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Abstract
We present a quantitative, statistical analysis of random lambda terms in the

De Bruijn notation. Following an analytic approach using multivariate generat-
ing functions, we investigate the distribution of various combinatorial parameters
of random open and closed lambda terms, including the number of redexes, head
abstractions, free variables or the De Bruijn index value profile. Moreover, we con-
duct an average-case complexity analysis of finding the leftmost-outermost redex in
random lambda terms showing that it is on average constant. The main technical
ingredient of our analysis is a novel method of dealing with combinatorial paramet-
ers inside certain infinite, algebraic systems of multivariate generating functions.
Finally, we briefly discuss the random generation of lambda terms following a given
skewed parameter distribution and provide empirical results regarding a series of
more involved combinatorial parameters such as the number of open subterms and
binding abstractions in closed lambda terms.
Mathematics Subject Classifications: 03B40, 03B70, 05A16, 05A99, 62E20,
68R05, 68W40.
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1 Introduction

Lambda calculus (often abbreviated to λ-calculus) is a functional calculus proposed by
Alonzo Church in the 1930s as an alternative foundation of mathematics. Although the
initial plan failed, due to logical inconsistencies discovered in Church’s naive system, it
was quickly realised that λ-calculus itself is able to elegantly capture the, by then still in-
formal, notion of computability, see [CH09]. Nowadays, λ-calculus is considered not only
as an important theoretical model of computation, but is also used in practical applic-
ations ranging from functional programming languages [PJ87], including the evaluation
and testing of functional programming language compilers [CH00, Pal12], to automated
theorem provers [BC10].

Despite the extensive use of λ-terms (i.e. formal expressions of λ-calculus) as computa-
tions in functional programming languages or as components of proof artifacts in various
automated theorem provers, quantitative investigations into the combinatorial or statist-
ical properties of λ-terms were initialised only quite recently. Motivated by the uniformly
random (conditioned on size) generation of λ-terms, Wang [Wan05] explored a combin-
atorial model of λ-calculus where α-convertible λ-terms (i.e. terms identical up to bound
variable names) are considered equivalent. The central problem of providing asymptotic
estimates on the number of λ-terms in this model remained, however, open. Some time
later, David et al. [DGK+13] investigated a similar model of λ-calculus where variables
do not contribute to the term size and showed that asymptotically almost all λ-terms are
strongly normalising. In other words, the fraction of λ-terms for which all evaluation
strategies terminate approaches one as the term size tends to infinity. Likewise, in this
model the central problem of giving accurate estimates on the number of λ-terms of size
n remained open. Enumeration problems for restricted classes of closed affine and linear
λ-terms, where binders capture at most and exactly one variable, respectively, were invest-
igated by Bodini, Gardy, Jacquot and Gittenberger [BGGJ13,BGJ13,BG14]. The class of
λ-terms with restricted unary height was considered by Bodini, Gardy and Gittenberger
in [BGG11].

The canonical models of Wang and David et al. pose considerable difficulties due
to the global, intractable structure of binders (abstractions) and their associated vari-
ables, all considered modulo α-equivalence. Explicit variable names, though elegant for
manual manipulation, introduce also problems with substitution of terms for variables,
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especially when computations in λ-calculus are meant to be automatised. For the latter
purpose, De Bruijn proposed an alternative notation of λ-terms, involving non-negative
indices instead of explicit variable names [dB72]. This notation was later adopted by
Lescanne [Les13,GL13] who proposed a new combinatorial representation for the enumer-
ation of λ-terms. Within this new representation, λ-terms represent entire α-equivalence
classes in the former models. Consequently, it became possible to enumerate also open
terms (i.e. containing free variables) not just closed ones. Let us also remark that in-
dependently, a different combinatorial model was proposed by Tromp who considered a
binary encoding of λ-calculus meant for the construction of a compact and efficient self-
interpreter with applications to Kolmogorov complexity [Tro06]. Enumeration problems
related to the binary λ-calculus, as well as the effective random generation of λ-terms,
were later studied by Grygiel and Lescanne [GL15].

Investigations into quantitative properties of λ-terms in the De Bruijn notation were
continued by Bendkowski et al. [BGLZ16,BGLZ17] who showed that, in contrast to the
canonical representation of David et al., asymptotically almost all λ-terms are not strongly
normalising. In other words, the proportion of terms for which all evaluation strategies
terminate approaches zero as the term size tends to infinity. Various size models based
on the De Bruijn notation, such as Tromp’s binary encoding or the so-called natural size
notion introduced by Bendkowski et al. were later generalised in a common framework
by Gittenberger and Gołębiewski who provided tight lower and upper asymptotic bounds
on the number of closed λ-terms [GG16]. Recently, the gap between both the lower and
bounds was closed by Bodini, Gittenberger and Gołębiewski [BGG18]. Subsequently,
efficient sampling methods for closed terms were developed and the enumeration of closed
λ-terms was finally completed.

In the current paper we propose to deepen the quantitative analysis of λ-calculus in
the De Bruijn notation, offering a detailed statistical analysis of random λ-terms. We
investigate the distribution of several combinatorial parameters related to plain (i.e. un-
restricted) and closed λ-terms. Table 1 provides a brief overview of the obtained results.

In the current paper, we provide limit laws and asymptotic estimates using tech-
niques from analytic combinatorics. While plain λ-terms in De Bruijn size notion can
be analysed using classical methods, the respective analysis of closed λ-terms requires
solving infinite systems of algebraic equations. Let us mention that an earlier paper by
Drmota, Gittenberger and Morgenbesser [DGM12] deals with infinite algebraic systems
which are strongly connected and whose Jacobian can be represented as a sum of a scaled
identity operator and an operator whose power is compact. Here, we develop a general
tool meant for analysis of infinite algebraic systems that resemble in structure systems
for closed λ-terms, however do not fit into the framework of Drmota, Gittenberger and
Morgenbesser. In this context, our result can be considered as a continuation of [DGM12].

The paper is structured as follows. In Section 2 we provide a concise presentation
of preliminary notions and techniques. In particular, we discuss the De Bruijn repres-
entation of λ-terms and explain the rules of lambda calculus. We then continue with
a fairly standard analysis of basic statistics corresponding to plain λ-terms (Section 3).
In the subsequent section we use our advanced marking techniques and study various
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Table 1: Comparison of obtained statistics for random λ-terms. Listed constants are
approximated up to the third decimal point. See Section 2 for details on trivial.

Parameter Mean, ∼ Distribution
plain closed plain closed

Variables 0.307n Normal
Abstractions 0.258n Normal
Successors 0.129n Normal
Redexes 0.091n Normal

Index value 0.420 Geometric
Redex search time 6.222 6.054 Discrete Discrete
Head abstractions 0.420 1.447 Geometric Discrete

m-openness 2.019 0 Discrete trivial
Free variables 5.722 0 Discrete trivial

Unary height profile 0.122
√
n Rayleigh

Natural height profile 0.412
√
n Rayleigh

parameters in closed λ-terms (Section 4). Next, we develop our main technical tool for
investigating combinatorial parameters in closed λ-terms (Section 5) used in the previous
section. Afterwards, we provide an empirical evaluation of several statistical properties
corresponding to plain, closed, and so-called h-shallow λ-terms, i.e. terms with De Bruijn
indices whose value does not exceed h (Section 6). We give empirical histograms and
relate the discovered distributions with considered term types, exhibiting some intriguing
correlations. Finally, we conclude the paper with remarks and open questions (Section 7).
For the sake of completeness, we describe standard analytic tools in Appendix A.

2 Preliminaries on lambda calculus

λ-calculus is a theoretical formalism famously equivalent in expressiveness to Turing ma-
chines, see [Bar84]. In this calculus, computations are represented as λ-terms defined by
the formal grammar T ::= x | (λx.T ) | (T T ) in which x belongs to the countable, infinite
alphabet of variables ; (λx.T ) is an abstraction of variable x in T ; and (T T ) denotes an
application of two λ-terms. Given an abstraction (λx.T ), occurrences of x in T are said
to be bound. Unbound variable occurrences are said to occur freely.

Lambda terms, intended to represent anonymous functions, are executed by means
of the iterated process of β-reduction. First, an arbitrary β-redex subterm in form of
(λx.N)M is selected (if no such subterm exists, computations are terminated). Next,
the selected β-redex is replaced with N [x := M ], i.e. N in which each occurrence of x
is substituted, in a capture-avoiding manner, by M . While substituting M for x in N
we have to avoid the unintended situation in which free variable occurrences in M get
bound, in other words captured, by some abstractions occurring in N . For instance, let
N = (λy.x) and M = y. The term (λx.N)M should not be reduced to λy.y as, by doing
so, the free variable occurrence y gets bound due to a coincidental clash with the inner
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abstraction variable name. Certainly, the arbitrary choice of the formal variable name y
should not influence the intended semantics of the represented computation. Following
this motivation, λ-terms differing only in bound variable names are considered equivalent
(in other words α-convertible). In order to avoid potential name clashes, we can therefore
rename bound variable occurrences before proceeding with β-reduction. Since there is an
infinite supply of available variable names, it is always possible to avoid variable captures.
Consequently, we can equivalently α-convert (λx.λy.x)y into, say, (λx.λw.x)y and proceed
with (λx.λw.x)y →β (λw.x)[x := y] = λw.y.

Though intuitive, explicit variable names pose considerable conceptual and imple-
mentation problems. For instance, consider the terms λx.x and λy.y. Although syn-
tactically different, both semantically represent the same anonymous identity function
as (λx.x)T →β T and (λy.y)T →β T for arbitrary T . In order to facilitate automatic
computations, De Bruijn proposed a different notation for λ-terms eliminating in effect
the troublesome variable names [dB72]. In his notation, variable occurrences are replaced
with indices represented as non-negative integers. The intention is to view λ-terms as
natural tree-like structures and encode variable occurrences as indices denoting their rel-
ative distance to respective variable binders – each index n denotes a variable occurrence x
whose relative distance to its binder (in terms of passed lambda symbols) is equal to n+1.
For instance, 0 corresponds to a variable occurrence bound to the nearest abstraction on
its unique path to the root in the associated tree-like representation of the considered
λ-term. Consequently, α-convertible λ-terms have the same De Bruijn representation.
In effect, each λ-term in the De Bruijn notation represents an entire α-equivalence class
of λ-terms in the classic variable notation. For instance, both λx.x and λy.y, being α-
convertible, are represented as λ0 in the De Bruijn notation. The use of De Bruijn indices
significantly simplifies the automatic substitution operation. Due to the lack of explicit
variable names, variable captures and name clashes do not pose implementation issues.

Remark 2.1. There exists a disagreement in the literature whether to start De Bruijn
indices with 0 or 1. Although De Bruijn himself assumed the latter [dB72], some authors
follow his footsteps, see e.g [GL13,GL15] whereas others do not, including 0 in the set of
admissible indices, see e.g. [GG16,BGLZ17,BT18]. Certainly, neither convention is better
than the other. In the current paper, we follow the convention of starting De Bruijn indices
with 0 so the keep consistent with the most recent literature.

Definition 2.2. Let {0, 1, . . .} be an infinite, denumerable set of available indices. Then,
the set L∞ of λ-terms in the De Bruijn notation is defined inductively as follows:

a) Each index n is a λ-term;

b) If N and M are λ-terms, then (NM) is a λ-term;

c) If N is a λ-term, then (λN) is a λ-term.

Following usual notational conventions, we omit outermost parentheses and drop par-
entheses from left-associated λ-terms. For instance, λx.λy.λz.((xy)z) in the classical
variable notation is written as λλλ210.
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An index occurrence n is said to be bound in the term N if there exist at least n +
1 lambda symbols on the unique path from n to the root of the associated tree-like
representation of N , see e.g. Figure 1. Otherwise, n is said to be occurring freely in N and
hence corresponds to a free variable in the classical λ-calculus notation. For convenience,
we refer to De Bruijn indices both as indices and variables. If each index occurrence in N
is bound, then N is said to be closed. Otherwise, it is said to be open. And so, λλλ210
is closed whereas λλ21 is not as here 2 is not bound. If prepending N with m lambdas
turns it into a closed λ-term, then N is said to be m-open. Certainly, if N is m-open, then
it is also (m + 1)-open. Moreover, 0-open λ-terms correspond exactly to closed λ-terms.
Hence, though λλ21 is not closed, it is 1-open as λλλ21 is a closed λ-term. Finally, we
write that a λ-term is plain if we mean to denote that it is either open or closed, without
specifying which case holds.

λx

λy

λz

@

@

x z

@

y z

λ

λ

λ

@

@

2 0

@

1 0

Figure 1: Two tree-like representations associated with the same example λ-term —
λx.λy.λz.xz(yz) and its De Bruijn notation variant λλλ20(10). Back pointers to abstrac-
tions are included for illustrative purposes only.

2.1 Enumeration

In the current paper we follow [BGLZ16, BGLZ17, GG16, BGG18] and investigate the
statistical properties of random λ-terms in the De Bruijn representation. We assume
a unary base encoding of indices, i.e. an encoding in which n is identified with an n-
fold application of the successor operator S to zero. Formally, the set L∞ of λ-terms is
described by the following formal grammar:

L∞ ::= n | (λL∞) | (L∞L∞)

n ::= 0 | S n.
(2.1)

In order to enumerate λ-terms, we have to assign a formal notion of size to each term
in such a manner that for each available size n the number of terms of size n is finite.
Though various size measures are considered in the literature, most notably the general
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size model framework of Gittenberger and Gołębiewski [GG16], we assume the simple
natural size notion [BGLZ16] in which the size of T is equal to the total number of
abstractions, applications, successors and zeros occurring in T . Formally, we define the
size of T inductively as follows:

|0| = 1
|S n| = |n|+ 1

|M N | = |M |+ |N |+ 1
|λM | = |M |+ 1.

(2.2)

Example 2.3. Note that, in general, n is of size n+1 as it consists of n successors applied
to zero. Consequently, the term λλλ210 is of size 11 as it consists of three λ symbols, two
applications between 2, 1 and 0, by convention omitted in writing, and indices 0, 1, 2 of
total size six.

Remark 2.4. It is worth noticing that, with some minor technical overhead, the analysis
presented in the current paper extends onto the more general size model framework of
Gittenberger and Gołębiewski [GG16] including the assumed natural size notion as a
special case. We prefer to avoid technicalities related to the general size notion and so,
for the reader’s convenience, favour a lucid presentation of the key arguments.

Let Lm denote the set of m-open λ-terms, see Theorem 2.2 (plain terms can be viewed
as “infinitely” open, hence the∞ symbol in the subscript of L∞). Like plain λ-terms (2.1),
Lm can be described in terms of a formal, though now infinite, grammar as follows:

Lm ::= (λLm+1) | (LmLm) | 0, 1, . . . ,m - 1
Lm+1 ::= (λLm+2) | (Lm+1Lm+1) | 0, 1, . . . ,m
. . . . . .

(2.3)

Anm-open λ-term T can take one of the three forms. Either T is in the form of abstraction
followed by an (m + 1)-open λ-term; or it is an application of two m-open λ-terms; or,
finally, T is one of the indices 0, 1, . . . ,m-1.

Due to the infinite combinatorial specification (2.3) for Lm standard analytic com-
binatorics techniques are not readily applicable. Consequently, enumerating closed
λ-terms poses a considerable challenge. In [GG16] a partial solution bounding the asymp-
totic growth rate of the number of m-open λ-terms of size n was proposed. Although both
the lower and upper bounds were of the form Cρnn−3/2, a typical trait of various tree-
like structures, the asymptotic growth rate of m-open terms remained open. Remarkably,
some time later in their joint paper [BGG18] Bodini, Gittenberger and Gołębiewski closed
the remaining gap and confirmed the conjectured Cρnn−3/2 form of the asymptotic growth
of m-open λ-terms. Furthermore, two combinatorial problems related to random closed
λ-terms were studied. Specifically, the number of terms with an a priori fixed number of
abstractions and the number of terms in β-normal form, i.e. without β-redexes. In this
context, our contribution is a natural continuation of their work. In addition, we offer a
different proof of the asymptotic growth rate of m-open λ-terms.
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3 Basic statistics of plain lambda terms

In this section we investigate several basic combinatorial parameters related to random
plain λ-terms. Let us start with invoking the combinatorial specification (2.1) describing
the set L∞ of plain λ-terms. Recall that L∞ is specified as

L∞ ::= n | λL∞ | (L∞L∞)

n ::= 0 | S n.
(3.1)

Equivalently, the set L∞ of λ-terms can be specified using the following pictorial tree
grammar (note the explicit @ symbol for term application):

L∞ =
λ

L∞

+
@

L∞ L∞

+ D

D = 0 +
S

D

Figure 2: Combinatorial specification for plain λ-terms.

Following symbolic methods [FS09, Part A: Symbolic Methods] we note that the gen-
erating function D(z) corresponding to De Bruijn indices takes the form D(z) =

z

1− z
and so the generating function L∞(z) associated with plain λ-terms satisfies the following
functional equation:

L∞(z) = zL∞(z) + zL∞(z)2 +
z

1− z
. (3.2)

Solving (3.2) for L∞(z) we obtain two formal solutions. Since we know a priori that the
resulting generating function has non-negative coefficients [zn]L∞(z) we conclude that

L∞(z) =
1

2z

(
1− z −

√
(1− z)2 − 4z2

1− z

)
. (3.3)

In this form, we can easily verify that the radicand expression (1− z)2− 4z2

1− z
carries

the single dominant square-root type singularity ρ of L∞(z). At this point, a straight-
forward application of the transfer theorem (see Proposition A.1) gives us access to the
asymptotic growth rate of the counting sequence corresponding to plain λ-terms.
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Proposition 3.1 (see [BGLZ16]). Let L∞(z) be the generating function associated with
plain λ-terms (3.3). Then, the number [zn]L∞(z) of plain terms of size n admits the
following asymptotic approximation as n→∞:

[zn]L∞(z) ∼ Cρ−nn−3/2 (3.4)

where
ρ ≈ 0.29559774 and C ≈ 0.606767. (3.5)

3.1 Joint distribution of variables, abstractions, successors and redexes

Basic marking techniques allow us to investigate limiting distributions of various sub-
patterns in plain λ-terms. In what follows we study the fundamental patterns of variables,
abstractions, successors and β-redexes. Recall that a β-redex is a λ-term in form of
(λN)M where N and M arbitrary λ-terms. In other words, redex is a sub-pattern which
can be depicted as

@

λ

·
· .

