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Abstract

Colorectal cancer is one of the most common types of cancer with a high mortality rate. It typically

develops from small clumps of benign cells called polyp. The adenomatous polyp has a higher

chance of developing into cancer compared to the hyperplastic polyp. Colonoscopy is the preferred

procedure for colorectal cancer screening and to minimize its risk by performing a biopsy on found

polyps. Thus, a good polyp detection model can assist physicians and increase the effectiveness of

colonoscopy. Several models using handcrafted features and deep learning approaches have been

proposed for the polyp detection task.

In this study, we compare the performances of the previous state-of-the-art general object

detection models for polyp detection and classification (into adenomatous and hyperplastic class).

Specifically, we compare the performances of FasterRCNN, SSD, YOLOv3, RefineDet, RetinaNet,

and FasterRCNN with DetNet backbone. This comparative study serves as an initial analysis of the

effectiveness of these models and to choose a base model that we will improve further for polyp

detection.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Colorectal Cancer

Colorectal cancer is one of the most common types of cancer with a high mortality rate.

According to studies, colorectal cancer is the fourth highest cancer by rates of new cancer cases

and also the fourth highest cancer by rates of deaths as of 2015 Group (2018); Society (2019b).

Furthermore, American Cancer Society estimated that colorectal cancer will be the fourth highest

new cancer cases and the second highest cause of deaths by cancer in 2019 Society (2019b). This

shows us the importance of developing accurate early screening methods as well as treatment

techniques for colorectal cancer.

Colorectal cancers typically develop from small clumps of benign cells called polyps Simon

(2016). Colon polyps can potentially grow slowly to become colorectal cancer over a period of 10

to 20 years. Due to this slow growth, an early screening process to detect the presence of these

polyps can help prevent their potential future growth to become cancerous cells. Screening can

reduce the incidence of disease and increase the likelihood of survival Society (2019a). Increasing

age is one of the greatest risk factors to colorectal cancer, with 99% of cases occurred in people of

age more than 40 and 85% in those of age more than 60 Ballinger & Anggiansah (2007). Thus,

it is recommended to get colorectal screening beginning at the age of 50 (although, family history

can increase the risk even for those aged below 50).

Common CRC screening methods can be categorized into two; visual examinations and stool-
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based tests. In stool-based tests, the stool (feces) are checked for signs of cancer such as blood

(guaiac-based fecal occult blood and fecal immunochemical tests), and additionally for genetic

mutation in the DNA of cells that are shed into the stool (FIT-DNA/Cologuard test). While having

the benefits of being non-invasive, no bowel cleansing necessary, and can be performed at home,

these tests often miss most polyps and require shorter test time interval.

Colonoscopy is the recommended visual examination screening method, although there are

other alternatives. CT colonography uses X-ray to get 2D or 3D views of the entire colon and

rectum. While being less invasive, it suffers from low detection rate on smaller polyps (5mm or

less) Johnson et al. (2008); de Haan et al. (2011). Similarly, double-contrast barium enema also

uses X-ray, but it has a lower detection rate than CT colonography Johnson et al. (2004). Sigmoi-

doscopy requires less complicated bowel preparation, but it only covers the rectum and lower third

of the colon. Wireless Capsule Endoscopy has high sensitivity for polyp detection, but it suffers

greatly from its dependence on whether the polyp is recorded during its progression through the

gastrointestinal tract and from the length of the recorded video (around 8 hours) Wang et al. (2013);

Spada et al. (2011); Eliakim et al. (2009). This long analysis is highly time consuming and can

suffer from physician’s fatigue, affecting the polyp detection rate. Nevertheless, any positive tests

(either stool-based or visual examination test) require further colonoscopy for complete diagnostic,

making colonoscopy an important screening method.

Colonoscopy procedure allows the physician to examine the entire colon and perform biopsies

on detected polyps. Colonoscopy requires a good bowel preparation, which affects the polyp

detection rate Rees et al. (2016); Lebwohl et al. (2011). Depending on the number and size of

polyps found, physicians may need to operate the colonoscope for a long time, which may increase

polyp miss detection rate due to mental and physical fatigue. Furthermore, a study showed that

colonoscopy procedure has a 25% miss rate for all polyps Leufkens et al. (2012). Therefore,

automatic computer aided-system is needed to improve the effectiveness of colonoscopy.

Colorectal polyps are commonly divided into two categories, non-neoplastic (commonly hy-

perplastic) and neoplastic (commonly adenomatous) polyps Shinya & Wolff (1979). Hyperplastic
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polyps are commonly serrated, diminutive (≤ 5mm), pliable, and sessile KIM & PICKHARDT

(2010). Although it is often considered to have little to no malignant potential Roland & Bar-

nett (2009), hyperplastic polyps should not be ignored Jass (2004). Adenomatous polyps are the

more common precursors as they account for approximately 85% of sporadic colorectal cancers,

termed the adenoma-carcinoma pathway KIM & PICKHARDT (2010). Thus, detected adenoma-

tous polyps are often removed during colonoscopy procedures.

1.1.2 Motivations and Goals

It has become apparent that a more accurate and effective automatic computer-aided system

for colonoscopy is needed to help physicians detect possible precancerous colorectal polyps as

early as possible. Computer-aided diagnosis may help physicians to avoid missing polyps and

misdiagnosing their types, especially due to mental and physical fatigues.

Common computer-aided systems developed for polyp detection in colonoscopy video ap-

proaches are utilizing handcrafted features and classical machine learning approach to locate and

classify the polyp. Often time, this approach can result in poor performance when there is a slight

variation in the frame which causes the feature to be unreliable. Deep learning has been getting

more popular in the computer vision field due to its success in solving numerous problems in

computer vision.

Here, we are particularly interested in classical general object detection models using deep

learning approach such as FasterRCNN Ren et al. (2015), YOLOv3 Redmon & Farhadi (2018),

SSD Liu et al. (2016), RetinaNet Lin et al. (2017), RefineDet Zhang et al. (2018), and DetNet

Li et al. (2018). The goal is to compare these classical general object detection models for polyp

detection and classification in colonoscopy as baseline models that could potentially be improved

to be better suited for polyp detection. While similar study exists Bernal et al. (2017), this study

compares proposed models for MICCAI 2015 Challenge on Automated Polyp Detection. In this

challenge, the goal was to locate and detect polyps either from still frames or sequence of video

frames. Note that this challenge does not classify the polyps to either adenomatous or hyperplastic,

3



as opposed to our study. Furthermore, some of the proposed models use handcrafted features,

hybrid, or end-to-end deep learning approach.

1.1.3 Challenges and Problems

When developing a computer-aided system for polyp detection in colonoscopy, we need to

address some possible challenges and problems. Being in a medical field, the small availability

of data (compared to popular large object detection datasets like ImageNet Deng et al. (2009)

and PascalVOC Everingham et al. (2010a)) is often a problem for deep learning approach as the

success of deep learning often depends on the size and quality of the dataset Razzak et al. (2018).

The practical usefulness of the model also depends on the real-time capability of the proposed

model, since colonoscopy procedures are performed in real-time. Furthermore, some challenges

may arise from the hardware perspective and from the scene environment perspective.

From the hardware perspective, various advancements in colonoscopy technology have been

developed to help increase physicians detection accuracy Ngu & Rees (2018). The use of high-

definition colonoscopy increases the resolution and quality of image, thus increases textural infor-

mation in the image. The use of zooming and magnification technology, as well as wide-angle

camera, might also help to capture more of the colon surface. Conventional chromo-endoscopy

uses contrast dyes to enhance the characterization of tissues, mucosal surfaces, and blood ves-

sels. Virtual chromo-endoscopy also tries to achieve the same goal using a narrow spectrum of

wavelengths with a decreased penetration depth Ngu & Rees (2018), as opposed to conventional

white-light endoscopy. Variants of virtual chromo-endoscopy include Narrow-band Imaging, Fuji

Intelligent Color Enhancement, Autofluorescence Imaging, i-SCAN, and Endoscopic Trimodal

Imaging. All these various technologies developed and used in colonoscopy must be taken into

consideration when building a computer-aided system to gain advantages of each technology as

much as possible.

From the scene environment perspective, we need to take into account of other textures that

might be present in the colon. Since colonoscopy requires a good bowel preparation Bechtold et al.
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Figure 1.1: Paris Classification of Superficial Neoplastic Lesions (Type 0)

(2016); Saltzman et al. (2015), the model needs to be robust to possible presences of solid/semi-

solid stools as well as moderate to large amount of liquid and fluid. Other than residual particles

and liquid from bowel preparation, blood vessels and colon wall textures might affect the appear-

ance of polyps, and thus, the detection of the polyps. Another factor that contributes more towards

polyp detection is the polyp morphology. Paris classification Workshop (2003) categorizes super-

ficial neoplastic lesions (type 0) into two subtypes, which are polypoid and non-polypoid subtypes.

Major variants of superficial neoplastic lesions are shown in Fig. 1.1. Combinations of the variants

(such as IIa + Is and IIa + IIc) are also possible. A robust model has to be able to detect these

different variants of polyp morphology. Sessile adenomatous polyps are known to have higher

detection miss rate than pedunculated adenomatous polyps Kim et al. (2017). Furthermore, it has

also been known that polyp detection miss rate increases with smaller polyp size Ngu & Rees

(2018); Van Rijn et al. (2006). So, the model must also be robust to variation of polyp sizes.
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1.2 Contributions

To the best of our knowledge, this thesis contributes to the first comparative study of clas-

sical general object detection models as baseline models for automated polyp classification and

localization. This thesis compares the performances of the object detection models using specified

metrics and provides the baseline performances of these models.

This thesis also contributes an open source dataset for polyp classification (to adenomatous

polyp or hyperplastic polyp) and localization, which we built by combining existing polyp detec-

tion datasets and a private colonoscopy video dataset.

1.3 Outline

The rest of this thesis is organized as follows. In chapter 2, we review different types of com-

puter vision problem statements. Then, we briefly discuss some handcrafted features approaches

in polyp detection and compare them with some proposed deep learning approaches. Then, we

discuss the difference between two-stage framework and one-stage framework in object detection

using deep learning.

In chapter 3, we summarize the model specifications of general object detection models that

we compare in this thesis. We also provide overviews about the models we compare in this thesis.

In chapter 4, we present the details of our experiments. We start by describing the datasets

that we use, the dataset preparation steps, and summary about the dataset. Then, we explain

the experiment settings, specifically the hyperparameters we chose for training and evaluating the

models. Finally, we explain the comparison methods and metrics used throughout our experiments.

In chapter 5, we present the experiment results and analysis. We compare and discuss our

results based on our observations.

In chapter 6, we conclude our findings from the experiment. We found that RefineDet has

the best performance compared to all the other models because it performs significantly better on

6



hyperplastic frames. SSD has the best performance on adenomatous frames and has the second

best performance after RefineDet.

