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1 I n t r o d u c t i o n

In the past years, a consensus has form ed that quantum  inform ation theory has an im­
portant role to  play in the understanding o f  the A d S /C F T  correspondence and quantum  
gravity. One com parably recent avenue o f  study is the investigation o f  con jectured holo­
graphic measures o f  complexity. From a quantum  inform ation theoretic perspective, the 
circuit complexity o f  a unitary operator U would be the m inimal num ber o f quantum -gates 
(picked from  a given gateset) needed to  im plem ent the operation  U to  within a specified 
error tolerance e. Similarly, the (relative) com plexity o f  a state \^u) w ith respect to  the 
reference state \R), C ( R .^ jj), w ould be identified with the m inimal com plexity o f any 
operator U that satisfies the equation

|^u) =  U \ R ) . ( 1.1)

In [1, 2] , a proposal was form ulated to  calculate the com plexity o f an operator U in geo­
m etric terms, choosing a distance measure on the space o f  unitary operators and equating 
the com plexity o f U, C (U ), as the (m inim al) distance between U and the identity operator 

according to  this distance function.

Ideas relating to  such notions o f com plexity entered the holography literature in [3- 5], 
see [6] for a recent overview. Curiously, there are m ore than one proposal for what bulk 
quantity might be a measure o f  com plexity in A d S /C F T . The first is the volume pro­

posal [4 , 5 , 7- 9] , according to  which the com plexity C o f  a field theory state w ith a sm ooth 
holographic dual geom etry should be measured by the volum es V (£ )  o f  certain spacelike 
extrem al codim ension-one bulk hypersurfaces £ ,  i.e.

C .  L g . . . = .

wherein a length scale L  has to  be introduced into equation ( 1.2) for dim ensional reasons 
which is usually picked to  be the A dS scale [8- 11] . The second proposal is the action 
proposal [10, 11]

C = A ?  » ■ »

wherein A ( W ) is the bulk action over a certain (codim ension  zero) bulk region, the W heeler- 
de W itt patch W . A  third, less utilised proposal, is the volume 2 .0  proposal o f o f  [12] . It
suggests that holographic com plexity may be given by the volum e o f  the W dW -patch ,

C .  V (W ). (1.4)

D espite sparking a flurry o f activity from  the A d S /C F T  com m unity, these proposals are 
on much less firm ground as for exam ple the fam ous R T  and H R T proposals for holographic 
entanglement entropy, sim ply because in the case o f  com plexity even the precise definition 
o f  the quantity o f  interest on the field-theory side is som ewhat uncertain. However, some 
progress has been made to  ease this predicam ent. Field theory techniques for defining and
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calculating com plexity where investigated in [13- 22] follow ing the geom etric ideas o f  [1, 2], 
in [23- 26] follow ing path integral m ethods and in [27, 28] follow ing an axiom atic approach. 
A  fascinating connection  w ith group theory was investigated in [29] . See also [30- 35] 
for other relevant works. Com parisons between field theory calculations and holographic 
calculations o f  com plexity where attem pted in [36- 41] , however, in the holographic pro­
posals ( 1.2) , ( 1.3) , and ( 1.4) it is not clear what choices o f  reference state, gate set and 
error tolerance might be needed to  fix am biguities o f the dual field theory definition o f 
com plexity. If a field theory definition o f com plexity corresponding to  ( 1.2) , ( 1.3) , or ( 1.4) 
is to  depend on such choices, they appear to  be implicit in the holographic dictionary. 
This, and the fact that w ith currently developed techniques the calculation o f  com plexity 
in field-theories som etim es requires the assum ption o f  weak coupling or even free theories, 
the com parisons attem pted in [36- 41] are som ewhat limited to  a rather qualitative level.

For exam ple, in [40] we studied how in A dS 3/C F T 2 com plexity, according to  the vol­
ume proposal ( 1.2) , changes under infinitesimal local conform al transform ations from  the 
groundstate. The rationale behind this is that on the C F T  side the conform al transform a­
tions can be written to  be generated by unitary operators w ith a very simple form  in terms 
o f  the V irasoro generators or the energy-m om entum  tensor, irrespectively o f  whether the 
central charge is large or not. Our hope was hence that for such a transform ation, the 
holographic results on the change o f  com plexity might be som ewhat universal am ong 1 +  1 
dim ensional C FT s, allowing for a potentially easier and m ore m eaningful com parison to  
field theory m odels in which com putations o f  com plexity are possible. In fact, in [42] a 
certain proposal was m ade for what the field theory definition o f  C in ( 1.2) should be, 
finding precise agreement with our results o f  [40].1

The main goal o f  this paper is hence to  extend the results o f  [40] from  the volum e 
proposal ( 1.2) to  the action proposal ( 1.3) . Hence, we will calculate how the com plexity o f 
the state o f  a holographic two dim ensional conform al field theory (C F T 2) dual to  Poincare- 
A dS 3 changes under an infinitesimal local conform al transform ation. The structure o f  our 
paper is as follow s: in section 2 we present in detail the calculation o f  com plexity, according 
to  the proposal ( 1.3) , for the case o f  Poincare-A dS in 2 +  1-dimensions. This serves as an 
introduction  o f some relevant concepts and notation, and will be used as a reference for our 
later m ore non-trivial results. Section 3 is devoted to  an explanation o f  how we will study 
conform al transform ations in A dS 3/C F T 2, following the lines o f  our previous paper [40]. 
Our novel results then start in section 4 , where we discuss the features o f generic W d W - 
patches in Poincare-A dS 3. Based on this, we will then calculate contributions to  the 
action on the W d W -p a tch  term  by term , starting with the bulk term  in section 5 , and then 
m oving on to  the surface terms (section 6) , the param etrization o f  the null-rays constituting 
the null-boundaries in section 7 , joint-term s in sections 8 and 9 , and finally the so called 
counter terms in section 10. W e close w ith a sum m ary and conclusion in section 11. Further 
technical details will be relegated to  the appendices A  and B .

1 Another conjectured holographic dual of bulk volumes is the so called fidelity susceptibility [43], see 
however [44] for a recent critique of this proposal.
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2 C o m p l e x i t y  o f  t h e  g r o u n d s t a t e

2 .1  W d W - p a t c h

W e start by considering the vacuum  state o f a large-c C F T 2 living in 1 +  1 dim en­
sional Minkowski space, w ith coordinates t .x  ( —to  < t . x <  + t o ) ,  respectively lightcone- 
coordinates x ±  =  t ±  x . I f this C F T  has a holographic dual, the bulk geom etry dual to  the 
vacuum  state will m ost easily be given by the Poincare-patch  o f  A d S 3:2

L 2 L2
ds2 =  —2 ( - dt2 +  dx2 +  dz2) =  —2 (d z2 -  d x + d x —  . (2 .1)

Clearly, this m etric is conform ally flat, however, it has an asym ptotic boundary at z =  0 
where one would com m only define a cu to ff at z =  e w ith e =  const. ^  1. In this section, we 
will revise the calculation o f the com plexity ( 1.3) for the state described by the m etric ( 2.1) , 
follow ing the outline and conventions o f  [46] . Readers w ho are already well familiar with 
this material may safely skip this section, however it will serve to  setup our conventions and 
notation, and it will give us the opportun ity  to  remark on a few details that will becom e 
im portant later on again.

First o f  all, what do  we mean by “A ” in ( 1.3) ? A  is meant to  be [10, 11] the integral o f 
the bulk action over the Wheeler-de W itt (W d W ) patch W . This codim ension-0 region o f 
the bulk is defined as the region enclosed by future and past lightfronts3 em anating from  
a chosen equal-tim e slice on the asym ptotic boundary. Consequently, the spacetim e-points 
inside o f  W  are not in causal contact w ith the chosen boundary tim eslice, while the points 
outside o f  W  can be reached by at least one causal curve from  at least one point on the 
boundary slice. For the boundary tim e-slice t =  0, the W d W -p a tch  in the Poincare-patch 
is bounded by the Poincare-horizon at z ^  to  and by the tw o lightfronts

t + ( z .x )  =  + z . t - ( z .x )  =  - z. (2 .2)

to  the future and the past, respectively. In order to  avoid divergences, a cu toff surface has 
to  be im posed near the boundary at z =  e. Similarly, a cu toff can be im posed at z =  zmax, 
w ith zmax ^  to . As pointed out in [48] , it is generically not possible to  calculate the 
contributions from  a null boundary to  the action via a lim iting procedure from  fam ily o f 
timelike or spacelike boundaries, w ith the exception  being the case where the null-boundary 
in question is a K illing horizon. This is the case for the Poincare-horizon. A nother intricacy 
arises in defining the W d W -p a tch  in the presence o f a small cu to ff e, see appendix D .4 o f [46] 
and also [49]. R ough ly  speaking, it might make a difference whether the null-boundaries 
o f  the W d W -p a tch  are defined to  em anate from  the cutoff-surface at z =  e, or whether 
they are defined to  em anate from  a tim e-slice o f the exact asym ptotic boundary at z =  0 , 
and are hence intersected by the cu to ff surface. W e will pick the latter convention, which 
appears to  be the overall m ore com m on one in the literature. It was also shown in [46, 49]

2In contrast to the notations and convention of [40, 45], we are using a coordinate z instead of A, with 
A =  1/z 2.

3We use this term instead of lightsheet, as a priori the lightfronts bounding a WdW-patch do not have 
to satisfy the necessary requirements to be lightsheets according the the definition of [47].
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Figure 1. W dW -patch for the t =  0 boundary slice in the Poincare-patch. Technically, the W dW - 
patch would be the lightly shaded square region between the lightfronts t =  ± z  and the Poincare- 
horizon. However, we introduce the field-theory UV cutoff z =  e and the IR cutoff z =  zmax near 
the Poincare-horizon, shown as dashed (blue) lines. Hence, the integration-domain W  for the action 
proposal, which we will still refer to as WdW-patch, is the darkly shaded region. We also mark the 
locations of the four spacelike joints J\-J4.

that, for many interesting questions, these tw o possible choices lead to  the same results in 
the limit e ^  0. See figure 1 for an illustration o f  the W dW -patch .

As ultim ately worked out in detail in [48] , the action is (see also [50- 57] , we m ostly 
follow  [46 , 49 , 57]4)

where we have included the appropriate surface, boundary, jo in t and counter terms. O f 
course, G N stands for N ew ton ’s constant. This form  o f  the action was derived by dem anding 
not only a well-defined variational principle under Dirichlet boundary conditions, but also
additivity o f the action under join ing o f  bulk regions and independence o f the value o f  the 
action under reparam etrisation o f the generators o f the null-boundaries.

W e will now go through these terms one by one.

4See also footnote 7 in [58] for a remark on the sign of the term <x k.
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2.2 Bulk  te rm

The bulk term  is the integral o f  the bulk E instein-H ilbert action [50, 51] over the cod im en­
sion 0 region W ,

Abuik =  I  (R  -  2A ) ^ = g d 3x, (2.7)
16nG N Jw

w ith A =  — L  in 2 +  1 dim ensions. The volum e-elem ent is as usual ^[—gd 3x  with g 
being the determ inant o f  the bulk metric. D ue to  (2.1) being a vacuum  solution o f  three 
dim ensional gravity, the integrand reads R  — 2A =  =1, w ith L  being the A dS radius which 
we will generally set equal to  one in the later sections. W e hence find

—L r r z r~  1 — L V  ( 1 1 A , ,
Abuik =  . n  dz dt d x ^  =   , (2 .8)

4nG N  Je J—z J—x  z 3 2nG N  \e  zm ax/

where we have set dx =  V .J — X

2 .3  S u r fa ce  t e r m s

There are potentially three types o f codim ension-one surfaces, nam ely timelike ones 7i, 
spacelike ones S ,  and null ones N .  From figure 1, we see that we will have to  deal 
w ith tw o null boundaries, tw o timelike boundaries, and no spacelike boundaries. Let us 
begin with the null ones, discussed on ly recently in [46 , 48 , 56]. The null boundaries are 
generated by null rays w ith (possib ly affine) param eter A, and the measure ^/pdx com es 
from  integrating over all the different null rays constituting the lightfront. The integrand 
k is fixed by the equation [46, 48]

k^V^,ku =  nkv , (2.9)

and measures the failure o f A to  be an affine param eter. Hereby, k^ is the null norm al to  
the lightfront, directed out o f  W . It is com m on to  choose k^ such that k =  0 and that 
k ■ f |z=0 =  ± 1  (the sign depending on the orientation o f  k) where t  =  dt =  is a future 
pointing vector at the boundary [46, 48 , 49].5 For the upper lightfront t +  =  z, we find that 
k^dx^ =  d(t — t + )  =  dt — dz has just the desired properties k =  0 and k ■t =  1. Similar 
statem ents hold for the past lightfront t —.

