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Abstract 

Compression ignition (CI) engines have been a figurehead in the transportation industry for 

decades. However, as environmental regulations dictate increasingly strict emissions guidelines 

for engines, technologies must accordingly advance. To this end, this thesis describes the work 

of validating a combined diesel particulate filter heat exchanger (DPFHX) for CI engine exhaust 

waste heat recovery (WHR) in a Rankine Cycle (RC), a concept introduced in the first chapter of 

this thesis.  

 The second chapter includes a comprehensive literature review, indicating the increasing 

prevalence of WHR in the literature. Additionally, with RC as the principal system for WHR and 

engine exhaust as the primary heat source, this research is exceptionally relevant. Furthermore, 

the primary aspects of an RC WHR system requiring individual optimization are the heat 

exchangers and expanders along with working fluid selection.  

 As such, the third chapter discusses experiments to analyze and compare the DPFHX 

with various working fluids; thus, incorporating the literature trends of working fluid comparison 

and component specificity in the methodology. Consequently, in the DPFHX, water achieved a 

higher heat transfer rate by over 60% than the 50% by volume mixture of water and ethylene 

glycol, the two optimal working fluids in the apparatus without DPF cores. However, alterations 

made to the DPF cores’ outer diameters and lengths when installing them in the heat exchanger 

tubes prevented them from achieving the expected outcome (i.e., improving apparatus 

performance). Finally, the fourth chapter links the conclusions from this work to 

recommendations for future efforts to investigate DPFHXs.  
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Chapter 1: Introduction  

1.1 Introduction to Waste Heat Recovery 

Since its inception, the internal combustion (IC) engine has been a primary source of power 

for the transportation field. In an IC engine, a fuel and air mixture is combusted, with the 

pressure from this combustion process subsequently moving a piston; thus, the engine transforms 

the chemical potential of the fuel into mechanical work. One type of IC engine is known as the 

compression ignition (CI) or diesel engine in which the air and fuel mixture ignites due to the 

physical compression of the mixture by the piston without an external spark. Two specific 

operating characteristics of CI engines include lean air-to-fuel ratios and generally heterogeneous 

combustion, which leads to nitrogen oxides (NOx) and particulate matter (PM or colloquially, 

soot) emissions, respectively [1]. While other chemical species, such as nitrogen (N2), oxygen 

(O2), water (H2O), carbon dioxide (CO2), carbon monoxide (CO), and hydrocarbons (HC), also 

occur in the exhaust, NOx and PM are the primary toxic species and are regulated in many 

countries [2]. 

 Generally, NOx forms due to relatively high combustion temperatures at lean equivalence 

ratios (i.e., less than one), which allows excess O2 to react with N2 [2]. While catalytic devices 

exist to moderate NOx, the operation of CI engines at lean equivalence ratios diminishes the 

efficacy of such catalysts [1]. Concerning NOx mitigation, the primary in-cylinder technique 

used is exhaust gas recirculation (EGR), which decreases NOx formation by lowering 

combustion temperatures within the cylinder [1]. In contrast, PM principally forms from poorly 
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mixed, relatively cool fuel rich pockets in the combustion chamber; however, its exact 

composition depends on engine conditions [1]. Once formed, the removal of PM can only occur 

using a filter to trap particles from the exhaust stream.  

 While the lessening of NOx via the aforementioned tactics is achievable, it brings with it 

additional challenges due to the so-called NOx-PM tradeoff. As stated, NOx forms due to excess 

O2 reacting with N2 at high temperatures. However, if the engine is run at a richer or larger 

equivalence ratio and/or a lower combustion temperature, the reduction of NOx comes at the cost 

of increased PM formation. In contrast, if there are higher combustion temperatures and leaner 

equivalence ratios and/or better mixing of the fuel/air mixture, less PM is generated at the cost of 

elevated NOx emissions. As such, the formation of each species is closely linked, thereby 

connecting their removal in catalytic aftertreatment systems.   

As shown in Figure 1.1, there are multiple distinct types of aftertreament devices for CI 

engines, with each apparatus targeting different emitted species. These components are often 

implemented in a series arrangement in order to address all hazardous emissions. Here, the 

primary method of abatement occurs in the form of catalytic reactions. Specifically, diesel 

oxidation catalyst (DOC) devices remove HC and CO; whereas, selective catalytic reduction 

(SCR) removes NOx through the addition of a diesel exhaust fluid (i.e., urea that decomposes 

into ammonia) [3]. Furthermore, if necessary, selective catalytic oxidation (SCO) can remove 

any remaining ammonia in the exhaust stream, since ammonia poses health hazards if emitted 

[3]. 
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Figure 1.1: Typical diesel aftertreament system components and the associated emissions they target [3]. 

The remaining component of most common CI aftertreatment systems is a diesel particulate 

filter (DPF). DPFs utilize a porous ceramic material to capture the PM in the exhaust stream with 

channels alternately blocked at either end. Therefore, the exhaust gas flows through the open 

channels on one end of the core, where it is then forced to traverse through the porous ceramic 

wall of the channel due to the blockage at the end of that channel. During passage through the 

wall, the PM is trapped within the porous filter. Subsequently, the exhaust gas leaves the filter 

through the unblocked channels. Generally, DPFs experience filtration efficiencies of up to 98%, 

making them an attractive method of reducing PM emissions [4].  

 When traveling through a DPF, the exhaust gas experiences a pressure drop due to 

various flow mechanisms. The first of these is due to the passage of the gas through the porous 

DPF wall, as the permeability of the wall presents an initial impedance to the flow, creating a 

pressure gradient. This pressure drop changes based on the wall’s soot loading, with the presence 

and amount of soot altering the wall’s permeability [5]. Furthermore, contraction and expansion 

of the exhaust gas at the DPF’s inlet and outlet, frictional effects of the gas entering and exiting 

individual DPF channels, and plugged lengths of the inlet and outlet channels contribute to the 

pressure drop, as well as variable influences (e.g., ash accumulation or geometric differences in 
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channels) [6, 7]. Subsequently, this generated pressure drop incurs a temperature decrease, while 

imposing backpressure on the engine, negatively affecting fuel consumption and performance. 

While effective at removing PM emissions, the DPF eventually reaches its capacity for soot 

loading. Regeneration events (active or passive) are used to remove accumulated PM from the 

cores, extending the life of the filter and mitigating the negative repercussions of a highly loaded 

DPF (i.e., increased backpressure). Active regeneration requires temperatures of 500-600oC in 

order for the O2 to oxidize the PM; whereas, passive regeneration only requires temperatures 

around 200oC while utilizing NO2 to oxidize the PM [1]. For active regeneration, techniques 

such as a late fuel injection or external heating of the DPF must be implemented to reach the 

temperatures needed. However, for passive regeneration, catalysts are required (e.g., DOC or a 

catalyzed DPF) to provide the necessary NO2 [2]. Generally, the initiation of a regeneration 

event is typically handled by on-board diagnostics systems that are triggered by an excessive 

backpressure or a specific fuel consumption metric [8, 9]. During this event, the exothermic PM 

oxidation reactions create high levels of thermal energy, and care must be taken to control these 

events in order to prevent damage, such as melting or cracking of the DPF substrate from 

thermal stresses [10]. Thus, regeneration initiation and control strategies are viewed as primary 

opportunities for improvement in DPF systems.  

Through a combination of in-cylinder techniques (i.e., EGR) and aftertreatment systems (i.e., 

SCR, DPF, etc.), emissions concerns of CI engines can be effectively managed. However, 

additional issues facing CI engines stem from increasing fuel efficiency standards. In an effort to 

reduce carbon pollution and improve fuel efficiency, the Environmental Protection Agency 
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(EPA) has proposed a series of standards for medium- and heavy-duty trucks. These standards, 

implemented in two phases, are aimed at reducing fuel consumption, thereby decreasing the 

associated expense for both consumers and businesses along with diminishing greenhouse gas 

(GHG) emissions. Specifically, Phase 1 standards were implemented for 2014-2018 heavy-duty 

(HD) vehicles to reduce both carbon emissions and fuel consumption through existing 

technologies. Phase 2 standards, geared towards 2021-2027 HD vehicles, augment the Phase 1 

standards and encourage the development of new technologies [11]. Based on the proposed 

Phase 2 EPA standards, diesel fuel consumption by large trucks is expected to decrease by nearly 

one million barrels per day over the course of the next 20 years [12]. Overall, a reduction in fuel 

consumption will directly result in fewer carbon emissions, but achieving such a drop requires 

the employment and development of technological innovations.  

Hence, a primary opportunity for improving fuel efficiency of CI engines is highlighted via 

the estimate of one-thirds as shown Figure 1.2, which states that, of the available energy from the 

fuel used in combustion, only approximately one-third of this energy yields effective power. 

Furthermore, an additional estimated one-third is lost in the exhaust gases, and the final amount 

is lost to the coolant within the system, with a margin for other internal losses. From this, it is 

readily apparent that an opportunity exists to recover a portion of the two-thirds of fuel energy 

that is currently lost. Specifically, Waste Heat Recovery (WHR) is an effective method to recoup 

the fuel energy lost by converting the thermal energy of a heat source, in this case either the 

coolant or exhaust, into electrical or mechanical energy through a power cycle. Therefore, to 

increase the fuel efficiency of a vehicle, the energy generated from the WHR power cycle could 
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be utilized on-board the vehicle; thus, reducing the load on the engine and subsequently 

decreasing fuel consumption.   

 

Figure 1.2: Diagram of the estimate of one-thirds for fuel energy distribution in diesel engines [13] 

. 

1.2 Combined Diesel Particulate Filter Heat Exchanger for WHR 

 Of the various power cycles available for WHR, a prevalent option is a Rankine Cycle 

(RC), due to its simplicity and cost effectiveness (e.g., RC having a payback period one year less 

than that of the Brayton Cycle [14]), as well as relatively high efficiencies with moderate 

temperature differences (e.g., 60-70% of Carnot efficiencies for temperature differences of 

approximately 350 K [15]) [16]. Traditionally, an RC consists of four components (i.e., 

evaporator, expander, condenser, and pump) through which a fluid is circulated. The processes 

taking place within an RC, as seen in Figure 1.3, can be described as follows:  

 Process 1-2: Waste heat is captured from the heat source via an evaporator and 

transferred to the working fluid. 
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 Process 2-3: The working fluid is expanded, generating power. 

 Process 3-4: The remaining thermal energy in the working fluid that was not used to 

generate power is rejected from the system by passing through a condenser. 

 Process 4-1: The working fluid passes through a pump and returns to its initial state.  

 

Figure 1.3: Components of an RC, where W represents power and Q represents a heat transfer rate with 
the associated arrows indicating their directions into or out of the system. 

Accordingly, the component most directly responsible for recovering the thermal energy 

from the heat source is the evaporator, a heat exchanger (HEX). Both the coolant, a low 

temperature heat source (e.g., approximately 300 to 400 K) and the exhaust, a medium 

temperature heat source (e.g., approximately 500 to 900 K), can be utilized within the RC [17]. 

However, since the recovery potential of any heat source is highly dependent on its temperature 

(i.e., following the Carnot efficiency), the exhaust is a more thermodynamically attractive 

working fluid [18]. As a result, when installed on a vehicle, an RC-based WHR has the potential 

to offer around a 10% increase in overall engine efficiency [19]. 
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For WHR implementation on-board a vehicle, consideration must be given to the location of 

the HEX evaporator in the exhaust stream. The catalysts used for CI engines do not require 

significant thermal considerations (except for warm-up), and thus do not drastically influence 

this determination. However, the temperature drop across the DPF, as well as the high 

temperature regeneration events that it experiences, greatly influence where the HEX evaporator 

can be placed. Specifically, installation of the HEX evaporator downstream of the DPF would 

not fully utilize the thermal energy of the exhaust, with temperature and subsequent energy 

decreases occurring across the DPF. Moreover, placement of the HEX evaporator upstream of 

the DPF would require greater operational changes to achieve temperatures for regeneration 

events (i.e., increased heating, more fuel injected late, etc.). Consequently, a novel idea is the 

coupling of the HEX evaporator and the DPF, creating a combined diesel particulate filter heat 

exchanger (DPFHX).  

As shown in Figure 1.4, when creating a DPFHX, the DPF cores (brown) could be installed 

in the tubes (gray) of a shell-and-tube HEX, allowing continued operation as a traditional DPF. 

In the shell (blue) of the DPFHX, a working fluid can circulate around these tubes, extracting 

thermal energy from the exhaust. The DPF cores within the tubes of the HEX would create 

further heat transfer pathways, namely convection within the channels and the walls of the cores 

along with conduction through the cores. These pathways would facilitate additional heat 

transfer, generating the potential for more effective WHR and greater improvements in engine 

efficiency than traditional WHR.  
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Figure 1.4: Rendering of a novel combined DPFHX [20]. 

 Further opportunities exist in the inherent operation of a DPF, such as during 

regeneration. As discussed, regeneration techniques can include the late injection of additional 

fuel or externally heating the DPF in order to reach the required temperatures. Not only could the 

DPFHX recover the additional thermal energy from the high temperature regeneration process, 

penalties on the engine’s efficiency from the additional energy input for external heating or fuel 

for late injection could be lessened. Moreover, an exhaust HEX also presents enhanced control 

opportunities to prevent excess temperatures in the DPF cores, mitigating potential damage from 

thermal stresses and cracking. Conceptually, the working fluid would stop circulating in the 

DPFHX until the DPF cores achieve regeneration temperatures. At this point the working fluid 

would begin circulating again to recover any excess heat from this regeneration while also 

preventing temperature runaway in the DPF cores. Possible extensions of the WHR system 

include utilization of a working fluid preheater (via a thermoelectric generator or the exhaust of 

the RC expander) to assist the DPFHX warmup during startup conditions and to help the DPFHX 
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achieve regeneration temperatures quicker, or implementing an electric heater powered by the 

RC during start-up conditions to pre-heat the exhaust for aftertreament [21, 22]. 

1.3 Scope of Work 

Due to the potential of the DPFHX device, the subsequent chapters in this thesis describe the 

work completed investigating this aftertreatment option for CI engines. Previously, Sprouse [20] 

detailed the creation of a WHR apparatus for use with a Yanmar single-cylinder CI engine. This 

included experimental testing of the WHR apparatus along with computational modeling of the 

DPFHX [20]. Building on that prior effort, this thesis explains the work of the author in further 

investigating the DPFHX for WHR. This involved experimental testing of various working fluids 

both with and without DPF cores.  

Before presenting the procedures and results of the experiments and simulations, Chapter 2 

aims to provide a contextual overview of the RC WHR analysis including the state-of-the-art in 

the field. The chapter begins with a discussion of RC WHR configurations, components, working 

fluids, and the terms used to assess their performance; thereby, developing an analytical 

framework for the subsequent literature review. Following a historical summary of RC WHR 

from 1973 to 2011 is an exhaustive review of the literature from 2012 to the present. 

Subsequently, the trends of RC WHR spanning the past 40 years are succinctly summarized, 

highlighting the direction of the field and specific topics requiring consideration.  

Next, the third chapter of this thesis covers the three rounds of experiments conducted: 

validating the performance of the WHR apparatus, assessing the performance of four working 
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fluids in the WHR apparatus, and testing the operation of the DPFHX. Overall, the results of 

each round will be discussed and compared where appropriate. Moreover, a thermal resistance 

analysis was completed to further elucidate the heat transfer mechanisms occurring within the 

DPFHX; hence, the methodology and results of this study are also included. Finally, through 

discussion and analysis of the experimental results, conclusions regarding operation of the 

DPFHX are presented based on the current apparatus and extrapolated to future research.  

Finally, Chapter 4 presents a summary of the entire work. It is at this point that the trends 

seen in the literature review are linked with the experimental exercises completed, indicative of 

the relevance and importance of this work in the context of the current state-of-the-art. 

Furthermore, these linkages are expanded upon to indicate the direction of and motivation for the 

author’s future undertakings. Thus, the efforts described in this thesis provide the background 

and validation for the continuation of research on the DPFHX concept, while also indicating 

specific aspects for enhancement based on the outcomes presented herein.  
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Chapter 2: RC WHR Literature Review 

2.1 RC WHR Overview 

Before delving into the state of the art of RC WHR, it is imperative to understand the 

fundamental aspects of RC WHR operation and analysis. First and foremost are the various 

configurations of cycles that are prevalently employed. The basic RC consists of an evaporator, 

expander, condenser, and pump in a single loop, as shown in Figure 2.1 [23]. When this, or any 

other configuration, utilizes engine exhaust gas as the heat source, it is commonly referred to as 

an RC bottoming cycle or mid-grade WHR [24]. Furthermore, if the engine coolant is used as the 

heat source, it is often referred to as low-grade WHR, a distinction made based on the 

temperature of the heat source used [17]. Although the coolant and exhaust are the primary 

sources of waste heat considered, additional energy sources employed include EGR, Charge Air 

Cooler (CAC), or general process waste heat in power plant applications.  

 

Figure 2.1: RC configuration highlighting the pump, evaporator, expander, and condenser. 
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In order to improve waste heat utilization, there are several modifications frequently made to 

the RC. For example, in a preheat RC (PRC) as in Figure 2.2a, an additional HEX is placed prior 

to the main evaporator to preheat the working fluid via a secondary heat source. Traditionally, 

this heat source for the preheater is the engine coolant, with the exhaust as the main heat source. 

Depending on the expander, the inclusion of preheat in the cycle can aid in vaporization of the 

working fluid, which can potentially prevent damage to the expander from liquid droplets in the 

working fluid stream, while also allowing for the utilization of additional waste heat sources [23, 

25, 26].  

An equally simplistic adaptation of the RC is the regenerative RC (RRC), in which an 

internal HEX is situated after the expander. This regenerative HEX captures residual heat from 

the working fluid after it passes through the expander, not only reducing the cooling load of the 

condenser, but also providing additional heat to the working fluid prior to the expander, similar 

to the preheater [27]. Figure 2.2b shows the most common RRC configuration, with the 

regenerator placed upstream, in series with the evaporator. However, placement of the 

regenerator can be further varied (i.e., placing the regenerator parallel to the evaporator). To 

additionally maximize waste heat utilization, both preheat and regeneration can be used in an RC 

(PRRC), shown in Figure 2.3. As in the PRC, the coolant is commonly used as the preheat 

source for the main exhaust heat source and as in the RRC, the location of the regenerator can be 

moved in relation to either the preheater or the evaporator.  
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Figure 2.2: (a) PRC and (b) RRC configurations. 

   

 

Figure 2.3: PRRC configuration. 

In contrast to the previously mentioned single-loop RC modifications, cascade RCs (CRCs) 

and dual-loop RCs (DRCs) consist of two full RC loops. Specifically, for a CRC, the high-

temperature (HT) loop is essentially a standard RC, but instead of transferring residual heat from 

the condenser to an external coolant, the residual heat of the HT loop is the heat source of the 

low-temperature (LT) loop, as shown in Figure 2.4. Comparatively, in a DRC as in Figure 2.5, 
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two different heat sources are used in the LT and HT loops, traditionally the coolant and the 

exhaust. In this way, multiple heat sources can be combined in a single WHR system with 

improvements in heat utilization and power output coming at the added expense of increased 

system complexity and supplementary components [27]. It is important to note that although the 

two loops in Figure 2.5 are completely separate RCs, the complexity can be increased using 

preheaters and regenerators, oftentimes connecting the two loops to form a cascade DRC. 

Ultimately, the configurations in Figure 2.1 through Figure 2.5 display basic set-ups for each 

cycle, with a large number of further variations and added complexities possible.  

 

Figure 2.4: CRC configuration. 
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Figure 2.5: DRC configuration. 

 Traditionally, the analysis of RC WHR systems, either through experiments or models, is 

done by energy balances on individual components. Most simplistically, steady-state systems are 

used to calculate the work with isentropic efficiencies for the pump and the expander along with 

finding the heat transfer for both the condenser and evaporator. Thus, the net work output can be 

calculated as the difference between the work generated in the expander and the work consumed 

by the pump. Furthermore, the comparison of the heat transfer to the working fluid versus that 

from the heat source yields indications about the waste heat utilization of the system. Also 

indicative of system performance are the various efficiency values calculated. In addition to 

individual component efficiencies, thermal efficiency, system efficiency, and conversion 

efficiency are all used to characterize the efficacy of RC WHR. The thermal efficiency of the 

cycle is calculated as the ratio of net work over the absorbed energy from the heat source, 

evaluating how well the cycle transfers the recovered waste heat to power output. While the 

system efficiency is the ratio of net power to the maximum heat available in the heat source and 
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can often be combined with the engine or heat source efficiency to provide an overall efficiency. 

Finally, the conversion efficiency takes into consideration losses in converting the energy from 

the expander to usable energy for the system.  

 Although the efficiencies generally describe the system, there are also several analysis 

methods strictly applicable to HEXs, commonly used in the literature for optimization. The first 

of these is a pinch point analysis, in which the minimum temperature difference between the two 

streams in a HEX provides correlations for performance and surface area. The lower the pinch 

point temperature difference, the fewer losses within the HEX, but a larger heat transfer surface 

area is required. This indicates the tradeoffs between lower operating costs of heat sources with 

higher costs of larger HEXs, which can be targeted and optimized during RC WHR operation 

[28]. The second calculation method is the overall heat transfer coefficient, which takes into 

consideration the thermal resistances from conduction, convection, and fouling within a HEX 

[29]. Since this overall heat transfer coefficient also takes into account the cold or hot surface 

area within the HEX, this coefficient can be optimized to minimize the heat transfer surface area 

and subsequently the cost of the HEX.  

 Moreover, an economic analysis is just as crucial to the overall design of RC WHR 

systems as the thermodynamic performance metrics mentioned. While different authors utilize 

dissimilar methodologies for assessing the economic performance of a system (e.g., only 

considering working fluid performance [30], optimizing thermodynamic, economic, and 

environmental performance concurrently [31], etc.), there are several overarching terms used. 

One such expression is the levelized energy cost (LEC), which evaluates the energy cost per 
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kWh based on the net power output, capital recovery cost, total cost of equipment, and operation 

and maintenance costs over the evaluated period [32]. The total investment cost, primarily based 

on the cost of the components, and the electricity production cost (EPC), calculated similar to 

that of LEC, also evaluate economic performance [33]. Calculated from the average price of 

electricity and the depreciation of system components, the depreciated payback period (DPP) is 

used to quantify the long term costs associated with a WHR system [34]. These terms, among 

others, are used to assess and compare the economic performance of various working fluids, 

cycle configurations, or waste heat sources.  

 The final factor for consideration is the working fluid. When a working fluid is organic, 

the cycle is referred to in literature as an Organic Rankine cycle (ORC). For organic working 

fluids, which generally have lower boiling points and critical temperatures than inorganic fluids, 

the classification of wet, dry, or isentropic is also applied, based on the slope of the fluid’s 

saturation curve [27]. However, in order to prevent damage to the expander from condensation 

and subsequently removing the need for superheating, dry and isentropic fluids, such as 

hydrocarbons and refrigerants, are preferred [35]. Additional criteria imperative to working fluid 

selection include thermal and chemical stability, low cost, environmental impact, safety, high 

latent heat of vaporization, density, specific heat, and general heat transfer properties (i.e., low 

viscosity, high thermal conductivity) [17]. 

 Based on cycle configuration, efficiencies, RC performance, economic performance, and 

working fluid selection, the efficacy of RC WHR systems for various applications can be 

assessed. Moreover, via multiple difference facets of RC design, the performance of these 
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systems can be optimized. Thus, this introductory overview frames these types of assessments 

carried out in the literature.  

2.2 Literature Review 

From 2010 to 2016, the number of publications on the topic of RC increased by nearly 400% 

after remaining steady from 2000 to 2010, indicating the growing interest in RCs for various 

applications across the globe [36]. However, conducting innovative and thorough research 

requires a wide literature search to understand the current state-of-the-art. The work of Sprouse 

[20] comprehensively reviewed WHR and RCs through 2011, including power cycle 

comparisons, WHR applications, component and working fluid selection, 

experimental/simulated performance, and economic approximations. Thus, after summarizing 

the state-of-the-art as of 2011, the current literature review will assess RCs for engine WHR 

between 2012 and 2018 to fully cover the growth in this research area.  

2.2.1 Early Literature Review Summary (1973-2011) 

The study of WHR began as early as the 1970s in an attempt to mitigate increasing fuel 

prices and growing concern over air pollution driven by the Clean Air Act. As fuel prices 

fluctuated through the years, so did interest in WHR methods, with publications dwindling in the 

late 1980s before picking up again in the mid-1990s and dramatically increasing in the mid-

2000s. The first two instances of Rankine cycles for automotive WHR occurred in 1973 and 

1976, respectively. In 1973, Morgan et al. developed a model and prototype RC for WHR using 

a 1972 Ford Galaxie for component sizing, indicating the potential for 11% fuel economy 
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improvement [37]. Furthermore, in 1976, Patel et al. installed an RC system on the exhaust of a 

Mack 676 diesel engine for a long-haul truck, yielding a 15% fuel economy improvement and a 

13% increase in maximum power output [38].  

From these benchmark studies, many researchers went on to compare other WHR methods to 

RCs, including Brayton cycles (BCs), Kalina cycles, Stirling engines, and gas turbine systems. 

However, even in the cases where the other cycles outperform the RC (e.g., the Kalina cycle in 

[39]), the simplicity and cost-effectiveness of the RC made it the more viable option. 

Furthermore, different heat sources for RC WHR were studied modestly, with researchers 

indicating that maximum heat recovery occurred when the exhaust and the coolant were used 

together [40, 41]. However, the exhaust gas alone was also utilized in the literature with success 

[42, 43], further improved by coupling the exhaust gas with the heat of the engine block [44]. 

Notably, Oomori et al. implemented the coolant as a heat source to negate the negative impact of 

exhaust heat fluctuations; thus, recovering 3% of the engine’s output energy [45]. 

More so than cycle type or heat source comparisons, working fluids were largely considered 

in the performance optimization of WHR methods. Specifically, the working fluids used early in 

RC WHR were subsequently phased out due to environmental considerations with global 

warming potential (GWP) and ozone depletion potential (ODP) becoming increasingly important 

selection criteria. Additionally, thermal stability, capital and investment costs, system size, and 

performance were all imperative criteria for working fluid selection beyond the necessary 

thermo-physical properties.  
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Although Badr et al. developed specific correlations for working fluid thermo-physical 

properties in one paper; authors customarily provided general correlations for specific properties 

and WHR performance [46]. For example, higher boiling points and higher critical temperatures 

yielded improved performance [47-50]. Furthermore, refrigerants performed better with 

decreasing source temp, while wet fluids attained superior cycle efficiencies for increasing 

turbine inlet superheat [47, 51]. Since the optimal working fluid varied and no single working 

fluid was persistently regarded as superior, determination of the appropriate working fluid for a 

given application was considered of great importance across the literature. Nonetheless, water, 

benzene, and R-123 regularly displayed preeminence, necessitating their consideration for most 

RC WHR applications.  

Rivaling in importance to working fluid selection was that of the expander. The efficiency of 

the expander, in conjunction with its coupling to energy conversion or storage technologies, 

affects overall cycle efficiencies, as well as the practicality of RC implementation. Turbines were 

the preferred expander for high temperature and power output situations, achieving high 

efficiencies, but requiring strict inlet working fluid conditions to prevent fouling. Thus, 

reciprocating expanders were widely applied in smaller systems, performing better at varying 

operating conditions and being more forgiving of inlet conditions. Also considered, though not 

as prevalent, were Wankel, screw, and scroll expanders, with their potential ability to outperform 

other types [52, 53]. Furthermore, aside from initial studies mechanically coupling the expander 

to the vehicle, hybridized vehicles or battery storage after energy conversion were extensively 

implemented as the field progressed.  
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Throughout the field, primary applications of WHR included on-board vehicle systems for 

spark-ignition (SI) and hybridized electric passenger vehicles, CI passenger vehicles, and CI HD 

long-haul trucks. As such, appropriate component sizing and the integral corollary, determination 

of working fluid selection, targeted minimization, as well as integration within existing vehicle 

components. Moreover, similar trends were displayed for economic concerns in system design, 

with cost becoming considerably larger for working fluids and components as system size 

increased. Furthermore, despite the cost of an RC system decaying dramatically as the power 

output grows, the economic optimization of operation is rarely the same as thermodynamic 

optimization [50, 54]. Hence, a compromise between economics and performance, including the 

previously discussed considerations (e.g., working fluids, components, and sizing) must be 

holistically targeted during RC design.  

 Notwithstanding the design and optimization challenges facing RC WHR, modeling and 

experimental thermal efficiency improvements from 2-30% were achieved in the literature prior 

to 2012, with power output upgrades ranging from 10-20%. Additionally, fuel economy grew by 

3-15%, with payback periods of around three years for several systems. Ultimately, the state of 

the art as of 2011 indicated the viability of RC WHR for enhancing the efficiency of internal 

combustion engines (ICEs). Furthermore, ameliorations in the RC systems themselves were 

achievable through effective working fluid and component selection and appropriate system 

sizing for the given application. With no single preferable RC system design developed, the 

trends in the literature stress the significance and weight that each constituent carries, as well as 

the need for further refinement and advancements in technology for WHR applications.  
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2.2.2 Recent Literature Review (2012-2018) 

In 2012, Boretti modeled an RC for WHR using a four-cylinder turbocharged 1.6 L gasoline 

passenger car engine in order to identify the most effective heat source with R245fa as the 

working fluid [55]. Furthermore, to eliminate the complication of transferring energy from the 

expander to the vehicle’s crankshaft, Boretti recommended installing the RC configuration on-

board a hybridized vehicle. Ignoring additional losses such as conversion efficiencies, usable 

power versus fuel energy flow rate improvements of 3.4%, 1.7%, and 5.1% were found for 

exhaust, coolant, and combined exhaust and coolant WHR, respectively. Moreover, despite 

providing a lower improvement in usable power versus. fuel energy flow rate than the other heat 

sources, WHR utilizing the coolant was a competitive heat source, since the coolant back 

pressure reduces the engine’s thermal efficiency less than the exhaust back pressure.  

In the same year, Shu et al. theoretically analyzed the performance of a combined 

thermoelectric-generator (TEG) with an RC (TEG-RC) system for exhaust gas waste heat 

recovery in which the TEG and the coolant preheat R123 with an additional, conditional 

preheating occurring when the cycle was subcritical [21]. Moreover, the most effective operation 

of the combined TEG-RC system occurred at an evaporator pressure of 4 MPa and a condenser 

pressure of 0.06 MPa, yielding 28 kW of additional power and an improvement of nearly 5% in 

the indicated thermal efficiency. Although the TEG produced only 6% of the power of the RC 

system, the TEG allowed for a wider range of RC operation, with improvements in technology 

and performance crucial for practical application.  
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Additionally at the same time, Latz et al. theoretically compared pure and zeotropic 

mixture working fluids in both supercritical and subcritical Rankine cycles for WHR on HD CI 

engines from the exhaust, coolant, and through the EGR system [56]. Of the seven pure working 

fluids, ethanol was superior in a subcritical cycle and HCFC-123 performed best in a 

supercritical cycle. Moreover, R430a and a mixture of water and methanol were the top 

achieving zeotropic working fluids in supercritical and subcritical cycles, respectively. From 

both types of working fluids, the supercritical cycle provided no significant thermal efficiency 

benefits at a costly higher pressure; thus, the water/methanol mixture in a subcritical cycle was 

deemed the most promising working fluid. 

Instead of investigating different working fluids, Arunachalam et al. in 2012 conducted a 

theoretical evaluation of RC WHR from five different heat source combinations on a 13 L HD CI 

engine in a dual loop cycle [57]. Using IPSEpro with water as the working fluid, the power 

available from each source at the primary operating point of the C75 European Stationary Cycle 

(ESC) and a sweep of operating points was compared. Overall, the authors obtained the highest 

power output from the dual loop cycle utilizing EGR, exhaust gas, and the CAC; however, the 

EGR alone proved to have a higher heat utilization efficiency (22.2% versus 15.6%). For the 

loading sweep, employing just the EGR achieved comparable power output to the three 

combined sources at 25-50% load (typical for HD operation). Therefore, while the ideal source 

for WHR depends greatly on the engine load, the EGR system by itself demonstrated improved 

consistency, while minimizing cost and size. 
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Following the recommendations from their previous study, Boretti et al. (in the same 

year) researched the implementation of an RC WHR cycle with water as a working fluid on a 

gasoline engine fitted with a parallel hybrid powertrain for cold start driving cycles [58]. While 

the parallel hybrid system incurred conversion penalties, it also allowed the WHR energy to be 

directly utilized on-board the vehicle. Overall, considering thermal, electrical, and transmission 

losses, the authors achieved 10.2% additional fuel economy savings on the parallel hybrid over a 

traditional powertrain.  

Concurrently, Lopes et al. thoroughly reviewed the state of the art of RCs for WHR via 

hybrid engines, investigating cycle components and literature trends [59]. Specifically, shell-and-

tube, plate, and metal foam HEXs were all used for RC applications, yet plate HEXs were the 

ideal option due to their compact design. Furthermore, five different types of expanders were 

typically used; nonetheless, the scroll expander was the most prevalent with the highest 

efficiencies. Of the three main pump types, the operation of diaphragm pumps most 

appropriately met the needs of an RC. Accordingly, the authors emphasized the importance of 

component sizing and working fluid selection specific to the application. 

Also in 2012, Dolz et al. studied RC working fluids and WHR heat sources for a HD CI 

engine in order to achieve maximum power output [60]. Comparing working fluids, all energy 

sources leaving the 12.0 L two-stage engine (i.e., exhaust gas, EGR cooler, intercooler, 

aftercooler, and engine block cooling water) were used in a single RC. From this, water 

performed better in HT cycles with superheating, while R245fa functioned better in LT cycles. 

Subsequent simulations included two heat source configurations with water as a working fluid: 
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only HT heat sources (i.e., exhaust, EGR, aftercooler) and a binary cycle using a top cycle (i.e., 

EGR, exhaust) and a bottom cycle (i.e., aftercooler, intercooler, cooling water, cooled exhaust 

gases). Consequently, the binary cycle achieved the highest power improvement of 19% over the 

baseline engine, followed by the HT cycle, and then the single cycle with all heat sources, at 

14.7% and 10%, respectively. 

Continuing the previous study by Dolz et al., Serrano et al. adapted the RC WHR system 

to resolve issues when coupling the RC to the engine, namely, by removing the low-pressure 

turbine [61]. Moreover, they modified the RC with the following heat sources: mid-pressure 

(MP) EGR, low-pressure (LP) EGR, and LP EGR with additional HT sources (i.e., exhaust 

gases, aftercooler). Specifically, compared to the standalone engine, they achieved RC power 

improvements of 6.4% and 7.7% for the MP EGR and LP EGR, respectively, and power 

degradation of 6.8% for the LP EGR/HT. Thus, when compared to the power improvements 

from Dolz et al., the reduced pumping losses from removing the LP turbine were inadequate to 

improve RC performance. Although the best performing RC configuration was the binary cycle 

from Dolz et al., it incurred additional complexity using every available source; thus, Dolz et 

al.’s HT heat source configuration utilizing the exhaust, EGR, and aftercooler was the most 

promising.  

Boretti followed up their work in the same year by modeling an RC WHR using the 

coolant and the exhaust of a hybrid gasoline vehicle; however, this time employing R245fa as the 

working fluid [62]. Experimentally obtained engine operating parameters permitted steady-state 

simulation of an RC using exhaust, coolant, or the two heat sources combined for WHR. Overall, 
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these options increased the average and maximum fuel efficiency by the following amounts: 

3.4% and 6.4% (exhaust); 1.7% and 2.8% (coolant); 5.1% and 8.2% (combined), without 

consideration of losses. 

As a different approach, in 2012 Tian et al. analyzed the thermo-economic performance 

of twenty working fluids in an RC WHR system, using the exhaust gas from a six-cylinder, 

supercharged CI engine [30]. Three working fluids exhibited superior behavior across all the 

parameters optimized, R141b, R123, and R245fa, with thermal efficiency values ranging from 

13.3 to 16.6%, net power from 49 to 60 kJ/kg, expansion ratios from 18 to 41, and ratios of total 

heat transfer area to net power output from 0.436 to 0.572 m2/kW. Furthermore, R141b, R123, 

and R245fa achieved electricity production costs of 0.30 to 0.35 $/kWh, indicating their 

economic capabilities, in addition to their thermal capabilities. 

The same year, Boretti again modeled an RC WHR system, but this time on a direct 

injected engine running on ethanol over the New European Driving Cycle (NEDC) startup and 

highway conditions [63]. This RC system consisted of exhaust gas as a heat source with the 

coolant as a preheater, R245fa as the working fluid, and an electrically operated pump. The 

simulation obtained fuel efficiency increases of 4.2% over NEDC with a faster engine warm-up 

and 6.4% over highway conditions. Further fuel efficiency improvements are possible by 

considering reductions in the cold start penalty along with enhancements provided by a hybrid 

powertrain (i.e., regenerative braking, engine start/stop, and the mixture of the thermal and 

electric power supplies). 
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The following year, Xie et al. simulated on-road RC WHR performance for a HD CI 

engine using the exhaust and cooling water as heat sources and R123 as the working fluid [64]. 

