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StanisławMigórski1,2 · Shengda Zeng3

Received: 20 February 2018 / Accepted: 18 November 2018 /
© The Author(s) 2018

Abstract
This paper is devoted to a generalized evolution system called fractional partial differential
variational inequality which consists of a mixed quasi-variational inequality combined with
a fractional partial differential equation in a Banach space. Invoking the pseudomonotonic-
ity of multivalued operators and a generalization of the Knaster-Kuratowski-Mazurkiewicz
theorem, first, we prove that the solution set of the mixed quasi-variational inequality
involved in system is nonempty, closed and convex. Next, the measurability and upper semi-
continuity for the mixed quasi-variational inequality with respect to the time variable and
state variable are established. Finally, the existence of mild solutions for the system is deliv-
ered. The approach is based on the theory of operator semigroups, the Bohnenblust-Karlin
fixed point principle for multivalued mappings, and theory of fractional operators.
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1 Introduction

The fractional calculus, as a natural generalization of the classical integer order calculus, has
been of great interest recently. Since fractional order derivatives hold local properties and
memory effects, they can accurately describe many phenomena, for example, in electrody-
namics, biotechnology, aerodynamics, distributed propeller design and control of dynamical
systems, see [13, 16, 26, 28, 32, 39, 40, 42].

The notion of differential variational inequalities ((DVIs), for short) was introduced
and systematically studied by Pang-Stewart [25] in Euclidean spaces. Since then, many
researchers are attracted to boost the development of theory and applications of DVIs. The
DVIs can be seen a useful tool to represent models involving both dynamics and constraints
in the form of inequalities, and arise in many applied problems, for instance, electrical
circuits with ideal diodes, Coulomb friction problems for contacting bodies, economical
dynamics and related problems such as dynamic traffic networks, see cf. [4, 10, 35]. The
most representative results are: Liu-Loi-Obukhovskii [19] who studied the existence and
global bifurcation for periodic solutions of a class of differential variational inequalities in
a finite dimensional space by applying the topological degree theory for multivalued maps
and the method of guiding functions, Gwinner [8] who explored a stability result of a new
class of differential variational inequalities by using the monotonicity method and the tech-
nique of the Mosco convergence, and Chen-Wang [5] who investigated the dynamic Nash
equilibrium problems involved in a decision process with multiple players which had the
formulation of differential mixed quasi-variational inequalities under the suitable condi-
tions. For more details on this topics in finite dimensional spaces the reader may consult
[9, 21, 25, 27, 29] and the references therein.

It is noteworthy that all aforementioned works were considered only in finite dimensional
spaces. This seriously limits their scope of applications since in many realistic problems
in engineering, operations research, economical dynamics, physical sciences, etc. various
phenomena are more accurately described by partial differential equations. Based on this
motivation, recently, Liu-Zeng-Motreanu [18] and Liu-Migórski-Zeng [15] proved the exis-
tence of solutions for a class of differential mixed variational inequalities in Banach spaces
by applying the theory of semigroups, the Filippov implicit function lemma, fixed point
theorems for condensing multivalued operators, etc. After that, Migórski-Zeng [22] applied
a temporally semi-discrete method based on the backward Euler difference scheme and a
feedback iterative technique to address a new kind of problems, which consist of a hemi-
variational inequality of parabolic type combined with a nonlinear evolution equation in
the framework of an evolution triple of spaces. In the meantime, Ke-Loi-Obukhovskii [12]
firstly considered a differential variational inequality in finite dimensional spaces driven by
fractional derivative operator. However, a natural question has been raised why there is a
need to study the fractional differential variational inequalities. More recently, Zeng-Liu-
Migórski [41] has delivered a positive answer to this question. Actually, the authors in [41]
applied the Rothe method combined with surjectivity of multivalued pseudomonotone oper-
ators and properties of the Clarke generalized gradient to establish existence of solutions to
the following fractional differential hemivariational inequality in a Banach space

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈A(C0 Dα
t u(t)) + B(u(t)), v〉 + J 0(β(t), Mu(t);Mv) ≥ 〈f (t), v〉

for all v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0,

β ′(t) = g(t, Mu(t), β) for a.e. t ∈ (0, T ),

β(0) = β0.
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Then, they have used the abstract results to study a quasistatic frictional contact problem for
viscoelastic materials with adhesion effect in which the friction and contact conditions are
described by the Clarke generalized gradient of nonconvex and nonsmooth functionals, and
the constitutive relation is modeled by the fractional Kelvin-Voigt law.

Let E and E1 be two real reflexive, separable Banach spaces, K be a nonempty, closed
and convex subset of E, 0 < T < ∞, and A : D(A) ⊂ E1 → E1 be the infinitesimal
generator of a C0-semigroup eAt in E1 such that

sup
t∈[0,T ]

‖eAt‖ ≤ MA for some MA > 0.

In this paper, given functions φ : K → R := (−∞,+∞], G : K → P(E∗), B : [0, T ] ×
E1 → L(E,E1), f : [0, T ] × E1 → E1, and g : [0, T ] × E1 → E∗, we consider the
following generalized evolution system

(FPDVI)

⎧
⎪⎪⎨

⎪⎪⎩

CDα
t x(t) = Ax(t) + f (t, x(t)) + B(t, x(t))u(t) a.e. t ∈ (0, T )

u(t) ∈ SOL(K, g(t, x(t)) + G(·), φ) a.e. t ∈ (0, T )

x(0) = x0.

(1.1)

Here, the operator CDα
t stands for the classical fractional derivative operator in the sense of

Caputo (see Definition 2.3 below) and the set SOL(K, g(t, x(t))+G(·), φ) ⊂ E represents
the solution set of the following mixed quasi-variational inequality ((MQVI), for short):
given t ∈ [0, T ] and x(t) ∈ E1, find u(t) ∈ K and u∗ ∈ G(u(t)) such that

〈u∗ + g(t, x(t)), v − u(t)〉 + φ(v) − φ(u(t)) ≥ 0 for all v ∈ K . (1.2)

Moreover, to highlight the level of generalization of our problem (1.1), we present below
several its particular cases.

(1) If E = R
m, E1 = R

n, f = 0, φ = 0 and G : K → R
m is a single valued mapping,

then (FPDVI) (1.1) reduces to the following linear fractional differential variational
inequality

⎧
⎪⎪⎨

⎪⎪⎩

CDα
t x(t) = Ax(t) + B(t, x(t))u(t) a.e. t ∈ (0, T )

u(t) ∈ SOL(K, g(t, x(t)) + G(·)) a.e. t ∈ (0, T )

x(0) = x0,

which has been explored by Ke-Loi-Obukhovskii in [12].
(2) If α = 1, A = 0, E = R

m, E1 = R
n, and φ = 0, then (FPDVI) (1.1) becomes the

following differential variational inequality
⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = f (t, x(t)) + B(t, x(t))u(t) a.e. t ∈ (0, T )

u(t) ∈ SOL(K, g(t, x(t)) + G(·)) a.e. t ∈ (0, T )

x(0) = x0,

which has been sstudied by Wang-Li-Li-Huang in [36].
(3) If α = 1, A = 0, E = R

m, E1 = R
n, and G : K → R

m is a single valued mapping,
then (FPDVI) (1.1) turns into the following differential mixed variational inequality

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = f (t, x(t)) + B(t, x(t))u(t) a.e. t ∈ (0, T )

u(t) ∈ SOL(K, g(t, x(t)) + G(·), φ) a.e. t ∈ (0, T )

x(0) = x0,
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which has been investigated by Li-Huang-O’Regan in [14]. For other special cases, the
reader can consult [17, 23, 31, 33, 34, 36, 37].

