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Aneurysm Formation, Growth and Rupture: The Biology and Physics of Cerebral 

Aneurysms 

 

Short Title: Biology and Physics of Cerebral Aneurysms 

 

Abstract 

  

 Cerebral Aneurysms (CAs) are characterized by a pathological wall structure with internal 

elastic lamina and media disruption which leads to focal weakened pouches of the arterial wall. 

The prevalence of unruptured CAs is estimated to be 2-5% in the general population. During the 

past few decades, the pathophysiological mechanisms behind the formation, growth and rupture 

of CAs have been the focus of numerous research studies. In this review, the inflammatory 

pathways, genetics and risk factors for the formation, growth and rupture of CAs are summarized. 

In addition, the concepts of geometrical indices, flow patterns and fluid dynamics that govern CA 

development are discussed. 

 

Keywords: cerebral aneurysms; intracranial aneurysms; inflammation; wall shear stress; flow 

dynamics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

The prevalence of unruptured cerebral aneurysms (CA) is estimated to be 2-5% in the 

general population.1 CAs are characterized by a pathological wall structure with internal elastic 

lamina and media disruption which leads to focal weakened pouches of the arterial wall.2,3 The 

majority of CAs remain clinically silent during the lifetime of patients who harbor them. However, 

aneurysmal rupture and subsequent subarachnoid hemorrhage (SAH), the most catastrophic 

sequelae, are associated with an approximately 50% mortality and 30-50% neurologic morbidity 

rate among the survivors.4 Despite the technological advances and use of novel devices to manage 

CAs, they continue to pose a significant risk of mortality and neurologic morbidity.4 

During the past few decades, the pathophysiological mechanisms behind the formation, 

growth and rupture of CAs have been the focus of numerous research studies.5,6 Inflammatory 

pathways and mediators implicated in CA formation and growth along with extensive imaging 

studies have provided new insights into our understanding of CAs.7,8 Deciphering the biology and 

physics of CAs could potentially optimize patient management and result in novel treatment 

options. This review aims to summarize current scientific knowledge with regards to CA 

formation, growth and rupture. 

 

Biology of CAs 

I) Inflammatory Pathways  

 Several studies have demonstrated that inflammation has an impact on the formation and 

growth of CAs.8–11 One hypothesis is that an initial hemodynamic insult leads to complex 

inflammatory processes which involve the matrix metalloproteinases (MMPs), vascular smooth 

muscle cells (VSMCs), macrophages and oxidative stress. 

 Endothelial dysfunction is considered the first step in the formation of CAs and this can be 

the result of smoking, hypertension, local flow dynamics dysregulation and non-modifiable factors 

including genetics. Oxidative stress is considered to be a major source of endothelial injury and 

entails the accumulation of free radicals due to increased production and/or decreased removal.5 

The next step involves a coordinated inflammatory response implicating macrophages, mast cells, 

T cells and a number of cytokines and inflammatory mediators. This inflammatory response leads 

to the phenotypic modulation of VSMCs, which are the main matrix-synthesizing cells within the 

media of the arterial wall.12 These VSMCs induce disruption of the internal elastic lamina, cause 



dysregulated collagen synthesis and extracellular matrix remodeling.13 The late steps in the biology 

of CA growth involve VSMC apoptosis which results in further thinning of the media and 

increased rupture risk.11 

 In addition, macrophages infiltrate the vascular wall as a result of the inflammatory 

mediators and cytokines. Macrophages express and release MMPs which cleave the extracellular 

matrix and collagen of the arterial wall.7 This, in turn, leads to the recruitment of other 

inflammatory cells, upregulates the expression of additional proteases and rapidly increases the 

degeneration and weakening of the arterial wall.14 These processes are often characterized by a 

positive feedback regulation and act together, ultimately culminating in aneurysm formation and 

growth. Further inflammation may severely impact the arterial wall and trigger aneurysmal rupture 

and SAH.11  

 Several experimental studies have supported these inflammatory pathways. A number of 

studies have focused on the VSMCs’ and macrophages’ role in the biology of CAs. The study by 

