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Abstract: We are concerned with rigid analytic geometry in the general setting of Henselian fields
K with separated analytic structure, whose theory was developed by Cluckers–Lipshitz–Robinson.
It unifies earlier work and approaches of numerous mathematicians. Separated analytic structures
admit reasonable relative quantifier elimination in a suitable analytic language. However, the rings
of global analytic functions with two kinds of variables seem not to have good algebraic properties
such as Noetherianity or excellence. Therefore, the usual global resolution of singularities from rigid
analytic geometry is no longer at our disposal. Our main purpose is to give a definable version of
the canonical desingularization algorithm (the hypersurface case) due to Bierstone–Milman so that
both of these powerful tools are available in the realm of non-Archimedean analytic geometry at
the same time. It will be carried out within a category of definable, strong analytic manifolds and
maps, which is more flexible than that of affinoid varieties and maps. Strong analytic objects are
those definable ones that remain analytic over all fields elementarily equivalent to K. This condition
may be regarded as a kind of symmetry imposed on ordinary analytic objects. The strong analytic
category makes it possible to apply a model-theoretic compactness argument in the absence of the
ordinary topological compactness. On the other hand, our closedness theorem enables application
of resolution of singularities to topological problems involving the topology induced by valuation.
Eventually, these three results will be applied to such issues as the existence of definable retractions or
extending continuous definable functions. The established results remain valid for strictly convergent
analytic structures, whose classical examples are complete, rank one valued fields with the Tate
algebras of strictly convergent power series. The earlier techniques and approaches to the purely
topological versions of those issues cannot be carried over to the definable settings because, among
others, non-Archimedean geometry over non-locally compact fields suffers from lack of definable
Skolem functions.

Keywords: separated analytic structure; strong analytic functions; resolution of singularities;
transformation to normal crossings; closedness theorem; quantifier elimination; definable retractions

1. Introduction

We are concerned with rigid analytic geometry in the general setting of Henselian fields
K with separated analytic structure (with two kinds of variables: one varies over the closed
unit ball K◦ and the other ones over the open unit ball K◦◦), whose theory was developed by
Cluckers–Lipshitz–Robinson [1–3]. It unifies earlier work and approaches of numerous mathematicians
(see e.g., [4–10]).

Separated analytic structures, unlike strictly convergent ones, admit reasonable quantifier
elimination, relative to the auxiliary sorts, in suitable analytic extensions of the 3-sorted language
of Denef–Pas [11] or 2-sorted language of Basarab–Kuhlmann [12,13]. However, the rings of global
analytic functions with two kinds of variables seem not to have good algebraic properties such as
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Noetherianity or excellence (cf. [2], Remark 5.2.9). Thus, the usual global resolution of singularities
from rigid analytic geometry is no longer at our disposal.

The main purpose of this paper is to give a definable version of the canonical desingularization
algorithm due to Bierstone–Milman [14] in the hypersurface case (where the concepts of strict and
weak transforms coincide). Thus the two powerful tools, quantifier elimination and resolution of
singularities, will be available in the realm of non-Archimedean analytic geometry at the same
time. The algorithm provides a local invariant such that blowing up its maximum strata leads
to desingularization or transformation to normal crossings (op.cit., Theorems 1.6 and 1.10). This will
be accomplished in Section 3 within a certain category of definable, strong analytic manifolds and
maps, which is introduced and examined in Section 2. One of the essential ingredients of our approach
is the closedness theorem from our papers [15–17]. The strong analytic category takes into account all
those fields which are elementarily equivalent to the ground field K, and makes it possible to apply a
model-theoretic compactness argument in the absence of the ordinary topological compactness. It is
more flexible than that of affinoid varieties and maps, and allows us to introduce in a geometric way
the concepts of a blowup along a smooth strong analytic center and of (weak) transform.

On the other hand, the closedness theorem enables application of resolution of singularities to
topological problems which involve the topology induced by valuation. Eventually, both of these
results, along with elimination of valued field quantifiers, will be applied in Section 4 to such issues
as the existence of definable retractions or extending continuous definable functions, including the
theorems of Tietze–Urysohn and Dugundji (cf. [18,19]).

Making use of the closedness theorem, local transformation to normal crossings, elimination of
valued field quantifiers and relative (to some auxiliary, imaginary, linearly ordered sorts) quantifier
elimination for ordered abelian groups, we established in the papers [15–17] a lot of new results as,
for instance: piecewise continuity of definable functions, several versions of the Łojasiewicz inequalities
and of curve selection over arbitrary, Henselian, non-trivially valued, equicharacteristic zero fields
(including the non-algebraically closed ones), as well as many further applications. Let us emphasize
that the Łojasiewicz inequalities and curve selection were known before only in the case of algebraically
closed valued fields.

Observe that the established results remain valid for strictly convergent analytic structures,
because every such structure can be extended in a definitional way to a separated analytic structure
(cf. [3]). Classical examples of them are complete, rank one valued fields with the Tate algebras of
strictly convergent power series.

Note that our treatment of the problems from Section 4 via strong analytic maps allows us not to
appeal to the theory of quasi-affinoid subdomains developed by Lipshitz–Robinson [9]. Furthermore,
the earlier techniques and approaches to the purely topological versions of those problems cannot
be carried over to the definable settings because, among others, non-Archimedean geometry over
non-locally compact fields suffers from lack of definable Skolem functions. For a more detailed
discussion about their classical, purely topological counterparts (see e.g., [20–22]), we refer the reader
to our paper [18].

In Section 5, we discuss certain intricacies of non-Archimedean analytic geometry and give some
background behind quantifier elimination. Some advantages of the approach proposed in this paper
are also emphasized.