Proposition 3.2. The multivariate generating function L∞(z,u) for plain λ-terms with
the auxilliary vector u = (u(var), u(red), u(suc), u(abs)) marking, respectively, variables, re-
dexes, successors and abstractions in a lambda term, satisfies a system of algebraic func-
tional equations

L∞(z,u) = u(abs)zL∞(z,u) + A(z,u)

A(z,u) =
u(var)z

1− u(suc)z
+ u(red)u(abs)z

2L∞(z,u)2 + zA(z,u)L∞(z,u).
(3.6)

L∞ =
λ

L∞

+
@

L∞ L∞

+ D

Figure 3: Marking variables in plain terms.

Proof. Let us consider a bivariate generating function L∞(z, u) in which [znuk]L∞(z, u),
i.e. the coefficient standing by znuk, denotes the number of plain λ-terms of size n with k
variables (equivalently k occurrences of 0). Marking all occurrences of 0 in the defining
equation (3.2) of L∞(z), see Figure 3, we obtain the following combinatorial specification
for L∞(z, u):

L∞(z, u) = zL∞(z, u) + zL∞(z, u)2 +
uz

1− z
. (3.7)

Consider next the auxiliary class N consisting of De Bruijn indices and terms in applic-
ation form. Note that if N is in application form, then either N is a β-redex in form of
N = (λM)P , or N = MP where M belongs itself to class N . Furthermore, with N at
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hand, notice that each plain λ-term N takes either the form N = λM for some λ-termM ,
or is an element of N . We can therefore write down the following joint combinatorial spe-
cification (3.8) for L∞(z, v) and N(z, v) corresponding to L∞ and N , respectively, using
the variable v to mark the redex occurrences in N , see Figure 4:

L∞(z, u) = zL∞(z, u) +N(z, u)

N(z, u) =
z

1− z
+ uz2L∞(z, u)2 + zN(z, u)L∞(z, u).

(3.8)

L∞ =
λ

L∞

+ N

N = D +
@

λ

L∞
L∞

+
@

N L∞

Figure 4: Marking redexes in plain terms.

Finally, in order to simultaneously mark four parameters in plain λ-terms, we aug-
ment the above specification with marking variables for abstractions, variables, and
successors. For that purpose we use the following auxiliary variable vector u =
(u(var), u(red), u(suc), u(abs)) corresponding to respective components of Xn, see Figure 5
(cf. Figure 4).

Let u denote the vector of considered marking variables. Such a specification,
when converted into a system of functional equations involving the generating functions
L∞(z,u) and A(z,u) associated with L∞ and A, respectively, yields (3.6).

Proposition 3.3. LetXn = (Xn(var), Xn(red), Xn(suc), Xn(abs)) be a random vector denoting

a) the number Xn(var) of variables;

b) the number Xn(red) of β-redexes;

c) the number Xn(suc) of successors, and

d) the number Xn(abs) of abstractions
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L∞ =
λ

L∞

+ A

A = D +
@

λ

L∞
L∞

+
@

A L∞

Figure 5: Marking abstractions, variables, successors and redexes in plain λ-terms.

in a random plane λ-terms of size n. Then, after standardisation, the random vector
Xn converges in law to a multivariate Gaussian distribution satisfying (up to numerical
approximation)

Xn
d−→ N

n


0.307
0.091
0.129
0.258

 , n


0.052 −0.013 −0.034 −0.069
−0.013 0.052 −0.022 0.047
−0.034 −0.022 0.145 −0.076
−0.069 0.047 −0.076 0.214


 . (3.9)

Proof. We start our investigations with the variable distribution in plain λ-terms. Con-
sider again the bivariate generating function L∞(z, u) with z marking the size of the plain
λ-term, and u marking the number of its variables. Then,

L∞(z, u) = zL∞(z, u) + zL∞(z, u)2 +
uz

1− z
(3.10)

and hence

L∞(z, u) =
1

2z

(
1− z −

√
(1− z)2 − 4uz2

1− z

)
(3.11)

as L∞(z, 1) = L∞(z).
The dominant singularity ρ(u) of L∞(z, u) is the real positive root of the radicand

expression F (z, u) = (1− z)2− 4uz2

1− z
. Moreover, the singularity has a non-zero derivative

at u = 1. According to Theorem A.12 (moving singularity framework) this leads to a
Gaussian limit law.

The mean and the variance of the resulting normal distribution can be computed
by Proposition A.11 using the values ρ′(1) and ρ′′(1) from the partial derivatives of F (z, u).
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Since F (ρ(u), u) = 0, after taking the derivative with respect to u we obtain

ρ′(1) = −∂uF (ρ, 1)

∂zF (ρ, 1)
and ρ′′(1) = −∂

2
uF (ρ, u) + 2ρ′(1)∂z∂uF (ρ, 1) + ρ′(1)2∂2zF (ρ, 1)

∂zF (ρ, 1)
.

(3.12)
A similar scheme can be adopted for the case of several parameters. We base our proof

on the multivariate central limit theorem (see Proposition A.11). Reformulating (3.6) we
find that

(1− u(abs)z)L∞(z,u) =
(
zu(abs)(u(red) − 1) + 1

)
zL∞(z,u)2 +

u(var)z

1− u(suc)z
. (3.13)

In this form, the dominant singularity ρ(u) of L∞(z,u) can be computed as the critical
value z = ρ(u) such that the discriminant of the equation is equal to zero. By applying the
multivariate central limit theorem, we obtain the claimed means and covariance matrix,
see (3.9).

Remark 3.4. Let us note that, in the case of limiting distribution for the number of vari-
ables in a plain λ-term, in a general abcd size notion, ρ(u) is a root of the polynomial
(1− zb)F (z, u) whose degree depends on the specific size model parameters a, b, c, d de-
noting the weights of zero, successor, abstraction and application, respectively, cf. [GG16].
Specifically,

(1− zb)F (z, u) = (1− zb) (1− zc)2 − 4uza+d. (3.14)

Consequently, for most admissible size notion parameters we cannot explicitly obtain
analytic expression of ρ(u). Instead, in order to check the premises of the multivariate
central limit theorem we have to work with the implicit equation (3.14).

The main technical obstacle lies in the verification of the requested variability condition
B′′(1)+B′(1)−B′(1)2 6= 0, see (A.23). The remaining argumentation is virtually identical
to the one presented for the specific case of a = b = c = d = 1.
Remark 3.5. Arguably, the most interesting part of the covariance matrix (3.9) is the
sign of the correlations and the absolute values of associated variances. Note that in the
natural size notion, the number of abstractions has greater variance than other construct-
ors. Interestingly, the number of β-redexes is positively correlated with the number of
abstractions. Not surprisingly, all other parameters are negatively correlated.

3.2 Head abstractions in plain lambda terms

In this section we turn to head abstractions in plain λ-terms showing that the correspond-
ing random variable converges to a discrete geometric distribution.

Proposition 3.6. Let Xn be a random variable denoting the number of head abstractions
in a random plain λ-term of size n. Then, Xn converges in law to a geometric distribution
Geom(ρ) with parameter ρ. Specifically,

P(Xn = h) −−−→
n→∞

P(Geom(ρ) = h) = (1− ρ)ρh. (3.15)
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Proof. Note that each λ-term starts with a (possibly empty) sequence of consecutive head
abstractions followed either by a De Bruijn index or an application of two terms (recall that
abstractions therein are no longer considered to be head abstractions). Consequently, the
set L∞ of plain λ-terms can be specified using the auxiliary class H of head abstractions
as depicted in Figure 6.

L∞ =
H

D

+
H

@

L∞|u=1 L∞|u=1

H = ε +
λ

H

Figure 6: Marking head abstractions in plain terms.

The bivariate generating function L∞(z, u) corresponding to plain λ-terms with
marked head abstractions satisfies therefore

L∞(z, u) =
1

1− zu

(
z

1− z
+ zL∞(z, 1)2

)
. (3.16)

Note that the dominant singularity ρ(u) of L∞(z, u) does not depend on u. In fact, ρ(u) =
ρ (i.e. the dominant singularity of L∞(z), see (3.5)) as, by construction, L∞(z, 1) = L∞(z).

We can therefore apply Proposition A.8 and, after routine calculations, find that the
limit probability generating function p(u) associated with L∞(z, u) satisfies

p(u) =
1− ρ

1− ρu
(3.17)

which indeed corresponds to the asserted limit geometric distribution (3.15) of Xn.

Remark 3.7. The mean number µn of head abstractions in a random λ-term of size n
satisfies

µn −−−→
n→∞

ρ

1− ρ
. (3.18)

The limit mean (3.18) is close to 0.4196. Consequently, sufficiently large plain terms have,
on average, less than one head abstraction. Such a result stands in sharp contrast to the
canonical representation of David et al. [DGK+13] where the number of head abstractions
in a random (closed) λ-term of size n is at least of order

√
n/ log n; in particular, it is a

moderately growing function of n.
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3.3 De Bruijn index values in plain lambda terms

In the current subsection we focus on the distribution of De Bruijn index values in random
λ-terms.

Proposition 3.8. Let Xn be a random variable denoting the De Bruijn index value m of
an index m taken uniformly at random from a random plain λ-term of size n. Then, Xn

converges in law to a geometric distribution Geom(ρ) with parameter ρ. Specifically,

P(Xn = m) −−−→
n→∞

P(Geom(ρ) = m) = (1− ρ)ρm. (3.19)

L∞ =
λ

L∞

+
@

L∞ L∞

+ 0 + . . . + m + . . .

Figure 7: Marking the index m in plain λ-terms.

Proof. Let V (m)
n be a random variable denoting the number of De Bruijn indices m in a

plain λ-term of size n. Marking the index m in the specification for plain terms, see Fig-
ure 7, we note that the bivariate generating function L

(m)
∞ (z, u) associated with V

(m)
n

satisfies

L(m)
∞ (z, u) = zL(m)

∞ (z, u) + zL(m)
∞ (z, u)

2
+

z

1− z
+ (u− 1)zm+1. (3.20)

Denote ∂
∂u
L
(m)
∞ (z, u)|u=1 as D(m)

∞ (z). Then, taking the partial derivative ∂u at u = 1
of both sides of (3.20) we arrive at

D(m)
∞ (z) = zD(m)

∞ (z) + 2zD(m)
∞ (z)L∞(z) + zm+1 (3.21)

as L(m)
∞ (z, 1) = L∞(z) for each m > 0, cf. (3.20) and (3.3). Note that [zn]D(m)(z)

corresponds to the weighted sum over all plain λ-terms of size n where each term comes
with weight equal to the total number of occurrences of index m in it.

Let S∞(z, w) =
∑

m>0D
(m)
∞ (z)wm. Taking the weighted sum over all m > 0 of both

sides of (3.21) such that weight corresponding to m is wm we obtain

S∞(z, w) = zS∞(z, w) + 2zS∞(z, w)L∞(z) +
z

1− zw
. (3.22)

Consequently, [znwm]S∞(z, w) stands for [zn]D(m)(z) whereas [zn]S∞(z, 1) denotes the
weighted sum of all λ-terms of size n where each term has weight equal to its total
number of variables. In other words, w in S∞(z, w) marks the probability mass function
corresponding to Xn. Solving (3.22) we find that

S∞(z, w) =
1

1− zw

(
z

1− z − 2zL∞(z)

)
=

z

1− zw

√(1− z)2 − 4z2

1− z

−1 (3.23)

the electronic journal of combinatorics 26(4) (2019), #P4.1 15



where the latter equality follows from the formula (3.3) for L∞(z).
Consequently, S∞(z, w) admits a Puiseux series expansion required for Proposi-

tion A.8. A final computation verifies the asserted geometric limit distribution Geom(p)
corresponding to the variable Xn.

Remark 3.9. The mean value µn of a random index with a random plain terms satisfies

µn −−−→
n→∞

ρ

1− ρ
. (3.24)

The limit value (3.24), coinciding in the natural size notion with the corresponding mean
for head abstractions (3.18), is close to 0.4196. This result stands, again, is sharp contrast
to the canonical model of David et al. [DGK+13] in which variables (in closed terms) tend
to be arbitrarily far from their binding abstractions.

Let us point out that such a disparity is a consequence of the different combinat-
orial models for λ-terms. In the canonical representation, the distance from a variable
to its binding abstraction does not contribute to the weight of the corresponding vari-
able (all variables have weight zero). On the other hand, in the De Bruijn represent-
ation weights of bound indices are proportional to the distances to their binding ab-
stractions. Consequently, De Bruijn indices in large random λ-terms tend to be, on
average, shallow. This central difference of both combinatorial models leads to remark-
ably contrasting asymptotic properties, including normalisation of large random λ-terms,
cf. [DGK+13,BGLZ16,Ben17].

3.4 Leftmost-outermost redex search

In order to evaluate an expression represented by a λ-term M we iteratively choose a
β-redex (i.e. a subterm in form of (λP )Q) in M and contract it using β-reduction, see
e.g. Figure 8 (cf. Section 2).

@

λ

@

@

0 @

1 0

λ

0

T

β−−−−→

@

@

T

@

1

T

λ

0

Figure 8: An example of β-reduction (λ0(10)(λ0))T →β T (1T )(λ0).
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The order of evaluation (i.e. the order in which redexes are contracted) has a crucial
impact on the computational effect of repeated β-reduction. Consider λ-terms Ω :=
(λ00)(λ00) and P := (λλ0)Ω. Note that Ω can be evaluated ad infinitum as Ω→β Ω. If
we choose the Ω redex over the main (λλ0)Ω redex in P , then P →β P . Otherwise, if
we choose the leftmost-outermost redex (λλ0)Ω instead of Ω we note that P →β λ0 since
the topmost abstraction in P has no associated indices. We cannot continue β-reducing
λ0 as it contains no more redexes (such terms are in so-called (β-)normal form) and so
we terminate the evaluation process.

Terms from which it is possible to reach a normal form using repeated β-reduction are
said to be normalisable. Since it is possible to emulate computations of arbitrary Turing
machines in λ-calculus by means of normalisable terms, it is undecidable to determine
whether a given λ-term is normalisable or not, see [Bar84]. Remarkably, the following
classical result provides a normalising evaluation strategy guaranteed to find normal forms
of normalisable λ-terms.

Theorem 3.10 (Standardisation theorem, see e.g [Bar84]). Let N be a normalising
λ-term. Then, the iterated process of applying β-reduction to the leftmost-outermost redex
in N leads to the (unique) normal form of N .

When searching for the leftmost-outermost redex in a given λ-term, we traverse the as-
sociated λ-tree in a depth-first manner favouring left branches of application nodes. Both
cases of handling abstractions and indices are trivial – when visiting an abstraction node,
we immediately recurse to its subterm looking for the leftmost-outermost redex; indices
cannot contain β-redexes hence after arriving at an index, we terminate the traversal.

The most interesting part of the traversal algorithm lies in visiting application nodes.
Suppose that we are currently visiting an application node. If its left branch starts with an
abstraction node, we terminate the traversal as we have just found the leftmost-outermost
redex. Otherwise, we have two possibilities based on whether the left branch is in β-normal
form or not. If it is, we move into the left branch and, as we cannot find a β-redex, return
from the recursion moving to the corresponding right branch. Otherwise if the left branch
is not in β-normal form, we handle it recursively, however since it contains a β-redex, we
eventually terminate the search before ever returning to visit the right branch.

Let us note that such a traversal algorithm, henceforth abbreviated to LO, introduces
some a priori non-trivial computational overhead to the execution cost of β-reduction in
λ-calculus. If carried out on a β-redex, LO takes constant time to run. In contrast, when
carried out on a λ-term in β-normal form, LO traverses nearly the whole λ-term. Such
a varying traversal cost poses the natural question of the average-case performance of
LO. In what follows, we show that the execution cost of LO, when viewed as a random
variable ranging over random λ-terms, tends to a discrete limit law with constant expect-
ation. Consequently, finding the leftmost-outermost redex introduces, on average, only a
constant overhead to the cost of carrying out a single β-reduction.

Proposition 3.11. Let Xn be a random variable denoting the number of nodes visited by
the LO traversal algorithm while searching for the leftmost-outermost β-redex in a random
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plain λ-term of size n. Then, Xn converges in law to a discrete limiting distribution with
computable probability generating function and constant expectation. The corresponding
means µn satisfy (up to numerical approximation)

µn −−−→
n→∞

6.222262521 . . . (3.25)

Proof. We start with providing a combinatorial specification for plain λ-terms marking
all nodes that are visited by the leftmost-outermost redex traversal algorithm LO. For
that purpose we introduce the following three auxiliary classes:

• N for the class of β-normal forms;

• M for the class of so-called neutral terms, and

• A for the class of De Bruijn indices and plain λ-terms starting with an application.

In order to give their combinatorial specification we follow the presentation of [BGLZ16]
and give a joint description for the class N of β-normal forms and the associated classM
of neutral terms. A β-normal form is either a plain λ-term starting with an abstraction
followed by another β-normal form, or a neutral term. A neutral term, in turn, is either
a De Bruijn index, or an application of a neutral term to a β-normal form, see Figure 9.

N =
λ

N

+ M

M = D +
@

M N

Figure 9: Joint specification for β-normal forms N and neutral termsM.

Such a specification provides the following system of functional equations defining the
generating functions N(z) and M(z) corresponding to the class of β-normal forms and
neutral terms, respectively:

N(z) = zN(z) +M(z)

M(z) = zM(z)N(z) +
z

1− z
.

(3.26)

Solving (3.26) we note that M(z) and N(z) satisfy

N(z) =
M(z)

1− z
and M(z) =

1− z −
√

(1 + z)(1− 3z)

2z
. (3.27)
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L∞|u=1

+
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+
@
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Figure 10: Specification for plain λ-terms with marked nodes following the execution of
the redex finding traversal algorithm LO.

