
 Antibiotic Molecular Design Using Artificial Bee Colony Algorithm 

 
 

By 

 

 
Shweta Mapari 

  
Submitted to the graduate degree program in Chemical and Petroleum Engineering and the 

Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the 

degree of Master of Science. 

 

 

 

 
Chairperson: Dr. Kyle Camarda 

 
Dr. Kevin Leonard 

 
Dr. Arghya Paul 

 

 

Date Defended: 15th January, 2019   

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/250306551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii 

 

The dissertation committee for Shweta Mapari certifies that this is the 

approved version of the following thesis: 

 

Antibiotic Molecular Design Using Artificial Bee Colony Algorithm 

 

 
 

 

 

 

 

 

Chairperson: Dr. Kyle Camarda 

 

 

 
 

 

 

Date Approved: 1st February, 2019     



iii 

 

Acknowledgements 

 

First, I would like to thank my advisor, Dr. Kyle Camarda for his excellent guidance and help in 

improving my thesis. I am thankful for all the wonderful friends I made in KU. I became very good 

friends with the roommates I have had over past three years, Unnati, Sravanthi, Ravali, Rashmi 

and Sayali. I will dearly miss them. I would like to thank Sirisha and Apoorv for helping me 

understand how Openbabel and Pybel work. I am grateful to Martha for always being so supportive 

and helpful. Finally, I can’t thank my family enough for their unconditional love and support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Abstract 

 

Research is acutely needed to develop novel therapies to treat resistant infections. This project 

aims to design a drug molecule via a computer aided molecular design approach to provide lead 

candidates for the treatment of bacterial infections caused by Staphylococcus aureus. In a recently 

published WHO report, a list of bacteria which pose the greatest threat to human health was given. 

The purpose of this report was to identify the most important resistant bacteria at global level for 

which immediate treatment is required.  Staphylococcus aureus, which is on this list, is a pathogen 

causing infections such as pneumonia and bone disorders.  A methodology which determines the 

structures of candidate antibiotic molecules is described. The Artificial Bee Colony algorithm has 

been used for the first time for molecular design in this work. 

It is necessary to predict physical and/or biological properties of compounds in order to design 

them. The prediction of properties is performed using Quantitative Structure Property 

Relationships (QSPRs). QSPRs are equations, which are developed using reported data for 

properties of interest by the method of regression analysis. This work applies connectivity indices 

and 3D MoRSE descriptors to develop QSPRs. The properties used in this work are minimum 

inhibitory concentration and Log P values. 3D MoRSE descriptors have been used for the first 

time for molecular design in this work.  

The QSPRs are combined with structural feasibility and connectivity constraints to formulate 

an optimization problem, which is a mixed integer nonlinear program (MINLP). Because of the 

large number of potential chemical structures and the uncertainty in the structure-property 

correlations, stochastic algorithms are preferred to solve the resulting MINLP. One stochastic 

algorithm which has shown promise to solve these problems is the Artificial Bee Colony algorithm, 



v 

 

which relies on principles of swarm intelligence to find near-optimal solutions efficiently. The 

Artificial Bee Colony algorithm described in this work is used to derive solutions which serve as 

lead compounds for a narrowed search for novel antibiotics. 

Results show that the ABC algorithm is very effective in finding near optimal solutions to the 

MINLP, which is a combinatorial optimization problem. Molecular structures were obtained by 

optimizing objective function for individual property values and simultaneously for both the 

properties.  

 

 

  



vi 

 

Contents 

 Introduction 1 

1.1 Motivation 1 

1.2 Methodology 2 

1.3 Molecular descriptors and Quantitative Structure Property Relationships 3 

1.4 Mathematical formulation of the design problem 3 

1.5 Artificial Bee Colony algorithm 4 

1.6 Outline of the thesis 4 

 Molecular Descriptors 5 

2.1 Connectivity indices 5 

2.1.1 Basic groups and molecular graphs 6 

2.1.2 Calculation of connectivity indices 8 

2.2 MoRSE descriptors 11 

2.2.1 Background on 3D MoRSE descriptors 11 

2.2.2 Calculation of 3D MoRSE descriptors 13 

 Development of Quantitative Structure-Property Relationships (QSPRs) 16 

3.1 Development of QSPRs using connectivity indices 17 

3.1.1 Step one: Data collection 18 

3.1.2 Step two: Creation of data structure for storing bonds 20 

3.1.3 Step three: Calculation of connectivity indices 20 

3.1.4 Step four: Developing the QSPRs 21 

3.1.5      Step five: Statistical analysis and property prediction 22 



vii 

 

3.2 QSPRs for predicting MIC and Log P using 3D MoRSE descriptors 23 

3.2.1 Step one: Data collection 23 

3.2.2 Step two: 3D structure generation 24 

3.2.3 Step three: Calculation of 3D MoRSE descriptors 24 

3.2.4 Step four: Developing the QSPRs 24 

3.2.5 Step five: Statistical analysis and property prediction 25 

 Formulation of the Design Problem 29 

4.1 Objective 30 

4.2 Constraints 31 

4.3 Optimization problem type and size 32 

4.4 Deterministic vs stochastic methods 35 

4.5 Summary of antibiotic design optimization problem 36 

 Artificial Bee Colony Algorithm 39 

5.1 Approach of ABC algorithm 40 

5.2 Application to molecular design 42 

5.3 Characteristics of the ABC algorithm 44 

 Results and Discussion 46 

6.1 Data structure used for storing molecules and procedure for generating new solutions 46 

6.2 Python packages used in this work 48 

6.3 Validation of code 49 

6.4 Selection of target property values 52 

6.5 Molecular structures obtained as results 52 



viii 

 

6.5.1 Case one 53 

6.5.2 Case two 55 

6.5.3 Case three 58 

6.6 Significance of control parameters 60 

 Conclusions and Recommendations 62 

7.1 Conclusions 62 

7.2 Recommendations 64 

References 66 

Appendix 73 

Python code for implementing the ABC algorithm 73 

 



ix 

 

List of Figures: 

Figure 1.1: CAMD (Camarda and Sunderesan, 2005) .................................................................... 3 

Figure 2.1: Conventional representation of n-butanol .................................................................... 7 

Figure 2.2: Molecular graph of n-butanol ....................................................................................... 7 

Figure 3.1: Flowchart for QSPR development. ............................................................................ 18 

Figure 4.1: Examples of convex regions....................................................................................... 33 

Figure 4.2: Examples of non-convex regions ............................................................................... 33 

Figure 4.3: Pazufloxacin molecule ............................................................................................... 37 

Figure 5.1: Artificial Bee Colony algorithm flowchart for CAMD .............................................. 43 

Figure 6.1: Norfloxacin molecule and its SMILES notation ........................................................ 47 

Figure 6.2: Pazufloxacin molecule ............................................................................................... 47 

Figure 6.3: Template molecule ..................................................................................................... 50 

Figure 6.4: Molecule used for validating Python code ................................................................. 51 

Figure 6.5: Change in absolute difference of target and predicted -log (MIC) with number of 

iterations ........................................................................................................................................ 54 

Figure 6.6: Best structure obtained for case one ........................................................................... 55 

Figure 6.7: Change in absolute difference of target and predicted Log P with number of iterations

....................................................................................................................................................... 57 

Figure 6.8: Best structure obtained for case two........................................................................... 57 

Figure 6.9: Change in the sum of absolute difference of target and predicted properties with number 

of iterations ................................................................................................................................... 59 

Figure 6.10: Best structure obtained for case three ....................................................................... 60 

 

 



x 

 

List of Tables: 

Table 2.1: Simple and valence atomic connectivity index values for basic groups used in this work

......................................................................................................................................................... 7 

Table 3.1: MIC values used as data (Andrews, 2001) .................................................................. 19 

Table 3.2: Log P values used as data (Pérez et al., 2002, Bermejo et al., 1999) .......................... 20 

Table 3.3: QSPRs using connectivity indices ............................................................................... 21 

Table 3.4: Selection of number of unweighted MoRSE descriptors for MIC model ................... 25 

Table 3.5: Selection of number of unweighted MoRSE descriptors for Log P model ................. 25 

Table 3.6: QSPRs using 3D MoRSE descriptors .......................................................................... 27 

Table 4.1: Groups having valency one used in the molecular design ........................................... 35 

Table 4.2: Groups having valency two used in the molecular design .......................................... 35 

Table 6.1: Control parameters and results for case one ................................................................ 54 

Table 6.2: Control parameters and results for case two ................................................................ 56 

Table 6.3: Control parameters and results for case three .............................................................. 59 



1 

 

Chapter 1 

 Introduction 

 

Computer Aided Molecular Design (CAMD) has become a very important tool for molecular 

design in recent decades. The traditional approach of molecular design involves synthesis of 

compounds with laboratory experimentation, which is very expensive and time consuming.  On 

the other hand, CAMD methods give quicker results at low costs. While there is no substitute for 

experimental validation, CAMD methodology creates molecules that are promising candidates for 

experimental studies (Churi and Achenie, 1996). A CAMD framework helps to create a compound 

with desired property values. Hence, it has been extensively used in creating a wide range of 

chemicals such as polymers, refrigerants, solvents (Camarda and Maranas,1999, Duvedi and 

Achenie,1996, Karunanithi et al., 2005).  Some of the important applications of CAMD include 

drug discovery and pharmaceutical product design (Schneider and Fetchner, 2005, Kapetanovic, 

2008, Siddhaye et al., 2004). In this work, an antibiotic molecule has been designed using a CAMD 

approach.  

1.1 Motivation 

Antibiotics have been helping us combat against various bacterial infections for a long time. 

However, bacteria develop resistance towards these drugs, often by developing alternative 

metabolic pathways to circumvent inhibited ones. WHO recently published an article that 

describes a list of bacteria which have become resistant to multiple antibiotics, thus specifying the 

necessity for developing new drug molecules (WHO Report, 2017). Staphylococcus aureus is a 

multi-drug resistant bacterium, which belongs to this list. It is a gram-positive, sphere shaped 



2 

 

bacteria which often skin infections, pneumonia, soft tissue, endovascular and bone disorders 

(Lowry, 1998). In order to treat the infections caused by this bacterium effectively, a novel 

pharmaceutical is required. The traditional approach of developing a new drug is expensive, time 

consuming and requires much trial and error. However, computer aided molecular design (CAMD) 

is a tool that allows the creation of a molecule having certain property values, using comparatively 

less amount of time and money (Achenie et al., 2002). 

1.2 Methodology 

The general methodology of CAMD is presented in Figure 1.1. When solving the forward 

problem, property values need to be estimated from the chemical structure. Property prediction is 

done with the help of structure-property relationships. The property values used in developing such 

relationships are found experimentally or taken from the published data and then correlated using 

molecular descriptors. A wide range of molecular descriptors are tested in correlating property 

values. The molecular descriptor values are calculated for the specific group of compounds of 

interest, and these values are correlated with experimentally determined property values to form 

quantitative structure-property relationships (QSPRs). The correlation that shows the best fit and 

the best predictive capability is chosen for property prediction for similar compounds not in the 

correlating set. 

When the inverse problem is solved, a molecular structure is obtained that possesses certain 

property values. This structure is determined by creating a molecular design problem within an 

optimization framework, which is solved using a suitable algorithm. This work seeks to solve 

antibiotic molecular design problems using the Artificial Bee Colony algorithm. 



3 

 

 

Figure 1.1: CAMD (Camarda and Sunderesan, 2005) 

1.3 Molecular descriptors and Quantitative Structure Property Relationships 

Molecular descriptors represent the structure of a molecule quantitatively. It is of prime 

importance that appropriate molecular descriptors are chosen to find an accurate correlation 

between property values and chemical structures. For a given data set of molecules, different 

molecular descriptors are calculated. A QSPR is derived for each property, correlating some 

number of descriptors to physical property values. The model which gives a high-quality fit, 

without over-fitting the data, is selected for molecular design and included in the molecular design 

optimization problem. The molecular descriptors present in this model are thus appropriate 

molecular descriptors for this class of molecules and for a given property. QSPRs in this work 

were obtained by correlating minimum inhibitory concentration (MIC) values and octanol-water 

partition coefficient values with connectivity indices and 3D MoRSE descriptors using the method 

of least squares.  

1.4 Mathematical formulation of the design problem 

The antibiotic design problem is an optimization problem, which contains both continuous and 

discrete variables with nonlinear constraints, resulting in a mixed integer nonlinear program 

(MINLP). Due to the non-convex nature of this problem, stochastic algorithms are preferred. We 



4 

 

have used the Artificial Bee Colony (ABC) algorithm to find near optimal solutions to this 

problem. This is the first time, CAMD approach has been used for the design of an antibiotic 

molecule using the ABC algorithm. 

1.5 Artificial Bee Colony algorithm 

Different algorithms have been explored in the past to solve nonlinear optimization problems. 

However, a comparative study (Karaboga and Akay, 2009) has shown that ABC, an algorithm 

based on swarm intelligence, can perform better than other commonly used algorithms like genetic 

algorithms or simulated annealing. The ABC algorithm is based on the intelligent foraging 

behavior of a group of honeybees. The algorithm iterates through a set of phases until a near-

optimal solution is obtained. More details on the ABC algorithm are given in Chapter Six. 

1.6 Outline of the thesis 

The introduction to the antibiotic design problem and motivation behind it are discussed in 

Chapter One. Background information on connectivity indices and 3-D MoRSE descriptors is 

given in Chapter Two. The development of QSPRs is discussed in Chapter Three. Chapter Four 

presents the mathematical formulation of the optimization problem intended for molecular design. 

The solution to the molecular design problem using the ABC algorithm is given in Chapter Five. 

Chapter Six contains the results and discussion of this work, followed by conclusions and future 

work in Chapter Seven. 

 

 



5 

 

Chapter 2 

 Molecular Descriptors 

 

Molecular descriptors are numerical values which define attributes of a chemical structure. 

There are hundreds of different descriptors available, each of which describes a molecule’s 

attributes differently. Some typical examples are molecular weight, total number of atoms in a 

molecule, or the number of single, double or triple bonds in a molecule. Sometimes, properties 

like melting point, boiling point, density can also function as descriptors (Terfloth and Gasteiger, 

2018). In this work, two types of molecular descriptors are evaluated for use in QSPRs: 

connectivity indices and 3D-MoRSE descriptors. 

2.1 Connectivity indices  

Topological indices are a type of molecular descriptor which depends on the topology of 

molecule. There are many topological indices, including Randic’s connectivity indices, Kier’s 

shape indices and the Weiner index (Raman and Maranas, 1998). Molecular connectivity indices 

were introduced by Randic around 1975 (Randic, 1975). Randic’s connectivity indices, usually 

referred to as ‘connectivity indices’, have been tested in this work. They are a type of topological 

index, which provide information about the number and type of atoms present in a molecule as 

well as the bonding environment between adjacent atoms. They are calculated using simple 

formulae using concepts of graph theory. Numerous graph-theoretic approaches have been used 

previously in predicting the biochemical and biological properties of different types of chemicals 

successfully (Basak et al., 1987). One of these approaches is the use of connectivity indices, which 

have been used for prediction of biological properties successfully, and possess a huge potential 



6 

 

in the process of finding drug leads (Dang and Madan, 1994, Galvez et al, 1995, Estrada et 

al.,2002).  

