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Abstract

As the second of a 3-part series of articles in this issue concerning the development of a 

mathematical model for comparative characterization of complex mixture drugs using crofelemer 

(CF) as a model compound, this work focuses on the evaluation of the chemical stability profile of 

CF. CF is a biopolymer containing a mixture of proanthocyanidin oligomers which are primarily 

composed of gallocatechin with a small contribution from catechin. CF extracted from drug 

product was subjected to molecular weight—based fractionation and thiolysis. Temperature stress 

and metal-catalyzed oxidation were selected for accelerated and forced degradation studies. 

Stressed CF samples were size fractionated, thiolyzed, and analyzed with a combination of 

negative-ion electrospray ionization mass spectrometry (ESI-MS) and reversed-phase-HPLC with 

UV absorption and fluorescence detection. We further analyzed the chemical stability data sets for 

various CF samples generated from reversed-phase-HPLC-UV and ESI-MS using data-mining and 

machine learning approaches. In particular, calculations based on mutual information of over 

800,000 data points in the ESI-MS analytical data set revealed specific CF cleavage and 

degradation products that were differentially generated under specific storage/degradation 

conditions, which were not initially identified using traditional analysis of the ESI-MS results.

*Correspondence to: Christian Schöoneich (Telephone: (785) 864-4880; Fax: (785) 864-5736). schoneic@ku.edu (C. Schöoneich). 

This article contains supplementary material available from the authors by request or via the Internet at http://dx.doi.org/
10.1016Zj.xphs.2017.06.022.

HHS Public Access
Author manuscript
J Pharm Sci. Author manuscript; available in PMC 2019 July 22.

Published in final edited form as:
J Pharm Sci. 2017 November ; 106(11): 3257–3269. doi:10.1016/j.xphs.2017.06.022.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/250306618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016Zj.xphs.2017.06.022
http://dx.doi.org/10.1016Zj.xphs.2017.06.022


Keywords

crofelemer; complex mixture; chemical stability; oxidation; mass spectrometry; HPLC; mutual 
information scores; machine learning

Introduction

Crofelemer (CF) is a naturally occurring botanical biopolymer extracted from the stem bark 

latex of the Croton lechleri tree.1 It is an FDA-approved drug for the treatment of 

noninfectious diarrhea in adult patients with HIV/AIDS undergoing antiretroviral therapies 

and acts by inhibiting 2 chloride channels located in the gastrointestinal tract.2 CF is a 

mixture of proanthocyanidin oligomers, also known as condensed tannins, with an average 

degree of polymerization ranging from 7, with an average molecular weight (MW) of 2300 

Da.3 The main constituents of CF are (+)-gallocatechin (GC) and (−)-epigallocatechin 

(epiGC), with a minor contribution from (+)-catechin (C) and (−)-epicatechin (epiC).4 A 

representative structure of CF that contains B-type interflavan linkages is displayed in Figure 

1a.

The C and GC components of CF are flavan-3-ol monomer units which are coupled through 

either A-type or B-type linkages to form oligomers.5 The linkages through C4-C8 or C4-C6 

carbon-carbon bonds are referred to as B-type linkages, whereas linkages involving either 

one of C4-C8 or C4-C6 carbon-carbon bond, and an additional ether bond between C2 and 

O7 or C2 and O5 positions, are referred to as A-type linkages.6 The 2 asymmetric carbons at 

positions 2 and 3 result in 4 diastereomers per individual monomer. Both C and GC are trans 
in configuration, whereas epiC and epiGC are cis in configuration. Proanthocyanidins are 

characterized by 2 aromatic rings (rings A and B), which are linked by an O-hetero-cycle 

(ring C). The hydroxylation pattern on the B-ring distinguishes different monomers. 

Proanthocyanidins that are composed exclusively of 3′,4′-dihydroxy substitution on the B-

ring are called procyanidins. Prodelphinidins contain exclusively GC with a 3′,4′,5′-
trihydroxy substituted B-ring. In addition, C and GC are linked by C-C bonds through C4 

and C8 or C4 and C6 to form B-type proanthocyanidins that sometimes undergo 

esterification with other groups such as glucose or gallic acid at C3.7 A-type proan-

thocyanidins are relatively rare and are formed by an additional ether linkage between C2 

and O7 or C2 and O5, imposing conformational stability.8,9 The 3 asymmetric carbons at 

positions 2, 3, and 4 result in different epimers. Collectively, this structural diversity results 

in CF being a highly heterogeneous mixture of proanthocyanidin oligomers.

Proanthocyanidins are naturally occurring secondary plant metabolites that are prevalent in 

bark, nuts, seeds, fruits, vegetables, and flowers.10 They are strong antioxidants11 that react 

with different types of reactive oxygen species such as singlet oxygen, superoxide radicals, 

and hydroxyl radicals.12 Both GC and galloylated-GC are more efficient radical scavengers 

than C.13,14 Biological properties of proanthocyanidins are related to their protein-binding 

capability, metal ion chelation, and antioxidant capacity, which are determined by the 

structure and degree of polymerization.10 Antioxidant properties can be evaluated through a 

variety of chemical and biochemical methods,14–17 including the ability to scavenge free 
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radicals and transfer hydrogen atoms or electrons. In addition, the complexation of metal 

ions can influence and, possibly, prevent metal-catalyzed redox reactions.18–20

The abundance of phenolic moieties makes CF highly susceptible to oxidation, not 

unexpected based on the known antioxidant potential of proanthocyanidins. Moreover, 

