting the dynamic
development of energy-containing structures in flow.

In the following content, the numerical scheme and
method of the two-tandem-cylinder model are described in
Sec. II. A brief overview of POD and calculation of LLEs are
explained next in Sec. III. Then the results of POD and LLE
analysis for the three cases, each corresponding to one of the
three nonlinear states, are presented and discussed in Sec. IV.
Finally, conclusions are made in Sec. V.

Il. PROBLEM DESCRIPTION AND NUMERICAL
SIMULATION

An immersed-boundary method is effective in simulating
flow around a moving structure because no body-conforming
mesh is required around objects in motion. In this study, an
improved direct-forcing immersed-boundary method*” is used
where the solid cylinders are considered as porous media®®*°
with a large resistivity. The model equations are the Navier-
Stokes equations for incompressible flow, with the modified
Zwikker-Kosten (Z-K) equation*! for flow inside the cylinder
body. All the equations and variables are nondimensionalized
with the incoming speed and the diameter of the cylinder. The
modified governing equations for incompressible, unsteady,
viscous fluid flow are written as

P 1
6—l:+u-Vu:—Vp+R—eV2u+f, 1)

V.u=0, 2)

where f is the body-force term representing the virtual bound-
ary force and Re is the Reynolds number defined as pU D/,
where U, is the free stream velocity and D is the diameter of
the cylinder. In order to restrict the flow to be two-dimensional,
the simulation is performed at the Reynolds number of 100,
which is the same Reynolds number as in the work of Yang
and Zheng.l The flow, both outside and inside the cylinders,
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can be simulated by the same format of the above governing
equations, with the definition of the forcing term as

—o(u — V), inside the solid body, 3)
B 0, outside the solid body,

where o is the dimensionless flow resistivity of the cylin-
ders in the flow and V is the moving velocity of the objects.
For the upstream cylinder, V is zero; for the downstream
cylinder, V is the oscillating velocity of the cylinder. The
equations for fluid flow and porous media are solved simul-
taneously, without a need to specify the interface boundary
conditions.

The simulation domain and the configuration of the prob-
lem are shown in Fig. 1, where a pair of equal-sized cylinders in
tandem arrangement are placed in a uniform, incompressible,
viscous flow. In this study, the upstream cylinder is station-
ary, and the downstream cylinder is oscillating periodically
in the crossflow direction. The computational domain size for
the two-dimensional study is [0, 38.4] x [0, 25.6], where the
length and width of the domain are nondimensionalized by the
cylinder diameter, D.

The center of the upstream cylinder is located 8D from the
inlet flow boundary to reduce the inlet effect and 30.4D away
from the outlet boundary to ensure unstrained vortex wake
development. The location of the downstream cylinder is deter-
mined by S, which is the center-to-center distance between the
two cylinders. In this study, S = 2 and 4 are specified, which
are corresponding to the vortex suppression and critical dis-
tance, respectively.! The distance between the centerline of the
cylinders and the upper and lower boundaries of the compu-
tational domain is 12.8. The size of the uniform, nonmoving
grid used in this study is Ax = Ay = 0.025 for all the com-
putational cases. The check for grid-independent solution has
been carried out in our previous work.>* The same boundary
conditions are used as in the previous work.! In this study,
the computational scheme is a low-storage third-order Runge-
Kutta scheme for time,*? the fifth-order WENO-Z method for
the convection terms,*® and the second-order central differ-
ence for the viscous terms. The incompressibility condition is
satisfied by solving a Poisson equation for pressure correction
using MUDPACK 3%

For the upstream stationary cylinder, the velocity on the
surface is zero. For the transversely oscillating downstream

25.6

- 15 |

38.4

FIG. 1. Sketch of the simulation domain and selected domain for POD.
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cylinder, the sinusoidal heaving motion is specified as

y() = h sinQxfer), “

where h is the heaving magnitude, f. is the oscillating
frequency, and ¢ is the time.

The computational scheme has been verified and validated
with numerous computational and experimental data.?%4043

lll. MATHEMATICAL FORMULATION OF POD
AND LLEs

A. Mathematical formulation of POD
A property of the flow field can be constituted as
W(x, 1) = W(x) +w(x, 1), )

where W is a variable of flow, which can represent velocity,
pressure, vorticity, density, and so on. In this study, vorticity
and velocity are used to analyze the flow dynamics. In Eq. (5),
W is the mean part and w is the time-varying part. As the mean
flow represents steady flow, this study focuses on the fluctuat-
ing part. The POD modes in this paper are only performed on
the fluctuating field, w.

After the numerical simulation is conducted, the flow vari-
able, w, has a discretized solution in space and time. The
starting point of the POD method is a temporal sequence of
data field arranged in matrix X,

X = [W1W2. . .WN], (6)

where N is the number of time snapshots of the recorded
time history of the unsteady flow simulation data. Each
flow field, wy, contains the property of the flow at the kth
time instant, with the time interval fixed between each time
instant. In the POD method, the flow field can be decom-
posed into spatially orthogonal modes with corresponding time
coefficients*

N
wie, 1) = ) (), )
k=1

where ¢ (x) are the POD modes, representing the coherent
structures of the flow, and a; () are the time coefficients of the
modes. With the orthonormality of ¢ (x), the time coefficients
can be obtained as

wm=/@mﬂﬂmw. ®)

By investigating the behavior of time coefficients, a(?), i.e.,
their LLEs (to be discussed later), the stability of each mode
can be analyzed.

We need to find a sequence of orthonormal ¢(x) in a
way that the approximation of using the POD series to rep-
resent the flow field is as good as possible, or optimized, in
a least-squares sense. To solve this optimization problem, a
temporal correlation matrix is calculated first with the method
of snapshots*®

C = /w(x, 1) - wx, t;)dx, )

where i, j = 1, 2, ..., N. The eigenvalue problem, CY = 17,
is then solved. The POD mode associated with the greatest
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eigenvalue is the optimal vector to characterize the ensem-
ble of snapshots. The ith POD mode can then be constructed
as p; = XY;.

In the POD analysis, the energy contained in the data is
defined as the sum of the eigenvalues, and the energy percent-
age captured by the ith POD mode is given by 4;/ Zf{v:] Ak,
which is also referred to as the energy of each mode. The
cumulative energy of the first i POD modes can be represented
by Yo, A/ i, A2

The wake region behind the oscillating cylinder is most
interesting to show the coherent vortical structures and their
related flow physics. Therefore, a selected domain of the near
wake behind the oscillating cylinder is used for analysis, in
the current study, as [8.5 + S, 23.5 + S] x [10.3, 15.3] shown
in Fig. 1. The larger domain outside this area is only needed
to ensure simulation accuracy, as indicated in the domain-size
influence check in our previous work.!

B. The largest Lyapunov exponent for o (t)

Lyapunov exponents are the average exponential rates
of convergence or divergence of nearby orbits in the phase
space, which are used as a key to indicate the chaos level
of a dynamic system.*’*8 Particularly, the largest Lyapunov
exponent (LLE) characterizes the system, and the existence
of a positive Lyapunov exponent is an evidence of chaos. In
this study, the time coefficients, a(¢), of coherent structures
(the POD modes) are a series of values sampled at time inter-
vals. The chaos levels of the coherent structures can thus be
analyzed by calculating the LLEs of a(¢). The behaviors of
LLEs in this particular problem are expected to relate to the
three identified non-linear states of the two-tandem-cylinder
system: lock-in, transitional, and quasiperiodic.' A particular
interest is to look into the stability or chaos levels of the POD
energetic modes by computing the LLEs of the POD mode
coefficients.