Now, following the papers [2,3], we remind the reader of the concept of an analytic structure.
Fix a Henselian, non-trivially valued field K of equicharacteristic zero; K may not be algebraically
closed. Denote by v, Γ = ΓK, K◦, K◦◦ and K̃ the valuation, its value group, the valuation ring (closed
unit ball), maximal ideal (open unit ball) and residue field, respectively. The multiplicative norm
corresponding to v will be denoted by | · |. The K-topology on Kn is the one induced by valuation v.
Observe that the K-topology is totally disconnected, and that a closed unit ball is a disjoint union of
infinitely many open unit balls (since the field K is not locally compact).
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Let K be a field with a separated analytic A-structure over a separated Weierstrass system
A = {Am,n}m,n∈N, i.e., with a collection {σm,n}m,n∈N of homomorphisms from Am,n to the ring of
K◦-valued functions on (K◦)m × (K◦◦)n. We consider the ground field K in the analytic language
L = LA from [2]. It is a two sorted, semialgebraic language LHen, augmented on the main, valued field
sort K by the multiplicative inverse (·)−1 and the names of all functions of the collection A, together
with the induced language on the auxiliary sort RV(K). Power series f from Am,n are construed as
f σ = σ( f ) via the analytic A-structure on their natural domains and as zero outside them.

Without changing the family of definable sets, one can assume that the homomorphism σ0,0

from A0,0 into K◦ is injective (whence so are the homomorphisms σm,n), which will be adopted in
the sequel. Recall further that the field K has A(K) structure by extension of parameters (cf. [2],
Section 4.5 and also [17], Section 2); more generally, K has A(F) structure for any subfield F of K.
Let TA be the LA-theory of all Henselian, non-trivially valued fields of equicharacteristic zero with
analytic A-structure.

The field K is embeddable into every model L of the LA(K)-theory of K. Under the above
assumption of injectivity, the field L has A(F)-structure for any subfield F of L. By abuse of notation,
we shall then identify the power series f ∈ A†

m,n(K) := K⊗K◦ Am,n(K) with their interpretations f σ on
their natural domains. The rings A†

m,n(K) of global analytic functions seem to suffer from lack of good
algebraic properties. Only the rings A†

m,0(K) and A†
0,n(K) of power series with one kind of variables

enjoy very good algebraic properties being, for instance, Noetherian, factorial, normal and excellent (as
they fall under the Weierstrass–Rückert theory; cf. [2], Section 5.2 and [23], Section 5.2). Therefore, the
techniques of resolution of singularities by Bierstone–Milman [14] or Temkin [24] cannot be directly
applied to them (and thus on the global space M0 = (K◦)m × (K◦◦)n).

We shall show that the output data of the algorithm are strong analytic if the input data are
too, and, consequently, that the desingularization invariant takes only finitely many values and its
equimultiple loci are definable. Actually, the resolution process works for arbitrary strong analytic
functions on strong analytic manifolds. Our approach, pursued in Section 3, is based on analysis
of the data from which the invariant is built, which in turn relies principally on the following four
crucial points:

1. The functions and submanifolds involved in the resolution process, are definable and strong
analytic. Consequently, via a model-theoretic compactness argument, the orders of those functions
are definable, i.e., their equimultiple loci are finite in number and definable. This enables
further analysis of the entries νr(a) of the invariant, which is a kind of higher order, rational
multiplicity of certain strong analytic functions. Hence and by the canonical character of the
process, the successive centers of blowups, being the maximum strata of the desingularization
invariant, are definable and strong analytic.

2. The entries νr(a) can be defined by computations which involve orders of vanishing in suitable
local coordinates (independently of their choice) induced by generic affine coordinates of the
ambient affine space. Therefore, such computations can be performed through suitable definable
families of coordinates induced by affine coordinates. This is of great importance, especially
in the absence of definable Skolem functions. Hence νr(a) turn out to be definable, i.e., their
equimultiple loci are finite in number and definable.

3. Making use of the closedness theorem, it is possible to partition each ambient manifold, achieved
by blowing up, into a finite number of definable clopen pieces so that, on each of them, both
the exceptional hypersufaces (which reflect the history of the process and enable the further
construction of the desingularization invariant) and next the successive blowup, can be described
in a definable geometric way. This geometric bypass compensates for inability to globally describe
the centers of the successive blowups in a purely analytic way, which is caused by lack of good
algebraic properties of the rings of global analytic functions.

4. The canonical algorithm depends only on the completions of the local rings of analytic function
germs at the points of the ambient manifolds. Therefore, finite partitions of those manifold
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into definable clopen pieces do not affect its output data, although quasi-affinoid structure may
change. This legitimizes partitions indicated above.

2. Strong Analyticity: Blowups and (Weak) Transforms

Strong analyticity is a model-theoretic strengthening of the weak concept of analyticity determined
by a given separated Weierstrass system (treated in the classical case e.g., by Serre [25]), which works
well within the definable settings. By strong analytic functions and manifolds, we mean the analytic
ones that are definable in the structure K and remain analytic in each field L elementarily equivalent to
K in the language LA(K). Examples of such functions and manifolds are those obtained by means of
the implicit function theorem and the zero loci of strong analytic submersions.

From now on, “definable” will mean “LA(K)-definable”. Since all analytic functions and manifolds
occurring in the resolution process turn out to be strong analytic, the words “definable, strong analytic”
will be shortened for simplicity to “analytic”.

Let f : M → K be an analytic function on an analytic manifold M (by the above convention,
in the category of strong analytic manifolds). By supp f , the support of f , we mean the closure (in the
K-topology) of the complement of its zero locus V( f ). It is not difficult to check that supp f is a
clopen definable subset and that the order of vanishing µa( f ) ∈ N of f at a point a ∈ supp f is finite;
obviously, µa( f ) = ∞ iff a ∈ supp f . The following basic result on order of vanishing will often be
used in the sequel.

Proposition 1. Under the above assumptions, the set of orders of vanishing {µx( f ) : a ∈ M} is finite.
Moreover, the conclusion remains true for definable families of analytic functions.

Proof. The assertion follows directly, via a routine model-theoretic compactness argument, from the
assumption of strong analyticity.