The paper is structured as follows. Section 2 recalls some basic definitions and prelim-
inary facts needed in the sequel. In Section 3, we establish the upper semicontinuity and
measurability of the solution set of (MQVI) with respect to the time variable t and state
variable x. Based on results of Section 3, in Section 4, we explore the existence of mild solu-
tions for (FPDVI) via applying Bohnenblust-Karlin fixed point principle, theory of operator
semigroups, and theory of fractional operators. Finally, we make a conclusion.

2 Notation and preliminary results

In this section, we recall briefly the necessary background material for self-contained pre-
sentation of our study. Throughout the rest of the paper, we denote by P(Y ) all nonempty
subsets of a topological space Y , and use the notations

C(Y ) := {
D ∈ P(Y ) | D is closed

}

K(Y) := {
D ∈ P(Y ) | D is compact

}

C(b)v(Y ) := {
D ∈ P(Y ) | D is closed (bounded) and convex

}
.

Let (E1, ‖ · ‖E1) be a Banach space with its dual E∗
1 and A : D(A) ⊂ E1 → E1 be the

infinitesimal generator of C0-semigroup {eAt , t ≥ 0}. We denote by C(J ; E1) the space of
continuous functions from J := [0, T ] to E1 with norm ‖x‖C := supt∈J ‖x(t)‖E1 and by
AC(J ; E1) the space of all absolutely continuous functions on J . We start with the follow-
ing definitions about fractional operators, for more details, we refer to the references [13,
26, 28].

Definition 2.1 Let f ∈ L1(0, T ;E1) and α > 0. The Riemann-Liouville fractional integral
of order α > 0 of f is given by

0I
α
t f (t) = 1

�(α)

∫ t

0
(t − s)α−1f (s) ds for a.e. t ∈ (0, T ),

where �(·) is the well-known Gamma function defined by

�(α) =
∫ ∞

0
tα−1e−t dt .

Definition 2.2 The Riemann-Liouville fractional derivative of order n − 1 < α ≤ n of
f : [0, T ] → E1 is defined by

RDα
t f (t) = 1

�(n − α)

(
d

dt

)n∫ t

0
(t − s)n−α−1f (s) ds for a.e. t ∈ (0, T ).

Definition 2.3 The Caputo fractional derivative of order n−1 < α ≤ n of f : [0, T ] → E1
is defined as

CDα
t f (t) = RDα

t

(

f (t) −
n−1∑

k=0

tk

k!f
(k)(0)

)

for a.e. t ∈ (0, T ).

According to our previous work [15, 17, 18, 21], we give the definition of a mild solution.
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Definition 2.4 A pair of functions (x, u), with x ∈ C(0, T ;E1) and u : [0, T ] → K

measurable, is said to be a mild solution of the problem (FPDVI) in (1.1), if
⎧
⎨

⎩

x(t) = Pα(t)x0 +
∫ t

0
(t − s)α−1Qα(t − s)

[
B(s, x(s))u(s) + f (s, x(s))

]
ds

u(t) ∈ SOL(K, g(t, x(t)) + G(·), φ)

(2.1)

for a.e. t ∈ (0, T ), where

Pα(t) =
∫ ∞

0
ξα(θ)eA(tαθ) dθ,

Qα(t) = α

∫ ∞

0
θξα(θ)eA(tαθ) dθ,

ξα(θ) = 1

α
θ−1− 1

α ωα(θ− 1
α ) ≥ 0,

ωα = 1

π

∞∑

n=1

(−1)n−1θ−αn−1 �(αn + 1)

n! sin(nπα), θ ∈ (0, ∞).

Remark 2.5 The function ξα is usually called a probability density function on (0,∞), since
it has the following properties

ξα(θ) ≥ 0 for θ ∈ (0, +∞) with
∫ ∞

0
ξα(θ) dθ = 1.

Moreover, by virtue of definition of ξα , one has
∫ ∞

0
θβξα(θ)dθ =

∫ ∞

0
θ−αβωα(θ) dθ = �(1 + β)

�(1 + αβ)
for β ∈ [0, 1].

Next, we shall recall the following lemma, which reveals several important properties of
Pα and Qα .

Lemma 2.6 [32, 42] Let A : D(A) → E1 be the infinitesimal generator of a strongly
continuous semigroup {eAt , t ≥ 0}. If there is a constant MA > 0 such that supt≥0 ‖eAt‖ ≤
MA, then operators Pα and Qα fulfill the following properties:

(i) for t ≥ 0 given, Pα(t) and Qα(t) are linear and bounded, more precisely, for any
x ∈ E1, we have

‖Pα(t)x‖E1 ≤ MA‖x‖E1 and ‖Qα(t)x‖E1 ≤ MA

�(α)
‖x‖E1 ,

(ii) both {Pα(t), t ≥ 0} and {Qα(t), t ≥ 0} are strongly continuous;
(iii) if the semigroup {eAt , t > 0} is compact, then for every t > 0, the operators Pα(t)

and Qα(t) are also compact.

Let X and Y be two topological spaces. Recall that a multivalued mapping F : X →
P(Y ) is called to be upper semicontinuous (u.s.c., for short) at point x0 ∈ X, if and only if
for any open set V ⊂ Y with F(x0) ⊂ V , there exists a neighborhood O(x0) of x0 such that
F(x) ⊂ V for all x ∈ O(x0). Moreover, the following theorem provides criteria to verify
the upper semicontinuity of a multivalued mapping.
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Proposition 2.7 [24] Let F : X → P(Y ), with X and Y topological spaces. The following
statements are equivalent:

(i) F is upper semicontinuous,
(ii) for each closed set C ⊂ Y , the set F−(C) := {x ∈ X | F(x) ∩ C �= ∅} is closed in

X,
(iii) for each open set O ⊂ Y , the set F+(O) := {x ∈ X | F(x) ⊂ O} is open in X.

On the other hand, we also recall the concept of quasicompact operators.

Definition 2.8 [11, Definition 1.1.5] A multivalued mapping F : X → P(Y ) is called to be

(i) compact, if its range F(X) is a relatively compact set in Y ,
(ii) quasicompact, if its restriction to any compact subset A ⊂ X is compact.

Theorem 2.9 [11, Theorem 1.1.12] Let X and Y be metric spaces. If F : X → P(Y ) be a
closed and quasicompact multivalued mapping, then F is upper semicontinuous.

Proposition 2.10 [3, Proposition 2] Let E and E1 be real Banach spaces and D be a
nonempty subset of E1. Assume that G : D → P(E) is a multivalued mapping with weakly
compact and convex values. Then G is strongly-weakly u.s.c. if and only if {xn} ⊂ D with
xn → x0 ∈ D and yn ∈ G(xn) implies that there exists a subsequence {ynk

} of {yn} such
that ynk

⇀ y0 ∈ G(x0).

Furthermore, we review the following Bohnenblust-Karlin fixed point theorem which is
the key tool in one of our main.

Theorem 2.11 [2] Let D be a nonempty subset of a Banach space X, which is bounded,
closed and convex. Suppose G : D → P(X) is u.s.c. with closed, convex values, and such
that G(D) ⊆ D and G(D) is compact (i.e., G(D) is a relatively compact set). Then G has a
fixed point.

We conclude this section with the well-known F-KKM theorem by Ky Fan [7].

Lemma 2.12 [7] Let K be a nonempty subset of a Hausdorff topological vector space E

and let G : K → P(E) be a multivalued mapping with the following properties:

(a) G is a KKM mapping, that is, for any {v1, v2, . . . , vn} ⊂ K , one has that its convex
hull co{v1, v2, . . . , vn} is contained in ⋃n

i=1 G(vi),
(b) for every v ∈ K , G(v) is closed in E,
(c) for some v0 ∈ K , G(v0) is compact in E.

