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1 In trodu ction

Since th e  m iddle of last cen tu ry  physicists have been pursu ing  th e  idea of unifying th e  four 
fundam en tal in teractions, th e  strong, th e  weak, th e  electrom agnetic  and  th e  g rav ita tio n a l 
in teractions. T he fram ew ork of Q u an tu m  Field T heory  (Q F T ) unified th e  first th ree  of 
th em  in th e  so-called S tan d ard  M odel. Includ ing  grav ity  rem ains an  unsolved problem  in 
a Q F T  co n tex t.1 Difficulties ap p ea r w hen one tries  to  form ulate  a q u an tu m  version of 
E in ste in 's  theo ry  of G eneral R elativ ity . T he naive q u an tiza tio n  leads to  a p ertu rb a tiv e ly  
non-renorm alizable theo ry  which canno t be sim ply included in th e  unified m odel of all 
in teractions. T he idea of asym pto tic  safety in troduced  by W einberg [1] is an  a tte m p t to  
form ulate  a n o n -p e rtu rb a tiv e  Q F T  of gravity. I t  assum es th a t  th e  renorm alization  group 
flow in th e  bare coupling co n stan t space leads to  a non-triv ial fin ite-dim ensional u ltrav io let 
fixed po in t a round  w hich a new p e rtu rb a tiv e  expansion can  be construc ted  which leads 
to  a pred ic tive q u an tu m  theo ry  of gravity. T he so-called E x ac t R enorm aliza tion  G roup  
p rogram  [2- 6] has tried  to  estab lish  th e  existence of such a fixed po in t w ith  a fair am ount 
of success, b u t relies in th e  end, desp ite  th e  nam e, on tru n ca tio n  of th e  renorm alization  
g roup  equations. T hus it would be reassuring  if o th er n o n -p e rtu rb a tiv e  Q F T  approaches 
could confirm  th e  exact renorm alization  g roup  results.

L attice  Q F T  is such a n o n -p e rtu rb a tiv e  fram ew ork and  it is well su ited  to  deal p re­
cisely w ith  th e  situ a tio n  w here one identifies fixed points, since these are w here one w ants 
to  reach continuum  physics by scaling th e  la ttice  spacing to  zero in a way w hich keeps 
physics fixed. It has been very successful providing us w ith  resu lts for QCD w hich are not 
accessible v ia p e r tu rb a tio n  theory. T here  exists a num ber of la ttice  Q F T  of gravity. O ne of 
them , th e  so-called D ynam ical T riangu la tion  (D T ) form alism  [7- 12] has provided us w ith  a 
“proof of concep t” , in th e  sense th a t  it has shown us, in th e  case of tw o-dim ensional q u an ­
tu m  grav ity  [13- 16], th a t  th e  con tinuum  lim it of th e  la ttice  theo ry  of grav ity  coupled to  
conform al field theories agree w ith  th e  corresponding  con tinuum  theories. O f course th ere  
are no p rop ag atin g  g rav ita tio n a l degrees of freedom  in tw o dim ensions, b u t th e  m ain  issue

1 Going beyond conventional QFT, string theory provides us with a theory unifying the interaction of 
m atter and gravity. Likewise loop quantum gravity uses concepts beyond conventional QFT.
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w ith  th e  la ttice  regu larization  is w hether or no t diffeom orphism  invariance is recovered 
w hen th e  la ttice  spacing goes to  zero. T h a t is th e  case in th e  D T  form alism , and  for th e

scaling dim ensions ob ta in ed  also in th e  continuum , i.e. scaling dim ensions which are differ­
en t from  th e  ones in flat spacetim e (the  so-called K P Z  scaling [17- 19]). T he D T  form alism  
was ex tended  to  higher dim ensional g rav ity  [20- 27], b u t th e re  it was less successful [28, 29]. 
I t  is no t ruled ou t th a t  th e  th eo ry  can  provide us w ith  a successful version of q u an tu m  
gravity, b u t if so th e  form ulation  has to  be m ore e lab o ra te  th a n  th e  first m odels (see [30- 33] 
for recent a ttem p ts ) . However, th e re  is one m odification of D T  which seems to  work in th e  
sense th a t  la ttice  theo ry  m ight have a non-triv ial continuum  lim it, th e  so-called C ausal D y­
nam ical T riangulations m odel (C D T ). T he m odel is m ore constra ined  th a n  th e  D T  m odels 
because one assum es global hyperbolicity, i.e. th e  existence of a global tim e foliation.