With both N(z) andM(z) at hand, we can now proceed and give the announced specifica-
tion for plain λ-terms with marked nodes visited during the execution of LO, see Figure 10.

Let T be a plain λ-term in the class A. Certainly, if T is a De Bruijn index, we mark
only its topmost atom (i.e. the topmost successor or 0 if T is equal to 0). Otherwise, T
starts with an application. If T is a β-redex, we mark two atoms – the topmost application
and the abstraction starting the left branch of T . Remaining nodes are left unmarked. If
T is not a redex however its left branch is a neutral term, we mark the entire left branch
as well as the topmost application. Finally, if the left branch of T is not a neutral term,
we take the difference class A\M of A and (marked) neutral termsM for the left branch.
The right branch remains unmarked.

Such a specification determines the following system of functional equations defin-
ing the generating functions L∞(z, u) and A(z, u) corresponding to classes L∞ and A,
respectively:

L∞(z, u) = zuL∞(z, u) + A(z, u)

A(z, u) =
zu

1− z
+ z2u2L∞(z, 1)2 + zuM(zu)L∞(z, u)

+ zu (A(z, u)−M(zu))L∞(z, 1).

(3.28)

Knowing a priori that L∞(z, 1) corresponds to the generating function for plain
λ-terms (3.3) we solve system (3.28) and find that L∞(z, u) satisfies

L∞(z, u) =
zuM(zu)L∞(z, 1)− (zuL∞(z, 1))2 − zu

1−z

zuM(zu)− (1− zuL∞(z, 1)) (1− zu)
. (3.29)

What remains to finish the proof is to check that L∞(z, u) meets the premises of Pro-
position A.8. Specifically, it admits a single, fixed dominant singularity ρ(u) = ρ and a
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corresponding Puiseux expansion in form of

L∞(z, u) = α(u)− β(u)

√
1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) . (3.30)

Denote the denominator expression of (3.29) as F (z, u). Note that F (ρ, 1) > 0 and
hence in a fixed neighbourhood of u = 1 the denominator F (z, u) is non-zero. Con-
sequently, L∞(z, u) shares its (fixed) dominant singularity with L∞(z, 1). The required
form of the Puiseux expansion of L∞(z, u) follows as a consequence of the Puiseux expan-
sions of both L∞(z, 1) and its power L∞(z, 1)2. A direct computation gives access to the
corresponding probability generating function (omitted for brevity) and also the specific
limit mean (3.25) of Xn.

Remark 3.12. The generating function M(z) associated with neutral terms, see (3.26),
also corresponds to the well-known class of Motzkin numbers enumerating, inter alia,
plane unary-binary trees, see e.g. [FS09, Note I.39, p.68]. We refer the curious reader
to [BGLZ16] for a size-preserving correspondence between neutral terms of size n and
Motzkin trees with n nodes.

3.5 Height profile in plain lambda terms

The goal of this section is to obtain some insight into the mean height profile of plain
λ-terms. We distinguish essentially two different notions of height. The first notion
which we call unary height, takes into account only the number of abstractions above
the considered node. The second notion concerns the natural height of a tree, i.e. the
number of predecessors of a node which can be either abstractions or applications. In
both situations, the semi-large powers theorem (see Proposition A.2) can be applied.
Consequently, the mean profile is always related to the Rayleigh distribution.

We are interested in the mean profile of different types of nodes. In what follows we
consider three types of mean profiles:

• the mean (unary or natural) profile of leaves;

• the mean (unary or natural) profile of abstractions, and

• the mean (unary or natural) profile of applications.

Proposition 3.13. Let Hn be a random variable denoting the unary (respectively nat-
ural) height of a randomly chosen variable (application or abstraction) in a random plain
λ-term. Then, with x in any compact subinterval of (0,+∞), Hn admits a limiting
Rayleigh distribution

P(Hn = k) ∼ C√
n
· x

2
e−x

2/4 where x =
k√
n
· C (3.31)

with C ≈ 4.30187 for unary height, and C ≈ 1.27162 for the natural height. The average
value of mean height is

√
πn/C whereas the peak value is attained at k∗ =

√
2n/C.

More specifically, the average number of
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• variables at unary height k is asymptotically equal to 2.839 ke−C
2k2/4n;

• variables at natural height k is asymptotically equal to 0.248 ke−C
2k2/4n;

• abstractions at unary height k is asymptotically equal to 2.383 ke−C
2k2/4n;

• abstractions at natural height k is asymptotically equal to 0.208 ke−C
2k2/4n;

• applications at unary height k is asymptotically equal to 2.839 ke−C
2k2/4n;

• applications at natural height k is asymptotically equal to 0.248 ke−C
2k2/4n.

Proof. We start with the unary height profile of variables. Consider generating functions
Ck(z, u) corresponding to plain λ-terms with u marking the variables at the unary height
k. These functions satisfy the following system of equations:

C0(z, u) =
uz

1− z
+ zL∞(z) + zC0(z, u)2, if k = 0;

Ck(z, u) =
z

1− z
+ zCk−1(z, u) + zCk(z, u)2, if k > 0.

(3.32)

Taking partial derivatives of each equation in (3.32) with respect to u, we obtain a linear
system for derivatives of generating functions. Setting u = 1 we can solve this linear
system and obtain

∂

∂u
Ck(z, u)

∣∣∣∣
u=1

=
1

1− z

(
z

1− 2zL∞(z)

)k+1

. (3.33)

Furthermore, a direct computation provides the following Puiseux series expansions as
z → ρ:

z

1− 2zL∞(z)
∼ 1− β

√
1− z

ρ
and L∞(z) ∼ 1− ρ

2ρ
− b∞

√
1− z

ρ
(3.34)

where β = 2b∞ ≈ 4.301868701457. Consequently, the numbers Mn,k of variables at unary
level k in a random plain lambda term of size n satisfy

Mn,k =

[zn]
1

1− z

(
z

1− 2zL∞(z)

)k+1

[zn]L∞(z)
. (3.35)

An application of the semi-large powers theorem (see Proposition A.2) and the transfer
theorem (see Proposition A.1) to the numerator and denominator, respectively, result in
the following asymptotic estimate:

Mn,k ∼
2k

1− ρ
e−β

2k2/4n. (3.36)
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After normalising by the total sum
∑n

k=0Mn,k we obtain the declared limiting distribution.
Next, we turn to the case of natural height profile of variables. Consider generating

functions Ck(z, u) where now u marks the variables at the natural height k, instead of the
unary height. As in the previous case, we obtain a system of equationsC0(z, u) =

uz

1− z
+ zL∞(z) + zL∞(z)2, if k = 0;

Ck(z, u) =
z

1− z
+ zCk−1(z, u) + zCk−1(z, u)2, if k > 0.

(3.37)

Again, taking partial derivatives ∂u at u = 1 we can solve the resulting system and find
that

∂

∂u
Ck(z, u)

∣∣∣∣
u=1

=
z

1− z
(z + 2zL∞(z))k . (3.38)

In this case, a direct computation verifies that the function z + 2zL∞(z) admits a
Puiseux series expansion in form of 1 − γ

√
1− z/ρ + O (|1− z/ρ|) where γ = βρ ≈

1.27162265120953. Consequently, this estimate yields a Rayleigh distribution with para-
meter 1.27162265120953. In particular, the average number Mn,k of variables at natural
height k in a random plain λ-term of size n satisfies

Mn,k ∼
2ρ2

1− ρ
ke−γ

2k2/4n. (3.39)

In order to mark remaining nodes, i.e. abstractions and applications, it is sufficient to
change the first equation of the system (3.32). Accordingly, only the constant multiple
behind the mean tree width at level k changes. For abstractions, we obtain, respectively,

C0(z, u) =
z

1− z
+ zuL∞(z) + zC0(z, u)2 (3.40)

for unary height whereas

C0(z, u) =
z

1− z
+ zuL∞(z) + zL∞(z)2 (3.41)

for natural height. This change gives the constants 2L∞(ρ) = (1−ρ)
ρ
≈ 2.383 for unary

height, and 2ρ2L∞(ρ) = ρ(1− ρ) ≈ 0.208 for the natural height, respectively.
Similarly, marking applications yields a change in the first equation for the generating

function
C0(z, u) =

z

1− z
+ zL∞(z) + zuC0(z, u)2 (3.42)

for unary height, and

C0(z, u) =
z

1− z
+ zL∞(z) + zuL∞(z)2 (3.43)

for natural height. We obtain the constants 2L2
∞(ρ) = (1−ρ)2

2ρ2
≈ 2.839 for unary height,

and 2ρ2L2
∞(ρ) = (1−ρ)2

2
≈ 0.248 for natural height, respectively.

The mean value is obtained by using the integral approximation for the ratio of sums
kMn,k/

∑n
k=0Mn,k whereas the peak value is obtained by finding the maximum value of

Mn,k as a function of k.
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4 Advanced marking

In the following section we investigate more parameters related to plain and closed
λ-terms. In particular, we consider:

• Several parameters related to closed λ-terms, resulting in Gaussian limit laws;

• Further parameters whose limiting distributions are discrete, including the leftmost-
outermost redex search time in closed terms, the number of free variables in plain
terms, the number of head abstractions in closed terms, and mean degree profile in
closed terms;

• Finally, the mean height profile of closed terms for several different notions of height.

4.1 m-openness and the enumeration of closed terms

Recall that a term is said to be m-open (see Section 2) if by prepending it with m head
abstractions we obtain a closed λ-term as a result. Following this natural, hierarchical
notion, the set Lm of m-open λ-terms can be specified as

Lm ::= λLm+1 | (LmLm) | 0, 1, . . . ,m - 1
Lm+1 ::= λLm+2 | (Lm+1Lm+1) | 0, 1, . . . ,m
. . . . . .

(4.1)

Let Lm(z) denote the generating function associated with the set of m-open λ-terms,
i.e. Lm(z) =

∑
n>0 an,mz

n where an,m stands for the number of m-open lambda terms of
size n. Using (4.1) we obtain a corresponding infinite system for the functions Lm(z):

L0(z) = zL1(z) + zL0(z)2,

L1(z) = zL2(z) + zL1(z)2 + z,

· · · ,
Lm(z) = zLm+1(z) + zLm(z)2 + z

1− zm

1− z
,

· · ·

(4.2)

In [BGG18, Lemma 8] the authors prove that for each m > 0 the generating functions
for m-open λ-terms Lm(z) admit Puiseux expansions in form of

Lm(z) ∼ am − bm
√

1− z

ρ
. (4.3)

Moreover, by the virtue of their proof, we obtain an suitable approximation procedure for
the coefficients am and bm by truncating the system (4.2) and replacing the function Lm(z)

with L∞(z). Furthermore, the estimated coefficients ãm and b̃m tend to their respective
limits with an error of order O( 1√

m
). Using Theorem 5.9 it is possible to prove that ãm and
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b̃m converge to their respective limits exponentially fast. Consequently, the approximation
procedure proposed in [BGG18] convergences exponentially fast, as well.

Immediately, this implies that the probability that a random plain λ-terms is m-open,

but not (m − 1)-open is
bm − bm−1

b∞
. Certainly, the limiting distribution associated with

m-openness is discrete.
Note that the probability distribution function of m-openness is proportional to the

coefficient at zn in the bivariate generating function

L(z, u) =
∑
k>1

uk
(
Lk(z)−Lk−1(z)

)
∼
∑
k>1

uk(ak− ak−1)−
∑
k>1

uk(bk− bk−1)
√

1− z

ρ
. (4.4)

The mean value corresponding to m-openness of plain terms can be calculated as

[zn]
∂

∂u
L(z, u)

∣∣∣∣
u=1

[zn]L∞(z)
∼
∑

k>1 k(bk − bk−1)∑
k>1(bk − bk−1)

=

∑
k>0(b∞ − bk)

b∞
=
∑
k>0

(
1− bk

b∞

)
. (4.5)

In order to compute this expectation we use the approximation procedure discussed above.
Using the (aptly truncated) recurrence for the coefficients am and bm

am =
1

2ρ

(
1−

√
1− 4ρ2

1− ρm
1− ρ

− 4ρ2am+1

)
, bm =

ρbm+1√
1− 4ρ2 1−ρ

m

1−ρ − 4ρ2am+1

(4.6)

we obtain the numerical approximation for the mean value corresponding to m-openness.
Numerical approximation yields an estimate 2.01922912627.

4.2 Variables, abstractions, successors and redexes in closed terms

In the following section we investigate the joint distribution of several parameters in closed
λ-terms, utilising the novel Theorem 5.9.

Proposition 4.1. Let Xn = (Xn(var), Xn(red), Xn(suc), Xn(abs)) denote a vector of random
variables denoting the number of variables, redexes, successors and abstractions in a ran-
dom closed λ-term of size n, respectively. Then, after standardisation, the random vector
Xn converges in law to a multivariate Gaussian distribution with identical parameters as
plain terms.

Proof. Let us recall that the system of equations from Proposition 3.3 associated with the
four parameters that we consider is, in the general class of plain terms, of the form

L(z,u) = u(abs)zL(z,u) + A(z,u),

A(z,u) =
u(var)z

1− u(suc)z
+ u(red)u(abs)z

2L(z,u)2 + zA(z,u)L(z,u)
(4.7)

with u = (u(var), u(red), u(suc), u(abs)) corresponding to respective components of Xn.
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In order to compose a similar, infinite system for m-open terms, we index respect-
ive generating functions in accordance with the natural combinatorial interpretation of
m-openness; if an abstraction stands before an occurrence of L(z,u), its respective index
should be increased by one. This leads us to the following system:

Lm(z,u) = u(abs)zLm+1(z,u) + Am(z,u),

Am(z,u) = u(var)
z(1− (u(suc)z)m)

1− u(suc)z
+ u(red)u(abs)z

2Lm(z,u)Lm+1(z,u)

+ zAm(z,u)Lm(z,u).

(4.8)

Equivalently, we can represent (4.8) as(
Lm(z,u)
Am(z,u)

)
= Km(Lm(z,u), Lm+1(z,u), Am(z,u), z,u), m = 0, 1, 2, . . . (4.9)

It is straightforward to check that all the conditions of Theorem 5.9 are satisfied.
Consequently, the function L0(z,u) admits a Puiseux expansion in form of

L0(z,u) ∼ a0(u)− b0(u)

√
1− z

ρ(u)
(4.10)

with the same ρ(u) as in Proposition 3.3. Therefore, the limiting distribution, after
standardisation, is Gaussian with the mean vector and the covariance matrix completely
determined by the behaviour of the singularity ρ(u) near the point u = 1.

4.3 Free variables in plain terms

Proposition 4.2. Let Xn be a random variable denoting the number of free variables
in a random plain lambda term of size n. Then, Xn converges in law to a computable,
discrete limiting distribution.

Proof. Consider the infinite system of functional equations (Lm(z, u))∞m=0 where Lm(z, u)
corresponds to the generating function for plain λ-terms in which each De Bruijn index
whose value k exceeds its unary height at least by m, is marked. For example, L0(z, u)
corresponds to plain λ-terms with marked free variables. Note that

L0(z) = zL1(z) + zL0(z)2 + uz + uz2 + · · · ,
L1(z) = zL2(z) + zL1(z)2 + z + uz2 + · · · ,

· · · ,
Lm(z) = zLm+1(z) + zLm(z)2 + z

1− zm

1− z
+ uz

zm

1− z
,

· · ·

(4.11)

Let us apply Theorem 5.9 to this system taking L∞(z) as the limiting equation. Certainly,
the limiting equation does not depend on the marking variable u. Therefore, the singular
point z∗ also does not depend on u. An application of Proposition A.8 finishes the
proof.
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In order to compute the mean value we set L�m(z) :=
∂

∂u
Lm(z, u)

∣∣∣∣
u=1

and represent

the respective derivative as

L�m(z) ∼ cm − dm
√

1− z

ρ
. (4.12)

Based on (4.11) we note that

L�m(z) =
z

1− 2zL∞(z)

(
L�m+1(z) +

zm

1− z

)
. (4.13)

Since z
1−2zL∞(z)

∼ 1− 2b
√

1− z/ρ as z → ρ we establish the following recurrence relation
for the coefficients cm and dm:

cm = cm+1 +
ρm

1− ρ
and dm = dm+1 + 2b∞cm+1 + 2b∞

ρm

1− ρ
. (4.14)

Once solved, this implies

cm =
ρm

(1− ρ)2
and dm =

2b∞ρ
m

(1− ρ)3
. (4.15)

Consequently, the mean value corresponding the number of free variables in a random
plain lambda term is equal to d0

b∞
= 2

(1−ρ)3 ≈ 5.7222625231204.

4.4 Head abstractions in closed terms

Proposition 4.3. Let Xn be a random variable denoting the number of head abstractions
in a closed λ-term of size n, chosen uniformly at random. Then, Xn converges in law to
a computable, discrete limiting distribution. The corresponding expectation is close to
1.447.

Proof. Let Lm(z, u) be the bivariate generating function associated with m-open lambda
where u marks head abstractions. Then, the system (Lm(z, u))∞m=0 satisfies

L0(z, u) = zuL1(z, u) + zL0(z, 1)2,

L1(z, u) = zuL2(z, u) + zL1(z, 1)2 + z,

. . .

Lm(z, u) = zuLm+1(z, u) + zLm(z, 1)2 + z
1− zm

1− z
,

. . .

(4.16)

If a λ-term starts with a head abstraction, then after its removal, the openness of the re-
spective subterm increases by one. Consequently, we include the expression uzLm+1(z, u)
in the equation for Lm(z, u). On the other hand, if the λ-term does not start with a head
abstraction, i.e. starts with an application or is itself a De Bruijn index, we do not mark
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remaining abstractions as they are no longer head abstractions. Hence, we also include
expressions zL2

m(z, 1) and z 1−zm
1−z in the equation corresponding to Lm(z, u).

Having established the system (4.16) we note that L0(z, u) can be obtained as a limit
of the solutions of truncated systems (see the description of the approximation procedure
in Theorem 5.9) and this limit is equal to the sum

L0(z, u) = zL0(z, 1)2 + zu
(
zuL2(z, u) + zL1(z, 1)2 + z

)
= zL0(z, 1)2 + z2uL1(z, 1)2 + z2u+ (zu)2

(
zuL3(z, u) + zL2(z, 1)2 + z + z2

)
= . . .

