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Abstract 

This dissertation investigates sound propagation in frequency-dependent materials. The 

study provides an improved understanding of how to numerically model the porous impedance 

materials more accurately under the conditions of complicated geometries. The finite difference 

time-domain (FDTD) method is implemented on the linearized Euler equation (LEE), along with 

the immersed boundary (IB) method and other numerical techniques to simulate the acoustic 

wave propagation in air, water, porous media and biological tissues.  

When material properties vary in the frequency domain, their time-domain counterpart 

may contain either convolution operation or fractional derivative operation. Both operations have 

been studied in this dissertation. Recursive algorithm methods, piece-wise constant recursive 

methods (PCRC) and piece-wise linear recursive methods (PLRC) are used to numerically solve 

for convolution operations, and fractional central difference (FCD) methods are used to solve for 

fractional Laplacians. Both methods show good results in comparison with analytical solutions.  

 A variety of models have been implemented to simulate the acoustic wave propagation 

inside porous media. The techniques include: the Zwicker and Kosten (ZK) phenomenological 

model, the Delany and Bazley model, various porosity two-parameter models, the time-domain 

boundary condition (TDBC) models, and Wilson’s relaxation model (WRX).  A new method is 

also proposed that utilizes the ANSI/ASA-S1.18 measurements to construct a new relaxation 

function. The new relaxation function can improve the prediction from the TDBC and WRX 

models significantly. 

 The ZK and WRX models have also been used in predicting the noise reduction of a 

house. The noise due to transmission and vibration of the wall is modeled as a simple wave 

transmission through a porous material layer. A curve fitting method is used to match acoustic 
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properties of the wall material. By assembling all the materials together, the over-all acoustic 

response of a house can be simulated.  

 When acoustic wave propagating in biological tissues, wave propagation equations were 

previously solved either with convolutions, which consume a large amount of memory, or with 

pseudo-spectral methods, which cannot handle complicated geometries effectively. The approach 

described in this study employs FCD method, combined with the IB method for the FDTD 

simulation.  It also works naturally with the IB method which enables a simple Cartesian-type 

grid mesh to be used to solve problems with complicated geometries. 

This work also studies acoustic scattering effects caused by 2D or 3D vortices. The LEE 

is used to investigate sound wave propagation over subsonic vortices. Instead of traditional direct 

numerical simulation (DNS) methods, the new approach treats vortex flow field as a scattering 

background flow and solves the acoustic field with the LEE solver. The numerical method uses a 

high-order WENO scheme to accommodate the highly convective background flow at high Mach 

numbers. The study focuses on the acoustic field scaling laws scattered by the 2D and 3D 

vortices.  
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Chapter 1.  Introduction 

Sound propagation problem has been a research topic for several decades because of its 

board applications. The traditional method for studying wave propagation problem is usually in 

the frequency domain. The research presented here uses a time-domain method to simulate the 

acoustic propagation phenomenon. When wave propagating inside air saturated porous media or 

water saturated biological tissues, the acoustic response of the material depends on the material 

properties. Usually material acoustic properties such as: flow resistivity 𝜎𝜎, porosity Ω, and 

tortuosity 𝑞𝑞 are functions of frequency. Hence, the corresponding model should also be 

frequency dependent. However, since the frequency-dependent material model is either difficult 

to implement or inaccurate in the time-domain simulation. Therefore, this topic becomes the goal 

that author intend to pursue. 

1.1 Research Background 

The history of acoustic propagation study can be traced back to the eighteenth century 

starting with the famous wave equation. A very detailed understanding of acoustics has 

developed from experiments and theories dating back to antiquity. The study of acoustics 

problems usually includes two proposes: from physical scientific point of view to understand the 

wave propagation phenomenon; from engineering point of view to control the sound propagation 

to benefit people’s life. 

The study of sound propagation over impedance surface can be dated back to the 1940s 

starting from the electromagnetic wave propagation theory [1]. With the development of the 

modern science, many approaches have been proposed. There are analytical methods that include 

the multiple-scattering theory (MST) method [2-4], plane wave expansion (PWE) analysis [5-8], 

and numerical methods that include the fast field program (FFP) [9-12] parabolic equation (PE) 
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method [9, 10, 13-15], boundary element methods (BEMs) and finite element methods (FEMs) [16-

21].  

Finite-difference time-domain (FDTD) methods, as a time-domain technique, can capture 

the evolution of the acoustic pressure. When wave is propagating over complicate geometries, 

the FDTD simulation can capture the development of reflection or diffraction waves, which is 

hard to be obtained by a frequency-domain technique. With the help of high performance 

computers, FDTD methods have evolved to be a powerful and effective way for simulating 

sound propagation around complex geometries, different media, and moving objects. By using 

parallel computation techniques, the time consumption for simulation can also be significantly 

reduced [22-26]. 

 

1.1.1 Porous media modeling 

A porous medium is a material containing pores. The skeletal portion of the material is 

often called “frame”. Based on different frame condition, the porous media model can be 

categorized into two types: rigid frame model and elastic frame model.  

The wave propagation in a fluid saturated elastic frame porous material is well described 

by the Biot theory [27, 28]. The theory describes two classical waves (one “fast” compressional 

wave and one shear wave), in addition to a second “slow” compressional wave, which is highly 

dependent on the saturating fluids. Biot’s theory addressed the coupling effects between the 

deformation of fluid saturated porous media and the transient pore fluid flow based on a linear 

stress-strain relation. The original equations have been reformulated by many others [29-34] 

which built the foundation of poroelasticity, recently its application can also be found in the 
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vibro-acoustics [35-38]. However, the research presented in this work will focus on the rigid 

frame porous medium. 

When the frame of the porous material is rigid, there are two ways to model the wave 

propagation phenomenon happened inside it. The first approach utilized the surface impedance 

relationship to generate a boundary condition. This method has been widely used in the past. 

Many frequency domain models have been proposed such as: Delany-Bazley empirical equation 

[39], Miki model [40], Attenborough’s microstructure model and variable porosity model [41, 

42]. More recently, Ostashev [43] implemented a time-domain boundary condition (TDBC) 

which transformed the frequency domain impedance relation into the time domain. The TDBC 

method allows material properties to vary with frequency which provides a better prediction on 

the reflection effect and can be easily coupled with the FDTD method. The second approach 

explicitly models the porous material layer. Usually Zwikker-Kosten (ZK) phenomenological 

model is used [44-46]. The ZK model assumes porous material properties are constants or weak 

functions of frequency. Therefore, its prediction for low flow resistivity porous material in high 

frequency range shows large deviations from other sophisticated models [47]. Wilson’s 

relaxation model (WRX) [48, 49] introduces the relaxation functions which allow the material 

properties to vary in frequency domain. Hence, the corresponding time-domain relaxation model 

can model the sound absorption process that happens inside porous material more accurately. 

1.1.2 Lossy media modeling  

The lossy medium is a medium in which a significant amount of acoustic energy is absorbed 

per unit distance traveled by sound wave. Most of the biological tissues can be considered as 

lossy media. Due to the effects caused by heterogeneous tissue media, thermal conduction, 

viscous dissipation, and chemical relaxation processes, ultrasound propagation processes inside 

human tissues are more complicated than those in a simple medium, such as air. Sound 
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attenuation is usually used to quantify energy loss in lossy media, which has also been found 

following the power law in the frequency domain as [50, 51]: 

 𝛼𝛼 = 𝛼𝛼0|𝜔𝜔|𝑦𝑦 (1) 

 where 𝛼𝛼 is the sound attenuation with a unit of Np/m, 𝛼𝛼0 is absorption coefficient, 𝜔𝜔 is angular 

frequency, and 𝑦𝑦 is power law exponent of the specific material with a value between 0 to 2. 

With this relation, Szabo derived a causal convolution operator that accounted for power law 

absorption with a non-integer frequency dependence [50]. This operator was later rewritten as a 

fractional derivative by both Chen and Holm [52] and Liebler and his colleagues [53], and then 

derived more formally by Kelly et al.[54]. With Szabo’s analogy, Chen and Holm [55] and 

Wismer [56] derived fractional derivative operators based on Stokes’ wave equation. While 

Caputo/Wismer used a fractional time domain operator, Chen and Holm utilized the idea of a 

fractional Laplacian. 

1.1.3 Vortex induced acoustic scattering 

Sound scattering caused by vortices has been studied over the past few decades to investigate 

the sound propagation through atmospheric turbulence [57-59], to understand the acoustic 

radiation in subsonic jets [60-62], or just to understand the scattering phenomenon in different 

flow conditions [63-66]. 

The relative scales of incident acoustic wave length and vortex size (i.e., the vortex core size) 

influence the scattering effects of vortices. The Born limit is when the acoustic wavelength is 

much longer than the vortex size. Most of the studies are within the Born limit because it is 

analytically tractable. Colonius et al. studied single vortex 2D scattering effect by directly 

solving compressible Navier-Stocks equations numerically. Ford and Smith [66, 67] separated 

the flow field into inner vortical region and outer wave region by using matched asymptotic 
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expansions and Lighthill’s acoustic analogy approximation, and successfully derived the leading-

order scattering amplitude for 2D and 3D vortices. Hattori and Smith [64] studied the scattering 

effect by Hill’s spherical vortex (HSV) and Gaussian vortex rings with direct numerical 

simulation. The 3D scattering effects agree with their analytical solution very well. Cheinet et al. 

[68] used finite difference time-domain (FTDT) method simulated 2D scattering effects under 

larger and small scattering angles. Most of their studies focused on low Mach number and 

stationary single vortex. Recently, Clair [69, 70] used Linearized Euler equations (LEE) model 

studied influence of source frequency, velocity, vortex magnitude and their effects on scattering. 

They put the vortex motion into the simulation, the sound pressure level and its relation with 

Strouhal number are thus studied, but scaling law for the scattering effect is yet not mentioned. 

1.2 Research Object and Motivation 

1.2.1 Frequency-dependent porous media modelling  

The ZK equation in the time domain is easy to implement with flow resistivity 𝜎𝜎, 

porosity Ω, and tortuosity 𝑞𝑞, being constants. The model is easy to implement but usually not 

accurate especially when flow resistivity is low, and frequency is high, which motivated the 

study of frequency-dependent material model. When we apply the frequency-dependent material 

model in the time domain, the Fourier transform will introduce convolution operations. The 

calculation of convolution includes the integration over time, which requires to store the previous 

solutions in the porous medium at all previous time steps. For a three-dimensional (3D) 

geometry, a tremendous memory space is thus needed. Consequently, the use of these equations 

has been limited to one- or two-dimensional geometries (1D/2D). Therefore, an efficient 

numerical method is necessary to evaluate convolutions with a reduced computational cost. 
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This problem has been thoroughly studied in electromagnetic propagation as many real 

materials have frequency-dependent properties. Three main methods emerged; all are based on 

the approximation of frequency-dependent parameters by a rational function in the frequency 

domain. The time-domain counterpart corresponds to a sum of exponentially decaying functions 

which permits a simplified computation of the convolutions [71].  

In the first method, a time discretization of the convolution is introduced. Assuming that 

the variables are constant over one timestep or vary linearly between two consecutive time steps, 

the evaluation of the convolution can be reduced to that of recursive expressions. Thus, the value 

of the convolution at the actual time step only depends on the one or two previous time steps. 

These methods are called recursive convolution methods [72, 73].The second method uses the Z-

transform formalism to discretize in time the equations [71, 74]. As shown by Sullivan (1996), 

the expressions obtained are very close to those of the recursive convolution methods. In the 

third method, originated from the work of Joseph [75], a differentiation of the convolution is 

performed, yielding an additional a) set of first-order differential equations, which are solved 

using the same numerical techniques as employed for the propagation equations. This method is 

referred to as the auxiliary differential equations (ADE) method and can be seen as a generalized 

recursive method as no additional approximations on the time variations of the variables are 

introduced. 

To implement WRX model [47] and Ostashev’s TDBC model [43], we would like to 

address this issue by using the recursive algorithm which can solve the convolution operation 

numerically with only one or two steps of the previous solution [72, 73].  
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1.2.2 Frequency-dependent lossy media modelling 

To simulate sound propagation inside lossy media, different numerical approaches have 

been proposed over the past few decades. Classical thermo-viscous theory predicted that the 

acoustic sound would attenuate inside lossy media due to thermal conduction effects and viscous 

dissipation [76]. However, the theory can only predict square-law attenuation (𝑦𝑦 =  2). Sparrow 

and Raspet implemented the finite-difference time-domain method (FDTD) in the 2D 

axisymmetric domain with nonlinear effects where the power attenuation law was not considered 

[77]. Szabo proposed a time-domain causal convolution operator that account for both power law 

absorption and dispersion(1 < 𝑦𝑦 < 2) [50]. However, the implementation of convolution 

integration consumes extremely large memory [78], especially when the computational domain 

is large. To improve the model, a fractional Laplacian model replaced the convolution model 

[52].  

Treeby and Cox implemented Chen and Holm’s model with the pseudo-spectral method 

[79], but theirs “k-space” method still needs to transform spatial derivatives back to the 

frequency domain which makes it difficult to deal with complicated geometries. Our approach 

here uses the fractional central difference (FCD) method and the FDTD method along with the 

immersed boundary (IB) method which can directly solve the model in the time domain along 

with the complicated geometry. 

1.2.3 Vortex scattering effect study 

From the low frequency theory, the scattering magnitude should scale with 𝑟𝑟−
1
2  [60] in 2D 

vortices, where 𝑟𝑟 is the distance away from the vortex center, which it is only true for a compact 

vortex, e.g. zero-circulation vortex or vortex pair in 2D. When circulation is non-zero due to the 

slowly decaying mean flow field, the long-range refractive effect will affect the result [63, 65]. A 
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vortex pair composed of two opposite orientation of finite-circulation vortices, as another form 

of zero-circulation vortex, is then of interest to study. The refractive effect of a 3D vortex is 

similar to a 2D compact vortex, and therefore the scattering effect of a 3D vortex would be 

similar to that of a compact 2D vortex.  

The method for studying scattering effect via direct numerical simulation (DNS) solves 

vortex induced flow field together with the acoustic field caused by that. Therefore, it is very 

expensive and not practical in studies with 3D big domains or complex geometries. In this study, 

we use the linearized acoustic propagation equation to study acoustic scattering. We use the 

analytical solutions for the background vortex flow for both 2D and 3D vortices. In this sense, 

the DNS result is a fully coupled flow and acoustic solution, and the linearized simulation result 

in this study is a one-way acoustic solution where the flow influences acoustic propagation, but 

not vice versa. We show, in this study, the one-way acoustic simulation compares very well with 

the full DNS results by Colonius et al (1994), demonstrating that the linearized simulation is a 

valid tool at least for studying vortex scattering effects.  

If we treat the background vortex flow as the source of acoustic scattering, by following the 

concept of the Lighthill analogy, we can have: 

1
𝑐𝑐02
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2

− ∇2𝑝𝑝 =
∇2𝑇𝑇𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

 (2) 

 

where 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑎𝑎𝑎𝑎�𝑢𝑢𝑖𝑖𝑎𝑎𝑎𝑎𝑢𝑢𝑗𝑗 + 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗𝑎𝑎𝑎𝑎� is the Lighthill stress tensor that behaves as the acoustic source 

in the acoustic propagation equation,𝑝𝑝 is the acoustic pressure, 𝑐𝑐0 is the speed of sound, 𝜌𝜌𝑎𝑎𝑎𝑎 is 

the background atmosphere density, and  𝑢𝑢𝑖𝑖𝑎𝑎𝑎𝑎and  𝑢𝑢𝑖𝑖 are respectively background flow velocity 

and acoustic velocity. Therefore, the refraction effect of the background vortex flow can be 

considered as the source of acoustic scattering. The solution of Eq. (2) can be written as  
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𝑝𝑝 = ∫ 𝐺𝐺(𝑥𝑥 − 𝜉𝜉, 𝑡𝑡 − 𝜏𝜏)𝑇𝑇𝑖𝑖𝑖𝑖(𝜉𝜉, 𝜏𝜏)𝑑𝑑𝑚𝑚𝜉𝜉𝜉𝜉𝜉𝜉 (3) 

where 𝐺𝐺 is the 2D or 3D Green function and m= 2 or 3, if the problem considered is 2D or 3D, 

respectively. When the vortex flow is treated as the source in the Lighthill stress tensor, the 

velocity decay rate of the vortex versus the distance from the vortex center influences the 

distance scaling law of acoustic scattering. The Lighthill tensor in the vortex background flow 

follows the vortex velocity decay rate with 𝑇𝑇𝑖𝑖𝑖𝑖~1/|𝜉𝜉|𝑛𝑛, where, e.g.,  𝑛𝑛 = 1 for a vortex with 

finite circulation, 𝑛𝑛 = 2 for a vortex dipole, and 𝑛𝑛 = 3 for a 3D Hill’s vortex.  If the source is 

compact, i.e., the source strength decays fast with the distance, the scaling law of acoustic 

scattering follows that of the Green function. The 2D acoustic pressure scattering scales 

with 1/𝑟𝑟
1
2, and the 3D scales with 1/𝑟𝑟. In this study, we investigate the distance scaling laws of a 

single vortex with a finite circulation, a single vortex with exponentially decaying circulation, a 

stationary or moving vortex dipole, and a stationary 3D Hill’s vortex. 

 We consider the cases in which the wavelength of incident sound is a few times longer than 

the characteristic length scale of the vortex to align with the Born approximation. In this paper, a 

plane incident wave at a frequency of 85Hz is used to study the scattering effects through 

vortices. 

For high-speed vortex flow, the velocity and its gradients are large, and numerical simulation 

without employing special numerical treatment for the convection terms can often suffer from 

numerical errors in the regions around the high-speed vortices. We address the problem by using 

a high order WENO scheme [80-89] to solve the convection-dominant background flow in the 

time-domain numerical simulation. This scheme not only achieves higher-order accuracy near 

the high gradient velocity regions, but also maintains a stable and non-oscillatory solution. On 

the other hand, to save the computational effort for the high-order scheme, the WENO scheme 
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does not need to be applied to the entire computational domain, but only to the regions with high 

velocity. 

 

1.3 Dissertation Outline 

This dissertation concentrates on the numerical modeling the acoustic wave propagation 

phenomena in frequency-dependent materials, improving the numerical model performance and 

apply the model to explain some physical phenomenon. Different models will be applied and 

reviewed. The numerical results are verified by the existing analytical solutions or measurement 

results.  