The simulation was based on four different driving modes: start-up, turbine turning at no-load, 

power, and protection implementing turbine bypasses when needed (e.g., when the working fluid 

cannot evaporate). However, on-road system efficiencies of the RC were as low as 3.63%, 

largely due to the variability of switching modes and the turbine bypassing required; hence, this 

creates significant opportunities for improvement. 

Also in 2013, Shu et al. evaluated the full installation of an RC WHR on a CI engine, 

using three plate HEXs to recover exhaust gas waste heat via a thermal oil circuit with a jacket 

water pre-heater [65]. Based on engine test data for two operating points, the cycle was 

simulated using R245fa and R601a as the working fluids. The maximum expansion power was 

12.4 kW for R245fa under the first operating condition versus 18.8 kW for R601a under the 

second operating condition, ultimately providing an enhancement of 9.0% and 7.7% for thermal 

efficiency, respectively. 

In the same year, Tian et al. expanded the traditional application of an RC for WHR on a 

CI engine by employing the power output of the RC as the input for a compression refrigeration 

cycle in four configurations as shown in Figure 2.6: standard, with an expander to recover the 

throttling power, with an internal HEX to preheat/cool the working fluid at the HEX (HEX) 

inlet/turbine outlet,  and with both an expander and an internal HEX [66]. Based on the 

simulations with CO2 as the working fluid, the inclusion of both the expander and the internal 

HEX in the provided improved system performance, due to the expander lowering the 
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compression refrigeration cycle high pressure and the internal HEX growing the expansion 

power. Moreover, they state that targeted high pressure values can further optimize performance. 

 

Figure 2.6: Diagrams of the combined RC-compression refrigeration cycle with (a) no modifications, (b)  
an expander, (c) an internal HEX, and (d) both an expander and an internal HEX [66]. 

Contrary to most previous WHR vehicle applications employed using parallel hybrids, in 

2013 Jung et al. introduced an RC WHR system on a series hybrid electric intra-city bus with a 

compressed natural gas (CNG) engine [67]. Two working fluids, water and R245fa, and two 

HEX surface types, 10.27T and 30.33T, were compared in a quasi-one-dimensional (1-D) 

simulation. Ultimately, the combination of R245fa and 30.33T provided the greatest overall 

improvement of fuel consumption at 8%, while maintaining power output across the operating 
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conditions of a typical bus route. Moreover, the engine and drivetrain in series allowed the 

engine with the RC to meet the same power loads while maintaining a reduced fuel consumption.  

The same year, Yamaguchi et al. used the exhaust heat of a single cylinder, high boosted, 

high EGR CI engine as the simulated input for an RC WHR system using water after comparing 

six potential working fluids [68]. Based on the available exhaust energy, coupled with their 

simulation results, the authors determined that medium to high driving loads (e.g., highway 

operation) were prime for RC operation, achieving an improvement in brake specific fuel 

consumption (BSFC) of 2.6-3.0% for full load conditions. 

Concurrently, Hossain et al. investigated the ability of two shell-and-tube HEXs to extract 

exhaust energy on a four-cylinder test engine with water as a working fluid [69]. After achieving 

a maximum HEX effectiveness value of 0.55 and a maximum combined RC and engine 

efficiency increase of 4.4% in their experimental set-up, the authors developed three dimensional 

(3-D) CFD models using ANSYS CFX to optimize the HEX design. Based on the optimized 

HEX design parameters (19 tubes, inner tube diameter of 76 mm, length of 2 m), the counterflow 

orientation recovered heat more effectively than parallel flow, attaining 23.7% additional power 

for an optimized working pressure of 30 bar. 

Also in 2013, Xu et al. developed a holistic approach to comparing different cycles for use in 

exhaust WHR through the generation of three new efficiency terms: energy recovery efficiency, 

energy conversion efficiency, and overall energy conversion efficiency (OECE) [24]. Using 

these terms, the authors compared six different bottoming cycles to determine which one would 

provide the maximum OECE: the Brayton air cycle with isothermal compression. However, due 
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to the difficulties involved in the implementation of isothermal compression, the superheated and 

standard Rankine cycles were subsequently the best performing WHR bottoming cycles. 

Furthermore, Domingues et al. continued the analysis in 2013 by creating an RC and a HEX 

model for the application of WHR from the exhaust gases of a 2.78 L SI engine, while 

additionally comparing thermal and vehicle mechanical efficiencies of water, R123, and R245fa 

as the working fluids [70]. Specifically, these models revealed water as the ideal working fluid, 

with R123 and R245fa as being more effective for LT WHR. Moreover, upon comparing HEX 

design, the ideal HEX (i.e., set model evaporating pressures) obtained maximum improvements 

of 3.52% and 15.95% for ICE thermal and vehicle mechanical efficiencies, respectively; 

whereas, full simulations of shell-and-tube HEXs obtained maximums of only 1.2% and 6.96%. 

However, the authors noted a coupled increase in evaporation pressure with thermal and 

mechanical efficiencies, indicating the importance of evaporator and expander designs. 

Continuing a busy year, Zhu et al. presented a theoretical energy and exergy study of a 

bottoming RC WHR using five different working fluids and a wide range of engine operating 

conditions [71]. Subsequently, the most important parameters influencing RC performance were 

working fluid properties, superheating temperatures, and evaporating pressures. Furthermore, the 

superheat temperatures and evaporating pressures greatly depended on working fluid properties 

subsequently influencing component sizing. Of the working fluids, ethanol and R113 achieved 

maximum recovery efficiencies across the operating conditions employed. However, at heat 

source temperatures above 800 K, water performed better. Despite the comparatively poor 
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thermodynamic performance of R245fa, its environmental safety makes it extremely attractive 

for low-grade WHR. 

The same year, Peris et al. simulated and compared six different RC configurations with ten 

distinct working fluids for RC WHR using engine cooling water [27]. The six RC configurations 

were as follows: basic, regenerative, double regenerative, reheat regenerative, ejector, and 

transcritical regenerative. Consequently, the most efficient WHR occurred in the double 

regenerative RC configuration with SES36 as a working fluid, improving the ICE electrical 

efficiency up to 5.3%. However, the double regenerative configuration is quite complex, and the 

other configurations provided similar system improvements with fewer alterations. In particular, 

the regenerative configuration with R236fa or the reheat regenerative configurations with R134a 

both provided similar improvements in the ICE electrical efficiency with simpler structures.  

Hajabdollahi et al. completed a thermodynamic, economic, and environmental optimization 

of an RC system in 2013 for CI WHR, targeting the maximum thermal efficiency and minimum 

total annual cost for working fluids [31]. Accordingly, the best economic and thermodynamic 

working fluid was R123 with a thermal efficiency of 51.27% and a total annual cost of $86,253 

per year. Notably, R245fa performed closely to R123, achieving a thermal efficiency and total 

annual cost less than R123 of 1.01% and 0.01%, respectively. 

In the same year, Shu et al. examined four different DRCs for WHR: basic, HT regeneration, 

LT regeneration, and both HT and LT regeneration [72]. Within the HT loop, several cycle 

modes and working fluid combinations were compared: subcritical with water, subcritical with 

siloxane, and transcritical with siloxane, while the LT loop operation and working fluid (R143a) 
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remained constant. Subsequently, the basic DRC with a subcritical water HT loop provided the 

highest performance, with a maximum net power output of 39.67 kW and a conversion 

efficiency of 11.93%. 

With the DRC performing best, Shu et al. focused the next year on its simulation for WHR 

from a six-cylinder turbocharged CI engine, while comparing the performance of six working 

fluids in the LT loop with water employed in the HT loop [73]. The heat source of the HT loop 

was the high-temperature exhaust, while the heat sources of the LT loop were the engine coolant, 

the residual heat of the HT loop, and low-temperature exhaust in series. Subsequently, through 

the optimization of the HT and LT evaporation temperatures, the results indicated that at high 

operating loads, R1234yf was the most suitable working fluid, obtaining maximum power and 

exergy efficiencies of 36.77 kW and 55.05%, respectively. However, maximum thermal 

efficiencies were obtained by R600 (20.07%) and R245fa (20.06%). Regardless of the load, 

R124 yielded the worst performance. 

In the same year, Zhang et al. theoretically surveyed the performance implications of a 

combined TEG and DRC system for exhaust WHR [74]. The DRC consisted of a HT loop with 

toluene as the working fluid and a LT loop with R123 as the working fluid. Subsequently, a 

combined thermal efficiency improvement of 5.2% was achieved; however, the authors 

concluded that the overall performance improvements of the combined system were not 

worthwhile considering the additional operational attention and costs incurred.  

Also in 2014, Yang et al. assessed the performance of a RC for exhaust energy recovery 

under driving conditions using a model of a HD CI bus with R123 as the working fluid [75]. The 
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authors achieved system efficiencies of 3.63% for actual driving cycles, in contrast to 7.77% 

under the rated operating condition; thus, displaying a significant variation in performance 

during driving cycles. Comparing control strategies for optimal RC performance elucidated the 

superiority of a combined control strategy through the rated efficiency, effective operating range, 

and dynamic control.  

 Based on the HEX optimization efforts from previous studies, Bari et al. conducted 

working fluid and load investigations in 2014 for RC WHR from CI engine exhaust [76]. Using 

ANSYS CFX modeling software, the authors compared ammonia and water as the working 

fluids under full and partially loaded conditions for two optimally designed HEXs. At full load, 

water produced a higher power generation at lower working pressures; whereas, ammonia 

achieved the opposite trend. Consequently, water managed the highest power recovery at full 

load and outperformed ammonia down to 70% load, despite the higher engine backpressure 

imposed. Conversely, below 70% load ammonia outperformed water as the working fluid. 

The same year, Furukawa et al. designed and tested an RC system for WHR from a HD CI 

truck [77]. Subsequently, the authors optimized the system efficiency by increasing the 

saturation temperature difference via HEX optimization and a high pressure turbine, with further 

improvements from the installation of a turbine energy recuperator. Consequently, upon 

selection of HFE as the working fluid, the authors attained a 7.5% fuel economy improvement 

using the exhaust gas, EGR species, and engine coolant as heat sources in comparison to only 

3.8% for the engine coolant and EGR species; subsequently, corresponding to a fuel savings of 

27% for the truck studied. 
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Concurrently, Dickson et al. utilized CFD simulations to optimize the design of the 

condenser for WHR on the Cummins-Peterbilt SuperTruck [78]. Through several design 

iterations, a condenser placed with the CAC, air conditioner condenser, and the radiator in the 

front grill of the SuperTruck was developed under the A75 operating condition with R134a as 

the RC working fluid. After successful thermodynamic and aerodynamic validation, the WHR 

system achieved fuel economy benefits ranging from 4-5%. 

Also in 2014, Jin et al. explored the performance of a two-phase, finned-tube, counterflow 

evaporator with R245fa in an RC WHR system for a CI engine across different engine loads and 

speeds [79]. The overall heat transfer increased with greater engine power, with the R245fa mass 

flow rate additionally growing linearly. Furthermore, in cases where the pressures at the inlet and 

outlet of the turbine were constant, increasing the working fluid mass flow rate enhanced the 

turbine output. As the engine speed grew, the efficiency of the evaporator decreased. Finally, the 

area of the preheated and two-phase zone areas enlarged and shrank, respectively, with 

increasing speed or load.  

As a slight deviation to traditional RC implementation in 2014, Han et al. studied the 

influence of cylinder clearance on the performance of an RC system with a free piston (FP) as 

the expander since FPs employ simpler structures, fewer moving parts, and lower mechanical 

losses than traditional rotational turbines [80]. Conversely, they experienced frictional losses 

between the cylinder and the piston, degrading their work output. Thus, in an effort to reduce 

frictional losses, the authors modeled the performance of a FP in an RC system with R245ca as a 

working fluid as shown in Figure 2.7. From a clearance of 0.00001 mm to 0.3 mm, the work 
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output gradually increased, and drastically decreased at clearances larger than 0.3 mm. As such, 

at a 0.3 mm clearance the net work output increased 10% presenting validation for performance 

improvements using FP expanders. 

 

Figure 2.7: Configuration of an FP RC system [80]. 

In the same year, due to the importance of suitable HEX designs on the efficiency of WHR 

systems, Hatami et al. reviewed WHR from CI engine exhaust [81]. The different WHR 

techniques included in the review were RCs, TEGs, EGR systems, and turbocharging. To 

increase the level of heat transfer, fins performed better than porous materials or foams, yielding 

lower pressure drops, while shell-and-tube HEXs were most widely used in the literature. The 

identified design pathways for increasing heat transfer include working fluid and material 

selection, parallel HEXs, and installing TEGs downstream. 



56 

 

Also in 2014, Yue et al. modeled a CI engine and bottoming RC system with R123 as the 

working fluid based on experimental data using two modeling approaches [82]. Their cascaded 

model calculated RC performance based on the results of the ICE model; while their integrated 

model evaluated the performance of the RC system with the influence of the RC on the ICE 

included. The cascaded model achieved an overall thermal efficiency improvement of 13.4% 

when compared to the standalone ICE; whereas, the integrated model achieved an overall 

thermal efficiency improvement of 7.8%, more indicative of actual performance due to the 

included pressure drop. Although the RC provided an overall efficiency improvement, the ICE 

efficiency decreased by 2% because of the restriction in the exhaust.  

Continuing a busy year, Long et al. inspected working fluid selection based on internal and 

external exergy of an RC WHR system using a set heat source [83]. The authors’ analysis 

indicated that the evaporation temperature largely determines the internal exergy efficiency 

instead of the working fluid’s thermo-physical properties. Conversely, the external exergy 

efficiency varied because of the evaporation temperature and thermo-physical properties, namely 

the Jacob number. As such, R600a achieved the greatest exergy efficiencies at larger heat source 

temperatures. Analysis of the overall exergy efficiency indicated the exergy and heat transfer 

processes (i.e., evaporator design and temperature) dictated the overall exergy transfer behavior 

in the RC system. 

At the same time, Zhang et al. generated an experimental RC system using a single-screw 

expander, a spiral-tube evaporator, a multi-channel parallel condenser, and R123 as a working 

fluid for CI exhaust WHR [84]. At low to medium rotational speeds, the single-screw expander 
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achieved a maximum power output of 10.38 kW and a shaft efficiency of 57.88%; thus, 

indicating the applicability of the expander. Moreover, the authors found that RC performance 

was influenced by the engine power and the torque of the expander, achieving a maximum RC 

efficiency of 6.48% at 250 kW of output and 64.43 N∙m of torque for an overall system 

efficiency of 43.8%. 

Similar efforts by Yang et al. considered the performance of a DRC system for a six-cylinder 

CI engine using R245fa as the working fluid in 2014 [85]. The HT loop utilized the exhaust as 

the waste heat source; conversely, the LT loop employed the coolant and the intercooler as heat 

sources. At the engine rated condition, the effective thermal efficiency of the combined engine 

and RC system grew by 13% for an overall efficiency of 35%. Moreover, at medium to high 

loads, the BSFC decreased by 4%. Generally, the LT loop yielded a higher power output than the 

HT loop, but also a higher exergy destruction rate. Over the entire operating range modeled, the 

DRC achieved a WHR efficiency of 5.4%.  

Concluding the studies in 2014, Hou et al. developed a generalized minimum variance 

(GMV) controller in order to regulate the operation of an RC WHR system with R245fa as the 

working fluid [86]. Two hallmark features of the proposed GMV controller were that it was data 

driven (i.e., no mathematical model) and it allowed for variations and disturbances in the tracked 

set-points. Applying the controller to a 100 kW RC system displayed that the multivariable RC 

system could handle variations in operating conditions while rejecting disturbances from noise. 

Furthermore, when compared to traditional proportional-integral-derivative controllers it 

displayed superior performance in tracking set-points and filtering out disturbances. 
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In 2015, Muhammad et al. designed, simulated, and then experimentally tested an RC WHR 

system consisting of a scroll-type expander coupled to an electric generator and a screw pump 

while utilizing the waste heat from steam and employing R245fa as the working fluid [87]. From 

the experimental setup, the authors obtained a maximum electric output of 1.016 kW and a net 

electric output of 0.838 kW, subsequently achieving a thermal efficiency of 5.64%, net 

efficiency of 4.66%, and isentropic expander efficiency of 58.3% at the maximum power output 

operating point. Overall, the largest losses in their system occurred in the pump and expander, as 

well as the in the piping systems. 

Meanwhile, Galindo et al. experimentally validated an RC system with a swash-plate 

expander and ethanol as the working fluid for a turbocharged gasoline engine [88]. System 

energy balances yielded maximum ICE mechanical efficiency improvements of 3.7% at high 

loads and a cycle efficiency of 6%. Subsequently, maximum values of the isentropic and 

volumetric efficiencies of the expander were 38.5% and 38.2%, respectively. 

Also in 2015, Yang conducted thermal and economic analyses of a transcritical RC (TRC) 

with R123yf as the working fluid for a marine CI engine [32]. Three different combinations of 

heat sources were compared: exhaust gas, exhaust gas and cylinder cooling water, and exhaust 

gas, cylinder cooling water, and scavenge air cooling water. The exhaust gas alone achieved the 

lowest total energy cost per kilowatt hour; conversely, all three sources combined exhibited the 

highest recovery efficiency, thermal efficiency, and specific work, but poor net power output and 

heat energy absorbed. However, the exhaust gas option exhibited the shortest payback period, the 

highest CO2 reduction, and the largest savings of heavy CI oil. Thus, use of the exhaust 
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demonstrated optimal combined economic and thermal performance as a heat source for a TRC 

on a marine CI engine. 

Feng et al., in the same year, addressed the thermo-economic, multi-objective optimization of 

an RC with a set heat source for WHR comparing pure and mixed R245fa and R227ea [89]. 

Consequently, the simulation results indicated that the performance of mixed or pure working 

fluids depended on the operational parameters, as well as the mixture mass fraction when 

present. Furthermore, maximum exergy efficiency and LEC were found for a mixture of 0.7 

R245fa/0.3 R227ea. Moreover, mixtures perform better than pure working fluids for a majority 

of their models. 

Also in 2015, Baldi et al. contrasted the optimization of an RC system on a chemical tanker 

with two CI engines installed at either 100% loading, 100% and 50% loading, over an 

operational profile from 50-100% loading in 5% intervals, or an operational profile over a 

variable range, as well as working fluids [90]. Consequently, the partial load conditions provided 

substantial improvements in the yearly fuel consumption savings estimates, growing from 7.0% 

to 9.0%. Furthermore, cyclopentane and benzene achieved the lowest yearly fuel consumption. 

When the interaction between the CI engines and the RC system were included in part load 

optimization efforts, the fuel consumption savings estimate increased further to 10.0%. 

Concurrently, Esposito et al. established a nonlinear control model for WHR on engine 

exhaust that predicted mass and energy flows through system components to allow for transient 

control and response of the RC system [91]. Furthermore, after validation via a simulation of an 

SI engine accelerating on the highway, the new control model yielded comparable net power 
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output throughout the transient operating profile to a traditional feed forward control; thus, they 

state that this established an improved transient control model.  

The same year, Song et al. evaluated the performance of a DRC for WHR from a 

turbocharged CI engine in which the HT loop utilized water as the working fluid and engine 

exhaust as a heat source; whereas, the LT loop used the jacket cooling water and residual HT 

heat as heat sources while testing three working fluids (R123, R236fa, and R245fa) [92]. By 

varying the dryness fraction of the water in the HT loop, the authors employed wet steam 

expansion via a screw expander. Consequently, a dryness fraction of 0.2 yielded the maximum 

HT loop net power output at 54.5 kW. Interestingly, for the LT loop, the variation of working 

fluid also led to variations in pinch point locations and evaporation temperatures; thus, R236fa 

yielded the maximum power output of the LT loop at 60.6 kW at an evaporation temperature of 

368 K. The combined optimized HT and LT loops generated a net power output of 115.1 kW, an 

11.6% increase from the standalone engine power. 

Additionally in 2015, Yamaguchi et al. completed a comprehensive analytical study of RC 

WHR on a HD CI engine with either a single-stage or a two-stage turbocharging system [93]. 

Based on their analysis, the single-stage system yielded 40.0-74.8 kW of available waste heat 

energy at high engine loading conditions; similarly, the two-stage system yielded 43.0-76.3 kW 

at the same engine loads. With the implementation of a WHR system, the effective work of the 

engine only improved by 1.5% and 1.4%, for the single- and two-stage configurations, 

respectively, translating to fuel economy improvements at highway conditions of 2.7% and 

2.9%, correspondingly. 
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 Analogously, Allouache et al. assayed the effect of various operating parameters on the 

performance of an RC WHR system for a 15 L CI engine in 2015 with R245fa as the working 

fluid [94]. Following validation of the simulation, the authors determined that the use of two 

straight-finned HEXs in parallel reduced the pumping losses substantially compared to a single 

HEX. Across a range of speeds and loads, the RC achieved a 5% increase in power output and 

obtained peak thermal efficiencies of 11%. Additionally, peak power output occurred for 

working fluid flow rates between 70 and 145% of the exhaust mass flow rate. 

Meanwhile, Pradhan et al. investigated heat sources and working fluids for RC WHR from a 

HD CI engine using experimentally obtained engine operating points [22]. Moreover, R123, 

R245fa, and R134a with three heat sources (CAC, EGR, and post-SCR exhaust) were considered 

in the study. For all configurations, R123 and R245fa exhibited the best working fluid 

performance. Moreover, for all working fluids, the combination of the post-SCR exhaust and 

EGR system displayed the best outcomes. Correspondingly, R123 obtained a maximum cycle 

output of 24.6 kW in this configuration, as compared to 19.9 kW for R245fa. Following system 

performance conclusions, the authors investigated the use of the WHR system to achieve SCR 

reaction temperatures during start-up operation. While the authors’ thermal analysis indicates 

that the preferred configuration generates enough power to accommodate the thermal needs of 

the SCR, further work must be done to actualize the premise. 

In the same year, Shen et al. focused their RC WHR research on the influence of two- and 

three-phase evaporators along with the impact of R245fa flow rate on expander power [95]. 

Subsequently, the two- and three-phase evaporators experienced 50-60% overall heat exchange 
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ratios with the two-phase outperforming the three-phase option at low loads. Thus, the mass flow 

rate of the working fluid and the enthalpy difference across the expander increased the power 

output of the expander. Conclusively, for CI engines at low temperatures, the two-phase 

evaporator was deemed ideal, while the three-phase evaporator was better for HD gasoline 

engines. Finally, both configurations had a total RC cost under $500, with a return on investment 

in 2.52 years. 

Eichler et al., also in 2015, presented a holistic approach to designing and optimizing an RC 

for CI engines [96]. Upon comparison of ethanol, toluene, and R245fa based on safety, isentropic 

process efficiency, and saturation, the best working fluid was determined to be ethanol. 

Moreover, exhaust gas and EGR were found to be the ideal heat sources based on the heat 

quality and ease of implementation. Finally, heavy-duty and medium-duty engines were 

analyzed for WHR based on the comprehensive methodology, consequently obtaining the best 

overall performance from a heavy-duty SCR-only system (no EGR), yielding fuel consumption 

savings of 3% under real driving conditions.  

Concurrently, Kulkarni et al. examined a DRC system for a HD ICE in which the LT loop 

with R245fa acts as the preheater for the HT loop with R236fa [97]. Consequently, the authors 

developed a MATLAB model of the RC system, achieving thermal efficiencies of 7.42% and 

6.48% for the HT and LT loops, respectively, and a maximum work output of 14.16 kW at full 

load and speed, corresponding to a thermal efficiency improvement of 10.3%. Furthermore, 

increasing the evaporator pressure, decreasing the condenser pressure, or superheating the 

turbine inlet temperature all grew the RC system efficiency.  
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Meanwhile, Kölsch et al. assessed the performance of methanol, toluene, and SES36 as 

working fluids in an RC for WHR from CI engine exhaust [98]. While toluene exhibited higher 

net power output, methanol attained greater thermal efficiencies and smaller heat transfer areas, 

while SES36 performed the worst. Furthermore, by balancing between heat transfer area, thermal 

efficiency, and power, methanol with a pressure of 18 bar and a turbine inlet temperature of 

320oC yielded a desirable heat transfer performance. 

Also in 2015, Amicabile et al. optimized the performance of an RC WHR system for a CI 

engine through the variation of heat source, working fluid, and thermodynamic cycle [99]. Upon 

evaluation of the available energy, the EGR cooler was the most appropriate waste heat source, 

with ethanol, pentane, and R245fa considered as working fluids in (1) a subcritical cycle with 

and without a recuperator and (2) a supercritical cycle with and without a recuperator. Of the 

twelve combinations, the subcritical cycle with a recuperator and ethanol as the working fluid 

yielded enhanced performance, improving the BSFC by 3.3%. Although the supercritical cycle 

with a recuperator and pentane as the working fluid displayed the highest power, the lower 

economic impact of the regenerative ethanol cycle was more attractive with a payback time of 

3.43 years for a capital cost of $14,162.  

Again in 2015, to mitigate the flammability concerns of hydrocarbons, Song et al. explored 

the performance of hydrocarbons mixed with retardants as working fluids in an RC WHR system 

employing the exhaust gas and cooling jacket water (preheat) for CI engines [100]. From the 

pure hydrocarbons, cyclohexane exhibited the maximum net power output of 78.3 kW. Then, 

cyclohexane was combined with two different retardants, R141b and R11, which, in addition to 



64 

 

reducing flammability, also reduced exergy losses subsequently improving exergy efficiency. 

Consequently, a 50% by volume mixture (50/50) of cyclohexane and R141b produced the 

highest net power output of 88.7 kW, a 13.3% increase over the pure cyclohexane. 

Concurrently, Glover et al. researched the performance of several working fluids in various 

RC configurations for coolant and exhaust WHR in which regeneration took place before, after, 

or parallel to the evaporator [101]. The authors found that for all fluids, once the coolant 

temperature exceeded 110oC, performance increased. Moreover, optimum system performance 

occurred for critical temperatures just below coolant temperatures at heat ratios greater than one, 

with a direct relation between enhancing RC performance and increasing critical temperature. 

Ultimately, cycle efficiencies were found between 5 and 23%, with fuel economy improvements 

between 10 and 30%. 

Continuing in 2015, Yang et al. completed a multi-parameter, multi-objective optimization of 

an RC system for CI engine exhaust WHR to obtain maximum power at minimum investment 

cost from six working fluid options [33]. Growing the evaporation pressure improved the 

thermodynamic and economic performance of the RC system, while increasing the condensation 

and evaporator exhaust temperatures displayed the opposite effect, with the degree of 

superheating negligibly influencing performance. Subsequently, R601a and R245fa displayed 

optimal thermo-economic performance; however, with comparable power output, and slightly 

fewer investment costs, R245fa proved to be the ideal working fluid. Specifically, R245fa 

achieved optimized performance for evaporation pressures from 1.1 to 2.1 MPa, a condensation 

temperature of 298.15 K, superheat degree between 0.5 to 20 K, and temperatures in the range of 
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414 to 417 K for torque above 500 N∙m. Finally, as indicated in many other studies, the RC 

achieved the greatest thermal efficiency of 12% in medium to high operating regimes. 

Jacobs addressed the changes facing ICEs in 2015, conducting a study of the effects of 

several new ICE technologies on WHR efforts [19]. Specifically, the influence of typical engine 

parameters (i.e., increasing EGR levels, decreasing equivalence ratios, increasing compression 

ratio), alternative fuels (i.e., bioCI), and alternative combustion modes (i.e., low temperature 

combustion) were investigated based on their impact on exhaust heat flow and exhaust 

temperature. Subsequently, it was determined that increasing engine parameters typically 

resulted in a growth in engine efficiency while leading to a decreased WHR efficiency and 

power output as a result of reduced exhaust exergy. Conversely, the combustion of alternative 

fuels had minimal effect on WHR opportunities, excluding the need to optimize performance for 

operating characteristics unique to the fuel. Finally, alternative combustion modes resulted in 

lower WHR potential, because of the lower exhaust heat flow. 

The following year, Shi et al. attempted to improve the efficiency of an RC WHR system on 

an ICE through the installation of an Exhaust Gas Mixture Recirculation system (EGMR-RC) in 

which, as shown in Figure 2.8, exhaust gas from the evaporator in the RC recirculated and mixed 

with real-time exhaust gas before re-entering the evaporator [102]. This recirculation, in 

conjunction with an energy storage module and a design control approach, reduced the 

fluctuations in exhaust temperature, enabling more consistent RC operation. Using R134a as a 

working fluid, the EGMR-RC achieved a net power output of 0.9 kW and an overall efficiency 

of 7%, higher and steadier than that of the standalone RC. Furthermore, Shi et al. indicated that 
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EGMR-RC approach with an integrated control strategy could potentially improve WHR 

performance, with further study of transient operation and parameterization required. 

 

Figure 2.8: Schematic of the integrated EGMR-RC system implemented by Shi et al. [102]. 

Also in 2016, Ma et al. studied the utilization and configuration of a single loop CRC system 

for WHR from the exhaust and jacket cooling water of a natural gas generator [103]. The three 

working fluids compared were R123, R245fa, and R141b, and the three cascade heat source 

configurations contrasted were the exhaust gas only, full exhaust gas recovery with the jacket 

water as a preheat, and full jacket water and exhaust gas recovery. The thermal efficiency of the 

CRC depended on the working fluid; thus, R141b achieved the highest value of 21.82%. 

Conversely, WHR efficiency depended on the heat source utilized; thus, the full exhaust gas 

recovery with the jacket water preheat attained the greatest level. Furthermore, across three 
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loads, the configuration produced improvements in power output for the engine at 10.61% for 

100% load, 12.09% for 75% load, and 14.23% for 50% load. However, the authors indicated the 

need for advancements in HEX sizing for growing evaporating pressures. 

At the same time, Khaljani et al. proposed a DRC utilizing the exhaust gas and cooling water 

from a natural gas homogeneous charge compression ignition engine for WHR [104]. The RC 

system with the exhaust gas as a heat source used n-heptane as the working fluid, while the 

system with the cooling water employed R123. Although the addition of the combined cycle 

achieved 13.121 kW in additional power, maximizing the efficiency of the system through the 

evaporator temperature improved the total cost rate of the system. Furthermore, increasing 

turbine efficiency reduced exergy but grew the cost, while increasing the pinch point and 

condenser temperature reduced cost but enhanced exergy. Through a multi-objective 

optimization, the exergy efficiency increased 1.06% and the total cost rate decreased by $0.13/hr. 

The same year, Shu et al. mathematically collated the performance of RC and DRC systems 

for WHR from a 1000 kW gas engine [105]. However, the operational intricacies of each type of 

cycle required different working fluids, configurations, and operating parameters. Specifically, 

the working fluids in the HT RC or DRC, LT RC or DRC, and RC were R245fa, toluene, and 

water, respectively. Subsequently, the DRC yielded the largest power output; however, the LT 

RC had the lowest system cost. Furthermore, the LT RC operated with the smallest electricity 

production cost, with trade-offs between cost and performance, in addition to condensing 

pressure and expander sizing. 
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Also in 2016, Shu et al. introduced the first of two studies on a RC system driven by multiple 

waste heat sources from a six-cylinder CI engine [106]. In the proposed CRC system, the HT 

loop recovered the engine exhaust and EGR, while the LT loop utilized the charge air and jacket 

water, in addition to the HT condensing heat, the residual exhaust heat, and residual EGR heat. 

Comparing the performance of working fluids for each loop, the combination of toluene (HT 

loop) and R143a (LT loop) obtained the greatest net power output, thermal efficiency, and 

exergy efficiency. Individual maximum available heat from the engine from the exhaust, EGR, 

charge air cooler, and jacket water were 156.0 kW, 9.1 kW, 37.5 kW, and 267.0 kW, 

respectively. Furthermore, the CRC obtained a maximum net power output of 38.2 kW, with 

thermal and exergy efficiencies of 11.3% and 38.7%, respectively, subsequently growing the 

original CI thermal efficiency by 16.0%. 

Continuing the previous study by Shu et al., Yu et al. considered the thermo-economic 

performance of the same proposed CRC for WHR on a CI engine [107]. The thermo-economic 

indexes evaluated were component-to-system cost ratio (CSCR), EPC, DPP, and savings-to-

investment ratio (SIR). The combination of toluene (HT loop) and R143a (LT loop) also 

obtained the best economic performance with the lowest EPC and DPP and highest SIR, 0.27 

$/kWh, 7.8 years, and 1.6, respectively. The expanders and HEXs were ¾ of the total system 

cost, with the LT expander the single most costly piece of equipment. Evaluation of the CSCR 

indicated that increasing the engine speed lowered the EPC (0.48 to 0.27 $/kWh) and DPP (20.5 

to 8.5 years) yet grew the SIR (0.85 to 1.65). Despite these trends, the cost of the system was not 

deemed advantageous for commercialization without further optimization. 
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Still in 2016, Yağli mathematically compared the performance of subcritical and supercritical 

RC systems using R245fa for exhaust gas WHR on a 12-cylinder biogas combined heat and 

power engine [108]. For the subcritical cycle, variations in turbine inlet pressure fluctuated 

trends in power and efficiencies, while increasing the turbine inlet temperature in the 

supercritical cycle at constant pressure enhanced performance. Moreover, the supercritical cycle 

outperformed the subcritical cycle in net power, thermal efficiency, and exergy efficiency, with 

maximum values of 81.52 kW, 15.93%, and 27.76%, respectively, at 38 bar and 163oC.  

Meanwhile, Yang studied the economic influence of working fluid selection through the 

comparison of six different zero-ODP working fluids in an RC WHR system with four sources of 

waste heat for a 12-cylinder CI marine engine at 85% load [109]. Subsequently, R236fa yielded 

the lowest optimal LEC, as well as the shortest payback period. Conversely, R152a obtained the 

highest net power and thermal efficiency, while R1234yf achieved the greatest available 

efficiency with the lowest critical temperature. Finally, R152a had the largest heavy oil savings 

and CO2 emission reduction. The results further elucidated the tradeoff in working fluid 

thermodynamic and economic performance as shown in Figure 2.9, with R152a displaying the 

best balance. 
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Figure 2.9: Various LEC values for working fluids based on varying vapor generator temperature 
difference and net work [109]. 

In another study published in 2016, Shu et al. experimentally surveyed R123 and R245fa as 

working fluids in an intermediate thermal-oil storage cycle and RC system (OS-RC) for WHR 

from HD CI engine exhaust [110]. Overall, R245fa performed better at light and medium loads 

across a range of expansion ratios, while the R123 could only match its performance at heavy 

loads with consistent expansion ratios. Based on the overall performance, the authors 

recommended the use of R123 for a HD truck and R245fa for a city bus.  

Concurrently, Zhang et al. used a Monte Carlo simulation in conjunction with probability 

density functions to understand the interaction of various parameters in an RC WHR system 

from CI engine exhaust [111]. Furthermore, they included performance comparisons for ten 

different working fluids, subsequently determining that hydrocarbons produce a greater net 

power than refrigerants. Additionally, ICE load did not influence the mass flow rate for 

hydrocarbons, while increasing the mass flow rate of refrigerants grew the RC net power output. 
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Subsequently, ICE power and sink temperature (i.e., temperature of the cooling water in the 

condenser) influenced the RC net power output more than the pinch point temperature and the 

maximum RC net power output obtained was 21.1 kW with a thermal efficiency of 13.8% using 

R123. 

Furthermore in 2016, Torregrosa et al. experimentally validated a bottoming RC WHR 

system on a gasoline engine in both steady-state and transient operating conditions using ethanol 

as a working fluid while developing a relatively simple control model for the system [112]. The 

results indicated that at lower expander speeds, in this case a swash-plate expander, heat transfer 

rates improved due to the increased residence time of the working fluid. However, under NEDC 

cold start conditions, the temperatures achieved were not high enough for expander operation. 

Ultimately, the new design controller considered high inertia (i.e., boiler, condenser) and low 

inertia (i.e., expander, pump) effects, subsequently yielding a potentially effective control 

methodology for realistic NEDC driving profiles.  

At the same time, Galindo et al. completed an exergy analysis via conventional and advanced 

methods for an experimental RC for WHR from the exhaust of a CI engine using ethanol as the 

working fluid [113]. In the advanced analysis methodology, exergy was categorically studied as 

avoidable or unavoidable (i.e., due to design or manufacturing) and internal or external. The 

internal exergy was larger than the external, indicating that the majority of irreversibility 

occurred within an individual component. Furthermore, the components with the largest 

avoidable exergy destruction were the expander and the pump, necessitating design improvement 



72 

 

priority. Further analysis on the influence of the pinch point in the boiler and the expander 

improved the cycle efficiency by 21% and reduced the exergy destruction by 4 kW. 

In their next work in 2016, Galindo et al. multi-objectively optimized an RC WHR system 

from the exhaust of a turbocharged gasoline engine, with ethanol as a working fluid and a swash-

plate expander [114]. The initial results quickly indicated the negative linkage between the 

thermo-economic and sizing parameters; namely, reducing thermo-economic criteria required 

greater sizing, while reducing sizing criteria required increased thermo-economic parameters. 

Thus, the authors developed a weighted methodology to analyze three components of design, 

specific investment cost (SIC), area of the HEXs (Atotal), and volume coefficient (VC), with 

weight factors of 0.5, 0.3, and 0.2, respectively, for optimized values of $3075/kW, 0.48 m2, and 

2.62 MJ/m3, respectively. Generalized trends of the individual components were that SIC 

increased with increasing expander isentropic efficiency, and higher superheating temperatures 

increased both Atotal and VC, due to the reduced pinch point in the evaporator and the higher 

enthalpy drop across the expander, respectively. 