Nonlinear time-series analysis can extract meaningful
information of a dynamic system. This framework relies on the
concept of reconstruction of the state space of a system; that
is, the one-dimensional time series needs to be reconstructed
to a finite-dimensional state space to reflect the dynamic char-
acteristics of the system.*> Reconstruction of state space can
be processed by lagging the data®® and turning ay(f) into a
series of vectors. For clarity, in the following discussion in
this section, a(t) represents any of a(¢) from the POD series,
and o' (t) represents a component of the reconstructed vector
from a(t).

To reconstruct the time series, the lag time, 7, and the
embedding dimension, m, need to be calculated first.>> If the
lag T was too small, o’ and &’*™ would be indistinguishable. An
appropriate selection of 7 is to make o' and o*7 sufficiently
independent. Here, the mutual information method>! is used
to calculate the lag, instead of the method based on the Fourier
transform.>* This method is widely used in the recent literature.
For example, Kodba et al.>” calculated the lag of a time series
produced by a driven resonant circuit, Tamil and Samuel’?
determined the lag of a temperature time series, and Perc>*
analyzed the dynamics of human gait.

To introduce the mutual information method, assume two
discrete systems, {r!, 7%, ..., 7, .. . }and {¢', ¢* .. ..¢',.. .},
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represented by R and Q, respectively. The marginal entropies
resulted from these two systems are

H(R) = =" Pr(r')log,Px(r"), (10)
H(Q) = - ) Po(¢)logPo(¢), (an

HR,Q) ==Y > Prolr,q)logsPro(r, ¢, (12)

where Pg(r') is the probability of 7/ in R, PQ(qj ) is the proba-
bility of ¢/ in Q, and P is the joint probability of (r', ¢’y in
R and Q. The mutual information is defined as

I(R,Q)=HR)+H(Q) - H(R, Q), 13)

where the probabilities for each of the dataset are obtained
by the histogram method>> based on Sturges’ formula®® for
constructing a number of bins.

For the assigned datasets, r', ¢/ = [a, @'*7], the mutual
information, I(7) = I(R, Q) of &' and a'*7, is a measure of the
mutual dependence between them. By calculating (1) with T
from 1 to n (<N), the first minimum of /(¢?, '*7) occurs at the
optimal 7. For the length of the time series of a(¢) about 20 000,
usually a value of n at a few hundreds is sufficient to achieve
the first minimum, a fact to be presented in Sec. IV. After T
is obtained, the embedding dimension m can subsequently be
calculated with the Cao method.?” In this method, first define

Ai(1+ 1) = Arearest( 4 1)
||Al(l) _ A?earesz(l)”

a(i,l) = ) (14)

where A;(I + 1) is the ith reconstructed vector with embed-
ding dimension [ + 1, A?**"**(I + 1) is the nearest neighbor of
A;(l + 1) with embedding dimension [ + 1, and ||-|| is a measure
of Euclidian distance. Then define

N-It

|
El) = 5= Z aGi, ). (15)
i=1

Obviously, E(I) only depends on the embedding dimension
and the lag. To investigate its variation from dimensions / to
[ + 1, the following is defined:

E(l+1)
E()

where E1(l) will stop changing when [ is larger than some
value, say, lo; then, [y + 1 is the embedding dimension, m.

Based on the lag and embedding dimension, at time i, the
reconstructed time series Z; is expressed as

El() =

(16)

Zi = (aiai+7. . .0/”(’”‘1)"). 17)

The reconstructed trajectory Z, which is an M X m matrix, can
be expressed as

z=(22 ... zM)T, (18)

where M = N — (m — 1)r, with N as the number of
time snapshots in POD and also as the length of the time
series a(?).

Once the matrix Z has been constructed for a(r), its
LLE is determined based on the mean growth rate of the
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separation of the nearest neighbors using the procedure
described in the literature.’* The procedure includes, after
reconstructing attractor dynamics using the method of delays,
finding nearest neighbors, constraining temporal separation,
measuring average separation of neighbors, and finally using
least squares to fit a logarithmic line to obtain the LLE
value. The details and reasoning of each step are presented in
Ref. 34. Following this procedure, different time series, a(?),
can result in different embedding dimensions and lag times.
Therefore, for each different POD mode, the time coefficient
may not necessarily contain the same embedding dimension
and lag time.

It should be noted that the above process to determine the
LLE is performed for each of the POD coefficient a(¢) and
the LLE of vorticity history at a specific point. By calculating
the LLEs of the time coefficients, the chaos level of each of
the corresponding energetic modes can be obtained, and by
calculating the LLE of the vorticity history at point P in the
flow field, the chaos level at a specific point can be obtained.
This also enables us to investigate whether there is a correlation
between the stability/chaos level at a specific point in the flow
field and those of the POD modes of the flow field in the nearby
region.

IV. POD STRUCTURES, LYAPUNOV EXPONENTS,
AND THE NONLINEAR DYNAMICS STATES

In our previous work,! three nonlinear states were found
for the tandem-cylinder system: lock-in, transitional, and
quasiperiodic, which were also identified by Papaioannou
et al.' In the following discussions, the nonlinear dynamic
behaviors are further analyzed using POD and LLEs for each
of the POD modes. The coherent structures from POD for vor-
ticity and the corresponding temporal coefficients for each of
the POD modes are selected to analyze the nonlinear dynamic
mechanism.

Time histories, power spectra, and phase portraits are plot-
ted for temporal coefficients of vorticity and velocity POD
modes, in order to investigate dynamic states of the POD
modes. Then, the Lyapunov exponent analysis is performed to
explain the level of chaos of each of the POD vorticity coher-
ent structures. The chaos levels of each POD mode for the
vorticity field and that of vorticity at a specific point are com-
pared. In this study, we focus on the dynamics of the most
energetic modes because the contribution of higher modes

Y-velocity

S S o
S I S o o
N o - a o a
T T T T T

o

[N}

3
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with less energy to the whole system may be ignored. Velocity
histories are also recorded at a point that is 0.8D downstream
of the center and 0.8D above the center line in the transverse
direction of the downstream cylinder (point P shown in Fig. 1),
which typically represents the combined wake effects from
the two cylinders. The velocity phase portrait and the vorticity
history at point P will be shown for each state. Note that the
velocity phase portrait and the vorticity history at point P for
each state include the mean components of the corresponding
variables.