oxidation would likely affect multiple monomeric units of CF, potentially leading to a large 

variety of oxidation products. This is part of a series of 3 papers in this issue focused on 

developing an integrated mathematical model for comparative characterization of complex 

mixture drugs using CF as a model system. Here, we evaluated the chemical stability profile 

of CF (1) during storage at 25°C and 40°C and (2) via forced degradation studies by metal-

catalyzed oxidation. The initial physicochemical and biological characterization of CF by a 

wide variety of analytical methods is described in the preceding paper.21 In the present 

paper, for the analysis of the chemical stability of CF, we used reversed-phase HPLC 

coupled with UV absorption spectroscopy, fluorescence detection, and electrospray 

ionization mass spectrometry (ESI-MS), including MS/MS. These analytical data sets were 

used to calculate mutual information scores (MISs) to correlate specific degradation 

products with specific storage/degradation conditions. The combination of the CF chemical 

stability data sets from this work and the physicochemical and biological characterization 

data of CF in the preceding paper is used in the third paper of this series for data-mining and 

machine learning approaches to develop an integrated mathematical model for comparative 

characterization of complex mixture drugs, using CF as a model system.

Materials

The compounds C, epiC, GC, epiGC, and β-mercaptoethanol (β-ME) were purchased from 

Sigma-Aldrich (St. Louis, MO). CF was extracted from commercially available Fulyzaq® 

tablets (Salix Pharmaceuticals, Raleigh, NC), and the extraction procedure is explained in 

detail in the preceding paper in this issue.21

Methods

Membrane Fractionation

Membrane fractionation of the CF extract is described in detail in the preceding paper in this 

issue.21 Briefly, Amicon Ultra-0.5 mL centrifugal filters (Millipore, Billerica, MA) of 3-and 

10-kDa molecular weight cutoff (MWCO) were used to fractionate CF. A sample of CF was 

added to an Amicon filter and centrifuged at 4000× g for 30 min at 4°C. A reddish-brown 

colored fraction (CF-Top) was retained in the insert and a colorless fraction (CF-Bot) was 

collected as the filtrate. Although the yields of the bottom fractions were low (for more 

discussion, please see the preceding paper in this issue21), this method was the only 

fractionation technique that enabled us to separate nonoxidized from oxidized CF, initially 

present in the extract from Fulyzaq tablets, as described in the following.

Thermal Stability

Individually sealed aliquots (3-mL type-1 glass vials; West Pharmaceutical Services, Exton, 

PA), stoppered with rubber stoppers (West Pharmaceutical Services), crimped of 25 mg/mL 

unfractionated CF, 25 mg/mL CF-Top, and 0.5 mg/mL CF-Bot were prepared in ultrapure 
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water and incubated at 25 or 40° C for 1 month for accelerated stability studies. Three and 4 

sample replicates were analyzed for MS and HPLC analyses, respectively.

Thiolysis of CF

Thiolysis was performed according to a previously published protocol for procyanidins from 

selected foods.22 A 50-μL sample of 6 mg/mL CF was thiolyzed in 1.2-mL low adsorption 

clear glass vials sealed with polytetrafluoroethylene/silicone septa (Waters, Milford, MA), 

using 0.6 N HCl and 0.7 M β-ME at 95° C for 5 min, followed by vacuum concentration for 

5 min. For control experiments, 50 μL of 2 mg/mL C, epiC, GC, and epiGC standard 

solutions were thiolyzed separately, using the same protocol.

Metal-Catalyzed Oxidation

To generate oxidized CF via a complementary oxidation reaction, CF, CF-Top, and CF-Bot 

samples were exposed to CuCl2 and ascorbic acid/ascorbate at 37°C for 3 days. Mixtures of 

CF, CF-Top, or CF-Bot with CuCl2 and ascorbic acid/ascorbate were prepared in ultrapure 

or deionized water. The pH values of these reaction mixtures were measured, but not 

controlled, that is, they were left at the values which were naturally adjusted by combination 

of the components of the mixtures. The ratio of CF:ascorbic acid/ascorbate:Cu(II) was kept 

at 50:10:1 between CF, CF-Bot, and CF-Top fractions. In CF and CF-Top, 10-mM CF 

(based on an average molecular weight of 2000 g/mol4,23) was treated with 2-mM ascorbic 

acid/ascorbate and 0.2 mM CuCl2 at pH 3.90. Instead, the relatively less concentrated CF-

Bot (0.1 mM) was reacted with 0.02-mM ascorbate and 0.002-mM CuCl2 (pH 6.80). In a 

separate experiment, metal-catalyzed oxidation (MCO) was carried out by incubating 50 μL 

of 10-mM CF with 1.4-mM CuCl2 and 14-mM ascorbic acid/ascorbate (pH 3.25) at 45° C 

overnight, and the reaction mixture analyzed by reversed-phase (RP)-HPLC.

RP-HPLC Analysis

A C18 column (Vydac 218TP, 250 × 4.6 mm, 5 m) was preheated to 40° C and equilibrated 

with a mixture of 95% mobile phase A (0.1% formic acid and 0.5% 2-propanol in water) 

and 5% mobile phase B (70% methanol, 30% water, 0.1% formic acid, and 0.5% 2-

propanol). The solutes were eluted by a linear gradient changing mobile phase B in the 

following way: 5%−30% within 55 min, followed by 30%−90% within 5 min at a flow rate 

of 0.8 mL/min. The solutes were monitored with UV detection at 280 nm and fluorescence 

detection (λex = 276 nm, λem = 316 nm).

