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Our theoretical study aims at finding some statistic parameters characterizing
the damped vibrations of a string excited by stochastic impulses. We derive the
dependence of these parameters on the parameters of the string as well as on the
stochastic distributions of the impulse magnitude, and on the place of the action.
We also carry out a numerical simulation verifying the derived mathematical model
and interpret the differences between the results obtained in simulation and the
mathematical calculations.

This study is the fourth stage of a research aimed at designing a probe that
facilitates the process of measuring of the parameters, determining the quality of
a technological process.

Keywords: string, stochastic impulses, statistic parameters characterizing the vibra-
tions.

1. Introduction

The work was inspired by attempts at constructing a measuring device that
would control the granularity of the medium in a dust pipeline. The device had
to signal the appearance of big particles in excessive quantity in the transported
dust. The difficulties that arose then in connection with interpretation of the
statistical data, forced us to search for a mathematical model that would explain
its causes.
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The developed model described below is based on the theorem proved in [3].
This theorem allows for calculation of the basic statistical parameters such as
mathematical expectation and variance, that characterize the movement of con-
tinuous and discrete systems stimulated by stochastic impulses. In this theorem
we assume that the probability that an impulse will occur in a short time inter-
val is proportional to its duration and the moments of impulse occurrence; their
magnitude and places of occurrence are probabilistically independent. These as-
sumptions seem to be quite natural in regard to the actual working conditions of
the above-mentioned measuring device.

This study is the fourth stage of the research aimed at designing a probe that
facilitates measuring of the parameters determining the quality of a technological
process.

At the first stage of the research, the Theorem 1 was proved in [3]. In the same
paper it was also manifested that the graph of the mean value of the amplitude
of an oscillator, excited by stochastic impulses without damping, is identical with
the graph of the free movement of an oscillator satisfying certain initial conditions
(Fig. 1). The variance of the random variable representing the amplitude of an
oscillator is shown in Fig. 2.
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Fig. 1. Estimators of the expectation for the oscillators without damping. Key: dashed red –
the theoretical expectation, dashed blue – the estimator of the expectation, 10 000 elements in

a statistical sample.

At the second stage of the research, the behavior of an oscillator with damp-
ing excited by stochastic impulses with the same distribution as that in [3] was
discussed in [4]. The graph of the mean value of the movement (Fig. 3) of the
oscillator is identical with the graph of the free movement of an oscillator satisfy-
ing certain initial conditions. In both cases (the oscillator with damping and that
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Fig. 2. Estimators of the variance for three different distributions η for the oscillators without
damping. λE(η) = const = 5566.7. Key: 1 – λE(η2) = 397 943.11, 2 – E(η2) = 368 588.00,

3 – E(η2) = 339 231.60.

without it) the graphs are increased by the mean value of stochastic impulses
acting on the oscillator. The variance of the movement (Fig. 4) of the oscillator
with damping tends to a certain constant, unlike the variance of the oscillator
without damping.
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Fig. 3. Estimators of the expectation for the oscillators with damping. Key: dashed red –
the theoretical expectation, dashed blue – the estimator of the expectation, 10 000 elements in

a statistical sample.

In the paper [5], the movement of a string without dumping excited by sto-
chastic impulses distributed in the same way as those exciting the oscillator is
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Fig. 4. Estimators of the variance for three different distributions η for the oscillators with
damping. λE(η) = const = 5566.7 Key: 1 – λE(η2) = 397 943.11, 2 – E(η2) = 368 588.00,

3 – E(η2) = 339 231.60.

discussed. However, the place they act on is a stochastic value, which is a signif-
icant difference as compared with the oscillator. Yet, it turns out that particular
points of the string in its motion behave like an oscillator without damping (Fig. 5
and Fig. 6). This follows from the fact that the amplitudes of the higher, odd
harmonic components are small while the even ones are equal to zero.
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Fig. 5. Estimators of the expectation for the string without damping. Key: green line – 1 000
elements in a statistical sample, blue line – 10 000 elements in a statistical sample, turquoise
line – 100 000 elements in a statistical sample, black line – 1 000 000 elements in a statistical

sample, red line – the theoretical expectation.