Chapter two will compare time-domain ZK model simulation with ANSI (American 

National Standard Institution) model results. Chapter three will review the popular time-domain 

porous material models and discuss a new method of constructing relaxation function, which can 

improve the prediction of the original frequency-dependent material model. A fitting method will 

be presented in Chapter four to determine the material parameters of each component of a house. 

Then the corresponding parameters are applied to the model of a house near an airport. Chapter 

five investigates the ultrasound propagation in biological tissues. Chapter six studies the 

scattering law caused by wave propagation over 2D and 3D vortices. In the last chapter, a 

summarize is presented for the main conclusions and new contributions of this dissertation work. 
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Chapter 2. A Time-Domain Simulation for Comparison with the ANSI Impedance 

Measurement 

2.1 Introduction 

In this chapter, we will study two problems: firstly, we would like to compare the 

prediction of time-domain ZK model simulation with the results from ANSI (American National 

Standard Institute) one- and two-parameter model. Second, we would like study the influence 

bought by ground roughness and each model’s performance in roughness ground condition.  

2.2 Numerical method 

2.2.1 ANSI model 

The ANSI standard [90], developed by Acoustical Society of America, contains procedures 

for obtaining the real and imaginary parts of normalized acoustic impedance of ground surfaces 

from measurements of the sound pressure levels at two separated microphones using specified 

geometries. ANSI provides two measurement setups, Geometry A and Geometry B. The design 

is given in Figure 1 with the parameters listed in Table 1. 

 

Figure 1. Geometrical definition: ℎ𝑠𝑠=source height, ℎ𝑡𝑡= top microphone height, ℎ𝑏𝑏= bottom microphone height, 
𝑑𝑑=source/receiver horizontal separation 

 

Table 1 Parameters in ANSI’s recommended geometry set up 
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 Geometry A Geometry B 

Source height (ℎ𝑠𝑠)  0.325 m 0.20 m 

Upper microphone height (ℎ𝑡𝑡) 0.46 m 0.20 m 

Lower microphone height (ℎ𝑏𝑏) 0.23 m 0.05m 

Horizontal separation (𝑑𝑑) 1.75 m 1.0 m 

 

Two frequency domain impedance models are provided in the ANSI’s standard, one-

parameter model and two-parameter model. The one-parameter model is the Delany and Bazley 

model [39], which is expressed as: 

𝑍𝑍𝑠𝑠
𝜌𝜌0𝑐𝑐0

= 1 + 9.08 �
1000𝑓𝑓
𝜎𝜎0

�
−0.75

+ 𝑖𝑖 11.9 �
1000𝑓𝑓
𝜎𝜎0

�
−0.73

 (4) 

where 𝜎𝜎0 is the flow resistivity of the ground material, 𝑍𝑍𝑐𝑐 is the ground surface impedance, 𝑓𝑓 is 

the frequency, 𝜌𝜌0 is the density of the air, and 𝑐𝑐0 is the speed of sound in air. The two-parameter 

model is also called variable porosity model [42], which is expressed as 

𝑍𝑍 =
1 + 𝑖𝑖
�𝜋𝜋𝜋𝜋𝜌𝜌0

�
𝜎𝜎𝑒𝑒
𝑓𝑓

+ 𝑖𝑖
𝑐𝑐0𝛼𝛼𝑒𝑒
4𝜋𝜋𝜋𝜋𝜋𝜋

 (5) 

where 𝜎𝜎𝑒𝑒 = 𝜎𝜎0
𝑞𝑞

  is the effective flow resistivity [91], 𝛼𝛼𝑒𝑒 represents an effective rate of change of 

porosity with depth, and 𝑞𝑞 is the tortuosity of the porous media. 

2.2.2 Linearized Euler Equation  

The linearized Euler equation for acoustic propagation in the air and porous ground are: 

𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ (𝒖𝒖𝒂𝒂𝒂𝒂 ∙ ∇)𝒖𝒖 + (𝒖𝒖 ∙ ∇)𝒖𝒖𝒂𝒂𝒂𝒂 = −𝛼𝛼𝑎𝑎𝑎𝑎∇𝑝𝑝 − 𝛼𝛼∇𝑝𝑝𝑎𝑎𝑎𝑎 + 𝑓𝑓𝑢𝑢 (6) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝒖𝒖𝑎𝑎𝑎𝑎 ∙ ∇)𝑝𝑝 + (𝒖𝒖 ∙ ∇)𝑝𝑝𝑎𝑎𝑎𝑎 = −𝛾𝛾𝛾𝛾∇ ∙ 𝒖𝒖𝒂𝒂𝒂𝒂 − 𝛾𝛾𝑝𝑝𝑎𝑎𝑎𝑎(∇ ∙ 𝒖𝒖) + 𝑓𝑓𝑝𝑝 (7) 
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where 𝑓𝑓𝑢𝑢 and 𝑓𝑓𝑝𝑝 are fictitious body forces to enforce the velocity and pressure to accommodate 

the governing equations in air and  inside a porous medium, which are given by [2]: 

𝑓𝑓𝑢𝑢 = �
0,   𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝛼𝛼𝑎𝑎𝑎𝑎∇𝑝𝑝 + 𝛼𝛼∇𝑝𝑝𝑎𝑎𝑎𝑎 + (𝒖𝒖𝑎𝑎𝑎𝑎 ∙ ∇)𝒖𝒖 + (𝒖𝒖 ∙ ∇)𝒖𝒖𝑎𝑎𝑎𝑎 −
Ω
𝑞𝑞2 𝛼𝛼𝑎𝑎𝑎𝑎  (∇𝑝𝑝 + 𝜎𝜎0𝒖𝒖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

(8) 

𝑓𝑓𝑝𝑝 = �
0,   𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝛾𝛾𝛾𝛾∇ ∙ 𝒖𝒖𝑎𝑎𝑎𝑎 + 𝛾𝛾𝑝𝑝𝑎𝑎𝑎𝑎(∇ ∙ 𝒖𝒖) + (𝒖𝒖𝑎𝑎𝑎𝑎 ∙ ∇)𝑝𝑝 + (𝒖𝒖 ∙ ∇)𝑝𝑝𝑎𝑎𝑎𝑎 −
𝛾𝛾𝑝𝑝𝑎𝑎𝑎𝑎
𝛺𝛺

(∇ ∙ 𝒖𝒖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (9) 

where 𝒖𝒖𝑎𝑎𝑎𝑎, 𝑝𝑝𝑎𝑎𝑎𝑎 and 𝛼𝛼𝑎𝑎𝑎𝑎 are the time averaged velocity, pressure, and specific volume, 

respectively; 𝒖𝒖, 𝑝𝑝 and 𝛼𝛼 are the corresponding acoustic fluctuations, with 𝛼𝛼  given as: 

𝛼𝛼 = −
𝑝𝑝

𝛾𝛾𝑝𝑝𝑎𝑎𝑎𝑎𝜌𝜌𝑎𝑎𝑎𝑎
 (10) 

where 𝛾𝛾 is the specific-heat ratio. The coefficients, Ω, 𝑞𝑞, and 𝜎𝜎0 in Eqs. (8) and (9), are porous 

medium porosity, tortuosity, and flow resistivity, respectively. A second-order finite difference 

numerical scheme both in time and space [25] is applied for the simulations in this study. 

For the cases in this paper, we use the values 𝑝𝑝𝑎𝑎𝑎𝑎 = 100𝑘𝑘𝑘𝑘𝑘𝑘, 𝛾𝛾 = 1.4, the density of 

air 𝜌𝜌𝑎𝑎𝑎𝑎 = 1.225 𝑘𝑘𝑘𝑘/𝑚𝑚−3, the porosity Ω = 0.3, and the tortuosity 𝑞𝑞 = √3. The flow 

resistivity 𝜎𝜎0 varies for the porous ground depending on the impedance. 

2.3 Numerical simulation and results discussion 

We will conduct two studies here. The first study is in flat smooth ground condition as 

specified in the ANSI’s standard. The second setup will introduce the ground roughness 

condition to investigate the difference. 

2.3.1 Smooth ground study 

Figure 2 shows “Geometry A” setup of ANSI’s standard [90]. The computational domain is 

2.5 meters in both y-direction and z-direction. A uniform grid mesh is used in the simulation, 

with the grid size set to be 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 0.002𝑚𝑚, which ensures that there are at least 20 grid 

points within one shortest wavelength for the interested frequency(4000Hz). The Courant–
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Friedrichs–Lewy (CFL) number is set to be 0.3 to guarantee a stable and efficient simulation. 

The simulation time is 8 ms, which allows the wave-front and reflection wave can fully pass all 

the receivers. 0.2 m perfectly matched layer (PML) [92] is placed on the top and right boundary 

to prevent the reflections from the computation boundary. 0.5 m porous medium layer is placed 

at the bottom of the boundary. 

 

Figure 2. Simulation setup for ANSI Geometry A 

A broadband point source in the form of Gaussian distribution is used as: 

𝑝𝑝 = exp(−300𝑟𝑟2) (11) 

where 𝑟𝑟 is the distance between the sound source and any location in the domain. The source and 

receivers’ location are specified according to ANSI’s standard. The study of “Geometry B” uses 

the same computational domain. The details of each source and receiver setup can also be found 

in Table 1. 

 The level difference (𝐿𝐿𝐿𝐿) is the difference between the upper and lower receiver’s sound 

pressure level (𝑆𝑆𝑆𝑆𝑆𝑆), which is defined as: 

𝐿𝐿𝐿𝐿(𝑓𝑓) = 𝑆𝑆𝑆𝑆𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑆𝑆𝑆𝑆𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 20 log10
𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 
(12) 
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where 𝑝𝑝𝑝𝑝𝑝𝑝 is the power spectrum density (PSD), which can be obtained by Fourier transform 

acoustic pressure time history collected at each receiver location. The level differences 

calculated at each one-third octave band center frequency between 250 and 4000Hz are given in 

Figure 3 and Figure 4. It should be noticed, the Two-parameter model’s effective flow resistivity 

is calculated based on the relation of 𝜎𝜎𝑒𝑒 = 𝜎𝜎0
𝑞𝑞

 , we also let 𝛼𝛼𝑒𝑒 = 0 for an infinite depth of ground. 

The corresponding curves are generated according to the method provided in ANSI’s Annex C 

[90].  

 It can be found that the ZK model’s results only matches with ANSI’s prediction at low 

frequency when flow resistivity is low in Figure 3 (a) and Figure 4 (a). By increasing the flow 

resistivity, the frequency region that matches also increases as presented in Figure 3 (b) and 

Figure 4 (b). When flow resistivity is very high, three curves match very well.  

𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

= −
Ω
𝑞𝑞2
𝛼𝛼𝑎𝑎𝑎𝑎 (∇𝑝𝑝 + 𝜎𝜎0𝒖𝒖) 

(13) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝛾𝛾𝑝𝑝𝑎𝑎𝑎𝑎
𝛺𝛺

(∇ ∙ 𝒖𝒖) 
(14) 

Let’s take a close look at ZK equation in Eqs. (13) and (14). The velocity equation Eq. 

(13) says if the flow resistivity 𝜎𝜎0 is low, the prediction of acoustic velocity and pressure also 

depends on porosity Ω and tortuosity 𝑞𝑞. We are testing different flow resistivity conditions with 

same Ω and 𝑞𝑞. Different flow resistivities implies different porous materials, which means the 

porosity Ω and tortuosity 𝑞𝑞 values should also be different in each simulation. Therefore, if we 

keep the values same across all simulations, the result of course will deviate from the data 

provide by ANSI model, especially when flow resistivity is low. On the other hand, when flow 

resistivity is very high, the unsteady term on the left-hand side (LHS) of the equation comparing 

with the term 𝜎𝜎0𝒖𝒖 , is a very small term. So, we can set LHS of Eq. (13) to 0. Therefore, we can 
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drop the constant term Ω
𝑞𝑞2
𝛼𝛼𝑎𝑎𝑎𝑎 on the right-hand side of Eq. (13), which leads to ∇𝑝𝑝 = −𝜎𝜎0𝑢𝑢. The 

pressure velocity relation tells us at this moment, only flow resistivity will influence the results 

regardless porosity and tortuosity. That explains when 𝜎𝜎 reaches 1 𝑀𝑀𝑀𝑀𝑀𝑀 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2 or beyond, the 

ZK model’s results agree with the other two models’ prediction pretty good in Figure 3 (d) and 

Figure 4 (d). Therefore, to make a reasonable comparison we will focus on the high flow 

resistivity material hereafter.   
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(a)       (b)  

  

(c)       (d) 

  

Figure 3. Comparison of the level difference between ZK model with One and Two-parameter model for ANSI 
Geometry A in different flow resistivity condition, a) 𝜎𝜎 = 10000 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2; b) 𝜎𝜎 = 100000 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2; c) 𝜎𝜎 =

1000000 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2; d) 𝜎𝜎 = 3200000 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2 
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(a)       (b) 

 

(c)       (d) 

 

Figure 4. Comparison of the level difference between ZK model with One and Two-parameter model for ANSI 
Geometry B in different flow resistivity condition, a) 𝜎𝜎 = 10000 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2; b) 𝜎𝜎 = 100000 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2; c) 𝜎𝜎 =

1000000 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2; d) 𝜎𝜎 = 3200000 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2 

2.3.2 Roughness ground study 

Recently an interesting study conducted by Bashir and his colleague shows the ground 

roughness plays important role in sound propagation near ground [93]. Therefore, we would like 

to verify our simulation with theirs measurement results before we implement the roughness 

ground to the ANSI’s setup. 
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Figure 5 gives the simulation set up, the simulation domain is 4 meters in the y-direction and 

2 meters in the z-direction. PML thickness is 0.5 meters in left, top and right boundary to absorb 

the reflection waves. 15 Triangles are equally placed on the ground from y=0.555m to 1.145m 

with a center-to-center space of 0.04m. The width of each triangle is 0.03m and height is 

0.015m. Grid size 𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑 is set to be 0.001𝑚𝑚, which will ensure each triangle has enough 

resolution. Meanwhile, this setup can also resolve an 8000Hz signal with 21grids. To capture 

high frequency signal, a gaussian plus in the form of Eq. (15) is used. This source is placed at 

(0.5, 0.07), a receiver is placed at (1.2, 0.07). We set simulation time to be 15ms, which allows 

wave front and ground reflection wave be able to propagate all the way to the right. 

𝑝𝑝 = exp(−1000𝑟𝑟2) (15) 

The triangles on the ground are modeled with porous medium with flow resistivity 𝜎𝜎0 =

3.2 𝑀𝑀𝑀𝑀𝑀𝑀 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2. Two additional simulations are also conducted with the similar set up, one 

with 9 triangles (0.08m center-to-center space) and the other with smooth rigid ground.   

 

Figure 5. Roughness ground simulation set up 
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 Contours at simulation time 𝑡𝑡 = 2.5𝑚𝑚𝑚𝑚 are provided in Figure 6. Diffraction caused by 

the triangles can be clearly observed. When center-to-center space is set to be 0.08m in Figure 6 

(b) the diffraction is much clear. The larger space will let diffraction wave generated by previous 

triangle have longer time to develop without being interrupted, which cause the Figure 6 (b) 

looks much busy than Figure 6 (a). On the other hand, if two triangles are very close, the 

diffraction wave may not have enough time to develop, and many local cancelations are likely to 

happen very soon, which lead to Figure 6 (a) looks more close to the smooth ground contours 

given in Figure 6 (c). 

 

 

(a) 

 
(b) 
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(c) 

 
Figure 6. Pressure contours at simulation time t = 2.5ms with (a) center-to-center distance 0.04m, (b) center-to-

center distance 0.08m; (c) smooth ground 

 Figure 7 compares relative sound pressure level between numerical simulation with 

measurements from Bashir et al.[93]. The relative sound pressure level is calculated with: 

𝑅𝑅𝑅𝑅𝑅𝑅. 𝑆𝑆𝑆𝑆𝑆𝑆 = 20 log(𝑝𝑝𝑝𝑝𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔/𝑝𝑝𝑝𝑝𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) (16) 

 where 𝑝𝑝𝑝𝑝𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the PSD from each roughness ground simulation, and 𝑝𝑝𝑝𝑝𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is 

obtained from a free space simulation (no ground). Both roughness ground configurations 

simulation results agree with measurements data. The simulation validated our immersed 

boundary method.  

On the other hand, it should be noticed that ANSI’s measurements are normally done 

under smooth ground condition. However, the solid curve in Figure 7 shows the smooth ground 

performance would be very different from that of a roughness ground condition.  
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Figure 7. Relative sound pressure level comparison between simulations with measurement data from Bashir, et.al 

Since implementation of immersed boundary method is verified, we are ready to bring 

these roughness ground features to our original ANSI’s simulation. Both roughness ground 

configurations are tested with triangles equally placed from 0 to 2.3m. Porous ground flow 

resistivity are set to be 3.2𝑀𝑀𝑀𝑀𝑀𝑀 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2 to remove the influence from porosity and tortuosity.  

Figure 8 compares the level difference between roughness ground simulation results and 

ANSI models’ prediction. It should be noticed that if roughness height is less than half of the 

shorted wavelength interested, according to ANSI, one and two-parameter model’s prediction 

should still be valid. In our case, the highest frequency we interested is 4000Hz, which implies 

the height variation should be less than 5cm. However, even the triangle height we used is 

1.5cm, which is much lower than the requirement, level difference curves in Figure 8 indicated 

the roughness ground prediction should be different from smooth ground. The peak frequency is 

found to shift towards low frequency region. When roughness spacing is bigger more oscillations 

can be observed at high frequency range. 
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Figure 8. Comparison of the level difference between ZK model prediction in roughness ground with One and Two-
parameter model for ANSI (a) Geometry A, (b) Geometry B. 

 

2.4 Summary 

Time domain simulations with immersed boundary method are used to predict the acoustic 

response from porous medium ground. ZK model shows very good agreement with ANSI’s 

measurement data especially under the condition of high flow resistivity. The numerical method 

is also validated by good agreement with roughness ground measurement data provided by 

Bashir et al.[93]. Once roughness condition is brought to the original ANSI setup, mismatches 

can be found even ground height variations are still within the allowance of the ANSI’s 

requirement, which indicate the necessarily of the numerical simulation. 
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Chapter 3. Sound propagation simulation inside frequency-dependent porous material 

3.1 Introduction 

As we mentioned the inaccuracy in the low flow resistivity prediction in previous 

chapter, so we will explore the solution in this chapter. We will start with reviewing the existing 

popular time-domain porous media models and implement two frequency-dependent models. 

