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Abstract  

The idea that uterine environment and adverse events during fetal development could increase 

the chances of the diseases in adulthood was first published by David Barker in 1998. Since then, 

investigators have been employing several methods and methodologies for studying and 

characterizing the ontological development of the fetus, e.g., fetal movement, growth and cardiac 

metrics. Even with most recent and developed methods such as fetal magnetocardiography 

(fMCG), investigators are continuously challenged to study fetal development; the fetus is 

inaccessible. Finding metrics that realize the full capacity of characterizing fetal ontological 

development remains a technological challenge. In this thesis, the use and value of multiscale 

entropy to characterize fetal maturation across third trimester of gestation is studied. Using 

multiscale entropy obtained from participants of a clinical trial, we show that MSE can characterize 

increasing complexity due to maturation in the fetus, and can distinguish a growing and developing 

fetal system from a mature system where loss of irregularity is due to compromised complexity 

from increasing physiologic load. MSE scales add a nonlinear metric that seems to accurately 

reflect the ontological development of the fetus and hold promise for future use to investigate the 

effects of maternal stress, intrauterine growth restriction, or predict risk for sudden infant death 

syndrome.  
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Chapter 1: Introduction 

“The Womb May Be More Important Than The Home,” David J. P. Barker, 1990 [1] 

In 1990, with the emergence of studies on relationships between early life placental and birth 

weight and later life risk of hypertension, and through several similar epidemiological findings, 

Barker [1] began to explore the link between fetal and infant growth and adult cardiovascular 

disease. He started shaping his hypothesis about the significance of long term programming in 

early life. Using the new knowledge of fetal processes that could determine programing, he 

focused on developing a new model of adult degenerative diseases which would involve 

programming by the environment in fetal and infant life. 

In 1998 Barker [2] published the “Barker hypothesis,” stating that factors during critical 

periods of gestation predispose the fetus to certain postnatal diseases. That is, disruption or adverse 

stimuli at critical times of embryonic and fetal development can lead to developmental adaptations 

with changes through structural, physiological and metabolic mechanisms which could predispose 

the individual to metabolic, cardiovascular or endocrine diseases in adult life; now termed 

developmental origins of health and disease (DOHaD). 

After Barker’s seminal publication, a PubMed search shows over 4000 publications related to 

fetal programming in human and animal models. More than 300 of these publications are directly 

measuring effects of fetal programming. Research on animal models has been more informative 

with respect to mechanisms, largely due to more invasive outcomes measures [3] .However, 

research on human fetal programming has mainly used birth weight as the most readily available 

measure of fetal growth which is what Barker used more than 20 years ago. Both low and high 

birth weights could put the fetus at greater risk for obesity and metabolic diseases later in adult life 
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[4] [5] [6] . Also, research would benefit from measures more specific to understanding the 

neurodevelopment of the fetus. With ever increasing evidence of developmental programming 

effects and expanding needs for understanding its mechanisms, the field of human fetal 

programing is in need of methodologies and metrics that accurately and realistically index fetal 

programming and explain its mechanisms [7].  

Clinical Fetal Monitoring   

Clinicians typically monitor fetal well-being throughout gestation with measures of growth, 

observational nonstress tests (fetal body and breathing movements), heart rate, and during delivery, 

heart rate patterns. Doppler ultrasound is routinely performed to evaluate the intrauterine 

environment, e.g., amniotic fluid sufficiency, vascularity of the umbilical cord, or to check for 

structural malformations of the fetus. Cardiography is used during parturition to ensure fetal well-

being and evaluate its readiness and survival during labor. The biophysical profile is a more 

integrative test which includes electronic fetal monitoring and fetal breathing motions, motor tone 

and amniotic fluid adequacy. These methods, while useful for monitoring the well-being of the 

fetus, are too insensitive and nonspecific to be useful for developmental research [8]. 

Fetal Research 

Characterizing Fetal Development – Distinct fetal HR patterns are well-known and linked 

with specific fetal activity states. These states are quiet sleep (1F), active sleep (2F), quiet 

wakefulness (3F) and active wakefulness (4F) [9] . These behavioral patterns have been studied 

by combining ultrasonic observations and the above methods to monitor fetal heart rate. Even 

though this gives information about fetal behavior towards evaluating fetal well-being or detecting 

a compromised fetus, it gives little insight to distinguish between normal and deviant 
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neurodevelopment. Therefore, while this is useful for clinicians and during delivery monitoring, it 

is not informative for understanding the ontological development of the fetus and is not sensitive 

enough to study potential fetal programming effects [10].  

Methods for Fetal Developmental Assessment  

Fetal developmental programming investigators have recognized the need for improved 

measures to estimate the ontological development of the fetus. Therefore, several experts focused 

on defining better methods. They looked at several aspects of the fetus such as behavior, 

movement, brain development and the extent of its relationship to maternal factors. DiPietro et. 

al., conducted eight longitudinal studies of maternal fetal pair from June 1997 to February 2013, 

referred to as the John Hopkins Fetal Neurobehavioral Project. They collected data through a 

combination of brief ultrasound scans and the method of fetal actocardiography. Fetal 

actocardiography is based on a subset of electronic fetal monitors which can extract fetal motor 

activity from Doppler signals through a single wide array transabdominal Doppler transducer 

which also detects fetal heart rate. Fetal actocardiography detects fetal movements by bandpassing 

signals with the highest and the lowest frequency and maintaining the remaining signal [8].   

In attempts to characterize the self-organization, adaptation and the individual development 

of the fetus, DiPietro explored heart rate movement coupling and found evidence that individual 

differences in HRV originate before birth and persist from prenatal to postnatal life. She observed 

correlations between fetal movement and HR accelerations which were especially evident in the 

third trimester and could be related to central nervous system maturation. In addition to findings 

about possible coordination of autonomic and motor function, DiPietro studied the effects of mild 

to moderate prenatal stress on motor development and association between the mother’s emotional 

state and the behavior (heart rate of) her fetus in later pregnancy  [11] . For example, she and 
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colleagues saw that the attitude of the mother towards pregnancy influences the level of motor 

activity in the fetus [12] . 

DiPietro’s efforts, among others established the association of maternal stress and anxiety 

with ultrasonographically observed fetal behavior and fetal heart rate [12], but she herself 

recognizes the limitations of Doppler Ultrasound. Even though this was the only commercially 

available means for both clinical and research use for a long time, it does not have the capacity for 

generating true interbeat (IBI) intervals and therefore has very limited use in developmental 

psychophysiological research [8]. 

Other researchers advanced the field by recognizing the limitations of standardized time- and 

frequency-domain HRV metrics for use in the fetus and realized the influence of fetal activity 

states and other typical movements on fetal HRV  [13] . David et al., analyzed fetal HRV using a 

continuous wavelet transform and observed differences in fetal HRV across time and frequency 

[14] . They established specific frequency bands for the fetus that differ from adults, given the 

higher HR and other significant differences between adults vs. the fetus. 

They used fetal and maternal ECG signals recorded by a FECG and heart rate monitor system. 

ECG has several complications such as electrical interference from external sources or maternal 

abdominal muscle activity, and attenuation of the intensity of fetal R-waves due to the electrical 

isolation created by fetal vernix. In spite of that, they were able to detect beat-to-beat fetal R waves 

accurately enough to use is for exploring fetal autonomic development and maturation [14]. In 

addition, they have appreciated more than other investigators at the time, noting the challenges 

and limitations of standard HRV metrics in spite of their clinical application, and the challenges 

of studying the fetus, an organism in a fluid environment, who is not breathing and yet has periodic 
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diaphragm movements, and whose HRV changes with changing activity states, different 

neurobehaviors, and maturation. 

Fetal magnetocardiography (fMCG) is an approach for noninvasive detection and recording 

of the fetal magnetocardiogram. Magnetic fields are generated by electric currents in the maternal 

and fetal bodies [15]. Using fMCG, Wakai showed that short-term and long-term fetal heart rate 

variability (fHRV) change during gestation and this may suggest the differential maturation of 

processes that control fHRV. He focused on fetal arrhythmias and observed an increase in fetal 

breathing movements and RSA in the third trimester of pregnancy [16]. Wakai also made efforts 

to characterize the influence of fetal state on heart rate variability [17]. 

Van Leeuwen and Cysarz et. al., looked at maternal– fetal HR interaction and synchronization 

[18] . Based on the observations that fetal heart rate changes with changes in physiological and 

psychological state of the mother and therefore correlated behavior of mean heart rates of mother 

and the fetus, and suspecting a specific coupling between maternal and fetal cardiac systems, they 

[19] found a phase synchronization between heartbeats of mother and fetus. In their work, they 

used multichannel magnetocardiography which simultaneously recorded the magnetic fields 

generated during each maternal fetal heartbeat at resting supine state [20]. Hoyer et. al., proposed 

a fetal autonomic brain age score using fetal heart rate patterns which he composed by time and 

frequency domain indices computed from fetal diagrams [21].  

As methods such as Doppler US and fMCG were explored further by these researchers and 

when they were sufficiently developed, Gustafson et al., used fetal biomagnetometry to 

characterize specific fetal neurobehaviors and their corresponding magnetic field properties as well 

as their effect on cardiac autonomic control. They characterized fetal neurobehaviors such as non-

nutritive suck (NNS), hiccups, and breathing movements and showed how the fetus modulates 



6 

 

heart rate around these behaviors [7, 22-24]. Their work advanced fetal developmental research 

from crude assessments towards using these methods, by primarily testing whether metrics of fetal 

HRV were sensitive enough to detect differences in groups where maternal factors might influence 

the development of cardiac autonomic control [25] .  

Gustafson explored the roles of several interventions on the development of fetal 

neurobehaviors and autonomic control. One of these studies investigated the effect of maternal 

physical activity on fetal and infant cardiac autonomic control. The investigators showed that 

maternal physical activity can influence development of fetal cardiac autonomic control and the 

duration and intensity of exercise is a determining factor of this influence. They also found that 

these effects carry on into the infant period and concluded that maternal exercise has a 

programming effect on offspring cardiac autonomic control rather than a transient in-utero 

phenomenon [25, 26] .  

Maternal-fetal biomagnetometry was used in a randomized clinical trial designed to determine 

the effect of docosahexaenoic acid (DHA), supplements taken by pregnant participants throughout 

the last two trimesters of pregnancy, on fetal autonomic development [7]. The results of this study 

showed that DHA supplementation to the mother increases fetal HRV [27] . It also led to evidence 

that suggested this effect was global and extended to both branches of the ANS rather than just 

specific to one. This was further validated by two Neonatal Behavioral Assessment Scale (NBAS) 

clusters turning out significantly higher in babies whose mothers received DHA, which signifies 

improved function in specific neurobehavioral domains [7, 28]. 