Remark 1. It follows immediately from the proposition that the sets of orders of vanishing {µx( f ) : a ∈ M}
over the fields L elementarily equivalent to K in the language LA(K) coincide.

Let C be a closed analytic submanifold of M. Likewise in the classical case, we can define the
order of the analytic function f along C at a point a ∈ C by putting

µC,a( f ) := min {µx( f ) : x ∈ C near a}.

Then µC,a( f ) takes only finitely many values and is constant on clopen definable subsets Fk. Using
the closedness theorem, it is not difficult to show the following

Proposition 2. Under the above assumptions, there are a finite number of pairwise disjoint, clopen definable
subsets Ωk of M covering C such that the order of vanishing µC,a( f ) is constant on C ∩Ωk. Further, we can
ensure that f vanishes on Ωk if µC,a( f ) = ∞ on C ∩Ωk.

A definable construction of the blowup along C. Suppose C is a closed (definable) analytic
submanifold of M0 = (K◦)k × (K◦◦)l of dimension p ≤ n− 1 with n = k + l, and consider the finite
subsets I of {1, . . . , n} of cardinality p. Define the canonical projections φI onto the xI variables
by putting

(φI(x))i =

{
xi if i ∈ I,
0 otherwise .

Let UI be the set of all points a ∈ C at which the restriction of φI to C is an immersion. Obviously,
the sets UI are a finite open definable covering of C. By [18] (Corollary 2.4) (being a consequence of the
closedness theorem), there exists a finite clopen definable partition ΩI of C such that ΩI ⊂ UI . For a
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fixed I, denote the restriction of φI to ΩI by φ. The fibres of φ are of course finite. It follows from the
closedness theorem that φ is a definably closed map. Therefore, for any a ∈ ΩI and a neighbourhood
U of φ−1(φ(a)), there exists a neighbourhood V of φ(a) such that φ−1(V) ⊂ U. Hence and by the
implicit function theorem, the set

F := {(a, z) ∈ ΩI ×M0 : ∃ x ∈ ΩI x 6= a, φ(x) = φ(a), z = x− a}

is a closed definable subset of ΩI ×M0. It follows from the closedness theorem, that there is an ε ∈ |K|,
ε > 0, such that |a− x| > ε for every a, x ∈ ΩI with φ(a) = φ(x) and a 6= x. Then the restriction of φI
to the clopen subset

B(a, ε) ∩ φ−1(φ(ΩI ∩ B(a, ε)))

is injective whence a bianalytic map onto the clopen image (by the closedness theorem again). Put

Ω∗I :=
⋃

a∈ΩI

(B(a, ε) ∩ φ−1
I (φI(ΩI ∩ B(a, ε)))).

Lemma 1. Ω∗I is a closed subset of M0 whence a clopen neighbourhood of ΩI .

Proof. Indeed, take a point b from the closure of Ω∗I . Then

B(b, δ) ∩Ω∗I 6= ∅

for every δ < ε. Further,

B(b, δ) ∩ B(a, δ) ∩ φ−1
I (φI(ΩI ∩ B(a, ε))) 6= ∅

for some a ∈ ΩI . Hence
B(b, δ) ∩ φ−1

I (φI(ΩI ∩ B(b, ε))) 6= ∅

and
φI(B(b, δ) ∩ φI(ΩI ∩ B(a, ε)) 6= ∅, B(φI(b), δ) ∩ φI(ΩI ∩ B(a, ε)) 6= ∅.

Thus φI(b) lies in the closure of φI(ΩI ∩ B(a, ε)). Since, by the closedness theorem, this is a closed
subset, we get φI(b) ∈ φI(ΩI ∩ B(a, ε)). Therefore φI(b) = φI(c) for some c ∈ ΩI ∩ B(b, ε). Then

b ∈ B(c, ε) ∩ φ−1
I (φI(ΩI ∩ B(c, ε)))),

and thus b ∈ Ω∗I , as required.

We can regard the restrictions of φI to Ω∗I as coordinate charts on C in analogy to regular coordinate
charts considered in [14] (Section 3). What will play an important role is that every ΩI is the zero
locus of an analytic submersion θ : Ω∗I → Kq defined as follows. Let J := {1, . . . , n} \ I and ψJ be the
canonical projection onto the variables xJ . Any point x ∈ Ω∗I lies in

B(a, ε) ∩ φ−1
I (φI(ΩI ∩ B(a, ε)))

for some a ∈ ΩI . Take a unique y ∈ ΩI ∩ B(a, ε) such that φI(x) = φI(y) and set θ(x) := ψJ(x)−ψJ(y).
This construction enables the standard definition of the blowup of Ω∗I along C which is an analytic
submanifold of Ω∗I × Pq−1(K).

We have thus constructed the blowups along C of the pairwise disjoint, clopen definable
neighbourhoods Ω∗I of the clopen pieces ΩI of the submanifold C and the blowups of those
neighbourhoods. On the complement

M0 \
⋃
I

Ω∗I ,
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which is a clopen subset of M0, it suffices to define the blowup to be the identity. By gluing, we obtain
the blowup σ1 : M1 → M0, which is an analytic map, where M1 is an analytic submanifold of
M0 × Pq−1(K) and q = n− p is the codimension of C in M0. We should once again emphasize that
this construction is performed in the category of strong analytic manifolds and maps.

Remark 2. In this manner, the blowup M1 can be further analyzed by using the q standard affine clopen charts
on Pq−1(K).

The above construction leads to the following

Definition 1. Let M be a closed analytic submanifold of dimension m of M0 := (K◦)k × (K◦◦)l , φ1, . . . , φn

be affine coordinates on M0 with n := k + l, Ω∗ be a clopen definable subset of M0 and Ω := Ω∗ ∩ M.
We say that φ1, . . . , φm are a definable coordinate system for M on Ω∗ if the restriction of (φ1, . . . , φm) is an
immersion of Ω such that for each point x ∈ Ω∗ there is a unique point y ∈ Ω that is closest to x from among
(φ1, . . . , φm)−1(x) ∩Ω. We then call Ω a definable chart with coordinates φ1, . . . , φm on Ω∗. As demonstrated
above, Ω is then the zero locus of an analytic submersion θ : Ω∗ → Kn−m.