HPLC-MS Analysis

The CF samples were analyzed by a Micromass Q-Tof Premier mass spectrometer 

(Micromass Ltd., Manchester, UK) connected to an Acquity UPLC system (Waters). The 

instrument was operated in the negative-ion ESI mode and the following instrument 

parameters were used: capillary voltage, 2.8 kV; desolvation temperature, 250°C. The 

samples were injected onto a Agilent ZORBAX (+) phenyl-hexyl column (3 × 50 mm, 1.8 

μ), and the solutes were eluted with a linear gradient changing mobile phases A (0.1% 

formic acid and 0.5% 2-propanol in water) and B (70% methanol, 30% water, 0.1% formic 
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acid and 0.5% 2-propanol) as follows: 15%−50% B within 6.5 min followed by 50%−90% B 

within 3 min, at the flow rate of 0.3 mL/min.

Mathematical Modeling

As outlined previously, the mass spectrometry data set nominally consists of 35 distinct 

samples: 5 fractions × 4 stability times × 2 temperatures for each stability time (except day 

0). Each of these samples had several replicates, but the 10-kDa and 3-kDa bottom fractions 

had too few replicates; a total of 21 separate sample types were thus available for this 

analysis. For each retention time and m/z value, we constructed a column vector consisting 

of the ion flux counts corresponding to all replicates from all of these samples. We created a 

2-D histogram of the joint probability distribution p(x,y), such that the y-bins are the 21 

categorical variables (i.e., distinct samples) and the x-bins estimate the probability of a 

particular range of ion fluxes. Once we had the joint probability distribution, we calculated 

the MIS using the standard definition24:

I(X; Y) = ∑
x ∈ X

∑
y ∈ Y

p(x, y)log p(x, y)
p(x)p(y)

where X and Y are the sets of possible x and y bins, and p(x) and p(y) are the corresponding 

marginal probability distributions. We used 6 bins for the ion fluxes (x) for Supplementary 

Figure S5, and although the choice of bin number in this case is essentially arbitrary, we 

observed a strong correlation between MIS calculated using 4, 6, 8, and 10 bins in ion flux 

count (Spearman’s rank correlation coefficient close to 0.9 in all cases). The choice of bin 

number for the ion flux variable thus had little effect on our result. All calculations were 

performed using the function MIS from sklearn.metric in Python. We used the base 2 

logarithm for this calculation so that the MISs in all figures have units of bits.

Results

Sample Preparation

The extraction of CF from commercially available tablets into an aqueous solution has been 

described in the preceding paper.21 After removal of the enteric coating, the Fulyzaq tablets 

as well as an aqueous extract exhibited a reddish-brown color. Because CF is a mixture of 

proanthocyanidin oligomers, it is expected to be colorless. Hence, the reddish-brown 

coloration might be an indication of the presence of oxidized proanthocyanidins as 

constituents of CF. On account of the complexity of the procyanidin mixture, we tested a 

membrane filtration method to further refine the mixture. Filtration by a 10-kDa MWCO 

filter separated the reddish-brown CF into 2 fractions, a colorless (CF-Bot) and a reddish-

brown fraction (CF-Top) (Supplementary Fig. S1). The reddish-brown fraction presumably 

contains a substantial portion of polymer-like molecules which cannot pass through the 10-

kDa MWCO membrane, whereas low-MW molecules, monomers, and proanthocyanidin 

oligomers may pass through the membrane. The compound that is responsible for the 

reddish-brown color of CF appears to have a higher MW than 10 kDa. Similarly, filtration of 

CF by a 3-kDa MWCO filter resulted in a reddish-brown fraction which was retained and a 

colorless fraction which was collected as the filtrate.
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Thiolysis

Thiolysis has been used for the analysis of proanthocyanidin polymers to measure the degree 

of polymerization and the composition of terminal and extension units.25 In this procedure, 

the terminal units (see Supplementary Figure S7, Supplementary Information) are released 

as flavanol monomers while the extension units add a thiol to the 4-position.26 For our 

experiment, β-ME was selected as the thiol. The presumed mechanism for thiolysis of a 

representative dimeric proanthocyanidin using β-ME is also displayed in Supplementary 

Figure S7. The thiolysis products of CF were further separated and analyzed by RP-HPLC 

and ESI-MS analysis.

Thermal Stability of CF

Samples of 25 mg/mL CF, 25 mg/mL CF-Top, and 0.5 mg/mL CF-Bot were prepared in 

ultrapure water and incubated at either 25 or 40° C for 2, 7, and 30 days to evaluate the 

chemical stability of proanthocyanidins. Subsequently, the samples were thiolyzed and 

analyzed by RP-HPLC with UV detection at 280 nm and HPLC ESI-MS as described in the 

following.