In chapter 7, we propose some possible future works to improve the best performing model

(RefineDet) for polyp classification and localization.
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Chapter 2

Literature Review

2.1 Computer Vision Problem Statements

Computer vision is one of the fastest growing fields in research due to the invention of

deep learning and convolutional neural network. Since AlexNet introduction and success in 2012

Krizhevsky et al. (2012) for ImageNet Large Scale Visual Recognition Challenge (ILSVRC), most

computer vision researches have been focusing on deep learning methods.

Various computer vision tasks from the simplest to the more complex tasks are image-level

object classification, object detection, semantic image segmentation, and object instance segmen-

tation Liu et al. (2018). In image-level object classification task, the model is presented with an

image and asked for probable classes of the objects contained in the image or asked about the pres-

ence of particular objects (classes) within the image, without the need of information regarding

the locations of the objects. Object detection task expands this task by asking about the presence

of objects within the image along with the locations and bounding box surrounding each detected

object. This task is often expanded to detect multiple classes of objects within an image. Semantic

image segmentation task focuses on pixel level prediction of the image. In this task, the model

predicts the most probable class assignment for each particular pixel in the image. Object instance

segmentation task is like the combination of object detection and semantic image segmentation in

which it predicts the most probable class assignment of each pixel in the image while distinguish-

ing different instances of the objects.

While the four tasks discussed previously often appear in medical image analysis, there are
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also other tasks that we may find Litjens et al. (2017). In registration task, the model tries to

find the best alignment (commonly spatial alignment) of multiple medical images so that we can

make a better comparison of the images from multiple patients. This is due to the shape and size

variations between patients’ bodies or organs. In content-based image retrieval task, the model

extracts features from the image, which will later be used to compute distances between other

images in the database and finally retrieve the closest matching images. Image generation and

enhancement task tries to improve the quality of the image. Lastly, combining image data with

report task tries to generate a caption or semantic label describing the image.

Fig. 2.1 depicts how each of the four main tasks would look like in computer-aided colonoscopy.

Due to the nature of colonoscopy procedures, image-level object classification will not be sufficient

in helping physicians to locate the polyps. Furthermore, the continuous nature of colonoscopy

video image frames will be difficult for image level object classification models to output the cor-

rect prediction due to the variation of locations, sizes, and ratios of the polyps within the image.

Semantic image segmentation and object instance segmentation which predict in pixel level might

be very helpful for physicians to actually see the locations as well as the boundaries of the polyps.

However, coarse bounding boxes of the polyps are often sufficient to help physicians locating the

polyps found during colonoscopy procedures. Thus, we chose to do comparison of models for

object detection and classification task in this study.

2.2 Handcrafted Features Approach and Deep Learning Approach

There have been various models proposed for polyp detection in colonoscopy. Previous com-

parative validation study on MICCAI 2015 Polyp Detection Challenge Bernal et al. (2017) includes

previously proposed models, both using handcrafted feature approach and deep learning approach.

Handcrafted feature approaches focus on using low-level image processing methods to ex-

tract geometric shape features or texture description features. Handcrafted feature approaches

often perform in real-time, making it suitable for real-life application. Furthermore, handcrafted
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(a) Image Level Object Classification (b) Object Detection

(c) Semantic Image Segmentation (d) Object Instance Segmentation

Figure 2.1: Various Computer Vision Tasks Applied to Colonoscopy

feature approaches do not need a large amount of dataset compared to deep learning approaches.

CVC-Clinic proposed a model that considers polyps as protruding surfaces and use valley infor-

mation along with completeness, robustness against spurious responses, continuity, and concavity

boundary constraints to generate energy map related to the likelihood of polyp presence Bernal

et al. (2015). In Karkanis et al. (2003), the model uses color feature extraction scheme based on

wavelet decomposition, producing color wavelet covariance feature. This model then uses Linear

Discriminant Analysis with the extracted features to classify image regions in the frames. Other

handcrafted feature approaches can be found in Taha et al. (2017).

Deep learning approaches have also been proposed for polyp detection in colonoscopy. In
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Park et al. (2015), it uses multi-scale architecture with 3 layers of CNN and 3 layers of max-pooling

followed with fully connected layer. Another model uses a slightly different approach in which it

uses 3 different extracted features to feed to an ensemble of 3 CNNs Tajbakhsh et al. (2015). The

extracted features used are color and texture clues, temporal features, and shape in context. Y-

Net Mohammed et al. (2018) combines two encoders following VGG19 network architecture (one

is pre-trained on ImageNet and the other is initialized using Xavier normal initializer) which are

then followed by decoder layers. This was proposed to solve the problem of small dataset size in

medical image analysis.

2.3 Deep Learning Object Detection Categories

Image level classification task performance is affected by the position and size of the object in

the frame. Thus, having an object detection stage can improve the classification performance of the

model. Early approach of object detection using deep learning was to use sliding window mech-

anism, where the deep learning classifier is applied to the sliding window to detect object within

that window. Then, other approaches for object detection was developed to improve efficiency and

accuracy of the models.

General Object Detection models using deep learning can be categorized into two main frame-

work categories; two-stage framework and one-stage framework. The difference between the two

categories is mainly due to the region proposal generation stage.

2.3.1 Two-stage Frameworks

In two-stage framework, a region proposal stage is used to generate possible regions of inter-

est. The proposed regions are then passed to a classifier to get the final prediction for each region.

Thus, this type of framework has two stages; the first being the region proposal stage, and the

second being the classifier stage.

Two-stage framework object detection models generally have higher accuracy compared to
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one stage framework models. This is because each stage of the framework is optimized to do a

specific task. The region proposal stage is trained to optimize the detection and localization of

objects with various size ratios and position within the image frame. The classifier is optimized

to classify the detected objects. However, two-stage framework models suffer on their processing

speed performance. The region proposal stage is often found to be the bottleneck as it is often a

slow process.

The development of two-stage framework models begins with R-CNN Girshick et al. (2014).

It uses selective search for its region proposal stage. While having good accuracy, R-CNN is slow

and far from reaching real-time level performance. Furthermore, training is multistage pipeline

(which is slow and difficult) and features from the 2000 region proposals are extracted from CNN

separately and required to be stored in the disk. Thus, several improvements and modifications to

R-CNN has been proposed to improve its processing speed and accuracy performances. SPPNet He

et al. (2015) uses spatial pyramid pooling layer to produce fixed size input for the fully connected

layer from any size of feature map output. This way, the CNN network processes the entire image

once, as opposed to R-CNN which processes each region proposal from the image separately.

However, this network still uses a multistage pipeline for training. Fast R-CNN Girshick (2015)

uses a similar idea to SPPNet, but it only uses single-level pooling layer (instead of three-level

pooling layer like in SPPNet) which they call RoI pooling layer (Regions of Interest pooling layer).

Furthermore, the model minimizes multi-task loss from softmax layer (for class prediction) and

linear regression layer (for bounding box locations). This allows the network to be trained end-

to-end, which simplifies the training process. Despite all these improvements, the selective search

algorithm for region proposal is still the bottleneck for speed performance for these models. Faster

R-CNN Ren et al. (2015) solved this problem by replacing the selective search algorithm with

region proposal network to generate region proposals from the image.

12



2.3.2 One-stage Frameworks

As opposed to two-stage framework, one-stage framework does not have region proposal

generation stage, making it single-stage pipeline. This framework formulates object detection as a

regression problem and directly predicts bounding box offsets and class probability based on dense

sampling of possible locations from the entire image in a single network pass.

One-stage framework has simpler architecture compared to two-stage framework. This frame-

work can also be trained end-to-end, which makes it easy to train. Having simpler architecture, this

framework has better speed performance compared to two-stage framework, often reaching real-

time performance. However, since this framework uses dense sampling of possible locations of

bounding boxes, it often has lower detection accuracy performance compared to two-stage frame-

work.

An example of an early proposed one-stage framework is OverFeat Sermanet et al. (2013),

which uses a multi-scale sliding window mechanism to detect objects in the image. Other popular

one-stage framework models are YOLO Redmon et al. (2016) and SSD Liu et al. (2016). The very

first YOLO model splits the image into S×S cells. Each cell is then responsible to predict an object

existence score, a class probability conditioned on object existence, and B bounding box locations.

Here, it only predicts one class for each cell, no matter how many bounding boxes are assigned

to each cell. Learned features from backbone CNN layers are passed to fully connected layers to

make predictions. The authors of this model have proposed two iterative improvements to YOLO,

which they call YOLOv2 Redmon & Farhadi (2017) (sometimes YOLO9000) and YOLOv3 Red-

mon & Farhadi (2018). YOLOv2 uses some tricks such as batch normalization, convolutional layer

for prediction (instead of fully connected layer), class prediction for each bounding box (instead

of for each grid cell), anchor box prediction, dimension priors using K-Means, direct location pre-

diction, Darknet-19 as backbone, and other tricks to improve the performance of YOLO. Notable

differences between YOLOv3 and YOLOv2 are the use of Darknet-53 as the backbone, multi-scale

prediction, and independent logistic classifiers with binary cross entropy loss for class prediction

(instead of softmax function with mean squared error loss). Similar to YOLOv3, SSD uses multi-
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scale prediction and convolutional layer for prediction. Each scale predicts bounding box locations

and class predictions for each grid cell in that scale. Other variants of SSD have been proposed to

solve known problems in SSD model. RetinaNet Lin et al. (2017) introduces focal loss to handle

class imbalance in object detection problem and feature pyramid network to improve the accuracy

performance in each scale. RefineDet Zhang et al. (2018) introduces anchor refinement module to

produce initial predictions that will be refined by the object detection module. This also filters out

negative results that will be passed down to the classifiers.
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Chapter 3

General Object Detection Model

In this chapter, we review different general object detection models used in this comparative

study. There are six models compared; namely FasterRCNN Ren et al. (2015), YOLOv3 Redmon

& Farhadi (2018), SSD Liu et al. (2016), RetinaNet Lin et al. (2017), RefineDet Zhang et al.

(2018), and DetNet Li et al. (2018).

3.1 Faster RCNN

Faster RCNN is a two-stage framework model and one of the families of RCNN networks. It

improves on the Fast RCNN network by replacing slow selective search algorithm for region pro-

posal generation with region proposal network. This results in faster detection rate. Furthermore,

region proposal network is trainable, which can potentially achieve better performance.

Faster RCNN is composed mainly of two modules, the region proposal network module and

the Fast RCNN detector module. Both modules share the same feature maps to simplify com-

putation and make it efficient. First, the backbone network (in this case, it is ResNet 101 He

et al. (2016)) extracts features from the image. Then, these features are passed down to the region

proposal network. The region proposal network applies n× n convolutional layer sliding win-

dow (n = 3 in the paper) followed by 1×1 two sibling convolutional layers to the feature map to

regress bounding box locations and 2 probabilities corresponding to object and non-object. Each

sliding window predicts k pre-defined anchor boxes (k = 9), centered at the sliding window, with

different sizes and ratios to achieve multi-scale learning. The model assigns positive label to (i)

anchors with highest IoU overlap with ground-truth box, or (ii) anchors with IoU higher than 0.7
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with any ground-truth box. Negative label is assigned to anchors with IoU lower than 0.3 for all

ground-truth boxes. Anchor boxes that do not meet these conditions are not included in the train-

ing objective. Thus, each sliding window outputs (4+2)× k values. The loss function for region

proposal network is as follows:

L({pi},{ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i )+λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i )

with pi as the probability of anchor i being an object (1 for object, 0 for non-object), ti as the

parameterization of bounding box for anchor i as described in Ren et al. (2015), Lcls as the log loss

over two classes, and Lreg as the smooth L1 loss in Girshick (2015).

