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Abstract. In this paper the results of numerical simulation of neuro-
transmitter fast transport in a presynaptic bouton of a biological neuron
are presented. A mathematical model governing the transport that is
fully described in [2] is recalled. A numerical simulation scheme, used
parameters and their origins are described. Finally, the results of the
simulation are presented.
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1. Introduction

Neurotransmitter fast transport in the axon terminal of a presynaptic
bouton is one of the primary mechanisms underlying the nerve system oper-
ation. This process is usually modeled using various methods — probabilis-
tic methods, ordinary differential equations or partial differential equations.
A synthesis, transport and release of a neurotransmitter model based on the
partial differential equations was shown in [2]. This paper describes the nu-
merical approach used to simulate the aforementioned model and presents
the preliminary results of this simulations.
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2. Mathematical model of fast transmission

Biological foundations. A fast component of synaptic transmission is
a process of small molecules (glutamate, acetylcholine, GABA) release from
the docked synaptic vesicles into the synaptic cleft. The molecules are synthe-
sized in the axon terminal of the presynaptic neuron. The release takes place
after the arrival of the action potential to the terminal button. The presented
model describes the refill of the vesicle pool in the docking site. It is assumed
that this process is a simple diffusion — vesicles diffuse in the cytoplasm and
dock in the specific regions of the cell membrane. The process takes place in
the time scale of the range 1 ms. The biological assumptions both mentioned

above and specified in the sequel are based on [1, 5, 6, 8, 9, 10].

Model assumptions.

1. The terminal button occupies a fixed domain, a fixed part of the domain

boundary are the vesicle release sites.

2. The unknown of the model is the concentration of vesicles in the cyto-
plasm. The unit in which this value is expressed can either be the mass
or the quantity of the vesicles or the fraction of the cytoplasm volume

they occupy.

3. Vesicles diffuse inside the terminal button and they are synthesized in

some subdomain of the button.

4. The efficiency of the vesicle synthesis may either be assumed to be
constant or proportional to the difference between the equilibrium con-
centration (above which the synthesis does not take place) and current

concentration.

5. Vesicles do not leave the domain unless the action potential arrives.
The arrival of the action potential triggers the possibility of the vesicles
release through some fixed period of time. The number of vesicles that
can be released in a time unit through the unit area is proportional to

the vesicle concentration in the vicinity of the release site.
Model parameters.
(i) © C R? - the domain of the terminal button,
(ii) 1 C 2 — the domain of the neurotransmitter production,

(iii) 0Qq C 02 — neurotransmitter release sites on the cell membrane,
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(iv) f:Q — R — the neurotransmitter source density defined, for example,
by f(x) =0 outside ©; and f(x) = f, on Qy,

(v) p — the balance concentration of the neurotransmitter in the button,

(vi) a — the coefficient denoting the rate of neurotransmitter exocytosis,
« is the number of vesicles (or molecules) which are released through
the unit area of the membrane in a time unit by the unit difference
of the concentration in the cell and outside the cell (1 action potential
activates 300 vesicles and 1 vesicle contains 1 000-10 000 molecules of
the neurotransmitter),

(vii) ai; : @ = R — the diffusion tensor for the neurotransmitter (assuming
that the cytoplasm is an isotropic and homogeneous medium the tensor
is diagonal and constant in time; the value of all three entries on the
diagonal is constant and equal to the diffusion coefficient which, for the
acetylcholine, is equal to 300um?/s — see [3]),

(viii) 7 — the time period through which the neurotransmitter is released from
the docked vesicles to the cleft (2-5 us),

(ix) to — the arrival moment of the potential.

Governing equations. The unknown in the model is the function
p: Q2 x[0,7] — R denoting the concentration of the vesicles with the neuro-
transmitter.

The function is the solution to the equation

3
a’g?t) =2 81- (az':'@)apg]’.ﬂ) + f(@)(p— pla, 1) (1)

ij=1

Remark: The first term on the right hand side of the equation is the
classical diffusive term. The second one denotes the neurotransmitter pro-
duction modelled by the function f. The production is weighed by the term
(p — p(z,t))" and in consequence the neurotransmitter is not produced if
its concentration is greater than p. This term yields the equation nonlinear.
To cope with the nonlinearity it is possible either to remove the weighting
term completely or to test its value in some time points and assume that it is
constant on the intervals between these points. This approximation will give
the equation which is piecewise linear and for small interval lengths it will be
good approximation of the nonlinear problem if the concentration does not
change fast.