Summing up, we have proven the following

Proposition 3. Every closed analytic submanifold M of dimension m in M0 = (K◦)k × (K◦◦)l can be
partitioned into a finite number of pairwise disjoint, clopen definable charts Ω with coordinates on clopen subsets
Ω∗ of M0. Moreover, M ∩Ω∗ is the zero locus of an analytic submersion θ : Ω∗ → Kn−m.

Corollary 1. Let C ⊂ M be two closed analytic submanifolds of M0 of dimension p and m, respectively.
Then there exist a finite number of pairwise disjoint, clopen definable subsets Us of M which cover C and such
that C ∩Us are the zero loci of some analytic submersions θs : Us → Km−p. In particular, if C is a hypersurface
in M, then C ∩Us = V(θs) for some analytic submersions θs : Us → K.

Using the above methods, we can obtain, in the category of strong analytic manifolds and maps,
the following characterization of normal crossing divisors, the detailed verification being left to
the reader.

Corollary 2. Let f : M→ K be a analytic function on an analytic submanifold of M0. If f is a normal crossing
divisor (in the usual sense), then there exists a finite partition of M into clopen definable subsets Ωs and, for each
s, analytic submersions

θs1 , . . . , θs,ls : Ωs → K and k1, . . . , kls ∈ N

such that
f ∼ θk1

s1 · . . . · θkls
s,ls

;

here ∼ means equal up to an analytic unit.

In view of the foregoing, we can readily construct in a definable way the transform of an analytic
hypersurface as well.

Construction 1. Consider a blowup σ1 : M1 → M0 along smooth analytic center C and with exceptional
hypersurface E. Let X be an analytic hypersurface of M0 corresponding to an analytic function f : M0 → K;
put f1 := f ◦ σ1. By Corollary 1 and Proposition 2, there exist a finite number of pairwise disjoint, clopen
subsets Us of M1 which cover E and such that E ∩Us = V(θs) for an analytic submersion θs and that the order
of vanishing µE,a( f1) = ds is constant on E ∩Us. Then the transform X1 of X is determined on Us by the
analytic function

f1 := θ−ds
s · f ◦ σ1;
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actually, ds is the largest power of θs that factors from g ◦ σ1.

3. Definable Desingularization Algorithm

In this section, the desingularization algorithm by Bierstone–Milman [14] (Chapter II), will be
adapted to the definable settings. To be brief, for the majority of details the reader is referred to their
paper. We give a concise outline of the process of transforming an analytic function g ∈ A†

k,l(K) to
normal crossings or, equivalently, resolving singularities of the hypersurface X = X0 = V(g) of the
manifold M0 = (K◦)k × (K◦◦)l determined by g. The notation and terminology related to the local
invariant for desingularization will generally follow those from op.cit.

Remark 3. The desingularization algorithm, and thus Theorems 1 and 2 as well, will of course hold whenever g
is a definable, strong analytic function on an arbitrary, definable, strong analytic manifold M0.

Consider a sequence of admissible blowups σj : Mj → Mj−1 along admissible smooth centers Cj−1,
j = 1, 2, . . .; let Ej denote the set of exceptional hypersurfaces in Mj (op.cit., p. 212). Let X1, X2, X3, . . .
denote the successive transforms of the given hypersurface X; here the strict and weak transforms
coincide. Admissible means that Cj and Ej simultaneously have only normal crossings and that invX(·)
is locally constant on Cj for all j. We can now state the main result, being a definable version of op.cit.,
Theorem 1.6.

Theorem 1. Under the above assumptions, there exists a finite sequence of blowups with smooth admissible
centers Cj such that:

(1) for each j, either Cj ⊂ Sing Xj or Xj is smooth and Cj ⊂ Xj ∩ Ej;
(2) the final transform X′ of X is smooth (unless empty), and X′ and the final exceptional hypersurface E′

simultaneously have only normal crossings.

First we begin with the necessary notation:
E(a) := {H ∈ Ej : a ∈ H}.
For a point a = aj ∈ Mj, let aj−1 ∈ Mj−1, . . . , a0 ∈ M0 be the images of a under the

successive blowups.
The order of vanishing of an analytic function germ f at a is µa( f ).
In each year j, the local invariant invX(a) at a point a ∈ Mj is the word:

invX(a) = (ν1(a), s1(a); ν2(a), s2(a); . . . ; νt(a), st(a); νt+1(a)),

where 0 < ν1(a), . . . , νt(a) ∈ Q, s1(a), . . . , st(a) ∈ N and νt+1(a) = 0 or ∞; note that t ≤ n (op.cit.,
p. 213); ν1(a) = µa(g) where g is a local equation at a of X. We consider such words with the
lexicographic ordering. The inductive resolution process terminates unless 0 < νr(a) < ∞.

The invariant invX(·) is upper semicontinuous (i.e., each point a ∈ Xj admits an
open neighbourhood U such that invX(x) ≤ invX(a) for all x ∈ U) and infinitesimally
upper-semicontinuous (i.e., invX(a) ≤ invX(σj(a) for all j ≥ 1); op.cit., Theorem 1.14.

An infinitesimal presentation (of codimension p) is the following data (op.cit., p. 222):

(N(a),H(a), E(a))

where:
Np(a) is a germ at a of a regular submanifold of codimension p;
H(a) = {(h, µh)} is a finite collection of pairs with h ∈ ON,a, µh ∈ Q, 0 ≤ µh ≤ µa(h);
E(a) is a collection of smooth hypersurfaces H 3 a such that N and E(a) simultaneously have

only normal crossings, and N 6⊂ H for all H ∈ E(a).
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The equimultiple locus of the infinitesimal presentation is

SH(a) := {x ∈ N : µx(h) ≥ µh ∀ (h, µh) ∈ H(a)};

put

µH(a) := min
{

µa(h)
µh

}
.