For a successful molecular design, two hurdles must be overcome. The first one is developing 

the quantitative structure-property relationships with enough accuracy, and the second one is 

solving the optimization problem in a reasonable amount of time. Connectivity indices are easy to 

compute, and are able to correlate various properties of drugs such as solubility and density (Kier 

and Hall, 1976) quite well. Thus, they help with both of the hurdles mentioned previously quite 

well. They have been successfully implemented within an optimization framework for molecular 

design in the past. For example, connectivity indices were used for designing polymers (Camarda 

and Maranas, 1999), metal catalysts (Chavali et al., 2004), soybean oil products (Camarda and 

Sunderesan, 2005), ionic liquids (McLeese et al., 2010), pharmaceutical products (Siddhaye et al., 

2000) and selecting the best substituent for compound having desired fungicidal properties (Raman 

and Maranas, 1998). Hence, connectivity indices were considered as a good choice for molecular 

descriptors in this work. 

2.1.1 Basic groups and molecular graphs 

To calculate connectivity indices, a molecule is divided into small units called ‘basic groups’. 

A basic group is defined as a non-hydrogen atom, along with its attached hydrogen atoms, in a 

particular valence state. The basic groups used in this work along with their corresponding atomic 

connectivity indices are shown in Table 2.1. A molecular graph is defined as the graph of a 

molecule where atoms and bonds correspond to vertices and edges respectively (Raman and 

Maranas, 1998). The basic groups are represented by vertices in a molecular graph, and the bonds 

are represented by edges. The conventional and molecular graph representations of n-butanol are 

shown in Figures 2.1 and 2.2 respectively. In the conventional representation, the numbers 1 to 5 



7 

 

shown underneath the groups indicate the corresponding basic groups, and the set of edges {(1,2), 

(2,3), (3,4), (4,5)} represent the bonds between the groups. 

Table 2.1: Simple and valence atomic connectivity index values for basic groups used in this 

work 

 

 

 

 

 

 

 

 

 

CH3-CH2-CH2-CH2-OH 

1        2      3      4       5 

Figure 2.1: Conventional representation of n-butanol 

 

 

Figure 2.2: Molecular graph of n-butanol 

 

 

 

Group 𝜹 𝜹𝒗 Group 𝜹 

 

𝜹𝒗 

-CH3 1 1 >C= 3 4 

-N< 3 5 =CH- 2 3 

-NH2 1 3 >CH- 3 3 

=O 1 6 >CH2 2 2 

-OH 1 5 -F 1 7 

-O- 2 6 >C< 4 4 



8 

 

2.1.2 Calculation of connectivity indices 

A partitioned adjacency matrix (PAM) is used to store the molecular graph numerically for 

each molecule. A PAM is a symmetric square matrix that has order equal to the maximum number 

of possible vertices (basic groups) in the molecular graph. Each row and column represents a basic 

group. If we denote the row number by ‘i’ and column number by ‘j’, elements in the PAM can be 

denoted by the binary variable yij. If there is a bond between group ‘i’ and group ’j’, then yij = 1, 

otherwise yij = 0. The calculation of molecular connectivity indices involves two more binary 

variables, wi and yijk. w is a one-dimensional array containing binary variables, each of which 

represents the existence of a particular group in the molecule. yijk is an element in the three-

dimensional matrix that has value one, if a triplet exists between i, j and k i.e. if yij = 1 and yjk = 1. 

The molecular connectivity indices of zeroth, first and second order are considered in this 

work. Each of these connectivity indices exist in two types: simple and valence. For calculating 

the simple and valence molecular connectivity indices, simple and valence atomic connectivity 

indices are used, respectively. Simple atomic connectivity indices ( 𝛿 values) refer to the number 

of bonds which can be formed by a group with other groups. The 𝛿𝑣 values are atomic valence 

connectivity indices, which describe the electronic structure of each basic group. 𝛿𝑣 is calculated 

using the formula shown below in Equation 2.1, where 𝑍𝑣 denotes the number of valence electrons 

of a non-hydrogen atom, NH denotes the number of hydrogen atoms bonded to it, and 𝑍 is the 

atomic number of the non-hydrogen atom in a basic group.  

𝛿𝑣 =
𝑍𝑣 − 𝑁𝐻

𝑍 − 𝑍𝑣 − 1
 

 

(2.1) 

The connectivity indices are structural descriptors that contain significant information about 

the molecule, such as the number of hydrogen and non-hydrogen atoms bonded to each non-



9 

 

hydrogen atom, the electronic structure details of each atom, and features like branching. 

Therefore, even if two molecules have the same groups present in their structures but are connected 

differently, they will have different molecular connectivity indices. The zeroth order molecular 

connectivity indices, ꭓ0 and vꭓ0 are sums over each basic group, hence they represent the identity 

of each basic group present in the molecular graph. The first order molecular connectivity indices, 

ꭓ1 and vꭓ1 are sums over bond pairs present in the molecule and thus consider the connectivity in 

the molecule. The second order molecular connectivity indices, ꭓ2 and vꭓ2 are sums over the triplets 

(three adjacently connected groups) present in the molecule and thus represent even better 

connectivity. The equations for calculating zeroth, first, and second order molecular connectivity 

indices based on the atomic connectivity indices are given in Equations 2.2-2.7. The square root 

sign was employed by Randic in the equations to avoid overlapping of indices belonging to 

different set of isomers (Randic, 1975). It should be noted that stereoisomers cannot be 

distinguished by connectivity indices, as connectivity within the molecules remains same. 

 

 

 

 

 

 

 

 

 

 

ꭓ0    = ∑
𝑤𝑖

√𝛿𝑖  𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠

 (2.2) 

vꭓ0 = 

 

∑
𝑤𝑖

√𝛿𝑖
𝑣

𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠

 (2.3) 

ꭓ1  = 

 

∑
𝑦𝑖𝑗

√𝛿𝑖𝛿𝑗𝐸𝑑𝑔𝑒𝑠

 
(2.4) 

vꭓ1 = 

 

∑
𝑦𝑖𝑗

√𝛿𝑖
𝑣𝛿𝑗

𝑣  𝐸𝑑𝑔𝑒𝑠

 
(2.5) 

ꭓ2  = 

 

∑
𝑦𝑖𝑗𝑘

√𝛿𝑖𝛿𝑗𝛿𝑘 
𝑇𝑟𝑖𝑝𝑙𝑒𝑡𝑠

 
(2.6) 

vꭓ2 = 

 

∑
𝑦𝑖𝑗𝑘

√𝛿𝑖
𝑣𝛿𝑗

𝑣𝛿𝑘
𝑣 𝑇𝑟𝑖𝑝𝑙𝑒𝑡𝑠

 
(2.7) 



10 

 

 

The calculation of connectivity indices for n-butanol has been performed using the atomic 

connectivity indices from Table 2.1. n-butanol has five basic groups which are shown as five 

vertices, and the four connections between the five groups are shown by four edges in the 

molecular graph. The calculation for the six connectivity indices, made using Equations 2.2-2.7, 

is shown along with the final numerical values. 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, it can be seen how the molecular connectivity indices are used to describe connectivity 

of a molecule numerically. A quantitative structure property relationship (QSPR) derived using 

these indices is discussed in Chapter Three. 

 

ꭓ0    = 1

√1
+

1

√2
+

1

√2
+

1

√2
+

1

√1
 = 4.1213  

 

vꭓ0 = 

 

1

√1
+

1

√2
+

1

√2
+

1

√2
+

1

√5
  = 3.5685 

ꭓ1  = 

 

1

√1×2
+

1

√2×2
+

1

√2×2
+

1

√2×1
  = 2.4142 

vꭓ1 = 

 

1

√1×2
+

1

√2×2
+

1

√2×2
+

1

√2×5
  =  2.0233 

ꭓ2  = 

 

1

√1×2×2
+

1

√2×2×2
+

1

√2×2×1
  = 1.4082 

vꭓ2 = 

 

1

√1×2×2
+

1

√2×2×2
+

1

√2×2×5
  =  1.1319 



11 

 

2.2 MoRSE descriptors 

Connectivity indices work well for predicting the physicochemical properties of compounds 

(Kier, 2012). Many researchers have shown that in some cases, the 2D descriptors, even though 

they are based on topology of the molecule, possess some information about 3D structure 

(Petitjean, 1992, Estrada et al., 2001). However, Bath et al. (1995) stated that 2D descriptors are 

not enough for the proper representation of a molecule, hence 3D descriptors are necessary. Any 

molecule is a 3-dimensional entity and possesses a certain special arrangement of atoms. While 

estimating the properties for any structure, this fact should be taken into account, especially for 

biological properties which are closely dependent on the interaction of molecule with the 

biological target. 3D MoRSE descriptors have been used in the past to predict biological properties 

successfully (Schuur et al., 1996). Hence, they are used in this work for the design of antibiotic 

molecules. 

2.2.1 Background on 3D MoRSE descriptors 

3D MoRSE stands for Molecular Representation of Structure based on Electron diffraction. 

These descriptors contain information about the 3D minimum energy structure of a molecule. In 

the 90’s, 3D structure generation of a molecule became very easy with the advent of 3D structure 

generating programs like CORINA and CONCORD. The main question was how to represent the 

3D structure? An easy answer to the problem would be to represent a molecule with atomic 

cartesian coordinates, where each atom would have a x, y and z coordinate. The number of 

parameters needed to store a molecule will then depend on the number of atoms present in a 

molecule. Ethane, which contains 8 atoms, will have 24 and caffeine, with 24 atoms, will have 72. 

Many methods used to find correlations between structures and property values, such as statistical 

or pattern recognition methods, need an equal number of variables for each molecule in the dataset. 



12 

 

The solution to this problem is to represent every molecule with the same number of variables 

despite the number of atoms present in it, which was achieved using the 3D MoRSE descriptors.   

The experimental methods used for determining 3D structure were considered when a unique 

way to represent every molecule was to be decided. Electron diffraction was one of the methods 

used in the structural determination. The general molecular transform used in electron diffraction 

studies is given by Equation 2.8. 

𝐺(𝑆) = ∑  𝑓𝑖(2𝜋𝑟𝑖⃗⃗⃗ 𝑆)

𝑁

𝑖=1

 

 

                                                            (2.8) 

where 𝐺(𝑆) is diffraction pattern, 𝑆 is an observation point, 𝑟𝑖⃗⃗⃗  is the location of each atom, 𝑓𝑖 is 

the form factor of atom i and N is number of atoms in the molecule. 

Equation 2.8 was presented in a more useful form by Weirl which is presented below as 

Equation 2.9 (Weirl, 1931). 

𝐼(𝑠) = 𝐾 ∑ ∑ 𝑓𝑖𝑓𝑗 ∫ 𝑃𝑖𝑗(𝑟)
sin (𝑠𝑟)

𝑠𝑟
𝑑𝑟

∞

0

𝑖−1

𝑗=1

𝑁

𝑖=2

 

      

                                                        (2.9) 

Where,  

𝑠 = 4𝜋 sin (
𝜗

2
) /𝜆 

 

𝜗 is scattering angle, 𝜆 is wavelength, I(s) is intensity of scattered radiation, 𝑃𝑖𝑗(𝑟) is probability 

distribution of the variation in the distance between atoms i and j due to vibrations, 𝑓𝑖 is form factor 

of atom i and K is collection of instrument constants. 

Gasteiger et al. (1996) further modified Equation 2.9 by considering the suggestions made by 

Saltzberg and Wilkins (1977).  



13 

 

𝐼(𝑠) = ∑ ∑ 𝐴𝑖𝐴𝑗

sin(𝑠𝑟𝑖𝑗)

𝑠𝑟𝑖𝑗

𝑖−1

𝑗=1

𝑁

𝑖=2

 

 

                                         (2.10) 

 where I(s) is the scattered electron intensity, A can be any atomic property such as atomic number 

or atomic mass, rij are the atomic distances between i th and j th atoms, s represents scattering of 

electrons by the group of N atoms at point ri and N is the number of atoms.  

The value of parameter ‘s’ is considered at specific points within a certain range. The value of 

‘s’ usually varies from 0 – 31 Å−1 with an increment of 1 unit (Gasteiger et al., 1996).  

2.2.2 Calculation of 3D MoRSE descriptors 

The calculation of 3D MoRSE descriptors is usually done by selection of weights. There are 2 

main categories among which the 3D MoRSE descriptors are divided: unweighted descriptors and 

weighted descriptors. The unweighted descriptors have no weight, i.e. the values for the atomic 

property parameters in Equation 2.10, 𝐴𝑖 and 𝐴𝑗 are 1. On the other hand, the weighted descriptors 

are calculated by assigning some atomic property values to parameters 𝐴𝑖 and 𝐴𝑗. Hence, 3D 

MoRSE descriptors provide a great advantage of selecting the atomic property based on the need 

of problem at hand. In commonly used software packages like DRAGON (Mauri et al., 2006), E-

dragon weighted descriptors are calculated for four different atomic properties: atomic mass, 

atomic van der Waals volume, atomic Sanderson electronegativity and atomic polarizability. It is 

worth noting that the numbering of 3D-MoRSE descriptors starts from 1, e.g. Mor01u represents 

an unweighted MoRSE descriptor having the scattering parameter, ‘s’ equal to 0 Å−1 as the 

scattering parameter starts from zero, Mor02u denotes unweighted MoRSE descriptor with ‘s’ 

equal to 1 Å−1 and so on.  



14 

 

Let us consider an example of methane molecule to better understand the calculation of 

MoRSE descriptors. The simplest MoRSE descriptor that can be considered is Mor01u, which is 

calculated using Equation 2.11. 

𝐼(0) = ∑ ∑ 𝐴𝑖𝐴𝑗

sin (0 × 𝑟𝑖𝑗)

0 × 𝑟𝑖𝑗

𝑖−1

𝑗=1

𝑁

𝑖=2

= ∑ ∑ 𝐴𝑖𝐴𝑗

sin (0)

0

𝑖−1

𝑗=1

𝑁

𝑖=2

 

 

                  (2.11) 

Even though division by zero is undefined, the limit of the term, sin()/ as  approaches zero 

equals 1. Hence, the term sin (0)/0 becomes 1. As the descriptors are unweighted, all the 𝐴𝑖 and 

𝐴𝑗 values are equal to 1. So, the summation term results in a number, giving all the atomic pair 

combinations in a molecule containing ‘N’ atoms. It can be observed that this descriptor is a 

function of the number of atoms only. 3D-MoRSE descriptors with scattering parameters equal to 

0 Å−1 are always positive for all positive weights like atomic mass and van der Waals atomic 

volume. Mor01u for methane, which consists of 5 atoms, is equal to 5C2 = 10.  

The second unweighted descriptor, Mor02u, has the scattering parameter value equal to one. 

Please note that 𝐴𝑖 = 𝐴𝑗 = 1 for unweighted descriptors. The calculation is given in Equation 2.12. 

𝐼(1) = ∑ ∑ 1 × 1 ×
sin (1 × 𝑟𝑖𝑗)

1 × 𝑟𝑖𝑗

𝑖−1

𝑗=1

𝑁

𝑖=2

= =  ∑ ∑
sin (𝑟𝑖𝑗)

𝑟𝑖𝑗

𝑖−1

𝑗=1

𝑁

𝑖=2

 

 

(2.12) 

 

As the scattering parameter is no longer 0, we need to know the distance between any two atoms 

within a molecule to calculate further MoRSE descriptors. As the methane molecule is highly 

symmetric and has repeating interatomic distance values, we can write the expression for Mor02u 

as shown in Equation 2.13. 