Fetal biomagnetometry, or fetal magnetocardiography (fMCG) is much more precise and 

reliable than other methods and it is noninvasive. fMCG is very sensitive to the changes in 

coordination and orientation of the fetal heart [7, 8]. Even though fetal biomagnetometry shows 
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great promise as a noninvasive and sensitive method for understanding the effects of interventions 

on physiology and neural integration, the limitations of HRV analysis in the fetus are still 

recognized. In adults, HRV are used in clinical assessment of cardiac health. HRV metrics have 

extended to psychological research to study vagal influence [29]. In the fetus, HRV has been used 

as proxy for central and peripheral nervous systems assessment and the degree of integration and 

coupling between them at different points during development. Therefore, there is a need to 

discover better methods and metrics which fully realize the capacity of HRV in measuring and 

understanding this integration between multiple systems in control of neurodevelopment and 

therefore development overall [7].  

For the field of fetal developmental research to advance, there is critical need for more 

sensitive and integrative measures that can inform the developmental processes and mechanisms 

that reflect maturation and integration of the fetal nervous system. The aim of this thesis is 

therefore to explore nonlinear metrics of HRV to evaluate whether these metrics better model the 

development of the fetus. Specifically, to find whether nonlinear metrics of entropy can 

characterize the autonomic integration during fetal development throughout gestation. [having in 

mind that the increase in maternal HR and decrease in maternal HRV with pregnancy has been 

established [30], and to better distinguish the role of entropy in reflecting development, we 

compare and contrast the way entropy represents fetal HRV changes with maternal HRV changes 

during gestation. 

We predict that as the fetus develops, the increased influence of vagal control will be reflected 

in the trends of Multiscale entropy, which is a nonlinear measure of HRV. As the fetus progresses 

past 30 weeks of gestation, changes in activity states and brain maturation occur which are 
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attributed to increased vagal control [8]. If our hypothesis is true, we should see increased vagal 

influence apparent in MSE scales between 32 and 36 weeks. 
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Chapter 2: Literature Review 

Fetal Research 

Fetal surveillance based on cardiac signals has been in place since 1600 [31] and more widely 

spreading around 1940s. Around 1980s when scientists became particularly interested in fetal 

development and research, heart rate as a way to assess well-being by clinicians increased; several 

tools towards reliably recording Fetal Heart rate (FHR) were created. Since then, documentation 

of fetal development using new devices and methods for FHR monitoring and interpretation 

became prominent [8] .There were many reasons for the increased focus on FHR, along with new 

devices and methods for FHR monitoring and interpretation, which started then and is continuing 

nowadays. Firstly, studies showed characteristic changes to HR patterns correlated with general 

placental under-perfusion and hypoxic events. Secondly, FHR is the most available and direct 

measure for monitoring fetal breathing, and thirdly, it is a way to assess fetal behavior [8, 16] .  

From a clinical standpoint, fetal health has been connected to fetal breathing, fetal movement 

and overall fetal behavior. This was due to observations that a fetus with a compromised health 

for any reason, shows limited physical mobility. Characterization of fetal behavior is the basis of 

neurodevelopment. On the other hand, the heart is largely under the influence of the autonomic 

nervous system. The SA node which on its own would lead the heart to beat at a constant rate, the 

conduction system and the myocardium are innervated by the ANS nerves. Sympathetic and 

Parasympathetic nervous system, two branches of ANS, work antagonistically and their constant 

activity is mediated by the Autonomic Nervous System. FHR is therefore the most tangible tool 

for understanding, monitoring and potentially improving fetal neurodevelopment and ultimately 

prenatal and neonatal health [8, 16] .Today clinical FHR measurement and monitoring is 

performed in clinic for ensuring fetal health throughout gestation and adequate oxygenation during 
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delivery. In research it is of interest for understanding fetal behavioral and neurodevelopmental 

processes and creating early diagnostic methods [31] . 

Fetal Heart Rate and Heart Rate Variability 

As early as the 1900, investigators looked at HR and HRV and noticed how they change with 

developmental advances and asked questions about the specific sources of these changes [32]. 

FHR was then and is now still an available measure of monitoring and assessing the fetus. The 

first tool for FHR measurement was a stethoscope used on the pregnant mother’s belly and since 

then different tools have been developed which are mostly based on principles such as Doppler 

ultrasound, bioelectric fetal signals and electromagnetic fetal signals.  

The simplest and oldest use of FHR was for ensuring general fetal wellbeing throughout 

pregnancy and during labor. Several tests and procedures have been carried out and various new 

protocols have been developed to respond to evolving clinical practices over time. Beginning 

nearly 40 years ago, non-stress testing of the fetus was incorporated into prenatal care protocols. 

This test was the first evaluation method which acknowledged and emphasized the connection 

between FHR accelerations and fetal health [33] . The fetal non stress test is the current primary 

clinical tool for externally monitoring the fetus, looking for fetal heart rate variability, specifically 

FHR accelerations due to fetal movements and other uterine activity [34]. This is a general and 

non-sophisticated test which categorizes the fetus as non-reactive if it detects less than two 

accelerations of 15 bpm or greater in 20 minutes [8, 33] . For adults, HRV is studied in the areas 

of cardiovascular disease, renal failure, smoking and drug addiction, sports, anxiety and 

depression. Some specific clinical uses are in predicting sudden cardiac death after acute 

myocardial infraction or diabetic cardiovascular autonomic neuropathy [35] . Some of the most 

recent clinical uses of FHR is in understanding the process of neurodevelopment and early and 
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noninvasive diagnosis of related pathologies, as well as fetal network physiology and the 

mechanism which engineers the coupling of fetal and maternal systems. 

Heart rate variability (HRV) by definition is the variations between consecutive inter-beat-

intervals (IBIs), or changes in heartbeat interval and is in a way, reciprocal of the HR. HR is 

controlled and regulated by the ANS through its connections with the CNS called Central 

Autonomic Network. The sympathetic (SNS) and parasympathetic (PNS) branches of the ANS 

have different influences on HR. SNS activity increases HR and decreases HRV, while PNS 

actions lead to decreased HR and increased HRV. In addition to this central influence, quick 

changes in HR occur by the arterial baroreceptor reflex which affects the sympathetic and 

parasympathetic activity and respiration [35] .  

For the fetus, these controls can be divided into the two categories of neural and non-neural 

regulation. Neural control which is driven by SNS and PNS changes throughout gestation. AS the 

parasympathetic and sympathetic innervations progress, the parasympathetic influence increases 

and the role of autonomic control which is initially performed by medulla oblongata is undertaken 

by higher cortical areas. Non-neural regulation is through physiological processes such as 

metabolic pathways [8, 16] . HRV is valuable because it gives information about these controlling 

pathways and systems such as nervous system inputs, adaptability and capacity of autonomic 

regulation and its balance, and status of developing systems within fetal body [8] , and 

physiological regulation.  

As previously mentioned, HRV is very important to understanding the ANS. The autonomic 

control generates the sinus rhythm of the heart in the SA node. Tracking the action potentials in 

the SA node for HRV measurement is not practically possible. In an ECG, the closest event to the 

SA node firing is atrial depolarization which is observed as the p-wave in the QRS complex. The 
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time between the two P-waves is therefore the period of the heartbeat. However, Ventricular 

depolarization contributes much more to the QRS complex than atrial depolarization and causes a 

better signal to noise ratio when compared with P-wave. Therefore the time between two QRS 

complexes instead of that of the p-waves is the basis for computing the heart beat period [35] . The 

contribution of ventricular depolarization is shown in figure 1. 

 

Figure 1. Electrophysiology of the Heart [35] 
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FHR and FHRV Monitoring Methods 

Some of the earliest fetal research involved auscultation; simply using a stethoscope to hear 

fetal heart beat through the mother’s abdomen. The heart beats were manually timed using a 

stopwatch and then either averaged to estimate the mean heart rate or were plotted for limited time 

durations. Years later, electronic fetal monitors for automatic detection of FHR were devised. Also 

called fetal cardiography, this method detects motions of the fetal heart, and therefore fetal heart 

beats based on Doppler, by detecting the frequency changes resulting from each systole. 

Autocorrelation methods are then employed for quantifying FHR.  

The majority of fetal monitoring studies so far have been conducted based on Doppler detected 

fetal heart rate as a commercially available and affordable technology for both research and clinical 

use [8] .  Ultrasound imaging, offered in three types of B-mode, M-mode and Doppler ultrasound, 

is still a widely used technique by mainstream researchers. B-mode and M-mode ultrasound both 

rely on two-dimensional cross-section images of the fetus, but M-mode offers more accuracy and 

detail because of continuous scanning of cross sectional images and therefore improved temporal 

resolution and, simultaneous structural measurements and comparisons during the cardiac cycle. 

B-mode ultrasound is suitable for general structural information such as head circumference (HC) 

or femur length (FL). M-mode offers more heart-specific structural insights such as ventricular 

walls thicknesses or systolic/diastolic diameter, and interaventricular septum thickness [15] . As 

mentioned above, Doppler ultrasound is used for the measurement of fetal heart rate, while also 

reporting on fetal circulation. As parts of tissues/organs such as heart walls move with respect to 

the ultrasound transducer, the resulted Doppler shifts are measured, ultimately enabling detection 

and tracking of fetal Respiratory Sinus Arrhythmias. Three dimensional (3D) color Doppler 

echocardiography and 4D fetal Doppler echocardiography are two recent extensions of Doppler 
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ultrasound which provide volumetric information about the fetal body and minimize the image 

reconstruction lag respectively and therefore present improved quantity and quality of information 

[15]. 

Doppler is indeed a valid method for quantifying FHR, but it lacks the capability to create true 

interbeat (IBI) intervals and therefore does not tell much about FHR variability which is highly 

required for any developmental fetal research. Also it is contaminated with artifacts and noise, 

hence requiring sophisticated signal processing techniques [15] . In recent years it became evident 

to physicians, scientists and researchers that unlike research of any other period of human life, 

fetal and prenatal science depends critically on technology and its capabilities in answering even 

the simplest questions. Focus of the research community partially shifted towards sophisticated 

imaging and HR measurement technologies after going back and forth between complicated 

unanswered questions [8] . A few other approaches have been developed for detecting the electrical 

or electromagnetic signals of the fetal R-wave noninvasively though the maternal abdomen surface 

[8] . Today, the most widely used techniques are ultrasound imaging, fetal electrocardiography 

(fECG) and fetal magnetocardiography (fMCG) [15] .  

fECG measures the heart’s electrical activity and heart beat patterns. In spite of low cost and 

accessibility of this method, it has several disadvantages. It is very difficult to set apart electrical 

fetal signals from larger and stronger maternal signals through transducers which are placed on the 

maternal abdomen. This is a bigger problem early during gestation due to week fetal cardiac 

readings as well as later during weeks 24 to 36 due to the relatively rapid thickening of vernix 

caseosa which is an electrical insulator [8, 15, 16].  