After comparing our implementation of the frequency-dependent model with the analytical 

solutions and the measurement results, we will propose a method based on ANSI/ASA-S.1.18 

measurements and ANSI’s two-parameter model. The method will construct a new relaxation 

function based on physical measurement results, which can improve the existing model’s 

prediction significantly.  

3.2 Outdoor acoustic propagation equations 

3.2.1 Linearized Euler equations 

Considering porous material is saturated with air, sound propagation in air can be 

simulated by solving Euler equations, linearized around mean flow field with velocity 𝑢𝑢0, 

density 𝜌𝜌0 and pressure 𝑃𝑃0, the acoustic pressure 𝑝𝑝, and acoustic velocity 𝑢𝑢 are obtained by 

solving the resulting system in ideal gas as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑢𝑢0 ∙ 𝛻𝛻)𝑝𝑝 + (𝑢𝑢 ∙ 𝛻𝛻)𝑃𝑃0 = −𝛾𝛾𝛾𝛾𝛾𝛾 ∙ 𝑢𝑢0 − 𝛾𝛾𝑃𝑃0(𝛻𝛻 ∙ 𝑢𝑢) + 𝑓𝑓𝑝𝑝 (17) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑢𝑢0 ∙ 𝛻𝛻)𝑢𝑢 + (𝑢𝑢 ∙ 𝛻𝛻)𝑢𝑢0 = −
1
𝜌𝜌0
𝛻𝛻𝛻𝛻 −

1
𝜌𝜌
𝛻𝛻𝑃𝑃0 + 𝑓𝑓𝑢𝑢 (18) 

where 𝛾𝛾 is specific gas constant of air, 𝑓𝑓𝑝𝑝 and 𝑓𝑓𝑢𝑢 are the possible fictitious body force terms used 

in the immersed boundary method [88]. The equation system is solved with a second order finite 

difference scheme in both time and space [25].  
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3.2.2 ANSI’s two-parameter model  

The American National Standard ANSI/ASA S1.18 [90] is a standard that determines the 

ground surface acoustic impedance with physical sound pressure level measurement. Two 

impedance models are adopted in the standard, one-parameter model and two-parameter model. 

We will focus on the two-parameter model since the model is used in processing the 

measurement data. The two-parameter model is also called Attenborough’s variable porosity 

model [42], which takes the form of: 

𝑍𝑍
𝜌𝜌0𝑐𝑐0

=
1

�𝜋𝜋𝜋𝜋𝜌𝜌0
�
𝜎𝜎0
𝑓𝑓

+ 𝑖𝑖 �
1

�𝜋𝜋𝜋𝜋𝜌𝜌0
�
𝜎𝜎0
𝑓𝑓

+
𝑐𝑐0𝛼𝛼𝑒𝑒
4𝜋𝜋𝜋𝜋𝜋𝜋�

 (19) 

where 𝛼𝛼𝑒𝑒 is the effective rate of change of porosity, 𝜎𝜎0 is the flow resistivity, 𝛾𝛾 is the specific 

heat ration of air, 𝑓𝑓 is the frequency, 𝑐𝑐0 is the speed of sound in air.  

3.2.3 ZK model 

The Zwikker-Kosten phenomenological model (ZK model) describes the wave 

propagation phenomenon inside a porous media layer. It can be expressed as: 

𝜎𝜎0𝑢𝑢 +
𝜌𝜌0𝑞𝑞2

Ω
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −∇𝑝𝑝 (20) 

1
𝐾𝐾
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −∇ ∙ 𝑢𝑢 (21) 

The model assumes a rigid porous frame. Therefore, ZK model works well for the air-saturated 

condition. Zwikker and Kosten call Ω the material porosity, 𝑞𝑞 tortuosity, K the compression 

modulus. They indicate that those material parameters may be frequency dependent. However, in 

the following text, we still consider those material parameters constants in order to build a 

baseline for comparison. 
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3.2.4 Relaxation model 

As mentioned in the previous section, material properties may not always present 

constant values in the frequency domain. The relaxation model proposed by Wilson (WRX) [48, 

49] uses viscous and thermal diffusion to model the relaxation process that happened inside 

material pores. He calls 𝜏𝜏𝑣𝑣 vorticity relaxation time, 𝜏𝜏𝑒𝑒 entropy relaxation time. And he formed 

two relaxation functions by connecting high and low frequency limits of material properties with 

smooth functions 𝑆𝑆(𝜔𝜔𝜔𝜔). As a result, the original ZK model can be modified as:  

𝜎𝜎0𝑢𝑢 +
𝜌𝜌0𝑞𝑞2

Ω
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ℱ−1[𝑆𝑆(𝜔𝜔𝜏𝜏𝑣𝑣)] ∗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −𝛻𝛻𝛻𝛻 (22) 

Ω
𝛾𝛾𝑃𝑃0

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝛾𝛾 − 1)ℱ−1[𝑆𝑆(𝜔𝜔𝜏𝜏𝑒𝑒)] ∗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −𝛻𝛻 ∙ 𝑢𝑢 (23) 

Here 𝜏𝜏𝑣𝑣 =  2𝜌𝜌𝑞𝑞
2

𝜎𝜎0Ω
, 𝜏𝜏𝑒𝑒 = 𝑁𝑁𝑝𝑝𝑝𝑝𝑠𝑠𝐵𝐵2𝜏𝜏𝑣𝑣, where 𝑁𝑁𝑝𝑝𝑝𝑝 is the Prandtl number and 𝑠𝑠𝐵𝐵 is a pore shape 

factor. Comparing Eq. (22), (23) with Eq. (20) and Eq. (21), we can find the WRX model and the 

ZK model are very similar in shape except the WRX model carries additional convolution terms 

in the brackets. The introduced frequency-domain relaxation functions in the Eq. (22) and (23) 

take the form of: 

𝑆𝑆(𝜔𝜔𝜔𝜔) =
1

√1 − 𝑖𝑖𝑖𝑖𝑖𝑖
 (24) 

The corresponding time-domain relaxation function is: 

𝑠𝑠(𝑡𝑡) = ℱ−1�𝑆𝑆(𝜔𝜔𝜔𝜔)� =
1

√𝜋𝜋𝜋𝜋𝜋𝜋
exp �−

𝑡𝑡
𝜏𝜏�
𝐻𝐻(𝑡𝑡) (25) 

where 𝐻𝐻(𝑡𝑡) is the Heaviside function.  

The WRX model can also be derived into a different format as [47]: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
Ω

𝜌𝜌0𝑞𝑞2
∇𝑝𝑝 +

Ω
2𝜌𝜌0𝑞𝑞2

�𝑠̅𝑠 �
𝑡𝑡
𝜏𝜏𝑣𝑣

, 1� ∗ ∇𝑝𝑝� −
1
𝜏𝜏𝑣𝑣
𝑢𝑢 (26) 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝛾𝛾𝑃𝑃0
Ω

∇ ∙ 𝑢𝑢 +
(𝛾𝛾 − 1)𝑃𝑃0

Ω
�𝑠̅𝑠 �

𝑡𝑡
𝜏𝜏𝑒𝑒

, 𝛾𝛾 − 1� ∗ (∇ ∙ 𝑢𝑢)� (27) 

which is the so-called stats-equation (WRX-S). The relaxation functions used here are in 

different forms. The corresponding relaxation functions in frequency and time domain are: 

𝑆𝑆̅(𝜔𝜔𝜔𝜔, 𝑎𝑎) =  
1 + 𝑎𝑎

√1 − 𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑎𝑎
 (28) 

𝑠̅𝑠 �
𝑡𝑡
𝜏𝜏

,𝑎𝑎� = ℱ−1�𝑆𝑆(𝜔𝜔𝜔𝜔)� = (1 + 𝑎𝑎)𝑒𝑒−
𝑡𝑡
𝜏𝜏 �

1
√𝜋𝜋𝜋𝜋𝜋𝜋

−
𝑎𝑎
𝜏𝜏
𝑒𝑒
𝑎𝑎2𝑡𝑡
𝜏𝜏 erfc�𝑎𝑎�

𝑡𝑡
𝜏𝜏�
� (29) 

However, no matter in which format, the convolution operation in the relaxation model is 

unavoidable. The direct implementation of convolution usually consumes large memory and 

computation time, which is very inefficient. The methods implemented in this paper will avoid 

these disadvantages. The details will be discussed and offered in Section 0.  

3.2.5 Time domain boundary condition (TDBC) model 

The TDBC model developed by Ostashev et al. [43] is based on the impedance relation in 

frequency domain. 

𝑍𝑍(𝜔𝜔) = 𝑍𝑍∞�
1 − 𝑖𝑖𝑖𝑖𝑖𝑖
−𝑖𝑖𝑖𝑖𝑖𝑖

, 𝑍𝑍∞ =
𝜌𝜌𝜌𝜌𝜌𝜌
Ω

, 𝜏𝜏 =
𝜌𝜌𝑞𝑞2𝛾𝛾
𝜎𝜎0Ω

 (30) 

When we transform Eq. (30) back to the time domain, the pressure at the porous surface is: 

𝑝𝑝(𝑡𝑡𝑛𝑛) = 𝑍𝑍∞[𝛿𝛿(𝑡𝑡𝑛𝑛) + 𝑔𝑔(𝑡𝑡𝑛𝑛)] ∗ 𝑢𝑢(𝑡𝑡𝑛𝑛) (31) 

where 𝛿𝛿(𝑡𝑡) is the Dirac delta function and 𝑔𝑔(𝑡𝑡) is the relaxation function, which is also given by 

Ostashev et al.: 

𝑔𝑔(𝑡𝑡) =
exp �− 𝑡𝑡

2𝜏𝜏�
2𝜏𝜏

�𝐼𝐼1 �
𝑡𝑡

2𝜏𝜏�
+ 𝐼𝐼0 �

𝑡𝑡
2𝜏𝜏�

�𝐻𝐻(𝑡𝑡). (32) 
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Just like the relaxation functions used in the WRX, 𝑔𝑔(𝑡𝑡) also describes the decaying response of 

the porous medium. Again, the implementation of the TDBC model needs to evaluate a 

convolution operation.  

It should be noticed that Eq. (31) describes the pressure and velocity relation at the boundary. If 

we use Eq. (31) as a pressure boundary condition, then the velocity boundary condition could be 

extrapolated as: 

 𝑢𝑢(𝑡𝑡𝑛𝑛, 𝑦𝑦𝑠𝑠) =
15
8
𝑢𝑢(𝑡𝑡𝑛𝑛,  𝑦𝑦𝑠𝑠 + 𝛥𝛥𝛥𝛥) −

5
4
𝑢𝑢(𝑡𝑡𝑛𝑛,  𝑦𝑦𝑠𝑠 + 2𝛥𝛥𝛥𝛥) +

3
8
𝑢𝑢(𝑡𝑡𝑛𝑛,  𝑦𝑦𝑠𝑠 + 3𝛥𝛥𝛥𝛥) (33) 

3.3 Implementation of convolution 

When evaluating the convolution terms in WRX model, Wilson’s original approach 

requires one to save long solution histories inside the porous material layer [47]. As mentioned 

earlier, the method consumes large memory and computation time, which is not practical 

especially for a big 3D simulation case. Ostashev improved the method by implementing a 

piecewise constant recursive method (PCRC) [43].  

The PCRC method includes two steps. Firstly, it approximates the time-domain 

relaxation function 𝑟𝑟(𝑡𝑡), e.g. Eq. (25) in the WRC model, Eq. (29), in the WRX-S model and Eq. 

(32) in the TDBC model, with an exponential series as: 

𝑟𝑟(𝑡𝑡) ≈�𝑎𝑎𝑘𝑘𝑒𝑒−𝛾𝛾𝑘𝑘𝑡𝑡
𝑁𝑁

𝑘𝑘

𝐻𝐻(𝑡𝑡) (34) 

The approximation process can be completed in the fashion of curve fitting by using a Matlab 

‘fminsearch’ function, which uses the Nelder-Mead simplex direct search algorithm [94]. In the 

case of the convolution operation where Ψ = 𝑟𝑟(𝑡𝑡) ∗ 𝑓𝑓(𝑡𝑡) = ∑ 𝑎𝑎𝑘𝑘𝑒𝑒−𝛾𝛾𝑘𝑘𝑡𝑡𝐻𝐻(𝑡𝑡)𝑁𝑁
𝑘𝑘 ∗ 𝑓𝑓(𝑡𝑡) = ∑ Ψ𝑘𝑘𝑁𝑁

𝑘𝑘  , 

each term of the accumulator Ψ can be expressed as: 
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Ψ𝑘𝑘 = � 𝑎𝑎𝑘𝑘𝑒𝑒−𝛾𝛾𝑘𝑘𝑡𝑡
′𝑓𝑓(𝑡𝑡 − 𝑡𝑡′)𝑑𝑑𝑡𝑡′

∞

0
 (35) 

Secondly, we assume variable 𝑓𝑓(𝑡𝑡) is a constant within one time-step, 𝑓𝑓(𝑡𝑡𝑛𝑛−1) = 𝑓𝑓(𝑡𝑡𝑛𝑛). 

Therefore, Eq. (35) in each discrete time step can be integrated out as: 

Ψ𝑘𝑘𝑛𝑛 = 𝑒𝑒−𝛾𝛾𝑘𝑘Δ𝑡𝑡Ψ𝑘𝑘𝑛𝑛−1 +
𝑎𝑎𝑘𝑘
𝛾𝛾𝑘𝑘
𝑓𝑓(𝑡𝑡𝑛𝑛)(1 − 𝑒𝑒−𝛾𝛾𝑘𝑘Δ𝑡𝑡) (36) 

Eq. (36) only uses one previous time step information, which greatly reduced memory 

consumption. But PCRC is only first order accurate [95]. We can raise the accuracy to second 

order by using the piecewise linear recursive method (PLRC), which assumes 𝑓𝑓(𝑡𝑡) changes 

linearly between one timestep [73]. The PLRC needs two time steps information in calculation, 

its expression can be found as: 

Ψ𝑘𝑘𝑛𝑛 = 𝑒𝑒−𝛾𝛾𝑘𝑘Δ𝑡𝑡Ψ𝑘𝑘𝑛𝑛−1 + 𝐴𝐴𝑘𝑘𝑓𝑓(𝑡𝑡𝑛𝑛) + 𝐵𝐵𝑘𝑘𝑓𝑓(𝑡𝑡𝑛𝑛−1), 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝐴𝐴𝑘𝑘 =
𝑎𝑎𝑘𝑘
𝛾𝛾𝑘𝑘
�1 −

1 − 𝑒𝑒−𝛾𝛾𝑘𝑘Δ𝑡𝑡

𝛾𝛾𝑘𝑘Δ𝑡𝑡
� , 𝐵𝐵𝑘𝑘 = −

𝑎𝑎𝑘𝑘
𝛾𝛾𝑘𝑘
�𝑒𝑒−𝛾𝛾𝑘𝑘Δ𝑡𝑡 −

1 − 𝑒𝑒−𝛾𝛾𝑘𝑘Δ𝑡𝑡

𝛾𝛾𝑘𝑘Δ𝑡𝑡
� 

(37) 

Therefore, the original WRX, WRX-S and TDBC model can be written as: 

WRX: 

𝜎𝜎0𝑢𝑢 +
𝜌𝜌0𝑞𝑞2

Ω �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ �Ψ𝑘𝑘

𝑁𝑁

𝑘𝑘

� = −𝛻𝛻𝛻𝛻, (38) 

Ω
𝛾𝛾𝑃𝑃𝑎𝑎𝑎𝑎

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝛾𝛾 − 1)�Φ𝑘𝑘

𝑁𝑁

𝑘𝑘

� = −𝛻𝛻 ∙ 𝑢𝑢 (39) 

WRX-S: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
Ω

𝜌𝜌0𝑞𝑞2
∇𝑝𝑝 +

Ω
2𝜌𝜌0𝑞𝑞2

�Ψ�𝑘𝑘

𝑁𝑁

𝑘𝑘

−
1
𝜏𝜏𝑣𝑣
𝑤𝑤 (40) 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝛾𝛾𝑃𝑃0
Ω

∇ ∙ 𝑤𝑤 +
(𝛾𝛾 − 1)𝑃𝑃0

Ω
�Φ�𝑘𝑘

𝑁𝑁

𝑘𝑘

 (41) 

TDBC: 

𝑝𝑝(𝑡𝑡𝑛𝑛) = 𝑍𝑍∞ �𝑤𝑤(𝑡𝑡𝑛𝑛) + �Λ𝑘𝑘

𝑁𝑁

𝑘𝑘

� (42) 

where Ψ,Φ,Ψ� ,Φ� , and Λ can be calculated with the PCRC or PLRC method described in Eq. (36) 

and Eq. (37). 

Another approach implemented by Dragna et al. (2015) is the auxiliary differential 

equation method (ADE). By differentiating Equation (35), auxiliary functions yield: 

𝜕𝜕Ψ𝑘𝑘
𝜕𝜕𝜕𝜕

+ 𝛾𝛾𝑘𝑘Ψ𝑘𝑘 = 𝑎𝑎𝑘𝑘𝑓𝑓(𝑡𝑡𝑛𝑛) (43) 

Eq. (43) is a series of first order ordinary differential equations (ODE). The amount the equations 

depends on the number of terms (𝑁𝑁) that we picked to approximate the relaxation function. With 

the solutions at the previous time step used as initial conditions, we can solve Eq. (43) along with 

the original porous medium model. The ADE method does not introduce additional 

approximations. Therefore, the order of accuracy of the original solver is preserved.  

3.4 Validation of method 

Before comparing simulation results with experiment results, we would like to verify our 

implementations first. Some 1D simulations are conducted to compare with the analytical 

solutions. Then the 2D and 3D simulations, which follow ANSI experiment set up, are 

performed. 

3.4.1 1D wave propagation problem  

In a one-dimensional test, the source signal is: 
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𝑄𝑄(𝑡𝑡) = (1 − (𝑡𝑡 − 𝑡𝑡0)2𝜔𝜔0
2) exp�−

(𝑡𝑡 − 𝑡𝑡0)2𝜔𝜔0
2

2
� (44) 

where source frequency 𝜔𝜔0 = 2𝜋𝜋𝑓𝑓0,𝑓𝑓0 = 800Hz, initial time 𝑡𝑡0 = 1
𝑓𝑓0

. We set the domain size to 

30𝜆𝜆 , where 𝜆𝜆 is the wavelength defined as 𝜆𝜆 = 𝑐𝑐0/𝑓𝑓. The line at 𝑥𝑥 =  0 represents the wall, 

which separate the computational domain into two parts, air and porous material. As illustrated 

in Figure 9 and Figure 10, we let the wave travels from left (air) to right (porous material). The 

source location is at 20𝜆𝜆 away from the porous surface. The thickness of the porous material is 

10𝜆𝜆. The porous material is acoustically soft with 𝜎𝜎0 = 103 Pa∙s∙m-2,Ω = 0.5, 𝑞𝑞 = 1.8. This low 

flow resistivity material is specially selected to demonstrate the performance of the porous 

medium models. The grid space is set to be 𝜆𝜆/40 in air. To ensure a stable and efficient 

simulation we set the Courant-Friedrichs-Lewy (CFL) number to 0.3.  