Ali et al. suggested that tumor necrosis factor- alpha (TNF-alpha) is implicated in the phenotypic 

modulation of VSMCs towards a pro-inflammatory and matrix remodeling phenotype.13 Guo et 

al. showed that the density of VSMCs in the media of CAs was significantly lower compared to 

normal arterial walls (43.9 VSMC/HPF vs. 222.8 VSMCs/HPF; p<0.01).15 Interestingly, a study 

of mice with elastase-induced CAs showed that macrophages were the predominant cells that 

infiltrated the aneurysm wall. 16 They also demonstrated that mice with macrophage depletion had 

a statistically significant lower incidence of CAs when compared with the control group (p<0.05). 

In addition, this study supported that monocyte chemotactic protein-1 (MCP-1) depleted mice also 

had a statistically significant lower incidence of CAs when compared with wild-type mice 

(p<0.05).16 Aoki et al. suggested that MCP-1 plays a critical role in CA formation; conversely, 

they demonstrated that its inhibition resulted in the cessation of CA growth in mice.17   

Oxidative stress and reactive oxygen species were shown to induce VSMC phenotypic 

switching and apoptosis; this was postulated to play a role in CA formation growth and risk of 

rupture.18–20 A study of both human and mice intracranial aneurysms demonstrated that inducible 

nitric oxide synthase (iNOS) immunoreactivity was consistent with the development of early 

aneurysmal changes.21 This study also showed that aminoguanidine, an iNOS inhibitor, reduced 

the incidence of induced CAs.21 In addition, another study demonstrated an upregulated gene 

profile related to reactive oxygen species, MMPs, growth factors, apoptosis, chemokines, adhesion 



molecules and complement in experimentally induced CAs.22  (Figure 1) Hasan et al. studied ten 

human CAs and introduced the concept of a macrophage subtype imbalance (M1: pro-

inflammatory; M2: anti-inflammatory) in ruptured versus unruptured aneurysms.23 Specifically, 

they showed that M1 and M2 were equally distributed within the aneurysm wall of unruptured 

aneurysms; in contrast, M1 pro-inflammatory macrophages were the predominant type of 

macrophages in ruptured aneurysms.23    

 

II) Genetics 

 The genetic predisposition to develop CAs and SAH has been well-established. There is 

an almost 2-fold and 4-fold or more increase in the incidence of CAs in patients with one and two 

affected first degree relatives, respectively, when compared to the general population.24,25 Familial 

CAs are more commonly multiple and found in the middle cerebral artery, may rupture at a 

younger age and may be larger than sporadic CAs.26–29 Genome-wide linkage studies have 

identified a number of susceptibility loci that may contain genes implicated in familial CAs.30 For 

example, 1p34.3-p36.13, 19q13.3, Xp22 and 7q11 were found to have a strong association with 

familial CAs.30–32 The 7q11 region contains the collagen type 1A2 gene and is adjacent to the 

elastin gene, both of which contribute to the structural integrity of the arterial walls.33–35 A 

systematic literature review showed that the 9p21/CDKN2, a loci which is implicated in vessel 

wall remodeling, had the strongest association with aneurysm rupture (Odds ratio: 1.42; p=0.01).36 

Another large scale genome-wide association study with approximately 2,000 patients with CAs 

and 8,000 controls reported single nucleotide polymorphisms in the 2q33.1, 8q11.23 and 9p21.3 

loci, which are thought to be associated with sporadic and familial CAs.37 Candidate genes that 

have been studied are MMPs, angiotensin-converting enzyme, phospholipase C, NOS, 

transforming growth factor-beta receptor among others. However, the outcomes of genetic linkage 

studies are inconsistent in the literature.33 Even though a large number of studies have implicated 

the effect of genetics on the development of CAs, it is more likely that CAs are the result of a 

multifactorial process where both genetics and environmental factors play a role. 