Remark 4. In view of the canonical character of the resolution process, the maximum loci of the desingularization
invariant (being at the same time the centers of the successive blowups) are strong analytic, because locally they
are constructed within rigid analytic geometry based on rings with good algebraic properties.

At this stage we can readily pass to the resolution process. The easiest is the initial year zero
before any blowup.

Year zero. For each a ∈ M0, we start with the following codimension 0 presentation for the
equation g:

(N0(a),G1(a), E1(a)), N0(a) = M0, G1(a) = {(g, µa(g))}, E1(a) = ∅.

Put d := ν1(a) = µ1(a)(g), s1 := 0 and F1(a) = G1(a). The further definable constructions should
take into account the equimultiple strata of the entry ν1 (and in the further years, the equimultiple strata
of the successive entries already constructed). Apply Construction 4.18, op.cit., to get a codimension 1
presentationH1(a) as explained below.

First, consider the family of (all, for the sake of definability) suitable affine coordinates x1, . . . , xn,
n = k + l, at a ∈ M0, i.e., such affine coordinates that ∂dg/∂ xd

n (a) 6= 0 with d := µa(g). More precisely,
two kinds of variables: ξ1, . . . , ξk and ρ1, . . . , ρl occur here; the first ones vary over the closed unit ball
K◦ and the second ones over the open unit ball K◦◦. We can thus consider, among others, the family of
affine coordinates of the form

ξ ′1 = ξ1 + u1ρl , . . . , ξ ′k = ξ1 + ukρl , ρ′1 = ρ1 + v1ρl , . . . , ρ′l = ρl + v1ρl ,

with u1, . . . , uk, v1, . . . , vl ∈ K◦. For simplicity, we shall further write the coordinates x1, . . . , xn,
considering the definable family of all suitable coordinates (coming from the affine ones in the ambient
space), which of course depend on the point a. Finally, set

N1(a) = V(∂d−1g/∂ xd−1
n ), E1(a) = ∅,

H1(a) =
{
(∂qg/∂ xq

n|N1(a), d− q), q = 0, 1, . . . , d− 2
}

,

and

ν2(a) = µH1(a) := min

{
µa(∂qg/∂ xq

n|N1(a))
d− q

, q = 0, . . . , d− 2

}
.

Notice that N1(a) can be regarded both as a codimension 1 submanifold in the open subset
M0 \ V(∂dg/∂ xd

n) (which is beneficial for the analysis of definability) or as its germ (which is the
case treated originally in the theory of infinitesimal presentations, op.cit.). It follows directly from
Proposition 1 that the entry ν2 takes only finitely many values and hence its equimultiple strata are
definable. Again, further definable constructions should take into account those strata. The same
holds over each field L elementarily equivalent to K in the language LA(K) (with the same set of orders
of vanishing).

Construction 4.23, op.cit., yields the codimension 1 presentation:

F2(a) = G2(a) :=
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{
(∂qg/∂ xq

n|N1(a), (d− q) · ν2(a)), q = 0, 1, . . . , d− 2
}

,

which satisfies the conditions of Proposition 4.12, op.cit.; in particular, µF2(a) = 1. Why the construction
falls into the three stages G, F andH will be clear in the next years of the process.

Next, repeat Construction 4.18, op.cit. To this end, consider again the family of suitable coordinates
on N1(a) induced by generic affine coordinates on the ambient space, taking also into account the
strata on which given pairs (h, µh) ∈ F2(a) satisfy the condition µa(h) = µh. In this way, we get
a codimension 2 presentation H2(a) determined by some definable data expressed in terms partial
derivatives with respect to the definable family of suitable coordinates.

The resolution process will be continued until νt+1 = 0 or ∞, which must happen for a t ≤ n.
In year zero, however, we eventually get the invariant invX(a) of the form (. . . ; ∞), whose maximum
stratum S = C0 is an analytic submanifold of M0. After blowing up the stratum S = C0, we pass to the
next year.

Remark 5. The analysis on the successive spaces Mj, j ≥ 1, comes down to the case of affine ambient spaces
with affine coordinates via the standard charts on the projective spaces involved when blowing up.

Suppose now that the process has been carried out in the years 0, 1, 2, . . . , j.

Year (j + 1). We have thus constructed the following sequence of blowups (op.cit., Section 1):

σj : Mj → Mj−1, σj−1 : Mj−1 → Mj−2, . . . , σ1 : M1 → M0;

the centers Ck−1 of σk are admissible and the exceptional hypersurfaces Ek on Mk and Ck simultaneously
have only normal crossings.

As before, for each a ∈ Mj, we start with the following codimension 0 presentation for the
transform g1 of g under σ1 ◦ . . . ◦ σj:

(N0(a),G1(a), E1(a)), N0(a) = M1, G1(a) = {(g1, µa(g1))},

where N0 = M1 and E1(a)) is defined as follows:
Let ν1 := µa(g1)), i = i(a) ≤ j be the smallest k with ν1(a) = ν1(ak),

E1(a) := {H ∈ E(a) : H is the transform of some element of E(ai)},

s1(a) := ] E1(a) and E1(a)) := E(a) \ E1(a).
Since the invariant invX(·) constructed in the previous years takes only finitely many values and

is both upper-semicontinuous and infinitesimally upper-semicontinuous, it is not difficult to check that
the equimultiple strata of the invariant i(·) are definable, whence so are the families E1(·) and E1(·).

Next, let F1(a) be G1(a) together with all pairs ( f , µ f ) = (θH , 1) with H ∈ E1(a), where θH
is an analytic equation of H. By Corollary 1, F1(a) is determined by definable data. Now, apply
Construction 4.18, op.cit., as in the year zero, to get a codimension 1 presentation

(N1(a),H1(a), E1(a)),

which is determined by definable data as well. Then

µ2(a) := µH1(a) = ∞ iff H1(a) = 0.