Then, we have
⋂

v∈K G(v) �= ∅.

3 Mixed quasi-variational inequalities for (FPDVI)

Let (E, ‖ · ‖E) be a real reflexive Banach space with its dual E∗, and K be a nonempty,
closed and convex subset of E. At the beginning of this section, we introduce the generalized
φ-pseudomonotonicity for multivalued mappings.
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Definition 3.1 Let G : K → P(E∗) be a multivalued mapping and φ : K → R. The map
G is said to be φ-pseudomonotone on K , if for each u, v ∈ K and u∗ ∈ G(u), it holds

〈u∗, v − u〉 + φ(v) − φ(u) ≥ 0 =⇒ 〈v∗, v − u〉 + φ(v) − φ(u) ≥ 0 for all v∗ ∈ G(v).

Remark 3.2 It is obvious that if G is a pseudomonotone monotone operator, i.e., φ-
pseudomonotone with φ = 0 (in particular, a monotone operator), then it is also
φ-pseudomonotone for any function φ. The converse is not true, in general. In fact, there
have many counterexamples that can indicate this fact. For the case, if G is a single-valued
operator, we can refer Example 1 and 2 in [20]. For the case, when G is a multivalued
operator, here, we provide the following example to show this assertion.

Example 1 (G is a multivalued operator) Let E = R, K = [2, 5], φ(x) = x2 and

G(x) =

⎧
⎪⎪⎨

⎪⎪⎩

[1, 2], if x ∈ [2, 3]
{−2x + 7}, if x ∈ [3, 4]
[−3, −1], if x ∈ [4, 5]

.

Chosing x = 5
2 and y = 9

2 , we have 〈x∗, y − x〉 ≥ 2 ≥ 0 for all x∗ ∈ G( 5
2 ) = [1, 2] and

〈y∗, y − x〉 ≤ −2 < 0 for all y∗ ∈ G(
9

2
) = [−3, −1].

So G is not pseudomonotone in K . But, if u, v ∈ [2, 5] satisfy

0 ≤ 〈u∗, v − u〉 + φ(v) − φ(u) = (v − u)(u + v + u∗) for all u∗ ∈ G(u),

then v ≥ u, which leads to

〈v∗, v − u〉 + φ(v) − φ(u) = (v − u)(u + v + v∗) ≥ 0 for all v∗ ∈ G(v).

Therefore, G is φ-pseudomonotone.

Now, we turn our attention to the following mixed quasi-variational inequality ((MQVI),
for short): find u ∈ K such that there exists u∗ ∈ G(u) and

〈u∗ + H, v − u〉 + φ(v) − φ(u) ≥ 0 for all v ∈ K, (3.1)

where H ∈ E∗, φ : K → R := R ∪ {+∞} is a proper, convex and lower semicontinuous
function, and G : K → P(E∗) is a multivalued mapping. In what follows, we denote

SOL(K,G(·) + H, φ) := {
u ∈ K | u is a solution to problem (3.1)

} ⊂ E

to be the solution set of (MQVI) in (3.1).
We start with the following theorem.

Theorem 3.3 Let K be a nonempty, closed and convex subset of a real reflexive Banach
space E. Assume that

(A1) G : K → P(E∗) is upper semicontinuous with compact values, and G(·) + H is
φ-pseudomonotone,

(A2) if the set K is unbounded in E, then there exists ṽ ∈ K ∩ D(φ) such that

lim
u∈K, ‖u‖E→+∞

inf
u∗∈G(u)

〈u∗, u − ṽ〉 + φ(u) − φ(̃v)

‖u‖E

= +∞. (3.2)
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Then, the solution set SOL(K,G(·) + H, φ) of (MQVI) in (3.1) is nonempty, closed and
convex in E.

Proof First, we will show that the set SOL(K,G(·) + H, φ) is closed. Let {un} ⊂
SOL(K,G(·) + H, φ) be such that un → u in K . Then, for each n ∈ N, there exists
u∗

n ∈ G(un) such that

〈u∗
n + H, v − un〉 + φ(v) − φ(un) ≥ 0 for all v ∈ K .

Since G is upper semicontinuous with compact values and un → u in K , there is a sub-
sequence {u∗

nk
} of {u∗

n} such that u∗
nk

→ u∗ ∈ G(u) (more details one can see [30]). In
addition, the lower semicontinuity of φ guarantees that

〈u∗ + H, v − u〉 + φ(v) − φ(u) ≥ 0 for all v ∈ K .

This means that u ∈ SOL(K,G(·) + H, φ), thus SOL(K,G(·) + H, φ) is a closed subset
of K .

Next, we shall verify the convexity of SOL(K,G(·) + H, φ). Let u1, u2 ∈
SOL(K,G(·) + H, φ). So, there exist u∗

1 ∈ G(u1) and u∗
2 ∈ G(u2) such that

〈u∗
i + H, v − ui〉 + φ(v) − φ(ui) ≥ 0 for all v ∈ K, i = 1, 2.

It follows from φ-pseudomonotonicity of G + H that

〈v∗ + H, v − ui〉 + φ(v) − φ(ui) ≥ 0 for all v∗ ∈ G(v) and v ∈ K, i = 1, 2.

For any λ ∈ (0, 1), we denote uλ = λu1 + (1 − λ)u2. From the convexity of φ, we have

〈v∗ + H, v − uλ〉 + φ(v) − φ(uλ) ≥ λ
[〈v∗ + H, v − u1〉 + φ(v) − φ(u1)

]

+(1 − λ)
[〈v∗ + H, v − u2〉 + φ(v) − φ(u2)

] ≥ 0 (3.3)

for all v∗ ∈ G(v) and all v ∈ K . Moreover, for any v ∈ K and t ∈ (0, 1], inserting
v = vt := tv + (1 − t)uλ ∈ K into (3.3), we get

〈v∗
t + H, vt − uλ〉 + φ(vt ) − φ(uλ) ≥ 0 for all v∗

t ∈ G(vt )

Hence, by the convexity of φ, we find

〈v∗
t + H, v − uλ〉 + φ(v) − φ(uλ) ≥ 0 for all v∗

t ∈ G(vt ).

Having in mind that G is u.s.c with compact values, and taking the limit as t → 0+, in the
above inequality, without any loss of generality, we may assume that v∗

t → u∗
λ ∈ G(uλ).

Therefore, we easily get

〈u∗
λ + H, v − uλ〉 + φ(v) − φ(uλ) ≥ 0 for all v ∈ K .

Hence, uλ ∈ SOL(K,G(·) + H, φ), and thus SOL(K,G(·) + H, φ) is convex.
It remains to prove the nonemptiness of SOL(K,G(·)+H, φ). To do so, we first assume

that K is bounded. We consider the multivalued mapping Q : K → P(K) defined by

Q(v) :=
{

u ∈ K | inf
v∗∈G(v)

〈v∗ + H, v − u〉 + φ(v) − φ(u) ≥ 0

}

for v ∈ K .

We readily get v ∈ Q(v) for all v ∈ K , i.e., Q is well-defined. Next, we can demonstrate that
Q(v) is weakly closed for each v ∈ K . Indeed, let {un} ⊂ Q(v) be such that un ⇀ u ∈ K .
Hence, one has

inf
v∗∈G(v)

〈v∗ + H, v − un〉 + φ(v) − φ(un) ≥ 0 for all n ∈ N.
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Combining this inequaity with the weak lower semicontinuity of φ, we have

inf
v∗∈G(v)

〈v∗ + H, v − u〉 + φ(v) − φ(u) ≥ 0 for all n ∈ N.