The boundary conditions are defined in the following way:
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e On the whole boundary of 2 apart from the docking sites we assume
that no vesicles leave the cytoplasm, which leads to the homogeneous
Neumann boundary condition

3

Z aij apa(zit) n; =0 for (z,t) € (0Q—0Q:) x[0,T]. (2)

i,j=1

e Similarly at the docking sites there is no flow of vesicles apart from
the time interval on which the voltage dependent calcium channels are
open after the arrival of the action potential

L 9p(a,t)
E aijWni =0 for (:L',t) € 004 X ([O,to) @] (to + 7, T]) (3)
J

1,j=1

e At the docking sites within the time interval on which ion channels
are open (which is triggered by the action potential) the flow of the
vesicles outside the button is proportional to their concentration inside
the domain. We assume that the vesicle concentration outside 2 is

equal to 0.
3
> az‘jé)[gi’-wni = ap(z,t) for (z,1) € 0Qq x [to,to +7].  (4)
ij=1 J

We also assume the initial condition

p(x,0) = po(z) on Q. ()

Weak formulation. Problem well posedness. The unknown con-
centration is sought in the space V = {v € L*(0,T,V), v' € L?(0,T;V*)},
where V = H'(Q), and V* is its dual space (with the duality pairing denoted
by (-,-)). A scalar product in L?(Q) is denoted by (-,-).

The weak formulation of the problem that governs the phenomenon is
given as follows (see [2], Eq. (10)):

Find p € V such that

(0] 55 (20, 2) |

7,7=1
= (f-(p—pu(t)T,v) for vEV ae te(0,T), (6)
p(0) = po € L*(2), (7)
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where a(t) = a for t € [tg, to+7] (there are possibly more subintervals during
which the terminal excitation takes place) and a(t) = 0 otherwise. Diffusion
tensor a;; and excitation rate f are possibly dependent on x (that represents
heterogeneity and anisotropy of the bouton domain). If we introduce the

linear operator A(t) : V. — V* given by (A(t)u,v) = Zij:l (aij%‘j, (%;’i) +
de a(t)uv do and the nonlinear operator B : V. — V* given by (Bu,v) =
(f-(p—u)",v), then the equation (6) takes the simple form

Op(t

g(t) + A(t)p(t) = Bp(t) in V* for a.e. t € (0,T). ()

In [2] (see Theorem 1) it is shown, that, under appropriate reasonable as-
sumptions on the problem data, it has exactly one solution.

3. Numerical simulations

This section presents the tools and methods used for simulating neuro-
transmitter fast transport. We begin by presenting a mathematical deriva-
tion of the iterative method implemented in the simulation software. This
software complemented by the mesh generator and results visualizer consti-
tutes a full software package used. The obtained results are presented in the
concluding part of this section.

3.1. Finite element method

Solving partial differential equations in the three dimensional space suffers

from many problems — generation of a three dimensional mesh or spatial
integration. Because of all these reasons the presented model was narrowed
to two dimensions.
Let us assume that we have a mesh of Lagrange elements. Let x; be a mesh
point for i = 1,...,n. By A;j; we will denote a Lagrange element with
vertices in z;, x; and xj, points. Let v; be linear test functions fori =1,...,n.
In order to define the functions formally we will choose ¢ = 1,...,n and
J.k € {1,...,n}, such that x;, z;, x; points define a Lagrange element. Then
the v; function is defined as follows:

(2} —x) 7 . -
v R2S (2,y) = { @@y | @Y € Rk g
0 : otherwise
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The geometrical interpretation of this function is very simple — it is an area
of the triangle with vertices in (x,y), z;, x divided by the area of the x;, x;, z},
triangle. Using the triangle area formula based on the vector product in R?
and simplifying it we obtain the above result. The important property of

this definition is
1 :i=j
”i(:”j)_{ 0 i)

Having defined the test functions we can now present the Finite Element
Method used to solve the equation (6). We approximate the p function using
linear combinations of test functions with time dependent coefficients. We
assume

p(x,t) = Zzl(t)vl(t), where z1:[0,T] 5t — R.
=1

Using the above equation, we substitute p in (6) obtaining

(;(Zzl(t)vl(x)),v($)> =— Z <aij($)£(; z(t)v(x)), ga:z (x)> _

=1

n

e /BQ a(t) Y atyu(@)v(z)do + (/3(:1:) 7= atyu()", v(:E)) :

I=1
Simplifying the equation, we get
n 82[ 2
Y (), (@) ==

t
=1 ij=11=1

~

Since all the above transformations hold for all v € C*°(Q2) we assume v
to be v, v9,...,v,, thus obtaining a following equation system

n SN
Z aa’ztl(t)(vl(l-),vk(l')) _ Z Zzl(t) <azj($)g:2($)7 gz:j ($)> — ...