T he C D T  m odel of four-dim ensional q u an tu m  grav ity  is realized by considering piece­
wise linear sim plicial d iscre tizations of space-tim e. T he sim plicial bu ild ing blocks can  be 
glued together, satisfy ing th e  basic topological co n stra in ts  of global hyperbolic ity  (as m en­
tioned) and  a sim plicial m anifold s tru c tu re . T he q u an tu m  m odel is now defined using th e  
Feynm an p a th  in tegral form alism , sum m ing over all such geom etries w ith  a su itab le  action  
to  be defined below. T he sp a tia l U niverse w ith  a fixed topology evolves in p ro p er tim e. 
G eom etric s ta tes  a t a fixed value of th e  (discrete) tim e are trian g u la ted , using regular 
th ree-d im ensional sim plices ( te trah ed ra ) glued along trian g u la r faces in all possible ways, 
consisten t w ith  topology. T he com m on length  of th e  edges of sp a tia l links is assum ed to  
be a s . T e trah ed ra  are th e  bases of four-dim ensional {4,1} and  {1,4} sim plices w ith  four 
vertices a t tim e t  connected by tim e links to  a vertex  a t t  ±  1. All tim e edges are assum ed 
to  have a universal length  a t . To co n stru c t a four-dim ensional m anifold one needs two 
add itional types of four-sim plices: {3,2} and  {2,3} (having th ree  vertices a t tim e t  and 
tw o vertices a t t  ±  1). T he s tru c tu re  described above perm its  for every configuration  the  
ana ly tic  con tinuation  betw een im aginary  at (L orentzian  signature) and  real at (E uclidean 
signatu re). E ven afte r W ick ro ta tio n  th e  o rien ta tio n  of th e  tim e axis is rem em bered. T he 
sp a tia l and  tim e links m ay have a different length , and  are re la ted  by a a 2 =  a 2. T he 
q u an tu m  am plitude  betw een th e  in itia l and final geom etric s ta te s  separa ted  by th e  integer 
tim e T  is a w eighted sum  over all sim plicial m anifolds connecting th e  tw o sta tes. In  th e  
L orentz ian  fo rm ulation  th e  weight is assum ed to  be given by a discretized version of th e  
H ilb ert-E in ste in  action.

w here [g] denotes an  equivalent class of m etrics and  D m  [g] is th e  in teg ra tion  m easure over 
nonequivalent classes of m etrics. A piecewise linear m anifold w here we have specified th e  
leng th  of links defines a geom etry  w ith o u t th e  need to  in troduce coord inates. In  th e  C D T  
approach  th e  in teg ra tion  over equivalent classes of m etrics is th u s  replaced by a sum m ation  
over all trian g u la tio n s T  satisfying th e  constra in ts . A fter a W ick ro ta tio n  th e  am plitude  
becom es a p a rtitio n  function

conform al field theories living on th e  la ttice  one ob ta ins precisely th e  non-triv ial critica l

( 1 . 1)

Z c d t  =  ^  e ,
T

(1 .2)
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w here S r  is a su itab le  form  of th e  E inste in -H ilbert ac tion  on piecewise linear geom etries. 
T here  exists such an  action, which even has a nice geom etric in te rp re ta tio n , th e  so-called 
Regge ac tion  S r  for piecewise linear geom etries [34]. In  our case it becom es very sim ple 
because we have only tw o kinds of four-sim plices w hich we glue to g e th er to  form  our 
piecewise linear four-m anifold:

S r  =  - ( K o  +  6 A ) ■ No +  K 4 ■ (N 41 +  N 32) +  A  ■ N 4 1 , (1.3)