So, Q(v) is weakly closed for each v ∈ K . In addition, from the convexity of φ, we can
conclude that Q(v) is convex for each v ∈ K .

We further proceed by examining two cases:

(a) the mapping Q is a KKM mapping.
(b) the mapping Q is not a KKM mapping.

Assume that the case (a) occurs, i.e., Q is a KKM mapping. Since K is a bounded, closed
and convex subset of a reflexive Banach space E, it follows that K is weakly compact, so
does G(v) for each v ∈ K . By applying F-KKM theorem, Lemma 2.12, we obtain

⋂

v∈K

G(v) �= ∅.

We deduce that there is u ∈ K such that

〈v∗ + H, v − u〉 + φ(v) − φ(u) ≥ 0 for all v∗ ∈ G(v) and v ∈ K . (3.4)

Next, for any v ∈ K and t ∈ (0, 1), letting vt := tv + (1 − λ)u ∈ K , we have

〈v∗
t + H, vt − u〉 + φ(vt ) − φ(u) ≥ 0 for all v∗

t ∈ G(vt ).

Similarly as we did before, it follows that

〈v∗
t + H, v − u〉 + φ(v) − φ(u) ≥ 0 for all v∗

t ∈ G(vt ).

By virtue of the upper semicontinuity of G, there exists a subsequence of {v∗
t } such that its

limit u∗ ∈ G(u). Hence, we have

〈u∗ + H, v − u〉 + φ(v) − φ(u) ≥ 0 for all v ∈ K,

which implies that u ∈ SOL(K,G(·) + H, φ).
Now, suppose that case (b) holds, i.e., Q is not a KKM mapping. By the defini-

tion of KKM mapping, there exist a finite sequence {v1, v2, . . . , vN } ⊂ K and u0 ∈
co{v1, v2, . . . , vN } with u0 := ∑N

i=1 λivi , λi ∈ [0, 1] and
∑N

i=1 λi = 1 such that

u0 /∈
N⋃

i=1

Q(vi).

Hence, for each i ∈ {1, 2, . . . , N}, it holds

inf
v∗
i ∈G(vi )

〈v∗
i + H, vi − u0〉 + φ(vi) − φ(u0) < 0. (3.5)

Therefore, we assert that

Claim 1 There exists a neighbourhood U of u0 such that for all v ∈ U ∩ K , we have

inf
v∗
i ∈G(vi )

〈v∗
i + H, vi − v〉 + φ(vi) − φ(v) < 0 for all i ∈ {1, 2, . . . , N}.

Arguing by contradiction, for any neighbourhood U of u0, there are v0 ∈ U ∩ K and
i0 ∈ {1, 2, . . . , N} such that

inf
v∗
i0

∈G(vi0 )
〈v∗

i0
+ H, vi0 − v0〉 + φ(vi0) − φ(v0) ≥ 0.
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In particular, we can choose U = B(u0,
1
n
) := {u ∈ E | ‖u0 − u‖E ≤ 1

n
}. Then, for each

n ∈ N, we are able to take vn ∈ U ∩ K and in ∈ {1, 2, . . . , N} such that

inf
v∗
in

∈G(vin )
〈v∗

in
+ H, vin − vn〉 + φ(vin) − φ(vn) ≥ 0.

Recalling that in ∈ {1, 2, . . . , N} for all n ∈ N, without any loss of generality, we may
assume that there exists i0 such that for all n ∈ N, it holds

inf
v∗
i0

∈G(vi0 )
〈v∗

i0
+ H, vi0 − vn〉 + φ(vi0) − φ(vn) ≥ 0,

that is
〈v∗

i0
+ H, vi0 − vn〉 + φ(vi0) − φ(vn) ≥ 0 for all v∗

i0
∈ G(vi0).

Passing to the limit as n → ∞ in the above inequality, it reveals that vn → u0 and

〈v∗
i0

+ H, vi0 − u0〉 + φ(vi0) − φ(u0) ≥ 0 for all v∗
i0

∈ G(vi0).

Hence
inf

v∗
i0

∈G(vi0 )
〈v∗

i0
+ H, vi0 − u0〉 + φ(vi0) − φ(u0) ≥ 0,

which contradicts condition (3.5), so, Claim 1 is proved.
By applying Claim 1 and using the φ-pseudomonotonicity of G + H , we conclude

〈v∗ + H, v − vi〉 + φ(v) − φ(vi) ≥ 0 for all v∗ ∈ G(v) and v ∈ U ∩ K .

This implies

〈v∗ + H, v − u0〉 + φ(v) − φ(u0) ≥
N∑

i=1

λi

[

〈v∗ + H, v − vi〉 + φ(v) − φ(vi)

]

≥ 0 (3.6)

for all v∗ ∈ G(v) and v ∈ U ∩ K . Moreover, for any w ∈ K , if t is small enough, we can
take vt := tw + (1 − t)u0 ∈ U ∩ K in (3.6) to get

〈v∗
t + H, w − u0〉 + φ(w) − φ(u0) ≥ 0 for all v∗

t ∈ G(vt ).

Since G is upper semicontinuous with compact values, we can assume v∗
t → u∗

0 ∈ G(u0).
Therefore, we get

〈u∗
0 + H, w − u0〉 + φ(w) − φ(u0) ≥ 0 for all w ∈ K .

This means u0 ∈ SOL(K,G(·) + H, φ).
Moreover, when K is unbounded, we conclude with the following.

Claim 2 There exist k ∈ N and u ∈ SOL(B(̃v, k),G(·) + H, φ) such that ‖u − ṽ‖E < k,
where ṽ is defined in condition (A2) and B(̃v, k) := {u ∈ K | ‖u − ṽ‖E ≤ k}.

If the claim does not hold, then for each k > 0 and for all u ∈ SOL(B(̃v, k),G(·) +
H, φ) one has ‖u − ṽ‖E = k. From hypothesis (A2), if ‖u‖E large enough, there exists an
increasing function r : R+ → (0, +∞) with r(k) → ∞, as k → ∞ such that

inf
u∗∈G(u)

〈u∗, u − ṽ〉 + φ(u) − φ(̃v) ≥ ‖u‖E r(‖u‖E).

Hence, for k large enough such that r(k − ‖̃v‖E) >
‖H‖E∗k

‖̃v‖E+k
, we have

sup
u∗∈G(u)

〈u∗ + H, ṽ − u〉 + φ(̃v) − φ(u) ≤ (‖H‖E∗ − r(k − ‖̃v‖E)) k

+‖̃v‖E r(k − ‖̃v‖E) < 0.
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This is a contradiction, since u ∈ SOL(B(̃v, k),G(·) + H, φ). Therefore, Claim 2 is
fulfilled.

Now, we assume k > 0 and u ∈ K are such that u ∈ SOL(B(̃v, k),G(·) + H, φ) and
‖u− ṽ‖E < k. We will prove that u ∈ SOL(K,G(·)+H, φ). For any v ∈ K and t ∈ (0, 1),
we have vt = tv + (1 − t)u ∈ B(̃v, k), where t is small enough. Analogously as above, we
also get that there exists u∗ ∈ G(u) such that

〈u∗, vt − u〉 + φ(vt ) − φ(u) ≥ 0,

and therefore
〈u∗, v − u〉 + φ(v) − φ(u) ≥ 0 for all v ∈ K .

This implies that u ∈ SOL(K,G(·)+H, φ), which completes the proof of the theorem.

We observe that Theorem 3.3 extends the recent results obtained by Liu-Zeng-Mo-
treanu [18], Liu-Migórski-Zeng [15], and Wang et al. [36]. In fact, the main approach
employed in the proof of Theorem 3.3 is the F-KKM theorem, which was also used in [15].
However, it does not follow the lines of the proof of [15, Lemma 3.1]. In the present proof,
the operator is multi-valued not a single-valued one, and we have introduced more general
assumptions for the operators.