𝑀𝑜𝑟02𝑢 = 4
sin (1.085)

1.085
+ 6

sin (1.772)

1.772
= 6.578 

                       (2.13) 

 



15 

 

For calculating each further unweighted MoRSE descriptor value, the scattering parameter is 

increased by 1. The calculation of weighted MoRSE descriptors is done in the same way as 

unweighted MoRSE descriptors except the 𝐴𝑖 and 𝐴𝑗 values are not 1, but some atomic property 

values (Devinyak, 2014). 

Thus, 3D MoRSE descriptors provide a unique way to represent 3D structure of a molecule, a 

definite improvement over connectivity indices which only consider the connections within a 

molecule. 3D MoRSE descriptors inherently account for the bond angles and bond lengths present 

within atoms of a molecule, thus possessing better characteristics of the real molecular structure. 

They can even help in avoiding ambiguity for certain cases. For example, let us consider two 

molecules, 3-methyl heptane and 4-methyl heptane. They both have same values for zeroth and 

first order connectivity indices. Hence, they contribute the same information despite being two 

different molecules. The values of 3D MoRSE descriptors in this case would be different, as the 

change of methyl position from 3 to 4 would change the interatomic distance for atoms in the 

methyl group with the rest of the atoms in the molecule. 

Overall, connectivity indices and 3D MoRSE descriptors are two sets of promising molecular 

descriptors for predicting physicochemical and biological properties of drug molecules. These 

molecular descriptors are correlated with property values of a group of compounds for obtaining 

quantitative structure-property relationships. Their development process and statistical analysis 

will be discussed in the following chapter. 

  



16 

 

Chapter 3 

 Development of Quantitative Structure-Property Relationships (QSPRs) 

 

Quantitative structure-property relationships play a very important role in CAMD. QSPRs are 

equations that relate property values to molecular descriptors. Therefore, if we know the structure 

of a molecule belonging to a particular class of compounds, its property value can be predicted 

using a QSPR. The main advantage of QSPRs is that once they are verified with a certain accuracy 

and prediction power, they can be used for predicting properties of new molecules even before 

they are synthesized. Hence, they are employed in this work for property prediction of newly 

designed molecules. The formulation of a molecular design problem containing these QSPRs is 

discussed in Chapter Four.  

QSPRs are developed using experimental property data for a set of similar compounds. They 

are used to find out how the structure of a molecule should be changed in order to get a desired 

property value or to predict properties of compounds when experimental measures are unavailable. 

They have applications in different areas like combinatorial chemistry, molecular design and 

mainly, screening of large molecular databases. Day by day, as the need for new medicines is 

growing, the need to find potential drug candidates without doing extensive experimental work is 

on the rise. QSPRs help eliminate a majority of possible compounds, and narrow down a full 

database to a few promising candidates, which are considered for further studies. Thus, they play 

a crucial role in the drug discovery process. 

The QSPRs developed in this work are for the minimum inhibitory concentration (MIC) of 

certain antibiotics and for the octanol/water partition coefficient i.e. Log P values. Andrews (2001) 

has defined MIC as the lowest concentration of an antimicrobial that will inhibit the visible growth 



17 

 

of a microorganism after overnight incubation. MIC is considered the ‘gold standard’ to test 

susceptibility of bacteria to antibiotics, and hence it was chosen in this work for the antibiotic 

design (Andrews 2001). Another chosen property is the Log P value, which is logarithm of the 

octanol/water partition coefficient of the compound. A drug molecule has to pass through 

numerous biological barriers before it reaches the target site, which involves passing through 

different lipophilic and lipophobic membranes. An octanol/water system mimics biological 

tissues, and therefore gives a good estimate as to how effectively a drug would pass through these 

barriers. The two properties provide two important characteristics for antibiotic design. The new 

molecule should not only be potent enough to exhibit antibacterial activity, but also possess enough 

affinity towards both lipophilic and lipophobic environments in order to exhibit a biological effect. 

Other properties like density, solubility and toxicity are also relevant for drug design and can be 

included in the molecular design formulation depending on the scope of application. 

Quinolones represent a class of broad-spectrum antibiotics that is effective against a wide range 

of bacteria. The development of quinolones began in 1960s with the discovery of ‘nalidixic acid’. 

Since then, this class of antibiotics has grown to become one of the most prescribed antibiotics in 

the world. One of the important changes made to the quinolone structure during the development 

process was inclusion of a fluorine atom at the C6 position. Because of this addition, quinolones 

are often referred as fluoroquinolones. Fluoroquinolones are used for treating infections caused by 

various gram negative and positive bacteria, staphylococcus aureus being one of them (Aldred et 

al., 2014). 

3.1 Development of QSPRs using connectivity indices 

QSPRs are developed for correlating MIC and Log P values with the connectivity indices of 

fluoroquinolones listed in Tables 3.1 and 3.2 respectively. They are developed according to the 



18 

 

flowchart shown in Figure 3.1. The development process for the QSPRs is described below in 

detail.  

 

Figure 3.1: Flowchart for QSPR development. 

3.1.1 Step one: Data collection 

The chemical structures and their corresponding property values are taken from the literature. 

Andrews has reported the MIC values of different classes of antibiotics including fluoroquinolones 

against various bacteria. The data was collected for the MIC values from this paper for 

fluoroquinolones tested against staphylococcus aureus (Andrews, 2001). The MIC values are 

reported in mg/L. They are converted into mol/L before correlating the data. As the MIC values in 

mol/L are of the order 10-6 to 10-8, negative logarithm of all the MIC values is considered. The 



19 

 

MIC values are shown in Table 3.1. The experimental values for Log P were also obtained from 

literature (Pérez et al., 2002, Bermejo et al., 1999) and are given in Table 3.2. 

Table 3.1: MIC values used as data (Andrews, 2001) 

Fluoroquinolone MIC (mg/L) 

Ciprofloxacin 0.12 

Enoxacin 0.5 

Fleroxacin 0.5 

Gatifloxacin 0.03 

Grepafloxacin 0.03 

Levofloxacin 0.12 

Lomefloxacin 0.5 

Moxifloxacin 0.06 

Nalidixic Acid 130 

Norfloxacin 0.25 

Ofloxacin 0.25 

Pefloxacin 0.25 

Rufloxacin 1 

Sparfloxacin 0.03 

Trovafloxacin 0.015 

 

 

 

 

 

 

 



20 

 

Table 3.2: Log P values used as data (Pérez et al., 2002, Bermejo et al., 1999) 

Fluoroquinolone Log P 

Norfloxacin -1.52 

Pefloxacin 0.26 

N-Ethylnorfloxacin 0.37 

N-Propylnorfloxacin 1.05 

N-Butylnorfloxacin 1.48 

N-Pentylnorfloxacin 2.11 

N-Hexylnorfloxacin 2.71 

N-Heptylnorfloxacin 3.22 

Ciprofloxacin -1.1 

N-Methylciprofloxacin 0.15 

Enrofloxacin 0.53 

N-Propylciprofloxacin 1.07 

N-Butylciprofloxacin 1.55 

N-Pentylciprofloxacin 2.06 

N-hexylciprofloxacin 2.56 

N-Heptylciprofloxacin 3.02 

 

3.1.2 Step two: Creation of data structure for storing bonds 

As we are trying to relate the structure of a chemical with property values, which are numerical 

in nature, it is necessary to find a way to present the chemical structure in numerical way as well. 

For the mathematical interpretation of chemical structure, a data structure is created to store all the 

bonds between groups of a molecule. One example of such data structure is Partitioned Adjacency 

Matrix, which has been discussed in Chapter Two. 

3.1.3 Step three: Calculation of connectivity indices 

The calculation of connectivity indices is performed using Equations 2.2 to 2.7 from Chapter 

Two. In this work, the online software E-Dragon calculated connectivity indices for all molecules 

(Tetko et al., 2005). The process of forming a PAM separately for each molecule in the data set is 



21 

 

tedious. Hence, we used the software E-Dragon to calculate the connectivity indices. The input 

was .sdf (structure-data file) file of the compound for which connectivity indices are to be 

calculated and the output was the numerical values of the connectivity indices.  

3.1.4 Step four: Developing the QSPRs 

The QSPRs are developed as correlations between property values and zeroth, first and second 

order connectivity indices. As we are considering only zeroth, first and second order connectivity 

indices in this work, the QSPR will have the form shown in Equation 3.1, where P is the property 

value, C1, C2, C3, C4, C5, C6 are the coefficients, C7 is the constant, 𝜒𝑛 is nth ordered simple 

connectivity index and v𝜒𝑛  is nth ordered valence connectivity index. 

7

2

6

2

5

1

4

1

3

0

2

0

1 CCCCCCCP vvv ++++++= 
 

(3.1) 

R is a statistical software and program which is widely used for data analysis and statistical 

computing (R Core Team, 2017). The method of linear regression is used to obtain the QSPRs in 

R. The correlations for MIC and LD-50 values, developed using the connectivity indices, are 

shown in Table 3.3.   

Table 3.3: QSPRs using connectivity indices 

Property Correlation R2 Q2 

MIC − log(𝑀𝐼𝐶) = −0.494𝜒0 − 1.788𝜒1 + 2.687𝜒2

+ 0.338
0v

+ 3.51 1v − 3.647
2v

− 3.935 

0.87 0.54 

Log P log(𝑃) = 29.499𝜒0 − 28.163𝜒1 + 6.995𝜒2 − 23.903
0v

+ 18.48 1v − 2.991
2v

− 66.943 

0.99 0.97 



22 

 

3.1.5      Step five: Statistical analysis and property prediction 

After developing a mathematical model that correlates property values to molecular 

descriptors, a statistical analysis is performed to check quality of fit and predictive ability of the 

model. R2 is the correlation coefficient, which denotes how well the data fits the mathematical 

model. For a model M, generated for data set that consists of variables x1, x2,….., xn which describe 

a value y, the correlation coefficient R2 is calculated as shown in Equation 3.2 (Draper, 1966). 

𝑅2 = 1 −
∑ (𝑦𝑖

𝑓𝑖𝑡
− 𝑦𝑖)

2
𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑚𝑒𝑎𝑛)2𝑁
𝑖=1

= 1 −
𝑅𝑆𝑆

𝑆𝑆
 

(3.2) 

Where, N denotes total data points,  𝑦𝑖
𝑓𝑖𝑡

 is the y value predicted by model M, 𝑦𝑖 is given data 

point, 𝑦𝑚𝑒𝑎𝑛 is the mean of all y observations, RSS is Residual Sum of Squares and SS is Sum of 

Squares. 

Q2 is the prediction quotient that shows how well the model predicts the correlated property 

value. Leave-One-Out Cross-Validation (LOOCV) method was used to evaluate the predictive 

ability of the model. In LOOCV method, one observation is left out of the data set and the 

remaining data is used to correlate the descriptors to property values. The resulting model is used 

for predicting property value for the left-out observation. This process is repeated for each 

observation in the data set. Upon completion, the predictions are used to calculate the predicted 

residual sum of the square errors (PRESS). The calculation of Q2 is shown in Equation 3.3 (Efron, 

1983).  

𝑄2 = 1 −
∑ (𝑦𝑖

𝑝𝑟𝑒𝑑 − 𝑦𝑖)
2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦𝑚𝑒𝑎𝑛)2𝑁
𝑖=1

= 1 −
𝑃𝑅𝐸𝑆𝑆

𝑆𝑆
 

(3.3) 



23 

 

Where N denotes total data points, 𝑦𝑖
𝑝𝑟𝑒𝑑

 is predicted value for the left-out data point, 𝑦𝑖 is given 

data point, 𝑦𝑚𝑒𝑎𝑛 is the mean of all y observations, PRESS is PREdicted residual Sum of Squares 

and SS is Sum of Squares. 

A special package named ‘cvq2’ is installed in R for calculating Q2. One of the advantages of 

this package is that it generates a linear model for the given data while calculating the Q2 value 

and provides the conventional correlation coefficient R2 along with Q2. The R2 and Q2 values for 

MIC and LD-50 models generated with connectivity indices are given in Table 3.3. 

For both parameters, R2 and Q2, values closer to 1 imply good data fit and predictability for 

the model.  For the MIC model, the R2 value is 0.87, indicating moderately good quality of fit for 

the given data. However, the Q2 value is 0.54, indicating a low quality of prediction for the 

correlation. For the Log P model, both R2 and Q2 values are greater than 0.95, indicating an 

excellent data fit and predictability. This behavior can be explained with the nature of molecular 

descriptors used. Connectivity indices consider the molecular connectivity information which has 

been proven to be very good for predicting physicochemical properties, however not as good for 

predicting the biological activity which involves the shape, geometry and orientation of molecule 

with respect to the binding target. 

3.2 QSPRs for predicting MIC and Log P using 3D MoRSE descriptors 

The process used for development of MIC and Log P QSPRs using 3D MoRSE descriptors is 

described below. 

3.2.1 Step one: Data collection 

The MIC and Log P data is same as the data used for generating QSPRs with connectivity 

indices. 



24 

 

3.2.2 Step two: 3D structure generation 

3D MoRSE descriptors depend on the interatomic distances within a molecule. Hence, we need 

to find spatial coordinates of atoms to get the interatomic distances. With the availability of 

programs like CORINA (Sadowski et al., 1994) and Openbabel (OBoyle et al., 2011), this can be 

achieved very easily. In Openbabel, the input can be supplied in the SMILES (Weininger, 1987) 

notation format to find the 3D coordinates of atoms. Once we know the positions of all atoms, the 

distance formula can be used to get distance between any two atoms.  

3.2.3 Step three: Calculation of 3D MoRSE descriptors 

3D MoRSE descriptors are calculated using Equation 2.10 in Chapter Two. We have used the 

software E-Dragon for the calculation of 3D MoRSE descriptors (Tetko et al., 2005). The input is 

provided as .sdf file of the molecule and the output is numerical values of desired descriptors.  

3.2.4 Step four: Developing the QSPRs 

In this work ten unweighted MoRSE descriptors were considered for correlation development. 

The simplest MoRSE descriptors are the unweighted MoRSE descriptors. The QSPRs were 

developed as a correlation between the property values and unweighted MoRSE descriptors. An 

experiment was conducted to determine the number of descriptors that should be included in the 

correlations for MIC and Log P values to avoid overfitting of the data. Different models were 

created for different numbers of descriptors used in the correlation in R by using method of linear 

regression. We started with the first five unweighted MoRSE descriptors and continued until ten. 

The R2 and Q2 values calculated for MIC and Log P models are listed in Tables 3.4 and 3.5 

respectively. 

 



25 

 

Table 3.4: Selection of number of unweighted MoRSE descriptors for MIC model 

Number of MoRSE descriptors used R2 Q2 

First 5  0.8058 -0.045 

First 6  0.8577 0.2150 

First 7  0.9640 0.7336 

First 8 0.9869 0.9209 

First 9  0.9894 0.9216 

First 10  0.99 0.69 

 

Table 3.5: Selection of number of unweighted MoRSE descriptors for Log P model 

Number of MoRSE descriptors used R2 Q2 

First 5 0.9853 0.9667 

First 6  0.9898 0.9656 

First 7  0.9935 0.97 

First 8 0.9963 0.9843 

First 9  0.9983 0.985 

First 10 0.9984 0.9806 

 

3.2.5 Step five: Statistical analysis and property prediction 

Statistical information is used to make the decision about the number of descriptors to be 

included in the correlations. For the MIC model, the R2 values show an increase from 0.81 to 0.99 

indicating better models for data fitting with increase in number of descriptors. The Q2 values show 



26 

 

a vast difference when changing from five to ten descriptors, showing an increase until nine 

descriptors and a sudden drop at ten. This results from the overfitting of data at ten descriptors. 