 On the other hand, several hereditary diseases with an established genetic profile are known 

to be associated with an increased risk of CA formation and rupture. The most common is 

autosomal dominant polycystic kidney disease (ADPKD), which has a mutation in the PKD1 and 

PKD2 genes. The prevalence of CAs in ADPKD is estimated within the range of 10-13% and up 



to 25% in those with a positive family history of CA or SAH.38 Other hereditary syndromes 

associated with CAs are fibromuscular dysplasia and Ehlers-Danlos type IV.24 

 

III) Risk Factors 

 Several modifiable and non-modifiable factors have been proposed to affect the risk of 

aneurysm formation, growth and rupture. The most studied and well-established modifiable factors 

are cigarette smoking and hypertension. Smoking and hypertension were independent risk factors 

for CA formation with an OR of 3.0 and 2.9, respectively.39 The same study highlighted that the 

combined risk of individuals who smoke and are hypertensive increases synergistically to a 

statistically significant OR of 8.3.39 Smoking and hypertension are both known to increase 

oxidative stress.  Oxidative stress acts as the initial hemodynamic insult causing endothelial injury 

and subsequent  inflammation, ultimately resulting in aneurysm formation.5 Smoking increases the 

production of reactive oxygen species through NADPH oxidase activation.40 In contrast, there is 

currently no strong evidence pointing towards a direct unidirectional link between hypertension, 

free radical generation and aneurysm formation. There is inconsistent evidence regarding the 

effect of alcohol consumption and formation of CAs; in comparison, heavy alcohol consumption 

has been shown to increase the risk of SAH.5,41 Atherosclerosis is also consistently present in 

saccular CAs; however, whether atherosclerosis can cause CAs is still unknown.42,43 

 As discussed above, family history of CAs and SAH is one of the non-modifiable risk 

factors which might be associated with specific genetic loci. Interestingly, the number of first-

degree relatives with SAH affects the risk of SAH for an individual. Bor et al. evaluated 

approximately 135,000 patients and showed that individuals with 1 affected and 2 affected 

relatives had an OR of 2.15 and 51, respectively, for an increased risk of SAH.44 Female gender 

and older age were also considered non-modifiable risk factors for CAs in a meta-analysis of 

95,000 patients.45 In addition, female patients had a three-fold increase in the risk of aneurysmal 

rupture compared to male patients.46 

 Hereditary syndromes are also non-modifiable risk factors. ADPKD-associated CAs are 

commonly found in the MCA and tend to have a small diameter (mean 4.4 mm).47,48 CAs in the 

ADPKD population occur in approximately 10-13% whereas in the general population the 

incidence ranges from 3-5%.38,49 However, a 20-year follow-up study and a systematic literature 

review suggested that the risk of growth or rupture in ADPKD patients is not higher when 



compared to the general population.47,50 These results, however, should be interpreted with caution 

as ADPKD patients usually receive more aggressive treatment after diagnosis. Ehlers-Danlos type 

IV is another hereditary syndrome with an associated increased risk of CAs; importantly, catheter 

angiography may be higher risk for these patients due to fragility of the arterial walls.51 Moreover, 

sickle cell anemia is considered a non-modifiable risk factor for CAs. Patients with sickle cell 

anemia might present with multiple aneurysms, including aneurysms in the posterior circulation. 

The presumed mechanism is endothelial injury due to the sickle cells.52,53 In addition, Loeys-Dietz 

syndrome is thought to be associated with a high risk of CA formation, with an estimated 

prevalence of CAs ranging from 10-28%;however, data is limited.54,55 A study of 376 hereditary 

hemorrhagic telangiectasia (HHT) patients reported that only 2.1% of patients harbored CAs.56 

Nevertheless, this study found that 12.8% of patients had arteriovenous malformations.56 Whether 

Marfan disease, neurofibromatosis, multiple endocrine neoplasia type I and acromegaly are 

associated with an increased risk to harbor CAs is still controversial.24,57–60  

 