Continuing work in 2016, Uusitalo et al. studied the influence of installing an RC WHR 

system on GHG emissions in two operating scenarios for electricity production from a biogas 

engine with toluene as a working fluid [115]. In the first operating situation, the electricity and 

waste heat from the engine were utilized in the plant, while in the second only the electricity was 

utilized. When the exhaust heat and the produced electricity were consumed by the plant, GHG 

emissions increased with the inclusion of the RC due to the greater waste heat production 

necessary to accommodate the lower waste heat temperatures following the RC. Conversely, in 
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the scenario where the waste heat was otherwise unused, the inclusion of an RC decreased GHG 

emissions. Ultimately, the results indicated that while an RC could reduce GHG emissions, the 

extent depends on the plant where the system will be operating. 

Again in 2016, Xia et al. generated a model of a combined cooling and power system in 

which, the BC recovered waste heat from the ICE exhaust using CO2, the RC recovered waste 

heat from the condenser of the BC using isobutane, while the refrigeration cycle recovered 

residual waste heat from the exhaust also using isobutane [116]. Subsequently, key operating 

parameters indicated that growing the BC turbine inlet temperature, RC turbine inlet pressure, 

and flow pressure of the refrigeration cycle increased exergy efficiency. Furthermore, 

performance degradation occurred when the compressor pressure ratio and inlet temperature 

were enhanced. Minimizing the average cost per unit of exergy product ($63.53/MWh) yielded 

an allowable exergy efficiency of 27.63%. 

de Oliveira Neto et al. furthered the literature in 2016 by contrasting the installation of an RC 

WHR system in a power plant using the exhaust gas of a stationary CI engine with an urban 

water supply or a dedicated cooling tower as sources of the engine coolant water [34]. Of the 

working fluids compared, toluene exhibited the highest thermal and exergy efficiencies with a 

20% power increase for both configurations. Furthermore, an economic analysis indicated that 

the shortest payback period was for toluene in the system without a cooling tower. 

Additional work in 2016 finds Yu et al. building a cascaded steam RC and R123 ORC 

system (RC-ORC) for WHR from CI engine exhaust by modifying an OS-RC system [117]. 

Figure 2.10 shows the existing OS-RC system and the modifications Yu et al. made to create the 
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RC-ORC system. Operating at medium-high loads and speeds, 101.5 kW of waste heat was 

available from the six-cylinder test engine. Using expansion valves in place of expanders, an 

estimated 6.9-12.7 kW of mechanical power was obtained for the RC-ORC system, improving 

the power beyond the CI engine alone and the combined engine and OS-RC by 5.2% and 3.2%, 

respectively. 

 

Figure 2.10: Diagrams of (a) the existing OS-RC system and (b) the modified cascade RC-ORC system 
used by Yu et al. [117]. 

Also in 2016, Grelet et al. assayed four RC heat source configurations for WHR in steady-

state and transient operating profiles from a HD truck: exhaust gases, EGR, both exhaust gas and 

EGR in parallel, and exhaust gas and EGR in series [118]. Furthermore, a brief consideration of 

working fluids and cooling configurations yielded ethanol as the working fluid with a dedicated 

RC radiator. Subsequently, the EGR and exhaust gases in parallel yielded the best performance, 

followed by both sources in series. The authors noted that the same general trends were seen 

during transient and dynamic driving profiles, indicating that the simpler steady-state analysis 

could be used to develop a qualitative study. 
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That same year, Morgan et al. utilized an exhaust RC WHR system on a CI engine to 

evaluate the performance of a novel intra-cycle based WHR concept, in which an evaporator 

recovered waste heat from the intake air flow between separate compression and combustion 

chambers [119]. Modeling consequently revealed that the RC reached higher maximum working 

fluid (50/50 water/ethanol) temperatures and greater heat recuperating efficiencies; however, the 

split cycle experienced lower combustion temperatures and enhanced overall efficiencies. 

Comparatively, the split cycle achieved a thermal efficiency of 52.2% while the RC achieved 

44.2%. 

Moreover, in 2016 Shu et al. rigorously compared the performance of a CO2-based 

transcritical Rankine cycle (CTRC) with preheat and regeneration (PR-CTRC) to that of a basic 

CTRC and a transcritical PRRC using R123 employing WHR from the exhaust gas and coolant 

(preheat) [120]. Subsequently, the PR-CTRC outperformed the basic CTRC with a net power 

output increase of 150%, a thermal efficiency growth of 184%, and an enhancement in exergy 

efficiency of 227%, while also outperforming the PRRC at high turbine inlet temperatures. 

However, although the basic CTRC required a smaller total heat transfer area than the basic RC, 

the PR-CTRC required a larger total heat transfer area than the PRRC, presenting design 

drawbacks. 

Concurrently, Ziviani et al. tested the performance of a small-scale RC test rig using a single-

screw expander and a simulated waste heat source while comparing R245fa and SES36 as 

working fluids [121]. Consequently, although R245fa yielded a 10% improvement in power 

output, SES36 allowed the expander to operate at a higher isentropic efficiency and achieve 
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greater pressure ratios. Thus, SES36 achieved a peak overall isentropic efficiency of 64.7% with 

improvements achievable through the reduction of mechanical and friction losses. 

At this point, Zhou et al. compiled a comprehensive review of Rankine cycle designs, 

components, and working fluids used in literature over the past 20 years until 2016 for vehicle 

WHR [26]. Of the available energy sources, engine coolant and exhaust gas are the most 

popular; however, due to its higher temperature range, exhaust gas displays greater potential for 

energy recovery. Furthermore, the most critical component is the expander, of which there are 

four primary types and selection depends on design conditions. Similarly, working fluid selection 

is crucial to RC operation, but highly dependent on working conditions and expander selection. 

Generally, water is ideal for high temperature operations, but at lower temperatures organic 

fluids are preferred. Finally, hybrid vehicle systems provide an ideal integration scheme through 

conversion and storage of electricity in the existing hybrid system, while operating at relatively 

constant engine loads, making the optimization of RC performance easier. 

Continuing in 2016, Xu et al. created a model of an RC for HD CI WHR using a finite 

volume method and a pressure drop model [122]. Of note, both the exhaust gases and EGR were 

utilized as waste heat sources through separate evaporators in parallel, with ethanol as the 

working fluid. For both steady-state and transient operating conditions, the results were validated 

from experimental results, within 10% error for the transient case. Upon this validation, the 

authors state that their model can be subsequently used for further optimization. 

Also in 2016, De Rosa et al. numerically analyzed the performance of a DRC for five 

working fluids across a range of operational conditions [123]. In the DRC, the first loop utilized 



77 

 

the exhaust gas as a heat source, while the second loop utilized the coolant as a heat source 

before, after, or parallel to the regenerator. The five working fluids tested, but not directly 

compared, were R1234-yf, ipentane, R245fa, butane, and R134a. Consequently, it was 

determined that putting the coolant HEX after the regenerator yielded the best performance for 

all working fluids. 

Furthermore in 2016, Cipollone et al. designed an experimental bottoming RC for WHR 

from a HD CI engine, utilizing a finned coil evaporator, a plate heat condenser, and an impulse 

axial turbine with R245fa as the working fluid [124]. Operating the engine at medium to high 

load conditions, the system achieved overall net efficiencies of 3-4% including conversion 

losses, with 2 kW of electrical power recovered. Moreover, they state that there exists the 

potential for improvements through technological developments and reductions in induced 

backpressure. 

Moreover in 2016, Shu et al. again focused on the topic of RCs for WHR, this time using a 

rated 1,000 kW natural gas engine and water as a working fluid [125]. Through the variation of 

the exhaust mass flow rate and temperature at the inlet of the evaporator, the authors investigated 

the dynamic performance of the RC system. For a reduction in the exhaust mass flow rate or 

evaporator inlet exhaust temperature, the evaporating pressure correspondingly decreased, and 

the thermal efficiency and output power of the RC system decreased significantly. Moreover, the 

same diminutions in exhaust mass flow rate or inlet temperature directly result in diminished 

waste heat, but the subsequent cool exhaust final temperature led to improved waste heat 
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utilization. Notwithstanding, significant consideration must be given to the interaction of the 

aforementioned operating parameters for full optimization of the RC performance. 

In a simulation of an RC for WHR from the exhaust of a CI engine in the same year, 

Wiedemann et al. achieved an average fuel savings of 3% through realistic, non-isentropic 

expansion efficiencies and a pinch point analysis over the engine’s entire operating region [126]. 

The RC model utilized ethanol as the working fluid, a screw-type expander, and plate HEXs. In 

simulating the RC system for marine and rail applications, the marine environment outperformed 

rail operation. Specifically, marine had the highest fuel savings, an average of 3%, between 40-

90% engine loads. 

In continuation of a busy year, Kim et al. surveyed four different single-loop configurations 

of an RC for exhaust WHR from a six-cylinder gasoline engine, including a novel dual heat 

source configuration [127]. The specific configurations were: Case 1 using an engine coolant 

preheater and R245fa; Case 2 with an engine coolant preheater and a recuperator and R245fa; 

Case 3 with vaporization by the engine coolant and a recuperator using R245fa and R134a; and 

Case 4, the novel configuration including low and high temperature recuperators and 

vaporization by the engine coolant using R245fa and R134a. For Cases 3 and 4, R134a yielded 

higher system and thermal efficiencies, as well as a superior net power output. Furthermore, 

although Cases 1 and 2 achieved greater thermal efficiencies, Case 3 yielded an enhanced net 

power output and system efficiency due to full utilization of the waste heat of the coolant. 

However, Case 4 outperformed all three other cases in net power output and system efficiency, 

obtaining values of 5.63 kW and 10.8%, respectively, with R134a as a working fluid. 
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Hærvig et al. adapted general guidelines for working fluid selection according to heat source 

temperatures for a basic RC employing WHR in 2016 by optimizing their model over 26 pure 

working fluids and three mixtures for heat source temperatures varying between 50 and 280oC 

[128]. Generally, the ideal working fluid has a critical temperature that is 30-50 K below the heat 

source inlet temperature. Furthermore, if multiple potential working fluids have similar critical 

temperatures, the fluid with the lowest, positive, vapor saturation slope is preferred. For an ideal 

mixture, the temperature glide should be approximately equal to the cold source temperature 

change. 

The following year, Lu et al. investigated the use of a scroll expander in an RC system for 

exhaust WHR from a 6.5 kW Yanmar engine using R245fa as a working fluid [129]. In the RC 

system, an intermediate oil loop passed the engine exhaust energy to the working fluid, preheated 

by the engine coolant. With a heat sink temperature of 20oC, the system produced 1 kW of 

power, with the scroll expander achieving speeds of 4000 RPM, stated as being suitable for 

coupling to a conventional generator. 

In 2017, Li et al. experimentally examined the influence of condenser cooling water 

temperatures and working fluid superheat at the turbine inlet on the performance of an RC for 

low-grade WHR using R245fa, an oil boiler as the heat source with a plate evaporator, and a 

turboexpander with a generator [130]. When the heat source temperature and flow rate were 

constant, the power output and cycle efficiency increased as the cooling water temperature 

decreased. Conversely, at constant cooling water temperatures, condensing pressures were 

unaffected by the degree of superheat, while increasing the superheat at the turbine inlet 
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negatively affected cycle power output and efficiencies; thus, stressing the importance of 

utilizing the superheat as a cycle control parameter. Furthermore, the maximum power obtained 

from the turboexpander was 5.405 kW for a cooling water temperature of 23oC and a pressure 

ratio of 2.3.  

Yu et al. in the same year established a model for the simultaneous optimization of heat 

integration and techno-economic factors for an RC from a refinery chemical process utilizing a 

hot water intermediate cycle via four working fluids for WHR [131]. In their work, R600a 

achieved the greatest power output of 1490 kW, with the highest total annual cost, while R227ea 

obtained the lowest total annual cost and a power output of 1098 kW. Overall, the results of 

simultaneous economic, thermodynamic, and heat integration optimization increased the net 

power output of the basic thermodynamic optimization by 24.3%.  

Based on the RC system designed in [129] with a scroll-expander, Lu et al. continued their 

efforts in 2017 by evaluating the performance of six different working fluids [132]. Of the 

working fluids considered, R152a at an expander inlet temperature of 200oC achieved the highest 

power output of 1.2 kW, followed by R134a at 1.15 kW for expander inlet temperatures between 

140-170oC. Furthermore, R152a obtained the highest overall thermal efficiency of 41%, with the 

lowest BSFC. 

Also in 2017, Wang et al. inspected the transient performance of an RC system for exhaust 

gas WHR on a natural gas engine in Simulink using R245fa as the working fluid [133]. Of note, 

the RC system also included a hot water intermediate cycle with a finned tube HEX; whereas, 

the evaporator was a counterflow, straight tube HEX. While the condensing pressure remained 
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relatively unchanged for varying engine conditions and pump speed, the evaporating pressure 

increased linearly with decreasing pump speed and engine conditions. Conversely, the superheat 

degree and working fluid enthalpy change grew for decreasing engine operation. All three 

parameters responded more slowly as engine operating conditions (i.e., load and speed) fell, with 

the evaporation pressure responding the fastest. Improved control performance at lower load 

conditions through controller alterations indicated the importance of a properly designed control 

system. 

Alternatively, Seyedkavoosi et al. proposed a novel two-step RC configuration in 2017 for 

WHR from a 12-cylinder gas-fired ICE using the exhaust gas in the first loop and the engine 

coolant in the second with a dual expander [134]. At the set engine operating condition, R123 

performed better than water or R134a, achieving an exergy efficiency of 21.01% as compared to 

13.16% and 8.80% for water and R134a, respectively. Furthermore, the pressure of exhaust heat 

recovery influenced the system performance more than the pressure of the coolant recovery. 

Moreover, the expander efficiency was the largest opportunity for improvement, such that a 30% 

increase in its efficiency improved the net output power by 53%. 

Meanwhile, Lu et al. examined the performance of four different optimized RC 

configurations on the exhaust of a single cylinder CI engine for WHR using R245fa as the 

working fluid [25]. The baseline configuration utilized the engine’s exhaust gas and coolant, and 

modifications included using a recuperator between the pump and the engine coolant HEX, a 

recuperator between the coolant and exhaust HEX, and a traditional PRC using the exhaust with 

the coolant as a preheater. Although, the PRC exhibited the highest efficiency, the placement of 
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the recuperator between the pump and engine coolant HEX yielded the greatest power output, as 

well as the maximum BSFC reduction and overall efficiency improvement across all engine 

loads, making it the superior configuration. 

Furthermore in 2017, Tian et al. experimentally validated the concept of an FP coupled with 

a linear generator (FPLG) for future use in RC WHR systems using a test set-up with 

compressed air as the working fluid [135]. Although the piston displacement profile was similar 

to that of a sinusoidal wave, the motion symmetry improved as the intake pressure increased. A 

maximum power output of 96 W was achieved for an operational frequency of 1.0 Hz and an 

external load resistance of 20 Ω; however, the maximum energy conversion efficiency of 45.82% 

was achieved for 2.0 Hz and intake pressure of 2.6 bar. The power and conversion efficiency 

achieved validated the concept of using the FPLG in an RC system, with further work needed for 

actual implementation. 

Kuboth et al. utilized an iterative approach in the same year to reduce the error between 

experimental data and simulation results for RC efforts [136]. The experimental set-up consisted 

of a scroll expander, a gear pump, and brazed plate HEXs for the evaporator, condenser, and 

internal recuperator, with R365mfc as the working fluid and a thermal oil circuit heat source. 

Two simulation models were created in Aspen Plus; the first calculated state points throughout 

the system, while the second used the results of the first simulation with experimental data to 

refine the findings and reduce deviations. From the original model, deviations of 8.4% and 4.1% 

existed between the model and the experiments for the state enthalpy and pressure values, 

respectively. However, using the semi-empirical second model, the deviations were reduced to 



83 

 

0.6% and 1.2% for the enthalpy and pressure values. Thus, the integration of experimental results 

into the simulation improved its overall accuracy. 

Concurrently, Galindo et al. created and experimentally substantiated a 1-D RC model for 

WHR from the exhaust of a gasoline engine with ethanol as the working fluid over a portion of 

the NEDC [137]. Subsequently, the maximum power extracted by the swash-plate expander was 

800 W, with a BSFC reduction of 23.5 g/kWh, yielding an improvement of 2.5% in fuel 

conversion efficiency. The best performance was achieved by the system at higher operating 

points, with the expander limiting performance improvements at low speeds. 

In an effort to improve the efficiency and design of turbines used in RC WHR systems, in 

2017 Alshammari et al. introduced a novel design methodology optimizing the rotor exit tip 

radius and the inlet blade angle of a radial expander through the total-to-static isentropic 

efficiency [138]. Subsequently, increasing the rotor tip by 9.5% raised the isentropic efficiency 

from 73% to 82%, and enlarging the inlet blade angle from 0o to 54o further grew the isentropic 

efficiency to 83.5%. Validation of the optimization using CFD analysis indicated an isentropic 

efficiency of 81.3%, an improvement that would still benefit eventual RC performance. 

The same year, Kosuda et al. proposed a prototype RC configuration, which employed air 

cooling in the fin-and-tube condenser, HFC3654mfc as a working fluid, and a thermal oil bath as 

the heat source [139]. Furthermore, the expander was a volumetric scroll type, with a brazing 

plate HEX regenerator and a tube evaporator. For a condenser ambient temperature of 20oC and 

an expander inlet temperature of 175oC, the total power generated was 1.027 kW with gross and 

net power generation efficiencies of 10.5 and 9.0%, respectively. Furthermore, of the generated 



84 

 

power, the pump and fan accounted for only 12.7%, yielding a large ratio of effective generated 

power. Future improvements included reducing the piping pressure and the heat dissipation 

losses, as well as improving expander efficiency. 

In 2017, Bufi et al. implemented a parametric optimization of an RC for exhaust WHR from 

a HD CI engine that included the uncertainty in various operating parameters, such as exhaust 

gas mass flow rate and temperature, turbine and pump efficiencies, and condensing temperatures 

[140]. From this optimization, R11 and R113 displayed the best performance, with thermal 

efficiencies of 20.8% and 19.2%, respectively. Furthermore, the expander efficiency and 

condensing temperature had the greatest influence on the thermal and exergy efficiencies. 

Subsequently, a robust optimization identified a necessary compromise between various 

operating parameters and system performance in order to minimize the variability of the RC 

system. 

At the same time, Zhao et al. experimentally inspected the influence of varying recuperation 

rates on an RC system for exhaust gas WHR on a HD CI engine using R245fa as the working 

fluid [141]. Under steady-state conditions at the rated engine load, as the recuperative rate rose, 

the net output power increased, and the cooling heat decreased, at the cost of prolonged time to 

reach steady-state at start-up and increased working fluid mass required. Under transient 

operation, the recuperative cycles overshot the temperatures and power during the start-up phase, 

posing a threat to the expander. Finally, with the recuperator having minimal effect on the 

backpressure of the engine, the improved recuperative RC performance came with relatively few 

drawbacks. 
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Concurrently, Rijpkema assessed four different power cycles and four unique working fluids 

from four distinct waste heat sources for low speed, medium load operation on a HD CI engine 

[142]. The power cycles investigated were the RC, the TRC, the trilateral flash cycle (TFC), and 

the single flash cycle (SFC). Additionally, the working fluids considered were cyclopentane, 

ethanol, R245fa, and water, while the four waste heat sources were the CAC, coolant, EGR 

cooler, and exhaust. General trends in thermal efficiencies are shown in Figure 2.11. For the 

CAC as a heat source, both the TFC and SFC achieved the best efficiency and net power for all 

working fluids. Conversely, using the coolant as a heat source, the RC achieved significantly 

higher net power and thermal efficiencies for all working fluids. For the EGR cooler, ethanol 

was the preferred working fluid, obtaining similar performance parameters in the RC and TRC, 

while all cycles performed similarly with the exhaust as a heat source. Ultimately, the power 

cycle chosen influenced performance more than working fluid selection.

 

Figure 2.11: The variation in thermal efficiencies for working fluids in four different power cycles with 
different heat sources [142]. 

Lion et al. completed a combined first and second law analysis in 2017 to identify 

inefficiencies within a DRC system on the exhaust and coolant streams of a six-cylinder CI ship 

engine with a LP EGR system [143]. At 100% engine load, the combination of DRC and EGR 

improved the RC net power output by 77 kW over just the DRC system with steam as the 
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working fluid for exhaust heat recovery and R1233zd for coolant heat recovery. Furthermore, the 

largest system inefficiencies were in the evaporator at the high speed, high load condition. 

 Furthermore in 2017, Landelle et al. experimentally tested a transcritical RC (TRC) 

utilizing a scroll expander, plate HEXs, and R134a as the working fluid with an electrical boiler 

as the heat source [144]. Seventy different steady-state points were tested in the rig, yielding the 

highest power output of 1.5 kW and maximum thermal and exergetic efficiencies of 1.0% and 

1.8%, respectively, with these results attributed to low pumping efficiencies. Individual analysis 

of the components indicated that the regenerative configuration increased the exergy efficiency 

of the HEXs, while the condenser accounted for the largest portion of exergy destruction. 

Continuing their work in 2017, Shu et al. focused on the response time of 14 different 

working fluids in an RC for WHR from the exhaust of an eight-cylinder natural gas engine with 

counterflow, straight pipe HEXs and a nozzle as the expander [145]. Consequently, Figure 2.12 

displays the enthalpy response times of various working fluids, with low temperature working 

fluids responding faster to system changes, while high temperature working fluids acted slower. 

The same general trends were seen for changes in evaporating pressure. Other working fluid 

parameters that yielded faster response times included small heat capacity, lower evaporating 

latent heat, high working fluid mass flow rate, reduced critical temperature, and low density. 

Although these properties cannot be manipulated or found in a working fluid, straight-chain 

alkanes specifically exhibited a direct relationship between an increase in critical temperature 

and a growth in response time. 
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Figure 2.12: Response time of enthalpy changes for (a) LT and (b) HT working fluids [145]. 

Also in 2017, Pang et al. experimentally evaluated the performance of various mass fraction 

ratios of R245fa/R123 mixtures in an RC system for WHR using a scroll-type expander and a 

heating oil circuit as a low-temperature waste heat supply [146]. As the working fluid mass flow 

rate increased, heat input and pump power consumption rose, while the net power efficiency 

grew and then fell. A 2:1 mixture of R245fa/R123 yielded the highest maximum net power 

efficiency and net power of 4.4% and 1.66 kW, respectively, at the heat source temperature of 

120oC and a mass flow rate of 0.15 kg/s. Moreover, pure R123 achieved the same maximum 

power efficiency as the 2:1 R245fa/R123 blend, but with a net power output of only 1.52 kW at a 

heat source of 120oC and a mass flow rate of 0.176 kg/s. However, mixtures provide a wider 

spectrum for waste heat applications, with the authors indicating the potential for a better thermal 

match to the applied system. 

Concurrently, Chen et al. presented the use of a confluent cascade expansion RC (CCE-RC) 

for WHR from the engine coolant and exhaust gases on a six-cylinder CI engine, replacing the 
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conventional DRC system [147]. Compared to a DRC system, the CCE-RC negated the use of a 

second thermal reservoir and an intermediate HEX, resulting in an 18% decrease in total HEX 

volume. Six working fluids were considered, with cyclopentane achieving the highest net power; 

thus, it was selected as the primary working fluid. Subsequently, simulations indicated that the 

CCE-RC achieved a peak thermal efficiency of 49.5%, a 4.2% increase from the DRC. 

Furthermore, the minimum BSFC of the CCE-RC system decreased to 169.9 g/kWh, as 

compared to 185.6 g/kWh. Overall, the CCE-RC generated 7.94% more net power than the 

DRC, in addition to decreasing the system size due to the removal of the intermediate HEX. 

Lemmens et al. completed a thorough economic analysis of a 375 kW basic, subcritical RC 

system using R245fa for flue gas heat recovery from an industrial kiln in Belgium in 2017, while 

considering policy impacts [148]. The authors examined applicable potential discount rates, 

initially yielding a positive net present value (NPV) for the system at varying discount rates; 

however, the specific system studied was not always in operation, lowering the NPV. The initial 

rate of return was heavily influenced by the taxes imposed, depending on system location and 

governmental subsidies. Furthermore, the capital investment was the largest determinant of the 

NPV, while the annual costs affected it minimally. Finally, the annual load hours of the system 

and the electricity price were the largest factors influencing the NPV. 

Meanwhile, Yang et al. varied the mass fractions of R1234yf/R32 mixtures as working fluids 

in a TRC for 180oC ICE exhaust gas WHR [149]. From the simulations, the optimal mass 

fractions were 0.8/0.2 R1234yf/R32 at an expander inlet temperature and pressure of 150oC and 

6 MPa, respectively, for an LEC of $0.205/kWh. This resulted in an improvement of 1.46% over 
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pure R1234yf and 4.88% over pure R32, while allowing for more variation in expander design. 

Furthermore, the mass fraction of R32 in the mixture was proportional to the optimal expander 

inlet temperature and pressure, yet inversely proportional to the condensation temperature.  

Also in 2017, Budisulistyo et al. employed a comprehensive optimization methodology to 

improve the design of an existing RC WHR system on a gas turbine with an intermediate thermal 

oil circuit and 50% R245fa/50% R365mfc as the working fluid [150]. Subsequently, the model 

investigated the size of the three HEXs in the system (thermal-oil HEX, evaporator, and 

condenser) for optimal performance over three operating points of the gas turbine. A completely 

new design, in which all three HEXs were resized, achieved the highest power output and the 

greatest net power output to total HEX area ratio. Furthermore, the new design utilized 76.9% of 

the available waste heat, indicating that the new design strongly fit the waste heat profile of the 

studied gas turbine. 

Feng et al. experimentally collated the performance of R245fa, R123 and their mixtures as 

working fluids in an RC WHR system with a scroll-type expander, a plunger pump, plate HEXs, 

and a constant electric heater source temperature of 120oC in the same year [151]. A rooftop 

cooling tower was utilized; thus, the environment dictated the cooling temperatures. 

Subsequently, a mixture of 0.67 R245fa/0.33 R123 achieved the highest maximum thermal 

efficiency of 7.33% and net electricity output of 1.67 kW. However, such improvements in 

thermal performance came at the cost of consuming up to 0.108 kW more in pump power than 

the pure fluids 
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In their final publication in 2017, Shu et al. generated a model of an RC system using the 

operational profile of a cruise ship engine with seven working fluid candidates for extracting the 

waste heat from the engine’s exhaust [152]. In their work, R123 and R365mfc achieved the 

highest maximum exergy efficiencies across all loading conditions, while exhibiting the lowest 

electricity production cost and depreciated payback period at the design evaporating pressure. 

Between the two, R123 yielded higher power output at heavy engine loadings, making it well 

suited for container ships. Conversely, R365mfc performed better at light engine loadings in 

which tankers operate. 

Tian et al. optimized the configuration of a CO2 transcritical power cycle (CTPC) using the 

waste heat of a six-cylinder, turbocharged CI engine in 2017 [153]. In addition to the basic 

CTPC, the addition of a preheater (P-CTPC), a regenerator (R-CTPC), or both (PR-CTPC) was 

considered. The CTPC and the P-CTPC displayed the worst thermodynamic performance, while 

both the R-CTPC and the PR-CTPC exhibited improvements in thermodynamic performance, 

indicative of the importance of a regenerator. Although the PR-CTPC displayed better 

thermodynamic performance than the R-CTPC, with 17.44% higher net power output and 4.98% 

greater exergy efficiency, it also achieved a 4.11% larger EPC. Regardless, the PR-CTPC was 

the optimal solution of all four configurations considered, achieving an optimum power output of 

24.24 kW with an exergy efficiency of 36.88% and an EPC of $0.583/kWh. 

Similarly that year, Shi et al. implemented a basic CTRC, a CTRC with regeneration, a 

CTRC with preheat, and a PR-CTRC for a WHR comparison using the exhaust gas and coolant 

of a six-cylinder CI engine [154]. Furthermore, the evaporator was a double-pipe HEX, while the 
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preheater and regenerator were brazed plate HEXs, in coordination with an expansion valve 

instead of an expander. Comparing the performance of all four cycles at a set pressure ratio of 

1.65, the PR-CTRC yielded the highest net power output and efficiencies of 3.47 kW, 7.8% 

(thermal), and 17.1% (exergy). Additionally, the PR-CTRC, aside from power and efficiency 

improvements, also reduced the cooling load of the combined engine and PR-CTRC by 18.1% as 

compared to the basic CTRC. 

Other work in 2017 finds that Liu et al. built a mathematical model using MATLAB to 

optimize the design and cost of a fin-and-tube evaporator in an RC WHR system to recover the 

waste heat of the exhaust of a CI engine using R245fa [155]. Simulations indicated that for an 

increase in the inlet radius on the tube side, the exhaust pressure drop and tube bundle volume 

grew, as the total annual cost diminished. Conversely, for a growth in the inlet radius on the shell 

side, the opposite phenomena occurred. Furthermore, raising the fin height increased the tube 

bundle volume, but diminished the pressure drop and total annual cost, while the fin thickness 

and spacing negligibly affected these items. From the optimized evaporator design, the tube 

bundle volume increased by 6.49% from the original design, decreasing the annual cost and 

exhaust pressure drop by 71.46% and 27.6%, respectively. 

At the same time, Kyriakidis et al. considered two different configurations of a steam RC 

WHR system on a two-stroke marine CI engine with an integrated EGR system with two or three 

pressure levels [156]. A performance evaluation in MATLAB revealed that the configuration 

with three pressure levels generated 1641 kW of net power; whereas, the two pressure level 
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generated only 1577 kW at lower steam mass flow rates. Thus, the configuration with three 

pressure levels was better suited for marine CI engines. 

Also in 2017, Yang assayed the performance of 50% by volume mixtures of R32, R161, 

R290, R1234yf, and R1234ze with CO2 as working fluids in a TRC for low-grade waste heat 

recovery [157]. The mixture of CO2/R161 exhibited the best economic performance, with a 

21.52% improvement in LEC over pure CO2. Furthermore, in addition to decreasing the LEC of 

the system, the CO2 mixtures allowed for improved maximum thermal efficiencies at optimal 

expander inlet pressures and temperatures.  

With benzene as a working fluid, Mondejar et al. used quasi-steady state modeling in 2017 to 

assess the applicability of a RRC for WHR from the exhaust of the four main CI engines and 

four auxiliary CI engines on-board a cruise ship [158]. The RRC system displayed optimal 

performance when the ship was cruising in the open sea with the main and auxiliary engines 

running, with poor performance at low mass flow rates when the ship was in port. However, the 

average net power production of the RRC over the four-week trip was 396 kW, or 22% of the 

total on-board power consumption and followed similar trends as the power demand of the ship. 

Panesar devised a DRC system in 2017 to utilize direct engine block heat energy in addition 

to exhaust gas waste heat for WHR [159]. In this novel RC configuration, the low pressure and 

temperature loop extracted the engine block waste heat directly and subsequently validated its 

performance against a reference CRC. Furthermore, while water and R245fa were the working 

fluids in the HT and LT loops of the CRC, respectively, blends of water and 1-propanol and 

water and 3-ethyl-1-butanol were used in the DRC. The simulated DRC improved the system 
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power, power density, and brake thermal efficiency by 20%, 33%, and 5.3% respectively, while 

reducing the total heat transfer footprint by 50%. Replacing water and R245fa with a single 

water blend lessened the HEX performance in the HP loop; however, this could be compensated 

through condenser improvement in the LP loop. 

Wang et al. analyzed the performance of a supercritical-subcritical DRC system with and 

without regeneration for WHR from the exhaust gas and coolant of a six-cylinder CNG engine in 

2017 [160]. The primary working fluid pair studied was R1233zd in the HT loop with R1234yf 

in the LT loop. However, for further comparison R245fa/R134a, toluene/R134a, and 

water/ethanol were included as HT/LT working fluids. Although the thermal efficiency of the 

water/ethanol mixture was the largest, even without regeneration, the required size of the turbine 

and HEXs was undesirable. Furthermore, R1233zd/R1234yf achieved a higher thermal 

efficiency than R245fa/R134a with lower toxicity and GWP; thus, R1233zd/R1234yf was the 

most adequate working fluid pair, subsequently improving fuel efficiency by over 8%. 

Additionally in 2017, Uusitalo et al. surveyed the performance of plate-and-shell HEXs in an 

RC system for WHR from the exhaust of a six-cylinder CI generator [161]. After analyzing 

several different working fluids, siloxane MDM was chosen as the working fluid and in lieu of 

an expander, the experimental setup contained an expansion valve. Subsequently, the evaporator 

achieved a maximum heat transfer rate of 59 kW while maintaining a pinch point temperature 

difference below 14oC. Furthermore, using an expander efficiency of 75%, the system attained 

an estimated maximum power of 8.1 kW. 
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The same year, Xu et al. optimized the power of an RC exhaust and EGR WHR system on a 

HD CI engine under transient operating conditions using ethanol [162]. Moreover, system 

variation appeared in the form of the three mixed vapor temperature conditions entering the 

turbine: constant vapor temperature, constant superheat temperature, and a fuzzy logic vapor 

temperature that determined the vapor temperature from the waste power level. Following 

transient simulations and using constant vapor temperature as a baseline, the constant superheat 

improved RC net power by 1.1%; whereas, the fuzzy logic option improved the net power by 

2.1%. Consequently, further recommendations for power improvements involved additional 

parameters for the fuzzy logic strategy and experimental validation. 

For marine applications, Liu et al. investigated a cogeneration strategy in 2017 consisting of 

an RC for exhaust WHR and an absorption refrigeration cycle (ARC) for cooling [163]. 

Specifically, the RC generated electricity for on-board use, while the ARC recovered the heat 

from the RC condenser to provide further cooling capacity. Based on the high-temperature 

exhaust of a Wartsila low-speed CI engine, benzene, toluene, cyclohexane, and cyclopentane 

were compared as working fluids in the RC, with ammonia and water was the working fluid pair 

in the ARC. Subsequently, the best performing working fluids for cogeneration were toluene for 

high evaporation systems followed by benzene in low evaporation systems, with maximum 

exergy efficiencies of 50.8% and 48.3%, respectively. Moreover, at an RC condensation 

temperature of 135oC, the highest energy ratios of the WHR system were achieved with benzene 

(63.9%) and toluene (64.9%). 
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At the same time, Merrett et al. employed two studies from 2011 to validate a simulation tool 

for RC WHR systems used on HD CI engines [164]. The previous studies by Teng et al. and 

Park et al. utilized the EGR and exhaust as heat sources, then experimentally tested the 

performance of the WHR system over 13 ESC operating conditions [165, 166]. Merrett et al. 

then validated their simulation, achieving errors less than 2% for temperatures and pressures and 

less than 5% for turbine power output, allowing for further system manipulation and 

development prior to the costly implementation of experimental setups. 

Also in 2017, Yu et al. generated an RC model for WHR from the exhaust gases of a CI 

engine utilizing a reciprocating piston expander [167]. Choice of ESC 13-mode operating 

conditions provided exhaust gas conditions for simulation with R245ca as a working fluid. 

Increasing the evaporating pressure positively influenced the piston expander operation; thus, 

achieving a maximum recovery efficiency of 33.8% for an evaporating pressure of 1.1 MPa 

under the C25 operating condition. Parameters such as output power, expander efficiency, and 

total recovery efficiency increased with a growing expansion ratio between 2 and 6. Finally, 

enlarging the clearance volume negatively affects the RC system, decreasing output power and 

efficiencies. 

In the first of two studies in 2017, Di Battista et al. implemented an axial single stage turbine 

and a finned coil HEX in an RC WHR system installed on the exhaust of an IVECO N67 engine 

operating at various loading conditions with water as a working fluid [168]. The turbine yielded 

an electrical power of 2.5 kW; however, transient operation and thermal states (i.e., level of 

superheating, turbine inlet conditions) caused concern regarding the turbine’s performance. 
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Thus, centripetal radial turbines were recommended for further applications. Moreover, an 

overall conversion efficiency of 40% was achieved, with nearly 60% of the mechanical power 

lost, necessitating conversion efficiency improvements. Furthermore, regeneration increased the 

cycle efficiency on the order of 10-15%, while reducing exhausted heat by 15%, subsequently 

resulting in net unit efficiencies of 2.5-3.0%. 

Next, Di Battista et al. explored evaporator and condenser sizing for an RC WHR system 

from exhaust gases of a CI engine [169]. Using a previously developed model, they added the 

heat transfer analysis of a shell-and-tube evaporator and a radiator condenser to minimize size 

and weight for an on-board application [170]. Ultimately, size and frontal area occupation were 

the primary design limitations for the condenser. However, the sizing of the evaporator incurred 

additional consideration due to the detrimental engine back pressure; thus, the maximum allowed 

pressure drop became the dominant constraint, generating a weight and power trade-off. Through 

the authors’ design, the RC recovered 2-5% of engine brake power for a net power recovery of 

1%. 