The lock-in, transitional, and quasiperiodic states depend
on the distance between the cylinders, S, the oscillating ampli-
tude of the downstream cylinder, 4, and the oscillating fre-
quency of the downstream cylinder f. normalized by the
natural frequency f,; of the corresponding stationary tandem
cylinder system. Three typical nonlinear states identified by
Yang and Zheng! are selected for the study here. The condi-
tions for the lock-in state are S = 2, h = 0.15, and f,. = 1.3f,;
for the transitional state are S =4, h = 0.35, and f, = 0.9f,,,; and
for the quasiperiodic state S = 2, h = 0.15, and f, = 1.7f,,. For
each case, when the simulation reaches 30 oscillating cycles,
five oscillation cycles (from 317 to 357, where T = 1/f.) are
chosen for LLEs analysis. To detect the development of the
LLEs, when the simulation reaches 100 oscillation cycles, five
oscillation cycles (from 817 to 857) and twenty oscillation
cycles (from 817 to 1007 are extracted. The first early 5T
and second late 5T periods of data are used to explain the
development of the LLEs. The last 207 periods of data are
used for POD analysis, such as energy distribution and vor-
ticity coherent structures and Lyapunov exponent calculation.
To ensure the data-number convergence of the POD modes,
two different time intervals, 0.025 and 0.05, in the time snap-
shot data are tested. The L,-norm differences?? for the first
ten modes are calculated in each of the datasets. The results
show that the maximum L,-norm difference is below 0.3% for
the time interval equal to 0.025 in each case. Thus, the time
interval in data between two successive snapshots of 0.025 is
used.

A. The lock-in state

When the system is in the vortex suppression regime
with spacing S = 2, a small oscillating amplitude /2 = 0.15,
and an oscillating frequency f. = 1.3f,, the lock-in state is
obtained. Figure 2(a) shows the velocity portrait of the down-
stream wake at point P, where the velocity portrait is a clean,

FIG. 2. Lock-in state: (a) Velocity phase portrait at point
P and (b) vorticity time history at point P.
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TABLE 1. Energy levels of the POD modes and their respective contributions to the total energy in the lock-in
state.
Modes 1 2 3 4 5 6 7 8
Energy of each mode (%) 39.93 39.42 6.43 6.28 3.41 3.38 0.43 0.43
Cumulative energy (%) 39.93 79.35 85.78 92.06 95.47 98.85 99.28 99.71
10° = 1 eigenvalues which represent the most energetic modes, are
-y _50'9 listed in Table I with their percentages of energy contribu-
I - —m- — Energy of Each Mode ] tion and cumulative energy. The energy of each mode and
3 Y-a ——=—— Cumulative Energy 0.8 cumulative energy versus the number of the POD modes are
2 u—n ] - shown in Fig. 3, where only the first 20 modes are shown.
EO 102k \ ‘20'7 o Clearly, the first two modes dominate and comprise almost
= \._\ ] 2 80% of the total energy of the motion. The first eight modes
S \ 06 % collectively contain more than 99.5% of the energy. Thus,
W0k —n 1 = within these modes, we have almost captured the entire spa-
3 \ Jos ® tial structure of the flow field. Also shown in Fig. 3, the odd
20 i ] g and even modes are found to be paired with close energy lev-
@ 10 3 \"'\ 1 =] els for the first several modes, similar to those found in the
o | na 10, © literature.8
y 05;_ \' o The first eight flow structures of the POD modes and
F . their mode coefficients are plotted in Fig. 4. The paired modes
- - (modes 1 and 2) have very similar structures, and one is just a
10° e 08 shift from the other in the streamwise direction. It also shows

modes

FIG. 3. Energy distributions of the first 20 POD modes in the lock-in state.

closed orbit. The time history of vorticity at point P is shown
in Fig. 2(b) where a regular periodicity can be observed.
The first eight modes, corresponding to the first eight largest
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mheeil

that the first pair of modes reveal a top-bottom mirrored sym-
metry with respect to the centerline of the statistic cylinder (and
the domain). The top-bottom symmetric structures appear as
a traveling-wave-like flow structure in the streamwise direc-
tion.”8% The temporal coefficients of these two modes, in
Fig. 4(b), show a regular periodicity. After the Fourier trans-
form of the temporal coefficients, we find that the dominant
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FIG. 4. Lock-in state: (a) spatial struc-
tures of vorticity POD modes (modes
1 to 8 from top to bottom), (b) tempo-
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frequency is the same as the cylinder oscillating frequency 2f.. The third pair (modes 5 and 6) again shows a top-bottom
f¢. Thus, the first two dominant modes contain a fundamen- symmetry, with structures that are spatial harmonics of those
tal frequency corresponding to the oscillating frequency. The shown in the first pair. In the same way, the fourth pair of
second pair of modes (modes 3 and 4) exhibits a top-bottom modes (modes 7 and 8) shows antisymmetry as the second
antisymmetry, with bifurcation and dissipation seen clearly  pair. The symmetric and antisymmetric properties of the wake
in these two modes. The temporal coefficients also show a  result from nonlinear interactions of the wake and the sym-
regular periodicity, with a dominant frequency found to be = metric forcing. In addition, the temporal coefficients of paired
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TABLE II. LLE for each vorticity mode in the lock-in state.
Temporal coefficients o [¢%) a3 oy as Og a7 ag
Lag 7 (time units) 1.5 1.5 0.7 0.75 0.45 0.45 0.25 0.25
Embedding dimension m 3 3 3 3 3 3 3 3
LLE (31T7-35T) 0 0 0 0 0 0 0 0
LLE (817-85T) 0 0 0 0 0 0 0 0
LLE (817-1007T) 0 0 0 0 0 0 0 0

modes 1 and 2, i.e., a; and oy, have a period T, while pairs of
o3 and o4, o5 and ag, and a7 and ag have periods 7/2, T/3,
and 7/4, respectively. In the frequency domain, each pair of
modes contains different frequencies, with the main frequen-
cies at f., 2f., 3fc, and 4f., respectively, for pairs 1, 2, 3,
and 4.

In the lock-in state, the vorticity spectra have clear peaks
at f. and its integer multiples as found by Yang and Zheng'
and Papaioannou e al.'® What was not discovered in the
previous studies is that by doing the POD analysis, the spatial
modes (coherent structures) along with the frequency-domain
behaviors of their corresponding temporal coefficients can be
seen clearly.

The phase portraits of the vorticity POD temporal coeffi-
cients of higher modes versus that of the first mode are plotted
in Fig. 5(a). The first pair is apparently a circle. The higher
modes show trajectories of closed cycles pertaining to the super
harmonic modes in the lock-in state.

We also performed POD and plotted the coefficients for
streamwise (u) and vertical (v) velocities, which showed the
same properties of the vorticity POD temporal coefficients as
those in Fig. 4(a). So here we omit those plots. Instead, the
phase portraits of these time coefficients are shown in Fig. 5(b)
and the closed orbits are found. Because the temporal coeffi-
cients of velocity POD are also paired in the same way as those
of vorticity POD modes in the lock-in state, only o, a3, as,

FIG. 6. Transitional state: (a) Velocity phase portrait at
point P and (b) vorticity time history at point P.
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TABLE III. Energy levels of the POD modes and their respective contributions to the total energy in the transitional

state.