Physics of CAs 

I) Geometry 

 A variety of geometrical factors have been utilized with the goal to determine CAs prone 

to rupture. One of the simplest factors that has been historically used is the maximal aneurysm 

size. Several suggestions have been made in the past with regards to maximal CA size. The critical 

threshold above which there is an increased risk of rupture varied between 5-10mm. Even though 

there is evidence that maximal size and CA rupture are correlated,61,62 data from studies comparing 

the diameter of ruptured vs unruptured CAs are inconclusive.63–65 A systematic literature review 

suggested that the mean difference of the diameter between ruptured and unruptured aneurysms 

was only 1.5mm.66 Importantly, data from a number of studies showed that 70-85% of the 

unruptured aneurysms had a maximal diameter of less than 10mm which further questions the 

applicability and sensitivity of this factor.67–69 

 Aspect ratio, defined as aneurysm height divided by aneurysm neck is considered a useful 

geometrical parameter that can be used for risk stratification. Reports from several studies have 

suggested that ruptured aneurysms most commonly have an average aspect ratio of 2.4 whereas 

unruptured aneurysms have an average aspect ratio of 1.6 or lower.66,70–72 A study of 129 patients 

with ruptured and 72 patients with unruptured CAs reported that approximately 80% of the 



ruptured aneurysms had an aspect ratio greater than 1.6, whereas almost 90% of the unruptured 

had aspect ratio less than 1.6.73 Nevertheless, there is no consensus with regards to an optimal 

aspect ratio threshold value that could be used in routine clinical practice. Future studies with 

larger patient samples and prospective design would be more likely to provide accurate thresholds 

with the potential to predict rupture. 

 Size ratio, is the aneurysm-to-parent vessel size ratio and has been shown to be a promising 

geometric factor that can help predict aneurysm instability and risk of rupture.74 Results from a 

prospective study underscored that size ratio was the only statistically significant predictor of 

aneurysm rupture (OR: 2.12; 95% CI: 1.09-4.13) and this was validated by larger studies.75,76 A 

virtual experimental study also reported that higher size ratio is associated with flow patterns 

typical for ruptured CAs, independent of aneurysm type and size.77  It has been also suggested 

that size ratio might be a more efficient predictor for rupture of small aneurysms <5mm.76 

 The area ratio defined as the ratio of the area of the aneurysm to the parent artery in the 

neck plane and may be a potential predictor of CA rupture. In a multicenter study of 2,674 CAs in 

Chinese population, area ratio ≥1.5 (adjusted OR, 4.089; 95% CI, 1.247–13.406), and irregular 

wall (adjusted OR, 10.443; 95% CI 3.394 –32.135) were significant predictive factors for 

aneurysm rupture after adjustment for aneurysm size.78 Of note, additional morphological 

parameters have been used with various applicability.79 In this era of technological advancements 

and development of novel imaging software, more sophisticated combinations of geometrical 

variables are emerging. This could lead to the development of an imaging-based predictive test 

which utilizes the morphological characteristics of an individual aneurysm and computes the 

adjusted risk of rupture with an acceptable area under the curve. 

 

II) Flow Patterns 

 CA flow has been investigated by clinical and experimental studies in animals and in vitro. 

The aneurysmal flow patterns are based on the geometrical indices of the CA-parent vessel 

complex and the volumetric flow characteristics in the afferent and efferent arteries. Different 

intra-aneurysmal flow patterns have been described in sidewall CAs, bifurcation aneurysms with 

symmetric or asymmetrical outflow and asymmetric bifurcation aneurysms.80 The typical flow 

pattern of a sidewall CA is characterized by flow that impinges on the distal CA neck, enters the 

aneurysm, travels along the wall and exits the CA at the proximal neck.66,81 This intra-aneurysmal 



flow pattern is also associated with reduced flow velocity in the center in theoretical models and 

human imaging studies.82,83 Geometric indices that impact flow patterns in bifurcation CAs are the 

bifurcation angle, branch diameters and flow dynamics in these branches.80 Flow in bifurcation 