After proposed regions are generated, RoI pooling pool the feature map corresponding to the

proposed regions to generate fixed size features to be passed down to the two sibling fully con-

nected layers. The loss function used for the final prediction form this two sibling fully connected

layers is similar to the loss function used in region proposal network, noting that the number of

class is the same as the the number of object categories in the dataset. Fig. 3.1 depicts the archi-

tecture of Faster RCNN.

(a) FasterRCNN Architecture (b) Region Proposal Network Architecture

Figure 3.1: FasterRCNN model architecture. Source: Ren et al. (2015)
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Faster RCNN model has high accuracy, benefiting from optimization from separate stages.

However, this model cannot perform in real-time speed, performing at around 5 fps Ren et al.

(2015).

3.2 YOLOv3

YOLOv3 (You Only Look Once v3) is the last iterative improvement proposed by the orig-

inal authors. It improves its performance from previous versions by introducing new backbone

network, multi-scale prediction, and modified class prediction loss function.

YOLOv3 uses DarkNet-53 as its backbone network for feature extraction. This backbone

network incorporates skip connections to solve the vanishing gradient problem in a deep network

and upsampling layer to improve multi-scale prediction by combining (concatenating) features

from lower scale with higher scale. This model predicts at three different scales for small, medium,

and large objects. Feature map from each scale is passed down to a detection module composed of

fully convolutional layers. The detection module splits the image into S×S grid, depending on the

scale. Each cell is responsible to predict ground truth objects with centers located inside the cell.

Each cell in the grid predicts B× (4+1+C) values corresponding to B bounding boxes, 4 values

for bounding box locations, 1 value for object confidence, and C values for C classes of objects

in the dataset. The bounding boxes are centered at the center of the cell and have predictions of

parameterized x,y offsets and h,w. Class prediction is assigned per bounding box instead of per

cell in the grid like in YOLOv1. The loss function of the model at scale m (which will be summed

for all scale for total loss function) with S×S cells is as follows:

Ltotalm = λcoord

s2

∑
i=0

B

∑
j=0

1ob j
i, j Lbbox(ti, t∗i )+

λob j

S2

∑
i=0

B

∑
j=0

1ob j
i, j Llogistic(pob j, p∗ob j)+
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λnoob j

S2

∑
i=0

B

∑
j=0

1noob j
i, j Llogistic(pob j, p∗ob j)+

S2

∑
i=0

B

∑
j=0

C

∑
k=0

Llogistic(pk, p∗k)

with B as the number of bounding boxes, C as the number of classes, λcoord as the weight for

bounding box coordinate loss, λob j,λnoob j as the weights for object confidence loss, Llogistic as

the logistic function with binary cross entropy loss, ti as 4 values of bx,by,bw,bh, and Lbbox as sum

of squared loss for each parameterized bounding box values as follows:

bx = σ(tx)+ cx

by = σ(ty)+ cy

bw = pwetw

bh = pheth

Here, tx, ty are the x,y offsets from cell center, cx,cy are the coordinates for cell top left corner,

pw, ph are prior anchor box width and height. These priors for width and height of the bounding

boxes (size and aspect ratio) are pre-computed using K-Means algorithm from the dataset.

YOLOv3 has fast detection rate, achieving real-time performance. However, YOLOv3 often

has lower detection accuracy compared to Faster RCNN.

3.3 Single Shot Detector

Single Shot Detector model is a one-stage framework model that uses convolutional layers

to predict bounding box locations and class prediction at different feature map scales. This model

has simple architecture and can achieve fast detection rate with good accuracy.
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The proposed SSD model uses VGG-16 network Simonyan & Zisserman (2014) as the back-

bone network for feature extraction. Similar to YOLOv3, SSD introduced multi-scale prediction

first. SSD also introduced the use of convolutional layer for prediction prior to YOLOv3, since

YOLOv1 uses fully connected layers for prediction. The detection layers are fairly simple, only

composed of convolutional layers which then predict B× (4+C) values for each cell in the grid,

where B is the number of anchor boxes and C is the number of classes. Here, the number of classes

includes the background class. So, if the highest class prediction for that anchor box is the back-

ground class, then the anchor box does not contain any object. The feature maps are progressively

passed down to the next layers with downsampling to allow the model to predict various small to

large objects from different scales. This eventually results in a larger number of prediction anchor

boxes compared to YOLOv1. Each ground truth box is matched to anchor box with the best IoU,

and then the anchor boxes are matched with any ground truth box with IoU of more than 0.5. The

loss function for SSD is shown as follows:

L(x,c, l,g) =
1
N
(Lcon f (x,c)+αLloc(x, l,g))

with N as the number of matched anchor box, xp
i, j as the indicator of matching of anchor box

i with ground truth box j of category p, l as the predicted box, g as the ground truth box, and α as

the weight for localization loss. Lcon f (x,c) is softmax loss over multiple classes as follows:

Lcon f (x,c) =−
N

∑
i∈Pos

xp
i, jlog(ĉp

i )−
N

∑
i∈Neg

log(ĉ0
i )

ĉp
i =

exp(cp
i )

∑p exp(cp
i )

Lloc(x, l,g) is a smooth L1 localization loss for anchor box d as follows:

Lloc(x, l,g) =
N

∑
i=∈Pos

∑
m∈{cx,cy,w,h}

xk
i, jsmoothL1(l

m
i − ĝm

j )
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ĝcx
j = (gcx

j −dcx
i )/dw

i ĝcy
j = (gcy

j −dcy
i )/dh

i

ĝw
j = log(

gw
j

dw
i
) ĝh

j = log(
gh

j

dh
i
)

Fig. 3.2 depicts the architecture of SSD.

(a) SSD Architecture

(b) SSD Anchor Box

Figure 3.2: SSD architecture and anchor box. Source: Liu et al. (2016)

SSD has a good trade-off between speed and accuracy. The simple one-stage framework

architecture results in fast performance, achieving real-time detection rate. Furthermore, the use

of anchor boxes and multi-scale prediction give it good detection accuracy.
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3.4 RetinaNet

RetinaNet is a one-stage framework model which is based on SSD model. RetinaNet tries

to improve performance by using Feature Pyramid Network for feature extractor and focal loss

function to solve the class imbalance problem.

In SSD model, the multi-scale prediction mechanism suffers from its architectural weakness

in which higher level layers do not use information from lower level layers. Using feature pyramid

network as the backbone, each scale can have better detection accuracy due to the use of both

higher level and lower level features. The prediction at each scale of the network is similar to

SSD model, predicting for class and bounding box location for each anchor box. Another major

difference and contribution of this model is the use of focal loss to solve the class imbalance

problem. Class imbalance, specifically extreme background class imbalance, influences one-stage

framework detection performance greatly compared to two-stage framework. This is because most

background class is implicitly filtered out by the region proposal network as opposed to one-stage

framework. The proposed focal loss is as follows. Let us begin by defining the cross-entropy loss

for binary classification:

CE(p,y) =−log(pt),where pt =

 p if y = 1

1− p otherwise

The focal loss is then defined as follows:

FL(pt) =−αt(1− pt)
γ log(pt)

The αt parameter is the weight for the class to balance out positive/negative examples. γ is the

focusing parameter that smoothly adjusts the rate to down-weight easy examples. This way, well

classified examples will have small loss value contribution, while missclassified or hard classified

examples will have large loss value contribution. Fig. 3.3 depicts the architecture of RetinaNet.
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Figure 3.3: RetinaNet architecture. Source: Lin et al. (2017)

Having similar architecture to SSD model for its detection layers, RetinaNet has similar de-

tection speed to SSD. It has better accuracy thanks to the use of focal loss and feature pyramid

network (which combines higher level and lower level information).

3.5 RefineDet

RefineDet is a one-stage framework model that is also based on SSD model. Like Reti-

naNet, this model also aims to solve the class imbalance problem that affects one-stage framework

models. However, it achieves it through a different approach than RetinaNet. Inspired by the archi-

tectural advantage of two-stage framework models to handle class imbalance, RefineDet combines

the architectural advantages of one-stage framework with two-stage framework by using two inter-

connected modules, namely Anchor Refinement Module (ARM) and (Object Detection Module).

RefineDet uses either VGG-16 network or ResNet-101 network as its backbone for feature

extraction. The Anchor Refinement Module is used to refine the initial anchor boxes locations

to provide better initialization of coarse bounding boxes locations for final prediction. It also

filters out easy negative anchors using binary classification prediction, which in turn reduces search

space for the final classifier, similar to two-stage framework models. Similar to SSD model, each

scale divides the image into grid cells. Each cell predicts B× (4+ 2) values corresponding to B

bounding boxes, 4 values corresponding to bounding box locations, and 2 values corresponding to

confidence scores for the presence of foreground object in that anchor box. After obtaining refined

anchor boxes, the corresponding feature map for each scale and the refined anchor boxes containing
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foreground objects are passed down to the Object Detection Module through Transfer Connection

Block module. Transfer Connection Block modules convert features from different layers from

Anchor Refinement Module to the correct input dimension for the corresponding feature map scale.

It uses deconvolution operation on features from higher level layer and sums them element-wise

with the corresponding feature map scale. This way, the model combines higher level and lower

level contextual information to make better predictions. Finally, the Object Detection Module

makes the final predictions of objects in the image and their locations. Again, this module has

similar architecture to SSD detection layer, which splits the image into grid cells for each scale.