15 

 

Fetal Magnetocardiography (fMCG) 

fMCG was first performed in 1974 by A gradiometer type SQUID magnetometer intended to 

reach the sensitivity of 10 ngauss with a 100 Hz bandwidth, in a wooden cottage 70 m away from 

the nearest residential areas [36] . At first, many investigators used this approach to study 

congenital heart defects such as congenital atrioventricular block in fetuses [37] . Longitudinal 

research with MCG later developed and led the field towards more focus on growth and 

developmental questions. As the role of autonomic nervous system on fetal development and 

cardiac control was investigated by fMCG experts, more specific topics such as the influence of 

fetal states or other factors on HR and HRV [38] , fetal-maternal coupling and network physiology 

[39] , clinical diagnosis of serious fetal arrhythmia [40] and fetal brain age score [21] raised. What 

has been suggested by recent research is the individuality of HRV which is one of the most 

significant findings for the future of fetal development research [31] . 

Known for its precision in assessment of fetal beat-to-beat HRV, fMCG is an approach for 

noninvasive detection and recording of fetal R-waves which records the magnetic fields generated 

by electric activities in the fetal/maternal body. This electrical activity could come from many 

sources such as the eye, the brain, the heart and any type of fetal movements such as trunk 

movements or breathing activity. The advantage of this over FECG is that magnetic signals do not 

suffer from low conductivity or contamination by noise and maternal signals as much as electric 

signals [15].  

In general, biomagnetic and bioelectric signals have similar features and quality, but for fetal 

signals this is not the case. Fetal electric signals are weak with lots of interference from maternal 

signals and a low amplitude. Fetal magnetic signals are on the other hand offering notable higher 

quality even as early as 20 weeks gestation [16] .  
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fMCG is therefore much more reliable even though it is largely altered by the distance between 

sensors or between sensors and the source as well as the configuration of the volume conductor. 

This is different from person to person or depending on the gestational age [15] . fMCG is very 

sensitive to the changes in coordination and orientation of fetal heart and this was how fMCG 

actography developed. Fetal actocardiography bandpasses extreme frequency signals such as fetal 

heart rate signals with high and maternal somatic activity with low frequencies and maintains the 

remaining signal which is indicative of movements [8] . Fetal actography is a way of inspecting 

fetal activity. Fetal trunk movements are the most noticeable and important movements which 

result in episodic variations in signal baseline and amplitude [16] . fMCG is therefore very suitable 

for detecting and analyzing gross fetal trunk movements and general fetal activity [16].  

Due to its accuracy, robustness, reliability and noninvasiveness, fMCG has been deemed as 

an appropriate approach for monitoring and understanding the effects of different factors such as 

nutrition on the development of fetus and the autonomic control of the heart [31] . Several findings 

of fMCG such as its detection of RSA have proven this method exceptionally useful and important 

in understanding and predicting important neonatal problems such as sudden infant death 

syndrome. This is just one example of how fMCG alone has revolutionized and increased the 

diagnostic and predictive value of FHR and FHRV [16]. 
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Chapter 3: Materials and Methods 

fMCG Recording 

The first step of the study is recording fetal and maternal HR using an investigational 

biomagnetometer with 83 channels, shown in figure 2. This device is custom-designed by CTF 

systems (a subsidiary of VSM MedTech, Ltd) and placed in a magnetically shielded room to 

prevent noise and contamination from any other magnetic fields outside maternal body. The sensor 

array is distributed specifically to span across the gravid maternal abdomen. These sensors are 

particularly sensitive axial gradiometers that use superconducting quantum interference devices 

(SQUID) to detect even the weak magnetic fields coming from the inside of maternal body. The 

83 channels enable simultaneous multichannel recordings and therefore a time resolution of 

millisecond. Fetal biomagnetometry is a preferred method for FHR and FHRV analysis because 

in addition to overall exceptional quality of recordings, it is completely noninvasive, it records 

biomagnetic signals from sources in addition to the heart, and it records the QRS complex and 

therefore precisely each R-peak which is necessary for accurate HRV measurements [31].  

 

Figure 2. 83 Channel Investigational Biomagnetometer 
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EEGLAB 

EEGLAB is a toolbox offering an interactive graphic user interface (gui) which runs under 

the cross platform MATLAB environment. It is intended for flexible processing of continuous and 

event-related EEG, MEG, and in general electrophysiological data by employing independent 

component analysis (ICA) algorithm, time/frequency analysis, and various artifact rejection 

algorithms and programs such as standard averaging methods [32] [41] .  

EEGLAB comes with a detailed tutorial and help notes and a command history function for 

smooth transition from gui-based data exploration to building batch, running it or custom data 

analysis. It is freely available under the GNU public license for noncommercial use along with the 

tutorial, sample data and thorough documentations. Some other features are visualization and 

modeling event-related brain dynamics, structured programming environment for storing, 

accessing, measuring, and manipulating any high density and dynamic brain data, and open-source 

platform for research programmers to share methods with the research community by contributing 

plug-in functions that show up in the menu [32, 41]. More specifically, available EEGLAB 

functions are for EEG and MCG data, channel or event information importing, data visualization, 

pre-processing, independent component analysis (ICA) and time/frequency decompositions. All 

these functions are categorized in three different layers with the goal or ease of use and efficiency 

by various types of users.  When using top layer functions, the user does not need MATLAB syntax 

and instead can work with the data using the graphic interface. This is the simplest way to import 

data, and run it through processing and visualization functions in the main menue under five tabs: 

File, Edit, Tools, Plot, and Help [32, 41] .  

The second layer consists of the EEGLAB command history which is suitable for intermediate 

users. In addition to using the main menu, these users can use the command history and create 
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batch scripts when they need to process similar datasets. Menu option functions can also be called 

through Matlab command lines and depending on how they are called, they run with or without a 

pop-up window for taking additional inputs or parameters. 

The third layer of EEGLAB functions is the opportunity for the user to take advantage of fully 

documented data processing functions directly for direct computations on datasets with the user’s 

own script. Experienced users can write their own scripts using EEGLAB data structures to call 

any EEGLAB functions. The best way to take full advantage of EEGLAB is to use all three modes 

of  EEGLAP capabilities described above: GUI-based, history-based, and autonomously scripted 

data analyses [32] .  

fMCG and EEGLAB 

fMCG recordings contain much more than needed for FHR and FHRV assessment. They have 

signals from several sources other than the heart from both mother and fetus. The Independent 

Component Analysis (ICA) available in EEGLAB is based on an infomax-based ICA algorithm 

[41] , which incorporates the maximum entropy method by Bell and Sejnowski [42]  that 

maximizes the mutual information between inputs and outputs by only maximizing the entropy of 

the outputs, and Amari et al learning algorithm which minimizes a statistical dependency among 

outputs for blind separation of mixed signals [43] . By estimating an optimal linear transformation, 

ICA maps the multivariate data into temporally independent components with distinct spatial 

distribution [23] . 

 In the case of fMCG, ICA is used for filtering purposes, enabling the removal of components 

that have temporal patterns which associate them clearly with other electrophysiological sources 

[15] . ICA separates raw biomagnetic signals into maternal cardiac, maternal breathing, fetal 
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cardiac, fetal breathing, fetal movements and other artifacts according to their spatially distinct 

electrophysiological sources. It reconstructs specific components in the sensor space to map the 

location of their corresponding signals [25] and this makes it possible to obtain HRV from the 

QRS wave and specifically the R-R interval. This algorithm has been independently evaluated and 

verified for efficiency in artifact rejection of fetal magnetographic recordings and used by several 

researchers in this field for purposes such as characterizing fetal behavior [23, 44, 45] . 

KubiosHRV 

 Kubios is an advanced software tool for studying the variability of heart beat intervals. It was 

designed by Kubious OY (limited company) which is a biotech company with the focus of 

developing software and algorithms for biomedical signal analysis. Several analysis options and 

user-friendly interface, it is the most popular HRV tool used by many human or animal health, 

medical, or sports researchers and clinicians in the fields of cardiology, neurology, maternal-fetal 

medicine, etc. It enables examination of the heart together with the ANS functioning. The most 

common uses of this software today is in the fields of HRV analysis and neurology as well as 

sports research in assessing the well-being of athletes [35].  

There are currently two versions of this software, Kubios HRV Standard and Kubios HRV 

Premium. The main advantage of Premium over Standard is that it supports a wider range of ECG 

and HR data, it offers time-varying options and supports group analyses, and is for scientific and 

commercial applications. A comprehensive Kubios HRV user manual is available with both 

versions of the software in which metrics, procedures, settings, etc as well as functional differences 

between the two versions are explained. With each updated version of the software, the user’s 

guide is updated with a “release note” section which consists of detail descriptions of the most 

recent updates and changes. This user’s guide is accessible on the Kubious website. The website 
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also has a FAQ/troubleshooting section addressing the most common and recent issues users face 

with solutions. The main advantage of Premium over Standard is that it supports a wider range of 

ECG and HR data, it offers time-varying options and supports group analyses, and is for scientific 

and commercial applications.  

System requirements for running Kubios on Windows are the following: a 64-bit operating 

system with at least 4 GB of RAM and 3-5 GB of disk space, 1024 * 768 or higher screen 

resolution, and the MATLAB Runtime R2016b (ver 9.1) because Kubios was developed using this 

version of MATLAB and was compiled to a standalone application with the Matlab compiler [35]. 

After registration or purchase is completed at http://www.kubios.com/, necessary information for 

installation and the personal license key are provided. Installation is easy and straight forward and 

before the first launch, the user needs to activate her personal license key on the same computer 

[35] .  

The user’s guide is the best reference to get started with Kubios HRV, however it does not 

include step by step instructions. This is because there are numerous pathways and applications 

for using the metrics and analysis options. The user’s guide includes an overview of HR and HRV, 

extraction of heart beat intervals, derivation of HRV time series and other descriptions needed for 

every researcher to better interpret the data and use the available analysis options. It also includes 

descriptions of types of input data that are supported and approaches for saving and analysis of 

outputs and results, software features and operational interface. Instructions for setting 

requirements for different analysis options and other details needed to learn all the functionalities 

of the software are also included.  
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The user’s manual also contains two sample runs and pre-processing and analysis methods in 

the time-domain, frequency-domain, nonlinear and time-varying categories for more thorough and 

practical aspects of working with and making the most of raw data.  