CAs usually enters the side of the neck  which is closer to the larger branch, creates a vortex in the 

aneurysmal sac and exits into the daughter branch closest to the exit.84,85 Of note, higher aspect 

ratios affect the flow by creating a much slower circulation near the dome and reduce the flow 

penetrance in the aneurysm.85 Another important consideration when studying the flow patterns 

and flow dynamics of CAs is the cardiac cycle.86 For example, pulsatile flow during systole can 

drive blood flow from the parent vessel into the aneurysm, contributing to vortex formation, while 

the flow can either exit the aneurysm or redistribute into stagnation zones or vortical regions during 

diastole.86,87 There is also a temporal component in the flow patterns of the parent vessel at the 

aneurysm neck due to the cardiac cycle. More specifically, portions of the aneurysmal vortex or 

secondary flow structures (e.g. recirculation zones, helical flow patterns) may be generated at this 

location.88,89 However, individual aneurysms generally develop unique flow patterns which are 

affected by a number of geometrical indices, flow dynamics in the parent vessel and anatomy of 

the parent vessel-aneurysm complex. 

 

III) Flow Dynamics and Wall Shear Stress (WSS)  

 A detailed and accurate hemodynamic description of a CA would require the evaluation of 

blood velocities within the flow pattern, density and viscosity as well as the geometry and 

mechanical properties of the arterial wall. This would allow the description of WSS distribution in 

the parent artery and CA flow. WSS is defined as the force per unit area which is exerted by a solid 

boundary (i.e. arterial wall) on a fluid in motion (i.e. blood) and vice-versa, in a direction on the 

local tangent plane. The impact of WSS on cerebral arterial walls has been a subject of recent 

study. WSS has been found to affect endothelial homeostasis and induce aneurysm formation and 

atherosclerotic lesions.90–92 Meng et al. suggested that the combination of high WSS and high WSS 

gradient increases the risk for aneurysm formation at arterial bifurcations.92  However, there is 

conflicting evidence with regards to the mechanism through which WSS facilitates CA growth and 

rupture.93–96 Shojima et al. studied 20 middle cerebral artery aneurysms and proposed that a high 

WSS may contribute to the initial phase of hemodynamic stress, but that a low WSS may promote 

aneurysmal growth and increase the risk of rupture due to degenerative wall changes.94 Similarly, 



Miura et al. compared the morphologic and hemodynamic parameters between ruptured and 

unruptured CAs and showed that low WSS was the only independent predictor of aneurysm 

rupture in multivariate analyses.95 In contrast, a study of 210 patient-specific CA geometries 

performed 1,050 image-based computational flow dynamics simulations and reported that elevated 

maximum WSS is associated with a positive history of CA rupture.93 Interestingly, the authors  

also highlighted that low WSS levels did not show any association with rupture.93 However, it 

should be noted that growing CAs tend to have complex flow patterns which induce variable WSS 

distributions along the CA wall.97 There is also evidence that low WSS with high oscillations may 

induce focal CA growth (i.e. bleb or blister) while high WSS may be associated with global 

enlargement of the CA.98  Future studies are needed to better characterize the effect of WSS on 

aneurysm formation, growth and rupture. 

 The mechanism through which WSS exerts its effects on the vascular wall and endothelium 

has been investigated by a number of studies. WSS is known to trigger several kinase pathways 

which lead to the activation of multiple transcription factors and result in the translation of 

vasoactivators, monocyte chemoattractants and endothelial growth factor genes that dysregulate 

vascular homeostasis and function.90 A study of elastase-induced CAs in rabbits demonstrated that  

low WSS was associated with upregulation of MMPs or pro-MMPs and downregulation of their 

inhibitors, as compared to the control group.99 Importantly, Wang et al. suggested that high WSS 

decreased endothelial NOS expression and increased inflammatory markers in the CA as compared 

to adjacent arterial segments and controls.100 In conclusion, despite the complex interactions of 

hemodynamics with CA formation, growth and rupture, it is likely that both increased and 

decreased WSS contribute to the initial hemodynamic stress insult to the cerebrovascular tree, 

albeit with different mechanisms.101 

 