RP-HPLC-UV Analysis

Chromatograms of CF samples, incubated at 40° C for 0 days (control) and 30 days, 

subjected to thiolysis, are shown in Figure 2a. Thiolysis produces β-ME-derivatized 

proanthocyanidin and free flavanol molecules (see Supplementary Figure S7, Supplementary 

Information). Qualitatively, the RP-HPLC profile of products generated from the sample that 

was incubated for 30 days at 40° C is similar to that of the control (0 days). Peaks eluting at 

7.5,14.9,15.5, and 27 min were assigned to GC, C, epiGC, and epiC by comparison to 

authentic standards. However, after 30 days of incubation, the amounts of GC, C, epiGC, 

and epiC recovered by thiolysis decreased compared to the amount recovered from control 

samples, suggesting a chemical transformation of CF. Importantly, the peaks with retention 

times (RTs) = 14.1, 25.3, 29, and 42.5 min also showed a time-dependent reduction of peak 

area (Fig. 2b). These peaks were collected for analysis by LC-MS.

We additionally monitored the changes in terminal monomer (substituted at C6 or C8 to the 

successive monomer unit in the original oligomer chain) composition of CF samples that 

were incubated at different temperatures over time (Fig. 3). Thiolysis of a control sample 

revealed that CF contains 30.8 ± 3.1% GC, 34.2 ± 5.0% epiGC, 15.1 ± 2.7% C, and 20.0 

± 1.6% epiC as terminal units. Figures 3a and 3b display the changes of terminal C, GC, 

epiC, and epiGC in CF samples that were incubated for up to 30 days at 25 and 40°C, 

respectively. The amount of each monomer decreases over time under both conditions; 

noteworthy, the epiGC content showed the most rapid decline during incubation at 40° C.

CF-Top fractions obtained after membrane filtration of CF (CF-Top) with a 10-kDa MWCO 

filter were incubated at 25°C and 40°C for 2, 7, and 30 days. The data are displayed in 

Figures 3c and 3d. Control samples of CF-Top contained 27.1 ± 3.8% GC, 36.1 ± 7.6% 

epiGC, 15.4 ± 3.5% C, and 21.0 ± 4.7% epiC. As observed for unfractionated CF, epiGC 

showed the most rapid temperature-dependent decline at 40°C (Fig. 3d).
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HPLC ESI-MS Analysis of Collected UV Peaks

Fragmentation reactions of proanthocyanidin ions in the gas phase are well documented.27,28 

The fragmentation mechanisms reported for polyphenolic compounds,27,28 including 

proanthocyanidins, can be used to explain the fragment ions observed for ESI-MS

analysis of CF. Here, 3 main mechanisms are described, referred to as retro-Diels Alder 

reaction, heterocyclic ring fission, and quinone methide (QM) fission; these were reported 

for a representative B-type proanthocyanidin containing 2 GC units and are illustrated in 

Supplementary Figure S8, Supplementary Information. The hitherto unidentified peaks 

eluting at 14.1 and 42.5 min in the RP-HPLC chromatograms (Fig. 2a) were collected 

multiple times, and the fractions were pooled, and lyophilized, before analyses by negative-

ion ESI-MS. The MS analysis of the peak eluting at 42.5 min revealed 3 major peaks with 

m/z 1097.18, 1307.22, and 917.17 in the total ion chromatogram (TIC). The MS2 spectra of 

those peaks are shown in Figures 4a–4c.

Peak 1 (m/z 1097.18)

The ion with m/z 1097.18 can be rationalized as a procyanidin trimer, composed only of C 

units (Fig. 4c). Table 1 shows the ions and fragment ions of this compound together with 

their tentative structures. After thiolysis, each of the 3 C units is derivatized with 1 

equivalent of β-mercaptoethanol. QM cleavage (Supplementary Figure S8, Supplementary 

Information) of the top unit results in the fragments with m/z 731.10 and 365.09. Ring 

closure of ring-C and the loss of 1 β-ME generates the dimeric ion with m/z 653.12. QM 

cleavage of this dimer forms the ion with m/z 287.06 from the upper C unit.

Peak 2 (m/z 1307.22)

The product with m/z 1307.22 can be identified as a tetrameric structure, which contains 2 

B-type linkages and 1 A-type linkage, and is derivatized with 2 β-ME molecules (Fig. 4b). 

Ions and fragment ions along with their tentative structures are listed in Supplementary 

Table S1. The fragmentation of the tetramer at the second B-type linkage from the top 

(indicated by an arrow in Supplementary Table S1) yields fragment ions with m/z 575.13 

and m/z 653.13 through the QM reaction (Supplementary Figure S8, Supplementary 

Information). The ion at m/z 653.13 originates from QM cleavage followed by C-ring 

closure, with the elimination of 1 β-ME. It is also possible that subsequent C-ring closure 

with thiol elimination yields an ion with m/z 575.13, which subsequently converts into ions 

with m/z 125.02 and m/z 449.10 by heterocyclic ring fission (Supplementary Figure S8, 

Supplementary Information) of the upper C unit. The fragment with m/z 287.08 is generated 

by QM of the dimer (m/z 575.13).

Peak 3 (m/z 917.17)

The spectrum in Figure 4a shows an important difference to the spectra of Figures 4b and 4c. 

Here, a prominent fragment ion in the low m/z region is observed with m/z 153.02 (instead 

of 125.02), suggesting the presence of a galloyl moiety. The molecular ion with m/z 917.17 

would correspond to a GC dimer esterified with 2 galloyl groups (Supplementary Table S2). 

Loss of 2 gallic acid moieties (−152 Da) from the molecular ion leads to a dimer with m/z 

611.14, which then undergoes the QM reaction to form GC (m/z 305.09). QM cleavage of 
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the molecular ion yields the fragment with m/z 459.11. The presence of galloylated species 

adds heterogeneity to the proanthocyanidin composition of CF.