Figure 9 captures a moment when the wave-front just reflected from the porous material. 

The wavelet on the left represents the strength and the shape of the source. When wall material is 

rigid, the reflection wave has the same magnitude and shape as the source. Once we introduced 

the porous medium, the strength of the reflection wave became much weaker compared with the 

rigid wall due to the energy absorbed by the porous material. The reflection waves calculated by 

the ZK model, the TDBC model, and WRX model are almost indistinguishable in Figure 9. 

When the wave propagates inside the porous material, the ZK model’s results show much higher 

magnitude than that from the WRX model. Moreover, if we let the wave keep travelling inside 

the porous material as shown in Figure 10, the transmission wave amplitude of the WRX model 

drops much quicker than that of the ZK model. 
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Figure 9. Incident of a wavelet on the porous material in at t = 22.5t0 with rigid boundary condition, TDBC, ZK, and 
WRX model. 

 

Figure 10. Incident of a wavelet on the porous material in at t = 25.5t0 with ZK and WRX model 

To further understand the results, we compare the numerical computation results to the 

Wilson’s analytical solutions [47]. The analytical solutions for acoustic impedance 𝑍𝑍 and sound 

attenuation coefficient 𝛼𝛼 are given as:  
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𝑍𝑍(𝜔𝜔) =
𝑞𝑞𝜌𝜌0𝑐𝑐0
Ω ��1 +

𝛾𝛾 − 1
�1 − 𝑖𝑖𝑖𝑖𝜏𝜏𝑒𝑒

��1 −
1

�1 − 𝑖𝑖𝑖𝑖𝜏𝜏𝑣𝑣
��

−12
 (45) 

𝛼𝛼(𝜔𝜔) = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�
𝑞𝑞𝑞𝑞
𝑐𝑐0

��1 +
𝛾𝛾 − 1

�1 − 𝑖𝑖𝑖𝑖𝜏𝜏𝑒𝑒
� /�1 −

1
�1 − 𝑖𝑖𝑖𝑖𝜏𝜏𝑣𝑣

��

1
2
� (46) 

With the flow parameters given, we can plot out 𝑍𝑍 and 𝛼𝛼 easily in Figure 11 and Figure 12. On 

the other hand, if we pick a point inside the porous material layer and monitor its pressure and 

velocity history, the acoustic impedance and the attenuation coefficient can also be calculated 

theirs definition as: 

𝑍𝑍(𝜔𝜔,𝑦𝑦) =
𝑃𝑃�(𝜔𝜔,𝑦𝑦)
𝑈𝑈�(𝜔𝜔,𝑦𝑦)

, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃�(𝜔𝜔,𝑦𝑦) = ℱ�𝑝𝑝(𝑡𝑡, 𝑦𝑦)�,

𝑈𝑈�(𝜔𝜔,𝑦𝑦) = ℱ�𝑢𝑢(𝑡𝑡,𝑦𝑦)� 

(47) 

𝛼𝛼(𝜔𝜔,𝑦𝑦) = log��𝑃𝑃�(𝜔𝜔,𝑦𝑦)�� / log��𝑃𝑃�(𝜔𝜔,𝑦𝑦 + Δ𝑦𝑦)�� /Δ𝑦𝑦 (48) 

It should be noticed that since the TDBC method does not calculate the acoustic filed 

inside porous material layer, the nodal valued at the boundary was monitored. The frequency 

domain pressure and velocity 𝑃𝑃�,𝑈𝑈� in Eq. (47) are obtained with fast Fourier transformation 

(FFT) of the recorded time histories at the monitor point. 
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Figure 11. Characteristic impedance comparison between analytical and numerical solutions. 

 

Figure 12. Attenuation coefficient comparison between analytical and numerical solutions. 

Characteristic impedance curves given in Figure 11 show all models agree with analytical 

solutions well, except at very low frequency. The sound attenuation coefficient comparison is 

illustrated in Figure 12. The 𝛼𝛼 from the ZK model presents an almost constant value, which only 

matches the analytical solution at the low frequency. Since ZK model’s assumption is constant 

material properties, flat attenuation curve is within our expectation. The WRX model, as a 
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frequency-dependent material model, appears to match the analytical solution better, especially 

the WRX-S model.  

3.4.2 2D/3D wave propagation problem 

In this section, we will compare two-dimensional / three-dimensional simulation results 

with the available measurement data. 

Alberts and Sanchez measured sound pressure level difference (LD) under different 

ground conditions. Their measurement setup follows the ANSI S1.18 requirement [96]. 

Therefore, we also set up our simulations accordingly. The 3D simulation domain is 2m in the x-

direction, 2.5m in the y-direction, and 2m in the z-direction. To model the wave propagation 

inside the porous ground, we set the ground thickness to 0.2m. The perfectly-matched-layer 

(PML) boundary conditions are specified at front, back, right and top of the domain with a 

thickness of 0.2m to prevent the additional reflections. The source signal is a Gaussian pulse 

which can be described as: 

𝑄𝑄(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = exp(−300𝑟𝑟2) , 𝑟𝑟2 = (𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2 +  (𝑧𝑧 − 𝑧𝑧0)2 (49) 

The source is located at (0, 0, 0.325). The upper and lower receivers are set at 

(0, 1.75, 0.23) and (0,1.75,0.46), respectively. The 2D simulation is carried out with the size in 

the x-direction being set to 0m as presented in Figure 13.  
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Figure 13. Front view of ANSI S1.18 test set up (2D setup) 

By curve fitting the spherical wave reflection coefficient, Alberts and Sanchez were able 

to find out the flow resistivity 𝜎𝜎0 and the porosity gradient 𝛼𝛼𝑒𝑒 used in ANSI’s two-parameter 

model from measured SPL difference. Readers can find details in ANSI/ASA, 2010 and Alberts 

and Sanchez, 2013. In the simulation below, we will use 𝜎𝜎0 = 51375.65 Pa∙s∙m-2,𝛼𝛼𝑒𝑒 = 53.3 m-1. 

It should be noticed that tortuosity 𝑞𝑞 and porosity Ω are still undefined. These two parameters 

can be measured non-acoustically, but here we still use the curve fitting method which suggests 

𝑞𝑞 = 1.79, Ω = 0.87. The detail of the curve fitting process will be given in Section 3.5. 

 

Figure 14. 3D and 2D simulated pressure contour when simulation time t = 5ms. 
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Figure 14 gives the 3D and 2D simulated pressure contour at 𝑡𝑡 =  5ms. The porous 

medium is modeled with the WRX model. A strong waver-front, a weaker reflection wave and 

an even weaker transmission wave inside porous ground can be clearly observed. We can also 

observe the contour level’s difference between 2D and 3D simulation. This is due to the distance 

effect. To compare simulation results with the measurement results, the LD between upper and 

lower receiver is calculated as: 

𝐿𝐿𝐿𝐿 = 20 log10
𝑝̂𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑝̂𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

  (50) 

where 𝑝̂𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑝̂𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are calculated by Fourier transform of receiver’s pressure time history 

to frequency domain. Figure 15 gives LD comparison between the 2D and the 3D simulation. 

Two curves are almost indistinguishable. Therefore, we will use 2D simulation results in the 

following text considering cost and efficiency.  

 

Figure 15. Comparison between 2D and 3D simulation results  
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To compare the numerical prediction results with measurement results, we also 

conducted simulations with other porous material models. The corresponding LD curves are 

given in Figure 16. The numerical predictions, no matter from which model, all present lower 

magnitudes and shifted phases comparing with physical measurements. It should be noticed that 

the relaxation functions used in the WRX model or the TDBC model are constructed artificially 

by connecting high and low frequency limit with a smooth function. However, this smooth 

function might not reflect the physical condition.  

 

Figure 16. Sound pressure level difference between upper and lower receiver from measurements and different 
porous material models. 

3.5 Improvement of the relaxation function in TDBC model 

The method provided in ANSI/ASA S 1.18 offered an approach that connect the LD 

measurements with the frequency domain impedance [90]. On the other hand, with the existing 

pressure and velocity equations, we can analytically derive impedance equation in frequency 

domain from our original models. The ideal is once we can match our analytical frequency 
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domain impedance with ANSI’s impedance model, our frequency domain model should also 

match the physical measurement results. Therefore, when we transform this ‘matched model’ 

back to the time domain, the corresponding time-domain simulation results would be corrected.  

If we take TDBC model as an example, the acoustic impedance in TDBC model can be found as 

[43]: 

𝑍𝑍(𝜔𝜔) = 𝑍𝑍∞ �1 +
𝑓𝑓(𝜔𝜔)
𝜏𝜏

�. (51) 

Here 𝑓𝑓(𝜔𝜔) is the relaxation function in frequency domain. We also approximated the 

time-domain relaxation function with an exponential series as mentioned in Section III:  

𝑓𝑓 �
𝑡𝑡
𝜏𝜏�

≈�𝑎𝑎𝑘𝑘𝑒𝑒
−𝛾𝛾𝑘𝑘𝑡𝑡𝜏𝜏  

𝐾𝐾

𝑘𝑘

 (52) 

Transform the above time-domain approximation function to frequency domain yield: 

𝑓𝑓(𝜔𝜔) = ℱ �𝑓𝑓 �
𝑡𝑡
𝜏𝜏�
� ≈ ℱ ��𝑎𝑎𝑘𝑘𝑒𝑒

−𝛾𝛾𝑘𝑘𝑡𝑡𝜏𝜏

𝐾𝐾

𝑘𝑘

� = �
𝑎𝑎𝑘𝑘𝜏𝜏

𝛾𝛾𝑘𝑘 − 𝑖𝑖𝑖𝑖𝑖𝑖

𝐾𝐾

𝑘𝑘

 (53) 

Therefore, the impedance relation in Eq. (51) yields: 

𝑍𝑍(𝜔𝜔) ≈ 𝑍𝑍∞ �1 + �
𝑎𝑎𝑘𝑘

𝛾𝛾𝑘𝑘 − 𝑖𝑖𝑖𝑖𝑖𝑖

𝐾𝐾

𝑘𝑘

� (54) 

When we plug the original parameters that we found by fitting the relaxation function Eq. 

(34) into Eq. (54) the impedance curves in Figure 17 appear to deviate from ANSI’s impedance 

results a lot. The fact supports our hypothesis that the modeled relaxation function may cause 

mismatches between simulation results and physical measurements. Hence, instead of using the 

exponential serial to approximate the modeled time-domain relaxation function in Eq. (32), we 

would like to use Eq. (54) to approximate the ANSI’s two-parameter impedance model in Eq. 

(19). It should be noticed that since relaxation time 𝜏𝜏 is a function of tortuosity 𝑞𝑞 and 
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porosity Ω, q and Ω can be found out by using a Matlab ‘fminsearch’ function which match Eq. 

(54) to Eq. (19). Additionally, the Eq. (54) is in the form of a rational function. Therefore, when 

𝑞𝑞 and Ω values are found, we can use vector fitting method to quickly refine the pole values [97-

99]. 

 

Figure 17. Comparsion of characteristic impedance between ANSI two-parameter model and TDBC model 

The parameters 𝑎𝑎𝑘𝑘 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾𝑘𝑘 found by fitting impedance curves are exactly the parameters 

that we need to construct a new time-domain relaxation function. Figure 18 shows the new time-

domain relaxation function along with the old function. The new function is still a decaying 

curve but presents higher magnitude at the same moment.  
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Figure 18. Comparison of modeled relaxation fucntion and measurement fitted relaxation function. 

By using this new measurement fitted relaxation function, the SPL difference predicted 

by the TDBC model are improved significantly. Figure 19 gives the SPL difference plot for four 

tests, which flow resistivities are in different range. All simulation results the measurements. 

(a)       (b) 
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(c)       (d) 

   

Figure 19. Sound pressue level difference comparsion between measurement and the fitted TDBC model, (a) σ = 
51375.65 Pa∙s∙m-2,αe =53.3 m-1; (b) σ = 54350.37 Pa∙s∙m-2,αe =41.6 m-1; (c) σ = 66107.51 Pa∙s∙m-2,αe =9.97 m-1; (d) σ 

= 62097.75 Pa∙s∙m-2,αe =23.5 m-1;   

  

3.6 Improvement of the relaxation function in WRX model 

The TDBC method only describes a boundary condition. When porous material layer is 

thin, the penetration of the wave needs to be considered. In this case, we would like to use the 

WRX model to explicitly model the porous medium layer. We also want to apply the same 

matching method described in Section 3.5 to the WRX model. The frequency domain impedance 

in the WRX model is: 

𝑍𝑍(𝜔𝜔) = 𝑍𝑍∞
�
𝑖𝑖𝜎𝜎0Ω
𝜔𝜔𝜌𝜌0𝑞𝑞2

+ 1 + 𝑆𝑆(𝜔𝜔𝜏𝜏𝑣𝑣)

1 + (𝛾𝛾 − 1)𝑆𝑆(𝜔𝜔𝜏𝜏𝑒𝑒) , (55) 

When fitting Eq. (55) to Eq. (19), the resultant relaxation functions not always showing a 

decaying performance, which also lead to a bigger mismatch between measurement results and 

simulation results demonstrated in Figure 20 (c) and Figure 20 (d). Since Eq. (55) describes the 
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ratio of two relaxation functions, the matching of the two functions’ ratio does not necessarily 

ensure each relaxation function will follow the realistic condition.  

The Critical frequency 𝑓𝑓𝑐𝑐 of porous material can be found as [100]: 

𝑓𝑓𝑐𝑐 =
𝜎𝜎02Ω2Λ′2

8𝜋𝜋𝜋𝜋𝑞𝑞2
 (56) 

where Λ′ is the characteristic viscous length of the ground and 𝜈𝜈 is the kinematic viscosity of the 

air. Here, when we plug in the porous ground material properties, 𝑓𝑓𝑐𝑐 value can be found around 

1.68 × 104Hz. Since the frequency, 𝑓𝑓, we studied is from 150Hz to 2500Hz, which means 𝑓𝑓 ≪

𝑓𝑓𝑐𝑐 , our study can be considered as a low frequency study. In the low frequency region, the 

viscous effects dominate [101]. Therefore, we only consider the vorticity relaxation process in 

the original WRX model, which leads to a new system: 

𝜎𝜎0𝑢𝑢 +
𝜌𝜌0𝑞𝑞2

Ω
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ℱ−1[𝑆𝑆(𝜔𝜔𝜏𝜏𝑣𝑣)] ∗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −𝛻𝛻𝛻𝛻 (57) 

Ω
𝛾𝛾𝑃𝑃0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −∇ ∙ 𝑢𝑢 (58) 

 We call Eq. (57) and Eq. (58) vorticity relaxation model (WRX-V). The corresponding 

analytical impedance and sound attenuation coefficient can be found as: 

𝑍𝑍 =  
𝑞𝑞𝜌𝜌0𝑐𝑐0
Ω �𝛾𝛾 �1 −

1
�1 − 𝑖𝑖𝑖𝑖𝜏𝜏𝑣𝑣

��
−1/2

 (59) 

𝛼𝛼 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

⎝

⎜⎜
⎛𝑞𝑞𝑞𝑞
𝑐𝑐0

⎣
⎢
⎢
⎢
⎡

𝛾𝛾

�1 − 1
�1 − 𝑖𝑖𝑖𝑖𝜏𝜏𝑣𝑣

�
⎦
⎥
⎥
⎥
⎤
1
2

⎠

⎟⎟
⎞

 (60) 

Following the same fitting process, we can find out corresponding 𝑎𝑎𝑘𝑘 and 𝛾𝛾𝑘𝑘 to construct a new 

relaxation function. With the new relaxation function, the simulation results are given in Figure 
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20. The SPL difference in Figure 20 tends to shift towards the high frequency. But when we 

compare them with the original WRX model’s predictions, the WRX-V’s results are much better. 

(a)       (b)  

  

(c)       (d) 

  

Figure 20. Sound pressue level difference comparsion between measurement, WRX model,  fitted WRX model, and 
fitted WRX-V model, (a) σ = 51375.65 Pa∙s∙m-2,αe =53.3 m-1; (b) σ = 54350.37 Pa∙s∙m-2,αe =41.6 m-1; (c) σ = 

66107.51 Pa∙s∙m-2,αe =9.97 m-1; (d) σ = 62097.75 Pa∙s∙m-2,αe =23.5 m-1; 
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3.7 Summary 

The time-domain porous medium model simulation results match the analytical solutions 

well. The frequency-dependent material models (WRX and TDBC) present better acoustic 

attenuation prediction comparing with the ZK model. However, the WRX model and the TDBC 

model’s predictions still show deviations comparing with physical measurements. The 

mismatches are caused by the difference between the modeled relaxation function and the 

physical relaxation process. 

To improve the TDBC model’s prediction, we proposed a new approach that constructed 

a relaxation function by fitting the original model’s frequency domain impedance performance 

with ANSI’s two-parameter impedance model. The new relaxation function shows a very good 

performance in the TDBC model. The predicted LD curves match measurements well. A 

vorticity relaxation function model is also proposed for simulate wave propagation in porous 

media at low frequency. With the same fitting process, the WRX-V’s predictions significantly 

improved the results from the original WRX model. 

This study proposed a new approach where, with a simple sound pressure level 

measurement or impedance measurement which following ANSI’s set up, one can define the 

relaxation function of a specific porous ground. With this new relaxation function, the original 

frequency-dependent porous material model’s prediction can be significantly improved.  
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Chapter 4. Numerical modeling of the exterior-to-interior sound transmission through 

building materials 

4.1 Introduction: 

Usually in outdoor acoustics we treat the wall of a building as a rigid material, which will 

reflect most of the acoustic waves. In this manner, transmission wave would be so weak that we 

can hardly receive sound signals inside the room. However, due to the vibration of the wall or 

windows caused by the outdoor noise source, people usually hear some level of noise inside the 

room. The vibration of the wall will generate pressure distributions, which will act as an 

additional source and influence the indoor object. In the vibro-acoustic field, scholars and 

engineers usually split this kind of problem into three parts: (1) exterior sound propagation and 

induced structural loading; (2) structural response; and (3) interior acoustic response [102, 103]. 