Modes 1 2 3

5 6 7 8 9 10

Energy of each mode (%) 35.22 3397 4.79

Cumulative energy (%)

355 34 2.7 176 146 131 1.27
3522 69.19 7398 77.53

80.93 83.63 8593 86.85 88.16 89.43
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FIG. 7. Energy distributions of the first 20 POD modes in the transitional
state.

and a7 of u and v are plotted. It can be seen that the trajectories
of the temporal coefficients for each of the modes are all in the
shape of cleanly closed ellipses.
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To investigate the chaos level in the POD coherent struc-
tures, we calculate LLEs for the vorticity POD temporal
coefficients by the method presented in Sec. III. The tran-
sient development of the LLEs is evaluated by using the
early first 57, the late 57, and the last 20T time coefficient
data.®® The results are shown in Table II. The LLE of the
vorticity history at point P is also calculated to compare
with the LLEs of each field mode. In this case, at point P,
7 =15, m =3, and LLE = 0. LLEs for all the modes at
the early 57, late 57, and last 207 are zero in the lock-
in state. It demonstrates that, when the simulation becomes
period, the LLEs remains to be zero all the time in the
lock-in state. This means that there is no chaos existing in
the lock-in state and all the energetic modes in the lock-in
state are stable. The embedding dimensions of all the modes
are also the same as that of point P. The lag of point P
is the same as that of the first two energetic modes. That
is, the lag time is mostly controlled by the highest energy
modes.

It is also noted that the lag time of the paired modes is the
same. The lag time of modes 1 and 2 is 1.5, that of modes 3
and 4 is 0.75, that of modes 5 and 6 is 0.45, and that of modes
7 and 8 is 0.25, with a trend of decreasing towards the higher
modes.
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FIG. 8. Transitional state: (a) spatial
structures of vorticity POD modes
(modes 1 to 10 from top to bottom),
(b) temporal coefficient time histories
. of vorticity POD modes for the vortic-
ity field, and (c) power spectra of the
temporal coefficients of vorticity POD
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B. The transitional state

When the system is under the conditions of a critical
spacing S = 4, a higher oscillating amplitude 4 = 0.35, and
an oscillating frequency close to natural vortex shedding fre-
quency f. = 0.9f,s, the transitional state occurs. Figure 6(a)

shows the velocity portrait at point P. The velocity phase por-
trait at this point shows some random tendency. The time
history of vorticity at point P is shown in Fig. 6(b), and
the regular periodicity disappears. Weak chaos is shown in
Fig. 6(b). Again, the time-varying part of the flow is selected
to be decomposed and the fluctuating fields are represented by
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the coherent structures. The values of the first ten modes with
the largest eigenvalues corresponding to the most energetic
modes are shown in Table III. The energy of each mode and
cumulative energy versus the number of the POD modes are
plotted in Fig. 7 for the first 20 modes. Obviously, the first two
modes are dominating modes, containing about 35% and 34%
of the total energy, respectively. The third and fourth modes
account for lower energy percentages of less than 5%. The
first ten modes collectively contain almost 90% of the energy.
Therefore, with these modes, the majority of flow characteris-
tics can be captured. Figure 7 shows that all the modes are not
exactly paired in terms of energy level, not like in the lock-in
state in Fig. 3. Thus, if the vortex shedding pattern switches
from the lock-in state to the transitional state, the paired modes
in the lock-in state cannot be maintained, which has also been
discovered by Konstantinidis et al.®! for wakes behind a single
cylinder.

The first ten POD modes of the coherent structures are
shown in Fig. 8(a). It can be seen that the first two modes,

200 100

100

-100
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modes | and 2, are paired in terms of similarity in their spatial
structures, although their energy levels are not the same but
close as evident in Fig. 7. Both the modes also show a top-
bottom mirrored symmetry. In addition, the structures of the
first two modes are almost the same as the first two modes
of the lock-in state, which appear to be traveling-wave-like
structures. The third, fourth, sixth, and eighth modes exhibit
somewhat antisymmetric properties though not exactly. The
fifth, seventh, ninth, and tenth modes show some symmetric
properties but again not exactly. However, with flow structure
similarity and close energy levels, it seems that modes 4 and 6,
mode 5 and 7, and modes 9 and 10 can still be paired. Modes 3
and 8 are some modes with a different topology and are mainly
active during the rapid changes of transition, and this rapid
change phenomenon is also found in the wake behind a single
cylinder.5>%3 With these somewhat irregular flow structures,
non-periodic motions of the flow start to evolve.

The temporal coefficients of these modes are plotted in
Fig. 8(b). The temporal coefficients of the first two modes

100 100

==

FIG. 9. Phase portraits of vorticity POD temporal coef-
ficients in the transitional state. (a) @y vs. a1, (b) @3 vs.
ay, (C) ay vs. ay, (d) as vs. ay, (e) ag vs. @y, and (f) ag
VS. ag.
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TABLE IV. LLE for each vorticity mode in the transitional state.

Phys. Fluids 30, 123602 (2018)

Temporal coefficients o (o3 o3 oy o5 ag a7 og a9 a0
Lag 7 (time units) 1.45 1.45 1.15 0.75 1.35 0.95 1.65 0.8 0.7 0.7
Embedding dimension m 5 5 5 5 5 5 5 5 5 5
LLE 31T-35T) 0.5625 0.5345 1.0124 0.5123 0.4285 0.4583 0.9584 0.9215 0.6251 0.7521
LLE (81T-85T) 0.0085 0.0093 0.0334 0.0256 0.0250 0.0451 0.0207 0.0512 0.0287 0.0282
LLE (817-100T) 0.0084 0.0104 0.0220 0.0254 0.0253 0.0207 0.0205 0.0244 0.0294 0.0295
041 121
1.4F
0.05F I
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2005k g ) I FIG. 10. Quasiperiodic state: (a) Velocity phase portrait
> N T at point P and (b) vorticity time history at point P.
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show clear periodicity while the others do not exhibit regular
periodic properties and only quasi-periodicity at most. In the
spectral-domain results in Fig. 8(c), the dominant frequency
for the first two modes is the same as the forcing frequency,
f¢, corresponding to the downstream-cylinder oscillating fre-
quency. It can be seen that higher modes contain different
frequencies. Peaks at 2f. and 2f,s; can be found in modes
3 and 4. A peak at f,,; can be seen in mode 6. In addition,
peaks with lower amplitudes are found in modes 5, 7, 8, 9,
and 10, which may cause some modulations in these frequen-
cies as well. Similar multi-frequencies were discovered in the
previous work "»!? in the transitional state.

The phase portraits of temporal coefficients of the higher
modes versus that of the first mode are displayed in Fig. 9.
Unlike the lock-in state, the trajectories of a; versus @ do
not show a limit circle but a series of round circles, which
means that modes 1 and 2 contain the same dominant fre-
quency. All the others do not show periodicity with a dominant
frequency. These results can be observed in Fig. 8(c), where
modes with low energy contain different frequencies, which
can cause some modulations.'?

To investigate the behaviors of LLEs in the transitional
state, LLEs of the vorticity temporal coefficients for each
of the modes are calculated. The development of the LLEs
is again evaluated by using the early 57, late 57, and last
207 time coefficient data to calculate the LLEs.®® The results
are listed in Table IV. In the transitional state, at point

P, =145, m =5, and LLE = 0.0112, which means that
weak chaos exists in the transitional state. From Table IV, it
can be seen that the LLEs become smaller (but remain positive)
as time increases from the early 57 to the late 57. The LLEs
of the late 5T and last 207 have very close values, except
for the modes 3, 6, and 8. This is because modes 3, 6, and
8 contain low frequencies, which cannot be captured by the
late 5T data, but can be captured by the last 207 data. It also
indicates that when time increases, the LLEs of each mode
become smaller until reaching a constant value, and 207 is long
enough to capture the features in the transitional state in this
study.