Data Collection 

Each recording session is conducted individually. Before starting the pregnant participant is 

asked to remove pieces of clothing that contain metal or jewelry which could interfere with the 

recordings. Then she is seated in a reclined posture facing the biomagnetometer and both the seat 

and the biomagnetometer are adjusted so that the maternal abdomen fits inside the concave surface 

of the sensor array with minimal contact, ensuring the participant can easily take deep breaths 

without feeling any discomfort or pressure, particularly on the vena cava. Legs are supported via 

adjustable foot pedals, hands are rested against arm cushions, and optional head rest and back 

support is available. Each recording lasts for 30 minutes, throughout which the participant is 

monitored or if necessary interacted with, via camera and microphones in the shielded room. 

The biomagnetometer has 83 channels. This number of channels is necessary because the 

recorded signal is a combination of signals from numerous sources such as maternal or fetal heart, 

fetal brain or eyes, breathing or extremities movements and other in utero activities. Without these 

many sensor channels it would not be possible to record and then separate all the signals because 

of insufficient information captured by the recording. 

Data is acquired with a 1200 Hz sampling rate and a recording filter of 0-75 Hz. Afterwards, 

digital filtering is performed offline with bidirectional fourth-order Butterworth filters between 0.5 

and 40 Hz. The resulted raw data is a combination of several maternal and fetal signals with 

different sources such as maternal breathing, uterus smooth muscle contractions. By visual 
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inspection, maternal and fetal MCG are distinguishable, even though the peaks overlap at times 

and could prevent the correct identification of all R-peaks [31] . 

After opening EEGLAB and running it in MATLAB, by selecting “load existing dataset” 

under the tab file, the fMCG recording in .set format is loaded. Then under the tab “plot”, 

“component activities” are plotted. The channels record mixed signals from several sources such 

as maternal and fetal cardiac signals, diaphragm movements, nonnutritive suck, and maternal 

muscle contractions, and etc. When EEGLAB is plotting component activities, in fact it is 

performing ICA to decompose the mixture of signals recorded by the sensors into temporally 

distinct (maximally independent over time) components each of which normally display one 

specific signal [31, 41] . 

After waiting a few seconds for ICA process to be completed, the plot of all components are 

loaded and the independent components are visually inspected in order to recognize all the 

components of interest. Figure 3 shows a typical component activities plot. Using previous work 

of several researchers in characterization of fetal behavior using fetal magnetocardiography, 

several components such as fetal cardiac, maternal cardiac, fetal hiccups, maternal uterine muscle 

contraction, fetal nonnutritive suck, fetal dMMG and eye movement can be recognized  [22-25] . 

In Figure 3, 10 seconds of fMCG data with activities of the first 11 independent components are 

shown. Maternal cardiac components are seen in IC1 and IC2, fetal cardiac components are seen 

in IC3, IC4 and IC5. 
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Figure 3. Component activities, EEGLAB 

 

After visually inspecting and identifying the fetal cardiac components, they need to be 

extracted and isolated from the rest of the components. A good component is one that is 

consistently showing fetal cardiac recordings preferably for the entire recording time. If there are 

more than one such components, all must be retained in order to maintain as much information as 

possible. Under the tab “tool” in the main menu, picking the option “remove components” opens 

a window in which the components to retain or the ones to remove can be specified. The output of 

this step is another .set file which is saved as a different name and automatically loaded in 

EEGLAB. In order to use this data for obtaining IBT time series, HR and HRV, a .text file is 

needed. Therefore this file is exported to a text file containing the RR data.  
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Many times especially in early weeks such as 28 weeks and prior, due to the small size of the 

fetus and occurrence of numerous and quick movements, the signal is not retained in any one 

components for the entire recording. Therefore, there are no good components to isolate and 

export. For example, depending on how the fetus moves, fetal cardiac signal may be visible in IC2 

for the first 6 minutes of the recording and then be transferred to IC4 for the next 4 minutes. This 

might happen several times during a 30 minute recording.  

In this case to maintain the entire signal as much as possible and yet prevent contamination of 

components into each other, the chosen components could be extracted and reconstructed together. 

But an additional step is required in which after extraction of the best components, the channel 

data is plotted to identify and extract appropriate channels which contain the desired signal. Using 

this step, the signals are reconstructed from the channels and instead of exporting components to 

text file, channel data are exported to text file. A good channel is a channel in which RR peaks are 

recorded consistently for the entire recording. It is preferred that these RR peaks are positively 

recorded in this channel, and if that is not the case, a channel must be picked that has either positive 

or negative RRs consistently for the entire recording. A channel in which RR peaks are flipped up 

and down multiple times is not useful for further processing. Extraction of good channel(s) helps 

remove any other signals from undesired sources or noise which lead to unfavorable ICA outputs 

in the first place.   

Edit Preferences 

The settings and specifications for how to process and analyze ECG and RR interval data can 

be edited and set permanently in “Preferences”. Preferences has 4 different groups. The first one 

is User Information in which the name, last name, affiliation, and etc. of the person who performs 

the analysis, are specified to be shown in the report sheet as well as ACCII text file [35] . 
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The second group is Input data & Pre-processing which allows the input data type to be set to 

any of the formats compatible with Kubios. Signal type can be specified to either ECG or PPG 

which determines the heartbeat detection procedure. With ECG signals, QRS detection options let 

the user set the polarity of R-wave. This comes in handy especially when the exported fMCG 

channel has inverted signals where the R peaks are flipped down and therefore the RR intervals in 

the text file are negative. The prior guess for RR interval could also be designated as automatic, 

letting Kubios detect the R-waves polarity. Most of the time if any issues come up in identifying 

the R-waves, the automated polarity can be changed for better results. This might be the case when 

processing data other than adult humans (such as fetal data or small animals) where mean RR 

interval is shorter [35]. The interpolation rate and detrending method is also set here.  

Analysis Options 

The analysis options settings are the most detailed and significant section of preferences which 

influence the results of processing. In this section first the general analysis settings such as RR 

Interval Samples specifications and the mode of updating results are selected.  Then the analysis 

which is intended for the data is selected and its details are specified.  For time-domain, frequency-

domain and nonlinear analysis, the option standard analysis is appropriate. Time varying analysis 

could be picked separately. Selecting the method here prevents a waste of time for processing that 

is not required. To manipulate samples, their numbers, their processing manner, RR interval 

samples details are used.  

Once the analysis method is selected, further details and specifications are filled out. In time-

/frequency-domain section, the number of beats for taking the Max/Min HR (window width of the 

moving average filter) and NNxx and pNNxx threshold are stated. The ranges for frequency bands 

can be set depending on what type of HR data is being analyzed (humans, animals, etc). the 
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points/Hz in frequency domain correlate with the width of the moving average filter by default 

unless interpolation is intended, which should be controlled with changing the points in frequency 

domain. FFT spectrum method is also selected here. Generally for HRV spectral analysis, the use 

of Lomb-Scargle periodogram is recommended. In the nonlinear analysis section, it can be 

specified whether or not the processing is to be performed on detrended RR interval data. With 

unchecking of the first box in this section, even though RR interval data is detrended, but the 

nonlinear metrics are calculated from non-detrended data. The settings for calculating ApEn and 

SampEn, short term and long term variability in DFA and recurrence plot and correlation 

dimension details are set up here. In the time varying section, the user can limit the time-varying 

analysis to be performed only for select samples to increase speed. For the window of time-varying 

analysis, the width and grid interval (the time by which the window moves with each step) can be 

set in seconds. For example, if the whole interval is 40 minutes and the analysis is to be performed 

on 5 minute sections of this interval, both the width and grid interval should be 300 seconds. 

Spectrum estimation method can be changed from default which is the spectrogram to Kalman 

smoother method if desired.   

Report Settings 

The report settings are available to choose which of the analysis results are to show up in the 

report. Details such as the report paper size, color theme, and format of numbers for SBSS friendly 

reports can also be changed here. All settings and modifications specified in preferences are saved 

with the OK button. Once the preferences are saved, they will apply to the next session until the 

program is restarted or Close File is selected. Most of the options in preferences can also be 

changed in local settings for each analysis method for a current session, but doing this in 

preferences is more efficient and permanent. The preference directory paths of searching the data 
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file or saving the results and saved preference options are preserved in user specific folders. For 

windows 7, 8, or 10 these paths are the following: 

HRV Standard: C:\Users\<username>\AppData\Roaming\Kubios\KubiosHRVStandard 

HRV Premium: C:\Users\<username>\AppData\Roaming\Kubios\KubiosHRVPremium  

Specific Preference Settings for This Thesis  

After entering the user information, in the input data & pre-processing preferences are set 

according to the following table (everything not specified here as well as the entire report settings 

remain as default),  

Table 1. Input Data and Pre-processing Settings 

Data type EKG ASCII files 

R-wave polarity automatic 

Prior guess for RR interval  automatic 

Interpolation rate 10 Hz 

Detrending method None  

 

For the analysis options, both the General analysis and Time-varying analysis are selected. 

Further details are shown in the following table, 

 

 

 



29 

 

Table 2. Analysis Options Settings 

Number of samples 1 

Default sample length 300 s 

Sample analysis type Single samples 

Update mode Automatic  

 

Table 3.  Time/Frequency Domain Settings 

Min/max HR as average of  5 beats 

Threshold for NNxx and pNNxx 10 ms 

VLF  0 – 0.08 Hz 

LF 0.08 – 0.4 Hz 

HF 0.4 – 1.5 Hz  

Points in frequency- domain  300 points/Hz 

Window width 300 s 

Window overlap  50 % 

AR model order 16 

Use spectral factorization  No  
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Table 4. Nonlinear Settings 

Embedding dimension (for ApEn and 

SampEn) 

2 beats 

Tolerance  0.2 × SD 

Short term fluctuations (N1) 4 – 12 beats 

Long term fluctuations (N2) 13-64 beats 

Embedding dimention (for recurrence plot 

and correlation dimension)  

10 beats 

Threshold 3.1623 × SD 

 

Table 5. Time – Varying Settings 

Window width 60 s 

Grid interval 1 s 

 

After saving preferences the first step of opening the RR interval text files obtained from 

EEGLAB is to select “RR Interval ASCII files (*.txt, *.dat, *.csv) out of the 6 general data formats 

supported by Kubios.  

Text file obtained from EEGLAB processing is the starting point of the data analysis using 

Kubios. Kubios supports several data formats including RR interval text files *.txt and Kubios 

HRV Matlab MAT files *.mat files which are of interest in this project [35] . For kubios to process 
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RR interval text files, RR intervals must be measured/stored in beat-to-beat. This is why all the 

filtering and processing in EEGLAB are necessary. HRV analysis cannot be performed on average 

HRV data. Kubios works with more than one type of input in the RR interval text files. Here the 

text files obtained from EEGLAB contain one column showing the RR interval values in order. 