Addressing the issue of sensitivity between working fluids and RC design variables, Cignitti 

et al. in 2017 developed a simultaneous working fluid and system design approach for RC WHR 

from the exhaust of a 37 MW marine CI engine [171]. Using this approach and a fixed pinch 

point, the optimal working fluid was 2,2,3,3,4,4,5,5-octafluorohexane, which has no ODP 

potential and a low GWP, with a net power output of 1.2 MW. Furthermore, by applying the 

simultaneous approach with an optimization strategy bound by the product of the overall heat 

transfer coefficient and heat transfer area (based on the positive correlation between UA and 
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Wnet), the optimal working fluid was 5-chloro-4,5,5-trifluoro-2,3-dimethylpent-2-ene with a net 

power output of 1.25 MW. 

The same year, Xu et al. devised detailed models capable of effectively simulating RC and 

engine performance under transient operating conditions for exhaust and EGR WHR via two 

parallel shell-and-tube evaporators with helically coiled tubes, an expander with an integrated 

generator, and ethanol as a working fluid [172]. Using Simulink, the RC was modeled through 

expressions for detailed heat transfer coefficients and the pressure drops across the HEXs, while 

the engine model for a HD CI engine was developed in GT-POWER. Subsequently, their models 

producing mean errors of 2% and 3% for vapor temperatures and pressures, respectively, for a 

constant speed, variable load RC. Moreover, they state that their predictive model can be used to 

aid in the development of transient RC WHR control systems. 

In 2017, Preißinger et al. carried out a comprehensive sweep of working fluids and compared 

their performance in an RC WHR system for passenger cars and HD trucks [173]. Their 

simulation tool in MATLAB, in conjunction with thermodynamic working fluid data, enabled 

the authors to evaluate over 3,000 different working fluid candidates. By ranking them on their 

RC performance, and eliminating options due to toxicity and safety concerns, the top five 

working fluids were ethanol, hexamethyl-disiloxane, R152, 1,3-difluoro-benzene, and 1-

propanol. While ethanol was the best overall working fluid, hexamethyl-disiloxane performed 

well at higher condensation temperatures, and R152 was well suited for lower condensation 

temperatures. Overall, RC configuration and the condensing temperature were the most 

influential parameters. 
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Similar to Tian et al. earlier in the year, Hou et al. researched the performance of a FPLG 

with different cam plates and valve timings for the application of an RC WHR system using 

compressed air as the working fluid [174]. For an intake pressure of 2.0 bar and an operating 

frequency of 2.5 Hz, a maximum power of 19 W was achieved. However, the maximum 

indicated efficiency of 92.8% was at 1.4 bar and 2.0 Hz. Thus, as intake pressure grew, the peak 

power output of the FPLG increased, while the indicated efficiency decreased.  

Before proposing a novel RC system in 2017, Zhou et al. reviewed RC WHR systems for 

passenger vehicle applications [175]. Although the exhaust gas has a higher exergy potential than 

the engine coolant, many researchers utilized both sources with dual loops. For working fluid 

selection, at high-temperature conditions, water was better suited than organic fluids, which 

performed better under low-temperature conditions. Expander selection was crucial as well, with 

scroll expanders the ideal option due to their compactness and cost-effectiveness. Finally, Zhou 

proposed an RC system that utilized the power electronics of a hybrid vehicle as an additional 

heat source for WHR. Based on RC simulations using R245fa as a working fluid, the use of the 

electronics heat source improved the expander power output by 58% and the coefficient of 

performance (i.e., the ratio of expander work output to pump work input) by 20%. 

After detailing other types of WHR systems and identifying RC as the most promising, Lion 

et al. provided a comprehensive review of the various aspects of RC design in 2017 such as 

working fluid selection, component selection, system architecture design, and system modeling 

[176]. In regards to heat sources, Lion et al. determined that exhaust gas and EGR were largely 

used, often in parallel configuration. Furthermore, larger engines, such as in marine applications, 
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also used the coolant as a heat source. Vehicle applications in literature included passenger 

vehicles, but focused on long-haul truckers utilizing water and ethanol as the working fluids. 

Additional working fluid options and system components were presented, with generalized 

guidelines for selection criteria. Ultimately, in all RC applications, the primary obstacles facing 

the technology include packaging issues, thermal management issues, safety, cost, and reliability. 

The next year, based on a methodology that calculated equivalent temperatures for the 

evaporator and condenser of a basic RC system, Saloux et al. reconstructed and expanded their 

procedure to estimate the values of the actual temperatures at each state within the cycle and 

select potential working fluids through the variation of mass flow rates and isentropic 

efficiencies [177]. The reconstruction methodology first evaluated the RC performance without 

consideration of the working fluids, achieving RC cycle efficiencies of 9.9-10.5%. With the 

same RC performance for four working fluids compared, determining the best working fluid was 

difficult; however, the methodology proposed allowed for a more direct comparison of the 

feasibility of working fluids.  

In 2018, Yang et al. used the experimental performance of a hydraulic diaphragm metering 

pump to estimate its influence on RC WHR behavior using R123 as a working fluid [178]. 

Subsequently, the mass flow rate of the pump was independent of pressure; whereas, the actual 

pump efficiency increased nonlinearly with outlet pressure. Furthermore, a maximum pump 

efficiency of 88.27% was obtained for an outlet pressure of 1.33 MPa and a mass flow rate of 

2.06 ton/hr. As the outlet pressure increased, the power input of the pump also rose from 207.12 

W to 523.91 W. Moreover, the RC system consistently achieved thermal efficiencies over 10% 
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for pump strokes from 25-100% and both the thermal efficiency and net power output grew as 

the evaporating temperature increased.  

Sarkar in 2018 presented a design methodology for an RC WHR system that simultaneously 

predicts the location of the evaporator and condenser pinch points and optimizes the pressures 

[179]. Of the seven considered working fluids, R1233zd and isopentane achieved the highest 

working fluid mass flow rates, and subsequently the greatest net work output. However, 

ammonia yielded the largest thermal efficiency. Yet, due to its improved work output, as well as 

its better safety considerations when compared to ammonia and isopentane, R1233zd was chosen 

as the best working fluid considered. 

The same year, Negash et al. attempted to experimentally optimize an RC system 

configuration for WHR from multiple heat sources from a construction equipment engine with 

R245fa and R123 [180]. In addition to exhaust gas, EGR, and engine coolant as waste heat 

sources, the addition of a recuperator and the use of the engine’s hydraulic oil as a heat source 

with and without a recuperator were considered. The configuration utilizing the hydraulic oil as a 

heat source without a recuperator displayed the best performance, improving the net power 

output by 11.1% at half-load, while the use of a recuperator alone enhanced engine performance 

by 16.3% and 36.9% at half- and full-loads. However, the use of both a recuperator and the 

hydraulic oil significantly increased costs by 39% and 49%, respectively. R134a yielded a 4% 

net higher power output than R245fa, with the added benefit of smaller expanders and HEXs due 

to a greater operating pressure. 
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Using a bottoming RC configuration in 2018, Zhao et al. implemented a new control method 

for a modified engine and RC for better response to engine operation variation [181]. While the 

engine operation was modeled in GT-SUITE, MATLAB and Simulink were used to simulate the 

RC system with R245fa as a working fluid, a shell-and-tube evaporator, and a plate type 

condenser. Integrating the two models allowed for adjustment of the RC parameters according to 

changing engine operating parameters. Subsequently, 2.54 kW was obtained as the maximum net 

power output of the system, with a thermal efficiency of the engine and RC of 3.57%, while 

reducing the BSFC of the engine by 9.69 g/kWh. 

Also in 2018, Chintala et al. compiled a review of RC for WHR from CI engines and their 

design challenges [18]. Engine exhaust and engine coolant are the two most utilized waste heat 

sources and with a CRC or DRC, both sources can be effectively harnessed simultaneously. 

Furthermore, the evaporators used in each loop should be designed for the appropriate heat 

source, especially in the case of the variable exhaust gas waste heat and on-board applications. 

Moreover, scroll expanders present the best performance and economic considerations of 

expander technologies. Although RCs achieved only 10-25% standalone efficiencies, they still 

present an opportunity for combined RC and engine efficiencies between 60-90%. Smaller 

engines may not be as ideal for RC applications due to their lower mass flow rates, while high 

capacity, multi-cylinder engines are ideal. In comparing working fluids, R245fa was selected as 

the most thermally and environmentally attractive working fluid, followed by R141b and R123. 

Garcia et al. explored the different cycles used in low- and medium-grade WHR in 2018, 

including BRC, RRC, CRC, organic flash cycles, and trilateral cycles, subsequently comparing 



102 

 

them as a function of their efficiencies [182]. Based on efficiency values from the literature, the 

RC configurations achieved cycle efficiencies between 5-10%, while trilateral cycles achieved 

efficiencies between 30-50%. Furthermore, the topping and bottoming temperatures in the 

proposed trilateral cycles were significantly lower than the RCs, which further improved the 

thermodynamic performance of trilateral cycles over RCs. 

Finally, in 2018 Imran et al. conducted a bibliometric quantification of the trends in RC 

technology research, primarily comparing authorship and originating countries, but including 

research technology trends as well [36]. Of the core research areas of RCs (i.e., applications, 

working fluids, expander technology, cycle configuration, design and optimization, and 

dynamics and control), 42.15% of RC publications are on RC applications, followed by design 

and optimization. Furthermore, of RC technology applications, 37.81% of the articles are about 

RC for waste heat applications. Transcritical cycles were the most studied cycles, followed by 

cycle configuration comparisons, and then regenerative cycles. Moreover, for the research 

articles on RC design and optimization, 67.88% of the articles were focused on optimization 

rather than design, and for those on working fluids, 27.57% were about working fluid selection. 

Finally, of the articles focused on expander selection, 63.6% discussed turbine expanders, 

followed by scroll expanders. Between 2009 and 2016, the number of papers published on RC 

has compounded significantly, showing increasing interest in the field. The bibliometric 

approach used by Imran et al. not only provides nominal information about the research focus 

trends in the field of RC technology, but also displays the increasing popularity of the subject in 

research. 
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2.2.3 Recent Literature Review Summary 

Between 2012 and 2018, a tremendous number of researchers published work on RCs for 

WHR, building on the extensive research catalog for the decades prior, in response to 

progressively rigorous fuel economy and emissions regulations. However, the contemporary 

research did little to contradict the trends seen in previous reviews, but rather strengthened them, 

while adding specificity, volume, and weight. This shoring of RC WHR research is seen in the 

presented review of work on cycle configurations and comparisons, working fluid and 

component selection and sizing, applications, heat sources utilized, and performance and 

economic considerations.  

Despite the predominance of RCs as the power cycle used in WHR efforts, RC WHR was 

still compared or coupled to other WHR technologies and cycles, such as TEGs, BCs, 

transcritical power cycles, and trilateral cycles. Furthermore, RCs were combined with 

refrigeration cycles to expand operational applications [66, 163]. Oftentimes, the performance 

elevation over standard RCs was not justifiable given the further costs and complexities incurred, 

as in the case of the combined TEG-RC and the Brayton air cycle with isothermal compression 

[24, 74].  

More prevalent was the comparison of different configurations of an RC cycle. These 

modifications included regeneration, preheat, the use of intermediate thermal cycles, TRC, DRC, 

and CRC. Aside from single RC systems, DRC, CRC, or other combined cycles were the most 

frequent, allowing for the utilization and optimization of multiple waste heat sources for 

improved combined performance. Cycles employing both preheat and regeneration performed 
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better than standard cycles, regardless of the base configuration, yielding higher thermal and 

cycle efficiencies and net power output, by as much as 27% [25, 27, 99, 120, 128]. Nonetheless, 

as with more complex cycles, the inclusion of supplementary HEXs increased system size and 

cost. Thus, the consequences of the trade-off between system performance and cost are further 

emphasized.  

By far the most commonly studied parameter in RC WHR literature was working fluid 

selection, often considered in addition to cycle types or configurations, as the appropriate 

working fluid depends on the cycle type and heat source. The main selection criteria for working 

fluids were thermodynamic performance, economic considerations, safety, and environmental 

factors. In assessing optimal working fluid performance, compromises must be made between 

thermodynamic performance and economic considerations, primarily due to the effect that the 

working fluid has on component sizing [33, 99, 109]. Furthermore, the most environmentally 

sound or the safest working fluid rarely exhibits the best performance, indicating yet another 

concession [18, 71, 179]. Additionally, selection of the appropriate working fluid depends on the 

working conditions and should be concurrently considered with expander options [26].  

As in the literature prior to 2012, there was no single working fluid consistently exhibiting 

ideal performance. Nonetheless, there were several working fluids predominantly used in studies, 

consistently outperforming other working fluids. The most prevalently used working fluid was 

R245fa, with advantageous operation in low temperature systems. Conversely, with ideal 

performance exhibited in high temperature systems, water was the next predominant working 

fluid. Furthermore, R123, ethanol, R134a, and toluene also frequently appeared in the literature. 

Finally, working fluid mixtures were widely studied, indicating improved performance over pure 

working fluids while allowing for a wider spectrum of applications and working conditions [89, 
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100, 146]. However, mixtures are still subject to additional concerns, such as augmented 

thermodynamic performance bettering economic performance while negatively influencing 

pumping and component requirements [149, 151]. 

Regarding component selection, as before, the expander was the most crucial, as it was the 

largest source of losses and costs within a WHR system [26, 87, 107, 113, 140]. Nevertheless, 

the expander also presented one of the largest opportunities for advancing RC system 

performance, with drastic enhancements in net power output possible through comparatively 

minor growth in expander efficiency; thus, this indicates the need to focus on expander 

technology upgrades in the future [134]. Of the utilized expander types, scroll expanders were 

the most frequent due to their high efficiencies, followed by screw then swash-plate expanders. 

Notably, expansion valves or nozzles were often used in experimental set-ups to mimic the 

inclusion of an expander, with authors using available expander efficiencies from the literature to 

then calculate system performance. Furthermore, FP expanders were introduced as a novel 

technology, displaying comparable performance and elevated efficiencies, but requiring further 

study for actual RC WHR implementation [80, 135, 174].  

Expanding the focus of component design and selection beyond just the expander, the 

literature between 2012 and 2018 also concentrated significantly on HEX design. HEX types, 

sizes, and flow orientation were all considered as pathways for improving RC WHR 

performance. Through the design and optimization of HEXs for the specific RC application and 

heat source, not only can system performance and waste heat utilization be improved, but system 

costs and induced backpressure (when using engine exhaust) can be reduced [70, 150, 155]. The 

most common types of HEXs were shell-and-tube and plate HEXs, appearing with the same 

frequency, although plate heat exchangers were often considered superior due to their more 
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compact design [59]. Conversely, although their selection is important due to the potential for 

high losses, pumps were not as acutely considered, with diaphragm pumps commonly deemed 

appropriate for RC WHR applications [59, 87, 113].  

Also building on the historical literature, tremendous consideration was given to the 

comparison of heat sources for WHR. Engine exhaust was the most ubiquitous source of waste 

heat due to its high temperature and quality, ease of implementation, and reduced costs [26, 32, 

96]. Other prevailing heat sources included coolant, EGR, and varying complexities of their 

combinations. Notably, in dual or cascaded cycles, the coolant and the exhaust together were the 

most common and effective heat sources. However, selection of the best heat source or 

combination of heat sources depended on the engine load, as well as the specific power cycle 

being utilized [57, 142]. Moreover, intermediate thermal cycles between the heat source and the 

RC working fluid were implemented to mitigate variations in the heat source temperature and 

improve control [110, 117, 131, 133]. 

The most common application for RC studies was automotive CI engines, such as heavy-duty 

trucks or buses, followed by marine CI engines on ships, both traditional and hybridized SI 

engines in passenger vehicles, and power plant applications. For automotive applications on both 

SI and CI engines, the aforementioned trade-offs between performance, working fluid selection, 

and component sizing became especially important for fitting the WHR system on-board a 

vehicle. Conversely, system cost and economic considerations were primarily more important for 

marine and power plant applications due to the lessened size restrictions. Consistent with 

previous conclusions, the use of a hybridized powertrain in automotive applications yielded an 

ideal conversion and storage mechanism for the recovered power, while also allowing for more 

consistent RC operation with engine variability [26, 55, 58, 62, 63, 67].  
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Additional attention was also given to transient operation, as well as operation over driving 

cycles, in order to assess more realistic performance parameters. However, the general trends 

between steady and transient analysis were similar; thus, this allows the simpler, steady analysis 

to be exploited as an initial assessment [118]. Furthermore, more concern was placed on control 

strategies for RC systems, in order to address variability in operation based on driving profiles 

and engine loads. Proposed strategies included dynamic, combined, minimized variance, and 

non-linear transient control [75, 86, 91].  

With such a wide range of cycles, components, working fluids, and applications studied, the 

modeled or experimental performance parameters are difficult to compare. However, generalized 

thermal efficiencies for RCs between 5-51.27% were achieved, with system efficiencies (i.e., 

including the engine or waste heat source) between 3.63-43.8%. Moreover, power improvements 

between 2.1-23.7% were achieved, for fuel economy savings of 2.7-30% in automotive 

applications. These generalized performance values indicate a betterment over similar values 

achieved prior to 2012, suggesting a progression in technology and optimization in RC WHR. 

Unfortunately, economic parameters depend greatly on the application, and as such are even 

more complex to compare. However, the following trends were seen: escalating system 

complexity resulted in rising system costs, working fluid selection affected electricity production 

costs and the payback period, and growing component efficiencies elevated expenses.  

2.3 Conclusion 

Despite the introduction and comparison of many different types of WHR, RC remained the 

dominant method of WHR for various applications between 1973 and 2018. As the field 
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advanced, dual or cascaded RCs became prevalent, in addition to preheaters or regenerators to 

improve system efficiency and performance. However, the introduction of these complexities 

and additional system components comes at the expense of inflating system costs. Working fluid 

selection remains the prominent parameter of RC WHR. Water and R123 have consistently been 

selected as working fluids throughout the research due to their enhanced performance and safety, 

but since 2012, R245fa has become progressively prevalent due to its elevated environmental 

characteristics. 

Expander selection continues to be a crucial component, with direct relationships between 

expander efficiency and RC thermal efficiency. In recent years, the design and sizing of the 

HEXs utilized within the cycle have become competitively essential in bettering thermal 

efficiencies, especially in on-board applications where sizing is paramount or in variable waste 

heat source applications where the heat transfer must be maximized. Also, more directly 

considered in recent years were waste heat sources. Although the exhaust alone is remarkably 

popular due to its high temperature and simplicity, for exceedingly complex systems the coolant 

and the exhaust is the preeminent heat source combination.  

Holding true to the historical summary, automotive CI engines are the primary applications 

of RC WHR, with specific emphasis placed on heavy-duty trucks and passenger vehicles. A 

hybridized powertrain, specifically for SI engines, has become a widely accepted method of 

successfully converting and storing energy for on-board RC WHR systems. As the research in 

the field expanded, the achieved performance values from models and experiments also 

developed, outperforming previous studies. The biggest areas for advancement in RC WHR lie 

in the expander and HEXs, as well as in the working fluid selection. However, despite the 

progressions seen in the various aspects of RC design, the strongest trend seen is that the system 
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must be designed and optimized for its specific application in order to achieve maximum 

thermodynamic and economic performance, with literature trends providing a strong background 

and methodology.  
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Chapter 3: WHR & DPFHX Experiments 

3.1 Introduction 

The primary focus of this WHR research effort was a shell-and-tube HEX for experimental 

assessment as the evaporator in an RC WHR system with the exhaust of a single-cylinder CI 

engine as the waste heat source. In focusing on the HEX component, there were two concepts to 

be assessed: (1) the experimental performance of a combined DPFHX using an existing 

apparatus and (2) experimental working fluid performance comparisons in the HEX on hand. 

Thus, the experimental objectives were to determine if the combined DPFHX would allow for 

enhanced operation as a HEX evaporator in an RC WHR system and comparing the performance 

of multiple working fluids within the device with and without DPF cores installed. Parameters 

such as heat transfer rates (experimental parameters), HEX effectiveness and the overall HEX 

heat transfer coefficient (HEX parameters), in conjunction with the flows’ Nusselt numbers and 

convection heat transfer coefficients (convective heat transfer parameters), were used to 

quantitatively assess apparatus and working fluid performance.   

Consequently, this chapter describes the methodology and equipment for the WHR HEX and 

DPFHX experiments, the results obtained, and the associated analysis. With this in mind, the 

first round of experiments employed the HEX without DPF cores, exercising only water as the 

working fluid, as validation of the apparatus’ performance after several years out of operation via 

direct comparison to its’ previous performance. Next, several different heat recovery working 

fluids were investigated and compared via the aforementioned parameters. From these 

comparisons, the two working fluids providing the largest values for the experimental and 



111 

 

analytical parameters were then considered in the ensuing DPFHX experiments, with their 

resulting parameters being compared once again. Thus, based on experimental results and 

evaluation of experimental, HEX, and convective heat transfer parameters, comparisons and 

conclusions could be formed regarding the operation of the DPFHX apparatus compared to the 

WHR HEX, as well as regarding the performance of various working fluids within the devices.  

3.2 WHR Apparatus, Data Collection/Processing, and Calculations  

The equipment in the WHR experiments, shown in Figure 3.1, can be grouped in four 

categories: single-cylinder test engine, WHR apparatus, associated NI LabVIEW code for data 

collection, and working fluid. The specifications for the Yanmar L100V single-cylinder CI 

engine (Figure 3.1a) used for testing can be found in Langness et al. [183].  The remaining 

components will be discussed subsequently, followed by the procedure for post-testing data 

processing and the methodology for obtaining the required parameters that will be used to 

evaluate the performance of the apparatus. Then, the criteria and process for working fluid 

selection will be covered in detail.  

The experiments were conducted as five-minute trials, with three trials per working fluid 

(aside from the first experiment in which only two trials were run). The data obtained for each 

trial were averaged over the five-minute trial time span in which the engine and WHR apparatus 

were both operating under steady-state conditions. This occurred when the change in oil and 

exhaust temperatures of the engine along with the change in working fluid and exhaust 

temperatures in the HEX were all less than one percent over the course of 60 seconds (i.e., the 

engine and the apparatus were both maintaining steady temperatures), determined via monitoring 

the temperatures of interest throughout the warm-up period. In order to ensure that these metrics 
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were achieved, the engine and WHR apparatus were run for approximately 30 minutes prior to 

capturing any experimental data, also allowing enough time for the apparatus itself to achieve 

steady-state (i.e., beyond the time frame indicated by the transient conduction calculations shown 

in Appendix A). 

During testing, the Yanmar engine operated between -0.5 Nm to 0.3 Nm at a speed of 1800 

RPM, with the injection of diesel fuel occurring from 0.060 g/s to 0.065 g/s. In order for the 

working fluids within the HEX to stay a liquid and prevent boiling, the engine had to remain at 

extremely low loads (i.e., 0.0 Nm ± 2.5%) to limit the temperature of the exhaust. However, 

since the dynamometer maintains the engine at a set speed, in conjunction with cyclic variation, 

the loading varies and becomes negative at times when the dynamometer prevents the engine 

from increasing speed. Nonetheless, the engine and exhaust temperatures remain steady, despite 

these cyclic variations. Moreover, although engine operation is pulsed flow, by averaging the 

data over the entire trial, the flow effectively becomes steady. Furthermore, the pump was 

operated using a 20 mA signal via the data acquisition (DAQ) program (described subsequently) 

for each trial, corresponding to the maximum rate of fluid circulation for the pump and the 

maximum flow rate for each working fluid.  
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Figure 3.1: WHR apparatus components: (a) Yanmar single-cylinder engine; (b) shell-and-tube HEX 
wrapped in thermal insulation and tape; (c) thermocouples, pressure transducers, and their respective 

fixtures for the exhaust and working fluid; (d) Grundfos diaphragm pump; (e) polyethelene bucket and high 
temperature silicone tubing; (f) Adams bench scale and digital display; (g) aluminum T-slotted extrusions 

and polycarbonate sheeting; and (h) NI CompactDAQ. 
 

The primary component of the WHR apparatus was the HEX connected to the exhaust of the 

engine, directly responsible for extracting the thermal energy. In this case, it was a single pass, 

shell-and-tube design provided by SEC Heat Exchangers (Figure 3.1b). This stainless steel HEX 

contains six 19.05 mm inner diameter and 22.23 mm outer diameter tubes within the shell, which 

was previously determined to provide an adequate heat transfer area for the Yanmar engine’s 

exhaust energy [184]. For the DPFHX experiments, cordierite DPF cores were installed within 
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the tubes of the HEX. 

 

Figure 3.2: The uninsulated HEX with mounted thermocouples, pressure transducers, and Type-K 
thermocouples. Note that although the HEX is in a counterflow configuration in this photo, a parallel 

configuration was used for experimental testing.  

  Added to the inlet and outlet of the HEX tube bundle were 76.20 mm to 25.40 mm 

reducers, to which additional piping was secured for the mounting of thermocouples and pressure 

transducers in the exhaust gas stream. Moreover, fixtures placed at the top and bottom of the 

shell provided the mountings for thermocouples and pressure transducers for the inlet and outlet 

working fluid streams, all of which are shown in Figure 3.2. The thermocouples and pressure 

transducers were both from Omega, products TC-J-NPT-G-72 (accuracy ± 0.75% K) and 

PX309-030AV (accuracy ± 0.25% psi), respectively. Furthermore, four Omega type K 

thermocouples, product SAI-K-SRTC (accuracy ±0.75% K), were affixed to the shell exterior to 

monitor the external HEX temperature, secured underneath the white high temperature cement in 

Figure 3.2. Finally, based on findings from previous testing, to prevent the loss of thermal energy 
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to the surroundings the HEX was wrapped in 25.40 mm thick, ceramic fiber thermal insulation 

from Tao Fibre and an outer layer of thermal tape (Figure 3.1b) [20].  

The next element of the apparatus was the pump, which transports the working fluid through 

the shell side of the HEX. A Grundfos positive displacement diaphragm digital dosing pump 

(Figure 3.1d), product DDA 30-4 AR-PP/E/C-F-31U7U7BG (accuracy ±1%), connected to the 

working fluid inlet via high temperature silicone tubing (Figure 3.1e), was controlled utilizing a 

4-20 mA signal, corresponding to a maximum flow rate of 30 L/hr for pressures up to 4 bar. 

Moreover, the working fluid moved to and from two NSF-certified polyethylene buckets (Figure 

3.1e), serving as reservoirs, with stainless steel as the material for any additional fittings or 

clamps.  

The final two pieces were the weight scale and the modular mount for the apparatus. An 

Adam bench scale with a digital display (Figure 3.1f), product CPWplus 35 (accuracy ± 0.01 

kg), provided data for the working fluid flow rate based on measurements of the inlet reservoir 

bucket weight. Furthermore, a mounting structure for the HEX was constructed out of 25.40 mm 

aluminum T-slotted extrusions and impact resistant polycarbonate sheeting (Figure 3.1g). This 

structure was designed to fit in the pad space available in the test cell while allowing slight 

modifications to align the HEX with the exhaust pipe.  

Rivaling in importance to the physical machinery was the DAQ program responsible for 

reading and logging all experimental data; thus, a LabVIEW code was created specifically for 

the WHR apparatus. The WHR LabVIEW code ran a 4-slot National Instruments (NI) 

CompactDAQ (Figure 3.1h) connected via a USB cable to a computer outfitted with NI DAQmx. 
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Specifically, the modules in the CompactDAQ were: NI 9211, a thermocouple input module for 

the working fluid and exhaust temperatures; NI 9237, a simultaneous bridge module for working 

fluid and exhaust pressure measurements; NI 9265, for analog control of the pump via excitation 

from the power supply; and NI 9211, a thermocouple input module for the type K thermocouple 

data. Specific information regarding each module is available in [20].  

Control and monitoring of the experiments were accomplished using a graphical user 

interface (GUI) accompanying the WHR LabVIEW code, seen in Figure 3.3. This GUI provided 

real-time graphical representations of the pressure and temperature measurements during the 

experiment. Moreover, the GUI contained controls for the excitation output to the pump, 

controlling the working fluid flow rate. Furthermore, this GUI continuously updated the scale 

reading to monitor the working fluid reservoir (via a direct VGA connector), while also 

providing a count of elapsed experimental time and cataloging the current time and date.  

 

 

Figure 3.3: LabVIEW GUI for monitoring and running the WHR apparatus during experiments. 
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Additional data were recorded from the inherent DAQ program associated with the single-

cylinder test engine, which runs for the entire duration of each individual experimental trial and 

compiles a single engine performance data file. Of this amassed data, the necessary parameters 

required were the air and fuel flow rates to the engine, which together equal the exhaust flow 

rate. Furthermore, pressure traces were taken multiple times throughout the testing to compare 

the influence of the HEX on engine performance with and without DPF cores installed. 

Extensive records of the entire instrumentation installed on the Yanmar engine can be found in 

[183]. 

During testing, the WHR LabVIEW program ran and recorded the entire time that the engine 

and apparatus are operating; thus, a significant amount of data processing was done post-testing 

in order to obtain relevant experimental data from the appropriate periods. When trials were 

executed, the starting time and weight of the reservoir were recorded, followed by the stopping 

time and weight, which were then used to filter the applicable trial data from the accumulated 

recorded information.  

The thermocouple measurements, pressure transducer data, and weight values were output 

into individual technical data management solution (TDMS) files. However, only the 

measurement values were recorded in these files; hence, after testing, timestamps were allocated 

to each recorded measurement using the sampling rate of each different device to assign the data 

to the appropriate trial (i.e., temperature data collected every 0.333 s, pressure data every 0.6 s, 

weight scale data every second, and fuel and air mass flow rates every 0.1 s). Since steady state 

tests were conducted, the data were then simply averaged with a standard deviation calculated. 
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To determine the mass flow rate of the working fluid, the difference in the working fluid 

reservoir’s weight for a trial was divided by the time of that trial (i.e., 300 s). Then, the final data 

needed for complete analysis was the exhaust flow rate, obtained by summing and averaging the 

air and fuel flow rates from the trial, with a standard deviation also calculated.  

All pertinent data were then compiled into a single comprehensive Excel file, including the 

working fluid type, inlet and outlet temperatures and pressures for the exhaust and working fluid, 

and mass flow rates for the exhaust and working fluid. Subsequently, a MATLAB program, 

written by the author and available in Appendix B, conducted all of the necessary calculations to 

compute the heat transfer rate lost by the engine exhaust, the heat transfer rate to the working 

fluid, the effectiveness of the HEX, and the overall heat transfer coefficient.  

First, the code extracted the experimental data from the Excel file, creating an input data 

matrix and indexing the separate trials’ data into individual rows. Once the data was input into 

MATLAB, the first major calculation was finding the heat transfer lost from the exhaust ( exQ ) 

using the species molar flow rates ( in ) and change in molar enthalpy ( ih ) via Eq. (3.1): 

 
1

NM

ex i i
i

Q n h


     (3.1) 

with the number of species (NM) to be determined using a simplified combustion analysis. 

Based on an assumed diesel fuel composition (C14.20H25.54), the molecular weights of the fuel 

and air were calculated [20]. These molecular weights, along with the experimental fuel and air 
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mass flow rates, provided the molar flow rates of the air and fuel accordingly. Furthermore, the 

fuel and air molar flow rates were used to calculate the number of air molecules needed (Z) to 

balance the lean combustion equation presented as follows: 

 14.20 25.54 2 2 2 2 2 2C H O 3.76N CO H O N OZ a b c d          (3.2)  

The coefficients, a-d, on the products in Eq. (3.2) depended not only on the composition of the 

fuel, but also the amount of air entering the engine; thus, these values changed with varying 

engine operating parameters. Accordingly, the coefficients of the products multiplied by the fuel 

molar flow rate yielded the molar flow rates of the individual species (ṅi). While there were 

significantly more products of CI combustion, for simplification of the calculation, only the 

products of lean combustion presented in Eq. (3.2) were considered; hence, NM = 4. 

Furthermore, the species’ molar enthalpies ( ih ) were calculated via the addition of the 

species’ heat of formation with the sensible enthalpy; i.e., the difference between the enthalpy at 

the species’ temperature and the enthalpy at the standard reference temperature [23]. Then, the 

product of the change in each species’ molar enthalpy and its respective molar flow rate 

generates the individual heat transfer values for each species, which when summed yield the 

overall exhaust heat transfer, as in Eq. (3.1). Notably, as discussed previously, the exhaust mas 

flow rate (ṁex) was obtained by adding the fuel and air mass flow rates together via a 

conservation of mass balance on the engine itself. 
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Next, the MATLAB code calculated the heat transfer to the working fluid ( wfQ ) by first 

determining the mass-based enthalpy change ( wfh ) of the working fluid from its inlet and outlet 

temperatures. Subsequently, the heat transfer to the working fluid was obtained by multiplying 

the working fluid mass flow rate (ṁwf) by the enthalpy change, as such: 

  , ,wf wf wf wf wf out wf inQ m h m h h       (3.3) 

For water, ethylene glycol, and propylene glycol, the enthalpy difference in Eq. (3.3) was 

found via interpolation of the inlet and outlet temperatures in matrices containing the enthalpy of 

each working fluid as a function of temperature [23, 185]. However, for the 50-50 mixture of 

ethylene glycol and water, the enthalpies were determined for each fluid alone as mentioned 

prior and then combined using mass fractions, resulting in a single enthalpy difference for the 

mixture, with the enthalpy of mixing considered negligible [186]. The selection procedure for 

these working fluids will be detailed subsequently. As indicated previously, the working fluid 

mass flow rate (ṁwf) was found from the measured weight difference of the working fluid 

reservoir over the span of a trial.  

Examining the simplified energy balance equation for the HEX in Eq. (3.4), it can be seen 

that in an idealized situation, the heat transfer rate from the exhaust (i.e., the left hand side of the 

equation) would equal that gained by the working fluid (i.e., the right hand side of the equation). 

However, in reality there were losses in the system, thus decreasing the rate of heat transfer to 

the working fluid and transforming the energy balance into Eq. (3.5). This equation incorporated 
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Qloss, a term quantifying the losses within the system, defined as the difference between the 

exhaust heat transfer rate and the working fluid heat transfer rate.    

 , , , , , , , ,ex in ex in ex out ex out wf out wf out wf in wf inm h m h m h m h        (3.4) 

 ex wf lossQ Q Q    (3.5) 

In addition to the heat transfer rates, an important parameter for evaluating the heat transfer 

through a HEX is the effectiveness (ε); i.e., how well the HEX captures the waste heat. The 

definition of the effectiveness is the ratio of the actual heat transfer to the maximum heat transfer 

possible, as such [29]:  

 
max

Q

Q
     (3.6) 

Eq. (3.6) can be expanded to include the product of each of the respective average specific 

heats and mass flow rates (i.e., the average heat capacity, ˆpmc ) and temperature differences. 

Thus, the effectiveness can be calculated based on the heat transfer gained by the working fluid, 

as in Eq. (3.7), or based on the heat transfer lost by the exhaust, as in Eq. (3.8). Applying the 

minimum heat capacity in the denominator of Eqs. (3.7) and (3.8) represents the maximum heat 

transfer possible in the HEX as indicated in Eq. (3.6).  
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Although both Eq. (3.7) and Eq. (3.8) provide valid quantifications of HEX performance, to 

focus the assessment on the rate of heat transfer to the working fluid, Eq. (3.7) served as the 

effectiveness value compared. Additionally, Eq. (3.7) presents the minimum value since, in order 

to balance the energy equation as indicated before, the heat transfer to the working fluid must be 

less than that from the exhaust. Overall, the minimum heat capacity,  
min

ˆ pmc , was that of the 

exhaust gas flow for all trials (i.e., ˆ ˆ( ) ( )p ex wfmc mc  ). 

Similar to the exhaust heat transfer methodology, to find the exhaust specific heat (cp,ex), the 

individual exhaust species’ specific heats ( ,p ic ) were found first, using a curve fit for the variation 

of the specific heat with temperature, with the assumption that the gas species behave as ideal 

gases, as follows [23]: 

  2 3 4
,

u
p i i i i i i

i

R
c T T T T

M
           (3.9) 

The Greek coefficients are constants associated with different gas species, iM  is the 

molecular weight of each species, uR is the universal gas constant, and T is the temperature of 

the gas in kelvin. Therefore, the inlet and outlet exhaust gas temperatures ( ,ex inT , ,ex outT ), as well as 

the mass fractions ( iY ) of each species, provided the basis to calculate an average specific heat 
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for the exhaust gas ( ,ˆp exc ). Direct interpolation of the working fluid’s specific heats at the inlet 

and outlet temperatures subsequently allowed for the computation of an average working fluid 

specific heat ( ŵfc ) [23, 29, 187]. Of note, specific heat data for the 50% EG and water mixture by 

volume was employed, as opposed to combining individual fluid data [188].  