There are two approaches to simulate this phenomenon. The first approach couples the governing 

equations in both fluid and solid mechanics to solve the problem [103-106]. The other approach 

considers that the walls are deformable poroelastic material. Therefore, Biot theory is used to 

model the structural response [35, 107-109].  

Inspired by the poromechanics approach, we would like to test a new method by 

simplifying the whole solid wall to be a porous medium layer. The idea is: since the sound will 

reach the receiver room regardless the path, if we can match the SPL of the measurements with 

our simulation, we will be able to simplify the complicated structure response with a porous 

medium layer. 

Two wall configurations will be considered in this study. For exterior walls we will use 

one layer of gypsum board as presented in Figure 21 (a) since Thomas and his colleagues tested  
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a similar design [110]. For interior walls, we will use double leaf wall as given in Figure 21 (b) 

which is also measured by Arjunan and his colleagues [103, 104, 106].  

(a)       (b) 

 

Figure 21.a) Exterior and b) Interior wall layer configuration 

4.2 Numerical method: 

Combining the linearized Euler sound propagation equations in air with those equations 

in a porous medium in the form of the Zwikker-Kosten (Z-K) equation, yields 

 𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ (𝒖𝒖𝑎𝑎𝑎𝑎 ∙ ∇)𝒖𝒖 + (𝒖𝒖 ∙ ∇)𝒖𝒖𝑎𝑎𝑎𝑎 = −𝛼𝛼𝑎𝑎𝑎𝑎∇𝑝𝑝 − 𝛼𝛼∇𝑝𝑝𝑎𝑎𝑎𝑎 + 𝑓𝑓𝑢𝑢 (61) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝒖𝒖𝑎𝑎𝑎𝑎 ∙ ∇)𝑝𝑝 + (𝒖𝒖 ∙ ∇)𝑝𝑝𝑎𝑎𝑎𝑎 = −𝛾𝛾𝛾𝛾∇ ∙ 𝒖𝒖𝒂𝒂𝒂𝒂 − 𝛾𝛾𝑝𝑝𝑎𝑎𝑎𝑎(∇ ∙ 𝒖𝒖) + 𝑓𝑓𝑝𝑝 (62) 

where 𝑓𝑓𝑢𝑢 and 𝑓𝑓𝑝𝑝 are fictitious body forces to enforce the velocity and pressure to accommodate 

the governing equations in air and inside a rigid or porous object, which are given by: 

𝑓𝑓𝑢𝑢

= �
0,   𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝛼𝛼𝑎𝑎𝑎𝑎∇𝑝𝑝 + 𝛼𝛼∇𝑝𝑝𝑎𝑎𝑎𝑎 + (𝒖𝒖𝑎𝑎𝑎𝑎 ∙ ∇)𝒖𝒖 + (𝒖𝒖 ∙ ∇)𝒖𝒖𝑎𝑎𝑎𝑎 −
Ω
𝑞𝑞2 𝛼𝛼𝑎𝑎𝑎𝑎 (∇𝑝𝑝 + 𝜎𝜎𝒖𝒖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

(63) 
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𝑓𝑓𝑝𝑝

= �
0,   𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝛾𝛾𝛾𝛾∇ ∙ 𝒖𝒖𝑎𝑎𝑎𝑎 + 𝛾𝛾𝑝𝑝𝑎𝑎𝑎𝑎(∇ ∙ 𝒖𝒖) + (𝒖𝒖𝑎𝑎𝑎𝑎 ∙ ∇)𝑝𝑝 + (𝒖𝒖 ∙ ∇)𝑝𝑝𝑎𝑎𝑎𝑎 −
𝛾𝛾𝑝𝑝𝑎𝑎𝑎𝑎
𝛺𝛺

(∇ ∙ 𝒖𝒖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
(64) 

where 𝒖𝒖𝑎𝑎𝑎𝑎, 𝑝𝑝𝑎𝑎𝑎𝑎 and 𝛼𝛼𝑎𝑎𝑎𝑎 are the time averaged velocity, pressure, and specific volume, 

respectively; 𝒖𝒖, 𝑝𝑝 and 𝛼𝛼 are the corresponding acoustic fluctuations, with 𝛼𝛼  given as: 

 𝛼𝛼 = −
𝑝𝑝

𝛾𝛾𝑝𝑝𝑎𝑎𝑎𝑎𝜌𝜌𝑎𝑎𝑎𝑎
, (65) 

where 𝛾𝛾 is the specific-heat ratio. The coefficients, Ω, 𝑞𝑞, and 𝜎𝜎 in Eqs. (63) and (64), are porous 

medium porosity, tortuosity, and flow resistivity, respectively. 

 If we use Wilson’s relaxation model (WRX). The fictitious body forces are 

𝑓𝑓𝑢𝑢

= �

0,   𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝛼𝛼𝑎𝑎𝑎𝑎∇𝑝𝑝 + 𝛼𝛼∇𝑝𝑝𝑎𝑎𝑎𝑎 + (𝒖𝒖𝑎𝑎𝑎𝑎 ∙ ∇)𝒖𝒖 + (𝒖𝒖 ∙ ∇)𝒖𝒖𝑎𝑎𝑎𝑎 −
Ω

𝜌𝜌0𝑞𝑞2
𝛼𝛼𝑎𝑎𝑎𝑎  (∇𝑝𝑝 + 𝜎𝜎𝒖𝒖) −�Ψ𝑘𝑘

𝑁𝑁

𝑘𝑘

, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
(66) 

𝑓𝑓𝑝𝑝

= �

0,   𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝛾𝛾𝛾𝛾∇ ∙ 𝒖𝒖𝑎𝑎𝑎𝑎 + 𝛾𝛾𝑝𝑝𝑎𝑎𝑣𝑣(∇ ∙ 𝒖𝒖) + (𝒖𝒖𝑎𝑎𝑎𝑎 ∙ ∇)𝑝𝑝 + (𝒖𝒖 ∙ ∇)𝑝𝑝𝑎𝑎𝑎𝑎 −
𝛾𝛾𝑝𝑝𝑎𝑎𝑎𝑎
𝛺𝛺

(∇ ∙ 𝒖𝒖) −�Φ𝑘𝑘

𝑁𝑁

𝑘𝑘

, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
(67) 

The accumulator in Eq (6) and (7) are calculated with PCRC method as: 

Ψ𝑘𝑘𝑛𝑛 = 𝑒𝑒−𝛾𝛾𝑣𝑣𝑘𝑘Δ𝑡𝑡Ψ𝑘𝑘𝑛𝑛−1 +
𝑎𝑎𝑣𝑣𝑘𝑘
𝛾𝛾𝑣𝑣𝑘𝑘

𝑝𝑝(𝑡𝑡𝑛𝑛)�1 − 𝑒𝑒−𝛾𝛾𝑣𝑣𝑘𝑘Δ𝑡𝑡� (68) 

Φ𝑘𝑘
𝑛𝑛 = 𝑒𝑒−𝛾𝛾𝑒𝑒𝑘𝑘Δ𝑡𝑡Φ𝑘𝑘

𝑛𝑛−1 +
𝑎𝑎𝑒𝑒𝑘𝑘
𝛾𝛾𝑒𝑒𝑘𝑘

𝑢𝑢(𝑡𝑡𝑛𝑛)�1 − 𝑒𝑒−𝛾𝛾𝑒𝑒𝑘𝑘Δ𝑡𝑡� (69) 

where 𝑎𝑎𝑣𝑣𝑘𝑘, 𝛾𝛾𝑣𝑣𝑘𝑘,𝑎𝑎𝑒𝑒𝑘𝑘, 𝛾𝛾𝑒𝑒𝑘𝑘 are found by curve fitting exponential series with the approximated 

relaxation function as: 

�𝑎𝑎𝑘𝑘𝑒𝑒−𝛾𝛾𝑘𝑘𝑡𝑡
𝑁𝑁

𝑘𝑘

≈
1

√𝜋𝜋𝜋𝜋𝜋𝜋
exp �−

𝑡𝑡
𝜏𝜏�
𝐻𝐻(𝑡𝑡) (70) 

4.3 Numerical simulation: 
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 We will test two wall materials and a window glass material in several 2D simulations. 

After simulation results match with the measurement results, we will apply the corresponding 

material parameters which found in the 2D simulation to the final 3D simulations. 

4.3.1 Component level test 

The measurement results present in Arjunan and his colleagues’ work [104] present noise 

reduction performance of a double leaf wall, which is a noise insulation wall configuration 

usually used in indoor. To study the wall material properties, we set up our simulation domain 

according to the measurement layout noted in his research as showing in . The source room on 

the left is 4.9m long in the y-direction; the double leaf wall sample with thickness of 0.1m is 

located in the middle of the domain; the receiver room on the right is 4.5m long. The total width 

of the room is 3.9 m. The detail set up can be  A source is located in the middle of the left wall of 

the source room at (0, 1.95). The source is in the form of Gaussian pulse as: 

𝑝𝑝 = exp (−40𝑟𝑟2) (71) 

Two receivers are places at source room and receiver room with location of (2.45, 1.95), (7.20, 

1.95). Total simulation time is 0.24s, grid size is 0.0025m, and CFL number is set to be 0.3 to 

ensure a stable and efficient computation.  

 

Figure 22. 2D simulation set up according to measurement layout in Arjunan et,al. [104] 
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 We start the investigation from different value of flow resistivity 𝜎𝜎. Four 𝜎𝜎 values are 

tested with porosity Ω and tortuosity 𝑞𝑞 being set to the same value. It can be found in Figure 23 

that the indoor and outdoor noise reduction index varies with flow resistivity, lower flow 

resistivity tend to lead to lower sound reduction effect. After comparison between four tests, flow 

resistivity of 𝜎𝜎 = 5 × 104 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2 is picked. 

 

Figure 23. Sound reduction index of different flow resistivity 𝜎𝜎 values 

 Different porosity values are given in Figure 24. When porosity increase, the noise 

reduction index value at low frequency region still remains same, but in high frequency region, 

the value starts to increase and approaching the measurement results. Similar phenomenon can 

be observed with different tortuosity value in Figure 25. 

 

Figure 24. Sound reduction index of different porosity Ω values 
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Figure 25. Sound reduction index of different tortuosity 𝑞𝑞 values 

 With the simulation results from the three studies, we picked the flow resistivity 𝜎𝜎 =

5 × 104 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠 ∙ 𝑚𝑚−2, porosity Ω = 0.9 and tortuosity 𝑞𝑞 = 1.0. Since the picked flow resistivity 

is relatively low, we tested the case with the WRX model. The results in Figure 26 shows the 

simulation results from WRX match measurements better especially in the high frequency range. 

 

Figure 26. Sound reduction index curve from ZK model and WRX model comparing with measurements 

  

If we take a close look at the material properties picked above, Ω = 0.9 tells us the 90% 

of the material is void; 𝑞𝑞 = 1.0 means the speed of sound inside the porous material layer is 

almost same as speed of sound in the air. Actually, this matches the physical structure of the 

interior double leaf wall.  
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 We can apply the same method to fit the exterior wall and windows material noise 
reduction curve with physical measurements. 

 
Figure 27 Noise reduction comparison between simulation results and measurement results 

 

Figure 28. Sound pressure level difference comparison between ZK model, WRC model along with measurement 
results. 

 

4.3.2 Assemble level 3D simulation 

 After match each part of the building’s material acoustic response to the measurement 

results, we can get all material parameters summary in the Table 2. 
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Table 2 Material properties of building's exterior wall, interior wall, and glass window. 

Material Flow resistivity 𝜎𝜎 
(Pa∙ s∙ m-2) 

Porosity Ω Tortuosity 𝑞𝑞 Model 

1. Interior Wall 3 × 104 0.9 1.0 WRX 

2. Exterior Wall 7 × 104 0.7 1.5 ZK 

3. Glass Window 7 × 104 0.5 1.7 ZK 

 

The building given in Figure 29 is firstly built up in CAD package based on floor plan 

and measurements. The full geometry is then imported into the numerical simulation solver. All 

exterior walls including roof are modelled with material #2, all interior walls are modelled with 

material #1, windows with material #3, ground with rigid material.  

Computational domain is 17.43m in the x-direction, 21.72m in the y-direction, 7.95m in 

the z-direction. The origin of the coordinate is set at south east lower corner of the first floor at 

exterior side. Grid size is 0.015m, time step is 1.5e-5s, and total simulation time is 0.225s. 

Source is located at (-5.39, 3.21, 0.83). Five receivers are randomly placed at surface of the south 

side exterior wall of the living room. And anther fiver receivers are placed inside the living 

room. To accommodate the complicated geometries, immersed boundary method is used. 

(a)     (b) 
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(c)       (d) 

  

Figure 29. House used in simulation a) ISO view of the physical house, b) ISO view of the CAD model, c) Front 
view of the house, d) Top view of the first-floor section 

 

Figure 30. Simulation contours of a) top view, b) side view, c) front view, d) ISO view 



55 
 

 The acoustic pressure contours at simulation time 36ms are given in Figure 30, it can be 

found the geometry details of the buildings are captured. Reflections from the wall and 

diffractions by the roof can be observed in Figure 30. The transmission waves are also captured 

inside room with much lower magnitude due to the absorption of the porous wall. 

The Noise level difference between outdoor and indoor are given in Figure 31. Two curves 

compare the noise level difference between open window and closed window simulation. It can 

be found:  

• With all windows opened, the geometry and wall of the house can provide around 15dB 
reduction of the noise across a wide frequency range. 

• When windows are closed the noise are more likely to be attenuated, especially at high 
frequency range. 

• The low frequency signals can penetrate the room even when windows are closed. 

 

 

Figure 31. Noise reduction at living room when all windows are open/closed 
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4.4 Summary 

In this study the porous media model is coupled with immersed boundary method to 

solve for a noise reduction problem for a two-story house. The rigid wall is acoustically 

modelled with porous material layers. Therefore, the noise caused by vibration of the building 

wall is simplified by the penetration wave from the porous media.  By matching the 

measurement response of each part of the building material to the simulation results. The 

acoustics properties of each part of the building can be found. After assembling all the materials 

into a 3D simulation, the acoustic response of a house can be found. The study presented a 

method that single components measurement can be used to back out the acoustic properties of 

each component of a building. Then, the whole acoustic response of a house can be achieved by 

assembling acoustic properties of each part into an over-all simulation. 
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Chapter 5. Time-Domain Simulation of Ultrasound Propagation with Fractional 

Laplacians for Lossy-Medium Biological Tissues with Complicated Geometries 

5.1 Introduction 

Ultrasound has been widely used as a diagnostic tool in medical imaging for over 50 

years. Its applications have been extended to destroy kidney stones, kill malignant tissues and 

cosmetic surgery [111, 112]. Focused ultrasound beam can also be used to remove the brain 

tumors [113]. A recent study shows that ultrasound techniques in conjunction with microbubbles 

can be used to safely open the blood–brain barrier (BBB) for brain drug delivery, which is a new 

treatment in instance of stroke or Alzheimer's disease [114, 115]. Therefore, using ultrasound 

safely requires accurate planning, which motivates accurate ultrasound simulation techniques. 

A lossy medium is a medium in which a significant amount of acoustic energy is 

absorbed per unit distance traveled by sound wave. Most of the biological tissues can be 

considered as lossy media. Sound attenuation is usually used to quantify energy loss in lossy 

media, which has also been found following the power law in the frequency domain as [50, 51]: 

 𝛼𝛼 = 𝛼𝛼0|𝜔𝜔|𝑦𝑦 (72) 

where 𝛼𝛼 is sound attenuation with a unit of Np/m, 𝛼𝛼0 is absorption coefficient, 𝜔𝜔 is angular 

frequency, and 𝑦𝑦 is power law exponent of the specific material with a value between 0 to 2.  

This study presents an approach in which a simple structured Cartesian grid mesh can be 

used to solve ultrasound propagation problem with any irregular geometry of lossy media. And 

the frequency power attenuation law, Eq. (72), can be satisfied. The finite-difference time-

domain (FDTD) method is coupled with the IB method to accommodate complicated geometries 

[2, 89, 116]. The lossy medium is modeled with the Chen and Holm’s equation [52]. In order to 

calculate the fractional Laplacian terms in the model, the fractional central difference method 
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(FCD) [117] is used. The perfectly matched layer (PML) boundary is used to mimic a free space 

condition [92]. This new approach, different from the “k-space” method, does not need 

additional correction factors or integral transforms and can accommodate complicated 

geometries with a simple structured mesh.  

The governing equations will be presented in Section 5.2, along with the detailed 

numerical method. Simulation examples of sound propagation inside the lossy medium are given 

in Section 5.3. After comparing the numerical simulation results with the analytical power 

attenuation law, we will discuss the results and offer the conclusion in Section 5.4.  The order of 

accuracy of the scheme is also evaluated and presented in Appendix. 

5.2 Numerical method 

5.2.1 Governing equations in lossy media 

 Two media are considered in this study: water and the lossy-medium biological tissue. 

The linearized Euler equations for wave propagation in water are:  

 
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ (𝒖𝒖𝟎𝟎 ∙ ∇)𝒖𝒖 + (𝒖𝒖 ∙ ∇)𝒖𝒖𝟎𝟎 = −
1
𝜌𝜌0
∇𝑝𝑝 +

𝑝𝑝
𝜌𝜌02𝑐𝑐02

∇𝑝𝑝0, (73) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝒖𝒖𝟎𝟎 ∙ ∇)𝑝𝑝 + (𝒖𝒖 ∙ ∇)𝑝𝑝0 = −𝜌𝜌0𝑐𝑐02(∇ ∙ 𝒖𝒖) + 𝑓𝑓𝑝𝑝, (74) 

where, 𝒖𝒖𝟎𝟎,𝑝𝑝0 and 𝜌𝜌0 are time averaged velocity, pressure, and density of water. 𝒖𝒖, 𝑝𝑝 and 𝜌𝜌 are 

their corresponding acoustic fluctuations, 𝑐𝑐0 is the speed of sound in water, and 𝑓𝑓𝑝𝑝 is the 

fictitious term for implementing the immersed-boundary method, which will be explained later. 

In water, if there is no back ground flow and the background pressure is a constant value, Eqs. 