From the proof of Theorem 3.3, we can see that the condition (A2) indeed indicates that
the multivalued mapping H �→ SOL(K,G(·) + H, φ) for (MQVI) is bounded.

Theorem 3.4 Assume that (A1) and (A2) hold. Then the multivalued mapping H �→
SOL(K,G(·) + H, φ) is bounded.

Proof Arguing by contradiction, we assume that there exists N0 > 0 such that the set
SOL(K,G(·) + BE∗(0, N0), φ) is unbounded, where BE∗(0, N0) := {H ∈ E∗ | ‖H‖E∗ ≤
N0} ⊂ E∗, that is

sup
H∈BE∗ (0,N0)

{ ‖u‖E | u ∈ SOL(K,G(·) + H, φ)
} = +∞.

Therefore, we can find sequences Hk ∈ BE∗(0, N0) and uk ∈ SOL(K,G(·) + Hk, φ) such
that ‖uk‖E > k for each k = 1, 2, . . ..

It follows from hypothesis (A2) that there are an increasing function r : R+ → (0, +∞)

with r(k) → +∞, as k → +∞ and a constant M > 0 such that for each ‖u‖E ≥ M , we
have

inf
u∗∈G(u)

〈u∗, u − ṽ〉 + φ(u) − φ(̃v) ≥ r(‖u‖E) ‖u‖E .

Hence, for k large enough such that r(k) > N0 + N0‖̃v‖E

k
, one has

sup
u∗

k∈G(u)

〈u∗
k + Hk, ṽ − uk〉 + φ(̃v) − φ(uk)

≤ [‖Hk‖E∗ − r(‖uk‖E)
]‖uk‖E + ‖Hk‖E∗ ‖̃v‖E

≤ [
N0 − r(‖uk‖E)

]‖uk‖E + N0‖̃v‖E < 0.

This is a contradiction, which completes the proof of the theorem.

Remark 3.5 It follows from Theorems 3.3 and 3.4 that the solution set SOL(K,G(·) +
H, φ) of (MQVI) is bounded.
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Theorem 3.6 Let E1 be a reflexive and separable Banach space and g : [0, T ] × E1 →
E∗ be a continuous function. Assume that G : K → P(E∗) is upper semicontinuou with
compact values, and G(·) + g(t, x) is φ-pseudomonotone for all (t, x) ∈ [0, T ] × E1. If G
fulfills condition (A2), then the following statements hold

(i) the multivalued map U : [0, T ] × E1 → Cbv(K) given by

U(t, x) := {
u ∈ K | u ∈ SOL(K, g(t, x) + G(·), φ)

}
(3.7)

is strongly-weakly upper semicontinuous,
(ii) the multifunction t �→ U(t, x) is measurable for every x ∈ E1.

Proof We only verify assertion (i), because part (ii) can be obtained following the lines of
the proof of [15, Theorem 3.4(ii)]. It follows from Theorems 3.3 and 3.4 that U(t, x) ∈
Cbv(K) for all (t, x) ∈ [0, T ]×E1, therefore, U is well-defined. Moreover, Proposition 2.7
indicates that U is strongly-weakly upper semicontinuous if and only if the set U−(C) given
by

U−(C) := {
(t, x) ∈ [0, T ] × E1 | SOL(K, g(t, x) + G(·), φ)

}
,

is strongly closed for each weakly closed set C ⊂ E. So, we only need to verify the strong
closedness of U−(C).

Let {(tn, xn)} ⊂ U−(C) be such that (tn, xn) → (t, x) in [0, T ] × E1. This means that

U(tn, xn) ∩ C �= ∅ for each n ∈ N.

Hence, there exist {un} ⊂ K and {u∗
n} ⊂ E∗ such that u∗

n ∈ G(un) and

〈u∗
n + g(tn, xn), v − un〉 + φ(v) − φ(un) ≥ 0 for all v ∈ K .

By the same proof as in Theorem 3.3, we have for each n ∈ N

〈v∗ + g(tn, xn), v − un〉 + φ(v) − φ(un) ≥ 0 for all v∗ ∈ G(v) and v ∈ K .

On the other hand, Theorem 3.4 ensures that {un} is also bounded, thanks to the boundness
of {g(tn, xn)}. Without any loss of generality, we may assume un ⇀ u in K due to the
reflexivity of E. Thereby, we readily conclude that

〈v∗ + g(t, x), v − u〉 + φ(v) − φ(u) ≥ 0 for all v∗ ∈ G(v) and v ∈ K . (3.8)

Moreover, for any v ∈ K and λ ∈ (0, 1), putting vλ := λv+ (1−λ)u ∈ K into (3.8), we get

〈v∗
λ + g(t, x), v − u〉 + φ(v) − φ(u) ≥ 0 for all v∗

λ ∈ G(vλ) and v ∈ K .

Since G is upper semicontinuous with compact values, then there exists a subsequence of
{vλ

∗}, denoted again by the same symbol such that v∗
λ → u∗ ∈ G(u), as λ → 0+. Hence,

we easily get u∗ ∈ G(u) and

〈u∗ + g(t, x), v − u〉 + φ(v) − φ(u) ≥ 0 for all v ∈ K .

This implies that u ∈ U(t, x) ∩ C due to the weak closedness of C, and hence (t, x) ∈
U−(C). The proof is complete.
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4 Existence results for (FPDVI)

This section is devoted to explore existence of mild solutions for problem (FPDVI) by
using results provided in Section 3. For convenience’s sake, we denote by S the set of mild
solutions to (FPDVI), see Definition 2.4, namely,

S := {
(x, u) | x ∈ C(0, T ; E1), u : [0, T ] → K measurable, (2.1) holds for a.e. t

}
. (4.1)

From Theorem 3.6, we know that t �→ U(t, x) is measurable for each x ∈ E1 and x �→
U(t, x) is strongly-weakly u.s.c. for a.e. t ∈ (0, T ). So, invoking the separability of E1,
see [24, Theorem 3.17] and [11, Theorem 1.3.1], we conclude that t �→ U(t, x(t)) admits a
measurable selection l : (0, T ) → E such that

l(t) ∈ U(t, x(t)) for a.e. t ∈ (0, T ).

We assume that g is a continuous function and satisfies the following condition

(A3) there exists a constant Mg > 0 such that

sup
(t,x)∈[0,T ]×E1

‖g(t, x)‖E∗ ≤ Mg .

From Theorem 3.4 and condition (A3), we have

l ∈ L∞(0, T ; E) ⊂ L2(0, T ;E) for each x ∈ C(0, T ; E1).

Thus, the multivalued mapping PU : C(0, T ;E1) → L2(0, T ; E) defined by

PU(x) := {
l ∈ L2(0, T ; E) | l(t) ∈ U(t, x(t)) for a.e. t ∈ (0, T )

}
,

is well-defined for each x ∈ C(0, T ; E1).
The following lemma shows that PU is strongly-weakly u.s.c. from C(0, T ; E1) into

L2(0, T ; E). Its proof is similar with the one in [15, Lemma 4.1], however, for completness,
we include an independent proof.

Lemma 4.1 Assume hypotheses of Theorem 3.6 and condition (A3). Then, PU is strongly-
weakly u.s.c. from C(0, T ; E1) into L2(0, T ; E).

Proof We now invoke Proposition 2.10 to verify this lemma.
Indeed, Theorem 3.6 implies that U has weakly compact convex values, so does PU(x).