The different LLEs indicate different chaos levels of these
modes. After a long period of time, the LLEs for the modes
with lower energy become almost the same. Table IV shows
that after a long period of time, the LLEs of the first two modes
are close to zero (around 0.0112), which means that the chaos
levels of point P and the first two energetic modes are in the
same order and the first two modes are relatively stable. The
LLEs of the other modes are all positive and larger than 0.0112,
which shows that their chaos levels are higher than the first two
modes and weak chaotic motions exist in these modes. It again
demonstrates that 207 is long enough to capture the features in
the transitional state because the LLEs reach a constant value.
The embedding dimensions of all the modes are the same as
that of the vorticity history at point P, while only the lags for
the first two dominant modes are the same as those of point

TABLE V. Energy levels of the POD modes and their respective contributions to the total energy in the

quasiperiodic state.

Modes 1 2 3 4 5 6 7 8
Energy of each mode (%) 24.45 22.51 20.43 17.84 3.33 2.97 1.58 1.50
Cumulative energy (%) 24.45 46.96 67.39 85.23 88.56 91.53 93.11 94.61
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FIG. 11. Energy distributions of the first 20 POD modes in the quasiperiodic
state.

P. Thus, it can be conjectured that in the transitional state,
the first two dominant coherent structures are relatively stable,
while weak chaos exists in the higher modes and leads the
higher-mode structures to become unstable first. After a long
period of time, the LLEs of the first two modes are almost the
same with that of the vorticity history at point P. It is without
coincidence that the lag time listed in Table IV is again the
same for the paired modes, modes 1 and 2 and modes 9 and
10, with a trend to decrease in the higher modes. On the other
hand, the fact that different POD modes have different LLEs

(a)

-0.005 -0004 -0.003 -0002 -0001 0 0001 0002 0003 0004 0005
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may provide an evidence that there is no single LLE for the
entire flow field,®* but there can still be an LLE for each of the
POD modes.

To check the chaos level of the transitional state, we
also tested another transitional state in our previous work:!
S =4, h=0.15, and f. = 1.1f,;. The time histories of
z-vorticity at point P also show non-periodicity. For a long
period of time, the LLEs are also positive in the modes
with low energy, providing another evidence that chaos
exists in the transitional state, especially in the low energy
modes.

C. The quasiperiodic state

When increasing the oscillating frequency in the lock-in
state to f- = 1.7f .5, still at the vortex suppression spacing S =2,
but with a smaller oscillating amplitude /2 =0.15, the quasiperi-
odic state occurs. Figure 10(a) shows the velocity portrait at
point P, which displays a quasiperiodic pattern. The time his-
tory of vorticity at point P is shown in Fig. 10(b) where an
obviously periodic property can be seen. Again, the first eight
modes corresponding to the first eight largest eigenvalues are
the most energetic modes, as listed in Table V. The plots of the
energy of each mode and cumulative energy versus the num-
ber of the POD modes are shown in Fig. 11 for the first 20
modes. Apparently, the first four modes are dominant modes,
which contain more than 85% of the total energy. The fifth
and sixth modes account for a lower energy percentage of
less than 4%. The first eight modes collectively contain more
than 95% of the energy. Although Fig. 11 does not clearly
indicate paired modes as those found in the lock-in state, sim-
ilarity in the mode spatial structures between the neighboring
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FIG. 12. (Continued).
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modes, shown in Fig. 12(a), brings back the odd-even pair
patterns as in the lock-in state. However, the coherent struc-
tures in the quasiperiodic state are very different from those in
the lock-in state. Anyway, it seems that the pattern of paired
modes re-emerges when the flow reaches the quasiperiodic
state.

The first eight POD modes are shown in Fig. 12(a). It
can be seen that the first two modes show the top-bottom
mirrored symmetry. The third and fourth modes also exhibit
the top-bottom symmetry, although variations in the mode-
structure contours make this symmetry inexact. The next four
modes with less energy show antisymmetry, again not in an
exact way. An interesting phenomenon is that for the last four
modes, there is weaker vorticity in the near wake than in the far

wake. The temporal coefficients of these modes are plotted in
the middle column of Fig. 12(b). Clearly, the temporal coeffi-
cients of all the dominant modes in this state are non-periodic,
even for the most energetic modes. The dominant frequencies
for modes 1, 2, 3, and 4 are f. and f,;, respectively. Thus,
the first four modes contain the fundamental frequency corre-
sponding to the oscillating frequency and the vortex shedding
frequency. The dominant frequency for modes 5 and 6 is
fe — fns, corresponding to the linear combination of vortex
shedding frequency and oscillating frequency. For the tempo-
ral coefficients of the last two modes, modes 7 and 8, peaks are
identified at 2f s, f¢ — fns, and 2f .. Therefore, the quasiperi-
odic state exhibits clearly multiple peaks at two frequencies
fe and f,s and their linear combinations, which is similar to
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FIG. 13. Phase portraits of vorticity POD temporal coef-
ficients in the quasiperiodic state. (a) a; vs. a1, (b) a3
vs. a1, (¢) as vs. a1, and (d) @7 vs. a|.
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the property of the double-frequency quasiperiodic system
discussed in the previous study.%*

The phase portraits of temporal coefficients of the
higher modes versus that of the first mode are shown in
Fig. 13. No clear closed circles can be seen as those in the
lock-in state shown in Fig. 5(a). The multi-frequency peri-
odicity, as evident in Fig. 12(c) where each mode con-
tains multiple dominant frequencies, cannot be seen in such
phase portraits using @ as the reference. This is because
a; itself contains two frequencies in addition to phase shifts
from all the other mode coefficients. Therefore, even with
double-frequency periodicity in the quasiperiodic state, the
phase portraits in Fig. 13 do not show clear attractors of the
system.

The LLEs of the vorticity POD temporal coefficients are
calculated to explore the time evolution of the POD modes.
The LLEs of the early 57, late 57, and last 207 time coeffi-
cients are calculated with the results shown in Table VI. The
LLE of the vorticity history at point P is also calculated to
compare with the LLE of each mode, with the results being
7=15,m=25, and LLE = —0.0024, which means that the
quasiperiodic state is stable. Table VI shows that the LLEs
in the quasiperiodic state change from positive to negative

TABLE VI. LLE for each vorticity mode in the quasiperiodic state.

(close to zero) as time increases from the early 57 to the late
5T. Change of LLEs in time from positive to negative in a
quasiperiodic state was also found by Glaz et al.®* The LLEs
of the late 5T and the last 20T are very close, except for mode
8. This is because mode 8 contains low frequencies, which
cannot be captured by the late 5T data but by the last 20T
data. It also indicates that when time increases, the LLE of
each mode becomes smaller until reaching a constant value,
and 20T is long enough to capture the time-development fea-
ture of the POD time coefficients in the quasiperiodic state.
From Table VI, it can be seen that, for a long period of time,
the LLEs of all the modes are close to —0.0024, the same as
the LLE of vorticity history at point P. The embedding dimen-
sions of all the modes are also the same as that of point P, while
only the lag of the first four modes is the same as that of point
P. As the LLEs of all the modes are negative, stable motions
exist in all the POD coherent structures in the quasiperiodic
state, which is also shown in the previous study.®* The lag
time in each of the mode pairs is the same, as observed in the
lock-in state, but does not decrease monotonically with higher
modes.