MS analysis of the peak eluting at 14.1 min resulted in several signals (m/z 593.04, 625.03, 

685.13, 696.04, 883.10, and 1145.18), and the most intense peak with m/z 1145.18 

corresponds to a GC trimer derivatized with 3 β-ME units. The peaks eluting at 25.3 min 

and 29 min did not generate reliable data in the MS analysis, most likely due to their low 

yield.

Thermal Stability of the Bottom Fraction of CF (CF-Bot)

Samples of 0.5 mg/mL CF-Bot prepared in ultrapure water were incubated for up to 30 days 

at 40° C. The samples were not thiolyzed on account of the low concentration recovered 

from the bottom fractions. However, CF-Bot samples were separated by RP-HPLC and 

monitored with UV and florescence detection at λex = 276 and λem = 316 (Fig. 5a). When 

fluorescence detection was used, the control CF-Bot samples (0 days) exhibited a baseline 

shift, which was not observed for the samples exposed to 40° C for up to 30 days. This shift 

in the baseline may be related to the presence of polymer-like molecules which are degraded 

by prolonged exposure to 40° C. Similar to CF and CF-Top, a decrease in peak areas was 

observed for the CF-Bot fractions.

To identify oxidation products, if present, chromatographic profiles of temperature-stressed 

samples were monitored at λ = 340 nm (Fig. 5b). We observed a significant increase of a 

peak eluting at 6.8 min after 30 days of incubation at 40° C. On account of the low 

abundance, the identity of the product could not be verified by MS2 analysis.

MCO of CF

CF, fractions of CF, CuCl2, and ascorbate samples were prepared in ultrapure water or 

deionized water. MCO of CF, CF-Top, and CF-Bot was carried out with Cu(ll)/ascorbate at 

37°C for 3 days. CF (10 mM) and CF-Top (10 mM) samples were treated with 0.2-mM 

CuCl2/2 mM ascorbate, and CF-Bot (0.1 mM) samples were treated with 2 μM CuCl2/0.02 

mM ascorbate (both 1:10 molar ratio). After 3 days, the formation of insoluble material was 

observed in both CF and CF-Top fractions, and the initially, colorless CF-Bot fractions 

turned brown (see Supplementary Fig. S2).

For RP-HPLC analysis, a separate sample of 10 mM CF (based on an average molecular 

weight of 2000 g/mol4,23) was reacted with 1.4-mM Cu(ll)/14-mM ascorbate at 45°C 

overnight, and a control was similarly incubated in the absence of Cu(ll)/ascorbate. The 

sample that was subjected to MCO and a control were thiolyzed to enable analysis by RP-

HPLC (see Supplementary Fig. S3 which compares a CF sample exposed to MCO to a 

control). Analogous to the temperature-stressed CF samples, MCO-exposed CF samples 

display a decrease in thiolytic products, monomers, and adducts.

Data Analysis

As explained in the Methods section, CF samples were fractionated using 3-kDa and 10-kDa 

MWCO filters, and the unfractionated CF and its 4 fractions (3 kDa top and bottom and 10 
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kDa top and bottom) were incubated at either 25° Cor 40° C for the specified amount of 

time. Incubated samples (with 3 replicates per sample) of CF and the 4 fractions were then 

analyzed by RP-HPLC ESI-MS. Representative TIC and mass spectra for a sample of the 3 

kDa top fraction, which was incubated at 25° C for 30 days followed by thiolysis, are shown 

in Supplementary Figure S4. The TIC contained 4 major peaks (Supplementary Fig. S4, top) 

and the mass spectra obtained by integrating the most intense 3 peaks on TIC are displayed 

in Supplementary Figure S4, bottom. The peaks 1 and 2 contained ions ranging from m/z 

125.02 to 1145.18, whereas peak 3 contained ions ranging from m/z 125.01 to 1097.19. 

These MS data were used in the development of the mathematical model.

We next investigated whether there might be particular CF oxidation products or other 

detectable chemical changes specific to a particular CF fraction, incubation temperature, or 

stability time. One major difficulty in answering this question, however, is the sheer volume 

of the data: there are over 800,000 unique (RT, m/z) pairs for each individual sample. In 

addition, the “major” peaks (i.e., those with the highest ion counts) show very little 

difference in intensities between each of the samples, and as a result, it is essentially 

impossible to use visual inspection to find data points that are significantly different between 

the various treatments. We thus used an MIS analysis to identify differences in these data.

The MIS is a measure of the statistical correlation between random variables24; the higher 

the value of the MIS, the more information the ion flux at that particular (RT, m/z) value can 

tell you about the nature of the sample itself (see Methods for further details on this 

calculation). We calculated the MIS between the ion flux for every (RT, m/z) pair and the 

particular label of the samples (e.g., unfractionated, 25° C, 7 days). Supplementary Figure 

S5 shows the heat map of the MIS for all (RT, m/z) values. The region of highest overall 

information is for retention times between 9 and 11 min and m/z values between 700 and 

1100, corresponding to fairly hydrophobic chemical species ranging in size from monomers 

to trimers. As is clear from Supplementary Figure S5, however, there are other points of high 

information content scattered throughout the data set, further highlighting the difficulty of 

finding these particular points by eye.

