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The Natural Operators Similar to the
Twisted Courant Bracket One

W�lodzimierz M. Mikulski

Abstract. Given natural numbers m ≥ 3 and p ≥ 3, all Mfm-natural op-
erators AH sending p-forms H ∈ Ωp(M) on m-manifolds M into bilinear
operators AH : (X (M) ⊕ Ω1(M))×(X (M) ⊕ Ω1(M)) → X (M) ⊕ Ω1(M)
transforming pairs of couples of vector fields and 1-forms on M into cou-
ples of vector fields and 1-forms on M are founded. If m ≥ 3 and p ≥ 3,
then that any (similar as above) Mfm-natural operator A which is de-
fined only for closed p-forms H can be extended uniquely to the one A
which is defined for all p-forms H is observed. If p = 3 and m ≥ 3, all
Mfm-natural operators A (as above) such that AH satisfies the Leib-
niz rule for all closed 3-forms H on m-manifolds M are extracted. The
twisted Courant bracket [−, −]H for all closed 3-forms H on m-manifolds
M gives the most important example of such Mfm-natural operator A.
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1. Introduction

The “doubled” tangent bundle T ⊕ T ∗ over m-dimensional manifolds (m-
manifolds) is full of interest because it has the natural inner product, and the
Courant bracket, see [1]. Besides, generalized complex structures are defined
on T ⊕ T ∗, generalizing both (usual) complex and symplectic structures, see
e.g. [3,4].

In Sect. 2, the description from [2] of all Mfm-natural bilinear operators

A : (X (M) ⊕ Ω1(M)) × (X (M) ⊕ Ω1(M)) → X (M) ⊕ Ω1(M),

transforming pairs of couples of vector fields and 1-forms on m-manifolds M
into couples of vector fields and 1-forms on M will be shortly cited. The most
important example of such Mfm-natural bilinear operator A is given by the
Courant bracket [−,−]C , see Example 2.2. This Courant bracket was used in
[1] to define the concept of Dirac structures being hybrid of both symplectic
and Poisson structures.
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In Sect. 2 we also deduce that the “trivial” Lie algebroid (TM ⊕
T ∗M, 0, 0) is the only Mfm-natural Lie algebroid (EM, [[−,−]], a) with EM
:= TM ⊕ T ∗M .

In Sect. 3, using essentially the results from [2], if m ≥ 3 and p ≥ 3,
we find all Mfm-natural operators A sending p-forms H ∈ Ωp(M) on m-
manifolds M into bilinear maps

AH : (X (M) ⊕ Ω1(M)) × (X (M) ⊕ Ω1(M)) → X (M) ⊕ Ω1(M).

The most important example of such A is given by the H-twisted Courant
bracket [−,−]H for all 3-forms H on m-manifolds M , see Example 3.2. Prop-
erties of [−,−]H (as the Leibniz rule for closed 3-forms H) were used in [7,8]
to define the concept of exact Courant algebroid.

In Sect. 4, we observe that if m ≥ 3 and p ≥ 3, then any (similar as
above) Mfm-natural operator A which is defined only for closed p-forms H
can be extended uniquely to the one A which is defined for all p-forms H.

In Sect. 5, if p = 3 we extract all Mfm-natural operators A as above
satisfying the Leibniz rule

AH(ρ1, AH(ρ2, ρ3)) = AH(AH(ρ1, ρ2), ρ3) + AH(ρ2, AH(ρ1, ρ3)),

for any closed H ∈ Ω3(M), ρ1, ρ2, ρ3 ∈ X (M) ⊕ Ω1(M) and M ∈ obj(Mfm).
From now on, (xi) (i = 1, ...,m) denote the usual coordinates on Rm

and ∂i = ∂
∂xi are the canonical vector fields on Rm.

All manifolds considered in this paper are assumed to be finite dimen-
sional second countable Hausdorff without boundary and smooth (of class
C∞). Maps between manifolds are assumed to be smooth (of class C∞)

2. The Natural Bilinear Operators Similar to the Courant
Bracket

The general concept of natural operators can be found in the fundamental
monograph [5]. In the paper, we need two particular cases of natural operators
presented in Definitions 2.1 (below) and 3.1 (in the next section).

Let Mfm be the category of m-dimensional C∞ manifolds as objects
and their immersions of class C∞ as morphisms (Mfm-maps).

Definition 2.1. A natural (called also Mfm-natural) operator A sending pairs
of couples of vector fields and 1-forms on m-manifolds M into couples of vec-
tor fields and 1-forms on M is a Mfm-invariant family of operators (func-
tions)

A : (X (M) ⊕ Ω1(M)) × (X (M) ⊕ Ω1(M)) → X (M) ⊕ Ω1(M),

for all m-manifolds M , where X (M) ⊕ Ω1(M) is the vector space of couples
(X,ω) of vector fields X on M and 1-forms ω on M . Such Mfm-natural
operator A is called bilinear if A is bilinear (i.e., A(ρ1,−) and A(−, ρ2)
are linear (over the field R of real numbers) functions X (M) ⊕ Ω1(M) →
X (M) ⊕ Ω1(M) for any fixed ρ1, ρ2 ∈ X (M) ⊕ Ω1(M)) for any m-manifold
M . Such Mfm-natural operator A is called skew-symmetric if A is skew-
symmetric for any m-manifold M .
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The Mfm-invariance of A means that if (X1 ⊕ ω1,X2 ⊕ ω2) and (X
1 ⊕

ω1,X
2 ⊕ ω2) are ϕ-related by an Mfm-map ϕ : M → M (i.e., X

i ◦ ϕ =
Tϕ◦Xi and ωi ◦ϕ = T ∗ϕ◦ωi for i = 1, 2), then so are A(X1 ⊕ ω1,X2 ⊕ ω2)
and A(X

1 ⊕ ω1,X
2 ⊕ ω2).

The most important example of such Mfm-natural bilinear operator A
is given by the (skew-symmetric) Courant bracket [−,−]C for any m-manifold
M .