(4.17)

and so

L0(z, u) = z
∑
m>0

(uz)mLm(z, 1)2 +
∑
m>1

um(zm+1 + · · ·+ z2m)

= z
∑
m>0

(uz)mLm(z, 1)2 +
∑
m>1

(uz)mz
1− zm

1− z

= z
∑
m>0

(uz)mLm(z, 1)2 +
uz2

(1− z)(1− uz)
− uz3

(1− z)(1− uz2)
.

(4.18)

Denote the final sum in (4.18) as S(z, u). Since for each m the function Lm(z, 1) admits
a Puiseux series expansion Lm(z, 1) ∼ am − bm

√
1− z/ρ, near z = ρ it holds

S(z, u) ∼ c(u) + z
∑
m>0

(uz)m
(
a2m − 2ambm

√
1− z

ρ

)
(4.19)

where c(u) comes from the last two summands of the previous expression. Since a2m 6 a2∞
and ambm 6 a∞b∞, S(z, u) is convergent near (z, u) = (ρ, 1) and the function L0(z, u)
admits a Puiseux series expansion in form of

L0(z, u) ∼ a0(u)− b0(u)

√
1− z

ρ
. (4.20)

Consequently, p(u) = b0(u)/b0(1) is the limiting probability generating function corres-
ponding to the number of head abstractions in closed λ-terms. The function b0(u) satisfies

b0(u) = 2ρ
∑
m>0

(uρ)mambm. (4.21)

4.5 De Bruijn index values in closed lambda terms

Proposition 4.4. Let Xn be a random variable denoting the De Bruijn index value m
of a random index m in a random closed λ-term of size n. Then, Xn converges in law to
a geometric distribution Geom(ρ) with parameter ρ. Specifically,

P(Xn = h) −−−→
n→∞

P(Geom(ρ) = h) = (1− ρ)ρh. (4.22)
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Proof. Let Lm,k(z, u) denote the generating function for m-open λ-terms with u marking
the number of occurrences of De Bruijn index k. Note that Lm,k(z) satisfies a functional
equation

Lm,k(z, u) = zLm+1,k(z, u) + zLm,k(z, u)2 + z
1− zm

1− z
+ (u− 1)zk+11[k<m] (4.23)

where 1[·] stands for the Iverson bracket notation.
Taking the partial derivative of (4.23) with respect to u and assigning u = 1, we obtain

the generating function corresponding to λ-terms weighted by the number of occurrences
of De Bruijn index k. Denote ∂

∂u
Lm,k(z, u)|u=1 as L�m,k(z). Then, taking into account that

Lm,k(z, 1) = Lm(z) we arrive at

L�m,k(z) = zL�m+1,k(z) + 2zLm(z)L�m,k(z) + zk+11[k<m]. (4.24)

Consider the generating function

Em(z, w) =
∑
k>0

L�m,k(z)wk. (4.25)

Note that [zn]Em(z, w) denotes the probability generating function associated with the
distribution of variables in m-open λ-terms (cf. Proposition 3.8). Consequently, sum-
ming (4.24) over k we obtain

Em(z, w) = zEm+1(z, w) + 2zLm(z)Em(z, w) + z
1− (wz)m

1− wz
. (4.26)

These equations generate an infinite system for which Theorem 5.9 with a small modi-
fication is applicable. Each of the equations of the infinite system is linear, and the
generating functions Lm(z) enter the equations as coefficients. This yields the desired
behaviour of the Puiseux expansions, because the non-linearity of the components is used
only to provide the Puiseux expansion of the limiting equation, which is given in our case
by construction.

The condition of exponential convergence holds because the difference between the
limiting system and the mth equation of the system is equal to

2zE∞(z, w) (L∞(z)− Lm(z)) +
z

1− wz
(wz)m (4.27)

and decreases at exponential speed. Hence, the limiting distribution of De Bruijn index
value is identical to the respective parameter in plain λ-terms.

4.6 Leftmost-outermost redex search time in closed terms

Proposition 4.5. Let Xn denote the number of vertices visited by depth-first traversal
algorithm searching for the leftmost-outermost β-redex in a random closed λ-term of size
n (see Section 3.4). Then, the random variable Xn converges in law to a computable,
discrete limiting distribution.
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Proof. Recall that the system (3.28) defining the generating function L∞(z, u) corres-
ponding to plain terms with u marking visited nodes is written as

L∞(z, u) = uzL∞(z, u) + A(z, u),

A(z, u) = u
z

1− z
+ z2u2L∞(z, 1)2 + zuM(zu)L∞(z, u) + uz(A(z, u)−M(zu))L∞(z, 1)

(4.28)

with M(z) being the generating function associated with so-called neutral terms and also
Motzkin numbers, see Theorem 3.12:

M(z) =
1− z −

√
(1 + z)(1− 3z)

2z
. (4.29)

Lm =
λ

Lm+1|u=1

+ Am

Am = Dm +
@

λ

Lm+1|u=1

Lm|u=1

+
@

Mm Lm

+
@

Am\Mm Lm|u=1

Figure 11: Specification corresponding to redex search time in closed lambda terms.

Note that including indices in (4.28) according to m-openness we obtain

Lm(z, u) = uzLm+1(z, u) + Am(z, u),

Am(z, u) = uz
1− zm

1− z
+ z2u2Lm(z, 1)Lm+1(z, 1)

+ zuMm(zu)Lm(z, u) + uz(Am(z, u)−Mm(zu))Lm(z, 1)

(4.30)

where Mm(z) is the generating function for m-open neutral lambda terms. The sequence
of functions (Mm(z))∞m=0 can be obtained from the system of equations

Nm(z) = zNm+1(z) +Mm(z),

Mm(z) = zMm(z)Nm(z) + z
1− zm

1− z
.

(4.31)

Comparing (4.31) with its limiting counterpart (3.26) we note that the M∞(z)−Mm(z)
decays at exponential speed as m→∞ by virtue of Theorem 5.9. As additionally follows
from the theorem, the functions (Mm(z))∞m=0 share the same singularity ρ = 1/3.
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Next, the system of equations (4.31) can be represented in the form(
Lm(z, u)
Am(z, u)

)
= Km(Lm(z, u), Lm+1(z, u), Am(z, u), z, u). (4.32)

In order to apply Theorem 5.9 to (4.32) we need to replace the condition that the limiting
system satisfies the premises of Drmota–Lalley–Woods theorem by an assumption that
the limiting system admits Puiseux expansion. It was proven in Proposition 3.11 that
L∞(z, u) has a fixed singularity z∗ which is independent of u. Therefore, all the functions
Lm(z, u) have a fixed singularity z∗ and by applying Proposition A.8, we obtain that the
limiting distribution of the redex search time is discrete.

4.7 Node height profile in closed terms

Like in Section 3.5, in the current section we consider unary and natural height profile
of variables, abstractions and applications in closed lambda terms. For this purpose, we
provide a variation of the semi-large powers theorem (see Proposition A.2).

Theorem 4.6. Let (fk(ρz))k>0 be a sequence of functions analytic in delta-domain ∆(R)
(see Proposition A.1) for some R > ρ admitting Puiseux series expansions in form of

fk(z) ∼ σk − ak
√

1− z

ρ
(4.33)

as z → ρ. Assume there exist β and σ̂ such that the sequences (σk)k>0 and (ak)k>0 satisfy

k∑
j=0

aj
σj
∼ βk and lim

k→∞

k∏
j=0

σk → σ̂. (4.34)

Then, for x in any compact subinterval of (0,+∞), as n→∞, it holds

[zn]
k∏
j=0

fj(z) ∼ σ̂
ρ−n

n
S(βx) and x =

k√
n

(4.35)

where S(x) is the Rayleigh function defined in Proposition A.2.

Proof. We recall that in the course of the proof of the semi-large power theorem, see [FS09,
Theorem IX.16], the coefficient [zn]f(z)k is expressed as the following complex contour
integral with the help of Cauchy’s integral theorem:

[zn]f(z)k =
1

2πi

∮
f(z)k

dz

zn+1
=

1

2πi

∮
ehn,k(z)

dz

z
, hn,k(z) = k log f(z)− n log z. (4.36)

With the change of variables z = ρ(1−t/n) the coefficient [zn]f(z)k can be accordingly
approximated by the following real integral:

[zn]f(z)k ∼ −ρ
n

n

1

2πi

∫ ∞
0

et−ax
√
tdt. (4.37)
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As proven in the referenced literature, this yields the Rayleigh approximation. In the
statement of the current theorem, the function hn,k(z), i.e. the logarithm of the sub-
integral expression, is replaced by

h̃n,k =
k∑
j=0

log fj(z)− n log z. (4.38)

Accordingly, with the variable change z = ρ(1−t/n) the coefficient [zn]
∏k

j=0 fj(z) becomes

[zn]
k∏
j=0

fj(z) =
k∏
j=0

σk · [zn]
k∏
j=0

(
1− ak

σk

√
1− z

ρ

)
∼ −

ρn
∏k

j=0 σk

n

1

2πi

∫ ∞
0

et−βx
√
tdt

(4.39)
which has the same form as (4.37), finishing the proof.

Proposition 4.7. Let Hn be a random variable denoting the unary (respectively natural)
height of a uniformly random variable in a random closed lambda term. Then, with x in
any compact subinterval of (0,+∞), Hn follows the Rayleigh limiting distribution

P(Hn = k) ∼ C√
n
· x

2
e−x

2/4, where x =
k√
n
· C (4.40)

with C ≈ 4.30187 for unary height and C ≈ 1.27162 for the natural height.

Proof. Let Cm,k(z, u) denote the bivariate generating function corresponding to m-open
λ-terms where variable u marks De Bruijn indices at unary height k − m. Certainly,
Cm,k(z, 1) = Lm(z) for each m and k. Note that, the functions (Cm,k(z, u))∞m=0 satisfy
jointly 

Cm,k(z, u) = z
1− zm

1− z
+ zCm+1,k(z, u) + zCm,k(z, u)2 if m < k,

Cm,k(z, u) = zu
1− zm

1− z
+ zLm+1(z) + zCm,k(z, u)2 if m = k,

Cm,k(z, u) = Lm(z) if m > k.

(4.41)

A straightforward induction yields

∂

∂u
C0,k(z, u)

∣∣∣∣
u=1

=
k∏
j=0

z

1− 2zLj(z)
· 1− zk

1− z
. (4.42)

This function is amenable to asymptotic analysis of their coefficients by Theorem 4.6.
First show that in the respective Puiseux expansions of the functions

z

1− 2zLj(z)
∼ σj − cj

√
1− z/ρ
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the sequence σj tends to 1 at exponential speed, and the sequence cj tends to a limit
2b∞ ≈ 4.30187 again at exponential speed. This holds because in the course of the proof
of Theorem 5.9 we have shown that the sequences of coefficients of the Puiseux expansion
of (Lj(z))∞j=0 (respectively, the the sequence of first coefficients Lj(ρ), and the sequence
of the second coefficients) tend to their respective limits, i.e. to the coefficients of the
Puiseux expansion of L∞(z) exponentially fast. Comparing with the Puiseux expansion
of z

1−2zL∞(z)
given in the proof of Proposition 3.13 we obtain the limiting values of the

sequences (σj)
∞
j=0 and (cj)

∞
j=0. Since the speed of convergence is exponential, the product∏k

j=0 σj converges to some σ̂, and the sum of the ratios cj/σj tends to a linear function
βk = 2b∞k.

Note that up to a normalising constant, the height profile of other parameters, namely
the height profile distribution of abstractions and applications, remains asymptotically
the same because from the generating function viewpoint only the multiple in front of the
product

∏k
j=0 fj(z) changes (see Proposition 3.13).

In the same manner, there can be obtained Rayleigh distribution for natural height
profile of different parameters. For example, in the case of variable height profile, we
obtain the system of equations for the family of generating functions Cm,k(z, u) for m-
open lambda terms with variable u marking De Bruijn indices at unary height k −m:

Cm,k(z, u) = z
1− zm

1− z
+ zCm+1,k(z, u) + zCm+1,k(z, u)2, 0 6 m < k;

Cm,k(z, u) = uz
1− zm

1− z
+ zLm+1(z) + zLm(z)2, m = k;

Cm,k(z, u) = Lm(z), m > k.

This implies
∂

∂u
C0,k(z, u)

∣∣∣∣
u=1

=
k∏
j=1

(z + 2zLj(z)) · z1− zk

1− z
.

Using the same argument as in the previous case, and taking into account two first terms
of Puiseux expansion of (z + 2zL∞(z)) (see proof of Proposition 3.13), we obtain again
Rayleigh distribution, with the same parameter as for plain lambda terms.

5 Infinite systems of algebraic equations

In this section we present our main technical contribution within analytic combinatorics
meant for dealing with certain recursive, infinite systems of generating functions, i.e. The-
orem 5.9. Although our results admits broader applications than the one presented in the
current paper, for consistency, we focus only on the enumeration and statistical ana-
lysis of various combinatorial parameters in closed λ-terms. Our proof is motivated by
the papers [BGG18,GG16] where the authors consider the enumeration problem of closed
λ-terms without additional marking parameters. For that purpose, they construct a series
of sequences (Lm,N)m>0 that approximate m-open λ-terms with convergence rate of order
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O
(

1√
N

)
. In what follows we improve this rate to an exponential one. Moreover, we

abstract the considered system away from λ-terms in the De Bruijn notation, allowing for
an analysis of more general varieties of combinatorial systems.

Remarkably, in [GG16, Section 5] the authors obtain the asymptotic estimate
Θ(n−3/2ρ−n) for the number of closed lambda terms of size n with the difference between
upper and lower bounds on the constant multiple within 10−7. Let us notice that this tech-
nique is quite different from the technique used in [BGG18]. Our approach is more similar
to the former method, however admits certain improvements. Specifically, we simplify the
procedure of improved constant estimation, give a rigorous proof about the exponential
convergence rate of the constant multiple, and provide more general and simpler tools
based on the properties of the Jacobian of the limiting system (instead of exploiting the
particular form of this equation in the case of λ-terms).

5.1 Calculus techniques for formal power series

We start with some basic notation and properties of coefficient-wise inequalities on formal
power series and some geometric results on matrices of formal power series. In what
follows, we denote the spectral radius of matrix A, i.e. the largest absolute value of its
eigenvalues, by r(A).

Definition 5.1 (Formal power series domination). We say that f(z) is dominated by g(z),
denoted as f(z) � g(z), if for each n > 0 we have [zn]f(z) 6 [zn]g(z). For multivariate
formal power series

f(z) =
∑
n>0

anz
n and g(z) =

∑
n>0

bnz
n (5.1)

where z = (z1, . . . , zd), n = (n1, . . . , nd) and zn = zn1
1 z

n2
2 . . . zndd the domination

f(z) � g(z) means that for each vector of indices n it holds an 6 bn. Certainly, if a
combinatorial class F is included in a combinatorial class G, then the generating func-
tions f(z) and g(z) corresponding to respective classes satisfy f(z) � g(z). The same
holds for marked classes and associated multivariate generating functions. Finally, for
vectors A and B of identical (however not necessarily finite) dimension, we write A � B
to denote a coordinate-wise domination of respective components.

In real analysis, the squeeze lemma is a theorem regarding the limit of the sequence
which is upper- and lower-bounded by two sequences with the same limit value. The
following statement is a variant of this lemma, stated in the context of formal power
series admitting coefficient asymptotics suitable for analysis of corresponding limit laws,
see Appendix A.2.

Lemma 5.2 (Squeeze lemma for formal power series). Let z ∈ C and u = (u1, . . . , ur) ∈
Cr. Assume that f(z,u), (hm(z,u))m>0, and (gm(z,u))m>0 are multivariate formal power
series in (z,u) with non-negative coefficients, such that for every n and m, the functions

[zn]f(z,u), [zn]hm(z,u) and [zn]gm(z,u) (5.2)
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are polynomials in u.
Moreover, assume that the following conditions hold:

• for each m > 0, we have

hm(z,u) � f(z,u) � gm(z,u) (5.3)

in the sense of multivariate formal power series domination;

• there exists a sequence of real positive numbers Cn and functions
(
Am(u)

)
m>0

,(
Am(u)

)
m>0

, B(u) analytic in a common neighbourhood of u = 1, such that uni-
formly for m > 0 and uniformly in a fixed complex vicinity of u = 1, it holds

lim
n→∞

[zn]hm(z,u)

CnAm(u)B(u)n
= 1 and lim

n→∞

[zn]gm(z,u)

CnAm(u)B(u)n
= 1; (5.4)

• there exists a function A(u) analytic near u = 1 such that A(1) 6= 0 satisfying
uniformly in a complex vicinity of u = 1

lim
m→∞

Am(u) = lim
m→∞

Am(u) = A(u). (5.5)

Then, uniformly in a complex vicinity of u = 1, as n→∞:

[zn]f(z,u) ∼ CnA(u)B(u)n. (5.6)

Proof. We divide the proof into two parts. We start with showing that the statement
holds for vectors u whose components are real positive numbers. Next, we extend this
property onto all complex components of u.