These values are given in milliseconds.  

The Kubios version used for this analysis is Kubios HRV premium version. The user interface 

window of Kubios HRV has three sections: The RR interval series options, the data browser 

segment, and the results view segment [35]. The RR interval series options can be used to take 

advantage of artifact correction, modifying and tailoring of samples for analysis, and removing 

trend components . 

Artifact Correction 

 For artifact correction there are two options, 1) Automatic Correction and 2) Threshold 

Correction. The automatic correction is an algorithm which identifies artifacts such as missed or 

misplaced beats or ectopic beats (premature ventricular beats) in an RR interval series. The 

threshold correction however only examines each beat interval against a local mean RR and 

considers it an artifact if it is above the given threshold. This threshold should be designated 

specifically for each individual because variability of RR intervals is different between different 

people.  

The artifact correction method used here is automatic correction. Once automatic correction 

is selected, the summary of corrections to be made on the RR interval are shown in green in the 

data browser segment as the number of beats and their percentage. Artifact correction essentially 

produces artificial values to replace the artifacts and therefore incorporate interpolated values into 
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the RR interval data. Caution must be taken that the percentage of corrected beats should be below 

5%. Otherwise results and their interpretation will be notably distorted. If this number is 5 % or 

more, the RR interval series must have been too corrupted for further processing.  By clicking the 

apply button these corrections are implemented, without affecting the normal RR intervals. The 

corrections are made based on a piecewise cubic spline interpolation method.  

By comparing the time-domain results with and without artifact correction the necessity and 

significance of artifact correction can be verified. The effect of artifacts on parameters such as 

SDNN, RMSSD, and TINN cannot be ignored and therefore care must be taken to correct them 

before the analysis [35] .  

Samples for Analysis 

In the Samples for Analysis Section, samples can be added or removed, and multiple samples 

can be generated out of a single recording for performing simultaneous but individual analysis and 

obtaining results in a single Kubios HRV report. The start time and length of each of them can be 

set as desired. If it is needed, several samples can be merged into and analyzed as one long sample. 

This feature is useful for studies involving comparing different behavioral states which are 

displayed by the fetus throughout one recording session.  

Remove Trend Components 

This feature offers methods for removing any low frequency baseline trend components that 

is in the RR interval time series. Options include a method called smoothness priors or removal of 

the first, second, or third order linear trend. The smoothness priors method is a time-varying high 

pass filter and therefore the smoothness of the removed trend can be manipulated by adjusting the 

Lambda parameter which determines the cut-off frequency. The cut-off frequency is shown with 
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the Lambda value edit box and a bigger value of Lambda leads to a smoother removed trend. 

Before removal of the trend, it is shown as a red line on the analyzed RR data sample [35]. 

The Data Browser Segment 

The data browser segment shows the measured ECG signal and the derived RR Series. Both 

series are shown for the whole time of the dataset. The range of axes can be changed by writing 

values in the boxes next to them. By using the lock button on the bottom right corner, both series 

can be scrolled together. The grey patch in the RR chart shows the ECG range and it can be moved 

along the X axis. Other than displaying of ECG and RR data, the data browser segment’s purpose 

is to allow artifact correction. If the ECG is available in addition to the RR data, artifact correction 

can also be performed menually. Each + mark on the ECG signifies an R-wave and therefore using 

the mouse and precise clicking, each + can be moved  if it is out of place and additional R-peak 

markers can be designated where they are missing. The placement of the markers does not have to 

be completely manual, once they are clicked on, they will be designated to the nearest ECG 

maximum with a click. There changes simultaneously show in the RR interval series [35]. The 

data browser segment also has options for printing the ECG for a specific range recording or 

changing the RR data type to HR. 

The Results View Segment  

This segment shows the results of analysis for the analyzed RR interval sample. Time-domain, 

frequency-domain, nonlinear and time-varying results and graphs are available with the push of a 

button for each. With every change in the settings or sample(s) of the RR interval data, the results 

are automatically updated. This automatic update takes a few seconds depending on the size of the 

samples. The smaller the length and the number of the samples, the higher the speed of processing. 
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If this is not necessary and a higher speed is in priority instead, unchecking the “auto-refresh 

results” option can stop the updating. The results can still be updated by clicking “refresh” when 

preferred [35].  

Time Domain 

The time domain results view shows one table and two histograms. The table includes 

calculated variables such as Mean RR, STD RR (SDNN), Mean HR, STD HR, Min HR, Max HR, 

RMSSD and etc. If detrending has been applied during the processing, all parameters except Mean 

RR and Mean HR will be computed for the detrended RR series.  

The histograms have boxed below them that allow the user to set RR (s) and HR (bpm) fixed 

axes limits. These settings can be entered in “Preferences” in Kubios once without the need to be 

entered every time Kubios is opened. If they are not specified, then the minimum and maximum 

values in the data are used to auto-scale the histograms [35].  

Frequency Domain 

Frequency domain results view displays one table and the spectra of the FFT (Welch’s 

periodogram) and AR spectrum estimation methods (performed on detrended RR series) with their 

numbers shown in the table on their left. In Premium version only, Lomb-Scargle periodogram 

can be chosen instead of FFT based on Welch’s periodogram. The frequency axes are 0-0.5 Hz by 

default and otherwise the range is 0 - upper limit of HF band+0.1 Hz.  

When ECG is measured, in addition to the results in the table, electrocardiogram derived 

respiration (EDR) which is an approximation of the respiration frequency is also calculated and 

shown separately below the spectrum options. It is indicated with a vertical lime in the spectra as 

well. EDR can be hidden using the checkbox below the spectrum options boxes.  
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The adjustable settings for frequency-domain results view can be used to establish limits of 

the power axes. Also the limits of very low frequency (VLF), low frequency (LF), and high 

frequency (HF) bands can be changes and any adjustments in this window are kept only for the 

current session. All changes made here will carry on to the report sheet for the current session. To 

maintain settings and changes permanently, they must be implemented by using “Edit 

Preferences”. The default values for the bands are VLF: 0–0.04 Hz, LF: 0.04–0.15 Hz, and HF: 

0.15–0.4 Hz according to the guidelines by “Task Force of The European Society of Cardiology 

and The North American Society of Pacing and Electrophysiology” [35]. 

Nonlinear  

The nonlinear results view consists of a table of all the calculated nonlinear variables. The 

successive RR intervals variability is demonstrated visually by the Poincare plot. The Detrended 

fluctuations (DFA) plot presents the detrended fluations and their slopes against n on a double 

logarithmic graph.   

Time-varying results  

Time varying results show the time varying trend of any selected time domain, frequency 

domain, or nonlinear variables. Color map of the time-varying spectrum is displayed along with a 

color bar for reading different colors for different power values. The window width and grid 

interval can be adjusted. The time varying spectrum can be calculated with one of the two methods 

of spectrogram and Kalman smoother. Under the box for choosing the spectrum method, 

adaptation coefficient which changes the adaptation speed of the algorithm [35]. 
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Our processing 

The samples for analysis are 30 minutes long. For both maternal and fetal data, all 4 analysis 

methods are performed on the entire 30 minutes and the Kubios 3 types of reports are obtained. 

The ASCII text file, the PDF report, the .mat file. Then the SampEn, ApEn and MSE are extracted 

for analysis. Examples of parts of the PDF report are demonstrated in figures 4 and 5. 

 

 

Figure 4. Time-domain, frequency-domain, and nonlinear analysis results in Kubios report 
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Figure 5. Time-Varying results in Kubios report 

 

HRV Metrics and Methodologies   

There are several metrics and methods for analyzing fetal heart rate variability such as time 

domain, frequency domain, nonlinear, and time-varying methods [35] [31] . All these methods use 

the RR interval series for calculations. Time domain methods is the most preliminary analysis 

applied to HR and signify general changes in fetal HRV and average HR. The metrics of this 

approach are mean HR, SDNN, SDSD (SD of HR), RMSSD, NN50 and pNN50. Frequency 

domain analysis calculates a power spectrum density (PSD) to compute the absolute and relative 

VLF, LF, and HF band powers, normalized LF and HF band powers, the LF/HF power ratio, and 

peak frequencies for each band. Nonlinear methods are some of the most recent and in depth 
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HRV analysis methods which are based on measures of ApEn and SampEn, DFA, Poincare plot, 

Multiscale entropy (MSE). Time- varying methods focus on trends of time domain, frequency 

domain, and nonlinear metrics  [31, 35]. The last and most recently developed approach is Stress 

index and PNS/SNS indexes 

Time domain  

Mean RR interval is what is referred to as mean heart rate (HR) in most literature. It is the 

mean of Time interval between successive electrocardiogram R-waves (RR interval, same as IBI). 

An example of HR time series and RR series from Kubios are shown in figure 6. The rest of the 

time-domain variables are for estimating the variability within the RR series. SDNN is the standard 

deviation of RR intervals, representing both short-term and long-term, therefore overall variability, 

which is calculated according to Equation 1 [35], 

���� = � 1� − 1 
���
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��  

Equation 1 

 

In which RRj is the jth RR interval and the overall number of successive intervals is denoted 

by N.  Another standard deviation is SDSD, standard deviation of successive RR intervals which 

signifies short term variability and is computed using Equation 2, 
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Equation 2 
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which is equal to the root mean square of successive RR interval differences (RMSSD) for a 

stationary RR series, 

����� = � 1� − 1 
���
�� − ��
�����

��  

Equation 3 

RMSSD calculates beat to beat variation and therefore signifies short term variability [16]. 

NN50 is another time-domain metric which indicates the number of successive intervals 

which vary by more than 50 ms and is sometimes represented as its relative value, pNN50, 

���50 = ��50� − 1 × 100%  
Equation 4 

 

 

Figure 6. HR time series and RR series example 
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Frequency Domain  

As for the frequency domain parameters, Very Low Frequency (VLF) with the default value 

of 0 - 0.04 Hz, low frequency (LF) as 0.04 - 0.15 Hz and High Frequency (HF) as 0.15 – 0.4 Hz 

are used for adult HRV. For fetal HRV these frequency bands are respectively 0 – 0.08 Hz, 0.08 – 

0.4 Hz, and 0.4 – 1.5 Hz [35] . Frequency domain metrics are obtained from a spectrum estimate 

for each frequency band. An example spectrum is shown in figure 7.  These metrics are: absolute 

and relative powers of VLF, LF and HF bands; LF and HF band powers in normalized units; the 

LF/HF power ratio; and peak frequencies for each band [46] . In addition LF/HF ratio and EDR 

are calculated. Frequency domain analysis of HRV dissects sympathetic and parasympathetic 

activity by some means, but it is very sensitive to missing data points [47] . 