Example 2.2. On the vector bundle TM ⊕ T ∗M there exist canonical sym-
metric and skew-symmetric pairings

〈
X1 ⊕ ω1,X2 ⊕ ω2

〉
± =

1
2
(iX2ω1 ± iX1ω2)

for any X1 ⊕ ω1,X2 ⊕ ω2 ∈ X (M) ⊕ Ω1(M), where i is the interior derivative.
Further, the (skew-symmetric) Courant bracket is given by

[X1 ⊕ ω1,X2 ⊕ ω2]C

= [X1,X2] ⊕
(
LX1ω2 − LX2ω1 + d

〈
X1 ⊕ ω1,X2 ⊕ ω2

〉
−

)

for any X1 ⊕ ω1,X2 ⊕ ω2 ∈ X (M) ⊕ Ω1(M), where [−,−] is the usual bracket
on vector fields, L is the Lie derivative and d is the exterior derivative.

Theorem 2.3 [2]. If m ≥ 2, any Mfm-natural bilinear operator A in the sense
of Definition 2.1 is of the form

A(ρ1, ρ2)

= a[X1, X2] ⊕
(
b1LX2ω1 + b2LX1ω2 + b3d

〈
ρ1, ρ2

〉
+

+ b4d
〈
ρ1, ρ2

〉
−

)

for (uniquely determined by A) real numbers a, b1, b2, b3, b4, where ρi = Xi ⊕
ωi ∈ X (M) ⊕ Ω1(M) for i = 1, 2 are arbitrary, and where 〈−,−〉+ and
〈−,−〉− are as in Example 2.2.

Corollary 2.4 [2]. If m ≥ 2, any Mfm-natural skew-symmetric bilinear op-
erator A in the sense of Definition 2.1 is of the form

A(X1 ⊕ ω1, X2 ⊕ ω2)

= a[X1, X2] ⊕ (b(LX1ω2 − LX2ω1) + cd
〈
X2 ⊕ ω1, X1 ⊕ ω2

〉
−)

for (uniquely determined by A) real numbers a, b, c.

Roughly speaking, Corollary 2.4 says that if m ≥ 2, then any Mfm-
natural skew-symmetric bilinear operator A in the sense of Definition 2.1
coincides with the one given by Courant bracket [−,−]C up to three real
constants.

Definition 2.5. A Mfm-natural bilinear operator A in the sense of Defini-
tion 2.1 satisfies the Leibniz rule if

A(ρ1, A(ρ2, ρ3)) = A(A(ρ1, ρ2), ρ3) + A(ρ2, A(ρ1, ρ3))

for all ρ1, ρ2, ρ3 ∈ X (M) ⊕ Ω1(M) and all m-manifolds M .

Of course, in the case of skew-symmetric bilinear A the Leibniz rule is
equivalent to the Jacobi identity

∑
cycl(ρ1,ρ2,ρ3)

A(ρ1, A(A(ρ2, ρ3)) = 0.
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Example 2.6. The (not skew-symmetric) Courant bracket given by

[X1 ⊕ ω1,X2 ⊕ ω2]0
:= [X1,X2] ⊕ (LX1ω2 − iX2dω1),

where Xi ⊕ ωi ∈ X (M) ⊕ Ω1(M), satisfies the Leibniz rule, see [7,8].

The Courant bracket [−,−]C from Example 2.2 does not satisfy the
Leibniz rule.

Theorem 2.7 [2]. If m ≥ 2, any Mfm-natural bilinear operator A in the sense
of Definition 2.1 satisfying the Leibniz rule is one of the following ones:

A〈1,a〉(ρ1, ρ2) = a[X1,X2] ⊕ 0,

A〈2,a〉(ρ1, ρ2) = a[X1,X2] ⊕ (a(LX1ω2 − LX2ω1)),

A〈3,a〉(ρ1, ρ2) = a[X1,X2] ⊕ aLX1ω2,

A〈4,a,0〉(ρ1, ρ2) = a[X1,X2] ⊕ (a(LX1ω2 − iX2dω1)),

where a is an arbitrary real number, and where ρ1 = X1 ⊕ ω1 and ρ2 =
X2 ⊕ ω2.

Corollary 2.8. If m ≥ 2, the Courant bracket [−,−]0 from Example 2.6 for
m-manifolds M is the unique Mfm-natural bilinear operator A in the sense
of Definition 2.1 satisfying the conditions:
(A1) A(ρ1, A(ρ2, ρ3)) = A(A(ρ1, ρ2), ρ3) + A(ρ2, A(ρ1, ρ3)),
(A2) πA(ρ1, ρ2) = [πρ1, πρ2],
(A3) A(ρ1, ρ1) = i0d 〈ρ1, ρ1〉+ ,

for all ρ1, ρ2, ρ3 ∈ X (M) ⊕ Ω1(M) and all m-manifolds M , where 〈−,−〉+
is the pairing of Example 2.2, π : TM ⊕ T ∗M → TM is the fibred projection
given by π(v, ω) = v and i0 : T ∗M → TM ⊕ T ∗M is the fibred embedding
i0(ω) = (0, ω).

Consequently, if m ≥ 2, then a Mfm-natural bilinear operator A in
the sense of Definition 2.1 satisfying the conditions (A1)–(A3) satisfies the
conditions:
(A4) πρ1 〈ρ2, ρ3〉+ = 〈A(ρ1, ρ2), ρ3〉+ + 〈ρ2, A(ρ1, ρ3〉+ ,
(A5) A(ρ1, fρ2) = πρ1(f)ρ2 + fA(ρ1, ρ2)
for all ρ1, ρ2 ∈ X (M) ⊕ Ω1(M), all f ∈ C∞(M) and all m-manifolds M
(i.e., putting [[−,−]] := A we get an exact Courant algebroid E = (TM ⊕
T ∗M, [[−,−]], 〈−,−〉+ , π, i0) in the sense of [8] for any m-manifold M).