w here N 0 is th e  num ber of vertices in a trian g u la tio n  T , N 41 and  N 32 are th e  num bers of 
{4,1} plus {1,4} and  {3,2} plus {2,3} sim plices, respectively. T he ac tion  is param etrized  
by a set of th ree  dim ensionless bare  coupling constan ts , K 0, re la ted  to  th e  inverse g rav ita ­
tional constan t, K 4 —  th e  dim ensionless cosm ological co n stan t and  A  —  a function  of th e  
p a ram ete r a , th e  ra tio  of th e  sp a tia l and  tim e edge lengths (for a detailed  discussion we 
refer to  [35] and  to  th e  m ost recent review [36] and  for th e  original lite ra tu re  to  [37, 38]). 
T he am plitude  is defined for K 4 >  K4rit and  th e  lim it K 4 ^  K4rit corresponds to  a (dis­
crete) infinite volum e lim it. In  th is  lim it, th e  p roperties  of th e  m odel depend on values 
of th e  tw o rem aining coupling constan ts . T he m odel was extensively stud ied  in th e  case, 
w here th e  sp a tia l topology was assum ed to  be spherical (S 3) [39- 45]. T he m odel could not 
be solved analy tica lly  and  th e  in form ation  ab o u t its  p roperties was ob ta in ed  using M onte 
C arlo  sim ulations. I t was found th a t  th e  m odel has a surprising ly  rich phase stru c tu re , w ith  
four different phases. T he m ost in teresting  am ong th e  four phases is phase C, w here th e  
m odel dynam ically  develops a sem iclassical background geom etry  which in som e respect is 
like (Euclidean) de S itte r geom etry, i.e. like th e  geom etry  of S 4. B o th  th e  sem iclassical vol­
um e d is trib u tio n  and  fluctua tions around  th is  d is trib u tio n  can  be in te rp re ted  in te rm s of a 
m in isuperspace m odel [46- 49]. For increasing K 0 phase C is bounded  by a first-order phase 
tran s itio n  to  phase A, w here th e  tim e correlation  betw een th e  consecutive slices is absent. 
For sm aller A  phase C has a phase tran s itio n  to  a so-called b ifu rcation  phase, w here one 
observes th e  appearance of local condensations of geom etry  a round  som e vertices of the  
tr ian g u la tio n  [50- 53]. T he phase tran s itio n  is in th is  case of second or higher order. For 
still lower A  th e  b ifu rcation  phase is linked w ith  th e  fo u rth  phase, th e  so-called B phase, 
w here one observes a spontaneous com pactification  of volum e in th e  tim e d irection, such 
th a t  effectively all volum e condenses in one tim e slice. T he phase tran s itio n  betw een th e  
b ifu rcation  phase and  th e  B phase is also of second or h igher order [44]. T he behavior 
of th e  m odel near continuous phase tran sitio n s is crucial if one w ants to  define a physical 
large-volum e lim it (a careful discussion of th is  can  be found in [54]). In  th is  respect phase C 
s tan d s ou t, th e  reason being th a t  only in th is phase th e  large scale s tru c tu re  of th e  average 
geom etry  is “observed” (via th e  M onte C arlo sim ulations) to  be four-dim ensional, isotropic 
and  hom ogeneous, and  one can  define an  infrared  sem iclassical lim it w ith  a correct scaling 
of th e  physical volum e [42 , 46]. V ia phase C we th u s w ant a renorm alization  group flow in 
th e  bare  coupling co n stan t space tow ards an  UV fixed po in t (the  asym pto tic  safety fixed 
p o in t), while keeping physical observables fixed. T he n a tu ra l endpo in t of such a flow would 
be a po in t in th e  phase d iagram  w here several phases m eet. In  th e  early  stud ies it was 
specu lated  th a t  th e re  could be a quadrup le  po int, w here all four phases m eet. U nfo rtu ­
n a te ly  th e  num erical algorithm  used was not efficient in th is  m ost physically in teresting
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F ig u re  1. The phase structu re  of C D T for a fixed num ber of tim e slices T  =  4 and average lattice 
volume N 4 1  =  160k. Blue color represents the  bifurfaction phase, black color the  crum pled phase, 
green color the  C phase and orange color the A phase.

range in th e  coupling co n stan t space. As a consequence it was not possible to  analyze th e  
m odel in th is  range.

T h e  present artic le  discusses a new fo rm ulation  of th e  m odel, w here th e  sp a tia l topology 
is assum ed to  be th a t  of a th ree -to ru s  (T 3) [55- 57], ra th e r  th a n  th a t  of a th ree-sphere, which 
was th e  topology used in all th e  form er studies. I t was found th a t  th e  four phases in th is 
case are th e  sam e as in th e  spherical m odel, w ith  th e  position  of phase boundaries shifted 
a l i tt le .2 T he add itional, im p o rtan t bonus in th is  new form ulation  comes from  th e  fact 
th a t  th e  physically in teresting  region in th e  bare  coupling co n stan t space m entioned above 
becom es num erically  accessible w ith  th e  s tan d a rd  algorithm  used in th e  earlier studies. We 
could th en  observe th a t  th e  speculative q uadrup le  po in t, m aybe no t surprisingly, separates 
in to  tw o trip le  points, connected  by a phase tran s itio n  line betw een phase C  and  th e  B  
phase, and  no t sep ara ted  by th e  b ifu rcation  phase (see figure 1) . A n im p o rtan t po in t is 
th a t  we now have access to  these trip le  po in ts d irec tly  from  phase C  and  it is th u s  possible 
to  have a renorm alization  group flow from  th e  in frared  to  th e  po ten tia l U V fixed point 
en tire ly  in th e  “physical” C phase.