The HF band is attributed to vagal control because the efferent vagal activity is the biggest 

contributor to the HF component of HRV [46, 48] . HF component is mediated by parasympathetic 

control and is therefore 

 centered at respiratory frequency and has the range of 0.15 – 0.4 Hz. It is referred to as 

respiratory band because it corresponds to the respiratory HRV. HF power is closely correlated 

with pNN50 and RMSSD. With the inhibiting of the vagus nerve stimulation by the cardiovascular 

center during inhalation, HR increases and during exhalation is decreases. Total parasympathetic 

blockade eliminates the HF oscillations [49] .  

The LF component reflects both vagal and sympathetic heart rate regulation and baroreflex 

activity. There is not agreement on whether the PNS activity is has the dominant influence on this 

component or the SNS [46, 48, 49] .The absolute LF power should not be relied on as a direct 
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indicator of sympathetic activity but both normalized LF and HF powers (n. u.) respectively show 

valid links to sympathetic and parasympathetic activities [46, 48].  

The integration of various autonomic and humoral control loops such as the thermoregulatory 

processes and renin-angiotensin system is signified by VLF component [46, 48] . There is not yet 

definite consensus on the physiological sources of the activity in the VLF band. The heart’s 

intrinsic nervous system and SNS influence affect the VLF rhythm. PNS control certainly 

influences VLF power because in the case of Parasympathetic blockade, VLF component almost 

entirely disappears. Sympathetic blockade has no influence on VLF power [49]. The complex 

relationship between SNS and PNS nerve activity means that the ratio between LF and HF power 

will not always index autonomic balance [49]. 

 

 

Figure 7. Frequency domain spectrum example  

� Grey: VLF, SNS 
� Pink: LF, PNS+SNS 
� Green: HF, PNS+RSA 
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Nonlinear Methods 

Sample entropy (SampEn), approximate entropy (ApEn), and Multiscale entropy (MSE) are 

nonlinear indices and approaches for assessing the level or irregularity in HRV data. Poincare plot 

(or a recurrence map) is also another nonlinear approach of demonstrating short term and long 

term variability [31] [50].  

ApEn 

According to the definition of Kolmogorov-Sinai (KS) entropy [50] in system dynamics, 

entropy is the rate of information production. The Approximate Entropy (ApEn) is an entropy 

based complexity measure that is applicable to clinical cardiovascular datasets or several similar 

types [31] . Developed by Pincus for analysis of short noisy time series [50] from theory developed 

in the area of nonlinear dynamic analysis and chaos [47] and originated from efforts of Grassberger 

and Procaccia [51] and Eckmann and Ruelle  [31, 50] , ApEn evaluates the time series for similar 

epochs. This nonlinear analysis is approximately the negative natural log of the conditional 

probability that a dataset of length N which has already repeated itself within tolerance r for m 

points, is going to again repeat itself for m+1 points [47] . In other words it has an inverse 

relationship with the conditional probability that two sequences that are similar for m points will 

maintain this similarity (within the tolerance r) at the following point [31] .   

 

Approximate Entropy (ApEn), is a nonlinear method for assessing the irregularity of a signal. 

Therefore, the larger its value, the more irregular the signal is. The value of ApEn depends on m; 

the length of the vectors, r; the tolerance value, and N; the length of the dataset. It is calculated 

according to Equation 5, 
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�#���,   $ = 1, 2, … , � − & + 1  
Equation 5 

m is called embedding dimension and in kubious, is set to 2 by default. N is number of measured 

RR intervals which is the length of the dataset and the larger it is the closer the ApEn gets to its 

asymptotic value. (
 are a set of vectors with length m the distance between which is computed 

as, 

)� 
 ,  *� = max . /��
�0 − ��*�0/1 2 = 0, … , & − 13 

Equation 6 

Next, 4
#567 is calculated as the relative number of vectors Uk for which this distance is less 

than or equal to r which is the tolerance value. The tolerance value should be set as a fraction of 

SDNN, the standard deviation of the data, and this makes ApEn a Scale-invariant measure [47]. 

This generates sufficient consistency for the comparison of different types of data. Generally, it is 

set at r = 0:2SDNN and thus this is its default value in Kubious, 

4
#567 = nbr of � *  | )� 
 ,  *�  ≤  6�� − & + 1   ∀@ 

Equation 7 

 

The value of 4
#567 is between or equal to 1 5� − & + 17⁄  and 1. Taking the natural logarithm of 

4
#567 and averaging over j, we get: 
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Φ#567 = 1� − & + 1 
 ln 4
#567��#��

��  

Equation 8 

Approximate entropy is the difference of subsequent values of Φ#567, 
D��25&, 6, �7 = Φ#567 − Φ#��567 

Equation 9 

This algorithm [35] considers each sequence as a match to itself  . This match is counted and 

therefore erroneously implies more similarity and therefore less complexity than is actually 

present. This is precisely why ApEn is considered to have bias and thus first, depend on the length 

of the dataset and second, to suffer from lack of relative consistency. The first is problematic 

because it leads to lower values of ApEn than estimated for shorter datasets. The second means 

even though the algorithm of ApEn, and specifically the designation of r is intended for consistency 

and validity of comparison between datasets, this is practically not the case. The relative 

relationship of the value of ApEn in two datasets will not remain the same for all conditions tested 

[31].  

SampEn 

Sample Entropy is a measure of time series regularity similar to ApEn but it carries several 

improvements. To interpret their role indirectly, one could say both the ApEn and SampEn in fact 

look for how much the data did not come from random processes. There are several words for this 

interpretation such as complexity, regularity, or order [35] .  
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This entropy measure is applicable to a time series datasets sampled from a continuous process 

[31] . For eliminating the issue of self-matching which in essence means comparing data with 

themselves [31], 4
#567 is computed as follows, 

4
#567 = nbr of � *  | )� 
 ,  *�  ≤  6�� − &   ∀@ ≠ $ 

Equation 10 

In the next step, averaging gives, 

4#567 = 1� − & + 1 
 4
#567��#��

��  

Equation 11 

and then SampEn is calculated according to, 

�F&��25&, 6, �7 = ln�4#567/4#��567� 

Equation 12 

In Kubios, the default values for r and m are the same as they are set for ApEn. SampEn was 

developed with the purpose of reducing the bias of ApEn. Additionally, for random numbers with 

known probabilistic content across a broad range of operating conditions, SampEn is in closer 

agreement with the theory (than ApEn) [35]. As stated, this method does not count self-matches 

while calculating the conditional probability which was discussed above. In a sense, a lower 

SampEn than ApEn shows there has been more self-similarities in the dataset, and disregarding 

those has led to this lower value [31] .  
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SampEn also is computationally simpler than ApEn and its algorithm requires one-half of the 

time required for ApEn. SampEn computation contains no template-wise approach to calculate 

conditional probabilities. It only requires that one template finds a match with length of m+1. It is 

very independent of the length of the recording and therefore it shows relative consistency in cases 

where ApEn does not [31] . In other words, if with a set of designated values for m and r, dataset 

A has lower SampEn than dataset B, this will remain the case with a different set of m and r values  

[47]. More specifically ApEn lacks relative consistency because data sets with less regularity have 

fewer matching templates and are more impacted by the bias due to self-matches. SampEn analysis 

of the same data, on the other hand, reports correctly over the whole range of r. Practically SampEn 

is a statistic that counts events. Each time there is similarity between two vectors, this is considered 

an event. The only instance in which relative consistency would be absent in this analysis is when 

these events are sparse. Also for very short recordings residual bias occurs due to nonindependence 

of templates. However there have not been any cases in which ApEn has relative consistency but 

SampEn does not. Due to these improvements, SampEn has enhanced accuracy over ApEn and 

this makes it more useful in analysis of experimental clinical cardiovascular and other biological 

time series  [31, 35]. 

ApEn and SampEn both can be calculated analytically for series of random numbers and in 

such circumstances their values are nearly identical. In fact if these random numbers are distributed 

uniformly, ApEn and SampEn should give identical results, and with any other distributions they 

turn out somewhat different from each other [31].  

One advantage of SampEn analysis is that it is not prone to missing data points. This is 

significant and useful especially regarding neonatal HRV and the fact that usually loss of even 

small data sections interferes with complexity and regularity measures in truly deterministic data. 
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There are some additional considerations, precautions, and shortcomings about both ApEn and 

SampEn. First, there are no guidelines for choosing the optimal values of m and r for guaranteeing 

an acceptable Confidence Interval around the SampEn estimate. Even though they can be 

optimized this area is largely unexplored and this is one of the issues associated with SampEn [47].  

One systematic approach developed by J. S. Richman and J. R. Moorman [31] gives a new 

metric of entropy estimate’s efficiency. This process first finds a range for m by either fitting AR 

models or through reflecting on the underlying physical processes. Next, SampEn is computed for 

several values from a range of r and the one that maximizes the efficiency criteria is chosen. This 

method is only an example and not valid for all datasets for which SampEn analysis is applicable 

[47].  

Second, differences in entropies should not always be accepted as a result of differences in 

regularity and complexity. With reduced variability entropy falls and this could be due to either an 

increase in regularity (decrease in complexity) or outliers that affect the SD and therefore the 

variance. 

 This could cause a clinical issue because it is observed that HR and surrogate data fall when 

spikes occur. It is proved by [47] that specifically neonatal HR data is affected by spikes as much 

as by increased regularity and may be even more. This explains why reduced variability and 

transient decelerations in fetal and neonatal HR records bring upon lower ApEn and SampEn. This 

sometimes causes confusion especially when regularity is not otherwise indicated or visually 

observed. Thus it is always important to keep in mind the reasons for this reduction that are 

irrelevant from regularity decrease in complexity. Both ApEn and SampEn, are therefore 

vulnerable to outliers, even though initially ApEn was claimed to be robust against them. This 
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gives prespective as to why caution must be taken when drawing conclusions from traditional 

nonlinear dynamics of HR data.  

Reduced variability and transient decelerations could signify ANS dysfunction or defective 

and incomplete intracellular signal transduction processes, but its mechanism is not known. Even 

though SampEn does not help with identifying the mechanism, it can still be used as a general 

measure for health of infants and newborns through monitoring of high risk fetuses and newborns 

for cases such as Sepsis and evaluating the burden of illness [47]. 