So, overall the MIC model with nine descriptors is best, showing very good data fitting and 

predictive capability. For Log P models, the data fit is very good for all, as R2 does not change 

very much with an increase in the number of descriptors. The predictive capability also varies 

within a very small range indicating the highest value for nine descriptors. Hence, the Log P model 

with nine descriptors is chosen to be the best after considering the R2 and Q2 values. The resulting 

correlations for MIC and LD-50 values along with their statistics are shown in Table 3.6. 

Both the models show very good quality of fit and predictive capability for the given data. The 

predictive capability is better for Log P than MIC. MIC is dependent on the biological activity, 

thus introducing an element of uncertainty in the predictions. However, it is no surprise that the 

predictability for Log P is excellent as the information contributed by 3D descriptors is more than 

enough for predicting a physical property. 

 

 

 

 

 

 

 

 

 



27 

 

Table 3.6: QSPRs using 3D MoRSE descriptors 

Property Correlation R2 Q2 

MIC −log (𝑀𝐼𝐶) = −0.002 ∗ 𝑀𝑜𝑟01𝑢 + 0.09 ∗ 𝑀𝑜𝑟02𝑢

− 0.082 ∗ 𝑀𝑜𝑟03𝑢 − 0.127 ∗ 𝑀𝑜𝑟04𝑢

− 0.634 ∗ 𝑀𝑜𝑟05𝑢 − 0.413 ∗ 𝑀𝑜𝑟06𝑢

+ 0.19 ∗ 𝑀𝑜𝑟07𝑢 − 0.581 ∗ 𝑀𝑜𝑟08𝑢

− 0.237 ∗ 𝑀𝑜𝑟09𝑢 − 2.509 

0.99 0.92 

Log P log(𝑃) = 0.022 ∗ 𝑀𝑜𝑟01𝑢 + 0.011 ∗ 𝑀𝑜𝑟02𝑢

+ 0.624 ∗ 𝑀𝑜𝑟03𝑢 − 0.41 ∗ 𝑀𝑜𝑟04𝑢

+ 2.312 ∗ 𝑀𝑜𝑟05𝑢 − 2.227 ∗ 𝑀𝑜𝑟06𝑢

+ 0.497 ∗ 𝑀𝑜𝑟07𝑢 − 0.465 ∗ 𝑀𝑜𝑟08𝑢

+ 0.589 ∗ 𝑀𝑜𝑟09𝑢 − 11.375 

0.99 0.99 

 

The goal of this work is to design an antibiotic molecule having certain properties. In the 

molecular design process, these property values are calculated by QSPRs. Hence, it is very 

important that the appropriate QSPR model is chosen for property prediction. The QSPR model 

selection for molecular design is dependent on the kind of molecular descriptors used for model 

development. For example, let us consider MIC models developed in this chapter. Both the models 

are developed using the same data. However, the statistics show that the MIC model developed 

using 3D descriptors is much better and reliable compared to the one with connectivity indices. 

This difference arises due to different nature of molecular descriptors used. Connectivity indices 

are based on the concept of a molecular graph whereas, 3D MoRSE descriptors are based on 

interatomic geometric distances. As 3D QSARs work well for correlating the activity values, 3D 



28 

 

MoRSE descriptors provide a better model for predicting MIC. For Log P, both the molecular 

descriptors show very good results, however slightly better predictive capability is observed with 

the 3D descriptors. 

Based on these results, MIC and Log P models derived using 3D MoRSE descriptors are 

chosen for the molecular design. Using these property models, an optimization problem has been 

formulated. It is discussed in the next Chapter. 

 

 

 

 

 



29 

 

Chapter 4 

 Formulation of the Design Problem 

 

The QSPRs developed in the previous chapter provide a means of predicting property values 

of fluoroquinolones.  These QSPRs along with other equations are put into an optimization format 

to create a molecular design problem. Previously, optimization has been used in the design of 

various chemicals and products. For example, Eslick et al. (2009) designed polymethacrylate 

dental materials, Achenie and Sinha (2003) designed cleaning solvents in the printing industry, 

Sinha et al. (1999) designed environmentally benign solvents and, Gebreslassie and Diwekar 

(2015) designed a solvent for extracting acetic acid from waste process stream by using 

optimization methods. In this chapter, an antibiotic design problem is formulated using the 

optimization framework.  

Molecular design has evolved over the years. In the beginning, group contribution methods 

were mainly used for developing QSPRs and ultimately for molecular design. Group contribution 

methods consider the presence of certain blocks or groups of atoms present in a molecule and thus 

account for their contribution towards property values (Gani et al., 1991). Even though group 

contribution methods were successful at predicting certain properties, a better approach for 

representing molecular structure was provided by topological indices which are based on the 

topology of a molecule (Bicerano, 2002). An example is connectivity indices, which are used in 

this work for developing correlations. Connectivity indices not only consider the presence of 

certain groups in a molecule, but also the way they are connected, thus they provide better 

information than group contribution methods. An even better approach for representing molecules 

is to use their 3D structure, as molecules are three dimensional entities and molecular descriptors 



30 

 

contributing 3D structural information can be considered as the ones that come closest to 

representing the actual molecular structure. An example is 3D MoRSE descriptors, which are used 

in this work for property prediction and in molecular design (Gasteiger et al., 1996).  

When the QSPRs described above are combined with constraints to ensure a stable, bonded 

molecule, an optimization problem is derived. This problem consists of an objective and a set of 

constraints. The goal of an optimization problem is to find a solution that either minimizes or 

maximizes a given objective while staying in the feasibility region created by a set of constraints. 

An increase in the number of constraints makes the feasibility region smaller, and often reduces 

the computational time to find a solution. Thus, the number of constraints is an important factor 

for solving an optimization problem in a time-efficient manner. The constraints used in this work 

include structural feasibility and connectivity constraints, which are typically used in molecular 

design. More details about these constraints and objective are given below. 

4.1 Objective 

This work is an example of a small drug molecule design, with the molecule possessing desired 

physical and biological property values. The user can select a drug class, and the properties that 

are relevant to the application. As this work deals with antibiotic design, the chosen drug class is 

fluoroquinolones and the chosen properties are MIC and Log P for reasons mentioned in Chapter 

Three. The calculation of these properties is done using the QSPRs developed in the previous 

chapter. The desired property values are called target property values. The objective function for 

the optimization problem is stated in Equation 4.1, where  𝑃𝑖,𝑡𝑎𝑟𝑔𝑒𝑡 is the target value of property 

i, 𝑃𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the predicted value of property i using QSPRs and 𝑤𝑖 is scaling factor used for 

adjusting relative importance of each property. 

 



31 

 

𝑀𝑖𝑛    𝑆 = ∑ 𝑤𝑖 |
𝑃𝑖,𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑃𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑃𝑖,𝑡𝑎𝑟𝑔𝑒𝑡
|

𝑖∈𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠

 

(4.1) 

The scaling factor gives the flexibility to design a molecule by giving more weight to one 

property over others. As the predicted property values approach target values, the objective 

function approaches zero. Hence, the objective function needs to be minimized. Sometimes, the 

objective function is written in linear or convex form to simplify the method for finding solution, 

as nonlinear or non-convex problems are comparatively difficult to solve. Once the objective is 

converted to a linear or convex form, the problem can be solved with a deterministic method to 

find the global optimum. This is not required in this work, since a stochastic algorithm like 

Artificial Bee Colony can find near-optimal solutions to nonlinear, non-convex problems.  

4.2 Constraints 

The structural feasibility and connectivity constraints are important for molecular design. The 

structural constraints ensure that a stable molecule is formed. This means the valency of every 

group is satisfied, only one type of bond exists between any two groups, and the total number of 

basic groups present in a molecule is kept constant. The connectivity constraints are known as 

network flow constraints.  They ensure that all the basic groups which form a molecule are bonded 

together as a single unit. The network flow constraints are based on following considerations: 

1) The groups present in a molecule can be considered nodes of a molecular graph. One 

existing node is chosen as the source and is provided N units. N units are equal to the 

total number of groups present in the molecule. 

2) These N units must be distributed among all other nodes such that every other node 

retains exactly one unit. 



32 

 

3) Units can only flow between nodes connected by edges. 

These rules are satisfied with a connected graph. These constraints, if included in a molecular 

design problem, end up producing feasible molecular structures that are connected as a complete 

unit. Even though the structure feasibility and connectivity constraints are not explicitly present in 

the optimization problem when we solve using a stochastic algorithm, they are accounted for by 

replacing a group with another group having the same valency. Thus, newly formed molecules 

always have stability and a well-connected structure, as no infeasible solutions are considered. 

The QSPRs used for predicting properties are included as constraints. The calculation of 

property values for a candidate molecule is done by using molecular descriptors. Hence, the 

equations for calculating 3D MoRSE descriptors are included as constraints. As this work deals 

with antibiotic design, it is very important that the pharmacophore should remain intact. The 

pharmacophore is the part of a drug molecule that is responsible for the desired biological effect. 

So, another constraint was implicitly added, which did not allow the pharmacophore structure to 

change. 

4.3 Optimization problem type and size 

Optimization problems are broadly categorized into two groups based on the nature of 

equations in a problem. A problem having linear equations is called a linear problem. On the other 

hand, a problem containing any nonlinear equations is a nonlinear problem. These two types of 

problems can be further divided into two types based on the nature of variables used in the problem. 

If all the variables in the problem are continuous, the problem is simple linear program (LP) or 

simple nonlinear program (NLP). If the problem contains both continuous and discrete variables, 

the problem is mixed-integer linear program (MILP) or mixed-integer nonlinear program 

(MINLP). Thus, there are four general types of optimization problems. 



33 

 

The solution to an LP or MILP can be found easily compared a nonlinear problem. For a linear 

problem, the constraints are linear in nature. Hence, the feasibility region created by constraints is 

convex and the global optimum lies at one of the extremities of feasibility region created by 

constraints. A feasible region is convex if, for any two points present within the region, the line 

segment joining those two points lies entirely within the feasibility region (Morris and Stark, 

2015). Some examples of convex region are shown in Figure 4.1. For a nonlinear problem, the 

feasibility region could be convex or non-convex. MINLPs occur in many areas such as plant 

designs, scheduling, process synthesis and molecular design. The MINLP in this work is non-

convex in nature. Some examples of non-convex region are shown in Figure 4.2. 

 

 

 

 

 

Figure 4.1: Examples of convex regions 

 

 

 

 

 

 

Figure 4.2: Examples of non-convex regions 

 



34 

 

The optimization problem formulated in this chapter is nonlinear, and it contains both 

continuous and discrete variables. The nonlinearity arises due to the MoRSE descriptor terms in 

the QSPR equations. Even though the QSPRs are linear in nature, the calculation of MoRSE 

descriptors, shown in Equation 4.2, adds the element of nonlinearity to the problem. The problem 

contains both continuous and discrete variables. For example, the MIC and Log P property values 

are continuous variables, while on the other hand, the existence of a particular group in a molecule 

is a binary variable. Thus, the formulation of design problem results in an MINLP. 

𝐼(𝑠) = ∑ ∑ 𝐴𝑖𝐴𝑗

sin(𝑠𝑟𝑖𝑗)

𝑠𝑟𝑖𝑗

𝑖−1

𝑗=1

𝑁

𝑖=2

 

 

                                         (4.2) 

It is a good idea to determine the size of an optimization problem to understand how large the 

search space is. Usually one can calculate the total number of feasible solutions for a given 

optimization problem and have a fair idea about the scope of the problem. For a molecular design 

problem, the number of feasible solutions is going to be the total number of structures that can be 

designed by using groups that are included in the design. The groups used in this work are listed 

in Table 4.1 and Table 4.2.  

The number of feasible solutions to the molecular design are calculated as follows: 

Total number of groups having valency one = 10 

Total number of groups having valency two = 2 

Number of positions where replacement can occur with valency one groups = 4 

Number of positions where replacement can occur with valency two groups = 4 

Total number of possible structures = 10×10×10×10×2×2×2×2 =160,000 

Thus, the total number of feasible solutions/ structures are 160,000. The goal is to find a structure 

which will have MIC and Log P values as close as possible to the target values.  



35 

 

Table 4.1: Groups having valency one used in the molecular design 

 

No. Groups with valency 

one 

1 -F 

2 -NH2 

3 -CH3 

4 -OH 

5 -CH2-OH 

6 -CH2-NH2 

7 -CH2-CH2-OH 

8 -CH2-CH2-NH2 

9 -CH2-CH2-CH2-OH 

10 -CH2-CH2-CH2-NH2 

 

 

Table 4.2: Groups having valency two used in the molecular design 

 

No. Groups with valency 

two 

1 -O- 

2 -CH2- 

 

4.4 Deterministic vs stochastic methods 

Solutions to any optimization problem can be sought by implementing a deterministic method, 

or a stochastic method. Deterministic methods guarantee the determination of a global optimum 

by constantly decreasing the difference between upper and lower bounds until they finally meet. 

Hence, with the same initial solution, a deterministic algorithm will always take the same route to 

give the same final solution. Stochastic methods, on the other hand, employ random search 

techniques which are easy to implement, robust and can be effectively parallelized (Mendivii et 



36 

 

al., 1999). Even though stochastic methods do not guarantee the global optimum, they are very 

effective in finding near-optimal solutions. Deterministic methods encounter problems while 

solving large design problems, as they must calculate upper and lower bounds and the bounds must 

meet to get a globally optimal solution. In case of a non-convex problem, multiple local optima 

are present. If the algorithm gets stuck in a local optimum, it’s difficult to escape that optimum in 

a deterministic method. However, as the solutions are generated randomly in stochastic algorithms, 

they offer a great advantage of escaping local optima and achieving globally optimal or near-

optimal solution. It is very important to note that as the QSPRs have limited accuracy, there is no 

guarantee that the global optimum provided by a deterministic method would be better than the 

near optimal solution found by a stochastic method. A stochastic method run multiple times gives 

a list of different near-optimal solutions. The user can select a criterion like cost or ease of synthesis 

to rank these solutions. 

4.5 Summary of antibiotic design optimization problem 

The antibiotic design problem formulated in this chapter can be stated as follows: 

Objective function:  

𝑀𝑖𝑛 𝑆 = 𝑤𝑀𝐼𝐶 |
𝑃𝑀𝐼𝐶(𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑃𝑀𝐼𝐶(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝑃𝑀𝐼𝐶(𝑡𝑎𝑟𝑔𝑒𝑡)
| + 𝑤𝐿𝑜𝑔 𝑃 |

𝑃𝐿𝑜𝑔 𝑃(𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑃𝐿𝑜𝑔 𝑃(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝑃𝐿𝑜𝑔 𝑃(𝑡𝑎𝑟𝑔𝑒𝑡)
| 

(4.3) 

Subject to: 

−log (𝑀𝐼𝐶) = −0.002 ∗ 𝑀𝑜𝑟01𝑢 + 0.09 ∗ 𝑀𝑜𝑟02𝑢 − 0.082 ∗ 𝑀𝑜𝑟03𝑢 − 0.127 ∗ 𝑀𝑜𝑟04𝑢

− 0.634 ∗ 𝑀𝑜𝑟05𝑢 − 0.413 ∗ 𝑀𝑜𝑟06𝑢 + 0.19 ∗ 𝑀𝑜𝑟07𝑢 − 0.581 ∗ 𝑀𝑜𝑟08𝑢

− 0.237 ∗ 𝑀𝑜𝑟09𝑢 − 2.509 

(4.4) 



37 

 

log(P) = 0.022 ∗ 𝑀𝑜𝑟01𝑢 + 0.011 ∗ 𝑀𝑜𝑟02𝑢 + 0.624 ∗ 𝑀𝑜𝑟03𝑢 − 0.41 ∗ 𝑀𝑜𝑟04𝑢

+ 2.312 ∗ 𝑀𝑜𝑟05𝑢 − 2.227 ∗ 𝑀𝑜𝑟06𝑢 + 0.497 ∗ 𝑀𝑜𝑟07𝑢 − 0.465

∗ 𝑀𝑜𝑟08𝑢 + 0.589 ∗ 𝑀𝑜𝑟09𝑢 − 11.375 

(4.5) 

𝐼(𝑠) = ∑ ∑ 𝐴𝑖𝐴𝑗

sin(𝑠𝑟𝑖𝑗)

𝑠𝑟𝑖𝑗

𝑖−1

𝑗=1

𝑁

𝑖=2

 

(4.6) 

 

 

Figure 4.3: Pazufloxacin molecule 

 

The objective function stated as Equation 4.3 aims to minimize the difference between target 

and predicted property values while subjected to a set of constraints. A few of these constraints 

are explicitly present as equations in the problem, which are Equations 4.4, 4.5 and 4.6. Equations 

4.4 and 4.5 are the QSPRs for calculating MIC and Log P respectively, while Equation 4.6 is used 

for calculating MoRSE descriptors. The remaining constraints are present implicitly. They are 

structural feasibility and connectivity constraints along with a constraint that keeps the 

pharmacophore structure intact. The circled portion shown in Figure 4.3 is the pharmacophore. 