For each cell, it predicts B× (4+C) values where C is the number of classes. The loss function

for the model is as follows:

L(pi,xi,ci, ti) =

1
Narm

(∑
i

Lb(pi, [l∗i ≥ 1])+∑
i
[l∗i ≥ 1]Lr(xi,g∗i ))+

1
Nodm

(∑
i

Lm(ci, l∗i )+∑
i
[l∗i ≥ 1]Lr(ti,g∗i ))

Lb is the binary classification loss (cross-entropy loss of two classes; object vs non-object),

Lm is the softmax multiclass cross-entropy loss, Lr is the smooth L1 regression loss of the bounding

box as in FasterRCNN Ren et al. (2015), i refers to the anchor box i, li∗ is the ground-truth class

label, pi is the prediction of objectness confidence in ARM, ci is the class prediction in ODM,

xi is the refined prediction of bounding box location and size in ARM, ti is the final prediction

of bounding box location and size in ODM, gi∗ is the ground-truth bounding box location and

size, Narm is the number of positive anchor boxes in ARM, NODM is the number of positive anchor

boxes in ODM, and [li ≥ 1] is 1 when anchor is not negative and 0 otherwise. Fig. 3.4 depicts the

architecture of RefineDet.
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(a) RefineDet Architecture

(b) RefineDet Transfer

Connection Block Module

Figure 3.4: RefineDet architecture and Transfer Connection Block Module. Source: Zhang et al.
(2018)

RefineDet has good speed performance similar to SSD model, achieving real-time perfor-

mance. It also has better accuracy thanks to its architectural design that removes easy negative

examples prior to final classification. The refined anchor boxes also provide better initialization

for final bounding box location prediction.
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3.6 DetNet

DetNet is different than previously discussed general object detection models. DetNet is not

an object detection model, rather it is a backbone network specifically designed for object detec-

tion problem. It was motivated by the popular use of pre-trained backbone network on ImageNet

classification problem for object detection. The authors argued that previously proposed back-

bone networks that are pre-trained on image level classification task are not well suited for object

detection task due to the increasing loss of spatial information in higher level layers from down-

sampling operations. Previously proposed backbone networks often have different numbers of

stages resulting in different spatial resolutions, weak visibility of large objects due to large strides

(which reduces object localization ability), and invisibility of small objects as larger contextual

information is integrated.

The proposed DetNet 59 backbone network follows the same settings as ResNet-50 for the

first 4 stages. In stage 5 and 6, the spatial resolutions are fixed by using dilated bottleneck with

1×1 convolutions at the beginning of each stage. This allows the network to enlarge its receptive

field while keeping the spatial resolution the same as in stage 4. Due to the expensive operation

of dilated convolution, the numbers of channels in stage 5 and 6 are kept the same as in stage 4.

The network can also use FPN-like design by summing up features from higher level layers with

lower level layers. Fig. 3.5 depicts the bottleneck blocks used in DetNet. The structure of DetNet

is depicted in 3.6.
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Figure 3.5: DetNet architecture. Source: Li et al. (2018)

Figure 3.6: DetNet architecture. Source: Li et al. (2018)

DetNet as backbone network improves the performance of previously proposed generic object

detection model.
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Chapter 4

Experimentation

In this chapter, we explain the experiment settings as well as the dataset that we use for

experiments in this comparative study.

4.1 Dataset

For this comparative study, we created a new dataset by combining three existing polyp de-

tection datasets and a new dataset containing 80 unannotated video sequences. Brief overview of

each dataset is explained as the following.

4.1.1 MICCAI 2017: GIANA Endoscopic Vision Challenge Dataset

This dataset is a part of MICCAI 2017 Endoscopic Vision Challenge Gastrointestinal Image

ANAlysis (GIANA) Sub-Challenge for Polyp Detection task. The original task for this dataset

is to detect and locate the presence/absence of polyps in a frame from colonoscopy video. It is

composed of 18 short videos for training and more than 20 short and long videos for testing. Each

frame in the training set has associated ground truth segmentation mask for the polyps within it.

4.1.2 CVC-ColonDB Dataset

This dataset comes from Bernal et al. (2012). It contains 15 short colonoscopy video se-

quences from 15 different studies. The original task for this dataset is to detect and locate the

presence/absence of polyps in a frame from colonoscopy video. There is a total of 300 frames
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in this dataset. Each frame in this dataset has associated ground truth segmentation mask for the

polyps within it.

4.1.3 Gastrointestinal Lesions in Regular Colonoscopy Dataset

This dataset comes from Mesejo et al. (2016). It contains a total of 76 video sequences;

15 serrated adenomas, 21 hyperplastic lesions, and 40 adenoma video sequences. Each video

sequence was recorded using Narrow-Band Imaging and White Light colonoscopy. However, this

dataset does not come with ground truth segmentation mask nor ground truth polyp bounding

box mask. The original task for this dataset is to classify each video sequence to its correct polyp

category. Particularly, the original authors were interested to maximize accuracy while minimizing

false positives and false negatives.

4.1.4 KUMC 80 Videos Dataset

This dataset comes from the University of Kansas Medical Center. It contains 80 colonoscopy

video sequences. Each video sequence has been inspected and labeled by an endoscopist for two

polyp categories; hyperplastic and adenomatous. However, this dataset does not come with ground

truth segmentation mask nor ground truth polyp bounding box mask.

4.2 Dataset Preparation

Since we use a combination of previously mentioned 4 colonoscopy datasets, we need to

prepare the datasets for our experiment. The followings are the data preparation steps that we

took.
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4.2.1 Ground Truth Bounding Box Annotation

As previously mentioned, KUMC 80 Videos Dataset and Gastrointestinal Lesions in Regular

Colonoscopy Dataset do not have ground truth annotation for polyp location in the frames. Thus,

we manually annotated bounding boxes for the polyps that we found in the frames. The annotations

are stored in PASCAL VOC format Everingham et al. (2010b).

The MICCAI 2017 GIANA Endoscopic Vision Challenge Dataset and CVC-ColonDB Dataset,

on the other hand, contain ground truth segmentation mask for polyps in the frames. We converted

the segmentation mask to bounding box by recording the maximum and minimum in X and Y

coordinate of the frames. Finally, we store bounding boxes in PASCAL VOC format.

4.2.2 Frame Selection

In order to make a fair comparison for the performances of the models in each video sequence,

we tried to balance the number of frames in each video sequence. Each video sequence contains

different numbers of frames, depending on the length of the video, and can vary from 300 - 1500

frames. The exception being the CVC-ColonDB which only contains a total of 300 frames for the

15 video sequences. Due to this variation, we tried to balance the number of frames for the three

other datasets by filtering the frames.

Firstly, we filtered the frames by skipping some frames in the sequence so that we get a

reasonably balanced number of frames per video sequence. This is also because most of the video

sequences were recorded by trying to stay still and focused on the polyps, thus, there is very little

variation within subsequent frames. Skipping some frames in the sequence makes sure that we

have high variations of the polyp appearances from different angles.

Secondly, we removed blurry and bad frames from the sequences. During the colonoscopy

procedure, it is not uncommon for gastroentrologists to move the colonoscope view around to

get different angles of the polyp. Sometimes the movement is too quick that makes the resulting

recorded frames to be blurry. Furthermore, sometimes gastroentrologists try to get as much detail
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as possible about the polyp appearance by zooming and closing in to the polyp. This causes the

view of the polyp to be too close and cover the whole frame. Thus, we removed blurry and bad

frames to get a cleaner dataset.

Thirdly, we removed multiple polyp frames in the sequence. The MICCAI 2017 GIANA

Endoscopic Vision Challenge Dataset and CVC-ColonDB Dataset do not have ground truth for the

class category of the polyps. Thus, we asked for an endoscopist to categorize the video sequences

into hyperplastic and adenomatous. However, sometimes the video sequences zoom out of the

dominant polyp in the sequence to either try to get different angles of the same polyp or to find other

possible polyps in the colon. Furthermore, some frames also contain multiple polyps. To be sure

that the polyp in the frame is of its correct class category, we removed frames that have multiple

polyps in it. We also removed frames that contain different polyps other than the dominantly

focused polyp in the video sequence.

Lastly, we removed outlier video sequences. Some of the video sequences contain multiple

polyps for the entire frames, which we decided to remove from the dataset. Also, some of the

video sequences contain polyps that have very distinct appearances than the rest of the polyps and

we consider these sequences to be too difficult to classify due to their unique appearances. So, we

decided to remove such sequences.

4.2.3 Dataset Split

To measure and compare the performances of each model, we first split the sequences per

dataset into 70/30 split for training and test. So, an example is for KUMC 80 Videos dataset, we

split the sequences into 70/30 split. We split the datasets per sequence because we want to see how

the models perform on unseen colonoscopy video sequences, which potentially contain polyps of

various appearances. After we get 70/30 splits per video sequences for each dataset for training

and test datasets, we further split the training datasets into training and validation datasets with

70/30 split. Lastly, we group the dataset splits into training, validation, and test datasets.
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Figure 4.1: Summary of datasets

Figure 4.2: Visualization of dataset split

4.2.4 Dataset Summary

Figure 4.1 depicts summary about the datasets used in this study. Figure 4.2 visualizes the

steps to split and combine the existing datasets to generate our own dataset for this study.

4.3 Experiment Settings

The experiment was conducted by training the 6 models discussed previously in General Ob-

ject Detection Model chapter using the training dataset. The validation dataset was used to monitor
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the performance of each model during training to avoid overfitting. We used the mean average pre-

cision metric for validation. Finally, the test dataset was used to compare the performances of the

trained models. The datasets were resized to fit each model’s requirement for image size. Fur-

thermore, data augmentation techniques such as patch cropping as well as random horizontal and

vertical flipping were performed.

4.3.1 Model Hyperparameter Settings

The followings are the hyperparameters we used for training and evaluating the models:

• DetNet: This model was trained using learning rate of 1×10−3, weight decay rate of

1×10−4, batch size of 128, image size of 600× 600, and total epoch of 7. Evaluation

was done using NMS threshold of 0.45 and confidence threshold of 0.5

• FasterRCNN: This model was trained using learning rate of 1×10−3, weight decay rate of

1×10−1, batch size of 8, image size of 600× 600, and total epoch of 30. Evaluation was

done using NMS threshold of 0.45 and confidence threshold of 0.5

• RefineDet: This model was trained using learning rate of 1×10−4, weight decay rate of

5×10−4, batch size of 8, image size of 512×512, and total iteration of 175000. Evaluation

was done using NMS threshold of 0.45 and confidence threshold of 0.5

• RetinaNet: This model was trained using learning rate of 1×10−5, weight decay rate of 0,

batch size of 1, image size of 608, and total epoch of 100. Evaluation was done using NMS

threshold of 0.5 and confidence threshold of 0.05

• SSD: This model was trained using learning rate of 4×10−4, weight decay rate of 1×10−4,

batch size of 32, image size of 300×300, and total epoch of 50. Evaluation was done using

NMS threshold of 0.45 and confidence threshold of 0.5
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• YOLOv3: This model was trained using learning rate of 1×10−3, weight decay rate of

5×10−4, batch size of 32, image size of 416×416, and total iteration of 44000. Evaluation

was done using NMS threshold of 0.45 and confidence threshold of 0.3

4.4 Comparison Methods

We use the following methods and metrics to compare the performances of the models. Partic-

ularly, we are interested to measure the performances regarding polyp detection, polyp localization,

and polyp classification. The followings are further explanation of each method.

4.4.1 Polyp Detection

Here, we compare each model’s ability to correctly classify polyp category within an image

frame. In this comparison method, we do not take the bounding boxes generated by the models

into consideration. Thus, we regard this computer vision problem as an image classification task.