We ranked the (RT, m/z) pairs by MIS to better understand which chemical species are 

significantly different between the samples; Supplementary Figure S6 shows the MIS values 

for the top 100 points. To find the species that varied the most between samples, we chose 

the top 6 (RT, m/z) points according to MIS and plotted the ion flux for those points as a 

function of the stability time for each of the samples and temperatures (Fig. 6). As one can 

see, the abundance of these particular chemical species changes in a significantly different 

manner depending on the particular fraction and temperature in question. One consistent 

observation for all of these species is that they tend to have a somewhat higher concentration 

in the CF samples incubated at 25° C compared to 40° C. This can be rationalized with the 

oxidation sensitivity of the CF subunits, which degrade faster at 40°C compared to 25°C 

(representatively shown for monomers in Fig. 3). In addition, note that the ion flux counts in 

these cases are fairly low, indicating that the significant differences between samples in this 

case derive from (RT, m/z) pairs that would not generally be considered major peaks and 

thus could easily be missed in a standard analysis of mass spectrometry data. Although all of 
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these (RT, m/z) values vary significantly between the samples, we focused our further 

analyses on the (2.69 min, m/z 607.12) point because this is a nonmonomeric species.

The tentative molecular structures of the m/z values highlighted by MIS analysis are 

presented in Supplementary Table S3. We obtained the RT and m/z of components which 

change over time across different parameters (e.g., fractions, time, temperature) and 

extracted the mass spectra that correspond to these RTs. This includes a GC dimer (m/z 

607.12) and its fragments. Here, we focus on the m/z 607.12 ion because other ions 

appeared to be fragments of the GC dimer, and the presence of this ion was confirmed under 

different conditions in different samples. For example, the mass spectrum extracted from a 

CF sample that was incubated at 25° C for 30 days is shown in Figure 7a. The formation of 

this ion could be correlated with the ions with high m/z, and a potential mechanism of 

formation is shown in Figure 7b. The ion with m/z 763.14 could be present in the solution, 

and fragmentation in the gas phase could generate m/z 685.13 and 607.12. Fragmentation of 

the ion during MS1 analysis might be due to fragmentation in the ion source. It is also 

possible that there is an equilibrium between these 3 ions in the solution.

Using our MIS analysis, we thus discovered a potential component of CF that changed over 

the degradation study. This component displays an ion with m/z 607.12 and tentatively 

corresponds to an oxidized GC dimer. The ion with m/z of 607.12 has an abundance of 

5.20% (integration of ion signal) relative to the ion with m/z 305.09 of the gallocatechin 

monomer, that is, of a comparable peak in a nonstressed CF sample. Given the volume of the 

data, it is highly unlikely that a standard analysis would have discovered this particular 

species.

Discussion

CF is a highly heterogeneous mixture of oligomers, and therefore, MW-based membrane 

filtration and thiolysis were introduced to reduce the complexity of CF. Fractionation with a 

10-kDa MWCO separated reddish-brown CF into a colorless low-MW and reddish-brown 

high-MW fraction. A similar fractionation was observed when 3-kDa MWCO filters were 

used. The reddish-brown fraction appears to contain high-MW polymers. One reaction 

pathway leading to the formation of such polymers might be initiated by proanthocyanidin 

oxidation, followed by a series of secondary reactions to form high-MW species. However, it 

is also possible that the retention by the membrane is either due to hydrophobic interactions 

and hydrogen bonding between proanthocyanidin molecules and the membrane (regenerated 

cellulose) or through formation of higher molecular weight species through selfassociation. 

Spontaneous interactions between polyphenols and polysaccharides have been reported.29

Chromatographic separation challenges were encountered during our analysis because the 

heterogeneous CF eluted as a broad, unresolved peak despite the chromatographic method. 

Similar chromatographic separation challenges of proanthocyanidins were reported 

elsewhere.10,30 Unlike oligomeric procyanidins, polymeric-procyanidins with a high degree 

of polymerization were difficult to separate by reversed-phase, normal-phase, and size-

exclusion chromatography.31,32 Thus, alternative methods, such as hydrophilic interaction 

liquid chromatography, have been introduced to analyze procyanidins.33 One successful 
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strategy to address the complexity of proanthocyanidins would be to combine thiolysis or 

another fractionation method with routine HPLC and MS methods to achieve satisfactory 

resolution as evidenced in this work.

In this analysis, CF was thiolyzed to obtain a good chromatographic separation. Thiolysis 

uses degradation of flavanols by a mercaptan in acidic medium.26,34 Interflavanoid bond 

cleavage releases free monomers and forms an intermediary carbocation at the C4 position 

(Supplementary Figure S7, reaction 2; Supplementary Information), which subsequently 

reacts with a nucleophile to form flavanol adducts (Supplementary Figure S7, reaction 3; 

Supplementary Information). It should be noted that the intermediary C4 carbocation can 

deprotonate to yield a quinone methide, which will equally react with a nucleophile. Singly 

derivatized flavanol adducts can further react to form double-derivatized flavanol ad-ducts 

(Supplementary Figure S7, reactions 4 and 5; Supplementary Information). B-type linkages 

are cleaved by thiolysis, whereas A-type linkages and O-gallate substitutions at the C3 are 

resistant to thiolysis.35,36 Heat-induced epimerization of C to epiC, and epiC to C is known.
37 It is important to note that released free flavanol monomers may undergo epimerization 

under thiolysis reaction conditions.21

The temperature stability of CF was assessed at 25° C and 40° C. We observed that thiolytic 

products, free flavanols, and β-ME-derivatized extension units were decreased significantly 

at 40° C over time, where epiGC was much more sensitive to temperature in comparison to 

the other isomers. This behavior is consistent with reports of the decrease of flavanols and 

polyphenol levels in plant foods as a result of thermal processing and drying.38–42

After temperature stress, the RP-HPLC peaks of interest were collected and analyzed by 

ESI-MS in the negative-ion mode, which permits detection of proanthocyanidins as 

deprotonated ions, to identify the constituents through their fragmentation patterns from 

MS2 experiments. As expected, MS2 analysis reveals that CF contains combinations of C 

and GC, resulting in a highly heterogeneous mixture of procyanidins and prodelphinidins. 