38 

 

The solutions to the optimization problem formulated in this chapter are antibiotic candidate 

molecules possessing desired MIC and Log P values. In this work, these solutions are found by 

using the ABC algorithm, which will be discussed in the next Chapter. 

 

 

 

 



39 

 

Chapter 5 

 Artificial Bee Colony Algorithm 

 

Many engineering optimization problems are nonlinear and constrained in nature. The 

optimization problem formulated in Chapter Four for antibiotic molecular design is nonlinear and 

finding solutions to it is computationally expensive as there are more than 100,000 feasible 

solutions. As mentioned previously in Chapter Four, nonlinear optimization problems are difficult 

to solve compared to the linear ones. Especially if a nonlinear problem is non-convex in nature, it 

becomes even more difficult to find solutions for it as there could be numerous local optima where 

an algorithm may get stuck. This issue does not arise when the problem is convex as there is only 

one local optimum. Numerous algorithms have been reported in the past to solve such problems 

including genetic algorithm, particle swarm optimization, differential evolution algorithm. All 

these algorithms are commonly used for finding near optimal solutions in a reasonable time 

(Karaboga and Basturk, 2008). Karaboga and Akay (2009) compared the performance of the 

Artificial Bee Colony (ABC) algorithm with genetic algorithms, particle swarm optimization, a 

differential evolution algorithm and an evolutionary strategy algorithm on a large set of 

unconstrained functions and found that ABC is better or comparable in performance with respect 

to these algorithms. 

The ABC algorithm is based on the simple idea of the foraging behavior of honeybees, hence 

its implementation is also easy and straightforward. Among the algorithms that have been reported 

based on honeybee swarm behavior, the ABC algorithm is the most widely studied and has found 

many applications in real-world problems (Karaboga et al., 2014). ABC has been found to be quite 

successful at producing good results with low computational cost and in solving single objective 



40 

 

optimization problems. A few examples where ABC has been used for solving MINLPs are as 

follows. Ayan and Kilic (2012) used ABC to minimize active power loss in power systems. Kaur 

et al. (2014) solved a non-convex, nonlinear problem for minimization of losses in distribution 

systems. Ajorlou et al. (2011) generated an optimal sequence of jobs for minimizing the 

completion time. Also, the ABC algorithm can handle unconstrained and constrained problems 

efficiently including combinatorial problems (Karaboga and Basturk, 2007). Therefore, in this 

work, the ABC algorithm is used for solving the molecular design problem formulated in previous 

chapter.  

Swarm intelligence is a research branch that models the behavior of self-organizing agents. 

Bonabeau has defined swarm intelligence as “any attempt to design algorithms or distributed 

problem-solving devices inspired by the collective behavior of social insect colonies and other 

animal societies” (Bonabeau et. al., 1999). The term ‘swarm’ is used in general sense to represent 

a group of individuals interacting/ working together. One of the typical examples of swarm system 

is bees swarming around their hive. A flock of birds can be thought of as a swarm whose individual 

agents are birds. Similarly, an ant colony is swarm of ants, an immune system is a swarm of cells 

and molecules and a crowd is swarm of people.  

5.1 Approach of ABC algorithm 

An idea for numerical optimization based on the behavior of honeybee swarm was reported by 

Karaboga (2005). He simulated the idea of real bees working around their hive into an algorithm 

and called it ‘artificial bee colony algorithm’. As per the model described by Karaboga, the colony 

of artificial bees consists of three types of bees: employed bees, onlooker bees and scout bees. All 

the bees work in an organized fashion to constantly find a better food source. A bee going to the 

food source visited by itself previously is called an ‘employed bee’. A bee that makes decision to 



41 

 

choose a food source is named an ‘onlooker bee’. A bee carrying out random search is called a 

‘scout bee’. The half of the colony consists of the employed bees and the remaining half includes 

the onlookers. The employed bee whose food source is exhausted by the employed and onlooker 

bees becomes a scout. The exchange of information about quality of food source is necessary for 

the bees to perform effectively. This exchange occurs through a dance performed by bees called 

‘waggle dance’ and the area around hive where this dance takes place is called ‘dancing area’. The 

main steps of the algorithm are as follows: 

1. Initialize 

2.  Repeat: 

i. Send the employed bees to the food sources in the memory;  

ii. Send the onlooker bees to the food sources in the memory;  

iii. Send the scouts to the search area for discovering new food sources; 

iv. Store the best solution found in this cycle. 

3. Until (requirements are met). 

Each cycle goes through three main stages: sending the employed bees onto the food sources 

where they measure the nectar amount of food source; selecting of the food sources by the onlooker 

bees based on the information shared by employed bees and determining the nectar amount of 

those food sources; determining the scout bees and then sending them onto possible food sources. 

In the initialization stage, bees randomly select food sources, store their positions in the 

memory and determine their nectar amounts. Then these bees return to the hive and share 

information about the nectar of food sources with the bees waiting in the dance area around the 

hive. At the second stage, the employed bees go to the food source area visited in the previous 



42 

 

cycle as that food source exists in their memory, and now choose new food sources by means of 

visual inspection in the neighborhood of the present one. At the third stage, the onlookers choose 

food source areas depending on the nectar information collected from the employed bees by their 

waggle dance. The probability of selection of a food source by an onlooker increases as the nectar 

amount of food source increases. Therefore, the dance of employed bees is important in terms of 

exchanging information as it recruits the onlookers for the food source areas with higher nectar 

amount. The onlookers then arrive at the selected area and choose a new food source by gathering 

visual information in the neighborhood of the one in the memory. Visual information is based on 

the comparison of food source positions. When a food source is completely exhausted by the bees, 

it is abandoned, and a new food source is randomly chosen by a scout bee to replace with the 

abandoned one. In the model developed by Karaboga, in each cycle at most one scout goes to 

search for a new food source and the number of employed and onlooker bees are kept equal. 

5.2 Application to molecular design 

The bees in artificial bee colony work together for finding better food sources in every new 

cycle. The analogy for that approach is used in this work to find solution to the molecular design 

problem. The working of ABC algorithm for solving molecular design problem is shown in Fig 

5.1. In ABC approach, the bees store the solutions as location of food source in their memory and 

the quality of solutions is associated with the nectar amount. In our model, the bees are feasible 

solutions which represent different molecular structures. The quality of solution is evaluated by 

calculating their property values. The employed and onlooker bees in ABC find new solutions 

around the previous solutions. Similarly, the employed and onlooker bees in our model create new 

solutions by changing one group at a time in their previous structures. 

 



43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Artificial Bee Colony algorithm flowchart for CAMD 

Yes 

No 

The best solution obtained in every iteration is saved 

Stop criteria has been met 

 

Check Exit Criteria 

Employed bees become scout bees, if their solution has not 

improved in recent iterations 

Onlooker bees search in the neighborhood of the good 

employed bees’ solutions for obtaining new solutions 

Scouts search randomly for new solutions 

 

Employed bees search their neighborhood for improved 

solutions 

Each class of bees is initialized to a template 

 

start 



44 

 

At the initialization, all the solutions are adjusted to the structure of template molecule. A 

template molecule is a base molecule to which changes will be made in the program to find the 

one that matches target property value. Every cycle goes through three phases: the employed phase, 

the onlooker phase and the scout phase. In the employed phase, the employed bees make a random 

change to their template structure by changing only one group. If the new property value is closer 

to the target property value than previous solution, it abandons the previous solution and stores the 

new one. This method of selection of solution is called the ‘greedy selection’ method. It makes 

sure the new solution is not worse than the previous one. At the end of this phase, all the employed 

bees’ solutions are then assessed in terms of their property values. The solutions are ranked from 

the best to worst depending on how close they are to the target property value. The onlooker bees 

then target only a first few of these solutions. The onlookers will randomly pick any of the good 

solutions and make changes to them by changing one group at a time. The onlookers also follow 

‘greedy selection’ criteria and keep the better solution. These solutions are again assessed with 

respect to their property values and ranked from best to worst. The best solution is saved as the 

best solution found in that cycle. Finally, in the scout phase, if a solution is not improved within a 

certain number of iterations, it is abandoned and replaced with a new solution. The algorithm 

repeats itself through these phases until a near-optimal solution is obtained. 

5.3 Characteristics of the ABC algorithm 

The control parameters in the ABC algorithm are the number of employed bees, the number of 

onlooker bees, the number of predetermined cycles after which the scouts will randomly choose 

new solution and the maximum number of cycles. In addition to these parameters, one more control 

parameter is considered in this work: the number of good employed bees. Employed bees’ 

solutions are ranked based on their closeness to the target property values, from best to worst. The 



45 

 

first few solutions are selected, based on which onlooker bees choose their new solutions. The 

employed bees corresponding to these chosen solutions are named good employed bees. The 

progress of the bee colony can be measured in terms of how rapidly it discovers good food sources. 

Similarly, the progress of algorithm is dependent on how fast it generates good solutions. Good 

solutions for this work will be the ones that are closer to the target value. For a robust algorithm, 

the exploration and exploitation of good solutions should occur simultaneously. In ABC, the 

employed and onlooker bees perform task of exploiting while scouts do the exploring. The 

exploring done by scouts helps in achieving global optimum and the exploitation by employed and 

onlooker bees is good for local optimization.  

Even though the applicability of ABC has been explored in numerous fields, there are not many 

cases where it has been used in molecular design. This is the novel work which has employed ABC 

approach for molecular design. Solutions to the antibiotic design MINLP, which correspond to 

near-optimal antibiotic molecular candidates are found by using ABC algorithm and are discussed 

in the next Chapter. 

 

 

 

  



46 

 

Chapter 6 

 Results and Discussion 

 

The solution to the antibiotic design problem formulated in Chapter Four is found by using the 

ABC algorithm described in Chapter Five. A code has been written in the programming language 

Python to implement the ABC algorithm. The goal is to find antibiotic candidate molecules that 

match the target property values set for MIC and Log P. There are two methods which can be 

followed to find these candidate molecules. The first is to create new molecules by putting together 

different atoms/ groups to form a stable structure and checking property values of these molecules 

until a molecule is found which matches target property values. The second one involves making 

changes to an existing molecule at different positions and checking their property values until a 

molecule is found which matches target property values. The later approach, which is called 

‘templating’ is applied in this work. The base molecule which will be changed at different positions 

is called the ‘template’. The data structure used for representation of the molecules, the Python 

packages used for this work, and the results for specific example cases are discussed below. 

6.1 Data structure used for storing molecules and procedure for generating new solutions 

There are different data structures which can be used for storing molecular structure 

numerically. One of them is a PAM, which has been discussed previously. In this work, 

representation of molecules is accomplished using the SMILES notation for that molecule. The 

SMILES notation is a string of characters that represents the connections between atoms within a 

molecule and is unique for each molecule. Hydrogen atoms are usually excluded from the SMILES 

string. An example is shown in Figure 6.1. 



47 

 

 

C(=C(C(C(C2C(O)=O)=O)=C1)N(C=2)CC)C(N(CCN3)CC3)=C1F 

Figure 6.1: Norfloxacin molecule and its SMILES notation 

 

As mentioned previously, a template molecule is the base molecule which will undergo 

changes to generate new solutions. A few groups are selected on the template molecule where 

changes could be made. Every time a new solution is to be generated, one of these groups is picked 

randomly and replaced with a new group. Thus, a new solution is generated.  All the groups 

considered in this work and the total number of possible structures have already been discussed in 

Chapter Four.  Pazufloxacin is used as the template molecule in this work. The groups where 

changes can be made are circled in Figure 6.2. 

 

Figure 6.2: Pazufloxacin molecule 

 



48 

 

In the Python code written to implement the ABC algorithm, this change is made by changing 

the corresponding position in the SMILES notation for that group. The template molecule SMILES 

notation is saved for each solution before the iterations begin. When a certain group is to be 

replaced with a new one, the old group position in the SMILES string is replaced with the new 

character/characters corresponding to the new group. For example, if -F is replaced with -NH2 in 

pazufloxacin, F for fluorine atom from pazufloxacin SMILES notation will be changed to an N for 

amine group. 

Pazufloxacin SMILES: 

C(C(=C(C1OC3)N(C2)[C@@H](C)3)C(C(C(O)=O)=2)=O)=C(C=1C(C4)(C4)N)F 

SMILES after replacing -F with -NH2: 

C(C(=C(C1OC3)N(C2)[C@@H](C)3)C(C(C(O)=O)=2)=O)=C(C=1C(C4)(C4)N)N 

New molecules generated by making changes in the template molecule will again be changed 

in the next iteration by replacing one group at a time. The process of generating new solutions 

continues until maximum number of iterations are completed. The goal of following this process 

is to come across a molecule that will match or will come very close to the target property value.  

6.2 Python packages used in this work 

This work employs 3D MoRSE descriptors, which depend on the interatomic distances within 

a molecule. As mentioned above, the representation of molecules is done with the SMILES format, 

which is a 2D format for representing molecules. In order to use 3D descriptors, this 2D 

information must be augmented with 3D structural information. Therefore, a package called ‘Open 

Babel’ was installed in the Python environment for converting 2D connectivity information from 

SMILES into 3D coordinates of atoms in the molecule. Open Babel is a chemistry toolbox 

designed for interconverting chemical data from one format to another (OBoyle et al., 2011). It 



49 

 

accepts a variety of molecular file formats and can be used in different programming languages. 

Open Babel has a C++ library and can be easily called from C++. Additionally, it can also be used 

in Python, Perl, Ruby, CSharp and Java via language bindings. For example, for using Open Babel 

in Python, Python bindings are needed. For Python, a module named ‘Pybel’ is provided which 

makes it easier to access features of the bindings (OBoyle et al., 2008). Hence, Pybel was also 

installed into the Python environment. Pybel has functions and classes which make it easier to 

access the Open Babel libraries from Python, especially for accessing the attributes of atoms and 

molecules. 