T he phases of th e  m odel were identified for a system  w ith  N 41 =  160k, analyzing 
th e  s tru c tu re  of geom etry  a t th e  grid of po in ts in th e  coupling co n stan t plane shown in 
figure 1, th e  different phases represen ted  by do ts  w ith  different colors. In  th e  presented  
phase d iagram  th e  precise position  of phase tran sitio n s  was no t determ ined . T his requires 
a careful s tu d y  of th e  infinite volum e lim it and  scaling of th e  position  of phase tran s itio n

2This may be a finite-size effect. The diagram was determined by analyzing systems with only one 
volume.
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lines w ith  th e  la ttice  volum e. T he m ost in teresting  region is th e  one separa ting  phase C 
and  B w here we m ay observe tw o trip le  points. T he present p ap er is th e  first step  in th e  
analysis of th is  m ost physically in teresting  region. We will perform  a detailed  analysis of 
th e  behavior of th e  m odel a t K 0 =  4.0 in th e  neighborhood of th e  phase tran s itio n  line. We 
will try  to  d eterm ine th e  order of th e  phase tran s itio n  a t th is po int. We will show th a t  th e  
tran s itio n  seems to  be a first o rder tran sitio n . T he resu lts p resen ted  in th is  artic le  show 
th a t  th e  m ost in teresting  region in th e  bare p aram eter space can  successfully be analyzed 
using th e  s tan d a rd  M onte C arlo  algorithm  used in th e  earlier sim ulations.

2 T he phase stru ctu re o f C D T

As m entioned , th e  phase d iagram  of th e  C D T  m odel w ith  a to ro idal sp a tia l topology per­
m its us to  investigate th e  properties of th e  m odel in an  im p o rtan t range of th e  bare  coupling 
co n stan ts , previously inaccessible to  num erical m easurem ents. For system s w ith  a spherical 
sp a tia l topology a detailed  analysis of th e  phase d iagram  was perform ed following tw o lines 
in th e  bare  coupling co n stan t space. T hese were th e  vertical line w ith  varying A  a t K 0 =  2.2 
and  th e  horizonta l line a t A  =  0.6. In  th e  first case it was possible to  analyze th e  phase
tran s itio n  betw een C and  b ifurcation  phases and  betw een th e  b ifu rcation  and  B phases. In
th e  second case a tran s itio n  betw een th e  C and  A phases was stud ied  (see [58] for recent re­
su lts). T he belief com ing from  th e  analysis of th e  spherical case was th a t  if we decrease th e  
value of A  for a fixed value of K 0 we necessarily move from  C phase to  th e  b ifu rcation  phase 
and  only, for still lower A , to  th e  B phase. However, changing to  to ro idal sp a tia l topology 
we discovered th a t  th is  is no t th e  case, p robab ly  also in th e  spherical topology. T here  exists 
a range of bare  coupling co n stan ts  w here C and  B phases are d irec tly  neighboring. T his 
happens close to  th e  A  =  0 line in th e  range of K 0 betw een, approxim ately , 3.5 and  4.5. 
O ne m ay expect th e  existence of tw o trip le  poin ts (instead  of th e  previously conjectured  
q uadrup le  poin t): one trip le  po in t w here C, A and  B phases m eet, and a second trip le  po int 
w here C, b ifu rcation  and  B phases m eet. F ind ing  th e  precise location  of th e  trip le  points 
m ay be num erically  m ore difficult th a n  analyzing th e  generic tran s itio n  betw een phase C 
and  B. As a first step  in th e  detailed  analysis we have chosen to  d eterm ine th e  position  and 
th e  order of th e  phase tran s itio n  betw een C and  B phases along a vertical line a t K 0 =  4.0. 
T his is approx im ate ly  in th e  m iddle betw een th e  position  of th e  tw o trip le  po in ts. Since 
th e  charac te ris tic  behavior in th e  tw o phases corresponds to  different sym m etries of th e  
configurations (we have tran s la tio n a l sym m etry  in tim e in th e  C phase and  a spontaneous 
breaking  of th is  sym m etry  in th e  B phase) we expect a relatively  large hysteresis w hen we 
cross th e  phase boundary. We w ant to  find m ethods w hich m ake th e  hysteresis effect as 
sm all as possible. We also expect relatively  large finite size effects. A n im p o rtan t po in t in 
th e  analysis will be to  check how th e  hysteresis behaves w hen th e  system  size goes to  infinity.