Proof. By Theorem 2.7, the conditions (A1) and (A2) imply that A = A〈1,1〉

or A = A〈2,1〉 or A = A〈3,1〉 or A = A〈4,1,0〉. On the other hand if ρ1 = X ⊕ ω,
then i0d 〈ρ1, ρ1〉+ = 0 ⊕ diXω and A〈1,1〉(ρ1, ρ1) = 0 ⊕ 0 and A〈2,1〉(ρ1, ρ1) =
0 ⊕ 0 and A〈3,1〉(ρ1, ρ1) = 0 ⊕ LXω and A〈4,1,0〉(ρ1, ρ1) = 0 ⊕ diXω. Then
A = A〈4,1,0〉. �

Corollary 2.9. If m ≥ 2, any Mfm-natural Lie algebra brackets on X (M) ⊕
Ω1(M) [i.e., Mfm-natural skew-symmetric bilinear operator satisfying the
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Jacobi identity (Leibniz rule) is the constant multiple of the one of the fol-
lowing two Lie algebra brackets:

[[X1 ⊕ ω1,X2 ⊕ ω2]]1 = [X1,X2] ⊕ 0,

[[X1 ⊕ ω1,X2 ⊕ ω2]]2 = [X1,X2] ⊕ (LX1ω2 − LX2ω1).

At the end of this section we are going to describe completely all Lie
algebroids (TM ⊗ T ∗M, [[−,−]], a) which are invariant with respect to im-
mersions (Mfm-maps). The concept of Lie algebroids can be found in the
fundamental book [6].

Of course, the anchor a : TM ⊕ T ∗M → TM for all m-manifolds M
must be Mfm-natural transformation [i.e., Tf ◦ a = a ◦ (Tf ⊕ T ∗f) for
any Mfm-map f : M → M1] and fibre linear. By Corollary 2.9, [[−,−]] =
μ[[−,−]]1 or [[−,−]] = μ[[−,−]]2 for some μ ∈ R.

Lemma 2.10. Any Mfm-natural transformation a : TM ⊕ T ∗M → TM
which is fibre linear is the constant multiple of the fibre projection π : TM ⊕
T ∗M → TM .

Proof. Clearly, a is determined by the values < η, ax(v, ω) >∈ R for all
ω, η ∈ T ∗

x M , v ∈ TxM , x ∈ M , M ∈ Obj(Mfm). By the standard chart
arguments, we may assume M = Rm, x = 0 , η = d0x

1. We can write
< d0x

1, a0(v, ω) >=
∑

i αiv
i +

∑
j βjωj , where vi are the coordinates of v

and ωj are the coordinates of ω, and where αi and βj are the real numbers
determined by a0. Then using the invariance of a0 with respect to the maps
(τ1x1, ..., τmxm) for τ1 > 0, ..., τm > 0 we deduce that α2 = · · · = αm = 0
and β1 = · · · = βm = 0. Then the vector space of all a in question is at most
1-dimensional. Thus the dimension argument completes the proof. �

So, a = kπ for some real number k. It must be a([[X1 ⊕ 0,X2 ⊕ 0]]) =
[a(X1 ⊕ 0), a(X2 ⊕ 0)] for any vector fields X1 and X2 on M . This gives
the condition kμ[X1,X2] = k2[X1,X2]. Then kμ = k2, and then (k = 0 and
μ arbitrary) or (k 
= 0 and μ = k). Consider two cases:

1. [[−,−]] = μ[[−,−]]1. Let ρ1 = X1 ⊕ ω1 and ρ2 = X2 ⊕ ω2. It
must be [[ρ1, fρ2]] = a(ρ1)(f)ρ2 + f [[ρ1, ρ2]]. Considering the Ω1(M)-parts
of both sides of this equality we get 0 = kX1(f)ω2 + 0 for any vector fields
X1,X2 on M any map f : M → R and any ω1, ω2 ∈ Ω1(M). Then k = 0.
Then considering the X (M)-parts we get μ[X1, fX2] = fμ[X1,X2]. Then
μX1(f)X2 = 0 for all vector fields X1 and X2 on M and all maps f : M → R,
i.e., μ = 0.

2. [[−,−]] = μ[[−,−]]2. Let ρ1 = 0 ⊕ ω1 and ρ2 = X2 ⊕ 0. It must be
[[ρ1, fρ2]] = a(ρ1)(f)ρ2 + f [[ρ1, ρ2]]. Considering the Ω1(M)-parts of both
sides of this equality we get −μLfX2ω1 = −μfLX2ω1. Then μ = 0 or
difX2ω1 + ifX2dω1 = fdiX2ω1 + fiX2dω1. Putting ω1 = dg we get μ = 0 or
d(ifX2dg) = fdiX2dg. Then μ = 0 or d(fX2g) = fd(X2g). Then μ = 0 or
X2(g)df = 0 for any X2, g, f in question. Putting X2 = ∂

∂x1 and f = g = x1

we get μ = 0 or dx1 = 0. Then μ = 0, and then k = μ = 0.
On the other hand one can directly show that (TM ⊕T ∗M, 0[[−,−]]1, 0π)

is a Lie algebroid. Thus we have



101 Page 6 of 15 W. M. Mikulski MJOM

Proposition 2.11. If m ≥ 2, (TM ⊗ T ∗M, 0, 0) is the only invariant with
respect to Mfm-maps Lie algebroid (EM, [[−,−]], a) with EM = TM ⊕
T ∗M .

3. The Natural Operators Similar to the Twisted Courant
Bracket

Definition 3.1. A Mfm-natural operator A sending p-forms H ∈ Ωp(M) on
m-manifolds M into bilinear operators

AH : (X (M) ⊕ Ω1(M)) × (X (M) ⊕ Ω1(M)) → X (M) ⊕ Ω1(M),

is a Mfm-invariant family of regular operators (functions)

A : Ωp(M) → Lin2((X (M) ⊕ Ω1(M)) × (X (M) ⊕ Ω1(M)),X (M) ⊕ Ω1(M))

for all m-manifolds M , where Lin2(U ×V,W ) denotes the vector space of all
bilinear (over R) functions U × V → W for any real vector spaces U, V,W .

The Mfm-invariance of A means that if H1 ∈ Ωp(M) and H2 ∈ Ωp(M)
are ϕ-related and (X1 ⊕ ω1,X2 ⊕ ω2) and (X

1 ⊕ ω1,X
2 ⊕ ω2) are ϕ-related

by an Mfm-map ϕ : M → M , then so are AH1(X1 ⊕ ω1,X2 ⊕ ω2) and
AH2(X

1 ⊕ ω1,X
2 ⊕ ω2).