For an additional quantitative comparison between experimental results, the final calculation 

in the MATLAB code was the overall heat transfer coefficient (U). This value was determined 

based on the working fluid flow rate, average specific heat, and temperature difference, as well 

as the heat transfer area (AHT) and the log mean temperature difference (LMTD) of the HEX: 

 
 , ,ˆwf wf wf out wf in

HT

m c T T
U
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
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
  (3.10) 
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  (3.11) 

The term F in Eq. (3.11) is a correction factor to account for internal flow disturbances 

within a HEX, used with ∆Ta and ∆Tb, temperature differences across a HEX, traditionally 

defined for counterflow. However, for this analysis, the HEX was idealized and treated as a 

concentric tube HEX in parallel flow, meaning that F is equal to 1. Thus, for this idealized HEX, 

the LMTD was calculated for parallel flow according to:  
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 , ,a ex in wf inT T T     (3.12) 

 , ,b ex out wf outT T T     (3.13) 

Notably, a constant heat transfer area of 0.1915 m2 was utilized in Eq. (3.10), calculated from 

the tubes’ outer diameter and length. By defining the overall heat transfer coefficient in terms of 

the rate of heat transfer to the working fluid (i.e., the numerator of Eq. (3.10)), the resulting value 

provided a minimum evaluation of U, since the working fluid heat transfer rate was less than that 

of the exhaust from the discussion of Eq. (3.5). Moreover, the overall heat transfer coefficient 

provided an evaluation of the resistances between the exhaust and the working fluid; thus, the 

overall heat transfer coefficient yielded a quantitative measurement of the effect various working 

fluids had on the heat transfer within the HEX (i.e., which fluids provided larger resistances thus 

deterring heat transfer), since the exhaust flow remained generally the same across the working 

fluid experiments. Finally, the MATLAB code exported the heat transfer values, as well as the 

effectiveness and the overall heat transfer coefficient, to the original Excel spreadsheet 

containing the input data to provide a comprehensive table of the experimental results.  

Upon completion of the data analysis, the results were evaluated and compared, allowing 

conclusions to be drawn about the WHR apparatus’ performance. Thus, the heat transfer from 

the exhaust and to the working fluid, with the effectiveness and overall heat transfer coefficients, 

indicated the efficacy of the HEX. Furthermore, these quantitative parameters were employed to 

relate the ability of the working fluids and subsequently the behavior of the combined DPFHX.  
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3.3 Working Fluid Selection 

Aside from the HEX design, working fluid selection is one of the most significant aspects 

influencing RC performance, as indicated in the literature review. As such, four different 

working fluids were experimentally tested in the WHR apparatus: water, ethylene glycol (EG), 

propylene glycol (PG), and a 50/50 mixture of ethylene glycol and water. However, prior to the 

selection of these working fluids, an extensive search and comparison of available working fluids 

was completed, identifying the primary criteria preferred, evaluating such criteria for an array of 

common working fluids, and ultimately narrowing the options down to those utilized 

experimentally.  

While the initial criteria considered was more broadly applicable to working fluids for use 

within an entire RC system, the final limiting factors in the selection of working fluids arose 

from the given experimental setup. Due to laboratory limitations, it is not currently possible to 

implement a complete RC system. Additionally, the HEX is the main component to be merged 

with traditional aftertreatment systems for on-board WHR. As a result, the focus of the final 

working fluid selection criteria and subsequent experimental efforts was the optimization of only 

the HEX portion of the RC system. Hence, the trends and results from these experimental tests 

provide a direct indication of the influence of working fluid behavior regarding the entrance of 

thermal energy into an RC system, a vital first step for WHR operation and optimization in the 

future.  

Thermal properties were the customary starting point for finding viable working fluids, 

significantly motivated by the perceived shortcomings of water as a working fluid based on the 
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experimental efforts of Sprouse [20]. Primarily, the relatively low boiling point of water meant 

that at moderately high engine loads, the water in the HEX experienced boiling due to the 

temperature of the exhaust gas [20]. While boiling is ideal for actual RC operation (i.e., 

enhancing heat transfer while preventing expander damage due to liquid droplets), this phase 

change significantly confounds the heat transfer analysis of the HEX as it cannot be 

experimentally validated easily, an unwanted complication (i.e., the quality of the working fluid 

exiting the HEX cannot be experimentally determined if boiling occurs). Furthermore, fluids 

with higher boiling points generally have greater efficiencies given the same pressure conditions 

[47, 49]. Thus, although in traditional WHR systems, a lower boiling point would be 

advantageous, since boiling could be achieved more easily, experimental limitations of the 

apparatus require a higher boiling point, providing some potential benefits within the HEX. 

Subsequently, the primary considered thermal property of a working fluid was to have a boiling 

point higher than that of water, as a precaution to prevent the working fluids from boiling in the 

HEX.  

After the boiling point, additional deliberation stemmed from an understanding of the 

preferred attributes of working fluids for a HEX evaporator in an RC. Specific thermal criteria 

for this application are as follows [17, 46]: low specific heat, low viscosity, high latent heat of 

vaporization, high thermal conductivity, and low specific volume. With a low specific heat and 

high thermal conductivity, the thermal diffusivity of the working fluid is larger, subsequently 

allowing the fluid to respond more quickly to thermal changes, which, although less important 

for steady state operation, can carry considerable weight for transient operation; while a reduced 

specific volume (i.e., greater density) minimizes the required size of the components. 
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Furthermore, a small viscosity, in conjunction with a high latent heat of vaporization and large 

thermal conductivity, minimizes the pressure drop of the fluid across the HEX while maximizing 

heat transfer [29, 35, 46]. However, the latent heat of vaporization was not strongly considered 

since the fluids will not be experiencing boiling; nonetheless, it is included here for completeness 

regarding the ultimate application of this HEX. Hence, these thermal attributes were secondary 

standards for potential working fluids, with the intention of improving HEX performance 

through the appropriate selection. Moreover, safety considerations were used to exclude several 

working fluids, such as hydrocarbons, even if they possessed the necessary thermal traits.  

Beyond thermal and safety considerations, other miscellaneous topics also required attention, 

the first being limitations of other components in the WHR apparatus, primarily the pump. Per 

the pump’s mechanical data sheet, the maximum viscosity the pump is capable of handling is 

150 cP; thereby, eliminating fluids with higher viscosities (e.g., glycerin). Moreover, in order to 

obtain a diverse spread of data without running an excessive amount of testing, working fluids 

with a diverse range of properties, such as the Prandtl number, were desired. The Prandtl number 

was specifically targeted since it is calculated using several thermal properties of focus (i.e., 

specific heat, thermal conductivity, viscosity, and thermal diffusivity). Furthermore, concerns 

regarding corrosiveness and compatibility between the working fluid and the apparatus materials 

were addressed. The WHR apparatus is an open system, making the use of a gaseous working 

fluid nearly impossible. Finally, commercial availability was considered in order to minimize 

purchasing costs. Such practical considerations, in conjunction with previously declared criteria, 

were subsequently applied to further narrow the scope of working fluids.  
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The initial survey of working fluids considered 43 different options: ethylene glycol, 

propylene glycol, water, fluorine, acetone, propyl alcohol, R-114, isobutane, n-pentane, HFE301, 

R-123, propane, R-11, R-113, R227ea, benzene, toluene, p-xylene, octamethyltrisiloxane, 

ethylbenzene, propylbenzne, butylbenzene, butane, hexane, cyclopentane, R245fa, R32, R245, 

R152a, ammonia, R236ea, R22, R143a, R124, R142b, R236fa, R290, R600a, butane, and 

isobutene. A review of prior working fluids for WHR, primarily via an RC, as well as working 

fluids for general application in HEXs, generated this list of potential working fluids. A few of 

these were eliminated due to low boiling points. The remaining 30 were then compared based on 

their Prandtl number, boiling point, and viscosity. A direct comparison of these three key 

properties allowed for the exclusion of some working fluids while ensuring that each property 

fell within the desired range. Table 3.1 displays the seven remaining options for the WHR 

experiments and their respective properties at 300 K, representative of their properties near room 

temperature, and at 350 K, indicative of the direction their properties will be altered during 

operation as a WHR working fluid.  
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Table 3.1: Working fluids considered for WHR experimentation and their considered parameters (evaluated 
at 300 K and 350 K where applicable) [29, 185]. 

Working 
Fluid 

Evaluated 
Temperature 

[K] 

Boiling 
Point 

[K] 

Density 

[kg/m3] 

Viscosity 

[Ns/m2 ∙ 
102] 

Specific 
Heat 

[kJ/kgK] 

Thermal 
Conductivity 

[W/mK] 

Prandtl 
Number  

[-] 

Ethanol 
300 351.39 782.83 0.105 2.596 0.165 16.50 

350 - 737.80 0.045 3.169 0.154 9.29 

Ethylbenzene 
300 409.32 861.77 0.061 1.756 0.127 8.48 

350 - 817.94 0.037 1.925 0.116 6.20 

Ethylene 
Glycol 

300 470.59 1108.50 1.571 2.415 0.259 146.60 

350 - 1073.05 0.335 2.637 0.255 34.56 

Propyl 
Alcohol 

300 370.19 798.13 0.186 2.412 0.154 29.07 

350 - 755.07 0.065 2.999 0.142 13.75 

Propylene 
Glycol 

300 460.41 1031.29 3.590 2.513 0.203 445.01 

350 - 992.26 0.385 2.820 0.195 55.74 

Toluene 
300 383.75 860.44 0.054 1.707 0.130 7.09 

350 - 812.90 0.033 1.878 0.116 5.29 

Water 
300 373.15 996.51 0.085 4.180 0.610 5.85 

350 - 973.70 0.037 4.197 0.668 2.31 

Water was the principal working fluid of Sprouse [20]; thus, for consistency, it was 

maintained as one of the working fluids. Moreover, this provided a benchmark to compare the 

performance of other fluids; hence, the other options were related to water. Both propyl alcohol 

and ethanol have boiling points that are lower than that of water, precluding them from 

consideration. In other words, choosing propyl alcohol or ethanol as the working fluid would 

require the engine to be run at a lower load to prevent exhaust temperatures from reaching the 

boiling points of these species; thus, eliminating similarities in testing conditions. All of the 
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working fluids possess higher Prandtl numbers than water while displaying an appropriate spread 

of values. Notably, toluene and ethylbenzene have Prandtl numbers relatively similar to that of 

water at room temperature and propylene glycol has the highest for both temperatures. In 

addition to a vast range of viscosities, all remaining working fluid options have viscosities well 

within the maximum limit of 150 cP (i.e., 0.15 Ns/m2) specified by the pump manufacturer. 

However, as a hydrocarbon, toluene is extremely unattractive and unsafe as a working fluid. 

Furthermore, ethylbenzene, aside from being highly flammable as well as a hydrocarbon, is also 

expensive to purchase. Thus, ethylbenzene and toluene were both eliminated from consideration.  

Now, with a majority of the working fluids rejected, the remaining options in consideration, 

ethylene glycol and propylene glycol, were directly compared to water on a thermal property 

basis ensuring that they would maintain their appeal even with a temperature increase. 

Specifically: 

 Ethylene glycol and propylene glycol both have lower specific heats than water.  

 Ethylene glycol and propylene glycol both have higher viscosities than water, but 

they do allow for a wider range of Prandtl numbers as desired.  

 For the criteria of high thermal conductivity, both have values lower than that of 

water, but they also have higher boiling points.  

 Both fluids have greater densities than water, meaning they have lower specific 

volumes.  

Thus, with lower specific heats and higher boiling points, while also expanding the Prandtl 

number range and minimizing the specific volume, both ethylene and propylene glycol present 
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competitive thermal traits to those of water. It is also important to note that ethylene glycol is 

identified as a hazardous substance with a Category 4 acute oral toxicity, while propylene glycol 

is not classified as hazardous [189, 190]. This difference in categorization simply means that 

additional caution must be taken when handling the ethylene glycol to avoid ingestion, but does 

not warrant concern regarding its implementation as a working fluid.  

Ultimately, ethylene glycol and propylene glycol are both attractive working fluids 

considering their safety and WHR apparatus compatibility while being generally thermally 

favorable in comparison to water, making them prime candidates for experimental testing. 

Furthermore, in order to expand the data collected, additional consideration was given to the two 

selected working fluids in order to determine which would be more appropriate for a 50% by 

volume mixture with water, as mixtures display increasing popularity and enhanced performance 

in RC applications. Hence, as apparent in Table 3.2, ethylene glycol possessed better thermal 

characteristics when combined with water (i.e., lower viscosity and higher thermal conductivity) 

for the temperature range from 300-350 K. As a result, the working fluids selected for 

experimentation were water, propylene glycol, ethylene glycol, and a 50% by volume mixture of 

ethylene glycol and water. Thus, performance analysis of the HEX with multiple working fluids 

will allow for the hierarchical classification of the working fluids as heat recovery fluids within 

the WHR apparatus.  
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Table 3.2: Properties of 50% by volume mixtures of ethylene glycol and propylene glycol with water and 
associated thermal properties (evaluated at 300 K and 350 K where applicable) [188, 191]. 

Working 
Fluid 

Evaluated 
Temperature 

[K] 

Boiling 
Point 

[K] 

Density 

[kg/m3] 

Viscosity 

[Ns/m2 ∙ 
102] 

Specific 
Heat 

[kJ/kgK] 

Thermal 
Conductivity 

[W/mK] 

Prandtl 
Number  

[-] 

50/50 EG & 
Water 

300 380.93 1081.28 0.323 3.273 0.386 27.41 

350 - 1048.80 0.105 3.472 0.410 8.85 

50/50 PG & 
Water 

300 378.71 1039.20 0.504 3.558 0.365 49.13 

350 - 1003.84 0.122 3.753 0.399 11.43 

 

3.4 WHR Experiments and Analysis 

In the initial rounds of testing, experimental trials using the WHR apparatus (i.e., the 

standard HEX with no DPF cores installed) were conducted. The first round of testing was 

completed to verify that the apparatus was still operational after several years out of service. This 

was done by directly comparing the heat transfer rates, effectiveness, and overall heat transfer 

coefficients to values obtained by Sprouse [20]. After this initial validation, the objective of the 

second (primary) round of testing was to directly compare the performance parameters of the 

apparatus with various working fluids. That is, the heat transfer rates, effectiveness, and overall 

heat transfer coefficients were directly compared for each of the working fluids to discern which 

working fluid allowed for the largest heat transfer rate to the working fluid, while also 

maximizing the HEX parameters. Following this, convective heat transfer parameters in the form 

of the Nusselt number and convective heat transfer coefficient were calculated and compared for 

each working fluid. A fluid obtaining higher values indicated improved convection within the 

HEX over the other fluids, subsequently making it a more attractive working fluid.  
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In the initial validation test, water was used as a working fluid in order to reproduce previous 

results, while the second utilized water, propylene glycol, ethylene glycol, and a 50% by volume 

mixture of ethylene glycol and water. The results of both rounds are presented in this section. In 

the second round of testing, a lack of agreement in the trends of the heat transfer rates and the 

HEX parameters (i.e., the effectiveness and overall heat transfer coefficient), a convective heat 

transfer analysis was conducted to provide additional values to compare the working fluids (i.e., 

the convection heat transfer coefficient and the Nusselt number). Therefore, the methodology for 

the convective heat transfer analysis and the subsequent results are also presented, to allow for 

the sought conclusions to be drawn from their comparative parameters. Finally, the results of 

both the experiments and convective analysis provide the backdrop for a complete discussion of 

the performance of the working fluids, allowing for their subsequent ranking and heat transfer 

fluids within the HEX.  

3.4.1 Experimental Results  

Table 3.3 presents the experimental results of the two trials completed in the initial round of 

testing, the objective of which was to directly compare these results to previous results using the 

heat transfer rates, effectiveness, and overall heat transfer coefficient. The first trial experienced 

an exhaust temperature difference of 53.22 K, a working fluid temperature difference of 9.97 K, 

and a rate of heat transfer loss (Qloss, defined as the difference between Qex and Qwf), of 10.22 W. 

For the second trial, these values were 52.50 K, 8.60 K, and 52.98 W, respectively. Between the 

two trials, the largest discrepancy was in Qloss, correlating to differences in the working fluid heat 

transfer rates and related temperature changes, as the exhaust heat transfer rates were similar.  
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Although the working fluid temperature difference of the second trial was only 1.37 K less 

than the first, this translated into a decrease in enthalpy change of 5.78 kJ/kgK. This, when 

multiplied by the working fluid mass flow rate, explains the 47.36 W difference in the working 

fluid heat transfer; thus, indicating the sensitivity of the apparatus to temperature differences. 

Furthermore, since the water entering the system was generally the ambient temperature of the 

test cell, as the engine runs for a longer period the ambient temperature in the test cell may also 

increase slightly; hence, growing the temperature of the working fluid as well.  

Table 3.3: Experimental results from initial WHR testing with water as the working fluid and associated 
errors.  

Fluid 
ṁex 

[g/s] 

ṁwf 

[g/s] 

Tex,in 

[K] 

Tex,out 

[K] 

Twf,in 

[K] 

Twf,out 

[K] 

Qex 

[W] 

Qwf 

[W] 

Qloss 

[W] 

ε 

[-] 

U 

[W/m2K] 

Water 
6.47 ± 
0.33 

8.20 
± 

0.05 

369.34 
± 0.60 

316.12 
± 0.07 

294.35 
± 0.15 

304.32 
± 0.04 

352.40 ± 
18.02 

342.18 
± 5.83 

10.22 
± 

18.94 

0.689 
± 

0.037  

52.30 ± 
1.15 

Water 
6.47 ± 
0.33 

8.20 
± 

0.05 

368.46 
± 0.11 

315.96 
± 0.18 

297.69 
± 0.09 

306.29 
± 0.04 

347.80 ± 
17.78 

294.82 
± 3.82 

52.98 
± 

18.19 

0.629 
± 

0.033 

50.15 ± 
0.84 

Particularly, the effectiveness and the overall heat transfer coefficients presented in Table 

3.3 are the minimum values, calculated for both trials via the working fluid heat transfer rate. 

Here, standard deviations for the appropriate averaged values are also provided. For the 

measured values, this is a standard population deviation across the trials combined with the 

associated instrument accuracy. While for the calculated values the error is determined using the 

sequential perturbation technique, which estimates the propagating errors for a calculated value 

by determining and then combining the influence that the error of each measured parameter has 

on the calculated value [192]. This same methodology is applied for all subsequent standard 

deviations presented. Regarding the resulting errors, it is apparent for the first trial that the 
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deviation in Qloss is larger than the value itself, indicating that this specific trial is questionable, 

but is included for transparency. 

Then, the results were compared with the efforts of Sprouse [20] to address the 

experiment’s goal. The results presented in Table 3.4 are the experimental results using the same 

device, engine, and experimental techniques, but conducted by Sprouse several years prior [20]. 

In Table 3.4, averaged mass flow rates and temperatures are presented, as well as the calculated 

heat transfer rates, effectiveness, and overall heat transfer coefficients, to allow for direct 

comparison to the results in Table 3.3. 

Table 3.4: Experimental results from Sprouse using the WHR apparatus [20]. 

Working 
Fluid 

ṁex 

[g/s] 

ṁwf 

[g/s] 

Tex,in 

[K] 

Tex,out 

[K] 

Twf,in 

[K] 

Twf,out 

[K] 

Qex 

[W] 

Qwf 

[W] 

Qloss 

[W] 

ε 

[-] 

U 

[W/m2K] 

Water 6.413 5.667 375.57  320.58  296.36  309.83  361.34 318.98 42.36 0.623 48.63 

Water 6.360 4.833 376.91  321.92  297.19  312.63  358.45 312.02 46.43 0.610 49.73 

The current results yielded averaged heat transfer rates of the exhaust and working fluid of 

350.10 ± 12.66 W and 318.50 ± 3.48 W, respectively, values for which Sprouse obtained 

averages of 359.90 ± 1.45 W and 315.50 ± 3.48 W, respectively, resulting in percent differences 

of 2.76% for the exhaust heat transfer rate and 0.95% for the working fluid heat transfer rate. 

Additionally, Sprouse had an average heat transfer rate loss between the working fluid and 

exhaust (Qloss) of 44.39 ± 2.04 W and an average overall heat transfer coefficient of 49.17 ± 0.56 

W/m2K, as compared to 31.60 ± 13.13 W and 51.22 ± 0.71 W/m2K for the current results, 

respectively, yielding a 33.66% difference in the average Qloss but only a 4.08% difference in the 
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average U. The large difference in the heat transfer loss rate may be due to reinsulating the HEX 

since Sprouse’s testing.  

Furthermore, the average effectiveness achieved in this research was 0.659, while the 

average effectiveness for Sprouse was 0.617, a 6.58% difference, strongly influenced by the 

difference in working fluid mass flow rates. These variances can be attributed to the indicated 

dissimilarities in operating conditions (i.e., working fluid mass flow rates, exhaust temperatures, 

reinsulating the apparatus) and normal working deviations; thus, these similarities validate the 

current performance of the WHR apparatus against its past performance, achieving the objective 

of the initial round of testing.  

The goal of the second round of experimental testing was to compare the performance of 

the different working fluids in the WHR apparatus. Of note, water was run before and after the 

alternate working fluids in order to serve as a control. Table 3.5 presents the experimental results 

from all trials completed. As in the previous experimental trials, the minimum HEX 

effectiveness and the overall heat transfer coefficient were calculated for each trial with error 

values provided. It should be noted that for all but two trials, the minimum effectiveness was that 

associated with the working fluid heat transfer, as discussed. However, for Trial 2.7 and Trial 

2.13, the minimum effectiveness was for the exhaust heat transfer. Furthermore, for Trial 2.13, 

the calculated heat transfer to the working fluid exceeds that lost by the exhaust, disrupting the 

energy balance for the HEX; while the deviation on the heat transfer rate loss for Trial 2.14 is 

nearly zero, also discrediting the energy balance. Thus, these data sets were removed from 

further consideration, but included in this table for lucidity. Although the deviation on Qloss for 
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Trial 2.1 is close to the size of the value, making it questionable, it is included in subsequent 

analysis.  

Table 3.5: Experimental results from WHR testing with various working fluid and associated errors. Note: 
Trials 2.13 and 2.14 were removed from further consideration, as discussed.  

Trial 
Working 

Fluid 
ṁex 

[g/s] 

ṁwf 

[g/s] 

Tex,in 

[K] 

Tex,out 

[K] 

Twf,in 

[K] 

Twf,out 

[K] 

Qex 

[W] 

Qwf 

[W] 

Qloss 

[W] 

ε 

[-] 

U 

[W/m2K] 

2.1 Water 
6.50 

± 
0.31 

8.23 
± 

0.05 

369.36 
± 0.23 

315.61 
± 0.02 

290.82 
± 0.04 

300.51 
± 0.24 

357.24 
± 

17.04 

333.97 
± 8.73 

23.27 
± 

19.15 

0.639 
± 

0.035 

45.32 ± 
1.45 

2.2 Water 
6.47 

± 
0.31 

8.20 
± 

0.05 

370.27 
± 0.20 

315.63 
± 0.03 

290.87 
± 0.05 

299.63 
± 0.23 

362.02 
± 

17.02 

300.84 
± 8.14 

61.18 
± 

18.86 

0.572 
± 

0.031 

39.69 ± 
1.27 

2.3 Water 
6.46 

± 
0.31 

8.20 
± 

0.05 

371.03 
± 0.22 

315.76 
± 0.06 

291.12 
± 0.05 

299.78 
± 0.25 

365.05 
± 

17.37 

297.15 
± 8.97 

67.90 
± 

19.55 

0.563 
± 

0.032 

39.06 ± 
1.40 

2.4 EG 
6.44 

± 
0.31 

8.80 
± 

0.05 

370.14 
± 0.70 

318.70 
± 0.42 

295.51 
± 0.03 

309.19 
± 0.27 

338.99 
± 

17.15 

248.43 
± 5.15 

90.56 
± 

17.90 

0.593 
± 

0.032 

48.21 ± 
1.64 

2.5 EG 
6.44 

± 
0.31 

8.80 
± 

0.05 

372.17 
± 0.29 

319.87 
± 0.21 

295.66 
± 0.05 

309.93 
± 0.14 

344.42 
± 

16.50 

259.53 
± 3.06 

84.89 
± 

16.79 

0.605 
± 

0.030 

48.80 ± 
0.86 

2.6 EG 
6.43 

± 
0.31 

8.83 
± 

0.05 

372.84 
± 0.11 

320.48 
± 0.12 

295.96 
± 0.10 

310.36 
± 0.08 

344.41 
± 

16.46 

263.01 
± 2.74 

81.40 
± 

16.69 

0.611 
± 

0.30 

49.02 ± 
0.61 

2.7 
50/50 

(EG/H2O) 

6.45 
± 

0.31 

8.57 
± 

0.05 

368.82 
± 1.03 

320.40 
± 0.69 

301.79 
± 0.02 

313.56 
± 0.52 

319.61 
± 

17.35 

257.46 
± 

11.60 

62.15 
± 

20.87 

0.722 
± 

0.056 

65.88 ± 
5.13 

2.8 
50/50 

(EG/H2O) 

6.43 
± 

0.30 

8.53 
± 

0.05 

371.87 
± 0.49 

322.19 
± 0.26 

301.68 
± 0.03 

311.69 
± 0.27 

326.96 
± 

15.49 

217.96 
± 6.17 

109.00 
± 

16.68 

0.610 
± 

0.033 

46.82 ± 
1.80 

2.9 
50/50 

(EG/H2O) 

6.42 
± 

0.31 

8.43 
± 

0.05 

373.12 
± 0.16 

322.82 
± 0.07 

301.54 
± 0.02 

310.98 
± 0.15 

330.31 
± 

15.83 

202.93 
± 3.37 

127.38 
± 

16.18 

0.558 
± 

0.028 

41.26 ± 
0.87 

2.10 PG 
6.42 

± 
0.30 

7.83 
± 

0.05 

370.87 
± 0.88 

321.74 
± 0.69 

296.51 
± 0.02 

311.31 
± 0.29 

322.92 
± 

16.76 

195.73 
± 4.08 

127.19 
± 

17.28 

0.604 
± 

0.032 

47.41 ± 
1.83 
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2.11 PG 
6.41 

± 
0.29 

7.83 
± 

0.05 

373.28 
± 0.42 

323.69 
± 0.33 

296.59 
± 0.04 

312.23 
± 0.19 

325.65 
± 

15.21 

207.00 
± 2.82 

118.66 
± 

15.47 

0.621 
± 

0.030  

47.58 ± 
1.03 

2.12 PG 
6.41 

± 
0.29 

7.83 
± 

0.05 

374.65 
± 0.25 

324.68 
± 0.19 

296.77 
± 0.06 

312.83 
± 0.13 

327.95 
± 

15.24 

212.58 
± 2.28 

115.37 
± 

15.41 

0.628 
± 

0.030 

47.82 ± 
0.71 

2.13 Water 
6.41 

± 
0.29 

8.03 
± 

0.05 

374.41 
± 0.30 

320.40 
± 0.16 

290.90 
± 0.02 

302.34 
± 0.31 

354.47 
± 

16.30 

384.43 
± 

10.66 

-29.96 
± 

19.48 

0.647 
± 

0.046 

46.97 ± 
1.61 

2.14 Water 
6.41 

± 
0.29 

8.00 
± 

0.05 

375.40 
± 0.23 

319.88 
± 0.07 

290.92 
± 0.02 

301.78 
± 0.31 

364.30 
± 

16.65 

363.74 
± 

10.47 

0.56 ± 
19.67 

0.656 
± 

0.035 

44.08 ± 
1.55 

2.15 Water 
6.40 

± 
0.30 

8.00 
± 

0.05 

375.84 
± 0.06 

318.63 
± 0.06 

291.08 
± 0.05 

301.02 
± 0.32 

368.18 
± 

17.03 

332.92 
± 

11.14 

35.26 
± 

20.35 

0.599 
± 

0.034 

39.84 ± 
1.59 

 

Comprehensive average results for each working fluid are presented in Table 3.6 to provide 

general trends for each working fluid, along with their specific heat and thermal conductivity (at 

300 K) for reference. Markedly, the averages for water now include the two trials from the first 

round of testing, while excluding the trials previously removed. The working fluid with the 

highest effectiveness is 50/50 EG/water followed by PG, with values of 0.630 and 0.618, 

respectively. Furthermore, 50/50 EG/water followed by ethylene glycol exhibited the highest 

average overall heat transfer coefficients of 51.32 W/m2K and 48.68 W/m2K, correspondingly. 

Water consistently exhibited the highest heat transfer rates for the working fluid and exhaust, 

resulting in the lowest losses of 41.80 W, while 50/50 EG/water and propylene glycol displayed 

the highest rate of heat transfer losses of 99.51 W and 120.41 W, respectively. 
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Table 3.6: Averaged experimental results of the first two rounds of experiments for each working fluid, 
associated errors, and associated parameters (300 K). 

Working Fluid 
ˆ

exQ   

[W] 

ˆ
wfQ   

 [W] 

ˆ
diffQ   

[W] 

̂   

 [-] 

Û   

[W/m2K] 

Specific 
Heat 

[kJ/kgK] 

Thermal 
Conductivity 

[W/mK] 

50/50 
EG/Water 

325.63 ± 
9.38 

226.12 ± 
4.52 

99.51 ± 
10.41 

0.630 ± 
0.035 

51.32 ± 
1.84 

3.273 0.386 

EG 
342.61 ± 

9.65 
256.99 ± 

2.20 
85.62 ± 

9.89 
0.603 ± 
0.018 

48.68 ± 
0.65 

2.415 0.259 

PG 
325.51 ± 

9.10 
205.10 ± 

1.82 
120.41 ± 

9.28 
0.618 ± 
0.018 

47.60 ± 
0.74 

2.513 0.203 

Water 
358.78 ± 

8.22 
316.98 ± 

3.23 
41.80 ± 

8.94 
0.615 ± 
0.013 

44.39 ± 
0.52 

4.180 0.610 

 Based strictly on the experimental results, several general comparisons can be made. 

Notably, the 50/50 EG/water presents the highest values of the HEX parameters (i.e., overall heat 

transfer coefficient, effectiveness), at the expense of lower heat transfer rates. Water obtains 

greater experimental parameters in the form of the largest heat transfer rate magnitudes for the 

exhaust and working fluid, while minimizing the loss rate. Furthermore, the averages for the 

water consist of additional trials, lending more weight to their validity, as opposed to the others 

with only three trials. Thus, 50/50 and water present promising results over propylene glycol and 

ethylene glycol based on HEX and experimental parameters, respectively. However, without one 

working fluid providing both larger heat transfer rates and higher HEX parameters, an additional 

metric is needed to be able to further compare their performance. As such, convective heat 

transfer parameters for the various fluids and the exhaust will be compared, to provide further 

comparative criteria to the working fluids’ performance.  

 



140 

 

3.4.2 Heat Transfer Analysis  

To provide another tier of comparative parameters for the working fluids within the HEX, an 

analysis of the heat transfer occurring within the device, exhaust, and working fluids was 

conducted. With conduction within the device easy to define (i.e., steady-state conditions, known 

material thermal conductivity and geometry), the focus was placed on the convection occurring 

within the various fluid streams, with emphasis on the working fluids to compare their efficacy 

as heat transfer fluids in providing improve convection over the other working fluid options. 

Thus, the Nusselt number and the convection heat transfer coefficient were the targeted 

convection parameters.  

The initial methodology adopted to evaluate the convection within the HEX was through the 

utilization of the thermal resistance network. Conceptually, the thermal resistance network links 

the convection occurring in the exhaust to that occurring in the working fluid via conduction 

through the tubes of the HEX. Each of these heat transfer modes are then described as resistances 

and connected in a network according to the heat transfer pathways available. Within the 

resistances used to describe the convection in the working fluid and exhaust lies the convective 

heat transfer coefficients desired to compare specifically working fluid performance. Moreover, 

the convective heat transfer coefficient can be used to calculate the Nusselt number (Nu) and 

vice versa, as seen in Eq. (3.14) in which h is the convection heat transfer coefficient, Lc is the 

characteristic length, and k is the thermal conductivity, in this case of the fluid, ultimately 

providing the ratio of convection to conduction in a fluid [29].  

 chL
Nu

k
   (3.14) 
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 The convection coefficient depends greatly on flow conditions, surface geometry, and 

other thermodynamic properties. For common geometries, correlations for the Nusselt number, 

and subsequently the heat transfer coefficient, are developed generally in the form of Eq. (3.15), 

where a, b, and d are constants. However, the working fluid flow conditions are unique to the 

surface geometry of the apparatus, without a known literature correlation. Similarly, an exact 

correlation is unknown for the exhaust flow conditions, despite its simplicity. Thus, the results of 

the experiments were used to attempt to generate such correlations via the thermal resistance 

network, with the objective of utilizing these correlations to then calculate the convection heat 

transfer coefficient and compare the working fluids’ convective performance in the HEX. 

 Re Prb dNu a   (3.15) 

As seen in Figure 3.4a, there are three primary heat transfer pathways within the HEX, which 

together form the thermal resistance network for the HEX. The first is convection from the 

exhaust gases to the inner diameter of the tubes (R1); the second is conduction through the tube 

wall (R2); the third is convection from the outer diameter of the tubes to the working fluid (R3). 
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Figure 3.4: (a) Diagram of resistances in HEX tube; (b) Thermal resistance network diagram. 

These three resistances can be defined for a radial system as follows:  

 
 1

1

6 2 inner ex

R
r Lh

   (3.16) 

  2

ln

6 2

outer

inner

tube

r

r
R

Lk

 
 
    (3.17) 

 
 3

1

6 2 outer wf

R
r Lh

   (3.18) 

where router and rinner are the outer and inner radii of the tubes, L is the length of the tubes, hex and 

hwf are the convection coefficients for the exhaust gas and working fluid, respectively, and ktube is 

the thermal conductivity of the tubes. The factor of six is the number of tubes in the HEX.  

The resistances act in series within the system, as in Figure 3.4b, allowing a total thermal 

resistance (Rtotal) to be calculated as the sum of the three resistances. From Rtotal, the heat transfer 
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from the exhaust to the working fluid can be defined using the log mean temperature difference 

(LMTD) calculated as in Eq. (3.11), as [29]:  

 
1 2 3

1 1

total

Q U A LMTD LMTD LMTD
R R R R

    
 

  (3.19) 

The following assumptions were used in the thermal resistance analysis: 

 Steady-state operation of the engine and the HEX.  

 Negligible heat loss to the surroundings, kinetic and potential energy changes, 

radiation effects, and fouling. 

 The exhaust gas has the properties of air. 

 Properties of the exhaust gas and the working fluid are constant and evaluated at the 

average of their respective inlet and outlet temperatures.  

 Fully developed flow conditions for the exhaust and working fluid.  

 The Nusselt numbers of the working fluid and exhaust gas are constant and can be 

approximated by Eq. (3.15).  

 HEX idealized as a concentric tube, parallel flow HEX (i.e., F = 1 in the calculation 

of LMTD).  

To do this, the total thermal resistance was determined from the calculated LMTD and 

working fluid heat transfer via Eq. (3.19), with hex in Eq. (3.16) calculated as follows: 

 
2

ex ex
ex

inner

Nu k
h

r
   (3.20) 

In Eqns. (3.16) though (3.18), the geometry parameters were directly measured and the 

thermal conductivity of the tube was found from literature for stainless steel, a value of 17 
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W/mK [29]. After calculating R1 and R2 from Eqns. (3.16) and (3.17), R3 was found from Rtotal, 

and hwf was calculated from Eq. (3.18), as shown below: 

 
 3

1

6 2wf
outer

h
R r L

   (3.21) 

such that the working fluid Nusselt number can be calculated via the following equation: 

 
 2wf outer

wf
wf

h r
Nu

k
   (3.22) 

However, a correlation for Nuex in Eq. (3.20) is required to obtain hwf. Furthermore, to validate 

the values of hwf obtained, a relationship in the general form for Nuwf must be generated as a 

theoretical comparison. As such, prevalent literature relationships for both the exhaust gas and 

the working fluid Nusselt numbers were researched. These correlations were then used in 

conjunction with the experimental results to determine Nuex and Nuwf correlations for the WHR 

apparatus. The general methodology for developing the Nusselt number correlations is shown in 

the flowchart in Figure 3.5.  

 

Figure 3.5: Flow chart describing the general methodology for calculating the working fluid Nusselt number. 
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As seen in Figure 3.5, the process to ultimately calculate the working fluid Nusselt number 

first begins with the exhaust Nusselt number. Thus, based on the flow conditions of the exhaust 

(i.e., internal, turbulent flow as determined in Appendix F) literature correlations for flow in 

similar conditions were found. Note that with the aim of developing a strict correlation for the 

experimental data, the literature correlations need not strictly apply to the exhaust flow 

conditions.  

Depcik & Assanis presented a comprehensive review of literature correlations for Nuex and 

was used as the primary reference for the relationships considered, listed in Table 3.7 [193]. In 

addition to the equations derived specifically for exhaust gas pipe flow (Nuex) from Depcik & 

Assanis, generalizations for fully developed turbulent flow inside circular tubes (Nufd), as well as 

simultaneously thermally and hydrodynamically developing flow (Nuth,bl), were studied. 

Moreover, for many ICE applications, the Prandtl number component of the Nusselt number is 

often ignored since its value is nearly one, as seen in the correlations of Malchow found in [193]. 

Table 3.7: The exhaust Nusselt correlations considered for internal, turbulent convective flow [193, 194]. 