Let {xn} ⊂ C(0, T ; E1) be such that xn → x∗ in C(0, T ; E1) and ln ∈ PU(xn). Next, we
will show that there exists a subsequence of {ln} which converges to l∗ ∈ PU(x∗). Because
U([0, T ] × E1) is uniformly bounded by condition (A3), we know that the sequence {ln}
is also bounded in L2(0, T ;E1). Hence, we may assume that ln ⇀ l∗ in L2(0, T ;E1).
It follows from the Mazur lemma (see e.g. [6]) that there is a sequence {ln} of a finite
combination of the functions {li | i ≥ n} such that

ln → l∗ strongly in L2(0, T ; E1).

Further, we may suppose that ln(t) → l∗(t) for a.e. t ∈ (0, T ), as n → ∞, see e.g. [24,
Theorem 2.39].

Recall that U is strongly-weakly u.s.c. and xn → x∗ in C(0, T ; E1). Hence, for every
weak neighborhood Vt of U(t, x∗(t)) there is a strong neighborhood Ut of x∗(t) such that

U(t, x) ⊂ Vt for all x ∈ Ut .
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This clearly implies that l∗ ∈ PU(x∗) (more details, we refer to the proof in [1, Lemma 1.1]).
Therefore, by applying Proposition 2.10, we complete the proof of the lemma.

In what follows, we denote by L(E, E1) the class of linear and bounded operators from
E to E1. Let MA > 0 be the constant such that supt∈[0,T ] ‖eAt‖ ≤ MA. To prove a result on
existence of solutions for (FPDVI), we need two additional assumptions.

(A4) the operator B : [0, T ] × E1 → L(E,E1) satisfies the Carathéodory conditions,

and there exist a constant β ∈ (0, α) and a function ρB ∈ L
1
β (0, T ;R+) such that

‖B(t, x)‖L(E,E1) ≤ ρB(t)(1 + ‖x‖E1) for all (t, x) ∈ [0, T ] × E1,

(A5) the function f (·, x) : [0, T ] → E1 is measurable for all x ∈ E1, and there exists a

function ρf ∈ L
1
β (0, T ;R+) such that f (t, ·) : E1 → E1 fulfills

{ ‖f (t, x) − f (t, y)‖E1 ≤ ρf (t)‖x − y‖E1 for all x, y ∈ E1,

‖f (t, 0)‖E1 ≤ ρf (t).

The main result in this paper reads as follows.

Theorem 4.2 Assume hypotheses of Theorem 3.6 and conditions (A3)–(A5). In addition,
let the operator eAt , t > 0, be compact. Then, the solution set S of problem (FPDVI) given
by (4.1) is nonempty.

Proof Consider the multivalued mapping  : C(0, T ; E1) → P(C(0, T ; E1)) associated
with problem (FPDVI) and defined by

(x) :=
{

y ∈ C(0, T ;E1) | y(t) = Pα(t)x0 +
∫ t

0
(t − s)α−1Qα(t − s)

[
B(s, x(s))l(s) + f (s, x(s))

]
ds for a.e. t ∈ (0, T ) and l ∈ PU(x)

}

. (4.2)

It is obvious that we only need to prove that  has at least one fixed point in C(0, T ; E1).
First, we prove the following claims.

Claim 3  is a bounded mapping with convex values, and maps bounded sets into
equicontinuous sets of C(0, T ; E1).

It is evident that  has convex values for all x ∈ C(0, T ;E1) due to the convexity of
PU(x). Next, we will show that  is a bounded mapping. In what follows, we consider the
ball

BC(0, k) := {x ∈ C(0, T ;E1) | ‖x‖C(0,T ;E1) ≤ k}, k > 0.

For any x ∈ BC(0, k) and y ∈ (x), there exists l ∈ PU(x) such that

y(t) = Pα(t)x0 +
∫ t

0
(t − s)α−1Qα(t − s)

[
B(s, x(s))l(s) + f (s, x(s))

]
ds

for a.e. t ∈ (0, T ). By the boundedness of g and Theorem 3.4, there exists a constant
Mg > 0 such that

‖l(t)‖E ≤ Mg for a.e. t ∈ [0, T ].
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From Lemma 2.6, we obtain

‖y(t)‖E1

≤ ‖Pα(t)x0‖E1 +
∫ t

0
(t − s)α−1‖Qα(t − s)[B(s, x(s))l(s) + f (s, x(s))]‖E1 ds

≤ MA‖x0‖E1 + MA

�(α)

∫ t

0
(t − s)α−1

[

‖B(s, x(s))l(s)‖E1 + ‖f (s, x(s))‖E1

]

ds

≤ MA‖x0‖E1 + MA

�(α)

∫ t

0
(t − s)α−1

[

MgρB(s)(1+‖x(s)‖E1)+ρf (s)(1+‖x(s)‖E1)

]

ds

≤ MA‖x0‖E1 + MA

�(α)

∫ t

0
(t − s)α−1

[

MgρB(s)(1 + ‖x‖C) + ρf (s)(1 + ‖x‖C)

]

ds

≤ MA‖x0‖E1 + MAMg(1 + ‖x‖C)

�(α)

[(
1 − β

α − β
tγ

)]1−β

‖ρB‖
L

1
β

+

+MA(1 + ‖x‖C)

�(α)

[(
1 − β

α − β
tγ

)]1−β

‖ρf ‖
L

1
β

≤ MA‖x0‖E1 + MAMg(1 + k)

�(α)

[(
1 − β

α − β
T γ

)]1−β

‖ρB‖
L

1
β

+

+MA(1 + k)

�(α)

[(
1 − β

α − β
T γ

)]1−β

‖ρf ‖
L

1
β
,

where γ := α−β
1−β

and ‖x‖C := supt∈[0,T ] ‖x(t)‖E1 . This means that the set (BC(0, k)) is
bounded in C(0, T ;E1), i.e.,  is a bounded operator.

It remains to verify that (BC(0, k)) is a set of equicontinuous functions in C(0, T ;E1).
Let 0 < s < t < t +h ≤ T with h > 0 and 0 < ε < t . For any x ∈ BC(0, k) and y ∈ (x),
there exists l ∈ PU such that

y(t) = Pα(t)x0 +
∫ t

0
(t − s)α−1Qα(t − s)

[
B(s, x(s))l(s) + f (s, x(s))

]
ds

for a.e. t ∈ (0, T ). Therefore, we have

y(t + h) − y(t)

=
∫ t+h

t

(t + h − s)α−1Qα(t + h − s)
[
B(s, x(s))l(s) + f (s, x(s))

]
ds

+
∫ t

t−ε

(t + h − s)α−1[Qα(t + h − s) − Qα(t − s)
][B(s, x(s))l(s) + f (s, x(s))

]
ds

+
∫ t

t−ε

[
(t + h − s)α−1 − (t − s)α−1]Qα(t − s)

[
B(s, x(s))l(s) + f (s, x(s))

]
ds

+
∫ t−ε

0
(t + h − s)α−1[Qα(t + h − s) − Qα(t − s)

][
B(s, x(s))l(s) + f (s, x(s))

]
ds

+
∫ t−ε

0

[
(t + h − s)α−1 − (t − s)α−1]Qα(t − s)

[
B(s, x(s))l(s) + f (s, x(s))

]
ds

+Pα(t + h)x0 − Pα(t)x0.