Even though sample entropy (SampEn) is less dependent on the length of dataset, both ApEn 

and SampEn give a higher value of entropy for pathologic datasets that show less complexity than 

healthy time series. This is because these metrics are both on a single scale which is the shortest 

one, and based on the function’s one step difference. Therefore, using the past history of time 

series, they indicate the uncertainty of the next new point [50] . Both metrics fail to account for 

features of structures on scales other than the shortest one. 

Multiscale Entropy  

So far several metrics and methods for heart rate and heart rate variability were discussed. In 

the developing of each of these metrics, scientists and engineers have tried to overcome several 

challenges and eliminate shortcomings of each previous method. Quantification of complexity of 

biological systems using physiologic time series has been always a significant focus of researchers. 

However previous heart rate metrics do not offer any insights into this problem. The reason is that 

the multiple time scales of healthy physiologic dynamics is overlooked by these methods. They 

quantify the orderliness of a time series and imply that the more disorder and randomness, the 

higher the value of entropy is. Thus they assume highest value of entropy for a randomly generated 
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set of numbers, attributing the highest entropy to the least complex and correlated system. In other 

words, these cannot distinguish between randomness in pathologic conditions and antagonistic but 

sophisticated and correlated dynamics of healthy systems. Mostly the previous metrics have been 

employed in assessing complexity even though they count any lack of similarity and regularity as 

complexity when in a living system this is not always the case. The reason for the importance of 

measurement of complexity is that is signifies pathologic dynamics such as aging which degrades 

physiologic information content and deteriorates the adaptive ability of organ systems. Dynamic 

physical and biological systems rarely display features of perfect regularity and complete 

randomness. Multiscale entropy retains the information overlooked by conventional measures 

because it captures dynamic characteristics displayed by these systems on multiple spatial and 

temporal scales [50]. In attempts to solve this problem, Costa et al [50] created another 

methodology with the intent of recognizing pathologies and the difference between random 

uncorrelated noise with long-range correlated noise  [35, 50].  

Multiscale Entropy (MSE) is an extension of SampEn while taking into account the multiple 

time scales in living systems. This method is based on Zhang’s proposed approach using 

Shannon’s entropy which did in fact show differences between correlated and uncorrelated noise, 

but was not suitable for physiologic signals since it is only applicable to relatively long and nearly 

noise-free datasets and does not work for finite length noisy data such as cardiac recordings [35, 

50].  

MSE calculation involves two major steps, first is a coarse graining process and second is 

computation of SampEn for each coarse-grained time series. Starting with a one-dimensional 

discrete time series, consecutive coarse-grained time series are created, averaging the data points 

within non-overlapping windows of increasing length according to the following equation: 
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H
5I7 = 1J 
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I

L�5
��7I��      1 ≤ $ ≤ �J  

Equation 13 

In which J is the scale factor. The length of resulted coarse-grained time series is their original 

beat-to-beat RR interval time series length reduced by a factor of J.  Afterwards the SampEn is 

computed for each of these time series and the value is returned as a function of J. Clearly, the 

scale 1 MSE is the same as SampEn. The concept of course graining is shown in figure 8. Larger 

scales are obtained by accumulating neighboring NN intervals leading to lower time resolutions 

(low-pass filter) and increasing investigation time horizons according to the coarse graining 

procedure [48] . Using MSE, the complex structures across multiple time scales in correlated noise 

are recognized and therefore distinguished from the randomness in white noise [48].  

 

Figure 8. Course-Graining Procedure [52] 
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MSE distinguishes between healthy and pathologic systems and between correlated and 

uncorrelated white noise and each of their complexity levels. Pathologic systems have a reduced 

complexity which could be signified by either increased orderliness and decreased variability or 

increased randomness and therefore increased variability due to cease of correlated and adaptive 

coupling of organs and organ systems. It is therefore not surprising that multiscale entropy also 

decreases with old age [53] . Physiologic complexity is a concept more sophisticated than just lack 

or order or regularity and that is why measures such as MSE are critical to integrative evaluation 

of living systems. When long-range coupling of systems breaks down, essential information 

exchange between them stops and this is associated with disease. Some diseases, such as neonatal 

Sepsis and Sepsis-like illnesses could be diagnosed using entropy before clinical signs appear and 

clinical diagnosis is made [8, 47, 50] . 

Caution must be taken when using MSE analysis not to focus on asymptotic and isolated 

values of entropy and specially in interpreting the process and output of different dynamical 

processes. In addition to specific measures of MSE, the dependence of these values on resolution, 

i.e., their scale should be considered for objective characterization of a physiologic event or 

process. MSE method quantifies the level of disorder at all relevant levels of resolution of the 

signal and that is why it offers a reliable measure of complexity [50, 53]. 

Fetal heart rate and heart rate variability are two of the most integrative sources of information 

for studying autonomic nervous system’s development with gestational age. Neurodevelopment at 

every state is affected by the intertwined interaction of sympathetic and parasympathetic (vagal) 

systems. However, conventional methods and metrics of HR and HRV (discussed above) have not 

been able to understand and represent this interaction accurately or comprehensively [48] .  
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With respect to fetal HRV, these single-scale measures have reported conflicting conclusions. 

For example, according to these complexity increases with increasing gestational age, and also 

decreases because of emerging patterns of heart rate acceleration as the fetus matures [48]. 

This has caused experts and researchers to move towards HRV indices which incorporate 

behavioral patterns and offer more information about developing of complex systems and 

maturation of autonomic control. Multiscale entropy is useful because it offers insights into 

Multiscale complexity throughout gestation.  

In the growing fetus, short scale complexity increase throughout gestation is indicative of 

rising number of components involved in development. A simultaneous decrease in long scale 

complexity could signify the progressing synchronization and regularity of each component alone 

and in relationship with the rest of component [48] . Complexity is therefore linked to maturation, 

and increasing as well as decreasing as behavioral states are established.  

Poincare Plot  

One commonly used nonlinear method that is simple to interpret is the Poincaré plot. It is a 

graphical representation of the correlation between successive RR intervals, i.e. plot of RRj+1 as 

a function of RRj [35] . Also called a return map, this is a scatter plot drawn based on plotting each 

RR interval against the prior interval. It enables researchers to visually inspect and find patterns 

hidden in a sequence of RR intervals from successive measurements [49] . The shape of this plot 

has already been proven useful in assessing the degree of cardiac failure or dysfunction in adults 

[54] . 

The Poincare plot is drawn from nonlinear dynamics and is intended to demonstrate the 

fluctuations between RR intervals visually. Even though it is introduced and used as a nonlinear 
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method for HRV analysis, mathematically it has been proven that it correlates with standard time 

domain metrics extremely closely and via linear equations [54] .  

SD1, a measure of the width of the ellipse and SD2, the measure of length of the plot are the 

two common descriptors of the poincare plot. However [54] have proved that SD1 is really just 

the scaled version of the standard deviation of the successive intervals and therefore both SD1 and 

SD2 are related to the autocovariance function through a linear relationship. This demonstrates 

SD1 is extremely highly and linearly correlating with standard measures of HRV such as SDSD 

index. In addition, SD2 relates highly and linearly to the standard traditional HRV measures of 

SDRR and SDSD. One could say that SD2 is a measure of long term HRV because SDRR is used 

as a measure of long term variability. However that is not most accurate. SD2 is a measure of all 

the variability, both long-term and short-term [35, 54].  

While the Poincare analysis’s uses in demonstrating beat to beat dynamics of the heart should 

not be overlooked, current ways of interpreting this plot ignore this capacity and reduce its use to 

a simple statistical prop for highlighting traditional metrics. Still, there are some techniques 

through which this plot can give independent and truly nonlinear assessment of the heart and these 

are mostly working with number of peaks and the distance of them from the line of identity. The 

issue is these are not as dominant, well known or popular as the mainstream methods of 

interpreting Poincare plot [54] . 

Stress Index And PNS/SNS Indexes 

Baevsky’s stress index 

Baevsky’s stress index is calculated according to the following equation, 
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�M = D�N × 100%2�N × �K��2 

Equation 14 

In this equation, Mo is the most frequent RR interval (the mode) which is obtained as the median 

of RR interval. AMo is the amplitude of mode in percentage and is considered to be the height of 

the normalized RR interval histogram. MxDMn is the variation scope which represents the degree 

of RR interval variation. MxDMn is estimated as the difference of shortest and longest RR interval 

values. for decreasing sensitivity of the stress index value to slow changes in Mean HR, RR interval 

time series should be detrended using the smoothness priors method to eliminate the very low 

frequency trends [46] .  

SNS Index 

There are several parameters that are used as the basis of calculating SNS index. With 

increased sympathetic activity the HR increases. Therefore, Mean HR (bpm) is an obvious choice 

for the SNS index equations.  The stress index is widely applied as a measure of cardiovascular 

stress and therefore is the second parameter in calculation of SNS index. The third metric for 

estimating SNS index is SD2 from the Poincare plot [46]. When calculating SNS index, the square 

root of SI is taken for obtaining a normal distribution and also making the SNS index less 

vulnerable to extreme SI values.  

PNS Index 

Parasympathetic nervous system decreases HR and therefore increases the values of RR 

interval and its mean. Mean RR (ms) therefore is the first choice of input for calculating PNS index 

because it directly changes with parasympathetic regulation. Vagal activity influences the 
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magnitude of RSA, shown as quick and observable increases in RR interval with exhalation and 

quick decreases in RR interval values with exhalation. The RSA therefore is most correlated to 

RMSSD because it signifies quick beat-to-beat variations. Therefore, the second parameter that 

goes into calculation of PNS index is RMSSD. The third parameter for PNS index computation is 

SD1 from the Poincare plot which is closely related to RMSSD [46, 54] . 

The parameters which are used as inputs for the calculation of SNS and PNS index, are first 

scaled with their standard deviations from their own normal population values. Then for reliable 

SNS and PNS index calculations a proprietary weighing is also used. An example of the 

comparison of PNS and SNS indexes with normal (resting) values from Kubios is shown in figure 

9.  

 

Figure 9. PNS and SNS index  
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Chapter 4: Results 

Table 1 shows the mean sample entropy for 43 fetal and 33 maternal subjects for 32- and 36-

weeks gestational age. Average of sample entropy decreases from 32 to 36 weeks for the mother 

and increases for the fetus. 