If µ2(a) < ∞, set

µ2,H := min
{

µH,a(h)
µh

: (h, µh) ∈ H1(a)
}

, H ∈ E(a)
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and
µ2(a) := µH1(a), ν2(a) := µ2(a)−∑

H
µ2,H(a).

By Proposition 2, the invariant ν2(·) takes only finitely many values and its equimultiple loci
are definable.

If ν2(a) = 0 or ∞, set invX(a) := (ν1(a), s1(a); ν2(a)). Otherwise, apply Construction 4.23, op.cit.,
to get a codimension 1 presentation

(N1(a),G2(a), E1(a)) with µG2(a) = 1.

The construction consists in dividing the h ∈ H1(a), previously scaled so that the µh are equal,
by their greatest common divisor that is a monomial in the equations θH of H ∈ E1(a). Hence and
again by Proposition 2, G2(a) is determined by definable data.

Now, let i = i(a) ≤ j be the smallest k such that

(ν1(a), s1(a); ν2(a)) = (ν1(ak), s1(ak); ν2(ak)),

E2(a) := {H ∈ E1(a) : H is the transform of some element of E1(ai)},

s2(a) := ] E2(a) and E2(a)) := E1(a) \ E1(a). Then

(N1(a),G2(a), E2(a))

is a codimension 1 presentation determined by definable data as well.
Next, let F2(a) be G2(a) together with all pairs ( f , µ f ) = (θH , 1) with H ∈ E2(a), where θH

is an analytic equation of H. The process continues inductively until νt+1 = 0 or ∞ for a t ≤ n,
and eventually yields the invariant invX(·) on Mj which takes only finitely many values and whose
equimultiple loci

SX(a) := {x ∈ Mj : invX(x) = invX(a)}, a ∈ Mj,

are definable; SX(a) will also be regarded as a germ at a. Its maximum stratum S is an analytic
submanifold or a normal crossing submanifold according as its maximum value is (. . . ; ∞) or (. . . ; 0).
In the latter case, for any a ∈ S, the irreducible components Z of SX(a) are of the form (op.cit.,
Theorem 1.14):

Z = SX(a) ∩
⋂
{H ∈ E(a) : Z ⊂ H}. (1)

Then, in order to eventually achieve a smooth maximum stratum, the invariant should be extended
as outlined below.

Consider any total ordering on the collection of all subsets I of Ej. Observe that whether the
intersection SX(a) ∩ ⋂ I is an analytic submanifold at a is a definable property with respect to the
points a (which is expressed, in view of equality (1), by means of suitable coordinate projections).
Therefore, the components Z of SX(a) can be defined by the following formula (*):

Z = SX(a) ∩ ⋂ I is an analytic submanifold at a for some I and, for every J, if Z ⊂ SX(a) ∩ ⋂ J is an
analytic submanifold, then Z = SX(a) ∩⋂ J.

The family of the components Z of SX at the points a is thus definable (consider the product of
] Ej copies of Mj). For a component Z at a, let J(Z) be the set of all H ∈ Ej containing Z. Set

J(a) := max{J(Z) : Z a component of SX(a)}.

Then the index J(a) is definable:
J(a) = I∗ iff formula (*) holds for I∗ at a and, for every I ! I∗ and J > I∗, formula (*) holds at a neither

for I nor for J.
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Extend the invariant on Mj by putting

inve
X(a) := (invX(a); J(a)).

Then the maximum locus of inve
X(·) is smooth (op.cit., Remark 1.15). Actually, for any component

Z of the maximum locus of invX(·) at a point a, one can choose an ordering above so that

J(Z) = J(a) = max Ej.

Therefore, the component Z extends to an analytic submanifold of Mj, the maximum locus of
inve

X(·). Furthermore, by choosing a suitable ordering on the subsets of each Ej, one achieves the
extended invariant inve

X(·) with the property that every germ Sinve
X(a) is smooth (op.cit., Remark 1.16).

Hence the maximum locus of inve
X(·) is an analytic submanifold of the ambient space (which means

strong analytic, by the convention adopted in Section 2).
Sketch of resolution of singularities. Now we briefly outline the desingularization algorithm in the

hypersurface case (op.cit., Theorem 1.6), which immediately yields transformation to normal crossings
(op.cit., Theorem 1.10) as well. The proof, given in op.cit., Section 10, carries over verbatim to the
definable settings treated here. It essentially relies on the fact that the (extended) desingularization
invariant takes only finitely many values and, though those values νr(·) are merely rational numbers,
it behaves as if those values were integers (unless ∞). This directly follows from the infinitesimal
upper-semicontinuity of the invariant and its finitary character in each particular year of the process
along with the estimates of denominators given below (op.cit., p. 214).

In each year of the process, the entries νr(a), r = 2, . . . , t ≤ n, are quotients of positive integers
whose denominators are bounded in terms of the previous part of the invariant invX(a). More precisely,
define recursively e2(a) := ν1(a) and er+1(a) := max{er(a)!, er(a)! · νr(a)}. Then er(a)! · νr(a) ∈ N
and et+1(a)! · µt+1(a) ∈ N.

In each year j of the process, the maximum locus Cj of the invariant invX (or the extended
invariant inve

X if νt+1 = 0 on the maximum locus of invX) is smooth so that one can blow it up.
For each point a ∈ Cj, if invX(a) = (. . . ; ∞), then

invX(a′) < invX(a) for all a′ ∈ σ−1
j+1(a).

Otherwise (op.cit., Theorem 1.14), we get

(invX(a′), µX(a′)) < (invX(a), µX(a)) for all a′ ∈ σ−1
j+1(a),

where µX(a) = µt+1(a) if νt+1(a) = 0. Hence the maximum value of the invariant must decrease after
a finite number of admissible blowups and, eventually, the transform Xj becomes smooth.