=1 ij=11=1

n

ey a0 [ uluis+ <ﬂ(w)(p— szt)vl(x))*,vl(x)),

=1 =1
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for all kK =1,...,n. The matrix representation of the above system is

(Ulavl) (1)2,1}1) (Un,vl) %
(vi,v2)  (v2,v2) ... (vn,v2) %
(vi,00)  (v2,0n) o (Un,vn)] |92
——
¢ g (1)
2 dvy 9 2 p O
~2ig=1(0igss ) -~ Xig=(eias 5p) 2
- : 3 e
2 vy Ouy, 2 n  Oun :
B Zi7j:1 (aij%;’ B?ci ) e T Ei,j:l(aijﬁjv Blﬂ)ﬁi ) 2
——
4 2(t)
21
_ f(,m vivdo ... — faﬂ vpv1do 2
+ aft) : " : N
_ f(m vvpdo ... — fag VpUpdo Z"l
B/ N /
2(t)
(3007~ Siey ()
+ .

(5 (z)(p - Z?:lzzl (o(z))", vn)

P(=(1))

The short version of the above matrix equation is as follows:

dz
Ga(t) = Az(t) + a(t)B'2(t) + P(2(t)).
Since we are using a fixed mesh and presented test functions the values of
G, B’ and A matrices depend only on the spatial variable, thus it is possible
to compute them at this point. In the implementation used, the Gauss points

method is used for this task. Furthermore, from the above formula we can

observe, that

po(1) p(0,21) > i=1 21(0)v (1) 21(0)

Po(fff2) B P(Ovzfcz) _ > i1 21(0)vy(w2) _ Z2f0) _ 0.

o)) LoOz)| S aOm@)] a0
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The last equality is obtained by the properties of the test functions v; for

i=1,...,n. Using a Crank—Nicholson method with At time step, we obtain:

z(t+ At) — 2(t)
At

G :%m+au+Aw3pu+Aw—1P@@)

2

—%(A + a(t)B")z(t) + %P(z(t + At)).

The result is an ordinary non-linear equation system. In order to solve it, we
use a following iterative method — at the beginning we assume (0 (t 4+ At) =
z(t). We will solve the following equation system, at each step

ZBED (¢ 4 At) — 2(t) 1
¢ At 2
- ;A+MQRV@+%P@%ﬂ@+Am.

(A+a@+AprWM@+Aw—%P@@)

However, the above equation system is still non-linear. In order to solve it, we
substitute the z*+1 (¢t 4 At) in the P(z*+1) (¢ + At)) term with 2(¥) (t + At).
As the result we obtain the following iterative method (for a fixed time point)

O+ At = (1)

Gz(m)(t +A) —2(t)  (A+alt+A)B) M+ At P(2(1)
At B 2 2
L PEW (40 A+ a<g>B’>Z<t> for & > 1.

As a result in each step of this method a linear equation system is solved. In
the simulation software implementation a bcgstab method, provided by the
SciPy library for Python, was used.

3.2. Mesh generation

In order to facilitate the mesh generation, a separate program was created.
Together with the Triangle library it constitutes a full solution for generation
of meshes with the required parameters. The constructed software allows for
defining the basic geometry that is further used for the mesh generation.
This is made possible by allowing the user to define points, connect them
into segments and place markers on the points, segments and areas that are
used by the Finite Method Implementation for its purposes. These attributes
allow us to define the neurotransmitter production domain and release sites.
The defined geometry is then passed into the Triangle library, which pro-
cesses it using an improved version of the Delaunay algorithm — the Ruppert
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algorithm. This allows us to generate a required triangular mesh without
the losses in assigned parameters — they are transfered or interpolated onto
newly created points. Additional control over the mesh parameters is ob-
tained using the Triangle library option allowing to specify a lower bound
on the triangle inner angles. This guarantees the stability of the numerical
method used. The mesh used for simulations is presented below.