 

Table 6. Fetal and Maternal Average Sample Entropy 

 32 weeks 36 weeks 

Fetal 0.56784 0.662739 

Maternal 1.192773 1.068124 

 

Multiscale entropy, which is the focus of this thesis, is a non-standard and nonlinear HRV 

measure. Therefore, the first step to understand how MSE characterizes the autonomic 

development of the fetus, is to determine how MSE compares and contrasts between adults with 

parasympathetic dominance and the ones with sympathetic dominance. In order to do so, subject 

one, a mother with parasympathetic dominance, and subject two, with sympathetic dominance 

were selected for comparison. The initial assumptions about the autonomic control in these 

individuals were confirmed by the use of standardized time and frequency domain metrics. Subject 

1 displays lower Mean HR, SNS index, Stress index and higher PNS index, SNDD, RMSSD, 

relative HF power, and entropy than subject 2. As shown in figures 10 and 11, the round vs. narrow 

distribution of Poincare plot respectively in subject 1 vs. 2 reflects more balance between short 

term and long term heart rate variability in subject 1.  
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Figure 10. Poincare Plot - subject 1 

 

Figure 11. Poincare Plot, subject 2 
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Figure 12 shows the MSE for all 20 scales for subject one and subject two. As observed here, 

the short scale entropies for subject one are higher than subject two, but the long scale entropies 

in subject 2 are higher than subject 1. This shows smaller values at short scales of entropy 

correspond to higher SNS input and in contrast, smaller entropy values at long scales of entropy 

are associated with higher PNS control. 

 

 

Figure 12.  Scale 1 to 20 MSE for subject 1 (high PNS) and subject two (low PNS) 

To further investigate this, after averaging the MSE of 142 other subjects for each scale, by 

performing the median split of MSE1 (which is the same as SampEn), the participants are divided 

into two groups of high versus low sample entropy. Figure 13 shows a similar pattern as observed 
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for the individuals in figure 12. The high entropy group has larger short scale entropies and smaller 

long scale entropies. Table 7 shows the means and standard deviations of both groups.  

 

 

Figure 13.  Median split of sample entropy (MSE 1) in two groups of 71 individuals each 

 

Table 7.  mean and SD of multiscale entropies of subjects in figure 13- The mean and SD MSE scales 2-20 of 

142 pregnant women are shown in table 2. A median split of the 142 samples allowed the classification of two 

groups; low and high sample entropy. 

 mse2 mse3 mse4 mse5 mse6 mse7 mse8 mse9 mse10 mse11 mse12 mse13 mse14 mse15 mse16 mse17 mse18 mse19 mse20 

low 
1.24 

(0.30) 
1.27 

(0.28) 
1.29 

(0.27) 
1.29 

(0.27) 
1.32 

(0.27) 
1.35 

(0.28) 
1.39 

(0.30) 
1.43 

(0.30) 
1.43 

(0.30) 
1.44 

(0.27) 
1.46 

(0.28) 
1.49 

(0.33) 
1.52 

(0.34) 
1.51 

(0.32) 
1.54 

(0.34) 
1.62 

(0.38) 
1.63 

(0.38) 
1.49 

(0.41) 
1.70 

(0.42) 

high 
1.57 

(0.16) 
1.50 

(0.16) 
1.40 

(0.15) 
1.40 

(0.14) 
1.42 

(0.16) 
1.42 

(0.16) 
1.44 

(0.17) 
1.40 

(0.17) 
1.43 

(0.22) 
1.43 

(0.19) 
1.44 

(0.20) 
1.47 

(0.22) 
1.48 

(0.25) 
1.49 

(0.27) 
1.48 

(0.27) 
1.52 

(0.33) 
1.51 

(0.33) 
1.52 

(0.34) 
1.57 

(0.40) 

 

 

This gives us a profile for the behavior of the scales with respect to the dominance of 

sympathetic or parasympathetic control by the autonomic nervous system. Based on this 
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investigative practice to contrast the behavior of scales of entropy with high sympathetic and 

parasympathetic dominance, and knowing that vagal contribution in fetus increases in the final 8-

10 weeks of gestation, we expect that MSE data of our 43 fetal subjects reflects increasing 

parasympathetic input as the fetus matures from 32 weeks to 36 weeks. Using the information 

gained from analyzing the maternal MSE scales and observing the influence of parasympathetic 

and sympathetic input on short and long scales, we would predict that MSE scales 1-5 would 

increase between 32 and 36 weeks gestational age and MSE scales 15-20 would decrease between 

32 and 36 weeks gestational age. Figure 14, the Multiscale entropies of the 43 fetal subjects, 

confirms this expectation. For scales 1-5, 36 weeks MSE values are higher than 32 weeks MSE 

values. Also for scales 14 and higher, 36 weeks MSE values are lower than 32 weeks. 

 

 

Figure 14.  Scale 1 to 20 average MSE for 43 fetal subjects - 32 wks and 36 wks 
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Figure 15 shows an increase in the average Multiscale entropies of 33 pregnant women across 

all scales. With advancing gestation, an overall reduction in complexity is observed. However this 

is in contrast with Figure 14, in which fetal MSE scales reflect the effect of maturation and 

increasing parasympathetic influence. 

 

 

Figure 15.  Scale 1 to 20 average MSE for 33 maternal subjects - 32 wks and 36 wks 
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Chapter 5: Discussion 

The first aim of this work was learning about the autonomic nervous system of the developing 

fetus and the physiology of pregnancy, analysis of heart rate variability, pros and cons of standard 

and traditional HRV metrics, and how to apply nonlinear methodologies to the fetus, currently 

practiced by very few researchers in the field. 

Through attending and participating PANDA (Prenatal Autonomic Neuro-Developmental 

Assessment) clinical trial maternal and fetal visits during the first year of my graduate studies, I 

observed and learned the complete process of obtaining HRV data. With several trainings I 

received from Dr. Gustafson and her team, I learned about the principles of the biomagnetometer 

and its operation and maintenance. Through hands on work, I learned about the advantages and 

limitations of this machine and its use in multiple areas of research such as neuroscience, 

physiology, and psychology. I got familiar with EEGLAB as the next phase of analysis once the 

recording is obtained via the biomagnetometer. I analyzed several datasets obtained from previous 

and current studies. Then I practiced and interpreted the output of my EEGLAB analysis and 

understood how I can use the traditional and standard HRV metrics to determine the physiological 

meaning of fetal and maternal HRV data.  

I also joined the recruiting team of ADORE (Assessment of DHA On Reducing Early preterm 

birth) and PANDA clinical trials to recruit participants in clinic and through this experience I 

realized the clinical implications of HR and HRV and became familiar with maternal and fetal 

conditions which interfere with or limit the application of HRV data towards research, conditions 

such as congenital heart defects or neural tube issues that with the use of biomagnetometer, could 

be studied and characterized on their own.   
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The second and central purpose of this thesis was to explore the value and capability of MSE 

in characterizing fetal maturation. Based on observations in figure 1 and 2, and the knowledge that 

parasympathetic influence increases with increasing gestational age, it was expected that at 36 

weeks gestational age, scale ~1-5 MSEs would be higher than those at 32 weeks. Also, the MSE 

values for scales of ~15-20 were anticipated to be lower at 36 weeks than those at 32 weeks. This 

in fact is confirmed in Figure 4 which fetal Multiscale entropy trends of 43 fetal subjects. For 

scales 1-5, 36 weeks MSE values are higher than 32 weeks MSE values. Also for scales 14 and 

higher, 36 weeks MSE values are lower than 32 weeks.  

This is consistent with results of a study of indices of maturing fetal autonomic control by 

Hoyer and colleagues [48]  who found an increase in MSE based age related complexity in scales 

1-9 and a decrease in MSE in scales of 15 and higher with advancing gestational age. Even though 

the analysis was done separately on groups of quiet and active states, similar observations were 

made in both groups [48] 

For the fetus, Multiscale entropy reflects growth and increase in complexity by showing the 

effects of maturation on each and every scale individually. Together, the trends of 20 scales, 

specifically the first five and the last five scales from 32 to 36 weeks gestational age, show the 

increasing parasympathetic influence. Even though the fetus is under dominant control of the SNS, 

around 30-32 weeks gestation autonomic differentiation initiates parasympathetic processes and 

drives their development as the fetus grows. Therefore, parasympathetic regulation further 

advances [8]. This increase in parasympathetic input and autonomic nervous system development 

continues in the final 8-10 weeks of gestation until birth. 

For understanding the capability of MSE in reflecting different systems, we examined 

maternal MSE scales between 32 and 36 weeks, and the results are shown in figure 4. These results 



64 

 

show MSE decreases across all scales with advancing pregnancy. Entropy changes of all the scales 

show the effect of increasing allostatic load accompanied by increase in physiologic stress and 

dampening of complexity. Maternal MSE trends show the linear effect of load exerted on the 

mother via pregnancy. This is expected because the physiological changes in maternal body to 

adapt to an increasing physiological load during pregnancy is associated with a decrease in 

entropy. Specifically increasing metabolic stress and circulatory capacity to handle additional 

blood flow are two of the most significant changes in the body of a pregnant woman [55] . Unlike 

ANS of the fetus, maternal AND is fully developed, therefore there is no sign of maturation, 

growth and development in MSE scale trends. On the other hand the fetus is developing and the 

nonlinear influence of developing and growing ANS is reflected in the behavior of MSE scales.  

This differs from the fetus, because the maternal ANS is already developed, and confirms the 

increasing allostatic load that results in a linear increase in physiologic stress and therefore 

dampening of complexity. Therefore, MSE can show interaction between developing organs in a 

growing system and linear effect of physiological load in a system which has already fully 

developed. In other words, MSE recognizes maturation related complexity change where there is 

one. 

Based on this study, MSE has value in showing nonlinear complexity changes, characterizing 

the increasing interaction of the parasympathetic nervous system on autonomic control of the fetus 

during maturation. And when maturation and growth is absent, such as in maternal system, it shows 

the linear effect of factors such as allostatic load. 

Based on its capability to recognize and measure complexity, Multiscale entropy can convey 

information about the ability of an organism to adapt to difficult situations such as difficult labor 



65 

 

and delivery, secondary illnesses, premature birth, etc. An organism with a more complex signal 

is more flexible and more likely to survive in a hostile environment. 

There are surrogates for complexity but they are not universally adaptable. Greater entropy 

does not always signify more complexity and growth. Single scale entropies such as approximate 

entropy cannot distinguish between circumstances of chaos due to pathologies and maturation as 

the cause for increased complexity. The advantage and importance of Multiscale entropy is due to 

the fact that it retains the information overlooked by conventional measures because it captures 

dynamic characteristics displayed by these systems on multiple spatial and temporal scales [50] . 

we expect to see increasing complexity in a developing organism. With increased parasympathetic 

input and integration of the peripheral and central nervous systems we should observe definite 

neurobehavioral states in the fetus, heart rate patterns linked to fetal state and organization of 

movements. This constant and overall increase in complexity has been realized with the use of 

metrics such as mean RR interval, and its standard deviation, and root mean square of successive 

differences, but here we see that the MSE scales add a nonlinear metric that seems to accurately 

reflect the ontological development of the fetus [13] . 
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