However, some further admissible blowups may be needed in order to satisfy the requirement
that the final transform Xk and Ek simultaneously have only normal crossings. To this end, one must
blow up the successive maximum strata of the invariant invX until its parameter s1 has decreased to
zero everywhere on Xk (op.cit., p. 285). Then we attain the final step of the desingularization process.

In a similar manner, we are able to achieve a definable version of transforming to normal crossings
a sheaf of ideals I = I0 ⊂ OM0 generated by a finite number of strong analytic functions f1, . . . , fs on
M0. This process uses the successive weak transforms Ij of the ideal I when blowing up the maximal
strata of the desigularization invariant (op.cit., Theorem 1.10). We adopt the previous notation and,
for convenience, remind the reader of the statement.

Theorem 2. Under the above assumptions, there exists a finite sequence of blowups with smooth admissible
centers Cj such that the final weak transform of I is Ik = OMk and the pull-back σ−1(I) · OMk = Ek of the
sheaf of ideals I is a normal crossing divisor; here σ is the composite of the σj.
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4. Application to the Problem of Definable Retractions

In this section, we demonstrate applications of definable resolution of singularities to the problems
of definable retractions and extending continuous definable functions. The main aim here is the
following theorem on the existence of definable retractions onto an arbitrary closed definable subset,
whereby definable non-Archimedean versions of the extension theorems by Tietze–Urysohn and
Dugundji follow directly (cf. [18,19], where also conducted is a more detailed discussion about their
classical, purely topological counterparts).

Theorem 3. Consider definable, strong analytic functions g1, . . . , gr on a strong analytic manifold M. Let
X := V(g1, . . . , gr) be their zero locus and A be a closed definable subset of X. Then there exists a definable
retraction X → A.

We immediately obtain

Corollary 3. For each closed definable subset A of Kn, there exists a definable retraction Kn → A.

The case of analytic structures, determined on complete rank one valued fields K by separated
power series, was already established in our previous paper [19] (Theorem 1). Using the results of this
paper, we can carry out that proof to the general settings of separated analytic structure as outlined
below. Our proof made use of the following basic tools:

• elimination of valued field quantifiers (due to Cluckers–Lipshitz–Robinson [1–3,10]);
• embedded resolution of singularities and transforming an ideal to normal crossings by blowing

up (due to Bierstone–Milman [14] or Temkin [24]);
• the technique of quasi-rational and R-subdomains (due to Lipshitz–Robinson [9]);
• and the closedness theorem [15–17].

Remark 6. Observe that the advantage of working here with the more flexible, strong analytic settings lies also
in that we do not need to appeal to the theory of quasi-affinoid subdomains.

Now, we are able, after some elaboration, to repeat that previous proof, via the definable version of
transformation to normal crossings treated here, except for [19] (Lemma 3.1) recalled below, because the
full version of resolution of singularities seems to be unavailable in the definable settings.

Lemma 2. Let Z  X be two closed subvarieties of M and A a closed definable subset of Z. Suppose that X is
non-singular of dimension N and Theorem 3 holds for closed definable subsets of every non-singular variety of
this kind of dimension < N. Then there exists a definable retraction r : Z → A.

In our paper [19], this lemma holds in full generality. But in the proof of Theorem 3, it was
involved in an induction procedure and used only when Z was the zero locus of one analytic function

ψj = (ψj−1 ◦ σj) · χj with j = 0, . . . , k,

thus being an analytic hypersurface of M in the algebro-geometric sens. (By abuse of notation, we
often use the same letter for an analytic subvariety and its support, i.e., underlying topological space,
which does not lead to confusion.) Hence it suffices to prove here the following version (where s = 1
would be enough):

Lemma 3. Let X be a closed, strong analytic submanifold of M of dimension N, f1, . . . , fs be strong analytic
functions on X, Z := V( f1, . . . , fs) and A be a closed definable subset of Z. Suppose Z is of dimension < N and
that Theorem 3 holds for closed definable subsets of every closed, strong analytic submanifold of M of dimension
< N. Then there exists a definable retraction r : Z → A.
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Proof. Apply Theorem 2 to transform to normal crossings the sheaf of ideals I generated by f1, . . . , fs

on the analytic manifold X. Set

τj := σ1 ◦ . . . σj, j = 1, . . . , k, and Aτ := τ−1(A).

Then Zτk =
⋃

Ek. Considering the canonical map from the disjoint union ä Ek onto
⋃

Ek and
using the assumption of the lemma, it is not difficult to check that there is a definable retraction
ρk : Zτk → Aτk .

Therefore, by op.cit., Corollary 2.13, there is a definable retraction rk−1 : Zτk−1 → (Ck−1 ∪ Aτk−1).
Again by the assumption, there is a definable retraction Ck−1 → (Ck−1 ∩ Aτk−1), and hence a definable
retraction ρk−1 : Zτk−1 → Aτk−1 .

As before, by op.cit., Corollary 2.13, there is a definable retraction rk−2 : Zτk−2 → Ck−2 ∪ Aτk−2).
Again by the assumption, there is a definable retraction Ck−2 → (Ck−2 ∩ Aτk−2), and hence a definable
retraction ρk−2 : Zτk−2 → Aτk−2 .

Proceeding recursively, we eventually achieve a definable retraction ρ0 : Z → (A), we are
looking for.

Remark 7. It is plausible that the above results will also hold in more general settings of certain tame
non-Archimedean geometries considered in the papers [26,27].

Perhaps the strongest, purely topological, non-Archimedean results on retractions are those from
the papers [22,28] recalled below respectively.

Theorem 4. (1) Any closed subset A of an ultranormal metrizable space X is a retract of X; (2) Any compact
metrizable subset A of an ultraregular space X is a retract of X.

5. Intricacies of Non-Archimedean Analytic Geometry

In this final section, we discuss some background behind quantifier elimination in
non-Archimedean analytic geometry. The theory of semi- and sub-analytic sets was first developed
over the real field (cf. [29–31]) with the three powerful tools: Gabrielov’s [29] complement theorem (in
other words, quantifier simplification for the real analytic structure), and Hironaka’s [30] resolution of
singularities and flattening of analytic morphisms by blowing up.