In this paper we investigate statistical behaviour of the string with damping.
Concerning the statistical behaviour of such a string we can derive similar con-
clusions as for a string without dumping. It suggests the behaviour of the systems
of higher dimensions since their mathematical analysis is technically much more
complicated.
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Fig. 6. Estimators of the variance for five different distributions η for the string without
damping. Key: 1 – λE(η2) = 397 943.11, 2 – E(η2) = 368 588.00, 3 – E(η2) = 339 231.60,

4 – E(η2) = 90 723.67, 5 – E(η2) = 86 889.83.

The obtained results will allow us to suggest possible ways of finding the
statistical characteristics of forces influencing the system, having the trajectory
of motion of the device we use to measure these forces.

The first partial theoretical results regarding vibration of oscillators excited
by stochastic impulses can be found in the following papers [1, 2, 6, 8–10]. In the
study [7], we can find the results that generalize the findings published in the
previous papers.

2. Theoretical background

Now, for the convenience of the reader we quote the theorem from [3].
Let gi: [0,∞) → R, i = 1, 2, 3, ..., m be a sequence of continuous functions,

A being a bounded connected Borel subset of Rp for some p ∈ N , hi: A → R,
i = 1, 2, 3, ..., m denoting a sequence of bounded and continuous functions,{
τi

}∞
i=1

– a sequence of independent and identically distributed random variables
with exponential distribution F (x) = 1 − exp(−λx) for x > 0 and F (x) = 0
for x < 0,

{
ηi

}∞
i=1

– a sequence of independent and identically distributed ran-
dom variables with finite expectation,

{
ζi

}∞
i=1

– a sequence of independent and
identically distributed random variables with values in the set A, and finally let{
αi

}∞
i=1

be a sequence of real numbers. Let us put
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t0 = 0, ti =
i∑

j=1

τj , i = 1, 2, 3...,

(1)

ξ(t) =
m∑

n=1

αn

∑

0<tj<t

ηjhn(ζj)gn(t− tj)

and denote the distributions of ζ and η by φζ and φη, respectively. Assume that
Ai ⊂ C and Bi ⊂ [0,∞) i = 1, 2, . . . , m denote the Borel sets and k(i, j), for
every fixed i, is an increasing sequence of all the natural numbers such that

χAi

(
ηk(i,j)

)
χBi

(
ξk(i,j)

)
= 1, (2)

where χA(x) = 1 if x ∈ A and χA(x) = 0 if x /∈ A. Write tij = tk(i,j) and
τ i
j = tij − tij−1. We will say that ξ(t) is decomposable if for every n ∈ N , all
the Borel sets Ai ⊂ A and Bi ⊂ [0,∞), i = 1, 2, . . . , n such that Ai × Bi, are
mutually disjoint

τ⋃

i=1

Ai ×Bi = A×B . (3)

τ i
j are independent and identically distributed random variables with exponential

F (x) = 1− exp (−λΦξ(Ai)Φη(Bi)) for x > 0 and
(4)

F (x) = 0 for x < 0,

ξi(t) =
m∑

n=1

αn

∑

0<tji <t

ηk(i,j)hn(ζk(i,j))gn(t− tij) (5)

are independent and

ξ(t) =
n∑

i=1

ξi (6)

From the technical point of view, decomposability of the process ξ(t) means
that we can divide the acting stochastic forces in any way, and the space onto
which they acted (a string, a membrane etc) can be divided into any areas. If we
consider the processes corresponding to the acting forces, let us assume – a group
number i acting on the area number j, we will obtain a series of processes. As
regards these processes, we assume that they are independent.

Theorem 1: If the process defined in Eq. (6) is decomposable, then the char-
acteristic function, expectation and variance of ξ(t) are given by

ϕ(s) = exp



λt




∫

A

∞∫

0

1∫

0

exp

(
is

m∑

n=1

αnyhn(z)g(ut)

)
duφη(dy)φζ(dz)− 1





, (7)
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E(ξ(t)) =
ϕ′(0)

i
= λtE(η)

m∑

n=1

αnE(hn(ζ))

1∫

0

gn(tu) du, (8)

D2(ξ(t)) = E(ξ2(t))−E2(ξ(t)) =
1
i2

(
ϕ′′(0)− (ϕ′)2(0)

)

= λtE(η2)
m∑

n=1

m∑

j=1

αnαjE(hn(ζ)hj(ζ))

1∫

0

gn(tu)gj(tu) du. (9)

This theorem allows to derive statistical properties of the motion of the excited
and damped string.