The choice k =  0 clearly makes the contribution  from  the null-boundary vanish in ( 2.4) . 
W e are hence left w ith the terms for the timelike boundaries, which are just the well known 
G ibbons-H aw king type boundary terms [52, 53] . Then 7  is the determ inant o f the induced 
m etric on the surface z =  const., and the extrinsic curvature can be easily calculated (see 
appendix A ) to  be K  =  L at z =  e and K  =  — L at z =  zmax. Hence

V  ( f e 2 L 2 f zmax 2 L 2 L V  ( 1 1 A
Aurfa“  =  s n c N  ( L  l ^ d t + / . z „„ , l zmax )  =  2 z g n  (7 — zm ax) ■ (2 -10)

5In fact, t =  is a timelike Killing vector, which defines the units in which we measure boundary
time. This kind of consideration also played a role in [59].
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2.4 Joint terms

W e are left w ith the four codim ension-tw o jo in t terms J \ -J 4 that arise where tw o o f  the 
codim ension-one boundaries com e together [48 , 49] :

1 v4 > I
A joint =  8“ 7 nji V P d x. (2 -11)

N i= \ d Ji

Herein yfpdx is the induced line-element on the joints J , which are one-dim ensional 
spacelike subm anifolds. In principle, there might be tim elike-timelike, spacelike-spacelike, 
timelike-spacelike, timelike-null, spacelike-null or even null-null joints. From figure 1, it is 
apparent that so far we will on ly have to  deal w ith timelike-null type joints. The integrand 
for this case is then defined as [48, 49]

dJi =  —sign(k ■ s)sign (k ■ t) log (|k ■ s| ), (2-12)

w ith the null norm al k^ defined in section 2 .3 , the unit norm al form  s o f  the timelike 
boundary surface Ti (defined to  point out o f  W ) and t, a norm alized timelike vector living 
in the tangent space o f  the boundary Ti and norm al to  the join t surface, pointing away 
from  W . See e.g. [49] for details, and note that t =  t. Let us focus on the join t J i  first. 
W e find sign(k ■ s) =  + 1 , sign (k ■ t) =  + 1 , k ■ s =  L and ,J~p =  L /e , thus

A j  =  8n G N  L  log ( L ) .  (2 -13)

Similarly, at J 2, sign(k ■ s) =  + 1 , sign (k ■ t) =  + 1 , k ■ s =  L and

A j  =  88iGN  L  log ( L )  - (2 ' 14)

On the other hand, at both  J 3 and J 4, we find sign(k ■ s) =  —1, sign (k ■ t) =  + 1 , 
k ■ s =  — ̂ mfx and

A J3,4 =  8- (V  z L  log ( )  - (2 .15)8 n G N - max \- max/

Consequently

V L
A joint 1  l o g (  — —  l o g f  —

e e - max - max
(2.16)

4 n G N

2 .5  C o u n t e r  t e r m s

Lastly, we are dealing w ith the term

Acounter ° log(|0^c |)dA^pdx, (2.17)
8 n G N N  Ni

which has been introduced already in [48], but the im portance o f which was pointed out 
in [57] (see also [58, 60] for the im portance o f  these terms, but also [61]). Again, the null
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boundaries are generated by null rays with affine (due to  k =  0, see section 2.3) param eter A, 
and the measure j p d x  com es from  integrating over all the different null rays constituting 
the lightfront. The reason why these terms are called counter-terms is that they make 
sure that the value o f  the action remains the same under reparam etrisations o f  the affine 
param eter A param etrising the lightrays that make up the null boundaries [48, 57] . As we 
can see, however, this com es at the price o f introducing an arbitrary lengthscale £c .6

W ith  the equations o f appendix A  in m ind, we could  now proceed to  directly evalu­
ate (2.17) , however, we will first sim plify the expression follow ing [57] . To do  so, we remind 
ourselves firstly that the expansion 9 is given by (see appendix A )

9 =  J - d x J p .  (2.18)
v  P

H ence (2.17) can be rewritten as

1 C Xmax r +
A counter — ~&kG J  J  (dxJp)log(\9£c\)dAdx (2.19)

1 f  + ~  Xmax 1 f  Xmax f  Qm

=  s n c N  L  [ j p l o g ( \s ' c| )]l ,m„ .dx — s i a N J x m,„ L  - r dA^ d x - (2 -20)

This is as far as [57] went, but we can make an additional step by using Raychaudhuri’s 
equation (A .14) , which in a 2 +  1-dim ensional vacuum  bulk-spacetim e boils down to  ^  — 
—9, and hence, using (2.18) again,

1 f+ ™  Xmax 1 f X max f  +  ™
Acounter =  Q ^  [ j p log ( \9 ĉI)] dx +  dxJpdAdx  (2 .21)

8 n a N J — ̂  Xmin 8 n G N j Xmin J— ̂
1 r+OO Xmax

=  j log (|9 Ĉ\) ] , maxdx, (2 .22)8 n a N J — CO Xmin

where we have redefined the arbitrary lengthscale £c such that log(£c) +  1 =  log(^C). W e 
have now achieved to  rewrite the term  (2.17) as a term  to  be evaluated solely on the 
joints Ji.

For the upper lightfront, t +  =  z and k^dx^ =  d(t — t + )  =  dt — dz. The surfaces o f 
constant A along this lightfront are codim ension  2 spacelike slices defined by t =  z =  const. 
w ith induced line-element j p  =  L /z .  Hence (see [57] and appendix A ) A =  L 2/ z  and 
9 =  z / L 2. The upper lightfront gives the term

/. V L  \ 1 , ( &  M 1 , ( £czmax Ml
ounter,+ =  8 n (5 „  [2 loH  L'2)  z'max loH  L 2 )  J ■ (2 -23)

A  similar contribution  com es from  the lower lightfront t — =  —z: here k^dx^ =  d(t —1 —) =  
—dt — dz, j p  =  L /z ,  A =  L 2/ z  and 9 =  z / L 2. Hence

/. V L  \ ^  ( £c 2 M 1 , ( £czmax Ml
_______________ Acounter,— =  [ 2  l o g (  t f  z.iiax H  L 2 )J  ■ (2 '24)

6One might be tempted to set this lengthscale equal to the AdS-scale L as e.g. [57], however in general 
this tends to simplify the results for complexity almost too much. So we leave l c to be arbitrary in this 
paper.
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2 .6  E nd result

Taking the results from  the previous subsections together, we find 7

v l  r i ( ec \ i ( nc \ i

A = 4nG N  .7  loH l )  -  w loH lJ. •
(2.25)

which is exclusively given by A joint and A counter,±, as the bulk and surface terms cancel 
precisely. Furthermore, it is noteworthy that even without this cancellation, all the terms 
involving zmax vanish independently in the limit zmax ^  to. This is a consequence o f the 
special properties o f the Poincare-horizon, which when mapping the W dW -patch to global 
AdS would collapse to a pair o f lightrays, emanating from what would be the “point at 
infinity” for the Poincare-patch. Similarly, the joints J 3 and J4, after taking the limit 
zmax ^  to, would be mapped to two caustic points which do not contribute to the action, 
see appendix B o f [46]. Usually, it would not be consistent to calculate the contributions 
from a null surface by taking a limit of spacelike surfaces, however in the case o f the 
Poincare-horizon, this is possible [48]. Following [57], it is also interesting to point out that 
due to the inclusion o f the counter terms (2.6) , the overall result (2.25) diverges only as V 
with the x-Volume V  and the UV-regulator e, as opposed to a divergence V log(e) indicated 
by (2.16) . This however comes at the price of introducing the ambiguous lengthscale £'c.

3 Conformal transformations in A dS3/C F T 2

3.1 Solution generating diffeomorphisms

Let us revise some o f the details about how to implement local conformal transformations in 
AdS3/C F T 2, discovered in [63], but following the outline and notation o f [40, 45]. We start 
with equation (2.1) . Local conformal transformations can now be implemented by applying 
global bulk diffeomorphisms which act nontrivially near the boundary [63], see also [45]. 
These diffeomorphisms map solutions of the equations o f 2 +  1 dimensional AdS gravity to 
new solutions which will be physically inequivalent, hence describing distinct CFT-states. 
They can thus be called solution generating diffeomorphisms (SGDs) [45]. For example, 
holographically calculating the expectation value o f the energy-momentum tensor o f the 
boundary theory by the method o f [64] after applying an SGD will give a result different 
from zero (which we would get from the metric (2.1) ), which however agrees with the 
formula for the energy-momentum tensor of a CFT after a conformal transformation due 
to the Schwarzian derivative [45]. The resulting metrics, due to their discovery in [63], are 
called Banados geometries and have been studied in more detail for example in [45, 65- 69].

7See also [62] for related, but more general results.
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The SGDs are o f  course only defined up to  a residual diffeom orphism  which is trivial 
at the boundary. Follow ing [45], we will write them  as8

z =  z^J  G + (X + )G - (x - ), (3.1)

x +  =  G + (X + ), (3.2)

x -  =  G - ( X - ), (3.3)

where G ±  are some functions with G ±  >  0. The line element in the new coordinates Z, X±  
is [45]

1 1  2 2 
ds2 =  dZ2 ------3 dX+ ■ dX-  +  (A + dX +  +  A _ d X - )  dZ ■ (A +d X +  +  A _ d X - ) , (3.4)zZ2 zZ2 -  zZ -

. 1 G ± " (X±)
A ±  = -  2 G ± m . (3 -5)

There are tw o possible equivalent view points from  which we can approach these geom e­
tries. The first would be to  just take (3.4) and treat it like any other solution in holography. 
In order to  calculate quantities like the expectation  value o f  the energy-m om entum  tensor 
or entanglement entropies, we would introduce the natural cu toff Z =  e w ith e =  const. ^  1. 
W e call this choice o f  cu toff natural because Z takes the role o f  the (inverse) radial coord i­
nate in (3.4) , and the induced line element on the cu to ff surface reads

ds 2„d =  — 1  dX+ ■ dX-  +  O (e0), (3.6)
e2

i.e. the dual C F T  lives on flat space. B y (3.1) , this coice  o f  cu toff would correspond to  
deform ing the cu to ff in the old  coordinates:

Z =  e ^  z =  e ^ G + / (X + )G - / (X- ). (3.7)

This m otivates the second (equivalent) perspective that we can take, nam ely that in the old 
coordinates o f  the Poincare-patch, the SGDs actively shift the position o f  the cu toff surface 
according to  (3.7) , which in the holographic calculation o f  C F T  quantities then leads to  
the changes expected  for a conform al transform ation [45].9 This is shown in figure 2 . In 
the coordinates o f (2.1) , the induced line element on this cu to ff surface ( 3.6) then reads

, 2 G +  1) /(x + )G (_ 1} /( x - K  + , _  0, 1 dX+ dX" + , 0. . .
dsjnd = ---------------------ó------------------d x+ d x  +  O(e  ) =  — -  - — d x+ d x  +  O(e ), (3.8)

e2 e2 dx+  d x -

which is o f course consistent w ith the way the m etric transform s under conform al trans­
form ations, acquiring an overall prefactor. Throughout this paper, we will switch between 
these two perspectives, depending on what is easier for the given task at the time.

8This is different from the convention used in [63]. The convention used here and in [40, 45], while 
leading to a somewhat more involved expression for the line element, has the advantage of presenting the 
SGDs in a simpler form. This will not affect our physical endresults.

9Something similar happens in AdS2-holography: there, the family of physically inequivalent solutions 
to the bulk equations is given by the set of curves defining different cutoff-surfaces near the boundary of 
AdS2 [70].
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Figure 2. A conformal diagram of the Poincare-patch of AdS3. The vertical line is the asymptotic 
boundary while the two diagonal lines are the two Poincare-horizons where t ^  ± ro . The two 
cutoff surfaces z =  e and z =  e are shown as dashed (red) and dotted (blue) lines, respectively. The 
figure is taken from [40].

Following [40], we will again consider a small SGD

with the expansion parameter a  ^  1. Just as in [40], we will throughout the paper assume 
that the functions g±  as well as their derivatives are smooth, bounded, and fall off to zero 
at infinity. The line-element (3.4) can similarly be expanded, yielding

where we have switched from lightcone coordinates X± to standard coordinates t  X on the 
boundary. In this paper, as in [40], we will be interested in terms up to and including order

as they are rather cumbersome. It is a trivial exercise to derive them from (3.4) .