The regularity of A means that it transforms smoothly parametrized
families (Ht,X

1
t ⊕ω1

t ,X2
t ⊕ω2

t ) into smoothly parametrized families AHt
(X1

t ⊕
ω1

t ,X2
t ⊕ ω2

t ).

Example 3.2. The most important example of Mfm-natural operator in the
sense of Definition 3.1 for p = 3 is given by the H-twisted Courant bracket

[X1 ⊕ ω1,X2 ⊕ ω2]H := [X1,X2] ⊕
(
LX1ω2 − iX2dω1 + iX1iX2H

)

for all 3-forms H ∈ Ω3(M) and all m-manifolds M . We call this Mfm-natural
operator the twisted Courant bracket Mfm-natural operator.

Example 3.3. The operator given by [−,−]dH for all H ∈ Ω2(M) and all
m-manifolds M is a Mfm-natural operator in the sense of Definition 3.1 for
p = 2.

The main result of this section is the following

Theorem 3.4. Assume m ≥ 3. Then we have:
1. Any Mfm-natural operator A in the sense of Definition 3.1 for p = 2

such that AH = AH+dH1 for any H ∈ Ω2(M) and any H1 ∈ Ω1(M) is
of the form

AH(ρ1, ρ2) = a[X1, X2]

⊕
(
b1LX2ω1 + b2LX1ω2 + b3d

〈
ρ1, ρ2

〉
+

+ b4d
〈
ρ1, ρ2

〉
− + ciX1 iX2dH

)
,

for (uniquely determined by A) reals a, b1, ..., c, where 2-forms H ∈
Ω2(M), pairs ρi = Xi ⊕ ωi ∈ X (M) ⊕ Ω1(M) for i = 1, 2 and m-
manifolds M are arbitrary.
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2. Any Mfm-natural operator (not necessarily satisfying AH = AH+dH1)
in the sense of Definition 3.1 for p = 3 is of the form

AH(ρ1, ρ2) = a[X1, X2]

⊕
(
b1LX2ω1 + b2LX1ω2 + b3d

〈
ρ1, ρ2

〉
+

+ b4d
〈
ρ1, ρ2

〉
− + ciX1 iX2H

)
,

for (uniquely determined by A) reals a, b1, ..., c, where 3-forms H ∈
Ω3(M), pairs ρi = Xi ⊕ ωi ∈ X (M) ⊕ Ω1(M) for i = 1, 2 and m-
manifolds M are arbitrary.

3. If p ≥ 4, any Mfm-natural operator (not necessarily satisfying AH =
AH+dH1) in the sense of Definition 3.1 is of the form

AH(ρ1, ρ2) = a[X1, X2] ⊕
(
b1LX2ω1 + b2LX1ω2 + b3d

〈
ρ1, ρ2

〉
+

+ b4d
〈
ρ1, ρ2

〉
−

)

for (uniquely determined by A) reals a, b1, ..., b4, where p-forms H ∈
Ωp(M), pairs ρi = Xi ⊕ ωi ∈ X (M) ⊕ Ω1(M) for i = 1, 2 and m-
manifolds M are arbitrary.

Proof. Clearly, A0, where 0 is the zero p-form, can be treated as the bilinear
operator in the sense of Definition 2.1. Then A0 is described in Theorem 2.3.
So we can replace A by A − A0. In other words, we have assumption A0 = 0.

By the invariance, A is determined by the values AH(X1 ⊕ ω1,X2 ⊕
ω2)|0 for all H ∈ Ωp(Rm),Xi ⊕ ωi ∈ X (Rm) ⊕ Ω1(Rm). Put

AH(X1 ⊕ ω1,X2 ⊕ ω2)|0
=

(
A1

H(X1 ⊕ ω1,X2 ⊕ ω2)|0, A2
H(X1 ⊕ ω1,X2 ⊕ ω2)|0

)
,

where A1
H(...)|0 ∈ T0Rm and A2

H(...)|0 ∈ T ∗Rm. Then A is determined by
〈
A1

H(X1 ⊕ ω1, X2 ⊕ ω2)|0 , η
〉 ∈ R and

〈
A2

H(X1 ⊕ ω1, X2 ⊕ ω2)|0, μ
〉 ∈ R

for all H ∈ Ωp(Rm),Xi ⊕ ωi ∈ X (Rm) ⊕ Ω1(Rm), η ∈ T ∗
0R

m, μ ∈ T0Rm,
i = 1, 2.

By the non-linear Peetre theorem, see [5], A is of finite order. It means
that there is a finite number r such that from (jr

xH = jr
xH, jr

x(ρi) = jr
x(ρi),

i = 1, 2) it follows AH(ρ1, ρ2)|x = AH(ρ1, ρ2)|x. So, we may assume
that H,X1,X2, ω1, ω2 are polynomials of degree not more than r.

Using the invariance of A with respect to the homotheties and the bi-
linearity of AH (for given H) we obtain homogeneity condition

〈
A1

( 1
t id)∗H

(
t
(
1
t id

)
∗ X1 ⊕ t

(
1
t id

)
∗ ω1, t

(
1
t id

)
∗ X2

⊕ t
(
1
t id

)
∗ ω2

)
|0 , η

〉

= t
〈
A1

H(X1 ⊕ ω1,X2 ⊕ ω2)|0 , η
〉
.

Then, by the homogeneous function theorem, since A is of finite order and
regular and A0 = 0 and p ≥ 2, we have

〈
A1

H(X1 ⊕ ω1,X2 ⊕ ω2)|0 , η
〉

= 0.
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Using the same arguments we get homogeneity condition
〈

A2

( 1
t id)∗H

(
t
(
1
t id

)
∗ X1 ⊕ t

(
1
t id

)
∗ ω1, t

(
1
t id

)
∗ X2

⊕t
(
1
t id

)
∗ ω2

)
|0 , μ

〉

= t3
〈
A2

H(X1 ⊕ ω1,X2 ⊕ ω2)|0 , μ
〉
.