First, take u ∈ Rr in the vicinity where the functions Am(u), Am(u), B(u) are
analytic. Then, following (5.3) and (5.4), for every positive ε there exists N := N(ε),
independent of m and u, such that

∀n > N Am(u)(1− ε) 6 [zn]f(z,u)

CnB(u)n
6 Am(u)(1 + ε). (5.7)

Taking the limit with respect to m we note that condition (5.5) guarantees that for
arbitrary small ε > 0 and sufficiently large N (again, independent of u) we have

∀n > N A(u)(1− ε) 6 [zn]f(z,u)

CnB(u)n
6 A(u)(1 + ε). (5.8)

In other words, for values of u ∈ Rr within a fixed vicinity of u = 1 it holds

[zn]f(z,u) ∼ CnA(u)B(u)n. (5.9)

Now, let us consider u ∈ Cr. Note that since for each n,m > 0 the formal power
series [zn]f(z,u), [zn]hm(z,u) and [zn]gm(z,u) are polynomials in u, they are analytic in
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Cr. Moreover, as ψn,m(u) := [zn]f(z,u)− [zn]hm(z,u) is a polynomial with non-negative
coefficients, for every u ∈ Cr we have |ψn,m(u)| 6 ψn,m(|u|) and, consequently,∣∣[zn]f(z,u)− [zn]hm(z,u)

∣∣ 6 [zn]f(z, |u|)− [zn]hm(z, |u|). (5.10)

After dividing both parts by Cn|A(u)||B(u)n| we obtain∣∣∣∣ [zn]f(z,u)

CnA(u)B(u)n
− [zn]hm(z,u)

CnA(u)B(u)n

∣∣∣∣ 6 [zn]f(z, |u|)
Cn|A(u)||B(u)n|

− [zn]hm(z, |u|)
Cn|A(u)||B(u)n|

. (5.11)

Following condition (5.4) and the estimate (5.9) for u ∈ Rr, we note that for every ε > 0
there exists N := N(ε) independent of m and u, such that for all n > N we further have∣∣∣∣ [zn]f(z,u)

CnA(u)B(u)n
−
Am(u)

A(u)

∣∣∣∣ 6 A(|u|)− Am(|u|)
|A(u)|

· B(|u|)n

|B(u)n|
+ ε. (5.12)

Since ε does not depend on m, we can take the limit with respect to m. Given condi-
tion (5.5) we note that for sufficiently large n we have∣∣∣∣ [zn]f(z,u)

CnA(u)B(u)n
− 1

∣∣∣∣ 6 ε. (5.13)

Hence, uniformly in a fixed complex vicinity of u = 1

lim
n→∞

[zn]f(z,u)

CnA(u)B(u)n
= 1, (5.14)

which finishes the proof.

Remark 5.3. Using the same technique, higher-order error terms can also be transferred,
provided that the function is squeezed between two sequences of formal power series
with known Puiseux expansions. In such a situation, higher-order terms correspond to
coefficients obtained from the summands of Puiseux expansion

f(z,u) ∼
∑
k>0

ck(u)

(
1− z

ρ(u)

)k/2
. (5.15)

The next lemma is a formal power series analogue of Lagrange’s mean value theorem.

Lemma 5.4 (Mean value lemma for formal power series). Let f(z) and g(z) be two formal
power series such that f(z) � g(z). Assume that Ψ(t) =

∑
n>0 ψnt

n is a formal power
series with non-negative coefficients. Then,

Ψ(g(z))−Ψ(f(z)) � (g(z)− f(z)) Ψ′(g(z)). (5.16)

Likewise, the statement holds for vectors of formal power series in a coordinate-wise man-
ner.
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Proof. Coefficient-wise subtraction of the left-hand side of (5.16) yields

Ψ(g(z))−Ψ(f(z)) =
∑
n>0

ψn (g(z)n − f(z)n)

= (g(z)− f(z))
∑
n>0

ψn

(
n−1∑
i=0

g(z)if(z)n−i−1
)

� (g(z)− f(z))
∑
n>0

ψnng(z)n−1

= (g(z)− f(z)) Ψ′(g(z)).

(5.17)

The first two equalities hold as a consequence of formal power series composition and
the identity an − bn = (a− b)

∑n−1
i=0 a

ibn−i−1. The subsequent domination follows from
the assumption that f(z) � g(z).

5.2 Forward recursive systems

The following definition of forward recursive systems encapsulates the general, abstract
features of the infinite systems that we consider in the current paper. Core characteristics
of the infinite system corresponding to closed λ-terms are abstracted and divided into
three general conditions which are sufficient to access the asymptotic form of respective
coefficients.

Definition 5.5 (Forward recursive systems). Let z be a formal variable and u =

(u1, . . . , ur) be a vector of r formal variables. Consider infinite sequences
(
L〈m〉

)
m>0

and
(
K〈m〉

)
m>0

of d-dimensional vectors

L〈m〉 =
(
L
〈m〉
1 , . . . , L

〈m〉
d

)
and K〈m〉 =

(
K
〈m〉
1 , . . . , K

〈m〉
d

)
(5.18)

consisting of formal power series L〈m〉i (z,u) and K
〈m〉
i (`1, `2, z,u) where `1 and `2 are

vectors of d variables and i = 1, . . . , d.
Assume that

(
L〈m〉

)
m>0

and
(
K〈m〉

)
m>0

satisfy

L〈m〉 = K〈m〉
(
L〈m〉,L〈m+1〉, z,u

)
. (5.19)

Then, we say that the system (5.19) is forward recursive.
Furthermore, consider a limiting system in form of

L〈∞〉 = K〈∞〉
(
L〈∞〉,L〈∞〉, z,u

)
(5.20)

where L〈∞〉 and K〈∞〉 are d-dimensional vectors of formal power series L〈∞〉i (z,u) and
K
〈∞〉
i (`1, `2, z,u), respectively, and moreover all series K〈∞〉i are analytic at (`1, `2, z,u) =

(0,0, 0,1). In this setting, we say that the system (5.19):
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a) is infinitely nested if K〈m〉(`1, `2, z,u) � K〈∞〉(`1, `2, z,u) for each m > 0;

b) tends to an irreducible context-free schema if it is infinitely nested and its corres-
ponding limiting system (5.20) satisfies the premises of the Drmota–Lalley–Woods
theorem (see Proposition A.5) i.e. is a polynomial, non-linear system of functional
equations which is algebraic positive, proper, irreducible and aperiodic;

c) is exponentially converging if there exists a vectorA(z,u) = (A1(z,u), . . . , Ad(z,u))
and a function B(z,u) such that:

• for each m > 0 we have

K〈∞〉(L〈∞〉,L〈∞〉, z,u)−K〈m〉(L〈∞〉,L〈∞〉, z,u) � A(z,u) ·B(z,u)m; (5.21)

• A1(z,u), . . . , Ad(z,u) and B(z,u) are analytic functions in the disk |z| < ρ+ε
for some ε > 0 and u = 1 where ρ is the dominant singularity of the limit
system (5.20) at point u = 1. Moreover, at u = 1 we have |B(ρ(u),u)| < 1
where ρ(u) is the singularity of the limiting system (5.20).

Example 5.6. Consider the infinite system corresponding to m-open λ-terms, see (2.3).
Recall that the sequence (Lm(z))m>0 of respective generating functions satisfies

L0(z) = zL1(z) + zL0(z)2

L1(z) = zL2(z) + zL1(z)2 + z

· · ·
Lm(z) = zLm+1(z) + zLm(z)2 + z

1− zm

1− z
· · ·

(5.22)

Let us show that (5.22) is an infinitely nested, forward recursive system which tends to
an irreducible context-free schema of L∞(z) at an exponential convergence rate. Here,
each intermediate system L〈m〉 consists of a single equation defining Lm(z). Note that
there are no additional marking variables u. The vectors K〈m〉 are one-dimensional and
the corresponding functions Km are given by

Km(`1, `2, z) := z`2 + z`21 + z
1− zm

1− z
. (5.23)

The limiting system L∞(z) satisfies

L∞(z) = zL∞(z) + zL∞(z)2 +
z

1− z
. (5.24)

One can easily check that it also satisfies the premises of Proposition A.5; hence, the
considered system (5.22) tends to an irreducible context-free schema. Since the trivari-
ate formal power series K∞(`1, `2, z)−Km(`1, `2, z) has non-negative coefficients, the sys-
tem (5.22) is also infinitely nested. Moreover, the difference between the limiting equation
and the mth equation computed at `1 = `2 = L∞(z) is equal to zm+1

1−z and corresponds to
a subset of De Bruijn indices. Certainly, as m tends to infinity, this difference converges
to zero exponentially fast.
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Given the combinatorial relation between m-open λ-terms and plain terms, we readily
obtain the requested condition Lm(z) � L∞(z). However, for arbitrary forward recursive
systems (4.2) establishing that L〈m〉 � L〈∞〉 is no longer so straightforward. In what
follows, we prove that for this inequality to hold it is sufficient that the limiting system
is well-founded.

Lemma 5.7. Let S be an infinitely nested, forward recursive system (5.19). Assume that
the coefficients of the formal power series K〈∞〉(`1, `2, z,u) corresponding to the limiting
system are non-negative and the limiting system (5.20) is well-founded (i.e. algebraic
proper in the sense of Theorem A.3) and has a non-zero solution L〈∞〉(z,u). Finally,
assume that K〈∞〉(0,0, 0,u) = 0. Then,

L〈m〉(z,u) � L〈∞〉(z,u). (5.25)

Proof. Consider the vectors L = (L〈0〉,L〈1〉, . . .) and L+ = (L〈∞〉,L〈∞〉, . . .) consisting of
aptly concatenated and flattened systems

(
L〈m〉

)
m>0

and L〈∞〉, respectively. Intuitively,

L and L+ are in a sense vectors of vectors, but for convenience we call them just vectors.
Note that both L(z,u) and L+(z,u) satisfy

L(z,u) = Φ(L(z,u), z,u)

L+(z,u) = Ψ(L+(z,u), z,u)
(5.26)

where

Φ(λ, z,u) = (K〈0〉(λ0,λ1, z,u),K〈1〉(λ1,λ2, z,u), . . .)

Ψ(λ, z,u) = (K〈∞〉(λ0,λ1, z,u),K〈∞〉(λ1,λ2, z,u), . . .)
(5.27)

with λ taken as a flattening concatenation of d-dimensional vectors of free variables
(λ0,λ1, . . .).

Since for each m we have K〈m〉(λm,λm+1, z,u) � K〈∞〉(λm,λm+1, z,u) it also holds

Φ(λ, z,u) � Ψ(λ, z,u). (5.28)

The idea of the current proof is to consider the difference L+(z,u)−L(z,u) and show
that it is non-negative. According to (5.26) this difference can be represented as

L+(z,u)−L(z,u) = Ψ(L+(z,u), z,u)−Φ(L(z,u), z,u). (5.29)

Since Ψ(λ, z,u) � Φ(λ, z,u), the formal power series Ψ can be represented as a sum
Ψ(λ, z,u) = Φ(λ, z,u) + Θ(λ, z,u) with Θ(λ, z,u) � 0. Hence, the difference (5.29)
becomes

L+(z,u)−L(z,u) = Θ(L+, z,u) +
(
Φ(L+, z,u)−Φ(L, z,u)

)
. (5.30)

At this point, our tactic is to apply an analog of the mean value theorem to the right-hand
side difference and obtain an equation of the form

L+(z,u)−L(z,u) = Θ(L+, z,u) +J ·
(
L+ −L

)
(5.31)
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and consequently

L+(z,u)−L(z,u) = (I−J )−1Θ =
∑
k>0

J kΘ � 0 (5.32)

where J is some non-negative operator whereas I is the corresponding identity. The rest
of the proof is dedicated to formalising the above approach, in particular showing that
the Neumann series

∑
k>0J

k is well-defined.
We start by noticing that due to the well-foundedness of the limiting system (5.20)

we have L+(0,u) = 0. Since Φ(λ, z,u) � Ψ(λ, z,u) there also holds Φ(0, 0,u) = 0.
Furthermore, since there exists a unique formal power series solution of the equation
L(0,u) = Φ(L(0,u), 0,u) and L(0,u) = 0 satisfies this equation, we note that indeed
L(0,u) = 0.

Consider two formal infinite-dimensional variables λ and λ+ which are both flattened
concatenations of d-dimensional vectors of free variables. Let us show that the difference
Φ(λ+, z,u)−Φ(λ, z,u) can be represented as

Φ(λ+, z,u)−Φ(λ, z,u) = J (z,u,λ,λ+)(λ+ − λ) (5.33)

where J = J (z,u,λ,λ+) is some non-negative operator (i.e. infinite-dimensional mat-
rix). Moreover, after substituting λ = L(z,u) and λ+ = L+(z,u) into J , there exists a
non-negative integer K > 0 such that J K is element-wise divisible by z. Since we have
established that both L+(0,u) = 0 and L(0,u) = 0, the latter condition is equivalent to
the nilpotency of the operator J evaluated at λ = L(z,u), λ+ = L+(z,u) and z = 0.

Note that the function Φ(λ, z,u) is a sum of (finite) monomials in formal variables
(λ, z,u); although λ is infinitely-dimensional, each of the monomials involves only finitely
many factors of λ. Let us consider the difference of arbitrary monomials in form of

xn1
1 · · ·x

nk
k − y

n1
1 · · · y

nk
k . (5.34)

Note that we can rewrite (5.34) as

xn1
1 · · ·x

nk
k − y

n1
1 · · · y

nk
k = (xn1

1 · · ·x
nk
k − y

n1
1 x

n2
2 · · ·x

nk
k )

+ (yn1
1 x

n2
2 · · ·x

nk
k − y

n1
1 y

n2
2 x

n3
3 · · ·x

nk
k ) + · · ·

+
(
yn1
1 · · · y

nk−1

k−1 x
nk
k − y

n1
1 · · · y

nk
k

)
= (x1 − y1)xn2

2 · · ·x
nk
k

(xn1
1 − yn1

1 )

x1 − y1

+ (x2 − y2) yn1
1 x

n3
3 · · ·x

nk
k

(xn2
2 − yn2

2 )

x2 − y2
+ · · ·

+ (xk − yk) yn1
1 · · · y

nk−1

k−1
(xnkk − y

nk
k )

xk − yk
.

(5.35)

Note that each factor
(xnii − y

ni
i )

xi − yi
in the final sum is in fact a polynomial

ni−1∑
j=0

xjiy
ni−j−1
i .

Therefore, the difference xn1
1 · · ·x

nk
k − y

n1
1 · · · y

nk
k can be represented as a scalar product
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of x− y := (xi − yi)ki=1 and a vector of formal power series in (x,y). Furthermore, the
difference Φ(λ+, z,u)−Φ(λ, z,u) consists of the sums of such differences of monomials
multiplied by appropriate non-negative coefficients. Grouping these differences together,
we obtain the desired form (5.33).

Next, as an intermediate step, let us now show that the Jacobian operator
∂Ψ

∂λ
(λ, z,u)

is nilpotent at (z,λ) = (0,0). For convenience, set

J1(u) :=
∂K〈∞〉(`1, `2, z,u)

∂`1

∣∣∣∣∣ z=0
`1=0
`2=0

and J2(u) :=
∂K〈∞〉(`1, `2, z,u)

∂`2

∣∣∣∣∣ z=0
`1=0
`2=0

. (5.36)

Then,

J1(u) + J2(u) =
∂K〈∞〉(`, `, z,u)

∂`

∣∣∣∣∣
z=0
`=0

. (5.37)

Since the limiting system is well-founded (see Theorem A.3) the sum J1(u) + J2(u) is
nilpotent. Moreover, since each of the matrices J1(u) and J2(u) is non-negative, there
exists K such that all the summands of the expanded binomial (J1(u)+J2(u))K are zero.

On the other hand, note that following the definition of Ψ(λ, z,u) its Jacobian oper-

ator
∂Ψ

∂λ
evaluated at (z,λ) = (0,0) admits the following block structure:

∂Ψ

∂λ

∣∣∣∣
z=0
λ=0

=


J1 J2

J1 J2
J1 J2

. . .

 . (5.38)

If we take the Kth power of this operator, it will have a block structure in which each
block element consists of a sum of certain summands from the binomial expansion of
(J1+J2)

K . Since the latter is a zero matrix and the summands corresponding to the blocks
are non-negative and dominated by (J1 + J2)

K , all such summands are also zero. This

implies that the Jacobian operator
∂Ψ

∂λ
(λ, z,u) evaluated at (z,λ) = (0,0) is nilpotent

with a nilpotence index at most K, i.e. the nilpotence index of the Jacobian operator
∂K〈∞〉(`, `, z,u)

∂`
evaluated at (z, `) = (0,0).

Now, let us show that the infinitely-dimensional matrix J (z,u,λ,λ+) evaluated at

(z,λ,λ+) = (0,0,0) is equal to the Jacobian operator
∂Φ

∂λ
evaluated at (z,λ) = (0,0).

Recall that the operator J is determined by the differences of monomials in Φ(λ+, z,u)−
Φ(λ, z,u). Monomials that have degree zero in λ or λ+ cancel out because they depend
only on the arguments z and u. Likewise, monomials with degree two or more in λ or λ+

vanish after the substitution λ = λ+ = 0. The only type of the terms that do not turn to
zero upon substitution λ = λ+ = 0 are terms coming from differences of monomials linear
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in λ or λ+. Note that such terms have the same contribution to the infinitely-dimensional

matrix J as the corresponding terms of the infinitely-dimensional matrix
∂Φ

∂λ
. Hence,

J (z,u,λ,λ+) evaluated at (z,λ,λ+) = (0,0,0) is indeed equal to the Jacobian operator
∂Φ

∂λ
evaluated at (z,λ) = (0,0).

The nilpotence of J evaluated at (z,λ,λ+) = (0,0,0) follows from the fact that
Ψ(λ, z,u) is dominating Φ(λ, z,u), and therefore, the corresponding Jacobian operator
∂Ψ

∂λ
(respectively its Nth power) is dominating the operator

∂Φ

∂λ
(respectively its Nth

power). For this reason, the latter Jacobian operator
∂Φ

∂λ
, evaluated at (z,λ,λ+) =

(0,0,0) is nilpotent with the nilpotence index at most the corresponding nilpotence op-

erator of the former Jacobian operator
∂Ψ

∂λ
.

And so, we have established that J evaluated at λ = L(z,u), λ+ = L+(z,u) and
z = 0 is nilpotent. Equivalently, it meas that after substituting λ = L(z,u) and λ+ =
L+(z,u) into J there exists a non-negative integer K > 0 such that J K is element-wise
divisible by z. Consequently, each coefficient in z of the formal sum

∑
j>0J

j is finite.
Indeed, for each integer N > 0, the coefficient at zN in this formal series is a sum of
coefficients at zN in the finite sum

∑K·N
j=0 J

j. Moreover, since J is non-negative, this
sum is also non-negative. Finally, this infinite formal series is equal to (I −J )−1 where
I is the identity operator of appropriate dimension.