Specifically, we define the following criteria:

• True Positive: model correctly predicts particular polyp category for the image

• True Negative: model correctly predicts the image does not contain particular polyp cate-

gory (or no polyp)

• False Positive: model predicts particular polyp category while image does not contain the

predicted polyp category (or no polyp)

• False Negative: model predicts wrong polyp category (or no polyp) while image contains

particular polyp category
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4.4.2 Polyp Localization

Here, we compare each model’s ability to correctly classify polyp category as well as to

correctly predict the size and location of the polyp within an image frame. Thus, we regard this

computer vision problem as an object detection task. We use Intersection Over Union (IoU) value

between the ground truth bounding box and the prediction bounding box to determine whether

a prediction bounding box correctly predicts the size and location of the polyp. Specifically, we

define the following criteria:

• True Positive: IoU of ground truth bounding box and prediction bounding box > IoU thresh-

old as well as correct polyp category prediction

• True Negative: Correct no prediction bounding box for no ground truth bounding box. In

object detection task, the there are infinitely many possible True Negative, thus it is rarely

used

• False Positive: Prediction bounding box has IoU < IoU threshold with all ground truth

bounding box (or no ground truth bounding box), wrong polyp category prediction with

matching ground truth bounding box

• False Negative: No prediction bounding box has IoU > IoU threshold with ground truth

bounding box

4.4.3 1 Class Polyp Classification VS 2-Classes Polyp Classification

Here, we consider comparing the models under two scenarios, 1-class polyp classification or

2-classes polyp classification. In 1-class polyp classification, we regard the predictions as polyp or

non-polyp. In 2-classes polyp classification, we further consider whether the polyp is adenomatous

or hyperplastic. We use 1-class polyp classification to see how the models perform if we disregard

the polyp categories. We apply these two scenarios for both polyp detection and polyp localization

methods.
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4.4.4 Still Frame vs Video Sequence

Here, we consider the performances of the models to correctly predict still frames and the

whole video sequence. Under the still frame scenario, we consider each image as an individual

image with no relation to all the other image frames in the test dataset. Thus, it measures the

performances of the models, given random colonoscopy image frame. Under the video sequence

scenario, we classify the video sequence based on the mostly predicted polyp category; adenoma-

tous or hyperplastic. So, we have the final polyp category as argmaxx := {Nx
Np
|x ∈ Sc} where Nx is

the number of frames predicted as x polyp category, Np is the total number of frames containing

polyp prediction in the video sequence, and Sc is the set of polyp category. Furthermore, these two

comparison scenarios only apply to 2-classes polyp classification.

4.4.5 Combined Performance

Here, we try to see the combined performance of all the models, considering only the true

positive cases. Specifically, we measure the recall value using the combined true positive cases

from all the models. We are interested to see the optimistic performance of current object detection

models if we combine them together. This shows possible performance improvements if we take

the best predictions of each model. We define the combined performance as all the ground truth

bounding boxes that have been matched (correct IoU and classification) with predictions from all

the models combined. So, essentially, this is just all the bounding boxes that have been predicted

successfully by any of the model, and we treat them as predictions from a probable model.

4.4.6 Comparison Metrics

In this subsection, we define metrics we use to measure the performances of the models.

• Intersection over Union (IoU) or Jaccard Index: Area of Intersection over Union between
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ground truth bounding box and prediction bounding box

IoU(A,B) =
|A∩B|
|A∪B|

• Precision: Fraction of true positive over all positive predictions

Precision =
True Positive

True Positive + False Positive

• Recall: Fraction of true positive over all positive cases in the set

Recall =
True Positive

True Positive + False Negative

• Average Precision: Average of precision values given corresponding recall values over re-

call = 0 to recall = 1. This is essentially the area under precision-recall curve.

Average Precision =
n

∑
k=1

Precision(k) ∆Recall(k)

To minimize the impact of the change of precision values over a large number of different

recall values, we can also use interpolated average precision over some fixed values m by

taking the maximum of the precision values greater than i. So, we have

Interpolated Average Precision =
1
m ∑

i∈{ x
m |x=1,2,...,m}

max
ĩ:ĩ≥i

Precision(i)

• F1: Harmonic mean of precision and recall values

F1 =
2(Precision) (Recall)

Precision+Recall
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• False Positive Rate: Fraction of false positive over all negative cases in the set

False Positive Rate =
False Positive

False Positive+True Negative

• Precision-Recall Curve: Curve of precision values given recall values

• ROC Curve: Curve of true positive rate values (recall values) given false positive rate values
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Chapter 5

Results and Discussions
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5.1 Confidence Score Analysis

(a) Confidence Analysis: DetNet

(b) Confidence Analysis: FasterRCNN

(c) Confidence Analysis: RefineDet
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(d) Confidence Analysis: RetinaNet

(e) Confidence Analysis: SSD

(f) Confidence Analysis: YOLOv3

Figure 5.0: Distribution of prediction confidence scores for each model, green shows correct pre-
diction, while red shows false positive prediction
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Before we analyze the prediction results of each model further, let us analyze the confidence

scores for predictions made by the models. The confidence threshold we set in the post-processing

step will affect the predictions to be kept for final predictions. Figures in 5.0 show the distributions

of the predictions’ confidence scores made by each model. The green bar plots on the left show

the distribution of correct class, size, and location predictions of the ground truth bounding boxes.

The red bar plots on the right show the distribution of false positive predictions (wrong class, size,

or location predictions).

As we can see, 5 of the 6 models, excluding YOLOv3, have the highest number of correct

predictions with confidence score between 0.9− 1.0. Furthermore, 4 of them have "J" shape dis-

tribution, with the second highest number of correct predictions having confidence score between

0.0−0.1. The false positive distributions with confidence score between 0.9 - 1.0 also have small

number of false positive. This means, that when the models make predictions with high scores,

those predictions are quite likely to be correct. Having lower confidence score threshold allows

us to predict more correct bounding boxes. However, as we can see from the corresponding false

positive distributions, it introduces more false positive predictions (with the highest number having

confidence score between 0.0 - 0.1). This surely is not a result that we want since it will not be

usable in the real world.

Having a lower confidence threshold can also be misleading when we look at the mean av-

erage precision score. Due to the way we implement mean average precision computation, lower

confidence score threshold will mostly result in a higher score even though it introduces more false

positive (which should affect precision). Since we usually sort the predictions by confidence score

before computing mean average precision, then lower confidence predictions will always be con-

sidered last. This results in high precision values at low recall values, which will results in high

mean average precision even though it has many false positive predictions with low confidence

scores. Furthermore, from the average precision formula, it always increases. So, as long as it

hits correct predictions at low confidence scores, the mAP will still increase. Thus, we need to

understand how the confidence score threshold affects mean average precision.
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The YOLOv3 confidence score distribution is different from the other distributions since it

keeps decreasing with an increasing confidence score. This means that if we set a higher confidence

score threshold, the model will have fewer correct predictions, which in turn results in a lower mean

average precision score.

RetinaNet has the smallest number of false positive predictions compared to the other models.

This is probably because RetinaNet benefits from the use of Focal Loss, which helps with easy

background examples. Thus, it is less likely to make false positive predictions.

RefineDet has the highest number of correct predictions with confidence score ≥ 0.5, fol-

lowed by FasterRCNN, and then SSD. This means that these models are able to make correct

predictions with high confidence scores.

5.2 1-class Polyp Image Classification Task

Metrics Combined DetNet FasterRCNN RefineDet RetinaNet SSD YOLOv3

Acc 87.0 93.9 87.5 93.9 90.4 85.7 42.0

Bal Acc 93.3 96.8 87.8 96.8 78.8 89.1 70.0

Prec 100 100 99.5 100 98.7 99.7 100

Rec 86.6 93.7 87.4 93.7 91.2 85.4 40.0

F1 92.8 96.7 93.1 96.7 94.8 92.0 57.1

AP 99.5 99.7 99.5 99.7 99.6 99.4 97.9

AUC 93.3 96.8 92.2 96.8 92.0 91.5 70.0

Table 5.1: Performance of each model under different metrics for 1-class polyp detection task
(classifying each frame as polyp or non-polyp)

43



(g) DetNet (h) FasterRCNN (i) RefineDet

(j) RetinaNet (k) SSD (l) YOLOv3

Figure 5.1: ROC Curve for 1-class polyp detection

(a) DetNet (b) FasterRCNN (c) RefineDet

(d) RetinaNet (e) SSD (f) YOLOv3

Figure 5.2: PR Curve for 1-class polyp detection
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Here, we consider the task as a 1-class image classification task. So, we do not consider the

size and position predictions made by the models. We are only interested in whether the models

know that there is a polyp or not in the image frame. Table 5.1 shows different metric scores

for the models. Figures in 5.1 show the ROC curve for each model. Figures in 5.2 show the

Precision-Recall curve for each model.

We can see that RefineDet, DetNet, and YOLOv3 have 100 % precision score. This means

that these models never make prediction that the image contains polyp when in fact it does not.

However, YOLOv3 makes a fewer number of predictions compared to the other models, so this is

not particularly interesting. RefineDet and DetNet also have high recall scores (which results in

high F1 scores) compared to the other models. So is the case with the average precision and area

under ROC curve scores for these two models. So, RefineDet and DetNet are particularly good at

knowing if the image frame has polyp or not.

Another interesting thing to note here is that RefineDet and DetNet have better performances

than the combined performance. This is because the combined performance only considers cor-

rectly predicted bounding boxes. If the models predict that there is a polyp in the image but the

prediction is wrong (incorrect class, size, or location), then the prediction will not be included

in the combined performance. Thus, combined performance has lower recall score compared to

RefineDet and DetNet at 1-class polyp image classification task.
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5.3 2-classes Polyp Image Classification Task

Metrics Combined DetNet FasterRCNN RefineDet RetinaNet SSD YOLOv3

Acc 87.0 66.5 62.4 66.4 63.9 67.8 31.7

Bal Acc 91.3 76.7 69.8 78.8 64.4 74.2 52.0

Prec Ad 100 76.9 77.9 88.4 76.2 80.5 84.0

Prec Hy 100 60.9 59.5 57.9 60.1 73.4 56.5

mPrec 100 68.9 68.7 73.2 68.2 77.0 70.2

Rec Ad 84.9 66.1 64.8 53.1 65.5 74.5 34.2

Rec Hy 89.1 64.2 56.5 83.5 61.4 55.5 21.9

mRec 87.0 65.1 60.6 68.3 63.4 65.0 28.1

F1 Ad 91.8 71.1 70.8 66.4 70.4 77.4 48.6

F1 Hy 94.2 62.5 57.9 68.4 60.7 63.2 31.6

mF1 93.0 66.8 64.4 67.4 65.6 70.3 40.1

AP Ad 93.2 73.7 76.9 79.9 71.8 80.5 69.8

AP Hy 92.4 56.4 57.2 69.0 54.4 62.4 44.3

mAP 92.8 65.1 67.1 74.5 63.1 71.4 57.1

AUC Ad 85.7 69.5 72.3 76.8 66.2 75.9 60.8

AUC Hy 89.6 69.0 65.4 76.4 64.8 69.7 47.0

mAUC 87.7 69.2 68.9 76.6 65.5 72.8 53.9

Table 5.2: Performance of each model under different metrics for 2-classes polyp detection task
(classifying each frame as adenomatous, hyperplastic, or non-polyp)
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(a) DetNet (b) FasterRCNN (c) RefineDet