T he analysis presen ted  in th e  p ap er is based on a stu d y  of system s w ith  a fixed tim e 
period  T  =  4 and  different (alm ost) fixed volum es N 41 . In  th e  earlier studies, it was shown 
th a t  reducing th e  period  T  does no t produce significant finite-size effects [58]. On th e  
o th e r hand , in p articu la r in th e  C phase, th e  average volum e per tim e slice for a fixed to ta l 
volum e gets relatively  large, w hich is very im p o rtan t. In  th e  M onte C arlo  sim ulations we
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enforce th e  la ttice  volum e N 41 to  flu c tu a te  around  a chosen value N 41, so th a t  th e  m easured 
(N 41) =  N 41. T his is realized by adding  to  th e  Regge ac tion  ( 1.3) a volum e-fixing term

S r  ^  S r  +  e(N 41 — N 41)2- (2-1)

In  th e  th e rm a liza tio n  process it is essential to  fine-tune th e  value of K 4 in such a way 
th a t  one gets s tab ility  of th e  system  volum e. T his is realized by le ttin g  th e  value of K 4 
dynam ically  change by sm all steps, un til th e  required  stab le  s itu a tio n  is realized. If a value 
of K 4 is to o  high, we observe th a t  system  volum e stabilizes below th e  ta rg e t value N 41. 
Similarly, if we take  it to o  sm all, th e  volum e will be too  large. O nly for K 4 K4Crit(N41) 
fluctua tions of volum e are cen tered  around  N 41 w ith  th e  w id th  controlled  by e. D uring  th e  
th e rm a liza tio n  p a r t of th e  M onte C arlo  sim ulations th e  algorithm  tries  to  find th e  op tim al 
value of K 4 for a given fixed set of p aram eters  K 0, A  and  N 41. T he whole process of 
m easurem ents is organized in th e  following way:

•  We s ta r t  a sequence of th e rm a liza tio n  runs a t a set of A  values in th e  neighborhood of 
th e  expected  position  of th e  phase tran sitio n . T h e  in itia l configuration of th e  system  
is tak en  to  be th e  sm all hyper-cubic configuration discussed in reference [55]. We 
choose th e  ta rg e t volum e N 41 and  let th e  system  size grow tow ards N 41 and  ad ap t 
th e  K 4 value from  th e  guessed in itia l value. T he in itia l K 4 can  be chosen e ither a 
little  below or a little  above th e  guessed critica l value.

•  We find th a t  on th e  grid of A  values we can  determ ine ranges corresponding  to  the  
appearance of tw o different phases, w ith  a relatively  sudden  ju m p  betw een th e  phases. 
In  general th e  ju m p  is observed betw een tw o neighboring values on th e  grid of A . 
T he corresponding  values of K 4 are m arkedly  different in th e  tw o phases. Typically  
th e  value is sm aller for th e  C phase th a n  for th e  B phase. We can  determ ine the  
phase of th e  system  by th e  m easured values of th e  o rder p aram eters  (see la te r for 
definitions), which are very different in th e  different phases.

•  T he value of A  w here th e  phase tran s itio n  is observed depends on th e  in itia l value 
of K 4 used in th e  th e rm a liza tio n  process. As a consequence, we observe in general 
tw o values AfOW(N41) and  Ah1gh(N 41). B o th  values are determ ined  w ith  th e  accuracy 
depending  on th e  grid  of A.

•  We rep eat th e  analysis on a finer grid, which covers th e  range w here we observed 
phase tran sitio n s. We found th e  m ost effective procedure is to  re s ta r t  th e  M onte 
C arlo  evolution from  th e  sam e sm all in itia l configuration as before, b u t using as th e  
in itia l values of K 4 th e  ones determ ined  for th e  C or th e  B phase from  earlier runs 
in th e  neighborhood of th e  tran sitio n s, corresponding  to  A£11W(N41) or Ahigh(N 41) 
respectively.

•  A finer grid perm its  to  determ ine th e  tw o positions of th e  phase tran s itio n  w ith  
b e tte r  accuracy. T he different position  of ju m p s betw een th e  tw o phases (low  or 
high) can  be in te rp re ted  as th e  hysteresis effect in a process w here we slowly increase 
th e  value of th e  A  p aram ete r or slowly decrease its value. W e observe tha t the size
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A

F ig u re  2. The plot illustrates the hysteresis m easured during sim ulations for the  target volume 
NN4 i =  160k. The green and blue dots correspond to  the  location of the phase C side of the 
phase-transition, while the  red and black dots correspond to  the location of the phase B side of 
the phase-transition. The same colors will be used in the  next plots, where we com pare results for 
different volumes.

o f the hysteresis fo r  a particular choice o f  IV41 does n o t decrease w ith in  reasonable 
therm aliza tion  tim es. B y  taking a fin e r  grid in  A  we can only determ ine the end  
poin ts o f a hysteresis curve w ith a better accuracy. We illu s tra te  th e  situ a tio n  in 
figure 2 . T he lines shown were ob ta in ed  from  th e  m easured values of A  and K 4 for 
N 41 =  160k.