To recheck the above revealed chaotic behaviors of the
periodic state, we tested another quasiperiodic state according

Temporal coefficients o [e%) o3 oy o5 ag a7 ag
Lag 7 (time units) 1.5 1.5 1.5 1.5 2 2 0.75 0.75
Embedding dimension m 5 5 5 5 5 5 5 5
LLE (317-35T) 0.2814 0.2587 0.2726 0.2825 0.5588 0.4435 0.5657 0.5489
LLE (817-85T) —-0.0023 —-0.0023 -0.0024 —-0.0024 —-0.0024 —-0.0024 —-0.0025 —-0.0041
LLE (817-100T) —-0.0024 —-0.0024 —-0.0024 —-0.0024 —-0.0025 —-0.0025 —-0.0025 —-0.0025
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to the previous study:' S = 6, h = 0.15, and f. = 1.3f,;.
The time history of vorticity at point P also shows quasi-
periodicity. For a long period of time, the LLEs also tend
to zero and the LLEs values for each mode are close to
the LLE of vorticity history at point P. This confirms that
the long-time dynamic behavior of the quasiperiodic state is
stable.!?

V. CONCLUSIONS

For a multi-variable dynamic system of flow around two
tandem cylinders with the downstream cylinder oscillating
transversely, there exist three states of nonlinear response:
lock-in, transitional, and quasiperiodic. In this study, these
three states are further explored using the POD analysis and
the LLEs of the POD mode coefficients along with the LLE
of the vorticity history at a specific point in the flow field. The
POD analysis expands the unsteady flow solution into a series
summation of each spatial-only POD mode with a temporal
coefficient. The spatial coherent flow structures are repre-
sented by the POD modes, and the time evolutions of these
structures are represented by their corresponding temporal
coefficients.

We focus on the first eight or ten POD modes because
they contain almost 90% total energy of flow in these three
states. The paired POD modes, i.e., the two adjacent modes
containing almost the same energy with a similar POD spa-
tial pattern, can be found in all the three states, although the
typical odd-even pair modes in the transitional state are not
quite clearly identified. The flow structures of the POD modes
are sometimes symmetric or anti-symmetric with respect to
the horizontal centerline of the tandem cylinder system. The
first pair (modes 1 and 2) is symmetric in all three states and
contains almost 70% of energy in the lock-in and transitional
states but only around 50% in the quasiperiodic state. The sec-
ond pair (modes 3 and 4) is antisymmetric in the lock-in state
and still symmetric, although not exactly, in the quasiperiodic
state. In the transitional state, modes 3 and 4 are not paired,
with mode 3 showing neither symmetry nor antisymmetry.
Instead, paired modes are found between modes 4 and 6, and
also modes 9 and 10. The first four modes (first two pairs) con-
tain more than 92% of energy in the lock-in state and more than
80% of energy in the quasiperiodic state. After the first two
pairs, the odd pairs exhibit symmetry and even pairs exhibit
antisymmetry in the lock-in state, and all the modes show the
antisymmetry (although not exactly) in the quasiperiodic state.
The transitional state possesses neither exactly symmetry nor
antisymmetry in all the higher modes other than the first pair.

The temporal coefficients for the lock-in POD modes
show regular periodicity with dominant frequencies at f, 2f,
3f ., and 4f ., for the first to fourth pairs of modes, respectively.
The phase portraits for the vorticity POD temporal coefficients
of the higher modes versus that of the first mode are all sin-
gle closed-loop curves. The phase portraits of the temporal
coefficients of the velocity POD modes are all clean, closed
ellipses. The temporal coefficients of the first two modes in
the transitional state exhibit clear periodicity, while the others
do not exhibit regular periodic properties. Prominent peaks in
the transitional state are at f., 2f., and 2f ;. The trajectories
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of a; versus a; show a series of round circles. The phase por-
traits of temporal coefficients of the others are not clean and
show some chaotic behaviors. The temporal coefficients of all
the dominant modes in the quasiperiodic state show double-
frequency periodicity. As « itself contains two frequencies
with phase shifts, the phase portraits do not show clear attrac-
tors of the system. The spectral peaks are at f., f,,s and the
linear combinations of /. and f ;.

By looking into the LLEs of the POD coefficients and the
vorticity history at point P, we find that the LLEs in the lock-in
state for all the POD modes and vorticity at point P are zero,
which means that there is no unstable development in the lock-
in state. In the transitional state, the LLEs evolve with time
from larger values to smaller values, but they are still larger
than zero after a long period of time. This indicates that when
flow becomes more periodic, the LLE of each mode becomes
smaller. The LLEs for the first two modes are almost the same
with that of point P and are close to zero, which means that
almost no chaos exists in those two modes of large coherent
structures in the transitional state. In this state, weak chaos
exists in other structures with almost the same chaos level
as indicated by the values of their LLEs. In the quasiperiodic
state, the LLEs developed from positive to negative after along
period of time. In addition, the LLEs of all the POD modes
and that of point P are almost the same with a value no larger
than zero (but close to zero), which means that the motions in
the quasiperiodic state are close to those in the lock-in state
and the system is stable for the quasiperiodic state. It is also
that noted for all three states, the values of lag time of the two
modes in a pair are the same or very close, and the lag time of
the vorticity history at point P is almost the same as the lag time
of the first two dominant modes. The embedding dimensions
of all the modes are the same as that of the vorticity history at
point P in all the nonlinear states.

It should be noted that in this study, we mostly truncate the
POD modes up to the first 10 modes. The behavior of higher-
order modes can possibly be different from those of the first
10. Although the dynamics of higher-order POD modes may
also influence the dynamics of flow, this study mostly focuses
on the dynamics of lower-order modes whose higher-energy
levels are likely to be responsible for the significant dynamic
development of flow.

Finally, although this study is based on flow simulation at a
Reynolds number of 100, the above conclusions are applicable
for flow in the laminar regime in the same non-linear states for
similar types of systems.

IX. Yang and Z. C. Zheng, “Nonlinear spacing and frequency effects of an
oscillating cylinder in the wake of a stationary cylinder,” Phys. Fluids 22,
043601 (2010).

2p. Sumner, “Two circular cylinders in cross-flow: A review,” J. Fluids
Struct. 26, 849 (2010).

3 A. Chatterjee, “An introduction to the proper orthogonal decomposition,”
Curr. Sci. 78, 808 (2000).

4K. Taira, S. L. Brunton, S. T. Dawson, C. W. Rowley, T. Colonius,
B. J. McKeon, O. T. Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley,
“Modal analysis of fluid flows: An overview,” AIAA J. 55, 4013 (2017).

SM. M. Zdravkovich, “The effects of interference between circular cylinders
in cross flow,” J. Fluids Struct. 1, 239 (1987).