(d) RetinaNet (e) SSD (f) YOLOv3

Figure 5.3: ROC Curve for 2-classes polyp detection: adenomatous polyp

(a) DetNet (b) FasterRCNN (c) RefineDet

(d) RetinaNet (e) SSD (f) YOLOv3

Figure 5.4: ROC Curve for 2-classes polyp detection: hyperplastic polyp
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(a) DetNet (b) FasterRCNN (c) RefineDet

(d) RetinaNet (e) SSD (f) YOLOv3

Figure 5.5: PR Curve for 2-classes polyp detection: adenomatous polyp

(a) DetNet (b) FasterRCNN (c) RefineDet

(d) RetinaNet (e) SSD (f) YOLOv3

Figure 5.6: PR Curve for 2-classes polyp detection: hyperplastic polyp
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Here, we consider the task as 2-classes (adenomatous and hyperplastic) image classification

task. Again, we do not consider the size and position prediction made by the models. We are

interested in whether the models know what is the correct class for the polyp contained in the

image frame (if it does contain a polyp). If the model predicts that there are multiple polyps in the

image frame, we take the prediction with the highest confidence score as the final class prediction

of the whole image frame. Table 5.2 shows different metric scores for the models. Figures in

5.3 and 5.4 show the ROC curve for each model prediction of adenomatous and hyperplastic,

respectively. Figures in 5.5 and 5.6 show the Precision-Recall curve for each model prediction of

adenomatous and hyperplastic, respectively.

We can see that SSD has better mean precision score compared to RefineDet and DetNet in

this case. This means that more of those polyp frames predicted by RefineDet and DetNet are

misclassified compared to SSD predictions. However, the mean recall scores for RefineDet and

DetNet are still better than SSD. Overall, RefineDet has the highest mean average precision score,

followed by SSD. DetNet has lower mean average precision score due to its lower mean precision

score. Unsurprisingly, the combined performance has the best scores for all the metrics due to the

way it was created.

5.4 1-class Polyp Localization Task

Metrics Combined DetNet FasterRCNN RefineDet RetinaNet SSD YOLOv3

Prec 100 77.8 70.2 83.2 66.3 83.7 89.0

Rec 86.6 86.5 82.4 89.2 84.0 78.1 38.5

F1 92.8 81.9 75.8 86.1 74.1 80.8 53.8

AP 86.6 81.8 75.8 87.5 81.7 76.0 37.1

Table 5.3: Performance of each model under different metrics for 1-class polyp localization task
(locating and classifying each prediction as polyp or non-polyp)

49



(a) DetNet (b) FasterRCNN (c) RefineDet

(d) RetinaNet (e) SSD (f) YOLOv3

Figure 5.7: PR Curve for 1-class polyp localization

Here, we consider the task as 1-class object detection task. Thus, we also consider the size

and location prediction made by the models. This means that we use each bounding box prediction

instead of each image prediction for comparison. We first compare the performances of the models

considering just 1-class to see how well the models are able to localize the polyps, regardless of

the class. If the models have good performances on this task but bad performances on the 2-class

polyp localization task, then the models are having difficulty to classify the polyps. Table 5.3

shows different metric scores for the models. Figures in 5.7 show the Precision-Recall curve for

each model.

We can see that YOLOv3 has the highest precision score. However, this is because it makes

fewer predictions compared to the other models. The recall and average precision scores for

YOLOv3 also confirm this. So, this does not necessarily mean that YOLOv3 performed better

than the other models.

Excluding YOLOv3, SSD has the best precision score followed by RefineDet. However, the
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overall recall score for RefineDet and DetNet are still higher than SSD. RetinaNet also has higher

recall score than SSD. RefineDet has the highest average precision score, followed by DetNet and

RetinaNet. These three models have good average precision scores (more than 80%) if we do not

consider the class prediction.

5.5 2-classes Polyp Localization Task

Metrics Combined DetNet FasterRCNN RefineDet RetinaNet SSD YOLOv3

Prec Ad 100 67.0 67.0 84.2 51.4 74.9 81.1

Prec Hy 100 43.0 41.0 48.6 40.4 53.3 52.3

mPrec 100 55.0 54.0 66.4 45.9 64.1 66.7

Rec Ad 84.9 63.4 68.6 57.5 61.3 72.8 34.9

Rec Hy 89.1 58.5 57.3 80.3 55.5 46.8 22.8

mRec 87.0 60.9 62.9 68.9 58.4 59.8 28.8

F1 Ad 91.8 65.2 67.8 68.4 55.9 73.8 48.8

F1 Hy 94.2 49.6 47.8 60.5 46.7 49.8 31.7

mF1 93.0 57.4 57.8 64.4 51.3 61.8 40.3

AP Ad 84.9 49.5 55.8 51.6 51.9 62.6 31.4

AP Hy 89.1 32.9 29.5 58.4 34.5 32.0 16.1

mAP 87.0 41.2 42.7 55.0 43.2 47.3 23.8

Table 5.4: Performance of each model under different metrics for 2-classes polyp localization task
(locating and classifying each prediction as adenomatous, hyperplastic, or non-polyp)
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(a) DetNet (b) FasterRCNN (c) RefineDet

(d) RetinaNet (e) SSD (f) YOLOv3

Figure 5.8: PR Curve for 2-classes polyp localization: adenomatous polyp

(a) DetNet (b) FasterRCNN (c) RefineDet

(d) RetinaNet (e) SSD (f) YOLOv3

Figure 5.9: PR Curve for 2-classes polyp localization: hyperplastic polyp
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Here, we consider the task as 2-classes (adenomatous and hyperplastic) object detection task.

This is the original computer vision task that is addressed in this comparative study. We take into

account the class, size, and location prediction made by the models. Table 5.4 shows different

metric scores for the models. Figures in 5.8 and 5.9 show the Precision-Recall curves for each

model prediction of adenomatous and hyperplastic, respectively.

Similar to the previous analysis, YOLOv3 has the best precision due to fewer predictions. So,

it is not particularly interesting to compare YOLOv3 precision scores. RefineDet has the best mean

precision score, followed by SSD and DetNet (excluding YOLOv3). RefineDet also has the best

mean recall score. The hyperplastic recall score for RefineDet is significantly higher compared

to the other models. This means that RefineDet is very good at predicting correct hyperplastic

polyps. However, the adenomatous recall score is lower compared to the other models (excluding

YOLOv3). On the other hand, SSD has the highest adenomatous recall score and the lowest hyper-

plastic recall score compared to the other models (excluding YOLOv3). Surprisingly, FasterRCNN

has the second best mean recall score. Finally, RefineDet has the highest mean average precision

score, followed by SSD and RetinaNet.

The combined performance has good scores on most of the metric scores. It has a final mean

average precision score of 87%. This means that it is possible to design and improve a model that

has good performance for this particular dataset. The hyperplastic average precision score is high

for the combined performance, despite the low scores for most of the models. This means that

each model correctly predicted different hyperplastic frames. Thus, performance improvement on

this dataset is possible.
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5.6 Video Sequence Classification Task

Metrics Combined DetNet FasterRCNN RefineDet RetinaNet SSD YOLOv3

Acc 1.0 79.1 79.1 62.5 83.3 83.3 58.3

Bal Acc 1.0 79.2 79.2 66.4 82.8 81.4 58.5

Prec Ad 1.0 84.6 84.6 85.7 85.7 81.2 72.7

Prec Hy 1.0 72.7 72.7 52.9 80.0 87.5 54.5

mPrec 1.0 78.6 78.6 69.3 82.8 84.3 63.6

Rec Ad 1.0 78.5 78.5 42.8 85.7 92.8 57.1

Rec Hy 1.0 80.0 80.0 90.0 80.0 70.0 60.0

mRec 1.0 79.2 79.2 66.4 82.8 81.4 58.5

F1 Ad 1.0 81.4 81.4 57.1 85.7 86.6 64.0

F1 Hy 1.0 76.1 76.1 66.6 80.0 77.7 57.1

mF1 1.0 78.8 78.8 61.9 82.8 82.2 60.5

AP Ad 1.0 84.3 90.9 91.7 91.2 91.9 68.2

AP Hy 1.0 74.9 82.4 89.6 90.1 89.2 57.8

mAP 1.0 79.6 86.7 90.6 90.6 90.5 63.0

AUC Ad 1.0 79.2 85.7 89.2 89.2 89.2 66.7

AUC Hy 1.0 79.2 85.7 89.2 89.2 89.2 69.2

mAUC 1.0 79.2 85.7 89.2 89.2 89.2 68.0

Table 5.5: Performance of each model under different metrics for video sequence classification
task (classifying each video sequence as adenomatous, hyperplastic, or non-polyp)
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(a) DetNet (b) FasterRCNN (c) RefineDet

(d) RetinaNet (e) SSD (f) YOLOv3

Figure 5.10: ROC Curve for 2-classes polyp detection per video sequence: adenomatous polyp

(a) DetNet (b) FasterRCNN (c) RefineDet

(d) RetinaNet (e) SSD (f) YOLOv3

Figure 5.11: ROC Curve for 2-classes polyp detection per video sequence: hyperplastic polyp
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(a) DetNet (b) FasterRCNN (c) RefineDet

(d) RetinaNet (e) SSD (f) YOLOv3

Figure 5.12: PR Curve for 2-classes polyp detection per video sequence: adenomatous polyp

(a) DetNet (b) FasterRCNN (c) RefineDet

(d) RetinaNet (e) SSD (f) YOLOv3

Figure 5.13: PR Curve for 2-classes polyp detection per video sequence: hyperplastic polyp
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(a) DetNet (b) FasterRCNN

(c) RefineDet (d) RetinaNet

(e) SSD (f) YOLOv3

Figure 5.14: Video sequence class prediction probability
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Here, we consider the task as 2-classes (adenomatous and hyperplastic) classification task

of the whole video sequence. Specifically, we are interested in the agreement of each model on

the class prediction of the frames in a particular video sequence. This is useful when a physician

wants to classify a polyp based on the whole video sequence. Sometimes, one or two frames are

not sufficient to know the actual class of the polyp. Thus, looking at the agreement of class predic-

tion across a sequence of frames might result in better class prediction for the polyp in the video

sequence. We need to also note that we consider the prediction in image level instead of bounding

box level. Table 5.5 shows different metric scores for the models. Figures in 5.10 and 5.11 show

the ROC curve for each model prediction of adenomatous and hyperplastic, respectively. Figures

in 5.12 and 5.13 show the Precision-Recall curve for each model prediction of adenomatous and

hyperplastic, respectively. Figures in 5.14 show video sequence class prediction probability for

each model. A red bar means that the model predicted the wrong class for the video sequence,

while a green bar means correct class prediction. The y-axis shows the percentage of the final class

prediction over all predicted frames. The x-axis shows the video sequence number; symbol a for

adenomatous and h for hyperplastic.