•  In  th e  range of A  values betw een AfOW(N41) and  Ah1jgth(N 41), depend ing  on th e  in itial 
value of K 4 a system  ends e ith er in th e  B  or C  phase. T his can  be in te rp re ted  
as a range of p aram eters , w here th e  tw o phases m ay coexist. T he d is trib u tio n  of 
th e  values of th e  o rder p aram eters  (to  be defined below), ch arac te ristic  for th e  two 
phases, is very narrow . As a consequence, a tunnelling  betw een th e  two phases is 
never observed a fte r we have reached a “s tab le” ensem ble of configurations in the  
th erm aliza tio n  stage.

T he th erm aliza tio n  p a th  chosen above m eans in practice, th a t  in th e  beginning, th e  
system  grows in a relatively  random  way from  th e  in itia lly  sm all configuration to  th e  desired 
ta rg e t volum e IV41 and  th e  geom etry  evolves to  a s tab le  range in th e  configuration space. 
T he first step  can  be in terp re ted  as a step  in th e  d irec tion  typ ical for th e  phase A, w here 
correlations betw een th e  sp a tia l configurations in th e  consecutive tim e slices are sm all or 
absent. O nly afterw ards we reach th e  dom ains corresponding  to  th e  tw o phases we study. 
As a consequence, we expect th a t  th e  described m ethod  will be very well su ited  to  th e  
fu tu re  analysis of th e  trip le  po in t involving th e  A phase.
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F ig u re  3. The pseudo-critical value K4rlt(N 4 1 ) as a function of A crlt(N 4 1 ). The d a ta  points 
m easured for increasing la ttice  volume N 4 1  are going from left to  right. C enter of the black ellipse 
corresponds to  the  estim ated  position of (A crlt(TO), K4rlt(TO)) and its radii correspond to  the 
estim ated  uncertainties. Colors of the fits follow the  convention used in figure 2 .

T he behavior of th e  pseudo-critical values K 4rit(N 41) is very sim ilar to  th a t  of 
A crit(N 41). This can  be seen in figure 3 , w here we show th e  values of K 4rit(N 41) p lo tted  as 
a function  of A crit(N 41). O n b o th  sides of th e  hysteresis th e  dependence is approx im ate ly  
linear, w hich m eans th a t  values of b o th  pseudo-critical p aram eters  (K 4rit and  A crit) scale 
in th e  sam e way w ith  th e  la ttice  volum e N 41. E x trap o la tin g  th e  lines to  a po in t w here 
th ey  cross perm its  to  d eterm ine values for K4rit and  A crit in th e  lim it N 41 ^  to . T he fit 
gives K 4rit(TO) =  1.095 ±  0.001 and  A crit(TO) =  0.022 ±  0.002. T h e  errors on th is  and  o th er 
plo ts are th e  estim ated  s ta tis tica l errors and  include th e  grid spacing for A .

A lthough th e  size of th e  hysteresis shrinks w ith  volum e N 41, th e  p lots ind icate  th a t  
th e  shrinking process is relatively  slow and  th u s  in order to  get rid  of th e  hysteresis one 
should use ex trem ely  large la ttice  volum es, no t tra c tab le  num erically. T he dependence of 
A crit on th e  la ttice  volum e, ranging  betw een N 41 =  40k and N 41 =  1600k is presen ted  in 
figure 4 . As it was explained above, th e  plot contains four sets of d a ta  corresponding  to  
th e  four different poin ts describ ing th e  hysteresis (see figure 2) . T h e  d a ta  poin ts can  be 
fitted  w ith  th e  curve

A crit(N41) =  A crit(TO) -  A  ■ N ~ 1 / 7 . (2.2)

T he best fit for th e  com bined sets of d a ta  (w ith  fixed A crit(TO) =  0.022 determ ined  above) 
was ob ta in ed  for 7  =  1.64 ±  0.18. A n a lte rn a tiv e  fit w ith  7  =  1 (and th e  sam e value of 
A crit(TO)) is excluded as can  be seen in figure 4 (the  dashed  line). T he value 7  =  1 would 
be a strong  evidence for a first o rder tran sitio n . T h e  fits were based on d a ta  m easured for 
volum es ranging from  N 41 =  40k to  N 41 =  720k. T he largest volum e N 41 =1600k was used 
only for checking consistency w ith  th e  ex trap o la tio n s  T he analogous p lo t p resenting  th e  
four sets of th e  pseudo-critical K 4rit(N 41) values for th e  sam e range of volum es is shown in
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F ig u re  4. The pseudo-critical value A crlt as a function of NN4 1 . The solid lines are (one param eter) 
fits of formula (2.2) w ith fixed common values of 7  =  1.64 and A crlt(w ) =  0.022. Colors of the fits 
follow the convention used in figure 2 . The dashed line shows a common fit of all d a ta  points to  
the scaling function (2 .2 ) w ith enforced value of 7  =  1 and A crlt(w ) =  0 .0 2 2 .