(73) and (74) become: 

 
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

=  −
1
𝜌𝜌0
∇𝑝𝑝, (75) 
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 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

=  −𝜌𝜌𝑜𝑜𝑐𝑐02∇ ∙ 𝒖𝒖, (76) 

In lossy media, conservation of mass is expressed as: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  −𝜌𝜌1∇ ∙ 𝒖𝒖, (77) 

where 𝜌𝜌1 is the density of the lossy medium. Conservation of momentum is still in the form of 

Eq. (75). The relation between acoustic pressure and acoustic density in the lossy medium is 

derived by Treeby and Cox (2010) based on Chen and Holm’s equation as: 

 𝑝𝑝 = 𝑐𝑐12 �1 − 𝜏𝜏
𝜕𝜕
𝜕𝜕𝜕𝜕

(−∇2)�
𝑦𝑦
2−1� − 𝜂𝜂(−∇2)

𝑦𝑦+1
2 −1 � 𝜌𝜌, (78) 

where 𝑐𝑐1 is the speed of sound in the lossy medium, and 𝜏𝜏 and 𝜂𝜂 are proportionality coefficients.  

Substituting Eq. (77) into Eq. (78) gives the acoustic pressure propagation equation in the lossy 

medium as: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜌𝜌1𝑐𝑐12∇ ∙ 𝒖𝒖 + 𝜏𝜏𝑐𝑐12(−∇2)
𝑦𝑦
2𝑝𝑝 + 𝜂𝜂𝜌𝜌1𝑐𝑐12(−∇2)

𝑦𝑦+1
2 −1(∇ ∙ 𝒖𝒖). (79) 

The proportionality coefficients, 𝜏𝜏 and 𝜂𝜂, follow the relations: 

 𝜏𝜏 = −2𝛼𝛼0𝑐𝑐1
𝑦𝑦−1, (80) 

 𝜂𝜂 = 2𝛼𝛼0𝑐𝑐1
𝑦𝑦 tan(𝜋𝜋𝜋𝜋/2), (81) 

where the coefficients are chosen as: 𝑦𝑦 = 1.9, 𝛼𝛼0 = 2.9858 × 10−10dB∙ Hz-y∙m-1, 𝑐𝑐1 =

2000 m/s, 𝜌𝜌1 = 1500kg/m3 to simulate a relatively hard tissue. The corresponding 

proportionality coefficients based on Eqs. (80) and (81) are: 

𝜏𝜏 = −5.58494 × 10−7dB∙s∙my-2, 𝜂𝜂 = −0.00018 dB∙my-1. 

5.2.2 Computation of fractional derivatives 

 Consider the Riesz fractional derivatives equal to the fractional Laplacian operator [118] 

given below: 
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 −(−∇2)
𝑦𝑦
2𝑓𝑓 =

𝜕𝜕𝑦𝑦𝑓𝑓
𝜕𝜕|𝑥𝑥|𝑦𝑦 +

𝜕𝜕𝑦𝑦𝑓𝑓
𝜕𝜕|𝑧𝑧|𝑦𝑦.  (82) 

The fractional central difference (FCD) method [117, 119] can be used to numerically 

approximate the Riesz fractional derivatives in Eq. (82). For a continuous function 𝑓𝑓(𝑥𝑥, 𝑧𝑧), each 

term in Eq. (82) can be expressed as: 

 
𝜕𝜕𝑦𝑦𝑓𝑓𝑖𝑖,𝑗𝑗
𝜕𝜕|𝑥𝑥|𝑦𝑦 =  −

1
Δ𝑥𝑥𝑦𝑦

� 𝜔𝜔𝑞𝑞𝑓𝑓𝑖𝑖−𝑞𝑞,𝑗𝑗

𝑖𝑖−𝑤𝑤(𝑗𝑗)

𝑞𝑞=𝑖𝑖−𝑒𝑒(𝑗𝑗)

,
𝜕𝜕𝑦𝑦𝑓𝑓𝑖𝑖,𝑗𝑗
𝜕𝜕|𝑧𝑧|𝑦𝑦 =  −

1
Δ𝑧𝑧𝑦𝑦

� 𝜔𝜔𝑞𝑞𝑓𝑓𝑖𝑖,𝑗𝑗−𝑞𝑞

𝑗𝑗−𝑠𝑠(𝑖𝑖)

𝑞𝑞=𝑗𝑗−𝑛𝑛(𝑖𝑖)

,    (83) 

where the weight function 𝜔𝜔𝑞𝑞 is: 

 𝜔𝜔𝑞𝑞 = (−1)𝑞𝑞Γ(𝑦𝑦+1)

Γ�𝑦𝑦2−𝑞𝑞+1�Γ(𝑦𝑦2+𝑞𝑞+1)
, 𝑞𝑞 = 0,∓1,∓2, …  (84) 

The fractional derivative terms in Eq. (79) are approximated with the summation of the weighted 

pressure or velocity gradients in space using Eq. (83). Comparing this method with the 

convolution method used in Norton and Novarini (2003), the memory requirement is reduced 

significantly. 

For an irregular shape lossy medium, the grid number required in computation are 

different in the x- and z-directions. Therefore, it is necessary to identify the range of the lossy 

medium in each direction.  A horizontal line crosses the boundaries in Figure 32 can have two 

intersections at the east and west boundaries of the geometry. Those intersection points are not 

necessarily located on the boundaries because of the Cartesian grid mesh used in the simulation. 

Therefore, they are approximated with the closest grids, 𝑒𝑒(𝑗𝑗) and 𝑤𝑤(𝑗𝑗), near the boundaries. 

Similar approximation is needed along a vertical line as shown in Figure 32. When the IB 

method is implemented, those boundary grids, 𝑒𝑒(𝑗𝑗),𝑤𝑤(𝑗𝑗), 𝑛𝑛(𝑖𝑖), and 𝑠𝑠(𝑖𝑖),  are flagged and stored 

at the beginning of the computation, as demonstrated in Figure 32. This makes the 

implementation of FCD method very simple and efficient. 
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Figure 32. Grid mesh around an irregular-shaped lossy medium in the Cartesian coordinates surrounded by water 

5.2.3 Immersed-boundary method 

 The 𝑓𝑓𝑝𝑝 in Eq. (74) is the fictitious term in the immersed-boundary method, which is used 

to represent the material change between water and the lossy medium. The existence of the 

boundaries of the lossy medium is represented by switching the fictitious force in the equation. 

The computation can be performed as if there are no boundaries. In Eq. (74), the fictitious force 

term for the immersed-boundary method implementation is expressed as: 

𝑓𝑓𝑝𝑝 =

⎩
⎪
⎨

⎪
⎧ 0,

                                                                             𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝜌𝜌𝑜𝑜𝑐𝑐02∇ ∙ 𝒖𝒖 − 𝜌𝜌1𝑐𝑐12∇ ∙ 𝒖𝒖 + 𝜏𝜏𝑐𝑐12(−∇2)
𝑦𝑦
2𝑝𝑝 + 𝜂𝜂𝜌𝜌1𝑐𝑐12(−∇2)

𝑦𝑦+1
2 −1(∇ ∙ 𝒖𝒖) .

                                                                                  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 (85) 

 The acoustic pressure outside the lossy medium is modeled with original pressure 

equation, Eq. (76), as the linearized Euler equation with 𝑓𝑓𝑝𝑝 = 0. The convection terms are 

neglected assuming the background flow speed is low. The pressure inside the lossy medium is 

modeled with Treeby and Cox’s equation as 𝑓𝑓𝑝𝑝 = 𝜌𝜌𝑜𝑜𝑐𝑐02∇ ∙ 𝒖𝒖 − 𝜌𝜌1𝑐𝑐12∇ ∙ 𝒖𝒖 + 𝜏𝜏𝑐𝑐12(−∇2)
𝑦𝑦
2𝑝𝑝 +
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𝜂𝜂𝜌𝜌1𝑐𝑐12(−∇2)
𝑦𝑦+1
2 −1(∇ ∙ 𝒖𝒖). This is constructed so that when substituting 𝑓𝑓𝑝𝑝 back to Eq. (74), the 

lossy medium model equation, Eq. (79), is resumed. Therefore, by switching the fictitious force 

term, the same computational solver can be used simultaneously for both materials. Moreover, 

with this method, a Cartesian grid mesh, regardless of the complicated object boundaries in the 

simulation domain, can be used to solve for the acoustic field. 

To absorb numerical reflections by computational domain boundaries, the perfectly-match-

layer (PML) boundary [92, 120] methods are used on the outside boundaries of the domain. The 

PML boundary condition has been successfully implemented and verified in our previous work 

[2, 25, 116] for the FDTD simulation.  

5.3 Numerical simulation and results discussion 

5.3.1 Ultrasound propagation in the lossy medium and water 

 Our first simulation is for acoustic propagation in the lossy medium only. A simulation 

for ultrasound propagation in water is also conducted as a reference. The size of the 

computational domain is 0.06m × 0.06m. A uniform Cartesian-type mesh with the grid size of 

Δ𝑥𝑥 = Δ𝑧𝑧 =  2.5 × 10−5m ensures at least 20 grid points are used per wavelength for 

ultrasound frequencies up to 1.5MHz. The speeds of sound of water and the lossy medium are set 

to 1500m/s and 2000 m/s, respectively. The density of water and lossy medium are set to 

1000kg/m3 and 1500kg/m3. The Courant-Friedrichs-Lewy (CFL) number is chosen to be 0.3 to 

satisfy a stable computation. It should be noted that if we reorganize Eq. (79) by moving the 

convection term to the left hand side, the left hand side is still in the form of Euler equation. The 

two fractional Laplacian terms on the right hand side of equation are calculated as the summation 

of a series, which is not part of the finite difference scheme. Therefore, the original stability 

criteria of the scheme in Zheng and Li (2008) should still apply. 
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The plane wave is set along the left boundary as: 

 𝑝𝑝(𝑡𝑡) = cos(2𝜋𝜋𝑓𝑓0𝑡𝑡) [1 − cos(2𝜋𝜋𝑓𝑓1𝑡𝑡)] (86) 

where 𝑓𝑓0 is the center frequency chosen as 𝑓𝑓0 = 1.3 MHz, and 𝑓𝑓1 is 0.2 MHz that dominates the 

plane wave bandwidth. Only one period (based on 𝑓𝑓1) of the signal is used in the simulation. The 

top and bottom boundary conditions are set to be symmetric. The right boundary is rigid. To 

prevent the influence of reflection waves from the right boundary, we ended the simulation at 

30μs, before the waves reach the right boundary so that no reflections occur. The indices, 

𝑒𝑒(𝑗𝑗),𝑤𝑤(𝑗𝑗), 𝑛𝑛(𝑖𝑖), and 𝑠𝑠(𝑖𝑖) indicate the grid points on the left, right, top and bottom boundaries of 

the computational domain, respectively.  Four receivers are placed along the centerline of 𝑧𝑧 =

 0.03m, at 𝑥𝑥 =  0.005m, 0.015m, 0.025m, and 0.035m to record the acoustic pressure histories 

in these locations. It should also be noted that we used this 1D problem to perform 2D 

simulation, for the purpose to verify the implementation of PMLs in the z-direction for preparing 

for the following IB method study. It is evident that the implementation of PMLs was successful.  

More details on the PML implementation can be found in [121]. 

 Figure 33 shows acoustic pressure contours at simulation time 𝑡𝑡 = 22.5μs. The plane 

wave in lossy medium travels further than that in water at this moment. However, the pressure 

magnitude in water is much higher at this moment, which can also be observed from receiver 

pressure histories in Figure 34. The phase shift in Figure 34 between solid and dashed lines can 

be explained by the speed of sound difference in the two media. Pressure histories of the four 

receiver locations in water show almost the same magnitude, while the pressure magnitude is 

gradually decreasing along the wave propagation direction in the lossy medium. The 

phenomenon agrees with the definition of lossy medium that the acoustic energy is absorbed 

with the distance travelled in the medium.  



64 
 

(a)      (b) 

 

Figure 33. Pressure contours of plane wave propagation at 𝑡𝑡 = 22.5 μs in (a) the lossy medium, (b) water  

 

Figure 34. Four receiver readings in two simulations, solid line: lossy medium simulation, dash line: water 

simulation.  

5.3.2 Comparison with the analytical solution 

To quantitatively verify the simulation results, a comparison with the frequency-domain 

power attenuation law is conducted. The analytical solution of attenuation in the lossy medium is 

described in Eq. (1). To obtain the attenuation from the time-domain numerical calculation, the 

pressure histories recorded in Section III.A are used. After the Fourier transform, the power 
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spectrum density (PSD) can be used to calculate the sound attenuation (SA) in the frequency 

domain as:  

 𝑆𝑆𝑆𝑆 =  −20 log10
𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

. (87) 

By averaging the sound attenuation over the wave propagation distance 𝑑𝑑, the normalized sound 

attenuation 𝛼𝛼 from numerical simulation is calculated as 

 𝛼𝛼𝑛𝑛 =
𝑆𝑆𝑆𝑆

100 ∙ 𝑑𝑑
 , (88) 

It should be noted that the unit of 𝛼𝛼 in Eq. (72) is Np/m. A unit conversion from Np to dB is 

necessary to compare with the SA obtained from Eq. (87). The comparison of sound attenuation 

values between the numerical solutions and the analytical solutions for different power law 

exponents, 𝑦𝑦, are plotted in Figure 35. All simulation results show perfect agreements with the 

analytical solutions. 

   

Figure 35. Simulated attenuation curves (symbols) compared with analytical solutions (lines) when 𝛼𝛼0 =

2.9858 × 10−10dB∙ Hz-y∙m-1(equivalent to 𝛼𝛼0 = 0.75 dB∙MHz-y∙cm-1) with different power law exponents 
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5.3.3 Simulation of ultrasound propagation in a complicated geometry 

The successful verification of the FCD in the lossy medium simulation enables further 

implementation for simulating wave propagation in complicated geometries. A piece of ring-

shaped lossy medium, which is intended to represent a bone-type biological material is placed in 

the middle of the computation domain, with the inner diameter of 0.05m and outer diameter of 

0.015m. The ultrasound source is placed on the left boundary from the height of 0.025m to 

0.035m to represent an ultrasound transducer. The total simulation time is 38μs, which allows 

the incident ultrasound waves to fully pass the ring-shaped lossy medium. 

  

Figure 36. Numerical simulation setup for a ring-shaped complex geometry, with the blue area 

representing water, the grey area in the middle representing the lossy material, and the white area 

representing the PML boundaries. The plane wave source is located on the left boundary from z = 0.025m 

to 0.035m.    
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The detailed simulation setup is shown in Figure 36. The areas in blue, grey, and white 

indicate water, lossy medium, and PML respectively. The simulation domain is surrounded by 

PMLs with a thickness of 0.01m to eliminate reflection waves from the computational 

boundaries. The dashed line on the left is to indicate that the area on the left side of the line will 

be switched into PML once the wave fully passed through. The medium interfaces, represented 

by the two concentric circles in the domain, are not aligned with the Cartesian grid mesh. 

Therefore, the immersed-boundary method is used to accommodate the cut-through Cartesian 

grid mesh between the interfaces of water and the lossy medium. The closest node points are 

used as the boundary points in the case of cut-through. 

Figure 37 presents acoustic pressure contours recorded at four different time moments. 

Reflection waves can always be found at the interface, which are formed due to the material 

difference of the two media and the geometrical shapes of the interfaces. For example, when 

waves propagate from the lossy medium to water in Figure 37(b) and from water to lossy 

medium in Figure 37(c), the two plots clearly capture the backward reflection waves. When the 

waves leave the lossy medium in Figure 37(d), they are much weaker than the incident waves in 

Figure 37(a), which shows the combined effects of wave reflection and dispassion due to the 

lossy medium. 

To illustrate the capability of the simulation, a multiple-source simulation is conducted. 

The same type of plane waves are specified on top, bottom, left and right boundaries. Pressure 

contours at different simulation moments can be found in Figure 38. The wave patterns are more 

complicated due to interactions of multiple incoming waves with the ring-shaped lossy medium. 

Comparing Figure 37(c) with Figure 38(d), which are at the same moment, the effect of multiple 

incident sources can be observed clearly.  
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(a)       (b)  

 

(c)      (d) 

   

Figure 37. Pressure contours of single-source ultrasound propagation at different moments: (a) t = 12.5μs (b) t = 

20μs (c) t = 27.5μs (d) t = 32.5μs  

 

  



69 
 

(a)       (b) 

 

(c)       (d) 

 

Figure 38. Pressure contours of multiple-source ultrasound propagation at different moments: (a) t = 12.5μs (b) t = 

17.5μs (c) t = 22.5μs (d) t = 27.5μs 
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5.4 Summary 

When sinusoidal waves propagate into a lossy medium, they experience dissipation caused 

by viscosity, heat conductivity, and relaxation process. Therefore, incident acoustic waves are 

attenuated by those processes, which results in a power-law attenuation in the frequency domain. 

This phenomenon can be modeled and numerically simulated with the FDTD method. When 

solving for fractional Laplacian derivatives in the lossy medium acoustic propagation equations, 

the FCD method is employed [117, 119]. The procedure, which is based on a relatively simple 

algorithm does not require large memory involve integral transform. The implementation of the 

FCD combining with the IB method maintains the second-order spatial accuracy.  

The numerical simulation results show a gradually reducing pressure level along the wave 

propagation direction in the lossy medium and agree with the analytical solution of a power 

attenuation law. The implementation of the immersed-boundary method enables ultrasound 

propagation around irregular geometries to be simulated with a simple structured Cartesian 

mesh. Moreover, this method can be used to solve multi-media, multi-source problems. Since the 

mesh is already designed to resolve very high frequency signals (over 1MHz) for ultrasound 

propagation problems, the density of the mesh usually enables accurate interpolation near the 

boundary of the medium geometry unless there are extremely small local features. For very small 

local geometrical features, we can increase the local mesh resolution to increase the accuracy of 

the immersed-boundary method. This capability for handling complex geometries with multiple 

material interfaces overcomes the limitation of the previous work in the area of lossy medium 

simulation. Furthermore, with the same approach, the method can be readily extended to 

simulate 3D problems.  
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Chapter 6. Vortex Scattering Effects on Acoustic Wave Propagation  

6.1 Introduction 

The traditional method for studying scattering effect is via direct numerical simulation 

(DNS). The method solves vortex induced flow field and the acoustic field caused by that. 