We can see that SSD and RetinaNet have the highest accuracy scores, while RefineDet has

lower accuracy score than the other models (excluding YOLOv3). This means that SSD and Reti-

naNet have better agreements in predicting correct polyp classification. RefineDet has a lower

hyperplastic precision score because it misclassified more adenomatous video sequences. How-

ever, the overall hyperplastic recall score for RefineDet is higher than the other models. Another

interesting observation is that RefineDet has a good mean average precision score, having a score

similar to SSD and RetinaNet. This is because correct predictions have high probabilities, which

results in a high mean average precision score. Even though the accuracy scores for DetNet and

FasterRCNN are higher than RefineDet, these models have lower mean average precision than Re-

fineDet because they have misclassified predictions with high probability as we can see from the

Precision-Recall curves for the models.

DetNet, FasterRCNN, and RetinaNet are not very consistent in predicting the polyp class
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in some of the video sequences, shown by prediction percentages that are close to 50% in 5.14.

RefineDet and SSD, on the other hand, are relatively more consistent in predicting the polyp class

in a video sequence. YOLOv3 performed the worse, having many misclassifications (with 1 video

sequence having no prediction at all) and prediction percentages close to 50 %.

5.7 Image Frame Prediction Analysis

After analyzing predictions made by the models based on previously discussed computer vi-

sion tasks, let us now analyze the predictions based on image frame category. We compare frames

containing correct prediction, frames containing misclassified prediction, frames containing mislo-

calized prediction, frames containing multiple predictions, polyp frames containing no prediction,

and non-polyp frames containing a prediction.
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Figure 5.15: Percentage of total correct prediction for each model

Figure 5.15 shows the percentage of correctly predicted frames over all number of frames for

each class. Here, correct prediction means that the model predicts the correct class, size, location,

and number of polyps in the image frame. This shows that the model successfully predicts the

image frame according to the ground truth with no error.

Most of the models successfully predicted around 50% of all frames with adenomatous class,

with SSD having the best performance of correctly predicting around 70% of all frames with ade-

nomatous class. The models have bad performances on predicting hyperplastic frames at around

22% - 48%, with the exception of RefineDet. In order to have good performances, we need to

increase the models’ performances on the frames with hyperplastic class. RefineDet has unusually

good performance on hyperplastic class at 71%, which explains the high mean average precision
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score it has.

We can see that the combined performance has a high percentage of correctly predicted

frames. This means that the correct prediction frames are spread over different frames, which

when combined covers a large portion of the image frames. Thus, it is possible to improve a

model’s performance to achieve at least this performance given the current dataset.

Figure 5.16: Percentage of total misclassified prediction for each model

Figure 5.16 shows the percentage of polyp frames with misclassified prediction over all polyp

frames for each class. Here, misclassified prediction means that the model predicts the correct size

and location, but incorrect class. This shows that the model is actually able to find the size and

location of the polyp but having difficulty in classifying the polyp.

We can see that RefineDet has the highest misclassified prediction on adenomatous frames.
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RefineDet predicts more hyperplastic class than adenomatous class, resulting in a large proportion

of the adenomatous ground truth to be misclassified as hyperplastic by the model. Thus, it has a

high hyperplastic recall score, but a low adenomatous precision score. The other models mostly

failed to predict the correct class; predicting adenomatous class for hyperplastic polyp.

Figure 5.17: Percentage of total mislocalized prediction for each model

Figure 5.17 shows the percentage of polyp frames with mislocalized prediction over all polyp

frames for each class. Here, mislocalized prediction means that the model makes a prediction at

the wrong size and location, regardless of the class. So, the model detects that there is a polyp at

a place that does not actually contain a polyp. Note that multiple predictions at the same correct

location and correct size do not count as mislocalized predictions.

We can see that RetinaNet has the worst performance at localizing the prediction. This means
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that when RetinaNet makes a prediction, that prediction is mostly at the wrong location or having

the wrong size. The other models are also having difficulty at making localization prediction for

hyperplastic frames. This might be due to the shape and texture of hyperplastic polyp that is harder

to distinguish from the colonic wall compared to adenomatous polyp.

Figure 5.18: Percentage of total multiple predictions for each model

Figure 5.18 shows the percentage of polyp frames with multiple predictions over all frames

for each class. Here, multiple predictions mean that the model predicts that there are multiple

polyps in the image frame. Based on the way we created the dataset, there should be no image

frame containing multiple polyps. Thus, if the model makes multiple predictions for the image

frame, then we know that there are false positive predictions in the image. This can affect the

mislocalized prediction if the multiple predictions are located at the wrong location or having the
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wrong size. The confidence score threshold we set for the post-processing step affects this result.

Lower confidence score threshold introduces more false positive to the prediction results. Thus,

we should not choose a confidence score threshold that is too low as it will not be usable in the real

world.

FasterRCNN makes more multiple predictions on the hyperplastic frames compared to the

other models, followed by RetinaNet. This is particularly interesting since the confidence score

threshold for FasterRCNN was set to be 0.5, which is relatively high. The confidence score thresh-

old for RetinaNet was set to be 0.05, so it does make more multiple predictions due to the thresh-

old. FasterRCNN, on the other hand, makes multiple predictions despite the high confidence score

threshold. This means that FasterRCNN is having difficulty in predicting hyperplastic polyp and

distinguishing it from the colonic wall.
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Figure 5.19: Percentage of total polyp frames without prediction for each model

Figure 5.19 shows the percentage of polyp frames with no prediction over all polyp frames

for each class. Here, it means that the model predicts that the image frame contains no polyp while

it actually contains a polyp. So, it shows how good the models are at not missing polyp in the

image frame.

YOLOv3 has a very high percentage of this category due to the low number of high confidence

scores for its predictions. With a confidence score threshold of 0.3 to minimize false positive

predictions, it removes large portions of the correct predictions with low confidence scores. Thus,

it has a very high percentage of this category. The other models have around 6% - 18% of this

category, which is relatively small compared to the misclassification percentage. So, the models

are mostly having difficulty in distinguishing the two polyp classes from each other. RefineDet and
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DetNet are performing the best, having the smallest number of frames in this category.

Figure 5.20: Percentage of total non polyp frames with prediction for each model

Figure 5.20 shows the percentage of non-polyp frames with prediction over all non-polyp

frames. Here, it means that the model predicts that there is a polyp in the image frame while it

actually contains no polyp. So, it shows how much the models make false positive predictions on

non-polyp frames.

We can see that three of the models know when there is no polyp in the image frame. Reti-

naNet has the worst performance, having more than 20% of the total non-polyp frames in this

category. FasterRCNN also has a relatively large percentage on the hyperplastic frames.
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5.8 Video Sequence Analysis

(a) Video sequence 1 - 4

(b) Video sequence 5 - 8
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(c) Video sequence 9 - 12

(d) Video sequence 13 - 16
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(e) Video sequence 17 - 20

(f) Video sequence 21 - 24

Figure 5.19: Percentage of correctly predicted frames per video sequence for each model. Numbers
on top of the bars show the percentage values, while numbers below the bars show the actual
number of frames 70



In this section, we analyze the agreement for the models regarding the video sequences in the

dataset. We aim to see if the models mostly agree that a particular video sequence is a difficult

sequence or a relatively easy sequence for the object detection task. Figures in 5.19 show the

percentages of correct predictions made by the models in each video sequence. The symbol a in

x-axis means that the video sequence is of adenomatous class, while the symbol h means that the

video sequence is of hyperplastic class.

As we can see, the percentages of correct prediction vary depending on the model and the

video sequence. Video sequences 6, 10, 11, 12, 14, and 22 have high variations between the

models. However, all the models agree that video sequences 2, 7, 8, 23, and 24 are difficult

sequences because none of the models correctly predict more than 50% of the image frames in

these video sequences. All the models, excluding YOLOv3, also agree that video sequences 1, 13,

16, 20, and 21 are relatively easy sequences because all the models correctly predict more than

50% of the image frames in these video sequences.

RefineDet has the best performance on most of the hyperplastic sequences, which is in line

with what we have observed so far. YOLOv3 surprisingly has the best performance on sequence 6,

surpassing all the other models. Another interesting observation is that the combined performance

on sequences like 2, 4, 5, 7, 8, 9, 18, 23, and 24 are relatively high compared to each individual

model performance. This means that the models correctly predicted different frames of the video

sequences, which when combined cover large portions of the video sequences. Thus, performance

improvement is possible for the models.

5.9 Image Frame Prediction Summary

In this section, we present summaries regarding the prediction results made by the models.

These summaries categorize the image frames according to the previously discussed analysis.

• Table 5.6 shows the polyp class, number of frames, number of polyp frames, and number of

non-polyp frames in each video sequence
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• Table 5.7 shows correctly predicted frames. SSD has the highest total of correctly predicted

frames, followed by RefineDet. The combined performance has 4634/5322 = 87% of all

frames correctly predicted, which is very good

• Table 5.8 shows misclassified prediction frames. FasterRCNN has the highest misclassifica-

tion followed by RefineDet as previous observation

• Table 5.9 shows mislocalized prediction frames. RetinaNet has the highest mislocalized

prediction frames followed by DetNet

• Table 5.10 shows multiple prediction frames. FasterRCNN has the highest multiple predic-

tions followed by RefineDet

• Table 5.11 shows polyp frames with no prediction. YOLOv3 has the highest polyp frames

with no prediction followed by SSD

• Table 5.12 shows non-polyp frames with prediction. RetinaNet has the highest non-polyp

frames with prediction followed by FasterRCNN

72



Seq Class Number of Frames Polyp Frames Non Polyp Frames

1 adenomatous 542 521 21

2 adenomatous 212 190 22

3 hyperplastic 150 143 7

4 hyperplastic 451 425 26

5 adenomatous 257 213 44

6 hyperplastic 227 227 0

7 hyperplastic 238 234 4

8 adenomatous 357 355 2

9 hyperplastic 155 155 0

10 adenomatous 22 22 0

11 hyperplastic 296 292 4

12 hyperplastic 174 174 0

13 hyperplastic 163 163 0

14 hyperplastic 225 215 10

15 adenomatous 192 192 0

16 adenomatous 172 172 0

17 adenomatous 268 268 0

18 hyperplastic 35 35 0

19 adenomatous 319 319 0

20 adenomatous 18 18 0

21 adenomatous 376 375 1

22 adenomatous 273 235 38

23 adenomatous 77 77 0

24 adenomatous 123 123 0

Total 5322 5143 179

Table 5.6: Summary for number of frames and classification of each video sequence
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Seq Combined DetNet FasterRCNN RefineDet RetinaNet SSD YOLOv3