figure 5. T he experim ental poin ts are again  well fitted  by th e  form ula

K4Crit(N4i) =  K4ritM  -  B  ■ N - 1 h , (2.3)

w here th e  m easured value of 7  =  1.62 ±  0.25 agrees well w ith  th e  resu lt ob ta ined  for A crit. 
T he fits are  represented  by curves w ith  different colors, w hich again  follow th e  convention 
used in figure 2 . O n th e  scale used in th is  plot th e  green and  blue curves p ractically  overlap.

3 Order param eters

To identify  th e  phases of C D T  w ith  to ro idal sp a tia l topology we follow m ethods used in 
th e  previous studies. T hese are based on th e  analysis of o rder p aram eters  w hich have a 
different behavior in th e  different phases. We use o rder p aram eters  which charac terize b o th  
global and  local p roperties of th e  sim plicial m anifolds. T he global order p aram eters  were 
called O 1 and  O 2, w here

O i =  N T ' ° 2  =  (3A)
In  each phase th e  d is trib u tio n s  of N 0 and  N 32 are very narrow , and  p ractically  G aussian. 
P hases B and  C are characterized  by very different average values for th e  tw o d istribu tions. 
T he dependence of th e  order p aram eters  O 1 and  O 2 on N 41 a t th e  endpo in ts of th e  hysteresis 
is p resented  in figure 6 . T he colors follow th e  convention used in figure 2 .

T he d a ta  presen ted  on th e  plots correspond for each N 41 to  th e  four values of the  
A crit(N 41) points, following again  th e  n o ta tio n  of figure 2 . I t  is seen th a t  a lthough  b o th  
pseudo-critical values K4rit(N 41) and  A crit(N 41) becom e very close for increasing N 41, this 
is n o t the case fo r  the order param eters, which in  fa c t behave in  a way sim ilar to tha t
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F ig u re  5. The pseudo-critical value K4rlt as a function of NN4 1 . The solid lines are (one param eter) 
fits of formula (2.3) w ith fixed common values of 7  =  1.62 and K4rlt(w ) =  1.095. Colors of the fits 
follow the convention used in figure 2 .

characterizing the fir s t order transition . I t m eans th a t  a tran s itio n  betw een th e  B and 
C phases becom es very rap id . O n th e  o th er hand , due to  th e  observed hysteresis, th e  
m ethod  used in th is  analysis chooses a position  of m easured values for th e  order p a ram ete rs  
slightly  away from  th e  true  tran s itio n  po in t (located  inside th e  hysteresis region) and  thus 
in fact we were no t able to  perform  stab le  sim ulations exactly  a t K 4rit(N 41) and  A crit(N 41) 
corresponding  to  such a tran s itio n  p o in t .3

A sim ilar behavior is observed for th e  set of local o rder p aram eters  O 3 and  O 4 defined
by

O 3 =  ^ ( n t + 1 -  n t )2, O 4 =  m a x op . (3.2)

H ere n t is th e  num ber of te tra h e d ra  shared  by {4 , 1} and  {1, 4} four-sim plices w ith  bases 
a t tim e t  and  n t =  1 N 41(t) =  2N41. m ax  op is th e  m axim al order of a vertex  in
a trian g u la tio n . T h e  typ ical behavior of these tw o order p aram eters  is expected  to  be 
different in phases B and  C. P h ase  B is characterized  by having a m acroscopic fraction  of 
th e  four-volum e concen tra ted  a t a single sp a tia l slice corresponding  to  som e tim e t (in th e  
sense th a t  alm ost all {4, 1} and  {1 , 4} four-sim plices have four vertices a t th is  sp a tia l slice). 
T his is accom panied by th e  appearance of tw o singular vertices located  a t tim es t ±  1 and 
shared  by a m acroscopic num ber of four-sim plices in a trian g u la tio n . As a consequence, in 
phase B —3  and  -O4  should be of o rder one. In  phase C th ere  is no such degeneracy and

for large N41 b o th  —3  and  — 4  should approach  zero. T he behavior of these tw o order 
p aram eters  is p resented  in figure 7 .