963
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From the above inequality, we deduce

‖y(t + h) − y(t)‖E1 ≤
6∑

i=1

‖Ii‖E1 ,

where Ii , for i = 1, 2, . . . , 6 are defined by

I1 := Pα(t + h)x0 − Pα(t)x0,

I2 :=
∫ t+h

t

(t + h − s)α−1Qα(t + h − s)
[
B(s, x(s))l(s) + f (s, x(s))

]
ds,

I3 :=
∫ t

t−ε

(t + h − s)α−1[Qα(t + h−s) − Qα(t − s)
][

B(s, x(s))l(s) + f (s, x(s))
]
ds,

I4 :=
∫ t

t−ε

[
(t + h − s)α−1 − (t − s)α−1]Qα(t − s)

[
B(s, x(s))l(s) + f (s, x(s))

]
ds,

I5 :=
∫ t−ε

0
(t + h − s)α−1[Qα(t + h − s)−Qα(t−s)

][
B(s, x(s))l(s) + f (s, x(s))

]
ds,

I6 :=
∫ t−ε

0

[
(t + h − s)α−1 − (t − s)α−1]Qα(t − s)

[
B(s, x(s))l(s) + f (s, x(s))

]
ds.

We readily get from the compactness of eAt and Lemma 2.6 that

‖I1‖E1 → 0, as h → 0. (4.3)

For integral I2, from hypotheses (A4) and (A5), we have

‖I2‖E1

≤
∫ t+h

t

(t + h − s)α−1‖Qα(t + h − s)
[
B(s, x(s))l(s) + f (s, x(s))

]‖E1 ds

≤
∫ t+h

t

(t + h − s)α−1‖Qα(t + h − s)‖[‖B(s, x(s))l(s)‖E1 + ‖f (s, x(s))‖E1

]
ds

≤ MA

�(α)

∫ t+h

t

(t + h − s)α−1
[

MgρB(s)(1 + ‖x(s)‖E1) + ρf (s)(1 + ‖x(s)‖E1)

]

ds

≤ MA

�(α)

∫ t+h

t

(t + h − s)α−1
[

MgρB(s)(1 + ‖x‖C) + ρf (s)(1 + ‖x‖C)

]

ds

≤ MA

�(α)

{

Mg(1 + k)

[(
1 − β

α − β
hγ

)]1−β

‖ρB‖
L

1
β

+

+(1 + k)

[(
1 − β

α − β
hγ

)]1−β

‖ρf ‖
L

1
β

}

→ 0, as h → 0. (4.4)
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As concerns integral I3, we calculate

‖I3‖E1

≤
∫ t

t−ε

(t + h − s)α−1
∥
∥Qα(t + h − s) − Qα(t−s)

∥
∥

∥
∥B(s, x(s))l(s) + f (s, x(s))

∥
∥

E1
ds

≤ 2MA

�(α)

∫ t

t−ε

(t + h − s)α−1
[

MgρB(s)(1 + ‖x(s)‖E1) + ρf (s)(1 + ‖x(s)‖E1)

]

ds

≤ 2MA

�(α)

∫ t

t−ε

(t + h − s)α−1
[

MgρB(s)(1 + ‖x‖C) + ρf (s)(1 + ‖x‖C)

]

ds

≤ 2MA

�(α)

{

Mg(1 + k)

[(
1 − β

α − β
[(h + ε)γ − hγ ]

)]1−β

‖ρB‖
L

1
β

+

+(1 + k)

[(
1 − β

α − β
[(h + ε)γ − hγ ]

)]1−β

‖ρf ‖
L

1
β

}

≤ 2MA

�(α)

{

Mg(1 + k)

[(
1 − β

α − β
2hγ

)]1−β

‖ρB‖
L

1
β

+(1 + k)

[(
1 − β

α − β
2hγ

)]1−β

‖ρf ‖
L

1
β

}

→ 0, as h → 0. (4.5)

For integral I4, we can calculate

‖I4‖E1

≤
∫ t

t−ε

∣
∣(t + h − s)α−1 − (t − s)α−1

∣
∣
∥
∥Qα(t − s)[B(s, x(s))l(s) + f (s, x(s))]∥∥

E1
ds

≤ MA

�(α)

∫ t

t−ε

∣
∣(t + h − s)α−1 − (t − s)α−1

∣
∣ (MgρB(s) + ρf (s))(1 + ‖x(s)‖E1) ds

≤ MA

�(α)

∫ t

t−ε

∣
∣(t + h − s)α−1 − (t − s)α−1

∣
∣ (MgρB(s) + ρf (s))(1 + ‖x‖C) ds

≤ MA

�(α)

(

Mg(1 + ‖x‖C)

(∫ t

t−ε

|(t + h − s)α−1 − (t − s)α−1| 1
1−β ds

)1−β

‖ρB‖
L

1
β

+(1 + ‖x‖C)

(∫ t

t−ε

|(t + h − s)α−1 − (t − s)α−1| 1
1−β ds

)1−β

‖ρf ‖
L

1
β

)

≤ MA

�(α)

(

Mg(1 + ‖x‖C))

(∫ t

t−ε

|(t + h − s)γ−1 − (t − s)γ−1| ds

)1−β

‖ρB‖
L

1
β

+(1 + ‖x‖C)

(∫ t

t−ε

|(t + h − s)γ−1 − (t − s)γ−1| ds

)1−β

‖ρf ‖
L

1
β

)

≤ MA

�(α)

(
Mg(1 + ‖x‖C)

γ 1−β

∣
∣
∣
∣(h + ε)γ − hγ − εγ

∣
∣
∣
∣

1−β

‖ρB‖
L

1
β
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+ (1 + ‖x‖C)

γ 1−β

∣
∣
∣
∣(h + ε)γ − hγ − εγ

∣
∣
∣
∣

1−β

‖ρf ‖
L

1
β

)

≤ MA

�(α)

(
Mg(1+k)

γ 1−β
(3h)γ (1−β)‖ρB‖

L
1
β

+ (1+k)

γ 1−β
(3h)γ (1−β)‖ρf ‖

L
1
β

)

→ 0, (4.6)

as h → 0. An application of Lemma 2.6 yields

‖I5‖E1

≤
∫ t−ε

0
(t + h − s)α−1‖Qα(t + h − s)−Qα(t−s)‖ ‖B(s, x(s))l(s) + f (s, x(s))‖E1ds

≤ sup
s∈[0,t−ε]

‖Qα(t+h−s) − Qα(t − s)‖
∫ t−ε

0
(t + h − s)α−1

(

MgρB(s)(1 + ‖x(s)‖E1)

+ρf (s)(1 + ‖x(s)‖E1)

)

ds

≤ sup
s∈[0,t−ε]

‖Qα(t + h − s) − Qα(t − s)‖
(

Mg‖ρB‖
L

1
β
(1 + k)

(
1 − β

α − β
|(t + h)γ

−(ε + h)γ |
)1−β

+ ‖ρf ‖
L

1
β
(1 + k)

(
1 − β

α − β
|(t + h)γ − (ε + h)γ |

)1−β)

→ 0, as h → 0. (4.7)

Moreover, for integral I6, we estimate

‖I6‖E1

≤
∫ t−ε

0
|(t + h − s)α−1 − (t − s)α−1| ‖Qα(t − s)[B(s, x(s))l(s) + f (s, x(s))]‖E1 ds

≤ MA

�(α)

∫ t−ε

0
|(t + h − s)α−1 − (t − s)α−1| (MgρB(s) + ρf (s))(1 + ‖x(s)‖E1) ds

≤ MA

�(α)

∫ t−ε

0
|(t + h − s)α−1 − (t − s)α−1| (MgρB(s) + ρf (s))(1 + ‖x‖C) ds

≤ MA

�(α)

[

Mg‖ρB‖
L

1
β
(1 + ‖x‖C)

( ∫ t−ε

0
[(t + h − s)α−1 − (t − s)α−1] 1

1−β ds

)1−β

+(1 + ‖x‖C)‖ρf ‖
L

1
β

(∫ t−ε

0
|(t + h − s)α−1 − (t − s)α−1| 1

1−β ds

)1−β]