To use Open Babel and Pybel, they need to be imported into a Python code. One of the ways 

in which a molecule is created in Pybel is by reading a string. This string is provided in the form 

of SMILES notation of that molecule. The function pybel.readstring reads molecule from the given 

string. For adding hydrogen atoms to molecule, the addh() function is used. The 3D coordinates 

are computed using make3D() function. By default, Open Babel uses a 50-step procedure for 

geometry optimization of molecule using the MMFF94 forcefield. This forcefield was developed 

by Merck and it provides good accuracy for a range of organic and drug-like molecules (Halgren, 

1996). Once 3D coordinates of a molecule are obtained, the interatomic distances for all atomic 

pairs can be easily calculated. 

6.3 Validation of code 

It is necessary to validate the code to check if it is performing correctly. As the problem size 

of the antibiotic design problem is very big, a small sized problem is considered for validating the 

code. This will help in obtaining output in a shorter time. A small sized problem is formulated by 

decreasing the number of positions where changes could occur, and the number of groups used for 



50 

 

making these changes. The template molecule used is pazufloxacin molecule. The groups which 

can be replaced for this validation example are circled in Figure 6.3. 

 

 

Figure 6.3: Template molecule 

The number of feasible solutions to this smaller problem are calculated as follows: 

Single valency groups used: -NH2, -F, -OH, -CH3, -CH2-NH2, -CH2-CH2-OH 

Double valency groups used: -CH2-, -O- 

Total number of groups having valency one = 6 

Total number of groups having valency two = 2 

Number of positions where replacement can occur with valency one groups = 3 

Number of positions where replacement can occur with valency two groups = 2 

Total number of possible structures = 6×6×6×2×2 = 864 

Thus, the total number of feasible solutions/ structures are 864.  

The accuracy of the code is verified by following a simple procedure. A molecule is created by 

making changes at some positions on the template. This molecule is shown in Figure 6.4 and the 

corresponding changes are circled. The -log (MIC) of this structure is calculated by using Equation 

4.4. This -log (MIC) value is now used as the target property value in the code. The Python code 



51 

 

will try to find a molecule which has -log (MIC) very close or equal to the target value set. If the 

output is the molecule shown in Figure 6.4, it can be confirmed that the code is running without 

any problems. 

 

 

Figure 6.4: Molecule used for validating Python code 

The -log (MIC) of structure shown in Figure 6.4 is found to be 4.901 after calculating with equation 

4.4. The code is run with 4.901 as the target property value and ABC control parameters given 

below. ABC control parameters have been discussed previously in Chapter Five. 

Maximum number of iterations = 30 

Number of employed bees = 6 

Number of good employed bees = 4 

Number of onlooker bees = 10 

Number of scout bees = 1 

The molecule shown in Figure 6.4 was obtained at the twenty-second iteration in one of the first 

few runs of the code. Thus, the validation of the code was completed. 



52 

 

6.4 Selection of target property values 

As the goal of this work is to develop antibiotic leads which will show activity against S. 

aureus, the target value for -log (MIC) was chosen based on the data used for developing MIC 

QSPR. This data contains fluoroquinolones showing antibacterial activity against S. aureus. The 

target value was chosen close to the lowest value in the data, as lower MIC values mean highly 

potent antibiotics. The lowest MIC has -log (MIC) equal to 7.4 and the highest MIC has -log (MIC) 

equal to 3.2 in the data. Hence, the target value selected for -log (MIC) is 6.  

Log P value is an indicator of hydrophobicity of the molecule. A value above 0 indicates that 

the molecule is hydrophobic, whereas Log P value less than 0 means the molecule is hydrophilic. 

Some studies have found a relation between molecular hydrophobicity and the concentration of 

fluoroquinolone accumulated inside bacteria S. aureus (Bazile et al.,1992, McCaffrey et al.,1992, 

Yoshida et al., 1990). Bazile et al. (1992) reported that a bulky and hydrophobic quinolone having 

Log P value 1.05, was accumulated in higher concentration in S. aureus. Nikaido and Thanassi 

(1993) suggested that resistant strains which efflux fluoroquinolones actively from their cells can 

be effectively treated, if higher rate of influx is present. Piddock et al. (2001) conducted a study 

which showed that there is a direct relationship between the fluoroquinolone accumulation and 

molecular hydrophobicity. Hence, it seems a hydrophobic fluoroquinolone candidate would be 

favorable for treating S. aureus. It should also be considered that the antibiotic candidate should 

not be too hydrophobic, such that it becomes difficult for the molecule to pass through hydrophilic 

barriers. Therefore, 1.5 was chosen as the target Log P value. 

6.5 Molecular structures obtained as results 

Results are obtained for three different cases. The first case gave the MIC value a 100% weight 

and Log P a 0% weight, the second case gave the MIC value a 0% weight and Log P a 100% 



53 

 

weight and, the third case sets both the properties to a 100% weight. Cases one and two would 

give the molecules having property values equal to or very close to the individual target values 

and the third case would try to find a molecule which comes very close to both the target values.  

For ABC algorithm, different control parameters are used which have been discussed in 

Chapter Five. Different combinations of control parameters were used to obtain the results. This 

was done to study the effect of individual parameters and their combination on quality of results. 

The objective function for antibiotic design, defined in Chapter Four is stated below. 

𝑀𝑖𝑛 𝑆 = 𝑤𝑀𝐼𝐶 |
𝑃𝑀𝐼𝐶(𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑃𝑀𝐼𝐶(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝑃𝑀𝐼𝐶(𝑡𝑎𝑟𝑔𝑒𝑡)
| + 𝑤𝐿𝑜𝑔 𝑃 |

𝑃𝐿𝑜𝑔 𝑃(𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑃𝐿𝑜𝑔 𝑃(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝑃𝐿𝑜𝑔 𝑃(𝑡𝑎𝑟𝑔𝑒𝑡)
| 

6.5.1 Case one 

In this case, 𝑤𝑀𝐼𝐶 = 1 and 𝑤𝐿𝑜𝑔 𝑃= 0, so the objective function can be written as below. 

Objective function: 

𝑀𝑖𝑛 𝑆 = |
6 − 𝑃𝑀𝐼𝐶(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

6
| 

The variation in control parameters along with the absolute difference between target and predicted 

-log (MIC) is shown in Table 6.1 for a few runs. For each run, the computational time was one 

minute per iteration. 

The best result obtained is shown in the fourth observation. Comparing parameters from fourth 

observation with the rest, it is observed that higher number of good employed bees help in getting 

a better result. The graph showing the decrease in absolute difference between target and predicted 

-log (MIC) corresponding to the best result is given in Figure 6.5. The molecular structure 

corresponding to the best result is given in Figure 6.6. This structure has -log (MIC) equal to 

6.000029, which is closest to the target value among all the results obtained for case one. It should 

be noted that a molecular structure that corresponds to -log (MIC) equal to 6 may not exist. 



54 

 

Therefore, a near optimal solution with the least difference between target and predicted property 

values can be considered as the best solution. Actual MIC for best result is 9.99×10-7 mol/L. The 

groups that are different from the template molecule are circled in Figure 6.6. 

 

Table 6.1: Control parameters and results for case one 

Observation 

number 

Maximum 

number of 

iterations 

Number 

of 

employed 

bees 

Number 

of good 

employed 

bees 

Number 

of 

onlooker 

bees 

Number of 

scout bees 

Absolute difference 

between target and 

predicted -log 

(MIC) 

1 20 50 5 20 2 after every 

10 iterations 

0.0004 

2 40 50 5 20 2 after every 

10 iterations 

0.0006 

3 20 20 5 50 2 after every 

10 iterations 

0.001 

4 20 50 10 20 2 after every 

10 iterations 

0.00003 

5 20 50 5 20 2 after every 

5 iterations 

0.0003 

 

 

Figure 6.5: Change in absolute difference of target and predicted -log (MIC) with number of 

iterations 

0.00000

0.05000

0.10000

0.15000

0.20000

0.25000

0.30000

0.35000

0.40000

0 5 10 15 20 25

A
b
so

lu
te

 d
if

fe
re

n
ce

Number of iterations



55 

 

 

 

 

Figure 6.6: Best structure obtained for case one 

6.5.2 Case two 

In this case, 𝑤𝑀𝐼𝐶 = 0 and 𝑤𝐿𝑜𝑔 𝑃= 1, so the objective function can be written as below. 

Objective function: 

𝑀𝑖𝑛 𝑆 = |
1.5 − 𝑃𝐿𝑜𝑔 𝑃(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

1.5
| 

The variation in control parameters along with the absolute difference between target and predicted 

Log P is shown in Table 6.2 for a few runs. For each run, the computational time was one minute 

per iteration. 

The best result obtained is found in the first and fourth observations. Comparing parameters 

from first and fourth observations with the rest, it is observed that higher number of good employed 



56 

 

bees help in getting a better result.  The graph showing the decrease in absolute difference between 

target and predicted Log P for one of these observations is given in Figure 6.7. The molecular 

structure corresponding to first and fourth observation is the same and is given in Figure 6.6. This 

structure has Log P equal to 1.4968, which is closest to the target value among all the results 

obtained for case two. The groups that are different from the template molecule are circled in 

Figure 6.8. 

Table 6.2: Control parameters and results for case two 

Observation 

number 

Maximum 

number of 

iterations 

Number 

of 

employed 

bees 

Number 

of good 

employed 

bees 

Number 

of 

onlooker 

bees 

Number of 

scout bees 

Absolute difference 

between target and 

predicted Log P 

1 20 50 5 20 2 after every 

10 iterations 

0.0032 

2 40 50 5 20 2 after every 

10 iterations 

0.007 

3 20 20 5 50 2 after every 

10 iterations 

0.034 

4 20 50 10 20 2 after every 

10 iterations 

0.0032 

5 20 50 5 20 2 after every 

5 iterations 

0.031 

 

 

 



57 

 

 

 

Figure 6.7: Change in absolute difference of target and predicted Log P with number of iterations 

 

 

 

Figure 6.8: Best structure obtained for case two 

 

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0 5 10 15 20 25

A
b

so
lu

te
 d

if
fe

re
n

ce

Number of iterations



58 

 

6.5.3 Case three 

In this case, 𝑤𝑀𝐼𝐶 = 1 and 𝑤𝐿𝑜𝑔 𝑃= 1, so the objective function can be written as below. 

Objective function: 

𝑀𝑖𝑛 𝑆 = |
6 − 𝑃𝑀𝐼𝐶(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

6
| + |

1.5 − 𝑃𝐿𝑜𝑔 𝑃(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

1.5
| 

The variation in control parameters along with the sum of absolute difference between target and 

predicted properties is shown in Table 6.3 for a few runs. For each run, the computational time 

was one minute per iteration. 

The best result obtained is given in first observation. Comparing parameters from first 

observation with the rest, it is observed that no parameter particularly affects the final result in this 

case. The graph showing the decrease in the sum of absolute difference between target and 

predicted properties is given in Figure 6.9. It can be observed that the final sum of differences 

between target and predicted properties is quite higher compared to the previous cases. The reason 

behind this is that there may not be a molecule which possesses -log (MIC) equal to 6 and Log P 

equal to 1.5. So, whenever more than one property is optimized, trade-offs occur between the 

properties to find optimal solution. The molecular structure corresponding to the best result is 

given in Figure 6.10. This structure has -log (MIC) equal to 5.9695 and Log P equal to 1.9979, 

which is closest to the target value among all the results obtained for case three. The groups that 

are different from the template molecule are circled in Figure 6.10. 

 

 

 

 



59 

 

Table 6.3: Control parameters and results for case three 

Observation 

number 

Maximum 

number of 

iterations 

Number 

of 

employed 

bees 

Number 

of good 

employed 

bees 

Number 

of 

onlooker 

bees 

Number of 

scout bees 

Sum of absolute 

difference between 

target and 

predicted 

properties 

1 20 50 5 20 2 after every 

10 iterations 

0.528 

2 40 50 5 20 2 after every 

10 iterations 

0.87 

3 20 20 5 50 2 after every 

10 iterations 

0.616 

4 20 50 10 20 2 after every 

10 iterations 

0.583 

5 20 50 5 20 2 after every 

5 iterations 

0.87 

 

 

Figure 6.9: Change in the sum of absolute difference of target and predicted properties with 

number of iterations 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25

S
u
m

 o
f 

ab
so

lu
te

 d
if

fe
re

n
ce

s

Number of iterations



60 

 

 

 

Figure 6.10: Best structure obtained for case three 

6.6 Significance of control parameters 

The goal of varying parameters in each case was to observe how each parameter or 

combination of different parameters affects the results and if they can be adjusted to obtain near 

optimal results faster i.e. decrease the total number of evaluations. After studying cases one, two 

and three, it can be observed that no single parameter particularly helps in finding a near optimal 

solution faster or defines the quality of result. The combination of control parameters, however, 

does affect the result to some extent.  

Overall, it was observed that there should be enough number of employed bees for given 

problem size. This is important because a larger number means that there will larger number of 

initial solutions to begin with. First few solutions which are closer to the target property value are 

chosen as good employed bee solutions. The onlooker bees then locally search around these good 

solutions. Therefore, even if there are lesser onlooker bees than employed bees, there is still better 

chance of finding near optimal solutions. The number of good employed bees chosen should not 



61 

 

be so few that they will continue to search around only few good solutions, and may get stuck in 

local optima. The number of good employed bees chosen should also include moderately good 

employed bees’ solutions so that exploration is wider. Scout bees do not affect the progress of 

algorithm in any way, but they replace the worst employed bees’ solutions after a few iterations. 

This is done hoping that the replacement will result in making the future solutions better in further 

iterations.  Two scout bees were used for every run. One scout bee was set to the best onlooker 

bee solution found in that iteration, to increase chances for finding near optimal solution faster. 

The other scout bee was set as the template molecule to increase the chances of escaping local 

optima.  The number of iterations does not affect the output in any way after the algorithm 

converges to a near optimal solution. There should be enough number of iterations to reach this 

near optimal point.   

Any combination of control parameters that satisfies the above criteria should be able to find 

near optimal solutions. It should be noted that the same combination of control parameters may 

give different results for different runs. This happens because the ABC algorithm is inherently 

stochastic in nature, so we cannot control the generation of new solutions. The new solutions would 

however be discarded, if they are not better than previous ones.  

An efficient algorithm should be able to find the optimal or near optimal results with the least 

number of evaluations. The number of solutions evaluated before the best result was obtained were 

700, 1330 and 700 for cases one, two and three respectively. All these numbers are much smaller 

compared to all the feasible solutions, 160,000. This is a good indicator that ABC is an efficient 

algorithm to find near optimal solutions. The only drawback of current Python code is a larger 

computational time. This could be arising because of the lengthy procedure of 3D coordinates 

generation by Open Babel. 



62 

 

Chapter 7 

 Conclusions and Recommendations 

 

In this work, combinatorial optimization approach has been used in the area of molecular 

design. The previous use of optimization techniques in designing solvents, polymers, 

pharmaceutical products has been extended to the design of novel antibiotic molecules. The 

property values of molecules were related to their structures by using molecular descriptors. The 

properties considered in this work, MIC and Log P values, were linearly correlated with molecular 

structures using two types of molecular descriptors, connectivity indices and 3D MoRSE 

descriptors. Zeroth, first and second order connectivity indices and unweighted 3D MoRSE 

descriptors were used for development of correlations. The correlations showing better quality in 

terms of correlation coefficient and predictive capability were employed in the molecular design 

problem. These structure-property correlations, structural feasibility and connectivity constraints 

along with an objective function were formulated as an MINLP antibiotic design problem. This 

MINLP design problem was solved using the ABC algorithm to find near optimal solutions. 