In the locally compact case, real and p-adic, even full quantifier elimination in a 1-sorted analytic
language was established by Denef–van den Dries [4]. Similar techniques, when applied over
algebraically closed, complete, rank one valued fields K, require the use of various G-topologies
(cf. [23,32]) because the underlying metric topology is totally disconnected and non-locally
compact. An analogous quantifier elimination over those fields would be available if a global rigid
analogue of Hironaka’s flattening were valid. However, the proof of such an analogue given by
Gardener–Schoutens [33] failed to be true, as it was indicated in the following counterexample by
Lipshitz–Robinson [34].

Example 1. Denote by
Tn :=

{
∑ aνξν : |aν| → 0 as |ν| → ∞

}
the ring of strictly convergent power series over K in the variables ξ = (ξ1, . . . , ξn. For α = (α1, . . . , αn) with
αi ∈ |K \ {0}|, the ring

Tn,α :=
{
∑ aν ξν : |aναν| → 0 as |ν| → ∞

}
is the affinoid algebra of the rational polydisc of polyradius α.
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Let D be the disc of K-rational radius ε; then O(D) = T1,ε. Suppose

f ∈ O(D) \
⋃
δ>ε

T1,δ

which means that f converges on D and is not overconvergent. For instance, take

f := ∑
n≥1

an−n2
ξn2

with |a| = ε < 1.

Put
X := Sp T2 and Y := Sp T4/I, I := (ξ2 − f (aξ4), ξ1 − aξ4) ∩ (ξ3).

The Ref [34] (Theorem 5.4) says that then the map

ϕ : Y → X, (ξ1, ξ2, ξ3, ξ4) 7→ (ξ1, ξ2).

cannot be flattened by a finite sequence of local blowups. Its subtle proof relies on the concept of a flatificator
at an analytic point defined in a wide affinoid neighbourhood, thus involving the theory of Berkovich spaces.
This allows the authors to reduce the initial problem to that of the existence of a curve defined in an affinoid
sub-polydisc of X without analytic continuation to a larger polydisc.

Not only does the proof by Gardener–Schoutens have a serious gap, but also their quantifier
elimination fails indeed. Given an algebraically closed, complete, rank one valued field K,
Cluckers–Lipshitz [3] (Theorem 4.3) constructed a strictly convergent subanalytic subset X ⊂ K3

which is not quantifier-free definable in the 1-sorted analytic language of strictly convergent analytic
structures. Nevertheless, then quantifier elimination holds in the 1-sorted analytic language of
separated analytic structures (cf. [2], Theorem 4.5.15).

Recently Ducros [35] develops (inspired by Raynaud–Gruson [36]) flattening techniques for
Berkovich spaces over complete, rank one valued fields K. One of the essential ingredients of
his approach (namely Lemma 1.18) is a consequence of Temkin’s version of the Gerritzen–Grauert
theorem [37] (Theorem 3.1). Using those techniques, he proves Theorem 7.8 that the image of a
morphism between compact analytic spaces is a finite union of the images of maps each of which
is a finite composite of blowups and quasi-étale morphisms. Eventually, Ducros anticipates that it
geometrically corresponds, if the ground field K is algebraically closed, to quantifier elimination for
the separated analytic structure on K (which is a definitional extension of the strictly convergent one
by solutions of certain polynomial Henselian systems considered by Cluckers–Lipshitz [3]).

We conclude the paper with some comments. The collections of Am,n and A†
m,n correspond

respectively to the collections of S◦m,n and Sm,n, which were earlier studied in the paper [9] in the case
of complete, rank one valued fields K. Since the rings A†

m,n = Sm,n have good algebraic properties, we
were able in our previous paper [19] to use the classical version of canonical desingularization (along
with the theory of quasi-affinoid subdomains).

Generally, however, separated analytic structures admit reasonable quantifier elimination,
but usual resolution of singularities from rigid analytic geometry is not available. The opposite
situation holds for strictly convergent analytic structures. It is thus of great importance that definable
desingularization for the former structures, provided in this paper, makes both these powerful
tools of analytic geometry available at the same time. Furthermore, let us emphasize once again
that the work within strong analytic manifolds and maps allows us not to appeal to the theory of
quasi-affinoid subdomains.

A further direction of research might be into definable Lipschitz retractions and extending
definable Lipschitz continuous functions (perhaps with the same Lipschitz constant) over non-locally
compact fields. These as yet open problems may be investigated in analytic structures and in the
tame non-Archimedean geometries from the papers [26,27] as well. Extending Lipschitz continuous
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functions f : A→ R, with the same Lipschitz constant from a subset A of Rn, goes back to McShane
and Whitney. The more difficult case of functions with values in Rk was achieved by Kirszbraun.
Aschenbrenner–Fischer [38] obtained a definable version of Kirszbraun’s theorem for definably
complete expansions of ordered fields. Recently Cluckers–Martin [39] established a p-adic version
of Kirszbraun’s theorem. They proved it, along with the existence of a definable Lipschitz retraction
(with constant 1) for any closed definable subset A of Qn

p, proceeding with simultaneous induction on
the dimension n of the ambient space. To this end, they introduced a certain form of preparation cell
decompositions with Lipschitz continuous centers. Besides, their construction of definable retractions
makes use of some definable Skolem functions. Therefore, we cannot expect that their approach can
be directly carried over to geometry over non-locally compact Henselian fields, where cells are no
longer finite in number (but parametrized by residue field variables) and definable Skolem functions
do not exist in general. The non-locally compact case will certainly require a new approach and
ingenious ideas.

Let me finally mention that my work in non-Archimedean geometry was inspired by the joint
paper with J. Kollár [40], which deals with the very concept and extension of continuous hereditarily
rational functions on real and p-adic varieties, and the results of which were further carried over to
non-locally compact fields in my papers [15,16].
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