Author Correlation 

Colburn 
4 1

5 30.023Re PrfdNu   

Depcik 
(exhaust) 

3

40.0718ReexNu   

Depcik 
(universal) 

3

40.07 ReNu   

Dittus-Boelter 
4

0.450.023Re PrfdNu   

Gnielinksi simplification 
1

0.875 30.016 Re PrfdNu   
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Gnielinski 

2

3

Re Pr
8

1.07 12.7 Pr 1
8

fd

f

Nu
f


 

  
 

 

where 
1

4

0.3164

Re

f   

Kakaç 

0.676

4
0.45

,

2.4254
0.023Re Pr 1th bl

i

Nu
L
d

  
  
   
  
  

  

 

Malchow 
0.7830.0483ReexNu   

Sachdev with 
Meiser & Sorenson 

0.7690.0774ReexNu   

Shayler 
0.680.14ReexNu   

The exhaust gas Nusselt number correlations were then used to calculate the working 

fluid heat transfer coefficient via the thermal resistance network, the results of which can be seen 

in Appendix C. From this, the Dittus-Boelter, Colburn, Gnielinski, Gnielinski simplification, 

Malchow, and Kakaç correlations were not chosen since they yielded principally or completely 

negative values for the heat transfer coefficients, indicating that the literature correlations were 

not accurately predicting the exhaust side behavior. Shayler, Depcik (exhaust), and Depcik 

(universal) attained primarily positive values, but several negative values as well. Thus, only the 

Sachdev correlation achieved positive values for all working fluids.  

 To further fit the data, and to achieve a correlation in the form of Eq. (3.15) with 

customary values of b and c equal to ¾ and 1/3, respectively, the Sachdev Nusselt number was 

used to calculate a for the exhaust Nusselt number in the following manner [193]: 
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0.769

1 13 3

3 34 4

0.0774Re

Re Pr Re Pr

SachdevNu
a     (3.23) 

For the experimental results, Eq. (3.23) yielded an average a value of 0.102, thus yielding the 

following initial correlation for Nuex: 

 
13
34

, , 0.102 Re Prex opt initial ex exNu    (3.24) 

 In evaluating this correlation, comparisons can be made to the universal correlation 

developed and verified by Depcik & Assanis [193], in which, the value of the leading coefficient 

a is 0.078, smaller than the value achieved for Eq. (3.24). However, both correlations used the 

universal values of ¾ and 1/3 for b and d from Eq. (3.15), respectively. As such, the value for a 

the comes from fitting the model to the experimental data, in keeping with the methodology of 

Depcik & Assanis.  

 The next step was the generation of a Nusselt number correlation for the working fluid 

passing through the shell of the HEX. In corroborating the results of the thermal resistance 

analysis with the experimental results, an optimization was conducted to fit a Nusselt number 

correlation in the form of Eq. (3.15) to the values of hwf. As with the exhaust, this process began 

with identifying various literature correlations for similar, albeit varying, conditions, such as 

general external flow, flow over staggered tubes, and flow into shell-and-tube HEXs. Thus, 

twelve related Nusselt number correlations for similar fluid flow were found in the literature and 

are listed in Table 3.8.  
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Table 3.8: The correlations considered for the Nusselt number of a working fluid for similar conditions as the 
HEX [29, 195-202]. 

Author Correlation 
Zukauskas 0.4 0.360.9 Re PrNu   

Hausen 0.57 0.310.87572 Re PrNu   

Short 
1

0.6 31.16 Re PrNu   

Dittus-Boelter 0.8 0.40.023 Re PrNu   

Kern 
1

0.55 30.36 Re PrNu   

Kays 
1

0.5 30.332 Re PrNu   

Miller 
1

0.8 30.032 Re PrNu   

Weisman 
1

0.8 30.00514 Re PrNu   

Rieger 0.86 0.40.01467 R e PrN u   

Dingee 
1

0.8 30.023 Re PrNu   

Staggered Tubes 
0.36Re PrbNu a  

where a = 0.9; b = 0.4 based on the Reynolds number range 

Bell-Delaware 

2

31
(2 )

Prouter

wf

c r J
Nu

k

 
 
    

where J is the product of correction factors accounting for tube arrangement, recirculation 
flow, and temperature gradient. 

The working fluid optimization (the code and results for which can be found in Appendix D) 

utilized the various Nusselt number equations, to determine which correlation most strongly 

correlated to the Nusselt number calculated from the thermal analysis (i.e., hwf calculated from 

hex via Nuex), according to a least-squares difference (LSQ) analysis. The working fluid Nusselt 

number coefficients (i.e., a, b, c in Eq. (3.15)) and the leading coefficient for the exhaust Nusselt 

number in Eq. (3.24) were varied to minimize the LSQ, as seen in the flow chart in Figure 3.6. 

Notably, for the Bell-Delaware correlation, 53 constants affecting the calculation of J were 

optimized instead of a, b, and c.  
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Figure 3.6: Flow chart describing the process to optimize the exhaust and working fluid Nusselt number 
coefficients. 

Of the potential working fluid correlations, Short and Kern were the correlations with the 

lowest LSQ values of 0.6271 and 0.6273, respectively. However, the leading coefficients for the 

exhaust Nusselt number correlation in Eq. (3.24) were 500.46 for Short and 496.31 for Kern, 

resulting in Nusselt numbers of 1.992-2.038 x 105 and corresponding convective heat transfer 

coefficients between 3.133-3.151 x 105 W/m2K. Expected values of the convective heat transfer 

coefficient for gases in forced convection reside in the range of 25-250 W/m2K, a range that the 

calculated values are exceeding by more than three orders of magnitude [29]. As such, the 

optimizations were deemed inappropriate.  

Thus, the temperature data were further assessed as a means to locate disparities in the 

thermal resistance analysis causing the failure of the attempted optimizations. From this, it was 

apparent that the assumption of perfect insulation for parts of the HEX was incorrect, seen in the 

difference between exhaust inlet and outlet surface temperatures (from the Type K 

thermocouples) and stream temperatures, labelled in Figure 3.7. As seen in Table 3.9, for the 



150 

 

exhaust inlet, the surface temperature of the inlet reducer (TS1) was on average 11.17 ± 1.67 K 

lower than Tex,in, indicative of heat loss through the inlet piping to the reducer. For the outlet, TS4, 

the surface temperature of the outlet reducer, was on average 2.29 ± 1.02 K higher than Tex,out, 

indicative of a smaller, but similar, loss as the exhaust gas passed from the outlet reducer to the 

tubing. However, aside from several exceptions towards the end of the trials, the average surface 

temperature of the shell (i.e., the average of TS2 & TS3 or ,Ŝ shellT ), was generally equal to that of 

the average working fluid temperature ( ŵfT ), such that the assumption of negligible shell side 

ambient losses holds. In the cases where the average surface temperature was larger than the 

ambient test cell temperature, it is likely that heat transfer losses were occurring. However, to 

find the correlation coefficients a, b, and d, these losses were not considered.  

 

Figure 3.7: Locations of thermocouples on the HEX. 
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Table 3.9: Exhaust, working fluid, surface, and ambient temperatures for all WHR apparatus experimental 
trials. 

Trial 
Working 

Fluid 

Tex,in  

[K] 

TS1 

[K] 

Tex,out  

[K] 

TS4  

[K] 

Twf,in  

[K] 

Twf,out  

[K] 
,Ŝ shellT  

[K] 

Tamb  

[K] 

1.1 Water 369.34 357.58 316.12 318.22 294.35 304.32 299.64 300.14 

1.2 Water 368.46 355.65 315.96 318.37 297.69 306.29 302.23 300.05 

2.1 Water 369.36 357.03 315.61 316.64 290.82 300.51 296.73 301.38 

2.2 Water 370.27 357.98 315.63 316.42 290.87 299.63 296.04 301.53 

2.3 Water 371.03 358.62 315.76 316.48 291.12 299.78 296.13 301.68 

2.4 EG 370.14 358.34 318.70 320.91 295.51 309.19 301.03 302.10 

2.5 EG 372.17 361.18 319.87 322.39 295.66 309.93 301.46 302.19 

2.6 EG 372.84 362.32 320.48 323.12 295.96 310.36 301.83 302.27 

2.7 50/50 368.82 357.46 320.40 323.61 301.79 313.56 313.34 302.27 

2.8 50/50 371.87 357.46 322.19 323.61 301.68 311.69 314.89 302.34 

2.9 50/50 373.12 364.06 322.82 326.19 301.54 310.98 315.28 302.40 

2.10 PG 370.87 360.52 321.74 324.99 296.51 311.31 315.17 302.34 

2.11 PG 373.28 364.71 323.69 327.31 296.59 312.23 316.89 302.34 

2.12 PG 374.65 366.85 324.68 328.50 296.77 312.83 317.29 302.34 

2.15 Water 375.84 364.79 319.63 320.83 291.08 301.02 304.26 302.57 

Employing the difference between exhaust and working fluid heat transfer values as an 

initial value of Qloss, hloss for the exhaust tubing can be approximated via Eq. (3.25), where AS1 

and AS4 are the surface areas corresponding to the inlet and outlet reducers and tubing.  

     
1 4

loss
loss

S S

Q
h

A A



     (3.25) 
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Then, the surface temperatures at the exhaust’s inlet and outlet reducers were used to estimate an 

actual value of Qloss via hloss, from which one can calculate the exhaust temperature inside the 

reducers with the ambient losses considered, Tα and Tβ, for the inlet and outlet, respectively. 

Notably, it was assumed that only half of the calculated lost heat transfer truly escaped. Without 

this assumption, the exhaust heat transfer values were below that of the working fluid, which, as 

discussed before, cannot occur (i.e., heat transfer occurs from high to low temperature regions). 

Upon calculation of these temperatures, new values for the exhaust heat transfer were calculated 

via the alpha and beta temperatures. The new Qex was anticipated to provide a more appropriate 

metric of the exhaust heat transfer rate while also considering losses within the shell of the HEX, 

but neglecting further ambient losses. A full schematic of this process can be seen in Figure 3.8. 
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Figure 3.8: Flow chart of the methodology for calculating the exhaust temperature in the HEX reducers. 

With the new data computed, the same methodology for calculating hwf and the 

subsequent optimization of the coefficients was carried out once more as in Figure 3.6. However, 

the resulting hex and Nuex values were still orders of magnitude larger the typical values, even 

with precautions taken to limit the coefficient in the Nuex expression (results are located in 

Appendix E). Thus, despite the precautions taken to account for many of the losses, the use of 

the thermal resistance network still did not yield suitable results.  

Therefore, without knowing the surface temperatures of the tubes, there was no other 

methodology to directly calculate the heat transfer coefficients without unsubstantiated 

assumptions to concretely define losses. Furthermore, the repeated attempts to use the resistance 
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network did not produce any useful results. Although the analysis carried out was informative for 

the researcher and identified several areas of improvement in the experimental apparatus for 

future iterations, it did not yield workable correlations for the Nusselt numbers of the exhaust or 

working fluid.  

 However, in order to compare the convective behavior of the working fluids, the exhaust 

and the working fluid conditions were examined once again to assign the most appropriate 

literature correlations. Primarily, the fluid flows were exactly defined through their Reynolds’ 

numbers. This, in addition to calculations for thermal and hydrodynamic boundary layers for the 

exhaust (Appendix F), allowed for the exclusion of several literature correlations previously 

considered.  

For example, the working fluid is in laminar flow, excluding the following for turbulent 

or fully developed flow: Short, Dittus-Boelter, Miller, Weisman, Rieger, and Dingee. Due to the 

complicated nature of its calculation, the Bell-Delaware correlation was also excluded. 

Subsequently, the Zukauskas, Hausen, Kern, Kays, and Staggered Tubes correlations were used 

to calculate the Nusselt number and heat transfer coefficient for the working fluid. In order to 

remain conservative, the correlation providing the minimum values was selected as the estimate 

of the working fluid heat transfer: the Kays correlation.  

 A similar approach was taken in determining the most applicable literature correlation for 

the exhaust heat transfer in turbulent, fully developed flow. As such, the unsuitable Colburn and 

Dittus-Boelter correlations were removed. Instead of utilizing the most conservative correlation, 

the Depcik (universal) correlation was chosen. Not only did this correlation provide heat transfer 
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coefficient values within the expected range for gases in forced convection, but also it is a widely 

utilized correlation for exhaust flow, cited over 75 times in Google Scholar [203].  

Thus, the average heat transfer coefficient and Nusselt number based on the assigned 

correlations, in addition to the Reynolds and Prandtl numbers, are presented in Table 3.10, with 

the associated standard deviations. In calculating the exhaust Reynolds number, the inner 

diameter of a single tube was used as the characteristic length; in calculating the working fluid 

Reynolds number, the characteristic length used is the hydraulic diameter of the shell. Water had 

the highest average heat transfer coefficient and Nusselt number, followed by the 50/50 mixture 

of EG and water. Although the exhaust Nusselt number and heat transfer coefficient should be 

the same across working fluids, and are in fact all similar, separate average values and standard 

deviations are presented in Table 3.10, yielding an overall average Nusselt number of 31.73 ± 

0.02 and an average heat transfer coefficient of 49.41 ± 3.88 W/m2K.  

Table 3.10: Average heat transfer coefficients and Nusselt numbers for each working fluid and the exhaust, 
calculated using the Kays (working fluid) and Depcik universal (exhaust) correlations, and associated errors. 

Working 

Fluid 

R̂eex   

[-] 

P̂rex   

[-] 

ˆ
exNu   

[-] 

ˆ
exh   

[W/m2K] 

R̂ewf  

[-] 

P̂rwf   

[-] 

ˆ
wfNu   

 [-] 

ˆ
wfh   

[W/m2K] 

50/50 
3468.89 

± 95.49 

0.701 ± 

0.000 

31.64 ± 

0.65 

49.40 ± 

1.02 

18.87 ± 

0.08 

22.38 ± 

0.05 

4.06 ± 

0.01 

71.34 ± 

0.12 

EG 
3476.57 

± 95.63 

0.701 ± 

0.000 

31.69 ± 

0.66 

49.38 ± 

1.03 

3.69 ± 

0.01 

131.97 

± 0.27 

3.25 ± 

0.01 

37.80 ± 

0.06 

PG 
3446.75 

± 92.48 

0.700 ± 

0.000 

31.49 ± 

0.63 

49.36 ± 

0.99 

1.66 ± 

0.01 

352.48 

± 1.19 

3.02 ± 

0.01 

27.42 ± 

0.05 

Water 
3508.90 

± 69.61 

0.701 ± 

0.000 

31.91 ± 

0.47 

49.46 ± 

0.74 

52.96 ± 

0.14 

6.27 ± 

0.01 

4.45 ± 

0.01 

121.94 ± 

0.15 
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In response to the difficulties encountered in determining correlations for the Nusselt 

numbers, additional consideration was given to the assumption of a correction factor equal to one 

in the LMTD calculation. Specifically, the calculations were repeated using a calculated 

correction factor for a shell-and-tube HEX with a single shell and a multiple of two tube passes, 

incorporating more realistic flow complexities within the HEX [29]. Additionally, for this 

computational methodology, the HEX was assumed to be under counterflow conditions, 

changing the temperature differences used to calculate LMTD to:  

 1 , ,ex in wf outT T T     (3.26) 

 2 , ,ex out wf inT T T     (3.27) 

The average correction factor determined for the HEX experimental trials was 0.94, thus 

affecting the calculation of the overall heat transfer coefficient and any calculations involving 

Rtotal from the thermal resistance network. Table 3.11 displays the averaged overall heat transfer 

coefficients for each working fluid for the idealized case where F is one, and for for the case 

where F was considered, via calculation and interpolation of the equations and chart in Figure 

3.9, respectively, with MATLAB. Table 3.1 also includes a worst scenario case where F is 0.75, 

to quantify the effect inclusion of the correction factor can have on the analysis. As expected, the 

inclusion of the correction factor deceased the overall heat transfer coefficient. However, slight 

variations in the experimental temperatures for the various working fluids resulted in varying 

correction factors, altering the trends seen (i.e., PG had a larger correction factor, leading to a 

corrected U larger than that of EG, despite being smaller than EG when uncorrected). Since the 

worst-case correction factor is equal across the board, the same trends are seen as in the 
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uncorrected U. Nevertheless, the impact of the correction factor becomes apparent in the 

alterations it makes to the rank of the working fluids according to the magnitude of the achieved 

overall heat transfer coefficient.  

 

Figure 3.9: Chart to calculate the HEX correction factor for a shell-and-tube HEX with a single shell and a 
multiple of two shell passes, along with the associated temperatures T (shell-side) and t (tube-side) [29].  

Table 3.11: Average correction factors and associated average overall heat transfer coefficients for the WHR 
experiments. 

Working Fluid îdealF  

[-] 

ˆ
idealU  

[W/m2K] 
ĉalculatedF  

[-] 

ˆ
calculatedU  

[W/m2K] 
ŵorstF  

[-] 

ˆ
worstU  

[W/m2K] 

50/50 1 51.32 0.93 39.48 0.75 31.86 

EG 1 48.68 0.94 37.15 0.75 29.57 

PG 1 47.60 0.96 37.27 0.75 29.25 

Water 1 44.39 0.94 36.79 0.75 29.50 
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Further, the methodology using the thermal resistance network was repeated with the 

inclusion of the correction factor when calculating the total thermal resistance, to determine if 

Nusselt number correlations could be developed that would yield more realistic results (i.e., 

convection heat transfer coefficients within the expected ranges for forced convection). Similar 

to the calculation of the overall heat transfer coefficient, this was done for both the calculated F, 

as well as the worst-case F, to again assess the implication this correction factor carried. Once 

again, many of the exhaust correlations evaluated initially provided negative values of the 

convection heat transfer coefficient of the working fluid, indicating that even with the correction 

factor, flow conditions were not being accurately approximated via these correlations. However, 

as before the Sachdev correlation did provide positive values, allowing for the determination of 

specific Nusselt number correlations via the same methodology explained previously.  

Table 3.12 displays the average convection heat transfer coefficients from this analysis, 

with the average results from the literature correlations previously indicated, as well as the 

average results for each working fluid for the best correlations obtained. For the calculated 𝐹෠, the 

LSQ value on the obtained correlations was 0.54, while an LSQ of 0.49 was attained for the 

worst-case correlations. 
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Table 3.12: Convection heat transfer coefficients for the exhaust and working fluids calculated using various 
correction factors. 

Working 
Fluid 

îdealF = 1 ĉalculatedF = 0.94 ŵorstF = 0.75 

ˆ
exh  

[W/m2K] 

ˆ
wfh  

[W/m2K] 

ˆ
exh  

[W/m2K] 

ˆ
wfh  

[W/m2K] 

ˆ
exh  

[W/m2K] 

ˆ
wfh  

[W/m2K] 

50/50 49.40 71.33 450.01 39.79 825.45 48.32 

EG 49.38 37.80 449.85 32.16 825.15 40.98 

PG 49.38 27.42 449.61 31.55 824.71 39.92 

Water 49.46 121.94 450.65 45.63 826.60 56.33 

The inclusion of a correction factor, as well as the alteration of the correction factor used, 

had drastic effects on the resulting convection heat transfer coefficients. First, the exhaust heat 

transfer coefficients are still over twice the range for gases in forced convection (i.e., greater than 

two times the range of 25-250 W/m2K [29]), indicating that these correlations are still not 

appropriate, despite having lower LSQ values than those obtained with a correction factor of 

unity and despite being more realistically representative of the flow conditions within the HEX. 

Moreover, the resulting working fluid convection coefficients are dramatically different for water 

and the 50/50 mixture across the range of F values, yet more similar for EG and PG. Although 

the trends across the working fluids are the same for each of the correction factors, the fact that 

such varying results are obtained from this methodology through the alteration of a single factor 

makes it extremely difficult to identify a single solution that is more accurate than the others 

without the use of an additional, external methodology, such as 3-D heat transfer modeling, with 

which to corroborate the results. As such, the inclusion of the correction factor, while shedding 

light on the effects from including complex flow conditions, did not yield a more concrete 
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examination or description of the convection heat transfer coefficients and associated Nusselt 

number correlations.  

Thus, without a concrete way to validate the correct methodology, the literature correlations 

used for the correction factor of unity were the convective parameters ultimately utilized to 

compare working fluid performance, allowing for general trends of the working fluids’ behaviors 

to be observed. Based on these convective parameters alone, the most promising working fluids 

were water and 50/50, since they have the largest heat transfer coefficients and Nusselt numbers. 

However, strictly categorizing the working fluids on the literature thermal analysis excludes 

considerations of the experimental performance.  

3.4.3 Discussion  

The trends of the heat transfer analysis can be combined with the experimental results to 

provide a general basis for comparing the working fluids. Based on the experimental results 

alone (i.e., the working fluids’ average effectiveness, overall heat transfer coefficient, and 

general heat transfer results); water and the 50/50 mixture were the best performing working 

fluids. Similarly, based on the results of the heat transfer analysis (i.e., working fluid Nusselt 

number and convective heat transfer coefficient), water and 50/50 performed superiorly. Thus, 

propylene glycol and ethylene glycol were excluded from further consideration.  

Water produced higher heat transfer rates than the other working fluids, indicating larger 

quantities of heat transfer for a given time. However, the overall heat transfer coefficient and the 

HEX effectiveness allow for comparison of performance despite experimental variations and can 

be combined with the thermal properties (see Table 3.6). The effectiveness and overall heat 
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transfer coefficient are proportional to the working fluid specific heat, for which water followed 

by 50/50 have the largest values. Furthermore, water and 50/50 possesses the highest thermal 

conductivity over the other working fluids. Thus, the superior performance of 50/50 and water 

over the other working fluids, seen in the effectiveness and overall heat transfer coefficient, is 

likely due to their combinations of specific heats and thermal conductivities. 

Additionally, the convective heat transfer coefficients and Nusselt numbers can be used to 

indicate the magnitude of the convective heat transfer occurring in each working fluid. In the 

case of both hwf and Nuwf, water had larger values. For the convective heat transfer coefficient, 

this indicates that, for the same change in temperature from tubes to the fluid with surface area 

held constant, the water will produce greater heat transfer rates than the 50/50 (an increase of 

46.56 W/m2K from 50/50 to water, resulting in a 65.26% growth in the heat transfer rate). For 

the Nusselt number, this means more effective convection is occurring, dominating over 

conduction within the flow. However, it must be reiterated that the correlations were not 

specifically developed for this HEX; nonetheless, they provided general trends from which these 

conclusions were drawn.  

Ultimately, water and 50/50 both present themselves as attractive working fluids for use in 

the current apparatus, and as such, were selected for the DPFHX experiments. Based on the 

results of the WHR experiments, water presents itself overall as a working fluid that will produce 

greater rates of heat transfer within the system, while minimizing losses, in conjunction with 

more effective convection within the working fluid itself. However, 50/50 appears more effective 

in the apparatus based strictly on its HEX parameters. Once more, the continued use of water 
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will allow for tracking the apparatus’ performance with and without the DPF cores, while also 

allowing for its comparison to the 50/50 mixture. Moreover, the hope is that the DPFHX 

experimental results will provide an additional criterion with which to compare the performance 

of the two working fluids.  

3.5 DPFHX Experiments and Analysis 

The final experimental effort involved testing the apparatus with DPF cores installed to 

compare the performance of the combined DPFHX to that of the WHR apparatus via the 

experimental, HEX, and convective parameters. The aim was to ascertain if the DPFHX had 

higher values than the WHR device, indicating improved performance. Furthermore, the two 

working fluids achieving the highest operational parameters in the WHR apparatus (i.e., water 

and 50/50 water/EG) were tested within the DPFHX device to further compare their performance 

to each other, in an effort to determine a singular working fluid that functions optimally in the 

HEX with or without DPF cores installed.  

It is important to address that the DPF cores obtained by Sprouse [20] were not adequately 

sized for the HEX and required adjustments. Specifically, instead of being 0.4572 m in length 

(i.e., tubes’ lengths in the HEX) the cores came in 0.3048 m lengths. Moreover, instead of being 

just under 22.23 mm in diameter (i.e., the tubes’ diameters), the cores were near 25.4 mm in 

diameter. To resolve the length issue, the cores were cut with a wet tile saw and taped together 

using Nashua 322 multi-purpose foil thermal tape, as shown in Figure 3.10. In order to resolve 

the diameter sizing issue, the outer diameter was sanded down until the cores would fit within 

the inner diameter of the tubes. When taping the cores together, great care was taken to properly 
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align the DPF channels such that every-other channel was blocked (a characteristic of DPFs). 

Furthermore, after sanding the outer radius initially, the cores had to be further sanded to allow 

the cores to fit within the tubes after the application of the thermal tape. 

 

Figure 3.10: (a) The six DPF cores with the applied thermal tape; (b) A close up of the thermal tape used to 
join the cores together. 

Although the mere presence of the cores alters heat transfer and convection within the HEX, 

these modifications cause the potential for deterioration of the heat transfer rates within the 

HEX, presenting themselves as additional thermal resistances to be overcome. One such 

resistance may be due to the bands of thermal tape preventing conduction to the inner radius of 

the tubes, as it may act as an insulator to the length of core it is covering. An additional 

resistance may be due to the presence of the thermal tape around the outer radius of the cores 

blocking exhaust gases and impeding flow in the outer channels of the cores. Furthermore, the 

under sizing of the cores, seen in Figure 3.11, could have created a gap for the exhaust gases to 

pass along the outer radius of the core without entering the channels. Thus, these changes have 

the potential to vary the heat transfer pathways in the DPFHX apparatus. 
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Figure 3.11: DPF cores installed in the six tubes of the HEX. 

The final step in modifying the apparatus was to reinsulate the HEX and reconstruct the 

apparatus, including thermocouples and pressure transducers. All instrumentation was checked 

after being reassembled in order to ensure that it was operating correctly. However, in 

reattaching the Type K thermocouples, one of the thermocouples was damaged; thus, only three 

Type K thermocouples were present during the DPFHX experimental testing. While two of the 

thermocouples were placed on the exterior of the shell of the HEX, providing important 

monitoring temperatures (i.e., maintaining the working fluid below its boiling point), the other 

two were placed on the inlet and outlet reducers of the exhaust gas, very near to the location of 

the thermocouples measuring the exhaust stream temperature. Thus, with similar measurements 

being taken there, the loss of one thermocouple was deemed inconsequential, provided two 

thermocouples were still placed on the shell exterior.  
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The details of such modifications are presented to provide the context for the subsequent 

results and will be further addressed in the discussion of the DPFHX thermal resistance network. 

Moreover, it must be indicated that due to laboratory constraints and the direction of future work, 

it was not endeavored to rebuild the device in avoidance of the alterations. Regardless, the 

performance of the two working fluids in the DPFHX were compared to each other and 

ultimately compared to the results of the water and 50/50 in the WHR device. Then, the 

combined results of the experiments provided conclusions and recommendations for moving 

forward with the DPFHX.  

3.5.1 Experimental Results 

The goal of these experiments was to evaluate the concept of the DPFHX by assessing 

whether the presence of the DPF cores improves or degrades the various performance parameters 

(i.e., heat transfer rates, effectiveness, etc.) occurring within the apparatus. Based on the work of 

Sprouse, an increase in the overall heat transfer coefficient of the HEX specifically is expected 

with the cores inserted, as indicated by the results of a simulation of the DPFHX and WHR 

devices [20, 184]. A secondary goal was to compare the performance of two different working 

fluids, as selected from the WHR experiments (i.e., water and 50/50 EG/water) according to the 

same comparison criteria. The experimental results of the DPFHX tests are presented in Table 

3.13 for three trials each of water and the 50/50 mixture.  
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Table 3.13: Experimental results from DPFHX testing with various working fluids and associated errors. 

Working 

Fluid 

ṁex 

[g/s] 

ṁwf 

[g/s] 

Tex,in 

[K] 

Tex,out 

[K] 

Twf,in 

[K] 

Twf,out 

[K] 

Qex 

[W] 

Qwf 

[W] 

Qloss 

[W] 

ε 

[-] 

U 

[W/m2K] 

Water 

6.67 

± 

0.35 

8.33 

± 

0.05 

372.04 

± 0.14 

338.02 

± 0.04 

290.44 

± 0.03 

295.65 

± 0.05 

232.36 

± 12.02 

181.62 

± 2.32 

50.74 ± 

12.02 

0.326 

± 

0.017 

15.84 ± 

0.21 

Water 

6.66 

± 

0.35 

8.33 

± 

0.05 

372.04 

± 0.15 

338.19 

± 0.05 

290.50 

± 0.02 

295.67 

± 0.04 

231.00 

± 11.91 

180.54 

± 1.95 

50.46 ± 

11.93 

0.324 

± 

0.017 

15.73 ± 

0.17 

Water 

6.66 

± 

0.33 

8.27 

± 

0.05 

372.72 

± 0.07 

338.65 

± 0.09 

290.67 

± 0.05 

295.84 

± 0.05 

232.43 

± 11.47 

178.92 

± 2.62 

53.51 ± 

11.56 

0.320 

± 

0.016 

15.48 ± 

0.23 

50/50 

6.62 

± 

0.32 

8.80 

± 

0.05 

371.64 

± 0.16 

341.11 

± 0.17 

295.15 

± 0.04 

299.32 

± 0.06 

207.26 

± 10.17 

93.02 ± 

1.67 

114.24 

± 10.15 

0.231 

± 

0.012 

10.90 ± 

0.20 

50/50 

6.62 

± 

0.33 

8.77 

± 

0.05 

371.91 

± 0.07 

340.75 

± 0.12 

295.21 

± 0.04 

299.53 

± 0.05 

211.25 

± 10.63 

95.76 ± 

1.45 

115.48 

± 10.63 

0.237 

± 

0.012 

11.28 ± 

0.17 

50/50 

6.60 

± 

0.34 

8.73 

± 

0.05 

371.83 

± 0.11 

340.75 

± 0.08 

295.31 

± 0.03 

299.60 

± 0.08 

212.33 

± 10.75 

95.04 ± 

1.91 

117.29 

± 10.71 

0.237 

± 

0.013 

11.25 ± 

0.23 

The average results and associated thermal properties are presented in Table 3.14. Water 

exhibited the highest effectiveness and overall heat transfer coefficients of 0.323 and 15.68, 

respectively. Furthermore, water had average higher values of heat transfer rates from the 

exhaust and to the working fluid, while also achieving the lowest rate of loss between the two. 

However, when compared to the average results of water and 50/50 from the WHR experiments 

in Table 3.6, both working fluids performed significantly worse. For water, the effectiveness and 

overall heat transfer coefficient decreased by 0.298 (-47.99%) and 28.67 W/m2K (-64.64%), 
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respectively. For 50/50, these values declined by 0.395 (-62.70%) and 40.18 W/m2K (-78.29%), 

respectively.  

Table 3.14: Average experimental results for the DPFHX experiments with associated errors and associated 
properties (300K). 

Working 

Fluid 

ˆ
exQ  

[W] 

ˆ
wfQ  

[W] 

ˆ
lossQ  

[W] 

̂  

[-] 

Û  

[W/m2K] 

Specific 

Heat 

[kJ/kgK] 

Thermal 

Conductivity 

[W/mK] 

Water 
231.93 ± 

6.81 

180.36 ± 

1.34 

51.57 ± 

6.84 

0.323 ± 

0.010 

15.68 ± 

0.12 
4.180 0.610 

50/50 
210.28 ± 

6.07 

94.61 ± 

0.87 

115.67 ± 

6.06 

0.235 ± 

0.007 

11.14 ± 

0.12 
3.273 0.386 

Both fluids experienced larger losses between the exhaust and the working fluid heat transfer 

rates, increasing from the WHR experiment by 15.66 W (+43.61%) and 16.16 W (+16.16%) for 

the water and 50/50, respectively. This outcome likely stems from the process of reinsulating the 

HEX after installing the DPF cores, indicating that better methodology is prudent for future 

iterations. Additionally, they exhibited lower heat transfer rates; for water, the heat transfer rate 

from the exhaust decreased by 127.64 W (-35.50%) and for the working fluid by 143.30 W (-

44.27%) values of 115.35 W (-35.42%) and 131.51 W (-58.16%), respectively, for the 50/50. 

These differences in heat transfer rate are directly related to the following reductions in 

temperature changes for the exhaust and the working fluid: 20.30 K (-37.41%) and 4.76 K (-

47.89%) for the water and 18.43 K (-37.26%) and 6.15 K (-59.08%) for the 50/50. Overall, with 

similar temperatures, these losses indicate worsening heat transfer rates occurring within the 

DPFHX compared to the WHR apparatus. 
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Based on the experimental results, water outperformed the 50/50 mixture with improved heat 

transfer rates and HEX parameters. Despite this, they both performed quantitatively worse than 

in the WHR apparatus. However, these results will be considered alongside the thermal analysis 

to allow for additional discussion 

3.5.2 Heat Transfer Analysis 

A heat transfer analysis of the DPFHX was completed following the procedure in the WHR 

analysis. Although water was clearly the optimal working fluid within the DPFHX from the 

experimental results, the determination of the convection parameters allowed for comparison of 

the performance of the DPFHX to the WHR device through the convective heat transfer 

coefficients and the Nusselt numbers of the exhaust and the working fluid. Ideally the same 

methodology would have been utilized to develop convection parameters (i.e., the thermal 

resistance network), but due to the errors encountered previously, literature correlations 

ultimately provided the convective heat transfer coefficients and Nusselt numbers. However, for 

thoroughness, the thermal resistance network of the DPFHX is examined subsequently. While 

the presence of the cores alone changed the thermal pathways, the adjustments to the DPF cores 

introduced additional thermal resistances with implications on heat transfer within the DPFHX 

apparatus. Thus, the thermal resistance network expanded.  

In addition to the assumptions of the WHR thermal resistance network, the DPF cores are 

assumed fresh, with no soot loading. Moreover, for exhaust gases flowing through the core walls, 

the temperature of the wall is assumed to instantaneously become the temperature of the gas 

during porous wall convection [204]. Furthermore, conduction through the DPF core is assumed 
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to begin in one central empty channel and propagate outwards. Finally, contact resistances 

involved were assumed approximately that of similar materials or interfaces.  

Examining the heat transfer pathways of the DPFHX apparatus, there are nine different 

thermal resistances that can be identified in Figure 3.12, six more than the WHR apparatus. The 

general thermal resistances for convection and conduction in radial systems are as follows, 

similar to Eqs. (3.16) and (3.17): 

 
1

2conv
outer

R
r Lh

   (3.28) 

 
ln

2

outer

inner
cond

r

r
R

Lk

 
 
    (3.29) 

where router and rinner are the outer and inner radii [m], L is the applied length [m], h is the 

convection coefficient [W/m2K], and k is the thermal conductivity [W/mK].  

 The first four resistances are standard for DPF cores; starting at the center of the DPF 

core, the first thermal resistance encountered is for convection in the channels of the DPF cores 

(R1). This resistance is a result of the forced convection from the gas to the DPF channel walls 

acting upon the entire length across the radius of the cores.  
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Figure 3.12: (a) Diagram of the thermal resistances presence in the tubes of the HEX with the DPF cores 
installed; (b) Thermal resistance network of the HEX with the DPF cores. 

The second thermal resistance is convection in the porous walls of the DPF cores (R2) 

acting in parallel to R1, occurring via forced convection as the blocked DPF channels force the 

exhaust gas through the DPF walls. Moreover, R2 also acts along the entire length of the DPF 

cores and across the entire radius. However, the convection coefficient appearing in the thermal 

resistance network is that of exhaust gas flowing through the wall, different from R1. 

Additionally, the temperature of the exhaust gases changes radially within the core, altering this 

resistance as the gas moves outward. However, in most DPF analysis, the cores are assumed to 

be the temperature of the exhaust gas passing through them, making this resistance negligible, 

but is included here for completeness [204]. Acting in series with R1 and R2 is R3, conduction 

from the interior cells to the perimeter cells of the DPF core, occurring from a central empty 

channel outward to the outer radius along the entire lengths of the cores. Finally, there is also R4, 

which similarly to R1 is convection in the DPF channels; however, with the radial temperature 
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change of the exhaust gas, this convection resistance varies greatly from the inner DPF channels 

to the outer channels.  

 Following the four DPF core induced resistances, there exist three thermal resistances 

acting together in parallel due to the modifications made to the cores. The first of these is R5, 

conduction through the thermal tape applied to the DPF cores, applied over the approximate 

length of the tape on each core. The presence of the thermal tape on the cores also created R6, 

convection through the gaps between the DPF core and the tube wall interior. The thermal tape 

essentially created a resistance fit for the cores within the tubes, meaning that the portions 

without the thermal tape experienced a gap between the edge of the core and the tube wall. This 

gap could create a convection heat transfer pathway with the convection coefficient of the 

exhaust gas in the channel acting along the length of the DPF core without thermal tape. The 

final thermal resistance due to the modifications is the contact resistance between the DPF cores, 

the thermal tape, and the tube wall interior (R7), applied along the length of the tape on the cores. 

The remaining three resistances (i.e., R8, R9, and R10) are the fundamental thermal resistances 

in the apparatus. Specifically, R8 is the thermal resistance for the convection from the exhaust 

gases to the tube wall interior in the outer channels of the DPF core that open to the tube wall, R9 

is conduction through the tube wall, and R10 is convection from the tube wall exterior to the 

working fluid in the HEX shell. Hence, R8 acts in parallel with the DPF resistances, which then 

act in series with R9 and R10.  

As before, all geometry-related parameters were measured directly from the apparatus, and 

the working fluid and exhaust properties were calculated based on an average temperature. The 
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values for the thermal conductivities (i.e., for the tube wall, the thermal tape, and the cores) and 

contact resistances (i.e., between the core to the tube wall via the thermal tape) were obtained 

from literature. Thus, the remaining parameters were the convection coefficients of the working 

fluid in the tube, the exhaust gas in the channel, and the exhaust gas in the core wall.  