Then, if p = 2, by the homogeneous function theorem and the bi-
linearity of AH and the assumptions A0 = 0 and AH = AH+dH1 , the
value

〈
A2

H(X1 ⊕ ω1,X2 ⊕ ω2)|0, μ
〉

depends quadrilinearly on X1|0, X2|0,
j10(H − H|0) and μ, only. By m ≥ 3 and the regularity of A, we may assume
that X1

|0, X2
|0 and μ are linearly independent. Then by the invariance we

may assume X1
|0 = ∂1|0, X2

|0 = ∂2|0 and μ = ∂3|0. Then A is determined
by the values

〈
A2

xi1dxi2∧dxi3 (∂1 ⊕ 0, ∂2 ⊕ 0), ∂3|0
〉

for all i1 = 1, ...,m and
i2, i3 with 1 ≤ i2 < i3 ≤ m. Then using the invariance of A with respect to
τ id for τ i > 0 we deduce that only v :=

〈
A2

x1dx2∧dx3(∂1 ⊕ 0, ∂2 ⊕ 0), ∂3|0
〉
,

w :=
〈
A2

x2dx1∧dx3(∂1 ⊕ 0, ∂2 ⊕ 0), ∂3|0
〉
, z :=

〈
A2

x3dx1∧dx2(∂1 ⊕ 0, ∂2 ⊕ 0), ∂3|0
〉

may be not-zero. But x1dx2 ∧ dx3 = −x2dx1 ∧ dx3 + d(...). So,
v = −w. Similarly, v = −z. Therefore the vector space of all A in question
with A0 = 0 and AH = AH+dH1 is at most one-dimensional. The part (1) of
the theorem is complete. If p = 3, then (by almost the same arguments as for
p = 2) A is determined by the values

〈
A2

dxi1∧dxi2∧dxi3 (∂1 ⊕ 0, ∂2 ⊕ 0), ∂3|0
〉

∈
R for all i1, i2, i3 with 1 ≤ i1 < i2 < i3 ≤ m. Then using the invariance
with respect to (τ1x1, ...τmxm) for τ i > 0 we deduce that only the value〈
A2

dx1∧dx2∧dx3(∂1 ⊕ 0, ∂2 ⊕ 0), ∂3|0
〉

∈ R may be not-zero. Therefore the vec-
tor space of all A in question with A0 = 0 is one-dimensional (generated by
the natural operator 0 ⊕ iX1iX2H).

If p ≥ 4, then (similarly as for p = 2) < A2
H(X1⊕ω1,X2⊕ω2)|0, μ >= 0.

Theorem 3.4 is complete. �

Corollary 3.5. If m ≥ 3, any Mfm-natural operator A in the sense of Def-
inition 3.1 for p = 3 such that AH is skew-symmetric for any H ∈ Ω3(M)
and any m-manifold M is of the form

AH(X1 ⊕ ω1,X2 ⊕ ω2) = a[X1,X2]

⊕
(
b(LX1ω2 − LX2ω1) + cd

〈
X2 ⊕ ω1,X1 ⊕ ω2

〉
− + eiX1iX2H

)

for (uniquely determined by A) real numbers a, b, c, e.

Roughly speaking, Corollary 3.5 says that any Mfm-natural operator
A in the sense of Definition 3.1 such that AH is skew-symmetric for any H ∈
Ω3(M) and any m-manifold M coincides with the “skew-symmetrization” of
the twisted Courant bracket Mfm-natural operator up to four real constants
a, b, c, e.

Corollary 3.6. If m ≥ 3, then the twisted Courant bracket Mfm-natural op-
erator from Example 3.2 is the unique Mfm-natural operator A in the sense
of Definition 3.1 for p = 3 satisfying the following properties:
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(B1) A0(ρ1, ρ2) = [ρ1, ρ2]0,
(B2) AH(X ⊕ 0, Y ⊕ 0) = [X,Y ] ⊕ iX iY H

for all closed H ∈ Ω3
cl(M), all ρ1, ρ2,X ⊕ 0, Y ⊕ 0 ∈ X (M) ⊕ Ω1(M) and all

m-manifolds M , where [−,−]0 is the Mfm-natural bilinear operator given by
the (not skew-symmetric) Courant bracket as in Example 2.6.

Proof. Clearly, the twisted Courant bracket Mfm-natural operator satisfies
(B1) and (B2). Consider A in question satisfying (B1) and (B2). Then by
Theorem 3.4, there exist uniquely determined reals a, b1, ..., c such that for
all H ∈ Ω3(M) and m-manifolds M

AH(ρ1, ρ2) = a[X1,X2]

⊕
(
b1LX2ω1 + b2LX1ω2 + b3d

〈
ρ1, ρ2

〉
+

+ b4d
〈
ρ1, ρ2

〉
− + ciX1iX2H

)
,

where ρi = Xi ⊕ωi ∈ X (M)⊕Ω1(M) are arbitrary. Putting ω1 = ω2 = 0 we
get AH(ρ1, ρ2) = a[X1,X2] ⊕ ciX1iX2H. Then condition (B2) implies c = 1.
Putting H = 0 we get

A0(ρ
1, ρ2) = a[X1, X2] ⊕

(
b1LX2ω1 + b2LX1ω2 + b3d

〈
ρ1, ρ2

〉
+

+ b4d
〈
ρ1, ρ2

〉
−

)

for all ρi = Xi ⊕ ωi ∈ X (M) ⊕ Ω1(M) and all m-manifolds M . But A0

is a Mfm-natural bilinear operator in the sense of Definition 2.1. Then
a, b1, b2, b3, b4 are uniquely determined because of Theorem 2.3. Then a,
b1, ..., c are uniquely determined. So, A is uniquely determined by conditions
(B1) and (B2). �

4. The Natural Operators Similar to the Twisted Courant
Bracket and Defined for Closed p-Forms Only

In the previous section, we considered Mfm-natural operators A which are
defined for all p-forms H. In this section, we observe what happens if A are
defined for closed p-forms H, only. We start with the following

Definition 4.1. A Mfm-natural operator A sending closed p-forms
H ∈ Ωp

cl(M) on m-manifolds M into bilinear operators

AH : (X (M) ⊕ Ω1(M)) × (X (M) ⊕ Ω1(M)) → X (M) ⊕ Ω1(M),

is a Mfm-invariant family of regular operators (functions)

A : Ωp
cl(M)→Lin2((X (M) ⊕ Ω1(M))×(X (M) ⊕ Ω1(M)),X (M) ⊕ Ω1(M)),

for all m-manifolds M .