Remark 5.8. The condition that K〈∞〉(0,0, 0,u) = 0 can be omitted but we keep it for
the simplicity of the proof. For the above proof, it is enough to guarantee that each
coefficient in z of the infinite formal sum

∑
j>0J

j is finite, which is equivalent to saying
that some power of J is divisible by z. More details on well-founded systems can be
found in [PSS12].

5.3 Coefficient transfer for infinite systems

Finally, we give our main theorem on the transfer of coefficients for infinitely nested
forward-recursive systems.

Theorem 5.9. Let S be an infinitely nested, forward recursive system (5.19) which tends
to an irreducible context-free schema at an exponential convergence rate. Then, the re-
spective solutions L〈m〉j (z,u) of S admit for each m > 0 an asymptotic expansion of their
coefficients as n→∞ in form of

[zn]L
〈m〉
j (z,u) ∼ [zn]

∑
k>0

c
〈m〉
j,k (u)

(
1− z

ρ(u)

)k/2
(5.39)

where ρ(u) is the dominant singularity of the corresponding limiting system (5.20) and
the coefficients c〈m〉j,k (u) are analytic at u = 1. Furthermore, ρ(u) is analytic near u = 1.
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The coefficients c
〈m〉
j,k (u) can be approximated by taking first (M − 1) equations

from (5.19) and replacing the M th equation by its following limit variant:

L〈M〉 = K〈∞〉
(
L〈M〉,L〈M〉, z,u

)
. (5.40)

Such a truncated system can be solved recursively. Consequently, the coefficients of respect-
ive Puiseux expansions (5.39) are estimated with an error which is exponentially small in
M .

Remark 5.10. • The condition that the system S tends to an irreducible context-
free schema can be replaced by a weaker condition asserting that the limiting sys-
tem (5.20) admits a suitable Puiseux expansion.

• Instead of limiting systems with square-root type singularities, it is also possible to
consider rational systems or other types of systems. The same set of conditions is
sufficient to establish the transfer of behaviours around the dominant singular point.

Proof. (Theorem 5.9) We divide the proof into three conceptual parts.

a) First, we show that each component of the difference vector L〈∞〉(z,u)−L〈m〉(z,u)
can be upper bounded by a Puiseux series expansion whose coefficients decay expo-
nentially fast as m tends to infinity;

b) Next, we show that if for m > 1 there exist coordinate-wise upper and lower bounds

L〈m〉(z,u) � L〈m〉(z,u) � L〈m〉(z,u), (5.41)

then the vector of functions L〈m−1〉(z,u) obtained from the infinite system S admits
upper and lower bounds L〈m−1〉(z,u) and L〈m−1〉(z,u) satisfying

L〈m−1〉(z,u)−L〈m−1〉(z,u) �R(z,u)
(
L〈m〉(z,u)−L〈m〉(z,u)

)
(5.42)

for some matrix R(z,u) with spectral radius satisfying r(R(z,u)) 6 1 for z ∈
[0, ρ(u)] where ρ(u) is the dominant singularity of L〈∞〉(z,u);

c) Finally, we combine two previous results and prove that the difference between the
Puiseux coefficients of upper and lower bounds of L〈m〉(z,u) can be reduced to zero.

First part. According to Theorem 5.7 we have L〈m〉 � L〈∞〉. Following the functional
definitions of L〈∞〉 and L〈m〉 from the infinite system of equations, their difference can be
represented as

L〈∞〉 −L〈m〉 = K〈∞〉(L〈∞〉,L〈∞〉, z,u)−K〈m〉(L〈m〉,L〈m+1〉, z,u). (5.43)

For convenience, henceforth we omit the arguments z and u. Moreover, K〈∞〉 and K〈m〉
become functions of two vector arguments

K〈∞〉 : Cd × Cd → Cd and K〈m〉 : Cd × Cd → Cd. (5.44)
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In addition, we use the nabla notation to denote the Jacobian operator

∇xK(x,y) =

(
∂

∂x1
K, . . . , ∂

∂xd
K
)

and ∇yK(x,y) =

(
∂

∂y1
K, . . . , ∂

∂yd
K
)
. (5.45)

We start with the following subtraction-addition trick. Each component of the vector
difference is evaluated through Theorem 5.4 (mean value lemma for formal power series)
and then upper-bounded by the value of the functional K〈∞〉 at L〈∞〉. Specifically,

L〈∞〉 −L〈m〉 = K〈∞〉(L〈∞〉,L〈∞〉)−K〈∞〉(L〈m〉,L〈∞〉) +K〈∞〉(L〈m〉,L〈∞〉)
−K〈∞〉(L〈m〉,L〈m+1〉) +K〈∞〉(L〈m〉,L〈m+1〉)−K〈m〉(L〈m〉,L〈m+1〉)

� ∇xK〈∞〉(x,y)
∣∣∣x=L〈∞〉
y=L〈∞〉

(L〈∞〉 −L〈m〉) + ∇yK〈∞〉(x,y)
∣∣∣x=L〈∞〉
y=L〈∞〉

(L〈∞〉 −L〈m+1〉)

+
(
K〈∞〉(L〈m〉,L〈m+1〉)−K〈m〉(L〈m〉,L〈m+1〉)

)
.

Since K〈m〉 � K〈∞〉, the final difference in the above sum is a vector of formal power
series with non-negative coefficients. Consequently, the last summand can be bounded by
K〈∞〉(L〈∞〉,L〈∞〉)−K〈m〉(L〈∞〉,L〈∞〉). By the condition of exponential convergence, this
difference can be even further bounded by a vector of exponentially decaying functions
A(z,u)(B(z,u))m. For brevity, set

∂1K := ∇xK〈∞〉(x,y)
∣∣∣
(x,y)=(L〈∞〉,L〈∞〉)

and ∂2K := ∇yK〈∞〉(x,y)
∣∣∣
(x,y)=(L〈∞〉,L〈∞〉)

.

Note that ∂1K, ∂2K ∈ Cd×d. Now, the upper bound on L〈∞〉 −L〈m〉 can be stated as

(L〈∞〉 −L〈m〉) � A(z,u)B(z,u)m + ∂1K · (L〈∞〉 −L〈m〉) + ∂2K · (L〈∞〉 −L〈m+1〉) (5.46)

or, equivalently,

(Id − ∂1K)(L〈∞〉 −L〈m〉) � A(z,u)B(z,u)m + ∂2K · (L〈∞〉 −L〈m+1〉) (5.47)

where Id ∈ Cd×d is the d× d identity matrix.
Let us show that the inverse matrix (Id − ∂1K)−1 exists and has non-negative coeffi-

cients in the sense of formal power series. As discussed in the proof of Theorem 5.7, the
matrix ∂1K is nilpotent at z = 0. Equivalently, there exists a non-negative integer K such
that (∂1K)K is divisible by z. It means that the formal series

∑
j>0 (∂1K)j is well-defined

and hence so is the formal inverse (Id − ∂1K)−1. Moreover, since ∂1K has non-negative
coefficients, the same holds for the investigated inverse matrix (Id − ∂1K)−1.

Now, let us focus on the behaviour of (Id − ∂1K)−1 as a function near z =
ρ(u). As follows from Proposition A.7 applied to the system of equations L〈∞〉 =
K〈∞〉(L〈∞〉,L〈∞〉, z,u), for each real 0 < z < ρ(u) we have the following inequality:

r(∂1K+ ∂2K) < 1. (5.48)
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By Perron–Frobenius theorem (see e.g. [Drm09, section 2.2.5] and references therein) the
spectral radius of a matrix with positive entries is monotonic in its coefficients. Hence,
for all real 0 < z < ρ(u)

r(∂1K) < 1 (5.49)

and so, in the same interval

(Id − ∂1K)−1 =
∑
j>0

(∂1K)j. (5.50)

Moreover, due to the continuity of the spectral radius, the same identity can be extended
to some complex neighbourhood of u = 1.

Consequently, we can multiply both sides of (5.47) by (Id − ∂1K)−1 and obtain

L〈∞〉−L〈m〉 � (Id− ∂1K)−1A(z, u)B(z,u)m + (Id− ∂1K)−1∂2K(L〈∞〉−L〈m+1〉) (5.51)

Let us denote δm := (Id − ∂1K)−1A(z,u)B(z,u)m and R := (Id − ∂1K)−1∂2K. Note
that the inequality L〈∞〉 − L〈m〉 � δm +R(L〈∞〉 − L〈m+1〉) can be further iterated for
increasing values of m. In doing so, we find that

L〈∞〉 −L〈m〉 � δm +Rδm+1 +R2δm+2 + · · · (5.52)

Hence, the difference L〈∞〉 −L〈m〉 can be bounded by the tail of a geometric progression
which appears as a summation of the formal Neumann series

L〈∞〉 −L〈m〉 � B(z, u)m
∑
k>0

(B(z,u)R)k(Id − ∂1K)−1A(z,u). (5.53)

Let us now focus on the above formal Neumann series. Note that applying Proposi-
tion A.5 (Drmota–Lalley–Woods theorem) to the limiting system (5.20), we obtain that
the vector of functions L〈∞〉(z,u) admits a coordinate-wise Puiseux expansion in form of

L〈∞〉(z,u) ∼ `0(u)− `1(u)

√
1− z

ρ(u)
(5.54)

where functions `0(u), `1(u), ρ(u) are analytic near u = 1. Likewise, both matrices ∂1K
and ∂2K admit Puiseux expansions of the same kind.

Let us prove that coordinate-wise Puiseux expansions of the matrixR near the singular
point z = ρ(u) have the form

R = (Id − ∂1K)−1∂2K ∼R0 −R1

√
1− z

ρ(u)
, z → ρ(u) (5.55)

where the spectral radius of R0 satisfies r(R0) = 1. According to Perron–Frobenius
theorem, since the coefficients of R are non-negative, the eigenvalue of the matrix R
with the largest absolute value, i.e. the eigenvalue corresponding to the spectral radius of
R, is the largest real positive solution λ of the characteristic equation

det
(
(Id − ∂1K)−1∂2K− λId

)
= 0. (5.56)
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Since the determinant of a matrix product is equal to the product of respective determin-
ants and det (Id − ∂1K) 6= 0, as Id − ∂1K is invertible, the above condition is equivalent
to

det (∂2K+ λ∂1K− λId) = 0 and also det(∂1K+ λ−1∂2K− Id) = 0. (5.57)

Let us show that the largest positive real solution (as a function of z < ρ(u)) of this
equation, does not exceed 1, with equality when z = ρ(u). Assume, by contrary, that
λ > 1. The matrix (∂1K + λ−1∂2K) is a matrix with non-negative coefficients, whose
coefficients are strictly smaller than the coefficients of the matrix (∂1K + ∂2K). By
Perron–Frobenius theorem (see e.g. [Drm09, section 2.2.5] and references therein), the
spectral radius of a matrix with positive coefficients is monotonic in its coefficients, so for
λ > 1

r(∂1K+ λ−1∂2K) < r(∂1K+ ∂2K) = 1. (5.58)
Therefore, the characteristic equation cannot have a solution λ > 1. Moreover, the
spectral radius of R0 is equal to the spectral radius of R when z = ρ(u) because in this
case, the two matrices coincide. Therefore, r(R0) = 1.

Moving back to the upper bound (5.53), according to the exponential convergence
condition in Theorem 5.5, in a complex vicinity of u = 1, the absolute value of the
function B(z,u) is strictly smaller than 1, hence the inverse matrix (Id − B(z, u)R)−1

in (5.53) exists. Moreover, since

A−1 =
1

det (A)
· adj(A) (5.59)

where adj(A) is the adjugate matrix of A, each element of the inverse matrix (Id −
B(z, u)R)−1 can be represented as a ratio of a sum of products of functions admiting
Puiseux series expansions in form of a(u) − b(u)

√
1− z/ρ(u) + O(|1− z/ρ(u)|) and a

non-zero determinant of Id −B(z, u)R. It means that each coordinate in the inverse
matrix (Id − B(z, u)R)−1 also admits a Puiseix series expansion of similar form. Thus,
the Neumann series in (5.53) converges and we obtain

L〈∞〉 −L〈m〉 � B(z,u)m × (Id −B(z,u)R)−1 (Id − ∂1K)−1A(z,u). (5.60)

From (5.60) we now note that the difference L〈∞〉 −L〈m〉 can be bounded by a vector
of functions having the same singularity ρ(u) as the components of the vector L〈∞〉. The
Puiseux coefficients of this upper bound decay exponentially fast as m → ∞. Moreover,
these coefficients are analytic functions near u = 1.

Second part. Assume that function L〈m〉(z,u) admits some upper and lower bounds
and denote by ∆m(z,u) the difference between these bounds:

L〈m〉(z,u) � L〈m〉(z,u) � L〈m〉(z,u), ∆〈m〉(z,u) := L〈m〉(z,u)−L〈m〉(z,u). (5.61)

Then, another pair of upper and lower bound can be established for L〈m−1〉 from (5.19)
(infinite system of equations) with the difference ∆〈m−1〉 satisfying

∆〈m−1〉 = K〈m−1〉(L〈m−1〉,L〈m〉)−K〈m−1〉(L〈m−1〉,L〈m〉) � ∂1K ·∆〈m−1〉 + ∂2K ·∆〈m〉.
(5.62)
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That is, repeating the argument that allows to multiply both sides of the inequality by
the inverse matrix, we obtain

∆〈m−1〉 � (Id − ∂1K)−1∂2K ·∆〈m〉. (5.63)

As we discovered in the first part, the matrix R := (Id − ∂1K)−1∂2K has spectral radius
1 at the singular point z = ρ(u).

Third part. As a result of the first part, we know that L〈∞〉(z,u)−L〈m〉(z,u) can be
bounded in the following manner:

0 � L〈∞〉(z,u)−L〈m〉(z,u) � B(z,u)m(Id −B(z, u)R)−1A(z,u). (5.64)

Let us assign
∆
〈m〉
0 := B(z,u)m(Id −B(z, u)R)−1A(z,u) (5.65)

for the difference between upper and lower bounds for the vector of functions L〈m〉(z,u).
Next, using the result of the second part, we construct a family of differences ∆

〈m〉
k between

upper and lower bounds for L〈m〉(z,u), so that for every k,m > 0 it holds

L
〈m〉
k (z,u) � L〈m〉(z,u) � L〈m〉k (z,u) and ∆

〈m〉
k := L

〈m〉
k (z,u)−L〈m〉k (z,u). (5.66)

The family of upper and lower bounds is defined using the procedure described in the
second part. More specifically, for every m > 1 and k > 0 these bounds satisfy the
equations

L
〈m−1〉
k+1 (z,u) := K〈m−1〉(L〈m−1〉k+1 (z,u),L

〈m〉
k (z,u), z,u);

L
〈m−1〉
k+1 (z,u) := K〈m−1〉(L〈m−1〉k+1 (z,u),L

〈m〉
k (z,u), z,u).

(5.67)

According to the second part, the differences ∆
〈m〉
k satisfy formal power series inequal-

ities ∆
〈m−1〉
k+1 �R∆

〈m〉
k . By iteration, we thus obtain

∆〈0〉m �Rm∆
〈m〉
0 . (5.68)

Since the spectral radius ofR is bounded by 1, and ∆
〈m〉
0 is exponentially small in m, the

values of Puiseux coefficients of L〈0〉(z,u) can be approximated within an exponentially
small in m gap, for arbitrarily large value of m.

Finally, we note that the functions L〈0〉m (z,u) and L〈0〉m (z,u) have Puiseux expansions
of type

fm(z,u) ∼ cm(u)− am(u)

√
1− z

ρ(u)
(5.69)

in a certain delta-domain. According to Proposition A.1 (transfer theorem), their coeffi-
cients admit the following asymptotic estimate:

fm(z,u) ∼ CnAm(u)B(u)n. (5.70)

A final application of Theorem 5.2 (squeeze lemma for formal power series) combined
with Theorem 5.3 finishes the proof.

the electronic journal of combinatorics 26(4) (2019), #P4.1 46



Remark 5.11. In Theorem 5.9 we prove a so-called weak transfer theorem, i.e. prove that
the asymptotics of the coefficients of each L〈m〉 can be obtained by taking the asymptotic
expansion of the correseponding Puiseux expansion. A stronger version would suggest
that the generating functions L〈m〉(z,u) can be analytically continued beyond the circle
of convergence of corresponding formal power series, in a certain delta-domain. However,
for our analysis, the presented weak variant is enough. The techniques presented above,
can be further extended to obtain a stronger transfer theorem, by computing the Taylor
series expansions at points z0 inside the circle of convergence.

6 Empirical results

The analysis of various combinatorial parameters corresponding to plain λ-terms can
be approached using standard proof templates, typical for algebraic structures. Starting
from a combinatorial specification associated with the investigated parameter, its analysis
follows as an, either direct or indirect, examination of the resulting system of multivariate
generating functions and related singularities, see [FS09, Chapter IX].

Alas, such a general approach to the analysis of combinatorial parameters related to
plain λ-terms does not readily transcend to closed λ-terms. Standard analytic tools, such
as Bender and Richmond’s multivariate central limit theorem (see Proposition A.11) or
the Drmota–Lalley–Woods theorem (see Proposition A.5) require that the investigated
system of generating functions is, inter alia, finite. Although this is true for plain terms,
closed λ-terms give rise to a more involved, infinite system of generating functions (2.3)
based on the hierarchical notion of m-openness. Consequently, closed λ-terms escape the
usual course of parameter analysis, successfully carried out in the case of plain terms,
see Section 3.

In the current section we present two, somewhat complementary, empirical approaches
to the analysis of combinatorial parameters related to closed λ-terms. We start with an
experimental scheme based on the recent development of efficient Boltzmann samplers
for closed λ-terms due to Gittenberger, Bodini and Gołębiewski [BGG18]. We generate
large, uniformly random (conditioned on size) closed λ-terms and collect empirical data
for various interesting parameters related to generated terms. The second approach is
based on the empirical evaluation of, appropriately truncated, systems of multivariate
generating functions. We compute the coefficients of the corresponding formal power
series and consequently analyse the distribution of investigated parameters for relatively
small term sizes.