Traditionally, the procedure would then follow analogously to that outlined in the WHR 

thermal resistance network, with the LMTD and all known resistances now used to calculate R9 

related to the working fluid convection from the tubes’ exterior. However, due to the previous 

struggles encountered with the simpler network of the WHR apparatus and F, literature 

correlations were again adopted to estimate the heat transfer parameters during DPFHX 

operation. 

 To account for the presence of the cores and the alterations they create for the exhaust 

flow, a constant Nusselt number of 2.71 for exhaust flow in DPF cores with square channels was 

adopted [204]. Traditionally, the correlation chosen also involves the Peclet number; however, 

Depcik & Assanis showed that 2.71 was an appropriate average value [204]. For the working 

fluid, the Kays correlation was again used to calculate the convective heat transfer coefficient 

and Nusselt number, for simplicity and for direct comparison between the experiments. Thus, the 

average results are presented in Table 3.15. In calculation of the Reynolds numbers, the same 

characteristic lengths are used for the exhaust tube and the working fluid, but for the exhaust 

channel, the height of a single DPF channel was used as the characteristic length.  
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Table 3.15: Average heat transfer coefficients and Nusselt numbers for each working fluid and the exhaust, 
calculated using the Kays correlation (working fluid) and DPF cores with square channels (exhaust), and 
associated errors. 

Working 

Fluid 

,R̂eex tube  

[-] 

,R̂eex channel  

[-] 

P̂rex  

[-] 

N̂uex  

[-] 

ˆ
exh  

[W/m2K] 

R̂ewf  

[-] 

P̂rwf  

[-] 

N̂uwf  

[-] 

ˆ
wfh  

[W/m2K] 

50/50 
3492.89 

± 101.06 

1524.06 ± 

44.10 

0.699 

± 

0.000 

2.71 
36.13 ± 

0.00 

14.82 

± 0.05 

29.68 

± 0.02 

3.96 ± 

0.01 

68.28 ± 

0.11 

Water 
3525.67 

± 104.14 

1538.36 ± 

45.44 

0.699 

± 

0.000 

2.71 
36.04 ± 

0.00 

48.78 

± 0.16 

6.97 ± 

0.00 

4.43 ± 

0.01 

120.19 ± 

0.20 

 Water achieved a higher average Nusselt number and average convective heat transfer 

coefficient than the 50/50 mixture. Specifically, the average Nusselt number of water was 0.47 

larger (an 11.21% difference) and the average convective heat transfer coefficient of water was 

51.91 W/m2K greater (a 55.09% difference). The higher Reynolds number of the water, based on 

density and viscosity, outweighed the larger Prandtl number of 50/50, subsequently yielding 

more favorable heat transfer parameters.  

Accordingly, the averaged exhaust results were similar in both cases. Notably, the Reynolds 

number for flow in the DPF channels was smaller than the Reynolds number through the tubes. 

Although the exhaust flow was turbulent prior to the insertion of the cores, the flow becomes 

laminar through the DPF channels. This becomes increasingly important when comparing the 

WHR and DPFHX experiments. 

Based on the theoretical heat transfer results, water displays larger promise as a working 

fluid within a DPFHX, due to its improved convective heat transfer coefficient and Nusselt 

number. However, as with the WHR experiments, the heat transfer analysis results will be used 
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in accordance with the experimental results. Furthermore, the DPFHX results will be compared 

with the WHR outcomes to examine the working fluid trends along with the influence of the 

DPF cores within the HEX tubes.  

3.5.3 Discussion 

Selected results from the WHR and DPFHX experiments are collated in Table 3.16. For both 

working fluids, the effectiveness and overall heat transfer coefficient decreased by over half from 

the WHR to DPFHX experiments, opposite of the trend expected based on the efforts of Sprouse 

who achieved higher overall heat transfer coefficients in a simulation of this DPFHX than the 

WHR apparatus [20]. Furthermore, the average Reynolds number, Nusselt number, and 

convective heat transfer coefficients all decreased. For the exhaust, the Reynolds number 

decreased due to laminar flow, as mentioned; thus, the Nusselt number and exhaust heat transfer 

coefficient fell correspondingly.  

Table 3.16: Averaged HEX and heat transfer parameters for water and 50/50 EG/water from the WHR and 
DPFHX experiments and associated errors. 

Experiment 
Working 

Fluid 
̂  

[-] 
Û  

[W/m2K] 
R̂eex  

[-] 

ˆ
exNu  

[-] 

ˆ
exh  

[W/m2K] 

R̂ewf  

[-] 

ˆ
wfNu  

[-] 

ˆ
wfh  

[W/m2K] 

WHR 50/50 
0.630 

± 
0.035 

51.32 ± 
1.84 

3468.89 ± 
95.50 

31.64 
± 0.65 

49.40 ± 
1.02 

18.87 
± 0.08 

4.06 ± 
0.01 

71.34 ± 
0.12 

DPFHX 50/50 
0.235 

± 
0.007 

11.14 ± 
0.12 

1524.06 ± 
44.10 

2.71 
36.13 ± 

0.00 
14.82 
± 0.05 

3.96 ± 
0.01 

68.28 ± 
0.11 

WHR Water 
0.615 

± 
0.013 

44.35 ± 
0.52 

3508.90 ± 
69.61 

31.91 
± 0.48 

49.46 ± 
0.74 

52.96 
± 0.14 

4.45 ± 
0.01 

121.94 ± 
0.15 

DPFHX Water 
0.323 

± 
0.010 

15.68 ± 
0.12 

1538.36 ± 
45.44 

2.71 
36.04 ± 

0.00 
48.78 
± 0.16 

4.43 ± 
0.01 

120.19 ± 
0.20 
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 The expected outcome of the DPF core installation was to improve the overall heat transfer 

coefficient; thus, enhancing the quality and quantity of heat transfer occurring from the exhaust 

to the working fluid. In the heat transfer parameters, this is most directly seen in the reduced 

Reynolds number. Specifically, the presence of the cores slows down the exhaust flow, providing 

an increased residence time of the exhaust gas, allowing for more time for heat transfer to occur. 

However, the limited number of core channels present only cut the Reynolds number in half. 

Therefore, the reduction in heat transfer transitioning from turbulent to laminar flow was not 

overcome sufficiently by increasing the time for heat transfer or the additional heat transfer 

pathways provided by the cores. A simple estimate indicates that the residence time should be 

further increased by (~49.46/36.13) another 1.5-2 to make up for the loss in turbulence. 

Another significant detriment to the heat transfer is likely a result of the modifications 

required for core installation. Specifically, although the cores are meant to promote enhanced 

heat transfer, the gaps on the outside of the cores, as well as the added resistances from the 

thermal tape and the potential for channels to be misaligned, all impede heat transfer from 

actually occurring. Thus, a decrease in Nuex and hex was not completely unexpected. To reiterate 

this thought, the HEX was dismantled after conducting the experiments with Figure 3.13 

displaying the condition of the cores. As can be seen, four of the six cores remained in their 

initial, installed location and show a darker color associated with soot loading. However, two of 

the cores were forced down the length of the tube. This movement suggests that the cores were 

blocking a good portion of the flow, likely due to the misalignment of channels. Therefore, the 

cores are not able to operate in their designated function (i.e., filtering PM out of the exhaust by 

passing through the core walls) and they are preventing the anticipated heat transfer 
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improvements. Although blocked channels present the opportunity for increasing the residence 

time of the exhaust gas in the tubes, as it becomes stuck in the multiple blocked channels, it 

would also then increase the flow rate through other non-blocked portions of the cores. This 

would consequently increase the Reynolds number in the remaining clear core channels and 

further reduce the residence time of the exhaust gas, contrary to the initial expectation for the 

cores.  

 

Figure 3.13: DPF cores installed in the HEX after DPFHX testing, showing the slippage of the blocked 
cores. 

 It was previously noted that the cores had to be undersized in order for the thermal tape 

connecting sections to fit within the tubes, which is most appropriately seen the top left and 

bottom left cores in Figure 3.13. Such gaps present the potential for the exhaust gas to pass along 

the outside of the cores, without flowing through the porous material at all. This outside passage 
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could increase the speed of the exhaust gas as it passes along the length of the cores without 

thermal tape, again reducing the exhaust gas’ residence time, while removing the additional 

pathways, and presenting another source for the depressed heat transfer results.  

 Overall, the effects of these heat transfer impediments are seen in the degradation of the 

effectiveness and overall heat transfer coefficients for both working fluids between the WHR and 

DPFHX experiments. However, water appears to be a better medium for heat transfer, including 

a slightly higher coefficient for the DPFHX experiments over the WHR tests. This indicates that 

even with a lower effectiveness and smaller overall heat transfer rates, improved convective heat 

transfer is still occurring in the water over the 50/50 mixture.  

3.6 Influence of WHR and DPFHX Devices on Engine Performance 

Aside from the performance of the WHR and DPFHX equipment, another important 

parameter is their effect on engine performance. To this end, the in-cylinder pressure traces 

present a relatively simple way of examining the influence of their installation. Figure 3.14 

presents four in-cylinder pressure traces from the engine: motoring (i.e., not injecting fuel), 

standard injection with the muffler installed (i.e., normal firing operation), standard injection 

with the WHR apparatus included (i.e., normal WHR apparatus operation), and standard 

injection with the DPFHX apparatus connected (i.e., normal DPFHX operation). These data for 

the WHR and DPFHX pressure traces represent a single trial from their respective experiments 

with water as a working fluid. Specifically, the WHR data are from Trial 2.15 at 0.2 N·m and the 

DPFHX data are from Trial 3.3 at 0.6 N·m, while the engine firing data and motoring trace are 

from a comparable engine loading point (i.e., 0.5 N·m). 
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Figure 3.14: In-cylinder pressure traces for the single-cylinder test engine when motoring, when firing in 
standard operating conditions and with the WHR and DPFHX apparatuses installed graphed against crank 

angle in degrees after top-dead center [ATDC]. 

Based on the general pressure trends displayed in Figure 3.14, it can be concluded that both 

the WHR and DPFHX devices affect the performance of the single-cylinder test engine. Both 

induce a lower in-cylinder pressure, which would result in increased fuel consumption of the 

engine to meet the same operating points. Although the DPFHX reaches a higher peak pressure 

than the WHR (60.45 bar versus 59.66 bar, respectively), the differences in engine loading points 

must be noted.  Since the DPFHX trial was at a higher loading point that the standard trace, it 

can be concluded that at 0.5 N·m, the DPFHX would reach a slightly lower peak pressure, 

despite the backpressure it induces. Conversely, the WHR trial is at a lower loading point than 

the standard trace, indicating that at 0.5 N·m it would reach a slightly higher peak pressure. 

However, the traces shown in Figure 3.14 display generally that both the WHR and DPFHX 

apparatuses negatively affect engine performance.  
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 The pressure traces hint at the added complexity of including a WHR or a DPFHX device 

in the exhaust stream. As such, precautions must be taken to minimize their potential impact on 

engine performance. Moreover, the true influence of the DPF cores on the in-cylinder pressure, 

whether it is the standard added backpressure from the cores or an exaggerated backpressure due 

to blocked channels, cannot be discerned without further experimentation. For reference, the 

pressure drop in the exhaust across the HEX for the experimental trials was 0.004 psi (0.0003 

bar) for the WHR trial and 0.158 psi (0.0109 bar) for the DPFHX trial. 

For the single-cylinder engine, it can be concluded that this WHR device with or without 

DPF cores had a detrimental effect on the performance of the engine at hand. This indicates that 

a WHR rig needs to be optimized for the engine it is coupled with or it may negatively affect 

engine performance. By tailoring the WHR apparatus to the engine, the fuel consumption 

benefits through the eventual installation of an RC system can be further improved. Additional 

design considerations must also be taken for the combined DPFHX to specifically augment its 

performance before use within an RC system.  

3.7 Experimental and Apparatus Comments for Future Work 

As apparent from the analysis presented, there are a number of opportunities for improving 

the testing apparatus. The rig was designed and built by Sprouse [20], and moving beyond this 

work, the HEX will no longer be utilized. Instead, the researcher will design and implement a 

completely new device, designed specifically for the test engine. However, in this endeavor, the 

issues and subsequent lessons learned from this initial experimental exertion provide numerous 



180 

 

metrics upon which to improve. Moreover, additional work can be done to further clarify the 

analysis conducted in this effort.  

To this end, the author will complete 3-D heat transfer modeling of the WHR and DPFHX 

devices. Not only will this aid in the investigation of the DPFHX concept, specifically regarding 

whether the modified cores were the source of the detrimental performance, but the modeling 

will provide an external assessment of the convective heat transfer of each of the working fluids. 

The results of such an analysis could then be used as validation against the various methods 

examined in this chapter for evaluating the convective heat transfer coefficient and the Nusselt 

number. Through such validation, as well as the modeling itself, the flow conditions within the 

HEX can be more realistically described. Additionally, upon the successful creation of 3-D heat 

transfer models according to the experimental state parameters (i.e., temperatures, flow rates, 

etc.), the model can then be extrapolated to allow for the working fluid to boil within the HEX, 

ideal for the actual operation of the HEX in an RC system. Then, further comparisons can be 

drawn regarding the ranking of the working fluids, based on the initial experimental values 

obtained through the efforts in this work.   

Regarding the future HEX design efforts, the sizing of the apparatus and all components can 

be addressed. Not only will the newly designed HEX be more compact and appropriately sized 

for the engine, but also the DPF cores need to be suitably sized in diameter and length to prevent 

installation issues. With a single core being the appropriate length for the HEX’s tube, the cores 

can serve their aftertreatment function, while encouraging augmented heat transfer. Furthermore, 

smaller, more compact sizing will result in a lower pressure drop across the HEX, with the 
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potential to mitigate any latent performance degradation, while also allowing for an easier 

accommodation for steady state conditions (i.e., less thermal mass). In addition, through more 

appropriate design considerations, the engine can be run at higher loads, providing higher 

temperatures in the exhaust stream, increasing the potential heat to be recovered. Moreover, 

compact HEXs allow for larger heat transfer surface areas with smaller overall dimensions, ideal 

for future installation on-board a vehicle.  

Additional precautions can also be taken to ensure that the maximum amount of data is 

collected. This defect was most apparent during the thermal resistance analysis. Without 

measuring tube surface temperatures, in addition to the thermocouples being located several 

inches upstream or downstream of the HEX’s inlet and outlet, the conditions of the exhaust and 

working fluid inside of the shell and the tubes the HEX were not specified. Furthermore, with 

inadequate insulation and the potential for ambient free convection on the exterior, even the 

measured temperatures were not guaranteed to provide a comprehensive picture of the physical 

states and heat transfer occurring within the HEX.  

As such, any future apparatus should include comprehensive measurements of the physical 

states of both the exhaust and working fluid entering, leaving, and within the HEX, through the 

installation of additional outer surface thermocouples, intermediate thermocouples and pressure 

transducers midstream, and ideally, surface temperature measurements within the HEX itself. 

Additionally, since the HEX will be more compact, it will be easier to properly insulate, and the 

use of an enclosed box surrounding the HEX with ambient temperature and pressure 

measurements will reduce external free convection and ambient losses. The presence of such 
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measures should allow for the quantification of losses within the system for more precise 

representations of the heat transfer mechanisms within the HEX. Moreover, additional trials 

should be taken across all experiments conducted in order to reduce errors in the data and 

improve the repeatability of the experiments.  

The final component to be included in future work is to introduce the use of additive 

manufacturing (AM) to create the new HEX. This manufacturing technique will aid in the 

compact design of the HEX and reduce the weight of the apparatus, aiding in the overall goal of 

the DPFHX to reduce fuel consumption for CI engines. Furthermore, magnesium and titanium 

are more common materials for AM, and as such, the thermal properties of the HEX itself may 

change, including differences induced by the manufacturing technique. The effect of AM is 

conjecture, as this is the primary subject of the author’s PhD research and will be addressed in 

the future, but remains important to note.  

Thus, despite the seemingly negative experimental results obtained, as well as the subsequent 

struggles encountered in analyzing the heat transfer pathways, the experiments conducted still 

yielded substantial contributions to the overall work of the author. Furthermore, addressing such 

struggles and unexpected results at this stage presents the opportunity for improvement in future 

iterations of the DPFHX concept.  

3.8 Conclusions 

The purposes of the experiments conducted and described in this chapter were to validate the 

performance of the WHR apparatus on the single-cylinder test engine, compare the performance 
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of working fluids in the apparatus, and evaluate the performance of the DPFHX apparatus all 

done via experimental, HEX, and convection parameters. Ideally, the desired outcome was to 

validate the DPFHX’s improved heat transfer performance over the WHR apparatus. Through 

the three rounds of experiments conducted, all -of the previous aims have been accomplished. 

In the first round of experimental trials, the performance of the WHR apparatus with water 

was compared to the performance of the same apparatus during the experiments conducted by 

Sprouse [20]. The general agreement between the two dissimilar tests indicated that the 

apparatus was still operational after time out of service.  

Following the first round of tests, multiple working fluids were used in the WHR apparatus 

to compare their efficacy as heat recovery fluids. These working fluids were selected after a 

thorough comparison of working fluid properties. The primary factors influencing the scope of 

the working fluid review were thermal properties for a working fluid in RC WHR operation (i.e., 

low specific heat, low viscosity, high thermal conductivity, low specific volume), a wide spread 

of property values (i.e., the Prandtl number), safety considerations (i.e., safe for use in an open 

system), and finally practical considerations (i.e., matching pump specifications, commercial 

availability, low cost). Based on these factors, ethylene glycol and propylene glycol were 

selected as the two primary working fluid options, in addition to water. Furthermore, the 

properties of 50/50 mixtures of propylene glycol/water and ethylene glycol/water were 

considered to provide a mid-range working fluid. A 50/50 ethylene glycol/water mixture had a 

higher thermal conductivity, lower specific heat, and a lower specific volume than a 50/50 

propylene glycol/water mixture; thus, making it a more thermally attractive working fluid option.  
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Assessing the performance of the four working fluids (i.e., water, EG, PG, 50/50 EG/water) 

in the WHR apparatus, the primary parameters considered were the heat transfer rates, HEX 

effectiveness, and the overall heat transfer coefficient, all calculated from experimental data. For 

these values, water and 50/50 presented the highest values, indicating better efficacy and 

quantity of heat transfer occurring in the apparatus with these working fluids based on improved 

HEX parameters and heat transfer rates, respectively.  

To provide another metric of the working fluid performance, a thermal resistance analysis 

was attempted on the WHR apparatus. However, due to a lack of data to quantify losses within 

the system, the analysis proved unable to generate correlations for the convective heat transfer 

coefficient and the Nusselt number of the working fluid. The influence of a HEX correction 

factor to allow for more realistic representation of flow complexities was also considered, 

subsequently indicating that a separate analysis method would be needed to determine the most 

accurate description of the convection. Thus, literature correlations applicable to the flow 

conditions (i.e., Depcik (universal) for the exhaust; Kays for the working fluid) were applied to 

the flows to provide general evaluations of the convective behavior. As such, the exhaust heat 

transfer parameters were similar for all of the working fluids, given the equivalent operating 

conditions used across all trials. However, a wider range of variability was seen in the various 

working fluid properties.  

Consequently, water and 50/50 EG/water once again yielded the highest values, this time for 

the convective heat transfer coefficient of the working fluid and the working fluid Nusselt 

number, indicating more effective convective heat transfer occurring. The larger magnitudes of 
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these values indicate that for the same temperature change of the working fluid across the same 

surface area, water and 50/50 EG/water will provide more heat transfer than the other working 

fluids, in conjunction with their superior experimental performance in the apparatus. Thus, 

moving forward to the DPFHX experiments, water and 50/50 were the primary working fluids 

used.  

In conducting the DPFHX experiments, several modifications were made to the DPF cores 

before installation since they were not sized for the HEX tubes. As such, the cores were sanded 

down in diameter and pieced together in length to fit within the tubes of the HEX. These 

modifications, although done with care, ultimately caused performance degradations in the 

DPFHX experimental results. Across a wide array of heat transfer and HEX parameters, the 

DPFHX experiments achieved worse results than the WHR apparatus, although the insertion of 

the cores should have improved (postulation) the overall heat transfer coefficient of the HEX. 

Upon applying literature correlations to describe the flow in the DPFHX apparatus (i.e., 

Depcik flow in square DPF channels for the exhaust; Kays for the working fluid), the change in 

the exhaust Nusselt number and decrease in the exhaust convective heat transfer coefficient 

supported this theory. The exhaust flow had a lower heat transfer coefficient due to laminar flow, 

but more residence time within the cores to allow heat transfer to occur. However, with 

additional complications arising from the presence of thermal tape and the misalignment of the 

cores, the expected outcome was not the same.  

Although the results of the DPFHX experiments do not support the anticipated outcome, 

conceptually, the DPFHX still holds weight. The degraded results do not conclusively specify 
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that the DPFHX vitiates the heat transfer performance of the apparatus, without more 

experimental trials and data. Through the failed thermal resistance network and contradictory 

experimental results, additional lessons and ideas were garnered that can be applied to future 

work on the concept to improve performance (i.e., more trials, more data collected, better 

insulation). Furthermore, the general superiority of water and 50/50 EG/water is supported across 

a range of experimental trials; however, selecting a single ideal working fluid requires additional 

trials and additional experimental considerations.  

A supplementary aspect of the experiments conducted is the conclusion that the installation 

of both apparatuses in the exhaust stream in this case negatively influences the performance of 

the engine, confirmed by the in-cylinder pressure traces of the engine for standard operation. 

This designates that the presence of WHR or DPFHX devices in the exhaust and the subsequent 

possibility for changes in the engines in-cylinder pressure must be targeted as a design criterion 

in future experiments. A complete WHR system would still capture and utilize the waste heat of 

an engine, providing benefits despite the potential for degraded performance. However, 

optimizing the system so that the in-cylinder pressure is unaffected by either device in the 

exhaust, yields the potential for further improvements in fuel consumption. Moreover, future 

iterations which consider such optimizations will be able to run at higher engine loads, further 

enhancing the fuel efficiency benefits available.  

Ultimately, the three primary goals of the experimental efforts conducted were achieved. The 

performance of the WHR apparatus was confirmed and two working fluids were deemed more 

appropriate for the application. While the results of the DPFHX experiments were not positive, 
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they still provide invaluable information for the application of this concept in the future. Thus, 

important conclusions and data will be used moving forward, with the final goal of (ideally) 

validating improved DPFHX performance and alternative manufacturing techniques. These 

experiments serve as preliminary datasets for future work to be conducted, and as such, even the 

generally considered failure in the operation of the DPFHX provides irreplaceable information 

and insight.  
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Chapter 4: Conclusions  

4.1 Thesis Conclusions  

There were several primary goals driving the research conducted in this thesis; all aiming to 

evaluate the concept of a combined DPFHX for WHR from CI engine exhaust via an RC. First 

was the appraisal of literature published on WHR systems, covering RCs themselves, other 

power cycles in competition with RCs, working fluid and component selection, technologies 

available for components, and various applications of WHR. Second was the experimental 

validation of the WHR apparatus on-hand, comparing working fluids within this apparatus, and 

evaluating the performance of the apparatus as a DPFHX. Thus, these goals have each been 

addressed in detail in this thesis.  

The literature review details the state of the art for WHR as of 2018, through a summary of 

the historical work done between 1973 and 2011 and a detailed review of the work completed 

between 2012 and 2018. From this review, several trends are apparent. Most notable is the 

growth in publications on WHR, increasing dramatically throughout the past few decades, 

revealing the growing interest and utility of WHR for various applications. Moreover, the 

literature indicates that even from as far back as 1973, RC is the principal system used in WHR 

applications. However, in recent years, the use of the RC for WHR has introduced new 

complexities over the basic RC, including multiple loops, reheating, preheating, and 

regenerating, as researchers find ways to utilize RC WHR in more effective and efficient 

manners. 
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Aside from manipulating the schema of the RC system itself, working fluid, heat source, and 

component selection are all highly researched subsets of RC WHR. In recent years, R245fa has 

become a widely used working fluid, with effective thermal performance and environmental 

safety; however, working fluid mixtures are also prevalent due to their ability to combine the 

ideal properties of multiple fluids. Regarding heat sources, exhaust gases are the most 

widespread, but as the systems themselves become more complicated, the combination of 

multiple heat sources, such as the coolant with the exhaust, display competitive performance and 

efficiency standards. Furthermore, the importance of expander selection is widely noted 

throughout the literature; as is the importance of HEX design in fully capturing waste heat with 

the greatest efficiency.  

With CI as the predominant application studied for RC WHR, the implementation of a HEX 

on the single cylinder test engine described in this research proves to be intrinsically applicable. 

Additionally, the growing importance of working fluid selection, combined with the necessity of 

HEX design and tailoring an RC system to its specific application, all demonstrate the relevance 

of this work via the trends in the literature itself.  

Hence, with the contextual background of the literature, the experimental efforts to assess 

and validate the DPFHX were undertaken. Contrary to most literature comparisons of working 

fluids, done using simulations and computational methods, various working fluids were 

experimentally compared in this work, providing concrete comparisons of their performance as 

opposed to trends obtained from simulations. Moreover, the working fluids evaluated 

experimentally were selected based on literature indications of properties displaying elevated 
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performance (i.e., low specific heat, low viscosity, high thermal conductivity, low specific 

volume), as well as safety and practical considerations. Furthermore, based on the ever-growing 

pervasiveness of mixtures, a mixed working fluid was tested as well.  

Upon successful validation of the WHR apparatus based on its previous performance, four 

working fluids were tested under steady-state conditions in the HEX using the exhaust of the 

single-cylinder CI engine as a heat source. Comparing water, EG, PG, and 50/50 EG/water on 

their effectiveness and overall heat transfer coefficient, water and 50/50 EG/water displayed 

higher values, and thus superior performance as working fluids, over EG and PG. Further heat 

transfer analysis was done on the HEX to lend additional criteria (i.e., correlations for the 

Nusselt number of the exhaust and working fluid flows) for the comparisons.  

However, in attempting to derive such metrics, gaps in the instrumentation on the apparatus 

proved to be a weak point in the experiments, lacking measurements to allow for the concrete 

description of system and ambient losses. Therefore, literature correlations were instead adopted: 

the Kays Nusselt number correlation for the working fluid, the Depcik (universal) Nusselt 

number correlation for the exhaust, and the subsequent heat transfer coefficients calculated from 

both. Water and 50/50 EG/water both yielded higher values, indicating that they provided more 

effective convective heat transfer as working fluids. Thus, with better experimental performance 

and enhanced convective heat transfer, these two working fluids were deemed ideal for the WHR 

apparatus and subsequently used in the DPFHX experiments.  

 For the DPFHX experiments, cordierite DPF cores were installed in the tubes of the HEX, 

hypothesized to enlarge the overall heat transfer coefficient of the HEX, consequently improving 
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the overall performance of the apparatus. Yet, for both working fluids tested, the DPFHX 

apparatus achieved lower overall heat transfer coefficients, effectiveness values, and heat 

transfer rates than the WHR apparatus, indicating inferior performance. Although, when 

comparing the experimental performance, water outperformed the 50/50 EG/water 

experimentally with a larger effectiveness and overall heat transfer coefficient. Once again, the 

working fluids’ efficacy was compared using literature correlations: the Kays correlation for the 

working fluid and a constant Nusselt number for the exhaust flow in DPF cores. Nonetheless, 

from the Nusselt numbers and corollary heat transfer coefficients, the water indicated improved 

convective heat transfer over the 50/50 mixture, following the results of the experimental 

comparison.  

It is worth mentioning the difference in the exhaust flow convection due to the presence of 

the DPF cores. In the WHR apparatus, the exhaust flow was turbulent within the HEX tubes, 

while the cores slowed down the exhaust flow in the DPFHX producing laminar flow. Although 

turbulence promotes larger heat transfer coefficients and thus more effective convection, the 

laminar flow within the cores provides additional residence time of the exhaust gas in the tubes 

with more heat transfer pathways, which can compensate for the laminar flow and allow for 

further heat transfer from the exhaust gas to the cores and subsequently to the working fluid. 

However, issues with the installation of the cores, stemming from the cores being inappropriately 

sized for the HEX tubes, likely prevented this conjectured outcome from occurring.  

Moreover, the influence of both the WHR and DPFHX apparatuses on engine performance 

was evaluated using the engine in-cylinder pressure traces. Based on this metric, it can be 
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concluded that both the WHR apparatus and the DPFHX apparatus had a negative effect on 

engine performance, as the pressure within the cylinder decreased when the apparatuses were 

installed. Although there were slight differences in the engine loading points of the pressure 

traces compared, the trends of depressed pressures in the engine remain. Notably, the DPFHX 

device achieved a higher peak in-cylinder pressure than the WHR device. However, the 

aforementioned issues with the cores installed potentially grow the pressure drop across the 

HEX, further altering the engine’s in-cylinder pressures; hence, additional experiments must be 

conducted before the true cause of the differences in performance can be concluded. 

Nonetheless, the changes in engine pressure indicate that although WHR structures provide 

benefits in the form of fuel efficiency rises, optimizing the systems to their specific applied heat 

sources can amplify these enhancements. 

Therefore, this thesis fully describes the work done towards the aim of gauging the DPFHX 

concept. Ultimately, the literature review provided trends from other researchers for the author to 

investigate in the given apparatus. Results from the experiments indicate that mixtures provide 

competitive traits to standard working fluids, in agreement with the literature, specifically in the 

HEX utilized. Furthermore, the comparison of working fluids experimentally is relatively novel 

within the literature. Although the DPFHX experiments did not yield favorable results, the 

considerations garnered from the results will be tremendously useful in forthcoming work.  

4.2 Future Work 

The author’s future work will continue with the concept of the DPFHX. However, the author 

will design a HEX specifically for the application of WHR from the single-cylinder Yanmar test 
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engine. Thus, the results and lessons from the work completed in this thesis provide the 

foundation for these efforts. As indicated in the literature review, tailoring an RC system to the 

specific application is the primary way to optimize performance and efficiency, validating the 

methodology moving forward. 

Additionally, the trends in the selection of working fluids in the literature, as well as the 

experimental results, display the importance of working fluid selection and justification for the 

use of working fluid mixtures. Ideally, various working fluids can be compared within the HEX 

through both 3-D models and experiments, providing valuable correlations between model trends 

and experimental validation, while also corroborating the results of the heat transfer correlations. 

Furthermore, the 3-D heat transfer modeling of the devices and the subsequent performance of 

working fluids can aid in the selection and comparison of working fluids prior to experiments, 

providing an additional tier of metrics with which to compare the fluids on top of the 

thermodynamic, safety, and practical considerations utilized in this thesis.  

From the experimental results of Chapter 3, many recommendations can be taken into 

consideration regarding future designs of the HEX itself. Based on the in-cylinder pressure data 

from the experiments conducted in this thesis, the sizing of the HEX should be made as compact 

as possible to mitigate the pressure drop across it, decreasing its potential influence on engine 

performance, and further enhancing the fuel efficiency savings. This becomes progressively 

more important if using DPF cores within the HEX, due to the added complexity of its induced 

backpressure. The compact sizing of the HEX also means less thermal mass within the system 

allowing for more realistic and achievable steady-state conditions during experimental testing. 
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Furthermore, a compact HEX will maximize the available heat transfer area while minimizing 

the required installation footprint and weight. With such attention to the HEX design, the engine 

can run at higher loads, thereby increasing the quantity of waste heat to retrieve.  

Moreover, based on the difficulties faced in analyzing the heat transfer pathways and 

convection within the current apparatus, the need for additional instrumentation is apparent. By 

better capturing the states of the flows entering and exiting the HEX, within the HEX itself, and 

on the HEX’s exterior, the state of each fluid and the losses occurring can be more appropriately 

described. This was most vividly illustrated through the unknown losses between where the inlet 

and outlet measurements were being taken and the shell of the HEX itself (i.e., in the tubing and 

reducers).  

If compact sizing of the HEX is achieved, not only will insulation of the apparatus be easier, 

but it will also be possible to enclose the apparatus in a box to reduce ambient losses via free 

external convection, as well as provide the ability to better define such losses via measurements 

of the thermophysical state within such an enclosure. By being able to identify and ideally 

quantify losses to the ambient, in conjunction with additional data regarding the flow entering, 

leaving, and within the system, the heat transfer pathways can be more accurately described; 

thus, ideally improving upon many of the failures encountered during the analysis attempted in 

this thesis. Experimentally, additional trials for each working fluid should be conducted, to 

improve the repeatability of the experiments.  

Furthermore, the new HEX will be manufactured using AM, allowing for the HEX to be 

formed with materials such as magnesium or titanium, commonly used in AM, providing better 
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thermal characteristics of the HEX and the potential for supplementary changes in thermal 

properties from the manufacturing process. Additionally, AM is known for its ability to reduce 

the weight of a component compared to its traditionally manufactured counterpart, a significant 

benefit for a technology with on-board vehicle applications, as the reduction in weight will 

provide improved fuel efficiency savings. 

Finally, the current work and future iterations focus only on the HEX component of an RC 

WHR system. In order to achieve the fuel consumption benefits for which an RC WHR system is 

desired, the entire cycle is required. Thus, beyond the scope of optimizing the capture of the 

waste heat from engine exhaust, additional components in the RC must also be individually 

researched and optimized, before implementing the entire system. Once this has been completed, 

the full employment of an RC for its intended purpose can be realized. Nonetheless, the work 

and conclusions in this thesis set the stage for such efforts in the future.  
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Appendices 

Appendix A: Transient Conduction Calculations 

To evaluate the time for the apparatus to achieve steady state conduction (i.e., determining an 

allowable time for the apparatus to run prior to collecting experimental data), transient 

conduction calculations were carried out, assessing conduction on the tube side (i.e., exhaust).  

First, the Biot (Bi) number was calculated for via Eq. (A.1), where h is the convection heat 

transfer coefficient, Lc is the characteristic length, and k is the thermal conductivity [29]; 

however, since the convection heat transfer coefficient of the flow was unknown initially, the 

Biot number was calculated with the maximum and minimum values for gases in forced 

convection, yielding values of 0.0506 for the maximum convection heat transfer coefficient (h = 

250 W/m2K) and 0.00506 for the minimum value (h = 25 W/m2K) [29]. 

 chL
Bi

k
   (A.1) 

 Since the Biot number is greater than 0.1, the lumped capacitance method is valid, 

allowing for the use of Eq. (A.2) to calculate the time required for the HEX tube to reach 

approximately 99% of the exhaust temperature (i.e., 0.99*375 K ≈ 371.25 K) [29]. In Eq. (A.2), 

ρ is the density of stainless steel (8238 kg/m3), c is the specific heat of stainless steel (468 

J/kgK), and V and As represent the volume and inner surface area of the tubes [29].  
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 The calculated time for the tube to reach approximately ambient temperature of the 

exhaust gas for the minimum convection coefficient was 1596.17 s (approximately 26 minutes) 

and 159.62 s (approximately 2.66 minutes) for the maximum convection coefficient. Although 

this rudimentary calculation does not take into account the circulation of the working fluid on the 

outside of the tubes, it provides a decent estimate of the time required for the solid components 

of the apparatus to achieve steady state conditions. Thus, prior to capturing experimental data, 

the engine and apparatus were run for approximately 30 minutes each, allowing plenty of time 

for this conduction to take place. 

The calculations were also considered for the working fluid, via the lumped capacitance 

method for the minimum convection coefficient for fluids in forced convection and the 

approximate solution method for the maximum based on their respective Biot numbers. 