3.2 Towards complexity change under conformal transformations

The SGDs (3.1)- (3.3) not only wrap the cutoff-surface as explained in section 3 and 
sketched in figure 2, they also lead to a change o f the definition o f equal-time slice, as 
clearly t =  const. and t =  const. are two inequivalent conditions. Our goal is to holo­
graphically calculate the complexity o f the state after applying an SGD, which is naturally 
understood to live on an equal time-slice o f the new coordinates, z =  io =  const. How will 
this time-slice look like in the old, untilded coordinates?

x+  =  G +(X+) =  X+ +  a  g+(X+), 

x -  =  G _ ( X - ) =  X-  +  a  g _ (X _ ),

(3.9)

(3.10)

ds2 =  ( —dp  +  dX2 +  dZ2) (3.
z 2

+  ^  ^g+ (p +  X) +  g -  (Z — X) j d p +  (g +  (p +  X) — g -  (p — X) j dx dZ +  O (a 2) ,

(3.11)

O ( a 2), however we have not written out the terms o f this order in the line-element above
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In general, it will not be possible to  exactly invert the transform ations in ( 3.9) , (3.10) . 
However, when working perturbatively in a, we can make use o f  the inverse transform ations

x +  =  G (|T 1) (x + ) w x +  -  a g+  (x + ) +  a 2g + (x + )g +  (x + ) +  O (a 3), (3.12)

x _  =  G __1) (x _ )  w  x _  — a  g _ ( x _ )  +  a 2g _ ( x _ ) g _ ( x _ )  +  O (a 3). (3.13)

z =  z\J G*(_1) /(x + )G _ _ 1) ' ( x _ ) .  (3.14)

Consequently, the equal-tim e boundary-slice in the new coordinates, t =  2 (x + +  x _ )  =  
to , z =  0, when m apped back to  the old  Poincare-patch  coordinates takes the (approxi­
m ate) form

t bdy(x ) =  to +  2  [g+(to +  x ) +  g _ (to  — x)] (3.15)

2
— a ^ [g _ (to  — x ) — g+ (to  +  x)] [g_(to  — x ) — g+  (to +  x )] +  O (a 3),

z =  0. (3.16)

From  now on, unless explicitly  specified otherwise, we will generally assume

to =  0. (3.17)

Given the tim e-translation invariance o f  the background ( 2.1) from  which we start, this is 
possible w ithout loss o f  generality. However, in order to  sim plify our calculations, we will 
also generally assume

g _  (to — x ) =  g+ (to  +  x ), (3.18)

which yields

t bdy (x ) =  to +  ag+ (to  +  x ) +  O (a 3). (3.19)

This now sets the stage for what we have to  do  in the rest o f  the paper. In order to  com pute 
the change o f  the com plexity ( 1.3) due to  an infinitesimal conform al transform ation, we 
have to  calculate the W d W -p a tch  for the state after the transform ation. This could  be 
tried in the tilded coordinates, where the line-element is given by ( 3.11) . W e would then 
be faced with the task o f solving for generic lightcones or null geodesics in such a m etric 
w ith t and x-dependent com ponents. A n  alternative approach would be to  work in the old 
coordinates, where the background spacetim e (2.1) is m anifestly conform ally flat. In this 
setup, we hence know all lightcones and null-geodesics trivially, however we will need to  
find the W dW -p a tch  for a boundary-slice o f  the form  ( 3.19) . This is indeed what we will 
do  in the following sections.

4  G e n e r a l  W d W - p a t c h e s  in  A d S 3

D ue to  its definition, which inherently relates the shape o f the W d W -p a tch  W  to  the causal 
connectiv ity o f  the spacetim e in question, the boundary o f W  will, apart from  cu to ff surfaces
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which we have artificially introduced or bulk-horizons, consist o f null surfaces generated 
by lightrays em anating from  the boundary slice, see figure 1. H ow can we calculate these 
null-surfaces for a general boundary slice like (3.19) ? Assum ing that in the coordinates 
o f  (2.1) (w ith L =  1 from  now on ), the future 10 null-boundary can be expressed as a 
function  t =  t + (z ,  x ) , we can easily calculate the induced m etric on such a general surface. 
As a null surface, the determ inant o f  this m etric should then vanish, and dem anding this 
leads to  the P D E

(dzt + (z ,  x ) ) 2 +  (dxt + ( z ,  x ) ) 2 =  1. (4.1)

This will be the central equation defining the null-boundaries o f  W  in the Poincare-patch, 
subject to  the boundary condition

t + ( 0 ,x )  =  t bdy (x ). (4.2)

A  similar but m ore cum bersom e equation can be derived for the em bedding t =  t + ( t ,  x ) 
o f  the lightfront in the tilded coordinates. In appendix B , we will give a numerical scheme 
for obtaining solutions and a discussion o f som e generic properties o f  such solutions. Here, 
we will just state some o f the m ost im portant observations for later.

First o f  all, in the case t bdy(x ) =  0, equation (4.1) is trivially solved by the light- 
fronts t + (z, x ) found in section 2 . These lightfronts are well behaved all the way from  
the boundary to  the Poincare-horizon. However, for general boundary conditions t bdy(x ), 
equation (4.1) does on ly allow for piecewise sm ooth  solutions. A  physicist’s p roof for this 
can be given by the use o f  the focusing theorem , which generically implies caustics to  
em erge at finite z ~  O (1 /a ) ,  see the discussion in appendix B .2 . These caustics will be the 
starting point o f  null-null joints, where tw o piecewise sm ooth  parts o f  the function t + (z ,  x ) 
will meet in a non-sm ooth  manner. These joints will then give rise to  extra contributions 
to  the action, which we will discuss in sections 9 and 10.2.

Secondly, due to  the conform al flatness o f ( 2 .1) , the lightrays that foliate the surface 
t + (z, x ) are straight lines o f  unit slope in the coordinate system spanned by t, z, x . Hence, 
along each o f  these lightrays, the expressions dzt + ( z ,x )  and dxt + ( z ,x )  will be constant. 
D rawing the lines in the z, x-p lane along which these quantities are constant 11 will hence be 
an easy m ethod to  draw the projections to  the z, x-p lane o f  the lightrays which foliate the
null front, given a numerical solution o f  t + (z, x ) . In figure 3 , we show the corresponding
figures for some simple choices o f  t bdy(x ).

Thirdly, apart from  numerical approaches, we can also try to  solve ( 4.1) iteratively in 
a , starting w ith the a  =  0 result t + ( z ,x )  =  + z . To second order, this yields12

t + ( z ,x )  w + z  +  t bdy(x ) — 1  z t bdy'( x ) 2 +  O (a 3), (4.3)

t - ( z ,x )  w — z +  t bdy(x ) +  1  z t bdy'( x ) 2 +  O (a 3). (4.4)

10Of course the treatment of the past boundary will be almost identical, so we will not spell it out in 
every step in the following.

11For example using the C ontourP lot[...] command of Wolfram Mathematica.
12 Similar expansions of general lightfronts in the z coordinate were done for example in [49, 57, 71].
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z z

F igure 3. Contour plots for the functions dzt  + (z,x) respectively dx't+ (z^x) (up to numerical 
errors, the contours for both expressions are identical) for various boundary conditions t bdy(x). 
Top left: t bdy(x) =  . Top right: t bdy(x) =  yyyr- B ottom  left: t bdy(x) =  yyyr- B ottom
right,: t bdy(x) =  . The black lines are projections of the null rays forming the lightfront down
to the x, £-plane, and should hence be perfectly straight. Any deviation from straight line behaviour 
is due to numerical inaccuracies. The orange points at the boundary (z =  0) are what we called 
hyperbolic points in section B.2, while the red points in the bulk are caustics, which are generated by 
the hyperbolic points. These caustics are generally the starting point of creases or null-null joints  
on which the function t + (.s,x) is not smooth (leading to increased numerical problems). Starting 
from a caustic, these creases will extend from there towards the Poincare-horizon. Those creases 
that we could determine analytically are marked by a dashed red line, see the discussion later in 
section B.3. In the case shown on the bottom right, we see that generically, creases may collide and 
merge into one.

-  14 -

JHEP05(2019)086



Hereby, we have assumed t0 =  0 and hence t bdy (x ) O (a ) , t bdy'( x ) 2 ~  O (a 2), see ( ) .
As we already pointed out in section 2 , it is generally not correct to  evaluate the terms o f the 
action com ing from  null boundaries by a lim iting procedure o f  boundary-term s on space- 
or timelike surfaces. Similarly, we cannot evaluate such null-boundary terms directly  from  
the approxim ate solutions (4.3) , (4.4) , however, in the calculation o f  the bulk term  and 
timelike boundary terms near the asym ptotic boundary this approxim ation will be useful 
later on. It should also be pointed out that (4.3) takes on a series-expansion form  not only 
in a, but also in z. This stays true even in higher orders. In fact, it is clear that even 
w ith arbitrarily higher order terms in a , the expression (4.3) will have a finite convergence 
radius in z for fixed t bdy (x ). The reason for this is that in the iterative procedure for 
deriving the terms o f  (4.3) for any additional order o f  a , the resulting term  will always be 
sm ooth  by construction  as long as t bdy(x ) is sm ooth . However, as discussed above and 
in appendix B .2 , the focusing theorem  implies that even for sm ooth  but otherwise generic 
t bdy(x ), the function  t + (z, x ) cannot be sm ooth  for large enough z. This is also clearly 
visible in figure 3 . Hence expressions o f  the form  ( 4.3) can only be a good  approxim ation 
close to  the boundary. As the caustics will on ly appear at coordinates o f order z 1/a ,  
we will from  now on assume the solutions (4.3) , (4 .4) to  be valid up to  z <  O  (1 /a ) .

In the follow ing sections, we will now evaluate the action on the W d W -p a tch  after a 
conform al transform ation perturbatively in a  up to  second order, subject to  the sim plifying 
assum ptions (3.18) and t0 =  0. W henever possible, we will try to  work w ith analytical 
expressions as much as possible, on ly using numerical solutions o f  t + (z, x ) for specific 
exam ples o f  t bdy(x ) when necessary. As m entioned already earlier, we will switch between 
the coord inate systems o f  (2.1) and (3.11) depending on what is m ore convenient in the 
given situation.

5 B u lk  t e r m

T o calculate the bulk term  o f  ( 2.3) , we need to  know the surfaces by which the W dW -pa tch  
W  is bounded. To the future and the past, this will be the lightfronts t ± ( z ,x ) ,  which we 
can calculate num erically as explained in section 4 and appendix B , and for which we also 
possess the approxim ate solutions (4.3) , (4.4) valid close to  the boundary, for coordinates 
z ^  O  (1 /a ) .  B y  our assum ptions, the function t bdy(x ) is bounded and fluctuates around 
t0 =  0 w ith an am plitude o f  order a , so |tbdy(x)| <  A a  with som e O (1) constant A. 
Consequently, due to  causality, we know

for any z. This will be o f  use shortly.
Towards the asym ptotic boundary, W  will be bounded by the cu to ff surface zt =  

e (e ^  1), as explained in section 3 .1 , see also figure 2 . This surface will be timelike 
(i.e. 1 +  1-dim ensional), and is m ost conveniently described in the new, tilded, coordinates. 
In section 2 .1 , see also figure 1, we introduced a timelike IR -cu toff surface z =  zmax near

z +  A a  >  t + (z ,  x ) >  z — A a, 

z +  A a  >  t - ( z ,x )  >  —z — A a,

(5.1)

(5.2)
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Figure 4. Bounds relevant for the calculation of the bulk integral, not to scale. Left: asymptotic 
boundary. Right: a x =  const. slice of the bulk, in Poincare-patch coordinates of (2.1) .

the Poincare-horizon. In the tilded coordinates, it might now seem most natural to  em ploy 
a cutoff-surface z =  zmax, however a problem  arises here: because o f the relation ( 3.1) , 
we know that in the original Poincare-coordinates, a surface z =  const. will fluctuate, and 
the m agnitude o f  these fluctuations will be a  const., see figure 4 for an illustration. For 
som e const. ~  O (1 /a ) ,  these fluctuations will becom e so strong that the surface defined by 
z =  const. is not everywhere timelike anym ore. So instead o f  z =  zmax, we will introduce 
an IR -cu to ff surface at z =  zmax, even for the cases after a conform al transform ation. This 
is no problem , as we are only interested in taking the limit zmax ^  to , and as in this limit 
the IR  cutoff-surfaces approach the Poincare-horizon, we expect that the end result will be 
independent o f  the specific fam ily o f  cu to ff surfaces w ith which this limit was taken [48]. 
W e will also introduce a zmid ~  O (1 /a ) ,  which we assume to  be small enough such that 
the series expansions o f  (4.3) , (4.4) still is a good  approxim ation up to  this point.