Therefore, it is very expensive and not practical in 3D big domain study. We will directly 

employ the vortex’s flow field solution as background and solve the acoustic field with 

linearized Euler equations (LEE). In our simulation, we consider the cases in which the 

wavelength of the incident sound is a few times longer than the characteristic length scale of the 

vortex to align with the Born approximation. For high-speed vortex flow, the velocity and its 

gradients are large, and numerical simulation without employing special numerical treatment for 

the convection terms can often suffer from numerical errors in the regions around the high-speed 

vortices. We address the problem by using a high order WENO scheme [80-89] to solve the 

convection-dominant background flow in the time-domain numerical simulation. This scheme 

not only achieves higher-order accuracy near the high gradient velocity regions, but also 

maintains a stable and non-oscillatory solution. On the other hand, to save the computational 

effort for the high-order scheme, the WENO scheme does not need to be applied to the entire 

computational domain, but only to the regions with high velocity.  In this paper, a plane incident 

wave at a frequency of 85Hz is used to study the scattering effects through vortices. 

We study the cases of single stationary vortex with zero or finite circulation first, and verify 

our linearized simulation with existing literature results from DNS [63]. Then a 

stationary/moving vortex pair is investigated and also verified with an analytical solution. For 3D 

vortex flow, we present the study of scattering by an HSV. Finally, we conclude with scaling 

laws of acoustic scattering by 2D and 3D vortices. 
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6.2 Numerical method 

6.2.1 Governing equations 

The linearized Euler equations of acoustic propagation in an idea gas are: 

 𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ (𝒖𝒖𝒂𝒂𝒂𝒂 ∙ ∇)𝒖𝒖 + (𝒖𝒖 ∙ ∇)𝒖𝒖𝒂𝒂𝒂𝒂 = −𝛼𝛼𝑎𝑎𝑎𝑎∇𝑝𝑝 + 𝛼𝛼∇𝑝𝑝𝑎𝑎𝑎𝑎, (89) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝒖𝒖𝒂𝒂𝒗𝒗 ∙ ∇)𝑝𝑝 + (𝒖𝒖 ∙ ∇)𝑝𝑝𝑎𝑎𝑎𝑎 = −𝛾𝛾𝛾𝛾∇ ∙ 𝒖𝒖𝒂𝒂𝒂𝒂 − 𝛾𝛾𝑝𝑝𝑎𝑎𝑎𝑎(∇ ∙ 𝒖𝒖),  (90) 

Here 𝑢𝑢𝑎𝑎𝑎𝑎,𝑝𝑝𝑎𝑎𝑎𝑎,𝛼𝛼𝑎𝑎𝑎𝑎 are the time-averaged velocity, pressure, and specific volume, respectively; 

𝑢𝑢,𝑝𝑝,𝛼𝛼 are their acoustic fluctuations. A fifth order WENO scheme is applied in the test 

region[88, 89]; a second-order finite difference scheme [25] is applied for region close to the 

boundary. 

6.2.2 High Order Upwind Scheme 

Due to their ability to accurately calculate the high gradient of velocity and achieve a stable 

and non-oscillatory numerical scheme, high-order upwind schemes have been widely used to 

discretize the convection terms of the variables in the direction of their propagation of 

information in a flow field [88, 89]. To illustrate the implementation of the high-order upwind 

scheme for the convection terms in the current simulation, we take the one-dimensional 

convection term as an example: 

 𝑎𝑎
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑎𝑎+𝑢𝑢𝑥𝑥− + 𝑎𝑎−𝑢𝑢𝑥𝑥+, (91) 

where 𝑎𝑎+ = max(𝑎𝑎, 0)   and 𝑎𝑎− = min(𝑎𝑎, 0). 

The fifth-order WENO scheme for 𝑢𝑢𝑥𝑥− and 𝑢𝑢𝑥𝑥+ used in this study is given as: 

 𝑢𝑢𝑥𝑥± = 𝑤𝑤1
±𝑢𝑢𝑥𝑥1± + 𝑤𝑤2

±𝑢𝑢𝑥𝑥2± + 𝑤𝑤3
±𝑢𝑢𝑥𝑥3±,   (92) 

where 𝑤𝑤1
±,𝑤𝑤2

± and 𝑤𝑤3
± are the weight coefficients and can be found in [88]. In addition, 𝑢𝑢𝑥𝑥1±,𝑢𝑢𝑥𝑥2± 

and 𝑢𝑢𝑥𝑥3±  are three ENO3 stencils defined as: 
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 𝑢𝑢𝑥𝑥1± =
𝑞𝑞1

±

3
−

7𝑞𝑞2
±

6
+

11𝑞𝑞3
±

6
,   (93) 

 𝑢𝑢𝑥𝑥2± = −
𝑞𝑞2

±

6
+

5𝑞𝑞3
±

6
+
𝑞𝑞4

±

2
, (94) 

 𝑢𝑢𝑥𝑥3± =
𝑞𝑞3

±

3
+

5𝑞𝑞4
±

6
−
𝑞𝑞5

±

6
,   (95) 

where 

 
𝑞𝑞1− =

𝑢𝑢𝑖𝑖−2,𝑗𝑗 − 𝑢𝑢𝑖𝑖−3,𝑗𝑗

Δ𝑥𝑥
, 𝑞𝑞2− =

𝑢𝑢𝑖𝑖−1,𝑗𝑗 − 𝑢𝑢𝑖𝑖−2,𝑗𝑗

Δ𝑥𝑥
, 𝑞𝑞3− =

𝑢𝑢𝑖𝑖,𝑗𝑗 − 𝑢𝑢𝑖𝑖−1,𝑗𝑗

Δ𝑥𝑥
,

𝑞𝑞4− =
𝑢𝑢𝑖𝑖+1,𝑗𝑗 − 𝑢𝑢𝑖𝑖,𝑗𝑗

Δ𝑥𝑥
,        𝑞𝑞5− =

𝑢𝑢𝑖𝑖+2,𝑗𝑗 − 𝑢𝑢𝑖𝑖+1,𝑗𝑗

Δ𝑥𝑥
 

   

(96) 

and 

 
𝑞𝑞1+ =

𝑢𝑢𝑖𝑖+3,𝑗𝑗 − 𝑢𝑢𝑖𝑖+2,𝑗𝑗

Δ𝑥𝑥
, 𝑞𝑞2+ =

𝑢𝑢𝑖𝑖+2,𝑗𝑗 − 𝑢𝑢𝑖𝑖+1,𝑗𝑗

Δ𝑥𝑥
, 𝑞𝑞3+ =

𝑢𝑢𝑖𝑖+1,𝑗𝑗 − 𝑢𝑢𝑖𝑖,𝑗𝑗
Δ𝑥𝑥

,

𝑞𝑞4+ =
𝑢𝑢𝑖𝑖,𝑗𝑗 − 𝑢𝑢𝑖𝑖−1,𝑗𝑗

Δ𝑥𝑥
, 𝑞𝑞5+ =

𝑢𝑢𝑖𝑖−1,𝑗𝑗 − 𝑢𝑢𝑖𝑖−2,𝑗𝑗

Δ𝑥𝑥
, 

(97) 

In this study, the high-order upwind scheme is applied to the regions around the vortices, 

and the numerical scheme in [25] is used for solving convection in the remaining region. More 

details about WENO scheme can be found in [88]. It should be noted that the background 

velocity field generated by the vortices is assumed to be steady. 

6.2.3 Simulation setup 

Figure 39 shows a schematic diagram of the configuration in both 2D and 3D 

simulations. A harmonic continuous plane wave is specified on the left boundary (𝑦𝑦 = 0). The 

acoustic waves propagate to the right, interact with the vortex in the middle, and then are 

dampened in the perfectly matched layers (PML) [92, 120, 122] on the right. To prevent 

reflection waves, we put PMLs all around test section except the left side. 
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The incident sinusoidal wave on the left boundary is in the form of 𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜔𝜔0 𝑡𝑡), here 

the angular frequency 𝜔𝜔0 = 2𝜋𝜋𝑓𝑓0. When we set the incoming wave frequency 𝑓𝑓0 to be 85 Hz 

and the speed of sound 𝑐𝑐0 to be 340 m/s, and vortex core size to be 1 meter, the wavelength 𝜆𝜆 of 

4m is a few times larger than the size of the vortex core, 𝐿𝐿, selected to be 1, which means the 

Born approximation is used.   

The size of the 2D computation domain is 110m in the y-direction and 160m in the z-

direction. The grid size of both 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥 is 0.05𝑚𝑚, the time step is 2.0 × 10−6𝑠𝑠, and the total 

simulation time is 0.31𝑠𝑠. The center of the vortex or the vortex pair is located at (20, 80)𝑚𝑚. 

Circular-shape receiver arrays centered by vortex center are place at far filed, the distance from 

each receiver to the center of the array is 𝑟𝑟. 

Figure 39(c) gives the 3D simulation setup. The 3D computational domain is a 19m 

square box, with the uniform mesh size Δ𝑥𝑥 = 0.02𝑚𝑚.  A sinusoid plane wave with 𝑓𝑓 = 170𝐻𝐻𝐻𝐻 

on the left side of the domain (𝑦𝑦 = 0𝑚𝑚) is specified as the incident wave. The PML thick is 1m 

at all the boundary surfaces except the left side, which is incident wave surface. The HSV with 

the radius size 𝐿𝐿 =  1m is located at (0, 8.5, 0). Receiver locations centered at the vortex center 

with radii equals to 2, 4, 6, 8m in the x-y plane (z = 0m) is used to calculate the far-field 

scattering effects. The simulation time is 0.15s, which allows the plane wave to completely pass 

the vortex and all the receivers. 
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(a)       (b) 

 

(c) 

 
Figure 39. Schematic diagram of (a) a 2D single vortex, (b) a 2D vortex pair, and (c) a 3D HSV. 

 To study the vortex influence on the acoustic field, a free space simulation (without 

vortex) is also carried out. Then, the scattering pressure can be calculated as: 

 𝑝𝑝𝑠𝑠 = 𝑝𝑝2 − 𝑝𝑝1 (98) 

where 𝑝𝑝𝑠𝑠 is the scattering pressure, 𝑝𝑝1 is the free space pressure, and 𝑝𝑝2 is the pressure of the 

domain with vortex. 
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6.3 Scaling law in different vortex configurations 

6.3.1 Single vortex with finite circulation 

For a finite circulation single vortex, the velocity is given by [63]: 

 𝑣𝑣𝜃𝜃 =
𝛤𝛤

2𝜋𝜋𝜋𝜋
�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝛼𝛼𝑟𝑟2

𝐿𝐿2
�� (99) 

where 𝛤𝛤, 𝐿𝐿 and 𝑟𝑟 are the circulation of the vortex, the radius of the vortex core, and the distance 

away from the vortex center, respectively; 𝛼𝛼 is a constant selected as 1.256431, so that the 

maximum velocity occurs at 𝑟𝑟/𝐿𝐿 = 1. The definition of the Mach number for a single vortex is: 

 𝑀𝑀 = 𝛽𝛽
𝛤𝛤

2𝜋𝜋𝜋𝜋𝑐𝑐0
 (100) 

where 𝛽𝛽  is a numerical constant related to the specific distribution of tangential velocity in the 

core of the vortex and is 0.7153322. 

In order to compare with the literature data, four simulation cases are considered for 

sound propagation over a single vortex with the Mach number to be 0.0625, 0.125, 0.25 and 0.5. 

The scattering pressure contours at time 0.31s for the four cases are shown in Figure 40 (a)-(d). It 

can be observed that the pressure pattern is more symmetric in the lower Mach number cases 

about the line of z = 80m and most of the scattering effect is in the region between -30° to 30°.  

As the Mach number increases, the scattering effect becomes stronger at both the up and down 

streams of the vortex. These refractive effects are obviously caused by the background vortex 

flow field. 
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(a)        (b)  

 
(c)      (d) 

 
  Figure 40. Finite-circulation single vortex pressure fluctuation contours at time 0.31s with different Mach numbers: 

(a) 0.0625; (b) 0.125; (c) 0.25; (d) 0.5. 

 The root-mean square sound pressure of the scattering wave, 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 is used to describe the 
scattering effect of the vortex, which is defined as: 

 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 = �∫𝑝𝑝𝑠𝑠
2𝑑𝑑𝑑𝑑
𝑇𝑇

 (101) 

 The  root-mean-square pressure is normalized with the incident wave pressure magnitude 

(𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟/𝑝𝑝𝐼𝐼,𝑝𝑝𝐼𝐼=1 is the amplitude of the incident wave), and the results are shown in Figure 41(a)-

(d), along with the DNS simulation results by Colonius et al. (1994). Our numerical results agree 
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well with the DNS data, except at some points in the case of M=0.5. In spite of these points, the 

overall agreement is still very good even at this high Mach number. It is also noticed that the 

scattering pressure variation versus angle at the range between 0 and180 degrees is more drastic 

than that between -180 and 0 degrees, when the Mach number of the vortex increases, which is 

also found in the scattering pressure contours in  Figure 40.  

 
 
 
(a)      (b) 

 
(c)      (d) 

 
  Figure 41. Normalized pressure level with different Mach numbers comparing with Colonius et al. (a) 0.0625 (b) 

0.125 (c) 0.25 (d) 0.5. 
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To illustrate the accuracy of the WENO scheme, we change the grid size from 0.05m to 

0.2m. Cases of Mach number 0.25 and 0.5 are tested, and the results are presented in Figure 42. 

For the case of Mach number 0.25 in Figure 42 (a), it is found that the results from both the 

second-order and WENO schemes are very close to the fine grid results. However, for the case of 

the larger Mach number of 0.5 in Figure 42 (b), the curve of the second-order scheme deviates a 

lot from that of the fine grid case, while the result of the WENO scheme still agrees well with the 

result of the fine grid. This is an evidence that the WENO scheme maintains very good accuracy 

with the vortex dominant flow in the background even at a very high Mach number.  

(a)       (b) 

 
Figure 42.Normalized pressure level with different schemes at different Mach number (a) 0.25 (b) 0.5 

According to the low-frequency theories in [60], the root-mean-square sound pressure 

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 in the far filed should scale as: 

 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 ~ 𝑝𝑝𝐼𝐼𝜀𝜀(𝜆𝜆/𝑟𝑟)1/2             (102) 

where,  

 𝜀𝜀 = 𝛤𝛤/(𝑎𝑎∞𝜆𝜆) (103) 
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 The root-mean-square sound pressure scaled by the right-hand side of Eq. (102) is given 

in Figure 43(a) for each different Mach number. When the ratio of  𝑟𝑟/𝜆𝜆 is kept a constant of 2.5 

and the Mach number decreases, the peak scattering of normalized 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 appears to scale with 𝜀𝜀 

until M=0.25 (𝜀𝜀 = 0.55). Once the Mach number increases to 0.5, the scattering peaks that occur 

at the lower Math numbers are no longer significant, because of the high Mach number effect.  

On the other hand, when we hold 𝜀𝜀 as a constant 0.14 (𝑀𝑀 = 0.0625), the normalized 

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 are plotted for various values of  𝑟𝑟/𝜆𝜆 in Figure 43 (b). The peak scattering appears not scale 

with (𝑟𝑟/𝜆𝜆)
1
2. This is due to the refraction effect of the slowly decaying vortex flow field [65], 

which is at the rate of 1/r, as indicated in Eq. (99) The results again agree with the single vortex 

scattering effect in the DNS by [63]. 

(a)       (b) 

 
Figure 43. Normalized 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 when (a) receiver distance 𝑟𝑟/𝜆𝜆 = 2.5, with varying Mach number (b) Mach number M 

= 0.0625 (𝜀𝜀 = 0.14), with varying receiver distance 

6.3.2 Single vortex with zero circulation 

With the above slow-decaying single vortex case, it is of interest to study a zero-circulation 

vortex flow field for fast-decaying refraction effect from the mean flow field. According to [63], 

the velocity of a zero-circulation vortex in polar coordinate can be expressed as: 
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 𝑣𝑣𝜃𝜃 = 𝑀𝑀 ∙ 𝑎𝑎∞ ∙
𝑟𝑟
𝐿𝐿

exp �
1
2

(1 − 𝑟𝑟2)� (104) 

In this case, the velocity decays exponentially, much faster than the previous finite 

circulation vortex expressed in Eq. (99). With the same simulation setup, the resultant scattering 

pressure contours are given in Figure 44. Similar to the finite-circulation single vortex, in the 

lower Mach-number cases, Figure 44 (a)-(c), the scattering pattern appears to be symmetric 

about 𝑧𝑧 = 80𝑚𝑚, but the scattering area is bigger, between −45° to 45°. The higher Mach number 

cases in Figure 44 start to show asymmetry, which is the same as the previous finite- circulation 

single vortex case. The difference is, comparing with Figure 40, we see fast-decaying far-field 

refraction effect in Figure 44.  

(a)      (b) 

 
(c)      (d) 
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 Figure 44. Zero-circulation single vortex scattering pressure contours at time 0.31s at different Mach numbers: (a) 

0.0625; (b) 0.125; (c) 0.25; (d) 0.5. 

Figure 45 gives the comparison with the DNS results by Clonius et al. (1994) of 

normalized scattering pressure (𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟/𝑝𝑝𝐼𝐼 ) at  𝑀𝑀 = 0.125 and the receiver at 𝑟𝑟/𝜆𝜆 = 2, showing 

the our linearized simulation matches the DNS results very well in the zero-circulation single 

vortex case. 

 
Figure 45. Normalized pressure level with different Mach numbers comparing with Colonius et al. M = 0.125, 

𝒓𝒓/𝝀𝝀 = 𝟐𝟐 

 
In Figure 45, we normalize the root-mean-square pressure with RHS of (100), and plot 

a) 𝑟𝑟/𝜆𝜆 = 2.5, with varying 𝜀𝜀 (different Mach numbers); and b) 𝜀𝜀 = 0.14 (Mach number 0.0625), 
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with varying 𝑟𝑟/𝜆𝜆 . In both Figure 46(a) and (b), the scaled  𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 curves collapse at lower Mach 

numbers and far-field, particularly near the peaks. This gives the evidence that the scaling law 

appears to hold for peak scattering at low Mach number in the far field, which is also consistent 

with the low-frequency theories in [60]. 

(a)             (b) 

  

  
Figure 46. Normalized 𝑷𝑷𝒓𝒓𝒓𝒓𝒓𝒓 when (a) receiver distance 𝒓𝒓/𝝀𝝀=2.5, (b) Mach number M = 0.0625 (ε=0.14).  

 

6.3.3 Stationary vortex pair 

The total circulation of a vortex pair is zero. However, due to a different flow field from a 

single vortex with zero circulation, the acoustic scattering effect can be different.  