However, the values were significantly lower than that of the exhaust side. Therefore, the 

exhaust values provide the maximum approximation of the time to reach steady state.  
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Appendix B: Code for Experimental Calculations 

% % Bailey Spickler 
% % Experimental Calculations  
% % Includes pulling in data from Excel spreadsheet of all experimental 
% data to calculate all trials in one run & write the results to the same 
% Excel sheet  
  
clc 
clear 
  
input = xlsread('Test Results File'); 
inputsize = size(input); 
output = zeros(inputsize(1),5); 
  
for j = 1:inputsize(1) 
% Experimental Inputs 
wf = input(j,1); % Denote as 1 water, 2 as EG, 3 as PG, or 4 as W-EG 
  
% Working fluid temperatures [K] & pressures [psi] 
Twfin = input(j,3); % [K] 
Twfout = input(j,4); % [K] 
pwfin = input(j,5); % [psi] 
pwfout = input(j,6); % [psi] 
  
% Exhaust temperatures [K] & pressures [psi] 
Texin = input(j,7);  % [K] 
Texout = input(j,8); % [K] 
pexin = input(j,9); % [psi] 
pexout = input(j,10); % [psi] 
  
mwf = input(j,11); % working fluid flow rate [kg/s] 
mfuel = input(j,12); % Fuel flow rate [g/s] 
mair = input(j,13); % Air flow rate [g/s] 
  
%% Exhaust Calcs 
  
R = 8.314; % [kJ/kmol]  
  
Cx = 14.2; % Fuel composition 
Hy = 25.54; 
  
C = 12; % Molar weights 
H = 1; 
O = 16; 
N = 14; 
  
MCO2 = C + O*2; 
MH2O = 2*H + O; 
MN2 = 2*N; 
MO2 = 2*O; 
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% Flow rates & molar weights 
Mfuel = Cx*C + Hy*H; % Fuel molar weight [g/mol] 
Mair = 2*O + 3.76*2*N; % Air molar weight [g/mol] 
  
nfuel = mfuel/Mfuel; % Fuel molar flow rate [mol/s] 
nair = mair/Mair; % Air molar flow rate [mol/s] 
  
Z = (mair/mfuel)*(Mfuel/Mair); % Number of air molecules needed 
  
% Balance lean combustion equation 
% CxHy + Z(O2 + 3.76N2) -> b*CO2 + d*H2O + e*N2 + f*O2 
  
cCO2 = Cx; 
cH2O = Hy/2; 
cN2 = Z*3.76; 
cO2 = 0.5*(2*Z - cH2O - 2*cCO2); 
  
% Finding molar flow rates [mol/s] 
% Based on conservation mass flow in = mass flow out 
% Reactants 
nRO2 = Z*nfuel; 
nRN2 = 3.76*Z*nfuel; 
% Products 
nPCO2 = cCO2*nfuel; 
nPH2O = cH2O*nfuel; 
nPN2 = cN2*nfuel; 
nPO2 = cO2*nfuel; 
  
% Finding enthalpies  
% Interpolating using values from Moran & Shapiro 5th Edition, Table A-23 
% h = hof + dh(from 298K) 
Temps_species = [0; 220; 230; 240; 250; 260; 270; 280; 290; 298; 300; 310; 
320; 330; 340; 350; 360; 370; 380; 390; 400; 410; 420; 430; 440; 450; 460; 
470; 480; 490; 500]; % [K] 
h_CO2_table = [0; 6601; 6938; 7280; 7627; 7979; 8335; 8697; 9063; 9364; 9431; 
9807; 10186; 10570; 10959; 11351; 11748; 12148; 12552; 12960; 13372; 13787; 
14206; 14628; 15054; 15483; 15916; 16351; 16791; 17232; 17678]; % [kJ/kmol] 
h_H2O_table = [0; 7295; 7628; 7961; 8294; 8627; 8961; 9296; 9631; 9904; 9966; 
10302; 10639; 10976; 11314; 11652; 11992; 12331; 12672; 13014; 13356; 13699; 
14043; 14388; 14734; 15080; 15428; 15777; 16126; 16477; 16828]; % [kJ/kmol] 
h_O2_table = [0; 6404; 6694; 6984; 7275; 7566; 7858; 8150; 8443; 8682; 8736; 
9030; 9325; 9620; 9916; 10213; 10511; 10809; 11109; 11409; 11711; 12012; 
12314; 12618; 12923; 13228; 13535; 13842; 14151; 14460; 14770]; % [kJ/kmol] 
h_N2_table = [0; 6391; 6683; 6975; 7266; 7558; 7849; 8141; 8432; 8669; 8723; 
9014; 9306; 9597; 9888; 10180; 10471; 10763; 11055; 11347; 11640; 11932; 
12225; 12518; 12811; 13105; 13399; 13693; 13988; 14285; 14581]; % [kJ/kmol] 
  
% CO2 
hofCO2 = -393522; % [kJ/kmol] 
h298CO2 = 9364; % [kJ/kmol] 
hTinCO2 = interp1(Temps_species, h_CO2_table, Texin); % [kJ/kmol] 
hToutCO2 = interp1(Temps_species, h_CO2_table, Texout); % [kJ/kmol] 
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hinCO2 = hofCO2 + hTinCO2 - h298CO2;  % [kJ/kmol] 
houtCO2 = hofCO2 + hToutCO2 - h298CO2;  % [kJ/kmol] 
  
% H2O 
hofH2O = -241820; % [kJ/kmol] 
h298H2O = 9904; % [kJ/kmol] 
hTinH2O = interp1(Temps_species, h_H2O_table, Texin); % [kJ/kmol] 
hToutH2O = interp1(Temps_species, h_H2O_table, Texout); % [kJ/kmol] 
  
hinH2O = hofH2O + hTinH2O - h298H2O; % [kJ/kmol] 
houtH2O = hofH2O + hToutH2O - h298H2O; % [kJ/kmol] 
  
% O2 
hofO2 = 0; % [kJ/kmol] 
h298O2 = 8682; % [kJ/kmol] 
hTinO2 = interp1(Temps_species, h_O2_table, Texin); % [kJ/kmol] 
hToutO2 = interp1(Temps_species, h_O2_table, Texout); % [kJ/kmol] 
  
hinO2 = hofO2 + hTinO2 - h298O2; % [kJ/kmol] 
houtO2 = hofO2 + hToutO2 - h298O2; % [kJ/kmol] 
  
% N2 
hofN2 = 0; % [kJ/kmol] 
h298N2 = 8669; % [kJ/kmol] 
hTinN2 = interp1(Temps_species, h_N2_table, Texin); % [kJ/kmol] 
hToutN2 = interp1(Temps_species, h_N2_table, Texout); % [kJ/kmol] 
  
hinN2 = hofN2 + hTinN2 - h298N2; % [kJ/kmol] 
houtN2 = hofN2 + hToutN2 - h298N2; % [kJ/kmol] 
  
  
% Heat Transfer Qexhaust 
QCO2 = nPCO2*(houtCO2 - hinCO2); % [W] 
QH2O = nPH2O*(houtH2O - hinH2O); % [W] 
QN2 = nPN2*(houtN2 - hinN2); % [W] 
QO2 = nPO2*(houtO2 - hinO2); % [W] 
Qex = QCO2 + QH2O + QN2 + QO2; % [W] 
  
  
if wf == 1    
    %% Working Fluid Calcs (water) 
    % Calculate enthalpies 
    % Interpolation of saturated water (liquid) table based on temperature 
    % Values from Moran & Shapiro, 5th Edition, Table A-2 
     
    Wtempinterp = 
[10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29;30;31;32;33;34;3
5;36;38;40;45]+273.15; % [K] 
    Whinterp = [42.01; 46.20; 50.41; 54.60; 58.80; 62.99; 67.19; 71.38; 
75.58; 79.77; 83.96; 88.14; 92.33; 96.52; 100.70; 104.89; 109.07; 113.25; 
117.43; 121.61; 125.79; 129.97; 134.15; 138.33; 142.50; 146.68; 150.86; 
159.21; 167.57; 188.45]; % [kJ/kg] 
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    % Twfin 
    hwfin = interp1(Wtempinterp, Whinterp, Twfin);  
  
    % Twfout 
    hwfout = interp1(Wtempinterp, Whinterp, Twfout); 
  
    % Qwf 
    Qwf = mwf*(hwfout - hwfin)*1000; % [W] 
  
     
    % Calculating cpwf for effectiveness calculations (later) 
    % values from Moran & Shapiro 5th Edition, Table A-19 
    water_temp = [275; 300; 325; 350; 375; 400]; % [K] 
    water_cp = [4.211; 4.179; 4.182; 4.195; 4.220; 4.256]; % [kJ/kgK] 
     
    cpwfin = interp1(water_temp, water_cp, Twfin); % [kJ/kgK] 
    cpwfout = interp1(water_temp, water_cp, Twfout); % [kJ/kgK] 
     
elseif wf == 2  
    %% Working Fluid Calcs (Pure EG) 
    % Pull in Excel enthalpy data 
  
    m = xlsread('EG Enthalpy Data.csv'); 
    % From: NIST Chemistry WebBook 
    % https://wtt-pro.nist.gov/wtt-pro/index.html?cmp=1.2-ethanediol#1.2-
ethanediol;06;0Z;4g;1g;7g;3g;5g;Hg;8g;8f;8a;8b;O6;Qg;T2;Re;zg,259.26,472.96,1
;Ye;ag;ae;ef;hf;jg;ja;na;ng;ya;yf/c;0,0/a;50,50/zgR;100,100/zgT;150,150,508,3
82/ 
     
    TempEG = m(:,1); % [K] 
    EnthalpyEG = m(:,2); % [kJ/mol] 
    UncertaintyEG = m(:,3); % [kJ/mol] 
  
    MWEG = 62/1000; % Molar weight of EG, [kg/mol] 
     
  
    % Interpolate data to find enthalpy values at inlet & exit temperatures 
of 
    % the wf 
    hwfin = interp1(TempEG,EnthalpyEG,Twfin); % [kJ/mol] 
    hwfout = interp1(TempEG,EnthalpyEG,Twfout); % [kJ/mol] 
  
    hwfin = hwfin/MWEG; % [kJ/kg] 
    hwfout = hwfout/MWEG; % [kJ/kg] 
  
    Qwf = mwf*(hwfout - hwfin)*1000; % [W] 
     
    % Calculating cpwf for effectiveness (later)  
    % Data from Bergman 6th Ed.  
    EG_temp = [273 280 290 300 310 320 330 340 350 360 370 373]; % [K] 
    EG_spheat = [2.294 2.323 2.368 2.415 2.460 2.505 2.549 2.592 2.637 2.682 
2.728 2.742]; % [kJ/kgK] 
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    cpwfin = interp1(EG_temp, EG_spheat, Twfin); % [kJ/kgK] 
    cpwfout = interp1(EG_temp, EG_spheat, Twfout); % [kJ/kgK] 
     
elseif wf == 3  
    %% Working Fluid Calcs (Pure PG) 
    
    PGrho = 1.032*1000; % [kg/m^3] 
    PGv = 1/PGrho; % [m^3/kg] 
  
    % Temperatures & Specific Heats for 100% PG  
    % From NIST WebBook 
    % https://wtt-pro.nist.gov/wtt-pro/index.html?cmp=1.2-propanediol#1.2-
propanediol;06;4g;1g;7g;3g;5g;Hg;8g,263,676.4,1;8f;8b;Qg;Tg,300,600,20;Re;Ye,
200,450,1;ae;ag;ef;hf;mg;jg,273.001,670,1;ja;na;ng,250,600,1;ya;yf/c;0,0/a;50
,50/ 
    n = xlsread('PG Enthalpy Data.csv'); 
     
    TempPG = n(:,1); % [K] 
    EnthalpyPG = n(:,2); % [kJ/mol] 
    UncertaintyPG = n(:,3); % [kJ/mol] 
     
    MWPG = 76/1000; % Molar weight of PG, [kg/mol] 
   
  
    % Interpolate data to find enthalpy values at inlet & exit temperatures 
of 
    % the wf 
    hwfin = interp1(TempPG,EnthalpyPG,Twfin); % [kJ/mol] 
    hwfout = interp1(TempPG,EnthalpyPG,Twfout); % [kJ/mol] 
  
    hwfin = hwfin/MWPG; % [kJ/kg] 
    hwfout = hwfout/MWPG; % [kJ/kg] 
  
    Qwf = mwf*(hwfout - hwfin)*1000; % [W] 
    
     
    % Calculate specific heat for effectiveness calculations (later) 
    % Temperatures & Specific Heats for 100% PG  
     
    PG_temp = [15.6; 26.7; 37.8; 48.9; 60.0; 71.1; 82.2; 93.3; 104.4; 
115.5]+273.15; % [oC] --> [K] 
    PG_spheat = [ 0.587; 0.603; 0.619; 0.635; 0.651; 0.667; 0.683; 0.699; 
0.715; 0.731]*4.1868; % [cal/g/oC] 
     
    cpwfin = interp1(PG_temp, PG_spheat, Twfin); % [kJ/kgK] 
    cpwfout = interp1(PG_temp, PG_spheat, Twfout); % [kJ/kgK] 
     
elseif wf == 4 
     
    m = xlsread('EG Enthalpy Data.csv'); 
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    TempEG = m(:,1); % [K] 
    EnthalpyEG = m(:,2); % [kJ/mol] 
    UncertaintyEG = m(:,3); % [kJ/mol] 
  
    MWEG = 62/1000; % Molar weight of EG, [kg/mol] 
      
   
    % Interpolate data to find enthalpy values at inlet & exit temperatures 
of 
    % the wf 
    EGhwfin = interp1(TempEG,EnthalpyEG,Twfin); % [kJ/mol] 
    EGhwfout = interp1(TempEG,EnthalpyEG,Twfout); % [kJ/mol] 
  
    EGhwfin = EGhwfin/MWEG; % [kJ/kg] 
    EGhwfout = EGhwfout/MWEG; % [kJ/kg] 
     
    % Interpolation of saturated water (liquid) table based on temperature 
    % Values from Moran & Shapiro, 5th Edition 
     
    MWW = MH2O/1000; % molar weight of H2O, [kg/mol] 
     
    Wtempinterp = 
[10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29;30;31;32;33;34;3
5;36;38;40;45]+273.15; % [oC] --> [K] 
    Whinterp = [42.01; 46.20; 50.41; 54.60; 58.80; 62.99; 67.19; 71.38; 
75.58; 79.77; 83.96; 88.14; 92.33; 96.52; 100.70; 104.89; 109.07; 113.25; 
117.43; 121.61; 125.79; 129.97; 134.15; 138.33; 142.50; 146.68; 150.86; 
159.21; 167.57; 188.45]; % [kJ/kg] 
     
    % Twfin 
    Whwfin = interp1(Wtempinterp, Whinterp, Twfin); % [kJ/kg] 
     
    % Twfout 
    Whwfout = interp1(Wtempinterp, Whinterp, Twfout); % [kJ/kg] 
     
    Y_EG_mix = (0.5*MWEG)/(0.5*MWW + 0.5*MWEG); % [-] 
    Y_W_mix = (0.5*MWW)/(0.5*MWW + 0.5*MWEG); % [-] 
     
    hwfin = Y_EG_mix*EGhwfin + Y_W_mix*Whwfin; % [kJ/kg] 
    hwfout = Y_EG_mix*EGhwfout + Y_W_mix*Whwfout; % [kJ/kg] 
     
    Qwf = mwf*(hwfout - hwfin)*1000; % [W] 
     
    % specific heat calculation for effectivness (later) 
    % Data from Dynalene for 50% EG & Water 
     
    HEG_temp = (([0 10 20 30 40 50 60 70 80 90 100 120 140]-
32)*(5/9))+273.15; % [oF] --> [oC] --> [K] 
    HEG_spheat = [0.740 0.745 0.751 0.756 0.761 0.766 0.772 0.777 0.782 0.781 
0.793 0.803 0.814]*4186/1000; % [Btu/lboF] --> [J/kgoC] = [J/kgK] --> 
[kJ/kgK] 
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    cpwfin = interp1(HEG_temp, HEG_spheat, Twfin); % [kJ/kgK] 
    cpwfout = interp1(HEG_temp, HEG_spheat, Twfout); % [kJ/kgK] 
     
end  
  
%% Cp Calculations 
% Total number of moles 
np = cCO2 + cH2O + cN2 + cO2; 
  
% Coefficients by species for Cp calcs 
% CO2 
aCO2 = 2.401; 
bCO2 = 8.735e-3; 
yCO2 = -6.607e-6; 
dCO2 = 2.002e-9; 
eCO2 = 0; 
  
% H20 
aH2O = 4.07; 
bH2O = -1.108e-3; 
yH2O = 4.152e-6; 
dH2O = -2.964e-9; 
eH2O = 0.807e-12; 
  
% N2 
aN2 = 3.675; 
bN2 = -1.208e-3; 
yN2 = 2.324e-6; 
dN2 = -0.632e-9; 
eN2 = -0.226e-12; 
  
% O2 
aO2 = 3.626; 
bO2 = -1.878e-3; 
yO2 = 7.055e-6; 
dO2 = -6.764e-9; 
eO2 = 2.156e-12; 
  
  
% Calculate Cp,in & Cp,ex for each species 
% CO2 
CpCO2in = R*(aCO2 + bCO2*Texin + yCO2*(Texin^2) + dCO2*(Texin^3) + 
eCO2*(Texin^4)); % [kJ/kmolK] 
CpCO2in = CpCO2in/MCO2; %[kJ/kgK] 
CpCO2out = R*(aCO2 + bCO2*Texout + yCO2*(Texout^2) + dCO2*(Texout^3) + 
eCO2*(Texout^4)); 
CpCO2out = CpCO2out/MCO2; 
% H20 
CpH2Oin = R*(aH2O + bH2O*Texin + yH2O*(Texin^2) + dH2O*(Texin^3) + 
eH2O*(Texin^4)); 
CpH2Oin = CpH2Oin/MH2O; 
CpH2Oout = R*(aH2O + bH2O*Texout + yH2O*(Texout^2) + dH2O*(Texout^3) + 
eH2O*(Texout^4)); 
CpH2Oout = CpH2Oout/MH2O; 
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% N2 
CpN2in = R*(aN2 + bN2*Texin + yN2*(Texin^2) + dN2*(Texin^3) + eN2*(Texin^4)); 
CpN2in = CpN2in/MN2; 
CpN2out = R*(aN2 + bN2*Texout + yN2*(Texout^2) + dN2*(Texout^3) + 
eN2*(Texout^4)); 
CpN2out = CpN2out/MN2; 
% O2 
CpO2in = R*(aO2 + bO2*Texin + yO2*(Texin^2) + dO2*(Texin^3) + eO2*(Texin^4)); 
CpO2in = CpO2in/MO2; 
CpO2out = R*(aO2 + bO2*Texout + yO2*(Texout^2) + dO2*(Texout^3) + 
eO2*(Texout^4)); 
CpO2out = CpO2out/MO2;  
  
  
% Mole & mass fractions for each species   
XCO2 = cCO2/np; 
XH2O = cH2O/np; 
XN2 = cN2/np; 
XO2 = cO2/np; 
  
M_mix = XCO2*MCO2 + XH2O*MH2O + XN2*MN2 + XO2*MO2; 
  
YCO2 = (XCO2*MCO2)/M_mix; 
YH2O = (XH2O*MH2O)/M_mix; 
YN2 = (XN2*MN2)/M_mix; 
YO2 = (XO2*MO2)/M_mix; 
% YN2 = 1 - YCO2 - YH2O - YO2; 
  
% Adding individual species for overall exhaust Cp 
Cpexin = YCO2*CpCO2in + YH2O*CpH2Oin + YN2*CpN2in + YO2*CpO2in; 
Cpexout = YCO2*CpCO2out + YH2O*CpH2Oout + YN2*CpN2out + YO2*CpO2out; 
Cpexavg = (Cpexin + Cpexout)/2; 
  
%%  
  
% Calculating working fluid Cp 
% cpwfin & cpwfout calculated for each working fluid separately  
  
Cpwfavg = (cpwfin + cpwfout)/2; 
%% Calculating Effectiveness & Overall Heat Transfer Coefficient  
Awf = 0.1915; % [m^2] 
Thin = Texin; % [K] 
Thout = Texout; % [K] 
Tcin = Twfin; % [K] 
Tcout = Twfout; % [K] 
  
mh = (mfuel + mair)/1000; % [kg/s] 
Cph = Cpexavg; 
mhCph = mh*Cph; 
mc = mwf;  
Cpc = Cpwfavg;  
mcCpc = mc*Cpc; 
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mCpmin = min(mhCph, mcCpc);  
mCpmax = max(mhCph, mcCpc); 
  
eff1 = ((mcCpc)*(Tcout - Tcin))/(mCpmin*(Thin - Tcin)); % Based on wf heat 
transfer 
eff2 = ((mhCph)*(Thin - Thout))/(mCpmin*(Thin - Tcin)); % Based on exhaust 
heat transfer 
  
% Parallel Flow 
dT1 = Thin - Tcin; 
dT2 = Thout - Tcout; 
LMTD = (dT1-dT2)/log(dT1/dT2);  
  
U = (Cpc*mc*1000*(Tcout-Tcin))/(Awf*LMTD); % Overall Heat Transfer 
Coefficient  
  
NTU = U*Awf/(mCpmin*1000); 
Cr = mCpmin/mCpmax; 
  
% Parallel concentric flow 
exp_eff = (1-exp(-NTU*(1+Cr)))/(1+Cr); 
  
%% Write results to single matrix  
  
output(j,1) = Qex; 
output(j,2) = Qwf; 
output(j,3) = eff1; 
output(j,4) = eff2; 
output(j,5) = exp_eff; 
output(j,6) = U; 
output(j,7) = LMTD; 
output(j,8) = Cpc; 
output(j,9) = Cph; 
output(j,10) = mCpmin; 
  
end 
  
xlswrite('Test Results Output File', output, 'O2:S16'); 
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Appendix C: Working Fluid Heat Transfer Coefficients Calculated via the Thermal 

Resistance Network and Literature Exhaust Gas Correlation 

Table C.1: Working fluid heat transfer coefficients [W/m2K] calculated from the thermal resistance network 
using the following literature exhaust gas correlations: (1) Dittus-Boelter; (2) Colburn; (3) Gnielinkski; (4) 
Gnielinkski Simplification; (5) Sachdev with Meisner; (6) Malchow; (7) Shayler; (8) Depcik Exhaust; (9) 
Depcik Universal; (10) Kakaç. 

Working 
Fluid 

Trial h1  h2  h3  h4  h5  h6 h7  h8  h9  h10 

Water 1 -27.82 -28.85 -30.09 -43.86 1297.05 -141.51 -540.42 -252.80 -219.94 -41.98 

Water 2 -28.47 -29.55 -30.84 -45.50 629.57 -160.01 -965.05 -318.51 -268.05 -43.47 

Water 1 -30.43 -31.67 -33.14 -50.67 266.20 -246.35 881.64 
-

1041.80 
-645.43 -48.15 

Water 2 -33.48 -34.99 -36.83 -59.79 146.12 
-

1008.06 
236.77 472.10 654.70 -56.36 

Water 3 -33.81 -35.35 -37.26 -60.91 138.58 
-

1571.45 
217.46 402.70 528.72 -57.38 

Water 3 -32.97 -34.44 -36.35 -58.23 150.42 -805.63 246.57 524.82 762.50 -55.16 

EG 1 -32.39 -33.80 -35.56 -56.45 167.60 -527.48 298.07 812.48 1566.58 -53.44 

EG 2 -32.10 -33.49 -35.23 -55.52 176.05 -458.88 324.85 1053.60 2800.71 -52.65 

EG 3 -31.95 -33.33 -35.07 -55.09 179.65 -435.08 336.92 1199.32 4141.64 -52.28 

PG 1 -42.64 -45.13 -48.39 -97.07 74.44 179.74 92.31 114.97 123.38 -88.68 

PG 2 -42.47 -44.94 -48.22 -96.01 74.94 182.65 92.96 116.10 124.68 -87.94 

PG 3 -42.20 -44.64 -47.91 -94.56 75.77 187.65 94.18 118.07 126.95 -86.80 

50/50 1 -28.13 -29.19 -30.49 -44.64 804.81 -151.32 -731.13 -286.77 -245.17 -42.74 

50/50 2 -36.20 -37.98 -40.26 -69.01 108.53 738.29 151.10 222.98 256.88 -64.66 

50/50 3 -41.72 -44.10 -47.25 -92.30 77.39 197.97 96.80 122.12 131.64 -84.78 
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Appendix D: MATLAB Codes for the Optimization of the Exhaust and Working Fluid 

Nusselt Number Coefficients 

D.1  Optimization Start Code 

%*******************************************************************% 
%  This is the main optimization file to be run                     % 
%*******************************************************************% 
% Clear the workspace 
clear all; 
%**************************************************************************** 
%  Set nominal value for variables and ranges 
%**************************************************************************** 
  
% % Std. Form & Staggered Tube coefficients 
Fit0(1) = ; % a from Nuex --> 0.101747 is initial value used for first run 
Fit0(2) = ; % d from Nuwf --> use correlation values for d,e,f for first run 
Fit0(3) = ; % e from Nuwf 
Fit0(4) = ; % f from Nuwf 
  
  
% % % % % For Bell-Delaware correlation ---> 
% % % % Fit0(1) = ; % a from Nuex --> 0.101747 is initial value used for 
first run 
% % % % Fit0(2:53) = []; --> use correlation values for first run 
  
for ll = 1:4 
     
% Set the lower bounds 
% % For std form & staggered tube correlations 
FitLB = [0.001  0.001 0.001 0.001]; 
  
% % % % % For Bell-Delaware 
% % % % FitLB(1) = 0.101751; 
% % % % FitLB(2:53) = -10^-15; 
  
% Set the upper bounds 
% %  For std form and staggered tube correlations 
FitUB = [0.1019 1000.0 1000.0 1000.0]; 
  
% % % % for Bell-Delaware -->  
% % % FitUB(1:53) = 10000.0; 
  
%**************************************************************************** 
% Create the optimization options parameter structure 
% Try and guess decent values initially, but usually they need to be adjusted 
options = optimset('Display','iter',... 
                   'TolX',1e-5,...                      % Termination 
tolerance on x 
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                   'TolFun',1e-5,...                    % Termination 
tolerance on function value 
                   'MaxIter',1e6,...                    % Maximum number of 
iterations allowed 
                   'MaxFunEvals',1e6,...                % Maximum function 
evaluations 
                   'DiffMinChange',.0001,...            % Minimum change in 
variables for finite difference derivatives 
                   'DiffMaxChange',.001, ...            % Maximum change in 
variables for finite difference derivatives 
                   'Algorithm','interior-point');         
%**************************************************************************** 
A = []; b = []; Aeq = []; beq = []; 
% Call the optimization routine 
x = fmincon(@Numodel_thesis, Fit0, A, b, Aeq, beq, FitLB, FitUB, [], 
options); 
% Put the variables back in the workspace 
%**************************************************************************** 
% Check the results file for the minimum myfun 
Fit0 = x; 
End 
 
 
 

D.2  Calculating LSQ for the Optimization 

function myfun2 = Numodel_thesis(VAR,~) 
resultsfile = ('BaileyOpt_v#_date.csv'); 
% % %  For Std. Form & Staggered Tube Correlations 
av = VAR(1); % a for Nuex 
const(1) = VAR(2); % d for Nuwf 
const(2) = VAR(3); % e for Nuwf 
const(3) = VAR(4); % f for Nuwf 
  
% % % % %%% For Bell-Delware correlation  
% % % % av = VAR(1); % a for Nuex 
% % % % const(1:5) = VAR(2:6); 
% % % % const(6) = VAR(7)*10^-5; 
% % % % const(7:35) = VAR(8:36); 
% % % % const(36) = VAR(37)*10^-7; 
% % % % const(37:39) = VAR(38:40); 
% % % % const(40) = VAR(41)*10^-8; 
% % % % const(41:42) = VAR(42:43); 
% % % % const(43) = VAR(44)*10^-6; 
% % % % const(44) = VAR(45)*10^-8; 
% % % % const(45) = VAR(46); 
% % % % const(46) = VAR(47)*10^-4; 
% % % % const(47) = VAR(48)*10^-5; 
% % % % const(48) = VAR(49)*10^-7; 
% % % % const(49:51) = VAR(50:52); 
% % % % const(52) = VAR(53)*10^-8; 
  
  



227 

 

  
% Call the model routine 
% modeltype: 1 = std form; 2 = staggered tubes; 3 = Bell-Delaware 
[ Nuwfexp, Nuwfmod ] = Nuwfopt_thesis(av, 1, const); 
% Now, compute myfun 
myfun2 = 0; 
for i=1:length(Nuwfexp) 
    myfun2 = real(myfun2 + (log(Nuwfexp(i)) - log(Nuwfmod(i)))^2); 
end 
myfun2 = sqrt(myfun2) 
% Write the results file 
fd=fopen(resultsfile,'a'); 
c = clock; 
s = date; 
fprintf(fd, 'The current date is: %s,', s); 
fprintf(fd, 'The current time is: %.0f:%.0f.%.2f,', c(4), c(5), c(6)); 
fprintf(fd,'The parameters are:,'); 
% %  For std form & staggered tube correlations  
fprintf(fd, '%.7e,%.7e,%.7e,', av, const(1), const(2), const(3)); 
  
% % % % % % Bell-Delaware -->  
% % % % fprintf(fd, '%.7e,%.7e,%.7e,', av, const(1:5), const(6)*10^5, 
const(7:35), const(36)*10^7, const(37:39), const(40)*10^8, const(41:42), 
const(43)*10^6, const(44)*10^8, const(45), const(46)*10^4, const(47)*10^5, 
const(48)*10^7, const(49:51), const(52)*10^8); 
  
fprintf(fd, 'The least-squared factor is:,'); 
fprintf(fd, '%.7e\n', myfun2); 
fclose(fd); 
  
 
 

D.3  Calculating Nusselt Number Based on Optimization Coefficients 

function [ Nuwfexp, Nuwfmod ] = Nuwfopt_thesis( a, modeltype, const) 
  
% % Use calculated values for Re, Pr, k, and Rtotal to use for comparison 
Reex = []; 
Prex = []; 
kex = []; % [W/mK] 
  
Rewf = []; 
Prwf = []; 
kwf = []; % [W/mK] 
  
Rtot = []; 
  
R2 = 0.000526088953122251; 
  
b = 3/4; 
c = 1/3; 
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dti = 2*0.009525; 
dto = 2*0.0111125; 
Ltb = 0.4572; 
Dis = 0.08265; 
  
for i=1:length(Reex) 
    
    Nuex(i) = a*(Reex(i)^b)*(Prex(i)^c);  
     
    % Nuwf,exp 
    hex(i) = (Nuex(i)*kex(i))/dti; 
    R1(i) = 1/(6*pi*dto*Ltb*hex(i)); 
    R3(i) = Rtot(i) - R1(i) - R2; 
    hwf(i) = 1/(6*R3(i)*pi*dto*Ltb); 
    Nuwfexp(i) = hwf(i)*dto/kwf(i); 
    
    % Nuwf,model 
    %if modeltype == 'Zukauskas' "OR" 'Hausen' "OR" 'Short' "OR" 'Kim_min' 
"OR" 'Kim_max' "OR" 'Dittus-Boelter' "OR" 'Kern' "OR" 'Kays' 
    if modeltype == 1 
        d = const(1); 
        e = const(2); 
        f = const(3); 
        Nuwfmod(i) = d*(Rewf(i)^e)*(Prwf(i)^f); 
         
    %elseif modeltype == 'StaggeredTubes' 
    elseif modeltype == 2 
        Sn = 0.028575;  
        Sp = 0.034925; 
         
        % % Insert values for u, mu, and rho based on experimental 
        % conditions & working fluid 
        uwf = []; 
        muwf = []; 
        rhowf = []; 
         
        umax = (uwf(i)*(Sn/2))/(((((Sn/2)^2)+(Sp^2))^(1/2))-dto); 
        Redmax = (rhowf(i)*umax*dto)/muwf(i); 
         
        d = const(1); 
        e = const(2); 
        f = const(3); 
        Nuwfmod(i) = d*(Redmax^e)*(Prwf(i)^f); 
         
    %elseif modeltype == 'Bell-Delaware' 
    elseif modeltype == 3  
        % Rhombic arrangement of tubes 
        Ai = const(1); 
        Bi = const(2); 
        Ci = const(3); 
        Di = const(4); 
        Ei = const(5); 
        Fi = const(6); 
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        Ji = exp(Ai + Bi*log(Rewf(i)) + Ci*(log(Rewf(i))^2) + 
Di*(log(Rewf(i))^3) + Ei*(log(Rewf(i))^4) + Fi*(log(Rewf(i))^5));  
  
        % Recirculation flow effect correction 
        jBc(1:25) = const(7:31);%[const(2) const(6) -0.185339 0.59250929 -
0.5964414 -1.3564474 16.400326 -116.51387 362.367998 -368.18466 1.18264455 -
19.614535 140.62959 -451.59784 478.689065 -1.1031648 16.9758369 -113.6298 
396.869404 -457.40996 0.59140536 -8.7366322 56.8613935 -210.10305 
253.214998]; %[0.991889 0.02071706 -0.185339 0.59250929 -0.5964414 -1.3564474 
16.400326 -116.51387 362.367998 -368.18466 1.18264455 -19.614535 140.62959 -
451.59784 478.689065 -1.1031648 16.9758369 -113.6298 396.869404 -457.40996 
0.59140536 -8.7366322 56.8613935 -210.10305 253.214998]; 
        N2 = 2/6; 
        Fsbp = (pi*(Dis^2)/4)-6*(pi*((dto/2)^2)); 
        Jb = (jBc(1) + jBc(2)*N2 + jBc(3)*(N2^2) + jBc(4)*(N2^3) + 
jBc(5)*(N2^4)) + (jBc(6) + jBc(7)*N2 + jBc(8)*(N2^2) + jBc(9)*(N2^3) + 
jBc(10)*(N2^4))*Fsbp + (jBc(11) + jBc(12)*N2 + jBc(13)*(N2^2) + 
jBc(14)*(N2^3) + jBc(15)*(N2^4))*(Fsbp^2) + (jBc(16) + jBc(17)*N2 + 
jBc(18)*(N2^2) + jBc(19)*(N2^3) + jBc(20)*(N2^4))*(Fsbp^3) + (jBc(21) + 
jBc(22)*N2 + jBc(23)*(N2^2) + jBc(24)*(N2^3) + jBc(25)*(N2^4))*(Fsbp^4); 
  
        % Adverse Temp Gradient correction 
        if Rewf(i) <= 20 
            jRc(1:5) = const(32:36); 
            N1 = 6+6; 
            Jr = jRc(1) + jRc(2)*N1 + jRc(3)*(N1^2) + jRc(4)*(N1^3) + 
jRc(5)*(N1^4); 
        elseif Rewf(i) > 20 
            jRc1(1:5) = const(32:36); 
            N1 = 6+6; 
            Jr1 = jRc1(1) + jRc1(2)*N1 + jRc1(3)*(N1^2) + jRc1(4)*(N1^3) + 
jRc1(5)*(N1^4); 
            jRc(1:16) = const(37:52); 
            Jr = (jRc(1) + jRc(2)*Rewf(i) + jRc(3)*(Rewf(i)^2) + 
jRc(4)*(Rewf(i)^3)) + (jRc(5) + jRc(6)*Rewf(i) + jRc(7)*(Rewf(i)^2) + 
jRc(8)*(Rewf(i)^3))*Jr1 + (jRc(9) + jRc(10)*Rewf(i) + jRc(11)*(Rewf(i)^2) + 
jRc(12)*(Rewf(i)^3))*(Jr1^2) + (jRc(13) + jRc(14)*Rewf(i) + 
jRc(15)*(Rewf(i)^2) + jRc(16)*(Rewf(i)^3))*(Jr1^3);     
        end 
         
        % % Insert mu values for experimetal conditions & working fluid 
        muwf = []; 
        cpwf = (Prwf(i)*kwf(i))/muwf(i); 
  
        hwf(i) = Ji*cpwf*((1/Prwf(i))^(2/3))*Jb*Jr; 
  
        Nuwfmod(i) = hwf(i)*dto/kwf(i);      
     
end 
 
end 
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Appendix E: Results from Running Experimental Calculations and Optimizations 

Adjusting for Losses (Using α and β Temperatures) 

Table E.1: Best optimization results for the exhaust and working fluid Nusselt numbers and heat transfer 
coefficients taking ambient losses into consideration. 

Working 

Fluid 
Trial 

Tα  

[K] 

Tβ  

[K] 

Nuex,opt  

[-] 

hex,opt 

[W/m2K] 

Nuwf,opt  

[-] 

hwf,opt 

[W/m2K] 

Water 1 368.55 316.37 3861.97 5968.76 1.71 53.00 

Water 2 364.56 317.25 3873.83 5963.64 1.69 50.46 

Water 1 367.39 316.15 3877.10 5981.74 1.74 46.01 

Water 2 365.02 317.02 3872.37 5963.13 1.74 40.57 

Water 3 365.19 317.29 3862.12 5950.63 1.74 39.99 

Water 3 372.73 320.55 3799.13 5933.29 1.73 40.46 

EG 1 363.04 321.09 3849.67 5943.79 3.12 40.92 

EG 2 365.56 322.15 3835.11 5948.02 3.11 41.43 

EG 3 366.53 322.68 3826.23 5945.38 3.10 41.61 

PG 1 361.77 325.30 3831.73 5938.00 3.78 30.95 

PG 2 364.78 327.11 3811.02 5941.54 3.76 31.12 

PG 3 366.32 328.07 3800.22 5943.24 3.74 31.28 

50/50 1 364.50 322.08 3845.98 5956.45 2.20 50.18 

50/50 2 364.14 325.19 3827.41 5948.09 2.21 35.96 

50/50 3 363.88 326.40 3817.30 5939.45 2.21 31.82 
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Appendix F: Defining Flow via the Reynolds Number 

For internal flow, turbulent flow begins at Reynolds’ numbers greater than 2300. The range 

of experimental Reynolds’ numbers for the exhaust flow in the WHR experiments (3446-3508) 

were within the turbulent range, while those for the exhaust flow in the DPFHX experiments 

(1524-1538) were within the laminar range, as discussed. The hydrodynamic and thermal 

boundary layer lengths for fully developed, internal flow were calculated using the following 

equations [29]: 
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In the case of the utilized HEX, the value of Ltube/(2rtube,inner) was 24, thus indicating fully 

developed thermal and hydrodynamic boundary layers for the turbulent WHR experiments (i.e., 

for (x/D) > 10, fully developed flow can be assumed). Furthermore, the lengths of the entry 

lengths were calculated as 0.1905 m for both xfd,bl and xfd,th in turbulent flow (i.e., WHR 

experiments), only 41.7% of the total length of the tube, indicating fully developed flow by the 

tube outlet. However, for laminar flow in the DPFHX experiments, the thermal and 
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hydrodynamic entry lengths were greater than the tube length (xfd,bl and xfd,th of 1.45 and 1.016 

minimum, respectively), thus indicating developing flow.  

 