To summarise, for the calculation o f  the bulk term , we take the W d W -p a tch  W  to 
be bounded by the surfaces z =  e ,t  =  t + , t =  t - ,z  =  zmax. Furtherm ore, we split the 
integration dom ain into tw o parts, W  =  W i +  W 2, where W i is bounded by the surfaces 
z =  e ,t  =  t + , t =  t - ,z  =  zmid and W 2 is bounded by the surfaces z =  zmid,t  =  t + , t =  
t - ,z  =  zmax, w ith e <  1, zmid ~  O (1 /a ) ,  and tmax^M . Clearly then

A bulk(W ) =  A bulk(W 1) +  A bulk(W 2) . (5.3)

W e will first look at the term  A bulk(W 1). This will be easiest to  do  in the tilded 
coordinates, as then the integration bounds zz =  e and zz =  zmid will not depend on the 
other coordinates, see figure 2 and (3.7) . The approxim ate expressions for the lightfronts 
are given in Poincare-coordinates in (4.3) , (4.4) , but they can just as well be calculated in 
tilded coordinates. The result is a little bit m ore cum bersom e, and given in equation (B .21) 
o f  appendix B .4 . W e are dealing with vacuum  solutions o f  E instein ’s equations, hence 
R  — 2A =  —4 (setting L  =  1) exactly, and from  (3.11) one can show yf—g  w +  O (^ 3).
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Consequently

_ 1  rz max r<tt /-t+(z,x) 1
Abuik(W1) =  — —  dz dx d i ^

4nGN A  J_ x  Jt - (t,x) z3

—1 f ZmiA J~ t+ (z ,x )  — t _ ( z ,x )=  ^  dz dx — ^ . (5.4)
4nGw J, J_ ^  z3

Expanding t+ (z , x) — t _ (z ,  x ) in a, we find that the O (a o)-term is identical to (2.8) under 
the replacement zmax ^  zmid. As can be seen from (B.21) , the O (a 1)-term of t + (z ,x )  — 
t _ (z ,  x) vanishes identically. The O (a 2)-term of t + (z ,x )  — t _ ( z ,x )  is more complicated, 
and so for the moment we obtain

A u ik ( W i , „ )  =  A b u ik (W i,0) +  - ^ -  f " “  dz r  d x t + ( z , x > -  Z - ( z , x )  -  2Z (5.5)
4n G N Je z 

=  Abuik(W i, 0) +  a 2A 2 M  +  O (a 3). (5.6)

  (2)
A  series expansion o f  t  (z, x ) — t  (z , x ) — 2z in z shows that the term  Abuik 1 will not
contribute any divergences in the limit e ^  to . This is as good  as our general approach gets.
For specific exam ples similar to  the ones evaluated in [40] , we find (keeping in m ind ( 3.18)
and (3.17) and taking e ^  0)

g + (x + ) =  -  • U k i  =  4 ^ 8 8 f 3 S - d + ° < z - » ,  (5 .7)

c • x . (2) —1 3c2n ^ .  _ 5 . . .
g+ (x ) =  a2 + x 2 -  Abulk,1 =  4 — N8|(i|3zmid +  O(zmid). (5.8)

As explained above, we assume zmid ~  O (1 /a ), and hence the combination a 2Ab21)lk 1 
does in general not contribute at order O (a 2). Consequently, up to and including second 
order in a,

Abuik(W1, a) w Abuik(W1 , 0), (5.9)

at least for the examples studied above. We still need to calculate the term A bulk(W 2), or 
more specifically the difference

z , z —1 f Z=Zmax f  ™ t + (z ,x )  — t _ (z ,x )  — 2z
Abulk(W2,a )  — Abulk(W2, 0) =  + - ——— dz / d x --------------------3------------------ ,

4nGN JZ=Zmid z
(5.10)

which we have now spelled out in (untilded) Poincare-coordinates. Again, we will argue 
that this does not contribute at order O (a 2), in the following way: as said above, the 
region W 2 is bounded by the surfaces z =  zmid,t  =  t + , t =  t _ ,z  =  zmax. W hen replacing 
A bulk(W 2, a) with A bulk(W 2,a  =  0), we are instead integrating (the same integrand) over 
the region bounded by the surfaces z =  zmid, t =  + z , t =  —z, z =  zmax. How big is the error 
that we make by changing the integral bounds? This can be estimated by integrating over
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the gray-shaded areas in figure 4 . Due to  the bounds ( 5.1) , (5.2) , the error E 1 introduced 
by replacing t =  t + (z ,  x ) w ith t =  + z  and t =  t —(z, x ) w ith t =  —z is at m ost o f order

Rzmax^^ 2 4 -  -
E i a  2 — 3-  a  - 3—  ~  O ( - 3). (5.11)

Zmid z zmid

Similarly, the error E 2 due to  integrating from  z =  zmid instead o f  z =  zmid ^  z =  
zmid/ y / G + / (x + )G - / (x - ) (where we have used (3.14) ) is estim ated by 13

/ [  to r z=Zm id/^G+'(x+)C-'(x-) 1
dt /  dx d z - 3  (5.12)

J — TO J Z=Zmid z

a  /  dt /  d x ^ -^  (g+  (t +  x ) — g — (x  — t ))  (5.13)
J J—rx zmid

/  x=to
dt- 3 (g+ (t +  x ) — g — (x  — t)) . (5.14)

x= —to

The last expression vanishes identically, due to  our assum ption that the functions g±  fall 
o ff to  zero at infinity (see section 3.1) . To summarise, we find

Abuik(W 2, - )  -  Abuik(W 2, 0) (5.15)

and consequently

A bulk( W , - )  ~  A bulk(W 1, - )  ~  A bulk(W , 0) (5 .16)

up to  and including O ( - 2) for the exam ples studied in ( 5.7) , ( 5.8) . This leads us to  the 
first main result o f  this paper: for the action proposal ( 1.2) , we will still have to  take 
into account the rem aining terms (2 .4) , (2.5) , (2.6) , however for the volum e 2.0 proposal 
o f  [12] , ( 1.4) , the result ( 5.16) is all we need. As the gravitational Lagrangian o f  our
spacetim e was constant, R  — 2A =  —4, we find A bulk(W ) a  V (W ). Hence, we have shown
that the com plexity, according to  ( 1.4) , does not change under infinitesimal conform al 
transform ations up to  order O ( - 2) for the exam ples studied above. For general g+ , there 
m ay be a change o f order O ( - 2), independent o f  the U V -cu to ff e, that can be calculated 
by the integral in ( 5.5) , using (B .21) .

6  T i m e l ik e  s u r f a c e  t e r m s

N ext we turn to  the timelike boundary terms which, as explained in the previous section, 
we evaluate at the U V  and IR  cu to ff surfaces z =  e (e ^  1) and z =  zmax (zmax ^  ro ). 
The term  at z =  zmax is the easiest to  deal with, which we d o  in Poincare-coordinates. 
Then, just as in section 2 .3 , we find K  =  —2 and ^ 7  =  1/zm ax. So

/+ ^  rt+ (Zmax,x) 1 r +to /  2 (  -  \ \
dx /  d t - 2—  = /  dx I  + O  I - 2—  1 1 , (6 .1)

-̂ o d t- (zmax,x) zmax J — <x \ zmax \zm a x //13Below, we do not specify the integral bounds in the f  dt integral explicitly, but it is enough to know 
that by (5.1) , (5.2) , |t| < O(zmid). The dependence of the exact integration bounds on the other coordinates 
does not play a role to lowest order in a, so we can assume that the integration bounds of the t-integral are 
independent of x and z below.
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where in the last step we have used the bounds ( 5.1) , ( 5.2) . So we see that in the limit 
Zmax ^  x ,  the variation o f  the term  A surface,IR vanishes, just as the O (a 0) result, which 
we discussed in section 2 .

N ext we turn to  the term  to  be evaluated at the U V  cu to ff z =  e ^  1. The trace o f 
the extrinsic curvature at this surface is K  =  2, independently o f a . The reason for this is 
simple: the holographic energy-m om entum  tensor o f  the dual theory is calculated by the 
fam ous equation [64]14

8n G NTij =  lim ( - K ij +  K Yij -  Yij) . (6 .2)

N ow, taking the trace and ensuring T  =  0 for the C F T  even after a conform al transform a­
tion  is equivalent to  dem anding K  =  2 +  O (e ), independently o f  a. The induced m etric 
and volum e element on this surface read

Yijdxidxj =  -1  { - d t 2 +  d x 2) +  O (a 2), ^ y  =  -1  -  wyg+ (x  -  z)g + (z +  x ) +  O (a 3). (6.3) 
e e 2

Consequently

1 ę ę  t+(e,x) /  i  a 2 \
Asurface,uv =  +  Q n  dx 2 I -2  -  — g+ (x  -  z)g + (z +  x ) +  O (a  ) dz (6.4)

8nG  N J—0 0 JX (e,x) \e 2 J
1 r+ ^

=  Asurface,uv(a =  0) +  dx O  (ea 2) , (6.5)
8n G N J—oc

where in the last step we have made use o f t+ (e ,X ) -  t - (e,X) =  0 (e ) (see (B.21) ) and 
the mean value theorem for definite integrals. As e ^  1, we drop all terms o f order e, 
and consequently we see that up to and including order 0 ( a 2) the divergent (and finite) 
contribution from A surface uv does not change.

7 A ffine param etrisation  o f lightrays and norm alisation

In order to compute the remaining terms, namely the null-surface term, the joint terms 
and the counter terms, we need to discuss the normalisation o f the null normals k  ̂ for the 
lightfronts in question. W ithout loss of generality, we will focus on the future lightfront, 
described by the function t + (z ,x )  in Poincare-coordinates. Generalising section 2.3, the 
null-normal k^ is given by the equation

$ - 1 (a, t, x, z)k^dx^ =  d(t -  t +(z , x )) =  dt -  dzt +(z , x )dz -  dxt +(z, x)dx. (7.1)

Herein, the function $ (a , t, x, z) is meant to allow for general local rescalings which of 
course don ’t affect the orthogonality o f k^ to the lightfront or the condition k^k^ =  0, 
which is equivalent to

(dz t +(z, x ) )2 +  (dxt +(z , x ) )2 =  1. (4.1)

14Compared to [64], we changed the sign of the extrinsic curvature, to conform with our conventions of 
appendix A .
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We now have to plug (7.1) into the equation

k ^ k ,fikV — Kkv, (2.9)

in order to calculate k . Ideally, we would like to be able to set k =  0, as was also the case 
in section 2.3. Calculating the Christoffel symbols and covariant derivative in Poincare- 
coordinates is an easy exercise, and in fact in the special case $  =  1 we find k =  0 as a 
consequence of (4.1) and (7.1) . In the more general case, we obtain (again using (4.1) )

k =  0 ^  dt$ (a , t ,x ,z )  +  dzt + (z ,x )d z$ (a , t, x ,z )  +  dxt + (z, x )d x$ (a , t, x, z ) =  0 (7.2)

Interestingly, there is a large class of general solutions to this equation: if the function 
$ (a , t, x, z) only depends on the coordinates x, z via the expressions dzt + (z , x ), dxt + (z , x), 
i.e. $ (a , t ,x ,z )  =  $  (a, dzt + (z ,x ) ,d xt + (z ,x ) ) ,  then (7.2) is implied to vanish identically 
by (4.1) . So, in a vector-like notation with coordinates t ,x ,z  (in that order), we obtain 
k =  0 for

where the remaining function $ (a , ■, ■) is still up to our choice. Hence, just as in section 2.3, 
we will have a vanishing null-surface term,

The result (7.3) is also important because it only depends on the coordinates via the 
expressions dzt + (z ,x ) ,  dxt + (z ,x ) ,  and as discussed in section 4, these expressions will be 
constant along any lightray that foliates the lightfront. Hence, in Poincare-coordinates, 
the components k^ o f the null normal will be constant along each lightray. Remember that 
it was the projections o f these lightrays to the x, z-plane which the plots in figure 3 show. 
Consequently, even though we do not know the function t + (z ,x )  analytically for too  large 
coordinates o f z, as long as we know where the lightray in question starts at the boundary, 
we can use the approximate solution (4.3) to calculate the components k^ within order 
O (a 2) in the region near the boundary. This will be o f use later in sections 9 and 10.

In section 2.3, we had fixed the overall normalisation o f k^ by demanding k ■ i| 0 =  1
where i is a future pointing vector at the boundary [46, 48, 49].15 In our more general 
setting, we will take i =  =  to be the future pointing vector at the boundary
z =  z =  0. Ensuring k ■ i |z=z=0 =  1 then fixes our choice of $  as a function o f a  and x 
at the boundary. As we know that $  has to be constant along each of the lightrays due 
to (7.3) , $  can then be extended from the boundary into the bulk. So at z =  0, we make

15Of course, the presence of the counter terms (2.6) is designed to make the action reparametrisation 
invariant [48, 57] , but fixing a specific parametrisation is still convenient in practice.

(  1 \=  $  (a ,d zt + ( z ,  x ) , dxt + ( z ,  x )) —dxt + ( z ,x )
y  — dzt + (z ,  x ) J

(7.3)

A surface, Ni — o n  Kd\p~pdx — 0 .
8nG N  AT Ni

(7.4)
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the ansatz

M z= 0 -  $ ( a , x )  - a g+  (x ) , (7.5)
^ - 1  +  2 a 2g+  (x )2 J

where (4.3) was used, and $ ( a ,  x ) =  limz^ 0 $  (a, dzt + (z ,  x ), dxt + ( z ,  x ) ) . 16 A lso, in 
Poincare-coordinates

/  1 \

f 1 +  f  (g+ (x+ ) -  g + ( - x  ^  -  fT (g+ ( - x  ) g +( - x  ) +  # + (x + )g +(x + )) \
^  =  ^  I 0 w  t lz=0 2 (g+( - x  ) +  g+(x+) +  fr  (g+( - x  )g +( - x  ) -  g+(x+)g +(x+))

/
(7.6)

Then, we find 17

1 =  k • *L=0 -  $ (0 ,x )  +  daT (a , x ) |CT=0 +  a2 ( 2 d2T (a , x ) |a=0 -  T (0 ,x ) g + (x )2)  +  0 (a 3),

(7.7)

which can be solved by

$ (a ,x )  w 1 +  a 2g+ (x )2 +  O (a 3) w 1 +  (dxt + (z ,x ) )2|z=0 +  O (a 3), (7.8)

hence up to order O (a 2) we can assume

$  (a, dzt+ (z , x), dxt+(z , x)) w 1 +  (dxt+ (z , x))2 +  O (a3). (7.9)

0

8 T im elik e-n u ll jo ints

The types o f timelike-null joints that we might have to deal with for nonzero a will be 
similar to the joint-terms already studied in section 2.4 for the a =  0 case. At the IR- 
cutoff surface z =  zmax, we will again have a volume element ^/p ~  1 /z max and an integrand 
n ~  log (|k ■ s|) with at most a logarithmic divergence, so these terms will again vanish in 
the limit zmax ^  to.