≤ MA

�(α)

[

Mg‖ρB‖
L

1
β
(1 + ‖x‖C)

( ∫ t−ε

0
|(t + h − s)γ−1 − (t − s)γ−1| ds

)1−β

+(1 + ‖x‖C)‖ρf ‖
L

1
β

(∫ t−ε

0
|(t + h − s)γ−1 − (t − s)γ−1|ds

)1−β]

≤ MA

�(α)

[Mg‖ρB‖
L

1
β
(1 + ‖x‖C)

γ 1−β

(

|(t + h)γ − (h + ε)γ − tγ + εγ |
)1−β
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+
(1 + ‖x‖C)‖ρf ‖

L
1
β

γ 1−β

(

|(t + h)γ − (h + ε)γ − tγ − εγ |
)1−β]

≤ MA

�(α)

(Mg‖ρB‖
L

1
β
(1 + k)

γ 1−β
(3h)γ (1−β) +

(1 + k)‖ρf ‖
L

1
β

γ 1−β
(3h)γ (1−β)

)

→ 0, as h → 0. (4.8)

Combining estimates (4.3)–(4.8), we conclude

‖y(t + h) − y(t)‖E1 → 0, as h → 0

for all y ∈ (x) and x ∈ C(0, T ; E1). This implies that (BC(0, k)) is equicontinuous in
C(0, T ; E1).

From Claim 3 and the Arzela-Ascoli theorem, see [38], it is clear that the mapping  is
compact, in particular, it is quasicompact (see Definition 2.8).

Claim 4  is a closed mapping.

Let {xn}, {yn} be such that xn → x and yn → y in C(0, T ; E1) with yn ∈ (xn). We
shall check that y ∈ (x). For each n ∈ N, there exists ln ∈ PU(xn) such that

yn(t) = Pα(t)x0 +
∫ t

0
(t − s)α−1Qα

[
B(s, xn(s))ln(s) + f (s, xn(s))

]
ds

for a.e. t ∈ (0, T ). From Theorem 3.6, we can see that {ln} is bounded in L2(0, T ; E).
Therefore, without any loss of generality, we may assume ln → l∗ weakly in L2(0, T ; E).
Recall that PU is strongly-weakly upper semicontinuous, see Lemma 4.1, hence l∗ ∈
PU(x). On the other hand, we use the compactness of eAt , hypotheses (A4), (A5) and
Lemma 2.6(iii) to obtain

y(t) = Pα(t)x0 +
∫ t

0
(t − s)α−1Qα(t − s)

[
B(s, x(s))l∗(s) + f (s, x(s))

]
ds

for a.e. t ∈ (0, T ) with l∗ ∈ PU(x). This implies that y ∈ (x), and thus  is a closed
operator.

Claim 5 There exists a constant MR > 0 such that  maps the ball

B̃C(0,MR) := {x ∈ C(0, T ; E1) | ‖x‖∗ ≤ MR}

into itself, where ‖ · ‖∗ is the equivalent norm on the space C(0, T ; E1) given by

‖x‖∗ := max
t∈[0,T ] e

−Lt‖x(t)‖E1

with L > 0 such that

MA

�(α)

∫ t

0
e−L(t−s)(t − s)α−1[ρB(s) + ρf (s)

]
ds < 1 for all t ∈ [0, T ]. (4.9)
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From (4.9), we can find MR > 0 such that

MA

[

‖x0‖E1 +
M‖g‖‖ρB‖

L
1
β

�(α)

(
1 − β

α − β
T γ

)1−β

+
‖ρf ‖

L
1
β

�(α)

(
1 − β

α − β
T γ

)1−β]

+MAMR

�(α)

∫ t

0
e−L(t−s)[ρB(s) + ρf (s)]ds ≤ MR .

We now prove that (B̃C(0,MR)) ⊆ B̃C(0,MR). For any y ∈ (x) with x ∈ B̃C(0,MR),
there exists l ∈ PU(x) such that

y(t) = Pα(t)x0 +
∫ t

0
(t − s)α−1Qα(t − s)

[
B(s, x(s))l(s) + f (s, x(s))

]
ds

for a.e. t ∈ (0, T ). Hence, we calculate

e−Lt‖y(t)‖E1

= e−Lt

∥
∥
∥
∥Pα(t)x0 +

∫ t

0
(t − s)α−1Qα(t − s)

[
B(s, x(s))l(s) + f (s, x(s))

]
ds

∥
∥
∥
∥

E1

≤ MA‖x0‖E1 + MA(1 + ‖x‖∗)
�(α)

∫ t

0
e−L(t−s)(t − s)α−1[Mgρf (s) + ρf (s)

]
ds

≤ MA

[

‖x0‖E1 +
Mg‖ρB‖

L
1
β

�(α)

(
1 − β

α − β
T γ

)1−β

+
‖ρf ‖

L
1
β

�(α)

(
1 − β

α − β
T γ

)1−β]

+MA‖x‖∗
�(α)

∫ t

0
e−L(t−s)(t − s)α−1(ρB(s) + ρf (s)) ds

≤ MA

[

‖x0‖E1 +
Mg‖ρB‖

L
1
β

�(α)

(
1 − β

α − β
T γ

)1−β

+
‖ρf ‖

L
1
β

�(α)

(
1 − β

α − β
T γ

)1−β]

+

+MAMR

�(α)

∫ t

0
e−L(t−s)(t − s)α−1(ρB(s) + ρf (s)) ds

≤ MR .

This implies ‖y‖∗ ≤ MR for all y ∈ (B̃C(0,MR)), so,  maps B̃C(0,MR) into itself.
Through Claims 3 and 4, we can see that the function  has compact and convex values.

Moreover, invoking Theorem 2.9 and Claim 4, we obtain that  is upper semicontinuous.
On the other hand, by applying Claims 3 and 5, we are able to find that (B̃C(0,MR)) is
relatively compact with (B̃C(0,MR)) ⊂ B̃C(0,MR). It turns out that Theorem 2.11 can
be applied by taking G :=  in its statement. We deduce that the set of fixed points of
mapping  is nonempty. Thus the solution set of (FPDVI) in the sense of Definition 2.4 is
nonempty. This completes the proof.

It is worth to mention that in [12] the authors used the theory of measure of noncompact-
ness and a fixed point theorem of condensing multivalued mappings to show the solvability
of fractional differential variational inequality in finite dimensional spaces. In this paper,
we have applied the theory of semigroups, the Bohnenblust-Karlin fixed point principle for
multivalued mappings to verify the existence of solution for a class of generalized frac-
tional differential variational inequalities. The main result of the present paper, Theorem 4.2,
extends the recent ones provided in [14, Theorem 4.1] and [36, Lemma 3.3]. Furthermore,

968



A Class of Generalized Evolutionary Problems Driven by Variational...

we also note that the proof of Theorem 4.2 is different than the one given in [15, Theo-
rem 4.2] since it is based on the Bohnenblust-Karlin fixed point principle for multivalued
mappings and the theory of fractional calculus.

5 Conclusion

In this paper, a new class of generalized fractional differential variational inequalities in
Banach spaces is introduced and studied. This class is much more general and complex
than the ones considered by Li-Huang-O’Regan [14], Wang-Li-Li-Huang [36], Liu-Zeng-
Motreanu [18], and Liu-Migórski-Zeng [15], etc. We have found suitable conditions under
which we have established an existence theorem for the system by using the theory of oper-
ator semigroups, the Bohnenblust-Karlin fixed point principle for multivalued mappings,
and theory of fractional operators.
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