0B, Qin, M. M. Alam, and Y. Zhou, “Two tandem cylinders of different
diameters in cross-flow: Flow-induced vibration,” J. Fluid Mech. 829, 621
(2017).


https://doi.org/10.1063/1.3372169
https://doi.org/10.1016/j.jfluidstructs.2010.07.001
https://doi.org/10.1016/j.jfluidstructs.2010.07.001
https://doi.org/10.2514/1.j056060
https://doi.org/10.1016/s0889-9746(87)90355-0
https://doi.org/10.1017/jfm.2017.510

123602-17 M. Zhang and Z. C. Zheng

7L. Wang, M. M. Alam, and Y. Zhou, “Two tandem cylinders of different
diameters in cross-flow: Effect of an upstream cylinder on wake dynamics,”
J. Fluid Mech. 836, 5 (2018).

87, Li, A. Chambarel, M. Donneaud, and R. Martin, “Numerical study of
laminar flow past one and two circular cylinders,” Comput. Fluids 19, 155
(1991).

9R. I. Jiang and J. Z. Lin, “Poiseuille flow-induced vibrations of two tan-
dem circular cylinders with different mass ratios,” Phys. Fluids 28, 064105
(2016).

10G, v. Papaioannou, D. K. Yue, M. S. Triantafyllou, and G. E. Karniadakis,
“Evidence of holes in the Arnold tongues of flow past two oscillating
cylinders,” Phys. Rev. Lett. 96, 014501 (2006).

g, Wang, Q. Xiao, Q. Zhu, and A. Incecik, “The effect of spacing on the
vortex-induced vibrations of two tandem flexible cylinders,” Phys. Fluids
29, 077103 (2017).

12r, Lin, X. Guo, G. Tang, M. Liu, C. Chen, and Z. Xie, “Numerical investiga-
tion of flow-induced rotary oscillation of circular cylinder with rigid splitter
plate,” Phys. Fluids 28, 093604 (2016).

B3p.s. Carmo, J. R. Meneghini, and S. J. Sherwin, “Secondary instabilities
in the flow around two circular cylinders in tandem,” J. Fluid Mech. 644,
395 (2010).

141, AlQadi, M. AlHazmy, A. Al-Bahi, and W. Rodi, “Large eddy simulation
of flow past tandem cylinders in a channel,” Flow, Turbul. Combust. 95, 621
(2015).

I5SM. D. Griffith, D. L. Jacono, J. Sheridan, and J. S. Leontini, “Flow-induced
vibration of two cylinders in tandem and staggered arrangements,” J. Fluid
Mech. 833, 98 (2017).

loy, Tanida, A. Okajima, and Y. Watanabe, “Stability of a circular cylin-
der oscillating in uniform flow or in a wake,” J. Fluid Mech. 61, 769
(1973).

17G. Xu and Y. Zhou, “Strouhal numbers in the wake of two inline cylinders,”
Exp. Fluids 37, 248 (2004).

18y Li, J. Sun, and B. Roux, “Numerical study of an oscillating cylinder in
uniform flow and in the wake of an upstream cylinder,” J. Fluid Mech. 237,
457 (1992).

I9N. Mahir and D. Rockwell, “Vortex formation from a forced system of
two cylinders. Part I: Tandem arrangement,” J. Fluids Struct. 10, 473
(1996).

20G. V. Papaioannou, D. K. Yue, M. S. Triantafyllou, and G. E. Karniadakis,
“Three-dimensionality effects in flow around two tandem cylinders,”
J. Fluid Mech. 558, 387 (2006).

g, Bao, S. Chen, Z. Liu, J. Li, H. Wang, and C. Zheng, “Simulation of the
flow around an upstream transversely oscillating cylinder and a stationary
cylinder in tandem,” Phys. Fluids 24, 023603 (2012).

27, X. Liang and H. B. Dong, “On the symmetry of proper orthogonal
decomposition modes of a low-aspect-ratio plate,” Phys. Fluids 27, 063601
(2015).

23a. Riches, R. Martinuzzi, and C. Morton, “Proper orthogonal decomposi-
tion analysis of a circular cylinder undergoing vortex-induced vibrations,”
Phys. Fluids 30, 105103 (2018).

24F. Takens, “Detecting strange attractors in turbulence,” in Dynamical
Systems and Turbulence, Warwick 1980 (Springer, 1981), p. 366.

BM.T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for
calculating largest Lyapunov exponents from small data sets,” Physica D
65, 117 (1993).

267, A. Wei, Z. C. Zheng, and X. Yang, “Computation of flow through a three-
dimensional periodic array of porous structures by a parallel immersed-
boundary method,” J. Fluids Eng. 136, 040905 (2014).

27N, Aubry, P. Holmes, J. L. Lumley, and E. Stone, “The dynamics of coherent
structures in the wall region of a turbulent boundary layer,” J. Fluid Mech.
192, 115 (1988).

28], Mezic, “Analysis of fluid flows via spectral properties of the Koopman
operator,” Annu. Rev. Fluid Mech. 45, 357 (2013).

29p Holmes, Turbulence, Coherent Structures, Dynamical Systems and
Symmetry (Cambridge University Press, 1998).

30A.E. Deane, I. G. Kevrekidis, G. E. Karniadakis, and S. A. Orszag, “Low-
dimensional models for complex geometry flows: Application to grooved
channels and circular cylinders,” Phys. Fluids A 3, 2337 (1991).

31G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decom-
position in the analysis of turbulent flows,” Annu. Rev. Fluid Mech. 25, 539
(1993).

327, Malm, P. Schlatter, and D. S. Henningson, “Coherent structures and dom-
inant frequencies in a turbulent three-dimensional diffuser,” J. Fluid Mech.
699, 320 (2012).

Phys. Fluids 30, 123602 (2018)

3s. Roy, J. C. Hua, W. Barnhill, G. H. Gunaratne, and J. R. Gord, “Decon-
volution of reacting-flow dynamics using proper orthogonal and dynamic
mode decompositions,” Phys. Rev. E 91, 013001 (2015).

34A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining
Lyapunov exponents from a time series,” Physica D 16, 285 (1985).

35E. Ginelli, P. Poggi, A. Turchi, H. Chate, R. Livi, and A. Politi, “Charac-
terizing dynamics with covariant Lyapunov vectors,” Phys. Rev. Lett. 99,
130601 (2007).

366, Huang, W. Lu, J. Zhu, X. Fu, and J. Wang, “A nonlinear dynamic model
for unsteady separated flow control and its mechanism analysis,” J. Fluid
Mech. 826, 942 (2017).

37A. Guha and F. E. Udwadia, “Nonlinear dynamics induced by linear wave
interactions in multilayered flows,” J. Fluid Mech. 816, 412 (2017).

3A. Towne, O. T. Schmidt, and T. Colonius, “Spectral proper orthogonal
decomposition and its relationship to dynamic mode decomposition and
resolvent analysis,” J. Fluid Mech. 847, 821 (2018).

N. Zhang and Z. C. Zheng, “An improved direct-forcing immersed-
boundary method for finite difference applications,” J. Comput. Phys. 221,
250 (2007).

40y, Xu, Z. C. Zheng, and D. K. Wilson, “Simulation of turbulent wind noise
reduction by porous windscreens using high-order schemes,” J. Comput.
Acoust. 18, 321 (2010).