We are left with the timelike-null joints at the cutoff surface z =  e. For simplicity, we 
will focus on the joint between the cutoff surface and the future lightfront t + (z ,x ) ,  the

16Strictly speaking, because of this limit <h cannot have an arbitrary x-dependence, but should be only a 
function of g'+ (x), <h (a, x) =  <h (a, g+ (x)), because as visible in (7.5) this is how dxt  + (z ,x ) and dzt+ (z ,x ) 
depend on x in this limit. We will see shortly that this is indeed satisfied, at least to second order in a. This 
is not surprising, as g+ (x) ~  t bdy/(x), and at the beginning of section B.3 we will see how some properties 
of at the boundary are only functions of t bdy/(x).

17Note that in this equation, evaluating the product at the boundary z =  0 also implies setting the 
t-coordinate in (7.6) to be t =  t bdy (x), as this is the time-coordinate as a function of x for which the 
lightfront emanates from the boundary.
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calculation for the join t w ith the past lightfront w ould be analogous. As seen in section 2 .4 , 
the jo in t term  takes the form  [46 , 48]:

A joint,1 =  8n ^  J  J l  V 'P ^  (8 .1)

w ith integrand

n j  =  —sign(k ■ s)sign (k ■ i)  log (|k ■ s| ), (2 .12)

w ith the null norm al k^ now generally defined as in ( 7.3) w ith $  as in ( 7.9) , the unit 
norm al vector s o f  the timelike boundary surface (defined to  point out o f  W ) and i, a 
norm alized timelike vector living in the tangent space o f  the timelike boundary. The 
values o f  sign(k ■ s) =  + 1  and sign (k ■ t) =  + 1  had already been calculated in section 2.4 
for the -  =  0 case, and we assume that they stay the same perturbatively. For the 
generic cu to ff surface defined by z =  e w ith (3.14) , we find that its intersection w ith the
lightfront t + ( z ,x ) ,  described accurately by (4.3) near the boundary, can be parametrised
perturbatively in -  and e as

t1 (x ) -  - g + (x )  +  e (1 — - 2g+ (x )2) +  - e 2g+  (x ) , z 1 (x ) -  - e  ^ 1 — 2 - 2g+  (x )2^ +  e2g+  (x ).

(8 .2)

Hence we find the induced volum e element on the join t curve

and the product

-  1  — - g + (x ) (8 .3)

k ■ s j  =  e +  O ( - 2,e 2). (8.4)

Consequently

Ajoint,1 =  /  ( l° gr )  — - log (e )g /+ ( x ^  dx +  O ( - 3). (8.5)

The term  ~  loge(e) is the order O ( - 0) result and the term  g // ( x )d x  vanishes by our
assum ption that the function g + (x )  (and hence its derivative) vanishes at large |x|. W e are 
thus left with

<SAjoi„t,1 =  O ( - 3). (8 .6)

9  N u l l - n u l l  j o i n t s

Our next step will be to  evaluate the joint-term s corresponding to  the null-null joints or 
“creases” . These terms will be interesting, because they have no analogue in the -  =  0 
case: in section 2 , there sim ply were no null-null joints in the lightfronts t ± ( x ,  z ). However, 
as explained in section B .2 , such creases will exist whenever t bdy(x ) =  const.. In figure 3 ,
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8ctxb 2 ( (x B2 +  l ) 3 — ct2)  8a X B 2

J~pdxf = -----------------^ -------------------------- - — 2 d x B = ----------- 1— 3 dxB +  0 (c t3). (9.1)
VP 1 (x B2 +  1) 6 — 4ct2x b 2 (x B2 +  1) 2 1 (x B2 +  1) 3 1 ( )

A n  interesting observation that can be m ade here is that lim xB f p  =  0. I.e. while the 
crease is overall a spacelike curve, as we approach the caustic point at which it starts, 
it approaches a null-ray such that the induced volum e-elem ent at the caustic point van­
ishes. This fact will be very im portant shortly. A nother interesting fact is that also 
limxB yfp =  0 , consequently the overall volum e (or m ore accurately length) o f the
crease is finite:

*jpd x B « - 2~. (9 .2)

Again, this leads us to  a very im portant and general observation: the creases are always 
spacelike curves starting at a caustic, and as explained in section B .2 , we always expect 
the caustics to  be located at z-coord inates o f  order 0 ( 1 / ct). Consequently, it is our generic 
expectation  that the volum e element ^/p (and total volum e, if finite) on the crease will be 
o f  order ct. Again, this will be im portant shortly. B y  [48 , 49], the join t term  takes the form :

•joint =  J j  n j f pdx, (9 .3)

with integrand

n j  =  - sign(k ■ k7)sign(P1 ■ k7) l o ^ 1 |k ■ k7̂  . (9.4)

Herein, k and k7 are the outward-pointing normal one-forms associated with the two light- 
fronts that meet on the null-null joint from its two sides. fc1 is an auxiliary vector, colinear

8For the lightray coming to the crease from the other side, we had introduced the coordinate , which
has to be a function of .
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we p lotted  som e exam ples for different physically interesting choices o f  t bdy(x ) (the null- 
null joints where marked in red), and in section B .3 we explained how these creases can 
be located  perturbatively in ct. The most im portant thing here is to  rem em ber that in 
section B .3 we introduced the coordinate x B on the crease, such that for a lightray that 
m eets the crease at this coord inate (from  one o f its tw o sides), x B is also the value o f 
the x -coord in ate at which that lighray started at the boundary.18 In this sense, x B has 
a double meaning. The em bedding o f  the crease into the Poincare am bient-space is thus 
given by a triplet o f functions tP (x B), x P (x B), z P (x B ), see e.g. (B .14) . Unfortunately, these 
calculations were on ly possible on a case by case basis, so in this section we will on ly present 
explicit results for the three cases t bdy (x ) =  , - + 2 .

C a s e  t bdy( x )  =  1+ x 2 . See the upper left figure in figure 3 . In terms o f  the coordinate 
x B €  [0, + to [ ,  the em bedding tP (x B ), x P (x B ), z P (x B) for this crease is given in (B .14 ) , 
and the induced volum e-elem ent on this curve can then be calculated to  be



to  k f , but oriented such that it points away from  W  and the null-null jo in t. W e have 
sign(k ■ k ') =  —1 and kf  =  —k f , hence sign(fc1 ■ k ') =  + 1.19

W e do  not know t + (z ,  x ) analytically (not even perturbatively) for the regime in which 
the z-coord inate is larger than the z-coord inate (o f order O (1 /a ) )  at which caustics appear, 
and o f course this is exactly  the regime in which the creases will be located. However, as 
seen in section 7 , in Poincare-coordinates the com ponents o f  kf  are constant along each 
lightray, hence

k f  (x P ( x f ), z P ( x f )) =  k f ( x f , 0), (9.5)

which can be evaluated as in ( 7.5) , as we know that (4.3) is valid near the boundary. So it 
will be possible for us to  evaluate (9.4) on  the caustic. W e find

7a 2x f 4
k ■ k' =  —2 x f 2 — 7 a x 1  4 +  O  (a 3) . (9.6)

1 (x f  2 +  1)4 V  ̂ ( )

Let us com m ent on this result for a m om ent: the tw o null-vectors (or one form s) k and k' 
are oriented w ith respect to  the future lightcones in the same way, so their scalar product 
is negative, as said above. In (9 .4) , we see there w ould be a logarithm ic divergence if ever 
k ■ k' =  0. This could happen in tw o ways:

Firstly, when setting a  =  0, kf  in ( 7.5) becom es independent o f x , and hence k =  k'. 
So we might naively expect that k ■ k' ^  k ■ k =  0 as a  ^  0, which is clearly not true 
in (9.6) . W h y? Because (9.6) was evaluated at the null-null joint, where as we know by 
now the z-coord inate will be o f  order O (1 /a )  (at least), and consequently in the expression 
k ■ k' =  g fVkf kV the inverse m etric will contribute such that the overall result has the 
expansion in a  shown in (9.6) , w ith a non-zero term  at order O (a 0). So it is im portant to  
note here that in an expansion in a, the integrand (9.4) will have an order O (a 0) term.

Secondly, from  e.g. figure 3 we see that as we m ove towards the caustic point along 
the worldline o f  the null-null join t, we also expect that k' ^  k, and hence k ■ k' ^  0. W h y 
does this not cause problem s? Because as we had noted above, in this limit the induced 
volum e element on the worldline o f the null-null join t, ^ p , will also vanish like a power 
law, i.e. faster than the divergence o f  the log.

Hence we expect to  find an overall finite result for the null-null join t term . In fact, we 
can now calculate

1 -  1 f +“  1 6 a x f  2 *°g  ( x f )  dxf  (9 7 (
4 iom'  =  s n c N X  (x f 2 + 1) 3 * '■  +  O (a  > = 0 + O (a  >■ (9 -7)

So in this specific and simple case, the term  on the null-null join t vanishes identically. 
However, by the arguments above, we expect generically sjp  O ( a 1) and n j  ~  O (a 0), 
so it looks like the null-null join t terms will contribute at order O (a )  to  the change o f  the 
action under conform al transform ations. W e will indeed see this on our next exam ples.

19This will apply to all three cases studied in this section.
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just as in the previous case. Note that ostensibly we are only studying the creases o f future 
lightfronts, t + (z, x ), but the future lightfront t + (z , x) with boundary slice t bdy(x) is related 
to the past lightfront t _ (z ,x )  with boundary slice —t bdy(x) by simple time-reflection. So 
the two cases t bdy(x) =  y+^2 are intimately related.

The scalar product turns out to be

( x f 2 — 1 ) 2 a 2 ( x f 6 — 4 x f 4 +  3 x f 2 +  1) , , ,
k ■ k' =  — V 1 ’  + — ^ ---------- 1---------^ +  O (a 3), (9.10)

2x f 2 (x f  2 +  1 ) 4 ( ), ( )

and the same overall remarks apply as in the previous case: as expected, the quantity is 
negative and has a term o f order O (a 0). Consequently21

1 r+xh 2a (x f  2 — 1 ) 2 f  (x f  2 — 1 ) 2\ f  3 1 3

A jo“  =  8^ / , H (x f 2 +  1) 3 d x ‘ +  O (a  > =  8^ ™  +  O (a  >■

(9.11)

So we obtain a term o f order O (a ) in the change o f the action under one o f our infinitesimal 
conformal transformations. The existence o f contributions at this order is one o f the main 
results of this paper.

Case t bdy(x) =  1+xx2 . See the lower left corner o f figure 3, the specific embedding 
o f this curve is given in (B .20) . The range o f x f  is x f  €(] — t o ,x h _] U [xH+, + ro [ with 
x H + w V 2 — 1 — 312 (3 V 2  +  4) a 2 and x H_ w —V  — 1 +  312 (3 V  — 4) a 2. In analogy to the 
previous cases, we find

a (x f  2 +  2x f  — 1 ) 2 3
VP =  V (  Ro 1 ) 3 1 +  O (a 3), (9.12)

x f  2 
1 + 1

20± x H are the coordinates of the hyperbolic points, a concept introduced in appendix B.2, see also the 
caption of figure 3 for an explanation.

21Technically, we should integrate from - x H to —e and from e to x H , for some finite but infinitesimal e. 
The integrations for negative and positive x f  would then correspond to integrations along the two arcs of 
the crease. The lightray leaving the boundary at exactly x f  =  0 does not reach either of the arcs of the 
crease (by symmetry under x ^  — x), but goes to the Poincare-horizon, as can be gleaned from figure 3 
(upper right corner). However, in our integrals the limit e ^  0 can be taken and yields the finite result 
presented below.
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C a s e  t bdy (x )  =  1+ ^2 • See the upper right figure in figure 3 , the specific em bedding o f 
this curve is given in (B .16) . The range o f  x f  is x H >  x f  >  —x H w ith x H w  1 — ct2/ 8 .20 
W e find the volum e element

C p  =  r -  +  O (ff3 )- <9 -8)( x f 2 +  1)

Interestingly, the com bined volum e o f both  arcs o f  the null-null joint will hence be

f + XH C p d x f  w ^ ,  (9.9)
J-XH 2



( rxH- r+ o \  i i na

J J \ f p d x f  — 8 (n -  2 )a  +  8 (2 +  3 n )a  =  ~2~, (9 .13)

k  ̂ , =  -  (x f 2 +  2 x f  -  1) 2 (9 14)
k k 2( x f  +  1)2 ( )

a 2 (x f  2 +  2x f  — 1) (x f  6 +  6x f  5 +  13xf  4 — 4 x f  3 — x f  2 +  6x f  +  3) 3
-------------------------------------------------------------------- )4 + O (a  ),8 ( x f 2 +  1 )4

and hence

Ajoint =  - ^ -  (  i XH-U / + ° )  a  ( x f  2+ 2 x f  —1)2 log (  ( x f  2 +f 2 x f  —21)2 )  dxf  +  O (a3 ) 
Joint 8n G N \ L  JxH+ )  (x f  2 +  1)3 %  4 ( x f  +  1)2 )  1 ( )

(9.15)

— — (0.5240 +  1.0468) — 1.5708. (9.16)
8n&N 8n&N

The results in the last line com e from  a numerical integration. Curiously, 0.5240 +  1.0468 — 
1.5708 m ight be a numerical expression o f  n /6  +  n /3  =  n /2 , so just as in the previous case 
it seems that we obtain  a term  at order O (a ) w ith a very nice m athem atical form .