3We are currently working on the numerical algorithm which would enable tunneling between both sides
of the hysteresis region in a single Monte Carlo run and thus enable to define a more precise position of the 
transition point.
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F ig u re  6 . The order-param eters O i and O 2 as a function of N 41 a t the endpoints of the  hysteresis. 
The colors correspond to  the  convention used in figure 2 .
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F ig u re  7. The order-param eters ° 3/ n 41 and ° 4/ n 41 as a function of NN4 1  a t the  endpoints of the 
hysteresis. The colors correspond to  the convention used in figure 2 .
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4 C onclusion  and discussion

In  th e  present artic le  we m ade a deta iled  stu d y  of th e  phase tran s itio n  observed betw een 
th e  phase C and  th e  phase B a t th e  value of th e  dim ensionless g rav ita tio n al coupling 
co n stan t K 0 =  4.0. T he tran s itio n  appears to  be located close to  A  =  0. T he identification  
of th is  region, and  th e  possib ility  th a t  one can  move all th e  way to  th e  trip le  po in ts of 
th e  phase d iagram , staying en tire ly  inside th e  “physical” C phase, is a good news for 
th e  renorm alization  group p rogram  s ta rted  in [54] (and tem p o ra rily  p u t on hold by th e  
discovery of th e  b ifu rcation  phase). T he renorm alization  g roup analysis is p robab ly  th e  
cleanest way to  connect C D T  la ttice  grav ity  approach  to  asy m p to tic  safety. T he analysis 
of th e  relevant coupling co n stan t region was m ade possible by sw itching from  spherical 
sp a tia l topology to  to ro idal sp a tia l topology. In  th is  first s tu d y  of th e  in teresting  region we 
positioned ourselves in th e  m iddle of th e  B-C  phase tran s itio n  line, betw een th e  tw o trip le  
endpo in ts and  from  th e  analysis of th e  M onte C arlo  d a ta  we conclude th a t  th e  tran s itio n  is 
m ost likely of first order. Since endpo in ts of phase tran s itio n  lines often  are of higher order, 
th e  trip le  po in ts m ight well be of second order and  one of th em  could th en  serve as a UV 
fixed po in t for a q u an tu m  theo ry  of gravity. We are actively  pursu ing  th is  line of research.

L et us end by som e rem arks ab o u t our q u an tu m  grav ity  m odel, viewed as a s ta tis tica l 
system  of four-dim ensional geom etries. D espite th e  alm ost triv ia l ac tion  ( 1.3) , th e  m odel 
has an  am azingly rich phase s tru c tu re , w ith  four different phases, each characterized  by 
very different dom inating  geom etries. In  add ition , som e of th e  phase tran sitio n s have qu ite  
unusual characteristics. T he tran s itio n  betw een phase B and  th e  b ifurcation  phase is a 
second o rder tran s itio n  [44], b u t superficially, for a finite volum e, it looked like a first o rder 
tran sitio n . However, analyzing th e  behavior as a function  of th e  increasing la ttice  volum e 
th e  first o rder n a tu re  faded away. M oving tow ards larger values of K 0, i.e. tow ards th e  
region we have been investigating  in th is  artic le , th e  tran s itio n  becam e m ore and  m ore like 
a first o rder tran sitio n . W ith  th e  spherical sp a tia l topology used in [44] one could no t get 
to  th e  region investigated  in th e  presen t article, b u t it is n a tu ra l to  conjecture th a t  passing 
th e  trip le  po in t m oving from  th e  b ifurcation-B  line to  th e  C-B line, th e  tran s itio n  changes 
from  second o rder to  first order. However, th is  first o rder tran s itio n  is still som ew hat 
unusual. F irstly , it has kept th e  charac teristics of th e  second o rder b ifurcation-B  tran s itio n  
th a t  th e  finite size behavior of th e  pseudo-critical points, given by eqs. (2.2) and  (2.3) have 
n on-triv ia l exponen ts 7 . Secondly, th e  hysteresis gap  goes to  zero w ith  increasing volume, 
w hich is a n o n -stan d a rd  behavior in th e  case of a first o rder tran sitio n . However, th e  
ju m p s of th e  order p aram eters  seem volum e independen t and  th a t  is th e  m ain  reason th a t  
we classify th e  tran s itio n  as being a first o rder tran sitio n . T he large finite size effects we 
observe m ight be re la ted  to  th e  global changes of dom inan t configurations w hich take place 
betw een phase C and  phase B, and these global rearrangem en ts m ight, for finite volumes, 
have a different “phase-space” in th e  case of spherical and  to ro idal topologies. T h a t m ight 
explain  why our M onte C arlo  algorithm  can  access th e  B-C tran s itio n  only in th e  case of 
to ro idal topology. T h e  s ta tis tica l th eo ry  of geom etries is a fascinating  area  w hich is alm ost 
unexplored for spacetim e dim ensions larger th a n  two.
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