Interestingly, a dimeric prodelphinidin that is esterified with 2 gallic acid molecules was 

identified in temperature-stressed, thiolyzed CF samples. This gallocatechin gallate dimer is 

a possible constituent in proanthocyanidins, but not in CF. We did not analyze the similar 

fraction in a control sample. However, MS analysis of thiolyzed, temperature-stressed, and 

thiolyzed, control samples (without collecting individual peaks) revealed that all peaks 

contained similar fragment ions in both samples. Therefore, this gallocatechin gallate dimer 

should be present in control samples.

In addition, those samples contained a procyanidin dimer with an A-type linkage, which is 

an unexpected constituent in CF. A-type proanthocyanidins are resistant to thiolysis and 

therefore are expected to be released as free A-type dimers by thiolysis if present in terminal 

units or as β-ME derivatives if present in extension units. Here, the A-type procyanidin must 

be located in the terminal units because it is detected as a free dimer. A-type 

proanthocyanidins are yellow in color and believed to be generated by the oxidation of B-

type proanthocyanidins, and it is known that the oxidation proceeds via a quinone methide 

mechanism.43,44 Although we did not analyze the similar fragment of control samples, as 

explained previously, it is possible that A-type dimers are present in control samples. The 
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presence of oxidized species may account for the reddish-brown coloration in extracted CF 

samples.

CF contains dihydroxyl (C)- or trihydroxyl (GC)-substituted B-rings, which are susceptible 

to oxidation. Supplementary Figure S9 shows the formation of o-quinone by C oxidation.45 

O-quinones are highly reactive, and the nucleophilic addition of electron-rich A-rings to 

electron-deficient B-rings leads to conjugate formation.46 Further conjugation leads to the 

formation of insoluble material such as tannins. Polyphenol oxidation is often accompanied 

by color changes and conjugate formation.

The reddish-brown coloration of CF cannot be attributed to structural and spectral properties 

of pure proanthocyanidin moieties; however, it appears to be a product of oxidation (e.g., a 

quinone). Oxidation-induced color changes have been associated with flavanols.47 Dilute 

acid–treated proanthocyanidins are also reported to have characteristic red color.48 

Alternatively, the coloration of CF could be related to interactions between flavanol 

molecules and metal ions. The catechol ring chelates with metal ions to cause a red shift in 

the spectrum, thereby absorbing at higher wavelengths. Brown et al. reported that the 3′, 4′-
hydroxyl groups on the flavonoids are important for the chelation of Cu2+.49 The complex 

formation of flavanols with metal ions and subsequent bathochromic shifts in spectral 

properties have been documented.50

The reddish-brown color and insoluble material formation during accelerated stability 

studies of CF was most likely due to nonenzymatic oxidation reactions. Conjugation yields 

insoluble yellow-brown tannins.51 It is known that oxidation of proanthocyanidins form 

polymers and insoluble reddish-brown pigments, called phlobaphenes.52 Nonenzymatic 

oxidation of proanthocyanidins proceeds via reaction with oxygen or ROS.53 Mochizuki et 

al. reported that autoxidation of C initiates by 1-electron oxidation to generate semiquinone 

and superoxide radical anion.54 Analysis of oxidation products of (+)-catechin model 

solutions revealed that different products are formed depending on the oxidation pathway.55 

For example, metal-catalyzed oxidation products showed different UV-Vis spectral 

properties in comparison to enzymatic oxidation or autoxidation conditions.

The large volume of data generated by MS analysis of CF and its fractions under different 

temperature conditions necessitated the use of data-mining approaches to better analyze the 

large data set. Similar to many modern measurement techniques, a major difficulty 

encountered with mass spectrometry is the sheer volume of data that it produces. In the case 

of our analysis of CF, each replicate of our 35 different samples results in flux counts for 

over 800,000 unique (RT, m/z) pairs, and most of these do not differ significantly between 

the samples. This is particularly true for those points with higher ion flux counts. In other 

words, the major peaks are more consistent between samples and thus less useful as a means 

of differentiating between chemical compositions.