1 542 483 519 534 391 529 432

2 52 22 21 23 21 23 22

3 150 73 73 137 57 103 87

4 428 236 63 295 85 108 28

5 220 149 132 91 141 83 77

6 227 7 10 186 137 43 215

7 88 20 11 44 11 15 17

8 221 32 39 33 104 165 74

9 140 46 28 56 81 12 0

10 22 14 20 3 18 13 9

11 296 194 137 282 82 244 66

12 166 117 55 157 96 16 15

13 163 143 131 163 155 106 0

14 197 167 34 161 64 159 27

15 157 53 78 9 54 112 1

16 170 92 136 105 132 151 63

17 246 215 178 182 125 235 124

18 35 14 17 23 18 19 25

19 310 208 113 234 118 262 4

20 18 18 18 13 16 17 4

21 370 317 328 209 289 337 190

22 270 157 110 77 144 235 90

23 43 19 14 12 1 29 2

24 103 56 19 2 35 59 0

Total 4634 2852 2284 3031 2375 3075 1572

Table 5.7: Number of correctly predicted frames. Here, correct prediction means correct classifi-
cation, localization, and number of prediction each frame74



Seq Combined DetNet FasterRCNN RefineDet RetinaNet SSD YOLOv3

1 0 1 0 5 0 0 22

2 0 46 86 62 16 17 1

3 0 69 62 11 84 45 39

4 0 4 6 0 22 0 0

5 0 105 114 153 84 145 12

6 0 219 216 24 72 183 2

7 0 200 207 166 207 203 70

8 0 268 273 287 172 143 111

9 0 0 0 12 8 5 0

10 0 1 0 19 0 6 10

11 0 37 75 6 112 36 59

12 0 33 59 2 31 29 2

13 0 9 30 0 2 47 25

14 0 6 59 0 27 10 0

15 0 25 17 141 1 1 0

16 0 9 25 61 17 4 43

17 0 35 77 76 59 19 15

18 0 13 16 4 6 13 5

19 0 89 192 83 196 11 5

20 0 0 0 5 0 1 10

21 0 32 34 160 78 26 6

22 0 94 160 196 105 33 136

23 0 1 0 39 0 12 0

24 0 1 0 74 0 9 0

Total 0 1297 1708 1586 1299 998 573

Table 5.8: Number of misclassified prediction frames. Here, misclassified prediction means frame
containing prediction at the correct location but wrong classification prediction75



Seq Combined DetNet FasterRCNN RefineDet RetinaNet SSD YOLOv3

1 0 45 20 1 149 4 7

2 0 109 48 48 113 70 0

3 0 7 21 2 15 0 0

4 0 180 347 116 304 277 7

5 0 5 8 12 34 11 15

6 0 36 5 19 29 3 3

7 0 35 20 29 72 33 4

8 0 46 11 10 68 23 30

9 0 54 35 73 39 25 0

10 0 8 2 1 4 4 0

11 0 60 66 6 158 7 5

12 0 27 42 6 49 8 0

13 0 8 2 0 3 4 1

14 0 19 12 11 46 7 0

15 0 56 59 21 96 13 0

16 0 70 8 6 26 13 0

17 0 9 4 5 78 2 1

18 0 10 2 7 14 3 0

19 0 42 1 2 6 1 0

20 0 0 0 0 2 0 0

21 0 33 11 6 21 5 1

22 0 31 8 0 38 5 16

23 0 38 32 14 30 3 0

24 0 58 17 33 48 19 0

Total 0 986 781 428 1442 540 90

Table 5.9: Number of misslocalized prediction frames. Here, misslocalized prediction means
frame containing prediction at the wrong location (regardless of class prediction)76



Seq Combined DetNet FasterRCNN RefineDet RetinaNet SSD YOLOv3

1 0 59 19 6 147 2 16

2 0 54 20 13 74 15 0

3 0 7 65 7 13 19 23

4 0 134 317 82 250 102 1

5 0 3 78 30 29 25 1

6 0 36 134 37 29 24 2

7 0 29 29 38 57 18 4

8 0 19 60 43 55 29 19

9 0 38 12 51 34 9 0

10 0 8 2 1 4 9 8

11 0 64 75 9 133 32 7

12 0 27 56 3 47 8 1

13 0 7 31 0 1 14 0

14 0 6 34 3 39 8 0

15 0 36 54 26 74 1 0

16 0 69 26 36 24 10 19

17 0 7 36 31 74 4 7

18 0 10 11 8 14 8 5

19 0 42 119 43 6 12 2

20 0 0 0 5 2 1 3

21 0 30 35 88 19 6 2

22 0 31 89 72 34 22 45

23 0 20 15 6 20 1 0

24 0 23 3 16 40 2 0

Total 0 759 1320 654 1219 381 165

Table 5.10: Number of multiple predictions frames. Here, multiple predictions means frame con-
taining more than one predictions 77



Seq Combined DetNet FasterRCNN RefineDet RetinaNet SSD YOLOv3

1 0 0 1 2 0 9 76

2 160 59 75 89 74 109 189

3 0 1 1 0 0 2 23

4 23 31 39 39 54 66 416

5 37 0 4 1 2 18 153

6 0 0 0 0 0 0 5

7 150 1 10 0 1 2 147

8 136 23 39 30 40 28 143

9 15 55 92 24 29 116 155

10 0 0 0 0 0 0 3

11 0 3 30 2 13 9 166

12 8 2 44 9 4 121 157

13 0 0 0 0 3 6 137

14 28 34 120 52 91 49 198

15 35 73 40 27 42 66 191

16 2 2 3 3 0 7 65

17 22 10 9 6 11 12 128

18 0 0 2 1 0 1 5

19 9 0 13 1 1 45 310

20 0 0 0 0 0 0 4

21 6 0 3 3 0 10 179

22 3 0 0 0 0 1 37

23 34 19 31 13 46 33 75

24 20 9 87 20 39 36 123

Total 688 322 643 322 450 746 3085

Table 5.11: Number of polyp frames without prediction. Here, it means frame containing polyp
but the model predicted that it does not contain polyp78



Seq Combined DetNet FasterRCNN RefineDet RetinaNet SSD YOLOv3

1 0 0 3 0 5 1 0

2 0 0 3 0 17 5 0

3 0 0 5 0 3 0 0

4 0 0 5 0 13 3 0

5 0 0 0 0 9 2 0

6 0 0 0 0 0 0 0

7 0 0 0 0 1 0 0

8 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

11 0 0 2 0 1 0 0

12 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0

14 0 0 1 0 6 0 0

15 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0

22 0 0 2 0 5 2 0

23 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0

Total 0 0 21 0 60 13 0

Table 5.12: Number of non-polyp frames with prediction. Here, it means frame containing no
polyp but the model predicted that it contains polyp79



Chapter 6

Conclusions

From the confidence score analysis, we found that YOLOv3 has mostly low confidence scores

for correct predictions. This results in its low performances throughout our analysis. RetinaNet

has the smallest number of false positive predictions compared to the other models, which might

be the benefit of using focal loss. RefineDet has the highest number of correct predictions with

confidence score ≥ 0.5. This results in its good performances throughout our analysis.

We also found some interesting observations from each previously discussed computer vision

task. We found that RefineDet and DetNet have the best performances in predicting whether there

is a polyp or not in the image frame. These two models have 100% precision score and 93.7%

recall score for this particular task. In 2-classes image classification task, SSD has a higher mean

precision score than RefineDet and DetNet but a lower overall mean recall score than these two

models. Again, RefineDet has the best mean average precision score for this particular task.

In 1-class object detection task, SSD also has a higher precision score but a lower recall score

compared to RefineDet, DetNet, RetinaNet. When we do not consider the class prediction, Re-

fineDet, DetNet, and RetinaNet have good performances with average precision scores of ≥ 80%.

However, once we start to consider the class prediction as in the 2-classes polyp localization task,

the metric scores decrease due to classification error. The models, excluding YOLOv3, have mean

average precision scores of around 40% - 55% because of poor performances on the hyperplastic

frames. RefineDet’s good performance on the hyperplastic frames (with a hyperplastic recall score

of 80.3 %) results in the highest mean average precision compared to the other models. Thus, to

improve the performances of the models, we need to improve their performances on the hyperplas-
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tic set. The resulting good combined performance also supports this finding that good performance

on this dataset is possible.

We also analyzed how consistent the models are at predicting the correct polyp classification

of image frames containing the same polyp from different viewpoints. We looked at the class

prediction percentage over all image frames per video sequence. We found that the models are

sometimes not sure about the correct class prediction for the same polyp, shown by class prediction

percentage close to 50%. However, sometimes the models are also very consistent at predicting

incorrect class prediction for the polyp. RefineDet and SSD are more consistent at making class

prediction of the whole video sequences (regardless of correct or wrong predictions) because they

have fewer predictions close to 50% compared to RefineDet, FasterRCNN, and RetinaNet.

From the image frame prediction analysis, we found that RefineDet outperformed all the other

models (which have bad performances) in correctly predicting hyperplastic frames. We also found

that most of the bad performances in the models come from misclassification and false positive

prediction instead of failing to make a prediction that there is a polyp in the frame (misdetection).

The exception being YOLOv3, which has high misdetection rate due to low confidence scores

in its predictions. RetinaNet and FasterRCNN tend to make more false positive predictions on

non-polyp frames than the other models.

From the video sequence analysis, we found that video sequences 2, 7, 8, 23, and 24 are

particularly difficult for all the models, while video sequences 1, 13, 16, 20, and 21 are relatively

easy for the models. RefineDet has the best performance on most of the hyperplastic sequences.

Finally, the combined performance shows promising improvement potential results for this dataset.

In conclusion, RefineDet is the best performing model, having constant good performance in

most of our analysis. This is also largely due to its good performance on the hyperplastic frames,

which outperforms all the other models significantly. For adenomatous frames, however, SSD has

the best performance and recall score.
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Chapter 7

Future Works

Based on our comparison results, we will try to improve the performance of RefineDet, the

best performing model from our analysis. The first improvement idea that we can test is to use

DetNet as the backbone for this model. DetNet was designed specifically to replace commonly

used backbones for an image classification task. The authors argued that commonly used image

classification backbone lose more spatial information (which is needed for object detection task)

due to the many pooling layers they use. The proposed DetNet architecture tries to solve this

problem to improve object detection performance. Thus, we want to see if using DetNet as the

backbone for RefineDet can improve its performance.

The second improvement idea that we can also test is the use of α weight factor as in Reti-

naNet focal loss. Since most of the prediction errors in RefineDet come from misclassification

error, the use of a weighting factor might help the model to distinguish the two different classes.

RefineDet architecture has a mechanism to deal with background-foreground imbalance problem

using separate ARM and ODM modules. However, based on our analysis, we still need to improve

its performance on distinguishing the two different classes. Distinguishing the two different classes

in polyp detection and classification is difficult because sometimes the two different polyp classes

may look similar from certain viewpoints. Thus, we still need to find a new idea to help improve

the model’s performance on classification.
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