We have the following corollary of Theorem 3.4.

Corollary 4.2. Assume m ≥ 3. Then we have:
1. If p = 3, any Mfm-natural operator in the sense of Definition 4.1 is of

the form

AH(ρ1, ρ2) = a[X1,X2]
⊕(b1LX2ω1 + b2LX1ω2 + b3d

〈
ρ1, ρ2

〉
+

+ b4d
〈
ρ1, ρ2

〉
− + ciX1iX2H),
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for uniquely determined by A reals a, b1, ..., c, where closed 3-forms H ∈
Ω3

cl(M), pairs ρi = Xi ⊕ ωi ∈ X (M) ⊕ Ω1(M) for i = 1, 2 and m-
manifolds M are arbitrary.

2. If p ≥ 4, any Mfm-natural operator in the sense of Definition 4.1 is of
the form

AH(ρ1, ρ2) = a[X1,X2]

⊕
(
b1LX2ω1 + b2LX1ω2 + b3d

〈
ρ1, ρ2

〉
+

+ b4d
〈
ρ1, ρ2

〉
−

)

for uniquely determined by A reals a, b1, ..., b4, where closed p-forms
H ∈ Ωp

cl(M), pairs ρi = Xi ⊕ ωi for i = 1, 2 and m-manifolds M
are arbitrary.

Proof. Let A be a Mfm-natural operator in the sense of Definition 4.1 for p.
Define a Mfm-natural operator A1 in the sense of Definition 3.1 for p− 1 by
A1

H̃
= AdH̃ . Then A1

H̃+dH1
= A1

H̃
for any H̃ ∈ Ωp−1(M) and H1 ∈ Ωp−2(M).

If p = 3, then by Theorem 3.4, A1 is of the form

A1
H̃

(ρ1, ρ2) = a[X1,X2]

⊕
(
b1LX2ω1 + b2LX1ω2 + b3d

〈
ρ1, ρ2

〉
+

+ b4d
〈
ρ1, ρ2

〉
− + ciX1iX2dH̃

)

for uniquely determined reals a, b1, ..., c and all H̃ ∈ Ω2(M), where ρi =
Xi ⊕ ωi for i = 1, 2. Then

AH(ρ1, ρ2) = a[X1,X2]

⊕
(
b1LX2ω1 + b2LX1ω2 + b3d

〈
ρ1, ρ2

〉
+

+ b4d
〈
ρ1, ρ2

〉
− + ciX1iX2H

)

for all exact 3-forms H, where ρi = Xi ⊕ ωi for i = 1, 2. But by the locality
of A and the Poincare lemma we may replace the phrase “all exact 3-forms”
by “all closed 3-forms”.

If p ≥ 4, then by Theorem 3.4, A1 is of the form

A1
H̃

(ρ1, ρ2) = a[X1,X2]

⊕
(
b1LX2ω1 + b2LX1ω2 + b3d

〈
ρ1, ρ2

〉
+

+ b4d
〈
ρ1, ρ2

〉
− + ciX1iX2dH̃

)

for uniquely determined reals a, b1, ..., c (with arbitrary c if p = 4 and with
c = 0 if p ≥ 5) and all H̃ ∈ Ωp−1(M), where ρi = Xi ⊕ ωi for i = 1, 2. The
condition A1

H̃
= A1

H̃+dH1
implies ciX1iX2dH1 = 0 for any H1 ∈ Ωp−2(M). If

p = 4, putting X1 = ∂1, X2 = ∂2 and H1 = x1dx2∧dx3, we get c(−dx3) = 0,
i.e., c = 0. If p ≥ 5, then c = 0, see above. Next, we proceed similarly as in
the case p = 3. �

The above corollary and Theorem 3.4 imply

Theorem 4.3. If m ≥ 3 and p ≥ 3 then any Mfm-natural operator in the
sense of Definition 4.1 can be extended uniquely to a Mfm-natural operator
in the sense of Definition 3.1.

Roughly speaking, if m ≥ 3 and p ≥ 3, then any Mfm-natural operator
in the sense of Definition 4.1 can be treated as the Mfm-natural operator in
the sense of Definition 3.1, and vice-versa.
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5. The Natural Operators Similar to the Twisted Courant
Bracket and Satisfying the Leibniz Rule for Closed 3-Forms

Definition 5.1. A Mfm-natural operator A in the sense of Definition 3.1 (or
equivalently in the sense of Definition 4.1) satisfies the Leibniz rule for closed
p-forms if

AH(ρ1, AH(ρ2, ρ3)) = AH(AH(ρ1, ρ2), ρ3) + AH(ρ2, AH(ρ1, ρ3))

for all ρ1, ρ2, ρ3 ∈ X (M) ⊕ Ω1(M), all closed p-forms H ∈ Ωp
cl(M) and all

m-manifolds M .

Example 5.2. The twisted Courant bracket Mfm-natural operator presented
in Example 3.2 satisfies the Leibniz rule for closed 3-forms, see [3,8].

Theorem 5.3. If m ≥ 3, any Mfm-natural operator A in the sense of Defi-
nition 3.1 (or equivalently of Definition 4.1) for p = 3 satisfying the Leibniz
rule for closed 3-forms is one of the Mfm-natural operators:

A
〈1,a〉
H (ρ1, ρ2) = a[X1,X2] ⊕ 0,

A
〈2,a〉
H (ρ1, ρ2) = a[X1,X2] ⊕ (a(LX1ω2 − LX2ω1)),

A
〈3,a〉
H (ρ1, ρ2) = a[X1,X2] ⊕ (aLX1ω2),

A
〈4,a,e〉
H (ρ1, ρ2) = a[X1,X2] ⊕ (a(LX1ω2 − iX2dω1) + eiX1iX2H),

where ρ1 = X1 ⊕ ω1 and ρ2 = X2 ⊕ ω2, and a and e are arbitrary real
numbers.