10  C o u n t e r  t e r m s

W e are left w ith calculating the counter-term s which, for the Poincare-case, had already 
been discussed in section 2 .5 . W e would like to  remind the reader that given in the 
form  (2 .6) , these terms w ould have to  be evaluated on the entire null-boundaries (i.e. light- 
fronts) N i. However in section 2.5 we showed, using [57] and in addition R aychaudhuri’s 
equation (A .14 ) , that for our cases these terms are total derivatives, and hence boil down 
to  expressions (2 .22)

± 1  1'+ o
Acounter =  ±, /  f P  log( 16<, |) dx ( 10.1)

8nG N J—oo

to be evaluated on the joints where the null-boundaries start ( — sign) and end (+  sign). 
For the expansion 0, we will make use o f the explicit equation (A.13) presented in ap­
pendix A .2 .22

10.1 Counter terms near boundary

Just as in section 8, we will focus on the intersection between the U V-cutoff surface and the 
future lightfront t + (z ,x ) .  The embedding and induced volume element on this joint-curve

22Specifically, we will use the last expression in this equation, which is formulated in terms of the em­
bedding of the joint-curve into the ambient Poincare-space and the null-vector fcM, without the need to 
apply covariant derivatives to fcM. Of course, all expressions for 6 given in section A.2 are equivalent, but 
especially for large z when we do not know the lightfronts t± (x , z) analytically it is convenient in practice 
to avoid having to act on with covariant derivatives.
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are already given in equations (8.2) and (8.3) . Note that the joint-curve is one-dimensional, 
so its induced metric is a 1 x 1-matrix with p j  =  1 /p ij =  ( y p ) 2. We hence find

9(x) =  e +  O(e2, a 3), ( 10.2)

and

Acounter,1 -  ^  -  ^ +  (x ) M 4 e ) )  dx (10.3)

where again the integral over g+ (x) vanishes. Hence

^A counter,1 =  O (a  ) . (10.4)

10.2 Counter terms at null-null joints

In dealing with the counter-terms induced on the null-null joints, it is important to notice 
that each null-null joint is the end-surface for two types o f lightrays, coming from both 
o f its sides, with normal forms k and k!. Hence on each o f these joints, we will have to 
integrate two terms, one with 9 (of k) and one with 9' (of kr). Again, we will do this on 
a case by case basis for the specific examples where we have identified the locations o f the 
creases in appendix B .3 . The volume-forms y p  can be found in section 9.

Case t bdy (x) =  1+ x2 . From equation (A.13) , we can derive

Let us com m ent on the qualitative features o f  this result: first o f  all, we see that it diverges 
as x f  ^  0. This is to  be expected, because on the worldline o f  the crease, taking the 
coord inate x f  towards zero corresponds to  m oving toward the caustic point at which the 
crease starts. At a caustic point, the expansion o f  lightrays diverges by definition, as 
discussed in appendix B .2 .23 However, this divergence will not cause a divergence o f  the 
integrand o f  (2.22) , as the volum e element f p vanishes in this limit, too . This is similar 
to  how divergences are avoided in the integrand o f the null-null join t terms, as discussed 
in section 9 .

A nother notew orthy aspect o f the above equation is that its leading order is O (1 /a ) .  
Perhaps this should not be surprising to  us. In section 2 .5 , we had seen that in the usual 
Poincare-case w ith a =  0, ,  ~  z. N ow  equation ( 10.5) has to  be evaluated at the location of 

the null-null joint, and as we are not saying for the first tim e, these joints will generically 
start at z-coord inates o f  order O (1 /a ) ,  and from  there on m ove out towards the Poincare- 
horizon. Hence d ~  z ~  1 /a  along the crease was to  be expected. Rem em ber also that in 
the a =  0 case, the intersection between the lightfronts t ±  =  ± z  and the Poincare-horizon 
is also nothing but a caustic when m apped to  global A dS. So it is sensible to  expect a

23The divergence here is towards + to, because as in section 2.5 we have effectively chosen the affine 
parameter to increase when going from the bulk towards the boundary.

,  =  , / =  ( x f 2 +  1 3  -  a  N x f 4 +  3« f 2 -  2  +  O  {a3 ) .
8a x f  2 16 { x f 3 +  x f  ) 2

(10.5)
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divergence in 0 (evaluated at the crease) when taking the limit a  ^  0 , as in this limit the 
crease itself moves towards the Poincare-horizon.

W e are hence left with

Acounter =  2 x f +“  log ( fc ( f 2 1) 3 )  * . f  +  O (a 3) ( 10.6)
8nG w  Jo (x f  2 +  1) 3 V 8a x f  2 J 1

- 1 ( ^  f t

16nG N n a  (2 loH^) “  3 +  log(64V +  O (a  ) ' (10 .7)

i.e. the counter terms provide us w ith contributions at orders a  and even a  lo g (a ).

C a s e  t b d y ( x )  =  . In this case, we find 0 and 0' as given in equations (B .22) , (B .23 ) ,
appendix B .4 . The integration o f both  counter terms (one for 0, one for 0 ') along both  arcs 
o f  the caustic then yields

Acounter «  n a  ^ 2 log ^ ^  -  1 +  log(64 )^  +  O (a 3). (10.8)

C a s e  t bdy ( x )  =  . The expansions 0 and 0' for this case are given in equa­
tions (B .24) , (B .25) , appendix B .4 . W e obtain

Acounter «  8— ^  ( n l o g  ( +  3.39117^ +  O (a 3), (10.9)

where the O (a )  term  com es from  a numerical integration.

11  S u m m a r y  a n d  c o n c lu s i o n

Before summarising the results o f  this paper, let us first look at the results o f  [40] again. 
In this paper, together w ith  N. Miekley, we studied the change o f  com plexity under in­
finitesimal conform al transform ations according to  the volum e proposal ( 1.2) . The basic 
result was

V (S ) =  V L =0 +  a 2V(2) (g ± ) +  O (a3) , w ith V(2) (g ± ) >  0 and V(2) ( - g ± ) =  V(2) (g ± ).
( 11.1)

This im plied that, according to  the volum e proposal, Poincare-A dS is, am ong the Banados 
geom etries, a local m inim um  o f  com plexity, w ith the change o f  com plexity under an in­
finitesimal conform al transform ation being o f  second order in a. It should also be stated 
that V(2) was independent o f  the U V  cu toff e and the infinite volum e V  =  /  dx. The 
feature V(2) ( —g ± ) =  V(2)(g ± )  was particularly interesting, as at lowest order in a, this 
sign change corresponds to  the inverse conform al transform ation. See the appendix o f  [40] 
for a discussion on the operators U±  (a g ± ) that im plem ent the conform al transform ation 
corresponding to  a g ±  in terms o f  field theory expressions, such as the V irasoro generators 
or the field theory energy-m om entum  tensor.

Let us now com pare these results to  the ones obtained in this paper. First o f  all, 
from  the sections 5, 6 , 8 and 10.1, we see that the change o f  the action A  integrated
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over the W dW -p a tch  W  does not receive any terms depending on the U V -cu to ff e or 
V  =  /  dx, i.e. 5A  is finite up to  O ( f 2). This is a similarity between the action proposal 
and the volum e proposal, which holds for generic functions g+  subject to  our assum ptions 
concerning finiteness and falloff stated in section 3 . In fact, for the exam ples o f  ( 5.7) , ( 5.8) , 
these terms d idn ’t lead to  a change o f  action up to  order O ( f 2) at all. A  full evaluation 
o f  the finite contributions to  5A  requires the evaluation o f  join t and counter terms at the 
null-null joints o f  the lightfronts t ± ( x ,  z ). This is very dem anding to  do  in general, however 
for som e simple exam ples o f  functions g ±  (always assuming (3.18) and (3.17) ) we were able 
to  calculate the necessary terms in sections 9 and 10.2. Taking these results together now 
(and including the correct terms for the past lighfronts t - ( z ,x ) ,  to o ), we find

5A  (g+ =  t/g) =  P g n log (I ) +  S T O N (3 — log(64 )) +  O ( fS ) ' (1L2)

5A  ( g+ =  )  =  4 T 0 N log ( I )  +  S T O N (3 — log(64 )) +  O (| S )' (1 L3)

5A  ( g+ =  r + G )  w P p log ( I )  -  P o N 3-64074 +  O (| 3 ). (1L 4)

So again, the change in com plexity is invariant under inversion o f  the conform al transfor­
m ation, which is a natural consequence o f tim e-reflection invariance o f  A dS -space.24

O f course, the elephant in the room  is that 5A  contains terms o f  orders i  and even 
i  l o g ( i ) .  This is very hard to  interpret in terms o f  what a physical definition o f  com plexity 
might look like on the field theory side, see figure 5 . C om plexity is meant to  provide a 
distance measure between states, and we are essentially working with the triangle spanned 
by the groundstate |0), the state after an infinitesimal conform al transform ation U ( i )  |0), 
and the im plicit reference state |R). As the change o f com plexity caused by U ( i )  and 
U (—i )  w U ( i ) -1  is the same, it seems in a naive geom etrical picture that the line o f states 
U ( i )  |0) is perpendicular to  the line between |0) and |R), so the three states under consid­
eration form  a right triangle. One o f the sides o f  this triangle will also be o f  infinitesimal 
length, which we call C (|0), U ( i )  |0)) =  b and assume b a  i .  I f the m etric defined by the 
com plexity functional was a flat m etric, then we could  use the Pythagorean theorem  to  
solve for the change o f  com plexity and find 5C a  i 2. Even if a R iem annian m etric defined 
by the com plexity functional on the H ilbert space is curved, we might still expect a similar 
result. This would qualitatively correspond to  the result ( 11.1) o f  the volum e proposal.

Suppose now we had obtained on ly the terms o f order O ( i )  in the action proposal. 
Those could  have a very simple interpretation if we assume that the distance measure 
defined on the Hilbert space by com plexity is m ore akin to  a Manhattan-metric, where 
instead o f  a2 +  b2 =  c2 the distance when m oving along tw o perpendicular axes is defined 
as |a| +  |b| =  |c|. This could  naturally lead to  5C a  i  in our naive geom etrical picture.

24 Another curious fact is that ( 3 - log(64))n ~  -3.64074, so it seems that the change of complexity induced 
by the conformal transformations g+ =  1+x2 and g+ =  1+x2 is identical subject to the assumptions (3.18) 
and (3.17) . See also (5.7) and (5.8) . This equivalence was already a feature of the results for the volume 
proposal [40], but we don't currently understand why this fact should hold generally for any holographic 
complexity proposal.
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A  change o f  order bC a  a  log (a ) however would seem very hard to  interpret in terms o f 
a plausible distance measure on the H ilbert space, especially as it would mean bC <  0 to 
lowest order, w ith an initial decrease w ith  infinite negative slope.25 A bove we have m ade 
the assum ption that the relative com plexity between |0) and U (a ) |0), C (|0), U (a ) |0)) =  b, 
is o f  order a . B y  the relation between operator-com plexity  and (relative) com plexity o f 
states outlined in section 1, we also have C (U (a )) >  b. Furtherm ore, w ith the notation  o f 
figure 5 , the triangle inequality would im ply b >  |a — c|. W ith  |a — c| w |£C| and our results 
from  above, for a  ^  0 this would mean

C (U (a )) >  |a log(a)| ■ K (11.5)

w ith some positive finite constant K. N ote that for small a , a K ' <  |a log(a)|K  for any 
positive constants K, K ', as lim CT̂ 0 da ( —a  lo g (a ))  =  + r o . Hence ( 11.5) and our results 
im ply the follow ing statement:

A n y definition o f field-theory complexity (for both operators and states as dis­

cussed in section 1) that utilises a unique reference state |R), satisfies the trian­

gle inequality and assigns to any operator o f the form  U (a ) =  1 +  a V  +  O (a 2) 26 
a complexity o f the form  C (U (a )) =  a K ' +  O (a 2) (for sufficiently small a  and 

a finite constant K ' depending on  V ) can not possibly be dual to the CA pro­

posal ( 1.3) in AdS3/C F T 2 with the counter-terms chosen as in (2.6) .

The existence o f the O (a  lo g (a ))  terms is the central result o f  this paper: despite the 
fact that we were only able to  explicitly com pute them  for three concrete exam ples, we have 
provided arguments throughout the paper that these terms should generally be expected  
to  contribute with the orders that they do. Let us repeat: for non-constant t bdy(x ), we 
generically expect caustics and creases to  emerge in the lightfronts bounding the W d W - 
patch [73]. The focusing theorem  implies that the caustics will have z-coord inates o f

25A somewhat similar behaviour of complexity decrease with infinite slope was observed in [72] in the 
time evolution of complexity in black hole backgrounds.