7.1 Conclusions 

A computer-aided molecular design (CAMD) approach has been successfully used for the 

design of novel antibiotic candidates in this work. The goal was to match the MIC and Log P 

values of resulting molecules as closely as possible to the target values. Among molecular 

connectivity indices and 3D MoRSE descriptors, the correlations with 3D MoRSE descriptors 

showed better results, when compared on the basis of correlation coefficient and predictive ability. 



63 

 

Therefore, these structure-property correlations were employed for prediction of properties in the 

molecular design, for ultimately generating novel antibiotic molecules. 

An improvement over previous work in the field of CAMD is the use of 3D molecular 

descriptors. Most of previous CAMD work has been performed using group contribution methods 

and topological indices like connectivity indices. For designing compounds based on 

physicochemical properties, 2D molecular descriptors like connectivity indices contribute enough 

information from chemical structure to form a good correlation with property values. This work 

involves prediction of biological activity of a compound, which is dependent on the interaction of 

a molecule with biological target. Therefore, molecular descriptors that contain information about 

3D structure of molecule should be used. 3D MoRSE descriptors depend on the distances between 

all atomic pairs present in the molecule, and thus account for 3D characteristics of molecule.  

The ABC algorithm derived from the foraging behavior of honeybees was implemented to find 

solutions to the antibiotic design problem. A small problem was solved using this algorithm for 

verifying the Python code and the results indicated the convergence to optimal solution in very 

few evaluations. The same code was used for solving bigger problem, specifically three different 

cases and results provided numerous near-optimal solutions i.e. molecular structures having 

property values closer to target property values. The solution to a larger problem was also obtained 

in a smaller number of evaluations compared to the problem size. Thus, it was shown that a large 

MINLP formulated for antibiotic design can be solved efficiently with a stochastic algorithm like 

ABC to generate near optimal solutions. 

New antibiotic leads, which have been designed in this work, may not necessarily end up being 

new choices for treating S. aureus infections. It should be noted that a lot of leads are structurally 

very similar to final drug that gets approved. So, shortlisting leads is a very important stage in the 



64 

 

process of drug discovery. The drug leads go through a rigorous process of preclinical and clinical 

trials before any of them is approved for official use. The purpose of finding leads is to narrow 

down a large database for a few potential candidates. In this work, antibiotic leads are shortlisted 

from large molecular set containing 160,000 molecules based on target values selected for two 

properties. So, this work provides a methodology for other molecular design problems where new 

candidates can be found based on the relevant property values. 

7.2 Recommendations 

The stepwise approach for synthesis of the novel antibiotic molecules has not been determined 

in this work. In future work, the antibiotic candidates provided in Chapter Six could be synthesized 

and tested for their MIC and Log P values.  

More data can be collected for fluoroquinolones showing antibacterial activity against S. 

aureus for MIC and Log P. This data can be included in the current data to make even better 

QSPRs. Even though current QSPRs with 3D MoRSE descriptors show good correlation 

coefficient and predictability, other 3D descriptors can be tested to see if they generate better 

mathematical models for property prediction. 

The molecular design problem can be made larger by adding more basic groups and properties. 

This allows user to generate variety of chemical structures suited for different purposes. Current 

molecular design is done using combinatorial technique where groups are replaced. New aspects 

can be added to the molecular design which allow ring formation or building of new groups on 

current groups in addition to replacing them.  

For large non-convex MINLPs, it is difficult to find near optimal solutions in reasonable 

amount of time. This is also the drawback of the current Python code. It took approximately a 

minute to compute solutions for 70 molecules. It can be understood why computational time is 



65 

 

large in this case. There is an optimization problem that needs to be solved for every molecule that 

is generated. This problem is finding a stable, minimum energy conformation of this newly 

generated molecule so that its 3D coordinates can be determined. This has been done using Open 

Babel and Pybel within a Python environment. This process makes the computational time to find 

near optimal solutions larger compared to the same sized molecular design problem that doesn’t 

need 3D coordinates. There are two ways which could solve this problem. First is, adding a custom 

function to find a low energy conformation of the molecule in a simple way from 2D structure so 

that there is no need to use Open Babel and Pybel. The second one is use of parallel computing. 

An algorithm can be parallelized either by performing some steps of an algorithm in parallel while 

maintaining the same flow as original algorithm, or by fitting the algorithm into some parallel 

computing structure. The ABC algorithm which has been used in this work has a series of iterations 

that needs to be performed in order to reach the final solution. Every iteration goes through 

employed bees’ and onlooker bees’ phase where evaluation of solutions is performed. For 

example, let us consider an ABC system that has 10 maximum number of iterations, 5 employed 

bees and 5 onlooker bees. Hence, every iteration has 10 total evaluations. Here, parallelization can 

be done at the employed phase and onlooker phase. In normal ABC algorithm, 5 employed bees’ 

solutions will be evaluated one after the other and the next step will be evaluation of 5 onlooker 

bees’ solutions one after the other. In a parallelized ABC algorithm, 5 employed bees’ solutions 

can be evaluated parallelly and the onlooker phase which is dependent on employed bees’ solutions 

can also be parallelized. Thus, for one iteration, the computational time can be reduced by 5 times 

at the employed phase and at the onlooker phase. For the antibiotic design problem, the employed 

bees and onlooker bees are much larger in number. Therefore, parallelization would end up 

reducing the computational time significantly. 



66 

 

References 

Achenie, Luke EK, and Manish Sinha. "Interval global optimization in solvent design." Reliable 

computing 9, no. 5 (2003): 317-338. 

Achenie, Luke, Venkat Venkatasubramanian, and Rafiqul Gani, eds. Computer aided molecular 

design: theory and practice. Vol. 12. Elsevier, (2002). 

Ajorlou, Saeede, Issac Shams, and Mirbahador G. Aryanezhad. "Optimization of a multiproduct 

conwip-based manufacturing system using artificial bee colony approach." In Proceedings of the 

international multiconference of engineers and computer scientists (IMECS 2011). 2011. 

Aldred, Katie J., Robert J. Kerns, and Neil Osheroff. "Mechanism of quinolone action and 

resistance." Biochemistry 53, no. 10 (2014): 1565-1574. 

Andrews, Jennifer M. "Determination of minimum inhibitory concentrations." Journal of 

antimicrobial chemotherapy 48, no. suppl_1 (2001): 5-16. 

Ayan, Kürşat, and Ulaş Kılıç. "Artificial bee colony algorithm solution for optimal reactive power 

flow." Applied soft computing 12, no. 5 (2012): 1477-1482. 

Basak, Subhash C., V. R. Magnuson, G. J. Niemi, R. R. Regal, and G. D. Veith. "Topological indices: 

their nature, mutual relatedness, and applications." Mathematical modelling 8 (1987): 300-305. 

Bath, Peter A., Andrew R. Poirrette, Peter Willett, and Frank H. Allen. "The extent of the relationship 

between the graph-theoretical and the geometrical shape coefficients of chemical 

compounds." Journal of chemical information and computer sciences 35, no. 4 (1995): 714-716. 

Bazile, S., N. Moreau, D. Bouzard, and M. Essiz. "Relationships among antibacterial activity, 

inhibition of DNA gyrase, and intracellular accumulation of 11 fluoroquinolones." Antimicrobial 

agents and chemotherapy 36, no. 12 (1992): 2622-2627. 



67 

 

Bermejo, Marival, Virginia Merino, Teresa M. Garrigues, Jose M. Pla Delfina, Antonio Mulet, Patrick 

Vizet, Gérard Trouiller, and Christiane Mercier. "Validation of a biophysical drug absorption model 

by the PATQSAR system." Journal of pharmaceutical sciences 88, no. 4 (1999): 398-405. 

Bicerano, Jozef. Prediction of polymer properties. cRc Press, 2002. 

Bonabeau, Eric, Directeur de Recherches Du Fnrs Marco, Marco Dorigo, Guy Théraulaz, and Guy 

Theraulaz. Swarm intelligence: from natural to artificial systems. No. 1. Oxford university press, 

1999. 

Camarda, Kyle V., and Costas D. Maranas. "Optimization in polymer design using connectivity 

indices." Industrial & engineering chemistry research 38, no. 5 (1999): 1884-1892. 

Camarda, Kyle V., and Patrick Sunderesan. "An optimization approach to the design of value-added 

soybean oil products." Industrial & engineering chemistry research 44, no. 12 (2005): 4361-4367. 

Chavali, Sunitha, Bao Lin, David C. Miller, and Kyle V. Camarda. "Environmentally-benign 

transition metal catalyst design using optimization techniques." Computers & chemical 

engineering 28, no. 5 (2004): 605-611. 

Churi, Nachiket, and Luke EK Achenie. "Novel mathematical programming model for computer 

aided molecular design." Industrial & engineering chemistry research 35, no. 10 (1996): 3788-3794. 

Dang, Poonam, and A. K. Madan. "Structure-activity study on anticonvulsant (thio) hydantoins using 

molecular connectivity indices." Journal of chemical information and computer sciences 34, no. 5 

(1994): 1162-1166. 

Devinyak, Oleg, Dmytro Havrylyuk, and Roman Lesyk. "3D-MoRSE descriptors explained." Journal 

of Molecular Graphics and Modelling 54 (2014): 194-203. 

Draper, Norman R., and Harry Smith. "Advanced regression analysis." (1966). 

Duvedi, Amit P., and Luke EK Achenie. "Designing environmentally safe refrigerants using 

mathematical programming." Chemical Engineering Science 51, no. 15 (1996): 3727-3739. 



68 

 

Efron, Bradley. "Estimating the error rate of a prediction rule: improvement on cross-

validation." Journal of the American statistical association 78, no. 382 (1983): 316-331. 

Eslick, John C., Q. Ye, J. Park, Elizabeth M. Topp, P. Spencer, and Kyle V. Camarda. "A 

computational molecular design framework for crosslinked polymer networks." Computers & 

chemical engineering 33, no. 5 (2009): 954-963. 

Estrada, Ernesto, Enrique Molina, and Iliana Perdomo-López. "Can 3D structural parameters be 

predicted from 2D (topological) molecular descriptors?." Journal of chemical information and 

computer sciences 41, no. 4 (2001): 1015-1021. 

Estrada, Ernesto, Santiago Vilar, Eugenio Uriarte, and Yaquelin Gutierrez. "In silico studies toward 

the discovery of new anti-HIV nucleoside compounds with the use of TOPS-MODE and 2D/3D 

connectivity indices. 1. Pyrimidyl derivatives." Journal of chemical information and computer 

sciences 42, no. 5 (2002): 1194-1203. 

Galvez, Jorge, Ramon Garcia-Domenech, Jesús Vicente de Julian-Ortiz, and Rosa Soler. "Topological 

approach to drug design." Journal of chemical information and computer sciences 35, no. 2 (1995): 

272-284. 

Gani, Rafiqul, Bjarne Nielsen, and Aage Fredenslund. "A group contribution approach to computer‐

aided molecular design." AIChE Journal 37, no. 9 (1991): 1318-1332. 

Gasteiger, Johann, Jens Sadowski, Jan Schuur, Paul Selzer, Larissa Steinhauer, and Valentin 

Steinhauer. "Chemical information in 3D space." Journal of Chemical Information and Computer 

Sciences 36, no. 5 (1996): 1030-1037. 

Gebreslassie, Berhane H., and Urmila M. Diwekar. "Efficient ant colony optimization for computer 

aided molecular design: case study solvent selection problem." Computers & chemical 

engineering 78 (2015): 1-9. 

Halgren, Thomas A. "Merck molecular force field. I. Basis, form, scope, parameterization, and 

performance of MMFF94." Journal of computational chemistry 17, no. 5‐6 (1996): 490-519. 



69 

 

Kapetanovic, I. M. "Computer-aided drug discovery and development (CADDD): in silico-chemico-

biological approach." Chemico-biological interactions 171, no. 2 (2008): 165-176. 

Karaboga, Dervis, and Bahriye Akay. "A comparative study of artificial bee colony 

algorithm." Applied mathematics and computation 214, no. 1 (2009): 108-132. 

Karaboga, Dervis, and Bahriye Basturk. "Artificial bee colony (ABC) optimization algorithm for 

solving constrained optimization problems." In International fuzzy systems association world 

congress, pp. 789-798. Springer, Berlin, Heidelberg, 2007. 

Karaboga, Dervis, and Bahriye Basturk. "On the performance of artificial bee colony (ABC) 

algorithm." Applied soft computing 8, no. 1 (2008): 687-697. 

Karaboga, Dervis, Beyza Gorkemli, Celal Ozturk, and Nurhan Karaboga. "A comprehensive survey: 

artificial bee colony (ABC) algorithm and applications." Artificial intelligence review 42, no. 1 

(2014): 21-57. 

Karaboga, Dervis. An idea based on honey bee swarm for numerical optimization. Vol. 200. Technical 

report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005. 

Karunanithi, Arunprakash T., Luke EK Achenie, and Rafiqul Gani. "A new decomposition-based 

computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent 

mixtures." Industrial & engineering chemistry research 44, no. 13 (2005): 4785-4797. 

Kaur, Sandeep, Ganesh Kumbhar, and Jaydev Sharma. "A MINLP technique for optimal placement 

of multiple DG units in distribution systems." International journal of electrical power & energy 

systems 63 (2014): 609-617. 

Kier, Lemont B., Wallace J. Murray, Milan Randić, and Lowell H. Hall. "Molecular connectivity V: 

connectivity series concept applied to density." Journal of pharmaceutical sciences 65, no. 8 (1976): 

1226-1230. 

Kier, Lemont. Molecular connectivity in chemistry and drug research. Vol. 14. Elsevier, 2012. 



70 

 

Lowy, Franklin D. "Staphylococcus aureus infections." New England journal of medicine 339, no. 8 

(1998): 520-532. 

Mauri, Andrea, Viviana Consonni, Manuela Pavan, and Roberto Todeschini. "Dragon software: An 

easy approach to molecular descriptor calculations." Match 56, no. 2 (2006): 237-248. 

McCaffrey, C., A. Bertasso, J. Pace, and N. H. Georgopapadakou. "Quinolone accumulation in 

Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus." Antimicrobial agents and 

chemotherapy 36, no. 8 (1992): 1601-1605. 

McLeese, Samantha E., John C. Eslick, Nicholas J. Hoffmann, Aaron M. Scurto, and Kyle V. 

Camarda. "Design of ionic liquids via computational molecular design." Computers & chemical 

engineering 34, no. 9 (2010): 1476-1480. 

Mendivii, Franklin, R. Shonkwiler, and M. C. Spruill. "Optimization by stochastic methods." (1999). 

Morris, Carla C., and Robert M. Stark. Finite Mathematics: Models and Applications. John Wiley & 

Sons, 2015. 

Nikaido, H., and D. G. Thanassi. "Penetration of lipophilic agents with multiple protonation sites into 

bacterial cells: tetracyclines and fluoroquinolones as examples." Antimicrobial agents and 

chemotherapy 37, no. 7 (1993): 1393. 

O'Boyle, Noel M., Chris Morley, and Geoffrey R. Hutchison. "Pybel: a Python wrapper for the 

OpenBabel cheminformatics toolkit." Chemistry central journal 2, no. 1 (2008): 5. 

O'Boyle, Noel M., Michael Banck, Craig A. James, Chris Morley, Tim Vandermeersch, and Geoffrey 

R. Hutchison. "Open Babel: An open chemical toolbox." Journal of cheminformatics 3, no. 1 (2011): 

33. 