Proof. Let A be a Mfm-natural operator in the sense of Definition 3.1 for
p = 3 such that AH satisfies the Leibniz rule for any closed H ∈ Ω3

cl(M). By
Theorem 3.4, A is of the form

AH(X1 ⊕ ω1,X2 ⊕ ω2) = a[X1,X2]
⊕(b1LX2ω1 + b2LX1ω2 + c1diX2ω1 + c2diX1ω2 + eiX1iX2H),

for (uniquely determined by A) real numbers a, b1, b2, c1, c2, e. Then for any
X1,X2, X3 ∈ X (M) and ω1, ω2, ω3 ∈ Ω1(M) we have

AH(X1 ⊕ ω1, AH(X2 ⊕ ω2,X3 ⊕ ω3)) = a2[X1, [X2,X3]] ⊕ Ω,

AH(AH(X1 ⊕ ω1,X2 ⊕ ω2),X3 ⊕ ω3) = a2[[X1,X2],X3] ⊕ Θ,

AH(X2 ⊕ ω2, AH(X1 ⊕ ω1,X3 ⊕ ω3)) = a2[X2, [X1,X3]] ⊕ T ,
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where

Ω = b1La[X2,X3]ω
1 + c1dia[X2,X3]ω

1 + eiX1ia[X2,X3]H

+ b2LX1(b1LX3ω2 + b2LX2ω3 + c1diX3ω2 + c2diX2ω3 + eiX2iX3H)
+ c2diX1(b1LX3ω2 + b2LX2ω3 + c1diX3ω2 + c2diX2ω3 + eiX2iX3H),

Θ = b2La[X1,X2]ω
3 + c2dia[X1,X2]ω

3 + eia[X1,X2]iX3H

+ b1LX3(b1LX2ω1 + b2LX1ω2 + c1diX2ω1 + c2diX1ω2 + eX1iX2H)
+ c1diX3(b1LX2ω1 + b2LX1ω2 + c1diX2ω1 + c2diX1ω2 + eiX1iX2H),

T = b1La[X1,X3]ω
2 + c1dia[X1,X3]ω

2 + eiX2ia[X1,X3]H

+ b2LX2(b1LX3ω1 + b2LX1ω3 + c1diX3ω1 + c2diX1ω3 + eiX1iX3H)
+ c2diX2(b1LX3ω1 + b2LX1ω3 + c1diX3ω1 + c2diX1ω3 + eiX1iX3H).

The Leibniz rule of AH is equivalent to Ω = Θ + T .

Putting H = 0, we are in the situation of Theorem 2.7. Then by The-
orem 2.7 (i.e., by Theorem 3.2 in [2]) we get (b1, b2, c1, c2) = (0, 0, 0, 0) or
(b1, b2, c1, c2) = (0, a, 0, 0) or (b1, b2, c1, c2) = (−a, a, 0, 0) or (b1, b2, c1, c2) =
(−a, a, a, 0). More, A0 for such (b1, b2, c1, c2) satisfies the Leibniz rule.

Therefore (as c2 = 0) the Leibniz rule of AH is equivalent to the equality

eaiX1i[X2,X3]H + b2eLX1iX2iX3H

= eai[X1,X2]iX3H + b1eLX3iX1iX2H + c1ediX3iX1iX2H

+eaiX2i[X1,X3]H + b2eLX2iX1iX3H.

If (b1, b2, c1, c2) = (0, 0, 0, 0), the above equality is equivalent to

eaiX1i[X2,X3]H = eai[X1,X2]iX3H + eaiX2i[X1,X3]H.

Putting X1 = ∂1, X2 = ∂1 + x1∂3 and X3 = ∂2 we have [X2,X3] = 0,
[X1,X3] = 0 and [X1,X2] = ∂3, and then 0 = eai∂3i∂2H for any closed H
(for example for H = dx1 ∧ dx2 ∧ dx3). Consequently e = 0 or a = 0.

If (b1, b2, c1, c2) = (0, a, 0, 0), the above equality is equivalent to

eaiX1i[X2,X3]H + eaLX1iX2iX3H

= eai[X1,X2]iX3H + eaiX2i[X1,X3]H + eaLX2iX1iX3H.

Putting X1 = ∂1, X2 = ∂2 and X3 = ∂3 and H = x2dx1 ∧ dx2 ∧ dx3 (it is
closed) we have [X2,X3] = 0, [X1,X2] = 0, [X1,X3] = 0, LX2iX1iX3H =
L∂2x

2dx2 = dx2 and LX1iX2iX3H = L∂1(−x2dx1) = 0. Then eadx2 = 0. So,
a = 0 or e = 0.

If (b1, b2, c1, c2) = (−a, a, 0, 0), the above equality is equivalent to

eaiX1i[X2,X3]H + eaLX1iX2iX3H

= eai[X1,X2]iX3H − eaLX3iX1iX2H + eaiX2i[X1,X3]H + eaLX2iX1iX3H.

Putting X1 = ∂1, X2 = ∂2 and X3 = ∂3 and H = x2dx1 ∧dx2 ∧dx3 we have
(see above) [X2,X3] = 0, [X1,X2] = 0, [X1,X3] = 0, LX2iX1iX3H = dx2,
LX1iX2iX3H = 0 and LX3iX1iX2H = L∂3(−x2dx3) = 0. Then eadx2 = 0.
So, a = 0 or e = 0.
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If (b1, b2, c1, c2) = (−a, a, a, 0), the above equality is equivalent to

ea
∑ {

iX1i[X2,X3]H + LX1iX2iX3H
}

= eadiX1iX2iX3H,

where
∑

is the cyclic sum
∑

cycl(X1,X2,X3). Then e is arbitrary real number
because from dH = 0 it follows

∑ {
iX1i[X2,X3]H + LX1iX2iX3H

}
= diX1iX2iX3H.