3. Applications

We shall apply the theorem presented above to a one-dimensional continuous
system with damping, i.e., to a string for which the equation describing the
vibrations induced by forces is as follows:

∂2u(x, t)
∂t2

= a2 ∂2u(x, t)
∂x2

+ f(x, t)− 2b
∂u(x, t)

∂t
. (10)

In our model we assume that the damping forces are proportional to the veloc-

ity of the string at the point x with the coefficient b > 0, small

((π

l

)2
>

(
b

a

)2
)

and independent of x. The coefficient a =

√
T

Aρ
, where T is the force of the string

stretch, A – the cross-sectional area, ρ – the mass density.
The boundary and the initial conditions are as follows:

u(0, t) = 0 and u(l, t) = 0, (11)

u(x, 0) = 0 and
∂u(x, 0)

∂t
= 0, (12)

for t ≥ 0, x ∈ [0, l], f(x, t) is given by

f(x, t) =
∞∑

i=1

ηiδtiςi , (13)

where δtiςi are the Dirac distributions at ti and ςi; then the solution of Eqs. (10)–
(12) takes the following form:

u(x, t) =
∞∑

n=1

Tn(t) sin
nπx

l
, (14)
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where

Tn(t) =
2

a

√(nπ

l

)2
−

(
b

a

)2

·
∑
ti<t

ηi sin
πnςi

l
e−b(t−ti) sin


a

√(nπ

l

)2
−

(
b

a

)2

(t− ti)


. (15)

If ηi and ζi, i = 1, 2, ... are two sequences of independent and identically distrib-
uted random variables with distributions Φη and Φς respectively, and τi = ti−ti−1,
i = 1, 2, ..., are also independent and identically distributed random variables
with exponential distribution (F (u) = 1 − exp(−λu) for u > 0 and for some λ
and F (u) = 0 for u < 0), then for any fixed x

ξm(t, x) = um(x, t) =
m∑

n=1

Tn(t) sin
nπx

l
(16)

is a stochastic process satisfying the assumptions of Theorem 1 with any m and
hi = sin(iπx/l), i = 1, ..., m. Due to the conditions of Theorem 1 we cannot
assume m = ∞. Instead of that we can assume the limit of um(x, t) as m tends
to infinity, to take the required results. Applying this theorem to um(x, t) we
obtain the result:

E(um(t, x)) = λE(η)
m∑

n=1

sin
πnx

l
E

(
sin

(πnς

l

))

a

√(πn

l

)2
−

(
b

a

)2

t∫

0

e−bv sin a

√(πn

l

)2
−

(
b

a

)2

v dv

= λE(η)e−bt
m∑

n=1

sin
πnx

l
E

(
sin

(πnς

l

))
sin a

√(πn

l

)2
−

(
b

a

)2

t

a3
(nπ

l

)2

√(πn

l

)2
−

(
b

a

)2

− λE(η)e−bt
m∑

n=1

sin
πnx

l
E

(
sin

(πnς

l

))
cos a

√(πn

l

)2
−

(
b

a

)2

t

a2
(nπ

l

)2

+ λE(η)
m∑

n=1

sin
πnx

l
E

(
sin

(πnς

l

))
sin a

√(πn

l

)2
−

(
b

a

)2

t

a2
(nπ

l

)2 , (17)
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D2(um(x, t)) = λE(η2)
m∑

n=1

m∑

j=1

sin
(πnx

l

)
sin

(
πjx

l

)

a2

√√√√(πn

l

)2
−

(
b

a

)2
√(

πj

l

)2

−
(

b

a

)2

× E

(
sin

πnς

l
sin

πjς

l

) t∫

0

e−2bv sin


va

√(πn

l

)2
−

(
b

a

)2



× sin


va

√(
πj

l

)2

−
(

b

a

)2

dv, (18)

being the expectation and variance of um(x, t), respectively.