Imaging Techniques and Risk Stratification 

Investigating the pathophysiological mechanisms implicated in CA formation and growth 

is as important as developing novel tools that will provide new insights in the risk stratification of 

CAs. Advances in imaging techniques that utilize the established knowledge of  inflammatory 

pathways associated with CA formation are already showing promising results. The use of high 

resolution magnetic resonance imaging has been used for a variety of cerebrovascular diseases 

including CA evaluation.102 It has been hypothesized that aneurysmal wall enhancement may be a 



surrogate marker of wall inflammation. A meta-analysis by Texakalidis et al. showed that CAs 

with wall enhancement had statistically significant higher odds of being unstable (OR: 20; 95% 

CI: 6.4-62.1) with a sensitivity of 95% (90.4-97.8) and a negative predictive value of 96.2% (92.8-

98).103 Another imaging technique targeting inflammatory cells is Ferumoxytol-Enhanced MRI. 

Ferumoxytol is a nanoparticle that can be used as a contrast agent and marker of inflammation 

because it is cleared by macrophages.104 A number of studies has also suggested that Ferumoxytol-

Enhanced MRI may also help individualize risk stratification for rupture in CAs.105,106 Hasan et al 

showed that uptake of Ferumoxytol in the CA wall within the first 24 hours may predict aneurysm 

instability and rupture in the next six months.105  Future studies are anticipated to validate these 

results. 

In addition, risk stratification with the use of the Unruptured Intracranial Aneurysm 

Treatment Score (UIATS) or PHASES, based on easily available characteristics of the patient and 

the CA, may prove to be accurate and guide clinical decision making.107,108 

 

Conclusions 

 The pathophysiology of CAs has been extensively studied.  The inflammatory pathways 

and physics behind the formation, growth and rupture of CAs have been described by a number of 

experimental and clinical studies. The combination of current scientific knowledge has allowed 

for the development of novel imaging techniques with the potential to optimize risk stratification 

of aneurysms prone to rupture. Future studies are anticipated to expand our understanding of this 

disease and develop innovative treatments. 
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Figure Legends 

 

Figure 1.  Cerebral aneurysm (CA) formation and rupture. Aneurysm formation is initiated by 

hemodynamically triggered endothelial dysfunction. An inflammatory response implicating 

several cytokines and inflammatory mediators as well as macrophages, T cells, and mast cells 

ensues. Concurrently, smooth muscle cells (SMCs) undergo phenotypic modulation to a pro-

inflammatory phenotype. The inflammatory response in vessel wall leads to disruption of 

internal elastic lamina, extracellular matrix digestion, and aneurysm formation. Loss of mural 

cells and further inflammation and vessel wall degeneration ultimately lead to CA rupture. bFGF 

indicates basic fibroblast growth factor; COX2, cyclooxygenase-2; ECM, extracellular matrix; 

ICAM, intercellular adhesion molecule; IL, interleukin; MCP, monocyte chemoattractant 

protein; MMP, matrix metalloproteinase; NK, natural killer; NO, nitric oxide; PGD, 

prostaglandin D; PGE, prostaglandin E; ROS, reactive oxygen species; TGF, transforming 

growth factor; TLR, toll-like receptor; TNF, tumor necrosis factor; VCAM, vascular cell 

adhesion molecule; VEGF, vascular endothelial growth factor; and VSMC, vascular smooth 

muscle cell. (Copyright 2019 Wiley. Used with permission from Chalouhi N, Hoh BL, Hasan D. 

Review of cerebral aneurysm formation, growth, and rupture. Stroke. 2013;44(12):3613-3622. 

doi:10.1161/STROKEAHA.113.002390) 
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