26See e.g. the appendices of [40] and [45] for how to write the generators of conformal transformations in 
this form.
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order O (1 /a )  (section B .2 ) , and consequently the creases starting there will too . So the 
(cod im ension-2) creases, on which jo in t- and counter terms will have to  be evaluated, 
will have induced volum e elements y p  ~  a due to  the factors o f  z induced by the ambient 
m etric (2.1) . The integrands to  be evaluated on these creases will have the form  y p l o g ( . ..) ,  
see sections 9 and 10. As argued in section 9 , the term  k ■ k' will be o f order O (a 0) and 
hence lead to  a term  5 A  ~  a. However, the expansion 9 o f  the lightfronts evaluated at the 
crease will diverge as 1 /a .  This gives rise to  the a  log(a )-term s, however as explained in 
section 10, this divergence has to  be expected: in global A dS-coordinates the intersection 
between the lightfront and the Poincare-horizon is also just a caustic point, thus 9 diverges 
when approaching it. Hence, w ith our present hindsight and understanding o f  the topic, 
the terms o f  order a and a log (a ) seem alm ost inevitable.

W e leave a further discussion o f  what possible im plications this has for the C A - 
con jecture (or the terms required in (2.3) - (2.6) ) and proposed field-theory definitions 
o f  com plexity to  the future. In any case, our results show a significant qualitative 
difference between volum e proposal ( 1.2) , action proposal ( 1.3) , and also the volum e 
2.0 proposal ( 1.4) , for which our results im plied 5C =  O (a 3) for the g+  o f  (5.7) 
and (5.8) . O ther papers in which qualitative differences between these proposals where 
found are [36- 39, 74, 75].27 W hich  o f the proposals is the “better” one according to  these 
com parisons still seems to  be an open question, to  which we hope to  have m ade a contri­
bution  with this paper.

D espite there being already considerable theoretical knowledge concerning the geom ­
etry o f  lightfronts (see the discussion in appendix B ) , some o f  our ideas outlined there 
m ay be helpful in practice for dealing with W dW -patches in generic cases, i.e. when the 
background-spacetim e is not translation invariant or when the boundary-conditions on the 
lightfront are nontrivial. This may be useful for further investigations along the lines o f  [77] 
or [78, 79] , although in [78] it was shown that the caustics w ould not play a role.
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A  E x p l i c i t  e x p r e s s io n s  f o r  e x t r in s i c  c u r v a t u r e  a n d  g e o d e s i c  e x p a n s i o n

In this appendix we will collect a num ber o f  explicit expressions useful in calculating 
geom etrical quantities such as extrinsic curvatures or null expansions.

27The paper [75] dealt with complexity of AdS/BCFT models, a topic also studied in [76].
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A .1  C od im en sion -1  extrinsic curvature

W e begin w ith a codim ension-1 surface £ ,  which is either timelike or spacelike, i.e. which 
has a nondegenerate induced m etric o f  definite sign. Then, there exists a norm al vector 
which can be norm alised so that

n p n p =  ± 1, (A .1)

where np is spacelike for timelike £  and vice versa. One can then define a degenerate 
tensor

Ypv =  Qpv T  npn v . (A .2)

which can be used to  project quantities into the tangent-space o f £  after raising one o f  its 
indices. Alternatively, for coordinates X p in the spacetim e m anifold and coordinates y i in 
the worldsheet o f £ ,  we can define the induced metric on  £ ,

d X p d X  v
Yij =  Qpv~ d t  ~ d j  (A .3)

The extrinsic curvature tensor or second fundamental form, in y*-coordinates, is then given 
by [80]28

28There is an overall ambiguity of sign choice in the definition of the extrinsic curvature, which is related 
to the ambiguity of choosing the orientation of nX. For the timelike Gibbons-Hawking type boundary terms, 
we chose the normal vector to be pointing outward of W  [53].
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d X p d X ” (  d2X p „ d X a d X P \ /h

ij =  W  pnv =  —n H  d yid yj +  ~ d j )  , ( ^

and its trace is

K  =  Yij K i j . (A .5)

A .2  C o d im e n s io n -2  e x t r in s ic  c u r v a tu r e s  a n d  n u ll e x p a n s io n

W e will now turn to  a codim ension-2 surface £ ,  which we assume to  be spacelike. One can 
then choose tw o norm al vectors, one timelike and one spacelike, subject to  the norm alisation 
and orthogonality conditions

nj1’ n (1’p =  —1, n p ’ n (2’p =  1, n p )n (2)p =  0 . (A .6)

Similar to  the previous subsection, we can then introduce the pro jector

pp v =  g p v + n 5t1’ n V1’ — n P2’ n V2’ (A .7)

and the induced m etric

d X p d X v , .  o,
Pij =  Qp V dyi dyj . (A .8)



For each norm al direction, it is now possible to  define an extrinsic curvature tensor (or 
second fundam ental form ) by

k (i) =  d X "  d X V v  , ,« )  =  - ,r>f 2̂ X 1  +  r "  d X a  d X N  (a .9 )
dy* dyj  "  v "  \dy*dyj  a !  dy* d y j  ’

and

K (i) =  pij K j .  (A .10)

A nother interesting aspect o f  the geom etry o f spacelike codim ension-2 surfaces are the 
properties o f the lightfronts em anating from  them . To understand this better, we will 
collect a few m ore equations, follow ing m ostly [56] (see also [81]). In general, there will be 
four lightfronts em anating from  a codim ension-2 spacelike surface, tw o towards the future 
and tw o towards the past. Assum e that we pick one o f  them , and its null-norm al one-form  
is given by k ", just as in section 2 .3 . W e introduce an auxiliary null-vector I" such that

1 %  =  0 ,1 "k " =  - 1. (A .11)

So although the null vectors l" , k " cannot be norm alised individually, they are normalised 
w ith respect to  each other. The tensor o f  (A .7 ) then takes the form

P"V =  g"V +  ^"kV +  k"^V) (A .12)

which easily follows by rewriting the null-normals as linear com binations o f  the tim e- and 
spacelike normals. A n  im portant geom etrical quantity o f the lightfront in question is its 
expansion 0. It is intuitively appealing, because it measures the norm alised change o f  the 
volum e element .- p o f  £  as we make a step dA o f  affine param eter away from  the surface 
along the light rays:

0 =  - = ^ - 5 .  (2.18)
v  p

It can be shown [56, 82] that this is sim ply the trace o f  the extrinsic curvature with respect 
to  the null vector A":

0 =  k  ( )̂ =  d X "  d X V v  a = _  k j  ( X X "  +  r "  d X a  d X !  j  w  13)
P dy* d y j V "  " p +  9 y ‘  Syi )  ' (

The overall freedom  o f  rescaling k"  hereby corresponds to  the freedom  o f  rescaling the 
affine param eter A in (2.18) , so 0 transform s under these rescalings in the expected  way.

A .3  T h e  R a y c h a u d h u r i  e q u a t io n

In the previous subsection, we saw how the expansion 0 o f  a lightfront originating from  a 
spacelike codim ension-2 surface is determ ined, at this surface, by its geom etry and em bed­
ding into the ambient space. Now, we would like to  understand how this expansion will 
evolve along the lightfront, as a function o f the affine param eter o f  the lightrays. To this 
end, we introduce the im portant Raychaudhuri equation. A  general overview is given for
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Figure 6 . The solid (red) line is the equal time slice t bdy(x) on the boundary, and the dotted 
(green) lines are the ligthrays emanating from this slice, forming the lightfront that is the boundary 
of W  to the future. The dashed (blue) line is the intersection of the lightfront with the bulk 
equal-time slice at t =  ti. Two lightcones are sketched with solid (blue) lines.

exam ple in [83], but here we will only need the case relevant for null-geodesics in 2 +  1- 
dim ensions, where shear and twist autom atically vanish. Assum ing Einsteins equations, 
we are then left with

e =  - e 2 -  r r , (A .14)

where 0 is the expansion o f  a fam ily o f  lightrays with tangent vectors 7 ^ and 0 is the 
derivative o f  the expansion with respect to  the affine parameter.

B  D e t a i l s  o n  W d W - p a t c h e s  in  A d S 3

B .1  N u m e r ic a l  m e t h o d

In this section, we present our numerical m ethod for finding (physical) solutions to  ( 4 .1) . A  
basic illustration for this is given in figure 6 . W e assume that we have given the boundary 
slice t bdy(x ), and we want to  calculate the intersection o f the lightfront t + ( z ,x )  w ith a 
bulk equal-tim e slice at t =  t i , as a function z =  z t l (x ).

A  point inside o f W  by definition is not in causal contact w ith any point on the 
boundary slice t =  t bdy (x ), and hence is outside o f any lightcone em anating from  such 
a point. Consequently, the function  z tl (x ), i.e. the intersection o f  the lightfront w ith the 
bulk slice t =  t i , will be the enveloping function o f  the circular intersections o f the bulk 
slice t =  ti w ith all the lightcones em anating from  a point on the boundary slice, see 
figure 7. H ow could  we derive this enveloping function? Again, the explicit conform al 
flatness o f  (2.1) is o f help here, because it means that in t, z, x-coordinates, the lightcones 
will just be straight undeform ed cones w ith 90° opening angle. The intersection between 
any o f  the lightcones w ith the t =  t 1 bulk slice ( t1 >  t0 +  O (a ))  will hence be a (sem i)-circle 
w ith center at coordinate x  =  x c , z =  0 and radius

r ( t i ,  x c) =  ti -  t bdy(x c). (B .1)
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Figure 7. Construction of the enveloping function z tl (x) as in figure 6 for t bdy (x) =  2+Xjx2 and 
t 1 =  1 (left) and t 1 =  2.5 (right). We see that z i(x )  (left) is a smooth function while z 2.5(x) (right) 
has developed a kink. This indicates the presence of a caustic point on the lightfront somewhere 
between t 1 =  1 and t 1 =  2.5.

This defines the fam ily o f  circles shown in figure 7 . For a fixed center x c , the functional 
form  o f these sem i-circles will then be

f  ( t i , x c ,x )  =  V - ( x  -  x c) 2 +  r ( t i , x c) 2. (B .2)

This defines a fictitious three dim ensional surface, shown in figure 8 , which is generated 
by smearing out the circles o f  figure 7 along the x c axis. The silhouette o f  this surface, 
when viewed along the x c axis, is precisely given by the enveloping function z tl (x ) that 
we are trying to  calculate. This means that for any given x  and t 1, we need to  m axim ize 
f  ( t1, x c , x ) as a function  o f  x c in order to  obtain  the value z t l (x ). This will in general have 
to  be done numerically, and doing so on a grid o f points in the x , t 1-plane will give us, by 
numerical interpolation, the function t + (z ,  x ). It can then be checked that these numerical 
solutions will indeed, within numerical errors, satisfy equation ( 4.1) . D rawing the contours 
along which the quantities dzt + ( z ,x )  and dxt + ( z ,x )  are constant does, as expected  due 
to  the discussion in section 4 , yield (identical) straight lines which are the projections to  
the z ,x -p la n e  o f  the light-rays which foliate the lightfront, see figure 3 .

In this context it has to  be pointed out that for A dS 3, causal wedges and entanglement 
wedges for intervals on the boundary are identical [84 , 85] . In other words, the half-circles 
that we dealt w ith above, which were o f interest to  us because they are intersections o f 
lightcones with the equal tim e slice t =  t 1, were also geodesics describing the entanglement 
entropy o f  a given boundary interval via the Ryu-Takayanagi formula. There is hence an 
overlap between our calculations above and results concerning hole-ography and differential 
entropy [86 , 87], see especially [88 , 89] . In the nom enclature o f [88] , the function  z tl (x ) 
was the outer envelope o f  a given set o f  intervals that can be derived from  t bdy(x ) and t 1. 
A lso, the swallow-tail like feature shown in figure 6b o f [89] is related to  the em ergence o f  a 
caustic and null-null jo in t in the case t bdy (x ) =  1 + 2  which we study throughout this paper, 
see e.g. figure 3 , upper left corner. W e leave it to  the future to  study in m ore generality the 
possible relations between differential entropy and W dW -patches, respectively com plexity.
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Figure 8 . Fictitious three-dimensional bodies. When viewed along the x c-axis, the silhouette of 
these bodies (shown in gray) corresponds to the functions z tl (x) shown in figure 7.

B .2  I d e n t i fy in g  ca u s t ic s

As visible in figure 3 , for generic functions t bdy(x ) the lightfronts will, at finite z (for finite 
a), develop caustics from  which null-null joints emerge. This is a well known consequence 
o f  the focusing theorem, which can be derived by integrating the Raychaudhuri equa­
tion  (A .14 ) , either in vacuum  or assuming the null energy condition  (see e.g. [73, 83 , 90]). 
As we are working with vacuum -solutions in which =  0 , it is easy to  solve ( A .14) and 
prove that generically, whenever the expansion 0 is negative near the boundary, it will d i­
verge to  minus infinity after a finite (positive) affine param eter, signaling that the lightrays 
have met a caustic, i.e. that they have been focused to  a point.