4. Numerical simulation

To verify numerically that the theoretical formulas are correct, we need a sta-
tistical sample T . To obtain one with n elements, we repeat the following pro-
cedure n times. First we choose randomly τi in accordance with the exponential
distribution. Remember that tm =

∑m
i=1 τi. Then, we choose randomly the values

of ηi (magnitude of the force exetred by the particles striking the string) with
discrete distribution, and finally, we select randomly ςi (the point of the action on
the string). We substitute these data into Eq. (16) and thus we obtain an element
of our statistical sample. The elements of the sample are denoted by uk

m(x, t).
Figure 7 presents estimators

Ẽn(um(x, t)) =
1
n

n∑

i=1

ui
m(x, t)

for m = 10, λ = 10, a = 20, b = 2, x = l/2, statistical samples of 1 thousand,
10 thousand, 100 thousand and 1 million elements, distribution of the variable
η such that η ∈ {728, 214}, P (η = 728) = 2/3, P (η = 214) = 1/3, and two
different distributions of the variable ς: continuous (b), and uniform (a), on the
points from the set A = {0.1, 0.3, 0.5, 0.7, 0.9}, (P (ζ = xi) = 1/5 for xi ∈ A).

Figure 8 shows the estimators

D̃2
n(um(x, t)) =

1
n

n∑

i=1

(
ui

m(x, t)−E(um(x, t))
)2

for m = 10, λ = 10, a = 2 and b = 0.2, and a = 20, b = 2, x = l/2, statistical
samples equal to 1 thousand, 10 thousand, 100 thousand and one million and
continuous distributions of the variable ς.
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Fig. 7. Estimators of the expectation. Key: green line – 1000 elements in a statistical sample,
blue line – 10 000 elements in a statistical sample, turquoise line – 100 000 elements in a sta-
tistical sample, black line – 1 000 000 elements in a statistical sample, red line – the theoretical

expectation.
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Fig. 8. Estimators of the variance. Key: green line – 1 000 elements in a statistical sample, blue
line – 10 000 elements in a statistical sample, turquoise line – 100 000 elements in a statistical
sample, black line – 1 000 000 elements in a statistical sample, red line – the theoretical variance

expectation.
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Figure 9 shows the estimators

D̃2
n(um(x, t)) =

1
n

n∑

i=1

(
ui

m(x, t)−E(um(x, t))
)2

for m = 10, λ = 10, a = 20, b = 2, x = l/2, statistical samples of one million and
continuous distributions of the variable ς, and the following cases for distributions
of η:

1. η ∈ {728, 214} and P (η = 728) = 2/3, P (η = 214) = 1/3,
2. η ∈ {728, 42.66} – P (η = 728) = 3/4 and P (η = 42.66) = 1/4,
3. η ∈ {728, 385.33} – P (η = 728) = 1/2 and P (η = 385.33) = 1/2,
4. η ∈ {352, 240, 120, 33} – P (η = 352) = 2/3 and P (η = 240) = 1/9,

P (η = 120) = 1/9, P (η = 33) = 1/9, E(η2) = 90 723.67,
5. η ∈ {330, 217, 120, 33} – P (η = 330) = 3/4 and P (η = 217) = 1/12,

P (η = 120) = 1/12, P (η = 33) = 1/12, E(η2) = 86 889.83.
In the first three cases λ = 10 and E(η) = 556.67, in the last two cases λ = 20 and
E(η) = 278.33. The values of E(η2) are equal to 368588.00, 397943.11, 339231.60,
90723.67, 86889.83 respectively. The quantity λE(η) = 5566.7 represents the
mass of the medium flowing through the pipe in the unit of the time.
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Fig. 9. The variance for five different distributions η. λE(η) = const = 5566.7. Key: 1 –
λE(η2) = 397 943.11, 2 – E(η2) = 368 588.00, 3 – E(η2) = 339 231.60, 4 – E(η2) = 90 723.67,

5 – E(η2) = 86 889.83.
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5. Conclusions

The occurrence of too large particles stimulating the motion of the measuring
device, with too high probability at the same mean value of transported mass in a
unit of time, is an unwanted effect. Calculation of variance allows for detection of
this phenomenon. The diagrams of variance estimators presented above (Fig. 9)
suggest how we should conclude about the distribution of stochastic impulses
forcing a string, from the values of the variance estimators of the process u(x, t)
given by Eq. (14). As we see, greater impulses imply faster rise of variance in time.

If λ increases, then, at constant flow λE(η) = const, the smaller is D2(u(x, t)),
the closer will be the size of a falling particle to the mean value, and the smaller
– the probability of a large particle strike. The mean value of the distribution of
particle sizes multiplied by the mean strike rate is constant, at least in certain
time intervals. The value of variance that we will be able to measure with the
methods similar to those used in simulation, will inform us about irregularities
in the technological process.
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