Here, we used a straightforward application of information theory (namely the mutual 

information score or MIS) to overcome this problem. Our analysis revealed that points with 

the capacity to differentiate between various samples were scattered throughout the (RT, 

m/z) space. Although retention times between 9 and 11 min and m/z values between 700 and 
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1100 contained the highest information on average, the top 6 points by MIS were all outside 

of this region (Fig. 6, and Supplementary Figs. S5 and S6). This analysis allowed us to 

assign peaks and identify chemical species that differed significantly between samples, 

storage temperatures, and times, ultimately providing further insight into the oxidation 

processes occurring within these samples. Because all of these species correspond to 

relatively minor peaks, with low total ion flux counts, they could easily have been missed in 

a more traditional analysis of mass spectrometry data. For example, the peaks eluting at 2.46 

and 2.69 min have abundance of 6.24% and 7.49%, respectively (integration of TIC), 

relative to one of the most intense peaks with m/z 1145.6 in a nonstressed CF sample, 

tentatively corresponding to a gallocatechin trimer derivatized with 3 molecules of β-

mercaptoethanol (during thiolysis). Future application of this MIS analysis to both mass 

spectrometry and other high dimensionality data56 will likely provide greater insight into the 

complex chemical processes that impact naturally derived complex mixtures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) A representative structure of CF. Two aromatic rings are marked A and B, and the O-

heterocyclic ring is marked C. (b) Individual constituents of CF.
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Figure 2. 
(a) Comparison of RP-HPLC chromatograms at 280 nm of 25 mg/mL CF incubated at 40°C 

for 0 and 30 days. The temperature-stressed samples were thiolyzed before chromatography. 

Peaks at 7.5,14.9,15.5, and 27 min were assigned to GC, C, epiGC, and epiC, respectively. 

(b) The change of CF products eluting at 14.1 min, 25.3 min, 29 min, and 42.5 min over 0, 

2, 7, and 30 days at 40°C as monitored by RP-HPLC and UV detection at 280 nm. The 

values shown are the mean ± SE for 4 sample replicates.
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Figure 3. 
Percentage of monomers, C, GC, epiC, and epiGC, generated over time in temperature-

stressed CF samples. CF samples (25 mg/mL) were incubated at 25°C (a) and 40°C (b) 

followed by thiolysis. CF-Top (25 mg/mL) fractions were also incubated at 25°C (c) and 

40°C (d) followed by thiolysis. The values shown are the mean ± SE for 4 sample replicates 

of temperature-stressed samples except 8 sample replicates for time zero. The total amount 

of terminal monomers was considered 100% at time zero.
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Figure 4. 
CF samples (25 mg/mL) which were incubated at 40°C for 30 days were thiolyzed and 

analyzed by RP-HPLC at 280 nm and the peak eluting at 42.5 min was collected. The 

collected peak was lyophilized and analyzed by mass spectrometry. Three main peaks were 

observed on the TIC chromatogram and their MS2 spectra are shown in a, b, and c. Refer 

Tables 1, and Supplementary Tables S1 and S2 for the structures and m/z of fragment ions.
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Figure 5. 
(a) CF-Bot (0.5 mg/mL) fractions were incubated at 40°C for 0, 2, 7, and 30 days and 

analyzed by RP-HPLC and fluorescence detection at λem = 276 nm and λem = 316 nm. (b) 

CF-Bot (0.5 mg/mL) fractions were incubated at 40°C for 0, 2, 7, and 30 days and analyzed 

by RP-HPLC and UV detection at 340 nm. The peak eluting at 6.8 min has increased 

significantly after 30 days of incubation at 40°C. These samples are relatively low 

concentrated compared to CF and CF-Top and thus were not thiolyzed.
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Figure 6. 
Ion flux trajectories as a function of the stability time for the top 6 pairs of m/z and retention 

times with the highest mutual information score.
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Figure 7. 
A possible CF structural change under temperature stress over time as discovered by the 

mathematical model. (a) Mass spectrum (MS1) that was extracted at 2.69 min of 25 mg/mL 

CF-Top incubated at 25°C for 30 days. (b) A possible mechanism to explain the formation of 

m/z 607.12 in MS1.

Hewarathna et al. Page 23

J Pharm Sci. Author manuscript; available in PMC 2019 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hewarathna et al. Page 24

Ta
b

le
 1

N
eg

at
iv

e-
Io

n 
E

SI
 F

ra
gm

en
t I

on
s 

of
 th

e 
M

ol
ec

ul
ar

 I
on

 W
ith

 m
/z

 1
09

7.
18

 F
ro

m
 C

ro
fe

le
m

er
 (

C
F)

, I
nc

ub
at

ed
 f

or
 3

0 
D

ay
s 

at
 4

0°
C

Io
n

m
/z

St
ru

ct
ur

e
Io

n
m

/z
St

ru
ct

ur
e

a 12
5.

01
b 16

1.
04

c 28
7.

06
d 36

5.
09

e 65
3.

12
f 73

1.
10

g 10
97

.1
8

R
 =

 −
C

H
2C

H
2O

H

T
he

 le
tte

rs
 a

-g
 c

or
re

sp
on

d 
to

 th
e 

si
gn

al
s 

in
 th

e 
M

S2
 s

pe
ct

ru
m

.

J Pharm Sci. Author manuscript; available in PMC 2019 July 22.


	Abstract
	Introduction
	Materials
	Methods
	Membrane Fractionation
	Thermal Stability
	Thiolysis of CF
	Metal-Catalyzed Oxidation
	RP-HPLC Analysis
	HPLC-MS Analysis
	Mathematical Modeling

	Results
	Sample Preparation
	Thiolysis
	Thermal Stability of CF
	RP-HPLC-UV Analysis
	HPLC ESI-MS Analysis of Collected UV Peaks
	Peak 1 (m/z 1097.18)
	Peak 2 (m/z 1307.22)
	Peak 3 (m/z 917.17)
	Thermal Stability of the Bottom Fraction of CF (CF-Bot)
	MCO of CF
	Data Analysis

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table 1