Fig. 1. A mesh

3.3. Simulation parameters

Below we present a table containing the values of parameters used for
the simulation. The values were chosen to reassemble the conditions found
in the nerve cells of Drosophila Melanogaster. The stimulation frequency
was chosen as in the experiment described in [1]. Spatial parameters were
developed using the photograph of the Drosophila melanogaster presynaptic
bouton cross-section presented in [7].

The release sites were also marked in the mentioned figure, which allows them
to be precisely marked. The neurotransmitter production domain, due to the
lack of information other than its central location, was chosen to be of the
same shape as the bouton scaled down and placed in the center.

Since the free acetylocholine has a diffusion coefficient equal to 30045, for
simulation this value was assumed to be 3 orders of magnitude smaller. The
reason for such a modification is to compensate for the difference in the dif-
fusion between free acetylocholine and that packed into vesicles.
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Tab. 1. Values of parameters used for the simulation

Parameter | Value

Q The mesh presented in Figure 1
m(§2) ~ 8.06um?

Qg The bold segments in Figure 1
m(2yq) ~ 3.46um

Q3 The gray area in Figure 1

m(Qs3) ~ 3.02um?

ail, a9y 1073 300%

ajz,az; | 0
T 4-1071s
to U5, {J +0.0255 - i + 0.01255}1%, U {j + 0.055 - i + 5.025s}7_
84000 .~ 84000 . 1
Po m) ~ so6 ~ 104235

70000 .~ 70000 23198 1

p Q) B.02 L

Qo 84%%%7- = 0.000?24000 ~ 8.93 mil.s
3 10—3% ~ 0.01024- 1~

T 98

At 10745

The initial density pg was calculated assuming the uniform placement of
the 84 000 vesicles (according to [7]) over the whole bouton domain. The
production threshold was calculated assuming the uniform placement of the
70 000 vesicles, constituting the reserve pool, over the production domain
Q3.

According to [2] one action potential activates about 300 vesicles, which cor-
responds to change of the pool by 82880 in time 7. From this we obtain the
value of a. The production efficiency was chosen to be 3 orders of mag-
nitude smaller than the value that would counterbalance the release of the
neurotransmitter. The reason for such an assumption is to approximate the
behavior of the biological neurons, which under the intense stimulation ex-
hibit the depletion of the available vesicles and regenerate slowly.

The release time 7 of the vesicles was chosen to be equal to 0.4ms, which
corresponds to the time of the action potential in creatures of the Drosophila
melanogaster size. The time moments when the neurotransmitter release oc-
curs were chosen to be evenly placed for the first as well as the second part
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of each second of the simulation. This corresponds to a 40H z stimulation
in the first part and 20H z stimulation in the second part of each time unit.
The whole simulation time 7" was set to 5s which is the same value as used
in the experiment described in [1]. Finally, the time step was chosen to be
dense enough to embrace the whole phenomenon — the release of the neuro-
transmitter in particular.

3.4. Simulation results

Below we present the result of the simulation. The dark areas represent
zero density, while the white areas represent the maximal possible density.

4. Concluding remarks

In this paper we mentioned a mathematical model of neurotransmitter
fast transport, described the methods used for its simulation and presented
the obtained preliminary results. The model was set in a biological context
through the appropriate choice of parameters resembling the conditions found
in the nerval cells of Drosophila melanogaster.

An important conclusion arising from the performed simulation is correct-
ness of the method used — experimental as well as theoretical. The observed
neurotransmitter vesicle dynamics is compliant with intuition and expecta-
tions set by the studies of biological cells. Furthermore, the simulations ex-
hibit a pattern ressembling the neurotransmitter vesicle depletion observed
in nature, thus further proving correctness of the methods used.

Finally, we would like to point out the problem of choosing the appropri-
ate shape of the production domain as well as production efficiency. During
the preparation of this paper no publication regarding the mentioned param-
eters was found. The software used for simulations allows for exploring the
wide range of possibilities for choosing just the two mentioned parameters.
Along with the possibility to modify other aspects of the neurotransmitter
vesicle dynamics this allows us to study of a broad range of neuron cells of
many species, thus further allowing the verification of the model.
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Fig. 2. Simulation results
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