 To represent the vortex pair, two counter-rotating single finite-circulation vortices as expressed 

in Eq. (99) is used. The distance, 𝑑𝑑, shown in Figure 39 (b), is the space between the two vortex 

centers. The distance between the receiver and the center of the vortex pair, 𝑟𝑟, starts from 50m. 

Different orientations of vortex pair are represented as different angles 𝜓𝜓 in Figure 39 (b), and 

the coordinates of the two vortex centers in a vortex pair with 𝜓𝜓 =90o are (20, 79) and (20, 81), 
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respectively. Because the purpose of this study is to investigate the scaling laws of the vortex 

scattering effect, we focus on the vortex pair aligned with the incident wave only, i.e., 𝜓𝜓 =90o, 

although we simulated vortex pairs with different orientation angles.   

With 𝜓𝜓 =90o, scattering pressure contours are given in Figure 47. Because the far-filed 

velocity decays at 1/r2, the far-field scattering effect is in between the finite- circulation vortex 

whose velocity decays at 1/r, and the zero-circulation vortex whose velocity decays 

exponentially with the distance.  Therefore, we observe insignificant refraction effects from the 

mean flow at the far field in Figure 47. 

 
Figure 47. Scattering pressure contours for the stationary vortex pair cases at time 0.31s with Mach number 0.25 for 

𝝍𝝍 =90° 

 

The normalized pressure levels for  𝜓𝜓 = 90𝑜𝑜 are given in Figure 48. It is seen that the 

main peak is located at 𝜃𝜃 = 0°.  Different from the single vortex cases, the curve of normalized 

pressure level is symmetric with respect to 𝜃𝜃 = 0° in the case of vortex pair at 𝜓𝜓 = 90°. This is 

because the flow field is symmetric in this case. 
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Figure 48. Normalized pressure levels at t=0.31s, r=10m and M=0.25 with 𝝍𝝍 = 𝟗𝟗𝟗𝟗° 

 To study the scaling law of the scattering effect, we plot the normalized 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 in Figure 

49. At the same receiver location (𝑟𝑟/𝜆𝜆 = 2.5), the low Mach number cases tend to scale with 𝜀𝜀, 

but this does not apply for the high Mach number cases in Figure 49(a). On the other hand, when 

Mach number is set to be 0.0625, i.e. 𝜀𝜀 is a constant of 0.14, by changing the receiver distance 𝑟𝑟, 

the curves appear to scale with (𝜆𝜆/𝑟𝑟)
1
2 in Figure 49(b). Therefore, the scattering effect of a 

stationary vortex pair agrees with the low-frequency theory when the Mach number is low.  
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(a)       (b) 

 

Figure 49. Normalized 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 when (a) receiver distance is 𝑟𝑟/𝜆𝜆=2.5 at different Mach numbers of 0.0625, 0.125, 0.25, 
and 0.5, (b) Mach number M = 0.0625 (ε=0.14) at different receiver locations 𝑟𝑟/𝜆𝜆 = 7.5, 8.75, 10, 11.25, and 12.5 

Since the vortex pair spacing, d, is another variable of a vortex pair, we verify the 

scattering effect with a larger 𝑑𝑑/L value,  𝑑𝑑/L=4, and plot the normalized 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 in Figure 50 for 

various far-field locations, 𝑟𝑟/𝜆𝜆, at the same Mach number 0.0625 (𝜀𝜀 = 0.14).  Figure 50 shows 

that 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 scales well with the distance at 1/ (𝑟𝑟/𝜆𝜆)1/2.  

 
(a)       (b) 

  
Figure 50. Normalized 𝑷𝑷𝒓𝒓𝒓𝒓𝒓𝒓 with different 𝒓𝒓/𝝀𝝀 at d/L=4 and M=0.0625 
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6.3.4 Moving vortex pair 

When scattering phenomenon occurs, it will lead to a spatial and spectral redistribution of 

acoustic energy. Once convection of the vortex is considered the distribution of acoustic energy 

is of interest to study. Clair and Gabard conducted investigations of a single vortex convected in 

a uniformed mean flow [69, 70]. They let a vortex move perpendicular to the direction of source 

wave propagation. The ‘haystacking’ spectral pattern in frequency domain was able to be 

observed from their simulations. Our study here will force on the spatial distribution of a vortex 

pair and convection influence to the Mach number and distance scaling laws. 

When a vortex pair moves at the self-induced translational velocity 𝑉𝑉, the velocity can be 

found as: 

 𝑉𝑉 = Γ/2𝜋𝜋𝜋𝜋 (105) 

The direction of the vortex pair motion is the same as the plane wave propagation when  𝜓𝜓 =90o. 

Vortex motion can possibly influence the far field velocity and scattering effects. For the moving 

vortex pair case, we keep all the vortex pair parameters the same as the stationary vortex 

simulation. To get a better far field results, we shift the vortex pair center and the receiver circle 

center to (60, 65), and the far-field receiver location is changed to 𝑟𝑟 = 50𝑚𝑚, in order to ensure 

that the moving vortex pair is contained inside the receiver circle during the simulation. We 

initialized the simulation with the stationary vortex pair until the plane waves passed all the 

receivers. After the vortex pair starts to move, we let it move along the plane wave propagation 

direction with its self-induced velocity for 5𝑚𝑚. The simulation is conducted with 𝜓𝜓 =

90°, 𝑑𝑑/𝐿𝐿 = 2 and M = 0.0625, 0.125, 0.25 and 0.5. 

Pressure contours of acoustic scattering when the vortex pair starts to move and after it 

moves for 5m are given in Figure 51 for the lowest and highest Mach numbers. The higher Mach 
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number case has stronger sound scattering effects. According to Eq. (105), the moving vortex 

pair with a higher Mach number has a higher moving velocity. 

(a)      (b) 

 
 (c)      (d) 

 
Figure 51.Scattering pressure contours for the vortex pair at the initial position (a) M = 0.0625, (c) M = 0.5; and 

after moving 5m: (b) M = 0.0625, (d) M = 0.5 

To verify our simulation results, the simulated acoustic pressure with 𝜓𝜓 = 90° is 

compared with the analytical solution in [123]. For the analytical solution, the acoustic potential 

and pressure of the incident plane wave is given by: 

 𝜙𝜙𝐼𝐼 = 𝑝𝑝𝐼𝐼 exp[𝑖𝑖(𝑘𝑘0𝑦𝑦 − 𝜔𝜔0𝑡𝑡)] (106) 

 where 𝑘𝑘0 is the wave number defined as 2𝜋𝜋/𝜆𝜆.   The scattered pressure at location (𝑦𝑦, 𝑧𝑧) is 

given as: 
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𝑝𝑝𝑠𝑠 = exp �
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(107) 

The analytical solution presented in [123] is only applicable for low Mach number steady motion 

of the vortex pair.   After the vortex pair moves 5m (𝑡𝑡 = 0.33𝑠𝑠) with at the case of 𝑀𝑀 = 0.0625, 

the simulated scattering acoustic pressure is compared with the analytical solution in Eq. (107) 

given in Figure 52. We can see that the numerical results have a very good agreement with the 

analytical solution. 

 
 
Figure 52. Scattering pressure of moving vortex pair when M=0.0625 in comparison with analytical solutions when 

vortex moved for 5m (t=0.33s)  

Figure 53 gives the normalized pressure level of the moving vortex pair cases in 

comparison with the stationary vortex pair cases. When the Mach number is lower, the two 

curves are very close due to the low self-induced velocity. As the Mach number increases, the 



90 
 

two curves gradually become apart from each other, especially at the forward scattering direction 

(𝜃𝜃 = 0°). We can also find that the scattering effect at the forward scattering direction is 

gradually reduced with the Mach number increasing. Therefore, the motion of the vortex pair 

does influence the scattering pressures. 

(a)      (b) 

 
Figure 53. Normalized scattered pressure levels of a moving vortex pair in comparison with those of a stationary 

vortex pair at r/lamda12.5: (a) M=0.0625; (b) M=0.5. 

To study the influence of the vortex motion on the scaling law, we plot the normalized 

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 profiles in Figure 54. The normalized 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 curves show that the curves still scale well with 

the receiver distance 𝑟𝑟/𝜆𝜆  in both low and high Mach number conditions. 

(a)       (b) 

  
 

Figure 54. Normalized 𝑷𝑷𝒓𝒓𝒓𝒓𝒓𝒓 after vortex pair moves 5m at a) M=0.0625, b) M=0.5 
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6.3.5 3D Hill’s spherical vortex (HSV) 

When we extend our study to three-dimensional vortices, Hill’s spherical vortex (HSV) is 

a good example due to its simple axisymmetric analytical solution. Consider a HSV moving in a 

medium that is at rest at infinity, its stream function can be found[64]: 

 𝜓𝜓0(𝑟𝑟, 𝜃𝜃) =  
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 (108) 

Here 𝑟𝑟 is the distance to the vortex center, 𝜃𝜃 is the polar angle. It is necessary to transform Eq. 

(108) into the Cartesian coordinates for numerical computation, and the resultant velocity field 

is: 
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  (𝑟𝑟 > 𝐿𝐿) (109) 

This velocity field obviously shows a decay rate of 1/𝑟𝑟3. 

Figure 55 shows vorticity contours and streamlines of a HSV with Mach number equal to 

0.25 and L=1.  
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Figure 55. Vorticity magnitude isosurface and streamlines of a HSV with M=0.25, L=1 

Scattering pressure contours are given in Figure 56, with M = 0.25. The scattering 

pressure pattern in the x-y and y-z planes are the same because of the axisymmetric vortex flow. 

The fast scattering pressure decay in the far-field also shows, because of 1/𝑟𝑟3 decay of the 

induced velocity due to the HSV in the far field. 

 

Figure 56. 3D scattering pressure field sections for M=0.25 

Normalized 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 scaled with 𝐿𝐿/𝑟𝑟 is given in Figure 57. At a fixed Mach number of 0.25, 

the peaks of three curves scale very well in Figure 57(a), which confirms that 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟  scales with 

(𝜆𝜆/𝑟𝑟) in 3D versus (𝜆𝜆/𝑟𝑟)1/2 in 2D. The results also mean the acoustic scattering decay is much 

faster in 3D than in 2D, which follows the sound pressure - distance relation in 3D and agrees 
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with the study in [64].  At a fixed receiver distance (𝜆𝜆/𝑟𝑟),  the three curves of scaled 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 at 

three different Mach numbers do not scale well at the high Mach number, similar to the 2D 

cases.   

(a)       (b) 

 
  

Figure 57.Normalized 𝑷𝑷𝒓𝒓𝒓𝒓𝒓𝒓 at constant a) M =0.25, b) r/λ =1.6 

6.4 Summary 

Propagation of plane waves through vortices in both 2D and 3D is studied. To accommodate 

the high convective velocity resulting from the background vortex flow, a fifth-order WENO 

scheme implemented for the time-domain LEE is applied. The results of the single vortex, both 

with finite circulation and zero circulation, have a good agreement with the full compressible 

Navier-Stokes simulation in the literature. The results show that, for a single vortex with finite 

circulation, the scaling law of vortex scattering decay with distance at the rate of 1/𝑟𝑟
1
2 is not 

valid, because of the slow decay of the vortex flow velocity field at the rate of 1/𝑟𝑟 that cannot be 

considered a compact scattering source. On the other hand, the scaling law of proportionality to 

the vortex Mach number is only valid for small Mach number vortex flow. However, the zero-

circulation vortex is a compact scattering source and the scaling law with the distance follows 
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the decay rate of (𝜆𝜆/𝑟𝑟)
1
2  very well in the far field. In the cases of both stationary and moving 

vortex pairs, the scaling laws of distance and Mach number seem to apply under the low Mach 

number flow condition. This is because the vortex velocity field of the vortex pairs decays faster 

than a single finite circulation vortex, at the rate of 1/𝑟𝑟2 . Similar results are also found in the 3D 

HSV scattering study. The scaling distance effect in 3D changes from (𝜆𝜆/𝑟𝑟)1/2 to (𝜆𝜆/𝑟𝑟), and the 

velocity decay rate for the HSV is 1/r3 The decay rates at the far field vortex flow of 1/𝑟𝑟2 for a 

2D scattering source and of 1/𝑟𝑟3for a 3D scattering source are both considered compact sources, 

and therefore the acoustic scaling laws of far-field distance and the Mach number are valid. This 

means, the scaling law for distance is applicable for compact scattering sources, and the scaling 

law for Mach number proportionality is valid for both compact and non-compact scattering 

sources at low Mach numbers.  
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Chapter 7. Conclusion 

The conclusions for each section have been summarized previously. In this chapter, the 

overall achievement of this dissertation is illustrated in Figure 58. 

 

 

Figure 58 Summary of the dissertation 

 

The FDTD simulation along with the IB method has been performed in coupling with 

other numerical models and techniques. The following conclusions are reached: 

• The ZK model predictions compare well with the ANSI model results under the condition 

of high flow resistivity. When the ground roughness is introduced, the ANSI model 

predictions are unable to capture the frequency shift due to the ground height variation. 

• The frequency-dependent porous material models, e.g. the TDBC and WRX models, are 

implemented by solving the convolution operation with recursive algorithms such as 

PCRC/PLRC. The simulation results match the analytical results and show better 

predictions than those from the frequency-independent porous material model (ZK 

model) under the low flow-resistivity condition in the high-frequency range. 
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• The simulation results of the original WRX model present mismatch with physical 

measurements due to the modeled relaxation function. A new approach has been 

proposed which utilizes the measurement results to construct a relaxation function that 

fits the measured material. The new relaxation function improves the prediction of the 

original frequency-dependent porous-medium model significantly. 

• A fitting method has been used to represent the material properties of the exterior wall, 

interior wall, and glass window of a building. The approach simplifies the vibration 

effects of the wall/glass materials with a simple porous material layer. By matching the 

simulated indoor-outdoor noise reduction with the measurement results, the material 

properties of the porous-medium layer can be found. With the identified material 

properties, a combination of frequency-dependent and frequency-independent material 

models coupled with the immersed-boundary method are used to simulate the noise 

reduction of a house near a noise source.  

• A fractional Laplacian model is used to simulation the frequency-domain power 

attenuation law of a biological lossy tissue. The fractional Laplacian terms are solved 

with the FCD method. The procedure does not require large memory nor need to use 

integral transform, which is a relatively simple algorithm. The implementation of the 

FCD method along with the IB method can resolve complicate geometries with a simple 

structured Cartesian mesh and still maintain a second-order spatial accuracy.  

• Sound propagation over vortices is also investigated. The scattering of plane sound waves 

by 2D and 3D vortices is studied by solving the finite-difference time-domain linearized 

Euler equations. Different from the DNS, the existing vortex flow field is employed as a 

background flow. The simulation results of single finite-circulation vortex and zero-
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circulation vortex reach a good agreement with the literature results. When applying the 

same method to a vortex pair, the distance scaling effect and Mach-number scaling effect 

can be clearly observed. After extending the study to a 3D HSV, the distance scaling 

effect is still clear. 

The following topics are listed for suggested future work: 

• Implement a higher-order scheme with low dissipation and dispersion to increase the 

accuracy as well as to reduce the computational cost. 

• Apply the auxiliary differential equation method (ADE) in 3D convolution calculation to 

increase the accuracy and save memory. 

• Extend the current solver from Linearized Euler Equation (LEE) to Linearized Navier-

Stokes Equation (LNS) for indoor and near field study. 

• Investigate the possibility of implementing the Biot theory to simulate a flexible frame 

porous medium. 

• Investigate the possibility of including nonlinear effects in lossy media. 
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Appendix  

Numerical scheme Order of accuracy validation for Lossy media simulation 

While a second-order accurate scheme is used in the simulation for both time and space 

[25], the approximation of boundary treatments used in the FCD and IB methods can possibly 

introduce additional errors in spatial discretization. Therefore, it is necessary to re-evaluate the 

order of spatial accuracy after implementation of the IB and FCD.  

Three cases are tested, with the water only simulation as a baseline. The lossy-medium 

only simulation is conducted to investigate the accuracy of the FCD method. Then, the 

simulation with the ring-shaped lossy medium is used to investigate the accuracy of the 

implementation of the IB method combining with the FCD method. Four levels of grid sizes are 

used in each simulation case, namely, coarse, medium, fine and finest. The grid size ℎ of each 

level is 5 × 10−5m, 2.5 × 10−5m, 1.25 × 10−5m, and 0.625 × 10−5m, respectively. A very 

small time-step, Δ𝑡𝑡 = 1.25 × 10−9s, is used to ensure the stability of the simulation. The 

simulation results at the moment of 𝑡𝑡 = 7.5μs, which is when the wave front fully passes the 

center of the domain, are used. All the nodal point pressure values along the centerline 𝑧𝑧 =

0.015m are used to calculate the L2-norm of the acoustic pressure. The L2-norm error is 

calculated as: 

 𝐿𝐿2 = �∑ �𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑟𝑟𝑟𝑟𝑓𝑓𝑖𝑖�
2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑖𝑖=1

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
 (A1) 

Since the exact solution is not available, the finest grid solution at ℎ =  0.625 × 10−5m is used 

as the reference. 

Table 3 gives the L2-norm errors of the different grid resolutions in the three cases. The 

observed order is computed using 𝑃𝑃 = log (𝐿𝐿2ℎ/𝐿𝐿20.5ℎ )/log2. The L2-norm curve of each case is 
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also given in Figure 59. It can be found that the slope of the L2-norm curve of the water-only 

case is over 2. For the lossy-medium only case, even the FCD is a second-order method [117, 

119, 124], the order of the scheme is below 2. For the case with the ring-shaped lossy material, 

the order of the simulation accuracy is back to above 2, but slightly lower than the water-only 

case. 

Table 3 L2-norm pressure errors and observed orders of accuracy for water-only, lossy medium only and ring-shaped 

lossy medium cases 

Simulation material 

L2-norm at 

grid size (m) 

5 × 10−5 

L2-norm at 

grid size (m) 

2.5 × 10−5 

L2-norm at 

grid size (m) 

1.25 × 10−5 

L2-norm at 

grid size (m) 

0.625 × 10−5 

Observed 

order (𝑃𝑃) 

Water only 2.4760E-01 5.9700E-02 1.1900E-02  2.19 

lossy medium only 

(𝑦𝑦=1.9) 
5.5500E-02 1.6300E-02 4.6000E-03  1.79 

ring-shaped lossy 

medium 
9.5852E-03 2.3772E-03 4.8398E-04  2.15 
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Figure 59. The L2-norms of the three cases verse the grid size in comparison with a line of slope 2 (dash) 
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