The benefits of such empirical approaches are threefold. Firstly, the empirical para-
meter distribution for large random λ-terms is closely related to its theoretical, limiting
counterpart; hence, develops solid intuitions underlying the successful analysis of a broad
class of combinatorial parameters, see Section 4. Secondly, the empirical data for vari-
ous term sizes provides insight in the convergence rates at which the considered random
variables tend to respective limit laws, relating them in effect with practically attainable
term sizes. Finally, experimental results for large closed λ-terms provide strong evidence
for conjectures regarding practical, though even more advanced parameters escaping the
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restrictions of our analysis.

6.1 Empirical evaluation of Boltzmann samplers

Boltzmann samplers are a prominent sampling framework meant for the random gen-
eration of large combinatorial structures [DFLS04]. Given an admissible combinatorial
specification, it is possible to construct an appropriate sampler whose outcome are uni-
formly random (conditioned on size) structures built according to the input specification.
Although Boltzmann samplers are guaranteed to return uniformly random structures,
their eventual size is not deterministic, but instead random. Following a proper calib-
ration during the construction of Boltzmann samplers, the randomness of their output
structure size can be controlled so that it is centred around a given (not necessarily finite)
expectation. A final rejection phase, dismissing structures of undesired properties, such as
for instance inadmissible size, provides the means of controlling the generated structures.

In order to conduct our experiments, we have implemented three kinds of Boltzmann
samplers1 for plain, closed and so-called h-shallow λ-terms, i.e. closed terms in which
De Bruijn indices do not exceed the shallowness bound h, see e.g. [GG16,Ben17]. The
respective sampler for closed λ-terms follows the ideas of [BGG18]. For each investigated
type of terms we sample k = 50, 000 terms of sizes in the interval [20, 000; 50, 000] us-
ing a dedicated singular Boltzmann sampler (i.e. a Boltzmann sampler with unbounded
outcome size expectation, see e.g. [BGR15]) whose controlling parameter is calculated nu-
merically with accuracy of order 10−9. For closed h-shallow terms, we fix h = 30. Finally,
we record several combinatorial parameters related to so obtained terms and use them in
the subsequent evaluation.

For each considered parameter and term type, we plot a histogram relating the collec-
ted samples and the respective parameter values. The x-axis denotes the parameter value
(either raw or aptly normalised) whereas the y-axis corresponds to the number of samples
attaining the associated value. Averages, variances and standard deviations corresponding
to the investigated parameter are rounded up to the fifth decimal point and summarised
in respective tables. For brevity, we include only histograms for plain and closed λ-terms.
We comment on the missing h-shallow λ-terms at the end of the current section.

6.1.1 Head abstractions

We start with head abstractions, see Section 3.2. Figure 12 depicts the distribution
histogram of the obtained data sets. The corresponding numerical approximations of
averages, variances and standard deviations are listed in Table 2.

Remark 6.1. The distribution corresponding to plain terms resembles a geometric law, as
expected by Proposition 3.6. The observed average corresponds closely to the theoretical
limit average (3.18). Notably, head abstractions in closed λ-terms do not follow the same
distribution as their plain counterpart.

1see https://hackage.haskell.org/package/lambda-sampler.
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Figure 12: Distribution histograms for head abstractions in plain and closed λ-terms.

Table 2: The average, variance and standard deviation corresponding to head abstractions
in plain, closed and h-shallow λ-terms within the obtained data sets.

Average Variance Std. dev.
plain 0.42202 0.59632 0.77222
closed 1.55712 1.30818 1.14376

h-shallow 1.56644 1.28803 1.13491

6.1.2 Free variables in plain lambda terms

When viewed as programs of an abstract programming language, variables in λ-terms be-
come formal arguments bound to abstractions introducing them in respective name scopes
(namespaces). In this perspective, free variable occurrences correspond to expressions
available in the global namespace such as for instance predefined operators or constants,
see e.g. [PJ87].

Figure 13 depicts the distribution histogram of the obtained data set for plain terms
(recall that closed λ-terms contain, by definition, no free variable occurrences). The
corresponding numerical approximations of averages, variances and standard deviations
are listed in Table 3.

Remark 6.2. The empirical distribution of free variables in plain terms resembles closely
a geometric law P(Geom = k) = (1− p)kp with parameter p ≈ 0.14815. Note however
that the observed distribution is not geometric; its global maximum is not attained at
the parameter value corresponding to the lack of free variables, see Figure 13. Remark-
ably, the observed value p is a quite good estimate for the probability that a sufficiently
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Figure 13: Distribution histogram for free variables in plain λ-terms.

Table 3: The average, variance and standard deviation corresponding to free variables in
plain λ-terms within the obtained data set.

Average Variance Std. dev.
plain 5.74976 43.40258 6.58806

large random plain λ-term is closed. Using the numerical estimate for the multiplic-
ative constant C in the asymptotic growth rate C · n−3/2ρ−n corresponding to closed
λ-terms [GG16, Section 6.1] one can find that this probability is in fact close to 0.12840.

6.1.3 Leftmost-outermost redex search

The next parameter we evaluate is the cost of finding the leftmost-outermost β-redex in
plain and closed λ-terms, see Section 3.4. Figure 14 depicts the distribution histogram of
the obtained data sets. Corresponding numerical approximations of averages, variances
and standard deviations are given in Table 4.

Table 4: The average, variance and standard deviation corresponding the search cost of
the leftmost-outermost redex in plain, closed and h-shallow λ-terms within the obtained
data sets.

Average Variance Std. dev.
plain 6.22118 26.72478 5.1696
closed 6.06994 21.78197 4.66712

h-shallow 6.12196 22.40393 4.73328
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Figure 14: Distribution histograms for leftmost-outermost redex search time in plain and
closed λ-terms.

Remark 6.3. The empirical histograms corresponding to plain and closed terms do not
follow the same law, similarly to the case of head abstractions, see Section 6.1.1. However,
here the observed variance is in both cases significantly larger. Note that all discovered
averages are remarkably close to each other.

6.1.4 Open subterms

In the current subsection we are interested in the degree to which variables connect various
subterms in random λ-terms. In other words, in the proportion of open subterms in a
random term. Let us note that such a parameter provides some insight in the extend
to which subterms, viewed as components of the entire term (i.e. functional program)
depend syntactically on each other. In this perspective, terms consisting of many closed
subterms correspond to programs with equally many independent subprograms. On the
other hand, λ-terms with few open subterms represent computations in which various
parts of the program depend on each other through common variable usage. Since each
index n consists of n open proper subterms which do not contribute to the intended
degree of functional dependence (variables in functional programs are atomic expressions)
for our current considerations we assume that n is itself atomic, i.e. does not have proper
subterms. Consequently, the total number of subterms of a given λ-term T becomes equal
to the number of indices, applications and abstractions occurring in T , without accounting
for successors.

The resulting distribution histograms for plain and closed λ-terms are depicted in Fig-
ure 15. The x-axis denotes the (normalised with respect to the total number of subterms
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as defined above) number of open subterms whereas the y-axis corresponds to the number
of terms attaining the corresponding value. Respective averages, variances and standard
deviations are listed in Table 5.
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Figure 15: Distribution histograms for open subterms in plain and closed λ-terms.

Table 5: The average, variance and standard deviation corresponding the proportion of
open subterms in plain, closed and h-shallow λ-terms within the obtained data sets.

Average Variance Std. dev.
plain 0.82728 0.00001 0.00276
closed 0.82723 0.00001 0.00275

h-shallow 0.82724 0.00001 0.00276

Remark 6.4. Both empirical distributions resemble Gaussian laws with respective means
and variances, see Table 5. The distributions seem to be concentrated around their
means whereas the observed variances and standard deviations are strikingly modest and
(almost) identical, though still positive. The high expectations in the order of 0.8272
suggest that the vast majority of subterms in a random λ-term is open, independently of
whether it is itself open or closed.

6.1.5 Binding abstractions

The next parameter we consider is the proportion of abstractions binding variables. Fig-
ure 16 depicts the empirical distribution histograms for plain and closed λ-terms, respect-
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ively. The x-axis denotes the proportion of binding abstractions among all abstractions.
Corresponding averages, variances and standard deviations are presented in Table 6.

0.61 0.62 0.63 0.64 0.650

200

400

600

800

1000

1200

1400

1600

(a) Plain λ-terms.

0.61 0.62 0.63 0.64 0.650

200

400

600

800

1000

1200

1400

(b) Closed λ-terms.

Figure 16: Distribution histograms for binding abstractions in plain and closed λ-terms.

Table 6: The average, variance and standard deviation corresponding to the proportion
of binding abstractions in plain, closed and h-shallow λ-terms within the obtained data
sets.

Average Variance Std. dev.
plain 0.62862 0.00003 0.00521
closed 0.62863 0.00001 0.00518

h-shallow 0.62862 0.00001 0.00512

Remark 6.5. Like in the case of open subterms, the distribution of binding abstractions in
plain and closed λ-terms, respectively, mirrors a Gaussian law. Corresponding variances
and standard deviations, though positive, are minuscule. The listed averages of order
0.6286 suggest that most abstractions are binding, both in plain and closed terms.

6.1.6 Maximal number of variables bound to a single abstraction

In the current subsection we turn to extremal statistics related to binding abstractions.
Specifically, we investigate the maximal number of variables bound to a single abstraction
in random λ-terms. Figure 17 illustrates the related distribution histogram for plain
and closed λ-terms, respectively. Numerical approximations of averages, variances and
standard deviations are given in Table 7.
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Figure 17: Distribution histograms for the maximal number of variables bound to a single
abstraction in plain and closed λ-terms.

Table 7: The average, variance and standard deviation corresponding the maximal number
of variables bound to a single abstraction in plain, closed and h-shallow λ-terms within
the obtained data sets.

Average Variance Std. dev.
plain 30.83028 43.08992 6.56429
closed 30.8323 43.12418 6.5669

h-shallow 30.87194 43.46242 6.5926

Remark 6.6. Obtained distributions and moments are reminiscent of a double-exponential
distribution related to extreme parameters in various combinatorial structures, see [FS09,
p. 311]. Notably, log1/ρ n for n ∈ [20, 000; 50, 000] lies in the interval [8.1259, 8.8777]
whereas as the same time

√
n > 141.421. Consequently, the obtained average suggests a

similar C · log1/ρ n type of behaviour occurring, for instance, in the analysis of longest runs
in random words, see [FS09, Example V.4]. Nonetheless, unlike the limit distribution of
longest runs, the discovered distribution does not suggest a limit concentration due to the
significant values of the observed variances.

6.1.7 m-openness of plain lambda terms

The central notion ofm-openness plays an important rôle in the analysis of closed λ-terms.
Given the complete analysis of m-open terms [BGG18] and efficient techniques allowing
to obtain numerical estimates for the relative asymptotic density of m-open terms in
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the set of all plain λ-terms [GG16] it is possible to approximate the limit distribution
of the m-openness parameter in plain terms. However, in order to avoid the laborious
computations involved in this approach, we offer a simple Monte Carlo approximation
scheme. Figure 18 depicts the distribution histogram of the obtained data set for plain
λ-terms. The corresponding average, variance and standard deviation are listed in Table 8.
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Figure 18: Distribution histogram for m-openness of plain λ-terms.

Table 8: The average, variance and standard deviation corresponding to the m-openness
of plain λ-terms within the obtained data set.

Average Variance Std. dev.
plain 2.01856 1.82538 1.35106

6.1.8 Generalised m-openness of plain and closed terms

Though the notion of m-openness is defined only for non-negative values of m, we propose
a natural generalisation to all integers in the following manner. We say that a closed
λ-term T is m-closed2 for m > 0 if it is possible to discard m head abstractions of T and
still retain a closed λ-term. In other words, a closed term is m-closed if its top m head
abstractions are non-binding.

Note that this new parameter provides a degree of term closeness; the higher the factor
m of an m-closed λ-term, the more closed it is. Like in the case of m-open λ-terms, closed
λ-terms are 0-closed. Moreover, if a term is (m+ 1)-closed, then it is also m-closed.

2Though this notion extends m-openness to negative values of m, we prefer to avoid the term m-open
while referring to closed terms and instead use the term m-close. Hence, a term is m-closed if it is,
intuitively, (−m)-open.
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Figure 19 depicts the distribution histogram of the obtained data sets for plain
and closed λ-terms, respectively. The x-axis denotes the generalised m-openness factor
whereas the y-axis corresponds to the number of terms attaining the corresponding cost
value. Numerical approximations of averages, variances and standard deviations are listed
in Table 9.
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Figure 19: Distribution histograms for the generalised m-openness in plain and closed
λ-terms.

Table 9: The average, variance and standard deviation corresponding the generalised
m-openness factor in plain, closed and h-shallow λ-terms within the obtained data sets.

Average Variance Std. dev.
plain 1.96196 2.15235 1.46709
closed −0.43814 0.61569 0.78466

h-shallow −0.44054 0.62834 0.79268

Remark 6.7. The empirical distribution corresponding generalised m-openness of closed
λ-terms suggests that the vast majority of closed terms are 0-closed but not 1-closed.
Given the related distribution of head abstractions, see Figure 12, such a result suggests
that if a closed term has a leading head abstraction, it is more likely that it is in fact
binding.

Let us note that all of the presented empirical histograms exhibit a close corres-
pondence between parameters of closed λ-terms and their corresponding equivalents in
h-shallow terms. Such a result should not be surprising given the exponential convergence
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speed at which h-shallow λ-terms of size N tend to closed λ-terms of size N as h → ∞,
see Section 5, cf. [BGG18]. Consequently, virtually all presented histograms for closed
λ-terms are also correct histograms for h-shallow terms.

6.2 Empirical speed of convergence from generating functions

The probability generating function pn(u) of a random variable Xn corresponding to a
certain parameter inside a random λ-term of size n, plain or closed, can be obtained by
evaluating the bivariate generating function L(z, u) and taking the respective ratio of
coefficients, see Appendix A.2:

pn(u) =
[zn]L(z, u)

[zn]L(z, 1)
. (6.1)

Remarkably, for statistics whose limit laws are discrete distributions, the convergence is
already evident at n = 20. We empirically evaluate the coefficients of generating functions
whenever the associated functional equations are available.

For closed λ-terms, the corresponding systems of functional equations are infinite and
hence cannot be directly evaluated. Fortunately, truncating the infinite system at the kth
level and replacing the kth function Lk(z, u) by its infinite counterpart L∞(z, u) yields an
exponentially small difference in the dominant term coefficients, see Section 5. In what
follows, we truncate the systems at height k = 15.

6.2.1 Head abstractions

We return to head abstractions in plain and closed λ-terms. The distribution of this para-
meter for large term sizes was discussed in Section 6.1.1. Here, we study this parameter
for small term sizes. The equations for corresponding generating functions are presented
in Sections 3.2 and 4.4.
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Figure 20: Distribution histograms for the number of head abstractions in plain and closed
λ-terms.
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The convergence process for n ∈ [1, 15] is depicted in Figure 20. Head abstractions
in plain terms admit a geometric distribution while the number of head abstractions in
closed lambda terms converges to a certain computable, discrete distribution.

6.2.2 Leftmost-outermost redex search

As already mentioned in Section 6.1, the distribution associated with the cost of finding
the leftmost-outermost β-redex in plain and closed λ-terms tends to a discrete limiting
distribution. The functional systems for bivariate generating functions can be found
in Sections 3.4 and 4.6.
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Figure 21: Distribution histograms associated with the cost of redex search time in plain
and closed λ-terms.

We depict the convergence process in Figure 21. For both plain and closed λ-terms, a
remarkable detail can be observed. For λ-terms of small size, the distribution has a peak
at the value corresponding to the term size. Note that such a phenomenon is related to
β-normal forms, witnessing the worst-case time complexity of the traversal algorithm. For
larger terms, the proportion of β-normal forms in all lambda terms becomes exponentially
negligible.

6.2.3 Free variables and m-openness in plain terms

Next, we consider two parameters of plain λ-terms that require advanced marking tech-
niques. The functional equations for the cases of free variables and m-openness are given
in subsequent Sections 4.1 and 4.3.

The convergence process is depicted in Figure 22. Let us remark that the convergence
process corresponding to the number of free variables proceeds more slowly than all the
other statistics that we consider in the current paper.
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Figure 22: Distribution histograms for the number of free variables and m-openness in
plain λ-terms.

6.2.4 De Bruijn index profile

The final pair of plots concerns the profile of variables or, in other words, the profile of
de Bruin indices in random plain and closed λ-terms. In Sections 3.3 and 4.5 we show
that both parameters tend to geometric limiting distributions. Figure 23 depicts the
probability distributions for lambda terms of the size in the interval n ∈ [1, 15].
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Figure 23: Distribution histograms for De Bruijn index profile in plain and closed λ-terms.

7 Conclusions

We investigated the statistical properties of λ-terms in the De Bruijn notation, provid-
ing some insight into their internal, quantitative characteristics. In essence, our results
suggest that random λ-terms, both plain and closed, exhibit typical traits of various tree-
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like structures. For instance, the distribution of sub-patterns inside random λ-terms is
typically Gaussian whereas their corresponding finding time tends to a discrete limit dis-
tribution. Similarly, the height profile of random terms follows the Rayleigh distribution.

Nonetheless, some of the investigated parameters do not have analogues in other tree-
like structures such as, for instance, m-openness or the number of free variables. In
both cases we have established a discrete limiting distribution. Remarkably, we have
not discovered substantially different statistical traits of plain and closed lambda terms;
however, we found that among the statistics with discrete limiting distributions, the
distribution in closed terms is often different from the associated distribution in plain
terms.