Indeed, using dH = 0 and i[X1,X4] = LX1iX4 − iX4LX1 and the well-known
formula expressing dH(X1,X2,X3,X4), we have

∑{
iX4iX1i[X2,X3]H + iX4LX1iX2iX3H

}

=
∑{

iX4iX1i[X2,X3]H + LX1iX4iX2iX3H − i[X1,X4]iX2iX3H
}

= 6
∑

{H([X2,X3],X1,X4) + X1H(X3,X2,X4)
−H(X3,X2, [X1,X4])}

= −24dH(X1,X2,X3,X4) + 6X4H(X3,X2,X1) = iX4diX1iX2iX3H.

Summing up, given a real number a 
= 0 we have (b1, b2, c1, c2, e) =
(0, 0, 0, 0, 0) or (b1, b2, c1, c2, e) = (0, a, 0, 0, 0) or (b1, b2, c1, c2, e) =
(−a, a, 0, 0, 0, ) or (b1, b2, c1, c2, e) = (−a, a, a, 0, e), where e may be arbitrary
real number. If a = 0 we have (b1, b2, c1, c2, e) = (0, 0, 0, 0, e), where e may
be arbitrary. Theorem 5.3 is complete. �

Corollary 5.4. If m ≥ 3, then the twisted Courant bracket Mfm-natural op-
erator from Example 3.2 is the unique Mfm-natural operator A in the sense
of Definition 3.1 for p = 3 satisfying the following conditions:
(C1) AH(ρ1, AH(ρ2, ρ3)) = AH(AH(ρ1, ρ2), ρ3) + AH(ρ2, AH(ρ1, ρ3)),
(C2) AH(X ⊕ 0, Y ⊕ 0) = [X,Y ] ⊕ iX iY H

for all ρ1, ρ2, ρ3,X ⊕ 0, Y ⊕ 0 ∈ X (M) ⊕ Ω1(M), all closed H ∈ Ω3
cl(M) and

all m-manifolds M .

Proof. Indeed, the condition (C1) and Theorem 5.3 imply that A = A〈1,a〉

or A = A〈2,a〉 or A = A〈3,a〉 or A = A〈4,a,e〉 for some real numbers a and e.
Then (C2) implies that A = A〈4,a,e〉 and a = 1 and e = 1 because A

〈1,a〉
H (X ⊕

0, Y ⊕0) = a[X,Y ]⊕0 and A
〈2,a〉
H (X ⊕0, Y ⊕0) = a[X,Y ]⊕0 and A

〈3,a〉
H (X ⊕

0, Y ⊕ 0) = a[X,Y ] ⊕ 0 and A
〈4,a,e〉
H (X ⊕ 0, Y ⊕ 0) = a[X,Y ] ⊕ eiX iY H. �

Corollary 5.5. If m ≥ 3, any Mfm-natural operator A in the sense of Def-
inition 3.1 for p = 3 such that AH is a Lie algebra bracket (i.e., it is skew-
symmetric, bilinear and satisfying the Leibniz rule) for all closed 3-forms
H ∈ Ω3

cl(M) and all m-manifolds M is one of the Mfm-natural operators:

A
〈1,a〉
H (ρ1, ρ2) = a[X1,X2] ⊕ 0,

A
〈2,a〉
H (ρ1, ρ2) = a[X1,X2] ⊕ (a(LX1ω2 − LX2ω1)),

A
〈4,0,e〉
H (ρ1, ρ2) = 0 ⊕ eiX1iX2H,

where ρ1 = X1 ⊕ ω1 and ρ2 = X2 ⊕ ω2, and a and e are arbitrary real
numbers.
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Proof. It follows from Theorem 5.3. �

Corollary 5.6. If m ≥ 3, any Mfm-natural operator A in the sense of Defi-
nition 3.1 for p = 3 satisfying the Leibniz rule for all 3-forms H (or for all
closed 3-forms and at least one non-closed 3-form) is one of the Mfm-natural
operators:

A
〈1,a〉
H (ρ1, ρ2) = a[X1,X2] ⊕ 0,

A
〈2,a〉
H (ρ1, ρ2) = a[X1,X2] ⊕ (a(LX1ω2 − LX2ω1)),

A
〈3,a〉
H (ρ1, ρ2) = a[X1,X2] ⊕ (aLX1ω2),

A
〈4,a,0〉
H (ρ1, ρ2) = a[X1,X2] ⊕ (a(LX1ω2 − iX2dω1)),

A
〈4,0,e〉
H (ρ1, ρ2) = 0 ⊕ eiX1iX2H,

where ρ1 = X1 ⊕ ω1 and ρ2 = X2 ⊕ ω2, and a and e are arbitrary real
numbers.

Proof. It follows from Theorem 5.3 and its proof. �

Remark 5.7. It is well-known that given closed 3-form H ∈ Ω3
cl(M) on a

m-manifold M , the twisted Courant bracket [−,−]H : (X (M) ⊕ Ω1(M)) ×
(X (M) ⊕ Ω1(M)) → X (M) ⊕ Ω1(M) is bilinear and satisfies the properties
(A1)–(A5) from Corollary 2.8 for all ρ1, ρ2, ρ3 ∈ X (M) ⊕ Ω1(M) and all
f ∈ C∞(M), see [3,8], but [−,−]H 
= [−,−]0 if H 
= 0. Is it a contradic-
tion with the uniqueness from Corollary 2.8? No, it is not. Indeed, [−,−]H
is not extendable to a Mfm-natural bilinear operator in the sense of Defini-
tion 2.1 because it is invariant only with respect to Mfm-maps ϕ : M → M
preserving H, in fact.

Remark 5.8. By Corollary 5.5, given a closed 3-form H on M , the skew-
symmetric bracket [[X1⊕ω1,X2⊕ω2]](H) := 0⊕iX1iX2H satisfies the Leibniz
rule. One can easily directly verify that (TM ⊕ T ∗M, e[[−,−]](H), 0π) for
arbitrary fixed e ∈ R and closed 3-form H is a Lie algebroid canonically
depending on H. So, if we have a closed 3-form H on a m-manifold M ,
we can construct canonical (in H) Lie algebroids (EM, [[−,−]][H], a[H]) with
EM = TM ⊕ T ∗M different than the one from Proposition 2.11.
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