In the rem ainder o f  this section, instead o f  integrating equation ( A .14 ) , we will show 
how the em ergence o f  such caustics can be predicted directly from  the shape o f  the boundary 
slice t bdy(x ). As can be seen from  figure 3 , the shape o f  t bdy(x ) determ ines in which 
direction the lightrays em anating from  the boundary tim eslice initially go, before at some 
point lightrays start to  collide form ing caustics and null-null joints. D epending on the 
curvature o f  t bdy(x ), these lightrays can be initially focused or defocused A  caustic is a 
point where neighbouring lightrays first collide, and hence locally looks like the tip o f a 
past lightcone. The past lightcone o f  the caustic point at bulk coordinates tc, x c,z c will 
intersect the boundary in a hyperbolic curve o f  the form

h (x ) =  tc — / z 2  +  (x  — x c) 2. (B .3)

Consequently, in order to  find the (infinitesim al) section o f  t bdy(x ) which focuses lightrays 
such that they meet in a caustic, we need to  find the point x  at which t bdy(x ) locally looks 
like a hyperbola (B .3 ) . Given the num ber o f  free parameters in (B .3 ) , fitting a hyperbola 
to  t bdy (x ) at any point x  is always possible to  second order in a Taylor expansion around 
x , but nontrivial to  third or higher order. The hyperbola  (B .3 ) satisfies the characteristic
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third order differential equation

h /(x )h " (x)2 — 1 h '"(x ) =  0 (B 4)
—1 +  h/ (x )2 3 h (X) 0, (B .4)

so any boundary point x H at which t bdy(x) satisfies

) 2 — 3 tbdy /// (x h  ) = 0’ tbdy//(xH ) <  0 (b .5)

will generate a caustic in t + (z ,x )  at some point in the bulk.29 We will call such a point
x H a hyperbolic point. From the fitting o f the parameters o f the hyperbola (B.3) to t bdy (x)
at x h , we can then also read off the location o f the caustic in the bulk.

, t bdy/(xH ) ( —1 +  t bdy/(xH }2) ( B6 )
x  =  xH +   ■ <B 6 )

z =  (1 — t bdy/(xH )2) 3/2 (B 7)
c —t bdy //(x H) , ( . )

t =  t bdy(xH ) +  —1 +  tbdy ' (xH  )2 
c (xH ) +  t bdy » ( x n )

(B.8)

The most im portant lesson from  this is that for t bdy(x ) ~  O (a ), the z-coord inate o f  the 
caustic will generically be o f  order O (1 /a ) .

B .3  I d e n t i fy in g  n u ll-n u ll jo in t s  o r  “ c r e a s e s ”

In this section we will explain how to  analytically calculate the position  o f the null-null 
joints which where depicted  as dashed red lines in figure 3 . B y  definition, these null-null 
joints are spacelike curves in the lightfront on which tw o lightrays foliating the lightfront 
will meet com ing from  different directions (see [73] for a related discussion). W e will refer to 
the x -coordinates from  which these tw o light-rays em anate on the boundary as x f  and x f , 
respectively. See figure 9 . As is clear by the conform al flatness o f the Poincare-m etric ( 2 .1) , 
lightrays in this spacetim e will be straight lines in the space spanned by the coordinates 
t, x , z , and their projections to  the x, z -plane will also be straight lines

x l / 2(z) =  s l/2 z +  x f /2 (B .9)

w ith slopes s 1/ 2. These slopes are entirely determ ined by the function t bdy(x ), and read

 ̂ _  t bdy/( x f )
si =  , ■

y  1 — t bdy/ ( x f  ) 2
(B.10)

This is easy to derive: it is clear that the slopes s* should be locally determined by the choice 
o f the boundary slice, i.e. that they will be a function of t bdy (x f ) and its derivatives only.

29Points with t bdy/;(xH) >  0 can be fitted by a hyperbola that is opened upwards, and hence generate a 
caustic in the past lightfront t - (z ,x ). Also, we can point out that to first order in a, equation (B.5) boils 
down to t bdy'" (x H) =  0.
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Figure 9. This figure is essentially a reproduction of the figure in the top right corner of figure 3, 
which depicts the situation for t bdy(x) =  f + f 1. The lines are projections of the null rays forming 
the lightfront down to the x, z-plane, and should hence be perfectly straight. Any deviation from 
straight line behaviour is due to numerical inaccuracies. The red point is the caustic and the orange 
point is the hyperbolic point, both as defined in section B .2. The change compared to figure 3 is 
that we have plotted fewer lightrays overall, and highlighted two specific lightrays emanating from 
the boundary points x f  and x f  as green dashed lines. These two lightrays meet at the same point 
with coordinates (xP, z P) of the null-null joint.

For t bdy(x) =  const., we find s 1 =  0, and for the boosted case t bdy(x) =  const1x +  const2 
(|const1| <  1) it is easy to derive (B.10) explicitly from the analytical solution o f (4.1) which 
can be found in this case. Now, for general smooth t bdy(x), if we zoom in close enough 
around any x f , the setup should be well approximated by t bdy(x) =  const1x +  const2, and 
hence (B.10) is the general result.

We will now assume that these two straight lines (projections o f the two lightrays to 
the x, z-plane) cross in a point with coordinates (x P , zP ) on the x, z-plane. This implies 
the set o f equations

(B .11)

which has the solution

(B.12)

For the point at (x P , zP ) to truly lie on the crease, it is not enough that the projections of 
the lightrays to the x, z-plane meet each other at this point, the lightrays themselves also
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need to have the same t-coordinate tP there. In the three-dimensional coordinate space 
spanned by t, x, z the slope o f the lightrays is 1, i.e. A t ^ A x 2 +  A z 2, and this yields the 
additional equation

tP =  t bdy( x f ) +  z P s j  1 +  s2 =  t bdy ( x f ) +  z P s j  1 +  s2. (B .13)

This equation is im portant because if we could  solve it, then for any given x f  it would 
tell us the coord inate x f  from  which a second lightray would have to  emerge from  the 
boundary in order to  intercept the ray em anating from  x f  at the crease.30 Unfortunately, 
for generic t bdy(x ) this equation cannot be solved analytically. It is possible to  treat (B .13) 
perturbatively in a , but this is best done on a case by basis for t bdy(x ). So in the following 
we will study a few specific exam ples which are o f  relevance in this paper.

C a s e  t bdy (x )  =  1+ x2 . This was p lotted  in the upper left corner o f figure 3 . B y  sym ­
metry, it is obvious that the solution to  (B .13 ) is x f  =  —x f . Consequently, the crease can 
be param etrized as

Taking the limit x f  ^  0 =  x H reproduces the coordinates o f the caustic point which we 
could also identify with the methods o f section B .2 . So as expected we see that the creases 
will always emerge at a caustic point, which will have a z-coordinate o f order 1/ ct. It 
would also be possible to invert the expression zP (x f ) in (B.14) perturbatively in ct and 
then calculate tP (zP) along the caustic perturbatively in ct, however for most applications 
the expressions in (B.14) are sufficient, i.e. we can view the crease as a spacelike curve 
parametrised by a coordinate x f  € [0, +ro[.

Case t bdy (x) =  1+ -2  . This was plotted in the upper right corner o f figure 3. This 
case is related to the previous one in that the creases o f the past lightfront o f the case 
t bdy(x) =  ^  are related to the creases of the future lightfront o f this case by simple 
time inversion. There will now be two arc-shaped creases, one in the region x >  0 and, by 
symmetry, one in the region x <  0. We will only focus on the case x >  0 now. O f course 
x f  =  —x f  would still be a solution to (B.13) , but one that would imply zP <  0. There 
are however also nontrivial solutions for the physical regime zP >  0 which can be found 
perturbatively in ct. Assuming x f  >  x H >  x f  >  0 with x H w 1 — 8̂- being the hyperbolic 
point as defined in section B .2 , we find

1 CT2x f
x f  =  x f  — ( f 2 + \ )2 +  0 (ct3). (B .15)x 1 x 1B 2 +  1

0An additional physical assumption z P > 0 has to be imposed.
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We then find

(B.16)

where the crease is parametrised by x H >  x f  >  0. In fact, (B.16) parametrises both arcs 
o f the caustic if we allow for x H >  x f  >  —x H. Curiously, we see that at the very lowest 
order in a, the embedding functions in (B.16) satisfy the relation a z P w x P2/2 , so the 
crease plotted in figure 3 (upper right corner) is approximately a parabolic arc.

C a s e  t bdy ( x )  =  i + X  . This was p lotted  in the lower left corner o f  figure 3 . W e now 
see that there are tw o asym m etric creases, one in the x  >  0 region, and one in the x  <  0 
region. Correspondingly, there are also tw o hyperbolic points a/2 — 1 — A  (3 a/2 +  4) a 2 & 
x H + >  0 >  x H— & —a/2 — 1 +  32 (3a /2  — 4) a 2. Assum ing x H+ >  x f  >  x H — and 
x B e] — <xi,xH—] U [xH+, + ro [ , the perturbative solution o f (B .13) is

(B.17)

Consequently

(B.18)

(B.19)

(B.20)

where the two arcs o f the crease are parametrised by x f  e] — to, x H - ] and x f  e  [xH+, + to[. 
Again, as in the previous case, we can note that at the very lowest order in a, the embedding 
functions in (B.20) satisfy the relation a z P w x P2, so the two parts o f the crease plotted 
in figure 3 (lower left corner) are approximately arcs of the same parabola.

B .4  Auxiliary results

Results for section 5 . Here, we write down the analogue o f the perturbative re­
sults (4.3) , (4.4) in tilded coordinates:

t  (x, X) = ± x + 2 (—Xg+ (x — X) + Xg+ (x + X) — g+(x — X) — g+(x + X) + 2g+(x)) 

± a2 ( 2zg+(x)g/((x  — X) — 4Xg+(x — X)g+(x — X) — 4zg+(x + X)g+(x — X) 

+ 2 X£+(x)£+(x + X) — 4 Xg+(x — X)g+ (x + X) — 4 Xg+(x + % +  (x + X)
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P B ( x f 2 +  1) 2 a  ( x f 2 +  3) p  B B 1 a 2x f
tP ( x f ) & —  ----------- -------------- ) ,  x p  ( x f ) & x f  +  - ^ ---------------1— 2 ,

( 1 ) 2a x f 2 2 ( x f 2 +  1) , ( 1 ) 1 x f  (x f  2 +  1)2 ,

zp  (x f  ̂  ( x f  2 +  1)2 _  a  ( x f  4 +  2 x f  2 +  3) 
z ( x i )  & 2a x f 2 2 (x f  2 +  1)2 ,

1   x f  x f  +  1
x f  =  — a  x f  + 1 2 +  O (a 3).

2 x f  +  1 2 (x f  2 +  1)2 ( )

tP (x f ^  ( x f 2 +  1 )2 a  ( x f 2 — 4 x f  +  1)
1 a (x f  +  1 )2 4 ( x f 2 +  1) ,

p  ( b . x f  2 +  1 , a 2( x f 2 — 1)
x  (x-| ) &  5---------- 1 K ,

x i  +  1 4 ( x f 2 +  1)

P ( B) (x B2 +  1 )2 a  (x B4 +  4x f  2 — 4 x f  +  3)

z (x i  ) & a ( x f  +  1) 2 4 (x B2 +  1) 2 ,



- 1  z# + (x ) 2 -  8  (x  -  ^ )2 - 3  z# + ( x + z ) 2 + 1  z# + (x  -  % + ( x + z)

- 1  g + ( x - % + (x ) + 2  g + ( x + % + (x ) + 1  g + (x )g + ( x - z )  -  4 # + (x  -  z )# + (x  -  z)

- 1  g + ( x + % + (x -  z) -  2  g + (x ) g + ( x + z ) + 1  g + (x  -  % + ( x + z)

+ 1  g + ( x + % + ( x + z ) -  4  (x  -  % + (x  -  z ) + 4  ̂ 2g + ( x + % + (x -  z)

-  4 Z2g+ (x -  % +  (x +  z)  +  4 Z2g+  (x  +  Z )g + (x  +  Z ))  +  O (a 3). (B .21)

R e s u lt s  fo r  s e c t io n  1 0 .2 . Some useful expressions o f  interest in section 10.2 are

,  =  W 2 +  1>3 2 (B .22)
2a  ( x f 2 -  1 )2

a  ( - x f 14 -  3 x f 12 -  3 5 x f 10 -  2 1 x f 8 +  8 5 x f 6 -  6 5 x f 4 +  7 x f 2 +  1) 3^
+----------------------------------------------------------- g------------------ó----------------------------------------+ O (a  )

2 (x f 2 -  1)5 (x f  2 +  1)2 ( )

e/ =  (x f 2  +  1) 3 2 (B .23)
2a x f  2 (x f  2 -  1)

a  ( - 3 x f 14 +  7 x f 12 -  2 9 x f 10 -  1 1 x f8 +  6 7 x f 6 -  8 7 x f 4 +  2 1 x f 2 +  3) 3
+------------------------------------------------------------- g-------------------- ó + O (a  )

2 (x f 2 -  1)5 (x f 2 +  1)2

for the case t bdy (x ) =  1+ 3- and

(x f  2 +  -,)3
e = ------- 2 +  © ( a 1) (B .24)

a  ( x f 2 +  2x f  -  1 )2

e/ = _________2 (x f  2 +  4  3________2 +  O ( a ‘ )
a ( x f  +  1) 2 ( x f 2 +  2x f  -  1)

(B .25)

for the case t bdy(x ) =  1 . Here, although the O ( a 1)-term s might in principle be relevant, 
we have not explicitly given them  for the sake o f  brevity.

O p e n  A c c e s s .  This article is distributed under the terms o f  the Creative Com m ons 
A ttribution  License ( C C -B Y  4.0) , which perm its any use, distribution and reproduction  in 
any m edium , provided the original author(s) and source are credited.
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