41X, B. Chen, P. Yu, S. H. Winoto, and H. T. Low, “Numerical analy-
sis for the flow past a porous square cylinder based on the stress-jump
interfacial-conditions,” Int. J. Numer. Methods Heat Fluid Flow 18, 635
(2008).

427. A. Wei and Z. C. Zheng, “Fluid-structure interaction simulation on energy
harvesting from vortical flows by a passive heaving foil,” J. Fluids Eng. 140,
011105 (2018).

43R. Borges, M. Carmona, B. Costa, and W. S. Don, “An improved weighted
essentially non-oscillatory scheme for hyperbolic conservation laws,”
J. Comput. Phys. 227, 3191 (2008).

44J. C. Adams, “Mudpack: Multigrid portable Fortran software for the effi-
cient solution of linear elliptic partial differential equations,” Appl. Math.
Comput. 34, 113 (1989).

457.C. Zheng and Z. A. Wei, “Study of mechanisms and factors that influence
the formation of vortical wake of a heaving airfoil,” Phys. Fluids 24, 103601
(2012).

40, Sirovich, “Turbulence and the dynamics of coherent structures. I.
Coherent structures,” Q. Appl. Math. 45, 561 (1987).

47TR. Grappin and J. Leorat, “Lyapunov exponents and the dimension of
periodic incompressible Navier—Stokes flows: Numerical measurements,”
J. Fluid Mech. 222, 61 (1991).

48K . Kanno and A. Uchida, “Finite-time Lyapunov exponents in time-delayed
nonlinear dynamical systems,” Phys. Rev. E 89, 032918 (2014).

49H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge
University Press, 2004), Vol. 7.

SON. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, “Geometry
from a time series,” Phys. Rev. Lett. 45, 712 (1980).

SIA. M. Fraser and H. L. Swinney, “Independent coordinates for
strange attractors from mutual information,” Phys. Rev. A 33, 1134
(1986).

523, Kodba, M. Perc, and M. Marhl, “Detecting chaos from a time series,”
Eur. J. Phys. 26, 205 (2004).

538, S. Tamil and S. R. Samuel, “Application of Lyapunov exponent on
the predictability of temperature over an equatorial station-Chennai,” Bull.
Environ., Pharmacol. Life Sci. 4, 144 (2015).

54M. Perc, “The dynamics of human gait,” Eur. J. Phys. 26, 525 (2005).

SSA.M. Kowalski, M. T. Martin, A. Plastino, and G. Judge, “On extracting
probability distribution information from time series,” Entropy 14, 1829
(2012).

S0H. A. Sturges, “The choice of a class interval,” J. Am. Stat. Assoc. 21, 65
(1926).

STL. Y. Cao, “Practical method for determining the minimum embedding
dimension of a scalar time series,” Physica D 110, 43 (1997).

38D, Rempfer and H. F. Fasel, “Evolution of three-dimensional coher-
ent structures in a flat-plate boundary layer,” J. Fluid Mech. 260, 351
(1994).

S9N. Nabatian, X. Xu, and N. Mureithi, “POD analysis of three-dimensional
harmonically forced wake flow of a circular cylinder,” Trans. Can. Soc.
Mech. Eng. 39, 789 (2015).

60pB, Glaz, I. Mezi¢, M. Fonoberova, and S. Loire, “Quasi-periodic
intermittency in oscillating cylinder flow,” J. Fluid Mech. 828, 680
(2017).


https://doi.org/10.1017/jfm.2017.735
https://doi.org/10.1016/0045-7930(91)90031-c
https://doi.org/10.1063/1.4954501
https://doi.org/10.1103/physrevlett.96.014501
https://doi.org/10.1063/1.4995463
https://doi.org/10.1063/1.4962706
https://doi.org/10.1017/s0022112009992473
https://doi.org/10.1007/s10494-015-9603-7
https://doi.org/10.1017/jfm.2017.673
https://doi.org/10.1017/jfm.2017.673
https://doi.org/10.1017/s0022112073000935
https://doi.org/10.1007/s00348-004-0808-0
https://doi.org/10.1017/s0022112092003495
https://doi.org/10.1006/jfls.1996.0032
https://doi.org/10.1017/s0022112006000139
https://doi.org/10.1063/1.3683565
https://doi.org/10.1063/1.4921843
https://doi.org/10.1063/1.5046090
https://doi.org/10.1016/0167-2789(93)90009-p
https://doi.org/10.1115/1.4026357
https://doi.org/10.1017/s0022112088001818
https://doi.org/10.1146/annurev-fluid-011212-140652
https://doi.org/10.1063/1.857881
https://doi.org/10.1146/annurev.fluid.25.1.539
https://doi.org/10.1017/jfm.2012.107
https://doi.org/10.1103/physreve.91.013001
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1103/physrevlett.99.130601
https://doi.org/10.1017/jfm.2017.321
https://doi.org/10.1017/jfm.2017.321
https://doi.org/10.1017/jfm.2017.84
https://doi.org/10.1017/jfm.2018.283
https://doi.org/10.1016/j.jcp.2006.06.012
https://doi.org/10.1142/s0218396x10004231
https://doi.org/10.1142/s0218396x10004231
https://doi.org/10.1108/09615530810879756
https://doi.org/10.1115/1.4037661
https://doi.org/10.1016/j.jcp.2007.11.038
https://doi.org/10.1016/0096-3003(89)90010-6
https://doi.org/10.1016/0096-3003(89)90010-6
https://doi.org/10.1063/1.4760258
https://doi.org/10.1090/qam/910462
https://doi.org/10.1017/s0022112091001003
https://doi.org/10.1103/physreve.89.032918
https://doi.org/10.1103/physrevlett.45.712
https://doi.org/10.1103/physreva.33.1134
https://doi.org/10.1088/0143-0807/26/1/021
https://doi.org/10.1088/0143-0807/26/3/017
https://doi.org/10.3390/e14101829
https://doi.org/10.1080/01621459.1926.10502161
https://doi.org/10.1016/s0167-2789(97)00118-8
https://doi.org/10.1017/s0022112094003551
https://doi.org/10.1139/tcsme-2015-0063
https://doi.org/10.1139/tcsme-2015-0063
https://doi.org/10.1017/jfm.2017.530

123602-18 M. Zhang and Z. C. Zheng

6lE  Konstantinidis, S. Balabani, and M. Yianneskis, “Bimodal vortex
shedding in a perturbed cylinder wake,” Phys. Fluids 19, 011701 (2007).

62B R. Noack, W. Stankiewicz, M. Morzyrski, and P. J. Schmid, “Recursive
dynamic mode decomposition of transient and post-transient wake flows,”
J. Fluid Mech. 809, 843 (2016).

Phys. Fluids 30, 123602 (2018)

63B. R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor, and F. Thiele,
“A hierarchy of low-dimensional models for the transient and post-transient
cylinder wake,” J. Fluid Mech. 497, 335 (2003).

%4H. G. Schuster and W. Just, Deterministic Chaos: An Introduction (John
Wiley & Sons, 2006).


https://doi.org/10.1063/1.2432152
https://doi.org/10.1017/jfm.2016.678
https://doi.org/10.1017/s0022112003006694