Given the general algorithmic frameworks meant for the construction of effective exact-
and approximate-size combinatorial samplers, such as Boltzmann samplers [DFLS04] and
the recursive method [NW78,FZC94], presented parameter specifications provide a novel
source of effective sampling methods for λ-terms with additional control over their specific
combinatorial parameters. In this context, most parameter specifications associated with
plain terms are finite and hence also readily applicable. Remaining, infinite specifica-
tions are a bit more involved. Nonetheless, an appropriate truncation of the specification
followed by a final rejection phase allows to discard inadmissible terms. The exponen-
tial convergence of intermediate, truncated specifications rationalises such an approach
and provides effective samplers for corresponding λ-terms. Let us also remark that so
generated terms do not have to be restricted to their natural parameter distributions.
It is possible to gain an additional control over the expected parameter values using a
dedicated tuning procedure which distorts the intrinsic parameter distribution and hence
allows for a skewed parameter distribution sampler construction [BBD18]. Consequently,
the presented analysis provides means for an effective construction of various samplers for
(plain or closed) λ-terms with additional control over their parameter distribution.

Few more aspects of the parameter analysis of λ-terms remain untouched. For instance,
our empirical data suggests that the distribution of binding abstractions, both in plain
and closed terms, is Gaussian. The same holds for the number of open subterms. Alas,
the theoretical verification of our empirical findings is left open. Moreover, we have
not investigated other, well-known parameters. Let us mention, for instance, the height
distribution of random closed terms, or the distribution of certain extremal statistics, such
as the maximal De Bruijn index, longest lambda run, or the maximal number of variables
bound to a single abstraction. We conjecture that the behaviour of these parameters in
closed terms does not substantially differ from the behaviour of respective parameters in
plain terms. Finally, the question of generalised m-openness also has not been settled and
the corresponding techniques are still to be developed.

Arguably, from the viewpoint of analytic combinatorics, our novel result complements
the existing result of Drmota, Gittenberger and Morgenbesser [DGM12] on infinite sys-
tems. In our formulation, the infinite system is not required to be strongly connected.
Consequently, we conjecture that the properties of the Jacobian operator of the infinite
system are not sufficient to deduce the result, in contrast with the mentioned paper. In
other words, we conjecture that the condition of exponential convergence is essential.
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Moreover, we discovered that it is possible to rewrite the infinite system defining closed
λ-terms as a strongly connected system, however the Jacobian of the resulting system is
not compact. Alas, the framework [DGM12] is not applicable.

Consequently, we finish the paper with an even more general question: what can be
stated about the properties of infinite systems which are either not strongly connected or
have a non-compact Jacobian operator?
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A Standard tools

A.1 Analytic tools

In the following subsection we present standard, analytic combinatorics tools following
the exposition of Flajolet and Sedgewick [FS09]. We also assume conventional notation
corresponding to generating functions, their coefficients and asymptotic expansions. We
refer the reader to [FS09,Wil06] for a detailed exposition.

For our purposes, combinatorial parameter analysis outlines as follows:

• Let an,k denote the number of plain (closed) lambda terms of size n for which the
investigated parameter takes value k. Note that we do not assume that the numbers
an,k are a priori known. With such a two-dimensional sequence of numbers we
associate a bivariate generating function

A(z, u) :=
∑
n,k>0

an,kz
nuk; (A.1)

In order to simultaneously study several different parameters of interest, we intro-
duce multivariate generating functions in form of

A(z,u) =
∑
n,k>0

an,kz
nuk (A.2)
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where u = (u1, . . . , ud) is a d-dimensional variable, k = (k1, . . . , kd) is a d-
dimensional index satisfying ki > 0, uk := uk11 u

k2
2 · · ·u

kd
d , and an,k denotes the

number of plain (closed) lambda terms of size n for which the investigated para-
meter values equal k1, k2, . . . , kd, respectively;

• Considered combinatorial parameters (patterns) inside plain or closed λ-terms are
described in terms of admissible combinatorial specifications (sometimes infinite, as
in the case of closed terms);

• So obtained specifications are then converted into systems of equations involving
multivariate generating functions where additional variables u = (u1, u2, . . . , ud)
mark associated combinatorial patterns;

• In the case of plain lambda terms, the resulting systems of equations are solved,
usually approximately, in terms of standard complex-valued functions like f(z) =√

1− z. The coefficients of associated generating functions depend on the marking
variables u = (u1, u2, . . . , ud). In the case of closed lambda terms, novel tools
developed in Section 5 are applied;

• Finally, an application of Flajolet and Odlyzko’s transfer theorem provides access
to probability generating functions of the limiting probability distributions. In con-
sequence, properties of investigated combinatorial parameters become readily avail-
able.

A.1.1 Asymptotic expansions

In order to access the asymptotic form of the coefficients of corresponding generating
functions, we view them as functions analytic at the origin of the complex plane and
examine their singularities, in particular so-called dominant singularities of smallest pos-
sible absolute value. Typically, at this point, an analytic continuation of the formal power
series outside its circle of convergence is required. The following, usual domain in which
the function is considered, is called a delta-domain.

Proposition A.1 (Transfer theorem [FS09, Section VI.3]). Suppose that f(z/ρ) is a
function analytic in the so-called delta-domain ∆(R, φ) for some R > 1 and 0 < φ < π

2
,

where
∆(R, φ) = {ζ : |ζ| < R, ζ 6= 1, arg(ζ − 1) > φ}. (A.3)

Suppose that as z → ρ, for z/ρ ∈ ∆(R, φ), it holds

f(z) = h(z)− g(z)

(
1− z

ρ

)−α
+O

(∣∣∣∣1− z

ρ

∣∣∣∣−β
)

(A.4)

where α, β ∈ C \ Z60, and h(z) and g(z) are functions analytic in |z| < R.
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Then, as n→∞, the coefficients [zn]f(z) admit an asymptotic approximation in form
of

[zn]f(z) ∼ g(ρ) · ρ−n · n
α−1

Γ(α)
+O

(
ρ−nnβ−1

)
(A.5)

where Γ: C \ Z60 → C is the Gamma function defined as Γ(z) =
∫∞
0
xz−1e−xdx.

In particular, if for z/ρ ∈ ∆(R, φ), as z → ρ, we have

f1(z) ∼ h1(z)− g1(z)

√
1− z

ρ
and f2(z) ∼ g2(z)√

1− z

ρ

, (A.6)

then we obtain, as n→∞, the following coefficient expansions:

[zn]f1(z) ∼ g1(ρ)ρ−n

2
√
πn3/2

and [zn]f2(z) ∼ g2(ρ)ρ−n√
πn1/2

. (A.7)

Proposition A.2 (Semi-large powers theorem, [FS09, Theorem IX.16], [BFSS01]). Sup-
pose that f(z/ρ) is a function analytic in delta-domain ∆(R, φ), see Proposition A.1, for
some R > 1, and f(z) admits asymptotic expansion as z → ρ for z/ρ staying in ∆(R, φ):

f(z) ∼ 1− a
√

1− z

ρ
. (A.8)

Then, for x in any compact subinterval of (0,+∞) the coefficient standing by zn in f(z)k

admits an asymptotic estimate

[zn]f(z)k ∼ ρ−n

n
S(ax) (A.9)

where S(x) is the Rayleigh function satisfying

S(x) =
xe−x

2/4

2
√
π

and x =
k√
n
. (A.10)

A.1.2 Algebraic systems

The following theorem, commonly known as the Drmota–Lalley–Woods theorem, is a
fundamental result obtained independently by several authors [Drm97,Woo97, Lal93] in
order to establish limit laws in various families of tree structures specified by context-free
grammars. In our exposition, we reference Drmota’s book [Drm09, Section 2.2.5], and the
papers [Drm97,DGM12,PSS12,BBY10].

Definition A.3. Consider a polynomial system of equations

y = Φ(z,y,u) (A.11)

which is a vector notation for (yj = Φj(z, y1, . . . , ym, u1, . . . , ud)) with j ranging over
1, . . . ,m. Assume that Φ(0,0,0) = 0. Then,
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• Φ(z,y,u) is said to be non-linear if at least one of its component polynomials Φj

is non-linear in one of the formal variables y1, . . . , ym;

• Φ(z,y,u) is said to be algebraic positive if all of its component polynomials Φj have
non-negative coefficients;

• Φ(z,y,u) is said to be algebraic proper if it admits a unique formal power series
solution to which the iteration

y0(z,u) = 0 and yk+1(z,u) = Φ(z,yk(z,u),u) (A.12)

considered in the metric space of formal power series with valuation, converges as

k →∞, and the Jacobian matrix
∂Φ

∂y
is nilpotent at (z,y) = (0,0).

• Φ(z,y,u) is said to be algebraic irreducible if its dependency graph (i.e. a graph
whose vertices are the integers 1, . . . ,m and there exists a directed edge k → j if yj
figures in a monomial of Φk) is strongly connected;

• Φ(z,y,u) is said to be algebraic aperiodic if each of its component solutions yj(z,1)
for j = 1, . . . ,m is aperiodic in the sense that the greatest common divisor of the
pairwise differences of the set of exponent indices of z within yj(z,1) is equal to 1.

Remark A.4. The notion of algebraic properness of systems, also referred to as well-
foundedness, is extensively studied in [PSS12, Section 5]. As discussed in [PSS12,Joy81],
the system has combinatorial meaning only if the Jacobian is nilpotent, i.e. if the re-
cursive definition is well-defined and allows to inductively construct all the instances of
combinatorial species.

Let us note that the condition Φ(0,0,0) = 0 is a technical assumption of the Drmota–
Lalley–Woods theorem. Pivoteau, Salvy and Soria consider, inter alia, well-founded sys-
tems for which y(0,0) 6= 0. One possible characterisation of such systems is the condition
that the limit of a suitable iterative approximation procedure yields the solution of the
initial functional system.

The assumption that a system is polynomial can be replaced by a more general as-
sumption that the functions are analytic, see [Drm97]. For a detailed and non-trivial
study of the conditions regarding analytic functions and the configuration of the critical
points in this more general case, see [BBY10].

Proposition A.5 (Irreducible positive polynomial systems). Let

y = Φ(z,y,u) = (yj = Φj(z, y1, . . . , ym,u)) , j = 1, . . . ,m (A.13)

be a non-linear polynomial system of equations which is algebraic positive, proper, and
irreducible. Then there exists ε > 0 such that all component solutions yj(z,u) admit
representation of the form

yj(z,u) = hj

(√
1− z

ρ(u)
,u

)
=
∑
k>0

ck,j(u)

(
1− z

ρ(u)

)k/2
(A.14)
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for u in a neighbourhood of 1, |z − ρ(u)| < ε and arg(z − ρ(u)) 6= 0, where ck,j(u) and
ρ(u) are analytic functions of u, and the functions hj(t,u) are analytic at (t,u) = (0,1).
In addition, if the system is algebraic aperiodic, then all yj have ρ(u) as their unique
dominant singularity, and there exist constants 0 < δ < π/2 and η > 0 such that y(z,u)
is analytic in a region of the form

∆ := {z : |z| < ρ(1) + η, | arg(z/ρ(u)− 1)| > δ}. (A.15)

Remark A.6. The above Drmota–Lalley–Woods theorem has been further generalised by
Drmota, Gittenberger and Morgenbesser in the case of strongly connected systems with
infinitely many equations [DGM12]. In their generalisation, the authors require that
the Jacobian of the system (or some of its power) is a compact operator. Alas, as the
system corresponding to closed λ-terms is not strongly connected, it does not fit into their
framework. In the current paper we introduce a new condition of exponential convergence
which is independent of the Jacobian and conjecture that it is crucial for obtaining the
respective Puiseux expansions of generating functions.

Proposition A.7 (Differential condition for the systems of equations [DGM12, see proof
of Theorem 1]). Let y = Φ(z,y) be a non-linear system of polynomial equations yj =
Φj(z, y1, . . . , ym) with j ranging over 1, . . . ,m. Assume that y = Φ(z,y) is algebraic
positive, proper and irreducible. Let ρ be the common singularity of its solution vector
yj. Then, the spectral radius (largest absolute value of its eigenvalues) of the Jacobian

matrix
∂Φ

∂y
is a strictly increasing function of z on the interval [0, ρ] and is bounded from

above by 1, with the equality holding if and only if z = ρ.

A.2 Limit laws

Consider a bivariate generating function L(z, u) with non-negative coefficients and a se-
quence of random variables (Xn)n>0 such that

L(z, u) =
∑
n,k>0

an,kz
nuk and P(Xn = k) =

an,k∑
j>0 an,j

. (A.16)

We say thatXn is associated with variable u. In order to understand the limiting behaviour
of Xn we investigate the probability generating function pn(u) of Xn defined as

pn(u) :=
∑
k>0

P(Xn = k)uk =
[zn]L(z, u)

[zn]L(z, 1)
. (A.17)

Once accessed, pn(u) proves extremely useful in establishing the traits of Xn as n
tends to infinity. In what follows, we focus on two types of limiting distributions. The
first type is related to the case of a so-called fixed singularity, which results in discrete
limit law; the second type is related to so-called moving singularity, and typically results
in a Gaussian limit law.
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A.2.1 Discrete limit laws

Proposition A.8 ( [FS09, Section IX.2]). Suppose that bivariate power series L(z, u)
admits in a complex neighbourhood of u = 1 a Puiseux series expansion in form of

L(z, u) = α(u)− β(u)

√
1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) (A.18)

as z → ρ uniformly in delta-domain ∆(R) for some R > ρ (see Proposition A.1). Then,
the random variable Xn associated with the marking variable u converges in distribution
to a discrete limiting distribution with probability generating function

p(u) = lim
n→∞

pn(u) =
β(u)

β(1)
. (A.19)

The corresponding mean values satisfy

lim
n→∞

EXn =
β′(1)

β(1)
. (A.20)

A.2.2 Central limit theorem

Remark A.9. In 1983, Bender and Richmond [BR83] proved a multi-dimensional variant of
the central limit theorem for probability generating functions taking the quasi-power form
pn(u) ∼ A(u)B(u)n. This line of research was later continued by Hwang [Hwa98] who
established precise rates of convergence in the one-dimensional case. The two-dimensional
case by was next investigated by Heuberger [Heu07]. More recently, in 2016, the full
multi-dimensional version has been resolved by Heuberger and Kropf [HK16] using a
multi-dimensional version of the Berry–Esseen inequality. Although we do not touch on
the rates of convergence in the current paper, let us mention that they can be obtained
using the above results.

In order to formulate the multivariate central limit theorem, it is convenient to intro-
duce the notion of logarithmic derivative which enters the mean value and the covariance
matrix of the resulting random variable.

Definition A.10. The logarithmic derivative of A(z, u) is given by the expression

∂

∂ log u
A(z, u) :=

∂

∂η
A(z, eη)

∣∣∣∣
η=log u

= u
∂

∂u
A(z, u). (A.21)

Proposition A.11 (Multivariate central limit theorem, [BR83, Theorem 1]). Let (Xn)∞n=1

be a sequence of coordinate-wise non-negative d-dimensional discrete random vectors with
probability generating functions pn(u) := E(uXn), u = (u1, u2, . . . , ud). Suppose that
uniformly in a fixed complex neighbourhood of u = 1 one has

pn(u) ∼ A(u) ·B(u)n (A.22)
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where A(u) is uniformly continuous and B(u) has a quadratic Taylor series expansion
with error term O

(∑
|uk − 1|3

)
. Assume that B(u) satisfies the following variability

condition:
det

[
∂2 logB(u)

∂ log ui ∂ log uj

]
i,j

> 0. (A.23)

Then, the sequence of random variables Xn, after standardization, converges in law to
Gaussian random variable satisfying

Xn − EXn√
n

d→ N (0,Σ) . (A.24)

The mean vector and the covariance matrix satisfy

EXn ∼ n · ∂B
∂u

∣∣∣∣
u=1

and CovXn ∼ n ·
[

∂2 logB(u)

∂ log ui∂ log uj

]
i,j

∣∣∣∣∣
u=1

. (A.25)

In the one-dimensional case (A.25) simplifies to

E(Xn) ∼ nB′(1) and V(Xn) ∼ n
(
B′′(1) +B′(1)−B′(1)

2
)
. (A.26)

Remark A.12. Typically, when the singularity is moving (see Proposition A.5) the bivari-
ate generating function takes the form

A(z,u) = α(u)− β(u)

√
1− z

ρ(u)
+O

(∣∣∣∣1− z

ρ(u)

∣∣∣∣) (A.27)

uniformly as z → ρ(u) for u in a vicinity of 1.
Consequently, the probability generating function takes form

pn(u) ∼ β(u)

β(1)

(
ρ(1)

ρ(u)

)n
. (A.28)

In this form, the probability generating function satisfies the premises of the multivari-
ate quasi-power theorem (see Theorem A.9) and so one can also obtain the speed of
convergence. In our situations this speed is typically of order O

(
1√
n

)
.

Remark A.13. For convenience, we say that a random vector Xn converges in law to
multivariate Gaussian distribution with mean nµ and variance nΣ writing

Xn
d−→ N (nµ, nΣ) (A.29)

to denote that
Xn − nµ√

n

d−→ N (0,Σ).

the electronic journal of combinatorics 26(4) (2019), #P4.1 70


	Introduction
	Preliminaries on lambda calculus
	Enumeration

	Basic statistics of plain lambda terms
	Joint distribution of variables, abstractions, successors and redexes
	Head abstractions in plain lambda terms
	De Bruijn index values in plain lambda terms
	Leftmost-outermost redex search
	Height profile in plain lambda terms

	Advanced marking
	m-openness and the enumeration of closed terms
	Variables, abstractions, successors and redexes in closed terms
	Free variables in plain terms
	Head abstractions in closed terms
	De Bruijn index values in closed lambda terms
	Leftmost-outermost redex search time in closed terms
	Node height profile in closed terms

	Infinite systems of algebraic equations
	Calculus techniques for formal power series
	Forward recursive systems
	Coefficient transfer for infinite systems

	Empirical results
	Empirical evaluation of Boltzmann samplers
	Head abstractions
	Free variables in plain lambda terms
	Leftmost-outermost redex search
	Open subterms
	Binding abstractions
	Maximal number of variables bound to a single abstraction
	m-openness of plain lambda terms
	Generalised m-openness of plain and closed terms

	Empirical speed of convergence from generating functions
	Head abstractions
	Leftmost-outermost redex search
	Free variables and m-openness in plain terms
	De Bruijn index profile


	Conclusions
	Standard tools
	Analytic tools
	Asymptotic expansions
	Algebraic systems

	Limit laws
	Discrete limit laws
	Central limit theorem