Pérez, Miguel Angel Cabrera, Humberto González Dıaz, Carlos Fernández Teruel, José Ma Plá-

Delfina, and Marival Bermejo Sanz. "A novel approach to determining physicochemical and 

absorption properties of 6-fluoroquinolone derivatives: experimental assessment." European journal 

of pharmaceutics and biopharmaceutics 53, no. 3 (2002): 317-325. 



71 

 

Petitjean, Michel. "Applications of the radius-diameter diagram to the classification of topological 

and geometrical shapes of chemical compounds." Journal of chemical information and computer 

sciences 32, no. 4 (1992): 331-337. 

Piddock, Laura JV, Yu Fang Jin, and Deborah J. Griggs. "Effect of hydrophobicity and molecular 

mass on the accumulation of fluoroquinolones by Staphylococcus aureus." Journal of antimicrobial 

chemotherapy 47, no. 3 (2001): 261-270. 

Raman, V. Shankar, and Costas D. Maranas. "Optimization in product design with properties 

correlated with topological indices." Computers & chemical engineering 22, no. 6 (1998): 747-763. 

Randic, Milan. "Characterization of molecular branching." Journal of the American Chemical 

Society 97, no. 23 (1975): 6609-6615. 

Sadowski, Jens, Johann Gasteiger, and Gerhard Klebe. "Comparison of automatic three-dimensional 

model builders using 639 X-ray structures." Journal of chemical information and computer 

sciences 34, no. 4 (1994): 1000-1008. 

Schneider, Gisbert, and Uli Fechner. "Computer-based de novo design of drug-like 

molecules." Nature reviews drug discovery 4, no. 8 (2005): 649. 

Schuur, Jan H., Paul Selzer, and Johann Gasteiger. "The coding of the three-dimensional structure of 

molecules by molecular transforms and its application to structure-spectra correlations and studies of 

biological activity." Journal of chemical information and computer sciences 36, no. 2 (1996): 334-

344. 

Siddhaye, Sachin, Kyle V. Camarda, Marylee Southard, and Elizabeth Topp. "Pharmaceutical product 

design using combinatorial optimization." Computers & chemical engineering 28, no. 3 (2004): 425-

434. 

Siddhaye, Sachin, Kyle V. Camarda, Elizabeth Topp, and Marylee Southard. "Design of novel 

pharmaceutical products via combinatorial optimization." Computers & chemical engineering 24, no. 

2-7 (2000): 701-704. 



72 

 

Sinha, Manish, Luke EK Achenie, and Gennadi M. Ostrovsky. "Environmentally benign solvent 

design by global optimization." Computers & chemical engineering 23, no. 10 (1999): 1381-1394. 

Soltzberg, Leonard J., and Charles L. Wilkins. "Molecular transforms: a potential tool for structure-

activity studies." Journal of the American Chemical Society 99, no. 2 (1977): 439-443. 

Team, R. Core. "R: A language and environment for statistical computing. Vienna, Austria: R 

Foundation for Statistical Computing; 2016." (2017): 860-864. 

Terfloth, Lothar, and Johann Gasteiger. "10 Calculation of Structure Descriptors." Chemoinformatics: 

Basic Concepts and Methods (2018): 349. 

Tetko, Igor V., Johann Gasteiger, Roberto Todeschini, Andrea Mauri, David Livingstone, Peter Ertl, 

Vladimir A. Palyulin et al. "Virtual computational chemistry laboratory–design and 

description." Journal of computer-aided molecular design 19, no. 6 (2005): 453-463. 

Weininger, David. "SMILES, a chemical language and information system. 1. Introduction to 

methodology and encoding rules." Journal of chemical information and computer sciences 28, no. 1 

(1988): 31-36. 

Wierl, Ro. "Elektronenbeugung und Molekülbau." Annalen der Physik 400, no. 5 (1931): 521-564. 

World Health Organization, Global priority list of antibiotic-resistant bacteria to guide research, 

discovery, and development of new antibiotics, Internal Report, (2017) 

Yoshida, H., M. Bogaki, S. Nakamura, K. Ubukata, and M. Konno. "Nucleotide sequence and 

characterization of the Staphylococcus aureus norA gene, which confers resistance to 

quinolones." Journal of bacteriology 172, no. 12 (1990): 6942-6949. 



73 

 

Appendix 

Python code for implementing the ABC algorithm 

A Python code has been written to solve the MINLP formulated in Chapter Four. The ABC 

algorithm is implemented in the python code to obtain results for MINLP, i.e. for obtaining 

molecular structures possessing target property values. Openbabel and Pybel are installed within 

the python environment to generate 3D coordinates of molecules. The code has three main 

sections: employed bees’ loop, onlooker bees’ loop and selection of scout bees after certain number 

of iterations. Every solution is assessed in terms of how close it is to the target property values. As 

the algorithm progresses, the difference between target and predicted properties decreases, which 

eventually leads to a near optimal solution. The code is given below. 

 

import random 

import math 

import openbabel 

import pybel 

import numpy 

 

# all the molecules will be represented in SMILES notation and will be saved in the form of a list 

of all the characters 

# for every group 

 

 

smiles = 'C1=C(C(=C3C2=C1C(C(=CN2[C@@H](C)CO3)C(O)=O)=O)C4(CC4)N)F'  



74 

 

# template molecule smiles notation 

 

 

switchable_groups = [30,32,33,38,49,50,53,55] 

# corresponding index in smiles string 

 

val_one = [55, 53, 30, 38] 

val_two = [49, 50, 33, 32] 

 

 

val_one_groups = ['F', 'N', 'C', 'O', 'CN', 'CO', 'CCN', 'CCO', 'CCCN', 'CCCO'] 

val_two_groups = ['C', 'O'] 

 

template_sequence = list(smiles) 

print template_sequence 

print '\n the number of characters are ', len(template_sequence) 

 

from copy import deepcopy 

 

'''ABC Settings''' 

 

MaxIt = 20     

# Maximum Number of Iterations 



75 

 

 

n_employed = 50 

# number of employed bees 

 

n_onlooker = 20 

# number of onlooker bees 

 

 

target_prop_mic = 6 

#target property value for -log(MIC) 

 

target_prop_logp = 1.5 

#target property value for log(P) 

 

'''data structures for storing employed and onlooker bees''' 

smi_em =[[] for zz in range(n_employed+1)]  

 

smi_on =[[] for zz in range(n_onlooker+1)] 

 

 

'''data structures for storing best solutions''' 

best_solution_smiles = [[] for zz in range(MaxIt)]   

### stores best smiles sequence 



76 

 

 

best_solution_prop = [[] for zz in range(MaxIt)]   

### stores best property value 

 

best_solution_prop_diff = [[] for zz in range(MaxIt)]   

### stores difference between target and best prop value 

 

 

 

'''Create Initial Population''' 

'''here all the employed and onlooker bees' initial solutions are the same molecule as initialised for 

template_sequence ''' 

print('Initial Values\n') 

 

for i in range(1,n_employed+1): 

    smi_em[i] = deepcopy(template_sequence) 

     

for i in range(1,n_onlooker+1): 

    smi_on[i] = deepcopy(template_sequence) 

     

    

 

def get_coordinates(smi_string_molecule): 



77 

 

    """  

    use this function as get_coordinates("CCC") 

    where CCC is the smi notation of the molecule you want to work on 

    """ 

    

     

    mol = pybel.readstring("smi", smi_string_molecule) 

 

    mol.addh() 

    mol.make3D() 

 

    foo = mol.write("sdf") 

    foo 

    bar = foo.split("\n")[4:][:mol.OBMol.NumAtoms()] 

 

    coordinates = map(lambda line: line.split()[:3], bar) 

    return coordinates, mol.OBMol.NumAtoms() 

 

def property_value(smile_string): 

 

    var = get_coordinates(smile_string) # var stores [(xyz cordinates), number of atoms] 

    coords = var[0] 

    Num_atoms = var[1] 



78 

 

     

 

    nn=Num_atoms 

    ## nn = number of total groups/atoms 

     

    t=0 

  

    

    B=[[0 for x in range(4)] for y in range(nn+1)]   

    # B is x y z co-ordinates matrix 

     

    dist=[[0 for x in range(nn+1)] for y in range(nn+1)] 

    ### matrix for storing interatomic distances 

 

    for i in range(1,nn+1): 

        for j in range(1,4): 

            B[i][j]=float(coords[i-1][j-1]) # converts string of numbers into actual number 

        

     

    sin_sum=0 

    

    for i in range(1,nn+1): 

        for j in range(i+1,nn+1): 



79 

 

            

            sum=0 

            for h in range(1,4): 

                sum=math.pow((B[i][h]-B[j][h]),2)+sum 

            r=math.sqrt(sum) 

            dist[i][j]=r 

             

    MORSE=[0 for x in range(11)]  

    #stores Mor01u to Mor10u 

     

    MORSE[1]=math.factorial(nn)/(2*math.factorial(nn-2)) 

    # calculation of Mor01u 

     

    for s in range(1,10): 

        sum_sum=0 

        for i in range(1,nn+1): 

            for j in range(i+1,nn+1): 

 

                sum_sum = sum_sum + math.sin(s*dist[i][j])/(s*dist[i][j]) 

                sum_sum = round(sum_sum,6) 

            

        MORSE[s+1]=sum_sum 

     



80 

 

 

   

             

    temp_2 = -0.002*MORSE[1]+0.09*MORSE[2]-0.082*MORSE[3]-0.127*MORSE[4]-

0.634*MORSE[5]-0.413*MORSE[6]+0.19*MORSE[7]-0.581*MORSE[8]-0.237*MORSE[9]-

2.509 

    ##Structure - property relationship for -log(MIC) 

     

    temp_logp = 0.022*MORSE[1]+0.011*MORSE[2]+0.624*MORSE[3]-

0.41*MORSE[4]+2.312*MORSE[5]-2.227*MORSE[6]+0.497*MORSE[7]-

0.465*MORSE[8]+0.589*MORSE[9]-11.375 

    ##Structure - property relationship for -log(MIC) 

     

    objective_fun = abs(temp_2-target_prop_mic)+abs(temp_logp-target_prop_logp) 

    ##objective function 

    

 

    return objective_fun 

 

least_value =[] 

for it in range(1,MaxIt+1): 

    print '\n This is iteration=  ',it 

    property_em = []  



81 

 

    property_em_diff = [] ### difference with target property values 

    property_on = [] 

    property_on_diff =[] 

     

    '''  ********    employed bees loop     *************''' 

     

    print '\n Employed Bees \n' 

    for e in range(1,n_employed+1): 

         

        old_em = deepcopy(smi_em[e]) 

        l = ''.join(old_em) 

        old_employed = deepcopy(l) 

        old_property_em = property_value(old_employed) 

        

         

 

        k = random.choice(switchable_groups) 

        #selection of a position for replacing a group 

         

        if k in val_one:    

             

            u = random.choice(val_one_groups) 

            # selection of a valency one group 



82 

 

             

     

            smi_em[e][k] = u 

            # smile notation change with new group at corresponding smiles string position 

             

             

        if k in val_two:    

             

            u = random.choice(val_two_groups) 

            # selection of a valency two group 

             

            smi_em[e][k] = u   

            # smile notation change with new group at corresponding smiles string position 

         

         

        new_string_em = ''.join(smi_em[e]) 

        ### joining all the characters to form a string 

         

         

        R = deepcopy(new_string_em) 

        

        new_property_em = property_value(R) 

        ## calculation of objective function 



83 

 

         

        ### greedy selection criteria   ##### 

        if new_property_em >= old_property_em: 

            smi_em[e] = deepcopy(old_em) 

            property_em.append(old_property_em) 

            

        else: 

            property_em.append(new_property_em) 

            

             

    old_property_values = deepcopy(property_em) 

    sorted_old_values = deepcopy(sorted(property_em)) 

    

    print 'this is prop diff list ', property_em 

    

    index = [] 

    

    ########################## ranking bees in this iteration ########################## 

    index_two = [] 

    for item in sorted_old_values: 

        for ind, value in enumerate(old_property_values): 

            if (item == value): 

                #print("******************This is Working************") 



84 

 

                index_two.append(ind+1) 

                break 

            else: 

                continue 

     

    

##############################################################################

############### 

    index = index_two[0:5] 

    ### these are best five employed bees 

     

    current_best = index_two[0] 

    ### this is best employed bee in the current iteration 

     

    current_worst = index_two[-1] 

    ### this is worst employed bee in the current iteration 

     

    current_second_worst = index_two[-2] 

     ### this is second worst employed bee in the current iteration 

    

    best_employed_sequence = smi_em[current_best] 

    best_employed_smiles = ''.join(smi_em[current_best]) 

    best_employed_prop = property_value(best_employed_smiles) 



85 

 

    

             

         

        '''This is the END of Employed Bees' Loop ''' 

         

         

        

     

    ''' ONLOOKER BEES LOOP Starts here''' 

             

    for on in range(1,n_onlooker+1): 

         

         

        old_on = deepcopy(smi_on[on]) 

        ###previous onlooker bee sequence 

         

        old_onlooker = ''.join(old_on) 

        ###joining the characters to form SMILES string 

         

        old_property_on = property_value(old_onlooker) 

        ###finding the value of objective function for old bee 

         

        onlook = random.choice(index) 



86 

 

        ##randomly selecting one bee out of good employed bees 

        

        now = ''.join(smi_em[onlook]) 

        smi_on[on] = deepcopy(smi_em[onlook]) 

        

                     

        k = random.choice(switchable_groups) 

        ###random selection of one group for replacement 

         

        if k in val_one:    

             

            u = random.choice(val_one_groups) 

            # selection of a valency one group 

            

            smi_on[on][k] = u 

            # smile notation change with new group at corresponding smiles string position 

             

        if k in val_two:    

             

            u = random.choice(val_two_groups) 

            # selection of a valency two group 

             

            smi_on[on][k] = u   



87 

 

            # smile notation change with new group at corresponding smiles string position 

         

         

        new_string_on = ''.join(smi_on[on]) 

        

         

        R = deepcopy(new_string_on) 

       

        new_property_on = property_value(R) 

         

         

        ##### greedy selection criteria   ####### 

        

        if new_property_on >= old_property_on: 

            smi_on[on] = deepcopy(old_on) 

            property_on.append(old_property_on) 

            

        else: 

            property_on.append(new_property_on) 

                        

             

    least = min(property_on) 

    ###closest property value to target value in this iteration 



88 

 

     

    least_indexx = (property_on).index(least) 

    #least_indexx = (property_on_diff).index(least) 

     

    least_value.append(least) 

    #print("\n\n\n least  diff value and corresponding index is  \n\n\n", least, least_indexx) 

     

    best_onlooker_sequence = smi_on[least_indexx+1] 

    best_onlooker_smiles = ''.join(smi_on[least_indexx+1]) 

    best_onlooker_prop = property_on[least_indexx] 

         

     

    ### choosing best solution in this iteration #### 

    if best_employed_prop <= best_onlooker_prop: 

        print '\n this is best soltution in this iteration ', best_employed_smiles 

        print '\n this is the corresponding prop ', best_employed_prop 

         

    else: 

        print '\n this is best soltution in this iteration ', best_onlooker_smiles 

        print '\n this is the corresponding prop ', best_onlooker_prop 

            

    ### choosing scout bees ###### 

    if it%10 == 0: 



89 

 

        smi_em[current_worst] = deepcopy(best_onlooker_sequence) 

        smi_em[current_second_worst] = deepcopy(template_sequence) 

         

        ##these two are scout bees, worst two employed bees solutions will be changed after 10 

iterations          

 


